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Preface 

Prostatic adenocarcinoma (CAP) is the second most common malignancy with an 
estimated 190,000 new cases in the USA in 2010 (Source: American Cancer Society), 
and is the most frequently diagnosed cancer among men. If CAP is caught early, men 
have a high, five-year survival rate. Unfortunately there is no standardized image-
based screening protocol for early detection of CAP (unlike for breast cancers). In the 
USA high levels of prostate-specific antigen (PSA) warrant a trans-rectal ultrasound 
(TRUS) biopsy to enable histologic confirmation of presence or absence of CAP. 

With recent rapid developments in multi-parametric radiological imaging tech-
niques (spectroscopy, dynamic contrast enhanced MR imaging, PET, RF ultrasound), 
some of these functional and metabolic imaging modalities are allowing for definition 
of high resolution, multi-modal signatures for prostate cancer in vivo. Distinct compu-
tational and technological challenges for multi-modal data registration and classifica-
tion still remain in leveraging this multi-parametric data for directing therapy and 
optimizing biopsy. Additionally, with the recent advent of whole slide digital scan-
ners, digitized histopathology has become amenable to computerized image analysis. 
While it is known that outcome of prostate cancer (prognosis) is highly correlated with 
Gleason grade, pathologists often have difficulty in distinguishing between intermedi-
ate Gleason grades from histopathology. Development of computerized image analysis 
methods for automated Gleason grading and predicting outcome on histopathology 
have to confront the significant computational challenges associated with working 
these very large digitized images. 

This workshop aims to bring together clinicians, computer scientists, and industrial 
vendors of prostate cancer imaging equipments to discuss (1) the clinical challenges 
and open problems, (2) present state-of-the-art research in quantitative image analysis 
and visualization methods for prostate cancer detection, diagnosis, and prognosis from 
multi-parametric imaging and digitized histopathology, and (3) advances in image 
guided interventions for prostate cancer therapy and biopsy. The workshop aims to 
acquaint clinicians, urologists, radiologists, oncologists, and pathologists on the role 
that quantitative and automated image analysis can play in prostate cancer diagnosis, 
prognosis, and treatment and also for imaging scientists to understand the most press-
ing clinical problems.  

This year’s workshop hosted two invited talks. The first was on challenges in histo-
pathological imaging and analysis of prostate cancer by Dr. John Tomaszewski, MD, 
Chair, Department of Pathology, Hospital at the University of Pennsylvania, Philadel-
phia, PA. The second invited talk was given by Dr. Jurgen J. Fütterer, MD, Dept of 
Radiology, Radboud University Nijmegen Medical Centre, The Netherlands, who will 
be speaking about the role of MRI in prostate cancer detection and diagnosis.  

A total of 13 papers were received in response to the call for papers for the work-
shop. Each of the 13 papers underwent a rigorous, double-blinded peer-reviewed 
evaluation, with each paper being reviewed by a minimum of 2 reviewers. Based on 
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the critiques and evaluations, 11 of the 13 papers were accepted for presentation in the 
workshop. An additional two invited papers, from two prominent groups working in 
the areas of prostate cancer diagnosis and prognosis were also received. The papers 
cover a range of diverse themes, including (a) prostate segmentation, (b) multi-modal 
prostate registration, and (c) computer-aided diagnosis and classification of prostate 
cancer. The clinical areas covered included (1) radiology, (2) radiation oncology, (3) 
digital pathology, and (4) image guided interventions. 
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Prostate Cancer MR Imaging

Jurgen J. Fütterer

Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

1 Abstract

With a total of 192,280 new cases predicted for 2009, prostate cancer (PC) now
accounts for 25% of all new male cancers diagnosed in the United States [1].
Furthermore, in their lifetime, one in six men will be clinically diagnosed with
having PC, although many more men are found to have histological evidence of
PC at autopsy [2,3,4]. Presently, approximately 1 in 10 men will die of PC [5,6].
The ever-aging population and wider spread use of the blood prostate-specific
antigen (PSA) test [7,8], as well as the tendency to apply lower cut-off levels for
this test [9], will further increase the diagnosis of this disease [10].

An elevated PSA level, abnormal changes in PSA level (i.e. PSA dynam-
ics) such as PSA velocity or doubling time, or an abnormal digital rectal ex-
amination are biologic indicators signaling an increased risk of PC. With the
improvement and wider range of curative therapies, detection and subsequent
exact localization of PC have become increasingly important because of their
influence on treatment strategy [11,12]. Two such affected treatments are la-
paroscopic (robotic) radical prostatectomy and intensity-modulated radiation
therapy (IMRT) [13]. The urologists inability to palpate the operating field dur-
ing laparoscopic surgery makes it even more crucial to know where the cancer
is located. Similarly, the urologist must know whether the cancer is near a neu-
rovascular bundle since this affects the decision of whether or not to perform
nerve-sparing prostatectomy [14]. IMRT also necessitates accurate PC localiza-
tion. While giving a standard dose to the prostate, a higher (i.e. boost) dose
can be given to any dominant intraprostatic lesion(s) since it is those lesion that
regularly appear to be the sites of recurrent disease [15]. Furthermore, precision
radiation dosimetry will decrease radiation complications, particularly rectal wall
toxicity [16], thereby likely diminishing the development of post-radiation rec-
tal cancer [17].In order to determine the optimal treatment for the individual
patient, it is necessary to evaluate all patient and cancer characteristics. Most
often used for this purpose are laboratory values (PSA level and dynamics), the
results of the digital rectal examination (clinical staging), and histopathologic
prostatic biopsy findings (Gleason score). However, MR imaging may play an
important role in detecting and localizing areas most reflective of the actual ag-
gressiveness of the cancer. This directly influences the assessment of the patient
and may lead to important changes in treatment strategy, which can mean the
difference between treatment success and failure.

A. Madabhushi et al. (Eds.): Prostate Cancer Imaging 2010, LNCS 6367, pp. 1–3, 2010.
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2 J.J. Fütterer

In the mid 1980s, the first prostate magnetic resonance (MR) imaging examina-
tions were performed. Since that time MR imaging has evolved from a promising
technique into a mature imaging modality for prostate cancer imaging [18,19]. Be-
side anatomical information, MR imaging can also provide functional tissue char-
acteristic information. Multi-parametric MR imaging consists of a combination of
anatomic T2-weighted imaging and functional MR imaging techniques such as dy-
namic contrast-enhanced MR Imaging (DCE-MRI), diffusion weighted imaging
(DWI), and 1H MR-Spectroscopic Imaging (MRSI). Within a multi-parametric
MR imaging examination the relative value of its component techniques, differ. In
addition to T2 weighted MR imaging which mainly assesses anatomy, MRSI [20]
can add specificity for prostate cancer detection,whileDCE-MRI [21] andDWI [22]
are both very sensitive and very specific.

The clinical challenges in the work-up of patients with either suspected or
proven prostate cancer include detection, localization, TNM-staging, determi-
nation of cancer aggressiveness, follow-up of patients in active surveillance pro-
tocols, and the determination of the site and extent of cancer recurrence after
therapy. In this presentation, the prostate MR anatomy and the basic MR tech-
niques which can be applied in prostate cancer, will be described and the clinical
role of MR imaging will be discussed. Finally, three clinically applicable protocols
are suggested.
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Computer Aided Detection of Prostate Cancer
Using T2, DWI and DCE MRI: Methods and

Clinical Applications

Henkjan Huisman1, Pieter Vos, Geert Litjens,
Thomas Hambrock, and Jelle Barentsz

Diagnostic Image Analysis Group, Dept. Radiology
Radboud University Nijmegen Medical Centre,

Nijmegen, The Netherlands
h.huisman@rad.umcn.nl

http://www.diagnijmegen.nl

Abstract. One in 10 men will be diagnosed with prostate cancer dur-
ing their life. PSA screening in combination with MR is likely to save
lifes at low biopsy and overtreatment rates. Computer Aided Diagnosis
for prostate MR will become mandatory in a high volume screening ap-
plication. This paper presents an overview including our recent work in
this area. It includes screening MR setup, quantitative imaging features,
prostate segmentation, and pattern recognition.

Keywords: computer aided diagnosis, prostate cancer, segmentation,
pattern recognition, screening.

1 Introduction

Prostate cancer is the most commonly diagnosed cancer among men and remains
the second leading cause of cancer death in men. In 2009, approximately 192,000
in the United States (US) and 9600 in the Netherlands (NL) men were diagnosed
with prostate cancer, and 27,000 (US) and 2400 (NL) men died from this disease
[20] and (http://www.cbs.nl). The prostate specific antigen (PSA) blood test
disseminated 20 years ago, and helped shift the disease stage at the time of
diagnosis to a much lower and potentially more curable stage. However, early
detection of prostate cancer remains a source of uncertainty and controversy.[20]

Recently, it has been established that PSA and systematic transrectal ultra-
sound (TRUS) testing can reduce prostate cancer mortality. In a large intention
to screen trial, Schroder et al [12] showed a mortality reduction of 20% (improved
trial showed 30% [11]). The Schroder clinical workflow had two major problems:
low specificity of the PSA test and biopsy as subsequent gold standard. The re-
sults showed that 1410 men would need to be screened and 48 cases of prostate
cancer need to be treated to prevent one death from prostate cancer.

Magnetic resonance imaging (MRI) can be used to increase specificity, guide
biopsy, and improve staging. Prostate MRI has evolved since its first application

A. Madabhushi et al. (Eds.): Prostate Cancer Imaging 2010, LNCS 6367, pp. 4–14, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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in the late 80’s [4]. This millennium saw the start of high resolution 3D T2
weighted sequences and 3D dynamic contrast enhanced MR (DCEMR), later
followed by 3D diffusion weighted imaging (DWI). Localization of prostate cancer
can be performed at a high diagnostic accuracy and has been applied in a first
clinical application: MR guided intensity modulated radiotherapy planning [1,7].
Tanimoto et al. [14] using a combination of T2 weighted, DWI, and DCEMR
concluded that in patients with a PSA level over 4 ng/ml unnecessary biopsy can
be avoided without missing prostate cancer. A recent development is to perform
MR guided biopsy of MR determined tumor suspicious regions after having a
positive MR. This approach proved to be an accurate method to detect clinically
significant prostate cancer in men with repeat negative biopsies and increased
PSA levels.[2]

Computer aided diagnostic tools will become essential if mass application of
MR would becomes a viable option. Reporting the huge volume of prostate MR
accurately and efficient will require skills and the right tools including com-
puterized analysis techniques that help to reduce oversight and interpretation
errors. In this paper we describe some of our efforts and recent development on
computer aided diagnosis applied to prostate MR.

2 Role of MR in Screening

In the Netherlands 2400 men die each year of prostate cancer. In the population
50-80 yr (2.000.000) that would amount to an incidence of aggressive prostate
cancer of about 0.1%, where aggresive is defined as lifethreatening. Similar to
breast cancer (same order of incidence), screening by repeat testing can find a
substantial number of these 0.1% that require treatment at a stage where cure is
still possible. It is essential for screening not to inflict unnescessary harm to men
without aggressive cancer, therefore a high specificity of the screening test is
essential. In contrast to breast cancer, there is a high incidence of non agressive
prostate cancer: most men die with prostate cancer, but not from prostate cancer.
These non-aggressive cancers do not require treatment and it is thus important
to discriminate agressive from non-agressive cancers.

The PSA test alone is not suitable for screening due to its low specificity. At
a PSA threshold of 4 [ng/ml] the sensitivity is 51% at a specificity of 91% for
detecting aggressive cancers. At a PSA threshold of 3, the sensitivity is 68% at a
specificity of 85% [20]. A PSA level of 3 in a group of 10.000 men with on average
10 aggressive cancers would result in about 7 cancers to be correctly found. The
same PSA test however will also be positive for 1500 men. In the current workflow
(see figure 1) this would mean 1500 unnescessary biopsies. The biopsy is a second
test to find the 7 cancers requiring treatment. Regular systematic first session
biopsies have a sensitivity in between 60 to 70%. Moreover, biopsy has only 50 to
70 % accuracy to predict true GS in prostatectomy. It is obvious that aggressive
cancers will be missed and over- and undertreatment will result.

We are currently investigating means to reduce the number of unnecessary
biopsies and increase the diagnostic yield of the biopsies by using MR as a
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second test after PSA testing. Early results show that MR can operate at a
sensitivity of 95% with a specificity of 74% [14]. At that setting about 1100 (74%
of 1500) unnescessary biopsies can be avoided. Moreover, the MR can guide the
biopsy resulting in more representative and fewer cores [2]. The huge reduction
in number of biopsies may render prostate MRI cost-effective. Further research
should focus on higher specificity MRI and augmenting TRUS to include MR as
guidance using automatical, fast and accurate techniques, e.g. [5].

Fig. 1. Prostate cancer detection workflows. Top workflow represents the current situ-
ation. The bottom workflow is our proposed future situation including MR.

3 Quantitative Image Features

Diagnostic imaging and computer aided diagnosis require discriminative image
features (or biomarkers) that significantly differentiate (aggressive) prostate can-
cer from other physiological changes. The raw MR sequences often require further
processing to reduce for example the coil sensitivity profile or dependencies on
administered contrast agent profile. In this section we focus on our recent work
on three types of image features: proton relaxation, diffusion weighted imaging
and pharmacokinetic DCE-MRI.

3.1 T1 and T2 Relaxation

Quantification of T1 and/or T2 relaxation can be done on the MR machine with
dedicated sequences. These sequences are often time consuming, consequently
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producing either low resolution or are being too slow for practical use in prostate
MR. We have been using the method by Hittmair et al.[3] in dynamic contrast en-
hanced MR to quantify tracer concentration. It uses an additional proton density
weighted MR sequence that adds only a minute to the total acquisition time. The
method also produces T1 estimates (or R1=1/T1, see paper appendix). The orig-
inal method was setup using FLASH sequences assuming a gradient echo signal
model. We have extended the method to handle any sequence model. T1 relax-
ation is a good biomarker to identify recent biopsy locations because hemorrhages
resemble malignancy due to the strong and fast contrast enhancement. We use
it as one of the features in our CAD systems [18], but we also display T1 images
to the clinician.

T2 estimation seemed feasible as well with the above method. As prostate MR
includes one or more T2 weighted images. we generalized the Hittmair method
further to estimate T2 from a T2 weighted and a proton density sequence and
known sequence models [17]. The T2 weighted and the proton density turbo spin
echo sequence signals at voxel position x are modelled by:

st2w(x) = Gt2wsin(θt2w)ρ(x)exp(−TE/T 2(x)) (1)
spd(x) = Gpdsin(θpd)ρ(x) (2)

where G represents the gain setting and θ the flip angle and ρ is a function
comprising proton density fluctuations and coil profile at location x. The T 2 at
position x is then derived by rewriting the above equation to:

T 2(x) =
−TE

log(st2w(x)) − log(spd(x)) − log(ηt2w,pd)
, (3)

where ηt2w,pd is the gain ratio estimated using a per patient reference fat tissue
with know relaxation properties. The additional effort in that work was to also
compensate for movement and deformation of the prostate in between the 15
minutes of the two sequences. The estimated T2 was validated by assessing its
diagnostic accuracy. The area under the ROC curve for discriminating benign
and malignant lesions was 0.64 for the unprocessed T2 weighted images and 0.86
for our T2 estimate. Further validation with additional T2 estimator sequences
showed very good correlation (r=0.97).

3.2 Diffusion Weighted Imaging

Diffusion Weighted Imaging (DWI) uses sequences that are sensitive to changes
in random Brownian motion properties of water molecules (diffusion) in tissue.
The degree of restriction to water diffusion in biologic tissue is inversely cor-
related to tissue cellularity and the integrity of cell membranes. Quantitative
analysis can be made using the apparent diffusion coefficient (ADC) derived
from several DWI images at different b strengths. The clinical role of DWI in
tumor localization with the prostate has extensively been reported before.

We have established that prostate cancer Gleason Score (GS) is strongly cor-
related with ADC[2]. We have also established that a normalized ADC value
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Fig. 2. Example images to demonstrate the effectiveness of the T2 estimation method.
To the left a slice from the original T2 weighted images, to the right the T2 estimate
of the same slice. The coil profile in the prostate has clearly reduced allowing more
narrow window settings and show more contrast. Notice the contrast difference of a
hypo dense lesion in the left periferal zone of the prostate (arrow).

(using both surrounding and mirror normal PZ) is even stronger correlated to
tumor aggressivity. We hypothesize that either ADC is also dependent on normal
prostatic tissue physiology and that normal values vary significantly per patient,
or ADC is still dependent on MR machine settings that differ per patient.

3.3 Pharmacokinetic DCEMR

Pharmacokinetic (PK) MR features quantify blood flow, permeability and tis-
sue extracellular volume. The volume transfer constant Ktrans[min−1] under
permeability limited conditions quantifies the permeability surface area of tis-
sue vasculature and is the most diagnostic feature [1]. Various PK estimation
methods exist, generally assuming a two compartment tissue model [15]. We
have investigated robust and fast DCEMR curve fitting methods [6] and later
on extended this to pharmacokinetic modeling [7] integrated with a reference
tissue method [9] to estimate the arterial input function (AIF). The AIF drives
the tissue model and directly affects the output. We have established that AIF
estimation strongly affects the diagnostic accuracy of PK methods [16]. In a
CAD application the common population based AIF achieved an AUC of 0.65
whereas the reference tissue method achieved 0.80. In that same publication we
presented an automatic method to segment the reference tissue region.
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4 Computer Aided Detection

Computer aided detection (CAD) is commonly used in breast cancer screening
to help reduce errors in oversight and interpretation. CAD systems generally
follow a radiologist perception strategy. Within the organ region a quick scan is
performed that results in several initial findings. Each of these findings is further
investigated and if any finding is then above a threshold of suspiciousness the
person is recalled for further diagnostic work-up. The initial voxel based detector
and the lesion classifier are both pattern recognition systems trained on sufficient
annotated cases with validated ground truth.

4.1 Prostate Segmentation

Segmentation of the prostate is required to reduce false positives in computer
aided detection of malignant lesions. Segmentation is challenging due to the het-
erogeneity of the zonal anatomy and embedding in variable context. The prostate
is situated in between bladder, rectum, two levator ani muscles, fat, neuro vascu-
lar bundles, pelvic bone and penis. Single object segmentation strategies that do
not account for this heterogeneous context of the prostate (e.g. region growing,
deformable surface models) are unlikely to produce satisfactory results. A first
context based method was published by Klein et al.[8]. They applied atlas based
segmentation on MR to automatically delineate the prostate in a radiotherapy
planning application. They showed good results on the majority of cases. How-
ever, the population variation was such that the atlas based population model
could not segment all the cases robustly. Furthermore, their method was rather
computationally expensive, which would be a problem for large scale application.

We propose a new parametric multi-object probabilistic anatomy model based
prostate segmentation method that incorporates context using a population
model. The pelvic anatomy and modality appearance are modeled by a set of
synthetic parametric anatomy objects. Each object has several parameters to
define shape and appearance. The complete pelvic model is characterized by a
parameter vector x. A population based probability function p(x) is defined that
returns the probability of a pelvic model realization to occur in a population.
The pelvic model is fitted to the MR images by finding the optimal set of pa-
rameters xopt that maximize the appearance correlation and probability in the
population. The appearance correlation is computed by simulating pelvic MR
images and correlate these with the actual MR images. The population model
constrains the pelvic model parameters to feasible solutions within the popula-
tion. The population model not only constrains individual anatomical objects
to be within a certain range (e.g. prostate diameter between 2-6cm), but also
captures the contextual relation between objects (rectum is beneath prostate).
The optimal pelvic model is then used to segment the images by probabilistic
modeling. Each anatomic object defines a spatial and grey value likelihood. For
each voxel the likelihood is computed for each anatomical object which is based
on position and grey value(s). The segmentation then results by assigning the
most likely anatomic object label to each voxel.
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Rectum
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Fig. 3. Parametric pelvic anatomical model definition

Estimating the population model function would require large training
databases for even modest pelvic anatomy models. We propose a solution to
redefine the anatomy model such that context is captured in several parame-
ters and that these parameters are independent. For example, the prostate and
rectum center location stored individually requires 6 parameters, none of which
individually captures the distance between the two (context). A redefinition of
parameters such that the rectum position is defined by a distance from and an-
gle to the prostate captures context, and also renders the parameters reasonably
uncorrelated. We have redefined the above pelvic model parameters to x′ (see
also Figure 3). Assuming independence the population probability function can
be redefined as a multiplication of Gaussians N :

p(x′) =
∏

Ni (4)

Each parameter (i) of the rewritten pelvic model is characterized by a mean
and standard deviation. This can be estimated from even a modest training set.
Moreover, it allows integration of explicit prior knowledge. For example, prostate
size is on forehand known to be within a certain range. Similarly are the grey
value distribution of the appearance of several anatomic objects. Figure 4 shows
an example segmentation achieved by this method.

4.2 Initial Detector

Our first prototype initial detector [19] used a multi-scale Hessian matrix blob
detection filter [10] applied to the ADC map. Peak (local maxima) coordinate
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Fig. 4. An example pelvic segmentation using our multi object anatomical model. The
pelvic model comprised prostate, rectum, bladder and a other class.

detection within a 5 mm region is performed to localize suspicious findings that
serve as input to the lesion characterization stage. In the mean time the data
set comprises 216 clinical patients scheduled between January and December
2009 that had elevated PSA levels (mean 14ng/ml range:1-58) and one nega-
tive biopsy. Histopathology confirmed the presence of PCa in 43 patients. The
detection method currently has a sensitivity of 64% at a 6 false positives per
patient.

Currently we are working on a multi-feature detection system, using a voxel
based Support Vector Machine classifier in conjunction with a lesion based clas-
sifier. Examples of voxel features are DCE MRI based features like Ktrans and
ve, diffusion based values like ADC and blobness outputs.

4.3 Lesion Characterization

For lesion characterization we compute several region based features and classify
these with a trained SVM classifier. Several region based tumor features exploit
the heterogeneity of a malignant lesion. Similar to breast MR hotspot analysis
determines the malignancy of a lesion by its most aggressive part. A robust,
simple method is to use region quartiles. One of our best features is the 3rd
quartile of Ktrans in a region [18]. A potentially improved hot spot analysis
method currently researched for application in breast MR is Mean-Shift cluster
analysis [13].

In addition we are also developing an automatic suspicious region segmenta-
tion system to segment the region. We use a custom cost function in combination
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with a LBFGSb optimization method to segment the suspicious region. The cost
function is a combination of a population based model and an appearance model.

arg min
x

f(x) = p(x) + a(x) (5)

Here p(x) represents the population model and a(x) the appearance model. Also
f(x) is the complete cost function and x is a set of parameters that is optimized.
An example of a parameter that appears in the population model is the radius
of the lesion. We assume a normal distribution on the radius, because we know
what lesion sizes we can expect in a clinical setting. An example of a parameter
in the appearance model can be the mean ADC, because we know that lesions
often have a lower ADC value.

After segmentation a number of feature can be extracted from the segmented
region, like volume, principle components, mean values and quartiles of quantita-
tive features. These are fed into a trained SVM classifier, after which a probably
per region is obtained. This way the false positives we obtain from the voxel
classifier can be further reduced.

5 Discussion

Screening using prostate MR can be cost effective in screening due to biopsy
reduction. The high volume of imaging requires CAD to assist clinicians in fast
and accurate reporting. We developed one of the first fully automatic computer
aided detection systems for prostate cancer detection on MR. We have shown
good results with quantitative features obtained using robust, automatic and
dedicated methods. An automated segmentation method of the prostate has
been developed that is robust, fast and sufficiently accurate for application in
CAD. We are currently exploring further improvements and setting up observer
experiments to validate the CAD methods.
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Abstract. Several studies have shown the advantages of multispectral
magnetic resonance imaging (MRI) as a noninvasive imaging technique
for prostate cancer localization. However, a large proportion of these
studies are with human readers. There is a significant inter and intra-
observer variability for human readers, and it is substantially difficult
for humans to analyze the large dataset of multispectral MRI. To solve
these problems a few studies were proposed for fully automated cancer
localization in the past. However, fully automated methods are highly
sensitive to parameter selection and often may not produce desirable seg-
mentation results. In this paper, we present a semi-supervised segmen-
tation algorithm by extending a graph based semi-supervised random
walker algorithm to perform prostate cancer segmentation with multi-
spectral MRI. Unlike classical random walker which can be applied only
to dataset of single type of MRI, we develop a new method that can
be applied to multispectral images. We prove the effectiveness of the
proposed method by presenting the qualitative and quantitative results
of multispectral MRI datasets acquired from 10 biopsy-confirmed cancer
patients. Our results demonstrate that the multispectral MRI noticeably
increases the sensitivity and jakkard measures of prostate cancer local-
ization compared to single MR images; 0.71 sensitivity and 0.56 jakkard
for multispectral images compared to 0.51 sensitivity and 0.44 jakkard
for single MR image based segmentation.

1 Introduction

Prostate cancer is one of the most frequently diagnosed malignancy in US male
population. Recent cancer studies estimate that 220,000 men will be diagnosed
and 32,000 will die of prostate cancer in 2010 [1]. Fortunately, the survival rate
is very high for the early diagnosed patients. Traditionally, transrectal ultra-
sound image (TRUS) guided biopsy samples are taken from suspected regions,
and pathologists confirm the presence or absence of cancer in the obtained cores.
However, cancer may be missed due to the limited number of biopsy samples and
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low resolution of TRUS, leading to delayed diagnosis (and thus delayed treat-
ment) of the disease. Accurate image guidance is extremely useful in ensuring
that the tissue is collected from suspicious regions for cancer. Hence, investi-
gation of imaging methods to detect these regions is an active research area.
In vivo imaging can also be used to guide surgery, threapy, and monitor dis-
ease progression. Applications of various diagnostic imaging techniques as well
as their clinical value in prostate cancer detection, localization and surveillance
are discussed in details [2].

As an alternative to TRUS, magnetic resonance imaging (MRI) has been used
to localize prostate cancer with varying degrees of success over the past years.
Many researchers investigated methods to boost the performance of prostate
cancer localization using MRI [3]-[4]. One way of boosting localization perfor-
mance is to use other MR imaging techniques such as diffusion weighted imaging
(DWI) and dynamic contrast-enhanced (DCE) MRI in addition to T2-weighted
images. For instance, in [3]-[4], the combination of morphological and metabolic
information for localizing cancer are investigated. Combining T2-weighted im-
ages with DWI and dynamic contrast-enhanced MR imaging has also produced
considerable improvement in prostate cancer localization compared to the clas-
sical T2-weighted MRI [5].

Although several studies have been performed with human observers using
multispectral MRI; only a few methods were proposed to automatically localize
prostate cancer with multispectral MRI [6]-[10]. There is a significant inter and
intra-observer variability for human readers, and it is difficult for humans to
analyze multiple image datasets motivating the need for automated methods.

On the other hand, fully automated methods are highly sensitive to parame-
ter selection and often do not produce desirable segmentation results. Recently,
semi-supervised image segmentation algorithms have been gaining increasing
popularity due to their superior performance, efficiency, and ease of application
[11], [12]. There are various types of semi-supervised segmentation algorithms
present in the literature including Intelligent Scissors, Active Contours, Random
Walker [11]. This study is focused on the semi-supervised learning of the third
type, namely (seed-based) Random Walker (RW) algorithm. Given an input im-
age and a set of seed points, RW computes the first arrival probability that a
RW starting at an unlabeled pixel first reaches one of the labeled seeds, then
that unlabeled pixel takes the label with maximum probability.

The main contribution of this paper is the development of a semi-supervised
multispectral segmentation framework using random walker by optimally com-
bining images coming from different spectrums or modalities to perform prostate
cancer segmentation. Our paper is the first to develop a semi-supervised random
walker algorithm with multispectral images, whereas most earlier approaches to
multispectral prostate MR image segmentation has considered fully supervised
learning techniques and semi-supervised methods are applicable to only images
of single type (modality or spectrum).
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2 Methodology

2.1 Multispectral Random Walker

Semi-supervised learning utilizes a few pixels of labeled data coming from the
human reader in addition to unlabeled image data to improve the tumor seg-
mentation accuracy. Random walker (RW) algorithm is a graph based seeded
segmentation technique that formulates the classical segmentation problem in
terms of a discrete (combinatorial) dirichlet problem [11].

A graph can be defined as G = (V, E) with vertices vi ∈ V and edges
E = {eij = (vi, vj)|vi, vj ∈ V, i �= j}. All the edges are undirected and each
edge eij is a weight values wij standing for the likelihood that a random walker
move along that edge. The degree of a vertex is defined as di =

∑
j wij for

all edges eij incident on vi. Given a weighted graph, a set of marked (labeled)
nodes F ⊂ V , and a set of unmarked nodes B ⊂ V , such that F

⋃
B = V and

F
⋂

B = ∅, objective is to label each node vi ∈ B with a label from the set
K = {l1, l2, . . . , lk}. Random walker algorithm assigns to each unlabeled node
the first arrival probability P (vi) that a random walker starting from that node
first reaches a marked node with label ls. The segmentation is then completed
by assigning each free node the label with the highest probability [11].

RW algorithm is typically formulated for segmentation tasks with single im-
ages. In the case of multispectral prostate MR images, rather than applying
RW on each image separately and combining binary segmentation results in an
ad hoc manner, we develop a method that determines a mathematically opti-
mum set of image weights ααα = (α1, α2, . . . , αN ) that are used for each of the
features, where N denotes the number of features of the multispectral image.
This weighted combination of features produces a fused image that yields im-
proved RW segmentation for the given set of seeds. Edge weight, wij , for the
multispectral problem now becomes

wij = exp

{
−β

(
N∑

k=1

αk(qki − qkj)

)}
, (1)

where qki indicates the image intensity at ith pixel for image type k. Our main
objective now is to determine the optimal α1, α2, . . . , αN values that would yield
the minimum cost of Eq. (2), resulting in the optimum segmentation in RW sense.
In this case, our cost function can be written as follows,

Emf =
∑

eij∈E

wij(P (vi) − P (vj))2 = PLmfP

st. P (v) = 1 for v ∈ F

P (v) = 0 for v ∈ B, (2)

where Lmf denotes the laplacian matrix of the fused image, which is a symmetric
positive semidefinite matrix. This cost function has two groups of unknowns
unlike classical random walker formulation: ααα and P (·) of unknown pixels vi ∈ B.
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We determine the minimum of this cost function in an alternating fashion for
these two groups;

– for a set of P (·), find optimum ααα.
– for a set of ααα, find optimum P (·).

Our final energy function is a function of the image weights (ααα) only, since the
unknown P (·) is eliminated by substituting its closed form solution given ααα as
shown in Eq. (3)

P =

[
PvF

−Lmf−1

B (Kmf)T PvF

]
, (3)

where Lmf
B and Kmf denote the marked and unmarked subblocks of Lmf matrix

[11]. The ααα that minimize the energy function in Eq. (2) do not have a closed
form expression since the Lmf matrix are nonlinearly dependent on the unknown
ααα. Therefore, we employ numerical methods to find the ααα that minimizes this
cost function. In this study, we resort to multi-start gradient based algorithms.
Multi-start algorithm performs gradient based optimization over a small set of
grid points, where each grid point represent ααα value. Once ααα is determined, un-
known P (·) values can be found by minimizing Eq. (2) yielding the segmentation
result.

In our study, we perform the optimization using a nonlinear conjugate gra-
dient method (CGM) to obtain the image weights that would minimize Emf .
Note the CGM does not guarantee convergence to global optimum for our cost
function and has a few parameters such as the step size that needs to be selected
by a priori. Using a small initial step size is a common practice, and the opti-
mum step size is approximated by doubling the step size until the cost function
increases or number of iterations exceed a preassigned max-number of iterations,
at which point the step size is fixed, and the update is performed.

Algorithm Summary:
To summarize, the steps of the proposed algorithm are:

1. Given a set of prostate multispectral MR images, human reader places a pair
of seeds on the tumor and normal regions.

2. Initialize multiple sets of ααα = (α1, . . . , αN ) parameters.
3. For each of these ααα, perform the following

– Using Eq. (1), map the image intensities to edge weights in the lattice.
– Search for optimum ααα values using CGM based algorithm.
– Solve Eq. (2) to determine the random walker probability values and

compute cost.
4. Set image weights ααα corresponding to minimum cost.
5. Compute P (·) corresponding to this set of ααα.
6. Obtain the final segmentation by assigning the corresponding label to each

node vi.
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The parameters αi essentially produces a fused image that would reduce the cost
of Eq. (2), which in general results in a better segmentation result than using
any single spectrum image alone or combining multiple spectrums in an ad hoc
and suboptimal manner as explained in next section.

3 Experiments and Results

3.1 Description of Multispectral MRI Data

In this study, multispectral MR images are obtained from 10 biopsy-confirmed
prostate cancer patients. Axial-oblique fast spin-echo (FSE) T2-weighted, echo
planar DWI, multi-echo FSE, and DCE-MRI were acquired before surgery us-
ing a 1.5-T MRI system (Echospeed or Excite HD; GE Healthcare, Milwaukee,
WI) with a 4-channel phased-array surface coil coupled to an endorectal coil
(MEDRAD, Warrendale, PA). All data were obtained with the image plane per-
pendicular to the rectal wall/prostate interface. Median time between imaging
and surgery was 33 days (range 1-129 days).

Acquisition parameters were:

– T2-weighted MRI: TR/TE = 6550/101.5 ms; 320x256 matrix; echo-train
length (ETL) = 16; bandwidth (BW) = 20.83 kHz; number of excitations
(NEX) = 3; field of view (FOV) = 14 cm; no phase wrap.

– DWI: TR/TE = 4000/77 ms; 128x256 matrix; ETL = 144; BW = 166.7 kHz;
NEX = 10; FOV = 14 cm; b = 0, 600 s/mm2. Multi-echo FSE images were
acquired at ten echo times (9.0-90.0 ms, in 9 ms increments) for T2 mapping
(TR = 2000 ms; 256x128 matrix; ETL = 10; BW = 31.25 kHz; NEX = 1;
FOV = 20 cm).

– Datasets for DCE MRI consisted of T1-mapping from multi-slice, multi-flip
fast spoiled gradient echo images (FSPGR) (flip-angles: 2, 5, 10, 20; TR/TE
= 8.5/4.2 ms; 256x128 matrix; ETL = 8; BW = 31.25 kHz; NEX = 1; FOV
= 20 cm), followed by 50 phases of multi-slice FSPGR MRI (flip-angle = 20;
TR/TE = 4.3/1.9 ms; 256x128matrix; BW = 62.5 kHz; NEX = 0.5; FOV = 20
cm; temporal resolution = 10s). Two phases were acquired before injection of
20 ml contrast agent (gadopentate dimeglumine (Magnevist; Bayer Schering
Pharma, Berlin, Germany)) at a rate of 4 ml/s, followed by a 20 ml saline flush
using a power injector (MEDRAD Spectris MR injection system).

The available MRI dataset consists of several functional, anatomical, and para-
metric image types; based on preliminary feature selection analysis, we restrict
our attention to three types of images (i) T2-maps, ii) ADC, iii) T1-PC (princi-
pal component) that have information from three main groups (T2, DWI, and
DCE-MRI). T2 maps are calculated from a series of echo time measurements
and eliminate the fluctuations in signal intensity as a function of proximity to
the endorectal coil seen in T2-weighted, as well as providing quantitative values.
Apparent diffusion coefficient maps are derived from DWI parametric maps, and
several recent studies [7], [3] have shown the usefulness of ADC maps for local-
izing prostate cancer. Dynamic contrast-enhanced MRI is a well-known method
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for detecting and quantifying tumor angiogenesis. Prostate carcinomas can be
visualized with axial T1 MR sequences. In this study, we used principal compo-
nents analysis to derive an image (T1-PC) from the dynamic series instead of
using a compartmental model, since parametric images obtained from compart-
mental models are extremely noisy.

Prostate cancer MR images are notorious for speckle for noise and low sig-
nal to noise ratio issues, and therefore denoising is a crucial step. In [12], [13],
anisotropic filtering is used to reduce the amount of noise in the multispectral
MRI data, which increases the segmentation performance considerably. Similarly,
in this study, anisotropic filtering is applied on normalized T2, ADC, T1-PC im-
ages data to facilitate the segmentation of tumor nodules. The prostate consists
of various zones such as transition zone (TZ) and peripheral zone (PZ). However,
in this study we have considered only the PZ region is since 70 % of the prostate
cancer occurs in this region [14].

Ground Truth: In order to evaluate the effectiveness of the proposed method
accurately, ground truth for tumor segments are obtained based on pathology.
Upon the completion of radical prostatectomy, the extracted prostate was placed
in formalin for 24 hours and embedded in HistOmer gel prior to ex vivo MRI. T2-
weighted (T2w) images were taken at a 5o intervals and the angle corresponding
to the plane of in vivo imaging was determined. The gel-embedded prostate was
cut into regular 3mm sections using a rotary blade, along the angle plane deter-
mined during the ex vivo imaging sessions. For all sections, standard pathological
techniques are used to prepare hemotoxylin and eosin (H & E) stained whole
mount histologic slides. The whole mount sections are assessed by a pathologists
and region of tumor was outlined as ground truth. Then, this tumor location is
transferred to the in vivo MRI by an expert radiologist, who views in vivo MRI,
histological slide, and the ex vivo MRI of this histological slide. A digitalized
histologic section of a patient is shown in Figure 1.(e) from the same patient and
location with in vivo MR images shown in Figure 1.(a)-(d).

(a) (b) (c) (d) (e)

Fig. 1. An example of multispectral MR images and histological slide. (a) T2-weighted
MRI, (b) T2 maps, (c) ADC, (d) T1-PC, (e) digitized whole mount H&E histological
slide.

3.2 Quantitative Evaluation

A set of pixel-based evaluation criteria are used to assess the performance of seg-
mentation, namely jakkard, sensitivity and specificity. Jakkard measure is an often
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used a quantitative metric in medical analysis; jakkard(A, B) = |A∩B|
|A∪B| where A

is the segmentation result and B is the ground truth. Sensitivity is fraction of tu-
mor region that is correctly detected by the algorithm as such, and specificity is
fraction in the true segmented healthy region that is also correctly identified.

Fisher’s exact test [15] is used to measure the statistical significance of the
results (differences in jakkard measure in our case). P-value with Fisher’s test
provides the probability of obtaining a test statistic at least as extreme as the
one that was actually observed. Lower p-values indicate a less likely, thus a more
significant result. A p-value of less than or equal to 5 % is typically deemed sta-
tistically significant.

For comparison purposes, in addition to our proposed method, we have also
implemented the random walker algorithm for the single image spectrums (types)
and the average image computed as follows

Average =
q1 + · · · + qN

N
. (4)

In this way, the advantage of the proposed method that optimally combines
multiple spectrums will be more apparent, compared to an ad hoc combination
of spectrums. In our study, we use two average images, namely Average2 and
Average3. Average2 is the average of T2 maps and ADC, and Average3 is ob-
tained by equally weighting T2, ADC and T1-PC considering appropriate signs.

3.3 Results and Discussion

First, we anisotropically filter T2, ADC, and T1-PC images as explained in
Section 3.1, and user assigns two seed points (one tumor, one normal) on the
image. In our analysis, we use only two seeds to make the seed selection easy
for the human reader. Using these seed points and a fixed β value in Eq. (1),
we compute the P (·) values of unlabeled pixels. In our analysis, only the PZ
region is considered since 70 % of the prostate cancer occurs in this region.
Figure 2 illustrates the random walker segmentation results using single images,
average images and the proposed method. These visual results show that the
proposed method yields improved segmentation performance. For patient 1 in
Figure 2, T2 maps yield the best segmentation performance among single images,
and proposed method automatically assigns a higher weight to T2 image and
achieves a similar segmentation as seen on the last column. On the other hand,
for patient 2 in Figure 2, ADC segmentation performs better than the other
image types, proposed method is again able perform improved segmentation
and similarly for third example patient.

In addition to visual evaluation demonstrated in Figure 2, Table 1 quantita-
tively presents the mean and standard deviation the sensitivity, specificity and
jakkard measures of 10 biopsy-proven patients. Sensitivity and jakkard measures
of proposed method (0.71 and 0.56) are significantly higher than single and aver-
age images with similar specificity. Table 2 provides the corresponding p-values
for jakkard values of Table 1. As evident by p-values, our method yields sig-
nificantly improved performance for T2 and T1-PC based segmentation results,
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(1)

(2)

(3)
(a) (b) (c) (d) (e)

Fig. 2. Part a) Ground truth for tumor. Segmentation results (white) using b) T2
maps, c) ADC, d) T1-PC, and e) proposed.

Table 1. mean±std of sensitivity/specificity & jakkard random walker (RW) segmen-
tation with T2 maps, ADC, T1-PC, Ave2, Ave3, and proposed

measure T2 ADC T1-PC Ave2 Ave3 Proposed
Sens. 0.56 ± 0.28 0.51 ± 0.21 0.44 ± 0.25 0.55 ± 0.23 0.58 ± 0.16 0.71 ± 0.12
Spec. 0.94 ± 0.06 0.98 ± 0.04 0.98 ± 0.02 0.97 ± 0.04 0.98 ± 0.02 0.95 ± 0.05

Jakkard 0.41 ± 0.20 0.44 ± 0.19 0.37 ± 0.17 0.44 ± 0.16 0.50 ± 0.09 0.56 ± 0.10

Table 2. P-value for jakkard measures between pairs of alternating methods using
prostate multispectral MRI dataset

T2 - Proposed ADC - Proposed T1-PCA - Proposed Ave2 - Proposed Ave3 - Proposed
p-val 0.0107 0.0898 0.001 0.0547 0.1719

and in some cases p-values does not show statistical significance due to possi-
bly limited number of patients. Notice that our method improves segmentation
performance compared to ad hoc Average2 and Average3 images as well. In ad-
dition, we observe that Average3 segmentation is more accurate than Average2
segmentation which demonstrates the usefulness of including T1-PC images in
our analysis.

A disadvantage of the proposed method is the increased computational time
required for optimization as expected since multiple images are used for seg-
mentation instead of a single image. Random walker solution is traditionally ob-
tained by solving large, sparse linear system of equations, and there exists many
methods for efficiently solving linear sparse systems. For the purposes of this
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study, we used a multi-start conjugate gradient algorithm on a sparse grid. In
future studies, our investigations will mainly focus on decreasing this computa-
tion time and also on automated seed selection techniques.

4 Conclusion

RW algorithm has been ubiquitously applied to datasets of various image types.
However, segmentation methods with RW are applicable only to single image
types (spectrums, modality, and intensity) to this date. In this study, we have
developed a RW based method that can be used with multispectral MR images.
It was shown that the proposed multispectral Random Walker using gradient
based optimization algorithm yields improved segmentation performance. The
effectiveness of the proposed method is demonstrated by presenting quantitative,
statistical and visual results with multispectral MRI datasets acquired from 10
biopsy-confirmed cancer patients. Tables 1 depict that the multispectral MRI no-
ticeably increases the sensitivity and jakkard measures of prostate cancer local-
ization compared to single MR images from 0.71 sensitivity and 0.56 jakkard to
0.51 sensitivity and 0.44 jakkard. Statistical significance of improvements shown
in Table 2 illustrates the superiority of the proposed method over the others. Our
results have also illustrated the benefit of including T1-PC image in addition to
T2 and ADC. Average3 image performed significantly better than Average2 im-
age, motivating the need for dynamic sequences. Compared to the earlier fully
supervised methods, proposed method drastically increases the sensitivity while
not significantly effecting specificity. In the future, we plan to automate the seed
selection process such that process becomes fully automated.
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Abstract. Prostate radiation therapy dose planning currently requires computed 
tomography (CT) scans as they contain electron density information needed for 
patient dose calculations.  However magnetic resonance imaging (MRI) images 
have significantly superior soft-tissue contrast for segmenting organs of interest 
and determining the target volume for treatment.  This paper describes work on 
the development of an alternative treatment workflow enabling both organ de-
lineation and dose planning to be performed using MRI alone.  This is achieved 
by atlas based segmentation and the generation of pseudo-CT scans from MRI.   
Planning and dosimetry results for three prostate cancer patients from Calvary 
Mater Newcastle Hospital (Australia) are presented supporting the feasibility of 
this workflow.  Good DSC scores were found for the atlas based segmentation 
of the prostate (mean 0.84) and bones (mean 0.89).  The agreement between 
MRI/pseudo-CT and CT planning was quantified by dose differences and dis-
tance to agreement in corresponding voxels.  Dose differences were found to be 
less than 2%. Chi values indicate that the planning CT and pseudo-CT dose dis-
tributions are equivalent.   

1   Introduction 

In Australia, prostate cancer is the most commonly diagnosed cancer behind skin 
cancer, and is the second highest cause of cancer-related deaths behind lung cancer 
[1-2]. For Australian men in 2005 prostate cancer was the most prevalent cancer ac-
counting for over 29% of all cancer diagnoses [2]. External beam radiation therapy 
(EBRT) is a major clinical treatment for prostate cancer. EBRT uses high energy x-
ray beams combined from multiple directions to deposit energy (dose) within the 
patient tumour region (the prostate) to destroy the cancer cells.  

The success of image guided radiotherapy depends on the accurate localisation of 
organs of interest.  During prostate cancer radiotherapy treatment there is a need to 
minimize the dose received by the bladder and rectum (to reduce post-treatment com-
plications). Recent advances in prostate radiotherapy have led to improvements in the 
amount of dose delivered to target organs, while reducing the amount to organs at 
risk. However side effects can still include inflammation of the anus, rectal bleeding 
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and haematuria  [3].  MRI has a number of advantages over computed tomography 
(CT) for treatment planning, including improved soft tissue contrast and better defini-
tion of tumour margins [4].  Prostate borders delineated on MRI scans by radiation 
oncologists have been shown to have lower inter-observer variability and are smaller 
than on CT [5-7].   Therefore by using MRI extra margins added to account for de-
lineation uncertainties are reduced and less normal tissues irradiated, reducing treat-
ment toxicity. 

The main reason why MRI scans are not used for treatment planning is that they are 
acquired by a completely different physical process related to the magnetic properties 
of tissues within the body. Tissues with slightly different magnetic properties due for 
example to the water content will give different MRI image values. Due to the different 
process MRI scans can not be calibrated to electron density. Radiotherapy dose calcu-
lations can therefore not currently be performed on MRI scans. Therefore, if used at 
all, an MRI scan must be manually aligned to a CT scan to transfer the prostate contour 
delineated on the MRI scan and dose calculation performed using the CT scan.   

The work in this paper aims to develop the first feasible implementation of MRI-
based prostate radiation therapy planning.  Translating to an MRI based workflow 
(shown in Fig. 1) involves a number of significant research issues to be addressed, 
including (i) the development of software for data transfer between the clinical treat-
ment planning system and research software platforms; (ii) methods to automatically 
segment organs of interest from MRI; and (iii) tools to automatically assign electron 
density information to MR scans for radiotherapy dose calculations for treatment 
planning.   

2   Method 

2.1   Images 

Ethics approval for the study protocol was obtained from the local area health ethics 
committee and informed consent obtained from all patients. Thirty nine patients had 
three prostate pure gold fiducial markers of diameter 1.0 mm and length 3.0 mm in-
serted trans-rectally by a urologist one to two weeks prior to the acquisition of the 
planning images. Note that results from only three patients are reported in this paper.  
Both CT and MRI images were acquired, with MRI scans obtained as soon as possi-
ble after the CT scans (usually one or two days after). CT scans were acquired either 
on a GE LightSpeedRT large bore scanner with 2.0 mm slices or a Toshiba Acquilion 
with 2.5 mm slices. A full bladder and empty rectum were specified. All patients 
followed a bowel preparation protocol consisting of a high fibre diet. Patients were 
positioned supine on a rigid couch-top with knee cushions and ankle immobilisation 
stocks. Three MRI scan sequences were acquired with a GE Medical Systems Signa 
Excite 1.5 T scanner and pelvic body coil: a T2  Wholepelvis MRI (WPMRI) scan, a T2 

scan with a smaller FOV for prostate delineation, and a T2* scan to image the im-
planted gold markers. Patients were positioned as closely as possible to the CT scan-
ning position with a 7 mm thick plastic slab placed on the underside of the pelvic coil. 
For each patient the bone, rectum, bladder and prostate on the CT scan and the 
WPMRI scan were manually contoured.   
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MRI Scan of patient 

Prostate and organs 
automatically defined using atlas 

based segmentation 

Organ contours manually 
adapted by radiation oncologist if 

required 

Pseudo-CT created 
automatically from MR (electron 
densities mapped to MR scan) 

Dose plan made on pseudo-CT 

Patient setup and treatment at 
medical linear accelerator 

 
Fig. 1. Flow diagram of MRI-based workflow for prostate radiation therapy planning  

2.2   Treatment Planning System Interface 

To perform image analysis tasks, such as automatic segmentation, a method to trans-
fer the image scans, manually defined contours and treatment planning data between 
commercial treatment planning systems (TPS) and external development software 
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needs to be used.  For this project custom software was written and validated for in-
formation transfer from the Varian Eclipse and Phillips Pinnacle systems treatment 
planning at the Mater Hospital (using the DICOM Radiation Therapy extensions (DI-
COM-RT) and the Radiation Oncology Therapy Group (RTOG) file formats) [8].  To 
transfer automatic organ segmentations and pseudo-CT images back into these sys-
tems for dose validation a modified version of the code written in [9] was used.   

2.3   MR Atlas Generation 

There are few papers on prostate segmentation from MRI (most have focused on 
ultrasound and CT), however recent papers by Martin et al. [10] and Klein et al. [11] 
have proposed the use of an automatic prostate segmentation method based on non-
rigid registration of a set of pre-labeled MR atlas images.  Atlas based segmentation 
usually involves an atlas image (generally an average of a set of images) with a 
matching set of organ labels.  To segment a new image, the atlas is registered to the 
the subject’s image to obtain a good correspondence between structurally equivalent 
regions in the two images, and then labels defined on the atlas are propagated to the 
image [12].  In this paper an atlas-based approach is applied which involves the auto-
matic segmentation of the organs from MR images of the pelvis by generating an 
average image atlas incorporating non-rigid registration with probabilistic atlases 
(PAs).  The atlas methodology presented in this paper is similar to Klein et al. [11]: 
the main difference is that instead of identifying a selection of atlas scans which are 
most similar to the target scan and using only their associated deformed label images, 
in this paper a single prostate atlas is used. 

Before registration, each MR image was pre-processed with:  
 

1. Bias field correction [13]; 
2. Interleaving correction [14]; 
3. Anisotropy correction (slice width in each volume resampled from 3 

mm to 1.5 mm);   
4. Smoothing using anisotropic diffusion;  
5. Zero mean and unit variance normalization. 

 

A probabilistic atlas (PA) for each organ of interest was generated by propagating the 
manual segmentations for each training case using the obtained affine transform and 
deformation field computed from the MR into the atlas space as per Rohlfing [15].  
An arbitrary but representative case in our database was chosen as the initial atlas 
defining the atlas space alignment 

The first iteration involved the registration of every other case to the selected atlas 
case using rigid followed by affine transformation.  Subsequent iterations involved all 
subjects being registered to the average image using rigid, affine transformation (es-
timated from correspondences between very similar areas in both images using a 
block matching approach described in [16]) and non-rigid registration (diffeomorphic 
demons algorithm [17,18]).  At the end of each iteration a new average atlas is gener-
ated and used in the subsequent iteration.  In the present study, five iterations were 
performed.   

The same method was also used to generate a probabilistic atlas of the prostate from 
the small field of view T2w images.  This atlas was used for prostate segmentation.  
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Fig 2. Axial view of the whole pelvis MRI atlas (left) and the matching pseudo-CT (right).  
Organ segmentations have been overlaid (these were thresholded at 50%) 

2.4   Atlas Generation (CT) 

To automatically assign electron density values to a new MR image, we generate a 
corresponding CT atlas (an axial slice from the whole pelvis MRI atlas and matching 
pseudo-CT atlas are shown in figure 2).  This is achieved by:  
 

1. Multimodal registration of the CT-MR scans for each patient contributing to 
the atlas.  The Insight Toolkit (www.itk.org) implementation was used for 
rigid and affine registration.   

2. Applying the transform matrices and deformation fields from the MR atlas 
generation described in section 2.3 above to the result of each CT-MR.   

3. Generating a median volume from the volumes resulting from step 2.  
 

With regards to step 1, multimodal non-rigid registration was attempted using the 
Insight Toolkit (www.itk.org) implementation of the free-form deformation algorithm 
[19].  However this registration method was found to result in unacceptable deforma-
tion of bone in the moving image.   

The background of the CT atlas was masked to -1000 HU (Air).  In addition, a 
post-generation adjustment of HU units for bone was required as the values for bone 
were found to be approximately 70HU too low (soft tissue HU values were cor-
rect).To correct this random values (Gaussian, mean 70, sd 17.5) were generated and 
added to voxels in the atlas volume with intensity > 100. 

To generate pseudo-CT values for a new patient, the MRI atlas is registered to the 
patient’s MRI.  Then the same transformation and deformations are then applied to 
the CT atlas to create a pseudo-CT corresponding to the patient MR scan anatomy. 
This pseudo-CT is then used for dose planning and digitally reconstructed radiograph 
(DRR) generation.   

2.5   Validation 

A leave one out approach was used.   Rigid, affine and non-rigid registration were 
used to map the atlas onto each subject’s MR scan and the affine transform and  
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deformation fields were then used to map the organs of interest (prostate, bladder, 
rectum and bones) onto each scan.  These organ PAs were then thresholded (50%) to 
provide a general segmentation for each individual subject. The automatic segmenta-
tions were compared against manual segmentations using the Dice Similarity Coeffi-
cient (DSC = 2 ( A ∩ B / (A union B) ) [20]. 

The spatial accuracy of the MRI scanner was assessed with a spatial uniformity 
phantom (Fluke Biomedical #76-907, Everett, WA, USA). The phantom was imaged 
using both the T2 and T2* MRI scan sequences. Measurements on the CT and MRI 
images of the phantom were made in the horizontal direction to the edges of the phan-
tom and from the centre of the phantom to the corners. 

The pseudo-CT images were imported into the corresponding patient in the treat-
ment planning system. The existing treatment plans for each patient were then copied 
and attached to the pseudo-CT images. While each plan reported 2 Gy at the ICRU 
point due to the plan prescription, the change in monitor units (MU) was used to 
compare the dose change for the plans using pseudo-CT images relative to the gold 
standard plan (which uses the original CT images). If a plan had more than one phase 
of treatment, each phase was considered separately. 

3   Results  

Dice Similarity Coefficient (DSC) scores between automatic and manual segmenta-
tions are summarised in Table 1.  The results for prostate segmentation (shown for 
example Fig. 3) were found to be superior from the small field of view atlas.  The 
bladder and rectum showed greater variability between atlas subjects with corre-
sponding lower scores.   

 

   

Fig 3. Coronal, Sagittal and Axial views of small field of view MR scan from patient H028.  
The automatic prostate segmentation has been overlaid.  

Table 1. DSC scores between manual and automatic segmentations for each pelvic organ For the 
three patients.  SFOV = MRI small field of view, WPFOV = MRI whole pelvis field of view  

Patient Prostate 
(SFOV) 

Prostate 
(WPFOV) 

Rectum Bladder Bone 

E027 0.85 0.74 0.67 0.43 0.88 
H028 0.83 0.78 0.63 0.75 0.89 
R031 0.84 0.84 0.65 0.73 0.89 
Mean (sd) 0.84 (0.01) 0.79 (0.05) 0.65 (0.02) 0.64 (0.18) 0.89 (0.01) 
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Six plans in total were calculated from the three patients (one patient had two 
phases of treatment, and one had three phases). Based on the doses calculated using 
the reported monitor units, the doses from the three patients ranged from 1.94 Gy to 
1.99 Gy (2.8% to 0.6% lower than the intended 2 Gy).  Digitally reconstructed radio-
graphs from one patient’s pseudo-CT are shown in Fig. 4.  The automatic contours 
and dose plan for the same patient are shown in Fig. 5.  

  

Fig 4. Anterior-posterior (AP) (left) and lateral digitally reconstructed radiographs generated 
from the MRI pseudo-CT volume for patient H028. 

 

Fig 5. Screenshot from TPS (Varian Eclipse) showing automatic contours and dose plan for 
patient H028.  The dose plan shows the beam arrangement (two lateral, one anterior and two 
oblique fields) and the dose deposited due to these beams.  
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The pseudo-CT and original CT plans of the three patients were quantified using 
the Chi comparison value [21] applied to the 3D dose distributions: any value over 
80% of the maximum dose and all Chi values fall in the region of -1 to 1 indicating 
that the dose distributions are equivalent. 

Small spatial distortions were found in the MRI scanner but these were at most 2-3 
mm at more than 20 cm from the centre of the scanner. These small distortions are not 
sufficient to introduce significant errors in dose calculations for pelvic radiotherapy. 
Small distortions will be present in DRRs however these will be very small at the 
centre of the scan where the prostate fiducial markers are located. 

4   Discussion and Conclusion  

The feasibility of MRI based radiation therapy for prostate cancer has been estab-
lished.  The difference between dose from the planning CT and the MRI based 
pseudo-CT was found to be less than 2%.  Chi value analysis indicates that the dose 
distributions for all three patients were equivalent.  Further optimization of the 
method and validation of the accuracy of MRI-based dose plans with a larger patient 
data set is ongoing.  

The automatic segmentation of the prostate from axial MR images using a prob-
ability atlas scheme had good correspondence with the manual segmentation results.  
This could lead to a reduction in the uncertainties in prostate segmentation for pros-
tate treatment. Better knowledge of the location of the prostate border will result in 
less normal tissues receiving unnecessary and harmful high doses of radiation with 
subsequently fewer and less severe side-effects of treatment.  The automatic segmen-
tation results for the rectum and bladder may provide useful initial constraints for 
further segmentation methods (for example, by masking and then using active con-
tours within the masked region).   

The work is ongoing and further validation of the pseudo-CT and automatically de-
fined contours against standard CT based treatment planning are occurring.    
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Abstract. Deformable image registration is a key enabling technology
for adaptive radiation therapy (ART) as it can facilitate structure seg-
mentation as well as dose tracking and accumulation. In this work, we
develop an efficient inverse-consistent diffeomorphic registration method
applying the log-Euclidean formulation of diffeomorphisms. Unlike ex-
isting log-Euclidean deformable registration approaches, the proposed
method deforms two images towards each other in a completely symmet-
ric fashion during the registration optimization, which leads to higher effi-
ciency and better accuracy in recovering large deformations. The method
is applied for the automatic segmentation of daily CT images in prostate
ART. To address difficulties caused by large bladder and rectum con-
tent change, we propose further improvements and combine deformable
registration with model-based image segmentation. Validation results on
real clinical data showed that the proposed method gives highly accurate
segmentation of interested structures.

1 Introduction

Adaptive radiation therapy (ART) has emerged as an important treatment tech-
nology for cancer patients, with the goal of delivering high precision treatment
by adapting to daily changes in patient anatomy. Deformable image registration
is an indispensable method for the successful implementation of ART, as it can
greatly facilitate structure auto-segmentation and dose tracking and accumula-
tion. For example, with the estimated image correspondence from deformable
image registration, contours on the planning image can be mapped to the daily
treatment images to get their automatic segmentation, a process often referred to
as automatic re-contouring. The anatomical correspondence can also be used to
map the delivered treatment dose to a reference frame, allowing cumulative dose
to be computed and compared to the original plan. For ART applications, a de-
sirable property of a useful non-linear registration method is that the registration
result should be invariant with respect to the order of the input images, which
is known as the inverse-consistency criterion. Inverse consistency reduces regis-
tration bias and allows contour or dose information to be consistently mapped
between different image frames.
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Inverse-consistent deformable image registration has been the subject of exten-
sive study in the literature (cf. [1,2,3,4,5,6] and references therein). Existing meth-
ods typically have high computational cost due to the need for explicitly comput-
ing both the forward and the backward transformations and sometimes also their
inverses. The recent introduction of the stationary log-Euclidean representation
of diffeomorphisms [7] allows the use of a single vector field to model both the for-
ward and inverse transformations, which can significantly simplify the formulation
of inverse-consistent deformable registration methods. The three existing meth-
ods [4,8,9] in this framework all employ a symmetric cost function design that
involves two separate image similarity terms, one for the forward transformation
and one for its inverse. In this work, we simplify the formulation in order to get
a more efficient algorithm. Most importantly, with our formulation, the two im-
ages to be registered are deformed towards each other in a completely symmetric
fashion during the optimization process, which improves both the efficiency and
accuracy for recovering large deformations. We note that similar symmetric defor-
mation ideas have been proposed by others in the literature [5,3], but the overall
formulation is different and computationally more expensive.

In this work, we further adapt the proposed inverse-consistent deformable reg-
istration method for the auto-recontouring of treatment CT images for prostate
ART. To address difficulty caused by the overlapping of bladder with nearby
structures with similar intensity, we propose to combine image registration with
model-based bladder segmentation. Special pre-processing to improve registra-
tion accuracy in the presence of large rectum content change is also developed.
In the following, we first present our new inverse-consistent deformable registra-
tion framework and then describe the complete algorithm for prostate CT image
auto-recontouring.

2 Inverse-Consistent Diffeomorphic Registration

Given two images I, J : R3 �→ R, the goal of image registration is to find a
well-behaved spatial transformation T (I, J) that aligns points in one image to
their corresponding points in the other. Mathematically, image registration can
be formulated as an optimization problem:

Topt = argmaxT∈ΩT
Sim(I, J, T ), (1)

where Topt denotes the optimal transformation, Sim(·) is a selected similarity
metric and ΩT denotes the space of all feasible transformations. In this work,
we require the image transformation T to be a diffeomorphic mapping, i.e., T is
globally one-to-one, smooth, and has a smooth inverse.

The Large Deformation Diffeomorphic Metric Mapping (LDDMM) has been
considered as the standard paradigm for diffeomorphic registration in Computa-
tional Anatomy (cf. [10,8]), where diffeomorphic transformations are represented
through geodesic paths of time-varying vector fields. A major disadvantage of
this framework is its high computational cost. Recently, a log-Euclidean frame-
work was proposed by Arsigny et al. [7] that represents a diffeomorphic map-
ping as the group exponential map of a stationary vector or velocity field, i.e.,
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Fig. 1. Symmetric Registration Framework

T = exp(V). In addition, the exponential map can be computed efficiently using
a “scaling-and-squaring” method [7]. Although the stationary formulation has
fewer degrees of freedom than the original LDDMM model, it has been shown
to be versatile enough and led to the the development of new diffeomorphic
registration algorithms with better computation efficiency [4,8,9].

We adopt the same stationary velocity field parametrization to develop a new
inverse-consistent diffeomorphic image registration method. Unlike the previous
work [4,8,9], we propose to deform both images simultaneously and in a com-
pletely symmetric fashion. As illustrated in Fig. 1, we aim to compute a pair
of half-way transformations and enforce them to be exact inverse of each other.
Using the log-Euclidean framework, we can represent both half-way transforma-
tions using a single velocity field V: T1/2 = exp(V), and T−1

1/2 = exp(−V), as
it is known that exp(−V) and exp(V) are exact inverse transformations of each
other. After registration, the complete forward transformation can be computed
as h = exp(V)◦exp(−V)−1 = exp(2V) and the backward one by g = exp(−2V),
where “◦” denotes transformation composition.

We build this symmetric transformation model into an intensity-based de-
formable registration method. In this work, the sum-of-squared-differences (SSD)
is used as the image similarity metric since it performs well for CT images; but
other metrics can also be applied and the derivation is similar. With the above
model, Eq. (1) can be reformulated as

Vopt = argminV‖I ◦ exp(−V) − J ◦ exp(V)‖2 + λ‖LV‖2, (2)

where ‖·‖ denotes the L2-norm and L denotes a proper linear differential operator
that penalizes irregularity of the vector field V.

We compute the optimal solution of Eq. (2) using an iterative algorithm fol-
lowing the “pair-and-smooth” strategy proposed in [11]: at each iteration we first
update the vector field V to optimize the similarity measure and then smooth
the new vector field estimation. The weighting factor λ is not explicitly used but
is reflected in the selection of the kernel width of the smoothing filter applied
for the vector field regularization.

More specifically, given the current estimation of the vector field Vn where n
denotes the iteration number, we first seek an update field un that minimizes

‖I ◦ exp(−Vn) ◦ exp(−un), J ◦ exp(Vn) ◦ exp(un)‖2. (3)
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To simplify, let In = I ◦ exp(−Vn) denote the transformed image I by applying
the backward half-transformation at iteration n and Jn = J ◦ exp(Vn) the
transformed image J by the forward half-transformation. Then the optimal un

should minimize

SSD(In, Jn,un) = ‖In ◦ exp(−un) − Jn ◦ exp(un)‖2. (4)

Considering only small updates at each iteration, we have exp(un) ≈ Id + un,
where Id denotes the identity transformation. Substituting it into Eq. (4) and
applying the Gauss-Newton rule, the optimal update field can be found as

un(x) = −H−1(x)(In(x) − Jn(x))(∇In(x) + ∇Jn(x)), (5)

where H(x) is the 3 × 3 Hessian matrix given by

H = (∇In + ∇Jn)(∇In + ∇Jn)T + (In − Jn)(ΔIn − ΔJn). (6)

Given un, we can compute two intermediate updates for Vn, corresponding to
the forward and the backward half-transformations respectively:

Vn+1
f = log(exp(Vn) ◦ exp(un)), (7)

Vn+1
b = − log(exp(−Vn) ◦ exp(−un)). (8)

The logarithm map in the above equations can be computed efficiently using the
Baker-Campbell-Hausdorff (BCH) formula proposed in [12].

In general, Vn+1
b �= Vn+1

f ; hence the transformations for the two images are
no longer symmetric if either Eq. (7) or Eq. (8) is used. To maintain complete
symmetry and ensure inverse-consistency, we compute the final updated velocity
field Vn+1 as

Vn+1 =
1
2

log(exp(Vn+1
f ) ◦ exp(Vn+1

b )). (9)

This is equivalent to first computing the full transformation by composing the
forward and backward half-transforms and then split it into two equal halves.

After Vn+1 is computed, we regularize it using a spatial Gaussian filter, and
then start the next iteration. The iterative update is repeated until a user-
specified number of steps or until the SSD metric stops decreasing. The over-
all method is summarized in Algorithm 1 below. It can be easily checked that
the algorithm is fully inverse consistent. In fact, the algorithm guarantees that
Vn

I→J = −Vn
J→I at every iteration of the algorithm, where V n

I→J denotes the
velocity field at iteration n with input images I and J and V n

J→I denotes the ve-
locity field at the same iteration but with the order of the two images switched.
To improve computational efficiency, the traditional multi-resolution scheme can
be applied, which runs Algorithm 1 in a coarse-to-fine fashion using a pyramid
representation of both images.

Fig. 2 shows one example that compares the proposed method with the sym-
metric log-domain Demons registration method of [9]. The results of both meth-
ods were computed under similar parameter settings. It is clear that our method
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Fig. 2. Comparison of the proposed method with that of [9]. The first two are the
original images. The third one is the second image aligned to the first using the proposed
method, and the last is the result using [9]. The contours on the last two images
correspond to the bladder outline of the first image.

aligns the bladder much better due to the proposed symmetric, simultaneous
deformation model. In addition, it typically requires fewer iterations before con-
vergence, thus offering better efficiency.

Algorithm 1. (Symmetric Inverse-Consistent Diffeomorphic Registra-
tion):

0. Given two images I, J , and an initial estimate V0, set n = 0.
1. Compute forward transformation exp(Vn), and Jn = J ◦ exp(Vn);
2. Compute backward transformation exp(−Vn), and In = I ◦ exp(−Vn);
3. Compute update un using Eq. (5);
4. Compute V(n+1) using Eqs. (7), (8), and (9);
5. Regularize V(n+1) with a spatial Gaussian filter;
6. If converged, stop; otherwise, set n = n + 1, goto Step 1.

3 Prostate Image Auto-Recontouring

A main application of the proposed deformable registration method that we
consider in this work is the automated re-contouring of treatment CT images in
prostate ART. As mentioned earlier, this is achieved through deformable regis-
tration of each treatment image to the already segmented planning CT image
of the same patient. In this application, a major complication factor that often
limits the registration accuracy is large bladder and rectum content change that
can happen between planning and treatment time. As observed by others [13],
the presence of rectal gas can cause significant correspondence errors as no corre-
spondence exists for pockets of gas across different days. Although large bladder
deformation by itself is not a problem for the proposed method, difficulty arises
when an enlarged bladder in one image is overlapped with another structure
with similar image intensities in the second image, such as the bowel. Similar
intensity of difference structures leads to local optimum of the image similarity
metric, which cannot be easily resolved using image registration method alone.

We address these difficulties through proper image preprocessing and bladder
pre-segmentation. To account for rectum content change, we apply a simple image
thresholding to detect gas pockets in each input image and then modify
the image intensity at detected voxels to the average intensity of solid rectum
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tissues. To account for large bladder shape changes, we have developed a deformable
surface model method for bladder segmentation in the treatment image J :

dopt = argmind

∫ ∫
exp(−‖∇J(x0 + d(r, s))‖2)drds +

∫ ∫
‖∇d(r, s)‖2drds.

(10)

In the above equation, x0 denotes the center of the surface model and d(r, s)
indicates the radius vector at each surface vertex (indexed by (r, s)). As indicated
in the above equation, each surface vertex is only allowed to deform along the
radial direction, which helps maintain a star-like shape of the deforming surface
and prevents leaking. In addition, the smoothness constraint as indicated in
the second term of Eq. (10) also keeps the surface and its deformation to be
smooth. We initialize the model as a small sphere interior to the bladder based
on the mapped planning bladder surface after an initial linear registration. The
model is then iteratively updated according to a gradient-descent optimization
of Eq. (10). The surface centroid x0 is also updated after each iteration. At
convergence, the final bladder surface location of each vertex is computed using
x(r, s) = x0 + d(r, s). An example result is shown in Fig. 3 below.

Fig. 3. Cross-sectional views of a model-based bladder segmentation result. The thin
yellow curves correspond to the mapped planning bladder surface after linear registra-
tion, and the red curves are the deformable model bladder segmentation result.

After the bladder is segmented, the bladder surfaces in both planning and
treatment images are converted to two signed distance functions and used as an
extra channel to the SSD metric. The symmetric, inverse-consistent registration
method described in the previous section can be similarly applied.

4 Results

To evaluate the performance of the proposed method, we applied it to a set of 24
clinical CT images from 6 patients (4 images for each patient). The images have a
voxel size about 0.85×0.85×1.5mm3. Four structures were manually delineated
by experts for each image: the bladder, the rectum, the prostate, and the seminal
vesicles (SV). The proposed image registration and auto-recontouring method
was applied to map structure contours from the first image of each patient to
the remaining three images.

Fig. 4 illustrates the segmentation result for one patient. The top row shows
the planning image with given manual contours, and the bottom row shows
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Fig. 4. Illustration of an auto-recontouring result (see text for details)

the treatment image with auto-segmentation results (the color curves) using the
proposed method. This is a challenging case due to large rectum shape and
content change between the planning and treatment images. The method gives
very accurate results for all four structures, which agree very well with the given
manual segmentation (the white curves) on the treatment image.

For quantitative evaluation, we computed the widely used Dice similarity
coefficient (DSC) between the the auto- and manual- segmentation results. The
overall statistics of the DSC values are summarized in the box and whisker
plots of Fig. 5, where the left plot summarizes the results by directly applying
the deformable registration method and the right summarizes the results of the
complete algorithm with rectum and bladder processing. It can be seen that the
proposed deformable registration method itself already performs very well except
for a few outliers corresponding to cases with large bladder and rectum content
change. The rectal gas detection and bladder model addressed this difficulty and
produces significantly better accuracy. The results also compare favorably with
other reported prostate auto-recontouring methods in the literature [13].

We have implemented the proposed deformable registration method on GPU
using the NVIDIA CUDA programming model, and it usually takes less than
one minute to process one pair of images on a desktop computer with an Intel
Xeon Quad-core 2.66GHz CPU and a NVIDIA GTX 280 graphics card.

Fig. 5. Box plots of DSC results for 4 structures (see text for details.)
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5 Conclusion

In this work, we developed a fully symmetric, inverse-consistent diffeomorphic
registration method and adapted it to the automatic segmentation of daily CT
images for prostate adaptive radiotherapy. The proposed registration method
deforms both images towards each other in a completely symmetric fashion,
which is shown to be more effective in recovering large deformations. Combined
with rectal gas detection and model-based bladder segmentation, the overall
method gives very high accuracy for the segmentation of real CT images. Future
work includes validation on a larger set of data, and evaluating the registration
accuracy for dose accumulation applications. It is also desirable to extend the
proposed method for the segmentation of CBCT images.
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Abstract. The prediction of toxicity is crucial to managing prostate cancer ra-
diotherapy (RT). This prediction is classically organ wise and based on the dose
volume histograms (DVH) computed during the planning step, and using for ex-
ample the mathematical Lyman Normal Tissue Complication Probability (NTCP)
model. However, these models lack spatial accuracy, do not take into account de-
formations and may be inappropiate to explain toxicity events related with the
distribution of the delivered dose. Producing voxel wise statistical models of tox-
icity might help to explain the risks linked to the dose spatial distribution but is
challenging due to the difficulties lying on the mapping of organs and dose in a
common template. In this paper we investigate the use of atlas based methods to
perform the non-rigid mapping and segmentation of the individuals’ organs at risk
(OAR) from CT scans. To build a labeled atlas, 19 CT scans were selected from
a population of patients treated for prostate cancer by radiotherapy. The prostate
and the OAR (Rectum, Bladder, Bones) were then manually delineated by an
expert and constituted the training data. After a number of affine and non rigid
registration iterations, an average image (template) representing the whole popu-
lation was obtained. The amount of consensus between labels was used to gener-
ate probabilistic maps for each organ. We validated the accuracy of the approach
by segmenting the organs using the training data in a leave one out scheme. The
agreement between the volumes after deformable registration and the manually
segmented organs was on average above 60% for the organs at risk. The proposed
methodology provides a way to map the organs from a whole population on a sin-
gle template and sets the stage to perform further voxel wise analysis. With this
method new and accurate predictive models of toxicity will be built.

1 Introduction

The main challenge in prostate cancer radiotherapy is to deliver the prescribed dose
to the clinical target while minimising the dose to the organs at risk (OAR), thus
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avoiding subsequent toxicity-related events [1]. The prediction of toxicity is central
to improving the reliability of the treatment [2]. Dose-volume histograms (DVH) [3],
tying together the dose received by the patient and the irradiated volumes, have been
largely used to estimate the risk of complications. These values may also be fitted with
the Lyman Normal Tissue Complication Probability (NTCP) to predict toxicity[4,5,6].
In this way, many studies have shown a correlation between dose, volume and rec-
tal toxicity [7,8,9,10,11,12]. For the bladder, these correlations are however very lim-
ited [13]. Based on these studies, different recommendations for the rectum and blad-
der dose-volume values have been defined, but corresponding to a small number of
threshold values.

Although the recommandations are precise in terms of DVH, it has been pointed
that the DVH and NTCP models may lack specificity for prediction. The likelihood
of toxicity related events depends not only on the dose and the volume of the organs
included in the radiation field [7,14] but also on individual’s specific factors, such as
radiosensitivity or personal medical history [15]. In addition, anatomical deformations
may occur during treatment and consequently the planned dose does not fit to the actual
delivered dose [16], leading to uncertainties in NTCP calculation. Finally, there is a
lack of spatial specificty in the models which would grant a voxel-wise link between
delivered dose and the surgical outcome and toxicity, to a large extent.

More accurate predictive models that include a large set of explanatory variables
and allow an increased spatial specificity have to be developed to test toxicity hypoth-
esis. Cumulative DVH, for instance, being more representative of the actual received
dose [17] should lead to more reliable computation. The importance of spatial location
has also been pointed out by [18]. More recently published papers already performed
voxel wise analysis in two populations to statistically compare toxicity outcomes in the
urinary tract [19] and tumor control in the prostate [20]. However the methods used to
map the organs to a single template rely on organ delineations and are approximated
in terms of spatial location. Thus, the mapping was defined by a parametric represen-
tation of the whole image with respect to the organs position in polar coordinates. A
more accurate mapping of the organs at risk and in overall of the whole pelvic region
at a voxel basis is therefore needed allowing to relate the outcome of the treatment to
the delivered dose.

We present in this paper an atlas based method for the non-rigid mapping of the
individuals’ organs at risk (OAR) to a single template and evaluate its accuracy per-
forming the segmentation of the main organs in their native space. We would like to
raise awareness about the increasing necessity of spatial specific predictive models for
toxicity and discuss about the problems brought by the mapping of OAR to a single tem-
plate for further voxel-wise analysis. We developed an atlas-based approach based on
the methodology presented by [21], except that ours is based only on the CT used dur-
ing the planning in the clinical practice. To constitute the training data, 19 individuals’
CT scans were manually delineated by an expert (prostate and the OAR). To validate
the mapping, the volume overlap was computed based on the manual segmentations of
the main organs from the CT scans.
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2 Method

2.1 Patient Data

The training set consisted of nineteen patients treated for prostate cancer, who under-
went a planning CT scan and 8 more weekly CT scans. All CT scans were acquired
without constrast enhancement. The size of the images in the axial plane was 512*512
pixels with 1 mm resolution 3-mm thick slices. For each patient, the femur, the bladder,
the rectum, the prostate and the seminal vesicles (SV) were manually contoured by the
same observer.

2.2 Atlas Generation

A probabilistic atlas was generated by using the same methodology as presented by
Dowling et al. [21] for MRI segmentation who extended the approach proposed by
Rohlfing [22]. Probabilistic labels for the prostate, rectum, bladder and bones were gen-
erated by propagating the manual segmentations of these organs for each case using
the obtained affine transform and deformation field computed from the MR into the
atlas space as per Rohlfing [22]. An arbitrary but representative case in our database
was chosen as the initial atlas, defining the atlas space alignment. The first iteration in-
volved the registration of every other case to the selected individual case using a robust
block matching approach [23], followed by a diffeomorphic Demons non-rigid registra-
tion [24] in the subsequent iterations. At the end of each iteration a new average atlas is
generated and used in the subsequent iteration. In the present study, five iterations were
performed. Fig. 1 shows the obtained atlas and an overlaid of the probabilistic labeling
for the prostate and the rectum in the atlas coordinate system.

2.3 Segmentation of Organs from the Planning CT

After generation of the probabilistic labels (Prostate, rectum, bladder, femur and seminal
vesicles) in the common space, the atlas was used in a segmentation step to constrain
the organs of interest. Thus, a scheme based on affine [23], followed by a diffeomorphic

Fig. 1. Top: Prostate and Bottom: Rectum probability maps overlaid on the generated atlas or-
thogonal slices
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Demons non-rigid registration [24] led us to map the atlas onto each individual’s CT
scan. The obtained affine transform and deformation fields were then used to map the
probabilistic labels onto each individual scan. These registered labels were thresholded
(at 50%) to provide the hard organ segmentations for each individual scan. The overall
process is depicted in Fig. 2. We also tested different levels of thresholding and for
the prostate the results are depicted in Fig. 5, but 50% threshold represented a good
compromise between all the organs.

Affine + NRR Registration

Probability
maps

Atlas

Individual’s CT

Registered Atlas/CT

Propagation

Thresholding

hard segmentations

Fig. 2. Atlas based segmentation process from the planning CT

Fig. 3. Example of registration between the atlas and a single individual
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Figure 3 depicts the overlap between the atlas and a single individual. With the used
non rigid registration scheme good coincidence between the two images is obtained,
although the soft tissus are not as visible as they can be in an MRI. Notably the bladder
and rectum fits better with the template than the prostate, because the contrast in those
organs is higher.

Fig. 4. Top: Rectum probability map overlaid on the atlas coordinate system. Bottom: the rectum
probability map is propagated to one individual’s CT scan after registration.

3 Results

Using affine registration followed by the Demons algorithm for non-rigid registration,
the automatic segmentation for each CT scan required approximately 14 minutes on a
Dell T5500, with 12 Gb RAM, dual quad core (Quad-Core Intel(R) Xeon(R) X5550
(2.66Ghz/8MB L3 Cache).
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Fig. 6. Leave one out validation. Dice Scores for all the labeled organs (CTV2=:prostate,
CTV1:prostate and Seminal Vesicles).

Fig. 7. Leave one out validation. Dice Scores distribution for all the labeled organs
(CTV2:prostate, CTV1:prostate + seminal vesicles).

The generated atlas and an example of probabilistic label are presented in Figures 1
and 4. The automatic hard segmentations were compared against the manual segmen-
tations using the Dice Similarity Coefficient (DSC = 2(|A⋂

B|/(|A|⋃ |B|))). A
leave-one-out cross validation was performed. Thus, at each iteration a single individ-
ual was extracted from the training data and used as a test. The dice score results appear
summarized in Figure 6. As expected the highest areas of coincidence are shown in the
bones, but also in average the bladder and rectum, which have a good contrast in the
CT. Fig. 7 depicts the distribution of all those results. As table 1 summarised , some
outliers bias the average result.
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Table 1. Average Dice Score after leave one out validation. At each time one ID is extracted
from the training data set and is used as the test data. CTV1: Prostate+Seminal Vesicles, CTV2:
Prostate.

ID Bladder Rectum Rfemur Lfemur CTV1 CTV2
1 0.59 0.70 0.67 0.69 0.59 0.54
2 0.48 0.60 0.88 0.88 0.52 0.47
3 0.59 0.32 0.85 0.74 0.32 0.68
4 0.83 0.62 0.90 0.90 0.79 0.78
5 0.62 0.72 0.91 0.90 0.52 0.59
6 0.82 0.64 0.89 0.90 0.72 0.76
7 0.31 0.06 0.84 0.77 0.16 0.23
8 0.72 0.76 0.90 0.89 0.61 0.49
9 0.71 0.65 0.85 0.80 0.55 0.68

10 0.76 0.69 0.81 0.77 0.77 0.80
11 0.46 0.52 0.63 0.64 0.27 0.27
12 0.36 0.40 0.90 0.88 0.36 0.46
13 0.80 0.77 0.83 0.88 0.78 0.78
14 0.79 0.77 0.89 0.88 0.70 0.62
15 0.44 0.64 0.90 0.87 0.35 0.32
16 0.78 0.59 0.86 0.85 0.59 0.57
17 0.73 0.78 0.90 0.86 0.74 0.72
18 0.90 0.67 0.86 0.87 0.77 0.78
19 0.40 0.20 0.89 0.87 0.60 0.55

Average 0.636 0.583 0.851 0.834 0.564 0.583
Stdev 0.180 0.202 0.076 0.076 0.192 0.177
Max 0.898 0.778 0.908 0.902 0.791 0.795
Min 0.315 0.055 0.629 0.644 0.161 0.232

In general a good agreement was obtained with this approach. The main cause of
error in the automatic segmentation results are related to organ variation, particularly
with the CTV1 (vesicles + prostate), and the prostate. Obesity appears to also be a source
of error, as it induces a quite important variability to the training data set. We must
consider the high interobserver variability which bias also the obtained results. This
should be alleviated with the contribution of additional subjects to the atlas or with the
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computation of a set of atlases to stratify subjects. This will allow to group portions of
the populations that can be further mapped together in a single template.

Motivated by the potential utility of the approach for interindividual segmentation,
we also tested the method to segment structures from the CBCT scans acquired during
32 fractions for one single individual. Results are summarised in Fig. 8.

4 Conclusion

We have presented in this paper the first step aimed at the creation of a common tem-
plate for the mapping of organs at risk (OAR) as a basis to produce predictive models of
toxicity. The validation of the mapping was performed by using the atlas-based segmen-
tation results, where the OAR and prostate were delineated and compared with manual
segmentations. The automatic segmentation of the prostate, rectum, bladder and femur
from CT images using a probability atlas scheme had quite good correspondence with
the manual segmentation, and may provide useful initial constraints for further segmen-
tation methods, such as active contours or statistical models. We tested different levels
of thresholding and selected a 50% threshold over the propagated probability maps, but
in future work we want to optimize the segmentation for a particular organ of interest
using improved techniques from those maps. The analysis was performed on CT and
not in MRI, which would give more accuracy in terms of soft tissues registration, but
the goal is to map the delivered dose from available data. We intend to perform a large
voxel-wise interindividual analysis, where all the multivariate information (anatomy,
dosimetry plans, toxicity) across a different population would be mapped using non
rigid registration strategies.

Next step will be to compare with different non-rigid registration techniques and
to relate with the inter/intra expert segmentation variability. Approaches such as STA-
PLE [25], will help us to assess the confidence of the ground truth and to generate robust
segmentations. Further steps in Image-guided radiotherapy is the re-planning of the dose
distribution during the treatment. As an exploratory way, we also obtained good agree-
ment in organ segmentation for a single individual from the 32 CBCT scans acquired
during the treatment. Future work will include dose-tracking in the tissues during the
fractions and so a more accurate and adequate treatment for the patient according to the
predictive models of toxicity encompassing a multivariate analysis.
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Abstract. In this paper, a system for fusion of realtime transrectal ultra-
sound (TRUS) with pre-acquired 3D images of the prostate is presented
with a clinical demonstration on a cohort of 101 patients with suspicion of
prostate cancer. Electromagnetically tracked biopsy guides for endocavity
ultrasound transducers were calibrated and used to fuse MRI-based sus-
picious lesion locations with ultrasound image coordinates. The prostate
shape is segmented from MRI in a semi-automated fashion via a model-
based approach, and intraoperative image registration is performed be-
tween MR and ultrasound image space to superimpose target fiducials
markers on the ultrasound image. In order to align both modalities, a sur-
face model is automatically extracted from 2D swept TRUS images using
a partial active shape model, utilizing image features and prior statistics.
An automatic prostate motion compensation algorithm can be triggered
as needed. The results were used to display live TRUS images fused with
spatially corresponding realtime multiplanar reconstructions (MPRs) of
the MR image volume. In this study, all patients were scanned with 3T
MRI and TRUS for biopsy. Clinical results show significant improvement
of target visualization and of positive detection rates during TRUS-guided
biopsies. It also demonstrates the feasibility of realtime MR/TRUS image
fusion for out-of-gantry procedures.

1 Introduction

Prostate cancer is the second leading cancer among American men after skin
cancer, with an incidence rate of 157/100,000 (2010) in the US and approximately
218,000 new cases diagnosed each year. It is the second leading cause of cancer
death in men in the United States [1], with a mortality rate close to 32,000
every year. Successful screening and diagnosis of malignant tumors therefore
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becomes critical in order to treat highly suspicious cases. Towards this end,
once a rectal exam and a prostate-specific antigen (PSA) test is performed, a
transrectal ultrasound (TRUS) examination is scheduled. This type of procedure
is the most frequently used method for image-guided biopsy and therapy of
prostate cancer due to its real-time nature, low cost, and simplicity [2].

However because the accuracy of TRUS procedures for prostate cancer is
rather limited, biopsies are generally not lesion-targeted. Instead, the vast ma-
jority of biopsies are carried out using 6 to 12 core systematic geometric sampling
of the prostate [3]. With over a million biopsies performed annually in the US,
a significant rate of false negatives was reported for sextant biopsy in particu-
lar, reaching up to 30% [4]. This stems from the fact that ultrasound prostate
imaging has many limitations such as low intrinsic contrast between tumor and
non-tumor on ultrasound, and very high speckle artifacts in the images. Fur-
thermore the biopsies are carried out in an inherently undirected fashion in each
zone. On the other hand potential alternatives to TRUS have been studied ex-
tensively and continue to be an active area of research.

Novel imaging methods are being sought for screening, diagnosis, and stag-
ing of prostate cancer, as well as for biopsy and therapy guidance. Advanced
magnetic resonance imaging (MRI) methods such as dynamic contrast enhanced
MRI (DCE-MRI) and MR spectroscopy are becoming increasingly attractive as
new diagnostic modalities for prostate cancer [5,6]. The promise of advanced
MR prostate imaging has also stimulated research in MR-compatible robots
for biopsy or brachytherapy applications [2,7]. It is also a well suited modality
for visualizing the prostate anatomy and focal lesions that are suspicious for
prostate cancer. Unfortunately, MRI imaging is costly and typically not a real-
time modality and due to the magnetic environment, this increases the complex-
ity of interventional procedures, making the use of MRI for routine biopsy guid-
ance problematic. Fusion of pre-acquired MRI with electro-magnetically tracked
TRUS has therefore been investigated by several groups [8,9]. Kaplan et al.
propose a TRUS/MR fusion technique in transperineal biopsy, using a stepper-
stabilizer commonly used for brachytherapy [10]. Another method based on the
same modalities was applied for brachytherapy [11], reporting residual errors
of less than 2 mm. None of those approaches, however, offers the ease of use
and flexibility of freehand TRUS needed for transrectal prostate biopsy. Lastly,
very few studies have demonstrated the advantages of fusion-targeted biopsies
in large-scale clinical trials.

We introduce a solution to this problem where we propose a method to seg-
ment the prostate gland from previously acquired T2-weighted MR images and
fuse the 3D model to realtime TRUS images acquired in the operating room dur-
ing biopsy procedure, thus exploiting the advantages of each modality [10]. To
this end, key technologies in adaptive prostate segmentation, both from MRI and
ultrasound data, as well as in multi-modal registration were addressed to achieve
a robust, reliable and accurate fusion system. Pre-operative data processing is
accomplished through a partial active shape model. Then, registration is per-
formed in a semi-supervised fashion, where a motion compensation algorithm
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Fig. 1. Flowchart diagram of the proposed MRI/TRUS fusion system for guided
prostate biopsy

is integrated in the guidance software to accommodate for gland and patient
displacement during the procedure. In this paper, we present our overall system
aimed at providing prostate fusion imaging based on technologies that require
no or only minimal modification to the standard clinical workflow. The purpose
of this particular study is to present the clinical relevance of such a fusion system
in a routine environment with results provided from a cohort of 101 cases. The
potentials of such an approach is to give access to fusion-targeted biopsies in
conventional procedure room (out-of-gantry), and ultimately translate the tech-
nology to a urology office setting. Figure 1 shows the framework of registering
a tracked ultrasound sequence to the pre-operative 3D image. In this scenario,
we obtain a pre-operative MRI scan which is used to segment the shape of the
prostate with annotated target lesion landmarks. Once the patient is positioned,
a TRUS image sequence of the prostate is recorded and processed for a volume
reconstruction. We use this data to segment the prostate from TRUS, and ap-
ply a surface-based registration algorithm for MRI/TRUS fusion. The guidance
platform helps radiologists track the targeted tumor for targeted biopsy, with
the option of referring to the prior MRI to sample suspicious tissue. Inherent
tracking errors due to distortions in the magnetic field from metallic instruments
are reduced by the proposed image-based solution which provides image fusion
by the same tracked US probe. The advantage of using MRI data is the high
resolution 3D image where the suspicious lesions can be easily visualized before
or during the intervention. The paper is organized as follows. Section 2 presents
the hardware setup, prostate model segmentation and multi-modal registration
algorithms. In Section 3 we present our clinical results and the relevance of using
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such a method. Finally, the last section brings a perspective to the paper with
future enhancements.

2 Method

2.1 System Setup

Figure 2 shows the set up of the system. 3D images are acquired on a Philips 3T
Achieva MR scanner (Philips Medical Systems, Best, The Netherlands), collected
with an endorectal coil. The US guidance experiment was carried out using
the 2nd generation Aurora electro-magnetic tracking system (Northern Digital
Inc, NDI, Waterloo, ON, Canada). A tracking field generator is mounted near
the operating table using an articulated arm by D&K Technologies (Barum,
Germany). A Philips iU22 ultrasound scanner was used for real-time guidance
and the ultrasound images were captured using a frame-grabber card (Winnov
USA, Santa Clara, CA) at 30 fps. The software platform used was a JAVA-based
interventional navigation software previously demonstrated for radiofrequency
ablation (RFA). Target lesion identification is performed by a radiologist prior
to intervention on T2-weighted (T2w) images. SENSE protocols were used for
most scans, in accordance with the clinical scan protocol used.

2.2 Model-Based Prostate Segmentation from MRI

Once the T2w MR images of the patient’s prostate is acquired, a deformable
model is used to segment the prostate by using the boundary features and sta-
tistical shape models. A given image is segmented when the associated energy
of the deformable contour is minimized. The energy function is defined as:

E = Ef + Es (1)

Fig. 2. System setup in the operating room with tracking device
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where Ef denotes the content-based filtering response energy term and Es is the
constrain added to the energy term which is derived from the prostate shape
statistics. In our work, the feature energy term Ef is defined by the multi-scale
gradient magnitudes at the contour points. The prostate shape statistics is com-
puted by using an active shape model (ASM) [12]. The obtained shape statistics
consists of a mean shape s̄ and a set of eigenshapes φ = {ei|i ∈ [1, N ]}. After
initializing the segmentation by putting the mean shape s̄ on an image I, the
iterative energy minimization strategy used in ASM [12] is adopted to segment
the image. The associated energy function (1) is minimized in two steps dur-
ing each iteration. First, the feature term is minimized by moving each contour
point along the normal directions of the deformable contour to a location with
the largest feature response. A new model S′

MR with a smallest feature energy
Ef is thus obtained. Then, the shape statistics is used to constrain the newly
updated deformable model as ˆSMR = φbT . The iterative minimization contin-
ues until the deformation converges towards a minimum or the maximal number
of allowed iterations is reached. The final shape contour ˆSMR is considered as
the segmentation result. The method is a semi-supervised approach where the
level of accuracy varies on the user’s expertise and time requirements to obtain
a precise representation. Figure 3 illustrate an example of this process.

Fig. 3. Sample segmentation results of the prostate from MRI. The ground truth is
shown in red and the obtained model-based segmentation result is displayed in green.

2.3 TRUS Image Segmentation

A 3D ultrasound volume is obtained by sweeping the 2D TRUS probe across the
prostate. Automatic prostate segmentation in TRUS images is highly desired
in this case so to alleviate the manual interventions. Unfortunately, robust and
automated prostate segmentation is challenging due to low contrast and miss-
ing boundaries in shadow areas caused by calcifications or hyperdense prostate
tissues. We apply a method we previously presented which uses a priori shapes
estimated from partial contours for segmenting the prostate boundaries [13].

The method is able to automatically extract prostate boundary from 2D
TRUS images without user interaction for shape correction in shadow areas. At
its core, shape statistics of the prostate are computed using a point distribution
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model (PDM). However, in order to deal with missing boundaries in shadow
areas, contours are estimated by using a partial active shape model (PASM),
which takes partial contours as input but returns a complete shape estimation
such that the model is formulated as:

ˆSUS = ¯SUS + Φbs (2)

with mean shape ¯SUS and a matrix Φ, which includes the most significant top
eigenvectors of the input data covariance matrix. On the other hand to accommo-
date for salient contours, bs is the coefficient vector based on partial salient train-
ing data. With this previous shape guidance defined in (2), an optimal search is
performed to minimize the energy functional related to the deformable model:

E(vi) = Eext(vi) + Eint(vi) + EPASM (vi) (3)

where the external energy Eext(vi) is defined by the contrast of feature vectors
detecting contrast variations, the internal energy Eint(vi) represents the model
continuity and curvature, used to preserve the geometric shape. Finally, the
PASM term EPASM (vi) is defined by the distance between the model and corre-
sponding active points. For image segmentation, efficient dynamic programming
in a multi-resolution approach is adopted. The level of accuracy of the proposed
approach is evaluated at 2.01 ± 1.02mm on a cohort of 19 patients [13].

2.4 Surface-Based TRUS/MRI Registration

MRI/TRUS fusion requires real-time image registration between the two
datasets. In our protocol, the registration is conducted at the beginning of the ul-
trasound procedure, so the physician can use the time during the computation to
examine the patient sonographically. The registration can be described by the fol-
lowing chain of transformations, progressing from the US image towards the MRI:

TUS→MRI = T3DUS→MRI · T2.5DUS→3DUS ·TUS→2.5DUS (4)

where TUS→2.5DUS is the transformation from the ultrasound image space to
the local coordinate system of the tracking sensors attached to the ultrasound
probe, T2.5DUS→3DUS is the real-time tracking data of the ultrasound probe and
T3DUS→MRI is the registration transformation we seek between the patient and
the localizer. Since the probe is spatially tracked, the reconstructed ultrasound
volume is inherently registered to the tracking space. Therefore the cost func-
tion which optimizes the parameters of T , namely t and R follows an ICP-like
objective:

E = argmin
T3DUS→MRI

∑
i∈SUS

[(Rpi + t − qi) · ni]2 (5)

which minimizes the alignment of both point sets from the prior MRI and TRUS
segmented model, with qi ∈ SMR and ni defined as the normal at each point coor-
dinate of the MRI model. Although not a perfectly accurate method, the observed
prostate deformation caused by the ultrasound transducer can be controlled by
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the applied probe pressure to obtain a shape similar to the deformation caused by
the endorectal coil used during MRI. Registration is performed by rigidly aligning
both shapes for accurate mapping of MR targets in the TRUS images.

2.5 Intra-operative Motion Compensation

Involuntarily patient motion due to pain or probe pressure related to the needle
insertion may cause the prostate to shift from its originally swept position. In
addition, the transrectal probe can itself move and distort the prostate, while
the patients respiratory motion may slightly deviate the gland from its original
location [14]. Therefore, to maintain image fusion from these artifacts, realtime
image-based motion compensation can be triggered by the user to correct the
registration intraoperatively. Since the ultrasound images are acquired from a
tracked probe, mapping the slice back to the 3D volume is a viable solution.
However, single slice volume registration is very sensitive to input noise. There
are indeed many local minima along the off-plane direction which can offset the
registration. Hence we propose a method using multiple image frames for the
compensation [15], where a subset of frames demonstrating significant differ-
ences in translation and rotation are selected. The registration between these
frames and the reference ultrasound volume can be considered as 2.5D to 3D
registration. The objective function is given by:

O(R, t) =
N∑

k=1

∑
(x,y)

[Ik(x, y) − V (Tk(x, y, 0))]2 (6)

where N is the number of frames used in the registration adjustment, Ik is the kth

2D frame, V is the reference ultrasound volume, and Tk is a transformation model
between Ik and V with a parameter vector k. Since the 2.5D image acquisition is
performed at a high frame-rate, the relative prostate motion between the selected
ultrasound frames is negligible. In the example illustrated in Figure 4, we see the

(a) (b)

Fig. 4. Motion compensation results (a) before and (b) after realignment
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updated fusion after using four ultrasound image frames which were registered
to the reference ultrasound volume.

3 Clinical Experiments

The proposed targeted-fusion system was used and validated in a clinical study
incorporating patients with suspicion of prostate cancer. We tested the approach
by comparing results with standard measures used for prostate biopsies. Study
design and results are presented in this section.

3.1 Biopsy Protocol

The patient studies were carried out at the National Institutes of Health Clinical
Center to evaluate the system’s performance under an IRB approved protocol,
with written informed consent from each patient. In all, 101 patients were en-
rolled in this study and inclusion criteria consisted of a PSA > 2.5 or an abnormal
digital rectal exam. At least 1 lesion suspicious for prostate cancer had to be
present on the MRI. The mean age was 61.7 (range 41 - 81) and median age of
61. The mean PSA was 8.3 (range 0.21 - 103) and median of 5.4. From all the
patients who were enrolled in this study, 60 had at least one prior biopsy. From
these, 26 had a negative prior biopsy and 34 had a positive prior biopsy.

Four sequences were acquired for each patient: T2w (axial, sagittal, coronal),
DWI, DCE and MRS. The suspicious lesion locations were identified on T2w
images. For each lesion, an assignment of suspicion label based on low, moderate,
high was performed.

3.2 Results

All patients were under general anesthesia and were first treated with conven-
tional TRUS-guided 12-core double-sextant biopsy. This was then followed by
the proposed MRI-TRUS fusion-guided targeted biopsy approach with 2 cores
per target (axial, sagittal view). Figure 5 shows some results of fused MRI/TRUS
image guidance with US overlaid targets initially identified on the MRI.

We compared positive biopsy core rates for both sextant and targeted biopsy
cores using the proposed system (Figure 6). All patients were divided in one of
the following 3 categories: low, moderate and high suspicion. Biopsy rates are
calculated by the number of positive biopsy cores divided by the total number
of cores in each category. We can observe biopsy rates are nearly identical in
low-suspicion patients (6.5%), while in the two other categories, there is a signif-
icant increase in positive rates. Moreover, this increase is even more pronounced
for targeted biopsies, whereas the sextant core rate increase by a factor of 3.7
between high and low suspicion patients, the factors is 6.5 for targeted cores.
Furthermore, the targeted core rate is significantly higher than the core rate
(p < 0.001) in all categories except low suspicion patients. In order to correlate
the fusion-targeted procedure results with a recognized prostate cancer classifi-
cation score, we computed Gleason scores obtained in the targeted lesions, where
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Fig. 5. Registration of MRI/TRUS for image guidance, fusing T2w MRI fused with
reference ultrasound volume (color map), along with the real-time ultrasound and
target information

(a) (b)

Fig. 6. Comparison of sextant vs. image fusion-targeted biopsies. (a) Biopsy core rates
in low, moderate, high suspicion. (b) Biopsy core rates in low, moderate, high suspicion
per patients with combined approach.

the results displayed in Figure 7 show mean values and ±1 standard deviation.
We see a significant increase (p < 0.05) with target suspicion level, from 6.3
and 6.8 for low/moderate suspicion targets, indicative of low to moderate risk
cancer, up to 7.9, indicative of high risk of cancer.
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Fig. 7. Analysis of Gleason scores in targeted lesions

4 Discussion and Future Work

We have described an interventional navigation system fusing prior MRI with
TRUS for image guidance. The system is used for targeted prostate biopsy and
can be extended to focal therapy. Real-time fusion of MRI and ultrasound images
is possible despite the presence of prostate motion. Results show that MRI-based
suspicion labels correlate with both with biopsy core rates and Gleason scores.
While the system has been proven to be a significant improvement to standard
sextant biopsies, deformation of the prostate during MR and TRUS scans was
identified as the primary source of error. Hence, deformable registration algo-
rithms are being investigated to compensate for probe pressure in peripheral
regions which modifies the prostate appearance. In conclusion, fusion-targeted
biopsy potentially enables more accurate biopsy and improved patient manage-
ment, in particular for patients with potential cancer and after failed sextant
biopsy. Future trials in external clinical centers and out-of-gantry context are
being planned for further validation.
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1 Abstract

Prostatic adenocarcinoma (CAP) is the most common malignancy in American
men. In 2010 there will be an estimated 217,730 new cases and 32,050 deaths
from CAP in the US. The diagnosis of prostatic adenocarcinoma is made exclu-
sively from the histological evaluation of prostate tissue. The sampling protocols
used to obtain 18 gauge (1.5 mm diameter) needle cores are standard sampling
templates consisting of 6-12 cores performed in the context of an elevated serum
value for prostate specific antigen (PSA). In this context, the prior probability
of cancer is somewhat increased. However, even in this screened population, the
efficiency of finding cancer is low at only approximately 20%. Histopathologists
are faced with the task of reviewing the 5-10 million cores of tissue resulting
from approximately 1,000,000 biopsy procedures yearly, parsing all the benign
scenes from the worrisome scenes, and deciding which of the worrisome images
are cancer.

All prostate cancer is not biologically the same. Some cancers are progressive
despite therapy and eventually kill the patient. Other cancers are indolent. Our
ability to separate aggressive from indolent cancer is good but limited to popu-
lation statistics describing the distribution of features such as tumor size, tumor
stage, PSA value, and tumor grade. The Gleason grading system of CAP is the
single most powerful feature for the prediction of outcome in CAP. The Gleason
grading system recognizes 5 basic architectural patterns which structurally de-
scribe a disturbance of normal inter-glandular organizational relationships on a
2-10 scoring scale. The bins of score 6 or less; score 7; and score 8 or more have
significantly different biological outcomes in meta-analysis. In assigning Glea-
son grade the accurate identification of Gleason patterns 4 and 5 is the most
important task for the histopathologist. Inter-observer variance in the recogni-
tion of Gleason patterns 4/5 is an important limitation in grading. Educational
programs can improve concordance across labs.

Machine facilitated quantitative histoimaging with computer assisted diag-
nosis (HistoCAD) offers an algorithmic classifier approach to Gleason grading
with the promise of near 100% reproducibility. Recent improvements in virtual
slide scanning technology allow for ready access to whole slide digital images on
which to focus computational solutions. There are, however, many challenges to
effective HistoCAD programs.

The size of the data is enormous in comparison to other diagnostic modalities.
A high resolution CT scan comprises 512 × 512 × 512 spatial elements, or 134
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million voxels. A single core of prostate tissue digitized at 40X magnification
is approximately 15, 000 × 15, 000 elements, or 225 million pixels. Most biopsy
procedures generate 12 cores or 2.7 billion pixels per patient investigation! Com-
putational efficiency in dealing with data sets of this size is critical.

Finding a strong representation of the cancer in a whole slide image is a
crucial first task of any HistoCAD algorithm. Our collaborative group at Rut-
gers University and the University of Pennsylvania has studied two approaches.
Monaco et al [1] has reported on the high-throughput detection of prostatic
cancer in whole mount histological sections using probabilistic pairwise Markov
models. In this method, gland lumens are segmented, and then the gland areas
are extracted. The classification of individual glands leverages two features: (1)
cancerous glands tend to be smaller than benign glands, and (2) cancerous (be-
nign) glands tend to be in proximity to other cancerous (benign) glands. This
last feature describes a spatial dependency which was modeled using a Markov
prior which encourages neighboring glands to share the same label. Finally, the
algorithm consolidates the malignant glands in contiguous regions using the dis-
tance hull algorithm. The net effect is to quickly capture malignancy enriched
areas with 87% sensitivity and a false positive rate of only 10%. Such regions of
interest are ideal targets for molecular analyses or second set image queries.

A second approach to cancer detection which has been studied by our group is
employs a boosted Baysesian multi-resolution classifier for prostate cancer detec-
tion from digitized needle biopsies [2]. This algorithm decomposes the whole slide
image into an image pyramid composed of multiple resolution levels. Features are
then extracted which include first order statistics, co-occurrence features and Ga-
bor features. Regions are identified as being cancer by using a boosted Bayesian
classifier on a multi-resolution framework such that regions identified as cancer
via the classifier at lower resolution levels are subsequently examined in greater
detail at higher resolution levels, thereby allowing for the rapid and efficient anal-
ysis of large images. This process models the approach of expert histopathologists
in gleaning information at different scales in the diagnostic process.

The density of HistoCAD data offers the potential power of interrogating the
histoimages with large multidimensional feature sets. Object level features ad-
dressing structure such as size and shape, texture, chromatin, as well as spatial
arrangement features such as Voronoi tessellation, Delaunay triangulation, and
minimum spanning trees can create thousands of dimensions of features. Graph
theory can be used to model prostate cancer grades. Spatial arrangement fea-
tures offer a series of descriptors which capture the size, shape, and arrangement
of gland structures related to nuclei [3]. To date such approaches have been
used to reproduce expert annotations of grade allowing for the possibilities of
improved quality of grading and the consideration of high throughput, grade-
stratified molecular analyses. The next steps will be to extend these methods
to the discovery of value added structural features which provide informative
data beyond Gleason grading which could be used in the modeling of disease
progression and response to therapy.
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Finally, the hypothesis that quantitative high resolution image data represents
an integrated statement across genome, transcriptome, proteome and epigenome
can be explored using HistoCAD. The fusion of HistoCAD data molecular data
streams may provide a powerful paradigm for precision medicine.
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Abstract. Early and accurate diagnosis of prostate cancer enables min-
imally invasive therapies to cure the cancer with less morbidity. The
purpose of this work is to non-rigidly register in vivo pre-prostatectomy
prostate medical images to regionally-graded histopathology images from
post-prostatectomy specimens, seeking a relationship between the multi
parametric imaging and cancer distribution and aggressiveness. Our ap-
proach uses image-based registration in combination with a magnetically
tracked probe to orient the physical slicing of the specimen to be parallel
to the in vivo imaging planes, yielding a tractable 2D registration prob-
lem. We measured a target registration error of 0.85 mm, a mean slicing
plane marking error of 0.7 mm, and a mean slicing error of 0.6 mm;
these results compare favourably with our 2.2 mm diagnostic MR im-
age thickness. Qualitative evaluation of in vivo imaging-histopathology
fusion reveals excellent anatomic concordance between MR and digital
histopathology.

1 Introduction

Prostate cancer is the most common non-cutaneous cancer in men and kills
more than 600 men in the United States and Canada each week [1,2]. One out
of every seven men will develop prostate cancer over the course of his lifetime,
and one in 27 men will die of it [1]. Early prostate cancer detection increases the
number of suitable treatment options and improves survival rates [3]. Although
prostate biopsy is the current standard for diagnosing prostate cancer, there
is substantial evidence of both overestimation and underestimation of cancer
severity based on biopsy, which can lead to mismanagement of treatment. In a
study of 464 patients, biopsy underestimated the true cancer severity determined
after prostatectomy in 29.1% of cases, and overestimated it in 14% of cases [4].
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It is clear that innovative advancements in technologies supporting the di-
agnosis and staging of prostate cancer are necessary and will have a high im-
pact on disease management and the determination of the appropriate treat-
ment (e.g. whether prostatectomy, with frequent side effects of impotence and
incontinence, is required). The combination of multiple imaging modalities is
showing great potential for the detection and localization of clinically significant
prostate cancer [5]. However, the validation of imaging modalities and systems
for computer-aided diagnosis requires an accurate spatial mapping between in
vivo medical images and digital pathology images, wherein the ground truth in-
formation about cancer aggressiveness and distribution in the gland is known.
This mapping is challenging to compute due to deformations applied to the
prostate during in vivo imaging (e.g. due to the endorectal coil and transrectal
ultrasound transducer), as well as differential distortion of prostate tissue during
formalin fixation and histological processing.

The work presented in this paper is part of a study wherein radical prosta-
tectomy patients provide a set of in vivo prostate images, with modalities in-
cluding multi-parametric magnetic resonance (MR), dynamic contrast-enhanced
computed tomography (CT), three-dimensional (3D) ultrasound (US), and 18F-
choline positron emission tomography (PET). After removal, the prostate is his-
tologically processed and the resulting slides are digitized at high resolution. Our
high-level goal is then to non-rigidly register all of these images into a common
coordinate space so that the multimodality imaging can be correlated to ground
truth cancer aggressiveness and distribution assessments on digital histopathol-
ogy. This correlation can then potentially be used for improved image guidance
of prostate biopsy systems, e.g. [6,7,8], as well as focal therapeutic ablation
modalities such as cryo, laser, radio frequency, radiation, and high-intensity fo-
cused ultrasound [9], or enable minimally invasive surgical techniques such as
robot-assisted laparoscopic prostatectomy.

The overall objective of the work described in this paper is to develop and eval-
uate a novel technique for the fusion, via image registration, of in vivo prostate
MR images to corresponding digital pathology images. Sub-objectives: (1) To
develop and evaluate new software and hardware technology for orienting the
physical slicing of the prostate to be parallel to the in vivo MR imaging planes,
reducing the complexity of the registration problem from a 3D problem to a two-
dimensional (2D) problem; and (2) to develop and use novel fiducial markers for
the prostate, visible on medical images as well as digital pathology images.

Our approach centers on the use of a tracked probe to co-register fiducial
markers visible on an ex vivo prostate image with the same markers visible on
the specimen surface. Coupled with an in vivo to ex vivo image registration, this
allows the determination and physical marking of the desired cutting plane from
the in vivo image in the space of the physical specimen; we then use a specialized
tool to cut along the plane defined by the markers. Previous approaches to
orienting specimen slicing involve reorienting and reimaging the specimen in the
MR bore until a desired imaging plane orientation is obtained [10], or making
individual, per-specimen blade-guiding molds based on a segmentation of the
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surgical resection margins on in vivo MR images [11]. Our approach is novel in
contrast to [10] in that we support any in vivo orientation of the patient, and
unlike [11], we do not make the assumptions that the size, shape, and mechanical
properties of the in vivo and formalin-fixed specimens are similar, and that the
surgical resection margins can be reliably segmented on in vivo MR images prior
to surgery. Additionally, the spherical fiducial markers used in [10] require very
careful placement in order to ensure that they will lie within the pathology
images. In contrast, we have developed novel strand-shaped fiducial markers
that are visible on ex vivo imaging as well as on all pathology images. We have
developed a means of nondestructively inserting these markers into the specimen
and also mounting them to the specimen surface, permitting the use of a large
number of markers richly describing surface deformations.

It is important to note that the work in this paper is currently being ap-
plied within the typical clinical context where our prostate specimens are from
cancer patients who require follow-up diagnosis, and regulations dictate that
most of the tissue remains on file. There is therefore a spacing of 5 mm between
each of our histopathology images; this spacing introduces a significant challenge
to an alternative approach consisting of reconstructing a 3D volume from the
2D histopathology images and then using conventional nonrigid 3D registration
methods to register it to the in vivo context. Although such an approach would
be applicable in the atypical research context where specimens are serially sec-
tioned (i.e. the entire specimen is step-sectioned at 4 micron increments, yielding
zero spacing between histopathology images), our work intends to address the
challenges associated with translation to the clinical scenario.
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Fig. 1. Block diagram showing the high-level procedure conducted in this work. The
dark-shaded boxes indicate the steps that are the focus of this paper. Our novel ap-
proach to fiducial marking is described in section 2.2. The use of these fiducials for
image-guided gross slicing is described in section 2.3, and our registration method is
given in section 2.4.

2 Materials and Methods

2.1 Overall Process

The high-level process followed in this work is described in figure 1. With institu-
tional review board approval, we have collected image data for the first 12 of our
36 subjects. Relevant to this paper, we collect in vivo T2-weighted MR images



Registration of In Vivo Prostate Magnetic Resonance Images 69

(2D FSE, TR 6050 ms, TE: 163 ms, bandwidth +/-31.25 kHz, 2 averages, FOV
14 cm, 2.20 mm thick slices, 384x256 matrix, 40 slices) using an endorectal coil
surrounded by a sheath filled with barium. This configuration improves diag-
nostic image quality, but the inflated sheath causes deformation of the prostate.
After prostatectomy, formalin fixation, and fiducial marking (described in sec-
tion 2.2), T2-weighted (3D FSE, TR 2000 ms, TE 148.5 ms, bandwidth +/- 125
kHz, 3 averages, FOV 14 cm, 0.4 mm thick slices, 320x192 matrix, 160 slices)
and T1-weighted (3D Spoiled Gradient Echo, TR 6.5 ms, TE 2.5 ms, flip angle
15 degrees, bandwidth +/-31.25 kHz, 8 averages, FOV 14 cm, 0.4 mm thick
slices, 256x192 matrix, 160 slices) ex vivo MR images are taken with the speci-
men immersed in Christo-Lube (Lubrication Technology Inc., USA) in order to
yield a black background while minimizing boundary artifacts in the MR im-
ages. The apex of the specimen is then removed by making a single cut through
the prostate using the image-guided approach described in section 2.3. The re-
mainder of the specimen is placed within an agar block for gross slicing into 5
mm thick slabs using a deli slicer, in an orientation parallel to the apex slice.
The slabs are then processed using the standard paraffin embedding technique,
yielding hematoxylin and eosin stained microscope slides, each containing a sin-
gle 4 micron-thick section of tissue taken from the face of each slab. These slides
are scanned at 0.5 micron resolution using a Tissuescope scanner (Biomedical
Photometrics Inc., Canada), yielding 2D colour digital images of the sections.
These images are then registered to their corresponding in vivo MR images using
the procedure described in section 2.4.

2.2 Fiducial Markers

Fiducial markers used for the purpose of specimen slicing orientation and
imaging-to-histopathology registration must satisfy four criteria: (1) they must
appear and be localizable on ex vivo MR images, (2) they must appear and
be localizable on digital histopathology images (e.g. they must survive physical
handling, cutting, and chemical treatment during histological processing), (3)
they must not disrupt tissue cutting or histological processing (e.g. they must
be soft enough that they will not score/scratch the tissue during sectioning),
(4) they must not damage the tissue or in any way disrupt the pathologists’
interpretation. This last criterion is especially important in the context of our
study since our prostates are clinical specimens, and our pathologists need to
provide an accurate diagnosis of any cancer appearing at the prostate margins
as this is important to patients’ follow-up care. The fiducial markers described
in this section have been assessed by two pathologists and deemed to be entirely
non-disruptive to their assessments of these prostate specimens.

We have developed both internal and surface-mounted strand-shaped fiducial
markers that fulfil these criteria. Our internal fiducial markers are made from
cotton embroidery floss, soaked in a 1:40 mixture of Magnevist (Bayer AG, Ger-
many) and blue Tissue Marking Dye (Triangle Biomedical Sciences Inc., USA).
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(a) (b) (c)

Fig. 2. (a-b) Illustration of corresponding fiducial markers on T1-weighted ex vivo MR
images and on the specimen. (a) Two internal fiducial strands. (b) Seven surface-
mounted fiducial strands. (c) Cross sectional view of fiducial markers on digital
histopathology. Surface-mounted strands can be seen as small circular cross sections
immediately outside of the boundary. Arrows indicate the appearance of the inked holes
created by the internal fiducial strands, and their approximate corresponding locations
in the MR images.

We insert these strands through the specimens with minimal tissue disruption
using an 18-gauge spinal cannula with a Quincke-type point (BD Medical Inc.,
USA); the tip of this cannula is designed to cleanly separate tissue without any
tissue removal, thus minimally disrupting the pathologists’ view of the tissue
at the fiducial location under the microscope. The Magnevist in the mixture
results in straightforward localization of the strands on T1-weighted ex vivo MR
images (figure 2). Since the strands would be disruptive to tissue cutting, they
are removed prior to slicing, but the blue tissue ink leaves a coloured track in-
dicating their location (figure 2(c)). Our surface-mounted fiducial markers are
created by taking biopsies of lamb kidney cortex using a 16-gauge biopsy needle,
which is the type that is typically used for human breast biopsy. The resulting
strands are infused for 15 minutes in a 1:40 mixture of Magnevist and formalin,
and attached to the prostate surface in the apex-base direction using Loctite
411 toughened, heat-resistant, ethyl cyanoacrylate adhesive (Henkel Inc., Ger-
many). Figure 2 illustrates the appearance of these surface-mounted strands on
ex vivo MR images and digital histopathology images. Our experience with many
different adhesives and strand materials suggests that: (1) animal tissue is an
ideal fiducial material since, as organic material, it adheres to positively-charged
microscope slides during histological processing, (2) lamb kidney in particular
has the desired softness characteristic to avoid disruption of the tissue cutting
process, and (3) the choice of adhesive is important; Loctite 411 is toughened
to withstand the harsh chemical and temperature environment of histological
processing without hardening to the extent that it disrupts tissue cutting. These
fiducials capture the deformations both at the boundary and within the gland
that result from slicing and chemical processing of the tissue. Additionally, the
exit points of the internal fiducial strands are used as corresponding points in
the landmark-based registration depicted in figure 3(a).
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(a) (b)

Fig. 3. (a) Our approach to image-guided gross slicing. (b) The ProCUT slotted for-
ceps, used to make the first specimen cut. We designed and affixed to the device a set
of steel lateral support posts in order to eliminate relative lateral motion of the upper
and lower halves of the forceps.

2.3 Image Guidance for Specimen Slicing Orientation

A high-level overview of the specimen slice orientation procedure proposed in
this work is given in figure 3(a). We begin with the selection of a desired in vivo
MR imaging plane along which we wish to make the first specimen cut. The
T2-weighted in vivo MR image is then rigidly registered to the T2-weighted ex
vivo MR image using a manual alignment followed by a refinement, if necessary,
using an automated block matching technique [12]. The transformation given by
this registration places the desired cutting plane into the coordinate system of
the ex vivo image. The exit points of the internal fiducial markers are then local-
ized in the ex vivo image using interactive software, and on the specimen surface
using a probe tracked by an Aurora magnetic tracking system (Northern Digital
Inc., Canada). These corresponding points permit a rigid, landmark-based trans-
formation of the desired cutting plane into the space of the magnetic tracker.
Using software developed in our laboratory (figure 4), this tracked probe is used
to localize three points on the specimen surface lying within the desired cutting
plane, and three pins are inserted into these points to physically define this plane
on the specimen. The specimen is then loaded into a ProCUT slotted forceps
(Milestone Srl., Sorisole, Italy; Figure 3(b)), with the three pins placed within
a single slot of the forceps, orienting the specimen for slicing along the desired
plane. For stability during slicing, the specimen is supported using surrounding
foam and steel lateral support plates inserted into adjacent slots in the forceps
on either side of the prostate. After the apex is removed from the prostate,
the prostate is placed within an agar block and processed as described above,
yielding digital histopathology images taken every 5 mm throughout the gland.
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Fig. 4. Visualization software for image-guidance of gross specimen slicing. The visu-
alization updates interactively to show the tracked probe interacting with the gland,
giving visual feedback during fiducial and plane localization. Top row: the probe is
out of the desired slicing plane, and the plane is shown in red for visual feedback that
correction is necessary. Bottom row: the probe has been moved into the correct plane,
which is now shown in green to indicate that the probe is correctly oriented to guide
the insertion of a plane-marking pin.

It is important to note that although rigid registrations are used to map
the desired in vivo slicing plane into the context of the ex vivo image and the
specimen itself for pin-marking this plane, non-rigid registration (described in
section 2.4) is used to determine the appropriate warp mapping the anatomy
from the in vivo imaging context into the space of the digital histopathology
images. The need for rigid registration in the procedure described above is driven
by the fact that for practical reasons, the specimen must be sliced using a planar
blade, and therefore there can be no out-of-plane deformation in the map from
the in vivo image to the context of the specimen.

2.4 Image Registration

The transformations given by the registrations in figure 3 are then inverted in
order to extract from the in vivo MR image the slice corresponding to each
digital histopathology image. Next, an in-plane semi-automatic registration is
performed using a thin-plate spline approach [13] in order to warp the in vivo
MR image to match the digital histopathology image. To define the thin-plate
spline, up to 20 anatomically corresponding landmark pairs are chosen in the
images. The thin-plate spline then interpolates these correspondences to define
a warp mapping the entire in vivo MR image plane into the space of the digital
histopathology image.
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3 Validation

In this work, we measure three sources of error in our procedure: (1) the accuracy
with which the pins are inserted into the specimen, specifying the desired cutting
plane; (2) the accuracy of making a cut along a plane specified by three pins using
our modified ProCUT slotted forceps; and (3) the target registration error (TRE)
of our thin-plate spline registration approach. We perform the first accuracy
measurement by cutting a lamb kidney phantom such that it has two orthogonal
flat sides (figure 5(a-b)). After inserting internal fiducial markers using the same
procedure as for the prostates, we take a T1-weighted ex vivo MR image of
this phantom using the identical protocol to that used during prostate specimen
ex vivo imaging, with the coordinate system of the image oriented so that the
flat sides are orthogonal to two of the image coordinate system axes. A desired
cutting plane is determined in the space of the ex vivo image, parallel to the
intersection line of the flat sides (dotted white segment in figure 5(a)), and the
procedure described in section 2 is used to insert three pins within that plane.
The phantom is then placed on a steel jig such that its flat sides are aligned to
two of the axes of a milling machine, corresponding the 2D coordinate system
given by the two yellow axes given in figure 5(a-b) in both the ex vivo image and
the milling machine. A thin probe is inserted into the milling machine’s chuck
and its tip is used to localize the pin insertion points. The milling machine’s
digital readouts are used to provide 3D coordinates of pin insertion locations with
12.7 micron precision. The desired cutting plane is projected onto a line in the
2D coordinate system as shown in figure 5(a-b), and the pin insertion locations

Apex

(a) (b) (c) (d)

Fig. 5. (a-b) Measuring the accuracy of the insertion of pins within a desired specimen
cutting plane. (a) A lamb kidney phantom cut to have two orthogonal flat sides (bottom
and right). The yellow segments depict a 2D coordinate frame determined by vectors
lying within, and orthogonal to the (dotted, white) intersection line of, the planes
defined by the flat sides. The translucent plane in the figure indicates the desired plane
of first cut. The green spheres indicate the insertion points of the three pins, intended to
mark the cutting plane. (b) A rotated view of (a) showing the perpendicular distance
measure used to determine pin insertion accuracy. (c-d) Measuring the accuracy of
specimen slicing orientation. (c) The green spheres indicate insertion points of pins
defining the desired cutting plane. The red spheres indicate the insertion points of three
pins that are used to define an orthonormal frame of reference F (yellow segments).
(d) After the first cut, the insertion points indicated by the red spheres to determine
F . The blue segment illustrates a single cutting accuracy measurement.
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measured by the digital readouts are also projected onto that coordinate system.
The disagreement between each measured pin and the desired cutting plane is
measured in this 2D coordinate system as the Euclidean point-to-line distance
as shown in figure 5(b).

We perform the second accuracy measurement on our prostate specimens,
since cutting characteristics (e.g. tissue toughness, pliability) vary with tissue
type. In addition to the three pins inserted to define the desired cutting plane
(green spheres in figure 5(c)), we insert three additional pins (red spheres in
figure 5(c-d) to define an orthonormal frame of reference for the desired cutting
plane. The digital readouts on the milling machine are used to localize all pin
insertion points, thus representing the desired cutting plane in terms of the
coordinate system given by the yellow segments in figure 5(c-d). After the apex
of the prostate is cut using the procedure given in section 2, the prostate is
returned to the milling machine and the same coordinate system is reestablished
by localizing the pin insertion points indicated by the red spheres (figure 5(d)).
The digital readouts are then used to sample the 3D coordinates of eight equally-
spaced points along the perimeter of the specimen cross section exposed by the
cut, and the Euclidean distances between each of these points and the desired
cutting plane is measured, as depicted in the blue segment on figure 5(d). These
measurements indicate the amount by which the knife blade missed the desired
cutting plane at the perimeter of the gland.

The third accuracy measurement is the post-registration TRE, which is a
RMS error, of manually marked, corresponding fiducials in in vivo MR images
and corresponding digital histology images. We perform a leave-one-out cross-
validation experiment using the fiducial points that guide the TPS registration.

4 Results

Figure 6(a-b) qualitatively illustrates the anatomic concordance between a dig-
ital histopathology image and its corresponding registered in vivo MR image.
The arrows in figure 6(a) are at the same locations in image space as the cor-
responding arrows in figure 6(b); note the alignment of the visible structures.
Figure 6(c) shows the MR image before the in-plane warp, illustrating that much,

(a) (b) (c)

Fig. 6. A digital histopathology image (a) with corresponding registered MR image
(b). (c) The MR image before application of the thin-plate spline warp.
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but not all, of the deformation is due to pressure from the endorectal coil and
inflated sheath during in vivo imaging. The results of the validation experiments
(section 3) show a mean TRE of 0.85 mm (using 82 fiducials in 3 image pairs),
a mean pin insertion error of 0.7 mm (2 trials, 6 pins total), and a mean slicing
error of 0.6 mm (1 specimen, 8 sampled cross section points).

5 Conclusion

In this work, we have described and evaluated a method for registering in vivo
prostate MR images to digital histopathology images. Our qualitative results
demonstrate useful anatomic concordance resulting from the registration. In the
first stage of our technique for orienting specimen slicing to improve image reg-
istration, pins defining the desired cutting plane are inserted into the specimen,
and in the second stage, a specialized tool is used to slice along the plane defined
by the pins. We have quantitatively validated our approach by measuring our
TRE, as well as our accuracy at each of these two stages. Our TRE is 0.85 mm,
and our mean errors in pin insertion and slicing are 0.7 mm and 0.6 mm, respec-
tively, comparing favourably with our 2.2 mm diagnostic MR image thickness.
Our registration results provide a proof of principle that useful registrations are
achievable after orienting the slicing plane using our method. Ongoing research
involves the use of our fiducial markers both to drive and evaluate non-rigid
registration of the digital histopathology images to the ex vivo MR images, as
well as non-rigid 3D registration of the in vivo and ex vivo MR images.

References

1. Canadian Cancer Society’s steering committee: Canadian Cancer Statistics 2009.
Canadian Cancer Society, Toronto (2009)

2. Horner, M.J., Ries, L.A.G., Krapcho, M., Neyman, N., Aminou, R., Howlader,
N., Altekruse, S.F., Feuer, E.J., Huang, L., Mariotto, A., Miller, B.A., Lewis,
D.R., Eisner, M.P., Stinchcomb, D.G., Edwards, B.K. (eds.): SEER Can-
cer Statistics Review, 1975-2006. National Cancer Institute, Bethesda (2009),
http://seer.cancer.gov/csr/1975_2006/

3. LaSpina, M., Haas, G.P.: Update on the diagnois and management of prostate
cancer. Canadian Journal of Urology 15(suppl. 1), 3–13 (2008) (discussion 13)

4. Leite, K.R.M., Camara-Lopes, L.H.A., Dall’Oglio, M.F., Cury, J., Antunes, A.A.,
Sanudo, A., Srougi, M.: Upgrading the Gleason score in extended prostate biopsy:
Implications for treatment choice. International Journal of Radiation Oncology
Biology Physics 73, 353–356 (2009)

5. Ahmed, H.U., Kirkham, A., Arya, M., Illing, R., Freeman, A., Allen, C., Emberton,
M.: Is it time to consider a role for MRI before prostate biopsy? Nature Reviews
Clinical Oncology 6, 197–206 (2009)

6. Bax, J., Cool, D., Gardi, L., Knight, K., Smith, D., Montreuil, J., Sherebrin, S.,
Romagnoli, C., Fenster, A.: Mechanically assisted 3D ultrasound guided prostate
biopsy system. Medical Physics 35(12), 5397–5410 (2008)

http://seer.cancer.gov/csr/1975_2006/


76 A.D. Ward et al.

7. Cool, D., Sherebrin, S., Izawa, J., Chin, J., Fenster, A.: Design and evaluation
of a 3D transrectal ultrasound prostate biopsy system. Medical Physics 35(10),
4695–4707 (2008)

8. Krieger, A., Susil, R.C., Ménard, C., Coleman, J.A., Fichtinger, G., Atalar, E.,
Whitcomb, L.L.: Design of a novel MRI compatible manipulator for image guided
prostate interventions. IEEE Transactions on Biomedical Engineering 52(2), 306–
313 (2005)

9. Polascik, T.J., Mouraviev, V.: Focal therapy for prostate cancer. Current Opinion
in Urology 18(3), 269–274 (2008)

10. Rouvire, O., Reynolds, C., Hulshizer, T., Rossman, P., Le, Y., Felmlee, J.P.,
Ehman, R.L.: Mr histological correlation: A method for cutting specimens along
the imaging plane in animal or ex vivo experiments. Journal of Magnetic Resonance
Imaging 23, 60–69 (2006)

11. Shah, V., Pohida, T., Turkbey, B., Mani, H., Merino, M., Pinto, P., Choykey,
P., Bernardo, M.: A method for correlating in vivo prostate magnetic resonance
imaging and histopathology using individualized magnetic resonance-based molds.
Review of Scientific Instruments 80, 104301 (2009)

12. Ourselin, S., Roche, A., Prima, A., Ayache, N.: Block matching: A general frame-
work to improve robustness of rigid registration of medical images. In: Niessen,
W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 557–566.
Springer, Heidelberg (2001)

13. Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of de-
formations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(6),
567–585 (1989)



High-Throughput Prostate Cancer Gland
Detection, Segmentation, and Classification from

Digitized Needle Core Biopsies

Jun Xu1, Rachel Sparks1, Andrew Janowc k1,3, John E. Tomaszewski2,
Michael D. Feldman2, and Anant Madabhushi1

1 Department of Biomedical Engineering, Rutgers University, USA
2 The Hospital of the University of Pennsylvania, Anatomic and Surgical Pathology

Informatics, Philadelphia, USA
3 Department of Computer Science and Engineering, Indian Institute of Technology

(IIT) Bombay, Mumbai, India

Abstract. We present a high-throughput computer-aided system for
the segmentation and classification of glands in high resolution digitized
images of needle core biopsy samples of the prostate. It will allow for
rapid and accurate identification of suspicious regions on these samples.
The system includes the following three modules: 1) a hierarchical fre-
quency weighted mean shift normalized cut (HNCut) for initial detection
of glands; 2) a geodesic active contour (GAC) model for gland segmen-
tation; and 3) a diffeomorphic based similarity (DBS) feature extraction
for classification of glands as benign or cancerous. HNCut is a minimally
supervised color based detection scheme that combines the frequency
weighted mean shift and normalized cuts algorithms to detect the lu-
men region of candidate glands. A GAC model, initialized using the
results of HNCut, uses a color gradient based edge detection function for
accurate gland segmentation. Lastly, DBS features are a set of morpho-
metric features derived from the nonlinear dimensionality reduction of a
dissimilarity metric between shape models. The system integrates these
modules to enable the rapid detection, segmentation, and classification
of glands on prostate biopsy images. Across 23 H & E stained prostate
studies of whole-slides, 105 regions of interests (ROIs) were selected for
the evaluation of segmentation and classification. The segmentation re-
sults were evaluated on 10 ROIs and compared to manual segmentation
in terms of mean distance (2.6± 0.2 pixels), overlap (62± 0.07%), sensi-
tivity (85±0.01%), specificity (94±0.003%) and positive predictive value
(68 ± 0.08%). Over 105 ROIs, the classification accuracy for glands au-
tomatically segmented was (82.5 ± 9.10%) while the accuracy for glands
manually segmented was (82.89± 3.97%); no statistically significant dif-
ferences were identified between the classification results.

Keywords: High-throughput, geodesic active contour model, morpho-
logical feature, prostate cancer, glands, needle biopsy, digital pathology.
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1 Introduction

Digital pathology is a rapidly expanding field for the analysis, viewing, and
storage of histology tissue samples due to the advent and cost-effectiveness of
whole-slide digital scanners [1]. In the context of prostate cancer (CaP), pathol-
ogists grade histopathological specimens by visually characterizing gland mor-
phology and architecture in regions they suspect are malignant. The Gleason
grading system is used to describe CaP aggressiveness; nonaggressive glands
(grade 1) are medium-sized with round shapes, while aggressive glands (grade
5) are small and have irregular shapes [2]. CaP grading of histopathology can
therefore be divided into two separate tasks: identification of malignant regions
and the Gleason grading of the malignant regions. The ability to quickly and
accurately identify suspicious regions in tissue samples will enable the pathol-
ogist to focus their grading efforts on candidate regions, minimizing the time
spent on identifying CaP regions. Doyle et al. [3] have demonstrated the effec-
tiveness for discriminating malignant regions using texture based features at low
image resolutions. Recently, Monaco et al. [4] showed that gland size can be used
to discriminate between malignant and benign glands on high resolution whole
mount histopathology of the prostate. Automated schemes for Gleason grading of
suspicious regions on prostate histopathology have attempted to leverage gland
morphology by quantifying contour variability, length-to-width ratio, or related
features [5], [6]. We have recently demonstrated that Diffeomorphic Based Simi-
larity (DBS) features are better able to capture subtle morphometric differences
between prostate glands of different Gleason grades than previously reported
morphological features [7].

An important pre-requisite to extracting morphological features is the abil-
ity to accurately and efficiently detect the location of glands and segment them
accurately while preserving important morphological information. While active
contour models are good candidate for this task, most active contour models
are not able to efficiently handle very large images. Region-based active con-
tour models do not require accurate contour initialization, however they may
involve significant computational overhead [8]. Hence, there is a need for rapid
identification of the regions of interest in order to initialize the active contour
model. Hierarchical mean shift normalized cuts (HNCut) was shown to efficiently
determine the location of the region of interest on very large histopathology im-
ages [9]. Additionally, for most boundary based active contour models, the evo-
lution function is dependent on the gray scale intensity gradient [10]. We employ
a local structure tensor based color gradient, obtained by calculating the local
min/max variations contributed from each color channel (e.g. R, G, B or H, S,
V), resulting in stronger object boundaries compared to the gray scale gradient.

We present a system which applies a geodesic active contour (GAC) model in
conjunction with DBS feature extraction to effectively segment and classify the
glandular regions of needle core biopsies of the prostate in a high-throughput man-
ner. Figure 1 shows the flowchart of our system which is comprised of three mod-
ules. Module 1 identifies glands using HNCut, an accurate, efficient, and minimally
interactive model initialization scheme HNCut. In module 2, our GAC model



High-Throughput Prostate Cancer Gland Detection 79

initialized by HNCut finds the gland boundaries utilizing a color gradient based
edge-detector function. In module 3, DBS features are obtained by computing dif-
ferences between medial axis shape models of glands, followed by nonlinear dimen-
sionality reduction (Graph Embedding [11]) to extract relevant morphometric fea-
tures. DBS features are used to train a SVM classifier for distinguishing between
malignant and benign glands.

Our high-throughput system requires minimal human interaction. HNCut
only requires a few reference colors selected from a region of interest on a single
representative image. Our system is then able to automatically segment and clas-
sify the target objects on the remaining images in the dataset without the need
for further human interaction. While in this work our system is evaluated in the
context of segmentation and classification of glands on prostate histopathology
images, the system could be applied to a wide domain of problems where precise
quantification of morphological traits is critical, such as breast lesion morphology
on DCE-MRI [12].

Fig. 1. Flowchart of our integrated detection, segmentation, and classification system

2 Gland Detection and Segmentation

2.1 Notation

The following notations will be used throughout the paper: C = (C, f) denotes
the 2D image scene where C ∈ R

2 is a grid of pixels c ∈ C. The pixels c are
in a 2D Cartesian grid defined by c = (x, y). The image intensity function f(c)
assigns a three element intensity vector to pixel c ∈ C. The level set function
is defined as φ(t, c). C = {c ∈ Ω : φ(c) = 0} is the zero level set. Ω denotes a
bounded open set in R

2 space. Ωf = {c ∈ Ω : φ(c) > 0} denotes a foreground
region while Ωb = {c ∈ Ω : φ(c) < 0} denotes the background region. ‖ · ‖
denotes the L2 normal in real space. δ(φ) is the Delta function.
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2.2 Hierarchical Mean Shift Based Normalized Cuts Detection
Scheme

The hierarchical mean shift based normalized cuts (HNCut) scheme was origi-
nally presented in [9] for rapidly and accurately segmenting the object class of
interest. By operating in the color domain, as opposed to the spatial domain
(on pixels), the scheme is able to rapidly identify the gland regions even on very
large images. The scheme is outlined below:

1. User selects the domain swatch defined as a set of pixels that are represen-
tative of the target class;

2. Frequency weighted mean-shift clustering is performed on a multi-resolution
color pyramid;

3. Normalized cuts is used on the reduced color space created by the weighted
mean-shift algorithm.

HNCut is robust to human intervention; the first step is only applied to a single
representative image containing the target class. After the color swatch has been
selected from the region of interest in the first image, the same swatch may be
applied to all other images. The resulting target objects make for an excellent
initialization of the active contour model that is subsequently applied.

2.3 Geodesic Active Contour Model

Energy functional. Assume the image plane Ω ∈ R
2 is partitioned into 2

non-overlapping regions by a zero level set function φ: the foreground Ωf and
background Ωb. The optimal partition of the image plane Ω by a zero level set
function φ can be obtained through minimizing the energy functional as follows,

E(φ) = αE1(φ) + βE2(φ) + γE3(φ), (1)

= α

∫
C

g(f(c))dc + β

∫
Ωf

g(f(c))dc + γ

∫
Ω

1
2
(‖∇φ‖ − 1)2dc,

where E1(φ) is the energy functional of a traditional GAC model. E2(φ) is in-
spired by the balloon force proposed in [13]. An additional term E3(φ) is added
to the energy functional to remove the re-initialization phase which is required
as a numerical remedy for maintaining stable curve evolution in traditional level
set methods [14].

The color gradient. The edge-detector function in the traditional GAC model
and the balloon force are based on the calculation of the gray scale gradient of
the image [10]. In this paper, the edge-detector function is based on the color
gradient which is defined as g(f(c)) = 1

1+s(f(c)) . s(f(c)) is the local structure ten-

sor based color gradient which is defined as s(f(c)) =
√

λ+ − λ− [15], where λ+
and λ− are the maximum and minimum eigenvalues of the local structure tensor
of each pixel in the image. It locally sums the gradient contributions from each
image channel representing the extreme rates of change in the direction of their
corresponding eigenvectors. The methodology for computing the color gradient
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described above can be applied to different vectorial color representations such
as RGB, HSV, and Luv.

Curve evolution function of GAC model. Based on the theory of the
calculus of variations, the curve evolution function can be derived from the level
set framework by minimizing the energy functional (1). The function is defined
by the following partial differential equation:{

∂φ
∂t = δ(φ){αdiv

[
g(f(c)) ∇φ

‖∇φ‖
]
− βg(f(c))} − γ

[
Δφ − div( ∇φ

‖∇φ‖ )
]
,

φ(0, c) = φ0(c),
(2)

where α, β, and γ are positive constant parameters, and φ0(c) is the initial
evolution functional which is obtained from the HNCut detection results (see
Section 2.2). div(·) is the divergence operator. As the re-initialization phase has
been removed, φ0 is defined as piecewise linear function of regions:

φ0(c) =

⎧⎨⎩
−π, c ∈ Ωb;
0, c ∈ C;
π, c ∈ Ωf ,

where Ωf , C, and Ωb in the context of the problem addressed in this paper are
the luminal regions, the boundaries of the luminal regions and the other tissues,
respectively. π is a positive constant.

3 Diffeomorphic Based Shape Characterization and
Classification

3.1 Medial Axis Shape Model

The medial axis shape model M is defined by a set of pixels m ∈ Ωf along the
medial axis of an object, and a set of corresponding surface vectors v1, v2 on
the contour C. Here v1, v2 are comprised by the nearest pixels on the contour
C to the medial axis pixel m [16]. For a given object, we can define a distance

map function fe(c) on the image space as, fe(c) =

⎧⎪⎨⎪⎩
0 c ∈ C,

−minp∈C ||c − p|| c ∈ Ωf ,

minp∈C ||c − p|| c ∈ Ωb.
Given this distance map, the medial axis is the local minimum along the gradient

map of the image, defined as f̂e(c) =
(

∂fe(c)
∂x

)2

+
(

∂fe(c)
∂y

)2

. Atoms belonging

to the medial axis are obtained as M = {m : m ∈ C, f̂e(m) < τ}. Empirically,

{τ = 0.05
[
min
c∈C

(f̂(c)e)
]
} was found to give a well defined medial axis. ∀m ∈ M ,

the two closest pixels on the contour C can be defined as p̂1 = argmin
p∈C

||m − p||,
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(a) (b) (c) (d)

Fig. 2. (a) Two gland contours (black Ca, gray Cb) with corresponding medial atoms
(blue Ma, green Mb) after initial affine alignment. Medial atoms for the fifth iteration
with cluster centers of the shape models (light blue, dark green) for (b) initial cluster
centers and (c) registration of cluster centers. Note cluster centers are aligned between
the two gland contours after the registration. (d) The medial atoms of gland contours
after final registration

and p̂2 = argmin
p∈C,p
=p̂1

||m − p||, and the corresponding surface vectors are defined

v1 = p̂1 − m, and v2 = p̂2 − m.

3.2 Medial Axis Model Comparison

A dissimilarity metric is calculated between each pair of medial axis represen-
tations Mi and Mj , where i, j ∈ {1, . . . , N}. Here N refers to the number of
glands. Briefly the steps of the comparison are:

1. Mi is registered to Mj using a point-based diffeomorphic registration algo-
rithm originally presented in [17]. Fuzzy k-means clustering determines cor-
respondences between the medial axis models. From these correspondences,
a diffeomorphic transformation is calculated to register Mi into the coordi-
nate space of Mj. This process is iteratively repeated until a stopping criteria
is met. Figure 2 shows an example of this registration technique displaying
the initial alignment, a single clustering and registration step, and the final
alignment.

2. Point correspondence between the medial atom sets m̃û
i ∈ M̃i and mv̂

j ∈ Mj

is found. We define M̃i as the medial axis Mi registered to the medial axis
model Mj. We determine point correspondence between two medial axes
as,(û, v̂) = argmin

û,v̂
||m̃u

i − mv
j ||.

3. From the point correspondences in Step 2, shape dissimilarity is calculated
as

Aij =
∑
(û,v̂)

κ1||mû
i − mv̂

j || + κ2||vû
i,1 − vv̂

j,1|| + κ3||vû
i,2 − vv̂

j,2||. (3)

where κ1, κ2, and κ3 > 0 are selected so that Aab ≥ 0.

The medial axis model comparison is repeated over all objects i, j ∈ {1, . . . , N},
so that A ∈ R

N×N is a high dimensional dissimilarity matrix.
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3.3 Feature Extraction

From A, we define similarity matrix W , where Wij = e−Aij/σ, and σ > 0 controls
the width of the neighborhoods. D is diagonal matrix whose diagonal elements
are defined as dii =

∑
j Wij . Here Aij and Wij are elements of matrices A and

W , respectively. From the Laplacian matrix D − W , we find a low dimensional
space Y = (y(1),y(2), . . . ,y(N))T ∈ R

N×d, where N >> d, that attempts to
preserve pairwise distances between glands in A. Let Y∗ be the set of all N × d
matrices Y such that YT DY = Id. The DBS features of each gland will be
determined from the optimal Y ∈ Y∗ by solving the following minimization
problem [11]

min
Y∈Y∗

∑N
i=1

∑N
j=1 ‖y(i) − y(j)‖2Wij = tr(YT(D − W )Y), (4)

s.t YTDY = Id

where y(i) = (y1(i), y2(i), . . . , yd(i))T is the d-dimensional representation of the
i-th gland and Id is the d−dimensional identity matrix. Each row vector in Y is
used to determine d−dimensional DBS features of a corresponding gland, where
d = 3 in this work.

4 Experimental Design and Performance Measures

4.1 Data Description

The data set includes digitized images of whole-slide prostate needle core biopsy
specimens obtained from 23 patients and stained with Hematoxylin & Eosin
(H&E). All studies were obtained from the Hospital at the University of Penn-
sylvania (UPENN). Each sample was digitized at 20x optical magnification us-
ing an Aperio whole-slide digital scanner. For all images, an expert pathologist
manually annotated regions of interest (ROI) with different class labels: benign
epithelium, benign stroma, and Gleason grades 3 and 4. Within each ROI, a hu-
man observer manually segmented the lumen layer of each gland. A total of 105
ROIs were identified consisting of benign (23 ROIs, 66 glands), Gleason grade 3
(71 ROIs, 656 glands), and grade 4 (11 ROIs, 36 glands).

4.2 Quantitative Evaluation of Segmentation

Owing to the great deal of manual labor involved in segmenting the gland bound-
aries, we limited the quantitative evaluation to only glands present within 10 ROIs
from 10 whole-slide images randomly selected. The boundaries of automated seg-
mentation are defined as the contours of the zero level set function of active con-
tour models after convergence. We evaluate the segmentation results via two types
of measurements. For boundary-based measurements, mean absolute distance
(MAD) was calculated as MAD = 1

s

∑s
ν=1{min

χ
‖cν − cχ‖}, ∀cχ ∈ G, ∀cν ∈ S
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where G = {cχ|χ ∈ {1, . . . , t}} and S = {cν |ν ∈ {1, . . . , s}} are closed bound-
aries of manual and automated segmentation, respectively. t and s represent the
number of pixels on the boundaries of manual and automated segmentation, re-
spectively. For region-based measurements we calculated overlap (OL), sensitiv-
ity (SN), specificity (SP), and positive predictive value (PPV). For each image,
the set of pixels lying within the manual delineations of the glands is denoted as
A(G). A(S) is the set of pixels whose level set functions are positive, after the con-
vergence of active contour model. OL, SN, SP, and PPV are then defined as OL
= |A(S)∩A(G)|

|A(S)∪A(G)| , SN = |A(S)∩A(G)|
|A(G)| , SP = |C−A(S)∪A(G)|

|C−A(G)| , and PPV = |A(S)∩A(G)|
|A(S)| ,

where |S| represents the cardinality of set S.

4.3 Morphological Feature Set Evaluation

A support vector machine (SVM) classifier [18] was used to evaluate the discrim-
inability of the DBS features, with higher SVM accuracy reflecting a feature set
that is better able to describe morphometric differences between gland classes.
In this experiment we (a) compare the performance of the DBS features ver-
sus traditional boundary based attributes (area, perimeter, area overlap ratio,
average radial distance ratio, standard deviation of the normalized distance ra-
tio, compactness, and smoothness [12]) and (b) evaluate whether, from a gland
classification perspective, the results obtained from automated and manual seg-
mentation were significantly different. Four feature sets were tested comprising
of DBS or traditional morphological features from either automated or manual
gland segmentations.

For all feature sets malignant glands were defined as all glands contained
within ROIs of a Gleason grade 3 or 4, while benign glands are obtained from
benign ROIs. The SVM classifier accuracy was evaluated by utilizing a leave-
one-study-out approach. The leave-one-study-out approach selected a testing
set consisting of all glands from one patient study while the training set was
comprised of glands from the remaining 22 patient studies. We evaluated the
accuracy of our automated segmentation by performing a paired t-test over all
23 test sets between automated and manual segmentation for each feature set.
We hypothesize that if no significant difference is found between the classification
accuracies of the manual and automated schemes, the automated segmentation
results are as good as the manual segmentation.

5 Experimental Results and Discussion

5.1 Segmentation Evaluation

Table 1 shows the results of quantitative evaluation of segmentation by our auto-
mated GAC scheme in terms of MAD, OL, SN, SP and PPV across 10 ROIs from



High-Throughput Prostate Cancer Gland Detection 85

Table 1. Quantitative evaluation of segmentation results for the system. The average
and standard deviation of the MAD, OL, SN, SP and PPV over 40 glands and 10 ROI’s
have been reported

MAD Overlap (OL) Sensitivity (SN) Specificity (SP ) PPV
2.06 ± 0.2 0.62 ± 0.07 0.85 ± 0.01 0.94 ± 0.003 0.68 ± 0.08

Table 2. SVM classification accuracy evaluated for manual and automated segmenta-
tion as well as DBS or common morphological features sets for a leave-one-patient-out
evaluation. Accuracy was calculated for 23 different testing sets. The p-values reported
test the hypothesis that the underlying distributions are statistically dissimilar. In both
cases the null hypothesis, the distribution are statistically similar, was accepted

Morphological Feature Segmentation Accuracy- Annotated Regions P-Value

Common
Manual 79.47 ± 4.71%

0.989
Automated 81.30 ± 10.14%

DBS
Manual 82.89 ± 3.97%

0.9596
Automated 82.50 ± 9.10%

10 patient studies. The mean and standard deviation values in Table 1 show that
our HNCut based GAC scheme is able to segment the lumen regions accurately.

5.2 DBS Feature Evaluation

Table 2 shows that for both morphological feature types, the source of the gland
boundaries (manual or automated) did not affect the SVM’s ability to classify
glands. For both features sets, p-values are not statistically significant (p < 0.05),
so we accept the null hypothesis that the classifier accuracy using features derived
from the manual and automated segmentation are similar. DBS yields higher
classifier accuracy compared to traditional morphological features, although this
difference is not statistically significant.

Qualitative results are illustrated in Figure 3 (a). Three regions have been
shown in Figures 3 (b), (c) and (d), respectively. From the magnified regions,
one can see that the lumen regions have been correctly segmented. The corre-
sponding explicit medial axis shape models of segmented glands, consisting of
pixels belonging to the medial axis (light blue) and surface vectors (dark blue),
are shown in Figures 3 (e), (f) and (g), respectively. Figure 4 illustrates the
classification results obtained from module 3. In Figure 4(a), the region anno-
tated by the blue line is the malignant portion of the slide as determined by the
expert pathologist. Gland boundaries are displayed for glands labeled benign
(black) and malignant (green). From Figure 4(a), we can see that most of the
segmented glands are correctly classified, with most of the errors occurring at
the borders.
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(a)

(b) (c) (d)

(e) (f) (g)

Fig. 3. (a) A representative example of the gland segmentation results (boundaries in
green) from a whole-slide needle core biopsy. (b), (c), and (d) are three different ROIs
from (a) which have been magnified to show gland details. The corresponding explicit
medial axis shape model, consisting of the medial axis (light blue) and surface vectors
(dark blue) are shown in (e), (f) and (g), respectively
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(a)

(b) (c) (d)

Fig. 4. (a) An example of whole-slide needle core biopsy of the prostate with malignant
region delineated in blue. Glands labeled as benign/normal (black) and malignant
(green) by the DBS SVM classifier are displayed. (b) An example of a malignant gland
mislabeled by the DBS base classifier as benign. (c) A correctly labeled malignant and
(d) benign gland by the DBS SVM classifier

6 Concluding Remarks

In this paper, we presented a high-throughput system for rapid and accurate
gland detection, segmentation, and classification on high resolution digitized
images of needle core biopsy samples of the prostate. The system is comprised of
three modules: 1) a hierarchical mean shift normalized cut (HNCut) for initial
gland detection, 2) a color gradient based geodesic active contour (GAC) model
initialized via the result of HNCut, and the use of 3) a diffeomorphic based
similarity (DBS) features to classify glands as benign or cancerous. The system
requires minimal human interaction. The effectiveness of the automated seg-
mentation of glands and the DBS features to distinguish cancerous and benign
glands were evaluated and compared against corresponding manual segmenta-
tion obtained from 23 H & E stained prostate studies. Classification accuracy in
distinguishing benign from malignant glands when using the automated segmen-
tation scheme was 82.5± 9.10%, while the corresponding accuracy with manual
segmentation was 82.89±3.97%; no statistically significant differences were iden-
tified between the two segmentation schemes.
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Abstract. Prostate Needle biopsies are stained with the PIN-4 marker
cocktail to help the pathologist distinguish between HGPIN and adeno-
carcinoma. The correct interpretation of multiple IHC markers can be
challenging. Therefore we propose the use of computer aided diagnosis
algorithms for the identification and classification of glands in a whole
slide image of prostate needle biopsy. The paper presents the different
issues related to the automated analysis of prostate needle biopsies and
the approach taken by BioImagene in its first generation algorithms.

Keywords: Computer Aided Diagnostics (CAD), Prostate Analysis,
Medical Imaging, Histopathology Image Analysis.

1 Introduction

Several immunohistochemistry (IHC) markers are routinely used by pathologists
in the interpretation of prostate biopsies, including P504S (racemace), p63, and
high molecular weight (HMW) cytokeratins (CK5 and CK14) [1]. P504S is a
protein preferentially expressed in the cytoplasm of prostatic adenocarcinoma
as well as high-grade prostatic intraepithelial neoplasia (HGPIN). p63 and the
HMW cytokeratins are expressed in the nucleus and cytoplasm respectively of
prostatic basal cells surrounding benign prostatic glands, but not in the secre-
tory cells of these glands [2]. The combination of these markers in the PIN-4
antibody cocktail (Biocare) is useful to the pathologist in the distinction be-
tween adenocarcinoma, HGPIN, and benign glands, particularly in cases with
limited tissue [3]. However, correct interpretation of multiple IHC markers stain-
ing different subcellular compartments of different cell types can be challenging.
Computer aided image analysis (CAD) algorithms are therefore required to assist
the pathologist in the interpretation of prostatic tissue stained with the PIN-4
cocktail.

The workflow within the clinical labs is optimized to maximize the number
of cases a pathologist can sign out without compromising the quality of di-
agnosis. Digital pathology promises to create the transformation to pathology
practice that increases the overall quality and quantity of pathology diagnosis.
The pathology slides are scanned using the whole slide scanner such as the iScan
device from BioImagene. The images generated are managed within a workflow

A. Madabhushi et al. (Eds.): Prostate Cancer Imaging 2010, LNCS 6367, pp. 89–100, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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software such as Virtuoso. The pathologist reviews the slides and selects regions
in the images for analysis. The CAD algorithms for interpretation of PIN-4
marker cocktail in prostate glands consist of two steps. In the first step we de-
tect and identify the glands within the needle biopsy and in the second step we
classify each of the detected glands.

The paper describes the challenges associated with the segmentation, iden-
tification and classification of prostate glands in PIN-4 stained needle biopsies.
We also present some experiments conducted to compare the CAD classification
with the manual classification on whole slide images.

2 Approach

Whole slide images generated for Digital Pathology are typically Gigapixel images
that require a scalable computational infrastructure to support the data volume.
We have developed a pathology image analysis platform called iAnalytics that is
able to handle such data volumes. In addition, the iAnalytics framework has a
layered component based architecture that allows for the rapid development of
scalable algorithms for pathology CAD. The system is developed in C++ and has
interfaces to other languages such as Java, C#, Python and Matlab.

The components in iAnalytics are arranged in 3 layers (figure 1). At the
bottom layer, interfaces to external low level imaging libraries are maintained
through wrappers that allow these libraries to be plugged in or replaced. We
have specifically integrated with the Intel IPP, Intel MKL, FreeImage [4] and
OpenCV [5] libraries. The Imaging layer above this consists of the basic classes

Fig. 1. iAnalytics Component Based Layered Architecture
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needed for creating imaging objects and processing them. Image processing func-
tions that are available in the off-the shelf commercial and open source systems
are used with wrapper classes. In addition, we have implemented a large collec-
tion of basic imaging modules that include color processing, texture processing,
and morphological operations. Vision modules that compute different types of
features are also implemented in this layer. Most of the vision modules are high
performance implementations of well known algorithms. Proprietary techniques
have also been developed and included in the framework for the pathology do-
main that specialize well known techniques to the domain. Finally, classes im-
plementing different types of Machine Learning techniques are included in the
Imaging layer. The topmost layer of iAnalytics implements the components asso-
ciated with the pathology CAD algorithms. High level pathology objects such as
cells, nuclei, membrane, tissue regions, and glands are implemented as composi-
tions of the lower layer objects. The pathology objects are combined together to
define a CAD algorithm. All algorithms are accessed through a common inter-
face. New algorithms that are developed can easily be included within existing
applications that implement the interface framework. The iAnalytics compo-
nent architecture allows the development of new algorithms as a composition of
existing components.

2.1 Workflows

The automated analysis of PIN-4 stained prostate needle biopsies is supported
within two different types of workflows. In the first workflow, the pathologist
follows the steps enumerated below:

1. Select the case to be reviewed
2. Select the PIN-4 slide within the case to be reviewed
3. Review the virtual whole slide image at different resolutions and identify

potential regions of tumor
4. Select the region encompassing the tumor using the FOV (Field of View)

selection tool
5. Invoke the analysis algorithm on the FOV
6. The analysis algorithm automatically segments and identifies the individual

glands within the FOV
7. The algorithm then classifies the individual glands
8. Finally, the algorithm in addition to the gland class, reports on some of the

measurements on the gland (tumor area, median intensity).

In the above workflow the identification of the region is carried out by the pathol-
ogist. The onus of identifying all regions with tumor and carrying out the analysis
is left to the pathologist. The second workflow is more complex but makes the
job of the pathologist easier. The algorithm analyses the whole slide image and
identifies all glands in the biopsy and classifies them. The identified glands are
then presented to the pathologist in a sorted order that is diagnostically relevant.
The steps of the workflow are
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1. Select the case to be reviewed
2. Select the PIN-4 slide to be reviewed
3. The system does a whole slide analysis of the PIN-4 slide.
4. The system presents all the glands that have been identified and in an order

that allows the pathologist to review all glands very efficiently
5. The system presents the gland class during review and also presents addi-

tional measurements on the glands and tumor.

3 Segmentation, Identification and Classification

The key phases of the analysis in Prostate PIN-4 CAD algorithm are

1. Segment the glands from the other stromal areas
2. Identify glands such that care is taken to make sure glands from two different

classes are not merged and identified as a single gland
3. Classify the gland as adenocarcinoma, HGPIN, and Benign

3.1 Gland Segmentation

Segmenting glands out of microscopy/biopsy images is a challenging problem
for several reasons. Segmentation of the glands when the glands are well formed
is relatively easy. However, the regions of interest are cancerous tumor areas.
Such areas rarely have well formed and separated glands. Glands come in a wide
variety of irregular shapes and sizes. Furthermore, the images are typically full
of distracting structures and have varying background that can result in poor
segmentation. Sometimes the manual identification of individual glands is also
challenging. We explored two different segmentation approaches:

1. Unsupervised Color Segmentation
2. Learning based Classifier

Traditional segmentation algorithms are fully unsupervised and are therefore in
general unable to classify a segmented region as being a gland or other tissue.
It has been observed that segmentation performance is very poor if higher level
information is not taken into account. On the other hand, statistical learning
methods from the object detection literature, such as the Viola-Jones face de-
tector [6], cannot be readily applied to this problem because the object of interest
are deformable and come in a wide variety of shapes and sizes. Nevertheless, we
would like to take advantage of the vast advances made in this field in recent
years (e.g. pedestrian detection accuracy has improved dramatically over the last
decade [7]).

Unsupervised Color Segmentation. Our approach to segmentation and
identification follows an iterative multiphase process. In the first phase, we seg-
ment and extract candidate gland regions using just the color staining. The
brown regions are typically the basal layer cells. However, regions with non-
specific brown staining can also occur. The deep blue regions are the epithelial
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cells within the glands but also the stromal cells nuclei. The red regions appear
within the cytoplasm of the epithelial cells of the glands. Non-specific red stain-
ing also appears in some areas of the biopsy. The light regions within the tissue
regions are typically are the candidate lumen regions of the gland.

Color segmentation is done in a CIE L*a*b space. A constrained K-means
clustering technique in the three dimensional color space is used to segment the
image into clusters that broadly correspond to Brown, Blue, Red, and Light col-
ored regions. Initial three-dimensional color vector seed values for Brown, Blue,
Red and Light are specified. The convergent color thresholds are constrained to
be around the specified initial cluster seeds. We determine the seed color vectors
through a calibration step during the training phase of the algorithm. Sample
images with known ground truth are used to determine the seed color vectors
of the Red, Brown, Blue and Light clusters. This model is fairly robust within
a single lab setting because of the operations followed within the lab quality
process. Color segmentation is followed with a connected component blob anal-
ysis to extract multiple connected regions. One of the weaknesses of pixel-level
clustering methods is that the context and any top-level information about the
shape priors and size are ignored in the segmentation process.

Learning based Classifier. Our learning classifier is motivated by the ad-
vances in object detection. We turned to a recently published state-of-the-art
pedestrian system [7], and applied a similar method for gland segmentation. At
a high level, our learning approach can be summarized as follows. We begin by
sliding an image patch classifier densely over the input image. In the first step,
the patch classifier outputs the likelihood that the pixel in the center of a given
patch belongs to a gland (see figure 2). In the next step, the resulting classifier
response map is passed into an efficient segmentation algorithm.

The first component of our system involves an image patch classifier. To train
this classifier, we labeled 8 training images by hand. Labeling was done by out-
lining all glands in these images. From this, we extracted 5,000 positive image
patches (i.e. patches extracted from the gland regions), and 15,000 negative im-
age patches (i.e. patches extracted from the non-gland regions). The patch size
was fixed to 61x61. The classifier we trained was AdaBoost with decision stumps

Fig. 2. A sliding window classifier is used to predict the likelihood of belonging to a
gland for each pixel. Left image is the input image, and the right image is the resulting
response map
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as the weak classifiers. The features used were Haar-like features computed over
the following channels: LUV color channels, gradient magnitude, histogram of
gradient orientation channels, and a local standard deviation channel. For more
details we refer the reader to [7].

Graph-Based Segmentation. The result of applying the trained classifier to
a novel input image is a response map where for each pixel we have a likelihood
that that pixel belongs to a gland (e.g. the right image figure 2). In the second
phase of our system, we pass this response image into an efficient graph based
segmentation algorithm described in [8]. Note that segmenting the response im-
age is much easier than segmenting the original input image. Furthermore, the
class (i.e. gland or non-gland) of each segment can subsequently be determined
using the response image.

Qualitative results on novel test images are shown in figure 3. The trained
classifier works well on picking up gland regions even though there is a high
variability of appearances (colors and textures). Notice that, unlike pixel color
clustering approach, this approach does not rely on a particular stain or color -
glands that are not are surrounded by brown staining are picked up just as well
as glands that are. One of the challenges we need to address is that the method
sometimes merges two glands together incorrectly.

3.2 Gland Identification and Classification

In this step, the objective is to either to merge or split the regions output by the
segmentation process into gland objects.

Adjacency analysis: The non-connected candidate clusters are ranked by its
probability to be part of a gland. Candidate regions are analyzed within the con-
text of the adjacent regions. Regions are combined by associating the candidate
regions with a gland using the geometric relations between the different parts of
the gland. The step results in candidate glands.

Merging and Splitting: Candidate glands are split into two or merged into a
single gland. The splitting and merging criterion is based on identification of the
basal layer and intervening stromal regions. Further, we do a risk based analysis
for the sensitivity of splitting or merging. If the class of two candidate regions
are the same then merging them carries no risk. Similarly if splitting does not
change the class of either one of the candidate regions then there is no risk
associated with the split. For merges and splits where the classification changes,
additional analysis is done to improve the probability of the gland identification.
This is done by the improved detection of stromal and basal regions.

Classification: Once the identification is completed the classification of the
glands is not too complex. The classification criterion is

1. If gland has only the brown basal staining then the tumor is benign
2. If gland has both the red Racemace and the brown basal staining then it is

classified as HGPIN
3. If gland has only the red Racemace then it is classified as adinocarcinoma.
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Fig. 3. Above Figure shows example results of our system on test (novel) images. See
text for details.

4 Experiments

We have conducted some experiments with pathologists in the loop to evaluate
the effectiveness of our automated CAD algorithm for Prostate PIN4 analysis.
Fifty formalin-fixed, paraffin-embedded prostate biopsy cases, each consisting of
corresponding H&E and PIN-4 stained slides were selected. These cases were
part of a routine workflow in a pathology practice. This ensures that there is no
selection bias for the study. DAB chromagen was used to visualize the p63 and
HMW cytokeratin antibodies, and AEC chromagen was used to visualize the
P504S antibody. Slides were scanned at 20x magnification on the BioImagene
iScan Slide Scanner. Manual interpretation (manual digital read) was performed
on a computer monitor that allowed the pathologist to view whole slide images
at magnifications from 1x to 40x. After a one-week wash-out period, the same
cases were reviewed using the PIN-4 image analysis algorithm and BioImagene
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Virtuoso software for selected regions of interest. For manual scoring, cases were
categorized as benign, HGPIN, atypical/ASAP or adenocarcinoma. For auto-
mated analysis, the algorithm categorized cases as benign, HGPIN or adenocar-
cinoma. Some of the representative samples are presented in figures 4-6 below.
We present samples from each one of the classes. Note that the H&E image and
the IHC image are not of the same tissue section but are from the same tissue
block (serial sections) therefore there is a gross gland level correspondence but
no cell level correspondence.

In Figure 4 we present the case of a benign tumor. The pathologist examines
the H&E image and suspects a cancer tumor based on the gland morphology and
structural arrangements. The PIN-4 test is ordered that is carried out on a serial
section from the same block from which the H&E was generated. In 4.b the algo-
rithm has segmented and identified the individual glands. All glands have been
classified as benign (therefore outlined with green). Figure 5 presents the case
of a high grade prostatic intraepithelial neoplasia (HGPIN) which are suspected
to be the precursors to adenocarcinoma. The automated algorithm identifies the
glands and correctly classifies them as HGPIN (therefore marking them with a
yellow outline). Finally, Figure 6 presents the case of an adenocarcinoma. The
CAD algorithm has correctly segmented and identified the individual glands.
The classification is that of adenocarcinoma (therefore outlined with red). Note

Fig. 4. Examples of benign prostate biopsies stained with H&E with corresponding
area in PIN-4 IHC. The benign glands are outlined in green in the PIN-4 stained
image as a result of the CAD analysis.

Fig. 5. Example of HGPIN stained with H&E and corresponding PIN-4 IHC. The
HGPIN glands detected and classified by the CAD algorithm are outlined in yellow.
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Fig. 6. Example of adenocarcinoma stained with H&E and corresponding PIN-4 IHC.
The adenocarcinoma glands detected and classified by the CAD algorithm are outlined
in red.

that there is one gland in the mix that is actually benign. It is important for
the CAD algorithm to not merge this gland with the surrounding glands or the
diagnosis will be incorrect.

5 Results

We present the results of our experiments that compare the final automated
classification of the whole slide v/s the manual classification. The comparative
results are based only on gland segmentation produced by the unsupervised color
segmentation followed with gland identification and classification. In a future
work, we plan to do a similar experiment using the gland segmentation results
generated from the image patch classifier approach.

Although comparison of only the final diagnostic results hides a large number
of misclassifications, mis-identifications and erroneous segmentation, this is the
metric that is of final relevance to the final practice of pathology. We are in
the process of developing a large ground truth dataset that includes the manual
segmentation and gland identification for the whole slide images. With such
datasets we will be able to provide quantitative accuracy results of the gland
identification and segmentation procedures.

The first set of tabulated results (Table 1) shows comparison of manual read
v/s automated scoring of benign cases and abnormal cases. Benign cases include
cases that are classified as Benign and HGPIN. Abnormal cases are adenocarci-
noma and atypical/ASAP. Note that the automated algorithm did not classify
ASAPs but the manual reads did use the ASAP category. As the table indicates,
there was only one case where the manual classification was Abnormal while the
CAD analysis algorithm reported Benign. This is the case of ASAP that was not
recognized by the CAD algorithm (figure 7). In the future we plan to include
another class for ASAP. We have not included ASAP in the current experiment
as they are relatively rare and difficult to get sufficient training samples. As seen
in the result below we are seeing a concordance of 98% between the manual and
the automated classifications.



98 B. Sabata et al.

Table 1. Manual digital read vs. CAD analysis for interpretation of benign versus
abnormal PIN-4 IHC staining. Benign classification includes benign and HGPIN cases.
Abnormal classification includes atypical/ASAP and adenocarcinoma cases. Concor-
dance = 98%.

Image Analysis
Benign Abnormal

Manual Digital Read Benign 29 0
Abnormal 1 20

Fig. 7. Example of an atypical focus (ASAP) in a prostate biopsy stained with H&E
and the corresponding detection in PIN4. The analysis result was adenocarcinoma.

Table 2. Manual digital read vs. CAD for interpretation of benign versus be-
nign/HGPIN PIN-4 IHC staining. Benign classification includes benign cases while
benign/HGPIN classification includes benign cases with HGPIN. Concordance = 90%.

Image Analysis
Benign Benign+HGPIN

Manual Digital Read Benign 16 1
Benign+HGPIN 2 10

In table 2 below we present the results of the comparison of manual read v/s
automated scoring of Benign cases and HGPIN cases. The concordance between
the manual read and the automated CAD is lower in this case. We have a 90%
concordance. The reason is that the racemace staining is difficult to use and
therefore there is a big variation in the staining intensity. When the glands are
small, as in the case of HGPIN, the staining variation causes the recognition of
the red staining to be error prone.

In summary:

– There is close agreement between manual digital reading and image analysis
for interpretation of PIN-4 IHC staining

– CAD image analysis correctly categorizes glands into benign, HGPIN and
malignant categories in most cases
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– There is a 98% concordance between manual and automated classification
for benign (benign and HGPIN) vs. abnormal diagnoses (adenocarcinoma
and atypical) (refer to Table 1)

– There is a 90% concordance between manual and automated classification for
benign vs. benign/HGPIN (benign and HGPIN) diagnoses (refer to Table 2)

– The CAD image analysis algorithm does not currently have an atypical cat-
egory for small numbers of glands lacking basal cell staining. This explains
the handful of cases where the manual interpretation was benign or atypical,
but the IA interpretation was adenocarcinoma.

6 Discussions

Image analysis based CAD is a useful adjunctive tool to aid the pathologist
in the interpretation of PIN-4 IHC studies. The PIN-4 algorithm can identify
glands in three categories, and there is a high degree of concordance between
manual interpretation and automated image analysis. To our knowledge, this is
the first example of an algorithm to incorporate three color image analysis of an
IHC cocktail.

Planned future versions of the PIN-4 algorithm will include an atypical/ASAP
category, perform more accurate analysis based on integrating with H&E and
calibration slides.

As digital pathology is increasingly adopted within the pathology practice,
CAD algorithms for assisting the pathologist will enable a fundamental change
to the practice of pathology. In the early phases of the adoption we observe that
only a limited number of CAD algorithms provide the pathologist the additional
information that helps them with certainty of diagnosis. An area of increasing
utility is the optimization of workflow through the use of CAD algorithms. If
the system is able to preprocess the images for the pathologist and presents
the information in the order that is diagnostically relevant, the time to derive an
accurate and correct diagnosis will be significantly reduced. Further, the directed
review of the pathology slides will result in lower fatigue which will improve the
quality of the pathology practice.

The PIN-4 algorithm developed by BioImagene is one such algorithm that has
been adopted by the practicing pathologist to help in the diagnosis of adenocar-
cinoma in prostate needle biopsies. The usefulness of PIN-4 is still being studied
and a final equivocal decision has not been arrived at in the community. However,
we feel that the use of PIN-4 in the preprocessing of the whole slide image has
the potential to dramatically alter the protocol of prostate screening process. The
discussion of the usefulness of PIN-4 at that time will take a new dimension that
will have to take into account the automated screening aspect of the test.
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Abstract. This paper presents our work aimed at providing augmented reality 
(AR) guidance of robot-assisted laparoscopic surgery (RALP) using the da 
Vinci system. There is a good clinical case for guidance due to the significant 
rate of complications and steep learning curve for this procedure. Patients who 
were due to undergo robotic prostatectomy for organ-confined prostate cancer 
underwent preoperative 3T MRI scans of the pelvis. These were segmented and 
reconstructed to form 3D images of pelvic anatomy. The reconstructed image 
was successfully overlaid onto screenshots of the recorded surgery post-
procedure. Surgeons who perform minimally-invasive prostatectomy took part 
in a user-needs analysis to determine the potential benefits of an image 
guidance system after viewing the overlaid images. All surgeons stated that the 
development would be useful at key stages of the surgery and could help to 
improve the learning curve of the procedure and improve functional and 
oncological outcomes. Establishing the clinical need in this way is a vital early 
step in development of an AR guidance system. We have also identified 
relevant anatomy from preoperative MRI. Further work will be aimed at 
automated registration to account for tissue deformation during the procedure, 
using a combination of transrectal ultrasound and stereoendoscopic video. 

Keywords: MRI scan prostate, image guidance, augmented reality, robot-
assisted laparoscopic prostatectomy (RALP). 

1   Introduction 

1.1   Clinical Background 

Prostate cancer, the most common cancer in men in the UK, accounted for 9157 
deaths in 2008 [1]. 30201 new diagnoses of the disease were made in 2007, and the 



102 D. Cohen et al. 

incidence of prostate cancer is likely to increase due to an aging population [2].  The 5 
year survival rate is 71% which is aided by accurate surgical intervention and early 
detection using prostate-specific antigen. Radical prostatectomy is a well established 
treatment for organ confined prostate cancer and confers survival benefit [3].   

There are three common methods for performing a radical prostatectomy. The 
longest-established method is open surgery, either by retropubic or perineal approach, 
which was first described in 1905 by H Young [4]. The description and uptake of 
anatomic prostatectomy in the late 1970s refined the technique of the surgery. Open 
surgery is still the gold standard procedure for radical prostatectomy, although it is 
complicated by higher rates of blood loss and a longer hospital stay than for 
minimally-invasive procedures [5]. 

Minimally invasive radical prostatectomy can be performed by laparoscopic or 
robot-assisted laparoscopic methods. Laparoscopic surgery increased in popularity in 
the late 1990s and in the hands of an experienced surgeon, can deliver good patient 
outcomes. However, the procedure remains technically complex and has a long and 
difficult learning curve due to the constraints of operating with a laparoscopic system, 
such as the absence of haptic feedback, a reduced range of instrument motion, and 2-
dimensional visualisation during the procedure [5].  

Robot-assisted laparoscopic surgery is a further advance and has been increasing in 
popularity in the last ten years, with estimates that over 70% of prostatectomies in the 
United States are now performed this way. Systems such as the da Vinci Robot have 
added benefits to conventional laparoscopic surgery, including 3-dimensional vision, 
improved ergonomics, motion-scaling and tremor loss, and an increased range of 
motion for surgical instruments. Despite the rapid and costly uptake of RALP, there is 
debate as to which modality of prostatectomy confers the most benefit to patients, as 
the negative outcomes of positive surgical margins, functional impairment (erectile 
dysfunction, urinary incontinence) due to nerve damage and iatrogenic injury to 
surrounding structures are equally prevalent across the surgical modalities. 
Proponents of robot-assisted surgery claim it is superior to open or laparoscopic 
techniques. However, these claims are controversial and based on low quality 
evidence [5,6].  It is hoped that the forthcoming LopERA trial in the United Kingdom 
will add high quality evidence to this debate [6]. 

However, of all the techniques described above, RALP has been purported to have 
the greatest potential for improving outcomes in the future, due to ongoing research 
and developments of this relatively new technology [7]. 

The addition of augmented reality (AR) to robotic prostatectomy will enhance and 
potentially standardise the accuracy of surgery. Having the cancerous growth ‘visible’ 
by means of AR may aid in complete macroscopic excision, particularly in the 
difficult region of the prostatic apex where positive cancerous margins are most 
common, resulting in improved oncological cure. Display of surrounding anatomy 
could result in improved neurovascular bundle and sphincter preservation and guide 
bladder neck dissection, improving the potency and urinary continence rates  
achievable after RALP. The real time display of adjacent organs will reduce the 
potential for intraoperative morbidity such as rectal injury [8]. 
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The learning curve for robotic techniques has also been identified as a factor in 
surgical outcome [9]. Initial reports suggest a shorter learning curve for robot-assisted 
radical prostatectomy over conventional laparoscopic radical prostatectomy, with the 
advantage that prior laparoscopic experience may not be required [10]. However there 
is still a significant learning curve for robot-assisted radical prostatectomy which can 
be further shortened by improving the anatomical orientation within the male pelvis 
using AR. 

We describe our research to develop image guidance technology for RALP in order 
to improve surgical outcomes. 

1.2   Background to Augmented Reality 

Image guidance is becoming an accepted tool for applications in neurosurgery, ENT, 
maxillofacial surgery and orthopaedics [11], where the operations are close to bone. 
Here there can be rigid alignment of the image to the physical space of the patient. 
Within the abdomen, image guidance has been proposed to aid gastrointestinal, biliary 
and pancreatic surgery [12].  

The use of image guidance in urological surgery is as yet uncommon. There has 
been one report of an AR guided adrenalectomy and one of image guided partial 
nephrectomy [13,14]. Both these studies used preoperative CT scans to define 
anatomy intraoperatively.  

Transrectal ultrasound real-time guidance has been utilised in both open and 
laparoscopic radical prostatectomy. The authors suggested that this modality was 
helpful in identification of prostate margins and neurovascular bundles during surgery 
[15]. However, this technology has not become widely used, which may be due to the 
technical challenges of intraoperative ultrasonography, the need to have a 
ultrasonographer present throughout the procedure and the lack of high quality 
evidence showing improvements in patient outcome. 

As yet, no studies have utilised preoperative MRI scans in this anatomical region 
for image-guided surgery. MRI is the imaging modality of choice in prostate cancer, 
as it enables clear identification of intraprostatic anatomy and margins. These are both 
poorly defined on CT [16]. The use of MRI may also enable clear delineation of the 
neurovascular bundles running adjacent to the prostate. Damage to these structures 
during a prostatectomy is thought to be responsible for the functional problems that 
are reported after surgery. 

Combining intraoperative transrectal ultrasound scans with preoperative MRI may 
enable real-time image overlay during prostatectomy. However, transrectal probes 
may alter the shape of the prostate, which could have implications during both image 
reconstruction and overlay. 

This project aims to bring AR image guidance to radical prostatectomy by utilising 
preoperative MRI imaging. AR surgical guidance has the potential to reduce  
morbidity and improve outcome for prostate cancer patients. This project will build 
such a system and begin to evaluate its clinical efficacy for prostatectomy.  
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2   Methods 

2.1   MRI Scanning, Segmentation and Image Overlay  

Ten patients with histologically proven early stage prostate cancer were listed for 
robotic prostatectomy at St Mary’s Hospital, Imperial College Healthcare NHS Trust, 
London. This cohort all underwent conventional 3T CUBE MRI scans of the pelvis 
preoperatively. Three patients also underwent pre-biopsy endoanal 3T CUBE MRI 
scans to determine the effects on prostate deformation and enable comparison with 
conventional scans. None of these patients has proceeded to prostatectomy as yet, 
therefore these scans have not undergone segmentation and overlay. 

An anatomical protocol was established to guide the segmentation. The following 
structures were deemed important to identify as a minimum requirement: prostate, 
bladder, urethra, vas deferens, seminal vesicles, rectum, neurovascular bundles and 
ureters. Other structures were identified as deemed necessary at the time of 
segmentation. The scans underwent manual segmentation and reconstruction by a 
specialist MRI consultant radiologist to form a 3 dimensional reconstruction. 

Intraoperative recording of the robotic prostatectomies took place via a stereo-
recording system connected to the standard equipment stack in theatre. All patients 
were consented pre-MRI and pre-surgery for their images to be used for the purposes 
of this study. 

Post-operatively, the 3-dimensional reconstructed view was aligned to the console 
view for the purpose of retrospective evaluation by the surgeon. 

2.2   Establishing the Need for an Image Guidance System  

The theoretical benefits of image guidance have been discussed above. However, 
there is no qualitative data in the literature to support its development or to gain 
further insight into the uses, benefits and applicability of a system. A user-needs 
analysis was therefore performed. This was undertaken by means of semi-structured 
interviews on surgeons who perform minimally-invasive prostatectomy (figure 1). 
The stages of minimally invasive prostatectomy have been described elsewhere [17]; 
this structure was used to make the interview systematic. The interviews were 
transcribed in real-time and then underwent qualitative analysis to determine the 
perceived technical difficulties of the current procedure and the future benefits of an 
image guidance system. 

2.2.1   MRI Scanning Modality 
Fig. 2(a) shows a conventional 3T scan, clearly showing the anatomical boundaries of 
the prostate and surrounding anatomy. By contrast, Fig. 2(b) shows an MRI scan 
taken using an endoanal coil. Comparison of these images reveals subtle differences. 
The endoanal MRI image shows deformation of the prostate due to the ano-rectal 
probe, and more defined intraprostatic anatomy. As well as providing better contrast 
in this region the use of the endoanal coil may closer mimic the tissue deformation 
due to intraoperative transrectal ultrasound should this become our method of soft 
tissue tracking. 
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Augmented Reality Guidance for Robotic Prostatectomy 
What do Surgeons want from a system? 

 
1. What type of minimally-invasive prostatectomy do you perform? 
2. How many have you performed? 
3. Do you follow the 9 stage system previously described? 
4. Do you think an image guidance system would be helpful, and if so, how? 
5. What complications could an image guidance system help to avoid? 
6. Are there any other steps in the procedure where use of image guidance might be 

helpful? 
7. What are the requirements for successful implementation from a surgical point of 

view? 
 

  What are the 
technical 
challenges at 
each stage? 

What structures/anatomy 
would be useful to identify at 
each stage? How might an 
image guidance system help? 

1. Incision of 
peritoneum 

  

2. Incision of 
endopelvic fascia 

 
 

 

3. Ligation of dorsal 
vein complex 

 
 

 

4. Dissection of the 
bladder neck 

 
 

 

5. Seminal vesicle 
dissection 

 
 

 

6. Denonvilliers 
posterior dissection 

 
 

 

7. Nerve-sparing right 
and left 

 
 

 

8. Mobilising apex 
 

  

9. Anastamosis  
 

 

 

Fig. 1. Semi-structured interviews for urological surgeons 
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a)  b)  

Fig. 2. Example MRI scans - conventional (a) and with an endoanal coil (b) 

2.2.2   MRI Segmentation and Image Overlay 
MRI scans were successfully segmented and reconstructed in 3D. Relevant anatomy 
was identified and coloured. The images were then calibrated and overlaid onto still 
images of a recorded robotic prostatectomy.  

The combined images show the anatomy of the pelvis from the viewpoint of the 
operating surgeon. The images are scaled to reflect the magnification seen 
intraoperatively. 

Fig. 3 shows the appearance of the pelvic cavity at the beginning of the procedure. 
There is a significant pneumoperitoneum moving the abdominal wall anteriorly and 
therefore increasing the space for the robotic instruments to work. In Fig. 3(b) the 
overlay demonstrates segmented and reconstructed pelvic organs from the 
preoperative MRI scan that have been overlaid onto the operative image. The prostate 
(green), seminal vesicles (pink) and left sided neurovascular bundle (yellow) can be 
seen along with the pelvic bony structure (white/grey). The bladder has been removed  
 

 

a)   b)  
  

Fig. 3. The pelvic cavity at the beginning of the procedure – the operative view (a) and the 
same view with overlay (b) 
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a)  b)  

Fig. 4. Dorsal vein complex without (a) and with (b) overlay 

from the image as it was full during the preoperative MRI and occludes the other 
structures when overlaid. Furthermore, during the procedure the patient has a urinary 
catheter and therefore the bladder is decompressed. Note that these images do not 
reflect the pneumoperitoneum and therefore the structures are not completely aligned. 

Fig. 4 shows the dorsal vein complex about to be ligated by the surgeon. The needle 
is clearly visible in the screenshot. Again, the pneumoperitoneum makes accurate 
overlay difficult other than for the bony pelvis. Interestingly, the neurovascular bundle 
is not clearly visible on the screenshot, but is obvious on the augmented reality overlay. 

2.3   Establishing the Requirements and Use of an Image-Guided System  

Initial results of the questionnaire were encouraging. All surgeons believed that the 
system would be useful, although none believed that the system was of any benefit for 
stages 1, 2 and 9. All surgeons felt that the system would be of particular benefit to 
novice robotic surgeons and could help to accelerate the learning curve.  

In stage 3, visualisation of the depth of the dorsal venous complex and position of 
the urethra was felt to be a potentially useful addition to aid needle placement and 
avoid urethral injury. Most surgeons felt that image guidance in stage 4 could help to 
preserve the bladder neck if required, and also prevent inadvertent entry into a large 
middle prostatic lobe. Seminal vesicle dissection was felt to be a technically 
challenging procedure (stage 5), although image guidance was not universally felt to 
be of help, other than initial location of the vesicles. One surgeon noted that 
neurovascular bundles did run close to seminal vesicles, and visualisation of these 
prior to dissection could help avoid iatrogenic injury. All surgeons agreed that stage 6, 
which commences with a dissection of Denonvillers fascia, could be made safer by 
visualising the rectum posterior to the fascia and guiding the depth of dissection. 
Rectal injury is a concern during this part of the procedure.  

The development of an image guidance system was felt to be of greatest benefit in 
stages 7 and 8. High precision surgery in these areas can result in improved functional 
and oncological outcomes, by preservation of the neurovascular bundles and complete 
excision of a cancer. Stage 7 begins with the division of the lateral pedicles. Surgeons 
felt that identification of the neurovascular bundle in relation to the lateral pedicle 
would be a very useful development, and would aid nerve-sparing. One surgeon 
commented that anatomical differences between patients at this stage of the surgery 
made nerve-sparing a potentially difficult procedure, and one that image guidance 
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could make much safer. Stage 8 involves complete dissection of the prostate down to 
the apex. Image guidance was felt to be useful here on two grounds. Firstly, the image 
guidance could show the cancerous tumour within the prostate and therefore guide 
complete excision during surgery, making a positive cancer margin less likely. 
Secondly, there was concern that surgeons at present may injure the external sphincter 
during the apical dissection, which image guidance could help to avoid. 

More generally, surgeons stated that operative complications that could be avoided 
were any iatrogenic injury and inadvertent incision of the prostate. One surgeon 
commented that the system must work in real time when developed, in order to avoid 
lengthening the surgery. 

3   Discussion and Future Work 

We have demonstrated the capability of using preoperative MRI images to form a 3 
dimensional anatomical model. Furthermore, we have enabled successful overlay and 
alignment of the reconstructed MRI image onto the stereo view that the surgeon 
would see during a robotic prostatectomy, thus giving graphical representation of 
intraoperative anatomy. We have identified which anatomical structures are useful to 
identify at certain key stages of the surgery. This is a vital stage in establishing the 
clinical need for image guidance in RALP. 

There are a number of technical developments in progress. We are researching 
methods to provide a smooth and automated segmentation of the 3D MRI scan. 
Clearly the soft tissue deformation due to pneumoperitoneum and surgical 
mobilisation currently results in suboptimal registration. This challenge needs to be 
overcome to enable accurate image guidance intraoperatively. A registration 
technique that does not take account of the surgery-induced anatomical deformities 
will be of little use in improving surgical accuracy. In particular, preservation of the 
neurovascular bundles (aiding urinary continence and erectile function) and accurate 
mobilisation of the prostatic apex (aiding complete oncological resection) require 
high surgical precision, which can only be promoted by an accurate, deformable, 
image guidance system. 

We are researching possible methods of maintaining alignment in the presence of 
soft tissue deformation using transrectal ultrasound to follow the motion of the 
prostate and nearby structures. We have anticipated that transrectal intraoperative 
ultrasound would significantly alter the shape of the prostate due to direct pressure. 
For this reason we are investigating whether the MRI should be performed with an 
endo-anal coil (rather than a pelvic coil) in order that the soft tissue deformation is 
similar to that when the transrectal ultrasound probe is inserted. We are performing 
further research into the use of the steroendocsopic video to reconstruct the viewed 
surface for intraoperative registration. For accurate live-overlay to take place the 
problem of soft tissue motion needs to be addressed. 

It is expected that the overall system will lead to two major improvements in 
practice. Firstly, we expect both oncological and functional outcome improvements in 
patients who undergo robotic prostatectomy for early-stage prostate cancer as a result 
of image guidance. Secondly, we anticipate that the learning curve of the procedure 
will be improved for novice surgeons. Both of these developments would be of 
significant benefit to prostate cancer patients. 
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Abstract. Fusion of Magnetic Resonance Imaging (MRI) and Trans
Rectal Ultra Sound (TRUS) images during TRUS guided prostate biopsy
improves localization of the malignant tissues. Segmented prostate in
TRUS and MRI improve registration accuracy and reduce computational
cost of the procedure. However, accurate segmentation of the prostate
in TRUS images can be a challenging task due to low signal to noise
ratio, heterogeneous intensity distribution inside the prostate, and imag-
ing artifacts like speckle noise and shadow. We propose to use texture
features from approximation coefficients of Haar wavelet transform for
propagation of a shape and appearance based statistical model to seg-
ment the prostate in a multi-resolution framework. A parametric model
of the propagating contour is derived from Principal Component Anal-
ysis of prior shape and texture informations of the prostate from the
training data. The parameters are then modified with prior knowledge
of the optimization space to achieve optimal prostate segmentation. The
proposed method achieves a mean Dice Similarity Coefficient value of
0.95 ± 0.01, and mean segmentation time of 0.72 ± 0.05 seconds when
validated on 25 TRUS images, grabbed from video sequences, in a leave-
one-out validation framework. Our proposed model performs computa-
tionally efficient accurate prostate segmentation in presence of intensity
heterogeneity and imaging artifacts.

1 Introduction

Prostate cancer is a major health problem with more than 670,000 people being
diagnosed every year worldwide [1]. In clinical practice TRUS guided needle
biopsy is performed to diagnose prostate cancer, due to the real time nature of
the imaging system, ease of use, and portability. However, TRUS images have low
signal to noise ratio (SNR) and detection of malignant tissues in TRUS images
is difficult. MR images provide higher contrast for soft tissues of the prostate
that allows a better detection of cancerous tissues. However, interventional MRI
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guided biopsy is expensive and complicated. Therefore, one solution lies in the
fusion of the two imaging modalities to exploit the high quality of MR images in
TRUS interventional biopsies. Real-time registration between two dimensional
(2D) TRUS video sequence and three dimensional (3D) MR images is necessary
for such a process. Registration performed on accurately segmented contour
of TRUS and MR images will aid in designing computationally efficient and
accurate registration procedures [20]. Thus, real-time accurate 2D segmentation
of TRUS images from TRUS video sequence is necessary for the process.

Prostate segmentation in TRUS images is particularly challenging. Low SNR
in a TRUS image of prostate reduces the accuracy of intensity based segmen-
tation algorithms. Approaches working on traditional edge detection filters like
Sobel, Prewitt are adversely affected with the issues of high noise and low SNR
producing discontinuous prostate edges. Heterogeneous intensity distribution in-
side the prostate is a hindrance in designing a global descriptor. Added to these,
shadow artifacts, speckle noise and micro calcification significantly challenges
the segmentation of the prostate.

Incorporating prior shape and intensity informations in the segmentation
methods improve the prostate segmentation accuracy. In 1998 Cootes et al. [6]
provided an efficient framework for combining shape and intensity prior in their
Active Appearance Model (AAM). Medina et al. [16] used AAM to segment
prostate in Two Dimensional (2D) TRUS images with an overlap ratio of 96%.
However, it is argued by Wolstenholme and Taylor [19] that the time complexity
involved with AAM is high and is unsuitable for real time procedures. Instead
they proposed to use wavelet coefficients of training images for building the
AAM. Larsen et al. [14] showed that frequency separation in wavelet transform
allowed an edge enhancement that provided better result in terms of segmenta-
tion accuracy compared to traditional AAMs. They proposed to use a texture
vector comprising the truncated detail and approximation coefficients in multi-
resolution framework.

To address the challenges involved with prostate segmentation in 2D TRUS
images, we propose a novel AAM that is propagated by the approximation coef-
ficients of Haar wavelet transform in a multi-resolution framework . Compared
to the use of intensity as in traditional AAM [6], the use of approximation co-
efficients of the wavelet transformed image improves the computational time
and accuracy of prostate segmentation. The approach is similar to Larsen et al.
[14], while deviating from their model of using both detail and approximation
coefficients to construct a texture vector for AAM propagation we propose to
use the approximation coefficients of the Haar wavelet transformed image. The
performance of our method is validated using 25 images captured from TRUS
video sequence. Experimental results show that our method is unaffected by low
SNR, intensity heterogeneities and micro calcifications inside prostate region and
imaging artifacts like shadow and speckle noise.

The rest of the paper is organized as follows. The texture driven AAM is
formulated in Section 2 followed by quantitative and qualitative evaluation of
our method in Section 3. We finally draw conclusion in Section 4.
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2 Methods

The proposed method is developed on two major components: the adaptation of
AAM and incorporation of texture information. Traditional AAM is presented
first followed by a comprehensive discussion of using Haar wavelet in extraction of
texture feature to build the model. Finally, the model building and propagation
procedure are presented.

2.1 Active Appearance Model

AAM provides a compact parametric framework utilizing prior shape and inten-
sity variabilities learned from a training model to segment an unseen test image
exploiting the prior knowledge of the nature of the optimization space [14]. The
process of building AAM may be partitioned into two separate tasks; building
the shape model from the contours and building the appearance model from
the intensity distribution inside the manually segmented region. Finally, the two
models are combined to produce AAM that incorporates prior knowledge of
shape and intensity variabilities.

Generalized Procrustes Analysis (GPA) of the Point Distribution Model
(PDM) [5] built from manually segmented contours is used to align the PDM.
Principal Component Analysis (PCA) of the aligned PDMs are used to identify
the principal components of the variations in shape and suppress redundancy.
Intensity distribution are warped into correspondence using a piece wise affine
warp and sampled from shape free reference. PCA of the intensity distribution
is used to identify the principal components of intensity variations.

The model may be formalized in the following manner. In eq. 2 let E {s} and
E {t} represent the shape and intensity models where s and t are the shape and
the intensities of the corresponding training images, s and t denote the mean
shape and intensity respectively, then Φs and Φt contain the first p eigenvectors
of the estimated joint dispersion matrix of shape and intensity and θ represents
the corresponding eigenvalues.

E {s} = s + Φsθ (1)
E {t} = t + Φtθ

In addition to the parameters θ, four parameters, two translations, rotation
and scale are represented by ψ. In order to infer the parameters of θ and ψ of
a previously unseen image, a Gaussian error model between model and pixel
intensities is assumed [14]. Furthermore, a linear relationship between changes
in parameters and difference between model and image pixel intensities Δt is
assumed as shown in eq.2

Δt = X

[
Δψ
Δθ

]
(2)
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Fig. 1. Second level Haar wavelet decomposition of the prostate

X is estimated from weighted averaging over perturbation of model parameters
and training examples. Eq.2 is solved in least square manner fitting error as
shown in eq.3 [

ψ̂

θ̂

]
= (XT X)−1XT δt (3)

The problem is computationally expensive. To reduce the computational time
we propose to use approximation coefficients of Haar wavelet transform. How-
ever, this will introduce the additional time requirement of transformation of
the image into a new representation. Since the transformation is based on sparse
matrix, the computational burden can be considerably reduced as stated in [14].

2.2 Texture Analysis Using Haar Wavelets

Wavelets are a family of basis functions that decomposes signal into frequency
and time domains. In practice, a set of linear, rank preserving matrix operations
are carried out in a convolution scheme to decompose an image by a high pass
filter and by a low pass filter into different sub-bands. For a 2D image the high
pass filter generates three detail coefficient sub-bands corresponding to horizon-
tal, vertical and the diagonal edges. The approximation sub band obtained from
low pass filter, is down-sampled and is further decomposed to analyze the detail
and the approximation coefficients at a coarser resolution. The Haar wavelet
decomposition of a 2D TRUS image of the prostate is shown in fig.1.

The property of the wavelets that allows to analyze the detail and the ap-
proximation coefficients in a multi-resolution framework proves to be a powerful
tool for edge and texture analysis [17]. To introduce wavelet coefficients in AAM,
we formalize the framework with the used notation. First, let a n-level wavelet
transform be denoted by

ŵ =
[
âT ûT

1 . . . ûT
n

]T
(4)
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where, â and û represent the approximation and the detail coefficients respec-
tively, and ŵ is the wavelet transformed image [14]. The detail coefficients are
suppressed to produce a truncated wavelet basis as

b (ŵ) = Cŵ =
[
âT 0 . . . 0

]T
(5)

where, C corresponds to a modified identity matrix with the rows corresponding
to the detail coefficients removed. The AAM is built on the truncated wavelet
basis constituting the texture. The PCA of the texture is given by 6

a = a + ΦaBw (6)

where a is the mean of the approximation coefficients, Φa and Bw are the matrices
constituting the eigenvectors and their corresponding eigenvalue respectively,
that represent the principal components of the approximation coefficients.

Suppressing the high frequency components certainly reduces texture infor-
mation. However, the texture information that are to be preserved is context
dependent. To ensure the uniformity of texture inside the prostate, suppres-
sion of the detail coefficients is desirable since, the high gradient energies are
minimized. Moreover, speckle noise and micro calcifications, the high frequency
components, inside the prostate tissues are considerably reduced by the suppres-
sion of the detail coefficients, producing appropriate texture map. Finally, such
suppression reduces the computational complexities involved with the fitting of
a new image to the model. It is to be noted that, significant texture informations
are preserved in the high energy components that are the approximation coeffi-
cients [17]. PCA of the approximation coefficients helps us to suppress noise in
the underlying texture by preserving the important components only.

2.3 Model Building

The model building procedure could be summarized in the following steps,

1. Automatic creation of PDM from the segmented contour using a radial search
method.

2. All the PDMs are aligned using GPA.
3. PCA of the aligned contours is done to identify the principal components of

the shape variation.
4. Intensities are sampled from each of the aligned PDM.
5. Wavelet transform of the intensities produce the approximation and the de-

tail coefficients.
6. The detail coefficients are suppressed and the approximation coefficients are

then used to identify the principle variations of the texture which is used to
build the AAM.

Larsen et al. [14] claimed that wavelet decomposition of an image in multi-
resolution propagates fitting error due to loss of texture information. Therefore,
we have adopted wavelet decomposition of the first level and subsequently fitted
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Multi-resolution functioning of the model (a) 2D TRUS image of the prostate,
(b) Manual initialization of the mean model (blue contour) by clicking on the center of
the prostate, (c) Level 4 segmentation result, (d) Level 3 segmentation result, (e) Level
2 segmentation result, (f) Final segmentation result. Manual segmentation shown with
green contour and the red contour show the segmentation achieved.

our model to the approximation coefficients in coarser to finer spatial resolutions
to reduce texture dependent fitting error. Multi-resolution fitting of an image
improves segmentation accuracy. The multi-resolution functioning of the model
is illustrated in fig.2.

It is to be noted that the mean model is initialized by clicking in any position
close to the center of the prostate decided on visual inspection. The mean model
initialization and subsequent multi-resolution segmentations are produced based
on the approximation coefficients of the Haar wavelet.

3 Experimental Results

We have validated the accuracy and robustness of our approach on a series of 25
prostate ultrasound images using leave-one-out evaluation strategy. The images
of resolution 538× 418 are grabbed from TRUS video sequences (acquired with
a Siemens Aquson). Our method was implemented in Matlab 7 on a Intel Core
2 Duo T5250 processor of 1.5 Ghz processor speed and 2 GB RAM. We have
used most of the popular prostate segmentation evaluation metrics in order to
evaluate our approach. The average values for all the 25 images show, Dice
similarity coefficient DSC value of 0.95± 0.01, 95% Hausdorff Distance (HD) of
5.08± 1.18 mm, Mean Absolute Distance (MAD) of 1.48± 0.36 mm, Maximum
distance (MaxD) of 5.01 ± 1.13 mm, specificity of 0.92 ± 0.02 and sensitivity
value of 0.998± 0.001 with a mean segmentation time of 0.72 ± 0.05 seconds.

For a qualitative analysis of our method we have presented the 25 figures
used for validation with green contours depicting the ground truth and the red
contours indicating the segmented prostates as shown in fig.3.
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Fig. 3. Qualitative segmentation results. The green contour gives the manual segmen-
tation and the red contour gives the obtained result.

(a) (b) (c)

Fig. 4. (a)Prostate artifacts in TRUS image of the prostate, A=Low SNR, B=Micro-
Calcification, C=Intensity difference inside prostate region, D=Shadow Artifacts,
E=Speckle Noise. (b) Manual initialization of the mean model (blue contour) by click-
ing on prostate center, (c) Final segmentation result. Manual segmentation shown with
green contour and the red contour show the segmentation achieved.

As stated before in Section 1, the robustness of the the proposed method
against low SNR, intensity heterogeneities, shadow artifacts, speckle noise and
micro calcification inside prostate is demonstrated in fig.4. As seen in fig.4(b)
that on initialization a section of the mean model (blue contour) is located in a
region of shadow artifact, the model successfully avoids the artifact and segments
the prostate accurately with a DSC value of 0.94.
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The mean model initialization in the TRUS images is done on visual inspection
and therefore varies from one case to the other. Low standard deviation values of
0.01, 0.015 and 0.0001 associated with the DSC, specificity and sensitivity values
seems to indicate that the final segmentation result of our method is not affected
by the manual initialization of the mean model. To further validate our claim the
standard deviation value of mean DSC over four independent test was computed
and the mean of these values was 0.014. This further proves that accuracy of the
process is indifferent to manual intialization. However, the mean model could
be initialized automatically on the assumption that the prostate is visible in the
center of the TRUS image. A more sophisticated approach would be an initial
rough classification of the TRUS image to identify the prostate region and then
initialize the mean model at the center of the prostate region.

Comparison of different prostate segmentation methodologies is difficult in
absence of public datasets and standardized evaluation metrics, since the meth-
ods are developed with a wide variety of algorithms and with specific application
requirements. However, to have an overall qualitative estimate of the functioning
of our method we observe that the mean segmentation time of 0.72 ± 0.05 sec-
onds for an image is comparable to [2](less than a second),[15](2.1 second), [11](5
seconds), [3](5 seconds) and inferior only to [20] that achieves segmentation time
of 0.3sec in C++ and ITK framework. To have an estimate of overlap accuracy
DSC value of 0.95± 0.01 is comparable to different measure of overlap accuracy
value obtained by [12](Area difference 8.48%), [8](Area difference 4.79±0.68%),
[10](Average similarity 89%), [18](Area overlap error 3.98±0.97%),[3](Area over-
lap 93 ± 0.9%), [16](Area overlap 93%), [21](Area overlap 91%) and [4](Area
accuracy 94.05%). MAD of our method of 1.48 ± 0.36 mm is comparable to
[20](MAD 1.79 ± 0.95 mm), [12](MAD 2.61 mm), [13](MAD 4.4 ± 1.8 pixels),
[9](MAD 2.79 ± 1.94 mm), [7](6.21 ± 4.03 mm), and [11](Contour average dis-
tance 1.36±0.6 mm). With reasonable conviction we can state that qualitatively
our method performs well compared to some of the works in literature.

4 Conclusion

A novel approach of using Haar wavelet approximation coefficients to propagate
AAMs with the goal of segmenting the prostate in 2D TRUS images have been
proposed. Our approach is accurate, computationally efficient and robust to
low SNR, intensity heterogeneity of prostate tisssue, shadow artifacts, speckle
noise and micro calcification. It is observed that the use of the Haar wavelet
approximation coefficients only, does not deteriorate the segmentation accuracy.
While the proposed method is validated with prostate mid-gland images the
effectiveness of the method against base and apical region slices is yet to be
validated. Computational time of the process is fast but not suitable for real-
time applications like MRI-TRUS fusion. We would like to explore the possibility
of using the CUDA platform to achieve necessary hardware acceleration and
parallelization in order to produce real time 2D segmentation of the prostate in
TRUS images.
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Abstract. Prostate segmentation is an essential step in developing any
non-invasive Computer-Assisted Diagnostic (CAD) system for the early
diagnosis of prostate cancer using Dynamic Contrast Enhancement Mag-
netic Resonance Images (DCE-MRI). In this paper we propose a novel
approach for segmenting the prostate region from DCE-MRI based on
using a graph cut framework to optimize a new energy function con-
sists of three descriptors: (i) 1st-order visual appearance descriptors of
the DCE-MRI; (ii) a spatially invariant 2nd-order homogeneity descrip-
tor, and (iii) a prostate shape descriptor. The shape prior is learned
from a subset of co-aligned training images. The visual appearances are
described with marginal gray level distributions obtained by separat-
ing their mixture over the image. The spatial interactions between the
prostate pixels are modeled by a 2nd-order translation and rotation in-
variant Markov-Gibbs random field of object / background labels with
analytically estimated potentials. Experiments with prostate DCE-MR
images confirm robustness and accuracy of the proposed approach.

1 Introduction

Segmentation of the prostate is a basic task in many applications. It is a prelim-
inary step in many Computer-Assisted Diagnosis (CAD) systems in detecting
prostate cancer and calculating the prostate gland volume during biopsy. Al-
though manual outlining of the prostate border enables the prostate volume to
be determined, it is time consuming and subject to variability. Moreover, the
traditional edge detectors are unable to extract the correct boundaries of the
prostate since the gray-level distributions of the prostate and the surrounding
organs are hardly distinguishable. Therefore, a number of investigations have
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been devoted to designing automatic or semi-automatic methods that are suit-
able for segmenting the prostate boundaries. These developed methods have
been applied on different image modalities. The most common modality applied
in the literature work on prostate segmentation is the transrectal ultrasound
(TRUS) imaging [1,2,3,4], which is widely used for guided needle biopsy. How-
ever, magnetic resonance (MR) imaging has been recently suggested for improved
visualization and localization of the prostate [5]. It provides valuable pathologic
and anatomical information [5]. Moreover, new MR modalities, such as MR
spectroscopy (MRS) and dynamic contrast enhanced MRI (DCE-MRI), have
emerged as important tools for the early detection of prostate cancer. For these
reasons, we will focus on the existing MRI prostate segmentation techniques.

Zwiggelaar et al. [6] have developed a segmentation technique based on polar-
transform space and edge detection techniques. Zhu et al. [7] used a combination
of an Active Shape Model (ASM) and 3D statistical shape modeling to segment
the prostate. Toth et al. [8] presented an algorithm for the automatic segmenta-
tion of the prostate in multi-modal MRI. Their algorithm starts by isolating the
region of interest (ROI) from MRS data. Then, an Active Shape Model (ASM)
within the ROI is used to obtain the final segmentation. Klein et al. [9] has reg-
istered and matched an atlas training set of prostate images to the test image.
The segmentation of the prostate is obtained as the average of the best-matched
registered atlas set to the test image. Martin et al. [10] have presented a 3D
method for segmenting the prostate. In this method, a probabilistic anatomical
atlas was built and mapped to the test image. The resultant map is used to
constrain a deformable model-based segmentation framework.

The major problem in the segmentation of the prostate is the exitance of
a large variability in prostate appearance from patient to patient in intensity,
texture, and size. In this paper, we present a general framework that takes into
account all these issues. Our framework uses graph cuts to globally optimize a
new energy function that accounts for the visual appearances of the prostate
and the background, spatial interaction between their pixels, and the prostate
shape. The prostate shape is learned from a subset of co-registered training im-
ages. The visual appearances are described with marginal gray level distributions
obtained by separating their mixture over the image. The spatial interactions
between the prostate pixels is modeled by a 2nd-order translation and rotation
invariant Markov-Gibbs random field of object / background labels with ana-
lytically estimated potentials. We applied our framework in DCE-MRI as an
emerging modality that offer the ability to distinguish benign from malignant
tissues, which is our optimal goal after the segmentation step.

The paper is organized as follows: Section 2 overviews in brief our prostate
segmentation based on a learned soft prostate shape model and an identifiable
joint Markov-Gibbs random field (MGRF) model of DCE-MRI and “object–
background” region maps. Experimental results are described in Section 3. Con-
clusions are presented in Section 4.
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2 Segmentation of Prostate Using a Shape Model and a
Joint MGRF Model of DCE-MRI

Let Q = {0, . . . , Q − 1}, L = {ob, bg}, and U = [0, 1] be a set of Q integer gray
levels, a set of object (“ob”) and background (“bg”) labels, and a unit interval,
respectively. Let a 2D arithmetic grid R = {(x, y) : x = 0, 1, . . . , X − 1; y =
0, 1, . . . , Y − 1} support grayscale DCE-MRI g : R → Q, their binary region
maps m : R → L, and probabilistic shape model s : R → U. The shape model
allows for registered (aligned) prostate DCE-MRI. The co-registered DCE-MRI
and their region maps are modeled with a joint MGRF specified by a probability
distribution

P (g, s,m) = P (g|m)P (s|m)P (m) (1)

where P (m) is an unconditional Gibbs distribution of co-registered region maps,
P (g|m) is a conditional distribution of the DCE-MRI signals given the map, and
P (s|m) is a conditional distribution of the prior shape of the prostate given the
map.

As shown in Fig. 1, we focus on accurate identification of spatial interactions
in P (m), pixel-wise distributions of intensities in P (g|m), and prior distribution
of the shape of the prostate in P (s|m) for co-aligned DCE-MR images. The
probabilistic shape model s is learned from a training set of manually segmented
and co-aligned images. To perform the initial prostate segmentation, every given
DCE-MRI is aligned to one of the training images. The shape model provides
the pixel-wise object and background probabilities being used, together with the
conditional image intensity model P (g|m), to build an initial region map. The
final segmentation is performed by optimizing the identified joint MGRF model
of the DCE-MRI and region maps using a graph cut framework.

Spatial interaction in the Prostate: A generic MGRF of region maps ac-
counts only for pairwise interaction between each region label and its neighbors.
Generally, the interaction structure and Gibbs potentials are arbitrary and can
be identified from the training data. For simplicity, we restrict the interaction
structure to the nearest pixels only (i.e., to the 8-neighborhood) and assume,
by symmetry considerations, that the potentials depend only on the intra- or
inter-region position of each pixel pair (i.e., whether the labels are equal or not)
but are independent of its relative orientation. Under these restrictions, it is
similar to the conventional auto-binomial (Potts) model and differs only in that
the potentials are estimated analytically.

The 8-neighborhood has two types of symmetric pairwise interactions speci-
fied by the absolute distance a between two pixels in the DCE-MRI slice (a = 1,
and

√
2, respectively): (i) the closest pairs with the inter-pixel coordinate off-

sets N1 = {(±1, 0), (0,±1)}; and (ii) the farther diagonal pairs with the offsets
N√

2 = {(1,±1), (−1,±1)}. The potentials of each type are bi-valued because
only the coincidence of the labels is taken into account: Va = {Va,eq; Va,ne}
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Fig. 1. Joint Markov-Gibbs random field model of DCE-MRI

where Va,eq = Va(l, l′) if l = l′ and Va,ne = Va(l, l′) if l �= l′; a ∈ A = {1,
√

2}.
Then the MGRF model of region maps is as follows:

P (m) ∝ exp
∑

(x,y)∈R

∑
a∈A

∑
(ξ,η)∈Na

Va(mx,y, mx+ξ,y+η) (2)

To identify the MGRF described in Eq.1, approximate analytical maximum like-
lihood estimates are formed in line with [12] as follows1.

Va,eq = −Va,ne = 2
(

fa,eq(m) − 1
2

)
(3)

where fa,eq(m) denotes the relative frequency of the equal label pairs in the
equivalent pixel pairs {((x, y), (x + ξ, y + η)): (x, y) ∈ R; (x + ξ, y + η) ∈ R;
(ξ, η) ∈ Na}.

Conditional intensity model for DCE-MRI slice: We use a simple random
field of conditionally independent intensities to model the DCE-MRI slice, given
a region map:

P (g|m) =
∏

(x,y)∈R

pmx,y(gx,y)

1 To the best of our knowledge, we are the first authors who introduced an analytical
form to estimate Gibbs potentials.
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where the pixel-wise probability distributions for the prostate and its back-
ground, pλ = [pλ(q) : q ∈ Q]; λ ∈ L, are estimated during the segmentation
process. To separate pob and pbg, the mixed empirical distribution of all the
pixel intensities is approximated with a linear combination of discrete Gaussians
(LCDG)2.

In this case the LCDG has two dominant positive DGs that represent modes
associated with the object (i.e., prostate) and background, respectively, in the
empirical intensity distribution for the DCE-MRI to be segmented. To approxi-
mate more closely this distribution, the LCDG also contains a number of positive
and negative subordinate DGs:

pLCDG(q) =
Cp∑
t=1

wp,tψ(q|θp,t) −
Cn∑
t=1

wn,tψ(q|θn,t) (4)

where the index α ∈ {p, n} specifies whether the DG is positive or negative,
Cα is the number of such components, and θα,t and wα,t denote the weight and
parameters of each individual DG Ψθα,t ; t = 1, . . . , cα, respectively. The LCDG
of Eq. (4), including the numbers Cp and Cn of its components, is identified
using our previous EM-based algorithm introduced in [11].

Probabilistic model of the prostate shape: Most of the recent works on
image segmentation use level set based representations of shapes: an individual
shape is outlined by a set of boundary pixels at the zero level of a certain distance
function, and a given shape is approximated with the closest linear combination
of the training shapes. The main drawback of this representation is that the
space of signed distances is not closed with respect to linear operations. As a
result, linear combinations of the distance functions may relate to invalid or even
physically impossible boundaries.

To circumvent this limitation, the probabilistic prostate shape model s : R →
U where s(x, y) is the empirical probability that the pixel (x, y) belongs to the
prostate is learned from a training set of co-registered training DCE-MR images.
The soft template is constructed as follows:

1. Co-align the training set of DCE-MRI using a rigid registration with mutual
information as a similarity measure [13].

2. Manually segment the prostate from the aligned set.
3. Estimate the pixel-wise probabilities s(x, y) by counting how many times the

pixel (x, y) was segmented as the prostate.

Optimization of the Joint MGRF model using the graph-cut algo-
rithm: After accurately identifying the joint MGRF model of the DCE-MRI
image, the prostate segmentation problem turns to be a search for the Maxi-
mum A Posteriori (MAP) region map m in all the possible configurations of
2 A discrete Gaussian (DG) Ψθ = (ψ(q|θ) : q ∈ Q) with θ = (μ, σ2) is defined [11]

as ψ(q|θ) = Φθ(q + 0.5) − Φθ(q − 0.5) for q = 1, . . . , Q − 2, ψ(0|θ) = Φθ(0.5),
ψ(Q− 1|θ) = 1−Φθ(Q− 1.5) where Φθ(q) is the cumulative Gaussian function with
the mean μ and the variance σ2.
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this joint MGRF model. The MAP region map is found by maximizing the in-
teraction energy of the joint MGRF model. In this paper, we formulate a new
energy function E to accurately model the DCE-MRI image. This new function
is formed as the logarithmic function of the probability distribution of the joint
MGRF model given in Eq. 1:

E(m) = log(P (g|m)) + log(P (s|m)) + log(P (m)) (5)

The search problem is an exhausting task and should be done in an effi-
cient and precise way. We apply a graph-cut based algorithm (i.e., the s/t Min-
Cut/Max-Flow algorithm [14]) for such a task due to its powerful capability to
end up with the optimal global region map [15]. As shown in Fig. 2, two-terminal
graph-cuts with positive edge weights (maximizing the proposed energy E in
Eq. 5 using graph-cut is obtained by minimizing −E) are constructed as follow:

1. The first two terms in Eq. 5 define the object (t-links) by accounting for
both the 1st-order visual appearance descriptors of the DCE-MRI and the
prostate shape descriptor (i.e., − log(P (g|m)) − log(P (s|m))).

2. The last term in Eq. 5 find the cuts (n-links) by penalizing for the spatially in-
variant 2nd-order homogeneitydescriptor of the DCE-MRI (i.e.,− log(P (m))).

Fig. 2. Constructed two terminal graph-cuts: t-links (in blue and red) account for both
the 1st-order visual appearance descriptors of the DCE-MRI and the prostate shape,
and n-links (in light yellow) penalize for the spatially invariant 2nd-order homogeneity
descriptor of the DCE-MRI (The thicker links donate greater affinity between corre-
sponding nodes or terminals)

3 Experimental Results

We illustrate the performance of the proposed segmentation approach by apply-
ing it on 2D DCE-MRI prostate images. We observed that good selection of a
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DCE-MRI imaging protocol is as important as the image analysis. The protocol
described below has been found to be optimal with the current MRI hardware
(Signa Horizon LX Echo speed; General Electric Medical Systems, Milwaukee,
WI, USA). In our protocol, gradient-echo T1 imaging was employed by a Signa
Horizon GE 1.5 Tesla MR scanner using an additional pelvic coil. Images were
taken at 7 mm thickness with an interslice gap of 0.5 mm. The repetition time
(TR) was 50 ms, the TE was minimum with flip angle at 60 degrees, the band
width was 31.25 kHz, the field of view (FOV) was 28 cm, and the number of slices
was 7. The DCE-MRI process started with a series of MRI scans which were used
to establish a baseline in image intensity. These scans were performed without
the administration of contrast enhancing agents so that the tissue’s nonenhanced
image intensity could be established. In the next stage, 10 cc of gadoteric acid
(Dotarem 0.5 mmol/mL; Guerbet, France) was administered intravenously at
a rate of 3 ml/sec. At this point, a series of MRI scans was performed every
10 seconds for 3 minutes, and every series contained 7 slices. To evaluate the
classification accuracy, a radiologist manually segmented the “ground truth” for
98 different prostate images. These images represented 14 different series; each
series contained 7 slices. Figure 3(a) shows some of the prostate images obtained
using the above imaging protocol.

We divide the images into a training set and a testing set. The training set
contains one third of the images and is used to provide the shape prior. The test-
ing set contains two thirds of the images and is used to evaluate the performance
of our segmentation approach. The segmentation separates the prostate object
from the surrounding background. For comparison, the same images have been
segmented using our proposed approach and the shape-based, level-set approach
of Tsai et al. [16]. Figure 3 shows the comparative results for the testing prostate
images with the known ground truth (manually segmented by radiologist). As
shown in Table 1, differences between the mean errors for the two approaches are
statistically significant by the unpaired t-test (the two-tailed P -values are less
than 0.0001). To evaluate the selection of manually segmenting training images,
we divide the data into three groups and performed the 3-fold cross validation.
Table 2 shows that such a sensitivity is statistically insignificant.

Table 1. Accuracy of our proposed segmentation scheme on testing data in comparison
to the level sets-based segmentation in [16]

Algorithm
Our [16]

Minimum error, % 3.3 4.96
Maximum error, % 8.8 50.9
Mean error, % 5.2 17.1
Standard deviation,% 1.2 17.4
Significant difference, P-value 0.0001
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Slice1

Slice2

Slice3

Slice4

Slice5

Slice6

Slice7
(a) (b) (c)

Fig. 3. Segmentation results: (a) different prostate DCE-MRI testing images, (b) our
segmentation, and (c) segmentation with [16]. Error referenced to the ground truth
(GT) is outlined in yellow (False Negative (FN): pixels segmented as the prostate in
GT but not segmented as the prostate with our approach) and red (False Positive (FP):
pixels segmented as the prostate with our approach but not segmented as the prostate
in the GT)
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Table 2. Sensitivity of the proposed approach to the training data using 3-fold cross
validation

Tested Group
Group A Group B Group C

Minimum error, % 2.8 2.8 2.8
Maximum error, % 10.9 8.3 9.3
Mean error, % 4.9 4.7 5.1
Standard deviation,% 1.4 1.2 1.5

Significant difference, P-value (1,2):0.7491 (2,3):0.7737 (1,3):0.541

4 Conclusions

In total, we have presented a fully-automoted stochastic segmentation framework
based on three image descriptors; the intensity gray level, the shape information,
and the spatial information descriptors. These descriptors are embedded into a
new energy function that is globally optimized using graph cuts. The results
suggest that the proposed approach can precisely segment DCE-MRI prostate
images. In addition, it is shown to be robust against their complex shape vari-
ations. The developed stochastic segmentation framework is very suitable to
segment the anatomical structures that have noise and inhomogeneity problems.
Therefore, it is not only useful for the medical imaging society but also for the
computer vision applications. In our future work, we plan to extend the proposed
2D segmentation framework to include the segmentation of 3D prostate objects
to quantitatively characterize the effectiveness and robustness of the proposed
scheme.
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Abstract. Active contour methods are often methods of choice for de-
manding segmentation problems, yet segmentation of medical images
with complex intensity patterns still remains a challenge for these meth-
ods. This paper proposes a method to incorporate interactively spec-
ified foreground/background regions into the active model framework
while keeping the user interaction to the minimum. To achieve that,
the proposed functional to be minimized includes a term to encourage
active contour to separate the points close to the specified foreground
region from the points close to the specified background region in terms
of geodesic distance. The experiments on multi-modal prostate images
demonstrate that the proposed method not only can achieve robust and
accurate results, but also provides an efficient way to interactively im-
prove the results.

Keywords: Image segmentation, prostate imaging, MRI, CT, TRUS,
active contour, fast marching.

1 Introduction

Originally proposed in [1], active contour models for image segmentation have
attracted extensive research in the past two decades. The basic idea of the active
contour is to iteratively evolve an initial curve towards the boundaries of target
objects driven by the combination of internal forces determined by the geometry
of the evolving curve and the external forces induced from the image. Image
segmentation method using active contour is usually based on minimizing a
functional which is so defined that for curves close to the target boundaries it
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has small values. To solve the functional minimization problem, a corresponding
partial differential equation (PDE) can be constructed as the Gateaux derivative
gradient flow to steer the evolution of active contours.

The PDEs governing the evolution of active contours can be numerically ap-
proximated either by explicit or implicit methods. For explicit methods, an ac-
tive contour is represented in a parametric form such as cubic B-spline [2]. The
contour evolves as the parameters controlling the contour change. For implicit
methods, also known as level set methods, an active contour is embedded as a
constant level set in an embedding function (also called level set function) de-
fined in a higher dimensional space. The evolution of the active contour is carried
out implicitly by evolving its embedding function [3]. Thanks to level set’s in-
herent capability to handle topological changes and straightforward extensibility
to cope with high dimensional data, since the pioneering work in [4], level set
based segmentation has motivated a large amount of methods. These methods
not only explore a variety of image information [5,6,7,8,9], but also attempt to
integrate static/statistical shape prior information into the framework [10,11].

Most existing active contour methods are focused on fully automatic seg-
mentation. Once an initial contour is specified, users have no control over the
evolution of the contour. If the result turns out to be unacceptable, the only
things can be done by the users are either specifying another initial contour or
tuning a few parameters related to the curve evolution algorithm. Then the users
need to run the curve evolution again and wish the result could be better this
time. This procedure is tedious and normally requires detailed knowledge of the
segmentation method. Furthermore, there is no guarantee that a satisfactory re-
sult can be achieved. Due to these limitations, although active contour methods
have found great success in some special areas, they are still of limited practical
use in medical data segmentation. To change this situation, it is essential to in-
troduce a user interaction mechanism into the active contour framework. In this
paper, we propose an active contour method to allow users to specify foreground
and background regions so that segmentation results can be progressively refined
in a controllable way while keeping the user interaction to the minimum.

Prostate and surrounding organs segmentation is a demanding task due to the
organs’ close spatial proximity and changes in organs shape and appearance. Ad-
ditionally depending on the imaging modality used, segmentation algorithm has
to cope with a very low contrast and weak organ boundaries, complex textural
patterns representing different organs or very high level of random and struc-
tured noise. Recently number of segmentation techniques have been proposed
in literature aiming at semi-automatic prostate segmentation [12,13,14]. Most
of these techniques do not allow, though, for interactive improvements of the
segmentation, as the user interaction is limited to the algorithm initialization.
Authors in [15] introduced such an interaction mechanism in their algorithm but
it was based on, prior learn, statistical shape model of an organ of interest and
image intensity information was not directly used in the algorithm. In this paper
an algorithm similar, in guiding interaction principle, is proposed but contrary
to [15] the algorithm directly uses the image intensity information.
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2 Methodology

Let’s denote the input image as I and the specified foreground and background
regions as Rf and Rb respectively. Let S(p) represent an open curve with pa-
rameterization p normalized in the range of [0, 1], i.e., S : [0, 1] → R2 ∈ Ω with
Ω denoting the entire image domain. Then the geodesic distance function for
the specified foreground region, denoted as Df(x), can be defined as

Df(x) = inf
S∈Sf

∫ 1

0
G(S(p); I) · |S′(p)| dp (1)

where x denotes the coordinates of a point in the image domain and Sf represents
the set of curves that connect the point x and the specified foreground region Rf ,
i.e., Sf = {S : S(0) = x and S(1) ∈ Rf}. For an image with multiple channels,
the geodesic metric G(x; I) is related to the smoothed gradient of each channel:

G(x; I) =
N∑

i=1

|Gσ ∗ ∇Ii(x)| (2)

where Gσ is the Gaussian function and N is the number of channels. Similarly,
the geodesic distance function for the specified background region, denoted as
Db(x), can be defined as

Db(x) = inf
S∈Sb

∫ 1

0
G(S(p); I) · |S′(p)| dp (3)

with Sb = {S : S(0) = x and S(1) ∈ Rb}.
Since the geodesic metric G(x, I) is nonnegative, the geodesic distance func-

tions can be calculated by solving the following eikonal equations with boundary
conditions: { |∇Dx(x)| = Gx(x; I)

Dx(x) = 0 for ∀x ∈ Rx
(4)

where x ∈ {f, b}. Efficient approaches to numerically solve this type of equations
can be found in [16,17].

Let C(p) denote a close curve — a curve that divides the image domain into
disjoint regions. Then, as illustrated in Fig. 1, the corresponding level set function
φ(x) can be defined to satisfy the following conditions: (1) C = {x : φ(x) = 0};
(2) φ(x) > 0 for x inside the contour and φ(x) < 0 for x outside. The normal of
the active contour N is defined as the unit vector pointing to the direction that
expands the contour. The proposed functional to be minimized is defined as

E(φ(x)) =
∫

Ω

Df (x) · H(φ(x)) dx +
∫

Ω

Db(x) · (1 − H(φ(x))) dx

+ α

∫
Ω

g(x; I) · |∇H(φ(x))| dx (5)
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φ(x) < 0

φ(x) > 0

C

N

−N

Fig. 1. Some conventions regarding active contour and level set applied in the paper

where H(x) is the Heaviside function which equals to 1 when x ≥ 0 and 0 other-
wise. The functional consists of three terms. The first two terms indicate the fact
that a good segmentation should separate pixels having small geodesic distances
to the specified foreground region from those having small geodesic distances to
the specified background region. The last term, weighted by a positive scalar
α, is from the geodesic active contour model [6] used for accurate location of
object boundary, wherein g(x; I) = exp(−β · G(x; I)) with the positive scalar
β controlling the decreasing rate of the exponential function with respect to
G(x; I).

By deriving the Gateaux derivative of the proposed functional, the implicit
PDE, describing the evolution process of the level set function to achieve func-
tional minimization, can be expressed as

∂φ(x, t)
∂t

= (Db(x) − Df(x))|∇φ(x, t)|

+ α div
(

g(x; I) · ∇φ(x, t)
|∇φ(x, t)|

)
|∇φ(x, t)| . (6)

Note the introduction of time t into the level set function to emphasize that it
is an evolving process. Although the implicit PDE is practically used for level
set implementation, its equivalent explicit PDE can reveal more insights into
the evolution of the active contour itself. The equivalent explicit PDE can be
written as

∂C(p, t)
∂t

= (Db(C(p, t)) − Df (C(p, t))) · N
+α (g(C(p, t); I) · κ− < ∇g(C(p, t); I), N >) · N (7)

where κ is the curvature of the active contour and < ·, · > denotes the inner
product of two vectors. The first term in the equation describes a region com-
petition process. For every point on the active contour, there are two types of
forces competing in opposite directions along the normal, namely, the contrac-
tion force exerted by Rf and the expanding force exerted by Rb. The result of
the competition depends on the geodesic distances between the specific point
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on the contour and the specified regions. It can also be seen that, for images
with weak or ambiguous boundaries, g(x; I) can be set to constant 1, leading to
the simplification of the second term to ακN which is a curvature flow used for
curve smoothing.

3 Experimental Results

The objective of the first experiment is to demonstrate execution of the different
stages of the proposed method. For this purpose bladder was selected as an object
of interest (foreground) as it is an organ which is relatively easy to recognize and
segment. The input MRI image with superimposed user selected regions is shown
in Fig. 2(a). It can be seen that the regions can be defined by casual strokes
with different labels, which reduces the efforts of user interaction. The geodesic
metric computed using Equ. (2) is shown in Fig. 2(b) with intensity inverted
for a better illustration of details. The geodesic distance functions associated
with the bladder and non-bladder regions, as defined by the shown strokes,
were computed using the fast marching method and are shown in Fig. 2(c) and
Fig. 2(d) respectively. It can be seen that the functions increase as they propagate
from their specified regions with sharp increase as they cross strong edges.

Fig. 3 shows a few iterations of the curve evolution process. To demonstrate
the robustness of the method, the initial contours were chosen to be very dissim-
ilar to the shape of the bladder. As shown in the first image in Fig. 3 these initial
contours were defined as a set of uniformly spaced circles. As the algorithm pro-
gressed, the curves merged or vanished due to the level set’s inherent ability to
deal with topological changes. At the same time, the curves approached to the
desired boundary due to the competition of geodesic distances induced from the
bladder and non-bladder regions.

The second experiment was carried out to demonstrate another benefit of the
proposed method — it is possible to improve segmentation results progressively.
Fig. 4(a) shows the input MRI image with superimposed, region specifying,
strokes, where different colors differentiate region labels and line widths differ-
entiate regions selected in different stages of the segmentation process. Three
user adjustments were performed. For the initial selection, specified regions,
indicated by the bold strokes in Fig. 4(a), were used to get a rough segmen-
tation as shown in Fig. 4(b). Based on this rough segmentation, more regions,
indicated as median sized strokes, were added for the refined result shown in
Fig. 4(c). Finally, more regions, indicated as the thin strokes, were added to get
the final result shown in Fig. 4(d). The method is reasonably efficient, in terms
of computational time, for interaction. For the image shown in Fig. 4(a) with
size 240 × 320, the computation part of the process took about 0.8 second for
each region adjustment on an Intel Quad CPU (Q6700) 2.66GHz within Matlab
environment. In order to achieve efficiency, active contours were initialized as
the boundary of {x : Df(x) − Db(x) > 0} to reduce the number of iterations.
Additionally, AOS scheme [18] was applied to increase the time step for each
iteration, without compromising the numerical stability of the algorithm.
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(a) I , Rf and Rb (b) inverted G(x; I)

(c) Df (x) (d) Db(x)

Fig. 2. (a) Original MRI image with superimposed specified foreground (red) and back-
ground (blue) region strokes; (b) Geodesic metric with intensity inverted; (c) and (d)
Geodesic distance functions associated with the bladder and non-bladder regions re-
spectively

Examples of the segmentation results for rectum, seminal vesicles and prostate
delineated in an MRI data are shown in Fig. 5. It can be seen that even for
the seminal vesicles, represented in the MRI by a complex textural pattern, an
accurate segmentation can be obtained with only few approximate strokes.

The results obtained for organ segmentation from a CT data are shown in
Fig. 6. In this case the method preformed well even though the segmented organs,
represented by similar intensity patterns, are of low contrast with very weak
edges between organs.

Fig. 7 shows segmentation result of the prostate from a transrectal ultra-
sound (TRUS) image [12]. Again the method preformed well despite a high level
of noise, typical for this imaging modality. It should be stressed that for all the
results shown in this section no image pre-processing was used. The method
worked directly ”out-of-the-box” with only active contour’s smoothing param-
eter adjusted when segmenting different organs, though no changes were made
to the method’s design parameters when the same organ was segmented from
different imaging modalities.
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Fig. 3. A few iterations of active contour evolution with input strokes shown in
Fig. 2(a). #iterations = 0, 2, 5, 10, 15, 20 from left to right and from top to bot-
tom.

(a) (b)

(c) (d)

Fig. 4. Illustration of progressive segmentation. (a) Original MRI image superimposed
with user specified regions (red for foreground and blue for background); (b) segmenta-
tion result from the first region selection with bold strokes in (a) as specified regions; (c)
segmentation result from the second region adjustment with medium stokes in (a) as
additional specified regions; (d) segmentation result from the third region adjustment
with thin strokes in (a) as additional specified regions.

The method can also be used for segmentation of 3D data. A volumetric MRI
scan, with manual prostate delineation approved by a clinician as ground truth,
was used to test the algorithm. The MRI data consisted of 24 slices, among
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(a)

(b)

(c)

Fig. 5. Example of segmentation results from MRI data, with the strokes definitions
shown in the left column and the corresponding segmentation results in the right col-
umn for (a) rectum, (b) seminal vesicles, (c) prostate.

which only three slices close to the top, bottom and middle of the data volume
were selected and marked with specified regions as shown in Fig. 8. The whole
region specification process, including slice selection, was done in less than a
minute by one of the authors with very limited prostate delineation experience.
Fig. 9 shows the segmented prostate as a red mesh in 3D and Fig. 10 shows
a few image slices with corresponding contours, extracted from the segmented
prostate surface, superimposed as the red curves. In both figures, the ground
truth is indicated in blue for comparison. The segmentation error, defined as
the percentage of absolute difference between the segmented and ground truth
volumes over the ground truth volume, is around 8.52%.
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(a)

(b)

(c)

Fig. 6. Example of the segmentation results from CT data for (a) rectum, (b) seminal
vesicles and (c) bladder

Fig. 7. Prostate segmented from the transrectal ultrasound image (the image was
kindly provided by Prof. Ravi Sankar from the University of South Florida, Tampa,
USA).

The paper does not contain a formal quantitative evaluation of the proposed
method because due to the interactive nature of the method, obtained organs
delineation will always reflect user subjective judgment and therefore a compar-
ison of the segmentation results with the ground truth data would be effectively



140 Y. Zhang et al.

Fig. 8. Region selection on 3 slices of a volumetric MRI

Fig. 9. Comparison of prostate results in 3D. Blue: from manual delineation. Red: from
the proposed method.

testing inter- and/or intra- operator variability, thereby would not reflect on the
method itself. Nevertheless further tests, investigating statistical dependence be-
tween number and length of region defining strokes and segmentation accuracy,
are currently underway. In terms of the method efficiency, it took, for the results
presented here, at most three and on many occasions just a single interaction
to obtain the delineation which were considered to be accurate by an operator.
The whole process of an organ segmentation on a tablet computer, for the shown
2D results, took on average just a few seconds. Segmentation of 3D data takes a
bit longer as it is helpful when the region defining strokes are sparsely scattered
across a volume occupied by the organ.

Overall, the authors believe that the proposed method provides good tradeoff
between generalization properties of an automatic method and needs for clini-
cian’s subjective judgment.

Although for the sake of the presentation clarity a simple hybrid active contour
model [19] was used it is straightforward to combine the proposed method with
the most of existing active contour methods to equip them with the powerful
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Fig. 10. Segmented prostate results on a few slices. Blue: from manual delineation.
Red: from the proposed method.

tool of progressive refinement while keeping specific characteristics of the original
method. Possible extensions can include active contour models incorporating a
prior knowledge of the organ shape [11], topological constraints [20] or texture
by which organ is represented in a given imaging modality [21]. With the help
of Equ. (2) the method can be adopted for simultaneous organ segmentation in
registered multiple-modality data.

4 Conclusions

The paper describes a novel segmentation method incorporating user specified
regions into the active contour framework. The method can achieve robust results
by evolving an active contour through competition of the forces induced by
the specified regions and the input image providing an efficient way to refine
segmentation results progressively. The method has been shown to be robust
and able to cope with medical images of different modalities. More specifically it
has been shown that the proposed method is an effective tool for segmentation
of prostate and proximate organ at risk in imaging modalities typically used in
diagnosis and treatment of prostate cancer patients.
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