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Preface

On behalf of the organizing committee, we would like to welcome you to Darm-
stadt and DAGM 2010, the 32nd Annual Symposium of the German Association
for Pattern Recognition.

The technical program covered all aspects of pattern recognition and, to
name only a few areas, ranged from 3D reconstruction, to object recognition
and medical applications. The result is reflected in these proceedings, which
contain the papers presented at DAGM 2010. Our call for papers resulted in 134
submissions from institutions in 21 countries. Each paper underwent a rigorous
reviewing process and was assigned to at least three program committee mem-
bers for review. The reviewing phase was followed by a discussion phase among
the respective program committee members in order to suggest papers for ac-
ceptance. The final decision was taken during a program committee meeting
held in Darmstadt based on all reviews, the discussion results and, if necessary,
additional reviewing. Based on this rigorous process we selected a total of 57
papers, corresponding to an acceptance rate of below 45%. Out of all accepted
papers, 24 were chosen for oral and 33 for poster presentation. All accepted pa-
pers have been published in these proceedings and given the same number of
pages. We would like to thank all members of the program committee as well
as the external reviewers for their valuable and highly appreciated contribution
to the community. We would also like to extend our thanks to all authors of
submitted papers; without their contribution we would not have been able to
assemble such a strong program.

The technical program was complemented by a workshop on “Pattern Recog-
nition for IT Security”, which was organized by Stefan Katzenbeisser, Jana
Dittmann and Claus Vielhauer, as well as by four tutorials given by renowned
experts:

– “Sparse Linear Models: Reconstruction and Approximate Bayesian Infer-
ence” by Matthias Seeger

– “Computer Vision on GPUs” by Jan-Michael Frahm and P.J. Narayanan
– “Color in Image and Video Processing” by Joost van de Weijer
– “MAP Inference in Discrete Models” by Carsten Rother

In addition to the presentations from the technical program, we were also proud
to have had three internationally renowned invited speakers at the conference:

– Richard Szeliski (Microsoft Research Redmond)
– Yair Weiss (The Hebrew University of Jerusalem)
– Andrew Zisserman (University of Oxford)

Due to its success at DAGM 2009 in Jena, we again organized the Young Re-
searchers’ Forum at DAGM 2010 to promote scientific interaction between ex-
cellent young researchers and our community. This year the contributions of six
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students were accepted, who presented their Bachelor or Master thesis work dur-
ing the conference and interacted with our community. Their participation was
kindly supported by Daimler.

We would like to extend our sincere thanks to everyone who helped with
making DAGM 2010 in Darmstadt a success. We are indebted to Ursula Päckel,
Suzana Alpsancar and Carola Eichel for their help with all organizational mat-
ters, to Silke Romero and Nils Balke for web support and technical assistance,
to Sebastian Koch and Fabian Langguth for assembling the proceedings and
creating the registration system, our students and PhD students for many mis-
cellaneous things along the way, to Fraunhofer IGD for providing the rooms for
the PC meeting, workshop as well as the tutorials free of charge, and to Microsoft
for offering the CMT conference management system for free.

We would also like to sincerely thank all our sponsors for their financial
support, which helped to keep the registration fees as low as possible, especially
those of the student attendees. In particular, we would like to thank our Platinum
sponsor Daimler, our Gold sponsors Bosch and MVTec Software GmbH, our
Silver sponsors ISRA Vision and Toyota, as well as our Bronze sponsor Microsoft
Research. We appreciate their donations to our community, which values and
recognizes the importance of these contributions to our field.

We were happy to host the 32nd Annual Symposium of the German Associa-
tion for Pattern Recognition in Darmstadt and look forward to DAGM 2011 in
Frankfurt.

September 2010 Michael Goesele
Stefan Roth

Arjan Kuijper
Bernt Schiele

Konrad Schindler



Laudatio for Gerald Sommer, Chairman of
DAGM 2006–2009

Dear members of the German Pattern Recognition Society (DAGM),

The Darmstadt symposium on Pattern Recognition is the first meeting of our
society after Gerald Sommer’s chairmanship. It is my pleasure to thank my
predecessor Gerald Sommer for his service to our society during the last three
years as chairman and before that as vice chairman and as head of the technical
committee. He has fostered a climate of openness for new pattern recognition
challenges beyond our core scientific interests in computer and robot vision; for
example, machine learning has found a natural home in our society. His emphasis
on mathematical rigor and his insistence that pattern recognition has to solve
relevant problems will guide us beyond his tenure as DAGM chairman. Together
with my colleagues on the DAGM board I hope that we can rely on his advice
in the future and we wish him all the best for the years to come.

Joachim M. Buhmann
Chairman DAGM e.V.
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Wolfram Burgard Universität Freiburg
Hans Burkhardt Universität Freiburg
Daniel Cremers TU München
Andreas Dengel DFKI
Joachim Denzler Universität Jena
Peter Eisert HU Berlin
Michael Felsberg Linköping University
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E. Töppe
A. Ulges
L. Valgaerts
A. Vezhnevets
C. Vogel
O. Vogel
A. Walstra
Q. Wang
M. Werlberger
T. Weyand
C. Widmer
J. Wiklund
C. Wojek
K.M. Wurm
Z. Zia
D. Zikic
H. Zimmer
V. Zografos



Prizes 2009

Olympus Prize

The Olympus-Award 2009 was given to

Carsten Rother

for his outstanding work in the field of image segmentation using statistical
methods, and his ability to transfer scientific results into real-life products.

DAGM Prizes

The main prize for 2009 was awarded to

Bastian Goldlücke and Daniel Cremers: A Superresolution Framework for
High-Accuracy Multiview Reconstruction

Pascal Paysan, Marcel Lüthi, Thomas Albrecht, Anita Lerch, Brian
Amberg, Francesco Santini and Thomas Vetter : Face Reconstruction from
Skull Shapes and Physical Attributes

Further DAGM prizes for 2009 were awarded to

Martin R. Oswald, Eno Töppe, Kalin Kolev and Daniel Cremers: Non-
parametric Single View Reconstruction of Curved Objects Using Convex
Optimization

Christian Walder, Martin Breidt, Heinrich H. Bülthoff, Bernhard Schölkopf
and Cristobal Curio: Markerless 3D Face Tracking

The DAGM Young Researchers’ Prize was awarded to

Falko Kellner, Christian-Albrechts-Universität Kiel :
Environment Modelling and Object Segmentation Using an Actively Steered
Time-of-Flight Camera



DAGM Young Researchers’ Forum 2010

The following contributions were accepted into the DAGM Young Researchers’
Forum 2010

Angela Eigenstetter, TU Darmstadt :
Multi-Cue Pedestrian Classification with Partial Occlusion Handling

Martin Hofmann, University of Illinois:
Dense Spatio-temporal Motion Segmentation for Tracking Multiple Self-
occluding People

Tim Pattinson, Stuttgart University:
Quantification and Description of Distance Measurement Errors of a Time-
of-Flight Camera

Jens Rannacher, Heidelberg University:
Realtime 3D Motion Estimation on Graphics Hardware

Marcus Rohrbach, TU Darmstadt :
Visual Knowledge Transfer Using Semantic Relatedness

Robert Wulff, Christian-Albrechts-Universität Kiel :
Image-Based 3D Documentation in Archeology
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Christoph Schnörr, and Fred A. Hamprecht

N-View Human Silhouette Segmentation in Cluttered, Partially
Changing Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Tobias Feldmann, Björn Scheuermann, Bodo Rosenhahn, and
Annika Wörner

Nugget-Cut: A Segmentation Scheme for Spherically- and
Elliptically-Shaped 3D Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

Jan Egger, Miriam H.A. Bauer, Daniela Kuhnt, Barbara Carl,
Christoph Kappus, Bernd Freisleben, and Christopher Nimsky

Benchmarking Stereo Data (Not the Matching Algorithms) . . . . . . . . . . . . 383
Ralf Haeusler and Reinhard Klette

Robust Open-Set Face Recognition for Small-Scale Convenience
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

Hua Gao, Hazım Kemal Ekenel, and Rainer Stiefelhagen

Belief Propagation for Improved Color Assessment in Structured
Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

Christoph Schmalz and Elli Angelopoulou

3D Object Detection Using a Fast Voxel-Wise Local Spherical Fourier
Tensor Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

Henrik Skibbe, Marco Reisert, Thorsten Schmidt, Klaus Palme,
Olaf Ronneberger, and Hans Burkhardt

Matte Super-Resolution for Compositing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
Sahana M. Prabhu and Ambasamudram N. Rajagopalan

An Improved Histogram of Edge Local Orientations for Sketch-Based
Image Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432

Jose M. Saavedra and Benjamin Bustos

A Novel Curvature Estimator for Digital Curves and Images . . . . . . . . . . . 442
Oliver Fleischmann, Lennart Wietzke, and Gerald Sommer

Local Regression Based Statistical Model Fitting . . . . . . . . . . . . . . . . . . . . . 452
Matthias Amberg, Marcel Lüthi, and Thomas Vetter
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3D Reconstruction Using an n-Layer Heightmap

David Gallup1, Marc Pollefeys2, and Jan-Michael Frahm1

1 Department of Computer Science, University of North Carolina

{gallup,jmf}@cs.unc.edu
2 Department of Computer Science, ETH Zurich

marc.pollefeys@inf.ethz.ch

Abstract. We present a novel method for 3D reconstruction of urban

scenes extending a recently introduced heightmap model. Our model has

several advantages for 3D modeling of urban scenes: it naturally en-

forces vertical surfaces, has no holes, leads to an efficient algorithm, and

is compact in size. We remove the major limitation of the heightmap by

enabling modeling of overhanging structures. Our method is based on an

an n-layer heightmap with each layer representing a surface between full

and empty space. The configuration of layers can be computed optimally

using a dynamic programming method. Our cost function is derived from

probabilistic occupancy, and incorporates the Bayesian Information Cri-

terion (BIC) for selecting the number of layers to use at each pixel. 3D

surface models are extracted from the heightmap. We show results from

a variety of datasets including Internet photo collections. Our method

runs on the GPU and the complete system processes video at 13 Hz.

1 Introduction

Automatic large-scale 3D reconstruction of urban environments is a very active
research topic with broad applications including 3D maps like Google Earth
and Microsoft Bing Maps, civil planning, and entertainment. Recent approaches
have used LiDAR scans, video, or photographs, acquired either from ground,
aerial, or satellite platforms [1,2,3,4,5]. In this work, we focus on reconstructions
from street-level video, which has higher resolution than aerial data, and video
cameras are significantly less expensive than active sensors like LiDAR.

To process in a reasonable time, computational efficiency must be considered
when modeling wide-area urban environments such as entire cities, since millions
of frames of video are required for even a small town [3]. Even if a (cloud) com-
puting cluster is used, efficiency is of great concern since usage of such systems
is billed according to processing time. In addition to computational efficiency,
the models need to be compact in order to efficiently store, transmit, and render
them.

Gallup et al. [6] introduced a method, which uses a heightmap representa-
tion to model urban scenes. See Figure 1 for an example. The method takes
depthmaps as input and fits a heightmap to a volume of occupancy votes. In
contrast to other volumetric methods [7], the heightmap model has several ad-
vantages. First, it enforces that walls and facades are strictly flat and vertical,
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c© Springer-Verlag Berlin Heidelberg 2010



2 D. Gallup, M. Pollefeys, and J.-M. Frahm

Sample Input Images Sample Input Depthmaps

Heightmap 3D Model Geometry Textured 3D Model

Fig. 1. Our system uses a heightmap model for 3D reconstruction. Images courtesy of

Gallup et al.[6].

Fig. 2. Examples of n-layer heightmaps

since they appear as discontinuities in the heightmap. Second, the heightmap
represents a continuous surface and does not allow for holes. Third, because
the height estimate is supported by the entire vertical column, no regulariza-
tion is necessary, leading to a highly parallel and efficient computation. Fourth,
heightmaps can be stored and transmitted efficiently using depthmap coding
algorithms.

However, the major limitation of the method is the inability to model over-
hanging structures. Thus awnings, eves, balconies, doorways, and arches are
either filled in or missed entirely. While some loss of detail is to be expected in
exchange for a robust and compact representation, this is a major weakness.

In this paper we adopt the heightmap approach and improve upon it in the
following ways: First we introduce a multi-layer representation to handle over-
hanging structures. Second, the cost function for heightmap estimation is derived
from probability. We address the overhanging structure problem by extending
the method of [6] to an n-layer heightmap. Each layer represents a surface be-
tween full and empty space. Some examples are shown in Figure 2. The positions
of the n layers at each heightmap pixel can be computed optimally using dy-
namic programming. We also include the Bayesian Information Criterion (BIC)
as a model selection penalty to use additional layers only when necessary. In [6],
the cost function for heightmap estimation was defined in an ad-hoc manner. We
show how this cost function can be derived from probabilities. This derivation
also allows us to incorporate the BIC in a principled way.
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As in [6], our method also runs on the GPU, and the complete system can
process video at 13 Hz. We have demonstrate our approach on several chal-
lenging street-side video sequences. Results show a clear improvement over [6],
particularly on overhanging structures and trees.

Another data source for urban 3D reconstruction is images downloaded from
photo sharing websites such as Flickr. In this case data acquisition is free but is
subject to the interests of the website community, and thus datasets are usually
limited to popular tourist locations. Camera poses can be computed using tech-
niques such as Snavely et al. [8] and the more recent methods of [9,10]. Dense
stereo and surface modeling were achieved by Goesele et al. [11] and recently
by Furukawa et al. [12]. We apply our extended heightmap approach to 3D re-
construction from community photo collections as well. Our approach is much
simpler and faster, and yet results are surprisingly good.

2 Related Work

Recent approaches employ simplified geometries to gain robustness [13,1,14,15].
Cornelis et al.[13] produce compact 3D street models using a ruled surface model.
Similar to the heightmap model, this assumes that walls and facades are verti-
cal. Furukawa et al.[14] presented a Manhattan-world model for stereo, where
all surfaces have one of three orthogonal surface normals. Sinha et al.[15] em-
ploy a general piecewise-planar model, and Gallup et al.[6] uses a more general
piecewise-planar model that can also handle non-planar objects. Our approach
uses a simplified geometry and is far more general than [13,15], and more effi-
cient and compact than [14,6]. It effectively models buildings and terrain, but
also naturally models cars, pedestrians, lamp posts, bushes, and trees.

In our approach we use the probability occupancy grid of the scene from the
robotics literature [16,17]. The occupancy of each voxel is computed by bayesian
inference, and our derivation is similar to that of Guan et al.[18]. We model the
measurement distribution as a combination of normal and uniform distrubutions
in order to better handle outliers. Robustness to outliers is critical since our input
measurements are stereo depthmaps.

Dense 3D reconstruction for photo collections has first been explored by Goe-
sele et al.[11] and by Furukawa et al.[19]. Images on the web come from a variety
of uncontrolled settings, which violate many of the assumptions of stereo such
as brightness constancy. Goesele et al. and Furukawa et al. take great care to
select only the most compatible images, starting from points of high certainty
and growing outward. Our approach on the other hand relies on the robustness
of the heightmap model and results in a much simpler and faster algorithm.

Merrell et al. [20] proposed a depthmap fusion from video employing the tem-
poral redundancy of the depth computed for each frame. It obtains a consensus
surface by enforcing visibility constraints. The proposed heightmap fusion in con-
trast does not require a confidence measure due to the benefits of the vertical
column regularization.
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3 Method

The proposed n-layer heightmap generalizes the single layer heightmap. A single
layer heightmap defines a surface, which is the transition from occupied space
to empty space. In an n layer heightmap, each layer defines a transition from
full to empty or vice versa. The number of layers needed to reconstruct a scene
can be determined with a vertical line test. For any vertical line, the number
of surfaces that the line intersects is the number of layers in the scene. In our
approach, the user must give the number of layers beforehand, although model
selection may determine that fewer layers are sufficient.

The input to our method is a set of images with corresponding camera poses
and their depthmaps. The depth measurements from each camera are used
to determine the occupancy likelihood of each point in space, and an n-layer
heightmap is fit. Using a heightmap for ground-based measurements has the ad-
vantage that the estimated parameter, height, is perpendicular to the dominant
direction of measurement noise. This is ideal for urban reconstruction where
vertical walls are of particular interest.

We will now present our novel method for reconstructing scenes using an
n-layer heightmap. This method consists of the following steps:

– Layout the volume of interest.
– Construct the probabilistic occupancy grid over the volume.
– Compute the n-layer heightmap.
– Extract mesh and generate texture maps.

The volume of interest for heightmap computation is defined by its position,
orientation, size, and resolution. Heightmap computation assumes the vertical
direction is known, which can be extracted from the images itself. Besides that
constraint, the volume of interest can be defined arbitrarily. For processing large
datasets like video of an entire street, it makes sense to define several volumes of
interest and process them independently. For video, a frame is chosen as refer-
ence, and the volume of interest is defined with respect to the camera’s coordinate
system for that frame. Reference frames are chosen at irregular intervals where
the spacing is determined by overlap with the previous volume. Our video data
also contains GPS measurements, so the camera path is geo-registered, and the
vertical direction is known. For photo collections, the vertical direction can be
found using a heuristic derived from photography practices. Most photographers
will tilt the camera, but not allow it to roll. In other words, the x axis of the
camera stays perpendicular to gravity. This heuristic can be used to compute
the vertical direction as a homogeneous least squares problem as shown in [21].
The size and resolution of the volume are given as user parameters.

The next step is to compute the probabilistic occupancy grid over the volume
of interest. Since the heightmap layers will be computed independently for each
vertical column of the volume, the occupancy grid does not need to be fully
stored. Only each column must be stored temporarily, which keeps the memory
requirement low. We will first derive the occupancy likelihood for each voxel
independently. Voxel occupancy is in fact not independent since it must obey the
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layer constraint, and we will later show how to compute the layers for a column
of voxels using dynamic programming. The variables used in our derivation are
summarized as follows:

– Op: a binary random variable representing the occupancy of voxel p.
– Zp = Z1 . . . Zk: depth measurements along rays intersecting p from cameras

1 . . . k.
– zmin, zmax: depth range of the scene.
– σ: depth measurement uncertainty (standard deviation).
– S: depth of surface hypothesis.
– Lx = l1 . . . ln: configuration of layers at point x in the heightmap. li is the

vertical position of layer i.

For simplicity we have assumed that all depth measurements have the same
uncertainty σ although this is not a requirement.

We will now derive the likelihood for Op. We will drop the subscript p until
multiple voxels are considered for dynamic programming.

P (O|Z) ∝ P (Z|O)P (O) (1)

P (Z|O) =
∏

i=1...k

P (Zi|O) (2)

Equation 2 states our assumption that the measurements are independent. We
use the occupancy prior P (O) to slightly bias the volume to be empty above
the camera center and full below. This helps to prevent rooftops extending into
empty space since the cameras don’t observe them from the ground.

To determine P (Zi|O) we will follow [18] and introduce a helper variable S
which is a candidate surface along the measurement ray. The depth measurement
can then be formulated with respect to S.

P (Zi|O) =
∫ zmax

zmin

P (Zi|S, O)P (S|O)dS (3)

P (Zi|S, O) = P (Zi|S) =
{
N (S, σ)|Zi if inliner
U(zmin, zmax)|Zi if outlier (4)

= ρN (S, σ)|Zi + (1 − ρ)U(zmin, zmax)|Zi (5)

The measurement model is a mixture of a normal distribution N and uniform
distribution U to handle outliers. N|Z is the disribution’s density function evalu-
ated at Z. ρ is the inlier ratio, which is a given parameter. P (S|O) is the surface
formation model defined as follows where ε → 0 and zp is the depth of the voxel.

P (S|O) =

⎧⎨⎩1/(zmax − zmin) if S < zp − ε
(1− zp/(zmax − zmin)/ε if zp − ε ≤ S ≤ zp

0 if S > zp

(6)
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This model states that the surface must be in front of the occupied voxel, but
not behind it. We will also need the measurement likelihood given that the voxel
is empty, which we will denote by ¬O. The derivation is the same, replacing O
with ¬O, except the surface formation model is

P (S|¬O) = 1/(zmax − zmin). (7)

We will now define our n-layer model and show how to recover it with dynamic
programming. We will derive the likelihood of Lx which is the layer configuration
at pixel x in the heightmap. This pixel contains a vertical column of voxels, which
we will denote as Oi where i is the height of the voxel ranging from 0 to m.

P (L|Z) ∝ P (Z|L)P (L) (8)

P (Z|L) =
l1−1∏
i=0

P (Z|Oi)
l2−1∏
i=l1

P (Z|¬Oi) . . .

m∏
i=ln

P (Z|¬Oi). (9)

P (L) =
l1−1∏
i=0

P (Oi)
l2−1∏
i=l1

P (¬Oi) . . .

m∏
i=ln

P (¬Oi). (10)

Note that the measurement likelihoods alternate between the full condition
P (Z|Oi) and the empty condition P (Z|¬Oi) as dictated by the layer constraint.
Also note that the number of layers is assumed to be odd, giving the final product
the empty condition. This is true for outdoor urban scenes. For indoor scenes,
an even number of layers could be used.

We will now define our cost function C by taking the negative log-likelihood
of P (L|Z), which will simplify the dynamic programming solution.

C = −ln P (Z|L)P (L) = −
l1−1∑
i=0

(ln P (Z|Oi) + ln P (Oi)) (11)

−
l2−1∑
i=l1

(ln P (Z|¬Oi) + ln P (¬Oi)) . . . (12)

To simplify the sums over the layers we will define the following:

Ib
a = −

b∑
i=a

(ln P (Z|Oi) + ln P (Oi)) (13)

Īb
a = −

b∑
i=a

(ln P (Z|¬Oi) + ln P (¬Oi)) . (14)

The sums Ib
0 (resp. Ī) for all b can be precomputed making it easy to compute

Ib
a = Ib

0 − Ia−1
0 (resp. Ī).
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We can now write our cost function recursively in terms of Ck which is the
cost only up to layer k.

Ck(l) =
{

I l
l′ + Ck−1(l′) if odd(k)

Ī l
l′ + Ck−1(l′) if even(k) (15)

l′ = arg min
l′≤l

Ck−1(l′) (16)

C0(l) = 0 (17)

The original cost function is then C = Cn(m) where n is the number of layers
and m is the number of voxels in the vertical column.

The layer configuration that minimizes C can be computed with dynamic pro-
gramming. In order for this to be true, the problem must exhibit optimal sub-
structure and overlapping subproblems [22]. The problem has optimal substruc-
ture because of the independence between non-adjacent layers, i.e. an optimal
configuration of layers 1 . . . i−1 will still be optimal regardless of the position of
layer i. (As in Ck, we consider only the voxels below the layer.) The overlapping
subproblems occur since computing the optimal position of any layer greater
than i requires computing the optimial configuration of layers 1 . . . i. Therefore,
the optimal configuration can be solved with dynamic programming. The re-
cursive formulation in Equation 19 lends easily to the table method, and the
solution can extracted by backtracking.

Many parts of the heightmap will not need all n layers. The extra layers will
be free to fit the noise in the measurements. To avoid this, we incorporate the
Bayesian Information Criterion (BIC).

CBIC = −ln P (Z|L)P (L) +
1
2
n ln |Zx| (18)

|Zx| is the number of measurements interacting with the heightmap pixel x. The
first part of the equation is exactly C and the second part adds a penalty of
ln |Zx| for every layer in the model. We can add this penalty into our recursive
formulation by adding ln |Zx| at each layer unless the layer position is the same
as the preceding layer.

CBIC
k (l) =

{
I l
l′ + Ck−1(l′) + T (l �= l′)1

2 ln |Zx| if odd(k)
Ī l
l′ + Ck−1(l′) + T (l �= l′)1

2 ln |Zx| if even(k) (19)

Thus model selection is performed by prefering layers to collapse unless there is
sufficient evidence to support them. The table required to solve the problem is
of size m×n, and the sum variables are of size m. Therefore the algorithm takes
O(mn) time and space per heightmap pixel, and the whole heightmap takes
O(whmn) time and O(wh + mn) space.

4 Results

We have tested our n-layer heightmap method on street-level video datasets and
photo collections downloaded from the web. For the video datasets, the camera
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Fig. 3. Original photos and depthmaps computed from Internet photo collections

poses and depthmaps were computed with the real-time system of Pollefeys
et al.[3]. To compute the camera poses for the photo collections, we used the
method of Li et al.[9]. The output of their approach also gives a clustering of the
images which can be used to select compatible views for stereo. We computed a
depthmap for each photograph by selecting the 20 views in the same cluster with
the most matched and triangulated SIFT points in common. Stereo is performed
on the GPU using a simple NCC planesweep. Results are shown in Figure 3.

From these inputs we used our n-layer heightmap system to obtain a 3D
reconstruction in the form of a texture-mapped 3D polygonal mesh. Texture
mapping the mesh is a non-trivial problem, however, we did not focus on this
in our method. We have used a simple method to reconstruct the appearance
at each point on the surface. Each point is projected into all cameras, a 3-
channel intensity histogram is constructed. The histogram votes are weighted
by a guassian function of the difference between the measured depth and the
heightmap model’s depth, which helps to remove the influence of occluders. The
final color is the per-channel median and is easily obtained from the histograms.

Figure 4 shows the improvement gained by using multiple layers in the
heightmap. Overhanging structures are recovered while the clean and compact
nature of the reconstruction is preserved. Figures 5 show the results of the re-
constructions from video. Figures 6 show the results of the reconstructions from
photo collections.

Our system can process video at 13.33 Hz. Computing a 3-layer 100x100
heightmap with 100 height levels from 48 depthmaps takes only 69 ms to on the
GPU. The other steps are not as fast as we did not focus as much on optimizing
them. Converting the heightmap into a mesh takes 609 ms, and generating tex-
ture maps takes 1.57 seconds. The total time for processing a heightmap is 2.25
seconds. However, heightmaps only need to be computed about every 30 frames
of video. (All frames are used for depthmaps.) Therefore our system can process
video at 13.33 frames per second. Reconstructing photo collections is more

1 Layer 3 Layer 1 Layer 3 Layer

Fig. 4. 1-layer and 3-layer reconstructions
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Fig. 5. 3D reconstructions from video

Original Model Model

Fig. 6. 3D reconstructions from internet photo collections

challenging. Each scene takes 20-30 minutes, and most of that time is spent
computing NCC stereo.

5 Conclusion

We proposed a novel n-layer heightmap depthmap fusion providing a natural
way to enforce vertical facades while providing advantageous structure sepa-
ration. The main advantage of the proposed approach is the generality of the
modeled geometry. The regularization along the vertical direction allows the
heightmap fusion to effectively suppress depth estimation noise. Our fusion is
computationally efficient providing real-time computation. We demonstrated the
proposed method on several challenging datasets downloaded from the Internet.
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Abstract. We present a novel variational approach to estimate dense

depth maps from multiple images in real-time. By using robust penalizers

for both data term and regularizer, our method preserves discontinuities

in the depth map. We demonstrate that the integration of multiple im-

ages substantially increases the robustness of estimated depth maps to

noise in the input images. The integration of our method into recently

published algorithms for camera tracking allows dense geometry recon-

struction in real-time using a single handheld camera. We demonstrate

the performance of our algorithm with real-world data.

1 Introduction

Reconstructing the geometry of the environment from a hand-held camera is
among the classical topics in computer vision. While sparse reconstructions of
a finite number of tracked points can easily be done in real-time [1,2], the fast
computation of dense reconstructions from a moving camera remains an open
challenge.

Traditionally there are two complementary approaches to estimating dense
geometry, namely the reconstruction of depth maps (often called 2.5d recon-
structions) from stereo image pairs and the reconstruction of full 3D structure
from multiple images. While we have observed substantial advances in dense
3D reconstruction from multiple images, many of these approaches are to date
not real-time capable [3,4]. Moreover, they typically require a larger number of
around 30 calibrated images making them unsuited for live scene reconstructions
from a single moving camera. On the other hand, there exist many approaches
to reconstructing dense depth maps from pairs of images [5,6]. While these ap-
proaches were shown to provide excellent results on dense depth estimation, they
are typically too computationally intense for real-time applications, moreover,
they are rather noise sensitive since they only exploit two images.

In this paper, we propose a variational approach for computing dense depth
maps from multiple images with real-time performance. The key idea is to adopt
recently developed high-accuracy optic flow algorithms [7] to the problem of
depth map estimation from multiple images. Depth maps are computed by se-
quential convex optimization by means of a primal-dual algorithm. In particular,
we prove that the primal variables can be efficiently computed using a sophis-
ticated thresholding scheme. To obtain optimal performance, the dense depth
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maps are computed in coarse-to-fine-manner on the GPU while the camera co-
ordinates are simultaneously computed on the CPU using recently developed
algorithms. Our experiments demonstrate that the algorithm allows to compute
dense high-quality depth maps from a moving camera in real-time. Moreover,
our quantitative evaluation confirms that using multiple images substantially
improves the noise-robustness of estimated depth maps.

After submission of this manuscript we became aware that the problem of
reconstructing depth maps from a handheld camera was independently addressed
in the recent work of Newcombe and Davisson [8]. In the latter work, the authors
first estimate an optical flow field from consecutive images and subsequently use
this flow field to update a depth map. In contrast, we propose a variational
approach which directly provides a depth field. This seems more appropriate to
us: Why estimate a 2D motion vector for each pixel, if - apart from the camera
motion - the considered scene is static? One consequence of the proposed solution
to directly determine the depth field is that our algorithm is real-time capable
on a single graphics card whereas the approach of Newcombe and Davison needs
several seconds per frame on two GPUs.

2 Robust Estimation of Depth Maps from Images

In Section 2.1 we introduce our mathematical framework for computing dense
depth maps for the simpler case of two input images. In Section 2.2 we extend
this formulation and introduce a novel variational approach for estimating depth
maps from multiple images. In Section 2.3 we propose a primal-dual algorithm
which substantially generalizes the one of Zach et al and which allows to effi-
ciently minimize the proposed functional.

First we give an introduction to our notation. Let us assume a given set of
gray value images {Ii : Ωi → R} with i ∈ {0, . . . , N} that were taken from
different viewpoints with the same camera. Let us further assume, that the
corresponding camera poses (location and orientation of the camera) and the
projection π : R3 → R2 that projects from homogeneous coordinates to pixel
coordinates are known. The depth map h, that should be estimated, is a scalar
field which is defined with respect to the coordinate frame of one of the images.
Let us denote this camera image without loss of generality as I0 such that h :
Ω0 → R assigns a depth value to every pixel of I0. By using homogeneous 2D
coordinates x = (x1, x2, 1)T ∈ Ω0 we can express the position of each 3D surface
point X of the depth map by multiplying the homogeneous 2D vector by the
depth value: X(x, h) := h(x1, x2) · x.

Note that the above position vector is relative to the coordinate frame of
I0. The projection of such a 3D point X onto another image plane Ωi can be
achieved by π(exp(ξ̂i) ·X), where ξi is the camera pose for each image relative
to the coordinate frame of I0. The camera poses are given in so called twist
coordinates ξ ∈ R6. The hat-operator transforms ξi such that the twist ξ̂i ∈ se(3)
gives the exponential coordinates of the rigid-body motion that transforms the
coordinate frame of I0 into the coordinate frame of Ii.
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2.1 Stereo Estimation Using Two Images

Let us introduce our mathematical framework for the simplest case, when two
images are provided. To estimate a heightmap h from these two images we
propose the following variational formulation consisting of an L1 data penalty
term and an L1 total variation (TV) regularization of the depth map

E(h) = λ

∫
Ω0

∣∣∣I1
(
π
(
exp(ξ̂1)X(x, h)

))
− I0

(
π
(
x
))∣∣∣ d2x +

∫
Ω0

|∇h| d2x, (1)

where the data term I1
(
π
(
exp(ξ̂1)X(x, h)

))
− I0

(
π
(
x
))

measures the difference
of the image intensities of I0 and the image intensities that are observed at the
projected coordinates in I1. Above data term is motivated by the Lambertian as-
sumption, that the observed intensity is independent of the viewpoint as long as
the same surface point is observed in both views. The TV-norm regularizer allows
to preserve discontinuities in the depth map, e.g. at object boundaries, while the
robust data term lowers the sensitivity towards outliers in cases where objects
are invisible by occlusion or when the input images are affected with noise. In the
following we will use the simplified notation I1(x, h) for I1

(
π
(
exp(ξ̂1)X(x, h)

))
.

We begin with a linearization of I1(x, h) by using the first order Taylor ex-
pansion, i.e.

I1(x, h) = I1(x, h0) + (h− h0)
d

dh
I1(x, h)

∣∣∣
h0

(2)

where h0 is a given depth map. The derivative d
dhI1(x, h) can be considered as

a directional derivative in direction of a differential vector on the image plane
that results from a variation of h It can be expressed as the scalar product of
the gradient of I1(x, h) with this differential vector, i.e.

d

dh
I1(x, h) = ∇I1(x, h) · d

dh
π
(
exp(ξ̂)X(x, h)

)
. (3)

The differential vector mentioned above needs to be calculated with respect to
the chosen camera model.

Using the linear approximation for I1(x, h) and by reordering the integrals
the energy functional (Eq. 1) now reads

E(h) =
∫

Ω0

{
λ
∣∣I1(x, h0) + (h− h0)

d

dh
I1(x, h)

∣∣∣
h0

− I0(x)︸ ︷︷ ︸
ρ1(x,h0,h)

∣∣ +
∣∣∇h

∣∣} d2x. (4)

Though this energy functional is much simpler than the original functional
(Eq. 1), the task of minimizing it is still difficult, because both the regularization
term and the data term are not continuously differentiable.

We introduce an auxiliary function u that decouples the data term and the
regularizer, leading to the following convex approximation of Eq. 4:

Eθ =
∫

Ω

{
|∇u|+ 1

2θ
(u− h)2 + λ |ρ1(h)|

}
d2x, (5)
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where θ is a small constant and ρ1(h) denotes the current residual of the data
term (by omitting the dependency on h0 and x). It is immediate to see that for
θ → 0 the minimization of the above functional results in both h and u being a
close approximation of each other.

This minimization problem can be solved efficiently in real-time by minimiz-
ing the data term with a simple thresholding scheme and using a primal dual
algorithm for the minimization of the ROF energy [9].

2.2 Extension to Multiple Images

Let us now consider the case when multiple input images are given. In the
previous section we formulate our energy model for the classical stereo task in
case of two images. Compared to previous approaches that employ the epipolar
constraint by using the fundamental matrix the main difference is that here we
formulate the data term relative to the coordinate system of one specific view
and use the perspective projection to map this coordinate system to the second
camera frame. This makes it easy to incorporate the information from other
views by simply adding up their data terms. We propose the following energy
functional to robustly estimate a depth map from multiple images

E(h) = λ

∫
Ω

∑
i∈I(x)

|ρi(x, h)| d2x +
∫

Ω

|∇h| d2x (6)

where I(x) contains the indices of all images for which the perspective projection
π(exp(ξ̂i) ·X(x, h)) is inside the image boundaries. With ρi(x, h) we denote the
residual of the linearized data term for image Ii

ρi(x, h) = Ii(x, h0) + (h− h0) Ih
i (x)− I0(x), (7)

where Ih
i (x) is a simplified notation for the derivative d

dhIi(x, h)
∣∣∣
h0

.

By using the above functional we should expect two benefits. First of all
algorithms using only two images are not able to estimate disparity information
in regions that are occluded in the other view or simply outside of its image
borders. The use of images from several different views should help in these
cases because information from images where the object is not occluded can be
used. The use of the L1-norm in the data terms allows an increased robustness
towards outliers in cases where objects are occluded. The second benefit of using
multiple images is the increased signal to noise ratio that provides much better
results when the input images are affected by noise, which is a typical property
of image sequences acquired by webcams or consumer market camcorders.

This functional is more complicate to solve because the data term consists of
the sum of absolute values of linear functions, that cannot be minimized using
the simple thresholding scheme proposed in [7]. In [4] the authors extend the
thresholding scheme to data terms of the form

∑
i |x−bi|, with a set of constants

{bi ∈ R}. Unfortunately the data term in the proposed functional is not of such
form. Nevertheless, we will show in the next section that the thresholding concept
can be generalized to a substantially larger class of functionals.
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2.3 Generalized Thresholding Scheme

In this section we provide a substantial generalization of the thresholding scheme
which also applies to multiple images and more sophisticated data terms.

We decouple the smoothness and data term by introducing an auxiliary func-
tion u and get the following convex approximation of Eq. 6:

Eθ =
∫

Ω

⎧⎨⎩|∇u|+ 1
2θ

(u− h)2 + λ
∑

i∈I(x)

|ρi(x, h)|

⎫⎬⎭ d2x, (8)

The above functional is convex so an alternating descent scheme can be ap-
plied to find the minimizer of Eθ:

1. For h being fixed, solve

min
u

∫
Ω

{
|∇u|+ 1

2θ
(u− h)2

}
d2x (9)

This is the ROF energy for image denoising [10,9].

2. For u being fixed, solve

min
h

∫
Ω

⎧⎨⎩ 1
2θ

(u− h)2 + λ
∑

i∈I(x)

|ρi(x, h)|

⎫⎬⎭ d2x (10)

This minimization problem can be solved point-wise.

A solution for the minimization of the the ROF energy, the first step in our
alternating scheme, was proposed in [9], that uses a dual formulation of Eq. 9.
For the convenience of the reader we reproduce the main results from [9].

Remark 1. The solution of Eq. 9 is given by

u = h− θ divp, (11)

where p = (p1, p2) is a vector field and fulfills ∇(θ divp−h) = |∇θ divp−h|p,
which can be solved by the following iterative fixed-point scheme:

pk+1 =
pk + τ∇(div pk − h/θ)
1 + τ |∇(div pk − h/θ)| , (12)

where p0 = 0 and the time step τ ≤ 1/8.

The second step of the alternation scheme, Eq. 10, can be solved point-wise, but
shows some difficulties as it is not continuously differentiable. Nevertheless we
provide a closed-form solution by generalizing the thresholding concept to data
terms of the form

∑
i

|ai x− bi|.
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By taking a look at Eq. 7 we see, that for fixed h0 and x the residuals of the
linearized data terms ρi can be expressed in the general form of linear functions,
ρi(x, h) = ai h + bi, with ai := Ih

i (x) and bi := Ii(x, h0)− h0 Ih
i (x)− I0(x). The

absolute valued functions |ρi(h)| are differentiable with respect to h except at
their critical points, where a function equals zero and changes its sign. Let us
denote those critical points as

ti := − bi

ai
= −Ii(x, h0)− h0 Ih

i (x)− I0(x)
Ih
i (x)

, (13)

where i ∈ I(x).
At these points Eq. 9 is not differentiable, as the corresponding ρi changes its

sign. Without loss of generality we can assume that ti ≤ ti+1, i.e. we obtain a
sorted sequence of {ρi : i ∈ I(x)}, that is sorted by the values of their critical
points. In order to avoid special cases we add t0 = −∞ and t|I(x)|+1 = +∞ to
this sequence.

Proposition 1. The minimizer of Eq. 10 can be found using the following strat-
egy: If the stationary point

h1 := u− λθ

⎛⎝ ∑
i∈I(x):i≤k

Ih
i (x) −

∑
j∈I(x):j>k

Ih
j (x)

⎞⎠ (14)

lies in the interior of (tk, tk+1) for some k ∈ I(x), then h = h1. Else the mini-
mizer of Eq. 10 can be found among the set of critical points:

h = arg min
h2∈{ti}

⎛⎝ 1
2θ

(u − h)2 + λ
∑

i∈I(x)

|ρi(x, h2)|

⎞⎠ . (15)

Proof. Eq. 10 is differentiable with respect to h in the interior of intervals
(tk, tk+1). Let us assume that the stationary point

h1 := u− λθ
∑

i∈I(x)

(
sgn (ρi(x, h1)) Ih

i (x)
)

(16)

exists and lies in the interior of the interval (tk, tk+1), then∑
i∈I(x)

(
sgn (ρi(x, h1)) Ih

i (x)
)

=
∑

i∈I(x):ti<h1

Ih
i (x) −

∑
j∈I(x):tj>h1

Ih
j (x) (17)

=
∑

i∈I(x):i≤k

Ih
i (x)−

∑
j∈I(x):j>k

Ih
j (x) . (18)

This stationary point exists, iff it stays in the interior of (tk, tk+1) for some k.
If none of the proposed stationary points stays in the interior of its corresponding
interval, the minimizer of Eq. 10 resides on the boundary of one of the intervals,
i.e. it can be found among the set of critical points {ti}. 	
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3 Implementation

Because the linearization of the data term (Eq. 7) only holds for small displace-
ments of the projected coordinates, the overall innovation of the depth map is
limited. To overcome this, the energy minimization scheme is embedded into
a coarse-to-fine approach: Beginning on the coarsest scale a solution h is com-
puted. This solution is used as new point h0 for the linearization on the next
finer scale. By using this scheme we not only employ an iterative linearization,
but also utilize the multi-scale approach to avoid convergence into local min-
ima. When processing a consecutive sequence of input images, an initialization
of the coarsest scale can be achieved by transforming the depth map computed
in the preceding frame to the current camera pose, thus utilizing the sequential
property of the input data.

We embedded our method into a recently published camera tracking approach,
that allows tracking of a handheld camera in real-time [11]. An integral part of
this camera tracker is the storage of keyframes. While the pose for the current
camera image needs to be estimated in real-time, and thus contains a signifi-
cant amount of noise in the pose estimation, the camera pose associated to each
keyframe can be refined iteratively, leading to very accurate estimates for the
keyframes. Instead of using subsequent images with noisy real-time pose esti-
mates, our approach enables to estimate a depth map in a similar fashion to the
strategy employed in the camera tracker, by estimating the depth map using the
current camera image and the N closest keyframes to the current pose. By using
the much better camera pose estimates of the keyframes, the amount of noise in
the camera poses is minimized.

Fig. 1. Dense depth maps computed from images of a hand-held camera
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4 Experimental Results

High-accuracy dense depth maps from a hand-held camera: The proposed al-
gorithm allows to compute dense depth maps from a moving camera. Figure 1
shows the reconstruction result from 5 input images. In contrast to the commonly
used structure-and-motion algorithms [1,2], the proposed method computes a
dense geometry rather than the location of sparse feature points. Another exam-
ple is given in Figure 2 that shows the reconstruction result of an office scene.
Note the accurate reconstruction of small-scale details like the network cable.

  c

 d

 e

 a cb

Fig. 2. Textured (a,c) and untextured geometry (b,d). Note the accurate reconstruction

of small-scale details like the network socket and cords. (e) Images.

Realtime geometry reconstruction: The proposed primal-dual scheme can be ef-
ficiently parallelized on the GPU. The joint estimation of camera motion on the
CPU allows for live dense reconstructions of the scene. Clearly there is a trade-
off between speed and accuracy of the reconstructed geometry. Figure 3 shows
reconstruction results from 5 input images with different parameter settings and
for different resolutions of the resulting depth map. For evaluation we used a
standard personal computer equipped with a NVidia GTX 480 graphics card
and implemented our method using the CUDA framework. With high quality
parameter settings, an accurate reconstruction of the scene can be computed at
1.8 frames per second (fps). A slightly less accurate reconstruction can be ob-
tained at 11.3 fps. In both cases, the input images and reconstructed depth map
have a resolution of 640×480 pixels. By reducing the resolution of the computed
depth map, even realtime performance can be reached with 24 fps at a depth
map resolution of 480×360. In the two latter cases, a slightly different numerical
scheme is used: a number of 4 internal iterations is performed before the data
is exchanged with other blocks of the parallelized implementation, resulting in
small blocking artifacts visible in the reconstruction.
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Table 1. Parameter settings for different frame rates

Quality Setting High Medium Low

Pyramid Levels 24 10 7

Pyramid Scale-Factor 0.94 0.8 0.7
Iterations per Level 120 70 70

Internal Iterations 1 4 4

Frames per Second 1.8 11.3 24

(a) 1.8 fps (b) 11.3 fps (c) 24 fps

Fig. 3. Trade-off between speed and accuracy

Quantitative evaluation of the noise robustness: In contrast to traditional stereo
approaches, the proposed framework makes use of multiple images in order to
increase the robustness of the reconstruction. Figure 4 shows the reconstruction
error ε =

∫
Ω
(hσ−hσ=0)2 dx∫

Ω
h2

σ dx+
∫

Ω
h2

σ=0 dx
as a function of the noise level σ. In contrast to the

two-frame formulation, the integration of multiple frames is substantially more
robust to noise.
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Fig. 4. Reconstruction error ε as a function of the noise level σ. The integration of

multiple images is significantly more robust to noise.
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5 Conclusion

We proposed a variational method to compute robust dense depth maps from
a handheld camera in real-time. The variational approach combines a robust
regularizer with a data term that integrates multiple frames rather than merely
two. Experimental results confirm that the integration of multiple images sub-
stantially improves the noise robustness of estimated depth maps. The nonlinear
and non-convex functional is minimized by sequential convex optimization. To
this end, we adapt a primal-dual algorithm originally proposed for optical flow
to the problem of depth map estimation, and show that the primal update can
be solved in closed form by means of a sophisticated thresholding scheme. While
the camera motion is determined on the CPU, the depth map is estimated on
the GPU in a coarse-to-fine manner, leading to dense depth maps at a speed of
24 frames per second.
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From Single Cameras to the Camera Network:
An Auto-Calibration Framework for Surveillance
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Abstract. This paper presents a stratified auto-calibration framework

for typical large surveillance set-ups including non-overlapping cameras.

The framework avoids the need of any calibration target and purely

relies on visual information coming from walking people. Since in non-

overlapping scenarios there are no point correspondences across the cam-

eras the standard techniques cannot be employed. We show how to obtain

a fully calibrated camera network starting from single camera calibra-

tion and bringing the problem to a reduced form suitable for multi-view

calibration. We extend the standard bundle adjustment by a smoothness

constraint to avoid the ill-posed problem arising from missing point cor-

respondences. The proposed framework optimizes the objective function

in a stratified manner thus suppressing the problem of local minima.

Experiments with synthetic and real data validate the approach.

1 Introduction

Camera networks in surveillance systems can easily count hundreds of cameras.
The contextual information available within the network is currently not used
in practice, as maintenance of an updated map turns out to be a very expensive
procedure. Therefore the integration of information from single cameras occurs
only locally and completely relies on the human operator. Automatic integra-
tion of contextual and geometric information on a large scale just from visual
information would dramatically amplify the potential of such networks: not only
maintenance would be much easier, but also the automation of surveillance tasks
would profit of it. For reason of costs and efficiency, cameras are typically in-
stalled in sparse networks with non-overlapping fields of view and hence large
visual gaps. The absence of point correspondences among camera views is a
problem for calibrating the network in a first step and, as a consequence, tasks
such as handovering of moving objects between cameras are much harder [1].

In this paper we introduce a framework which aims at an auto-calibration
of non-overlapping cameras in surveillance scenario just by observing walking
people, see Fig. 1. We start with the fully uncalibrated case without information
neither about internal nor external camera parameters. Currently we do not deal
with the trajectory association problem and always consider a single trajectory.
We assume motion on a common ground-plane as it is often the case in realistic
scenarios and synchronized video streams.

M. Goesele et al. (Eds.): DAGM 2010, LNCS 6376, pp. 21–30, 2010.
� Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Goal of the paper: calibrating non- or slightly-overlapping surveillance cameras

from observing a moving object and expressing the cameras in one coordinate frame

As a result the cameras are expressed in one coordinate frame with estimated
focal lengths, see Fig. 1. We purely rely on visual information, especially on de-
tecting and tracking people. The reason is that in many cases, using special
calibration targets or manually established fiducial points is not possible or is
too impractical for non-experts. On the other hand we typically have a long
video footage from each camera observing walking persons containing enough
information to perform the calibration off-line without having an access to the
cameras and without any knowledge of camera properties. The difficulty of the
problem being solved here is underlined by the fact that there are no point corre-
spondences across the camera views and hence no standard calibration technique
known in Structure from Motion (SfM) community can be applied [2].

The contribution of the paper is three-fold and lies in introducing a stratified
auto-calibration framework: (i) we propose to pre-calibrate the cameras indepen-
dently from observing a frontally oriented person at different locations [3]. We
recognized that this technique chooses a local coordinate system in such a way
that it advantageously brings the problem of the following multi-view camera cal-
ibration to a reduced form where problem of local minima is greatly suppressed.
(ii) we show that the method [4] for calibrating top view cameras at constant
height from observing a moving object works for generally mounted cameras
with varying focal lengths. The proposed stratified auto-calibration method al-
lows bringing the problem very close to an optimal solution w.r.t. Gaussian
image noise. (iii) we extend the standard bundle adjustment (BA) optimizing
over all the parameters except focal length [5] by a smoothness constraint en-
forced on the trajectory. It allows solving the originally ill-posed problem when
some points on the trajectory are not seen at all and when the most of the points
are seen by at most one camera.

Our method is a first step towards a self-calibrating network that configures
itself solely by detecting human activity in the environment. The reconstruction
of the scene geometry provides the essential information needed to robustly solve
visual surveillance tasks such as detection in single cameras [6] or multiple-
camera tracking [7]. It reduces on the one hand computational burden when
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Fig. 2. The single camera pre-calibration step. Four cameras are independently pre-

calibrated by [3] from an observed and automatically detected person (top row) stand-

ing at different locations. The calibrations are related to different local coordinate

systems by [~Ri, t̃i] shown in the bottom views of the 3D plots.

detecting and tracking people, and on the other hand it reduces significantly
spurious false positive detections by enforcing the geometrical constraints.

Related Work. Calibration frameworks for overlapping cameras with known
internal camera parameters can be traced back in literature to Lee et al. [8].
Planar trajectories in camera triplets are used to estimate the plane-induced
inter-camera homographies, camera rotations and camera centers by non-linear
trajectory alignment. The approach was further improved by successive dense
alignment of the images [9] and additional vanishing points [10]. The most rele-
vant framework for non-overlapping cameras assumes calibrated, top view cam-
eras. Similar to BA, an objective function based on known planar trajectories
can be formulated. Although the problem is ill-posed, additional regularization
by assuming smooth trajectories allows estimation of camera rotation, camera
centers and trajectory’s location simultaneously. The approach was also aug-
mented for moving cameras and unknown trajectory association [11] and has
also been improved in efficiency [12] by splitting the solution search space into
parts corresponding to visible and not visible parts of the trajectory. This pa-
per basically extends this approach for uncalibrated cameras, general camera
views and slightly non-planar trajectories to make it applicable in surveillance
scenarios.

2 Network Calibration Framework

The calibration pipeline operates in three basic steps: first, a pre-calibration
estimates the camera intrinsics and their calibration w.r.t. a local coordinate
system [3]. Second, the local systems are aligned to a common reference frame
using a Maximum A Posteriori (MAP) estimate of both camera parameters and
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[K1, 1, 1] 

[T2] 

[θ1] 
[θ2] 

[K2, 2, 2] [T1] 

Fig. 3. The estimated camera parameters after pre-calibration [Ki, ~Ri, t̃i] refer to differ-

ent local ground-plane reference systems, which can be aligned to the global reference

system by a 2D translation and a rotation about the vertical axes μi = [Ti, θi].

trajectory after mapping on the ground-plane [4]. The combined solution of the
pre-calibration and alignment step is used as initialization of a local optimization
procedure which extends the standard BA [5] to non-overlapping cameras.

2.1 Pre-calibration

The pre-calibration delivers for each ith camera its focal length f i, rotation ~Ri,
and translation t̃i w.r.t. a coordinate system placed on the ground plane with
one axis perpendicular to it, as shown in Fig. 2. The coordinate system is given
by one of the person positions.

We adopt the method for calibrating single cameras just by observing a per-
son [3]. Typically one can automatically select frontal poses, e.g. by the HOG de-
tector [13], possibly containing outliers and feed that into the method of [3]. The
method has been shown to outperform techniques calibrating a single camera
just from vanishing points [14] or similarly from human foot-head homology [15].
Further the method is advantageous in two aspects: first, it does not require any
special calibration target, just a person standing at different locations in parallel
and approximately frontal poses, therefore not necessarily parallel to the image
plane. Second, coordinate systems of single cameras are related up to 1D rota-
tion and 2D translation on the ground plane. That allows us to reduce the space
of unknowns when trying to express all the cameras in one coordinate system
shown in Fig. 3. For each camera we need then to search for 3 parameters (1 for
rotation angle and 2 for translation) instead of 7 (1 for focal length, 3 for rota-
tion angles and 3 for translation) in the general case. Note, that the translations
t̃i are already estimated with the correct scale if the same person is used for
calibration of all the cameras.

2.2 Ground-Plane Alignment

The alignment of the local ground-plane coordinate systems is done using the
information provided by a moving target in the image view and assumptions
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about its trajectory. The image point u is first projected to the point y onto the
ground plane by [~Ri, t̃i] estimated with the pre-calibration. Then we apply si-
multaneous trajectory reconstruction and network calibration [4]. Although this
is thought for general positioning of the cameras given the local homography, the
experiments in [4] are restricted to the top camera view scenario with all cameras
at the same height. This is to avoid pre-calibration and the determination of the
focal length, which however could potentially break the assumption of planarity
of the 2D trajectory on which the method is based. In Sec. 3 we show that the
method works even if the planarity condition is only approximately fulfilled.

Following Rahimi et al. we define a MAP criterion to determine the ground-
plane trajectory x and camera parameters μ = [T, θ] as represented in Fig. 3

[x∗, μ∗] = arg max
x,μ

p(y|x, μ)p(x)p(μ). (1)

The first term in Eq. (1) is the likelihood of the target’s measurements, while
p(x) and p(μ) are the a priori distribution of trajectory and camera parameters
respectively. The likelihood criterion is based on minimization of the reprojec-
tion error. Contrary to standard BA in SfM, which always considers overlapping
views, in the non-overlapping case when part of the trajectory is unseen the
contribution from p(x) is essential to gain enough constraints for solving the op-
timization. This is defined using a linear Gaussian Markov dynamics to describe
the state transition of the target xt → xt+1. Finally, the last term in Eq. (1) is
used to fix one of the cameras at the origin of the global reference system.

The advantage of setting the non-linear optimization problem coming from
Eq. (1) in a reduced parameter space is that in many cases it is possible to
find a satisfying solution even with arbitrary initial conditions. This is not the
case in the general optimization by BA. To the best of our knowledge, currently
there are no alternative closed-form techniques for non-overlapping cameras to
deal with the non-linearity coming from the rotation parameters [7]. We follow
Rahimi et al. and set the initialization of all cameras and trajectory points to
the origin of the reference systems.

2.3 Bundle-Adjustment for Non-overlapping Cameras Scenario

Bundle adjustment [5] as the standard optimization method is used as the last
step of 3D reconstruction problems to find a local solution which is optimal under
Gaussian measurements noise. The general reconstruction problem is to find,
starting from an approximate estimate of the solution and given the temporal
sequence of 3D points X1 . . .XT and the set of projections ui

t of the point visible
at time instance t in the camera i, the camera parameters and the 3D points that
minimize the reprojection error between predicted and observed image points.
This requires the solution of a non linear least square problem over a large
parameter space. In the usual reconstruction at least some of the 3D points are
observed from multiple views, which provide the necessary constraints to infer
the reciprocal location of the cameras. In the non-overlapping camera scenario
such constraints are missing. Analogue to the approach of Rahimi et al. for a
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planar trajectory we generalize BA to the non-overlapping case by using the
smoothness constraint.

The data term is represented by the squared reprojection error computed
using the Mahanalobis distance ‖.‖ΣU with measurement covariance ΣU

d2
U =

∑
t

∑
i

δ(i, t)
∥∥ui

t − λKi
[
Ri ti

]
Xt

∥∥2
ΣU

. (2)

Here λ stands for the scale and K, R and t for the camera intrinsic calibration
matrix, the rotation and translation w.r.t. the world coordinate system [2], the
latter derived by composing the local ~Ri and t̃i with the parameters from the
plane alignment [Ti, θi]. The indicator function δ(i, t) takes the value 1 at times
t in which the target is detected in camera i, otherwise 0. In the implementation
we parametrize the rotations in terms of unit quaternions, as they are known
to have a more stable numerical behavior than Euler angles [16]. Smoothness is
enforced on the trajectory by minimizing the second derivative

‖Xt+1 − 2Xt + Xt−1‖2 → 0. (3)

Given the temporal sequence of 3D points X = [X1 . . .XT ]�, the smoothness
term corresponding to the temporal constraint is defined as

d2
X = XTGTGX, (4)

where G is defined as the stack over all time stamps of the matrices Gt

Gt =
√
Σ−1

X [03×3, . . . , I3×3︸︷︷︸
t−1

,−2I3×3︸ ︷︷ ︸
t

, I3×3︸︷︷︸
t+1

, . . . , 03×3]. (5)

with smoothness covariance ΣX . Finally, the minimization problem w.r.t. X, the
camera rotations R = {Ri} and translations t = {ti} is defined by the sum of
the data and smoothness terms

[X∗, R∗, t∗] = arg min
X,R,t

d2
U (X, R, t) + d2

X(X). (6)

The covariance matrices of the data and smoothness terms are the model param-
eters. We use diagonal matrices and set the variance associated to the data term
a few orders of magnitude smaller than that of the smoothness term. Therefore
the minimization of the reprojection error is the leading criterion of the recon-
struction if points are observed in at least one image view and the smoothness
constraint is the only criterion when observations are missing.

3 Experiments

To establish the limits of the approach for camera calibration a set of experiments
on both synthetic and real data is carried out.
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Fig. 4. Estimating camera parameters [Ti, θi] and trajectory reconstruction for slightly

(top) and largely (bottom) non-overlapping synthetic camera setup. (a) Top-view of

the reconstructions. The true and estimated camera centers are shown by red crosses

connected by red lines. The true and reconstructed trajectories are plotted by a blue line

and connected red dots respectively. Circles mark the points observed by the cameras.

(b) The RMS error on camera center localization and angle estimation vs. image noise

level. (c) The same but with 3D noise added to the trajectory.

Synthetic Data. We emulate a three camera scenario, each camera observing
a part of a synthetic spline curve located in the z = 0 plane. The quality of
the reconstruction is strongly influenced by deviations of the trajectory from the
Markov dynamics used to model it.

We evaluate the quality of calibration by ground-plane alignment in two real-
izations of the synthetic scenario, represented in the first column (a) of Fig. 4. In
the first case, called slightly non-overlapping, the gap between the field of view
of the cameras is of one up to few meters, while in the second case distances are
about 5 to 10 meters. Camera centers and rotations are known up to transla-
tion and rotation on the ground-plane [Ti, θi]. Fig. 4 shows qualitatively a good
agreement between ground-truth and reconstruction, even though in the second
example the sharp turn is reproduced with less accuracy than other parts of the
trajectory because it falls outside the field of view.

We evaluate the camera localization, which is the most relevant cue in surveil-
lance applications, by computing average and standard deviation of the RMS er-
ror for different realization of the same trajectory, obtained by adding a Gaussian
noise to the trajectory points observed in the camera views. This noise emulates
the noisy detections in the image data. Each trajectory is sampled 50 times for
each noise level with standard deviation between 0 and 1 pixel. Moreover, we
compare the two cases with and without a uniform noise added to the 3D trajec-
tory. A 3D noise of standard deviation σ = 20 cm and 40 cm is added to the two



28 C. Picus, B. Micusik, and R. Pflugfelder

Fig. 5. LED-light experiment in a slightly overlapping case. ’♦’ ground-truth epipoles,

’+’ projected camera centers using the estimated parameters after ground-plane align-

ment, and ’×’ after BA. The corresponding camera calibration and trajectory estima-

tion is shown in Fig. 1.

scenarios in Fig. 4. This emulates for a real scenario the effect of inaccurate local
pre-calibration and trajectory non-planarity on the ground-plane trajectory.

The mean value and standard deviation of the reconstruction of camera cen-
ters and of rotations is shown in columns (b) and (c) of Fig. 4. For almost overlap-
ping cameras, the reconstruction of the camera centers is, even with added Gaus-
sian noise, in the range of 10 cm. The error increases in the full non-overlapping
case to about 50 cm. The estimate of the error on the angle is comparable in the
two scenarios, in the range up to 2 degrees without 3D noise and up to 9 degrees
with added 3D noise.

Real Data. In the real experiments we consider the full pipeline in a setup
equivalent to the almost overlapping scenario of the synthetic experiment. The
full calibration uses detections from a moving LED-light source, although in this
step a head-shoulder detector could be used instead. We choose the LED-light
in order to find the upper limits of accuracy of our method independently of
the precision of the detector. However in generating the trajectory no special
attention was paid in having it perfectly planar. Therefore, although the de-
tection of the LED-light source is sub-pixel accurate, the up and down motion
of the human hand holding the light partially reproduces the inaccuracy of the
detector.

Fig. 1 shows the indoor scenario made up of four cameras. We measure with
a laser based device the distance between camera centers C with a precision of
±10 cm. The fields of view overlap in order to be able to mark manually the
epipoles. An epipole e is related to the estimated parameters by e = −KRC.
Epipoles are used as ground-truth giving implicitly information about rotations
and camera centers. The cameras have a resolution of 640 × 480pxl and are
synchronized by an external trigger. The lens distortion is negligible as we used
1/2′′ normal lens with 1/3′′ cameras. The LED-light spots are automatically
detected with subpixel precision. Few detections fall in the overlap area between
the cameras.

We perform two experiments: in the first one we include detections in the
overlap area while in the second one we eliminate them manually, in order to fall
into the slightly non-overlapping scenario equivalent to the first case in Fig. 4.
For the overlapping case, the full reconstruction after BA is shown in Fig. 1. The
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Fig. 6. LED-light experiment in a fully non-overlapping case. Top- and side-views of

camera calibrations and trajectory reconstruction before (left) and after (right) bundle

adjustment.

Fig. 7. Epipole analysis for non-overlapping case from Fig. 6. See caption of Fig. 5.

target detections are mapped by the local homographies to a noisy trajectory
on the ground plane. As the ground-plane alignment enforces planarity of the
reconstructed 3D trajectory, it is not able to match continuously the trajectory
from one camera to the other and moreover the reconstructed trajectory is noisy.
The result of the last optimization step in Fig. 1 is instead a smooth trajectory
which is as expected slightly non planar. Moreover, the corrections of the BA
in this scenario improves noticeably the estimate of the epipoles, as shown in
Fig. 5. The average error on the estimated distance between the cameras is about
50 cm.

Reconstruction in the non-overlapping scenario is shown in Fig. 6. There is a
good qualitative agreement of both experiments in terms of the reconstructed
trajectory and camera centers. However, the epipoles are estimated with less
accuracy and the BA is not able to improve the result of the ground-plane
alignment, Fig. 7. The reason for that is evident: even with few points in the
overlapping area, triangulation provides stronger support to the correct solution
then the smoothness constraint for the non-overlapping case.
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4 Conclusions

We describe in this paper a stratified auto-calibration framework for realistic
surveillance scenarios with non-overlapping cameras and an approximately pla-
nar trajectory originated from human observations. We use in the pipeline a
recently introduced single camera calibration in conjunction with an augmented
non-linear optimization. For the method to support visual tasks, we expected
an error in the calibration result not larger than the typical volume a person
occupies in space which is approximately 1 m × 1m × 2m. The experiments
show satisfying precision within this limit of applicability.

References

1. Javed, O., Shafique, K., Shah, M.: Appearance modeling for tracking in multiple

non-overlapping cameras. In: Proc. CVPR (2005)

2. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cam-

bridge University Press, Cambridge (2004)

3. Micusik, B., Pajdla, T.: Simultaneous surveillance camera calibration and foot-

head homology estimation from human detections. In: Proc. CVPR (2010)

4. Rahimi, A., Dunagan, B., Darrell, T.: Simultaneous calibration and tracking with

a network of non-overlapping sensors. In: Proc. CVPR (2004)

5. Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A.: Bundle adjustment - a

modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999.

LNCS, vol. 1883, pp. 298–375. Springer, Heidelberg (2000)

6. Hoiem, D., Efros, A.A., Hebert, M.: Putting objects in perspective. In: Proc. CVPR

(2006)

7. Pflugfelder, R., Bischof, H.: Localization and trajectory reconstruction in surveil-

lance cameras with non-overlapping views. PAMI 32(4), 709–721 (2009)

8. Lee, L., Romano, R., Stein, G.: Monitoring activities from multiple video streams:

Establishing a common coordinate frame. PAMI 22(8), 758–767 (2000)

9. Stein, G.: Tracking from multiple view points: Self-calibration of space and time.

In: Proc. CVPR. (1999)

10. Jaynes, C.: Multi-view calibration from planar motion trajectories. Image and Vi-

sion Computing (IVC) 22(7), 535–550 (2004)

11. Sheikh, Y., Li, X., Shah, M.: Trajectory association across non-overlapping moving

cameras in planar scenes. In: Proc. CVPR (2007)

12. Rudoy, M., Rohrs, C.E.: Simultaneous sensor calibration and path estimation. In:

IEEE Asilomar Conf. on Signals, Systems, and Computers (2006)

13. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:

Proc. CVPR (2005)

14. Lv, F., Zhao, T., Nevatia, R.: Self-calibration of a camera from video of a walking

human. In: Proc. ICPR (2002)

15. Krahnstoever, N., Mendonca, P.R.S.: Bayesian autocalibration for surveillance. In:

Proc. ICCV, pp. 1858–1865 (2005)

16. Lourakis, M.A., Argyros, A.: SBA: A Software Package for Generic Sparse Bundle

Adjustment. ACM Trans. Math. Software 36(1), 1–30 (2009)



Active Self-calibration of Multi-camera Systems

Marcel Brückner and Joachim Denzler

Chair for Computer Vision

Friedrich Schiller University of Jena

{marcel.brueckner,joachim.denzler}@uni-jena.de

Abstract. We present a method for actively calibrating a multi-camera

system consisting of pan-tilt zoom cameras. After a coarse initial calibra-

tion, we determine the probability of each relative pose using a probability

distribution based on the camera images. The relative poses are optimized

by rotating and zooming each camera pair in a way that significantly sim-

plifies the problem of extracting correct point correspondences. In a final

step we use active camera control, the optimized relative poses, and their

probabilities to calibrate the complete multi-camera system with a mini-

mal number of relative poses. During this process we estimate the trans-

lation scales in a camera triangle using only two of the three relative poses

and no point correspondences. Quantitative experiments on real data

outline the robustness and accuracy of our approach.

1 Introduction

In the recent years multi-camera systems became increasingly important in com-
puter vision. Many applications take advantage of multiple cameras observing a
scene. Multi-camera systems become even more powerful if they consist of active
cameras, i. e. pan-tilt zoom cameras (Fig. 1). For many applications, however,
the (active) multi-camera system needs to be calibrated, i. e. the intrinsic and
extrinsic parameters of the cameras have to be determined. Intrinsic param-
eters of a camera can be estimated using a calibration pattern [1] or camera
self-calibration methods for a rotating camera [2,3]. The focus of this paper is
on (active) extrinsic calibration which consists of estimating the rotation and
translation of each camera relative to some common world coordinate system.

Classical methods for extrinsic multi-camera calibration need a special cali-
bration pattern [1] or user interaction like a moving LED in a dark room [4,5].
From a practical point of view, however, a pure self-calibration is most appeal-
ing. Self-calibration in this context means that no artificial landmarks or user
interaction are necessary. The cameras estimate their position only from the im-
ages they record. An example for self-calibration of a static multi-camera system
is the work of Läbe and Förstner [6]. Given several images they extract point
correspondences and use these to estimate the relative poses. Another example
is the graph based calibration method proposed by Bajramovic and Denzler [7]
which considers the uncertainty of the estimated relative pose of each camera
pair. However, both methods are designed for static cameras and do not use the
benefits of active camera control.

M. Goesele et al. (Eds.): DAGM 2010, LNCS 6376, pp. 31–40, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. A multi-camera system (left) consisting of six pan-tilt zoom cameras (white

circles). The cameras are mounted near the intersection of the pan and tilt axes (right).

Sinha and Pollefeys [8] suggest a method where each pan-tilt zoom camera
builds a high resolution panorama image. These images are used for relative pose
estimation. However, these huge images can contain many ambiguities which
affect the extraction of correct point correspondences. The calibration method
of Chippendale and Tobia [9] defines an observer camera which searches for the
continuously moving other cameras. If the observer spots some other camera the
relative pose between the two cameras is extracted by detecting the circle shape
of the camera lens and tracking some special predefined camera movements.
The applicability and accuracy of this method highly depends on the distance
between the cameras.

One of the biggest problems in extrinsic camera calibration is extracting cor-
rect point correspondences between the camera pairs. This problem is called wide
baseline stereo and several approaches can be found in the literature [10,11].
However, if the cameras have very different viewpoints on a scene, projective
influences and occlusions complicate or make it impossible to establish correct
point correspondences. Active cameras could use rotation and zoom to reduce
these projective influences.

In this paper, we present a method which uses active camera control to cali-
brate a multi-camera system consisting of pan-tilt zoom cameras. After an initial
coarse calibration which uses the common field of view detection of Brückner et
al. [12] to reduce ambiguities in the point correspondence detection, the best
relative pose for each camera pair is selected based on its probability. Hence we
present an image based probability distribution for relative poses. Given the ini-
tial poses, each camera pair rotates and zooms in a way that the points of view
of the two cameras are very similar. The resulting similar camera images signifi-
cantly simplify the problem of establishing new point correspondences which are
used to reestimate the relative poses. In a final step we use the relative poses and
their probabilities to calibrate the complete multi-camera system from a minimal
set of relative poses. In order to estimate the scale factors of the relative poses in
a camera triangle, we use only two of the three relative poses and we do not need
any triple point correspondences. Instead we use active camera control and our
image based probability distribution for relative poses. This reduces the number
of relative poses needed for the complete calibration and totally avoids outlier
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point correspondences. The remainder of this paper is organized as follows: in
Section 2 we introduce some basics and notation. Our method is described in
Section 3. In Section 4 we present and discuss our experiments. Conclusions are
given in Section 5.

2 Basics

2.1 Camera Model and Relative Pose between Cameras

A world point Xw is projected to the image point x
def= KRptu (RiXw + ti),

where Ri, ti are the extrinsic camera parameters (rotation and translation), K is
the pinhole matrix [13] and Rptu is the rotation of the pan-tilt unit. We assume
the pan and tilt axes to be identical to the Y and X axes of the camera coordinate
system, respectively. Throughout the paper we use image points which are nor-
malized with respect to the camera and pan-tilt rotation x̃

def= R−1
ptuK−1x. From

this point on, when talking about the camera orientation and position we actu-
ally mean Ri, ti with no pan-tilt rotation Rptu = I. The relative pose between
two cameras i and j is defined as Ri,j

def= RjR
−1
i and ti,j

def= tj −RjR
−1
i ti.

2.2 Common Field of View Detection

Common field of view detection consists of deciding which image pairs show a
common part of the world. We will briefly describe the probabilistic method of
Brückner et al. [12] which gave the best results in their experiments.

Given two camera images, the difference of Gaussian detector [11] is used to
detect interest points Ci = {x̃1, . . . , x̃n} and Cj = {x̃′

1, . . . , x̃
′
n′}. For each point

x̃i, the SIFT descriptor des(x̃i) is computed [11]. These descriptors are used to
construct a conditional correspondence probability distribution for each x̃i

p
(
x̃′

j | x̃i

)
∝ exp

(
−di,j

d − dN (x̃i)
λd dN (x̃i)

)
, (1)

where λd is the inverse scale parameter of the exponential distribution, di,j
d =

dist(des(x̃i),des(x̃′
j)) is the Euclidean distance between the descriptors of the

points x̃i and x̃′
j , and dN (x̃i) = minj(d

i,j
d ) denotes the distance of the nearest

neighbor of the point x̃i. Each of the resulting conditional probability distribu-
tions p(x̃′

j | x̃i) has to be normalized such that
∑

x̃′
j∈Cj

p(x̃′
j | x̃i) = 1 holds.

The conditional probability distributions are used to calculate the normalized
joint entropy which is defined as

H(Ci, Cj)
def= −1

η

∑
x̃i∈Ci

∑
x̃′

j∈Cj

p(x̃i)p
(
x̃′

j | x̃i

)
log

(
p(x̃i)p

(
x̃′

j | x̃i

))
, (2)

where η = log(nn′) is the maximum joint entropy and p(x̃i) is a uniform dis-
tribution if no prior information about the interest points is available. A low
joint entropy H(Ci, Cj) indicates similar images. For further details the reader is
referred to [12].
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Fig. 2. The three steps of our multi-camera calibration method. Each step is described

in the indicated Section.

3 Active Multi-camera Calibration

We calibrate an active multi-camera system consisting of c pan-tilt zoom cam-
eras. For each camera the intrinsic parameters for different zoom steps are as-
sumed to be known. Our calibration method consists of three steps which are
illustrated in Fig. 2: an initial relative pose estimation with an evaluation of the
relative poses, an optimization of these relative poses and a final estimation of
the translation scale factors. Each step uses active camera control in a different
way and to a different extent.

3.1 Initial Relative Pose Estimation and Evaluation

Given the intrinsic parameters, each camera records as many images as necessary
to cover its complete environment. Now each camera pair searches for image pairs
sharing a common field of view (Section 2.2). This search can be viewed as a
prematching of point correspondences which considers the local environment of
each interest point. Hence, it decreases the chance of ambiguities disturbing the
point matching process. Between each of these image pairs point correspondences
are extracted using the difference of Gaussian detector, the SIFT descriptor, the
Euclidean distance, and the two nearest neighbors matching with rejection as
proposed by Lowe [11].

Based on all extracted point correspondences of a camera pair we estimate
the relative pose using the five point algorithm [14]. An important point is that
the translation of these relative poses can only be estimated up to an unknown
scale factor. For the complete calibration of a multi-camera system consistent
scale factors for all translations have to be estimated.

In order to increase the robustness against outliers we embed the five point
algorithm into a RANSAC scheme [15]. As distance measure we use the closest
distance between two viewing rays

di,j
e

(
x̃i, x̃

′
j

) def= min
λi,λj

∥∥∥∥(λiRi,j x̃i +
ti,j

‖ti,j‖2

)
− λjx̃

′
j

∥∥∥∥
2

with λi, λj > 0 . (3)

Since we normalize the translation to unit length, it is possible to define the
inlier threshold relative to the camera distance. The scale factors λi and λj need
to be positive which affects the direction of the viewing rays and is similar to
the constraint of 3D points to lie in front of both cameras.

Instead of selecting a single best pose, we select the mp best poses based on
the number of inliers. Since most of these poses are quite similar, we additionally
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constrain the selection to take only relative poses that satisfy a minimum rotation
difference θR and translation difference θt to the already selected relative poses.

Now, each camera pair i, j performs the following procedure for each of its mp

relative pose candidates. First, the two cameras are rotated in a way that they
look into the same direction and their optical axes are aligned (or a setup as close
as possible to this). Camera i has to look in the direction −Ri,jti,j and camera
j looks at −ti,j . From each of the resulting camera images interest points are
extracted. Now, the cameras repeat the first step, but in the opposite direction.
The result of this procedure is a set of interest points Ci and Cj for each of the
two cameras i and j. Given these interest point sets we want to evaluate the
relative pose candidate. Therefore we calculate the probability

p (Ri,j , ti,j) ∝
∑

x̃i∈Ci

∑
x̃′

j∈Cj

p
(
Ri,j , ti,j | x̃′

j , x̃i

)
p
(
x̃′

j | x̃i

)
p (x̃i) , (4)

where p
(
Ri,j , ti,j | x̃′

j , x̃i

) def= exp
(
−di,j

e

(
x̃i, x̃

′
j

)
/λe

)
is an exponential distri-

bution using the distance measure of (3) and the inverse scale parameter λe,
p
(
x̃′

j | x̃i

)
is the conditional correspondence probability of (1) and p (x̃i) is a

uniform distribution if no prior information about the interest points is avail-
able. We note that this probability distribution can also be viewed as an image
similarity measure which is based on image and geometric information. For each
camera pair the relative pose candidate with the highest probability is selected.

3.2 Actively Optimizing the Relative Poses

Given the initial relative poses Ri,j , ti,j we optimize these poses by steering each
camera pair in a way that it can easily establish new point correspondences.

As mentioned in Section 1, the biggest problem in finding correct point cor-
respondences are projective influences. These influences depend on the relation
between camera distance and scene distance and the difference in the viewing di-
rections between the cameras. To reduce these influences we first rotate the two
cameras in a way that their optical axes are aligned as described in Section 3.1.
Additionally we search for the zoom step z of the backmost camera i with the
highest image similarity by

argmin
z

H (Ci (z) , Cj) , (5)

where Ci (z) is the interest point set of camera i at zoom step z and H (Ci, Cj)
is the normalized joint entropy (2). Again, this procedure is repeated for the
opposite direction and yields in an interest point set for each camera. Similar to
the initial calibration we extract point correspondences and use these to estimate
the relative pose. Since we expect the descriptors of two corresponding points
to be very similar due to the high similarity of the camera images, we choose a
stricter rejection threshold for the two nearest neighbors matching than in the
initial calibration. The estimated relative poses are evaluated as described in
Section 3.1. For each camera pair the reestimated relative pose will only be used
if it has a higher probability than the initial relative pose.
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Fig. 3. A camera triangle (i, j, k). Cameras i and k rotate with angle α around the

plane normal of the camera triangle. The scale λs depends on the angle α. There will

be only one angle α where the optical axes of both cameras are aligned (left). At this

point the triangle is correctly scaled. In all other cases the cameras will not look into

the same direction and the scaling between the relative poses is incorrect (right).

3.3 Estimation of the Translation Scale Factors

At this point of our calibration we have for each camera pair i, j a relative pose
Ri,j , ti,j and a probability of this pose p (Ri,j , ti,j). We do not know the correct
scale factor of each translation. Scaling a relative pose always means scaling
the translation. The final calibration can only be estimated up to one common
scale factor [13]. In order to estimate the scale factors in a camera triangle,
traditional methods use either all three relative poses in the triangle [6,7] or
they try to establish point correspondences between all three camera images
[13]. Our proposed method uses only two of the three relative poses and does
not need any point correspondences at all. Instead we use active camera control
and the probability distribution of (4). This reduces the number of required
relative poses and totally avoids the chance of outlier point correspondences.

The final calibration is represented by a relative pose graph where each ver-
tex represents a camera and each edge represents the relative pose between two
cameras. Two vertices i and j are simple connected if there exists a path between
them and they are called triangle connected if there exists a path of triangles
between them [7]. The important difference is that only triangle connected sub-
graphs have a consistent scaling. In the beginning this graph has no edges. The
following procedure is repeated until the graph is triangle connected.

We search for the camera triangle (i, j, k) which has the highest product of
the probabilities of two of its relative poses p (Ri,j , ti,j) p (Rj,k, tj,k) and no edge
between the two vertices i and k. We now simultaneously estimate the third
relative pose Ri,k, ti,k and all translation scale factors of the triangle. This is
done by rotating camera i and k simultaneously around the plane normal of the
camera triangle. In the beginning both cameras look into the direction defined
by the translation ti,j . Now, we search for the rotation angle α that

max
α

p (Ri,k, ti,k (α)) with Ri,k
def= Rj,kRi,j and ti,k (α) def= Rj,kti,j + λstj,k ,

(6)
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Fig. 4. Situations that can occur when inserting a camera triangle into the relative

pose graph. The inserted triangle a has doted lines. Existing triangles are gray and

share the same letter if they are in a triangle connected subgraph.

where we assume ‖ti,j‖2 = ‖tj,k‖2, the scale factor λs
def= sin (α) / sin (Π − α− β)

arises from the law of sines and β
def= arccos

((
tT
i,jtk,j

)
/ (‖ti,j‖2‖tk,j‖2)

)
is the an-

gle between the translation vectors ti,j and tk,j . The probability p (Ri,k, ti,k (α))
is the probability of (4). There will be only one rotation angle α where the two
cameras i and k look exactly into the same direction. For a clearer understanding
the described relations are visualized in Fig. 3. The procedure is repeated in the
opposite direction which results in estimating the inverse relative pose Rk,i, tk,i.
Again, we decide between these two poses based on their probability.

If the relative poses and scales of a camera triangle are known, it is inserted
into the graph. We distinguish four different situations when inserting a new
relative pose triangle into the relative pose graph. These four situations are
illustrated in Fig. 4. The first situation is the trivial case of inserting a single
triangle without conflicting edges. In the second case the inserted triangle shares
a common edge with a triangle connected subgraph. This situation requires a
rescaling of the triangle. The scale factor is defined by the relation between the
translation lengths of the two common edges (the translation direction of these is
identical). The third case creates a triangle connection between two prior simple
connected parts of the graph. This requires rescaling the triangle and one of the
two graph parts. The relative pose triangle in the fourth case cannot be inserted
because it is impossible to correctly rescale the participating subgraphs. After
inserting a camera triangle into the graph we need to check if two edges of some
camera triangle are in the same triangle connected sub graph. In this case the
relative pose of the third edge results from the poses of these two edges.

We note that several single camera triangles can be inserted before some of
them build a triangle connected subgraph which reduces error propagation.

4 Experiments and Results

4.1 Experimental Setup

In our experiments we use a multi-camera system consisting of six Sony DFW-
VL500 cameras with a resolution of 640 × 480 pixels. Each camera is mounted
on a Directed Perception PTU-46-17.5 pan-tilt unit. We use a slightly modified
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version of this pan-tilt unit which allows to mount the camera quite close to the
intersection of the pan and tilt axes (Fig. 1, right). We test our method on a
total of 30 calibrations with 5 different setups of the multi-camera system. An
example setup can be found in Fig. 1 (left). In order to generate ground truth we
use the calibration software of the University Kiel [16] which uses a pattern based
calibration method [1] with non-linear refinement. The intrinsic parameters of
five zoom steps of each camera are estimated using the self-calibration method
of [3]. The radial distortion of the images is corrected using the two parameter
radial distortion model of [17]. As explained in Section 3.3, we can only calibrate
up to a common scale factor. In order to compare our calibration with the ground
truth, we scale our calibration result by the median of the factors ‖tGT

i,j ‖2/‖ti,j‖2
of all camera pairs i, j, where tGT

i,j is the ground truth translation.
For the common field of view detection we use λd = 0.5 and mr = 71 as

suggested by Brückner et al. [12]. Each camera records 20 images in order to
cover its complete environment. For each camera pair we use the mi = 20 image
pairs with the highest image similarity. From each of these image pairs 25 point
correspondences are extracted using a nearest neighbor rejection threshold of
0.8 as suggested by Lowe [11]. This results in a maximum of mc = 500 point
correspondences for each camera pair. We use 50000 RANSAC iterations and an
inlier threshold of 0.005 for the initial relative pose estimation. For each camera
pair we save the mp = 5 best poses according to the number of inliers and a
minimum rotation and translation difference of θR = θt = 2◦. We set the inverse
scale parameter λe of the exponential distribution in (4) to 0.005. The choice
of this parameter is not that critically as additional experiments show. For the
matching during the optimization process we use a stricter nearest neighbor
rejection threshold of 0.6.

4.2 Results

We present our calibration results in Fig. 5 using box plots (the box depicts
the 0.25 and 0.75 quantiles, the line in the middle is the median and crosses
are outliers, for further details please refer to [18]). In the upper row we show
the rotation errors in degree. The bottom row displays the translation errors in
degree or millimeters depending on the calibration step. We plot the errors of the
relative poses for the initial calibration (initial, Section 3.1), after the evaluation
and optimization step (opt., Section 3.2) and of the absolute camera poses for
the final calibration (final, Section 3.3). We also distinguish whether we used
the five zoom steps (zoom) or not (no zoom). For comparison we also present
results of the passive uncertainty based calibration method of Bajramovic and
Denzler [7] (passive). We manually rotate the cameras to ensure that they share
a common field of view for this passive method.

The results show that each step refines the calibration and outliers are re-
jected. We achieve a final median rotation error of 0.9degree and a median
translation error of about 68millimeters for the method using zoom. In the case
of no zoom the results are slightly worse. In comparison to the passive approach
we reach a similar rotation and a much lower translation error.
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Fig. 5. Top: the rotation error during the different calibration steps in degree. Bot-

tom: the translation error in degree or millimeters depending on the calibration step.

For comparison we also present the results of the passive calibration approach of [7]

(passive). The results of the initial calibration and some outliers are truncated.

Since we assume the pan and tilt axes to be identical to the Y and X axes
of the camera, we also investigated the rotation error between the pan-tilt unit
and the camera. We note that a (small) rotation between the camera and the
pan-tilt unit has a higher impact on normalized point coordinates extracted from
zoomed images. In order to rate the magnitude of this rotation we estimate it
with the hand-eye calibration method of Tsai and Lenz [19]. The mean rotation
between pan-tilt unit and camera in our experiments is 0.995◦.

We also investigate the repeatability of the camera zoom by switching between
the zoom steps and calibrating the intrinsic parameters several times. The cal-
culated coefficients of variation for the intrinsic parameters lie in a magnitude
of 10−3 which indicates good repeatability.

Calibrating a multi-camera system consisting of six cameras takes about 70
minutes in the current (serial) implementation. However, since many steps could
be parallelized the runtime could be improved significantly.

5 Conclusions

We presented a method which uses active camera control for calibrating a multi-
camera system consisting of pan-tilt zoom cameras. In order to evaluate a relative
pose we introduced a probabilistic measure (4) which incorporates image and
geometric information. Relative poses were optimized by rotating each camera
pair in a way that simplifies the problem of extracting correct point correspon-
dences. The final calibration process was based on these relative poses and their
probabilities. The scale factors in each camera triangle were estimated using
our probabilistic measure and active camera control. This allowed to reduce the
number of necessary relative poses. Our experiments demonstrated the robust-
ness and high accuracy of our approach. We achieved a median rotation error
of 0.9◦ and a median translation error of 68mm (Fig. 5). In our future work we
hope to improve our calibration by considering the hand-eye calibration.
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Jonathan Balzer1, Sebastian Höfer2, Stefan Werling2, and Jürgen Beyerer2

1 King Abdullah University of Science and Technology (KAUST),

Geometric Modeling and Scientific Visualization Center, Thuwal 23955-6900,

Kingdom of Saudi Arabia

jonathan.balzer@kaust.edu.sa
2 Lehrstuhl für Interaktive Echtzeitsysteme, Institute for Anthropomatics,

Karlsruhe Institute of Technology (KIT), Germany

{hoefer,werling,beyerer}@ies.uni-karlsruhe.de

Abstract. We state that a one-dimensional manifold of shapes in 3-

space can be modeled by a level set function. Finding a minimizer of

an independent functional among all points on such a shape curve has

interesting applications in computer vision. It is shown how to replace

the commonly encountered practice of gradient projection by a projec-

tion onto the curve itself. The outcome is an algorithm for constrained

optimization, which, as we demonstrate theoretically and numerically,

provides some important benefits in stereo reconstruction of specular

surfaces.

1 Introduction

1.1 Motivation

Some reconstruction methods in computer vision are plagued with non-unique-
ness. Instead of a single solution, they return to the user an entire family of
surfaces Γ that could have evoked the underlying observation(s) and therefore
require some form of regularization. This paper specializes in families Γϕ of a
real parameter c ∈ R. Initially, we notice that these are conveniently expressed
in terms of level set functions ϕ ∈ C2(R3):

Γϕ := {Γ ⊂ R3 | ϕ(x) = c, x ∈ Γ}. (1)

Observe that ϕ does not necessarily represent a signed distance, for in that case
all elements in Γϕ would be scaled versions of each other. The set Γϕ exhibits the
structure of a one-dimensional shape space or, as we call it, shape curve, which
gathers surfaces with the same trace in a joint equivalence class. Mathematically
speaking, a level set function is Eulerian in nature, meaning that it references
a global world coordinate system rather than a collection of local bases, and as
such accounts for the quotient structure of shape spaces in a very desirable way.

Imposing a smoothness assumption is a widespread practice to select a unique
element Γ ∗ from Γϕ. But what if all its shapes on the curve are equally smooth?

M. Goesele et al. (Eds.): DAGM 2010, LNCS 6376, pp. 41–50, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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To facilitate more sophisticated regularization schemes, a-priori knowledge may
be expressed in terms of a selector functional E : Γϕ → R in such a way that
the sought-after surface

Γ ∗ = arg min E(Γ ) subject to Γ ∈ Γϕ. (2)

A simple but effective strategy for the solution of the constrained optimization
problem (2) with feasible region Γϕ shall be the core of Section 2.2. An appli-
cation of the proposed algorithm to the reconstruction of specular surfaces is
discussed in Section 3.2.

1.2 Related Work

The monograph [1] provides a vast introduction to the analysis of shape spaces
and functionals defined on them. In [2], Aubert et al. argue where and how this
calculus has advantages over the classical variational approach in image process-
ing. Among other things, they discuss segmentation by active contours which
is aside from constraints the 2d counterpart of what will be presented below.
Solem and Overgaard provide a framework for shape optimization under equal-
ity constraints, which heavily relies on gradient projection in infinite-dimensional
Hilbert spaces [3].

2 Optimization on Shape Curves

2.1 Fundamentals

First, let us briefly recall a few essential concepts of shape calculus: Scalar normal
velocity fields vn : Γ → R may be regarded as “tangents” to a shape space at
a “point” Γ . By the Hadamard-Zolésio theorem, every functional E possesses a
unique shape gradient gE : Γ → R such that the differential of E in the direction
vn can be written as the L2-inner product dE(Γ, vn) = 〈gE , vn〉L2(Γ ), cf. [1, p.
348f.]. Analogous to the finite-dimensional setting, an auxiliary functional Eϕ can
be used to implicitly rephrase (1) as Γϕ = {Γ ⊂ D | Eϕ(Γ ) = 0} and constrain
a gradient descent by subtracting from its steps the components orthogonal to
Γϕ and thus parallel to gEϕ . Unfortunately, a large class of side conditions,
including the one discussed in Section 3, does not admit this kind of projection
because both, Eϕ as well as gEϕ are zero on Γϕ. For an illustration, consider the
finite-dimensional example S1 = {x ∈ R2 | ϕ(x) = (‖x‖ − 1)2 = 0}. While as
feasibility region the unit circle itself admits a projection along its normal field,
this specific algebraic representation forbids it as ∇ϕ = 0 on S1. One speaks of
insufficient linear independence constraint qualification, cf. [4, Definition 12.4].

2.2 The Algorithm

Even when well-defined, projected-gradient descents tend to accumulate errors
as they progress so that one would have to unbias the iterates themselves towards
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the curve in regular intervals anyway [3]. One key observation is that for feasi-
bility regions of the form (1), this amounts to normal field adaption: From the
theory of implicit functions, we know that ∇ϕ is orthogonal to the iso-surfaces
of ϕ and hence, after normalization, equal to their Gauss maps. The image Γ̃ of
a regular surface Γ with unitary normal field1 n̂ under the projection onto Γϕ

must make
Eϕ(Γ ) =

∫
Γ

1
2
‖n̂−∇ϕ‖2dΓ (3)

stationary. Assume now that Γ̃ = Γ + ṽnn̂. If Γ was a plane and ϕ respec-
tively ∇ϕ did not depend on the spatial variable x ∈ R3, the optimal normal
perturbation ṽn could be directly found as solution of the Poisson equation

ΔΓ ṽn = div∇ϕ (4)

on Γ , where ΔΓ denotes the Laplace-Beltrami operator2. In the general case,
update Γ̃ = Γ + ṽnn̂ and solution of (4) must be iterated alternatingly. It
can be shown that this procedure is equivalent to Newton’s method applied to
the nonlinear least squares formulation (3) of the projection subproblem, see
the examples section in [5] for further details. Interweaving the projection and
a descent with respect to the selector functional E, the following algorithm is
obtained:

1. Start with some initial surface Γ0.
2. Project Γk onto Γϕ by minimization of (3).
3. Advect the result Γ̃k according to Γk+1 = Γ̃k + αkvn(Γ̃k)n̂(Γ̃k) with vn any

descent direction of E and αk ∈ R an appropriate step size.
4. Terminate if |E(Γ̃k)−E(Γ̃k−1)| is below a fixed user-selected threshold, else

set k ← k + 1 and continue with step 2).

The stopping criterion is justified because it involves a finite difference approxi-
mation to the derivative of the chained mapping E(c) : R → R, taking the curve
parameter c to the value of E.

3 Application to Specular Stereo

3.1 Introduction

Shape from Specular Reflection3 was originally described in [6] maybe earlier
and proceeds roughly as follows: A camera images via the unknown specular
object some areal light source, e.g. a liquid crystal display. The latter is capable

1 Here and subsequently, unit vectors are marked with a hat, i.e. ‖x̂‖ = 1.
2 A comprehensive exposition of the Laplace-Beltrami operator as well as a convenient

Eulerian tangential calculus can be found in [1, p. 360ff.].
3 Also known as Shape from Distortion or, among measurement scientists, as deflec-

tometry.
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Fig. 1. Deflectometry principle for the high-precision measurement of specular surface

shape: Every screen pixel identifies itself in the camera image by a unique sequence

of gray values leading to robust correspondences between scene points and viewing

directions

of displaying optical code words such that individual correspondences between
pixels and observed scene points can be established, see Figure 1. Rising one
abstraction layer, by Malus’ and Dupin’s law, the raw data is converted into a
vector field n̂d of desired unit normals on a subset D ⊆ R3 of the field of view,
see Figure 2(a). Integrability provided, obviously n̂d induces a shape curve of the
form (1) via the partial differential equation (PDE)∇ϕ = n̂d, cf. [7]. To highlight
the dependance of a shape curve Γϕ on a normal field n̂d, we will subsequently
use the notation En̂d instead of Eϕ for the associated projection functional (3).
In the present context, regularization is understood as the selection of the level
set of ϕ corresponding to the true physical mirror surface. In particular, the
idea of specular stereo as introduced in [8] is to gain information by recording
a series of different normal fields n̂i

d, i ∈ {1 . . . , n} with n ≥ 2. As opposed to
classical stereo on Lambertian surfaces, the key concept illustrated in Figure 2(a)
is to correlate solution candidates through a generalized disparity d : D → R of
their normal fields, not features in image data. For further details, the interested
reader is encouraged to consult the survey [9] and the references therein.

3.2 Disparity Minimization on the Solution Manifold

We will strictly enforce the constraint that Γ ∗ must lie on the shape curve
spanned by the mean normal field

n̂m
d =

nm
d

‖nm
d ‖

, nm
d :=

1
n

n∑
i=1

n̂i
d. (5)

It can be assumed that n̂m
d is dense in D since we expect the result to lie inside

the visual hull induced by the involved imaging sensors. This is favorable in
view of the fact that for finite pattern generator areas, highly convex objects
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(a) (b)

Fig. 2. (a) Principle of specular stereo: The true surface must run through the points

where the generalized disparity between normal fields attains a minimum. (b) Our

robot-based monocular stereo setup.

may require multiple measurements, see for example Figure 7(c). As selector
functional we choose

E(Γ ) :=
∫
Γ

d(x)dΓ, (6)

although a variety of alternatives is imaginable (e.g. individual normal error,
distance to a known point, etc.). If we interpret the disparity d as Riemannian
metric on R3 respectively Γ , then (6) is simply a minimal weighted-area surface
functional with well-known shape gradient gE = κd + 〈∇d, n̂〉, cf. [1,2,10]. In
homogenous regions where ∇d = 0, the product of mean curvature κ and d de-
creases the value of E simply by shrinking the integral’s domain of definition. We
can drop it in our application and still maintain a, possibly less efficient, descent
direction for E! The vanishing of ∇d is exactly what we want to achieve, all the
while κ only introduces undesirable numerical stiffness into the descent equa-
tion. The remaining gradient term can be problematic in practice, as stochastic
disturbances of d are amplified through differentiation. Thus, we only use it to
estimate the correct sense of direction for vn in step 3) of our algorithm by
setting

vn(x) :=

⎧⎨⎩1 if
∫
Γ

〈∇d, n̂〉dΓ < 0,

−1, else.
(7)

After all, the only requirement on vn is that it is some descent direction. Further-
more, if the elements of Γϕ vary slowly enough, the identity function on Γ seems
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(a) (b)

0 0.0008
d(x)

Fig. 3. (a) Pointwise reconstruction by voxel carving. The coloring reflects the distance

of points in the cloud to the plane z = 0. (b) Reconstruction by our method: initial

surface (dark) and limit surface (light). Enforcing a hard constraint can lead to high-

quality results even under the influence of measurement noise, making extensive post-

processing obsolete. Also shown are cross sections of the corrupted disparity field d :

D �→ R. Areas, where only one or no normal field at all is available and hence the

disparity is not well-defined, are indicated by the color cyan.

to be a fairly good approximation of the shape gradient gE always provided that
Γ ∈ Γϕ.

4 Experiments

4.1 Implementation

As we assumed the topology of Γ ∗ to be known in advance, we based the im-
plementation on an explicit simplicial surface model, particularly a manifold
mesh, which contains no self-intersections, hanging edges, t-junctions, or isolated
vertices. This choice affords relatively low computational complexity compared
to the level set method, which is to be favored when topological changes are
expected to occur during the evolution. Still, although not mandatory, a full
three-dimensional Cartesian lattice of size 100 × 100 × 100 was maintained for
visualization purposes. It actually suffices to attach measurement data to the
evolving mesh via back-projection and compute all quantities specifying the de-
scent direction in a tubular neighborhood around Γk (very similar to narrow
band level set methods). The linear elliptic PDE (4) was handled by the finite-
element method in our implementation. For control of the step sizes αk, a simple
Armijo backtracking strategy was employed, cf. [4, p. 37] for the technical details.



Optimization on Shape Curves with Application to Specular Stereo 47

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0  1  2  3  4  5  6

k

E
(Γ

k
)

Noise-free data
Noisy data

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 0  1  2  3  4  5  6  7

k

i = 1
i = 2

E
n̂

i d
(Γ

k
)

i = m

(b)

Fig. 4. (a) Value of the selector functional E over Γk progressing through Γϕ. (b) The

error between actual surface normals and the gradient of ϕ quantifies the distance of

Γk from the constraint manifold Γϕ. Also the error with respect to the individual fields

n̂1
d and n̂2

d is decreasing. Re-projection occurs at odd steps, which have been inserted

here for visualization only (a cycle of the proposed algorithm begins at even numbers).

(a)

 100

 1000

 10000

 100000

 0  1  2  3  4  5  6  7  8  9

k

i = 1
i = 2

lo
g
E

n̂
i d
(Γ

k
)

i = m

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  1  2  3  4  5  6  7  8

k

E
(Γ

k
)

(b)

Fig. 5. (a) Partially specular bowling ball: Even sub-millimeter details like the em-

bossed logo print are easily recovered. The color encodes the mean curvature of the

reconstructed 3d model. (b) Convergence rates.
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(a) Original (b) Reconstruction

(c) Deflectometric stereo image: The color encodes the norm of the vector

field emerging from the projection center of the camera and pointing to the

locus of the observed scene point per pixel.

Fig. 6. Multiview specular stereo serves two main purposes: It enables the inspection

of large or complex-shaped objects as well as regularization by examining disparity

values in overlapping measure fields

4.2 Results

To be able to assess algorithm performance by comparison with ground truth, we
synthesized the following benchmark by ray tracing: A pinhole camera observes
the planar mirror Γ ∗ = {(x, y, z)� ∈ R3 | z = 10} orthogonal to the principle
axis. Sight rays, leaving the projection center located in the origin of the world
coordinate system, are reflected and intersect the xy-plane, which models the
controllable illumination. The surfaces in the induced solution manifold grad-
ually develop from concave to convex with growing distance from the optical
center. The original surface was regained effortlessly by voxel carving as de-
scribed in [11]. However, superimposing every coordinate of n̂m

d with zero-mean
Gaussian noise (standard deviation σ = 0.5) diminished reconstruction quality
visibly, see Figure 3(a). Shape and disparity change only little within the solu-
tion manifold, still enough, though, to be relevant from the standpoint of optical
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(a) Original (b) Reconstruction

(c) Indirect image of the pattern

generator

(d) Deflectometric image corre-

sponding to (c)

Fig. 7. Partially specular emblem of a German auto brand: Figure (c) demonstrates

that usually not all of the surface can be covered by one imaging constellation

metrology. It is precisely this low sensitivity that makes the pointwise approach
so error-prone. Our method enforces two strong constraints as countermeasures:
First, the context of points united in a regular surface is not resolved4. Second,
a feasible surface must be coherent with the deflectometric measurement. This
way, the mean squared distance error reduced from 0.13 to 1.38 · 10−6. Besides
the final reconstruction, one can observe in Figure 3(b) that, by definition (7),
the disparity must not necessarily be dense in the computational domain D.
Convergence rates are shown in Figure 4.

For our first real test object, the bowling ball depicted in Figure 5(a), the
manufacturer specifies a mean curvature of κd = 0.0125 mm−1, acting as some
form of ground truth here. Data were acquired in a monocular fashion with
the help of our robot-mounted sensor head shown in Figure 2(b). The result
by point-wise disparity minimization was degraded to a degree of unusability.
We experienced in turn high robustness of our algorithm with respect to noise,

4 Of course, one could argue that this is a disadvantage while recovering discontinuities.
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although no smoothing or regularization was involved but the averaging of fields
in Equation (5), refer to Figure 5. The mean curvature estimate of 0.0008 mm−1

for an arbitrarily chosen initial surface could be improved to as close as 0.01149
mm−1 to κd. This relative error of 8.7 % develops in the Voronoi area-based
curvature estimator used and may be also due to calibration uncertainties. Two
more practial examples are shown in Figures 6 and 7.

5 Conclusion

Deflectometric methods generate highly reliable shape information, which is,
however, only unique up to a scalar parameter. It is thus very natural to enforce
a strict data consistency constraint, while evaluating secondary information to
resolve the ambiguity. We have achieved this by introducing a general and ma-
thematically sound optimization framework, which could prove rewarding in
other computer vision or optical metrology scenarios.
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Abstract. We introduce a novel approach for separating and segment-

ing individual facades from streetside images. Our algorithm incorporates

prior knowledge about arbitrarily shaped repetitive regions which are de-

tected using intensity profile descriptors and a voting–based matcher. In

the experiments we compare our approach to extended state–of–the–art

matching approaches using more than 600 challenging streetside images,

including different building styles and various occlusions. Our algorithm

outperforms these approaches and allows to correctly separate 94% of

the facades. Pixel–wise comparison to our ground–truth yields a seg-

mentation accuracy of 85%. According to these results our work is an

important contribution to fully automatic building reconstruction.

1 Introduction

Large–scale image acquisition for geospatial mapping platforms such as Microsoft
Bing Maps or Google Maps requires appropriate data processing methods. While
early systems just showed raw photographies, more recent visualization tech-
niques allow to superimpose data obtained from satellite imagery, aerial photog-
raphy, and road maps. Modern systems use multiple–view images to analyze the
geometric properties of objects, resulting in 3D visualizations.

State–of–the–art methods [1] for 3D reconstruction are able to automatically
extract simple building models from aerial images. However, photographs taken
from an airplane offer limited view of building facades and therefore the recon-
struction lacks details. This is depicted to the left in Figure 1 using a 3D model
obtained from Microsoft Bing Maps. In contrast, an image of the same location
taken from street–level can be found to the right. The advantages are obvious:
Streetside images can be obtained with higher spatial resolution and from a more
natural point of view than aerial images.

Recently, there has been increasing interest in using streetside imagery for
automatically deriving 3D building models [2,3]. Müller et al. [2] introduced an
approach on image–based procedural modeling. Given single facade images they
first determine the structure of a facade. Once they know about the hierarchical
subdivisions of the facade it is possible to replace architectural elements by
parameterizable models. This representation has several advantages: First, the
visual quality of the image is improved. Whether we scale or change the view
within the model, there is no limit in spatial resolution. Second, the approach
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Fig. 1. Comparison between aerial and streetside imaging: While the 3D model ob-

tained from Microsoft Bing Maps (left) lacks details, it is easy to recognize the New

York Stock Exchange in the streetside image (right)

assigns semantical meanings to parts of the facade. This is important for future
applications using city models, for instance if the entrance has to be located.
Third, the huge amount of image data required to visualize an entire city can be
reduced to a predictable number of parameters. This allows geospatial mapping
systems to transmit high–quality data in a reasonable time across the web.

The availability of procedural modeling algorithms motivates the implemen-
tation of fully automatic streetside modeling pipelines. However, the gap be-
tween real–world data and assumptions in algorithms is big: State–of–the–art
approaches for 3D modeling [2,3] require orthorectified images of a single facade
as input. Since streetside data is in general acquired by cameras on top of a
moving car, images are not rectified and may show multiple facades. The goal of
our work is to close this gap by detecting and extracting single facade segments
from streetside images. By our definition, two facades should be separated if a
significant change in color or building structure can be detected. A single facade
segment is therefore a coherent area in an image, containing repetitive patterns
which match in color and texture.

The successful realization of this task does not only have an impact on auto-
matic procedural modeling workflows but also supports other computer vision
algorithms that cope with urban environments. For example, window detection
is strongly simplified if applied to single facades because the appearance of win-
dows is often similar. Our work contributes to this goal in two areas:

(1) Repetitive patterns. We analyze repetitive patterns by using contextual
information rather than directly comparing features or raw image data. Besides,
we compare our algorithm against various state-of-the-art feature matching ap-
proaches which we adapt for our purpose.
(2) Facade separation and segmentation. Building upon repetitive patterns
discovered in streetside images, we show how to separate and segment facades.
The approach is evaluated using 620 high–resolution streetside photographs,
acquired by cameras on top of a moving car. The images offer total coverage of
a city as seen from roads, but also include difficulties such as various building
styles and occlusions.
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2 Facade Separation and Segmentation Algorithm

Our algorithm for facade segmentation consists of three major steps: First, we
detect repetitive patterns in streetside images by extending a method designed
for wide–baseline matching (Section 2.1). The resulting pairs of interest points
are then used in a bottom–up manner to separate facades (Section 2.2). Fi-
nally, we combine the knowledge about repetitive areas with state–of–the–art
segmentation methods to obtain individual facade segments (Section 2.3).

2.1 Finding Repetitive Patterns

Matching of local features has been widely investigated but hardly ever applied to
a single image. Most algorithms were originally developed for object recognition
or wide–baseline matching where the task is to find the single best match to a
descriptor in a second image. We choose the Scale–Invariant Feature Transform
(SIFT) [4] to represent the category of local feature–based matching approaches.
SIFT has been designed for finding correspondences among feature sets from
different images. For single image operation a range of valid matches needs to
be defined. However, finding a proper threshold turned out to be difficult as the
descriptor either matched with structures across facade boundaries or it did not
find enough matches within a facade.

Shechtman and Irani [5] presented an approach to match complex visual data
using local self–similarities. They correlate a patch centered at the point of in-
terest with a larger surrounding region and use the maximal correlation values
within log–polar bins as descriptor. The benefit of this approach is the indepen-
dence of representation, meaning that just the spatial layout or shape is impor-
tant. However, this poses a problem for our needs: The most common repetitive
patterns are windows and their shape is often similar in different facades. While
the texture within the window often stays the same, the texture outside changes
and should definitely influence the result.

Tell and Carlsson [6,7] developed a robust approach for wide–baseline match-
ing. The basic idea is to extract intensity profiles between pairs of interest points
and match them to each other. If these profiles lie on a locally planar surface
such as a facade, any scale–invariant descriptor is also invariant to affine trans-
formations. Fourier coefficient descriptors of the first image are then matched to
descriptors of the second image, and votes are casted for the respective start-
and endpoints of the matching intensity profiles. Maxima in the voting table are
then considered as the best matches for the interest points of both images.

Within this work, we adapt the approach of [6] for finding repetitive patterns
within a single image. We detect interest points in the image, namely Harris
corners [8], and extract color intensity profiles on a straight line between them.
This results in a graph which connects all interest points (nodes) to each other.
To limit the complexity, we take only the nearest 30 neighbors into account.

Every RGB color channel contributes 20 values to the descriptor, sampled
using bilinear interpolation in regular intervals along the line. Finally, the 60–
dimensional descriptor is normalized. We achieve scale invariance by extracting
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Fig. 2. We describe the image content between Harris corners by extracting intensity

profiles with 20 values for every RGB color channel

a fixed amount of coefficients from interpolated, one–dimensional data. While
illumination changes of small areas are also corrected by the interpolation, larger
areas can be handled with the tolerance of the matching approach. Figure 2
visualizes some extracted intensity profiles and their origin in the image.

We use a kd–tree [9] for efficient matching of descriptors within a single im-
age, tolerating ±5% deviation off the descriptor prototype for finding repetitive
patterns. We do not consider matches with more than 10 descriptors involved
because these features are not discriminative enough. The robustness of the ap-
proach is based on an additional voting step. All matching profiles vote for the
similarity of the respective pair of start- and endpoints. Using this method, in-
terest points which are in similar regions get more votes than two random points.
We store a list of contributing profiles for every possible pair and increase the
vote count only if a descriptor has not contributed to that correspondence so far.
This is in a similar manner described in [7] and ensures that no bias is introduced
in the voting matrix. For locating repetitive patterns in the voting matrix, we
threshold the number of votes a correspondence received. A correspondence of
interest points has to be supported by at least 3 of 30 intensity profiles (10%).
One of the advantages of this voting process is the ability to match arbitrary
areas of the image, as visualized in Figure 3(a).

For the purpose of our work, we can further restrain the previously found
matches. Repetitive patterns on facades are unlikely to occur across the entire
image, but also very close matches are not valuable. We therefore restrict the
horizontal or vertical distance of the matches to avoid outliers. The final result
of our algorithm for finding repetitive patterns in a single image can be seen in
Figure 3(b). Note that only a small amount of interest point correspondences
cross the boundary between the two facade segments, while we can find a large
number within a segment.

2.2 Facade Separation

Facade separation is a task which has not received much attention in the past.
Müller et al. [2] introduced an algorithm which is able to summarize redundant
parts of a facade and thus subdivide images into floors and tiles. However, a
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(a) (b) (c) (d) (e)

Fig. 3. From streetside data to separation (best viewed in color): (a) Matching of arbi-

trary areas (b) Detected repetitive patterns (color–coded lines) (c) Projection results

in a match count along the horizontal axis (d) Thresholding the repetition likelihood

with the uniform repetition likelihood (e) Resulting repetitive areas, separation areas

(green), and unknown areas (red)

major limitation is the dependency on single facade images, and automatic pro-
cessing fails for scenarios with blurry texture, low contrast, chaotic ground floors,
and occlusions caused by vegetation. Other works on facade separation [3,10] are
based on the evaluation of directional gradients, which did not proof to be robust
for our datasets because it only works for highly regular facades.

The first stage of our facade segmentation algorithm provides interest point
correspondences. We can now use these results to detect clusters of repetitive
patterns. In this step we employ the Gravity Assumption, meaning that the
majority of images in streetside datasets show facades where repetitions occur
in horizontal direction and separations between facades in vertical direction.
This allows us to project the lines between all pairs of matching interest points
onto the horizontal axis and obtain the match count for every position on the
horizontal axis. An illustration can be found in Figure 3(c). We normalize the
match count to obtain the percentage of all matches at a given place on the
horizontal axis, which we call the repetition likelihood.

Simply detecting minima on the repetition likelihood is not suitable for find-
ing separation areas, as the global minimum would fail for panoramic images
with multiple splits and local minima occur regularly between rows of windows.
If all parts of the facade would contribute the same amount of repetitive patterns
to the likelihood, we would get a uniform repetition likelihood. This value is an
intuitive threshold, because areas where the likelihood is higher are more repeti-
tive than average (repetitive areas) and areas where it is lower are less repetitive
(separation areas). This fact is visualized in Figure 3(d). While repetitive areas
are used for segmentation later on, separation areas mark the position where
one facade ends and another starts. We also have to cope with the problem of
narrow fields of view, i.e. few or no repetitions are visible in images that actually
show a separation. We solve this by defining an unknown area on both sides of
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(a) (b) (c) (d)

Fig. 4. From separation to segmentation (best viewed in color): (a) Convex hull of

repetitive points as segmentation prior (b) Superpixel segmentation [11] (c) Combi-

nation of prior and appearance (d) Typical result

the image, starting at the image boundary and ending at the point where the
first repetitive area is detected. Separation examples are given in Figure 3(e).
The algorithm does not depend heavily on the quality of repetitive patterns but
works well with several approaches, as the evaluation in Section 3.1 shows.

2.3 Facade Segmentation

For the task of facade segmentation it is important to consider both the conti-
nuity of segments and the underlying structure of facades. Popular unsupervised
methods such as Normalized Cuts [12] or efficient graph–based segmentation [11]
failed to provide satisfactory results on our data because they lack this prior
knowledge. An approach which considers prior knowledge has been presented by
Korah and Rasmussen [13], who assume that the pixels located around a window
belong to the building wall. Their method also fails for our datasets as we do
not have knowledge about the window grid and a significant part of facades does
not have homogeneous texture.

In contrast, we want to incorporate repetitive areas as prior knowledge. Based
upon the results of the separation stage, we process repetitive areas individu-
ally. An interest point is called repetitive point if it has some correspondence
to another point. We assemble a set of all repetitive points within a repetitive
area and compute a convex hull [14] for this set of points, as can be seen in
Figure 4(a). The graph–based segmentation approach of [11] can be adjusted
to deliver superpixels (oversegmentations), visualized in pseudo–colors in Fig-
ure 4(b). We further combine prior knowledge and superpixels to the binary
masks in Figure 4(c). For all repetitive areas, we include those superpixels into
the respective facade segment which overlap with the convex mask. After mor-
phological post–processing, the final output of our algorithm are individually
segmented facades as depicted in Figure 4(d).
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3 Experiments and Results

Experimental evaluation is based on 620 images in total, which can be grouped
in two single–frame datasets and one dataset with panoramic images. First, the
US–style dataset contains 220 single–frame facade images. The main difficulties
of the dataset are very similar facades and low image quality in the top third
of the image. The second dataset consists of 380 frames with European–style
buildings. Compared to the first dataset, lower buildings result in more visible
parts of the facades. However, cars and trees occlude the facade and large parts
of road and sky can be seen. Furthermore, facades are heavily structured and it
is hard to obtain good segments for most of them. Finally, we manually selected
20 series (each of about 30 consecutive frames) to create the Panorama dataset.
Panoramic stitching is important because it increases the field of view in the
direction necessary for finding repetitive patterns. However, common algorithms
such as Autostitch [15] regularly fail due to occlusions by vegetation and signifi-
cant depth changes. While we cannot rely on fully automatic image stitching for
large sequences, we still want to show the applicability of our algorithm.

We use precision and recall [16] to evaluate our algorithm and combine them
by a harmonic mean to obtain the measure of effectiveness, also called F1–
measure. We obtained ground–truth by manually labeling individual facades.
We estimate the point matching quality by clustering the matches and assigning
them to ground–truth, resulting in a set of inliers and outliers for every segment.
We only use the match precision (PRmatch), as it is not possible to estimate the
amount of false negatives required to compute the recall. Facade separation
quality F1,sep is estimated by checking if the detected repetitive area lies within
the ground–truth segment. More or less splits lower the effectiveness except
when they occur in an unknown area. The facade segmentation quality F1,seg

is estimated using a pixel–wise comparison between the automatically obtained
segment and the ground–truth segment.

Our approach depends on the parameters of the Harris corner detector (σD =
0.7, σ = 3.0 for the European–style dataset and σ = 2.0 else) and the settings of
the superpixel segmentation (σ = 1.0, k = 100, min = 100). All other parameters
are defined with respect to the image scale. Facade segmentation using intensity
profiles takes about 10s per frame in a MATLAB implementation and could be
further improved by a proper implementation.

3.1 Comparison of Methods

The first experiment analyzes the influence of different profile descriptors. We
compare our choice of using intensity profiles in RGB color space, as described in
Section 2.1, to intensity profiles in different color spaces (Lab, grayscale), Fourier
profiles as used by Tell and Carlsson [6], gradients as used in SIFT [4], and RGB
histograms which neglect all spatial information.

The second experiment analyzes the influence of different methods for point
matching on the quality of facade separation and segmentation. We compare
our profile matching approach to the extended versions of SIFT descriptors [4],
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self–similarities [5], and raw patches of pixels. All methods are integrated in the
workflow of the facade segmentation algorithm and differ only by the approach
to repetitive pattern detection.

Table 1. Evaluation results as an average of all datasets. Our approach of intensity

profiles in RGB color space performs best

620 images, 3 datasets PRmatch F1,sep F1,seg

Intensity profiles (RGB) 72.8% 94.0% 85.4%

Intensity profiles (Lab) 68.8% 89.6% 83.8%

Intensity profiles (gray) 67.2% 90.9% 83.6%

Fourier profiles (gray) 67.1% 89.8% 84.6%

Gradient profiles (gray) 51.0% 82.6% 80.3%

Histogram profiles (RGB) 51.8% 83.6% 81.3%

SIFT [4] 72.6% 86.6% 78.6%

Self–similarities [5] 63.9% 78.4% 70.2%

Raw patches of pixels 72.3% 92.4% 83.6%

Table 1 presents an overview of the average results on all datasets. According
to these results our method performs better than any other intensity profile de-
scriptor or any extended state–of–the–art method. Although the distance to its
competitors is small there are two main reasons for using our method: First, it
achieves the best matching precision combined with a number of correct repeti-
tive patterns which is three times higher than for other methods. This increased
support makes the repetition likelihood defined in Section 2.2 more robust. Sec-
ond, our method is most tolerant regarding the appearance of repetitive patterns.
Corresponding areas can be arbitrarily shaped and do not depend on scale or
rotation.

3.2 Illustration of Results

After comparing the performance using objective measures we want to illustrate
the results. Figure 5 shows the separation and segmentation of four consecu-
tive images for the US- and European–style datasets. For better visualization,
videos are provided online1. A typical result for multiple–facade separation and
segmentation (Panorama dataset) can be found in Figure 6.

Separation problems occur if the field of view is too small. In such a case, a
different column of windows is enough to indicate a different facade. Segmen-
tation problems are mainly caused by repetitive patterns which are not part of
the facade, such as power lines in the sky. The resulting segment is therefore
too large and includes parts of the sky. Missing repetitive patterns at image
boundaries lead to wrong segmentations as well.

1 http://www.icg.tugraz.at/Members/wendel/

http://www.icg.tugraz.at/Members/wendel/
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Fig. 5. Typical results for facade separation (left) and segmentation (right) for US–

style facades (top) and European–style facades (bottom). The separation ground–

truth is marked by red lines. It overlaps either with separation areas (green), or un-

known areas (red) if not enough repetitive matches can be found.

Fig. 6. Typical results for multiple–facade separation (top) and segmentation

(bottom) in the Panorama dataset

4 Conclusion

In this work we proposed an algorithm which closes the gap between real–world
data and state–of–the–art procedural modeling approaches [2]. Our contributions
are two–fold: First, we developed a novel algorithm for finding repetitive patterns
in a single image. We compare contextual information using pairwise intensity pro-
file descriptors and an intermediate step of vote casting. As a result, corresponding
areas can be arbitrarily shaped and the matches are invariant to small illumina-
tion changes and affine transformations. Second, we presented a novel approach for



60 A. Wendel, M. Donoser, and H. Bischof

facade separation and segmentation. Our algorithm achieves excellent results of
94.0% separation and 85.4% segmentation effectiveness, making our work an im-
portant contribution to fully automatic building reconstruction. Future research
should focus on detecting occlusions such as vegetation and cars, as avoiding sepa-
rations in these areas would improve the performance. Furthermore, our approach
will be applied to texture segmentation and symmetry detection.

Acknowledgments. This work has been supported by the Austrian Research
Promotion Agency (FFG) project FIT-IT CityFit (815971/14472-GLE/ROD)
and project FIT-IT Pegasus (825841/10397).
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Mumford-Shah Inspired Outside Model
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Abstract. We present a novel statistical-model-based segmentation al-

gorithm that addresses a recurrent problem in appearance model fitting

and model-based segmentation: the “shrinking problem”. When statis-

tical appearance models are fitted to an image in order to segment an

object, they have the tendency not to cover the full object, leaving a gap

between the real and the detected boundary. This is due to the fact that

the cost function for fitting the model is evaluated only on the inside

of the object and the gap at the boundary is not detected. The state-

of-the-art approach to overcome this shrinking problem is to detect the

object edges in the image and force the model to adhere to these edges.

Here, we introduce a region-based approach motivated by the Mumford-

Shah functional that does not require the detection of edges. In addition

to the appearance model, we define a generic model estimated from the

input image for the outside of the appearance model. Shrinking is pre-

vented because a misaligned boundary would create a large discrepancy

between the image and the inside/outside model. The method is inde-

pendent of the dimensionality of the image. We apply it to 3-dimensional

CT images.

1 Introduction

We present a novel statistical-model-based segmentation algorithm that ad-
dresses a recurrent problem in appearance model fitting and model-based seg-
mentation: the “shrinking problem”, see the “Examples of Failure” in [1] for
instance. When statistical appearance models are fitted to an image in order to
segment an object, they have the tendency not to cover the full object, leaving
a gap between the real and the detected boundary. The model seems to shrink
inside the real object, a typical example can be seen in Figure 3b. This is due
to the fact that the cost function for fitting the model is evaluated only on the
inside of the object and the gap at the boundary is not detected. The state-
of-the-art approach to overcome this shrinking problem is to detect the object
edges in the image and force the model to adhere to these edges [2]. While this
can in fact prevent shrinking, it requires the accurate detection of the object
boundary. But in many applications the boundary detection can be almost as
difficult as the original segmentation task.
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Here, we introduce a region-based method that aims at solving the shrinking
problem without the need to explicitly detect edges. The idea is borrowed from
the Mumford-Shah functional for image segmentation [3], and is widely used in
the field of level set segmentation [4]: Instead of detecting edges, we try to par-
tition the image into different regions. The edges are only implicitly determined
as the boundary between these regions, see [5] for an illustrative explanation of
this principle. While the original Mumford-Shah method seeks any regions that
offer an optimal piecewise approximation of the image, in our case of appear-
ance model fitting, we have a very strong preconception into what regions we
wish to partition the image: The foreground object, which is an instance of our
statistical appearance model, and the background, the area around the model.
In this way, we combine some of the advantages of Mumford-Shah based level
set segmentation and appearance model fitting.

Statistical appearance models are built from example data sets and model
the shape and appearance of a specific object class. Typical object classes in the
literature are faces, organs or bones. In some cases, the example data sets may
offer representative data not only for the inside of the object but also for the
background. In these cases, the background can be modeled in a similar way to
the foreground, see [6], or the model can simply be enlarged to include some of
the background information. This problem can be regarded as solved.

We on the other hand focus on cases where the example data sets do not pro-
vide representative data for the background. Even though it would be desirable
to develop a complete model of an object and all possible backgrounds and adja-
cent objects, it is easier and often the only realistic option to focus on one object
of interest at a time. Our main motivation is a femur bone model we developed
from CT scans of isolated bones. In the scans, the bones are surrounded only by
air, but in most practical applications, bones will be surrounded by soft tissue,
adjacent bones, etc., see Figure 1. A similar situation is found in face modeling,
where a model has to be fitted to faces without any prior knowledge about the
background.

Fig. 1. On the left: a subset of the bones used to build the appearance model. The

model is built from isolated bones. No useful information is available for the outside of

the bones that could be used in real segmentation tasks such as segmenting the femur

in the images on the right.
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With no usable example data on the outside of the object, we look again
to the Mumford-Shah functional [3], which is generic in the sense that it does
not model regions based on examples. Instead, the appearance for the different
regions is estimated form the input image itself. The original formulation of the
functional proposes two possible ways to estimate the appearance for a given
region from the intensity values: the mean intensity or a smoothed version of
the image on that region. More sophisticated models have later been developed,
see [4]. However, introducing and evaluating the different modeling techniques
for different applications is beyond the scope of this paper and we introduce our
method based on the simple models from [3].

Prior Work. Image segmentation remains one of the most important challenges
in image analysis. When the objects of interest like for instance bones, organs or
faces, cannot be identified by simple intensity thresholding, the most successful
and intensively researched approach is to include prior knowledge in the form of
a statistical shape model into the segmentation algorithms and allow only shapes
than can be represented by this model as segmentation results. We can distin-
guish between algorithms with strict and those with relaxed shape constraints.
The algorithm we propose here enforces a strict shape constraint, which means
that the segmentation results have to strictly lie in the space of shapes modeled
by the statistical model. Essentially, such a segmentation can also be regarded as
a model fitting algorithm, as it optimizes only the pose and model parameters.
In principle the strict shape constraint could be relaxed by one of the methods
proposed in [6], but we have not yet implemented these methods.

There are two main segmentation frameworks that are commonly used as
the basis for shape-model-constrained segmentation and our method combines
features from both of them. The first is based on the active shape and appear-
ance models as proposed by Cootes, Taylor et al. [1] or Blanz and Vetter [7].
The second framework is that of level set segmentation and is mostly based on
the Mumford-Shah functional [3] and its level set formulation [5]. Instead of
trying to summarize the extensive research performed in this area, we refer to
the comprehensive reviews by Heimann et al. [6] and Cremers et al. [4]. Both
frameworks share the distinction between edge- and region-based segmentation.
Region-based methods have proven to be more robust and successful as they do
not only consider local edge information, but rather complete regions like the
inside and the outside of the segmented object, see [4,6].

Shape and Region Modelling. Conceptually, the main difference between the
level set and active appearance model frameworks is the representation of the
shapes. Active shape and appearance models represent shapes by discrete point
sets or grids, while level set methods represent shapes by implicit (= level set)
functions. Consequently, for including prior knowledge about an object class of
shapes into the segmentation algorithm, appropriate statistical models have been
proposed for each framework. Active shape and appearance models represent the
class of shapes by deformations of a reference. New shapes are generated by linear
combinations of example deformations. In order to determine these example
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deformations, the example data sets have to be brought into correspondence
with a non-rigid registration algorithm. In level set methods, a class of shapes
is modeled by linear combination of example level set functions. For this, the
shapes do not need to be in correspondence but only rigidly aligned.

Further, the different shape model representations determine a different treat-
ment of the image regions within the model. With correspondence information
available, it is easy to transfer the image intensity or “appearance” of each exam-
ple to the reference and build a separate linear model of appearances. For level
set based models without correspondence information, such a straight-forward
appearance modeling is not possible. Therefore, level set methods typically use
intensity models estimated from the input image or histogram-based statistic
that do not require correspondence information.

If we wish to use the statistical appearance information from the example
data sets for the inside of the model and a generic model estimated from the
input image on the outside, we have two possibilities: 1. Find a way to integrate
a correspondence-based intensity model in the level set framework. 2. Integrate
a generic input-image-based outside model into the active appearance model
fitting. While the first possibility is an interesting research topic and may be
the subject of a future paper, we take the second approach here. In this way
the appearance model can be used in its original form and only needs to be
complemented by an outside model.

2 Segmentation Method

In this section, we give a more detailed description of the models and show
how they can be combined. Then, we show the feasibility of our approach on a
few qualitative results. A thorough comparison with state of the art segmenta-
tion methods would require the implementation of many edge- and region-based
segmentation methods, which is beyond the scope of this paper.

2.1 Inside Shape and Appearance Model

To build the inside appearance model, we need to acquire a representative col-
lection of example data sets of the organ we wish to model. In our experiments,
we acquired n = 47 CT data sets of isolated human femur bones. After a rigid
pre-alignment, these are brought into correspondence with a non-rigid image
registration method [8]. We single out one of the data sets as the reference and
register all n data sets to this reference. This introduces a bias in the model
towards the reference, but the interested reader can find strategies to remove or
reduce this bias in [6]. Once the data sets are registered, a statistical shape and
appearance model can be built along the lines of those proposed by Blanz and
Vetter or Cootes and Taylor [7,1]. The registration algorithm produces n defor-
mation fields ui : Ω → IRd defined on the reference’s image domain Ω ⊂ IRd,
where the dimensionality d is of course typically 2 or 3. When we denote by
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Γ ⊂ Ω the points on the inside of the reference shape, the inside of the target
shapes is represented as

Γi = {x + ui(x) |x ∈ Γ}, (1)

i.e. Γi is a forward warp of Γ with x+ui(x). On the other hand, we can backward-
warp the CT intensities cti of the targets to the reference as:

c̃ti(x) = cti(x + u(x)) for x ∈ Γi. (2)

In this way, the shape and the intensity information of all examples is available
on the reference. In practice Γ is a finite set with m := |Γ | elements, and each
shape can be represented by a dm-dimensional vector si of coordinates and
each appearance by an m-dimensional vector ti of intensity values. From these,
we can calculate mean vectors s and t and covariance matrices Σs = 1

nXsXT
s ,

Σt = 1
nXtXT

t , where Xs,Xt are the mean free data matrices with columns si−s
resp. ti − t. The actual statistical modeling consists of assuming multivariate
normal distributions N (s, Σs), N (t, Σt) for the shape and intensity data. After
a singular value decomposition of the data matrices:

1√
n
Xs = UsWsVT

s resp. 1√
n
Xt = UtWtVT

t , (3)

we can represent the shapes and intensities of the statistical model as:

s(α) = s + UsWs α =: s + Qs α, and t(β) = t + UtWt β =: t + Qt β. (4)

where α and β are coefficient vectors. Under the assumption of the above nor-
mal distributions, α and β are distributed according to N (0, I). While the 3D
Morphable Model [7] was originally only defined on and not on the inside of the
modeled 3D object and the active appearance model [1,6] was originally only
introduced for 2D shapes, this is a straight-forward extension of these models.
Such models are usually called PCA models as Equations (3) and (4) constitute
a principal component analysis of the data matrices.

Segmentation with this statistical model is now performed by finding those
coefficients α, β for which the difference between the shape and appearance as-
sociated with the vectors s(α), t(β) and the target object in the input image
I(x) is minimal. In addition to the shape and appearance, we also need to esti-
mate the pose of the object in the image, which can be represented by a rigid or
similarity transform Tρ with parameters ρ. The segmentation can be formulated
as a minimization problem. For better readability we treat the vectors s, t as
continuous functions and write the problem as an integral:

E(α, β, ρ) =
∫
Γ

(
(t + Utβ)(x)︸ ︷︷ ︸
model intensity

− I
(
Tρ (s + Usα)(x)

)︸ ︷︷ ︸
image intensity at model point

)2
dx+ ηs‖α‖2 + ηt‖β‖2.

(5)
The norms of α and β with weighting terms ηt, ηs act as regularization terms
motivated by the normal distributions N (0, I) of α and β. The optimal parame-
ters α, β, ρ can be sought with any standard optimization algorithm, and in this
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fashion the shape, appearance and position of any object that can be represented
by the statistical model can be identified. However, only points on the inside of
the model are considered and all points on the outside of the model are ignored,
which can lead to the adverse effect of “shrinking” described in the introduction.

2.2 Mumford Shah Model

In their landmark paper [3], Mumford and Shah introduced what is now known
as the Mumford-Shah functional for image segmentation, which seeks to simul-
taneously find an edge set C and a piecewise smooth approximation J of an
input image I : Ω → IR. In [5] Chan and Vese proposed a simplified version of
this functional for the case that C is a closed contour (represented by a level
set function) that separates the image domain Ω into an inside and an outside,
in(C) and out(C) of C. In this case, the Mumford-Shah functional can be written
as:

F (C,J ) = λ

∫
in(C)

(Jin−I)2 +λ

∫
out(C)

(Jout−I)2+μ length(C)+ν

∫
Ω\C

|∇J |2 , (6)

where length(C) denotes the length of the segment boundary C and acts as a
regularization term. Typically, the functional is minimized with an interlaced
algorithm. In every other iteration the boundary C is kept fixed and the image
approximation J is optimized and in the next iteration J is fixed and C opti-
mized. Mumford and Shah showed that if C is fixed, J optimizes the functional
if and only if it satisfies the following elliptic boundary value problem with zero
Neumann boundary conditions on each of the segments, here written out only
for out(C):

−ΔJout =
λ

ν
(I − Jout) on out(C)

∂Jout

∂n
= 0 on ∂(out(C)). (7)

This means that J has to be a smoothed version of I with sharp edges on the
boundary C, which is why the functional is minimal when C coincides with
edges in the image, while on the segments the image can be approximated well
by smooth functions. The great advantage over methods based on actual edge
detection is that when no sharp edges are present in the image, the minimizing
edge set C will still separate the different regions in the image in an optimal
way when F (C,J ) is minimized. If λ

ν → 0, the optimal approximation J is a
piecewise constant function which takes on the mean value of the function I on
each of the segments, i.e. Jout ≡ cout = 1

|out(C)|
∫
out(C) I. More sophisticated

approximation strategies for Jin,out, e.g. based on texture can be found in [4].
This segmentation method separates those two regions which can be best

approximated by mean intensities or smooth approximations. However, it is by
no means guaranteed that these coincide with the organs we want to segment in
the image.
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2.3 Combining the Models

We now present a way to combine the prior knowledge of the statistical shape and
appearance model and the generic ad-hoc modeling technique of the Mumford-
Shah segmentation method. For the inside of the object, we use the appearance
model exactly as described in Section 2.1. The outside Mumford-Shah model is
derived from (6) with a few adjustments. First of all, we only use the terms con-
cerning the outside region. The length term can be omitted as the regularization
properties of the statistical model provide a superior regularization method.

The terms in Equation (6) are defined on a part of the input image domain,
whereas Equation (5) is defined on a part of the reference domain. To seamlessly
integrate the outside terms into the appearance model segmentation, we need to
transform them to the reference domain. In Equation (5), the spatial transforma-
tion from the reference model to the image is given by Φα,ρ(x) := Tρ (s+Qsα)(x).
and thus the transformation (“change of variables”) of the outside terms by:

λ

∫
out(C)

(Jout−I)2 +ν

∫
out(C)

|∇Jout|2 = λ

∫
Φα,ρ(Γout)

(Jout−I)2 +ν

∫
Φα,ρ(Γout)

|∇Jout|2

= λ

∫
Γout

(Jout ◦Φα,ρ −I ◦Φα,ρ)2 |detDΦα,ρ|+ ν

∫
Γout

|∇Jout ◦Φα,ρ|2 |detDΦα,ρ|,

(8)

where Γout is the outside of the model in the reference domain. In principal, Γout
should be chosen so that Φα,ρ(Γout) = out(C), but in practice, any neighborhood
of Γ can be used. Then, contrary to the original integral from the Mumford-Shah
functional, the transformed integral does not depend on the function or param-
eters we wish to optimize, which greatly simplifies the minimization. The only
dependence remains in the determinant term from the transformation formula
|detDΦα,ρ|. However, this is where we introduce a simplifying approximation
and assume |det DΦα,ρ| ≡ 1, as it would be very time-consuming to compute
the derivative of the deformations caused by the matrix Qs. Secondly, this term
measures the volume change caused by Φα,ρ and would allow the minimization
of the functional simply by contracting the model, which is not desirable. Our
proposed combined segmentation problem is then given as:

G(α, β, ρ) =
∫
Γ

(
(t + Qtβ)(x) − I ◦ Φα,ρ(x)

)2
dx + ηs‖α‖2 + ηt‖β‖2

+ λ

∫
Γout

(Jout ◦ Φα,ρ − I ◦ Φα,ρ)2 + ν

∫
Γout

|∇Jout ◦ Φα,ρ|2. (9)

The principal component matrix Qs and mean vector s used in Φα,ρ have been
defined only for the inside model Γ in Section 2.1. They need to be extended
to the outside in order to calculate the outside terms of Equation (9). If the
deformation fields ui from which the model is calculated are defined on the entire
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image domain of the reference, which is the case for the registration algorithm we
used, this extension can be performed in a straight-forward manner. The mean
vector s is naturally extended by the mean of the fields on Γout. The matrix
Qs can be extended by employing the same linear combination of the original
deformation fields on the outside as on the inside. The linear combinations are
stored in the matrix Vs from the singular value decomposition Equation (3), and
we can compute the principal component’s extension to Γout as Qs = (Xs−s)Vs.

2.4 Implementation

The minimization of the functional G defined in Equation (9) is handled in
an interlaced algorithm similar to that described in Section 2.2: We alternately
calculate the ad-hoc model Jout for the current parameters α, β, ρ, and find the
parameters for the next iteration step with a standard optimization algorithm;
we use the LBFGS optimizer [9]. Jout needs to be calculated from the image
intensities as the mean or according to the elliptic equation (7) (on Γout instead
of out(C)). Like the inside Γ , we represent Γout by an unstructured grid, and
implemented a Gaussian smoothing with Neumann zero boundary conditions on
this grid to approximate the solution of Equation (7). A more exact solution
could be achieved by computing a finite element solution on this grid.

2.5 Results

We conclude by showing a few examples of bone segmentations that show the fea-
sibility of segmentation with our proposed combined method and its advantages
over the individual methods of level set and appearance model segmentation. As
we are using a strict shape constraint, none of the segmentation results are per-
fect. They are only the best approximation within the space of the shape model
that the optimization algorithm was able to find. We used the LBFGS algorithm
with a landmark-based rigid alignment of the mean model as initialization. The
method is not very sensitive to the parameters. For all experiments, we have
chosen λ = 1, ηs = 100, ηt = 10. For the Gaussian smoothing of the outside
model, we have used a variance that corresponds to ν = 300.

Figure 2 illustrates the two proposed method for outside models. Only when
the outside of the bone is very uniform as for instance in the case of isolated

Fig. 2. On the left: A CT slice with its approximation by the inside and outside model.

The inside is an instance of the statistical model, while the outside is modeled as a

smoothed version of the image intensities. On the right, the outside is modeled as the

mean value of the outside intensities, which works best for uniform outside intensity.
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(a) (b)

Fig. 3. Comparison of the our segmentation method with each of the original methods.

The input images are shown in Figure 1. On the left in (a), the proposed method

identifies to femur bone, whereas the original Mumford-Shah level set segmentation on

the right separates air from not-air, and the segmentation boundary shows the muscle

tissue and not the femur bone. On the left in (b), the proposed method identifies the

femur as well as the model permits, while on the right the appearance model without

outside model “shrinks” and leaves a small gap between the model and the real bone

surface.

bones is the constant approximation by the mean preferable over the smooth
approximation. Note that the aim of the outside model is not the perfect repre-
sentation of the input image, that would of course be given by the unsmoothed
image itself. The aim is to give a homogeneous representation of the outside
which encourages the correct placement of the model boundary because any
other placement would incur a higher cost in the functional from Equation (9).

In Figure 3a we see how our method can identify the femur in a CT image with
soft tissue and other bones. In contrast, the Mumford-Shah level set segmenta-
tion finds the most prominent segment boundary in the image, that between air
and everything that is not air. While this is the optimal boundary from the point
of view of this segmentation method, it is not the boundary we are interested
in if we wish to segment femur bones. In Figure 3b, we see another successful
segmentation with our combined model, contrasted with a result of using only
the inside appearance model. As expected, in this case, the segmentation leaves
a narrow gap around the boundary of the model.



70 T. Albrecht and T. Vetter

3 Discussion

We have showed that including an outside model term motivated by the Mumford-
Shah functional can help reduce the effect of “shrinking” in active appearance
model fitting/segmentation. Without the need of explicit edge detection, the out-
side model discourages the incorrect placement of the boundary. Obviously, this
works best in regions where the foreground and background have distinct inten-
sity values, but the correct separation of fore- and background should always be
at least as good as without the outside model. We did not yet perform a quanti-
tative comparison with state-of-the-art segmentation or model fitting algorithms.
In fact, we think that a fine-tuned edge-based method may perform equally well
or even better if the correct edges can be found. But we have shown that a region-
based combined model can improve model-based segmentation while completely
circumventing the difficult and often unstable problem of edge detection.

Possible future work includes a thorough quantitative comparison with state-
of-the-art methods, the evaluation of more advanced outside region models, and
ways to relax the strict shape constraint.
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Abstract. In this paper we evaluate several regularization schemes ap-

plied to the problem of force estimation, that is Traction Force Mi-

croscopy (TFM). This method is widely used to investigate cell adhesion

and migration processes as well as cellular response to mechanical and

chemical stimuli. To estimate force densities TFM requires the solution

of an inverse problem, a deconvolution. Two main approaches have been

established for this. The method introduced by Dembo [1] makes a finite

element approach and inverts the emerging LES by means of regulariza-

tion. Hence this method is very robust, but requires high computational

effort. The other ansatz by Butler [2] works in Fourier space to solve

the problem by direct inversion. It is therefore based on the assumption

of smooth data with little noise. The combination of both, a regulariza-

tion in Fourier space, has been proposed [3] but not analyzed in detail.

We cover this analysis and present several methods for an objective and

automatic choice of the required regularization parameters.

1 Introduction

Living cells in multicellular organisms, e.g. sponges, mice and men, are con-
stantly experiencing and, most often, generating mechanical forces. These are
essential in a plethora of physiological and pathological processes ranging from
stem cell differentiation and tissue formation during embryogenesis to cell loco-
motion in the cellular immune response and cancer metastasis. Any attempt to
quantitatively understand such processes crucially depends on spatially and tem-
porally highly resolved measurements of cell forces. The first reliable technique
to visualize forces of individual cells was pioneered by Harris et al. [4] who grew
cells on a thin silicone sheet and observed wrinkles emerging under contracting
cells. To estimate the acting traction forces the setup was slightly changed by
replacing the silicone sheet with a solidly supported thin film of elastic material.
Usually cross-linked polyacrylamide (PAA) [1] or polydimethylsiloxane (PDMS)
[5], [6] are used. Fluorescent marker beads are embedded slightly below the sur-
face. These markers can be localized by fluorescent light microscopy combined
with digital image processing (c.f. Sect. 2). By comparison to a reference image
where the cell has been removed mechanically and the rubber has reached its
relaxed state the cell force induced deformations can be quantified (see Fig. 1).
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x

y

z Living cell

Force application

Marker beads

Traction forces

Displacements

Fig. 1. Scheme of the experimental setup for traction force analysis. A cell is located

on a thin rubber film with embedded marker beads and exerts forces on it. The position

of the fluorescent beads can be detected with fluorescence microscopy and quantified

by digital image processing (c.f. Sect. 2). The deformation vector field is subsequently

used to estimate location and magnitude of the cell force (see Sect. 3). Please note that

the proportions are not realistic.

To find a mathematical model that relates the measured deformations to the
traction forces the silicone substrate layer is most often assumed to be infinitely
thick, i.e., a linear elastic halfspace. Furthermore, the tractions are restricted
to act only on the surface of the halfspace. This kind of problem was studied
in elasticity theory by Boussinesq [7], [8] and found to satisfy the following
Fredholm integral equation∫

R2\{y}

G(y − x)f(x)dx = u(y) for each y ∈ R2 or short G [f ] = u , (1)

where u : R2 → R2 denotes the deformation at a place y, f : R2 → R2 the force
at a location x and G the Boussinesq Greens’ Tensor

G(d) =
3

4πE|d|3

(
|d|2 + d2

1 d1d2
d1d2 |d|2 + d2

2

)
with d = (d1, d2)T ∈ R2 . (2)

For notational clarity we use the uncommon G [f ] for the linear operator G acting
on f . E is the rubber’s Young modulus. Its Poisson ratio was found to be 0.5 [6]
corresponding to an incompressible medium. Merkel et al [9] have shown that
the assumption of an infinite halfspace has to be dropped if the layer thickness
is less than 60 μm. Here a modified Greens’ Tensor must be used, c.f. [9].

For both the finite and the infinite thickness case we must therefore invert a
Fredholm integral equation, a procedure which is known to be ill-posed. It hence
requires a regularization ansatz. We briefly introduce the methods of Dembo
and Butler in Sects. 1.1 and 1.2, several possibilities combining both methods
are discussed in Sect. 3.

1.1 Finite Element Method

To discretize the integral equation (1) Dembo used the manually marked cell
outline and generated a quadrilateral mesh within for estimating traction den-
sities. Cell forces are therefore restricted to the cell area. This is a reasonable
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assumption and limits the complexity of the emerging equation system. However,
after discretization the LES is still ill-posed and normally even lacks a solution.
To circumvent this Dembo made use of the regularization functional

||G [f ]− u||2 + λΩ(f) (3)

whose minimum is a force distribution f that compromises between the mea-
sured data set u and the operator Ω. In Dembo’s method an entropy measure is
used to prefer smooth force fields. The regularization parameter λ ≥ 0 is used
to adjust the expected complexity of the solution. Dembo’s method is known to
be highly accurate and profits from the restriction to the force application area,
which stabilizes the algorithm and restrains the number of unknowns. Never-
theless, f is still high-dimensional and the minimization of the functional (3) is
computationally expensive.

1.2 Fourier Method

Since the left-hand side of Equation (1) is a convolution, a transformation to
Fourier space will reduce it to a simple product

Ĝ(k)f̂(k) = û(k) for each k ∈ R2 , (4)

where Ĝ, f̂ , û respectively denote the Fourier transforms of G, f, u and k is a
two dimensional wave number. Note that for each k Equation (4) is a LES with
two equations and two unknowns while the Dembo’s LES is a system with 2n
equations and 2m unknowns. Here the number of beads is denoted by n and m
is the number of forces. The inversion of (4) is therefore very fast. However, for
small k the matrix Ĝ is nearly singular and a good solution will hence crucially
depend on noise-free data as mentioned by Butler et al [2].

2 Digital Image Processing

Several methods are currently in use to track fluorescent marker beads in micro-
graphs. All of them are comparably fast, accurate and reliable. In our case we
used a tracking algorithm that was implemented and described earlier [9]. Briefly,
the method comprises two steps. First, an interactively marked sample bead of
the reference image is fitted by a two dimensional Gaussian to obtain a template.
This is then compared to the whole image by normalized cross-correlation. Local
maxima of the thresholded correlation function are assumed to be probable bead
positions. Second, from each of these initial positions in the reference image a
template is taken and cross-correlated to a certain vicinity in the image of the
strained rubber. Templates that are recognized above a preselected threshold
are taken into account for the deformation vector field.
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3 Regularization

In the following we suggest a combination of both Dembo’s and Butler’s method,
a regularization in Fourier space, aiming to connect the stabilizing effects of the
regularization approach with the fast computation of a fourier space scheme.
Such a combined method has already been proposed by Sabass et al [3] albeit
without quantitative analysis of the possible regularization schemes and with a
manual choice of the regularization parameter. For this purpose we interpolate
the scattered deformation vector field on a rectangular grid. Let gx, gy be the
grid numbers and xmin, xmax, ymin and ymax minimum and maximum x- and
y-coordinate of the n bead positions, respectively. By choosing

gx :=
⌊√

n
ymax − ymin

xmax − xmin

⌋
and gy :=

⌊
n

gx

⌋
(5)

we guarantee that the number of displacement vectors and the aspect ratio
of the definition area stay approximately the same. Please note that by this
choice the spatial resolution of our TFM method is already determined (�x� :=
maxk∈Z,k≤x(k)). In a next step we perform a FFT on the interpolated deforma-
tion field to obtain ũ and1 likewise wave numbers k1,x, k1,y..., kn,x, kn,y ∈ R. We
now approach equation (4) for these k. For convenience, let

G̃ :=

⎛⎜⎝Ĝ(k1,x)
. . .

Ĝ(kn,y)

⎞⎟⎠ . (6)

We retrieve the LES
G̃f̃ = ũ . (7)

A back transformation of its solution2 f̃ gives a force density on the grid that ũ
was interpolated on. However, the blocks of G̃ are nearly singular for small values
of k and must hence be regularized. For reasons of computational efficiency and
convenient implementation we restrict ourselves to a slightly generalized version
of the regularization procedure by Tikhonov [10]. In fact we make use of the
following functional:

||G̃f̃ − ũ||2 + λ||L(f̃ − f0)||2 , (8)

where L is a quadratic matrix and f0 is a vector of the same dimension as f̃ .
The minimum of this functional is known to be the solution of

(G̃∗G̃ + λL∗L)f̃ = G̃∗ũ + λL∗Lf0 (9)

that is guaranteed to be unique if L is injective. Minimization of (8) is therefore
unexpensively accomplished by direct inversion of (9). Choosing L and f0 is
1 ũ is a vector containing x- and y- coordinates of the Fourier-transformed deformation

vectors in the grid which is assigned linewise.
2 f̃ is unique because G̃ is blockwise non-singular.
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equivalent to selecting a suitable penalty term for equation (8). L is normally
chosen to be a measure of a property that the solution is expected to have while
f0 can be understood to be an approximation of the solution itsself. There are
procedures that allow the definition of an optimal L using a Bayesian approach
with a prior of the solution’s noise distribution. Because traction force patterns
have never been measured by direct methods, the essential information for the
Bayesian interpretation is unavailable. Instead we will evaluate several heuristic
methods that are based on reasonable assumptions of location, formation and
temporal evolution of the traction field.

3.1 Classic Approaches

A first attempt to stabilize (7) is to penalize high values of f̃ by setting L = I
as proposed by Tikhonov [10]. Since the equations that belong to small wave
numbers are more instable than those to large ones, it also seems reasonable to
penalize high Fourier coefficients for small wave numbers.3 For this we made the
following choices we call wave damp or wave damp square choosing

Lij := δij
1
|ki|

or Lij := δij
1
|ki|2

. (10)

3.2 Temporal Smoothing

In many cases a series of cell and substrate images is made to record the cell’s
activity. If we assume that the difference of forces from image to image is small
we can develop another penalty term. Let t1, ..., tl ∈ R be the points of time
the images were made and u(ti) the respective deformation and forces at those
points of time. If we set

Ḡ :=

l times︷ ︸︸ ︷⎛⎜⎝G̃
. . .

G̃

⎞⎟⎠ and ū :=

⎛⎜⎝u(t1)

...
u(tl)

⎞⎟⎠ (11)

the solution of Ḡf̄ = ū will give a force density estimation for the whole series of
images. We can now introduce our assumptions of little difference by applying

Lij := δij − δi(j−2n) , (12)

i.e. the penalty term sums the differences between the fourier coefficients in one
time step and the proceeding. Thus, the functional (8) will prefer solutions where
the forces at the different points of time only change slightly.

3 With ground truth we could isolate the critical frequencies for an optimal L.
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3.3 Restriction to a Predefined Area

An important advantage of Dembo’s finite element method is that it easily allows
the force to be estimated only within a predefined area. By transforming the
convolution (1) into Fourier space this seems to become impossible since the
FFT algorithm works on a rectangular grid. However, it is possible to effectively
restrict forces to a certain area by the following procedure. Let 1C : R2 → {0, 1}
be the indicator function for the cell area, i.e., 1C(x) yields 1 if and only if x is
within the cell area.

The procedure consists of two steps. First we solve equation (7) by a common
regularization scheme (c.f. Sects. 3.1 and 3.2) to get a solution f̃ . We now trans-
form f̃ into spatial domain and multiply the result with 1C . The product will
be 0 outside the predefined area and return the estimated force pattern inside.
Subsequently we retransform the product into Fourier space and call the final
result f0. In a second step we make use of the functional

||Gf̃ − ũ||2 + λ||f̃ − f0||2 (13)

to get a solution that implicitly prefers a resemblance to the function f0, i. e., it
has no significant forces outside the marked cell area.

3.4 Objective Choice of the Regularization Parameter

Crucial to all regularization methods is the choice of the parameter λ that is
supposed to balance the data discrepancy and the penalty term. Therefore it is
of high importance to use well founded values for λ.4 To automate this parameter
choice without knowledge of the error several procedures have been proposed of
which two proved especially useful for our case.

The heuristic idea of the L-curve criterion [11] is to find a λ that represents
a trade-off between data fidelity and the penalty norm. This balance can be
determined by examining the L-shaped curve (||Gfλ − u||, ||L(fλ − f0)||) where
fλ is the solution of (9) but for our purpose this method proved unstable. Instead
we determine the functions d(λ) = ||Gfλ − u|| and p(λ) = ||L(fλ − f0)|| and
identify the λ values at which d has maximum and p has minimum derivative.
The average of those two values subsequently provides a useful choice for the
regularization parameter since it determines the value where the penalty starts
to apply and the data is still sufficiently fitted by the model.

Another parameter choice yielding a very good performance is an adjusted
cross-validation approach [12]. The cv-method splits the data set into a validation
and computation set. A ratio of 25% to 75% is a common choice. While the
computation set is used to calculate a solution for several choices of λ, these
solutions are applied to the direct problem and the result is compared to the
validation set. The solution that suits best is the one that most likely can explain
the unused data and is therefore a reasonable choice.
4 With the Bayesian approach that was previously mapped out, λ turns out to be

optimally chosen as ratio of the squared deformation error and the squared error in

the force field.
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Since a cross-validation in Fourier space did not provide satisfying results we
adapted it to work in position space. The computation set is interpolated on
a grid, transformed into Fourier space and forces are estimated as described
above. By equation (7) we are now able to compute the deformation vector field
uλ that would be observed if the estimation fλ was accurate. uλ is retransformed
to position space and the difference dλ to the grid-interpolated validation set is
determined. The λ which minimizes dλ is the parameter to choose. It is pos-
sible to repeat this procedure with another 25% validation set to stabilize the
results. Thus, the cross-validation approach is very reliable but computationally
expensive.

4 Experiments and Results

We evaluated our approach on several data to test it with ground truth and
different levels of noise in displacement data. First we created a synthetic set
of test data (see Fig 2, first row, left). The second situation was force fields
of normal human epidermal keratinocytes (Young modul of substrate: 11 kPa)
as retrieved by Tikhonov regularization and the L-curve criterion. (see Fig 2,
first row, right). This enables us to test the traction estimation in a realistic
situation. Both traction distributions served as ground truth for our second test
on synthetic data with known ground truth and noise.

4.1 Simulations

Simulations were performed by adding normal distributed noise on ground truth
displacements. For each noise level we performed the simulation with 20 different
noise patterns. To avoid random fluctuations between the tested penalties and
parameter determinations we used the same noise patterns for all simulations.

Noise levels were chosen as multiples of the occuring mean displacements in
the test images. As the interpretation of this quantity is not obvious we show
the displacement vector fields with the highest noise level in Fig. 2, second row.
All tests were done with 7 different noise levels.

On all data we performed tests with the wave damp, squared wave damp,
classical Tikhonov regularization and the temporal derivative as regularization
penalties. For determination of the regularization parameter we used both, the
L-curve criterion and the cross-validation approach with and without restricting
the traction to the cell area.

4.2 Results

Results for the artificial test pattern are shown in Fig. 3. Wave damp and squared
wave damp regularization generally show a linear dependence of estimation error
on the noise level up to a certain point. The error without any regularization is
also shown. The temporal derivative of the traction is therefore not well suited for
estimation in Fourier space. This was surprising since for the well-known point
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Fig. 2. Synthetic test data. First row: Defined traction patterns. Left: Artificial test

pattern. Right: Estimated traction distribution of a normal human epidermal ker-

atinocyte. Second row: Synthetic displacement data with maximum of added noise.

Left: Displacements of artificial test pattern, standard deviation of noise: 0.14 μm.

Right: Displacement of estimated traction distribution of a normal human epidermal

keratinocyte, standard deviation of noise: 0.054 μm.

force traction estimation as mapped out in [3], we found it a stable improvement.
Classical Tikhonov regularization combined with cross-validation yields best ac-
curacy. This result is confirmed by the simulations with the realistic traction
distribution (cf. Fig. 3, 3rd and 4th row). The squared wave damp regulariza-
tion also provides good results for high noise levels.

For low noise the cross-validation is not suited for the choice of an appropriate
regularization parameter which leads to high deviations (see Fig 3, 3rd row right,
for noise lower than 2 times of the mean displacement λ < 10−6, for higher noise
levels λ > 106). The second step regularization restricting the forces to the cell
area was able to enhance the results in several cases. Due to its low computational
effort the second step should be considered whenever the force application area
is known.

5 Discussion

In this paper we presented a systematic investigation of wave damp, wave damp
squared, Tikhonov regularization and temporal derivative as penalties for trac-
tion estimation in Fourier space. The regularization parameter estimation was
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Fig. 3. Results of different penalty terms on the evaluation of artificial test data (first

two rows) and a realistic traction distribution (last two rows) using different estima-

tion methods for the regularization parameter λ. First row left: wave damp, right:

wave damp squared. Second row left: Tikhonov, right: temporal derivative with 5 time

steps considered, note the different scaling. Third row left: wave damp, right: wave

damp squared. Fourth row left: Tikhonov, right: temporal derivative with 5 time steps

considered, note the different scaling.
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performed for all penalties with automatic choice of the regularization parameter
λ inspired by the L-curve criterion and cross-validation each with and without
constraining the tractions to the cell area. In connection with the Tikhonov reg-
ularization cross-validation yielded the best results. For this combination the
estimation errors are less than a fifth of the straight forward, not regularized
solution. As the choice of λ is critical for the evaluation of displacement data we
see an important point in its automized choice. This enables an objective and
reproducible evaluation of large data sets comprising many images.
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Abstract. Automatic categorization of microorganisms is a complex

task which requires advanced techniques to achieve accurate performance.

In this paper, we aim at identifying microorganisms based on Raman

spectroscopy. Empirical studies over the last years show that powerful

machine learning methods such as Support Vector Machines (SVMs) are

suitable for this task. Our work focuses on the Gaussian process (GP)

classifier which is new to this field, provides fully probabilistic outputs

and allows for efficient hyperparameter optimization. We also investigate

the incorporation of prior knowledge regarding possible signal variations

where known concepts from invariant kernel theory are transferred to the

GP framework. In order to validate the suitability of the GP classifier,

a comparison with state-of-the-art learners is conducted on a large-scale

Raman spectra dataset, showing that the GP classifier significantly out-

performs all other tested classifiers including SVM. Our results further

show that incorporating prior knowledge leads to a significant perfor-

mance gain when small amounts of training data are used.

1 Introduction

In the fast-growing field of medical and biological science, the need for classi-
fying microorganisms is rapidly increasing. There are many crucial tasks which
demand an accurate classification method, such as the categorization of po-
tentially pathogenic particles in clinical applications [1] or the identification of
contamination conditions in clean room environments [2], to name just a few.
The assortment of tools available for identifying microbes is broad, ranging from
microscopic inspection [3] to advanced biochemical analysis [4]. Though, while
the classification based on microscopic means using morphological information is
only possible on a coarse level, most accurate biochemical methods require time
consuming pre-processing steps for cultivating the media of interest. So-called
“vibrational techniques” such as Raman spectroscopy offer an elegant way out
of this dilemma by obtaining a “molecular fingerprint” of biological samples [2].

This work aims at introducing the Gaussian Process classifier to the field of vi-
brational spectroscopy. Although GP regression is well-known for the calibration
of spectroscopic data [5], GP classification is, to our knowledge, new to the field
of Raman spectroscopy. Moreover, we investigate the use of a-priori knowledge

M. Goesele et al. (Eds.): DAGM 2010, LNCS 6376, pp. 81–90, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Illustration of (pre-processed) Raman spectra and signal variations

by means of possible variations of Raman spectra, where we apply the approach
of Peschke et al. [6] to the GP framework. Shortcomings of this approach as well
as heuristics to overcome those issues are discussed.

This paper is organized as follows. In Sect. 2 we give a brief summary to Ra-
man spectroscopy. Sect. 3 gives an introduction to GP classification. In Sect. 4 we
formulate the notion of transformation invariant kernels and show how a-priori
knowledge can be incorporated in the GP framework. In Sect. 5 we empirically
demonstrate the performance of the GP classifier for Raman spectra categoriza-
tion compared to other state-of-the-art classification techniques and investigate
the effect of prior knowledge. Finally, we conclude and summarize our findings.

2 Classification of Raman Spectra

Raman spectroscopy is an optical technique for measuring the vibration of
molecules. The sample under focus is irradiated with a narrow-band LASER
and the scattered light is analyzed. Since shifts in wavenumber are strongly
related to the vibrational state of molecules and shifts from all molecules are su-
perimposed, we obtain a molecular fingerprint of the whole sample (c.f. Fig. 1).
Since most microorganisms substantially differ in molecular decomposition it is
assumed that they can be distinguished by means of their vibrational signature.
Empirical results validate [2] that Raman spectra contain discriminative infor-
mation and are suitable for categorization of even very similar microorganisms.

However, one major drawback is the occurrence of prominent background sig-
nals introduced by other optical phenomena such as fluorescence. One common
technique to overcome this issue is to explicitly pre-process all spectra prior to
training and learning. Alternatively, Peschke et al. [6] successfully apply an in-
variant kernel approach which implicitly incorporates possible background varia-
tions into the kernel for SVM and k-Nearest-Neighbor classification. In addition
to assessing the suitability of the GP classifier to the field of Raman spectroscopy,
this work aims at transferring the approach of [6] to the GP framework.
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3 Gaussian Process Classification

This section gives a brief introduction to GP classification. Since the classification
is motivated from non-parametric Bayesian regression, we first briefly introduce
the regression case before we discuss the GP classifier.

3.1 The Regression Case

The regression problem aims at finding a mapping from input space X to output
space � using labeled training data X = [x1, . . . ,xn] ∈ Xn, y = [y1, . . . , yn]T ∈
�

n. In the following it is assumed that the output is generated by a latent (non-
observed) function f : X → � and an additive noise term ε, i.e. y = f(x) + ε.
Rather than restricting f to a certain functional family, we only assume that the
function is drawn from a specific probability distribution p(f |X). This allows for
a Bayesian treatment of our problem, i.e. we infer the probability of outputs
y∗ given new inputs x∗ and old observations X,y by integrating out the non-
observed function values f∗ and f :

p(y∗|X,y,x∗) =
∫

p(f∗|X,y,x∗) p(y∗|f∗) df∗ (1)

p(f∗|X,y,x∗) =
∫

p(f∗|X, f ,x∗) p(f |X,y) df . (2)

The central assumption in GP regression is that all function values are jointly
normally distributed, i.e. f |X ∼ N (m(X), κ(X,X)). This distribution is solely
specified by the mean function m(·) and covariance function κ(·, ·). When we
additionally assume that the data is generated by zero mean independent Gaus-
sian noise, i.e. y ∼ N (f, σ2

n), then we are able to solve the integrals in closed
form. Using a zero mean GP, the predictive distribution (2) is again Gaussian
with predictive mean μ∗ = kT

∗
(
K + σ2

nI
)−1

y and predictive variance σ2
∗ =

k∗∗ − kT
∗
(
K + σ2

nI
)−1

k∗ using shortcuts K = κ(X,X), k∗ = κ(X,x∗), and
k∗∗ = κ(x∗,x∗) and hence also implies that (1) is Gaussian.

3.2 From Regression to Classification

The goal in binary GP classification is to model a function which predicts a
confidence for each class y ∈ {−1, 1}, given a feature vector x. In order to
make probabilistic inference about the output given a training set, we can di-
rectly apply the Bayesian formalism from equation (1) and (2). However, the
key problem is that the assumption of Gaussian noise no longer holds since the
output space is discrete. We could either ignore this issue and perform regres-
sion on our labels or we could use a more appropriate assumption of p(y|f).
Here we follow the latter approach using the cumulative Gaussian likelihood
p(y|f) = (2π)−

1
2
∫ yf

−∞ exp
(
−0.5x2

)
dx. The disadvantage of this procedure is

that our predictive distribution (2) no longer is a normal distribution. To over-
come this issue, we follow the standard approach to approximate [7] the posterior
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p(f |X,y) with a normal distribution p̂. We use Laplace’s Method, i.e. the mean
of p̂ is set equal to the mode of p(f |X,y) and the Hessian of − log p(f |X,y) is
utilized as covariance matrix of p̂. Moreover, by using the cumulative Gaussian
as described above, equation (1) also turns out to be a cumulative Gaussian [8]
and hence can be efficiently computed. Finally, appropriate hyperparameters θ∗

of the covariance function can be efficiently found by marginal likelihood maxi-
mization, i.e. θ∗ = argmaxθp(y|X, θ).

4 Prior Knowledge in GP Classification

As has been pointed out in Sect. 2, Raman spectra often contain undesirable
information introduced by fluorescence or different measuring conditions. The
resulting signal variations often pose a problem for most classifiers. This is es-
pecially the case in real scenarios where only small amounts of training data are
available, since the possible variations are not sufficiently covered by the train-
ing set. One way to overcome this issue is to implicitly embed knowledge about
possible signal variations into the learning algorithm. In this section we discuss
how and to which extent this kind of prior information can be incorporated into
the GP framework by means of Tangent Distance Substitution Kernels [9].

4.1 Tangent Distance Substitution Kernels

Many methods in machine learning are solely expressed via symmetric similarity
functions κ, so-called kernels. These kernels κ(x,x′) are often positive definite
in which case they can be interpreted as inner products κ(x,x′) = Φ(x)T Φ(x′)
in some feature space Y induced by a mapping Φ : X → Y. Many kernels used
throughout the literature are also expressed in terms of Euclidean distances d.
One possibility to introduce some degree of invariance into kernels is to replace
Euclidean distances with distances that are invariant with respect to pattern
variations. When specified beforehand, knowledge about expected pattern vari-
ations is thus some kind of prior information which can be incorporated into
distances. In the following we use the regularized Mean Tangent Distance [9]
TDMNγ which results in a locally invariant distance measure:

TDMN2
γ(x,x′) =

1
2
(
TD1S2

γ(x,x′) + TD1S2
γ(x′,x)

)
(3)

TD1S2
γ(x,x′) = min

p
||x + Txp− x′||22 + γ||p||22 , (4)

where TD1Sγ denotes the one-sided Tangent distance using regularization pa-
rameter γ. The latter Tangent distance computes the distance between x′ and
the first order approximation Tx of the variation manifold in which x resides
(see Fig. 2). As detailed in [9], Tangent distances can be used in any possible
distance-based kernel. In this paper, however, we will solely focus on the squared
exponential (SE) kernel [8] with respect to some distance d:

κν1,ν2(x,x′) = ν2
1 exp

(
−d2(x,x′)

2ν2
2

)
. (5)
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Fig. 2. Visualization of Tangent distance. Dotted red: Pattern variation manifold with

respect to x. Dashed blue: Tangent Tx of variation manifold with respect to x. Solid

green: Unregularized one-sided Tangent distance TD1S0(x,x′).

4.2 Invariant Kernels in GP Classification

GP methods can be related to kernel machines through their covariance function
κ which describes the underlying similarity structure. One can therefore utilize
invariant kernels such as (5) with d = TDMNγ as a covariance function. By
doing so, however, the theoretical assumptions behind the GP framework might
be violated. This is due to the fact that the Tangent distance is not necessarily
a metric distance. It can be shown [9] that in this case the above kernel is not
positive definite and hence no valid covariance function for a GP.

To overcome this issue one could explicitly enforce positive definiteness. This
is possible, e.g. by clipping off negative eigenvalues (CLIP), flipping negative
values to its positive absolute value (ABS) or by adding a constant c ≥ |λmin| to
all eigenvalues (SHIFT), where λmin is the smallest algebraic eigenvalue of the
kernel matrix. While the latter technique can be efficiently realized by Krylov
subspace methods such as Lanczos algorithms, CLIP and ABS require a full
eigendecomposition of the covariance matrix of the entire data.

To guarantee positive definiteness, one could also reduce the set of possible
tangents. It can be shown [9] that by using tangents which are constant, i.e.
independent of the input arguments x, the Tangent distance is equal to a Ma-
halanobis distance which leads to positive (semi-)definite SE-kernels.

We could also ignore the indefiniteness of the covariance function. One result
would be that variances might get negative. In order to construct a Gaussian dis-
tribution in the end, one could use heuristics to ensure positivity of the variance
term, e.g. by setting negative values to zero (negative variance cut-off heuristic).

Although the Bayesian perspective gets lost using the latter approach, we
can take a different view on the outcome. In GP regression, the moments μ∗
and σ2

∗ of predictive Gaussian p(f∗|X, f ,x∗) can be also derived from linear
estimation [10] in some indefinite inner product (Krĕın) space K, where the
predictive mean μ∗ =

∑
k wkfk is the linear Least Squares estimate with respect

to the latent function values f , and σ2
∗ is equal to the Least Squares objective

at the corresponding stationary point w. Using the Laplace Approximation, a
similar relationship holds using a slightly modified set of latent function values.
From this perspective, cutting off negative variances means that we are confident
(σ2

∗ = 0) for estimates f∗ in some regions of K that will result in negative Least
Squares objective values σ2

∗ .
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5 Experiments and Results

In the following experiments we used a large Raman dataset consisting of 6707
spectra comprising 4 different genera (classes) and 10 species (sub-classes) which
was captured over a period of 3 years. Due to the physics of the recording
process, each spectrum exhibits a potentially different set of wavenumber shifts.
We therefore crop the interesting region to the interval I = [540cm−1, 3350cm−1]
that is shared among all samples. In order to work with fixed dimensions, we use
quadratic interpolation to obtain the Raman intensity with respect to all integer
wavenumbers ω ∈ I ∩ �. In order to eliminate spike noise artifacts introduced
by cosmic radiation, a running median (of size 21) is applied. For the sake of
numerical stability, all spectra are either normalized to unit length or multiplied
by a fixed constant c = 8.5741 × 10−5. In all experiments we used the (noise-
free) GP classifier from Sect. 3.2 with kernel (5) whose parameters are tuned
with marginal likelihood maximization (starting at ν = (1, 1)T , 10 iterations).
To allow for multiple classes, a one-vs-all scheme based on predictive probabilities
(1) is employed.

In this section, we will empirically validate the following hypotheses:

1. The GP classifier is suitable for classification of Raman spectra (Sect. 5.1).
2. For small training sets, a significant performance gain is achieved by incor-

porating prior information (Sect. 5.2).
3. A special treatment of indefinite kernels isnotnecessary for our task (Sect. 5.2).

5.1 Suitability for Raman Spectroscopic Categorization

In order to investigate whether the GP classifier is suitable for the catego-
rization of Raman spectra, we compared it to four state-of-the-art classifiers:
k-Nearest-Neighbor classifier (KNN), Randomized Decision Forests (RDF) and
AdaBoost.MH [11] (ADA) with decision stumps, as well as Support Vector Ma-
chines [12] (SVM), where for the latter logistic regression is used to generate
pseudo-probabilistic outputs. Particularly, we used KNN with k = 1 (best per-
formance for this value of k), a gently randomized RDF (95% resampling proba-
bility, 250 random features per node) with 100 trees, and a SVM with rbf-kernel
whose parameters were determined via leave-one-out (LOO) estimates on a 2x10
grid for trade-off parameter and bandwidth parameter.

It should be noted that results concerning the novel large dataset used in this
work are not directly comparable to other work (e.g. [2]) since other datasets
strongly differ in size and complexity and are generally not publicly available. An
indirect comparison, however, is possible since we compare against SVM which
is known to achieve very good results in the field of Raman spectroscopy [2].
Moreover, since fast LOO error estimates cannot be computed for all classifiers,
we randomly chose 75% of the data for training and the remainder for testing. In
order to yield a more robust performance estimate we repeated this procedure
ten times.

The resulting ten average recognition rates for each classifier are illustrated in
Fig. 3 where results for the genus level (4 classes) and species level (10 classes) are
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Fig. 3. Average recognition rates on the genus level (4 classes) and species level (10

classes) using ten repetitions with 75% of the data randomly chosen for training and

the remainder for testing

given via Boxplots. They clearly show that the GP classifier (GPC) is suitable
for our setting and provides significantly higher average recognition rates than
the gold standard SVM (verified using t-test, p < 0.05). Please also note that
all experiments were conducted with unit length normalized spectra, however,
multiplication with a fixed constant yields analogous results in this setting.

5.2 Benefit of Prior Information

In the following we analyze different techniques from Sect. 4.2 to incorporate
prior knowledge into the GP framework.

Negative Variance Cut-Off Heuristic. To evaluate the effect of prior knowl-
edge we analyzed a different scenario, where only 10 spectra per class are utilized
for training. We tested our GP classifier on the remaining spectra for different
values of the crucial regularization parameter γ for both types of normalization.
Instead of ten repetitions of the randomized partitioning scheme we performed
one hundred trials. As in [6], we utilized the Tangent distance which is invariant
to global scaling of spectra and slowly varying background signals which are
modeled by a linear combination of Lagrange bases of degree deg = 3. Since the
assumed variations are both linear in the parameters, the Tangent distance is no
approximation but calculates the mean of exact (regularized) distances between
variation manifolds and patterns (see Fig. 2).

From Fig. 4 we clearly see that we observe different behavior when different
kinds of normalization are employed. Using the standard Euclidean kernel, the
unit length normalization (unit) yields substantially better performances com-
pared to raw features (raw) multiplied with normalization constant c. When
using invariant kernels with negative variance cut-off heuristic, however, the re-
sults turn out to be completely different. In case of unit length normalization,
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Small Scale Analysis Using TDMN with Lagrange Bases and Scaling Tangent

10 training points per class (10 classes), 100 repetitions             

Tangent distance types

Fig. 4. Euclidean versus TDMNγ-induced squared exponential kernel for different val-

ues of regularization parameter γ ∈ {0.1, 1, 10, 102, 103, 104} and different normaliza-

tions (unit, raw). Labels containing a number correspond to invariant kernels, e.g. raw-

10ˆ3 corresponds to the kernel using raw data and regularization parameter γ = 103.

we only observe marginal improvements. This can be explained by the fact that
we are applying an extra transformation to the spectra prior to using the invari-
ant kernel. While the unit length transformation already provides a certain kind
of scaling invariance, it simultaneously hinders the use of the transformation
invariance that is embedded in the GP prior.

When using raw spectra, however, we observe a significantly higher perfor-
mance gain compared to the Euclidean kernel (30.4% versus 46.8% on average).
Moreover, using this normalization type leads to significantly higher average
recognition rates than using unit length normalized data (3.5% for γ = 102).

It should be further noted that the benefit of using prior knowledge gets lost
when using large amounts of training data, e.g. we even observed a performance
drop of 2.5% compared to the non-invariant case when using 75% of the entire
dataset for training.

Constant Tangents. We already discussed in Sect. 4.2 that Tangent distance
with constant tangents leads to positive semi-definite SE-Kernels. Since the La-
grange bases used in our approach are independent of the Raman spectra, we
obtain overall constant tangents by discarding the non-constant scaling tangent.
To evaluate this approach which does not need any heuristics or approximation,
we repeated the above experiments and still observed a substantial performance
gain over the Euclidean kernel (30.4% versus 47.8% on average for raw spectra).
Compared to the negative variance cut-off heuristic, the results are nearly the
same. Therefore and due to space limitations, we omit further results regarding
this experiment.

Positive Definite Approximations. As has been discussed in Sect. 4.2, the use
of positive definite approximations is computationally prohibitive. We therefore
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Fig. 5. Standard GP approach (unit, raw) and invariant GP heuristic (raw-tdmn)

versus positive definite approximation methods (raw-shift, raw-clip, raw-flip)

adapted our experimental setting to accommodate for this fact. We randomly
selected a fraction of 50 spectra for each category and trained the classifier
with ten randomly chosen data points per category. Each such fraction was
measured ten times. In order to obtain a measure for the entire dataset, this
whole procedure was repeated 25 times. We thus ended up with a collection of
10 × 25 averaged recognition rates per classifier. We can see from Fig. 5 that
no approximation substantially improved the invariant GP classifier (raw-tdmn)
though non-positive eigenvalues occurred. Moreover, we can see that the rather
fast SHIFT transform is even counterproductive, leading to a slightly decreased
averaged performance (3%). The behavior of the SHIFT transform is even worse
in large-scale training sets. E.g. when 75% of the data is used for training, we
observe a performance drop of 55.8% compared to Euclidean kernels. This seems
to be an inherent problem of this approximation method, as similar performances
are reported for SVMs [13].

6 Conclusion and Future Work

This paper tackles the problem of Raman spectroscopic identification of microor-
ganisms and introduces the Gaussian Process classifier to this field. In addition
to the standard GP classifier we investigate the use of partially invariant co-
variance functions, where we embed known ideas from invariant kernel theory
into the Gaussian Process framework. We highlight the shortcomings of this
approach, i.e. that general GP classifiers are not able to cope with indefinite
covariance matrices, and investigate methods to circumvent this issue. Empiri-
cal results show that the GP classifier outperforms state-of-the-art methods on a
large Raman dataset. Moreover, for the case of few training samples a significant
performance gain is achieved via Tangent distance based covariance functions in-
corporating prior knowledge from possible pattern variations. Our results show
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that investigating invariant GP methods can indeed be beneficial. It would be
further interesting to transfer our approach to other applications and to high-
light relationships and empirically compare our work to other indefinite kernel
methods.
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Abstract. The matching of point sets that are characterized only by

their geometric configuration is a challenging problem. In this paper,

we present a novel point registration algorithm for robustly identifying

objects represented by two dimensional point clouds under affine distor-

tions. We make no assumptions about the initial orientation of the point

clouds and only incorporate the geometric configuration of the points

to recover the affine transformation that aligns the parts that originate

from the same locally planar surface of the three dimensional object. Our

algorithm can deal well with noise and outliers and is inherently robust

against partial occlusions. It is in essence a GOODSAC approach based

on geometric hashing to guess a good initial affine transformation that is

iteratively refined in order to retrieve a characteristic common point set

with minimal squared error. We successfully apply it for the biometric

identification of the bluespotted ribbontail ray Taeniura lymma.

1 Introduction

Euclidean motion of planar objects in 3D is equivalent to affine transformations
in 2D if we assume parallel projection neglecting occlusion. It is often possible
to robustly extract interest points from images that suffice to uniquely identify
a class of objects or even individual entities [1,2,3]. The identity of two clouds
under some transformation model can be established by a global invariant feature
[2,4] or by aligning the two clouds [5]. Global features for point clouds like
shape contexts [6] or features derived by integrating a local feature over the
whole structure [4] are fast to compare as we only need to compute distances
in the feature space. Such features, however, cannot deal well with outliers as
every point affects the value in the feature space. Point registration performs
much better in the presence of outliers: once a valid transformation is found, a
similarity measure based on point correspondences is not affected. Rigid motion
of non-planar objects generally requires the construction of a 3D model to be able
to model the transformation in two dimensions [2]. In this paper we exploit the
fact that many objects possess partly planar surfaces and therefore can be partly
modeled with an affine transformation[7]. Sample applications are depicted in
Fig. 1.

M. Goesele et al. (Eds.): DAGM 2010, LNCS 6376, pp. 91–100, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



92 D. Mai, T. Schmidt, and H. Burkhardt

x
x

x x
x

x
x
xx

x

x
x

x

x
x

xx

x

x x

xx
x

x

xx
xx

x

x
xx

x

x

x

x
x

x

x x

x

x

x

xx

x

xx
xx
x x

x

x

x
x

xx
x

x
x

(a) (b) (c)

Fig. 1. Possible applications of the point registration algorithm include noninvasive

wildlife monitoring (a,b) and place recognition in mobile robotics (c)

Formalization of the Problem. Let C be a point cloud containing points
pi = (x, y, 1)T in homogeneous coordinates. Let the common point set of two
clouds Ci under the affine transformation A be:

XA(C1, C2) = {(p1, p2) | p1 ∈ C1, p2 ∈ C2 : ‖Ap1 − p2‖ < δcorr} . (1)

We assume a correspondence (p1, p2) if the Euclidean distance of p2 and the
transformed point p1 is smaller than a threshold δcorr. We define the character-
istic common point set

X̂A(C1, C2) ⊆ XA(C1, C2), |X̂A(C1, C2)| ≥ #min (2)

as a subset of XA, holding enough correspondences to identify the object that
the point clouds originate from.

The minimum cardinality #min of X̂A(C1, C2) depends on the application.
For biometric identification, #min usually is a small value: The Battley System
reports two fingerprints identical when seven correspondences between minutiae
have been found[8], the seven most significant Eigenface coefficients suffice to
describe a face[9].

A fast and well understood method for aligning point clouds is the Iterative
closest Point algorithm[10] (ICP). The ICP needs a good initial alignment of the
point clouds and is hence not suitable for our problem by itself, but it is useful
to refine a transformation once a coarse initial guess has been made.

For recovering an affine transformation we need to find at least three corre-
sponding points. Local descriptors like SIFT[1], Spin Images[7] or orientation of
surface normals[11] are popular features to solve this task. In absence of such
descriptors, one can use invariant features based on the geometric configuration
of the points. [3,12,13] encode the points of a cloud relative to all possible 3 point
bases and use a generalized hough voting to find a corresponding basis. Aiger
et al.[14] use a feature based on area ratios to find a corresponding basis to a
fixed basis of 4 points. A popular philosophy to speed up the search for corre-
spondences is geometric hashing [3,11,12]: Points or groups of points are indexed
with a feature that remains invariant under the assumed transformation. When
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using groups of points two additional problems arise: 1. One has to make sure
that the sampling strategy remains unaffected by the allowed transformations
of the cloud. Sampling all

(
n
3

)
combinations [3,12] is only practicable for small

clouds. 2. The feature for indexing also has to be invariant against permutations
of the input – to the best of our knowledge none of the existing affine invariant
features fulfills this property.

Contribution and Overview. In this paper we present a novel algorithm to
find a characteristic common point set of two point clouds under the assumption
of an affine transformation. Our contributions are:

1. a family of affine invariant descriptors Tρ for sets of four points in arbitrary
order based on area ratios,

2. a novel strategy to partition the point cloud into a linear number of those
local four-point-neighborhoods based on a Voronoi decomposition, and

3. a point registration algorithm based on geometric hashing to identify a char-
acteristic common point set.

The remainder of the paper is organized as follows: In Section 2 we will introduce
the invariant mapping Tρ, in Section 3 we present our cloud partition algorithm,
and in section 4 we introduce the point registration based on the former two
sections. In section 5 we show the applicability of our algorithm for the biometric
identification of blue spotted ribbontail rays and conclude in Section 6.

2 Affine Invariants for 4 Points

An invariant mapping T of a pattern x is a function that maps all members of
an equivalence class εG under a transformation group G into one point of the
feature space:

xi
G∼ xj ⇒ T (xi) = T (xj) . (3)

As this necessary condition for invariance can already be achieved by a simple
constant function that maps the same value to every input, we also require

T (x1) = T (x2)⇒ x1
G∼ x2 , (4)

which would assure completeness [15]. This is difficult to achieve and might also
be difficult to prove in a domain with possibly infinite different patterns. We
therefore aim to construct invariants with a high degree of separability, which is
completeness on a subset of relevant patterns. Furthermore, we demand conti-
nuity of the invariant mapping T to be able to deal with noisy data, i.e. small
changes in the pattern result in small changes in the feature space.

Four not all collinear points pi
1

P = {p1, p2, p3, p4} (5)

1 In homogeneous coordinates like in Eqn. 1.
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define four triangles �i with at most one degenerate triangle having an area of
zero. We will call such a point set P a 4 point affine set (4PAS). Without loss
of generality we order the triangles ascending based on the area:

Area(�i) ≤ Area(�j)⇔ i < j. (6)

The sequence of triangles with equal areas is not important. We compute six
area ratios

Rij =
Area(�i)
Area(�j)

∀i < j. (7)

The Area ratio fulfills the following properties:

1. Due to the sorting, we have Rij ∈ [0, 1].
2. The area can be computed using the determinant which is a continuous

function in the point coordinates. Hence the area ratio is also continuous. It
can be shown that this also holds in the case of a change in the ordering of
triangles caused by coordinate noise.

3. The area ratio Area(�1)
Area(�2) = Area(�1)

Area(�2)
, with �i being an affine transformed

version of �i, is invariant under affine transformations[16].

In the following, we will index the six ratios Rij with a single index for ease
of notation as the order is not important. We can now introduce the invariant
mapping function Tρ : R3×4 → [0, 1]

Tρ(P ) = Tρ(R1, . . . , R6) =
1
6!

∑
π∈S6

Rρ1
π(1) · . . . ·R

ρ6
π(6) . (8)

The mapping Tρ is a symmetric polynomial parameterized with a set of expo-
nents ρ ∈ [0,∞)6, i.e. the positive part of the R6. We need this restriction to
assure that Rij ∈ [0, 1]. In order to be invariant to a permutation of the input
we integrate over the symmetric group S6.

We want to use Tρ as an indexing function for a hash table. Therefore we
aim to find a parameterization ρ that yields an invariant distribution as uniform
as possible, as this is optimal for hashing[13]. The shape of the distribution
depends on the underlying population of 4PAS and the parameterization ρ. Fig. 2
illustrates the impact of the parameterization ρ. Note that the hashing will work
with any kind of distribution, the degree of uniformity only has an impact on the
number of candidates within a tolerance level. We did not elaborately analyze
this part of the problem and choose ρ = [1, 1, 0, 0, 0, 0] as parameterization for
the further experiments, as it yields the most uniform distribution among the
parameterizations tested.

3 Voronoi Decomposition

With geometric hashing, we want to establish an initial pairing between two
4PAS P that lie on a characteristic common point set (Eqn. 2) of two objects.
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(a) (b) (c)

Fig. 2. The histograms show invariant distributions for 10.000 4PAS (see Sec. 3), sam-

pled from a typical population of Taeniura lymma (see Sec. 5) under different param-

eterizations ρ. The distribution (c) is not suitable for hashing.

As we do not make any assumptions for the initial configurations of the point
clouds, we need to partition the cloud into local neighborhoods2 of four points
independent of the cloud’s orientation.

The Voronoi decomposition partitions the R2 into disjunct cells based on a
set of centroids ci. For each cell holds that every point of the cell is closer to its
centroid ci ∈ C than to every other centroid cj ∈ C:

Vcell(ci) = {p | ∀j �= i ‖ci − p‖ < ‖pj − p‖} . (9)

Note that all the Vcell(ci) are disjoint, but their union does not equal the R2 as
the borders of the cells are not part of the cell. These borders are referred to as
Voronoi segments and can be defined in the following way:

Vseg(C) = R2 \
⋃

ci∈C
Vcell(ci) (10)

These segments represent the borders of the distinct Voronoi cells. All points on
a segment are equidistant to at least two Voronoi sites. The intersection points
of the borders define a Voronoi node:

Vnodes(C) = {v | ∃ci, cj , ck ∈ C : ‖ci − v‖ = ‖cj − v‖ = ‖ck − v‖} . (11)

We will construct the set P containing the 4PAS P by extracting the four nearest
neighbors for every Voronoi node v ∈ Vnodes(C) (See Fig. 3 for an illustration).
The construction of a Voronoi decomposition takes O(n log(n)) time and contains
O(n) Voronoi nodes. The distance queries are issued on a kd-tree that also takes
O(n log(n)) for construction and O(log(n)) for a nearest neighbor query. The
overall preprocessing time for a point cloud hence is in O(n log(n)).

This partitioning strategy is canonical for similarity transformations as rela-
tive point distances do not change. It therefore is also valid for affine distortions
that do not contain strong skews or strong anisotropic scaling. The number of
4PAS ∈ P is linear in the number of points in the point cloud.
2 The points of the characteristic common point set originate from a locally planar

part of the object.
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Fig. 3. A Voronoi node with its four nearest neighbors

4 Point Registration

The goal of the point registration is to find the affine transformation A that
defines a characteristic common point set (Eqn.2) of two point clouds Ci. We
use geometric hashing to establish an initial correspondence between two 4PAS
that are indexed by the invariant Tρ (Eqn. 8). This seed is used to compute an
initial transformation which is iteratively refined to obtain the transformation
that minimizes the quadratic error between the assumed point correspondences.
This can be seen as a GOODSAC [17] approach as we make an informed guess
(through hashing) for a good initial alignment. To achieve robustness against
bin-jumping, we use a kd-tree for indexing the set of 4PAS instead of fixed bin
sizes. For a 4PAS P 1 we consider every P 2 that lies within a certain tolerance
δ as a candidate correspondence: |Tρ(P 1)− Tρ(P 2)| ≤ δ.

4.1 Pseudoinverse Matrix

We define the affine transformation A and two 4PAS:

A =

⎛⎝a1 a2 a3
a4 a5 a6
0 0 1

⎞⎠ , P 1 = {p1, . . . , p4} ⊂ C1, P 2 = {p1, . . . , p4} ⊂ C2. (12)

Without loss of generality we align C1 → C2, i.e. A(P 1) = P 2, with point
correspondences pi

1 ∼ pi
2. Therefore, we have to solve:⎛⎜⎜⎜⎜⎜⎝

p1x p1y 1 0 0 0
0 0 0 p1x p1y 1
...

...
...

...
...

...
pnx pny 1 0 0 0
0 0 0 pnx pny 1

⎞⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

M

⎛⎜⎜⎜⎜⎜⎜⎝
a1
a2
a3
a4
a5
a6

⎞⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

a

=

⎛⎜⎜⎜⎜⎜⎝
p̃1x

p̃1y
...

p̃nx

p̃ny

⎞⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

b

. (13)

This overdetermined linear system of equations (Eqn. 13) encodes a point cor-
respondence in two lines, as the x– and y–coordinates of a point each impose
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a condition. For the initial pairing, the number of correspondences is n = 4.
It can be solved using the Moore-Penrose Pseudoinverse M+, minimizing the
quadratic Euclidean error between the corresponding points:

a = M+b . (14)

In general we do not know the corresponding points initially. Therefore we have
to check all 4! permutations of P 1 against P 2. We return the candidate trans-
formation with minimal error (Eqn. 15).

4.2 Iterative Refinement

Once we have an initial guess for the affine transformation A, we iteratively add
more correspondences to the Eqn. 13. We continue adding correspondences as
long as a maximum likelihood classification of the error of A indicates its validity.
We find the next correspondence by checking a small number k of candidates in
the neighborhood of the already found correspondences and take the one with
the smallest error (Alg. 1, lines 3 and 5). With this strategy, we find the next
most likely corresponding points without explicitly specifying a threshold δcorr

(Eqn. 1). The goal of the refinement is to estimate the size of the common point
set XA(C1, C2) that is implied by A. We accept two objects as identical once its
size reaches the application specific threshold #min. Naturally, the more common
points we find, the more confident we can be about the identity of the objects.

We define the error of a mapping of two sets of n correspondences K1 →K2
with respect to A as

eA(K1, K2) =
1
η2

n∑
i=1

‖A(Ki
1)−Ki

2‖2 , (15)

with normalizer η being the average distance of neighboring points in C2. We
need to normalize the error to account for different scalings in the data. The
error rises if the assumed correspondences can not be modeled well by an affine
transformation which usually is the case if they do not originate from a common
point set. This error measure enables us to to deal with noisy data well: By
learning the distributions of the expected error of A for a given number of
correspondences n, the registration algorithm adapts optimally to the noise-level
present in the application. With noise we refer to errors in the point coordinates
due to detector inaccuracies and not perfectly planar surfaces.

We have two classes: ωpos for correspondences that originate from a common
point set and ωneg for assumed correspondences that do not originate from a
common point set. We continue adding correspondences as long as maximum
likelihood classification of the error eA of the transformation

p(eA| ωpos, n) < p(eA| ωneg, n) (16)

indicates its validity. The distributions p(eA|ω{pos,neg}, n) for the positive and
negative cases with n points have to be learned on a set of labeled correspon-
dences originating from the population that we wish to work on.
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Algorithm 1. [K1, K2, A] = refineTransformation(A, C1, C2, K1, K2)
1: for n ∈ 4, . . . , #min do
2: μ = mean(K2) {center of gravity}
3: B ← KNN(C2, K2, k) {k nearest neighbors to K2 on C2}
4: for c2 ∈ B do
5: c1 = KNN(A ◦ C1, c2, 1)
6: K1 ← c1,K2 ← c2 {add to correspondences}
7: A = computeAFF(K1, K2) {using Eqn. 14}
8: if p(eA | ωpos, n) < p(ea| ωneg , n) then {ML classification of quality}
9: remove ci from Ki

10: else
11: break

12: end if
13: end for
14: if no new correspondence found then
15: return K1, K2, A
16: end if
17: end for

4.3 Complexity

The complexity of the registration algorithm is directly proportional to the size
of the queue holding the candidate pairings. For each pairing we have to run the
iterative refinement (Alg. 1) that runs at most #min iterations. We can assume
that this is a rather small value in real world applications (See Sect. 5). Therefore
we estimate the cost of one refinement with O(#min). The size of the queue is
dependent on the discrimination power of Tρ and the noise level of the data. The
best case, i.e. a characteristic common point set exists, is achieved in constant
time. The worst case (negative matching on a repetitive pattern) is quadratic in
the number of points as we have to try all possible pairings. The average case
for the negative matching is linear in the number of points, if the hashing yields
few possible candidate pairings. This usually is the case for random patterns.

5 Experiments

We test the algorithm for the biometric identification of the bluspotted ribbontail
ray, working with a total of 42 underwater pictures from 6 different individuals
(7 pictures each). We extract the point pattern using a multi scale LoG detector.
The extracted point data contains nearly no false positives on the surface of the
ray, but may contain lots of outliers. The average point cloud contains 140 points
and is partitioned into 180 4PAS. We learn the positive distribution p(eA|ωpos, n)
on one hand labeled set of 7 pictures for n ∈ 4, . . . , 21, retrieving around 500 error
measurements eA for each n. The negative case ωneg is learned on point clouds
of two different individuals by sampling iteratively increasing neighborhoods of
n points on the clouds.
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Fig. 4. A positively identified sting ray with its characteristic common point set (red)

and the initial pairing of 4PAS (green)

We perform a pairwise comparison on the remaining 5 sets conducting a to-
tal of 595 tests. Fig. 5 shows the precision–recall diagram of our classification
results. We achieve a precision of 1 with a recall of 0.75 which validates our
algorithm for the biometric identification. With #min = 17 we would achieve
perfect confidence on this population. The points that lie outside of the charac-
teristic common point set can be regarded as outliers, although they most likely
represent a real blue spot on the ray’s surface – but not from the same planar
surface patch. To the best of our knowledge, no other point registration algo-
rithm exists that can handle point clouds under affine distortions with ∼ 90%
outliers in arbitrary initial positions.

For the positive cases we find the solution after an average of 69 pairings.
The algorithm was implemented using MATLAB R2009a on a Intel Core 2 Duo.
Absolute timings for the positive matching are ∼ 3 sec. and ∼ 15 sec. for the
negative case. The learning of p(eA|ω{pos,neg}, n) takes less than one second for
every n.

Fig. 5. A cardinality of #min = 17 for the characteristic common point set identifies

an individual of Taeniura lymma unambiguously on our dataset
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6 Conclusion

We presented a novel point registration algorithm for matching two dimensional
point clouds originating from partly planar surfaces under affine distortions. It
can handle a huge amount of outliers and is able to deal with noisy data well.
We successfully apply it for the biometric identification of Taeniura lymma.
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TGraphs
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Abstract. This paper presents a case study showing that domino tile

recognition using a model-based approach delivers results comparable

to heuristic or statistical approaches. The knowledge on our models is

modeled in TGraphs which are typed, attributed, and ordered directed

graphs. Four task-independent rules are defined to create a domain inde-

pendent control strategy which manages the object recognition. To per-

form the matching of elements found in the image and elements given by

the model, a large number of hypotheses may arise. We designed several

belief functions in terms of Dempster-Shafer in order to rate hypotheses

emerging from the assignment of image to model elements. The devel-

oped system achieves a recall of 89.4% and a precision of 94.4%. As a

result we are able to show that model based object recognition is on a

competitive basis with the benefit of knowing the belief in each model.

This enables the possibility to apply our techniques to more complex

domains again, as it was tried and canceled 10 years ago.

1 Introduction

Object detection using model-based image analysis is still a challenge. Although
there has been research in this area for many years. It is widely excepted that
knowledge of the object domain is needed to classify objects. For example, Google
Earth provides lots of models of buildings which are designed in Geography
Markup Language (GML) and Keyhole Markup Language (KML). These model
descriptions deliver symbolic descriptions of buildings which may give new rele-
vance to model-based image analysis, because plenty of models are available.

Several approaches try to find an algorithm which is general, robust and effi-
ciently calculable. In this study we evaluate the efficiency and robustness of
model-based object recognition in a task-independent pattern recognition system.
Furthermore we introduce belief functions to achieve that goal. For this purpose
we use exemplary domino tiles as a first manageable application domain.

One archetype of such a system is ERNEST [1], which is a pattern recogni-
tion system developed in 1980 employing semantic networks in several applica-
tion domains, like building recognition [2] and speech understanding [3]. In our
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approach, we use TGraphs [4] as a “light-weight”-ontology. TGraphs are a very
general graph concept which is based on vertices and edges as first-class entities
and includes types, attributes, and ordering for both. We store the meta-knowledge
and instantiate concrete models using this knowledge, taking advantage of the fact
that no large sets of samples are needed because the geometrical knowledge about
domino tiles is directly used to construct the models. To find features in images
we exploit the explicit knowledge given by the models. Therefore, we use a task-
independent activity-control, which manages the application flow of the system.
In this paper, we outline how our model-based system can be extended to work in
any other application domain.

We introduce the related work in Section 2. Section 3 describes our approach
in detail. There we give the exact definition of the task and describing our model
of domino tiles as well as the designed belief functions. We show and discuss our
experiments and results in Section 4. A summary and ideas for future work can
be found in Section 5.

2 Related Work

In principle, the object detection task for domino tiles is simple; this problem
has been used as a case study before, e.g. in [5]. A heuristic strategy is to
detect circles and rectangles and count the circles in each half of the domino
tile. Another approach is to apply template matching [6], which is widely used in
face recognition. Bollmann et. al. [5] use template matching to identify domino
tiles. The advantage of template matching is that it delivers a similarity measure,
but it is neither rotation nor scale invariant.

Today, model-based approaches normally use statistics, appearance, shape or
geometry, which mostly work without an explicit geometrical model schema [7,8].
In this work we only use models where the modeling of the objects is in a explicit
form, like it is used in Computer Aided Design, which rather corresponds to the
human view. We use domino tiles as an example to demonstrate and evaluate
model-based approaches.

Using models for explicit knowledge representation, there are two main strate-
gies how a controlling algorithm can handle the analysis process (cf. [9] p. 240ff).
On the one hand, there is the data-driven strategy, where the segmentation ob-
jects, found in the image, serve as an initialization for the analysis. Based on
the segmentation objects, the best possible model is sought. The model-driven
strategy on the other hand works the other way round. Each model determines
whether it is contained in the image or not and tries to locate its elements.

Hybrid forms are feasible and favored in most cases. We choose a hybrid ap-
proach where data-driven models become pre-evaluated and then we selectively
search model-driven for segmentation objects. These strategies can be called
task-independent because they do not refer to knowledge of the domain. Other
systems exist which use ontologies such as OWL1 and combine them with un-
certain knowledge for finding concepts in a domain [10,11].

1
http://www.w3.org/2004/OWL/

http://www.w3.org/2004/OWL/


Model-Based Recognition of Domino Tiles Using TGraphs 103

Uncertainty theories, such as Bayes [6], Dempster-Shafer [12] or fuzzy sets [12]
define how to deal with uncertain, insecure or vague knowledge. They provide
a representation formalism for uncertain information and reasoning strategies.
The Dempster-Shafer as belief propagation is used by Hois in [13] and [10], where
Neumann uses Bayesian compositional hierarchies for scene interpretation [14].

The knowledge-based processing strategy was popular in several areas, also in
the image analysis, in the 80s. Semantic networks were introduced and success-
fully used for image and speech analysis [15,16,17]. The formalism ERNEST [17]
combines representation of concepts in a graph, using sparse edge types, with a
task-independent control of A*-basis. There the search for the best association
can be considered as a path search which can also be performed if not all states
are generated. This can be controlled by the A∗-algorithm [15].

An overview of knowledge-based systems for object recognition is given in
[18]. Such systems need to be robust to errors in segmentation data as well as
predominantly invariant to changes in image acquisition.

3 The Model-Based Approach

This paper describes a model-based approach to locate domino tiles in images,
where Section 3.1 gives a formal specification of the task. The application flow
of the system is to accomplish first a pre-evaluation of the models (3.2), where
only the circles in each half of a rectangle are counted. Then the activity control
(3.3) starts to recognize domino tiles with these model. The hypotheses of found
domino tiles are evaluated for each assignment (3.4) and the entire model.

3.1 Specification

The recognition system in this case study works with several domino tiles and
can handle wrong inputs.

Given
– a universe SEGMENT of all possible segmentation objects,
– a set RECT ⊂ SEGMENT of all possible rectangles,
– a set CIRCLE ⊂ SEGMENT of all possible circles,
– CIRCLE ∩RECT = ∅

– a relation CONTAINS which describes if a segmentation objects contains
another segmentation objects, CONTAINS ⊆ SEGMENT×SEGMENT,

– one domino tile rectangle dr1 ∈ RECT and its two halves dr2 ∈ RECT and
dr3 ∈ RECT,

– a set P ⊂ CIRCLE of possible pips with a specific position, with |P| = 14,
– a set LAYOUT of possible layouts, |LAYOUT| = 28, the number of possible

domino tiles, and LAYOUT ⊂ 2P,
– a set of Models M = {dr1}×{dr2}×{dr3}×LAYOUT, where m ∈ M ∧ m =

(m1,m2,m3,m4) is a concrete model (see Sect. 3.2).
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Input
– a set S ⊂ SEGMENT, S = R

.
∪C with R ⊂ RECT and C ⊂ CIRCLE, of all

segmentation objects found in the image,
– a threshold θ ∈ [0, 1], to set a belief limit of the hypotheses
– a total function BelS : S → [0, 1] ⊂ R, describing the belief in the segmenta-

tion object itself
– a total function BelM : M×(2R×2C) → [0, 1] ⊂ R, describing the belief in

the model assignment.

Output
– a set M′ ⊂ M of domino models, where ∀m ′ ∈ M′ | BelM(m ′, R′, C′) ≥ θ,

with C′ ∈ 2C ∧ R′ ∈ 2R,
– ∀m ′ ∈M′

• a set Rm′
⊂ R of rectangles partially mapped to m ′

1, m ′
2 and m ′

3, with
|R| < 4, where r1 ∈ Rm′

is assigned to the domino tile m ′
1,

• γm′
C = C � m ′

4,
• ∀ c1 ∈ C | c1 ∈ dom(γm′

C ) : r1 CONTAINS c1

• judgments Jm′
localk ∈ [0, 1], k = 1, . . . , L how well these mappings in detail

could be established,
• a total judgment Jm′

∈ [0, 1] of the found models. These are calculated
with BelM.

In this case study the judgment J is according to the belief of the Dempster-
Shafer theory [19].

3.2 Model

The basis for the model-based object recognition system is, of course, the model
itself. Therefore, we model the declarative knowledge in a generic scheme (see
Fig. 1). The main elements of the model are the elements TwoDGeometricObject
and SemanticObject, which are derived classes of the GenericObject, so we
have a clear separation of semantic and geometric objects.

Two types of edges are defined in the schema. On the one hand, the consists-
Of edge which describes that TwoDGeometricObjects are able to consist of other
TwoDGeometricObjects and SemanticObject are able to consist of other
SemanticObjects. A constraint to the schema is that SemanticObjects cannot
consist of TwoDGeometricObjects and the other way round. On the other hand,
the isRepresentedBy edge maps a SemanticObject to a TwoDGeometricObject.
Every edge has the attribute obligatory to determine if the part or representa-
tion is obligatory to recognize the object.

In addition to declarative knowledge, we also model the procedural knowl-
edge in the schema. Therefore, we need the three methods initiate, limit and
calculateBelief for every element. The initiate method has the task to find
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DominoTilePart TwoDCircle
− radius : Double

DominoTile Pips

SemanticObject

TwoDRectangle
ratio : Double

TwoDFace
name : String

TwoDGeometricObject
belief : Double

TwoDQuadrangle

TwoDPolygonalFace

GenericObject

initiate ( )
calculateBelief ( )
limit ( )

* *

isRepresentedBy
 obligatory   : Boolean

* 1*

1

* *1 0..61 2

*
*

consistsOf
obligatory : Boolean

Fig. 1. UML diagram of the domino tile schema

its potential equivalents in the image and to provide them to the system. After
a successful initialization, the limit method is needed to calculate with a given
segmentation object, as initiation candidate, the resulting limiting, region of
interest (ROI ). This ROI is set to the further parts of the model, so that in
further calculation steps only candidates within the ROI are considered. Finally,
the calculateBelief method calculates the belief in the element. These belief
functions vary widely and it is a scientific task to find adequate belief functions.
In Section 3.4, the functions are described in more detail.

With this schema, we are able to construct concrete models. In this case study,
we have 28 basic models, because we have 28 domino tiles.

3.3 Pragmatic of the System

A control system can now take these models and start with the analysis of the
image. The developed system is inspired by ERNEST (see Sect. 2). In ERNEST
six task-independent rules precisely define the computation of elements and in-
stances. These rules are combined with graph search algorithms to handle the
control problem. Our system has four task-independent rules.

Rule 1. If a isRepresentedBy edge belongs to the actual element, go to the
TwoDGeometricObject of the isRepresentedBy-edge and initiate the element.

Rule 2. If no isRepresentedBy edge belongs to the actual element, expand the
element, i.e., search for the part of this element which is not already processed.
If all parts are already processed go to the parent element and repeat Rule 2.

Rule 3. If the initialization of a element was successful, limit the ROI of all parts
which belong to this element.

Rule 4. If an element is not obligatory, but an initialization is possible, then use
Rule 1 for this element.
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In our model only the TwoDRectangles of the DominoTileParts are not oblig-
atory, because we are able to identify a domino tile without these rectangles, but
the knowledge of them gives a additional contribution in the belief that we have
found a domino tile in the image.

Each step in the analysis is encapsulated in one state. The search for the best
association can then be considered as a path search, which can also be performed
if not all states are generated. This search is controled by the A∗-algorithm.

3.4 Belief Functions

With the models and the activity control we are able to instantiate them, but
cannot say which model is plausible and which one is not. Therefore, we need
belief-functions which provide qualitative values for each model.

In this case study we choose the Dempster-Shafer belief function, which allows
to model the functions in a heuristic way without requiring the knowledge of the
statistical distribution of our data. Dempster-Shafer provides also a convenient
combination rule for independent beliefs. Therefore, we need the basic probability
assignment (bpa). A bpa must fulfill the conditions:

Given the sample space Ω = {ak} , k = 1, . . . ,K ,A ⊆ Ω, where ak and A are
arbitrary events.

bpa(∅) = 0 (1)

∑
A⊆Ω

bpa(A) = 1 (2)

The combined bpa with Dempster-Shafer is:

bpa1 ⊕ bpa2 = bpa(A) =

{
0 : A = ∅∑

t∩u=A bpa1(t)bpa2(u)
1−

∑
t∩u �=∅

bpa1(t)bpa2(u) : ∅ �= A ⊆ Ω
. (3)

The Dempster-Shafer rule is commutative and associative. Accordingly, it is
possible to combine various resources, but the resources have to be independent
of each other because in general bpa ⊕ bpa �= bpa is valid.

We define three general functions which are valid for each SemanticObject.
At first we need a function to combine bpa of two events of different sample
spaces which gives both a belief assignment that an accordant element is found
in the image (see eqn. 4). Therefore, the combination rule of DS (eqn. 3) is used
like Quint made it in [2]. Then the belief of a SemanticObject is

bpa(SemanticObject | Eparts , Erep) =
κ1 bpa(SemanticObject | Eparts) ⊕ κ2 bpa(SemanticObject | Erep) .

(4)

With κ1 and κ2 you can weight the trust that this event really support the
belief in the SemanticObject, where κ1, κ2 ∈ [0, 1]. The information source
Eparts describes the observation of the parts of a SemanticObject and the
information source Erep specifies the GeometricObject which represents this
SemanticObject. A example is given in equation 5 with the belief

bpa(dr1 | Edri , ER) = 0.7bpa(dr1 | ER)⊕ bpa(dr1 | Edri ), i ∈ {2, 3} (5)
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of the SemanticObject DominoTile given the information sources Edri (ob-
served domino tile parts) and ER (observed rectangle). The rectangle alone
gives a smaller contribution that the DominoTile element was found in the
image than possibly found domino tile halves, so κ1 = 0.7 ∧ κ2 = 1. Also
we need to know the belief of a SemanticObject given the information source
Eparts (observed parts). Therefore, we use a function (eqn. 6) equal to the total-
probability rule. For any partition Bj , j = 1, . . . , N of the event space Ω and
Ω = {{fp1, . . . , fpL}, {fp1, . . . , fpL}, . . . , {fp1, . . . , fpL}}, where fp equates the
event of found a SemanticObject part, is

bpa(SemanticObject | Eparts) =∑
j

bpa(SemanticObject | Bj )bpa(Bj | Eparts) . (6)

We apply the belief of a SemanticObject given the information source Eparts

to a DominoTile as example (eqn. 7) and calculate the weighted sum over the
partition B of the DominoTileParts. For this is Ω = {{dr2, dr3}, {dr2, dr3}, {dr2,
dr3}, {dr2, dr3}} and

bpa(dr1 | E{dr2,dr3}) =
∑
j

bpa(dr1 | Bj )bpa(Bj | E{dr2,dr3}) . (7)

Finally, we need the belief of a partition Bj given the information source EBj
:

bpa(Bj | EBj
) =

∏
pj∈Bj∧pj isTrue

bpa(pj ) . (8)

The concrete implementation for the partition Bj of domino tile parts is

bpa(Bj | E{dr2,dr2}) =
∏

dtpj∈Bj∧dtpj isTrue

bpa(dtpj ) . (9)

An example of a possible partion Bj is Bj = {dr2, dr3}.
These three functions are the same for each SemanticObject. They have to

be supplemented by basic probabilistic assignments bpa for the specific cases.
Some important bpa will be presented in the next equations 10 - 13.

The belief of the assignment of a segmented rectangle to a model rectangle is

bpa(dr1 | ER) =

{
ratior

ratiodr1
: ratiodr1 > ratior , r ∈ R

ratiodr1
ratior

: ratiodr1 < ratior , r ∈ R
. (10)

For the calculation of bpa(dri | ER) we take the already found rectangle dr1 of
the domino tile, divide it in two halves and compare it with the candidates for
the domino tile part rectangle dri . Therefore, we calculate the intersection area
of one of the halves and dri and divide the intersection by the entire area of the
rectangle half and dri .
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bpa(dri | ER) =
intersection area of dri and R

entire area of dri and R
with i ∈ {2, 3} . (11)

The beliefs of the rectangle assignments in (10) and (11) are necessary to dis-
tinguish a domino tile from other objects. We also need a belief function which
penalize missing assignments of segmentation objects and/or model elements:

bpa(dri | P) = e− 1
2 x2

x =|| C | + | {given pips} ∈ P | − | {associated pips} ∈ P || .
(12)

The belief in the assignment of a pip p to a circle c, where (cx , cy) and (px , py)
are the center points of the circles, and cr and pr are the radiuses, is very
important. We choose the exponential form to prevent that circles are assigned
to wrong and far away pips:

bpa(p ∈ P | c ∈ C) = 101− 200q − 50 | cr − pr |,

q =
√

(px − cx )2 + (py − cy)2 .
(13)

The choice of the functions (12) and (13) tunes if it is better to drop an assign-
ment or not. As much more missing elements are penalized and as much more
the bpa(p ∈ P | c ∈ C) forgive differences of pips and circles, the more segmen-
tation objects are assigned and the other way round. For the calculation of the
beliefs (11), (12) and (13) we translate and rotate the rectangle and circles in
the origin and scale them, so they are comparable with model elements.

With these functions we have now the ability to rate the assignments of model
elements to segmentation objects. Furthermore the combination of the functions
gives us the total belief that a specific model was detected in the image. With the
models, the task-independent activity-control, the belief functions, and a belief
propagation we have all parts to find domino tiles in images.

4 Experiments and Results

This section deals with the data acquisition and the conducted experiments.
The data set of images was created with a turn table in a lightbox (JUST

Pantone Color Viewing box 1). For the experiments, a data set containing 489
images of single domino tiles on a homogeneous background was used. The im-
ages were created with an standard USBcamera in an approximate orthogonal
angle to the objects. Furthermore, an adjustment of 22-45 degrees per rotation
step (8, 12 or 16 images per light source) was selected for the turn table. In addi-
tion to the automatically generated images we also added images with sunlight
and ambient light to the data set2.

We achieved a detection rate of 94.7% and a precision rate of 94.4%. This
proves well, that our system works accurately with the given models, and found
2 The dataset is published on er.uni-koblenz.de.

er.uni-koblenz.de
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(a) (b) (c)

Fig. 2. Image (a) is a possible image with sunlight of the database. This image is

additionally distorted to test the classification. Therefore, a circle is masked (b) (c)

and a circle is added (c).

rectangles and circles. A recall of 89.4% also seems acceptable and shows that
the classification is in balance of precision and recall. The Fig. 2(a) shows one
image of the database where our classification correctly recognize the domino tile
as a 4-3 domino tile with a belief of 97.3%. We manually distorted this image,
where in Fig. 2(b) one circle is not detectable and in Fig. 2(c) a additional circle
is added. For Fig. 2(b) the classification delivers as result a 4-3 domino tile with
a belief of 84.9%. Hence the classification recognizes the correct domino tile,
even though the segmentation is incomplete because we weight the position of
a circle more than the number of circles. Whereas for Fig. 2(c) the classification
failed. There the classification delivers as result a 4-4 domino tile with a belief of
68,9% because it is more likely that the circle is only at the wrong position than
it is a false segmentation, especially where the radius of this circle is correct. As
expected, the belief in the result is low. Furthermore, we know the belief of the
single assignments. So the belief in the assignment of the wrong circle to the pip
is 41.5%, where the belief of a correct circle to a pip is about 98%.

5 Conclusion

We demonstrated that a model-based approach with a task-independent control
is able to deliver solid and accurate results for the recognition of domino tiles
in images. We achieved a recall of 89.4% and a precision of 94.4%. We showed
that we can not only calculate all assignments, but also obtain the knowledge
which elements of an image is the best correspondence for an element among the
model. To adapt this strategy to another application domain we have to create
a new model and implemented the methods for initialization, belief calculation
and limitation. Afterwards the activity control is able to classify. In the moment
we aply this approach in order to classify poker cards and in the near future
the evolved strategies will be adapted to more complex problems, such as the
classification of traffic signs and buildings, which will continue the work that we
reported on in [20].3

3 We thank Kerstin Falkowski and Jrgen Ebert for their fruitful discussions on the

component system and the specification in Sect. 3.1.
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Abstract. Optical Rails [1] is a purely view-based method for autono-

mous track following with a mobile robot, based upon compact omnidi-

rectional view descriptors using basis functions on the sphere. We address

the most prominent points of criticism towards holistic methods for robot

navigation: Dealing with occlusions and varying illumination. This is ac-

complished by slicing the omnidirectional view into segments, enabling

dynamic visual fields capable of masking out occlusions while preserving

proven, efficient paradigms for holistic view comparison and steering.

1 Introduction: Beyond the View-Based Approach

In the field of visual robot navigation, view-based, or ‘holistic’ approaches have
recently become increasingly popular: They replace the tedious task of matching
prominent points or performing accurate geometric measurements by a compar-
ison of entire images in the spectral domain, utilizing the possibilities of om-
nidirectional sensors, which provide a large rotation-invariant visual field. The
vulnerability of holistic methods to occlusions of the view, or local changes in
illumination, is commonly considered a major obstacle for their successful deploy-
ment. Dederscheck et. al. [1] have shown that illumination-invariant view-based
navigation is possible by using vector-valued image representations. Dynamic
occlusions pose a different challenge: They require adaptive visual fields.

In the present paper we propose a simple solution for this task: We slice an
omnidirectional view into multiple segments; while the spatial arrangement of
the slices is known, each segment is represented in the spectral domain, i. e.
by the coefficients of an expansion into low-frequency basis functions on the
sphere. Hence, we denote the proposed hybrid concept as a semi-spectral view
representation, extending the track following approach of Dederscheck et. al.
(Optical Rails) towards occlusion-awareness: When comparing views stored in
a database to newly seen images, only those view segments free of occlusions
are regarded. At the same time, handling of illumination changes is facilitated,
enabling segment-wise compensation of lighting conditions.

Semi-spectral views can efficiently be recombined (Sec. 2.1) yielding the co-
efficients of expansion of a single hemispherical view. Thus, our new approach

M. Goesele et al. (Eds.): DAGM 2010, LNCS 6376, pp. 111–120, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.vsi.cs.uni-frankfurt.de
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easily connects to existing methods harnessing the traditional virtues of spectral
representations, such as efficient rotation estimation.

The Navigation Concept. A path to be followed is represented as a sparse se-
quence of omnidirectional reference views serving as waypoints during track fol-
lowing. Instead of memorizing the shape of the trajectory, steering is purely based
on gradient descent in view dissimilarities, which is performed efficiently without
any operations in image space. A similar navigation approach has been proposed
by Matsumoto et. al. [2] (omnidirectional view sequence). Both approaches can
be regarded as topological navigation methods, related to biologically inspired
approaches (e. g. Möller and Vardy [3]) based on the snapshot theory proposed
by Cartwright and Collett [4]. In contrast to the traditional feature-based or
landmark-based approaches (e. g. Shah and Aggarwal [5]) we present a purely
view-based approach not relying on geometry.

2 The Semi-spectral View Representation

Expansion of Spherical Signals and Visual Fields. As in Dederscheck et. al. [1],
the representation of omnidirectional views is based upon expansion of image
signals on the sphere S2 into real-valued spherical harmonics, which form an
orthonormal basis on the sphere.

We define spherical coordinates η = (θ, φ)T ∈ S2, where θ ∈ [0, π] denotes
the angle of colatitude and φ ∈ [0, 2π) denotes the angle of longitude. Image
signals on the sphere are denoted as s(η), and the utilized basis functions as Yj ,
j ∈ {1, . . . , M}. A truncated expansion of a spherical signal s(η) is given by

s(η) =
∑M

j=0 aj · Yj(η). (1)

The weights aj of the expansion form a coefficient vector a := (a1, . . . , aM )T .
The visual field of an omnidirectional sensor is defined as the subset G of the

sphere S2 where image data can be acquired; in our case of a webcam with a low-
cost fisheye lens, an almost hemispherical field of view limited by a maximum
angle θmax is given by G := {(θ, φ)T ∈ S2 | θ < θmax}. The visual field G is then
partitioned into segments Hi. Let I be an index set enumerating the segments;
we define the partition P of the visual field G by

P := {Hi ⊆ G |
⋃
i∈I

Hi = G, ∀i �= j : Hi ∩Hj = ∅}. (2)

Each of the view segments Hi will be represented by a coefficient vector, forming
the semi-spectral view representation for Optical Rails. The utilized segmenta-
tion scheme (Fig. 1) consists of a central area surrounded by a set of radial
slices, corresponding to the characteristics of typical occlusions: each outer slice
can consume a person standing close to the robot.

Mask functions. For any visual field K ⊆ S2, we define a mask function mK :
S2 → {0, 1} which is one within K, zero otherwise. For mG and mHi we obtain∑

i∈I mHi(θ, φ) = mG(θ, φ). (3)
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semi-spectral
view descriptors

waypoints
optical track

Fig. 1. Left: Concept of view-based robot navigation using segmented, semi-spectral

views. Right: Mobile robot vehicle with upward-facing low-cost omnidirectional camera.

The defined mask functions will be used throughout the following sections to
describe areas of interest when comparing visual fields.

Semi-spectral view descriptors. In our approach each segment is treated as an
individual signal s(η) only valid within its respective visual field Hi. Corre-
spondingly, a spherical harmonics expansion is provided for each segment Hi,
the resulting coefficient vector is denoted as a(Hi).

A stacked representation of the individual a(Hi) forms the semi-spectral view
descriptor a� = (a(H1); . . . ; a(H9))T consisting of all segments: The expansion
of a full visual field G into a semi-spectral view descriptor is simply defined as
a weighted sum of the expansions of the individual segments

ŝ(η) :=
∑

i∈I mHi(η) ·
∑M

j=1 a
(Hi)
j · Yj(η), (4)

i.e. weighting the individual expansion with the respective mask functions mHi

ensures that each expansion only occupies its respective visual field.
Since spherical harmonics are orthonormal, the coefficients of expansion for a

full spherical view are obtained as the inner product of the signal and the basis
functions: ai = 〈s(η), Yi(η)〉. However, for signals defined on only part of the
sphere this orthonormality is violated and the above result no longer applies.

In the next section, we derive the optimal expansion of arbitrary visual fields
into the same set of basis functions. Finally, the expansion will be performed
efficiently, directly using pixel vectors of input images without prior unwrapping.

2.1 Optimized Expansion of Individual Visual Fields

Let K ⊆ S2 and let a(K) be a coefficient vector of the expansion of an image
signal s(η) in the visual field denoted by K. For such a(K) we require that it
correctly represents the original signal within K, whereas outside the expansion
may assume arbitrary values. The desired view descriptor can be determined
using least-squares minimization of the error of approximation within area K.
This approach allows optimal expansion of arbitrary visual fields, where the
orthogonality of the basis is violated, such as small segments of the sphere.
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Let s(η) be an image signal to be approximated in region K; the expanded
image signal represented by the resulting view descriptor a(K) is defined as

ŝ(η) =
∑M

i=1 a
(K)
i · Yi(η). (5)

We define the squared residual error of the expansion in region K by

R =
∫

η∈S2 mK(η) ·
(
ŝ(η)− s(η)

)2 dη (6)

where dη corresponds to sin θ dθ dφ. Since mK is zero outside region K, the
residual approximation error is only determined within region K.

Let us now regard the image signals in the cartesian coordinate frame of a
planar camera sensor. We define the mapping h between spherical coordinates
and the image plane of the sensor by

h : S2 → R2, x = h(η) h−1 : R2 → S2, η = h−1(x). (7)

Let the Jacobian of the projection (θ, φ)T = h−1(x) be denoted as Jh−1(x). We
define the weight function w(x) = sin

(
h−1(x)T · (1, 0)T

)
· det(Jh−1(x)). Now

we can directly perform the transition to pixel coordinates of the input image
of the omnidirectional camera. Let xk be the coordinate of the k-th pixel in a
continuous planar image signal, where the pixels are numbered in an arbitrary
order with indices k ∈ {1, . . . , N}. We define the vectors and matrices

ẙi= (—Yi(h−1(xk))—)T ,

b= (— s(h−1(xk)) —)T ,

w= (— (w(xk) · Ap) —)T ,

m̊K= (—mK(h−1(xk))—)T ,
(8)

Y̊ = (ẙ1,· · · ,̊yM) , WK = diag {w} · diag {m̊K} , (9)

where Ap denotes the pixel area and WK is a diagonal weight matrix including
m̊K . Using the ‘pixel vectors’, R simply results in a quadratic form:

R = (Y̊ · a(K) − b)T ·WK · (Y̊ · a(K) − b) (10)

We minimize R by setting the derivative of R with respect to the expansion
coefficients to be zero: 0 != ∂R/∂a(K). This leads to the normal equation

(WK · Y̊)T · b = GK · a(K), where GK := (Y̊T ·WK · Y̊) (11)

is a Gramian matrix. The resulting coefficient vector a(K) is denoted as the
optimal expansion of an input image (pixel vector) b in K:

a(K) = G−1
K · (WK · Y̊)T · b. (12)

Recombining Slice View Descriptors. The semi-spectral representation
consisting of spherical harmonics view expansions of multiple visual fields is
not simply a composite form of representing multiple visual fields: The same
representation as for a single spherical harmonics expansion of the entire visual
field is easily obtained directly from the coefficient vectors.
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Fig. 2. Left to right: Input image, segmented image expansion, recombined view, seg-

mented expansion with normalized illumination (cf. Sec. 3.3), and recombined view.

Expansion into spherical harmonics up to order 9 (9 × 100 resp. 1 × 100 coefficients).

Replacing K by region Hi in (11) and summarizing both sides leads to∑
i∈I(WHi · Y̊)T · b =

∑
i∈I(Y̊

T ·WHi · Y̊) · a(Hi) (13)
((
∑

i∈I WHi) · Y̊)T · b =
∑

i∈I GHi · a(Hi); (14)

by equation (3) and WG = diag {w}·diag {m̊G} = diag {w}·(
∑

i∈I diag {m̊Hi})
=

∑
i∈I diag {w} · diag {m̊Hi} =

∑
i∈I WHi we obtain

(WG · Y̊)T · b =
∑

i∈I GHi · a(Hi) (15)

G−1
G · (WG · Y̊)T · b = G−1

G ·
∑

i∈I GHi · a(Hi), (16)

which according to (12) yields the view descriptor for the full visual field

a(H) = G−1
H ·

∑
i∈I GHi · a(Hi). (17)

In general, arbitrary visual fields composed of segments Hi can be recombined
if only some of the available WHi are summed up on both sides of (13).

3 Occlusion-Aware View Comparison and Steering

In Optical Rails, robot navigation for visual track following is based exclusively
on the comparison of views, i. e. the currently observed view and a destination
view chosen from a sequence of waypoints. First, a dissimilarity metric Q is
defined, which then leads to a gradient of view dissimilarity with respect to
robot motions, providing the steering direction towards a waypoint.

For both of these tasks, we introduce the extension to segmented visual fields,
yielding figures of dissimilarity and steering vectors for each of the individual
‘slices’. Within the comparison result for the full view, each slice can be enabled
or disabled individually, considering (both in the current and in the destination
view) only those parts of the visual field which are free of occlusions.

We define a clearance vector c = (− ci −)T for all i in index set I, where
ci = 1 if the visual field Hi is free of occlusions, otherwise ci = 0.
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3.1 View Dissimilarities

We compare views using the total squared difference of image signals in the
visual field G of the camera. Let s(η) be the currently observed view, and let
s̃(η) be a destination view. We define a dissimilarity metric QK for an arbitrary
visual field K (and analogously QG for the full visual field G):

QK(s(η), s̃(η)) :=
∫

η∈S2 mK(η) · (s(η)− s̃(η))2 dη. (18)

We now subdivide QG into the individual view segments according to (3) and
introduce ci as a weight to each summand to include the i-th segment only if it
is free of occlusions. We define the occlusion-aware dissimilarity metric

Q =
∫

η∈S2

∑
i∈I ci ·mHi(η)·(s(η)− s̃(η))2 dη =

∑
i∈I ci ·QHi(s(η), s̃(η)) . (19)

To determine the individual QHi , we substitute the two signals with their re-
spective expansions into basis functions according to (5):

QHi =
∫

η∈S2 mHi(η) ·
[(∑M

k=1 a
(Hi)
k · Yk(η)

)
−

(∑M
k=1 ã

(Hi)
k · Yk(η)

)]2 dη

=
∑M

k=1
∑M

j=1(a
(Hi)
k − ã

(Hi)
k )·(a(Hi)

j − ã
(Hi)
j )·G(Hi)

kj , (20)

where the integrals G(Hi) =
∫

η∈S2 mHi(η) ·Yk(η) ·Yj(η)dη correspond to the
entries of a Gramian matrix GHi as defined in Sec. 2.1.

Finally, the dissimilarity Q for segmented semi-spectral views is obtained as

Q(a�, ã�) =
∑

i∈I ci ·(a(Hi) − ã(Hi))T ·GHi ·(a(Hi) − ã(Hi)). (21)

3.2 The Pose Change Gradient

To determine the steering direction towards a destination waypoint in Optical
Rails, gradient descent in dissimilarities Q of two omnidirectional views is per-
formed, with respect to the pose change of the robot. Let s(η) be the currently
acquired view and let s̃(η) be the destination view. Let p = (x1, x2, pϕ)T be the
local pose (translation, rotation) of the robot, p0 = 0 denoting the current pose.

We define the gradient g = ∂Q/∂p
∣∣
p=p0

which points into the direction
of robot pose change leading to the steepest change of the view dissimilarity
Q; hence, we denote g as the pose change gradient. If the original pose p0 is
situated in the vicinity of the destination waypoint, motions in the direction −g
lead towards that waypoint.

By predicting the changes of the current view s(η) upon small motions of
the robot, we can determine g analytically. For that purpose the environment is
modeled as a hollow semisphere with the robot situated in the center (Fig. 3).
This model is closely related to assumptions common also to many landmark-
based navigation approaches and view-based visual homing (Möller et al. [3]).

We define a displacement transform f by η′ = f (η, p), such that if s(η) de-
notes the current view at pose p0, the view predicted after performing a pose
change from p0 to p is obtained as s(f(η, p)). The transform f is obtained by
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Fig. 3. Predicting view changes due to local robot motions: The hemispherical environ-

ment model provides a reasonable depth assumption for a variety of indoor scenarios.

projecting a view point P (3D coordinates of the environment) seen at coordi-
nates η = (θ, φ)T from the changed pose p to the camera center at the original
pose p0. The resulting view angles yield the spherical coordinates η′ = (θ′, φ′)T

at which P is seen from p0 (Fig. 3).

Occlusion-aware pose change gradient for semi-spectral view. Corresponding to
the definition of Q in (19), the occlusion-aware pose change gradient g is obtained
as the sum of pose change gradients gHi for the individual view segments:

g = ∂Q
∂p

∣∣∣
p=p0

= ∂
∂p

∑
i∈I ci ·QHi

∣∣∣
p=p0

=
∑

i∈I ci · gHi , gHi := ∂QHi

∂p

∣∣∣
p=p0

(22)

Computation of the individual gHi is performed using the generalized chain rule:

gHi =
∂QHi

∂p

∣∣∣∣
p=p0

=
∫

η∈S2
2·mHi(η)·

[
s(f (η, p))− s̃(η)

]
·
[

∂s(f(η,p))
∂p − ∂s̃(η)

∂p

]∣∣∣
p=p0

dη

=
∫

η∈S2
2·mHi(η) ·

[
s(η)− s̃(η)

]
· ∂f(η,p)

∂p

T
· ∂s(η)

∂η

∣∣∣
p=p0

dη. (23)

Since views to be compared are represented by view descriptors consisting of
spectral coefficients of the original signal for each segment Hi, we replace signals
s(η), s̃(η) by their respective expansions according to (4).

Due to the linearity of integration we can determine a factor which is inde-
pendent of the signal observed in the respective visual field:

uHi
p (j, k) := 2 ·

∫
S2 mHi(η) · Yj(η) · ∂f(η,p)

∂p

T
· ∂Yk(η)

∂η

∣∣∣
p=p0

dη. (24)

The steering gradient gHi of the comparison in segment Hi is thus yielded as

gHi(a
(Hi), ã(Hi)) =

∑M
j=1

∑M
k=1

[
a
(Hi)
j − ã

(Hi)
j

]
· a(Hi)

k · uHi
p (j, k), (25)

where the entries up(j, k) are precomputed expressions common to each visual
field Hi. For the occlusion-aware pose change gradient g we finally obtain

g(a�, ã�) =
∑

i∈I ci ·
∑M

j=1
∑M

k=1

[
a
(Hi)
j − ã

(Hi)
j

]
· a(Hi)

k · uHi
p (j, k). (26)
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3.3 Illumination Invariance

With the semi-spectral signal representation in Optical Rails, illumination in-
variance of views can be achieved simply by a segment-wise preprocessing step:
Bias removal and subsequent normalization of the image signal results in

bnorm
Hi

= b0√
bT
0 ·diag{m̊Hi}·b0

with bias removed signal b0 := b− bT ·m̊Hi

m̊T
Hi

·m̊Hi

(27)

for each segment a(Hi), and bnorm
Hi

replaces b in the subsequent expansion. Thus,
the comparison of the resulting views is resilient also to inhomogeneous changes
in illumination, since the brightness is normalized independently in the view
segments. Hence, occlusions in single segments also do not affect illumination
compensation in the remaining view segments.

Compared to global illumination compensation with a linear model, our ex-
periments have shown the normalization of individual segments to be favorable,
since the magnitude of dissimilarities and the pose change gradient depends less
on the distribution of illumination patterns and the large-scale appearance of
views: A certain degree of scale invariance of these measures is achieved.

4 Experiments

In our experiments, we show that robust robot navigation with tolerance to
occlusions is feasible by selectively masking out the affected visual fields. First,
we compare the behavior of the pose change gradient when steering towards an
occluded destination view; finally, a comparison of a challenging track following
scenario both using full and partially masked out visual fields is shown.

Pose Change Gradient: Effects of Occlusions and Mitigation. Our first experi-
ment provides a systematic comparison of the pose change gradient g used for
steering the robot (i) without occlusions, (ii) with occluded views and changed
illumination, and (iii) with the affected view segments masked out in the com-
parison. Fig. 4 shows steering vectors for these three cases, which have been
obtained by comparing views from a regularly spaced grid to a destination view.

Results show severe deviations of the steering direction for the occluded case,
leading away from the actual destination. Excluding the affected views mitigates
this effect, leading to a less pronounced, yet essentially correct pose gradient.

Track Following Experiments. Visual track following in Optical Rails consists of
a recording phase, where the robot is manually steered along the desired route
while semi-spectral views are acquired in rapid succession, and a driving phase,
where the robot autonomously follows the route based upon this view sequence.
Both phases have been implemented in real time (≥ 15 frames/sec.) on different
mobile robot vehicles running Matlab for all image processing tasks using the
precomputed entities defined in Sec. 2.1 and 3.2.

Prior to track following, a set of distinctive views are automatically selected by
filtering the teach-in sequence with a threshold criterion; the visual dissimilarity
between adjacent waypoints is required to monotonically decrease in the driving
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Fig. 4. Results of the pose change gradient using a view grid recorded in our lab,

demonstrating the effects of occlusions and severe illumination changes and their miti-

gation by masking out the affected segments. Arrows show the translation components

of the gradient g, which ideally should point towards the true destination (circle mark).

direction, yielding only waypoints within a suitable radius of convergence. While
approaching a waypoint by successively computing the pose change gradient,
arrival detection (waypoint handover) is performed by comparing the current
view to a set of adjacent waypoints from the filtered view sequence.

In Fig. 5, we show a particularly challenging scenario of visual track following
in our laboratory environment: An arbitrary path originates in a small closet
with a narrow door and ends below a desk, where the complete view of the
ceiling has been covered. Despite the resulting dramatic variations in brightness
and appearance, the original trajectory could always be reproduced accurately.
This specifically includes the part of the route while ‘parking’ under the desk,
where successful navigation was possible only by the introduction of segment-
wise normalized illumination.

Finally, to demonstrate that in case of occlusions sufficiently accurate steering
would still be possible, two adjacent view segments at the front were masked
out, simulating a typical occlusion by a person walking in front: Only slight
deterioration of the accuracy of the resulting trajectory occurred.
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Fig. 5. Results of track following, documented by beacon (blinking at 1Hz): Cyan line:
teach in track, orange line: reverse track following, full view, magenta line: reverse track

following with two consecutive segments (at front) masked out, simulating an occlusion.

5 Conclusion

In the present paper we have successfully shown the extension of the traditional
view-based navigation paradigm to a segmented hybrid approach with adap-
tive visual fields. This enables selective masking of occluded areas and largely
simplifies the task of attaining illumination invariance.

Obviously, the detection of occlusions and obstacles is a formidable problem in
itself; it could be solved by tentatively assuming each segment to be affected by
an occlusion, and performing the comparison only with the remaining segments
as described in Sec. 3.1, leading to a threshold decision. The presented recom-
bination of views Sec. 2.1 enables application of the method to purely holistic
comparisons such as rotation estimation and rotation-invariant matching, which
is required for more complex navigation tasks involving self-localization.

In the light of the obtained results and the highly versatile yet simple nature
of the approach, view-based navigation appears to us as an attractive field for
future challenges.
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Abstract. A procedure for reassembling ruptured documents from a

large number of fragments is proposed. Such problems often arises in

forensic and archiving. Usually, fragments are mixed and take arbitrary

shapes. The proposed procedure concentrates on contour information of

the fragments and represents it as feature strings to perform a matching

based on dynamic programming. Experiments with 500 images of ran-

domly shredded fragments show that the proposed reconstruction pro-

cedure is able to compose nearly 98% of the ruptured pages.

1 Introduction

Reassembling ruptured documents and broken two-dimensional objects from a
large amount of fragments is a known problem. It often arises in archiving, foren-
sic document examination and archeology. In general the collection of fragments
is randomly shredded, that implies no criteria was used performing the rupture
process. Additionally, the fragments are randomly mixed and some fragments are
missing. Performing a manual reconstruction is a tedious and time consuming
task, but reconstructing forensic document and historic objects would be highly
important and valuable.

Some methods using digital images to perform this task more efficiently have
been proposed in the literature. Most of these methods apply to related problems
with specific characteristics. For instance, jigsaw puzzles are special cases of
ruptured documents with a fixed number of corners, a predefined and smooth
outline of the fragments and a complete outcome.

Those problems have often been addressed in robotics and machine vision [1],
[2]. The approaches given in [3] and [4] concentrate on a polygonal approximation
of the contour and on geometric feature matching. This method requires a rather
coarse contour to be able to extract significant geometric features. The authors
of [5] use polygonal approximation combined with dynamic programming. Two
curve matching algorithms are given in [6], they are based on a conversion of
the outline into shape signature strings. A formal analysis method exploiting
the ordering of fragments caused by a common rupturing process is presented
in [7]. As a very fast strategy it can be applied to semi-automated reconstruction
tasks of large number of fragments. The reassembly of ceramic fragments is
addressed in [8] and [9], where the authors used multiscale approaches for outline
representation and curve matching.
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Aim of this work is to benefit from ideas of previous work but to overcome
their limitations to solve real world problems. The present approach does not
require assumptions to fragment order, fragment shape or completeness. The
reassembling method uses a contour representation based on curvature informa-
tion and performs a partial matching accounting for both curvature information
and original contour. According to computed matching scores the reconstruction
of a number of fragments is accomplished.

The paper is organized as follows: The matching method to determine if frag-
ments can be paired or not is introduced in section 2 including preprocessing
and representing contour information through feature strings, followed by the
matching method. In section 3 the reconstruction of a number of fragments is
given. Results of conducted experiments are presented in section 4 followed by
some conclusions in section 5.

2 Curve Matching

The paper describes a curve matching method that determines a degree of sim-
ilarity for two outline segments of a pair of fragments. If two fragments share a
part of their outline with high similarity they are supposed to be neighbors in
the original document and can be merged.

The methodology consists of three steps: Preprocessing, contour representa-
tion and matching. In the first step, the outline of any given fragment image is
analyzed and segmented. To reduce the complexity of matching only contour seg-
ments are matched instead of the entire outlines. In the second step each contour
segment is represented by a one-dimensional feature string. The final matching
step computes an alignment and a similarity score using original contour seg-
ments and their feature representations. Due to partial matching an adaptation
of the Smith Waterman Algorithm is applied.

2.1 Preprocessing

Jigsaw puzzles usually include fragments with smooth edges and well defined
corners of a fixed number. Considering a randomized rupture process, fragments
shredded by hand possess much more complicated outlines. As a result of those
arbitrary contours corner detection and outline segmentation is a difficult task.

Contour information is assumed to be noisy. An outline differs from an ideal
rupture line due to a number of reasons, for instance physical wear, areas of
shear and image quantization. To reduce the noise smoothing is applied to the
extracted outline.

Generally, two single fragments, which are supposed to be next to each other in
the original document, only share a part of their entire contours. For that reason
outlines are divided into contour segments to be used as matching input and the
authors of [10] pointed out that even short contour segments contain sufficient
information for matching. They analyzed the average information content of an
outline segment of a length of l = 10.8 mm and inferred that outline matching is
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Fig. 1. Fragment and corresponding contour information: corners (black line segments),

border segments (gray solid lines) and contour segments (gray broken lines)

suitable for the reassembly of ceramic fragments. A similar behavior is assumed
for other materials, thus performing matching on contour segments is sufficient.
The closed outlines are segmented with respect to characteristic points such as
corners.

At first the outline is extracted counterclockwise from the digital image. Each
fragment outline can be regarded as a sequence of discrete points giving a polyg-
onal representation of the real fragment contour. A contour point with a high
curvature value considered in an agglomerative polygonal approximation of the
local neighborhood is roughly defined to be a candidate for a corner. The de-
cision which candidates become corners depend on the global contour context.
Corners separate the outline in contour segments which are located between two
consecutive corners as can be seen in Fig. 1. Border segments, depicted by gray
solid lines, are disregarded for matching. Hence, matching only requires contour
segments, displayed as gray broken lines.

2.2 Contour Representation

The position of a fragment while feeding it into the scanner influences its out-
line quantization from the digital image. To overcome this drawback any contour
segment needs to be assigned appropriate feature values. A well-known approach
is the curvature representation. Here, contour points are assigned approximated
curvature values, as used in [6] and [9]. These curvature values build up a feature
string for any contour segment. The representation through feature strings ben-
efits from its invariance against rotation and translation of the fragment. Thus,
similar contour segments provide similar feature strings. Based on this feature
representation matching is performed and a similarity score is derived.

The method described by Wolfson in [6] is adopted to approximate the point-
wise curvature of the contour segments. A more detailed computation is given
below. In the application of reassembling fragments by computer contour infor-
mation is available as noisy polygonal data. Let P be the polygonal curve of any
contour segment, P = {p1, . . . , pn} whereby pk ∈ R2 for all k ∈ {1, . . . , n}. Based
on Wolfson the first step is to compute the turning function as stated in [11]. More
precisely, computing the angle between the counterclockwise tangent and the x-
axis at each vertex pk yield a function of the arc length θ(parc). parc is the arc
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parc

Fig. 2. A polygonal curve and its turning function of the arc length [11]

length function of the polygonal curve P . The turning function θ(parc) visualized
in Fig. 2 is a step function and constant between two consecutive vertices.

Then an equally spaced sampling is applied followed by a linear interpo-
lation on the graph of θ(parc). The sampling results in the arclength values
parc
1 , . . . , parc

ns
where ns is the number of equally sampled points on P with a

difference of se between consecutive points. Wolfson determines values Δθ(parc
k )

as described in equation (1) giving an approach to the curvature values for each
parc

k . To provide robust curvature values an average of q consecutive differences
is computed in equation (2).

Δθ(parc
k ) = θ(parc

k + Δs)− θ(parc
k ) (1)

φk =
1
q

q−1∑
l=0

Δθ(parc
k + lδ) (2)

se, Δs, q, δ are parameters to be adjusted. Δs and δ are bounded by the arc
length of the curve P . According to a global scale parameter m, any contour
segment is represented by a feature string of averaged curvature values, namely
R = (mφk)ns

k=1. This feature representation satisfies the following three condi-
tions: it is local, translationally and rotationally invariant and stable in a way
that small changes in the contour will only cause small effects in the feature
string [6].

Two extracted and smoothed contours of synthetically generated fragments
with their determined feature values are visualized in Fig. 3. In general two
contours are not equal due to quantization and smoothing, not even concerning
synthetically generated fragments. For this reasons the displayed feature strings
slightly differ from each other.

The description of all used parameters during contour feature computation
are summarized in table 1. These parameters have to be adjusted to get an opti-
mal discrimination between matching and non-matching fragment pairs. Wolfson
did not optimize these parameters. The values used in this work have been ad-
justed to a representative set of fragments using an evolutionary multiobjective
optimization. Values are given in section 4.
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Fig. 3. Smoothed contour segments of synthetically generated matching fragments

(top) and their corresponding feature strings (bottom)

Table 1. Collection of the required parameters

name description

se step size of the equally spaced turning function graph

q number of differences to be averaged

Δs distance used to compute the difference in (1)

δ distance between arclength values whose turning function

differences are to be averaged

m global scale factor

2.3 Matching Method

In this section the matching method based on the principles of dynamic program-
ming is presented. The aim of the method is to compute an alignment in order
to put in place the corresponding fragments images. Based on this alignment a
similarity score indicating a measurement of accuracy of fit can be derived.

Matching a pair of contour segments, however, is a partial matching. Gener-
ally lengths of two contour segments differ from each other, thus both segments
do not match from one corner to the other. Two of those contour segments are
shown in Fig. 4. This effect is caused by randomly rupturing the original paper
document. Additionally, noise, possible punch holes and other effects can reduce
the part where both contour segments correspond. As a consequence, a flexible
matching procedure is needed to compute the optimal local alignment of two
feature strings representing two contour segments. To perform the matching the
Smith-Waterman sequence alignment algorithm is applied [12]. It is a well-known
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Fig. 4. Partial matching. The right fragment only matches at a part of its left contour

segment.

dynamic programming algorithm accomplishing local string alignment. One ad-
vantage of this matching procedure compared to geometric feature matching with
polygonal approximation is that it even works on relatively straight contours.
Polygonal approximation does not include the high-frequency information, thus
it is not suitable for matching tasks on fairly straight contours.

The sequence alignment algorithm is adopted to real valued strings. Given two
feature strings f1 ∈ Rm and f2 ∈ Rn the problem consists in finding the optimal
local alignment of f1 and f2 with regard to a scoring scheme. The optimal local
alignment can be derived from a matrix M of size (m + 1) × (n + 1). M ist
created with the following recurrences:

M(i, 0) = 0, 0 � i � m (3)
M(0, j) = 0, 0 � j � n (4)

M(i, j) = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M(i− 1, j − 1) + wij

M(i− 1, j) + wgap

M(i, j − 1) + wgap

0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , 1 � i � m, 1 � j � n, (5)

where wij and wgap belong to the following scoring scheme:

wij =

⎧⎪⎨⎪⎩
2 if |f1

i − f2
j | � ε1

−0.1 if ε1 < |f1
i − f2

j | � ε2

−2 if |f1
i − f2

j | > ε2

(6)

wgap = −1, (7)

with tolerances ε1, ε2 ∈ R, 0 < ε1 < ε2. The optimal local alignment is then
extracted from M by backtracking from the maximum matrix entry to a zero
entry. The proposed scoring scheme was chosen to handle real values of f1 and
f2. The maximum score of 2 is awarded to f1

i and f2
j when their difference is

equal or less than ε1. If f1
i and f2

j do not have such a difference but are close
enough to each other so that their difference is equal or less than ε2 a penalty
score of -0.1 will be assigned. All remaining cases go with a penalty of -2. This
scoring scheme is appropriate to handle curvature values of fragment outlines
and to cope with small distortions and noise within the feature strings.
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According to the optimal local alignment feature substrings can be determined
by restricting the feature strings to the computed alignment. Additionally ap-
propriate contour subsegments can also be derived by restricting the contour
segments the same way. The obtained alignment is then used to compute a sim-
ilarity score as a measurement of matching quality.

Similarity Score. The similarity score as a measurement of matching accuracy
is constituted as the sum of three component scores: area score, length score
and correlation score. The lower the similarity score stotal > 0 the likelier both
contour segments match.

To compute the area score both contour subsegments are equalized so that the
difference of the Euclidean lengths between their start and endpoints is less than
one. Then they are transformed in a way that the starting points of the contour
subsegments lay on each other and the endpoints are located to each other
as close as possible. Thus, both polygonal curves of the contour subsegments
combined with each other span an area. Due to regions of overlapping and regions
of gap this area might be divided into several subareas. These subareas are
summed up to the size of the entire area by a flood fill algorithm. The area score
sarea is obtained by a weighted ratio of the summed subareas and the arc length
of the combined polygonal curves and restricted to the intervall [0, 1]. This score
is a measurement of gaps and overlapping regions relative to the arc length of
contour subsegments when putting two fragments together.

The length score slen measures the length of the matching contour part and
is normalized to the shorter arc length of both contour segments. It is defined
by the ratio of the arc length of the contour subsegment and the overall arc
length of the contour segment. Then slen is mapped to the intervall [0, 1]. This
score disadvantages fragment pairs sharing only a small part of their contour
segments.The feature substrings are used to compute the correlation score scor.
The cross correlation coefficient is determined and also mapped to the inter-
vall [0, 1].The total score using a range of [0, 3] is obtained by the sum of all
component scores stotal = sarea + slen + scor.

3 Reconstruction of Fragments

The previous section described the matching of two fragment images at two
contour segments. Performing an iterative reconstruction process of n images of
shredded fragments a matching threshold is used to decide which image pairs
shall be merged and which shall not. In any iteration matching of all possible
pairs of fragment contour segments is performed. Finally, regarding a greedy
approach, a sequential merging of fragment pairs with a similarity score lower
than a fixed threshold is executed. Any fragment pair is merged at its best
matching pair of contour segments. The procedure is given in Algorithm 1.

Given any two fragments i, j the alignment determination is not symmetric to
permutation of fragments, thus the algorithm performs the matching of (i, j) and
(j, i). In the double-sided case any front side image need to be matched to front
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Algorithm 1. Reconstruction of n fragments
Require: F : set of n fragments, ∀f ∈ F ∃Cf : set of all contour segments of f , thr:

constant threshold value

1: P ← {(f, g)|f ∈ F, g ∈ F, f 
= g}
2: S ← ∅
3: flag ← 0

4: repeat
5: for all p ∈ P with p = (f, g) do
6: for all (ci, cj) with ci ∈ Cf and cj ∈ Cg, i = 1, . . . , |Cf |, j = 1, . . . , |Cg| do
7: if (sp ← min

i,j
match score of (ci, cj)) exists then

8: S ← sp

9: while S 
= ∅ do
10: s∗ ← min

s∈S
s

11: if s∗ < thr then
12: flag ← 1

13: merge p∗ = (f∗, g∗) at (ci∗ , cj∗)

14: delete all p′ ∈ P that contain f∗ or g∗ and corresponding s′ ∈ S
15: else
16: S ← ∅
17: until flag = 0 or P = ∅

and back sides of all other images but not to its own back side. In case of double-
sided merging both front and back sides of a fragment pair are put together.

4 Experiments

To validate the proposed reconstruction procedure 30 documents were ruptured
without any constraints. After scanning with a resolution of 300 dpi a randomly
mixed set of 500 images was obtained. On average each page decomposed into
8.3 fragments. This reconstruction task is comparable to a medium real world
scenario. It can be scaled up but a very high number of fragments might contain
similar contours, e.g. due to shredding stacked pages simultaneously. The re-
sulting contours might lead to ambiguous matching results and further features
should be used to obtain suitable reconstruction results.

The following parameters were used to conduct the experiments: se = 1.9,
q = 2, Δs = 1.8, δ = 3.1 and m = 2.6. Each fragment image is matched
with each other except its own back side. The first iteration processed 62,250
image pairs. Since there is no general threshold value working for any application
three different threshold values 0.4, 0.45 and 0.5 were considered. In general, a
low threshold raises the False Reject Rate (FRR) and a high threshold raises
the False Accept Rate (FAR). The experimental results are shown in Table 2.
A threshold of 0.45 minimizes the objective function FRR+FAR. Using this
threshold a reconstruction rate of nearly 98% could be achieved.
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Table 2. Experimental results for three different threshold values are shown. A

database of 500 fragment images was used. All fragments need 220 double-sided merg-

ing steps built from 105,344 image pairs to compose 60 pages. The database corresponds

to 30 documents with 250 physical fragments.

Threshold 0.40 0.45 0.50

Accepts 213 216 213

Correct Accepts 213 215 210

CAR 96.82% 97.73% 95.45%

False Accepts 0 1 3

FAR 0.00% 0.46% 1.41%

False Rejects 7 5 10

FRR 3.18% 2.27% 4.55%

Fig. 5. Reconstruction results: Completely reconstructed page, nearly reconstructed

page, falsely reconstructed page

Three different reconstruction results are shown in Fig. 5. Considering the
missing merging steps (False Rejects) some pairs could not be merged due to
falsely reconstructed pairs in previous steps. Another reason of False Rejects is
that some contour segments suffer from gaps as shown in the second reconstruc-
tion in Fig. 5. These gaps might result from insufficient mergings of previous
steps caused by resolution inaccuracies during the scanning process. Thus, the
contour segment containing a gap is obviously longer than the one without gap
leading to unsatisfactory contour matching.

Performance. To perform the reconstruction of 500 fragment images with a
threshold of 0.45 105,344 pairs needed to be matched, whereas the computation
of the matching steps for one pair takes about 100-250 milliseconds using a
common PC equipped with an Intel(R) Core(TM) i7 2.80GHz CPU.
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5 Conclusion

A matching method was proposed to reconstruct ruptured documents from a
large number of fragments based on curvature information and an adapted ver-
sion of the Smith Waterman algorithm. With a greedy approach 500 fragment
images, shredded from 30 documents, could be almost completely reassembled.
Even without using obvious features as color, texture and document format
a convincing reconstruction rate of nearly 98% could be achieved. Integrating
further features could reduce the number of matching steps and improve the
reconstruction time.

References

1. Wolfson, H., Schonberg, E., Kalvin, A., Lamdan, Y.: Solving jigsaw puzzles by

computer. Ann. Oper. Res. 12(1-4), 51–64 (1988)

2. Goldberg, D., Malon, C., Bern, M.: A global approach to automatic solution of

jigsaw puzzles. Comput. Geom. Theory Appl. 28(2-3), 165–174 (2004)

3. Pimenta, A., Justino, E., Oliveira, L.S., Sabourin, R.: Document reconstruction

using dynamic programming. In: ICASSP 2009: Proceedings of the 2009 IEEE

International Conference on Acoustics, Speech and Signal Processing, Washington,

DC, USA, pp. 1393–1396. IEEE Computer Society, Los Alamitos (April 2009)

4. Solana, C., Justino, E., Oliveira, L.S., Bortolozzi, F.: Document reconstruction

based on feature matching. In: Rodrigues, M.A.F., Frery, A.C. (eds.) Proceedings

of the 18th Brazilian Symposium on Computer Graphics and Image Processing,

October 9-12. IEEE Computer Society, Los Alamitos (2005)

5. Kong, W., Kimia, B.B.: On solving 2d and 3d puzzles using curve matching. In:

CVPR (2), pp. 583–590 (2001)

6. Wolfson, H.J.: On curve matching. IEEE Transactions on Pattern Analysis and

Machine Intelligence 12(5), 483–489 (1990)

7. De Smet, P.: Reconstruction of ripped-up documents using fragment stack analysis

procedures. Forensic Science International 176(2-3), 124–136 (2008)

8. McBride, J.C., Kimia, B.B.: Archaeological fragment reconstruction using curve-

matching. In: Computer Vision and Pattern Recognition Workshop (CVPRW),

vol. 1, p. 3 (2003)

9. Leitão, H.C.d.G., Stolfi, J.: A multiscale method for the reassembly of two-

dimensional fragmented objects. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence 24(9), 1239–1251 (2002)

10. Leitão, H.C.d.G., Stolfi, J.: Measuring the information content of fracture lines.

International Journal of Computer Vision 65(3), 163–174 (2005)

11. Veltkamp, R.C., Hagedoorn, M.: Shape similarity measures, properties and con-

structions. In: Laurini, R. (ed.) VISUAL 2000. LNCS, vol. 1929, pp. 467–476.

Springer, Heidelberg (2000)

12. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.

Journal of Molecular Biology 147(1), 195–197 (1981)



Local Structure Analysis by Isotropic Hilbert
Transforms

Lennart Wietzke1, Oliver Fleischmann2, Anne Sedlazeck2, and Gerald Sommer2

1 Raytrix GmbH, Germany
2 Cognitive Systems Group, Department of Computer Science, Kiel University

Abstract. This work presents the isotropic and orthogonal decomposition of 2D
signals into local geometrical and structural components. We will present the so-
lution for 2D image signals in four steps: signal modeling in scale space, signal
extension by higher order generalized Hilbert transforms, signal representation in
classical matrix form, followed by the most important step, in which the matrix-
valued signal will be mapped to a so called multivector. We will show that this
novel multivector-valued signal representation is an interesting space for com-
plete geometrical and structural signal analysis. In practical computer vision ap-
plications lines, edges, corners, and junctions as well as local texture patterns
can be analyzed in one unified algebraic framework. Our novel approach will be
applied to parameter-free multilayer decomposition.

1 Introduction

Low level image analysis is often the first step of many computer vision tasks. There-
fore, local signal features determine the quality of subsequent higher level processing
steps. In this work we present a general 2D image analysis theory which is accurate
and less time consuming (seven 2D convolutions are required), either because of its
rotationally invariance. The first step of low level signal analysis is the designation of
a reasonable signal model. Based on the fact that signals f ∈ L2(Ω) ∩ L1(Ω) with
Ω ⊆ R2 can be decomposed into their corresponding Fourier series, we assume that
each frequency component of the original image signal consists locally of a superposi-
tion of intrinsically 1D (i1D) signals fν(z) with z = (x, y) ∈ R2, and ν ∈ {1, 2}, see
Equation (3). Each of them is determined by its individual amplitude aν ∈ R, phase
φν ∈ [0, π) [1,2], and orientation θν ∈ [0, π). To access each one of those frequency
components, an appropriate filter must be applied to the original signal. Although any
scale space concept can be used, in this work we will choose the Poisson low pass filter
kernel [3] p(z; s) instead of the Gaussian kernel. The Poisson scale space is naturally
related to the generalized Hilbert transform by the Cauchy kernel [4]. In Fourier space
F{·} [5] it can be seen that the well known derivative operator of order m

F{D(m)}(u) = [2π u i]m with u ∈ R
2 (1)

is closely related to the generalized Hilbert transform operator of m concatenations

F{H(m)}(u) = [2π ū i]m with ū =
u

‖u‖ . (2)
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2 Local Texture Modeling in Scale Space

Applying the Poisson filter kernel p to the original signal Ps{f}(z) = (ps ∗ f)(z)
results in the smoothed signal model

fp =

n∑
ν=1

aν cos(〈z, ōν〉 + φν)︸ ︷︷ ︸
fν (z)

∀z ∈ Ω (3)

with ōν = [cos θν , sin θν ]T as the oriented normal, 〈·, ·〉 as the inner product, and ∗ as
the convolution operator. This local signal model allows modeling textures and struc-
tures such as lines, edges, corners, and junctions in scale space. After having specified
the signal model, the mathematical task is the exact retrieval of the signal parameters
(θν , φν , aν) for every position z ∈ Ω, and for every scale space parameter s > 0. In
the following fe will be called the even signal part. Furthermore and without loss of
generality, at the origin (0; s) with 0 = (0, 0) of the applied local coordinate system,
the assumed signal model (3) results in

fp = Ps{f}(0) = (ps ∗ f)(0) =

n∑
ν=1

aν cos φν︸ ︷︷ ︸
fe

ν

. (4)

Since the geometrical information θν is not coded in the signal value fp, an appropriate
signal extension is necessary. Normally, this will be done by calculating higher order
derivatives of the signal, e.g. the SIFT features [6]. This work generalizes and improves
[7] by using higher order Hilbert transforms, and we will compare the results with those
of using derivatives.

T =

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎦ i +

⎡⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎦ j

⎞⎟⎟⎟⎟⎠ ∗ f

Fig. 1. Illustration of the convolution kernels in the spatial domain of the quaternion-valued ma-
trix signal representation T

3 Signal Extension by Hilbert Transforms

The problem, which has to be solved now, is the search for all unknown structural pa-
rameters aν ∈ R and φν ∈ [0, π) and the unknown geometric parameters θν ∈ [0, π).
We will restrict the signal model (3) to n < 3, since by this restriction most signal
structures can be modeled [8]. As the signal parameters are unknown, we have to solve
an inverse problem. This can only be done by extending the original signal to result in a
system of equations, which includes all unknown signal parameters. This will be done
by the generalized Hilbert transforms of higher orders. Our signal model which con-
sists of two superimposed i1D signals results in six degrees of freedom, which require
generalized Hilbert transforms of up to order three. The first order Hilbert transform
kernels read
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[
hx

hy

]
(z) =

1

2π‖z‖3

[
x
y

]
(5)

which are the analogues to the first order partial derivatives. Since we have to analyze
the original signal in scale space, it will be of advantage to provide one unified convolu-
tion kernel, which consists of the Poisson kernel and the generalized Hilbert transform
kernel of order n. The generalized Hilbert transform of order (i + j) in Poisson scale
space reads

qxiyj (z) = (hx ∗ . . . ∗ hx︸ ︷︷ ︸
i

∗hy ∗ . . . ∗ hy︸ ︷︷ ︸
j

∗ ps)(z) . (6)

The value of the (i + j)th order Hilbert transformed signal in Poisson scale space will
be derived by convolution in the spatial domain fxiyj = (qxiyj ∗ f)(z).

3.1 Signal Intelligence in Radon Space

After extending the original signal, the generalized Hilbert transformed signal must be
interpreted. This can be done in Radon space by the relation to the Fourier slice theorem.
The original signal f transformed into Radon space fr = R{f} reads

fr(t, θ; s) =

∫
z∈R2

Ps{f}(z)δ (〈z, ō〉 − t) dz (7)

with θ ∈ [0, π) as the orientation, t ∈ R as the minimal distance of the parameterized
line to the origin of the local coordinate system of the test point, and δ as the Dirac
distribution. The corresponding inverse Radon transformR−1 exists. The (i+j)th order
generalized Hilbert transformed signal can be expressed in Radon space, which delivers
a system of equations of all unknown signal parameters. This system of equations can
be solved, which has been done up to now only for n = 1 in Equation (3) [8]. The
Hilbert transformed signal can be expressed by

fxiyj = R−1
{

cos
i θ sin

j θ h(i+j)
(t) ∗ fr(t; θ; s)

}
(z) (8)

(Proof: Fourier slice theorem) with the classical one dimensional Hilbert transform ker-
nel [9] of order m

h(m)
(t) =

⎧⎪⎪⎨⎪⎪⎩
δ(t), m mod 4 = 0

1
πt

, m mod 4 = 1

−δ(t), m mod 4 = 2

− 1
πt

, m mod 4 = 3

, t ∈ R (9)

with δ as the Dirac distribution, which is the algebraic neutral element of the convolu-
tion. Finally, the (i + j)th Hilbert transformed signal results in

fxiyj =

n∑
ν=1

[
cos

i θν sin
j θν

]
f (i+j)

ν (10)

(Proof: Linearity of the inverse Radon transform). The odd signal part fo
ν = (h(1) ∗

fe
ν )(φν) = aν sin φν results of the even part by the classical 1D Hilbert transform and
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f (m)
ν =

⎧⎪⎪⎨⎪⎪⎩
fe

ν , m mod 4 = 0

fo
ν , m mod 4 = 1

−fe
ν , m mod 4 = 2

−fo
ν , m mod 4 = 3

(11)

In case of the zeroth order Hilbert transform (i.e. i + j = 0), this results in the local
signal value fp. According to (10), the first and second order Hilbert transformed signal
determines the following system of linear equations[

fx

fy

]
=

n∑
ν=1

[
cos θν

sin θν

]
fo

ν (12)

and ⎡⎣fxx

fxy

fyy

⎤⎦ =

n∑
ν=1

⎡⎣ cos2 θν

cos θν sin θν

sin2 θν

⎤⎦ fe
ν (13)

from which the signal value can be reconstructed by fp = fxx+fyy. With (10), the third
order Hilbert transformed signal determines the following system of linear equations⎡⎢⎢⎣

fxxx

fxxy

fxyy

fyyy

⎤⎥⎥⎦ =

n∑
ν=1

⎡⎢⎢⎣
cos3 θν

cos2 θν sin θν

cos θν sin2 θν

sin3 θν

⎤⎥⎥⎦ fo
ν (14)

from which the first order generalized Hilbert transform can be reconstructed by fx =
fxxx+fxyy and fy = fxxy+fyyy. Due to the relation of the Radon transform to the gen-
eralized Hilbert transform of any order, it is possible to result in a system of equations
which can be now solved for the unknown signal parameters. Please note that neither
the Radon transform nor its inverse are ever applied to the signal in practise. This is a
very important advantage compared to the wavelet transforms (e.g. Ridgelet transforms
[10]). Those approaches try out only a finite number of directions by the discrete Radon
transform [10], which suffers from numerical problems. The resulting disadvantages
are inaccuracy, problems resulting from aliasing effects, and higher computational time
complexities.

4 Algebraic Signal Representation

Derivative based signal extensions are normally arranged in matrix or tensor form. Since
these forms are only hardly suitable for geometric interpretation, we now present a sig-
nal representation in the so called multivector form, which comes from the field of ge-
ometric algebra [11]. Recent results of the hybrid matrix geometric algebra [12] offer
geometric interpretation, which in our case enables the complete signal analysis by map-
ping tensor structures to multivectors. For the sake of simplicity, we will restrict this
paper to the algebra of quaternions, which are solely needed for constructing the signal
tensor. Loosely spoken, simply consider the tensor-valued signal extension as a real-
valued 2×2×3 array. According to [12], a mapping from the quaternion-valued tensor
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T ∈ M(2, H) to the quaternion-valued vector ϕ(T ) ∈ H3 is possible. With the set of
basis vectors {1, i, j,k} of the quaternions H, the signal tensor for n < 3 in Equation
(3) can be defined by the generalized Hilbert transforms of second and third order

T =

[
fxx fxy

fxy fyy

]
+

[
fxxx fxxy

fxxy fxyy

]
i +

[
fxxy fxyy

fxyy fyyy

]
j ,

see Figure 1. By introducing the abbreviations f− = fxx− fyy, f−
x = fxxx− fxyy and

f−
y = fxxy − fyyy the quaternion-valued matrix T can be mapped by the isomorphism

ϕ to a quaternion-valued vector representation

ϕ(T ) =

⎡⎢⎣
fp

2

fxy

f−
2

⎤⎥⎦ +

⎡⎢⎣
fx
2

fxxy

f−
x
2

⎤⎥⎦ i +

⎡⎢⎣
fy

2

fxyy

f−
y

2

⎤⎥⎦ j (15)

which will be called signal multivector, see Figure (2). The signal multivector delivers
the complete geometrical and structural signal information with respect to both the as-
sumed signal model and the assumed maximal order of Hilbert transforms. In [13] the
geometrical signal features have been retrieved by higher order derivatives in the tradi-
tional matrix expression. This will be generalized by ϕ(T ) in a more natural embedding.

ϕ(T ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
i +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∗ f

Fig. 2. Illustration of the convolution kernels in the spatial domain of the signal multivector ϕ(T )

which is defined in Equation (15)

4.1 Geometry from the Signal Multivector

The hardest challenge of our signal analysis problem is to obtain the exact geometrical
signal features such as the orientations θν . The most important relations are

sin(2θ2/1) =
1

detD1/2

det

[
fxxy cos θ1/2

fxyy sin θ1/2

]
(16)

and

cos(2θ2/1) =
1

det D1/2

det

[
f−

x
2

cos θ1/2

f−
y

2
sin θ1/2

]
(17)

with the matrix

D1/2 =

[ fx
2

cos θ1/2
fy

2
sin θ1/2

]
(18)

which follow from Equation (14) of the third order generalized Hilbert transform for
n = 2. From the fact that sin2(2θ2/1) + cos2(2θ2/1) = 1, the nonlinear part of the
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inverse problem follows in form of a quadratic equation (since two unknown orienta-
tions have to hold the equation)

γ−
sin

2 θν + α sin(2θν) = β (19)

with

δ =

[
fx

2

]2

− f2
xxy −

[
f−

x

2

]2

(20)

β =

[
fy

2

]2

− f2
xyy −

[
f−

y

2

]2

(21)

α =
fx

2

fy

2
− fxxyfxyy − f−

x

2

f−
y

2
(22)

γ+
= β + δ (23)

γ−
= β − δ (24)

The main orientation can be derived by

θ1 + θ2 = arctan
2α

γ− (25)

as well as the apex angle

‖θ1 − θ2‖ = arctan
2
√

α2 − βδ

γ+
(26)

from which the single orientations θν can be obtained separately. Note, that geometric
algebra offers a more natural embedding of the signal multivector and delivers these
results by a single operation, called the geometric product.

4.2 Structure from the Signal Multivector

The local phase and amplitude represent the structural signal features, which can be
calculated by solving a linear system of equations by the Cramer’s rule of 2×2 matrices.
The even and odd signal parts can be derived by[

fe
1

fe
2

]
=

1

sin(θ1 − θ2) cos(θ1 + θ2)

[
fp

2
sin(2θ2) − fxy

fxy − fp

2
sin(2θ1)

]
(27)

which has been derived by the second order generalized Hilbert transform and[
fo
1

fo
2

]
=

1

sin(θ1 − θ2)

[
fy cos θ2 − fx sin θ2

fx sin θ1 − fy cos θ1

]
(28)

which has been derived by the first order generalized Hilbert transform respectively. By
means of the even and odd signal parts, finally the structural signal features such as the
phases and the amplitudes can be derived by

φν = arctan
fo

ν

fe
ν

(29)

aν =

√
[fe

ν ]
2

+ [fo
ν ]

2 (30)

for ν ∈ {1, 2}. Interestingly, this solution corresponds for each signal component to the
classical 1D analytic signal [14].
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5 Applications and Experimental Results

The signal multivector is isotropic and therefore needs only seven convolution filters.
The signal multivector can be implemented either in Fourier space or in the spatial do-
main. But the advantage of the spatial domain is the local adaption on the individual
scale space parameter which carries the important signal information for each test point.
Because of that we favor the convolution in the spatial domain. The implementation of
the signal multivector is easy and can be calculated in O(m) with m as the total con-
volution mask size. In practice the convolution mask size involves 7× 7 pixels. Due to
the latest developments in graphic controllers, the signal multivector can be also imple-
mented directly using the OpenGL R© Shading Language (GLSL). This enables realtime
computation of the signal multivector and detecting its optimal scale space parameter
by maximizing the local amplitude for each test point individually [8]. Since the signal
multivector is a fundamental low-level approach, many applications can be found. In
the following we will present the parameter-free decomposition of multilayer textures.

5.1 Multilayer Decomposition

As an application of the signal multivector we will analyze superimposed oriented pat-
terns and compare our results with the derivative based approach presented in [15]. In
comparison to [15] our approach does not need any parameter tuning and unifies the
case of i1D and i2D signals in one framework.

Derivative based approach. In [15] an i1D signal is assumed at first. An evidence
check decides between computation of one single orientation or the double orientation
case. The derivative operator for one orientation θ reads

Dθ = cos θ
∂

∂x
+ sin θ

∂

∂y
(31)

In the i1D case, the orientation computation is in essence an eigenspace analysis of the
tensor T = ∇f∇fT computed over a neighborhood Ω. The confidence measure for
an i1D structure is determined as det(T ) ≤ λ trace2(T ) with the tuning parameter
λ > 0 which has to be chosen manually. In the i2D case, the comparison in this paper
is restricted to considering overlaid oriented patterns resulting in the model

f(z) =

2∑
ν=1

fν(z) with z = (x, y) ∈ Ω (32)

Using the derivative operator (31) and applying it to the double orientation case, the
image signal in Gaussian scale space G{·}(z; s) satisfies the equation

Dθ1Dθ2G{f}(z; s) = cTDf = 0 (33)

with the so called mixed-orientation vector

c = [cos θ1 cos θ2, sin(θ1 + θ2), sin θ1 sin θ2]
T (34)

and

Df =

[
∂2

∂x2
,

∂2

∂xy
,

∂2

∂y2

]T

G{f}(z; s) (35)
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Taking into account that real image signals do not satisfy Equation (33) exactly the
residual error is defined by

ε(c) = cT

[∫
z∈Ω

(Df)(Df)
T dz

]
︸ ︷︷ ︸

J

c (36)

which has to be minimized with respect to the vector c under the constraint cT c = 1.
The eigenvector analysis of the 3 × 3 tensor J allows the computation of the mixed-
orientation vector c up to an unknown scaling factor r ∈ R by using the minors of J .
In a second test based on the properties of J , the i2D case is confirmed, otherwise, the
i0D case is assumed. In the i2D case, the vector rc has to be solved for the unknown
orientations θ1 and θ2.

Comparison: signal multivector versus derivatives. Both methods have been tested
on a set of synthetic and real images. The experiments on synthetic data have been con-
ducted on patchlets with same size as the convolution kernels. Two overlaid structures
have been tested in all possible combinations of angles, see Table (1). In addition, the
performance of both methods in case of changing convolution kernel size and changing
phase has been determined, see Figure (3). In case of the method [15] applied to real

Table 1. Signal multivector (SMV) average angular error (AAE) of the apex angle θa and the
main orientation θm of junctions and multilayer signals

a

m

a

m

AAE θa

AAE θm

[15] SMV
1.57◦ 0.15◦

1.11◦ 0◦

[15] SMV
1.75◦ 0.09◦

1.43◦ 0.02◦
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Fig. 3. Left figure: Average angular error (AAE) of [15] and the signal multivector (SMV) against
varying convolution mask size. The signal multivector performs better with small size which is
very important for local feature detection. Right figure: Average angular error (AAE) of [15] and
the signal multivector (SMV) against varying signal phase.
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images, it was sometimes difficult to adjust the parameter λ deciding between i1D and
i2D signals, whereas the signal multivector based method only needs the scale space
parameters, which can be adjusted automatically by phase congruency.

6 Conclusion

We have solved a fundamental problem of isotropic signal analysis with applications
in parameter-free multilayer decomposition. Our novel approach can be described for
arbitrary signal models by the following general steps

1. Signal modeling in scale space and signal extension by the generalized Hilbert transform.
The order of the required generalized Hilbert transforms corresponds to the complexity n of
the signal model in Equation (3).

2. Retrieving the explicit system of equations including all unknown signal parameters
(θν , φν , aν) by the relation of the generalized Hilbert transform to the Radon transform.

3. Algebraic signal representation in tensor form and subsequent mapping by the isomorphism
ϕ to its corresponding signal multivector.

4. Geometric interpretation of the signal multivector by solving the nonlinear part of the inverse
problem.

5. Structural multivector-valued signal interpretation by solving the linear part of the inverse
problem.

The message of this contribution is that the signal multivector is isotropic for i1D and
two superimposed i1D signals and offers accuracy with less computational time. Future
work contains the generalization of the signal multivector to multidimensional signal
domains to enable also isotropic motion tracking in computer vision applications.
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Abstract. The selection of an optical flow method is mostly a choice

from among accuracy, efficiency and ease of implementation. While varia-

tional approaches tend to be more accurate than local parametric meth-

ods, much algorithmic effort and expertise is often required to obtain

comparable efficiency with the latter. Through the exploitation of natu-

ral motion statistics, the estimation of optical flow from local parametric

models yields a good alternative. We show that learned, linear, paramet-

ric models capture specific higher order relations between neighboring

flow vectors and, thus, allow for complex, spatio-temporal motion pat-

terns despite a simple and efficient implementation. The method comes

with an inherent confidence measure, and the motion models can eas-

ily be adapted to specific applications with typical motion patterns by

choice of training data. The proposed approach can be understood as a

generalization of the original structure tensor approach to the incorpora-

tion of arbitrary linear motion models. In this way accuracy, specificity,

efficiency and ease of implementation can be achieved at the same time.

1 Introduction

1.1 Keeping Optical Flow Estimation Simple

Optical flow refers to the displacement field between subsequent frames of an
image sequence. Methods for its computation are in practice usually tradeoffs
between speed, accuracy and implementation effort. Local methods such as the
Lucas & Kanade approach [1] or the structure tensor approach by Bigün [2] are
very fast and easy to implement but not very accurate due to the simplified
assumption that neighboring pixels move in the same way. Global methods such
as the method by Horn and Schunck [3] and today’s state-of-the art approaches
are usually more accurate and can sometimes even be applied in realtime, yet
with considerable implementation effort and expertise. Knowledge on adequate
discretization, multigrid methods [5] and/or GPU implementation, variational
calculus or Markov Random Fields, image and gradient filters [6], coarse to fine
� This work was funded by the ”Heidelberg Graduate School of Mathematical
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Fig. 1. Examples for learned motion models. The inclusion of temporal information

allows for the representation of complex temporal phenomena, e.g. moving motion

discontinuities (top) and moving divergences (bottom).

strategies for handling large motion, possibly in combination with image warping
[7], as well as different norms and their characteristics for the preservation of
motion boundaries is indispensable in order to obtain highly accurate and fast
algorithms. Methods from the 1980s such as the Horn-Schunck approach can
yield rather good results if a pyramid approach and bicubic interpolation are used
to handle large motion combination with a multigrid solver. Yet, for industrial
applications such high end knowledge is rare and expensive.

In this paper we reduce the necessary expertise and implementation effort to a
minimum by learning statistically optimal (in the Gaussian sense) motion models
from training data, which capture complex motion patterns, yet are still simple
to compute. The complexity of the estimation task itself can be vastly reduced
due to the linearity of the model. At the same time the learning based approach
entails a strong adaptability to the specific optical flow estimation problem,
e.g. in fluid dynamics or driver assistance systems (see Figure 1). Finally, a
confidence measure directly inherent to the flow computation method can be
applied to improve the result.

1.2 Motion Models

Because the optical flow problem is underconstrained, all estimation methods
involve additional model assumptions on the structure of the motion.
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The simplest motion model is a piecewise constant flow, which can be obtained
by punishing the l2 norm of the gradient of the flow vector ‖∇u‖2 [3] or by as-
suming constant motion within a small local neighborhood [1,2]. This model is
not adequate for most optical flow fields. Other methods assume more general
models such as local planar models [8] or affine models [9,10,11]. General affine
models have been integrated into a variational framework by Nir et al. [12]. In
order to preserve motion boundaries in variational approaches, l1 regularization
in the space of bounded variations, the widely used TV-regularization, was in-
troduced into denoising by Rudin, Osher and Fatemi [13] and was soon applied
in optical flow estimation. Recently, a generalized version of the TV-regularizer,
the total generalized variation (TGV) regularizer, allowing for piecewise affine
motion with sharp boundaries has been introduced into variational approaches
[14]. For physics based applications often different conditions apply in flow es-
timation, e.g. the Navier-Stokes equation for fluid flows [15,16]. In the field of
water or heat motion, patterns such as vortices or curls are common and can
be handled by means of adequate regularization such as the div-curl regularizers
[17] or model based approaches [18]. Flow fields based on such predefined models
are often more accurate than those based on assumptions of constant flow. How-
ever, there are situations where even more complex and especially application
specific models are necessary to compute accurate flow fields.

In these situations learning motion models from given sample motion data is a
method to obtain superior results. Roth and Black [19] employed a general learn-
ing based approach using fields of experts, which is integrated into a global opti-
cal flow method. The approach is rather difficult to implement due to the fields
of experts model. Black et al. [20] as well as Yacoob and Davis [21] integrated
adapted, learning based models into a local optical flow method. To learn these
models, principal component analysis (PCA) is used. This leads to a nonlinear
energy functional, which is linearized and minimized by means of a coarse-to-fine
strategy and coordinate descent. However, the models employed are either purely
spatial [20] or purely temporal [21], or they are used for confidence estimation [22].

Our approach differs in four main aspects from these methods:

1. Instead of formulating a non-linear energy functional and applying gradient
descent for its minimization we obtain an overdetermined system of equations
which can be easily and globally solved by established least squares methods.

2. We employ spatio-temporal instead of purely spatial or temporal motion
models, which can represent complex motion patterns over time.

3. We show results comparable to Farnebäck’s (which are the best for local
optical flow estimation), but with much less effort.

4. By means of a model-based confidence measure directly inherent to the flow
computation method we can sparsify and reconstruct [23] the resulting flow
field obtaining significantly lower errors.

Based on learned motion models for complex patterns, we end up with a simple,
easily parallelizable and still accurate optical flow method. It is able to incor-
porate learned prior knowledge on special types of motion patterns and can be
adapted to all kinds of specific motion estimation problems. The goal of this
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paper is not to devise a method more accurate than any other method before,
but to point out a simple to implement and efficient alternative to all the state-
of-the-art optical flow approaches.

2 Motion Statistics

We use statistical methods to directly learn the motion model from sample mo-
tion data. For a given sample flow field u : Ω → R2 defined on the spatio-
temporal image domain Ω ⊂ R3 we randomly choose a specified number of loca-
tions (here 5000), where spatio-temporal sample patches of a fixed size ω ⊂ Ω are
drawn from. Such sample flow fields can be ground truth flow fields, computed
flow fields or any other flow fields containing motion patterns typical for the
application. The sample patches are vectorized (horizontal component stacked
on top of vertical flow component) and stored as columns in a matrix M . To
avoid bias towards any direction, we rotate the training samples four times by
90 degrees in order to obtain a zero sample mean.

We use principal component analysis (PCA) to obtain motion models from
the sample data. PCA means that we compute a new orthogonal basis system
B := [b1, ..., bp] ∈ Rp×p, p = 2|ω| (each column represents one eigenvector
containing a horizontal and a vertical flow component at each pixel of the patch
ω), within which the original sample fields in M are decorrelated. This is simply
done by computing the eigenvectors of the matrix M . Examples for such typical
motion patterns are presented in Figure 1.

Let the basis components, i.e. the eigenvectors bj of M , be sorted according to
decreasing eigenvalues. Then the first k ≤ p eigenvectors with the largest eigen-
values contain most of the variance of the sample data, whereas the eigenvectors
with small eigenvalues usually represent noise or errors in the sample flow fields
and should be removed from the set. Hence, the first k basis components span a
linear k-dimensional subspace of the original sample data space preserving most
of the sample data information. In order to select the number of eigenvectors con-
taining the fraction δ ∈ (0, 1) of the information of the original dataset we choose
the value k based on the eigenvalues λi of the eigenvectors bi, i ∈ Np such that

k := argmin
j∈Np

∑j
i=1 λi∑p
i=1 λi

≥ δ . (1)

Within the resulting k-dimensional subspace a vectorized flow field patch u(ω)
can be approximated by a linear combination of the first k principal components:

u(ω) ≈
k∑

j=1

αjbj . (2)

The linear subspace restricts possible solutions of the flow estimation problem to
the subspace of typical motion patterns statistically learned from sample data.
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3 Parameter Estimation

Optical flow computation is based on the assumption that the brightness of
a moving pixel remains constant over time. If x : [0, T ] → R2 describes the
trajectory of a point of an object we can model a constant brightness intensity
I : Ω → R as I(x(t), t) = const. A first order approximation yields the brightness
constancy constraint equation (BCCE), ∇x,y is the spatial gradient operator

dI

dt
= 0 ⇔ (∇x,yI)T · u +

∂I

∂t
= 0 , (3)

Instead of estimating the optical flow u itself we want to estimate the coefficients
αj , j ∈ Nk, in (2) which implicitly define the displacement field for the neigh-
borhood of the current pixel. In this way, the resulting optical flow is restricted
to the learned subspace spanned by the k principal components. In the sense of
Nir et al. [12] one could speak of an over-parameterized model, since we estimate
k coefficients to obtain a two-dimensional flow vector, which is chosen from the
center of the reconstructed patch.

To estimate the coefficients αj we make two assumptions:

1. the current flow field patch can be approximated by a linear combination of
principal components (2),

2. each of the flow vectors within the patch fulfills the BCCE (3).

Substituing u in (3) by the linear combination of model vectors in (2), we obtain
the following energy to be minimized for a whole patch located at ω ⊂ Ω

E(α) =

∣∣∣∣∣∣∣∣∣

⎛⎜⎜⎜⎝
Ix1 0 . . . 0 Iy1 0 . . . 0
0 Ix2 0 . . . 0 Iy2 0 . . . 0
...

. . . . . .
...

0 . . . 0 Ixn 0 . . . 0 Iyn

⎞⎟⎟⎟⎠
⎛⎝ k∑

j=1

αjbj

⎞⎠ +
∂I(ω)

∂t

∣∣∣∣∣∣∣∣∣
2

→ min,

(4)
where Icq denotes the image derivative with respect to c at patch pixel index q
and I(ω) denotes the vectorized intensities within the image patch ω containing
n := |ω| pixels. Denoting the image gradient matrix in 4 as A, we obtain the
following system of equations depending on the parameters α for each patch ω

(A ·B)T · α = −It, (5)

which can be solved by a simple least squares approach (or by the more sophis-
ticated least median of squares, which can handle outliers e.g. at motion bound-
aries [24]). The resulting parameter vector α represents the estimated flow for
the whole patch. To obtain the flow at the central pixel, we compute the linear
combination and choose the central flow vector.

The proposed approach can be understood as a generalization of the original
structure tensor approach to the incorporation of arbitrary linear motion models.
In case we choose only two model vectors, a normalized horizontal and vertical
one, we obtain exactly the original structure tensor approach.
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4 Confidence Estimation

To improve the resulting optical flow field, we apply the confidence measure
proposed in [22], which assigns a reliability value in the interval [0, 1] to each
flow vector. Here, 0 stands for no, 1 for full reliability. Based on a confidence
map computed flows can be sparsified in order to reduce the average error. In
this way the accuracy of further processing steps can be increased or errors can
be removed by means of reconstruction algorithms, e.g. inpainting. According
to [22] we assume that all correct flow field patches can be described in terms of
the learned motion model, i.e. lie in the space of eigenflows. Thus, the inverse
of the difference between the projection into the model space spanned by the
principal components and the original patch u(ω) at location ω ∈ Ω centered at
x indicates the confidence

c(x) =
1

1 + |u(ω)− (B · BT u(ω))| . (6)

Since the basis system has already been computed, the application of the confi-
dence measure is trivial and effective.

5 Results

In this section we present results on the accuracy, efficiency and adaptability
of the proposed optical flow method. For the implementation we use the fil-
ters optimized for optical flow by Scharr [6] to estimate image derivatives. We
presmoothed all sequences by a Gaussian filter with spatial σ = 0.8.

Accuracy. Our goal is not to devise an optical flow method yielding accuracy
as high as the top ranking state-of-the-art methods on the Middlebury database.
Instead, we want to demonstrate that the learned motion models can capture
much of the complexity of optical flow fields and allow for an efficient and simple
to implement flow computation method. To test our approach we use five differ-
ent test sequences: the famous Marble sequence, the Yosemite and the Rubber
Whale sequence from the Middlebury dataset [4] as well as the Street and Office
sequence [25]. Learning is performed on a set of various computed flow fields.
Table 1 shows a comparison to results obtained by the original structure tensor
approach [2] based on the same patch size. Furthermore, we show error values
and chosen parameters for all test sequences for different densities after sparsifi-
cation based on the confidence measure proposed in section 4. Figure 2 displays
the corresponding HSV coded motion fields, which show improvements especially
for large moving planes and near motion boundaries. Here oversmoothing due
to large patch sizes as in the traditional approach is avoided since the complex
relations between neighboring vectors are already contained in the model.

Stability. In the following, we examine the stability of our method for different
parameter choices, i.e. patch sizes and numbers of eigenvectors. Table 2 exhibits
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Table 1. Comparison of the angular error and standard deviation of the model based

approach to the traditional approach. The density refers to the flow field after sparsifi-

cation based on the confidence measure [22]. ω denots the spatio-temporal patch size,

k the number of eigenvectors.

Results

Density (%) Yosemite Marble Rubber Whale Street Office

100 1.53 ± 1.69 2.55 ± 4.25 7.85 ± 15.95 4.99 ± 13.72 3.83 ± 4.98

90 1.37 ± 1.43 1.87 ± 2.73 5.24 ± 10.43 3.65 ± 8.38 3.35 ± 3.85

80 1.24 ± 1.37 1.49 ± 2.05 4.36 ± 9.45 3.04 ± 6.05 3.01 ± 3.38

70 1.15 ± 1.38 1.27 ± 1.65 4.12 ± 9.75 2.44 ± 4.52 2.75 ± 3.25

traditional 3.42 ± 10.01 5.25 ± 6.49 19.30 ± 17.23 5.75 ± 16.92 5.55 ± 11.82

ω, k 19 × 19 × 3, 10 19 × 19 × 7, 6 19 × 19 × 1, 2 19 × 19 × 3, 2 21 × 21 × 1, 5

mean error 3.42 mean error 5.25 mean error 19.30

mean error 1.53 mean error 2.55 mean error 7.85

Fig. 2. Comparison of original structure tensor approach (top) and the motion model

based structure tensor approach (bottom), HSV-coded flow fields and mean angular

error for the Yosemite, Marble and the Rubber Whale sequence.

average error and standard deviation for different patch sizes based on 7 principal
components and for different numbers of principal components for fixed patch
size ω = 21× 21× 3. The results suggest that large patch sizes are favorable for
lower errors, whereas the number of principal components has less influence.

Adaptability. The proposed algorithm is adaptable to all kinds of scenes where
typical, complex motion patterns need to be computed such as in fluid dynamics
or driver assistance systems in vehicles. Figure 3 shows spatial principal compo-
nents computed on particle image velocimetry (PIV) test data, on the Yosemite
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Table 2. Left: angular error and standard deviation for different spatio-temporal sizes

ω for the Yosemite sequence using 7 principal components. Right: angular error for

different numbers of principal components for a fixed patch size of 21 × 21 × 3.

Model Size Principal components

space \ time 1 3 7 k 21 × 21 × 3 k 21 × 21 × 3

5 × 5 7.12 ± 12.76 4.72 ± 7.62 3.01 ± 3.55 2 1.93 ± 2.07 6 1.40 ± 1.53

9 × 9 3.93 ± 6.46 2.69 ± 3.49 2.12 ± 2.27 3 1.86 ± 2.06 7 1.35 ± 1.45

15 × 15 2.39 ± 3.01 1.81 ± 1.97 1.50 ± 1.70 4 1.53 ± 1.53 8 1.36 ± 1.40

21 × 21 1.79 ± 1.87 1.66 ± 1.57 1.35 ± 1.45 5 1.44 ± 1.56 9 1.35 ± 1.41

a) PIV b) Yosemite c) boundary

Fig. 3. Principal components based on training data from totally different application

fields, a) PIV data consisting of fluid motion patterns, b) Yosemite consisting mostly

of translations, c) a motion boundary.

sequence and on a motion boundary. The examples show that for very different
kinds of flow fields we obtain very different motion models.

Efficiency. The proposed local optical flow method can be implemented effi-
ciently due to several reasons. First, the algorithm only takes into account a
limited local image region in order to estimate the displacement vector for each
pixel. Hence, it takes only limited space and can be easily parallelized for the
computation on graphics hardware. Second, the computation of the PCA model
can be carried out once before the estimation of the optical flow and can be used
for all kinds of sequences and the confidence estimation later on.
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Fig. 4. Computation times per pixel for increasing patch sizes (left) and increasing

numbers of eigenvectors (right) on the CPU.

Computation times grow linearly with the number of pixels contained in the
patch, and almost linearly with the number of eigenvectors. Figure 4 shows
computation times for a single pixel on a standard CPU.

6 Summary and Conclusion

In this paper we proposed a generalization of the traditional algorithm by Bigün
for optical flow estimation to the incorporation of complex motion models. This
approach has four advantages: 1) The resulting method yields errors approxi-
mately half the value of the traditional approach due to the use of motion models,
which can capture complex spatio-temporal motion patterns. In this way, we in-
corporate prior knowledge on regular flow field patches without the need for
explicit regularization which would drastically increase computation times and
implementation complexity. And the results are improved especially near motion
boundaries and for planar motion. 2) The algorithm boils down to the simple
task of carrying out principal component analysis on training data and solving
an overdetermined linear system of equations at each pixel location by means
of least squares. Thus, the implementation effort and necessary expertise are
strongly reduced, which makes our approach especially interesting for industrial
applications. 3) The learned motion models are adaptable to all kinds of specific
applications, where special motion patterns occur, e.g. in the field of fluid dy-
namics or driver assistance systems. 4) The approach is stable with respect to
parameter variations.
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15. Vlasenko, A., Schnörr, C.: Physically consistent and efficient variational denoising

of image fluid flow estimates. IEEE Transact. Image Process. 19(3), 586–595 (2010)

16. Haussecker, H., Fleet, D.: Computing optical flow with physical models of bright-

ness variation. IEEE Transactions on Pattern Analysis and Machine Intelligence

(PAMI) 23(6), 661–673 (2001)

17. Gupta, S., Gupta, E.N., Prince, J.L.: Stochastic models for div-curl optical flow

methods. IEEE Signal Processing Letters 3, 32–35 (1996)
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Abstract. We present a method for tracking people in monocular broad-

cast sports videos by coupling a particle filter with a vote-based confidence

map of athletes, appearance features and optical flow for motion estima-

tion. The confidence map provides a continuous estimate of possible target

locations in each frame and outperforms tracking with discrete target de-

tections. We demonstrate the tracker on sports videos, tracking fast and

articulated movements of athletes such as divers and gymnasts and on non-

sports videos, tracking pedestrians in a PETS2009 sequence.

1 Introduction

Object tracking in video is a long-standing computer vision problem; in par-
ticular, tracking people has captured the interest of many researchers due to
its potential for applications such as intelligent surveillance, automotive safety
and sports analysis. State-of-the-art people trackers have predominantly focused
on pedestrians for traffic or surveillance scenarios. For sports analysis, however,
standard pedestrian trackers face significant challenges since in many broadcast
sports, the camera moves and zooms to follow the movements of the athlete.
Furthermore, in some sports, the athlete may perform abrupt movements and
have extensive body articulations that result in rapid appearance changes and
heavy motion blur. As such, sports tracking to date [1,2,3,4,5,6] has been limited
to team sports such as football and hockey, in which there is wide view of the
playing field and athletes remain relatively upright. In addition, these works are
primarily focused on the data-association problem of multi-target tracking and
do not deviate substantially from the pedestrian tracking scenario.

In the current work, we present a method for tracking people in monocular
broadcast sports videos by coupling a standard particle filter [7] with a vote-
based confidence map of an “athlete”-detector [8]. We target sporting disciplines
in which the athletes perform fast and highly articulated movements, e.g. diving
and gymnastics. Tracking in these types of sports is particularly difficult since
the athletes do not remain in an upright configuration. Our confidence map,
built from the Hough accumulator of a generalized Hough transform designed
for people detection, is well suited for handling pose and appearance changes and
athlete occlusions, as it is generated from a vote-based method. While we focus
on tracking in broadcast sports clips, as they provide a challenging testbed,
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(a) motion blur (b) extensive articulation (c) occlusion

Fig. 1. Select frames from the UCF Sports Dataset [9], showing challenges of tracking in

sports videos such as (a) motion blur, (b) extensive body articulation and (c) occlusions

our method is applicable to generic people tracking in unconstrained videos.
We demonstrate the tracker’s effectiveness on the UCF Sports Dataset [9], a
collection of footage from the 2008 Olympics and a PETS 2009 sequence [10].

2 Related Works

Early approaches in sports tracking began with background extraction and then
morphological operations to isolate foreground areas which may represent the
athlete [1,2,11]. Tracking was then performed by enforcing spatial continuity
through either Kalman or particle filtering. These approaches, both single- and
multi-camera, relied heavily on colour as a cue for separating the athletes from
the background as well as for tracking, though shape and motion information of
the athletes have also been used [12,4]. Most of the proposed algorithms, however,
have been designed for specific sports, such as soccer [1,2], speed-skating [13] or
hockey [3] and rely on sport-specific scene-knowledge, such as distances between
field lines [14].

Accurate modelling of target observations, be it athletes, pedestrians or generic
objects has been the focus of several current tracking works. One line of approach
learns and adapts appearance models online [15,16,17]; these methods cope well
with appearance changes and are not limited to tracking specific object classes,
but are susceptible to drift as tracking errors accumulate. Another line of approach
uses pre-trained models of the targets. Tracking-by-detection methods follow this
type of paradigm, in which object detectors are first trained offline and detections
across the sequence are then associated together to form the track, e.g. by parti-
cle filtering. Tracking-by-detection has been used for pedestrians [5,18,19] and in
specific sports such as hockey [3,5] and soccer [5,6]. All these approaches, however,
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assume that the humans remain upright - an assumption that does not hold for
broadcast sports videos in general.

The key component of our tracker is the use of a vote-based confidence map
to estimate the location of the targets. It is similar in spirit to the Fragment
Tracker in [20], which tracks object fragments or patches that vote for an object
center. Our work differs from [20] in that we track possible object centres from
the accumulated votes in the confidence map rather than the individual patches
that vote for a center.

3 Sports Tracker

The sports tracker is a tracking-by-detection approach with three components:
(1)a continuous vote-based confidence map to estimate the target location
(see 3.2), (2)appearance matching of the target based on feature templates
(see 3.3) and (3)motion estimation of the camera and the target from optical
flow (see 3.4).

3.1 Tracking Overview

Tracking in the sports videos is done using a particle filter [7]. We model the
state s = {x, y, c, u, v, d} ∈ R6 of a human by the image position and scale
(x, y, c) and velocity and change in scale (u, v, d). For particle i, the weight at
frame t is assigned as follows:

wi
t =

1
Z

exp
(
−K ·

(
α · V1(si

t) + (1− α) ·
∑

f

λfV2(si
t, f)

))
. (1)

The term V1 measures the response in the vote space (Figure 2(b), see 3.2) for
particle si

t. The term V2 measures the similarity of particle si
t with respect to

some template appearance feature f extracted from the associated bounding box
of the particle (Figure 2(f), see 3.3). K is a scaling constant and α∈[0, 1] is a
weighting parameter for V1 and V2. λf are weighting parameters between the
different features and sum up to 1. Z is the normalization term of the weights.

The tracker is initialized using the ground truth from the first frame of the
sequence. Particles are propagated by a dynamical model accounting for camera
motion (Figure 2(c)) and estimated athlete motion(Figure 2(d), see 3.4).

3.2 Vote-Based Confidence Map

The confidence map is generated from the output of a Hough forest [8] trained
for detecting athletes. The Hough forest is a random forest trained to map image
feature patches to probabilistic votes in a 3D Hough accumulator H for locations
and scales of the athlete. We use cropped and scale-normalized images of the
athletes as positive examples, background images as negative examples, and
colour and histograms of gradients [21] as features. For a detailed description of
the training procedure, we refer to [8]. For detection, feature patches are densely
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(a) original frame (b) vote-based confidence

map from Hough Forest [8]

(c) camera movement esti-

mation from frame borders

(d) optical flow (e) particle distribution
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Fig. 2. Components of the sports tracker. From the original frame(a), the vote-based

confidence map(b) is computed using a Hough Forest [8]. The dynamical model esti-

mates camera motion from the frame border(c) and motion of the tracked athlete from

the frame interior using optical flow(d). Each particle in the particle distribution(e) is

weighted according to the confidence map and appearance features such as colour and

texture(f).

sampled from the image and passed through the trees of the Hough forest to cast
votes in H . While a detector as in [8] thresholds the local maxima in H to obtain
a discrete set of object hypotheses, we consider H as a continuous confidence
mapping of athlete locations and scales. From H , the vote response V1

(
si

t

)
of

particle si
t is determined by

V1(si
t) = − log

( ∑
x∈N (st)∩H

G(si
t − x)

)
, (2)

i.e. we sum the votes in the neighborhood N of st weighted by a Gaussian kernel
G. Note that the sum is in the range of [0, 1].

3.3 Appearance Model

The appearance of particle si
t, denoted as V2

(
si

t, f
)
, is a measure of similarity

between that particle’s feature response hf
(
si

t

)
and some template hf

T for feature
f . To measure similarity, we use the Bhattacharyya coefficient BC:

V2
(
si

t, f
)

= 1−BC(hf
T , hf (si

t)) (3)

As image features, we use HSV colour histograms and local binary patterns [22]
to model colour and texture respectively. For the template, we use a weighted
mixture of the particle’s feature response in the initial frame at t0 and the
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previous frame t−1. Weighting of the individual appearance features in the final
particle weight (Equation 1) is determined by λf , in our case λcolour and λtexture.

3.4 Dynamical Model

For the dynamical model, we use an estimated velocity based on optical flow.
The reason for this is two-fold. First, constant-velocity models which perform
well for tracking walking or running people perform poorly for actions in which
the athletes move erratically, i.e. in gymnastics. Secondly, in many broadcast
sports, the cinematography already provides some framing and tracking of the
athlete, i.e. when the camera pans to follow the athlete across a scene. As such,
the position of the athlete changes in an inconsistent manner within the frame
and it is necessary to estimate the particle motion while accounting for camera
motion. Particles are propagated from frame to frame by

(x, y, c)i
t = (x, y, c)i

t−1 + (u, v, d)i
t−1 +N (0, σtran) , (4)

where σtran is the variance of added Gaussian noise for the transition. Velocity
is estimated as a weighted mixture between camera-compensated optical flow
and velocity in the previous frame, while change in scale remains constant.

(u, v)i
t = η ·

(
(u, v)of

t−1 − γ · (u, v)cam
t−1

)
+ (1 − η) · (u, v)i

t−1 (5)

Optical flow is computed according to [23]; camera motion is estimated as the
average optical flow in the border of the frame (Figure 2(b)). η is a weighting
parameter between estimated motion versus a constant velocity assumption,
while γ serves as a scaling parameter for the estimated camera motion.

4 Experiments

4.1 Datasets

We evaluate our tracker on sports and non-sports videos. For sports, we use
the UCF Sports Dataset [9] and our own collection of Olympics footage. The
UCF dataset, consisting of 150 sequences (50-100 frames each) from network
news videos, was originally intended for action recognition. To supplement the
UCF dataset, we annotated 31 sequences (150-2000 frames each) from the 2008
Olympics, featuring sports such as diving, equestrian and various disciplines of
gymnastics. The sequences are longer and more challenging than UCF, with
significant motion blur and de-interlacing artifacts. For non-sports videos, we
track three people from the PETS 2009 [10] sequence S2.L1, View001. For the
sports datasets, we train on all images of annotated athletes within the dataset
other than from the test sequence, in a leave-one-out fashion. For the PETS
sequence, we trained on the TUD pedestrian database [18].
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4.2 Evaluation

For evaluation, we use the VOC [24] criterion (the intersection over union, IOU,
of the tracked bounding box and the ground truth bounding box must be greater
than 0.5). We hand annotated select frames of the Olympics data and the PETS
sequence and used linear interpolation to generate bounding boxes for the frames
in between. For the UCF database, bounding boxes were provided as a part of
the ground truth annotation released with the data.

We run three experiments on the Olympics data to test the impact of each
component of the tracker. First, the confidence map is compared with discrete
detections; for fair comparison, we generate the discrete detections from the con-
fidence maps by thresholding1 the local maxima of H (see 3.2). Second, the effect
of the appearance modelling is tested by removing the colour and texture fea-
tures from the tracker. In the third experiment, we vary the η and γ parameters
and look at the effects of removing camera compensation as well as comparing
our current dynamic model to a constant velocity model. We also compare our
tracker’s performance on the PETS2009 sequence with the Fragment Tracker
in [20], using source code provided on the author’s website2. Run time on all
datasets was around 1 second per frame for 50 particles on a standard CPU.

5 Results

Olympics Data. We take the following parameter settings {α=0.5, λcolour=0.09,
λtexture=0.91, η=0.3, γ=1.5} and use these as our default scenario. Parameters
are set at these values for all experiments unless otherwise stated. Results for de-
fault scenario, split by discipline are shown in Figure 3 (a). Tracking results from
the first three experiments are shown in Table 1. From the first experiment, we
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Fig. 3. Average tracking performance by sport for (a)Olympics Dataset and (b)UCF

Sports Dataset, where a higher % indicates better performance

1 The threshold was set to achieve a high recall.
2
http://www.cs.technion.ac.il/~amita/fragtrack/fragtrack.htm

http://www.cs.technion.ac.il/~ amita/fragtrack/fragtrack.htm
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Table 1. Average tracking performance on the Olympics sequences, where a higher %

indicates better performance. There is a decrease in tracking performance with each

removed component of the tracker; the most critical component seems to be the vote

map, as using discrete components results in significantly lower performance.

Experimental Variation Affected Parameter/Variable % of frames with IOU> 0.5

Default NA 75.4 ± 13.4

Discrete detections V1 from discrete detections 26.1 ± 17.2
No detections α = 0 28.1 ± 17.3

No colour features λcolour = 0, λtexture = 1 73.9 ± 12.3
No texture features λcolour = 1, λtexture = 0 71.3 ± 10.3
No appearance features α = 1 70.4 ± 13.1

No camera compensation γ = 0 71.8 ± 11.7
Constant velocity η = 0 71.8 ± 15.0

see that using the vote-based confidence map in the tracker gives a significant
improvement over the use of discrete detections. In fact, for the sports, hav-
ing discrete detections is comparable to not using any detections (α=0). This
can be attributed to the many false-positive detections with high confidences,
which have the effect of attracting and clustering the particles to erroneous lo-
cations. Our second experiment shows that removing either or both appearance
features results only in a slightly decreased performance, again emphasizing the
importance of the confidence map in the tracker. In the last experiment, we
show that the use of our motion estimate in the dynamical model outperforms
a constant velocity model, particularly with having the camera compensation.
Varying η and γ had little effect, with performance ranging from 71.6%-74.9%.
Select frames from the tracked results are shown in Figure 4.

UCF Sports Dataset. Tracking performance for the UCF Dataset are shown in
Figure 3(b); select frames from the tracks are shown in Figure 5. On average,
81.8% ± 16.0% of the frames have tracks with an IOU greater than 0.5. The
tracker performs well in sports where people remain upright, i.e. golfing, running,
and skateboarding, but faces some difficulty with sports with more extensive
articulation such as diving, kicking and gymnastics. Part of the error results
from ground truth being tight bounding boxes around the athletes while tracked
bounding boxes are of a fixed ratio.

PETS2009. We compare the performance of our Sports Tracker with the Frag-
ment Tracker [20] in Table 2. The Sports Tracker successfully follows two of the
three tracks, but breaks down on track 3, most likely due to the lack of multiple
target handling. There are two identity switches, first from the target to another
person at frame 31 when several people group together and then back to the tar-
get after frame 115. Select frames are shown in Figure 6. The Fragment Tracker
successfully tracks one of the three tracks, but suffers from drift on the other
two tracks and around 100 frames into the tracks, loses the target completely.
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Fig. 4. Tracking on the Olympics sequences: select frames from diving (top), equestrian

(second row), floor routine (third row) and vault (bottom). The tracker successfully

follows the athletes but has difficulty with very fast motions, e.g. on the floor routine,

in the third frame, the tracker fails to track the tumbling sequence through the air.

Fig. 5. Tracking on the UCF Sports Dataset, showing select frames from running (top

row), skateboarding (middle row) and gymnastics (bottom row)
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Table 2. Comparison of the Sports Tracker with the Fragments Tracker in [20] on the

PETS2009 S2.L1 View001 sequence. Results shown are the % of frames with IOU> 0.5,
where a higher % indicates better performance

Track Frame Sports Tracker Fragments Tracker [20]

1 21 - 259 85.4 14.8
2 222 - 794 95.5 12.6
3 0 - 145 13.8 78.6

101 181 281 351

294 472 592 795

31 70 115 145

Fig. 6. Select frames from the PETS2009 sequence. The tracker successfully follows

the target in track 1 and 2 (top and middle row). Track 2 is particularly challenging

as it is over 500 frames long and several people including the target are all wearing

black clothing. In frame 294 of track 2, the tracker handles occlusion of the target by

another person wearing similar coloured clothing. In frame 31 of track 3 (bottom row),

there is an identity switch (true target is indicated by the white arrow); in frame 115,

the tracker switches back onto the correct target. Figure is best viewed in colour.

6 Conclusion

We have presented a method for tracking athletes in broadcast sports videos.
Our sports tracker combines a particle filter with the vote-based confidence map
of an object detector. The use of feature templates and target motion estimates
add to the performance of the tracker, but the strength of the tracker lies in the
confidence map. By providing a continuous estimate of possible target locations
in each frame, the confidence map greatly outperforms tracking with discrete
detections. Possible extensions to the tracker include making voting for the con-
fidence map adaptive and online, so that tracked bounding boxes are of varying
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ratios to yield tight bounding boxes around the athlete’s body, and making a
multi-target version of the tracker to better handle team sports.
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Abstract. We present a template-based pipeline that performs real-

time speed-limit-sign recognition using an embedded system with a low-

end GPU as the main processing element. Our pipeline operates in the

frequency domain, and uses nonlinear composite filters and a contrast-

enhancing preprocessing step to improve its accuracy. Running at inter-

active rates, our system achieves 90% accuracy over 120 EU speed-limit

signs on 45 minutes of video footage, superior to the 75% accuracy of a

non-real-time GPU-based SIFT pipeline.

1 Introduction

As object recognition systems continue to increase in accuracy and robustness,
we are beginning to see their deployment in real-time applications. In this work
we target real-time embedded systems: systems that can interact with the real
world at interactive rates using embedded processors. The low cost of embedded
systems—an order of magnitude below typical CPUs—make them suitable for
use in a variety of domains, including the automotive application space that
we analyze here. However, meeting real-time performance requirements with the
modest computational resources of these embedded processors, particularly with
a parallel processing model, presents an important research challenge.

In this study, we aim to address this challenge and perform real-time speed-
limit-sign recognition on an embedded platform. To achieve our goal, we leverage
the inherent parallelism in the recognition task using Graphics Processing Unit
(GPU) computing and construct our pipeline from modular components. The
data-parallel nature of recognition tasks is an excellent fit for an embedded,
low-power, parallel processor such as the low-end GPU we use in this study.
In addition, the GPU offers superior price-performance and power-performance
to comparable processors. Hence, in our pipeline we implement template-based
recognition techniques that are well-suited to the GPU architecture. In addition,
we built our approach from modular parts that can be extended or contracted.
We discuss how one can make the best use of the limited resources of underlying
hardware by fine-tuning the parameters of these separate components based on
the tradeoff between the runtime and success rate in Section 5.

M. Goesele et al. (Eds.): DAGM 2010, LNCS 6376, pp. 162–171, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



A Template-Based Approach for Speed-Limit-Sign Recognition Using GPU 163

As GPUs have become programmable, they have been increasingly used for
applications beyond traditional graphics that require general-purpose computa-
tion [1]. The computer vision domain is one of the domains GPUs have provided
significant performance improvements (e.g. Fung et al.’s OpenVIDIA project [2]).
The advent of GPU computing has also allowed researchers to revisit older
and simpler, but very effective, data-parallel techniques that have fallen out
of favor due to their compute demands. Template-based object recognition in
the computer vision literature is one of these techniques. For instance, several
other template-based road sign recognition approaches (Section 2) have lever-
aged template-based techniques. However, to the best of our knowledge, none
of these previous studies provided real-time recognition of road signs on an em-
bedded system. They employed commodity computers or optical devices to meet
the compute demands of their approaches. Using GPU computing, we parallelize
the time-consuming computation of template-based recognition and provide real-
time performance on an embedded domain. In addition to being suitable to the
GPU architecture, another advantage of using a template-based approach is that
our pipeline can be easily modified to recognize other objects, such as US speed-
limit signs or other salient road features.

In the computer vision literature, the Scale Invariant Feature Transform
(SIFT) [3] is a commonly used method for performing object recognition. Hence,
in order to evaluate our template-based approach, we also implement a SIFT-
based speed-limit-sign recognition system on the GPU and compare these two
approaches. Our results (Section 5) show that the template-based pipeline pro-
vides a higher success rate and faster runtime than the SIFT-based pipeline.

2 Previous Work

One of the approaches used for template-based road sign recognition is conven-
tional template matching, in which cross-correlation is calculated between the
template and the part of the scene of the same size to measure the match. In
the literature, several studies use conventional template matching in the final
classification stage of the recognition pipeline, after the candidate road signs
are detected [4, 5]. Conventional template matching is not the preferred tech-
nique for sign detection because searching the candidate road sign location with
this approach needs many cross-correlation computations between the templates
and different parts of the scene of the same size. Since this is a convolution-type
operation, it requires a long computation time. In order to reduce the search
space and thus, the runtime of the conventional template matching, Betke and
Makris [6] proposed using simulated annealing.

There are other template-based approaches that also involve a convolution-
type operation. To detect the potential road signs, Gavrila [7] proposed matching
the template and the scene using distance transforms; Cyganek [8] presented a
system that operates on the Gaussian scale-space and does template matching
in the log-polar domain.

Several studies in the field of optics have also investigated the template-based
recognition of road signs in the frequency space [9,10,11]. They proposed systems
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that perform FFT correlation between the scene and the filters generated from
the templates. Drawing upon this technique, Javidi et al. [12] presented an offline
system to perform speed-limit-sign recognition that is most similar in spirit to
our implementation.

Some other studies in the literature make use of color information to perform
template-based road sign recognition [13,14]. In our approach we cannot utilize
these techniques, since we are working with grayscale videos.

3 Approach

With our approach, we have chosen to perform template-based matching in the
frequency space, since it provides a faster runtime than the approaches that
perform convolution-type operations. FFT correlation involves taking the FFT
of both the template and the scene, multiplying the complex conjugate of the
FFT of the template with the FFT of the scene, and taking the inverse Fourier
transform of the product. Hence, instead of computing many match values using
a convolution, we can perform one multiplication in the frequency domain, which
is more efficient. Another advantage of working in the frequency space is that
it allows us to perform some operations in the Fourier domain to improve the
matching performance (e.g. kth-Law, explained below).

FFT-based recognition studies in the optics literature propose correlating the
scene with composite filters instead of the templates. Composite filters are gener-
ated from several templates and can be thought of as “combination templates”.
The advantage of one composite filter instead of several templates is that it re-
duces the number of correlations we need to perform and thus, provides faster
runtime.

Synthetic discriminant functions (SDF) [15] are one of the popular techniques
for generating composite filters. From the several variations of SDF filters, we
have chosen to work with the MACE (Minimum Average Correlation Energy)
SDF filter [16] due to its low false alarm rate. On the road, several objects may
look like a speed-limit sign. The MACE filter provides a high discrimination
ability against these impostor objects.

Performing a FFT correlation between the scene and the composite filter pro-
duces a correlation plane. The MACE filter minimizes the average correlation
energy of the correlation plane and produces a sharp distinct peak where the ob-
ject is located. We first Fourier-transform the templates we would like to include
in the filter and then perform MACE filter synthesis using these transforms.

Although the MACE filter provides good discrimination, it alone does not
provide sufficient accuracy. In addition, we needed to improve the illumination
invariance of our system. To address these challenges, we extend the MACE filter
by applying kth-Law nonlinearity [17], which improves the peak sharpness. The
nonlinear operation raises the magnitude of the Fourier transform to the power
of k, while keeping its original phase. In order to compute a FFT correlation
between the scene and a kth-Law MACE filter, we apply a kth-Law nonlinear
operation to the FFT of the scene before it is multiplied with the complex
conjugate of the kth-Law MACE filter.
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Several metrics can evaluate the goodness of the match in correlations. Since
the kth-Law MACE filter is designed to suppress the sidelobes adjacent to peaks
in the correlation plane, we use PSR (Peak-to-Sidelobe Ratio) [18], which mea-
sures the peak sharpness by taking into account the small area around the peak.

K th-Law nonlinearity produces enhanced illumination invariance, but still
misses many cases with low contrast. Hence, we add a histogram equalization
preprocessing step in our system to improve the contrast of the scene. This
technique involves adjusting the intensity values of the scene to equally dis-
tribute intensities throughout the whole brightness scale. However, since his-
togram equalization adjusts the values based on the statistics collected from the
entire image, it misses some details. Speed-limit signs usually appear in small
regions of the scenes. Hence, it is critical for us to bring out as much image detail
as possible: we thus use “Contrast Limited Adaptive Histogram Equalization”
(CLAHE) [19] to enhance the contrast of the scene. This algorithm divides the
image into small tiles and performs histogram equalization on these small local
regions instead of the entire image, thus bringing out more small-scale detail.

4 Implementation

Template-based speed-limit-sign recognition pipeline. The template-based pipeline
has four main stages: preprocessing, detection, classification, and temporal inte-
gration. Figure 1.a shows the overview of this pipeline. We generate composite
filters offline and input them to our system.

The composite filters used in the detection stage are more general than the
ones used in the classification stage. They are generated from the templates 00
and 100, which helps with detecting two-digit and three-digit signs, respectively.
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On the other hand, we generate a different set of classification filters for each
speed-limit sign we would like to recognize. Both detection and classification
filters integrate different out-of-plane rotations of the templates. This allows
the system to have rotation invariance along the X and Y axes. In addition,
both type of filters have different sizes, which allows the system to have scale
invariance. For each size, we have classification filters with different in-plane
rotations, which provides the system with rotation invariance along the Z axis.
EU speed-limit signs have circular shapes, which are somewhat insensitive to in-
plane rotations when the number inside the sign is not considered. To recognize
signs with shapes that are more sensitive to in-plane rotations (e.g. triangles),
we can also generate in-plane rotations of detection filters to improve accuracy.
We set the background of the templates to gray, which helps in recognizing
signs of both dark or light backgrounds. We do not include different sizes and
in-plane rotations of the templates in the creation of composite filters, because
these images typically have higher changes in energy when compared to images
that represent different out-of-plane rotations of the templates. Moreover, the
number of images we can include in a composite filter is limited.

The effect of the preprocessing stage is shown in Figures 1.c–d. After CLAHE
is applied to the scene, the speed-limit sign becomes more visible. Although
the “after” scene looks fairly different than the “before” scene due to the noise
introduced by CLAHE, the template-based approach we pursue works very well
with these kind of preprocessed images.

In the detection stage, we first perform a FFT correlation between the scene
and the detection composite filters. Then, we determine the detection filter that
returns the maximum PSR. The location of the peak value in the correlation plane
generated by this detection filter indicates the location of the candidate sign. Like-
wise, the size of this composite filter indicates the size of the candidate sign.

We start the classification stage by performing FFT correlations between the
classification composite filters and the part of the scene that includes the can-
didate sign. We only use the classification filters that have the same size as the
candidate sign. Then, we determine the classification filter that returns the max-
imum PSR. If this value is below a certain threshold, we conclude that there is
no speed-limit signs in the scene and start processing the next frame. If not, the
classification filter with the maximum PSR indicates the number displayed by
the speed-limit sign in the current scene. In addition, the in-plane rotation of
this filter indicates the in-plane rotation of the sign. Due to various factors (e.g.
the sign is partially occluded), it is possible to misclassify the signs in the scene.
Hence, providing a result that only depends on the findings of the current frame
is not reliable.

In the temporal integration stage, we increase the reliability of our results
by accumulating the findings from the sequence of frames. For this purpose, we
employ a majority voting technique similar to the one used by Keller et al. [20].
Each frame votes for the speed-limit number indicated by its classification stage.
The maximum PSR determined at this stage is used as the base vote value.
If the previous frame also voted for the same number, the vote is increased
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by multiplying the base value with a constant factor when one or both of the
following conditions are met: 1) the size of the sign is not decreasing; 2) in-plane
rotation of the sign remains the same. After all the frames in the sequence are
processed, we display the speed-limit number that collected the most votes over
a given threshold as the final result.

Since most operations of our implementation of a template-based approach
are data-parallel, this pipeline is suitable to be implemented on the GPU. We use
NVIDIA’s CUFFT library to take inverse and forward FFTs. We wrote kernels
to apply kth-Law nonlinearity to the FFT of the scene, to take the complex
conjugate of the composite filter in frequency domain, to multiply these two
FFTs, and to normalize the result of this product. In addition, we find the peak
in the correlation plane with a GPU kernel that performs a reduction operation.
Currently, we use optimized C code to apply CLAHE. However, this operation
has several data-parallel parts and could be mapped to the GPU to further
improve runtime.

SIFT-based speed-limit-sign recognition pipeline. The SIFT-based pipeline has
two main stages: identification and temporal integration. Figure 1.b shows the
overview of this pipeline. We extract the SIFT features of the templates offline
and input them to our system. The templates we use in this pipeline are the same
templates we use in the template-based pipeline to generate the composite filters.

In the identification stage, we first extract SIFT features of the scene. Then,
we perform SIFT matching between the features of the scene and templates.
We use SiftGPU [21], an open source GPU implementation of SIFT, for feature
extraction and matching. To improve the performance, we reject a match if the
orientation difference of the matched keys is larger than a certain threshold (as
proposed by Kuş et al. [22]). Next, we search for a template that returns the
maximum number of matches over a certain threshold to determine whether
we have a speed-limit sign in the current frame. Finally, we accumulate findings
from a sequence of frames in the temporal integration stage by employing similar
techniques we use in the template-based pipeline.

5 Results and Discussion

Template-based versus SIFT-based pipeline. Our EU speed-limit-sign recognition
test data is a collection of grayscale videos recorded in different weather (e.g.
sunny, foggy, rainy, and snowy) and road (e.g. highway, in the city, and coun-
try) conditions in Europe. In total, we use footage captured from 45 minutes
of driving that includes 120 EU speed-limit signs. Video size is 640x240. We
have run our experiments on a laptop equipped with an Intel Core2 Duo P8600
2.4 GHz CPU and a GeForce 9600M GT, a laptop graphics card comparable in
performance to next-generation embedded GPUs.

The runtime of the template-based pipeline is 18.5 fps. Since our video capture
rate is slower, we are able to process all frames in real time with template-based
approach. Computation time for the SIFT-based pipeline increases with the
number of keypoints extracted from an image and for a frame with moderate
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complexity the runtime is around 120 ms/frame (∼8 fps), which is slower than
the video capture rate. Hence, the SIFT-based pipeline does not provide real-time
performance. The SIFT-based approach has a slower runtime than the template-
based one on our resource-constrained GPU, since it consists of different stages
that are computationally intensive and require a large GPU memory.

The template-based pipeline returned a 90% success rate with no misclassifi-
cations or false positives. An offline run of the SIFT-based pipeline provided a
75% success rate with four misclassifications and nine false positives. The SIFT-
based approach has a lower success rate mainly due to two reasons. First, SIFT
recognition works best when objects have some complexity. However, speed-
limit signs have simple shapes and constant color regions and do not have any
texture. In addition, they usually appear small in the videos. Thus, often SIFT
cannot extract enough distinct features from these signs and the same number of
matches are returned by different templates. Secondly, we could not use CLAHE
in the SIFT-based pipeline. Applying CLAHE on the template-based pipeline
improved our success rate from 65% to 90% and eliminated all misclassifications
and false positives. However, since SIFT cannot handle the noise introduced by
CLAHE, we could not utilize this technique in the SIFT-based pipeline.

Both pipelines perform well in simple cases as well as several challenging cases.
Both reject signs that have a dominant difference. Because of the thick line that
crosses the whole sign, an end-of-50 sign (Figure 2.1) can be distinguished from
a speed-limit sign. Both also recognize signs with insignificant modifications.
Figure 2.2 depicts a speed-limit sign with a small stain in the digit 0.

We see several cases where the template-based pipeline succeeds and the SIFT-
based pipeline fails:
• The template-based approach capably recognizes small signs (e.g. Figure 2.3).

As the sign gets closer, we see a larger viewpoint change and thus, recognition
becomes harder. As a result, in some cases the SIFT-based pipeline misclassifies
the speed-limit sign, since it does not start recognizing the sign when it is far and
small. In the SIFT-based pipeline, in order to recognize small signs, we doubled

1) none, none 2) 60, 60 3) 30, none 4) 100, none 5) 30, none

6) 60, none 7) 120, none 8) none, 20 9) none, 70 10) none, none

Fig. 2. Scene examples: Template-based and SIFT-based pipeline results shown in

bold and italic, respectively.
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the image size and reduced the initial Gaussian blur. Even if these improvements
were helpful, they were not effective enough to recognize smaller signs such as the
one in Figure 2.3.
• The template-based pipeline is better at handling different kind of noise

introduced by effects such as motion blur (Figure 2.4) and partial shade (Fig-
ure 2.5). Our template-based approach is resistant to noise, allowing us to use
CLAHE. By applying CLAHE, we can recognize hard cases such as when the
sun is behind the sign (Figure 2.6) or a light beam effect (Figure 2.7). In order to
recognize low contrast cases with a SIFT-based pipeline, we have decreased the
threshold used to select potential keypoints. Although this change has provided
some improvement, it was not effective enough for recognizing very-low-contrast
cases such as Figure 2.6.
• The template-based approach is better at recognizing signs as a whole. Since

the SIFT-based pipeline deals with features that are local, it can misclassify
signs that look like only part of a sign. For instance, a 2-meter-width-limit sign
in Figure 2.8 is misclassified as a 20 km/h speed-limit sign by the SIFT-based
approach, since the digit “2” in both signs looks very similar.

We also see cases where the SIFT-based pipeline succeeds and the template-
based pipeline fails:

• Although dealing with local features causes the SIFT-based approach to
miss the big picture and fail in Figure 2.8, it becomes an advantage for recogniz-
ing partially occluded signs. For instance, SIFT-based pipeline performs better
than template-based approach in Figure 2.9, where the sign is partially occluded
by snow.
• The SIFT-based pipeline is good at recognizing signs with large rotations

as well as the ones that initially appear large in the videos. In order to recognize
these signs with the template-based pipeline, we need to cover larger rotations
and bigger sizes with composite filters, which in turn would increase our runtime.

In some cases, both template-based and SIFT-based approaches fail:
• Although the template-based pipeline succeeds where the SIFT-based ap-

proach has problems recognizing small signs (e.g. Figure 2.3), if the signs get
even smaller, template-based also starts missing them. Including an additional
composite filter with smaller sizes does not help since it introduces misclassifi-
cations and false positives.
• Both pipelines perform poorly when a big part of the sign is missing. For

instance, in Figure 2.10 a big part of the sign is not visible due to the bright
sunshine.

Template-based pipeline parameter study. With additional computational re-
sources, we could perform more computation and achieve higher accuracy. With
an embedded system and its limited computational capabilities, however, we in-
stead conducted a parameter study to answer the question “given a fixed amount
of compute resources, what is the best way to allocate those resources to achieve
maximum accuracy?” We thus varied our base configuration, which consisted
of five sizes [25 30 35 40 45], three in-plane rotations [−6◦ 0◦ 6◦] = [0◦ ∓6◦],
seven out-of-plane rotations along the Y-axis [0◦ ∓10◦ ∓20◦ ∓30◦], and three
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out-of-plane rotations along X-axis [0◦ ∓10◦], all run on a 4-SM GPU. We found
these parameters were well-suited for maximum accuracy on our base hardware
platform.

Varying each of these parameters allowed us to extend or contract different
modules of our template-based pipeline. Hence, this parameter study also pro-
vides insights for making recommendations to achieve optimum performance
when we are given less or more compute power. Space prevents us from de-
scribing the detailed results, but we draw the following conclusions from these
experiments. With less compute power available, we could choose to reduce the
number of frames per second that we analyze, but instead a better option is to
process only the smaller sizes of signs at a higher frame rate. With more compute
power, we can achieve higher accuracy in three principal ways: increase the pro-
cessing frame rate, add larger sizes of signs, and generate additional composite
filters with larger out-of-plane rotations.

6 Conclusion

Our work addresses the main challenge of meeting the real-time performance re-
quirements of speed-limit-sign recognition with limited hardware resources. To
achieve this goal, we exploit the inherit parallelism in this task using GPU com-
puting and build our pipeline from parameterized modules. Our template-based
pipeline is suitable to be implemented on the GPU and can be easily modified
to recognize other salient road features. Our future work includes expanding the
breath of detected objects (US signs and other signs of different types), investi-
gating other vision tasks (such as optical flow to detect potential collisions), and
developing software support for our data-parallel embedded system that can run
multiple tasks simultaneously (such as vision, graphics, and speech recognition)
while delivering throughput and/or latency guarantees.
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Abstract. In spite of numerous works on inpainting, there has been lit-

tle work addressing both image and structure inpainting. In this work,

we propose a new method for inpainting both image and depth of a

scene using multiple stereo images. The observations contain unwanted

artifacts, which can be possibly caused due to sensor/lens damage or oc-

cluders. In such a case, all the observations contain missing regions which

are stationary with respect to the image coordinate system. We exploit

the fact that the information missing in some images may be present in

other images due to the motion cue. This includes the correspondence

information for depth estimation/inpainting as well as the color infor-

mation for image inpainting. We establish our approaches in the belief

propagation (BP) framework which also uses the segmentation cue for

estimation/inpainting of depth maps.

1 Introduction

Of the computer vision problems recognized and addressed in the last decade,
inpainting has gained a lot of popularity. Arguably, one reason for this may
be its practical utility in fixing damages or removing unwanted occlusions in
images, solely through software. Although earlier works on inpainting mainly
considered only single images, in recent years problems in various domains have
been recognized that may be treated under the aegis of inpainting. These include
fixing damages due to lens/sensor distortions in real-aperture images, filling
missing regions in range images, occlusion removal using stereo images etc.

In this work we address the problem of inpainting depth as well as image
given multiple stereo observations captured from a single moving camera all of
which contain missing regions as a result of artifacts in images. The presence of
such artifacts can be typically attributed to common sensor and lens defects in
cameras. For instance, dust and humidity can enter the camera assembly and
contaminate the sensor [1]. Parts of sensors can also be damaged if exposed to
bright sunlight. Lenses can suffer from local damage due to shocks and climatic
effects. Occlusions due to small unwanted depositions/attachments on the lenses
[2,3] etc can also result in such image defects.

We wish to estimate the image as well as the depth map from a reference view
with such missing regions coherently inpainted. Our approach involves using the
motion cue, present in the stereo images for inpainting. The central idea is that

M. Goesele et al. (Eds.): DAGM 2010, LNCS 6376, pp. 172–181, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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the missing regions which are caused due to corruptions in the camera, have a
fixed location in all images while the scene objects undergo an apparent motion
depending on their depth. Our approach exploits this phenomena to discover
pixels, missing in the reference image, in other images and computes the cor-
respondence/color for the missing pixels. We establish our estimation approach
within an efficient belief propagation (BP) framework while also accounting for
pixel visibility and incorporating the segmentation cue.

1.1 Related Work

Since its inception, the inpainting problem has been mainly addressed for color
images [4,5]. Recent works on filling in sensor/lens damage have been reported
in [2,3,1]. These approaches operate on single images and compute plausible
color values to be filled in the missing regions typically using neighbourhood
information in some sense. Unlike, our approach their goal does not encompass
depth estimation/inpainting. On the other hand, there exist some works which
address the inpainting problem in depth/range maps [6,7] and 3D meshes [8].
However, these approaches work directly with damaged range maps/3D meshes
as input and do not involve inpainting color/intensity images.

The dis-occlusion problem in novel view synthesis is similar to inpainting [9].
However, the primary goal of dis-occlusion is to fill in the regions in the novel
view where data is not available due to stereo-occlusions, whereas we consider the
problem of filling missing regions in the reference image using damaged obser-
vations. Although, both problems involve filling in missing data, our inpainting
framework is considerably different than that used for dis-occlusion.

Inpainting both images and depth given color/intensity images of the scene
with missing data, has received relatively less attention. To our knowledge, only
the recent reported works in [10,11] closely relate to ours, which exploit the pixel
motion for inpainting. The authors in [11] address the problem in a binocular
stereo setting [11]. They consider the case of removing occluders present in the
scene. Their approach requires a priori computation of complete depth maps
(with the occluders) from both the views. The occluders are then removed as a
second step. In contrast to [11], our work inpaints the effects lens/sensor damage,
in which case the pixel mapping is quite different. Our method computes the
inpainted depth map in a single step and we need to compute the depth map
only from the reference view. The work in [10] consider the effects of pixel motion
under a shape-from-focus setting. Their approach handles the inpainting problem
implicitly as opposed to our approach which explicitly checks for missing pixels.
Moreover, unlike in [10] we also consider the occlusion effects and incorporate a
cue from image segmentation to improve our estimates. Also, we employ belief
propagation as opposed to the inefficient simulated annealing used in [10].

2 Methodology

Given stereo images with marked damaged/occluded regions, we wish to estimate
the depth map (from the reference view) where correct/plausible depth values
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are assigned even in the areas where the observation is missing. Moreover, given
this estimated depth map, we also wish to estimate the color information in
the missing regions in the (reference) image. Our estimation process employs
the efficient-BP algorithm [12], which involves computing messages and beliefs
on an image-sized grid where a label is assigned to each node. The messages
and beliefs are expressed as data and prior costs. In the subsequent sections, we
describe these cost definitions for our problems.

2.1 Depth Inpainting

We begin by marking missing regions in all the observations, since all of them will
be affected due to the damage. The locations of the missing pixels do not vary
in the image coordinate system since they are a part of the camera and undergo
the same motion as the camera. However, pixels locations corresponding to scene
points do change in the image. Hence, pixels missing in the reference image may
be observed in other images. Thus, even if correspondences cannot be found
between the reference image and other images, they may yet be established
between other images. We now formalize these ideas in our cost computation.
Since the BP algorithm considers computing costs for every label at each node,
the costs described below are for a particular label at a particular node (pixel).

2.1.1 Cost Computation
We denote the set of missing pixels as M . We arrange the images in an (arbitrary)
order (g1, g2, ..., gN ) with g1 being the reference image. Below we describe the
data cost computation in various cases for missing pixels.

Case 1 - Pixel not missing in any of the images: For pixels /∈ M for
the reference and the ith image, the data cost at a pixel (l1, l2) between them is
the same as used for the stereo problem.

Edi(l1, l2) = |g1(l1, l2)− gi(θ1i, θ2i)| (1)

where (θ1i, θ2i) is the warped location in the ith, which depends on the camera
motion and the depth label Z for which the cost is computed.

To consider occlusion we modulate the data cost with a visibility term Vi(l1, l2)
which switches on/off depending on whether a pixel is visible or occluded in the
ith image. The resultant data cost is

Edi(l1, l2) = V1(l1, l2) · |g1(l1, l2)− gi(θ1i, θ2i)| (2)

For the first iteration, all pixels are considered visible. In subsequent iterations,
Vi is computed by warping the current depth estimate to the ith view. We
also use geo-consistency to update visibility temporally [13]. The total data
cost between the reference image (i = 1) and all other images (i > 1) is then
computed as

Ed =
1
Ni

∑
i

Edi (3)
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where Ni is the total number of images excluding the reference image where
the pixel is visible. We note that we select the reference image such that, in a
standard stereo scenario (with no missing regions), a pixel will always be visible
in at least two observations. Hence, Ni in the above equation can never go to 0.

Case 2 - Pixel missing in reference image but not in the ith image:
In the case where g1(l1, l2) ∈ M , we need to inpaint the depth value at (l1, l2) by
searching for the correspondence between images other than the reference. We
compute the coordinates (θ1i, θ2i) and (θ1j , θ2j) for a depth label. If gi(θ1i, θ2i) /∈
M and gj(θ1j , θ2j) /∈M , the matching cost between them is defined as

Edi(l1, l2) = V c
ij(l1, l2) · |gi(θ1i, θ2i)− gj(θ1j , θ2j)| (4)

where 1 < i < j and the visibility V c
ij is a compound visibility term defined as

V c
ij(l1, l2) = Vi(l1, l2)Vj(l1, l2) (5)

The idea behind defining the compound visibility is that the data cost is not
computed if a pixel is not observed in either the ith or the jth view.

The corresponding total data cost for g1(l1, l2) involving all images for a depth
label is then computed by summing the matching costs as

Ed =
1
Ni

∑
i

Edi (6)

Here Ni are the number of pairs of images gi and gj such that gi(θ1i, θ2i) /∈ M
and gj(θ1j , θ2j) /∈M and Vi(l1, l2) �= 0. Thus, the cost for a pixel missing in the
reference image is computed by using those images in which the pixel is visible.
In case Ni = 0, the pixel is left unlabeled.

Case 3 - Pixels missing in the ith image but not in the reference
image: Finally, if a pixel g1(l1, l2) /∈M and gi(θ1i, θ2i) ∈M for some i > 1 then
the data cost between the reference view and the ith view is not computed. In
case, gj(θ1i, θ2i) ∈ M ∀i, then the pixel is left unlabeled.

To regularize the estimation, the MRF prior enforces smoothness between neigh-
bouring nodes. Moreover, since we also wish to avoid over-smoothing of the
prominent discontinuities, we define the smoothness prior cost as a truncated
absolute function stated as

Ep(n1, n2, m1, m2) = min(|Z(n1, n2)− Z(m1, m2)|, T ) (7)

where, Z(n1, n2) and Z(m1, m2) are depth labels for neighbouring nodes and T
is the threshold for truncation used for allowing discontinuities.

2.1.2 Segmentation Cue for Depth Inpainting
The estimation process using the cost computation described above, can yield
pixels which are not labeled (for which no correspondences can be found). More-
over, as in the depth estimation process, some of the pixels can also be labeled
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incorrectly. We use the cue from image segmentation to mitigate such errors. The
segmentation cue exploits a natural pattern of depth discontinuities coinciding
with image discontinuities. Moreover, given a sufficiently over segmented image,
each image segment can be assumed to have a planar depth variation.

Initially, we color-segment the reference image using the mean-shift algorithm
and classify the pixels as reliable or unreliable. The first BP iteration is run
without using the segmentation cue. We then compute a plane-fitted depth map
that uses the current estimate, the segmented image and the reliable pixels.
The plane-fitting for each segment is carried out via RANSAC. For more details
please refer to [14]. We feed the plane-fitted depth back to the iteration process
to regularize the data term as

Eds(l1, l2) = Ed(l1, l2) + w(l1, l2) · |Z(l1, l2)− Zp(l1, l2)| (8)

where Ed(l1, l2) is the previously defined data cost. Zp denotes the plane-fitted
depth map and the weight w is 0/1 if the pixel is reliable/unreliable. Note that
the above energy is also defined at each pixel (l1, l2). In fact, it is same energy
as described in equations 3 or 6 supplemented with a second term which uses
the plane fitted depth map. This term regularizes the unreliable depth estimates
such that their labels are close to that of plane-fitted depth map. We use this
more general data cost in subsequent iterations after the first.

Note, however, that the color segmentation of damaged observations will yield
some segments due to the missing regions. For brevity, we denote a set of such
segments by Sm. Each such segment will span across largely different depth
values, thus disobeying the very premise for the use of the segmentation cue.
Hence, we cannot use such segments to compute the plane-fitted depth map.

To address this issue, we assign the pixels in Sm to the closest segment /∈ Sm.
This essentially extends the segments neighbouring to those in Sm. The closeness
is determined by searching in eight directions from a pixel. The plane-fitted depth
map is then computed using the reliable pixels in these extended segments,
(including reliable pixels from segments which were earlier in Sm). The plane-
fitted depth map is fed back into the estimation process in the next iteration
where the unlabeled pixels are labeled because of the regularizer depending on
the plane-fitted depth map. Further iterations help to improve the estimates.

2.2 Image Inpainting

Given the estimated depth map, we now wish to estimate the color labels for the
missing pixels in the reference image. We search for pixel color in images other
than the reference that map to the missing regions in the reference image. If the
pixels at the mapped locations /∈ M , we use them in our data cost computation.

The data cost for image inpainting compares the intensities of gi(θ1i, θ2i)
i > 1 with an intensity label, if gi(θ1i, θ2i) /∈ M . This data cost for a particular
gi(θ1i, θ2i) /∈M and an intensity label L is defined as

Edi(l1, l2) = Vi(l1, l2) · |L− gi(θ1i, θ2i)| (9)
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The total data cost is sum of the Ni data costs similar to that described by
equation 6, where Ni is the number of images where gi(θ1i, θ2i) /∈ M i > 1.
The smoothness cost for the image is also defined similar to that in equation 7,
except that the intensity labels instead of depth labels are used.

Lastly, there may be missing pixels in g1 for which gi(θ1i, θ2i) ∈ M ∀i. Such
pixels are left unlabeled. The extent of such unlabeled pixels depends on the
original extent of the missing region and pixel motion. We observe in our ex-
periments, that for most of the image the pixel motion is sufficient to leave no
missing region unlabeled. The maximum extent of such unlabeled regions, if
they exist at all, is up to 2-3 pixels while the original extent of missing regions
is about 20 pixels. Such small unlabeled regions can be filled by any inpainting
algorithm (for instance, the exemplar-based inpainting method [5]).

3 Experimental Results

We validate our approach via real experiments on the multiple stereo images from
the Middlebury datasets. The more recent datasets contain complicated scenes
with a variety of shapes, textures and intensity variations. This serves to test
our approach quite extensively. We manually synthesized scratched masks and
superimposed them on the color images to emulate the damaged observations.

We note that the success of our motion-based inpainting approach essentially
depends on the size of the missing regions in the direction of the motion. Since
our algorithm considers general camera motion, with a priori knowledge of the
damage, one could decide on the camera motion which is suitable for inpainting.
Thus, our approach is general enough to handle various magnitudes and direction
of missing regions. Since the Middlebury images involve horizontal translation,
we typically consider the horizontal extent of the scratches of the order of max-
imum pixel motion to better demonstrate our approach. Thus, widths of the
scratches in our experiment (the minimum horizontal extent) were about 20-25
pixels, while their orientation, shapes, locations etc were arbitrary.

The processing time of our non-optimized Matlab implementation is about 15-
20 mins (on a P4 Core 2 Duo processor with 2 GB RAM). The depth estimation
part takes most of this time since it involves operating on the complete grid.
The image inpainting, on the other hand, takes about a minute since it operates
on only the missing pixels.

In each of the following examples we show six sub-figures (a-f), of which (a,b)
correspond to two of the four observations used in the experiment, with (a) being
the reference image. The sub-figures (d,e) depict the ground-truth and estimated
depth map, respectively while sub-figures (c,f) show the ground-truth and the
inpainted images from the reference view, respectively. The missing regions are
shown by black scratches in the observations.

Our first example shows results for the teddy scene (Fig. 1). Note that the
scratches span multiple depth labels and some of them cover a considerable
distance along the height of the image. However, we note that the estimated
depth map contains no traces of the scratches and matches closely with the
ground-truth depth map. For instance, the long scratch imposed on a ramp-like
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Teddy scene: (a,b) Two of the four observations used in the experiment. (c)

Original Image. (d,e) Ground-truth and estimated depth, respectively. (f) Inpainted

image.

surface in the left-half of the image has completely disappeared leaving no ar-
tifacts in the estimated smooth depth variation. Also, the depth discontinuities
are localized quite well, even when they cross the scratches (e.g. at the chimney
in the center and the soft toy at the bottom). The image is also inpainted quite

(a) (b) (c)

(d) (e) (f)

Fig. 2. Dolls scene: (a,b) Two observations with artifacts. (c) Original Image. (d)

Ground-truth depth map. (e) Estimated depth map. (f) Inpainted image.
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coherently and is visually very close to the ground-truth image. This can be
appreciated by noting the texture preservation at the scratched locations.

Our next example considers the dolls scene containing more complicated
shapes and more extensive scratches (Fig. 2). Note that in this example, the
scratches intersect larger number of depth layers than in the previous exam-
ple. In spite of such complexities our approach seems to perform quite well.
The estimated depth map, again does not contain any apparent signs of the
damage. with the shapes well-defined and depth variations estimated close to
the ground-truth. The inpainted image is visually identical to the ground-truth
reference image with the edges and texture neatly preserved.

We next show results for the moebius scene which also contains many com-
plex shapes (Fig. 3). Although one can notice some distortions in the estimated
depth, these are quite small when one considers the complexity of the scene.
Some of these errors are indeed due to scratches (e.g. the yellow tennis ball at
the bottom), but at most places the scratches are successfully inpainted while
maintaining the shapes. Note especially objects such as the yellow star at the top
right and the green block at the bottom right, which have been localized quite
well. The image is also inpainted with good fidelity with the complex edges and
texture inpainted quite coherently. Indeed, the inpainted image also compares
well with the ground-truth image.

Finally, we show a result on the rocks scene which does not contains various
types of textures (Fig. 4). To add more variety, we use a different, but equally
arbitrary, scratch pattern than the ones used earlier. Although the scene itself
does not contain well-defined shapes, the estimated depth map does capture the

(a) (b) (c)

(d) (e) (f)

Fig. 3. Moebius scene:(a,b) Damaged observations. (c) Original image. (d,e) Ground-

truth and estimated depth, respectively. (f) Inpainted image.
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Rocks scene: (a,b) Two of the four observations. (c) Original Image. (d,e)

Ground-truth and estimated depth, respectively. (f) Inpainted image.

prominent shape boundaries and depth variations present in the ground-truth.
Moreover our approach is also able to successfully to fill in the scratches. As a
consequence, the inpainted image is again virtually no different from the ground-
truth reference image, with no apparent distortions in the texture/shapes at the
locations of the missing regions in the observations.

In Table 1, we provide the mean absolute error (MAE) with ground-truths,
for depth estimation and image inpainting. The image inpainting error is only
computed at the missing regions where the inpainting was carried out. For depth
estimation, which was carried out on the complete grid, the error is computed at
all pixels. The actual depth labels ranged from 15 to 20. Relatively, we observe
that the error in depth estimation is very small (less than 5%). Similarly, the
image error is also around 10 intensity levels (averaged over all color channels),
which is less than the perceivable intensity variation.

Table 1. MAE for estimated depth and inpainted image

Scene Depth estimation error Image inpainting error

Teddy 0.68 11.06

Moebius 0.44 10.45

Dolls 0.39 16.71

Rocks 0.30 10.63
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4 Conclusion

We proposed an approach to compute an inpainted depth map and image using
multiple stereo observations with missing regions. Our approach exploited the
motion cue to find correspondences/color information in some images if they are
missing in others. We also used the segmentation cue to improve our depth esti-
mates. We establish our inpainting method in the belief-propagation framework.
In future, it would be interesting to consider defocus effects in our framework.
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Abstract. In this paper we present a novel approach for the analysis

of microtubules in wide-field fluorescence microscopy. Microtubules are

flexible elongated structures and part of the cytoskeleton, a cytoplasmic

scaffolding responsible for cell stability and motility. The method allows

for precise measurements of microtubule length and orientation under

different conditions despite a high variability of image data and in the

presence of artefacts. Application of the proposed method to demon-

strate the effect of the protein GAR22 on the rate of polymerisation of

microtubules illustrates the potential of our approach.

1 Introduction

The movement of cells is essential for several biological processes and it can
be altered in pathological conditions such as cancer. It depends on a complex
and dynamic cytoplasmic scaffolding called the cytoskeleton, which is composed
of three major types of filaments: actin filaments, intermediate filaments and
microtubules (MTs). The dynamics of these filament types is regulated by co-
ordinated cycles of assembly and disassembly characterised by the addition or
removal of monomeric subunits, respectively.

Many studies have demonstrated that the regulation of actin polymerisation
plays a major role in cell motility (see, for instance, [1], [2]). However, early
experiments with MT-depolymerising drugs such as nocodazole have shown that
the disruption of MTs impairs cell motility [3]. This suggests that actin dynamics
per se is not sufficient to support directional cell motility but requires functional
coordination with MT dynamics.

The mechanisms by which the actin and MT cytoskeleton influence each other
are not completely understood. It has been shown that MTs can affect the ad-
hesive properties of motile cells by inducing the disassembly of focal adhesions
[4], [5], discrete subcellular structures that mediate the attachment of the cells’
ventral side to the substrate. Other mechanisms involve the physical interaction
between actin filaments and MTs. Proteins of the plakin family, in particular
MACF1 (MT actin cross-linking factor 1 also known as ACF7), seem to play

M. Goesele et al. (Eds.): DAGM 2010, LNCS 6376, pp. 182–191, 2010.
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a major role in this process as suggested by the fact that cells lacking MACF1
have unstable MTs and display deficient motility [6]. Another protein that is
capable of actin-MT cross-linking activity is GAR22 (Gas2-related protein on
chromosome 22 [7]), whose functions are still unknown.

Many questions concerning the mechanisms that govern the regulation be-
tween actin and MT cytoskeleton remain to be answered. For instance, how do
they regulate directional cell motility? And, how do they regulate MT dynamics?
One possible experimental approach for answering these questions involves the
quantification of specific static and dynamic features of actin and MT cytoskele-
tons under different physiological conditions. Current approaches for studying
the cytoskeleton function are based on microscopic techniques (immunofluores-
cence, etc.) that mostly provide only qualitative and semi-quantitative analyses
with few methods tailored towards accurate measurements (e.g. [8], [9]). Semi-
automated approaches, however, do not provide entirely objective and repro-
ducible measurements. To the best of our knowledge, only one quantitative and
fully automated approach for the analysis of cytoskeletal filaments has been de-
veloped so far [10] (slightly modified and extended in [11]). In this approach, the
segmentation of cytoskeletal filaments is based on a rotated matched filtering
approach using a rod kernel of one-pixel width thereby not accounting for the
width of the sought structure.

Therefore it was our goal to develop a more accurate and sophisticated method
for the segmentation of cytoskeletal filaments allowing a highly precise analysis.
For the segmentation of line-like structures at the supracellular level, numerous
approaches have been proposed, tailored towards applications such as vessel or
neurite segmentation. Widely used are the Hessian-based vesselness filters. See
e.g. [12] for a comparison. Due to the varying width of vessels, filter responses
at different scales are typically combined to form a final estimate. In contrast,
the problem of MT segmentation can be confined to the problem of ridge de-
tection at a single scale as their width does not vary. Furthermore, it is crucial
for our work to not only segment the MTs but also to measure their orientation
as the analysis of directed cell motion is one future goal. Therefore, the core
of our approach relies on a steerable ridge detector [13] designed from an opti-
mality criterion. This enables us to simultaneously compute segmentation and
orientation estimation and to benefit from the advantages of steerable filters [14]
over rotated matched filtering. Furthermore, the used steerable ridge detector is
shown [13] to have a better orientation selectivity than a popular Hessian-based
ridge detector [15].

Our approach will thus allow the accurate quantification of parameters such
as MT length and orientation during their re-assembly under various conditions.
Hence it establishes the basis for the development of a quantitative analysis
of MT dynamics paving the way to better defining the molecular mechanisms
that regulate the interplay between actin and MT cytoskeletons and, as a con-
sequence, cell motility.

The remainder of our paper is organized as follows. The experimental setup
and image acquisition process are described in section 2. Section 3 explains the
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image preprocessing applied to enhance the images. The segmentation algorithm
is detailed in section 4. The results are illustrated in section 5. Section 6 provides
closing remarks and presents prospects for the future.

2 Experimental Procedure and Image Acquisition

To quantify the re-polymerisation of MTs, we acquired images of cells without
MTs, and cells in which MT re-polymerization was allowed for 5, 10 and 30
minutes. We acquired such data for cells overexpressing the GAR22 protein as
well as for wild type (control) cells. The procedure is detailed in the following for
the interested reader but is not crucial for the understanding of our approach.

Briefly, MTs were depolymerised by treatment with nocodazole for 2 h at
37◦C. To induce the re-polymerisation of MTs, cells were washed twice in cell
medium and incubated at 37◦C for 0, 5, 10 or 30 min. At the end of each incuba-
tion time, cells were washed twice with pre-warmed (37◦C) MT-stabilising buffer
(MSB) and then extracted using MSB containing 0:5% Triton X-100 for 3 min
at 37◦C. Fixation was done using ice-cold methanol (−20◦C) for 4 min followed
by re-hydration with Tris-buffered saline (TBS, a common buffer used in cell
biology) containing 0:1% Triton X-100 (3 times/4 min each). Immunofluores-
cence labelling of the MTs was done according to standard procedures [16], [17]
using the anti-tubulin antibody YL1/2 and an Alexa 594-conjugated secondary
antibody.

Image acquisition was done using an Axiovert 200 microscope (Carl Zeiss,
Germany) equipped with a Plan-Apochromat 100x/1.30 NA oil immersion ob-
jective equipped with 2.5x optovar optics. The Alexa 594 fluorophore was illu-
minated with a 100W HBO mercury lamp using the XF102-2 (Omega Optical)
filter set. The excitation time was 500ms. Images were recorded with a cooled,
back-illuminated CCD camera (Cascade 512B, Photometrics, USA) with a chip
of 512x512 pixels (pixel size: 16μm). Image resolution as measured with a mi-
crometre scale was 15.56pixel/μm. Greyscale images were acquired as 16-bit,
unsigned digital files and cropped to regions containing only a single cell.

3 Image Enhancement

Due to the morphological and functional heterogeneity of the cells, the acquired
images inevitably exhibit a high variability with respect to background fluores-
cence, amount of artefacts and fluorescence intensity of the MTs as illustrated
in figure 1.

To cope with the background fluorescence, i.e. to extract the light filaments on
a dark slowly changing background, we apply a Top-hat filter. As this filtering
operation is not intensity-preserving we apply a linear rescaling to the image
afterwards (Fig. 2).

The extremely high dynamic range of the MTs’ fluorescence intensity poses
a special challenge for the automated analysis of these images: The range of
fluorescence intensity values may cover over 90% of the total dynamic range of
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Fig. 1. High variability of image data: Strong background fluorescence (left), artefacts

appearing as speckles/dots in the image (middle) and high dynamic range of fluores-

cence intensity exhibited by microtubules (right)

Fig. 2. Original image with strong background fluorescence (left) and result of Top-hat

filtering and subsequent linear rescaling (right)

Fig. 3. Original image with high dynamic range of microtubule fluorescence intensity

(left) and result of histogram equalization after Top-hat filtering (right)
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the image and there may be significant overlap with the dynamic range of the
background. More precisely, in proximity of the MT organizing centres (where
the MTs polymerisation is nucleated/initiated), the fluorescence intensity is very
high whereas in other areas of the cell the MTs are dark as well as quite dense
depending on the amount of re-polymerisation and they exhibit low contrast.
In the image’s grey value histogram, the low contrast MTs form a peak. Due
to the fact that the sparsest areas in the histogram correspond to light grey
values, a histogram equalization leads to a brightening of these dark and dense
MTs and therefore to an enhancement of their contrast (Fig. 3). This enables
the segmentation of the MTs despite their highly varying fluorescence intensity.

4 Segmentation

To segment the MTs we follow the well-known methodology of Canny’s edge
detection algorithm [18] consisting of feature enhancement, thinning and thresh-
olding. The sought feature f(x) in our case is a ridge feature due to the line-like
characteristics of filaments. The three steps are detailed in the following.

4.1 Ridge Enhancement

Our task is to design an optimal filter hopt(x) that finds the sought ridge feature
f(x) in our image I(x). The optimality criterion is the maximization of signal-
to-noise ratio. More generally, we seek to design a filter to find a sought signal
in a measured signal. We assume that the measured signal I(x) is composed of
the sought signal f(x) and additive white Gaussian noise η(x):

I(x) = f(x) + η(x). (1)

The optimal linear filter then is a matched filter [19] given by hopt(x) = f(−x).
Filtering the image with this filter is thus equivalent to calculating the cross-
correlation between sought feature and image: The result is a feature strength
image (Fig. 4 left).

The sought filaments however represent arbitrarily oriented ridges. A simple
way to detect these would consist in designing rotated versions of the above filter
(rotated matched filtering). Each point is then assigned the orientation angle for
which the cross-correlation between rotated filter and signal becomes maximal.
It is clear that in order to achieve a good orientation selectivity and an accurate
estimation of ridge strength and orientation, we need a large number of rotated
filters (as many as there are quantization levels of the orientation angle), which
makes the filtering procedure very inefficient.

Steerable filtering first introduced by Freeman in [14] is an elegant way to avoid
these difficulties: When choosing the detector within the class of steerable filters,
the rotated filter hopt(Rθx) := h(Rθx) can be expressed as linear combination
of a small number of basis filters hi(x) weighted with bi(θ):

h(Rθx) =
M∑
i=1

bi(θ)hi(x) (2)
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Fig. 4. Steerable filtering applied to enhanced MT image: Ridge strength image (left),

orientation image (middle), thinned ridge strength image (right)

where Rθ is the rotation matrix Rθ =
[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]
. As convolution is a

linear operation, the convolution of the image I(x) with a rotated filter h(Rθx)
can then be expressed as:

h(Rθx) ∗ I(x) =
M∑
i=1

bi(θ)si(x), (3)

with si(x) = hi(x) ∗ I(x) being the convolution of basis filter hi(x) with the
image. This enables us to analytically determine the filter output as a function
of orientation. Maximizing this expression with respect to the orientation angle
yields an estimation of the feature orientation (fig. 4 (middle)) which is not
restricted anymore to a discrete set of considered orientations and thus becomes
more accurate.

The ridge enhancement step of our method relies on a steerable ridge detec-
tor proposed by Jacob and Unser [13]. The detector is designed from derivatives
of Gaussians such that the resulting filter is separable and they show that the
computation of the optimal orientation angle can be solved analytically. Fur-
thermore, in addition to the optimization of signal-to-noise ratio known from
matched filtering, two more terms are introduced to design an optimal detec-
tor in the style of Canny: First, the localization of the feature is enhanced by
maximizing the second derivative of the filter response orthogonal to the fea-
ture boundary. Second, false oscillations orthogonal as well as along the feature
boundary are minimized by means of a thin-plate-like regularization that en-
forces the filter response to be smooth.

4.2 Thinning and Thresholding

In the resulting ridge strength image, the location of the filaments now has to be
determined. This thinning step is realized by nonmaximum suppression as pro-
posed by [18] such that the thinned ridge strength image contains only one-pixel
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wide ridges (fig. 4 right). To decide which ridge corresponds to a filament and
which one is caused by noise, a thresholding on the ridge strength is necessary.
To obtain connected ridges we apply hysteresis thresholding [18]. The lower and
upper threshold values are calculated by means of a constant offset from the
Otsu threshold [20] maximizing the inter-class variance in order to achieve an
optimal classification into fore- and background despite the strong variability of
the images.

5 Results

We have applied the proposed method to the image data acquired as described in
section 2 to measure the speed of re-polymerisation for cells overexpressing the
GAR22 protein in comparison to control cells. For each point in time we have
measured between 13 and 20 cells. The segmentation quality has been visually
assessed by experts from cell biology. An overview of the segmentation results for
both cell types at each point in time is given in figure 5. Examples of the segmen-
tation results are shown in figures 6 - 8. The importance of the contrast enhancing
preprocessing for precise ridge detection is exemplarily illustrated in figure 7.

Fig. 5. Overview of the segmentation results for both cell types at each point in time

measured (Numbers indicate time in minutes.). Red ridges indicate detected MT loca-

tions. Scale bar represents 5μm.

Fig. 6. Example of segmentation result in the presence of strong background fluores-

cence: Original image (left) and segmentation result (right)
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Fig. 7. Example of segmentation result in the case of highly variable MT fluorescence

intensity: Original image (left) and segmentation result (middle). The results are shown

in detail for the region within the white box in figure 8. The poor segmentation result

(right) illustrates the failure of the segmentation step in case the contrast enhancing

preprocessing is lacking.

Fig. 8. White box region of segmentation result shown in figure 7. Top: Original image.

Middle: Enhanced image. Bottom: Segmentation result.

Fig. 9. Mean total length of MTs in pixels for control cells (left) in comparison with

cells overexpressing GAR22 (right) measured at different points of time. The com-

parison shows that re-polymerisation of MTs is slowed down in cells overexpressing

GAR22.



190 G. Herberich et al.

Based on the segmentations we have calculated the mean total MT length
in pixels for both cell types for each point in time. The results shown in table
9 clearly demonstrate that the control cells’ MTs re-polymerize significantly
faster than the MTs of cells overexpressing GAR22 suggesting a relationship
between GAR22 and the regulation of MT dynamics. Note that the high standard
deviation arises from the high diversity of the cells analyzed and thus should not
be interpreted as error measure.

6 Summary and Discussion

In this study, we have developed a method for the segmentation of cytoskele-
tal filaments in wide-field fluorescence microscopic images based on a contrast
enhancing preprocessing and a steerable ridge detector designed from an op-
timality criterion. Application of the method to image data containing MTs
demonstrates its ability to reliably segment MTs despite a high variability of
the image data. By applying this novel approach we could precisely analyse MT
re-polymerisation under various conditions. Moreover, our data suggest a role
for GAR22 in the regulation of MT dynamics. Problems are encountered at lo-
cations with crossing MTs as these represent multiply oriented features [21], [22]
the ridge detector is not designed for. Future developments will be aimed at
the correct segmentation of crossing MTs. Furthermore, we envisage that the
simultaneous computation of filament orientation and ridge strength will allow
the precise tracking of MTs in live cells during directional cell motility.
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Abstract. Gaussian processes are a powerful non-parametric framework

for solving various regression problems. In this paper, we address the task

of learning a Gaussian process model of non-stationary system dynamics

in an online fashion. We propose an extension to previous models that

can appropriately handle outdated training samples by decreasing their

influence onto the predictive distribution. The resulting model estimates

for each sample of the training set an individual noise level and thereby

produces a mean shift towards more reliable observations. As a result, our

model improves the prediction accuracy in the context of non-stationary

function approximation and can furthermore detect outliers based on

the resulting noise level. Our approach is easy to implement and is based

upon standard Gaussian process techniques. In a real-world application

where the task is to learn the system dynamics of a miniature blimp, we

demonstrate that our algorithm benefits from individual noise levels and

outperforms standard methods.

1 Introduction

Accurately modeling the characteristics of a system is fundamental in a wide
range of research and application fields, and it becomes more important as the
systems grow more complex and less constrained. A common modeling approach
is to use probabilities to represent the dependencies between the system’s vari-
ables and apply machine learning techniques to learn the parameters of the
model from collected data. Consider for example the task of learning the system
dynamics of a small blimp. The majority of existing approaches assume station-
ary systems and equally weight all the training data. The flight characteristics
of the blimp, however, are affected by many unconsidered factors that change
over time. A common approach to deal with non-stationary systems is to assign
higher weights to newer training samples.

In this paper we present a probabilistic regression framework that can accu-
rately describe a system even when its characteristics change over time. More
concretely, we extend the Gaussian process (GP) framework to be able to han-
dle training samples with different weights. GPs are a state-of-the-art non-
parametric Bayesian regression framework that has been successfully applied

� This work has partly been supported by the German Research Foundation (DFG)

within the Research Training Group 1103.

M. Goesele et al. (Eds.): DAGM 2010, LNCS 6376, pp. 192–201, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Learning Non-stationary System Dynamics Online Using Gaussian Processes 193

-1

 0

 1

-6 -4 -2  0  2  4  6

ta
rg

et
 y

input x

training samples
standard GP model

-6 -4 -2  0  2  4  6

input x

training samples
heteroscedastic GP model

-6 -4 -2  0  2  4  6

input x

training samples
our GP model

Fig. 1. Different observation noise assumptions in the data lead to different GP models.

From left to right: standard approach assuming uniform noise levels, heteroscedastic GP

model assuming input-dependent noise levels, and our approach assuming unrestricted

noise levels where the samples circled green (the smaller circles) are assigned with

higher weights.

for solving various regression problems. One limitation of standard GPs, how-
ever, is that the noise in the training data is assumed to be uniform over the
whole input domain (homoscedasticity). This assumption is not always valid and
different approaches have recently been proposed to deal with varying noise in
the data. The main idea behind these approaches is to assume that the noise
can be described by a function of the input domain (heteroscedasticity) so that
adjacent data is supposed to have similar noise. However, both of these ap-
proaches effectively regard all training data as having the same weight. In this
paper, we present a general extension of these GP approaches. Our model is
able to deal with individual, uncorrelated observation noise levels for each sin-
gle training sample and thereby is able to weight the samples individually. This
flexibility allows us to apply our framework, for example, to an online learning
scenario where the underlying function being approximated may change during
data collection.

Figure 1 illustrates how different assumptions about the observation noise in
the data lead to different predictive distribution of GP models. In the figure,
the predicted mean, the 95% confidence interval, and the training samples are
shown. The size of the circle around each point corresponds to its estimated
noise; the bigger the radius, the larger the noise. The left plot corresponds to
the most restrictive, standard GP model where the noise is assumed to be con-
stant. In the plot in the middle, the noise is assumed to depend on the input
domain. This corresponds to the more flexible heteroscedastic GP models. This
model, however, still has limited flexibility since it does not allow us to deal with
unrestricted noise levels. The approach presented in this paper is able to weight
the training samples individually by assigning different noise levels. The right
plot in Fig. 1 corresponds to a GP learned using our approach. Assuming the
samples circled red are outdated information and assigned with lower weights
than those in green circles our model selects the noise levels correspondingly.
Note that our model as well assigns smaller noise levels to the samples circled
red on the right side as there is no newer information available. Finally, the
predictive mean function is shifted towards the higher weighted samples and the
predictive variance reproduces the distribution of the training samples.
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The main contribution of this paper is a novel GP framework that estimates
individual, uncorrelated noise levels based on weights assigned to the training
samples. Considering unrestricted noise levels allows us to increase the prediction
accuracy compared to previous approaches as we can assign higher noise levels
to inaccurate observations, so that their influence onto the regression is reduced.

This paper is organized as follows. After reviewing related work in Section 2 we
give a short introduction of GP regression in Section 3. Afterward, in Section 4,
we introduce our approach of estimating unrestricted noise levels. Finally, in
Section 5 we provide several experiments demonstrating the advantages of our
method, followed by a conclusion.

2 Related Work

Gaussian process regression has been intensively studied in the past and applied
in a wide range of research areas such as statistics and machine learning. A
general introduction to GPs and a survey of the enormous approaches of the lit-
erature is given in the book of Rasmussen and Kuss [1]. In most GP frameworks
a uniform noise distribution throughout the domain is assumed. In contrast to
this, a heteroscedastic noise prediction has as well been intensively studied. For
instance, the approaches of Goldberg et al. [2] and Kersting et al. [3] deal with
input-dependent noise rates. Both use two separate GPs to model the data. One
predicts the mean as a regular GP does, whereas the other is used to model
the prediction uncertainty. In contrast to our approach, they predict input-
dependent noise levels. We extend their approach and additionally estimate for
each single training sample an individual noise value. Heteroscedasticity has as
well been applied in other regression models. For example, Schölkopf et al. [4]
integrated a known variance function into an SVM-based algorithm and Bishop
and Quazaz [5] investigated input-dependent noise assumptions for parametric
models such as neuronal networks.

GPs have been also successfully applied to different learning tasks. Due to
the limited space, we simply refer to some approaches which are closely related
to the experiments performed in this paper. Ko et al. [6] presented an approach
to improve a motion model of a blimp derived from aeronautic principles by
using a GP to model the residual. Furthermore, Rottmann et al. [7] and Deisen-
roth et al. [8] learned control policies of a completely unknown system in a GP
framework. In these approaches stationary underlying functions were assumed.
As already discussed above, in real applications this is normally not the case
and estimating an individual noise level for each observation can improve the
prediction accuracy.

Additionally, alternative regression techniques have been successfully applied
to approximate non-stationary functions. D’Souza et al. [9] used Locally Weighted
Projection Regression to learn the inverse kinematics of a humanoid robot. The
authors include a forgetting factor in their model to improve the influence of newer
observations. In contrast to their approach, we obtain an observation noise esti-
mate of each single training sample which, for instance, can be used to remove
outdated observations from the data set.
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3 Gaussian Process Regression

Gaussian processes (GPs) are a powerful non-parametric framework for regres-
sion and provide a general tool to solve various machine learning problems [1].
In the context of regression, we are given a training set D = {(xi, yi)}N

i=1 of N ,
d-dimensional states xi and target values yi. We aim to learn a GP to model the
dependency yi = f(xi) + εi for the unknown underlying function f(x) and, in
case of a homoscedastic noise assumption, independent and identically, normally
distributed noise terms εi ∼ N (0, σ2

n).
A GP is fully specified by its mean m(x) and covariance function k(xi, xj).

Typical choices are a zero mean function and a parametrized covariance function.
In this work, we apply k(xi, xj) = σ2

f exp
(
− 1

2 (xi − xj)T Λ−1(xi − xj)
)
, where

σ2
f is the signal variance and Λ = diag(�1, . . . , �d) is the diagonal matrix of the

length-scale parameters.
Given a set of training samples D for the unknown function and the hyper-

parameters θ = (Λ, σ2
f , σ2

n) a predictive distribution P (f∗ | x∗,D, θ) for a new
input location x∗ is again a Gaussian with

f∗
μ = m(x∗) + k(x, x∗)T (K + R)−1 (y −m(x)) (1a)

f∗
σ2 = k(x∗, x∗)− k(x, x∗)T (K + R)−1

k(x, x∗) . (1b)

Here, K ∈ RN×N is the covariance matrix for the training points with Kij =
k(xi, xj) and R = σ2

nI is the observation noise.

4 GP Model with Individual Noise Levels

In general, GP regression can be seen as a generalization of weighted nearest
neighbor regression and thus can be applied directly to model non-stationary
underlying functions. As more and more accurate observations become available
the predictive mean function is shifted towards the more densely located train-
ing samples. However, assigning lower weights to outdated samples improves the
approximation accuracy regarding the actual underlying function. For this pur-
pose, we assign a weighting value w(xi), i = 1, . . . , N, to each single training
sample xi. In case of GPs the weight of a sample and thus the importance on
the predictive distribution can be regulated by adapting the observation noise
correspondingly. Therefore, given the weights the presented GP framework esti-
mates individual noise levels for each training samples to obtain the most likely
prediction of the training samples. Obviously, the prediction accuracy of the ac-
tual underlying function highly depends on the progress of the weight values.
However, in practical applications such values can easily be established and, even
without having knowledge about the optimal values, raising the weights of only
a few samples result in a significant improvement of the approximation. In an
online learning task, the influence of subsequent observations can be boosted by
monotonically increasing values over time. D’Souza et al. [9], for instance, apply
a constant forgetting factor. Throughout our experiments we set
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w(xi) =

{
0.1 if i < N −Δ

1.0 otherwise
, i = 1, . . . , N , (2)

where N is the total number of training samples and the parameter Δ specifies
how many of the more recent observations are assumed to have higher impor-
tance. Although we are only using a simple step function to define the weights,
our GP framework is not restricted to any fixed distribution of these values.

To implement individual noise levels the noise matrix R of the GP model
is replaced by the diagonal matrix RD = diag(σ2

1 , . . . , σ2
N ) of the individual

noise levels for each training point x1, . . . , xN . In general, as the global noise
rate σ2

n is simply split into individual levels σ2
1 , . . . , σ2

N the GP model remains
unaffected and the additional parameters can be added to the set of hyper-
parameters θ. Given that, the noise levels can be estimated in the same fashion
as the other hyper-parameters. In our current system, we employ leave-one-out
cross-validation to adapt the hyper-parameters. Alternative cross-validation ap-
proaches in the context of GPs are described by Sundararajan and Keerthi [10].
In general, one seeks to find hyper-parameters that minimize the average loss of
all training samples given a predefined optimization criterion. Possible criteria
are the negative marginal data likelihood (GPP), the predictive mean squared
error (GPE), and the standard mean squared error (CV). The weights w(xi) can
easily be integrated into cross-validation by adding the value of each training
sample as an additional factor to the corresponding loss term. This procedure is
also known as importance-weighted cross-validation [11].

From (1a) and (1b) we see, that for an arbitrary scaling of the covariance
function the predictive mean remains unaffected whereas the predictive variance
depends on the scaling. Initial experiments showed that the GPP and GPE cri-
teria scale the covariance function to be zero as they minimize the average loss of
all training points. The predictive mean remains unchanged whereas the predic-
tive variance is successively decreased. Therefore, we employ the CV criterion,
which is given as

CV (θ) =
1

wN

N∑
i=1

w(xi) (yi − μ∗
i )

2
. (3)

Here, μ∗
i denotes the predicted mean value of P

(
f∗

i | xi,D(i), θ
)
, D(i) is obtained

from D by removing the ith sample, and wN =
∑N

i=1 w(xi) is the normalization
term of the importance values.

Using the CV criterion to optimize the hyper-parameters, we obtain individ-
ual, uncorrelated noise levels and a mean prediction — we will refer to it as
fCV

μ — which is optimal with respect to the squared error. However, an ade-
quate variance prediction of the training samples is not obtained. This is based
on the fact that the CV criterion simply takes the predictive mean into account.
To achieve this, we employ, in a final step, the obtained mean function as a fixed
mean function m(x) = fCV

μ of a second GP. The predicted mean of the first GP
becomes a latent variable for the second one, so the predictive distribution can be
written as P (f∗ | x∗,D, θ) =

∫
P

(
f∗ | x∗,D, θ, fCV

μ

)
·P

(
fCV

μ | x∗,D, θ
)

dfCV
μ .
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Given the mean fCV
μ the first term is Gaussian with mean and variance as de-

fined by (1a) and (1b), and m(x) = fCV
μ . To simplify the integral, we approx-

imate the expectation of the second term by the most likely predictive mean
f̃CV

μ ≈ arg maxf̃CV
μ

P
(
f̃CV

μ | x∗,D, θ
)
. This is a proper approximation as most

of the probability mass of P
(
fCV

μ | x∗,D, θ
)

is concentrated around the mean
which minimizes the mean squared error to the training samples.

To adjust the hyper-parameters of the second GP — and to define the final
predictive distribution — all we need to do is to apply a state-of-the-art GP
approach. The individual noise levels have already been estimated in the first
GP and they do not have to be considered in the covariance function of the second
GP. Therefore, depending on the noise assumption of the training samples, one
can choose a homoscedastic or heteroscedastic GP model. The final predictive
variance of our model is defined by the second GP only whereas the individual
noise levels σ2

1 , . . . , σ2
N are taken into account in the predictive mean. Still, the

hyper-parameters of the second model must be optimized with respect to the
weights w(xi). Therefore, we employ leave-one-out cross-validation based on the
GPP criterion with included weights instead of the original technique of the
chosen model.

5 Experimental Results

The goal of the experiments is to demonstrate that the approach above outper-
forms standard GP regression models given a non-stationary underlying func-
tion. We consider the task to learn the system dynamics of a miniature indoor
blimp [12]. The system is based on a commercial 1.8 m blimp envelope and is
steered by three motors. To gather the training data the blimp was flown in a
simulation, where the visited states as well as the controls were recorded. To
obtain a realistic movement of the system a normal distributed noise term was
added to the control commands to simulate outer influence like gust of wind.
The system dynamics of the blimp were derived based on standard physical
aeronautic principles [13] and the parameters were optimized based on a series
of trajectories flown with the real blimp. To evaluate the predictive accuracy,
we used 500 randomly sampled points and determined the mean squared error
(RMS) of the predictive mean of the corresponding GP model relative to the
ground truth prediction calculated by the simulator.

The dynamics obtained from a series of states indexed by time can be written
as s(t + 1) = s(t) + h(s(t), a(t)), where s ∈ S and a ∈ A are states and actions,
respectively, t is the time index, and h the function which describes the system
dynamics given state s and action a. Using a GP model to learn the dynamics
the input space consists of the state space S and the actions A and the targets
represent the difference between two consecutive states s(t + 1) − s(t). Then,
we learn for each dimension Sc of the state space S = (S1, . . . , S|S|) a Gaussian
process GPc : S × A → Sc. Throughout our experiments, we used a fixed time
interval Δt = 1 s between two consecutive states.
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We furthermore carried out multiple experiments on benchmark data sets
to evaluate the accuracy of our predictive model given a stationary underlying
function. Throughout the experimental section, we use three different GP mod-
els: a standard GP model (StdGP) of [1], a heteroscedastic GP model (HetGP)
of [3], and our GP model with individual, uncorrelated noise levels (InGP). As
mentioned in Section 4, our approach can be combined with a homoscedastic
as well as a heteroscedastic variance assumption for the data. In the individual
experiments we always specify which specific version of our model was applied.
We implemented our approach in Matlab using the GP toolbox of [1].

5.1 Learning the System Dynamics

In the first experiment, we analyzed if the integration of individual noise levels
for each single training sample yields an improvement of the prediction accuracy.
We learned the system dynamics of the blimp using our approach assuming a
homoscedastic variance of the data and a standard GP model. To evaluate the
performance we carried out several test runs. In each run, we collected 800
observations and calculated the RMS of the final prediction. To simulate a non-
stationary behavior, we manually modified the characteristics of the blimp during
each run. More precisely, after 320 s we increased the mass of the system to
simulate a loss of buoyancy.

We additionally evaluated different distributions of the weights (2) by adjust-
ing the parameter Δ, that specifies how many of the more recent observations
have higher importance. Table 1 summarizes the results for different values of Δ.
For each dimension of the state vector we plot the residual. The state vector of
the blimp contains the forward direction X , the vertical direction Z, and the
heading ϕ as well as the corresponding velocities Ẋ, Ż, and ϕ̇. As can be seen
from Table 1, the vertical direction is mostly affected by modifying the mass.
Also, as expected, increasing Δ raises the importance of more reliable obser-
vations (which are the more recent ones in this experiment). Consequently, we
obtain a better prediction accuracy. Note that this already happens for values
of Δ that are substantially smaller than the optimal one, which would be 480.

Table 1. Prediction accuracy of the system dynamics of the blimp using a standard

GP model and our approach with a homoscedastic variance assumption of the data

model X(mm) Ẋ(mm/s) Z(mm) Ż(mm/s) ϕ(deg) ϕ̇(deg/s)

StdGP 53.7 40.7 128.4 18.4 3.3 1.2

LWPR 43.4 33.9 27.9 9.1 3.7 1.1

InGP, Δ = 200 51.1 35.4 30.4 10.1 3.3 1.3

InGP, Δ = 300 42.7 38.4 27.5 10.1 3.6 1.3

InGP, Δ = 400 44.3 33.7 26.2 8.8 3.3 1.2

optimal prediction 50.4 32.1 12.5 7.1 3.0 1.3
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For comparison, we trained a standard GP model based on stationary dynamics.
The accuracy of this model, which corresponds to the optimum, is given in the
bottom of Table 1. Furthermore, we applied the Locally Weighted Projection
Regression (LWPR) algorithm [9] to the data set and obtained equivalent re-
sults compared to our approach with Δ = 400. LWPR is a powerful method to
learn non-stationary functions. In contrast to their approach, however, we ob-
tain for each input value a Gaussian distribution over the output values. Thus,
the prediction variance reproduce the distribution of the trained samples. Fur-
ther outputs of our model are individual, uncorrelated noise levels which are
estimated based on the location and the weights of the training samples. These
levels are a meaningful rating for the training samples. The higher the noise
level the less informative is the target to reproduce the underlying function. We
analyze this additional information in the following experiment.

5.2 Identifying Outliers

This experiment is designed to illustrate the advantage of having an individual
noise estimate for each observation. A useful property of our approach is that
it automatically increases this level if a point is not reflecting the underlying
function. Depending on the estimated noise value, we can determine whether
the corresponding point should be removed from the training set. The goal of
this experiment is to show that this way of identifying and removing outliers can
significantly improve the prediction accuracy.

To perform this experiment, we learned the dynamics of the blimp online and
manually modified the behavior of the blimp after 50 s by increasing the mass. As
soon as 10 new observations were received, we add them to the existing training
set. To increase the importance of the subsequent observations, we used (2) with
Δ = 10. Then, according to the estimated noise levels σ2

1 , . . . , σ2
N we labeled

observations with a value exceeding a given threshold ν as an outlier and removed
it from the data set. Throughout this experiment, we used the standard deviation

of the noise levels: ν = ξ ·
√∑N

i=1 σ2
i . After that, we learned a standard GP model

on the remaining points.
Figure 2 shows the learning rate of the vertical direction Z averaged over

multiple runs. Regarding the prediction accuracy, the learning progress based
on removing outliers is significantly improvement (p = 0.05) compared to the
standard GP model which uses the complete data set. Additionally, we evaluated
our InGP model with rejected outliers for the second GP and this model performs
like the standard GP model with removed outliers. This may be based on the fact
that we only took the predictive mean function into account. To have a baseline,
we additionally trained a GP model based only on observations that correspond
to the currently correct model. The prediction of this model can be regarded as
optimal. In a second experiment, we evaluated final prediction accuracies after
200 s for different values of ξ. The results are shown in Table 2. As can be seen,
the improvement is robust against variations of ξ. In our experiment, keeping
95% of the points on average lead to the best behavior.
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Table 2. Prediction accuracies of the sys-

tem dynamics using different thresholds ξ
to identify outliers

model RMS(mm)

StdGP 83.6 ± 5.6

removing outliers, ξ = 1.5 22.4 ± 12.2

removing outliers, ξ = 2.0 18.7 ± 12.1

removing outliers, ξ = 2.5 20.4 ± 12.4

removing outliers, ξ = 3.0 21.6 ± 12.3

optimal prediction 5.7 ± 2.7

5.3 Benchmark Test

We also evaluated the performance of our approach based on different data sets
frequently used in the literature. We trained our GP model with a homoscedastic
as well as a heteroscedastic noise assumption of the data and compared the pre-
diction accuracy to the corresponding state-of-the-art approaches. We assigned
uniform weights to our model as the underlying function of each data set is sta-
tionary. For each data set, we performed 20 independent runs. In each run, we
separated the data into 90% for training and 10% for testing and calculated the
negative log predictive density NLPD = 1

N

∑N
i=1−logP (yi | xi,D, θ). Table 3

shows typical results for two synthetic data sets A and B; and a data set of a sim-
ulated motor-cycle crash C, which are introduced in detail in [2], [14], and [15],
respectively. As can be seen, our model with individual noise levels achieves an
equivalent prediction accuracy compared to the alternative approaches.

Table 3. Evaluation of GP models with different noise assumptions

homoscedastic noise heteroscedastic noise

data set StdGP InGP HetGP InGP

A 1.506 ± 0.263 1.491 ± 0.255 1.455 ± 0.317 1.445 ± 0.276

B 1.834 ± 0.245 1.827 ± 0.262 1.496 ± 0.279 1.512 ± 0.269

C 4.528 ± 0.189 4.515 ± 0.233 4.315 ± 0.474 4.277 ± 0.530

6 Conclusions

In this paper we presented a novel approach to increase the accuracy of the pre-
dicted Gaussian process model based on a non-stationary underlying function.
Using individual, uncorrelated noise levels the uncertainty of outdated observa-
tion is increased. Our approach is an extension of previous models and easy to
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implement. In several experiments, in which we learned the system dynamics
of a miniature blimp robot, we show that the prediction accuracy is improved
significantly. Furthermore, we showed that our approach, when applied to data
sets coming from stationary underlying functions, performs as good as standard
Gaussian process models.
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Abstract. We consider an automated processing pipeline for tissue mi-

cro array analysis (TMA) of renal cell carcinoma. It consists of several

consecutive tasks, which can be mapped to machine learning challenges.

We investigate three of these tasks, namely nuclei segmentation, nuclei

classification and staining estimation. We argue for a holistic view of

the processing pipeline, as it is not obvious whether performance im-

provements at individual steps improve overall accuracy. The experi-

mental results show that classification accuracy, which is comparable to

trained human experts, can be achieved by using support vector machines

(SVM) with appropriate kernels. Furthermore, we provide evidence that

the shape of cell nuclei increases the classification performance. Most

importantly, these improvements in classification accuracy result in cor-

responding improvements for the medically relevant estimation of im-

munohistochemical staining.

1 Introduction

Cancer tissue analysis consists of several consecutive estimation and classification
steps which are currently highly labour intensive. The tissue microarray (TMA)
technology promises to significantly accelerate studies seeking for associations
between molecular changes and clinical endpoints [10]. In this technology, 0.6mm
tissue cylinders are extracted from primary tumor blocks of hundreds of different
patients and these cylinders are subsequently embedded into a recipient tissue
block. Sections from such array blocks can then be used for simultaneous in situ
analysis of hundreds or thousands of primary tumors on DNA, RNA, and protein
level. Although the production of tissue microarrays is an almost routine task
for most laboratories, the evaluation of stained tissue microarray slides remains
tedious, time consuming and prone to error. The high speed of arraying, the lack
of a significant damage to donor blocks, and the regular arrangement of arrayed
specimens substantially facilitates automated analysis.

This paper investigates an automated system to model such a workflow for
renal cell carcinoma (RCC). Current image analysis software requires extensive
user interaction to properly identify cell populations, to select regions of interest
for scoring, to optimize analysis parameters and to organize the resulting raw
data. Due to these drawbacks in current software, pathologists typically collect
tissue microarray data by manually assigning a composite staining score for
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Fig. 1. TMA processing pipeline, consisting of the following stages: (1) Detection of

cell nuclei within a high resolution TMA image, (2) nuclei segmentation, (3) nuclei

classification into malignant and benign, and (4) calculation of the percentage of tumor

cells and protein expressing tumor cells. The pathologists directly assign a staining score

(pale dashed arrow). We consider the subset of tasks indicated by the boxed region.

each spot - often during multiple microscopy sessions over a period of days.
Such manual scoring can result in serious inconsistencies between data collected
during different microscopy sessions. Manual scoring also introduces a significant
bottleneck that limits the use of tissue microarrays in high-throughput analysis.

The manual rating and assessment of TMAs under the microscope by pathol-
ogists is quite error prone due to the subjective perception of humans. In fact,
one pathologist might differ in the detection and classification of the same cell
nuclei within the same image in a second annotation round [7]. Reasons for such
a discrepancy may relate to the partial destruction of a cell nucleus during the
preparation of a TMA; the slow and often gradual transformation of a healthy
cell to a tumor cell, and the subjective experiences of the pathologist. There-
fore, decisions for grading and/or cancer therapy might be inconsistent among
pathologists.

In this paper, we follow the workflow in [7] which consists of cell nuclei detec-
tion, segmentation and classification, followed by estimation of the proportion
of nuclei stained by the antibody under investigation (Figure 1). In particular,
we investigate the effect of different image features and kernels on the accuracy
of classifying whether a cell nucleus is cancerous or not (Section 3.1). By con-
sidering the different types of features, we show in Section 3.2 the importance of
using shape features. The effect of classification accuracy on staining estimation
is shown in Section 3.3. Our contribution in this paper includes a comprehensive
investigation of various image features and associated kernels on the performance
of a support vector machine classifier for cancerous cells. Since the classifier is
only a part of a larger pipeline, we show that the observed improvements in
classification results in improvements in staining estimation. The estimation of
staining of various antibodies forms the basis for localized biomarker assessment.



204 P.J. Schüffler et al.

Fig. 2. Left: Top left quadrant of a TMA spot from a RCC patient. Right: A pathol-

ogist labeled all cell nuclei and classified them into malignant (black) and benign (red).

1.1 Tissue Micro Arrays

Tissue micro arrays (TMA) are an important preparation technique for the
quantitative analysis of various types of cancer, like clear cell renal carcinoma
(ccRCC). The TMA glass plates carry small round tissue spots of prospective
cancerous tissue samples with a thickness of one cell layer for each spot. Our
TMAs are immunohistochemically stained for the proliferation indicator pro-
tein MIB-1. Positive cell nuclei indicate cell division and appear brown in the
image. Additionally, eosin counter-staining is used for discovering the morpho-
logical structure of the tissue and the nuclei on the TMA. Hence, MIB-1 negative
nuclei are visualized as blue spots in the image.

In this study, we used the top left quarter of eight tissue spots from eight
patients. Therefore, each image shows a quarter of the whole spot, i.e. 100-200
cells per image (see Figure 2). The TMA slides were immunohistochemically
stained with the MIB-1 (Ki-67) antigen and scanned on a Nanozoomer C9600
virtual slide light microscope scanner from HAMAMATSU Photonics K.K.. The
magnification of 40x resulted in a per pixel resolution of 0.23μm. Finally the
spots of single patients were extracted as separate three channel color images of
3000 x 3000 pixels size.

1.2 Support Vector Machines and Kernels

Support vector machines (SVM, e.g. [11,2]) are in widespread and highly suc-
cessful use for bioinformatics tasks. SVMs exhibit very competitive classification
performance, and they can conveniently be adapted to the problem at hand.
This adaptation is achieved by designing appropriate kernel functions, which
can be seen as problem-specific similarity functions between examples. The ker-
nel function implicitly maps examples from their input space X to a space H
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Fig. 3. Example of nucleus segmentation. Left: The original 80x80 pixel patch. Mid-
dle: The segmentation via graphcut. Right: The resulting shape of the nucleus.

of real-valued features (e.g. H = Rd, d ∈ N ∪ {∞}) via an associated function
Φ : X → H. The kernel function k provides an efficient method for implicitly
computing dot products in the feature space H via k(xi, xj) = 〈Φ(xi), Φ(xj)〉.

The resulting optimization problem is convex and the global optimum can be
found efficiently. Furthermore, there are many freely available software packages
which can be used. One remaining question is the choice of features to use for
a particular image x and how to compare them via the kernel k(xi, xj). Our
approach is described in detail in Section 2.4.

2 Methods

2.1 Nuclei Extraction from Labeled TMA Images

TMA images of renal cell carcinoma were independently labeled by two pathol-
ogists [7]. From eight exhaustively labeled TMA images, we extracted 1633
patches of size 80x80 pixels centered at labeled cell nuclei (see Figure 3). For
1272 (78 %), the two pathologists agree on the label: 890 (70 %) benign and 382
(30 %) malignant nulcei.

We further labeled the nuclei according to their staining status. For each
patch, a color histogram was calculated for a 30x30 pixel size center square. A
higher mean of the red histogram than of the blue histogram indicated a stained
nucleus.

2.2 Segmentation

Segmentation of cell nuclei was performed with graphcut [1,4,5,9]. The gray
intensities were used as unary potentials. A circular shape prior was used to
prefer roundish objects (see Figure 3). To this end, the binary potentials were
weighted based on their distance to the center. The contour of the segmented
object was used to calculate several shape features as described in the following
section.

2.3 Feature Extraction

One computationally beneficial aspect of RCC is the fact that the classification
of cancerous cells can be performed locally (i.e. patch-wise). This advantage is
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Table 1. Guidelines used by pathologists for renal nuclei classification. In addition to

the depicted benign and malignant RCC nuclei the tissue consist of a large number of

benign non-renal cells like lymphocytes and endothelial cells which were all labeled as

non-cancerous.

Benign nucleus Malignant nucleus

Shape roundish irregular
Membrane regular thick/thin irregular
Size smaller bigger
Nucleolus none dark spot in the nucleus
Texture smooth irregular

absent for example in prostate cancer, where the morphology of whole glands
is crucial for the classification. Pathologists use several intuitive guidelines to
classify nuclei as described in Table 1. One aim of this study was to design
features, which are able to capture these guidelines. The following listsummarizes
the extracted shape and histogram features:

– Histogram of foreground intensity, FG (nucleus, 32 bins)
– Histogram of background intensity, BG (surrounding tissue, 32 bins)
– Freeman Chain Code, FCC: FCC describes the nucleus’ boundary as a

string of numbers from 1 to 8, representing the direction of the boundary
line at that point ([8]). The boundary is discretized by subsampling with
grid size 8. For rotational invariance, the first difference of the FCC with
minimum magnitude is used. The FCC is represented in a 8-bin histogram.

– 1D-signature, SIG: Lines are considered from the object center to each
boundary pixel. The angles between these lines form the signature of the
shape ([8]). As feature, a 16-bin histogram of the signature is generated.

– Pyramid histograms of oriented gradients, PHOG: PHOGs are cal-
culated over a level 3 pyramid on the gray-scaled patches ([3]).

– Shape descriptors derived from MATLAB’s regionprops function
(PROP) Area BoundingBox(3:4), MajorAxisLength, MinorAxisLength,
ConvexArea, Eccentricity, EquivDiameter, Solidity, Extent,
Perimeter, MeanIntensity, MinIntensity, MaxIntensity;

2.4 Kernel Calculation

The feature vectors extracted from the patches were used to calculate a set of
kernel matrices. All histograms are normalized. For the histogram features, ten
kernel functions and eight distance measures for histograms have been investi-
gated, whereas for the PROP features, only the linear, polynomial and Gaussian
kernels were calculated (see Table 2).
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Table 2. Commonly used kernels and distances for two scalar feature vectors u and

v of the length p. For the histogram features all kernels and distances were employed,

while for the PROP feature only the top most three kernels were used.

Kernel Definition

Linear u′ ∗ v

Polynomial (degree d=(3,5,7,10)) ((1/p)(u′ ∗ v))
d

Gaussian e−(1/p)
∑

i (ui−vi)
2

Hellinger
∑

i

√
ui ∗ vi

Jensen Shanon
−1

log 2

∑
i

ui log
ui

ui + vi
+ vi log

vi

ui + vi

Total variation
∑

i

min ui, vi

χ2
∑

i

ui ∗ vi

ui + vi

Distance Definition

Euclidean

√∑
i

(ui − vi)2

Intersection min (
∑

i

ui,
∑

i

vi) ∗ (1 −
∑

i min (ui, vi)

min (
∑

u,
∑

v)
)

Bhattacharya − log
∑

i

√
ui ∗ vi

χ2
∑

i

(ui − vi)
2

ui + vi

Kullback Leibler
∑

i

ui ∗ log
ui

vi
+

∑
i

vi ∗ log
vi

ui

Earth Mover

p∑
i=1

|
i∑

j=1

uj − vj |

�1
∑

i

|ui − vi|

Resulting dissimilarity matrices D were centered to have zero mean and
checked for being positive semidefinite, to serve as kernel matrices K. Where
needed, negative Eigenvalues were mirrored:

Dcentered = −0.5 ∗Q ∗D ∗Q where Q =

⎛⎜⎝1− 1
n − 1

n
. . .

− 1
n 1− 1

n

⎞⎟⎠
K = V ∗ |Λ| ∗ V ′ where V = Eigenvectormatrix(K)

2.5 SVM Training

Training of the SVMs was preformed using the libSVM package for Matlab
([6]). To generate a more reliable gold standard, we selected the patches with
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consistent labels from both pathologists for training and testing. To combine
different kernels, a normalization by their traces was performed. Normalization
is especially crucial for the addition of kernels from different scales. Parameter
optimization for capacity C was performed with exhaustive search, combining
different parameter values with the SVM classifiers.

3 Results

We focus on three main questions in our experiments: (i) Can we at all classify the
cell nuclei into a cancerous and a benign group? (ii) Which features are important
for such a classification? Is shape important? (iii) Does superior classification
rates lead to improved staining estimation by the complete analysis pipeline?

3.1 Cell Nuclei Classification

We investigated the performance of the classification task using 10-fold cross-
validation over all patches. The results clearly demonstrate that the data support
to automatically classify cell nuclei into benign and malignant at a comparable
performance level of pathologists (see Figure 4). The best performing kernels
utilize all features: foreground and background histograms, shape descriptors
and PHOG. The median misclassification error is 17%. The best kernels showed
a capacity of C = 1000. To confirm that we did not overfit the data, we chose
the best kernel using a further cross validation level on the training data. The
found best kernel was then tested on a separate test subset of samples that was
not used for training. This classifier achieved a median misclassification error
of 18%. In 6 out of 10 of the splits, the diffusion distance (with all histogram
features) combined with a linear kernel for the PROP features was identified as
best performing SVM kernel.

3.2 Importance of Different Image Features

The features that we consider can be grouped into intensity features (foreground
and background), shape features (FCC, SIG and PROP) and PHOG, which
combines intensity gradients with a region of interest, i.e. the nucleus shape. To
see how the different classes of features affect the performance of classifiers, we
again performed a double CV over all kernels, separating the kernels into these
three groups. Two conclusions can be drawn from Figure 5: (i) shape information
improves classification performance, and (ii) the above mentioned feature classes
measure different properties of the data; combining them improves the classifiers.

3.3 Effect of Classifier Performance on Staining Estimation

Recall from Figure 1 that we are ultimately interested in estimating the frac-
tion of cancerous cell nuclei which are stained. In Figure 6, we show the absolute
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Fig. 4. Left: The “performance” of the pathologist is computed from the confusion

matrix between the labels of the two pathologists. Right: Performance of kernels in

nucleus classification. 15 best performing and 15 worse performing kernels (blue) are

shown. Performance measure is the misclassification error in a 10-fold CV. The kernels’

names consists of the used features (see Section 2.3) and the kernel function (for his-

togram and non-histogram features, if needed). The orange bar represents the double

CV result, indicating non-overfitting and the ability to classify new samples (see text).

The horizontal line shows the mean (and standard deviation) of 100 permutation tests,

indicating chance level of prediction.

Fig. 5. Misclassification error of best kernels within a certain feature class (intensity:

kernels using FG, BG; shape: kernels using FCC, SIG, PROP; phog: kernels using

PHOG). Each bar shows the performance of the best kernel using a validation set and

a double CV: in the inner CV, the best kernel in a feature class is chosen based on

90% the samples. In the outer CV, this kernel is tested on the remaining 10%. The

plot shows that each image feature class carries information for classification.
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Fig. 6. Effect of nucleus classification performance on staining estimation. Left: Com-

parison between the best classifier and a random classifier with 100 permutation tests

on the staining estimation task. In a 10-fold CV, the classifier was trained and used

to predict the fraction of stained vs. all cancerous nuclei in the test set. The absolute

difference of the predicted fractions to the fractions calculated from the labeled nuclei

is shown in the plot. Right: Relation between the classifiers’ classification performance

and staining estimation error (shown for the best 100 kernels). The staining error (ab-

solute difference) of a classifier is calculated in the same way as in the left plot. The

better the classification of a kernel is (more left), the better its staining estimation is

(more down). The correlation coefficient 0.48.

difference in error between the predicted fraction of staining and the fraction
of staining indicated by the pathologists’ labels. Note that we used a simple
histogram method to estimate the colour. First, we compared the best classifier
in Figure 4 to a random classifier. Our results show that a good classifier is able to
estimate the staining of the cancerous nuclei with higher accuracy than a random
classifier (see Figure 6 (left)). Since the fraction of stained cancerous nuclei is
roughly 7% in the data, a classifier that results in an estimate of no staining will
have an error of 7% on this plot. In Figure 6 (right) we show the relationship
between different classification error rates with the staining estimation error.

4 Conclusion and Outlook

With this study, we contributed in several aspects: (i) We demonstrated that
graph cuts can be employed in conjunction with a circular shape prior to seg-
ment cell nuclei in a robust fashion. (ii) The classification of nuclei into malignant
and benign is not only feasible but additional shape features boost the classifica-
tion performance. (iii) We investigated and validated a large number of kernels,
distance function and combination thereof (Figure 4). The lesson learned is that
all extracted features are necessary for optimal performance and the best ker-
nels perform significantly better than chance and comparable to human domain
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experts. (iv) Finally we demonstrated the influence of the classification task on
the subsequent staining estimation problem.

Future goals of our research are going to be the incorporation of the proposed
system into a general purpose TMA analysis framework. Part of that is building
a robust nuclei detector and analyzing the resulting estimates in the scope of
survival statistics. We are convinced that an automated and objective analysis
pipeline will significantly further biomarker detection and cancer research.

Acknowledgements. This work was supported by the FET-Open Programme
within the 7th Framework Programme for Research of the European Commis-
sion, under project SIMBAD grant no. 213250.
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LNCS, vol. 5242, pp. 1–8. Springer, Heidelberg (2008)

8. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital image processing using matlab

(2003), 993475

9. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph

cuts? IEEE transactions on Pattern Analysis and Machine Intelligence 26(2), 147–

159 (2004)

10. Kononen, J., Bubendorf, L., et al.: Tissue microarrays for high-throughput molec-

ular profiling of tumor specimens. Nat. Med. 4(7), 844–847 (1998)

11. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)

http://www.wisdom.weizmann.ac.il/~bagon


Efficient Object Detection Using Orthogonal
NMF Descriptor Hierarchies�

Thomas Mauthner, Stefan Kluckner, Peter M. Roth, and Horst Bischof

Institute for Computer Graphics and Vision

Graz University of Technology, Austria

{mauthner,kluckner,pmroth,bischof}@icg.tugraz.at

Abstract. Recently descriptors based on Histograms of Oriented Gra-

dients (HOG) and Local Binary Patterns (LBP) have shown excellent

results in object detection considering the precision as well as the recall.

However, since these descriptors are based on high dimensional repre-

sentations such approaches suffer from enormous memory and runtime

requirements. The goal of this paper is to overcome these problems by in-

troducing hierarchies of orthogonal Non-negative Matrix Factorizations

(NMF). In fact, in this way a lower dimensional feature representation

can be obtained without loosing the discriminative power of the orig-

inal features. Moreover, the hierarchical structure allows to represent

parts of patches on different scales allowing for a more robust classifica-

tion. We show the effectiveness of our approach for two publicly available

datasets and compare it to existing state-of-the-art methods. In addition,

we demonstrate it in context of aerial imagery, where high dimensional

images have to be processed requiring efficient methods.

1 Introduction

Object detection is an important task in computer vision and thus still of high
scientific interest. Most successful approaches are either based on extracting and
describing key-points [1,2] or use a sliding window technique [3,4]. Recently, for
the later one the usage of Histograms of Oriented Gradients (HOG) [3] and Local
Binary Patterns (LBP) [5] in combination with support vector machines (SVM)
have been of considerable interest. Since these descriptors are quite general, can
be applied for different kind of objects, and are, to some extent, robust to many
distortions such approaches become quite popular and were widely applied (e.g.,
[3,5,6]). However, they are based on high-dimensional feature vectors resulting in
an increased computational effort. In particular, at evaluation time each patch
of an image, in most cases at multiple scales, has to be tested if it is consistent
with the previously learned model or not.

� This work was supported by the Austrian Research Promotion Agency (FFG) within

the project APAFA (813397) and the project SECRET (821690) under the Austrian

Security Research Programme KIRAS.

M. Goesele et al. (Eds.): DAGM 2010, LNCS 6376, pp. 212–221, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Efficient Object Detection Using Orthogonal NMF Descriptor Hierarchies 213

Thus, there has been a considerable interest in speeding up the the classifica-
tion process [7,8,9]. Zhu et al. [7] proposed to use a cascade of HOGs with variable
cell distributions. Rejecting samples in early cascades significantly speeds up the
classification while preserving the given accuracy. Maji et al. [8] introduced in-
tersection kernel SVMs (IKSVM) and applied multi-scale histograms of oriented
edge energies. Compared to linear SVMs [3] the runtime is constant in terms of
the number of required support vectors. Hence, they showed competitive clas-
sification results on significantly reduced run-time. Other approaches to reduce
the evaluation costs are based on fast pre-searching [9,10,11]. The hough voting
schemes by Ommer and Malik [10] or Maji and Malik [11] generate candidate
hypotheses which are finally verified with a HOG based classifier. Especially, in
[11] it was shown that sliding window classifiers can clearly be outperformed.
In contrast to these voting schemes, Lampert et al. [9] proposed a branch-and-
bound algorithm for efficient hypothesis generation.

A totally different way to accelerate the classification is to apply a dimen-
sionality reduction technique such as Principal Component Analysis (PCA), In-
dependent Component Analysis (ICA), or Non-negative Matrix Factorization
(NMF) to the original feature vectors. Especially, NMF [12] has recently drawn
a lot of attention. Since the method does not allow negative entries, neither in
the basis nor in the encoding, additive basis vectors are obtained, which mostly
represent local structures and are highly suitable for sparse encoding. This is of
particular interest if the data can be described by distinctive local information
(such as HOGs or LBPs) resulting in a very sparse representation. Moreover, in
contrast to the original representation local parts and multi-modalities can be
described very well. Thus, an NMF dimension reduction step has been applied
in a variety of applications including human pose representation [13], action
recognition [14,15], or motion segmentation [16].

NMF, however, has two main disadvantages. First, there exists no closed form
solution for the underlying optimization problem - an iterative procedure is re-
quired (for training as well as for evaluation). Second, the random initialization
and the non-convex optimization problem result in non-unique solutions. To
overcome these two problems, we propose to use an orthogonal NMF (ONMF)
hierarchy, which has several benefits: (a) The orthogonal basis vectors describe
the local information (parts) considerable better than a non-orthonormal basis;
in particular, if the data is characterized by a larger variability. (b) The evalua-
tion time is drastically reduced, since the representation can be estimated by a
direct projection and no iterative procedure is required. (c) The controlled hier-
archical initialization scheme allows us to find reliable basis vectors with different
spatial resolutions. We confirm these benefits in an experimental evaluation by
applying the approach to different detection tasks.

The reminder of the paper is organized as follows. First, in Section 2 we
review the main ideas of NMF and ONMF. Then, in Section 3 we present the
novel hierarchical ONMF descriptor tree. Experimental results on different data
sets are given in Section 4. Finally, we summarize and conclude the paper in
Section 5.
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2 Orthogonal NMF

In this section, we review the main concepts of NMF and orthogonal NMF and
summarize the required numerical steps1 which are required for the computation
of the hierarchical descriptor tree in Section 3.

2.1 NMF

Given a non-negative matrix V ∈ IRm×n, the goal of NMF is to find non-negative
matrices W ∈ IRm×r and H ∈ IRr×n that approximate the original data by
V ≈ WH. Since there exists no closed-form solution, both matrices W and H
have to be estimated in an iterative way. Therefore, we consider the optimization
problem

min ||V−WH||2
s.t. W,H ≥ 0 ,

(1)

where ||.||2 denotes the Euclidean distance. Using a gradient formulation we
get an iterative solution for the optimization problem (1) by the multiplicative
update rules [12]:

H← H%

[
W�V

]
[
W�WH

] W←W%

[
VH�

]
[
WHH�

] , (2)

where % denotes the Hadamard product and [.]/[.] an element-wise division.

2.2 Orthogonal NMF

Considering the formulations (1) and (2), two major problems arise: First, an
iterative procedure is required for training and evaluation and, second, since
the optimization problem (1) is not convex, non-unique solutions are estimated.
Thus, the estimation of the coefficients is too slow for many practical applications
and the non-unique solutions model the object class only to some extent. In order
to overcome these problems, as proposed in [18,17], we introduce an additional
orthogonality constraint. Hence, we can re-write the optimization problem (1)
to

min ||V−WH||2
s.t.W,H ≥ 0 and W�W = I ,

(3)

where the following multiplicative update rules can be derived [17]:

H← H%

[
W�V

]
[
W�WH

] W←W%

⎛⎝
[
VH�

]
[
WW�VW�

]
⎞⎠

1
2

. (4)

1 For detailed discussions and the derivation of the given update rules we would refer

to [12,17,18].
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Compared to the update rules defined in (2), the estimated basis matrix W is
orthogonal. Thus, even requiring an iterative procedure during training, given
the data V during evaluation the computation of the coefficient matrix H can
be reduced to a linear transformation: H = W�V.

Alternatively, a more efficient update scheme can be obtained if the structure
of the constraint surface is considered. Since W�W = I, i.e., W is an orthogonal
matrix, the vectors wi, W = [w1, . . . ,wr], describe a Stiefel manifold [19]. Thus,
the required operations can be performed based on the canonical metric of the
Stiefel manifold, yielding the following multiplicative update rules [18]:

H← H%

[
W�V

]
[
W�WH

] W←W%

[
VH�

]
[
WHV�W

] . (5)

From (2), (4), and (5) it can be seen that for all three methods the update rule
for H has the same formulation and only the update rules for W differ. However,
since the Stiefel manifold formulation provides a computationally more efficient
update rule in the following we perform the updates according to (5).

3 Hierarchical ONMF

In this section we introduce our new hierarchical ONMF descriptor, which is
illustrated in Fig. 1. The main idea is to describe a flat cell structure (e.g., [8])
by an ONMF hierarchy, which can then be used as input for, e.g., an SVM. In
contrast to similar approaches such as Pyramid of Histograms of Orientation
Gradients (PHOG) [20] or multi-level oriented edge energy features [8] the gran-
ularity is not pre-defined. In fact, it can be derived from the data and the bases
are not restricted to be geometrically connected. In the following, we first give
an overview of the applied low level features, i.e., HOG and LBP, and then we
introduce our new ONMF descriptor hierarchy.

3.1 Features

HOG. HOGs are locally normalized gradient histograms, which are estimated
as follows. Given an image I the gradient components gx(x, y) and gy(x, y) for
every position (x, y) the image is filtered by 1-dimensional masks [−1, 0, 1] in x
and y direction [3]. Then, to create the HOG descriptor, the image is divided
into non-overlapping 10× 10 cells. For each cell, the orientations are quantized
into 9 bins and weighted by their magnitude. Overlapping blocks are formed by
grouping 2× 2 cells, where each cell is normalized using the L1-norm. The final
descriptor is built by concatenation of all normalized cells. In contrast to [8], we
do not build a pyramid of different cell sizes, but keep the flat 10 × 10 pixels
cell structure as the input of our ONMF hierarchies. In our case, the spatial
grouping known from PHOG [20] or multi-level features [8] is accomplished by
the proposed hierarchies.
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Fig. 1. Concept of hierarchical ONMF for training (left) and testing (right). During the

construction of the hierarchy starting from a flat cell-based representation local data-

dependent modes are generated. Note that the basis vectors w can also be spatially

unconnected. The estimated descriptors are then used as input for an SVM.

LBP. An LBP pattern p is constructed by binarization of intensity differences
between a center pixel and a number of n sampling points with radius r. The
pattern p is assigned 1 if the intensity of a sampling point has a higher intensity
than the center pixel and 0 otherwise. The final pattern is formed by the 0− 1
transitions of the sampling points in a given rotation order. To avoid ambiguities
due to rotation and noise we restrict the number of allowed 0−1 transitions to a
maximum u, hence, defining uniform patterns LBPu

n,r. For our final description
for each cell we build LBP 4

8,1 pattern histograms and sum up the nonuniform
patterns to one bin. To finally estimate the LBP descriptors, we keep the cell-
based splitting of the HOGs and extract pattern histograms as described before
for each cell.

3.2 Training ONMF Hierarchies

Given the (positive) training data V ∈ IRd×n, to build the ONMF hierarchy with
L levels, we first have to estimate a root node. For that purpose, we estimate
a full ONMF model of size b1, where the basis matrix W1 ∈ IRd×b1 and the
coefficient matrix H1 ∈ IRb1×n are initialized randomly. Later on, these are
updated according to (5). In the subsequent levels l ∈ {2, ..., L} the granularity
of the representation is refined by introducing bases of higher dimensions. In
fact, given a splitting parameter s and the number of bases bl−1, in level l we
get a basis of size bl = s · bl−1, which is initialized by using the basis from
level l − 1. In particular, to increase the numerical stability, the basis Wl−1 is
independently augmented with noise obtaining W̃l−1, which is then copied s

times: Ŵl =
[
W̃l−1, . . . ,W̃l−1

]
. Using Ŵl and a randomly initialized encoding

Hl both matrices are again updated according to (5), finally obtaining a basis
Wl ∈ IRd×bl and an encoding Hl ∈ IRbl×n.

This scheme guarantees overlaps between successive hierarchy levels. This is of
particular interest for describing spatially important parts of objects. Moreover,
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since better initial solutions for the bases are given the convergence of the
multiplicative update scheme (5) is speeded up. Finally, when the last level
L in the hierarchy is reached the final representation W is estimated by W =
[W1, . . . ,WL]. The overall representation H is then computed by H = W�V.
The overall number of basis vectors in a hierarchy is given by b = b1 · sL−1

s−1 ,
thus, W ∈ IRd×b and H ∈ IRb×n. If several feature types are used in parallel,
independent hierarchies are built for each feature cue.

3.3 Classification

Given positive Vpos and negative Vneg training samples in any higher dimen-
sional representation. To train a binary classifier, we first project the data
onto the estimated ONFM hierarchy, obtaining the new feature representations
Hpos = W�Vpos and Hneg = W�Vneg. Then using this new representation we
train an SVM classifier, where due to the significant dimensionality reduction
the training time can be decreased. To classify a unlabeled sample v, it is first
projected onto W with h = W�v and then h is used as input for the SVM
classification step. Again, since the thus encoded feature vector is much smaller
than the original descriptor dimension the classification step is computational
much more efficient.

4 Experimental Results

To demonstrate the efficiency of our approach, we applied it on two publicly
available standard benchmark data sets, i.e., UIUC Cars and TUD Pedestrian
and compared it to state-of-the-art methods. In particular, we show the perfor-
mance gain in terms of precision and recall whereas the computational costs are
decreased due to the hierarchical structure. To increase the readability, in the
following we refer to the proposed method to as NMF, where, e.g., NMF300 in-
dicates that in the last level 300 basis vectors were used. We additionally quote
the results obtained with raw HOG/LBP features. Both representations were
trained using a linear SVM. In addition, we applied the proposed approach for
car detection in aerial images. Since high dimensional images have to be handled,
especially for this application an efficient method is required.

4.1 UIUC Cars

The UIUC dataset [21] includes a collection of single- and multi-scaled cars
from the side-view, which represents several real world problems such as varying
background, changing illumination conditions, low contrast, and partial occlu-
sions. For the experiments we use the provided evaluation script and the original
ground truth annotations. There are two test sets, one for single scales images
(approximately 100×40 pixels), which consists of 170 images including 210 cars,
which we will refer as to as UIUC-S ; the second test set representing cars of
different scales consists of 108 images showing 139 cars with scales, which we
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will refer as to as UIUC-MS. In addition, we use the given training set consisting
of 550 positive samples 500 negative samples.

For evaluation purposes, we trained different classifiers using SVM using dif-
ferent feature representation: raw features - HOG and combined HOG and LBP
(HOGLBP) and corresponding ONMF hierarchies of different sizes. These clas-
sifiers were then applied in a sliding window manner to the test images. For the
multi-scales test set, we additionally generated an image pyramid taking into
account scaling factors of 20.125. To compare these results to existing methods,
as typical for the UIUC dataset, we estimated recall-precision curves (RPC) and
the equal error rate (EER). These results are given in Table 1 and Fig. 2. It
can be seen that we achieve state-of-the-art or even slightly better performance,
even though in contrast to other methods a pure patch-based representation is
applied. Moreover, Fig. 2 reveals that ONMF hierarchies outperform raw feature
representation although they are trained on a limited amount of training data.

Table 1. Comparison of the UIUC

results using the EER

Method UIUI-S UIUC-MS
[8] 97.5 % n.a %
[2] 97.5 % 95.0 %
[9] 98.5 % 98.6 %
[1] 98.5 % 98.6 %

HOGLBP 97.0 % 95.3 %
NMF300 98.8 % 95.6 %
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Fig. 2. RPCs for UIUC single scale for

different feature combinations

4.2 TUD Pedestrian

Since the UIUC dataset includes only rigid objects, i.e., cars, we also demon-
strate our approach for detecting more challenging (articulated) objects, i.e.,
pedestrians. In particular, we use the TU Darmstadt data set [22] consisting of
400 training images, which include articulated persons from side views, and 250
test images with scale-varying pedestrians. In a first step, we collected positive
samples and simultaneously generated an initial negative training set using ran-
domly selected background patches from the INRIA dataset. The experimental
setup is the same as described in Section 4.1.

The results are summarized in Fig. 3, where it can be seen that existing
methods can be outperformed. This can be explained by the fact that articu-
lated objects such as walking pedestrians can be modeled considerably better
by the ONMF hierarchy, which captures sparse local modes on different scales.
Therefore, the gap between raw features and their ONMF representation is more
distinctive than recognized from the UIUC dataset. This effect is also reflected
by the detection results shown in Fig. 4, where it can be seen that raw features
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often prefer simple vertical structures. Moreover, Fig. 3 shows that the proposed
feature combination i.e., HOG and LBP (as also shown in [5]), clearly improves
the classification results. Moreover, compared to the underlying features, the
runtime during testing can be reduced by a factor of two to four, which is di-
rectly related to the reduced dimensionality.
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Fig. 3. Detection results obtained for the TU Darmstadt dataset: (a) comparison to

state-of-the-art methods and (b) a comparison of different feature types and different

representation dimensionalities within the ONMF hierarchy

Fig. 4. Illustrative detection results on the TUD data set: the detection results for raw

features (green) and NMF (red) are compared to the ground-truth (blue)

4.3 Car Detection in Aerial Images

Finally, we demonstrate our approach for car detection in aerial imagery. In par-
ticular for this task an efficient method is required, since we have to cope with
high-resolution images. In order to train the classifier, we manually labeled 2873
cars and 4668 background patches of a size of size of 35 × 70 pixels. Addition-
ally, we synthetically increased the training set by augmenting the images with
flipped ones. We separately trained a linear SVM classifier directly on HOG/LBP
as well as for the corresponding the NMF feature representations with reduced
dimension of 200. At evaluation time we performed car detection on full aerial
images with a dimension of 10000× 6700 pixels. In order to capture all orienta-
tions, the images are rotated in steps of π/8. For a hand-labeled region (including
1260 cars) we yield an overall detection rate of 72.82 % (at the EER point). A
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small part of such an aerial image is shown in Fig. 5(b). In addition, for this
experiment we carried out a more detailed runtime analysis (on a comparable
classification level), which is summarized in Fig. 5(a). Even though, the training
time is slightly increased (i.e., a large amount of high dimensional data has to
be processed during the ONMF step), the evaluation time can be reduced by a
factor of 5.

timings train test
HOGLBP 889.0 725.6
HOG 601.0 513.6
HOGLBP NMF200 1024.3 177.3
HOG NMF200 701.4 107.8
HOGLBP NMF400 2174.3 319.3
HOG NMF400 1413.7 197.2

(a) (b)

Fig. 5. Experimental results for the aerial image data set: (a) timings for training and

testing and (b) illustrative detection results (red points indicate the ground-truth, blue

points detections obtained with NMF200)

5 Conclusion

In this work we have presented an approach for training efficient hierarchical
descriptor-based classifiers. In particular, we build on HOG and LBP features
which are then represented by an orthogonal NMF hierarchy. In contrast to
similar approaches like the Pyramid of Histograms of Orientation Gradients or
multi-level oriented edge energy features the main advantage is the self defining
granularity of the ONMF step in each hierarchy level. Thus, we are not limited
to a fixed cell size or a fragmentation at each level. In our case the underlying
cell size is fixed, but ONMF instantiates the grouping data-dependent. We have
demonstrated the benefits of our feature description on competitive data sets
in terms of improved detection results and reduced run-time at the same time.
Possible extensions and future work would investigate the applicability of direct
occlusion and/or defect handling. Orthogonal NMF representation could also
increase applicability of existing methods by replacing the general iterative pro-
jection with the proposed hierarchies. Moreover, a sophisticated combination of
several hierarchies with different parametrization should yield further robustness.
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Abstract. Feature-based image matching is one of the most fundamental issues 
in computer vision tasks. As the number of features increases, the matching 
process rapidly becomes a bottleneck. This paper presents a novel method to 
speed up SIFT feature matching. The main idea is to extend SIFT feature by a 
few pairwise independent angles, which are invariant to rotation, scale and 
illumination changes. During feature extraction, SIFT features are classified 
based on their introduced angles into different clusters and stored in 
multidimensional table. Thus, in feature matching, only SIFT features that 
belong to clusters, where correct matches may be expected are compared. The 
performance of the proposed methods was tested on two groups of images, real-
world stereo images and standard dataset images, through comparison with the 
performances of two state of the arte algorithms for ANN searching, hierarchical 
k-means and randomized kd-trees. The presented experimental results show that 
the performance of the proposed method extremely outperforms the two other 
considered algorithms. The experimental results show that the feature matching 
can be accelerated about 1250 times with respect to exhaustive search without 
losing a noticeable amount of correct matches.  

Keywords: Very Fast SIFT, VF-SIFT, Fast features matching, Fast image 
matching.  

1   Introduction  

Feature-based image matching is a key task in many computer vision applications, 
such as object recognition, images stitching, structure-from-motion and 3D stereo 
reconstruction. These applications require often real-time performance.  

The SIFT algorithm, proposed in [1], is currently the most widely used in computer 
vision applications due to the fact that SIFT features are highly distinctive, and 
invariant to scale, rotation and illumination changes. However, the main drawback of 
SIFT is that the computational complexity of the algorithm increases rapidly with the 
number of keypoints, especially at the matching step due to the high dimensionality of 
the SIFT feature descriptor. In order to overcome this drawback, various 
modifications of SIFT algorithm have been proposed. Ke and Sukthankar [2] applied 
Principal Components Analysis (PCA) to the SIFT descriptor. The PCA-SIFT reduces 
the SIFT feature descriptor dimensionality from 128 to 36, so that the PCA-SIFT is 
size of the SIFT feature descriptor length, which speeds up feature matching by a 
factor 3 compared to the original SIFT method. 
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Recently, several papers [5, 6] were published addressing the use of modern 
graphics hardware (GPU) to accelerate some parts of the SIFT algorithm, focused on 
features detection and description steps. In [7] GPU was exploited to accelerate 
features matching. These GPU-SIFT approaches provide 10 to 20 times faster 
processing. Other papers such as [8] addressed implementation of SIFT on a Field 
Programmable Gate Array (FPGA) achieving about 10 times faster processing.  

The matching step can be speeded up by searching for the Approximate Nearest 
Neighbor (ANN) instead of the exact one. The most widely used algorithm for ANN 
search is the kd-tree [9], which successfully works in low dimensional search space, 
but performs poorly when feature dimensionality increases. In [1] Lowe used the 
Best-Bin-First (BBF) method, which is expanded from kd-tree by modification of the 
search ordering so that bins in feature space are searched in the order of their closest 
distance from the query feature and stopping search after checking the first 200 
nearest-neighbors. The BBF provides a speedup factor of 2 times faster than 
exhaustive search while losing about 5% of correct matches. In [10] Muja and Lowe 
compared many different algorithms for approximate nearest neighbor search on 
datasets with a wide range of dimensionality and they found that two algorithms 
obtained the best performance, depending on the dataset and the desired precision. 
These algorithms used either the hierarchical k-means tree or randomized kd-trees. 

In [11] a novel strategy to accelerate SIFT feature matching as a result of extending 
a SIFT feature by two new attributes (feature type and feature angle) was introduced. 
When these attributes are used together with SIFT descriptor for matching purposes 
so that only features having the same or very similar attribute are compared, the 
execution of the SIFT feature matching can be speeded up with respect to exhaustive 
search by a factor of 18 without a noticeable loss of accuracy. 

In this paper, a SIFT feature is extended by 4 new pairwise independent angles. 
These angles are computed from SIFT descriptor. In the SIFT feature extraction 
phase, the features are stored in 4 dimensional table without extra computational cost. 
Then, in the matching phase only SIFT features belonging to cells where correct 
matches may be expected are compared. By exploiting this idea, the execution of the 
SIFT feature matching can be speeded up by a factor of 1250 with respect to 
exhaustive search without a noticeable loss of accuracy. 

2   Original SIFT Method  

The Scale Invariant Feature Transform (SIFT) method takes an image and transforms 
it into a set of local features extracted through the following three stages, explained 
here shortly. The more details can be found in [1]: 
 

1. Feature detection and localization: The locations of potential interest points in 
the image are determined by selecting the extrema of DoG scale space. For searching 
scale space extrema, each pixel in the DoG images is compared with its 26 neighbors 
in 3×3 regions of scale-space. If the pixel is lower/larger than all its neighbors, then it 
is labeled as a candidate keypoint. Each of these keypoints is exactly localized by 
fitting a 3 dimensional quadratic function computed using a second order Taylor 
expansion around keypoint. Then keypoints are filtered by discarding points of low 
contrast and points that belong to edges.  
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Fig. 1. (a) Gradient image patch around a keypoint. (b) A 36 bins OH constructed from gradient 
image patch. 

2. Feature orientation assignment: An orientation is assigned to each key point based 
on local image gradient data. For each pixel in a certain image region around the 
keypoint, the first order gradient is calculated (gradient magnitude and orientation). 
The gradient data are weighted by scale dependent Gaussian window (illustrated by a 
circular window on Fig 1a) and then used to build a 36-bin orientation histogram (OH) 
covering the range of orientations [-180°, 180°] as shown in Fig. 1b. The orientation of 

the SIFT feature max
θ  is defined as the orientation corresponding to the maximum bin 

of the OH as shown in Fig. 1. 
 

3. Feature descriptor: The gradient image patch around keypoint is weighted by 
 a Gaussian window with σ  equal to one half the width of the descriptor window 

(illustrated with a circular window on Fig. 2a) and rotated by maxθ to align the feature 

orientation with the horizontal direction in order to provide rotation invariance (see  
Fig. 2a). After this rotation, the region around the keypoint is subdivided into 4x4 square 
sub-regions. From each sub-region, an 8 bin sub-orientation histogram (SOH) is built 
as shown in Fig. 2b. In order to avoid boundary affects, trilinear interpolation is used 
to distribute the value of each gradient sample into adjacent histogram bins. Finally, 
the 16 resulting SOHs are transformed into 128-D vector. The vector is normalized  
 
 

i
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Fig. 2. (a) Rotated gradient image patch with a 4x4 rectangular grid. (b) 16 8-bins SOHs used 
to build SIFT-descriptor. 
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to unit length to achieve the invariance against illumination changes. This vector is 
called SIFT descriptor (SIFT-D) and is used for similarity measuring between two 
SIFT features. 

3   Very Fast SIFT Feature  

Generally, if a scene is captured by two cameras or by one camera but from two 
different viewpoints, the corresponding points in two resulted images will have 
different image coordinates, different scales, and different orientations. Nevertheless, 
they must have almost similar descriptors which are used to match the images using a 
similarity measure [1]. The high dimensionality of descriptor makes the feature 
matching very time-consuming.  

In order to speed up the features matching, it is assumed that 4 pairwise 
independent angles can be assigned to each feature. These angles are invariant to 
viewing geometry and illumination changes. When these angles are used for feature 
matching together with SIFT-D, we can avoid the comparison of a great portion of 
features that can not be matched in any way. This leads to a significant speed up of 
the matching step as will be shown below. 

3.1   SIFT Feature Angles 

In [11], a speeding up of SIFT feature matching by 18 times compared to exhaustive 
search was achieved by extending SIFT feature with one uniformly-distributed angle 
computed from the OH and by splitting features into Maxima and Minima SIFT 
features. In this paper the attempts are made to extend SIFT feature by few angles, 
which are computed from SIFT-D. As described in section 2, for computation of 
SIFT-D, the interest region around keypoint is subdivided in sub-regions in a 
rectangular grid. From each sub-region a SOH is built. Theoretically, it is possible to 
extend a SIFT feature by a number of angles equal to the number of SOHs as these 
angles are to be calculated from SOHs. In case of 4x4 grid, the number of angles is 
then 16. However, to reach the very high speed of SIFT matching, these angles should 
be components of a multivariate random variable that is uniformly distributed in the 
16-dimensional space[-180°, 180°]16. In order to meet this requirement, the following 
two conditions must be verified [15]: 

 

• Each angle has to be uniformly distributed in [-180°, 180°] (equally likely 
condition). 

• The angles have to be pairwise independent (pairwise independence condition). 
 

In this section, the goal is to find a number of angles that are invariant to geometrical 
and photometrical transformations and that meet the above mentioned conditions. 
First, the angles between the orientations corresponding to the vector sum of all bins 
of each SOH and the horizontal orientation are suggested as the SIFT feature angles. 
Fig. 3b presents geometrically the vector sum of a SOH. Mathematically, the 

proposed angles }4,..,1,;{ =ji
ij

θ  are calculated as follows: 

( ) ( )( ) ( ) ( )( )( )∑ ⋅∑ ⋅=
==

− 7

0

7

0

1
cossintan

k jjk ijijj
kiorikimagkorikmagiθ  (1) 
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where )(kijmag  and )(kijori are the magnitude and the orientation of the th
k  bin of the 

th
ij  SOH respectively. Since the angles 

ij
θ  are computed from SOHs, from which the 

SIFT-D is built, they are invariant to geometrical and photometrical transformations. 
However, these angles must be examined, whether they meet the equally likely and 
pairwise independence conditions.  
 

                

ij
θ

11θ 12θ 13θ 14θ

21θ 22θ 23θ 24θ

31θ 32θ 33θ 34θ

41θ 42θ 43θ 44θ

Border angles

Center angles

(a)
(b) (c)

 

Fig. 3. (a) SOHs, (b):Vector sum of the bins of a SOH, (c) angles computed from SOHs 

The equally likely condition: To examine whether the angles 
jiθ  meet the equally 

likely condition, they are considered as random variables 
ij

Θ . The probability density 

functions (PDFs) of each angle are estimated from 106 SIFT features extracted from 
700 test images (500 standard data set images and 200 stereo images from a real-
world robotic application). Some examples of used test images are given in Fig 6. 
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Fig. 4. The PDFs of (a) center and (b) border angles estimated from 106 SIFT features extracted 
from 700 images 

The PDFs of 
jiΘ  was computed by dividing the angle space [-180°, 180°] into 36 

sub-ranges, where each sub-range cover 10°, and by counting the numbers of SIFT 

features whose angle 
ij

θ  belong to each sub-range. As can be seen from Fig. 4, the 

angles that are calculated from SOHs around the center of SIFT feature (called center 
angles), have distributions concerned about 0°, whereas the angles that are calculated 
from SOHs of the grid border (called border angles), tend to be equally likely 
distributed over the angle range. The reason of this outcome can be interpreted as 
follows: On the one hand, the SOHs are computed from the interest region (where OH 
is computed) after its rotation as shown in Fig. 2a. Therefore the orientations of the 
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maximum bin of each center SOH tend to be equal 0°. On the other hand, for each 
SOH, the orientation of the maximum bin and the orientation of the vector sum of all 
bins are strongly dependent since the vector sum includes the maximum bin that has 
the dominant influence to the vector sum [11]. In the contrary, the border SOHs and 
the OH do not share the same gradient data, therefore only border angles meet the 
equally likely condition. Fig. 3c presents the border and center angles. 
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Fig. 5. The correlation coefficients between angles of SIFT features. For example the top left 

diagram presents correlation coefficients between 
11

θ and all ij
θ . The x and y axes present indices 

i and j respectively while z axis present correlation factor. 

The pairwise independence condition: In order to examine whether suggested 

angles 
jiθ  meet the pairwise independence condition, it is needed to measure the 

dependence between each two angles. The most familiar measure of dependence 
between two quantities is the Pearson product-moment correlation coefficient. It is 
obtained by dividing the covariance of the two variables by the product of their 
standard deviations. Assuming that two random variables are given X  and Y  with 

expected values 
x

μ  and 
y

μ  and standard deviations 
x

σ  and 
y

σ  then the Pearson 

product-moment correlation coefficient 
xy

ρ  between them is defined as: 

( )( )[ ]
yxyxxy

YXE σσμμρ −−=  (2) 

where ][•E  is the expected value operator. 
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The correlation coefficients between each two angles α  and β are computed using 
106 SIFT features extracted from the considered test images.  
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The estimated correlation coefficients are explained in Fig. 5. As evident from Fig. 5, 
angles that are computed from contiguous SOHs, are highly correlated, whereas there 
is no or very weak correlations between two angles that computed from non-
contiguous SOHs. The reason of this outcome is caused by the trilinear interpolation 
that distributes the gradient samples over contiguous SOHs. In other words, each 
gradient sample is added to each SOH weighted by 1-d, where d is the distance of the 
sample from the center of the corresponding sub-region [1]. Hence from the 16 angles 
at most 4 angles can meet the pairwise independence condition.  

As mentioned above, four angles can be pairwise independent and only border 
angles can meet the equally likely condition, therefore the best choice are the corner 

angles:
111 θφ = , 

142 θφ = , 
413 θφ = , and 

444 θφ =  which can be considered as new 

attributes of the SIFT feature. 

3.2   Very Fast SIFT Features Matching  

Assuming that two sets of extended SIFT features R  and L , containing respectively 
r  and l  features, are given,. The number of possible matches is equal to lr ⋅ . 

Among these possible matches a small number of correct matches may exist. 
To avoid the check of all possible matches, the introduced angles are exploited.  
Assuming that the four angles are considered as components of 4-dimensional 

random vector of angles 
4321

,,, ΦΦΦΦ=Φ . This vector is uniformly distributed in the 

4-dimensional range [-180°, 180°]4 due to its components meet the equally likely and 
pairwise independence conditions. For possible SIFT matches, a random vector 
difference can be constructed. 

lr
Φ−Φ=ΦΔ  (4) 

Generally, the difference between two independent uniformly-distributed random angles 

is uniformly distributed in [-180°, 180°] [12]. Hence, if 
r

Φ  and 
l

Φ  are independent, 

then ΦΔ  is uniformly distributed in the 4-dimensional range [-180°, 180°]4. 
The behavior of ΦΔ  varies differently according to the type of matches (correct 

and false matches): For false matches, each two corresponding angles are 
independent. Hence ΦΔ  is uniformly-distributed. On the other hand, for correct 
matches, each two corresponding angles tend to be equal, since the features of correct 
matches tend to have the same SIFT-Ds. Therefore the ΦΔ  tends to have PDF which 

is concentrated in narrow range around ΦΔ = 0  (called range of correct matches 
corr

w ).  

Practically, 95% of correct matches have angle differences in the range [-36°, 36°]4. 
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Consider that one of the sets of features R  or L (for example R ) is stored in a 4-

dimensional table of size 4
b , so that the th

jfgi cell contains only SIFT features whose 

angles meet the following criteria: ,)2,2)1([1 bibi ππππφ ⋅+−⋅−+−∈  

,)2,2)1([2 bjbj ππππφ ⋅+−⋅−+−∈ )2,2)1([3 bfbf ππππφ ⋅+−⋅−+−∈  and 

)2,2)1([4 bgbg ππππφ ⋅+−⋅−+−∈ . 
The number of features of the set R  can be expressed as: 

∑∑∑∑=
= = = =

b

i

b

j

b

f

b

g
jfgirr

1 1 1 1
 (5) 

Because of the uniformly distribution of 
r

Φ  in the 4-dimensional range [-180°,180°], 

the features are almost equally distributed into 4
b  cells. Therefore, it can be asserted 

that the feature numbers of each cell are almost equal to each other. 

{ } 4
:,...2,1,,, brirbgfji

jfg
≅∈∀  (6) 

To exclude matching of features that have angle differences outside the range 
[-a°, a°]4, each SIFT feature of the set L  is matched to its corresponding cell and to 
n  neighbour cells to the left and n  neighbour cells to the right side for each 
dimension. In this case the matching time is proportional to the term: 

( )4

12 bnrlrlT
ni

nio

nj

njp

nf

nfs

ng

ngt opst
+⋅⋅=∑ ∑ ∑ ∑⋅=

+

−=

+

−=

+

−=

+

−=
 (7) 

Therefore, the achieved speedup factor with respect to exhaustive search is equal to: 

( )4

12 += nbSF  (8) 

The relation between n , a  and b  is as follows: 

abn 2360)12( =°⋅+  (9) 

Substituting of (9) into (8) yields: 

( )4

2360 aSF =  (10) 

To exclude matching of features that have angle differences outside the range  
[-36°,36°]4 we chose n=1 and b=15, then the matching is speeded up by a factor of 
625. When this modification of original SIFT feature matching is combined with the 
split SIFT features matching explained in [11], the obtained speedup factor reaches 
1250 without losing a noticeable portion of correct matches. 

4   Experimental Results  

The proposed method (VF-SIFT) was tested using a standard image dataset [13] and 
real-world stereo images. The used image dataset consists of about 500 images of 34 
different scenes (some examples are shown in Fig. 6a and 6b). Real-world stereo  
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Fig. 6. Examples of the standard dataset (a,b)  and real world stereo images (c) 

images was captured using robotic vision system (A Bumblebee 2 stereo camera with 
the resolution of. 1024X768 pixels), an example is shown in Fig. 6c. 

In order to evaluate the effectiveness of the proposed method, its performance was 
compared with the performances of two algorithms for ANN (Hierarchical K-Means 
Tree (HKMT) and Randomized KD-Trees (RKDTs)) [10]. Comparisons were 
performed using the Fast Library for Approximate Nearest Neighbors (FLANN) [14]. 
For all algorithms, the matching process is run under different precision degrees 
making trade off between matching speedup and matching accuracy. The precision 
degree is defined as the ratio between the number of correct matches returned using 
the considered algorithm and using the exhaustive search, whereas the speedup factor 
is defined as the ratio between the exhaustive matching time and the matching time 
for the corresponding algorithm. 

For both ANN algorithms, the precision is adjusted by the number of nodes to be 
examined, whereas for the proposed VF-SIFT method, the precision is determined by 

adjusting the width of the range of correct matches 
corr

w . 

To evaluate the proposed method two experiments were run. In the first experiment 
image to image matching was studied. SIFT features were extracted from 100 stereo 
image pairs and then each two corresponding images were matched using HKMT, 
RKDTs and VF-SIFT, under different degrees of precision. The experimental results 
are shown in Figure 7a. The second experiment was carried out on the images of the 
dataset [13] to study matching image against a database of images. SIFT features 
extracted from 10 query images are matched against database of 100000 SIFT 
features using all three considered algorithms, with different degrees of precision. The 
experimental results are shown in Figure 7b. As can be seen from Figure 7, VF-SIFT 
extremely outperforms the two other considered algorithms in speeding up of feature 
matching for all precision degrees. For precision around 95%, VF-SIFT gets a 
speedup factor of about 1250. For the lower precision degree speedup factor is much 
higher. Through comparison between Fig. 7a and Fig. 7b, it can be seen that the  
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Fig. 7. Trade-off between matching speedup (SF) and matching precision 
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proposed method performs similarly for both cases of image matching ( image to 
image and image against database of images), whereas ANN algorithms are more 
suitable for matching image against database of images.  

6   Conclusion  

In this paper, a new method for fast SIFT feature matching is proposed. The idea 
behind is to extend a SIFT feature by 4 pairwise independent angles, which are 
invariant to rotation, scale and illumination changes. During extraction phase, SIFT 
features are classified based on their angles into different clusters. Thus in matching 
phase, only SIFT features that belong to clusters where correct matches may be 
expected are compared. The proposed method was tested on real-world stereo images 
from a robotic application and standard dataset images. The experimental results 
show that the feature matching can be speeded up by 1250 times with respect to 
exhaustive search without lose of accuracy. 
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Abstract. Knowledge transfer from related object categories is a key

concept to allow learning with few training examples. We present how

to use dependent Gaussian processes for transferring knowledge from

a related category in a non-parametric Bayesian way. Our method is

able to select this category automatically using efficient model selection

techniques. We show how to optionally incorporate semantic similari-

ties obtained from the hierarchical lexical database WordNet [1] into

the selection process. The framework is applied to image categorization

tasks using state-of-the-art image-based kernel functions. A large scale

evaluation shows the benefits of our approach compared to independent

learning and a SVM based approach.

1 Introduction

Learning an object category with a single example image seems to be a difficult
task for a machine learning algorithm, but an easy everyday task for the human
visual recognition system. A common hypothesis to justify the ability of the hu-
man cognition system to generalize quickly from few training examples is our use
of prior knowledge from previously learned object categories [2]. This concept
is known as interclass or knowledge transfer. In general, machine learning prob-
lems with few training examples are often highly ill-posed. Knowledge transfer
from related categories allows to use prior knowledge automatically, which can
be utilized to regularize such problems or enrich the training data set indirectly.

In the following we concentrate on knowledge transfer between binary clas-
sification tasks, which is also termed one-shot learning for the special case of a
single training example. Given a target task with few positive training exam-
ples, one tries to select a support classification task from a heterogenous set
of tasks with each having a relatively large number of training examples. These
additional examples are then used to transfer prior knowledge to the target task.

Knowledge transfer techniques for image categorization were introduced by
Fei-Fei et al. [3], who model knowledge as a prior distribution of the parame-
ters of an object part constellation model. This prior distribution is used in a
maximum-a-posteriori estimation of the target task model parameters. Tommasi
and Caputo [4] present an extension to least-squares SVM which allows to adapt

M. Goesele et al. (Eds.): DAGM 2010, LNCS 6376, pp. 232–241, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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the SVM solution of the target task to the decision boundary of a related object
category. Our approach is based on classification and regression with Gaussian
processes (GP), which has recently developed to a widely applied and studied
machine learning technique [5] and is also used for image categorization [6].
One of the first papers investigating knowledge transfer with GP is the work of
Lawrence et al. [7]. They show that the joint optimization of hyper-parameters
using all tasks can be highly beneficial. Urtasun et al. [8] assume a shared latent
feature space across tasks which can be also modeled in a GP framework.

We use dependent Gaussian process priors, as studied in [9,10] and show how
to utilize them for image categorization. Dependent GP priors allow us to ef-
ficiently transfer the information contained in the training data of a support
classification task in a non-parametric way by using a combined (kernel) covari-
ance matrix. The amount of information transferred is controlled by a single
parameter estimated automatically which allows to move gradually from inde-
pendent to complete combined learning. Parallel to our work, Cao et al. [11] used
the same framework for machine learning problems, such as WiFi localization.

Additionally we handle the case of heterogenous tasks, where the set of avail-
able support tasks also includes unrelated categories, which do not contain any
valuable information for the target task. Similar to [4], we utilize efficient leave-
one-out estimates available for GP regression to select a single support classifi-
cation task. We also show how to use similarities estimated with WordNet [1] to
improve this selection. The basic steps of our approach are illustrated in Fig. 1.

The remainder of the paper is organized as follows. We will briefly review clas-
sification and regression with Gaussian processes, which is followed by describing
transfer learning with dependent Gaussian processes. The question how to choose
a valuable support task is answered in Sect. 3.1. Our choice of image-based kernel
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Fig. 1. Basic outline of the proposed transfer learning approach: Semantic similarities

between categories and leave-one-out estimates are utilized to select a support task,

which is used to transfer knowledge to a target task with dependent Gaussian processes
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functions is presented in Sect. 4. Experiments in Sect. 5 show the benefits of our
approach in an image categorization application. A summary of our findings and
a discussion of future research directions conclude the paper.

2 Classification with Gaussian Process Priors

In the following we will briefly review Gaussian process regression and clas-
sification. Due to the lack of space, we concentrate only on the main model
assumptions and the resulting prediction equation. For a presentation of the full
Bayesian treatment we refer to Rasmussen and Williams [5].

Given training examples xi ∈ T , which denote feature vectors or images,
and corresponding labels yi ∈ {−1, 1} we would like to predict the label y∗ of
an unseen example x∗. The two main assumptions of Gaussian processes for
regression or classification are:

1. There is an underlying latent function f , so that labels yi are condition-
ally independent given f(xi) and described using the so called noise model
p(yi | f(xi)).

2. The function f is a sample of a Gaussian process (GP) prior
f ∼ GP(0,K(·, ·)) with zero mean and covariance or kernel function K.

The Gaussian process prior enables us e.g. to model the covariance of outputs
f(x) as a function of inputs x. With K being a kernel function describing the
similarity of two inputs, one can model the common smoothness assumption that
similar inputs should lead to similar function values and thus similar labels. The
noise model can be quite general, and for classification tasks one often uses
cumulative Gaussian or sigmoid functions [5]. In contrast, we will follow Kapoor
et al. [6] and use a Gaussian noise model with variance σ2

p(yi | f(xi)) = N (yi | f(xi), σ2) (1)

which is the standard model for GP regression. The advantage is that we do not
have to rely on approximated inference methods, such as Laplace approxima-
tion or Expectation Propagation. As we will show in Sect. 3.1, this also allows
us to compute efficient leave-one-out estimates, which can be used for model
selection. The treatment of the classification problem as a regression problem,
which regards yi as real-valued function values instead of discrete labels, can be
seen as a clear disadvantage. Nevertheless, as shown in Nickisch et al. [12] the
performance of this method is often comparable with Laplace approximation for
classification tasks and is computationally much more efficient.

The GP regression model assumptions lead to analytical solutions for the
prediction of the label y∗. Let K be the kernel matrix with pairwise kernel
values of the training examples Kij = K(xi, xj) and k∗ be kernel values (k∗)i =
K(xi, x∗) corresponding to a test example x∗. The GP model for regression leads
to the following equation for the prediction ȳ∗:

ȳ∗(x∗) = kT
∗ (K + σ2I)−1y . (2)
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3 Transfer Learning with Dependent Gaussian Processes

We now consider the case that two binary classification tasks are given: a so
called support task with a large amount of training data T S and a target task
with only few training examples T T . This setting is different from the scenario
of multi-task learning in which one wants to train classifiers for multiple binary
classification tasks in combination. In our case, we do not want to improve the
classifier for the support task. This scenario for knowledge transfer is known as
the concept of domain adaptation [4] or one-shot learning [3].

Our use of dependent Gaussian processes for transfer learning is based on the
model proposed by Chai et al. [9]. For each task j we now have a latent function
f j which is assumed to be sampled from a GP prior. The key idea is that these
functions are not assumed to be independent samples which allows us to transfer
knowledge between latent functions. Thus, we use a combined latent function
f((j, x)) = f j(x) which is a single sample of a GP prior with a suitable kernel
function modeled by:

K((j, x), (j′, x′)) =

{
Kx(x, x′) j = j′

ρ Kx(x, x′) j �= j′
, (3)

with Kx being a base kernel function measuring the similarities of input exam-
ples. The hyper-parameter ρ of the extended kernel function with 0 ≤ ρ ≤ 1
controls the correlation of the tasks: ρ = 0 corresponds to the case of indepen-
dent learning whereas ρ = 1 assumes that the tasks are highly related. It should
be noted that this type of knowledge transfer can also be motivated theoreti-
cally with a decomposition of the latent function into an average latent function
shared by all tasks and an independent latent function [13].

We use only one single support classification task which is automatically se-
lected using the techniques described in Sect. 3.1. In comparison to the single
task GP model in equation (2), only the kernel function changes. Therefore, the
label prediction of an unseen example x∗ can be calculated as follows:

ȳ∗(x∗) = kT
∗ (K(ρ) + σ2I)−1y

=
(

kT∗
ρkS∗

)T ((
KTT ρKTS

ρKT
TS KSS

)
+ σ2I

)−1 (
yT

yS

)
, (4)

with yT and yS denoting the binary labels for the target and the support task
respectively. The matrix KT S contains the pairwise kernel values of the target
task and the support task. The same type of notational convention is used for
KSS , KT T , kS∗ and kT ∗.

Shared Background Category. In the context of image categorization, one
often has one single background and multiple object categories [14]. Thus, binary
classification tasks share the background category. In this case T S and T T are
not disjoint, which leads to an ill-conditioned kernel matrix K(ρ). We solve this
problem by restricting the support training set only to examples of the object
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category. Therefore the label vector yS is always a vector of ones. Please note
that due to our zero mean assumption of the GP prior this leads to a valid
classifier model and for the case of independent learning (ρ = 0) to an one-class
GP classifier for the support task.

3.1 Selection of a Support Task Using Leave-One-Out Estimates

The optimization of the hyper-parameter ρ and the selection of an appropriate
support task can be handled as a combined model selection problem. To solve
this problem, we use leave-one-out estimates similar to [4]. In the context of
Gaussian process regression, the posterior of the label of a training example xi

conditioned on all other training examples can be computed in closed form [5]

log p(y |
(
T T ∪ T S

)
\ {xi}, y, ρ) = −1

2
log η2

i −
(y − μi)2

2η2
i

− 1
2

log 2π , (5)

with η2
i being the variance of the leave-one-out estimate μi:

η2
i = 1/

(
K(ρ)−1)

ii
and μi = yi −

(
K(ρ)−1y

)
i
η2

i . (6)

The estimates μi offer to use a wide range of model selection criteria, such as
leave-one-out log predictive probability [5] or squashed and weighted variants
[4]. A common measure to assess the performance of a binary classification task
is average precision [15]. Therefore, we use the calculation of the average pre-
cision directly using the estimates μi and ground truth labels yi. This decision
is additionally justified by experiments in the last paragraph of Sect. 5.2, which
compares average precision to multiple model selection criteria embedded in
our approach. Those experiments will also show that the conditional likelihood
p(yT | yS , T S , T T ) is a non-appropriate model selection criterion in our setting.

We optimize the average precision with respect to ρ, which is a simple one-
dimensional optimization, with golden section search [16] for each task of the set
of given support tasks. The task and corresponding ρ value which yield the best
average precision are chosen to build the final classifier according to equation (4).

3.2 Automatic Pre-selection Using WordNet

Selecting a support classification task among a large set of available tasks using
only a single example is itself a very difficult problem, and the selection method
described above, might not be able to transfer beneficial information. A solution
is the use of prior knowledge from other information sources to pre-select tasks
which are likely to be related.

We optionally use WordNet, which is a hierarchical lexical database of the
English language, and the textual label of each object category. The usefulness
of this information source has been demonstrated recently in the context of
attribute based knowledge transfer [17] and hierarchical classification [18]. A
possible assumption would be that semantically related object categories are also
visual similar. Thus the support task could be selected by semantic similarity
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measures such as the Reznik measure [1]. Whereas this assumption might hold
for e.g. animal hierarchies, it might not hold in all cases and prevents important
knowledge transfer from only visual similar tasks. Therefore we use WordNet in
advance to leave-one-out selection and pre-select the K most related tasks among
all available tasks based on their semantic similarity. For K = 1, WordNet selects
the support task using the semantic of the category name and the leave-one-out
method only optimizes ρ. If K equals the number of available support tasks,
WordNet pre-selection does not influence transfer learning and the selection is
based on visual similarity only. The importance of the combination of visual and
semantic similarities for the selection will be analyzed empirically in Sect. 5.2.

4 Categorization Using Image-Based Kernels

One of the state-of-the-art feature extraction approaches for image categoriza-
tion is the bag-of-features (BoF) idea. A quantization of local features which
is often called a codebook, is computed at the time of training. We use Oppo-
nentSIFT [15] descriptors calculated on a dense grid and the method of Moos-
mann et al. [19] as the clustering method. For each image a histogram is cal-
culated which counts for each codebook entry the number of matching local
features. A standard way to apply the BoF idea to kernel-based classifiers is to
use the calculated histograms as feature vectors and apply a traditional kernel
function such as the radial basis function kernel.

In contrast, we define the kernel function directly on images. The spatial pyra-
mid matching kernel as proposed by Lazebnik et al. [20] extends the BoF idea
and divides the image recursively into cells (e.g. 2 × 2). In each cell the BoF
histogram is calculated and the kernel value is computed using a weighted com-
bination of histogram intersection kernels corresponding to each cell. In addition
we use the gray-value based PHoG (pyramid histogram of oriented gradients)
kernel [21] to compare our results directly to [4] in Sect. 5.1.

5 Experiments

Experiments are performed using all 101 object categories of Caltech 101 and a
subset of the Caltech 256 database [3]. Both databases contain a large number
of challenging object categories and a suitable background category. In each
experiment a target task and corresponding few training images are selected.
Training and testing is done for each target task 100 times with a random split
of the data, which yields mean performance measure values. In our experiments
we empirically support the following hypotheses :

1. Our transfer learning approach improves the mean performance compared to
independent learning even with a large heterogenous set of available support
classification tasks.

2. By using WordNet pre-selection, one can achieve a performance gain for
nearly all classification tasks.
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3. With a given set of related classification tasks, our method achieves higher
recognition rates than Adapted LS-SVM [4].

4. Using the average precision of leave-one-out estimates as described in Sect. 3.1
yields the best performance among several other model selection criteria.

In contrast to multi-task learning with a shared training set [10], a non-zero
noise variance σ is not essential to transfer knowledge. For this reason, we
choose the noise variance σ2 adaptively. We iteratively increase the value of σ2

(0, 10−8, 10−7, 10−6, . . .) until the Cholesky decomposition of the kernel matrix
can be calculated ensuring its positive-definiteness.

5.1 Experiments with Caltech 256

We compare our approach to Adapted LS-SVM as proposed by [4] and tried
to use an equivalent experimental setting. Two sets of classification tasks are
chosen to study the cases of transferring knowledge using only related support
classification tasks (car, fire-truck and motorbike) and using a heterogenous set
of classification tasks (school-bus, dog and duck). Training and testing is done
with a variable number of training images for the target object category and 18
training images for the background and support categories. It is important to
note that in contrast to [4] we did not perform a manual selection of images,
where the object is clearly visible without occlusion. To compare our results to
[4] (values were extracted from Fig 1(a) and Fig 2(a) in the paper) we used the
mean recognition rate of all tasks as a performance measure. A pre-selection of
classification tasks using WordNet is not applied in this experiment.

Evaluation. The results are shown in Fig. 2. First of all, it is clearly visible
that learning benefits from knowledge transfer using our approach even in the
“unrelated case” (Hypothesis 1, page 6 ). The same plots also validate that we
are able to improve the results of [4] in the “related case” even by using images
with occluded objects and different view points (Hypothesis 3 ). In the “unrelated
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Fig. 2. Caltech 256 results for our transfer learning approach, independent learning and

Adapted LS-SVM [4] (which performs a manual selection of adequate object images in

advance): (Left) using related classification tasks, (Right) using unrelated tasks
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case” this unconstrained setting yields to lower results for independent learning,
which makes transfer learning more important and leads to a significant perfor-
mance gain even by using unrelated tasks. Our approach also improves [4] for
the case of one-shot learning and when more than 7 training images are used.

5.2 Experiments with Caltech 101

In these experiments we use all 101 object categories as available support tasks
and a subset of possible target tasks (listed in Fig. 4). As a performance measure
for each binary classification task we use average precision as used in the Pascal
VOC challenges [15]. Training and testing is done with a variable number of
training images for the target object category, 30 training images for the support
object categories and 200 background images.

Evaluation. As to be seen in the left plot of Fig. 3 our transfer learning ap-
proach without WordNet pre-selection improves the mean average precision com-
pared to independent learning when using few training examples and converges
to it with more than 10 training examples (Hypothesis 1 ).

The detailed results for each task using a single training example are included
in the left plot of Fig. 4 and deliver additional insight into the methods behavior:
Transfer learning improves the average precision for some tasks significantly, e.g.
task “gerenuk” with a performance gain of more than 11%, but also fails for some
tasks like “okapi”. This is due to a wrong selection of the support task using
leave-one-out estimates and can be handled in almost all cases by using the
WordNet pre-selection method (Hypothesis 2 ). Our transfer learning method
fails for the task “watch”, because there seems to be no related task in general.
The right plot in Fig. 3 shows the benefit of WordNet for those cases by varying
the number K of pre-selected support tasks. The same plot also highlights that
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mance values of the kangaroo task for different values of K. The results of the kangaroo

task highlights the importance of the combination of WordNet and our model-selection.
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butterfly chair cougar body emu gerenuk
WordNet K=3 1e-15 1e-15 1e-15 1e-15 1e-15
no WordNet 1e-7 1e-3 1e-8 1e-13 1e-12

hedgehog kangaroo llama okapi panda
WordNet K=3 1e-15 1e-6 1e-15 1e-12 n.s.
no WordNet 1e-7 1e-11 1e-12 n.s. n.s.
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Fig. 4. (Left) Caltech 101 results for our transfer learning approach with and without

pre-selection of support classification tasks using WordNet and for independent learning

using a single training example. (Right) Mean average precision of all tasks using a

single training example without pre-selection and different model selection criteria.

severe pre-filtering with WordNet (K < 10) leads to worse results for the task
“kangaroo”. The same holds for the mean average precision of all tasks which
is lower for a strict pre-selection (with K = 3) compared to a pre-selection of
only 10 support tasks (cf. left plot of Fig. 3). Therefore, only a combination
of WordNet pre-selection with a selection based on leave-one-out estimates is
reasonable when confronted with a new task.

We additionally evaluated our approach with different model selection criteria:
average precision and area under the ROC curve using leave-one-out estimates,
leave-one-out predictive probability [5] with squashed variants [4] and the condi-
tional likelihood of the target task training set [11]. The results are shown in the
right plot of Fig. 4, justifying our choice of average precision using leave-one-out
estimates (Hypothesis 4 ).

6 Conclusions and Further Work

We presented an approach to transfer learning using dependent Gaussian pro-
cesses, which is able to significantly improve the classification performance of
one-shot learning and learning with few examples. Dependent Gaussian processes
allowed us to express transfer learning in terms of a combined latent function
with a suitable kernel function. Our method chooses a highly related classifica-
tion task automatically by using the average precision achieved by leave-one-out
estimates. We also studied the influence of the number of available tasks on the
performance of the selection and demonstrated that an optional pre-selection of
tasks using semantic similarities obtained from WordNet can be beneficial.

Further research has to be done to develop a more efficient model selection
method to robustly estimate multiple hyper-parameters of the combined covari-
ance function. For example, a combination of performance measures based on
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leave-one-out estimates and standard maximum likelihood estimation might be
suitable. Additionally, dependent Gaussian processes can also be used in conjunc-
tion with approximation methods for GP classification rather than regression.
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Abstract. This paper proposes a new multi-scale energy minimization algorithm
which can be used to efficiently solve large scale labelling problems in computer
vision. The basic modus operandi of any multi-scale method involves the con-
struction of a smaller problem which can be solved efficiently. The solution of
this problem is used to obtain a partial labelling of the original energy function,
which in turn allows us to minimize it by solving its (much smaller) projection.
We propose the use of new techniques for both the construction of the smaller
problem, and the extraction of a partial solution. Experiments on image segmen-
tation show that our techniques give solutions with low pixel labelling error and in
the same or less amount of computation time, compared to traditional multi-scale
techniques.

1 Introduction

Energy minimization and discrete optimization have become a cornerstone of computer
vision. This has primarily been driven by their ability to efficiently compute the Maxi-
mum a Posteriori (MAP) solutions in models such as Markov and Conditional random
fields (MRFs and CRFs), e.g. [1,3].

In recent years, advances in image acquisition technologies have significantly in-
creased the size of images and 3D volumes. For instance, the latest commercially avail-
able cameras can capture images with almost 20 million pixels. In fact it is now possible
to capture giga-pixel images of complete cities [7]. Similarly, latest medical imaging
systems can acquire 3D volumes with billions of voxels. This type of data gives rise to
large scale optimization problems which are very computationally expensive to solve
and require large amounts of memory.

Multi-scale processing has long been a popular approach to reduce the memory and
computational requirements of optimization algorithms (see [11,4,10] for a review).
The basic structure of these methods is quite simple. In order to label a large image (or
3D volume) they first solve the problem at low resolution, obtaining a coarse labelling
of the original high resolution problem. This labelling is refined by solving another opti-
mization on a small subset of the pixels. A classic example of such a multi-scale method
is the boundary band algorithm [9] for segmenting large images and 3D volumes. Given
a solution on a coarse scale (fig. 1c), a partial solution (narrow band around segmen-
tation) is extracted (fig. 1d) which is optimized again on high resolution (fig.1b). This
algorithm suffers form the problem that it cannot efficiently recover from large errors
present in the coarse labelling. For instance, if a thin foreground structure is missed in
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the coarse labelling, a large band of pixels will need to be analyzed at the fine scale.
This would make the size of the resulting higher resolution problem large and reduce the
computational benefits. An interesting method to resolve this problem was proposed by
Sinop and Grady [13]. Motivated by the problem of segmenting thin structured objects
they used the information from a Laplacian pyramid to isolate pixels which might not
have attained their correct labelling at the low resolution image. Recently, Lempitsky
and Boykov [8] presented an interesting touch-expand algorithm that is able to mini-
mize pseudo-boolean energy functions using a narrow band, while retaining the global
optimality guarantees. On the downside, it has no bounds on the size of the band it may
need to consider, and in the worst case the band can progressively grow to encompass
the whole image. While for highly structured unary terms, concerned with the shape
fitting task considered in [8], the bands are reasonably small, they are highly likely not
to be so for the less structured unary terms in e.g. segmentation problems.

Our Contributions. The goal of this paper is to develop a multi-scale algorithm which
can be used to minimize energy functions with a large number of variables. To do this,
we need to answer the following questions: (1) How to construct the energy for the
small scale problem? (2) After minimizing this energy, how do we then isolate variables
which need to be solved at the finer resolution? As we will explain later in the paper,
the answers to these two important questions are not independent. We will now provide
a brief overview of our strategy. For ease of explanation, we will use the two-label
interactive image segmentation problem as an example. However, our method is general
and can be used for any labelling problem such as 3D reconstruction, stereo, object
segmentation and optical flow.
Constructing the Low Resolution Energy. Ideally, we would want to construct the en-
ergy function in such a manner that its optimal solution, when projected to the full grid,
matches the optimal solution of the original energy as closely as possible. Recent band-
based methods for image segmentation such as [9] and [13] construct the small scale
energy from a low-resolution version of the image to be segmented. In contrast, our
approach constructs the small scale energy directly from the energy of the full resolu-
tion image. Experiments show that this strategy results in substantial improvements in
running time and accuracy.
Uncertainty Driven Bands. The band-based multi-scale segmentation methods use the
MAP solution of the small scale problem to isolate which pixels need to be solved at the
fine scale. They ignore the confidence or uncertainty associated with the MAP solution.
Intuitively, if a variable has low confidence in the MAP label assignment, the labels for
its corresponding variables at the fine grid should be inferred by minimizing the original
energy. Our method computes uncertainty estimates (fig. 1e) and uses them to choose
which regions (fig. 1f) of the image should be included in the optimization at the finer
level. Experimental results show that this technique enables us to identify thin structures
of the object which had been misclassified in the solution of the coarse energy.

2 Multi-scale Energy Minimization

Most of the our ideas can be applied to any pairwise MRF and CRF. Since we use
interactive image segmentation as the example application, we introduce the energy
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Fig. 1. Uncertainty driven multi-scale image segmentation. (a) Image with user marked brush
strokes for different segments. (b) Segmentation obtained by minimizing a conventional segmen-
tation energy (1) defined over the image grid. (c) Segmentation obtained by minimizing an energy
defined over a coarse level gird which is constructed using our method (see section 3). Observe
that many pixels take labels different from the MAP labels shown in (b). To correct such errors
we need to mark such pixels as unlabelled, and find their labels at the fine scale. (d) Partial seg-
mentation obtained by marking pixels in the band around the segmentation boundary of (c) as
unlabelled (marked gray). The size of the band is chosen to include all incorrectly labelled pix-
els. (e) Min-marginal based confidence values for pixels taking the MAP label (bright pixels are
more confident) — see section 4 for more details. (f) Partial labelling obtained by marking pixels
below a confidence score as unlabelled. As for (d) the confidence threshold is chosen to include
all incorrect pixels. For this example, with the uncertainty based scheme 3 times less number of
pixels need to be marked as unlabelled compared to the number marked with the boundary band.
As less number of variable need to be solved at the fine resolution, we get a larger speed-up.

model only for this application. The energy E : Ln → R can be written as a sum of
unary and pairwise functions:

E(x) =
∑
i∈V

φi(xi) +
∑

(i,j)∈E
φij(xi, xj). (1)

The set V corresponds to the set of all image pixels, E is set of all edges between
pixels in a 4 or 8 neighborhood. The random variable Xi denotes the labelling of pixel
i of the image. The label set L consists of two labels: foreground (fg) and background
(bg). Every possible assignment of the random variables x defines a segmentation. The
unary potential is given as φ(xi = S) = − logPr(Ii|xi = S) where S ∈ {fg,bg}, and
initialized using a standard GMM model [12]. The pairwise terms φij of the CRF take
the form of a contrast sensitive Ising model, i.e. φ(xi, xj) = g(i, j)[xi �= xj ], where
[arg] is 1 if “arg” is true and 0 otherwise. The function g(i, j) is an edge feature based
on the difference in colors of neighboring pixels [1]. It is typically defined as:

g(i, j) = θp + θv exp(−θβ||Ii − Ij ||2), (2)

where Ii and Ij are the colour vectors of pixel i and j respectively. The energy (1) is sub-
modular, hence the global optimum can be computed efficiently with min-cut/maxflow,
also known as graph cut, [1].
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We now provide an overview of multi-scale methods for energy minimization. These
algorithms have the following basic steps:

Construction the smaller problem. A new energy function El : Lnωs → R is con-
structed over a smaller grid (V l, E l) where V l denotes the set of lattice points, and
E l denotes the corresponding edge set. This grid has |V l| = nωs variables (origi-
nal energy E had n variables), where ωs is the scaling parameter (0 ≤ ωs ≤ 1). Let
Xl ={X l

i, i ∈ V l} denote the vector of variables defined on V l. We will denote their
labelling by xl = {xl

1, x
l
2, ..., x

l
nωs
}.

Computation of a partial labelling. The coarse energy El is minimized to extract a
partial labelling x∗ for the original random variables X. Formally, each variable Xi is
assigned one label from the extended label set L∪{ε}. The assignment x∗

i = ε indicates
that variable Xi has not been assigned any label.

Solving the Partial Labelling induced Projection. The final solution of the original
problem is obtained by minimizing a projection of the original energy function E. This
energy projection E′ : Lnε → R is constructed from E(·) by fixing the values of the
labelled variables as: E′(x) = E(xp) where nε is the number of unlabelled variables
i.e. those assigned label ε.

2.1 Partial Labelling Quality

We will now discuss the question of what is a good partial labelling? If all variables in
the partial solution x∗ are labelled, then the projection E′ of the energy will take no vari-
ables as argument (a constant function) and would be trivially minimized. On the other
hand, if all variables are unlabelled, the projection of the energy will be the same as the
original energy (E′ = E) and we would not obtain any speed-up. While constructing
the partial labelling x∗, we also want to make sure that all labelled variable are assigned

the MAP label i.e. x∗
i �= ε ⇒ x∗

i = xopt
i . This will ensure that min E′(x) = min E(x).

We will measure the quality of a partial labelling using two measures: (1) Percent-
age of unlabelled variables (Pu) (lower the better), and (2) Percentage of correct label
assignments (Pc). Formally, these are defined as:

Pu =
100

|V|
∑
i∈V

[xp
i 
= ε], and Pc =

100
∑

i∈V [xp
i = x

opt
i ]∑

i∈V [xp
i 
= ε]

, (3)

where [arg] is as defined above.

Computation Complexity. Let us denote the complexity of the algorithm we are us-
ing to minimize the original energy E by O(T (n)), where T (n) is any function of n.
For instance, the complexity of max-flow based algorithms for minimizing submodu-
lar functions of the form (1) is O(n3), so T (n) = n3. The computation time for the
multi-scale algorithm can be divided into two parts. (1) The time taken for comput-
ing the partial solution by minimizing the coarse energy El. More specifically, T (nω)
for minimizing the energy over nω variables and a linear term (n) for extracting the
partial solution, thus resulting in the complexity O(T (nω) + n). (2) Time taken for
minimizing the projection of the energy which is O(T (Pu)). The final complexity is:
O(T (nω) + n + T (Pu)).
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3 Constructing the Low Resolution Problem

We now explain how a smaller energy minimization problem over the coarse grid V l is
constructed from the original large scale problem, defined over V .

There is a many-one mapping between points in V and V l. We denote the set of
indices of nodes in V which map to the node i ∈ V l by V(i) which we will call the
child set of i. We also define the function k : V → V l which given a node i in the
original grid, returns the index of its parent node in the reduced grid V l. For image
labelling problems, the traditional approach is to map a square θs × θs grid of nodes in
V to a single node in the small scale grid V l, where θ2

s = 1
ωs

. We also use this, however,
we can extend to other mappings using e.g. super-pixels.

The energy El defined over V l has the same form as the original energy E (1), with
new unary φl

i and pairwise φl
ij potentials, as defined next.

Scale Dependent Parameter Selection. Traditional band-based multi-scale methods
for image segmentation (e.g. [9,13]) define the energy potentials using a low-resolution
version Il of the original image I. These methods typically over-look the fact the en-
ergy should be adjusted and simple use the original energy, i.e. φl

i = φi and pairwise
φl

ij = φij . Figure 2b shows a result, and we refer to the solution with the symbol I1.
Using the work of Boykov and Kolmogorov [2] it is clear that the strength of the

pairwise potentials has to be adjusted when changing resolution. This is due to the fact
that the length of the segmentation boundary, in pixel terms, is reduced when we move
from the original image I to the low-resolution image Il. This reduction is inversely
proportional to θs = 1√

ωs
. Thus, we need to reduce the strength of the pairwise po-

tentials by the same amount, hence the terms in eqn. (2) are chosen as {θl
p, θ

l
v, θl

β} =
{√ωsθp,

√
ωsθv, θβ}2. Figure 2c shows an example, which we denote by the symbol Ic.

Construction from the Original Energy. A simple method to compute the unary po-
tential for a variable X l

i is to sum the unary potentials of all the variables in its child
set V(i). Similarly, the pairwise potential for an edge (u, v) ∈ E l is computed by sum-
ming the pairwise potentials defined between their children. The segmentation result is
shown in fig. 2(d), and denoted solution E.

At first glance this strategy seems reasonable, however, it ignores the definition of
the pairwise potentials defined on variables Xi and Xj (i, j ∈ V) which have the same
parent i.e. k(i) = k(j). In fact, it can be verified that this approximation is correct only
if we assume that Ising model pairwise potentials with infinite cost are defined over
every pair of variables Xi and Xj (i, j ∈ V) which share the same parent.

This situation can be more easily understood by considering the maxflow problem
corresponding to the original energy minimization problem. As an example, consider a
multi-scale decomposition where variables in a 2 × 2 square on the original grid share
the same parent. The pairwise potential definition would translate into a capacity in
the max-flow graph that would allow flow coming into any child node to pass through
to any other child node and flow out from it. Obviously, this is a very bad assumption

1 It indicates that the coarse scale energy was constructed from the low-res image.
2 Note that the parameter values depend on the topology of the graph, and this equation would

be different for the 3D voxel segmentation problem.
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Fig. 2. Constructing the coarse energy. The figure shows the results of using different methods
for constructing the coarse energy function. (a) The original image with user marked brush strokes
for the different segments (here ωs = 0.04; θs = 5). (b) The solution I obtained by constructing
the energy using a low resolution version of the original image. (c) Solution Ic of the energy with
the scale-corrected parameter values for the pairwise potentials. (d) Solution E obtained by using
the energy constructed from the original energy. (e) Solution Ec obtained by using the pairwise
potential definition in eqn. (4). (f) The solution obtained by minimizing the energy function (1)
defined over the full-resolution image grid.

since in reality the child nodes in the graph corresponding to the original energy may be
disconnected from each other3. This added phantom capacity would make the pairwise
potentials very strong and result in over-smooth segmentations (as seen in fig. 2d).
We resolve the problem of excess flow capacity by computing a lower bound on the
flow that can be passed between child nodes constituting any two sides of the child-set
square of a coarse variable X l

i(i ∈ V l). This capacity is used as the upper bound on the
capacity of the edges which connect a particular parent node to other parent nodes. We
estimate the lower bound by finding the minimum capacity edge in the child set.

Coming back to the energy formulation, instead of eqn. (2) we use

gl
e(i, j) = R(i, j) min

k∈{i,j},(u,v)∈E
u∈V(k),v∈V

θp + θv exp(−θβ||Iu − Iv||2), (4)

where R(i, j) is the number of edges between child-sets of the two coarse level vari-
ables Xi and Xj (i, j ∈ V l), i.e.R(i, j) =

∑
(u,v)∈E:u∈V(i),v∈V(j) 1. A result is shown

in fig. 2e, marked with the symbol Ec.

4 Computing Partial Labellings

Conventional multi-scale methods use the lowest cost solution xl∗ of the coarse energy
El for defining the partial labelling. For instance, the method proposed in [9] first de-
fined a full labelling of the original variables xe as: xe

i = xl∗
k(i), where recall k(i) returns

3 This is true if the Ising model penalty for taking different labels is zero.
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the parent of any variable Xi, i ∈ V . From the solution xe, a new set PB(δB) is derived,
which comprise of pixels that are a maximum distance δB away from the boundary.
The original problem is then solved only for pixels in PB(δB). This band has to be
large enough, so that no thin structures are lost, example in fig. 1d. This band-based
approach for extracting partial labellings does not take into account the confidence or
uncertainty associated with the label assignment for any variable xl

i, i ∈ V l, which we
will do next.

Partial Labelling from Min-marginals. Given an energy function, the min-marginal
encodes the confidence associated with a variable being assigned the MAP label. More
concretely, the min-marginal ψi;a returns the energy value obtained by fixing the value
of variable Xi to label a (xi = a) and minimizing over all remaining variables. For-
mally, ψi;a = minx,xi=a E(x). Min-marginals naturally encode the uncertainty of a
labelling and have been successfully used for solving a number of vision and learning
problems, e.g. [5]. The exact min-marginals associated with graph cut solutions can be
efficiently computed using dynamic graph cuts in roughly 3-4 times the time taken for
minimizing the energy itself [6].

We use the absolute difference between the min-marginals corresponding to the fg and
bg labels as our confidence score functionμ : V → R. Formally, μ(i) = ||ψi;fg − ψi;bg||.
If the difference between min-marginals of any variable Xi corresponding to taking the
MAP label and any other label is large, then the variable is assigned a high confidence

Fig. 3. Computing the partial labelling. The figure shows the results of using different tech-
niques for computing the partial labelling. For this experiment, we used the image shown in figure
(2a). We constructed an energy on a coarse level grid with scaling parameter ωs = 0.04 (θs = 5)
using the method explained in sec. 3, with the result in fig. (2e). Images (a), (b) and (c) depict the
response of a boundary distance function, confidence score μ(·), and hybrid score H(·) respec-
tively. These functions were used to obtain the partial solutions shown in images (d), (e) and (f) is
the same order. The thresholds for marking pixels as unlabelled was chosen to ensure all marked
pixels took the MAP label of the original energy. It can be seen that the hybrid approach requires
less number of unlabelled pixels compared to the confidence function which in turn requires less
pixels compared to the boundary band approach.
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score. The set of variables assigned the label ε in the partial solution is now computed
by finding the set of nodes PM (δ) whose confidence scores are less than some con-
stant δμ i.e. xe

i = ε, ∀i ∈ V , μ(i) ≤ δμ. Formally, the set is defined as PM (δμ) = {
i : i ∈ V , μ(i) ≤ δμ}. Similar to the boundary band-width parameter δB , the value of
the confidence threshold δμ can be used to the change the number of unlabelled variables
(see fig. 3e).

Although, the min-marginals based confidence function is able to obtain good partial
labellings, we observed that it sometimes selects variables which are spatially distant
from the main foreground segment. This motivated us to test a new hybrid measure
which combines the boundary and uncertainty based techniques described above. We
construct the new functionH : V → R which is defined as:H(i) = μ(i)D(i), where D
is the boundary distance function. As before, the set of variables assigned the label ε is
now computed by finding the set of nodesPH(δ) = { i : i ∈ V ,H(i) ≤ δH}. Formally,
the partial solution is defined as: xe

i = ε, ∀i ∈ V ,H(i) ≤ δH . (see fig. 3f)

5 Experiments

Relating Speed with Accuracy. The speed and accuracy of a multi-scale method are
inversely proportional to each other. The correctness of the partial labellings can be
easily changed by changing the threshold parameters δB , δμ, and δH .4 The key matter
we want to investigate is, how the percentage of variables (Pu) unlabelled in the partial
solutions produced by the different multi-scale minimization techniques affect correct-
ness Pc of the solution. We divide our experiments into two parts to investigate how
the performance is affected by the use of different: (1) Methods for constructing the
smaller energy minimization problem (section 3), (2) Methods for extracting the partial
labelling from the smaller energy (section 4).

Comparing Energy Construction Methods. We compared the quality of partial la-
bellings generated from different coarse energy constructions using the boundary band
method. The results for the images shown in fig. 1(a) and 2(a) are shown in graphs in
fig. 4(a) and (b). It can be seen from the results that using scale dependent parameters
is better than the traditional approach. Further, the method for constructing coarse en-
ergy directly from the original energy function outperforms other methods. It is able to
achieve a correctness of Pc = 99.5% with less than 10% of unlabelled variables.

Comparing Methods for Partial Solution Extraction. The relative performance of
different techniques for extracting the partial solution is now analyzed. Consider the
problem of segmenting the image in fig. 2(a). Figure 3 shows the different partial la-
bellings extracted from the coarse energy. The size of the sets PB , PM , and PH was
chosen to ensure that the partial labelling were fully correct (Pc = 100%), i.e. this gives
the optimal solution of the original problem. The percentage of unlabelled variables re-
quired for the boundary band, uncertainty, and hybrid approaches were 35.29%, 17.36%,
and 9.03% respectively. The results on the image shown in fig. 1(a) are shown in fig. 5(a).

4 For instance, setting δB =
√

I2
width + I2

height will make sure that all variables in the partial

solution are unlabelled. Here Iwidth and Iheight are the width and height of the image I to be
segmented respectively.
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Fig. 4. Results of different multi-scale energy constructions. The graphs show how the accu-
racy Pc of a partial solution changes as we increase the percentage of unlabelled variables (Pu).
Graphs (a) and (b) show the results of using the band based approach on the solutions generated
from different energy construction methods. Key: IB : result of energy constructed from the low
resolution image, IcB : same energy with scale dependent parameters, EB : smaller problem con-
structed from the original energy, Ec

B : smaller problem constructed using the lower bound on
pairwise potentials.

Fig. 5. Computation time and accuracy of different multi-scale methods. Graph (a) shows how
the accuracies Pc of partial solutions extracted using different methods change as we increase the
percentage of unlabelled variables (Pu). It depicts the results of using different partial solution
extraction methods. They key is the same as the one used in graph 4. Subscripts B, M and
H denote that the partial solutions were extracted using boundary distance, min-marginal based
uncertainty, and the hybrid uncertainty boundary bands respectively. Graph (b) shows the fraction
of computation required to achieve a particular pixel labelling accuracy in the final segmentation
solution.

Due to space, we only show the better performing methods for constructing the energy,
i.e. Ic and Ec. It can be seen that the hybrid partial labelling technique results in a much
smaller problem to be solved while still obtaining the exact global minimum.

Relating Computational Speedup and Accuracy. We now discuss the speed-up ob-
tained by our multi-scale methods. As explained in section 2, the total computation time
T of a multi-scale method has two primary components: time for partial solution compu-
tation ts, and that for solving the resulting projection (tp). The size of the projection (and
thus tp) is dependent on the level of accuracy required by the user, while ts is independent.
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For the boundary band method, ts is equal to the time needed to minimize the coarse
energy. For the min-marginal based confidence and hybrid extraction methods, ts is the
time needed to find the min-marginals, which is a much more expensive operation. For
instance, for the image shown in figure 1(a), it takes only 1 msec to minimize the coarse
energy, while it takes 10 msec to compute all the min-marginals. However, for any given
solution accuracy, the min-marginal based methods produce a smaller partial solution
compared to the boundary band method. For high levels of accuracy, the size of the
projection is large and thus tp is the dominant time. Thus, min-marginals based methods
are able to out-perform band based methods. However, for low levels of accuracy, the
size of the projection is very small, which makes ts to dominate. In such cases, the
boundary band based approach outperforms the min-marginals based approach. The
performance of all the methods can be seen in the graph shown in fig. 5(b).

6 Discussion and Conclusions

In this paper, we presented a uncertainty driven approach for multi-scale energy min-
imization. We showed that this strategy allows us to compute solutions close to the
globally optimal in a fraction of the time required by a conventional energy minimiza-
tion algorithm. The method proposed in this paper is general and can be applied to any
labelling problem. In future work we would like to investigate how general energies
defined over variables with large label sets can be minimized in a multi-scale fashion.

References

1. Boykov, Y., Jolly, M.: Interactive graph cuts for optimal boundary and region segmentation
of objects in N-D images. In: ICCV, pp. I: 105–112 (2001)

2. Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In:
ICCV, pp. 26–33 (2003)

3. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts.
PAMI (2001)

4. Gidas, B.: A renormalization group approach to image processing problems. PAMI (1989)
5. Glocker, B., Paragios, N., Komodakis, N., Tziritas, G., Navab, N.: Optical flow estimation

with uncertainties through dynamic mrfs. In: CVPR (2008)
6. Kohli, P., Torr, P.: Efficiently solving dynamic markov random fields using graph cuts. In:

ICCV, vol. II, pp. 922–929 (2005)
7. Kopf, J., Uyttendaele, M., Deussen, O., Cohen, M.F.: Capturing and viewing gigapixel im-

ages. ACM Trans. Graph. (2007)
8. Lempitsky, V.S., Boykov, Y.: Global optimization for shape fitting. In: CVPR (2007)
9. Lombaert, H., Sun, Y., Grady, L., Xu, C.: A multilevel banded graph cuts method for fast

image segmentation. In: ICCV (2005)
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Abstract. The �1,∞ norm and the �1,2 norm are well known tools for

joint regularization in Group-Lasso methods. While the �1,2 version has

been studied in detail, there are still open questions regarding the unique-

ness of solutions and the efficiency of algorithms for the �1,∞ variant. For

the latter, we characterize the conditions for uniqueness of solutions, we

present a simple test for uniqueness, and we derive a highly efficient ac-

tive set algorithm that can deal with input dimensions in the millions.

We compare both variants of the Group-Lasso for the two most common

application scenarios of the Group-Lasso, one is to obtain sparsity on

the level of groups in “standard” prediction problems, the second one is

multi-task learning where the aim is to solve many learning problems in

parallel which are coupled via the Group-Lasso constraint. We show that

both version perform quite similar in “standard” applications. However,

a very clear distinction between the variants occurs in multi-task settings

where the �1,2 version consistently outperforms the �1,∞ counterpart in

terms of prediction accuracy.

1 Introduction

In 1996, Tibshirani [1] introduced the Lasso, an �1-constrained method for sparse
variable selection. This well known method in machine learning was extended by
Yuan and Lin [2] and by Turlach et. al. [3] to the problem, where explanatory
factors are represented as groups of variables, leading to solutions that are sparse
on the group level. In recent years, mainly two variants of the Group-Lasso have
been proposed: one uses the �1,2 norm and the other one the �1,∞ norm as
regularization. The �1,2 norm penalizes the sum of the group-wise �2-norms of
the regression weight, whereas the �1,∞ norm penalizes the sum of maximum
absolute values per group. Both regularizer induce sparsity on the group level.
For �1,2-constrained problems, extensive research was done, for example in [2], [4],
[5] or [6]. The solution was characterized by analyzing the optimality conditions
by way of subgradient calculus, and conditions for the uniqueness of the solution
were formulated. There exist efficient algorithms that can handle large scale
problems with input dimension in the millions, see for instance [7].

Algorithms for the second variant of the Group-Lasso utilizing the �1,∞ norm
were studied in [3,8,9]. However, questions about the uniqueness of solutions were
not addressed in detail, and the method still suffers from high computational costs.
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Existing algorithms can handle input dimensions up to thousands [9] or even up
to several thousands [10], but in practical applications these limits are easily ex-
ceeded. Interestingly, it seems that no direct comparisons between these two meth-
ods have been conducted. In this paper, we address these problems by deriving
conditions for the the uniqueness of solutions when using the �1,∞ constraint. Such
a characterization of solutions is particularly important, because non-uniqueness
may severely hamper the interpretation of sparse solutions. As a “by-product” we
derive a highly efficient active set algorithm which makes it possible to directly
compare the different Group-Lasso variants on large real-world datasets.

For the comparison, we consider two common application scenarios of the
Group-Lasso. On the one hand, the Group-Lasso is used as a generalization of
the standard Lasso for prediction problems in which single explanatory factors
are encoded by a group of variables. Samples of this kind include dummy coding
for categorical measurements or polynomial expansions of input features. In these
cases, the focus is on interpretation, since it may be difficult to interpret a solution
which is sparse on the level of single variables.

On the other hand, the Group-Lasso is often used in multi-task learning prob-
lems, where the likelihood factorizes over the individual tasks. The motivation for
using the Group-Lasso is to couple the individual tasks via the group-structure of
the constraint term. Multi-task learning is based on the assumption that multiple
tasks share some features or structures. Each task should benefit from the richness
of data of all the other tasks, so that many learning problems can be solved in par-
allel, as was shown in [5]. It should be noticed that in this case the Group-Lasso
cannot be interpreted as a direct generalization of the standard Lasso, since the
latter is unable to couple the individual tasks.

Large-scale experiments for both types of applications show a clear over-all ad-
vantage of the �1,2 constraint over the �1,∞ version: in application scenarios of the
first kind, there are no pronounced differences in terms of prediction accuracy, but
the �1,2 seems to have slight advantages regarding the uniqueness of solutions and
the computational complexity. For multi-task learning, the distinction between
the variants is highly significant, since in this case the �1,2 version has consistently
better predictive performance.

The remainder of this paper is organized as follows: In section 2, conditions
for the completeness and uniqueness of Group-Lasso estimates are given, where
we adapt the notation in [7] which characterizes a solution as being complete if it
includes all groups that might be relevant in other solutions. A simple procedure
for testing for uniqueness is proposed. In section 3, an active set algorithm is
derived that is able to deal with input dimensions in the millions so that large-
scale problems can be handled efficiently. In section 4, we report experiments
on simulated and real data sets which demonstrate the advantages of the �1,2
variant of the Group-Lasso.

2 Characterization of Solutions for the �1,∞ Group-Lasso

In this section we basically lean on [11], with the difference that we deal with
the �1,∞ Group-Lasso and with a more general class of likelihood functions. We



254 J.E. Vogt and V. Roth

consider the following setting of a generalized linear model (see [12] for more
details): Given an i.i.d. data sample {x1, ..., xn}, xi ∈ Rd, arranged as rows of
the data matrix X , and a corresponding vector of responses y = (y1, ..., yn)�,
we will consider the problem of minimizing a negative log-likelihood function
l(y, ν, θ) = −

∑
i log f(yi; νi, θ) where f is an exponential family distribution

f(y; ν, θ) = exp(θ−1(yν − b(ν)) + c(y, θ)). Thereby c is a known function and
we assume that the scale parameter θ is known, for the sake of simplicity we
assume θ = 1. With ν = xT β and b′(ν) = η−1(ν), the gradient can be seen as a
function in either ν or β:

∇ν l(ν) = −(y − η−1(ν)) or ∇βl(β) = −X�∇ν l(ν) = −X�(y − η−1(Xβ)),

where η−1(ν) := (η−1(ν1), . . . , η−1(νn))� and η denotes a link function.
For the following analysis, we partition X , β and h := ∇βl into J subgroups:

X = (X1, ..., XJ), β = (β1, ..., βJ )� with βj = (βj1, ..., βjk)� for j = 1, ..., J and
h = (h1, ..., hJ)� = (X�

1 ∇ν l, ..., X�
J ∇ν l)�. Thereby l(β) is a convex objective

function and the constrained optimization problem has the following form

l(β)→ min s.t g(β) ≥ 0 where g(β) = κ−
J∑

j=1
‖βj‖∞. (1)

For the unconstrained problem, the solution is not unique if the dimensionality
exceeds n: Let β0 be a solution to problem (1) and ξ ∈ N (X) where N (X) is
the null space of X , then every β∗ := β0 + ξ is also a solution. We will require
the constraint to be active by defining κ0 := min

ξ∈N (X)

∑J
j=1 ‖β0

j + ξj‖∞ and then

assume that κ < κ0. Note that even if there may exist several vectors ξ ∈ N (X),
the minimum κ0 is unique.

We restrict our further analysis to finite likelihood functions. Under this as-
sumption, we have l > −∞, and as l is continuous and and the feasible set
compact, there exists a solution β̂ to (1). Further, as κ < κ0, any solution β̂ to
(1) will lie on the boundary of the feasible set, i.e

∑J
j=1 ‖β̂j‖∞ = κ. The solution

set of (1) is convex, as l is a convex function, g is a concave function and hence
the region of feasible values defined by g(β) ≥ 0 is convex. If additionally X has
full rank and d ≤ n, then it holds that the solution β̂ is unique.
Now we consider the Lagrangian function to (1):

L(β, λ) = l(β)− λg(β) (2)

For a given λ > 0, L(β, λ) is a convex function in β. As we assume l > −∞, a
minimum to (2) exists, because L(β, λ) →∞ for ‖β‖∞ →∞. Hence, there exists
at least one β̂ that minimizes L(β, λ) and β̂ is a minimizer iff the d-dimensional
null-vector 0d is an element of the subdifferential ∂βL(β, λ). Let dj denote the
dimension of the j-th sub vector βj . The subdifferential has the following form

∂βL(β, λ) = ∇βl(β) + λv = X�∇ν l(ν) + λv (3)

with v = (v1, ...vJ)� defined by:

‖vj‖1 ≤ 1 if ‖βj‖∞ = 0, ‖vj‖1 = 1 if ‖βj‖∞ > 0 (4)
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and in the case ‖βj‖∞ > 0 we differentiate between the following three cases:

vji ≥ 0 if βji = ‖βj‖∞, vji ≤ 0 if βji = −‖βj‖∞, vji = 0 if |βji| �= ‖βj‖∞ (5)

Thus, β̂ is a minimizer for fixed λ iff

0d = XT∇ν l(ν)|ν=ν̂ + λv, (with ν̂ = Xβ̂). (6)

Hence, for all j with β̂j = 0dj it holds that λ ≥ ‖XT
j ∇ν l(ν)|ν=ν̂‖1. This yields:

λ = max
j
‖XT

j ∇ν l(ν)|ν=ν̂‖1 (7)

For all j with βj �= 0dj it holds that

λ = ‖XT
j ∇ν l(ν)|ν=ν̂‖1 . (8)

With these properties we can state the following theorem:

Theorem 1. Let β̂ be a solution of (1) and λ = λ(β̂) the associated Lagrangian
multiplier. Then the following holds:

(i) λ and ĥ = ∇βl(β)|β=β̂ are constant across all solutions β̂(i) of (1).

(ii) Let ĥ be the gradient vector from (i) and B = {j1, ..., jp} the unique set for
which ‖ĥ‖1 = λ. Then β̂j = 0dj ∀j /∈ B across all solutions β̂(i) of (1).

Proof. (i): Since the value of the objective function l(ν(i)) = l∗ is constant across
all solutions and l is strictly convex in ν = Xβ and convex in β, it follows that
ν̂ must be constant across all solutions β̂(i), hence ∇βl(β)|β=β̂ = X�∇ν l(ν)|ν=ν̂

is constant across all solutions. Uniqueness of λ follows from (7).
(ii) A solution with β̂j �= 0dj for at least one j �∈ B would contradict (8). �

Completeness of Solutions. Assume we have found a solution β̂ of (1) with the set
of “active” groups A := {j : β̂j �= 0}. If A = B = {j : ‖ĥj‖ = λ}, then there can-
not exist any other solution with an active set A′ with |A′| > |A|. Thus, A = B
implies that all relevant groups are contained in the solution β̂, i.e we cannot
have overlooked other relevant groups. Hence the solution is complete, according
to [7]. If A �= B, then the additional elements in B \ A define all possible groups
that could become active in alternative solutions.

Uniqueness of Solutions. Note that even if A is complete, it might still con-
tain redundant groups. The question if we have found a unique set A is not
answered yet. The following theorem characterizes a simple test for uniqueness
under a further rank assumption of the data matrix X . With XA we denote the
n × s submatrix of X composed of all active groups, where A is the active set
corresponding to some solution β̂ of (1). Then the following theorem holds:

Theorem 2. Assume that every n×n submatrix of X has full rank and that A
is complete, i.e. A = B. Then, if s ≤ n, β̂ is the unique solution of (1).
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Proof. Since the set B is unique, the assumption A = B implies that the search
for the optimal solution can be restricted to the space S = Rs. If s ≤ n, XA must
have full rank by assumption. Thus, l(βS) is a strictly convex function on S which
is minimized over the convex constraint set. Thus, β̂S is the unique minimizer
on S. Since all other β̂j:j /∈A must be zero, β̂ is unique on the whole space. �

3 An Efficient Active-Set Algorithm

With the characterization of the optimal solution presented in section 2 we
can now build a highly efficient active set algorithm. The algorithm starts with
only one active group. In every iteration, further active groups are selected or
removed, dependent on the violation of the Lagrangian condition. At the end
we test for completeness of the active set and therewith are able to identify
all groups that could be relevant in alternative solutions. The algorithm is a
straight-forward generalization of the subset algorithm for the standard Lasso
problem presented in [11].

Algorithm 1. Active Set Algorithm

A : Initialize set A = j0, βj0 arbitrary with ‖βj0‖∞ = κ.
begin

B : Optimize over the current active set A.

Define set A+ =
{
j ∈ A : ‖βj0‖∞ > 0

}
.

Define λ = max
j∈A+

‖hj‖1. Adjust the active set A = A+.

C : Lagrangian violation: ∀j /∈ A, check if ‖hj‖1 ≤ λ. If this is the case,

we have found a global solution. Otherwise, include the group with the

largest violation to A and go to B.

D : Completness anduniqueness: ∀j /∈ A, check if ‖hj‖1 = λ. If so, there

might exist other solutions with identical cost that include these groups in

the active set. Otherwise, the active set is complete. If XA has full rank

s ≤ n, uniqueness can be checked additionally via theorem 2.

end

The optimization in step B can be performed efficiently by the projected
gradient method introduced in [9]. The main challenge typically is to compute
efficient projections to the �1,∞ ball. In [9] an efficient algorithm for the projec-
tion to the �1,∞ ball was presented where the cost of the algorithm is dominated
by sorting and merging vectors. We refer to [9] for details. During the whole
algorithm, access to the full set of variables is only necessary in steps C and
D, which are outside the core optimization routine. Step D requires almost no
additional computations, since it is a by-product of step C.

Computing the Solution Path. The Group-Lasso does not exhibit a piecewise
linear solution path. But we can still approximate the solution path by starting
with a very small κ0 and then iteratively relaxing the constraint. This results in
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Algorithm 2. Optimization Step B
begin

B1 : Gradient: At time t − 1, set b∗ := βt−1 − s∇βl(βt−1) where s is the

step size parameter, A+ = A and bji := |b∗ji| for i = 1, ..., k.

B2 : Projection: Calculate vector μ = (μ1, ..., μJ ) according to [9].

B3 : New solution :

if bji ≥ μj then βt
ji = μj ; if bji ≤ μj then βt

ji = bji; if μj = 0 then βt
ji = 0.

B4 : Recover sign: sgn(βt
ji) := sgn(b∗ji)

end

a series of increasing values of κi with κi > κi−1. Completeness and uniqueness
can be tested at every step i.

4 Applications

4.1 Multi-task Experiments

Synthetic Experiments. We address the problem of learning classifiers for a large
number of tasks. In multi-task learning, we want to solve many classification
problems in parallel and come to a good generalization across tasks. Each task
should benefit from the amount of data that is given by all tasks together and
hence yield to better results than examining every task by oneself. In all cases
we use an active set algorithm, the only difference lies in the projection step.

The synthetic data was created in a similar way as in [9]: We consider a
multi-task setting with m tasks and d features with a d × m parameter ma-
trix W = [w1, ..., wm], where wi ∈ Rd is a parameter vector for the i-th task.
Further, assume we have a dataset D = (z1, ..., zn) with points z belonging
to some set Z, where Z is the set of tuples (xi, yi, li) for i = 1, ..., n where
each xi ∈ Rd is a feature vector, li ∈ 1, ..., m is a label that specifies to
which of the m tasks the example belongs to and yi ∈ {−1, 1} is the corre-
sponding label for the example. First we generated the parameter matrix W
by sampling each entry from a normal distribution N (0, 1). We selected 2%
of the features to be the set V of relevant features. For each task, a subset
v ⊆ V was sampled uniformly at random from the set {#V/2, ..., #V }. All
parameters outside v were zeroed. This yields the sparse matrix W . For the
training set, we sampled n-times a d ×m matrix, where each entry of the ma-
trix was sampled from the normal distribution N (0, 1). The corresponding la-
bels y ∈ Rnm are computed by yk = (sgn(w�

k x1
k), ..., sgn(w�

k xn
k ))� ∈ Rn for

k = 1, ..., m. The test data was obtained by splitting the training data in three
parts and keeping 1/3 as an “out-of-bag” set. We ran two rounds of experi-
ments where we fixed the number of tasks K to 50 and the number of features
d to 500, but changed the number of examples from N = 20 to N = 500.
We evaluated three different approaches: the �1,∞ regularization, the �1,2 reg-
ularization and the �1 regularization. In Figure 1 one can clearly see that the
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Fig. 1. Prediction error of the different regularizers: red curve: single �1, blue curve:

�1,∞, green curve: �1,2. Left: 20 examples. Right: 500 examples

�1,2 norm yields the best prediction for every data set. The left picture shows
the experiment with only few examples. �1,2 performs best, followed by �1,∞
and single �1 shows definitely the worst performance. For the experiment with
more examples, the order of performance stays the same, but the gap to the
single �1 norm is notably reduced. There is not one single case where the �1,∞
norm performs better than the �1,2 regularization. There exists a convincing
explanation for the better performance of the �1,2 variant: The different tasks
are only connected with each other over the constraint term. The �1,∞ norm
just penalizes the maximum absolute entry of a group, whereas the �1,2 norm
penalizes the average of a group. That means, the �1,2 norm connects the different
tasks a lot stronger than the �1,∞ norm and hence leads to better results in multi-
task learning, where one wants to profit from the wealth of the data of all the
tasks. For only few examples the single �1 norm yields very bad results as there
exists no coupling between the different tasks. Concerning the run-time of the
algorithm, there was no advantage seen for the �1,∞ case. Both algorithms use
the same active set algorithm, the only difference lies in the projection step.
Projection to the �1,2 ball is slightly faster, as one can avoid the merging and
sorting steps that are necessary for the projection to the �1,∞ ball.

Cross-Platform siRNA efficacy prediction. Gene silencing using small interfering
RNA (siRNA) is a molecular tool for drug target identification. The aim in this
problem is the joint analysis of different RNAi experiments to predict the siRNA
efficacy. See [13] for details. In this data set we consider 14 cross-platforms, i.e
14 tasks, 19 features and 5 - 179 examples 1. We obtain the test set in the same
way as in the artificial experiment. This experiment shows the same tendency
as in the synthetic data, see Figure 2. We tested the statistical significance with
the Kruskal-Wallis rank-sum test and the Dunn post test with Bonferroni cor-
rection for pairwise analysis. These tests show that both Group-Lasso methods
perform significantly better than the single �1 norm and �1,2 shows slightly better
prediction than �1,∞.

1 The data is available at http://lifecenter.sgst.cn/RNAi/.
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Fig. 2. Prediction error of the different regularizers: red curve: single �1, blue curve:

�1,∞, green curve: �1,2. Left: trained with 10% of the data from each task. Right: trained

with 50% of the data from each task.

4.2 Standard Prediction Problems

Splice Site Detection. As a real world experiment, we considered the splice site
detection problem as it was discussed in [7] for the �1,2 Group-Lasso. The pre-
diction of splice sites plays an important role in gene finding algorithms. Splice
sites are the regions between coding (exons) and non-coding (introns) DNA seg-
ments. The MEMset Donor dataset 2 consists of a training set of 8415 true and
179438 false human donor sites. An additional test set contains 4208 true and
89717 “false” (or decoy) donor sites. A sequence of a real splice site is modeled
within a window that consists of the last 3 bases of the exon and the first 6 bases
of the intron. Decoy splice sites also match the consensus sequence at position
zero and one. Removing this consensus “GT” results in sequences of length 7,
i.e. sequences of 7 factors with 4 levels {A, C, G, T }, see [14] for details.

The goal of this experiment is to overcome the restriction to marginal proba-
bilities (main effects) in the widely used Sequence-Logo approach by exploring all
possible interactions up to order 4. Every interaction is encoded using dummy
variables and treated as a group. [7] considered one experiment with a small
window size and one with a bigger window size, resulting in a huge number of
dimensions. We accomplished exactly the same experiments and obtained almost
the same results. There is no advantage in using the �1,∞ Group-Lasso, neither
in terms of prediction nor in interpretation.

Here we elaborate the results for the problem with the larger window size
where the experiment shows that the interpretation of the Group-Lasso might
be complicated. We accomplished exactly the same experiment as in [7], i.e. we
look at all interactions up to order 4, use windows of length 21 and have in
total 27896 groups which span a 22,458,100-dimensional feature space. Figure 3
shows our results, that are very similar to the results obtained in [7] for the �1,2
Group-Lasso. For the �1,∞ norm, the optimal model at κ = 60 has correlation
coefficient 0.625 (left picture of figure 3), compared with κ = 66 and correlation
coefficient 0.631 for the �1,2 norm. Hence, in terms of prediction, there is no

2 Available at http://genes.mit.edu/burgelab/maxent/ssdata/.
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advantage in using the �1,∞ Group-Lasso. Among the 10 highest-scoring groups
the main effects are at positions −3, −5 and 0, i.e we obtain exactly the same
results as in [7]. In terms of interpretation of the solution, the �1,∞ case brings
no advantage as well. The right picture in Figure 3 shows the results of the
completeness tests. All solutions with κ > 46 are difficult to interpret, since an
increasing number of groups must be added to obtain complete models. This
is again almost the same result as in [7]. The number of groups that must be
included in the optimal model (κ = 60) to obtain a complete models is 900, in
the �1,2 norm experiment the number of groups to include is 300 for the optimal
κ = 66. Hence one can conclude that using the �1,∞ Group-Lasso brings no
advantage, neither in prediction, nor in interpretability.

5 Conclusion

We give a complete analysis of the �1,∞ regularization, including results about
uniqueness and completeness of solutions and a very efficient active set algo-
rithm. With these results, we successfully compare two types of Group-Lasso
methods by applying them to the two most common problem settings, multi-
task learning and the “standard” prediction problems. In the multi-task setting,
where a strong coupling between the different tasks is desirable, we can show
that the �1,2 method outperforms the �1,∞ method both in terms of prediction
and run-time. There was not one single example in the synthetic experiments
where the �1,∞ performed better than the �1,2 norm. Both Group-Lasso methods
show better results than the standard Lasso. The cross-platform siRNA efficacy
prediction example confirmed this tendency in a real-world context. In the �1,2
case the average over groups is considered and not only the maximum abso-
lute value of each group as in the �1,∞ case, hence the coupling in the �1,∞
norm regularization is not as strong as the coupling in the �1,2 norm regular-
ization. This property leads to better prediction for the �1,2 Group-Lasso. In
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the standard splice-site prediction problem we could show that using the �1,∞
norm regularization yields no advantage, neither in terms of prediction nor in
terms of interpretability of the solution. In all experiments, the �1,2 Group-Lasso
performed best in all tested properties, i.e. in terms of prediction, complexity
and interpretability. In summary one can conclude that there is no advantage in
using the �1,∞ Group-Lasso.
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Random Fourier Approximations for Skewed
Multiplicative Histogram Kernels
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Abstract. Approximations based on random Fourier features have re-

cently emerged as an efficient and elegant methodology for designing

large-scale kernel machines [4]. By expressing the kernel as a Fourier

expansion, features are generated based on a finite set of random basis

projections with inner products that are Monte Carlo approximations

to the original kernel. However, the original Fourier features are only

applicable to translation-invariant kernels and are not suitable for his-

tograms that are always non-negative. This paper extends the concept

of translation-invariance and the random Fourier feature methodology

to arbitrary, locally compact Abelian groups. Based on empirical ob-

servations drawn from the exponentiated χ2 kernel, the state-of-the-art

for histogram descriptors, we propose a new group called the skewed-
multiplicative group and design translation-invariant kernels on it. Ex-

periments show that the proposed kernels outperform other kernels that

can be similarly approximated. In a semantic segmentation experiment

on the PASCAL VOC 2009 dataset, the approximation allows us to train

large-scale learning machines more than two orders of magnitude faster

than previous nonlinear SVMs.

1 Introduction

In recent years, datasets containing large amounts of labeled data are increas-
ingly common in learning problems, such as text classification [1], spam filter-
ing [2] and visual object recognition [3]. It is however difficult to apply high-
performance kernel methods to these tasks, as the constraint to operate with
the kernel matrix makes such methods scale more than quadratically in the size
of the dataset. A number of recent algorithms perform explicit feature trans-
forms [4,5,6], so that nonlinear kernels can be approximated by linear kernels in
the transformed space. This makes possible to use efficient linear methods that
depend only linearly on the size of the training set [7,8]. If the approximations
are accurate, complex nonlinear functions can be learned using linear algorithms,
thus allowing to solve large-scale learning problems efficiently.

Random Fourier approximations (RF) provides an elegant and efficient
methodology to create explicit feature transforms. By applying Bochner’s the-
orem, translation-invariant kernels are computed as inner products in the fre-
quency domain (after a Fourier transform). Then m-dimensional feature vectors
are created for examples so that their inner products are Monte Carlo approx-
imations of the original kernel. The method has the convergence rate of Monte

M. Goesele et al. (Eds.): DAGM 2010, LNCS 6376, pp. 262–271, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Carlo: O(m− 1
2 ) independent of the input dimension. One usually needs only a

few hundred dimensions to approximate the original kernel accurately.
Previously, RF were developed for translation-invariant kernels on Rn. In

this paper we study the applicability of RF for histogram features where it is
known that kernels defined on Rn do not usually produce good results [9]. The
best performing kernel to-date on histogram features [9] is the exponentiated χ2

kernel [10]. However, this kernel cannot be approximated with RF. Our aim is to
design a kernel that has similar performance, but fits within the RF framework.

Wefirst extend the randomFourier featuremethodology to translation-invariant
kernels on general locally compact Abelian groups. It is hypothesized that two fac-
tors are important for the performance of the χ2 kernel: the sensitivity to the scale
of the features and the multiplicative decomposition as a product of components
along each dimension, instead of a sum. Therefore we design a new group called
the skewed multiplicative group, which has built-in sensitivity to feature scale. We
propose multiplicative kernels on this group and apply the RF framework on it.

In experiments, we show that our designed kernels are easy to approximate,
have better performance than other kernels usable within the RF framework,
and offer a substantial speed-up over previous nonlinear SVM approaches.

2 Fourier Transform and Random Features on Groups

We use n to denote the number of training examples, d the input dimensionality
and m the dimensionality of the extracted random features. F [f ] denotes the
Fourier transform of f , and U[a, b] is the uniform distribution on [a, b]. Eμ[x]
takes the expectation of x w.r.t to the measure μ.

2.1 Fourier Transform on Groups

Let (G, +) be any locally compact abelian (LCA) group, with 0 the identity.
There exists a non-negative regular measure m called the Haar measure of G,
which is translation-invariant: m(E + x) = m(E) for every x ∈ G and every
Borel set E in G. The Haar measure is provably unique up to a multiplicative
positive constant, and is required in the Haar integral :

∫
G f(x)dm, essentially a

Lebesgue integral on the Haar measure [11].
Now we establish the character and (Pontryagin) dual group of G [11]. A

complex function γ on G is called a character if |γ(x)| = 1 for all x ∈ G and if

γ(x + y) = γ(x)γ(y), ∀x, y ∈ G (1)

All complex γ(x) with |γ(x)| = 1 can be represented as γ(x) = eig(x). Therefore
to make a unique character, only a real-valued g(x) needs to be decided. The
set of all continuous characters of G forms the dual group Γ , where addition is
defined by (γ1 + γ2)(x) = γ1(x)γ2(x). It follows that Γ is also an LCA group.
To emphasize duality, we write (x, γ) = γ(x).
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For all f that are integrable on G, the function F defined on Γ by

F [f ](γ) =
∫

G

f(x)(−x, γ)dm (2)

is called the Fourier transform of f .
The simplest example is R, γη(x) = e2πηxi, where η is an arbitrary number. Eq.

(1) could easily be verified, and (2) becomes the conventional Fourier transform
F [f ](γη) =

∫
R

f(x)e−2πηxidx.

2.2 Random Features on Groups

Now we introduce Bochner’s theorem which is the main result we need [11]:

Theorem 1. A continuous function f on G is positive-definite if and only if
there is a non-negative measure μ on Γ such that f(x) =

∫
Γ (x, γ)dμ(γ).

Usually one is able to verify if a translation-invariant kernel k(x, y) = f(x−y) is
positive-definite. For such kernels, we can use Bochner’s theorem for the explicit
feature transform [4]:

k(x− y) =
∫

G

(y − x, γ)dμ(γ) = Eμ[ζγ(x)ζγ(y)∗], (3)

where ζγ(x) = (−x, γ) and ∗ is the conjugate. To construct ζγ explicitly, note that
(−x, γ) = e−igγ(x) = cos(gγ(x)) − i sin(gγ(x)). Then, k(x− y) = Eμ[cos(gγ(x)−
gγ(y))] + iEμ[sin(gγ(x) − gγ(y))]. For the real kernels we work with, the imag-
inary part must be zero. Therefore we only need to approximate the real part
Eμ[cos(gγ(x)− gγ(y))]. Define

zγ(x) = cos(gγ(x) + b), (4)

where b ∼ U[0, 2π]. It follows that Eμ[cos(gγ(x) − gγ(y))] = Eμ[zγ(x)zγ(y)],
thus (4) is the explicit transform we seek. To approximate the expectation
Eμ[ζγ(x)ζγ(y)∗], we sample from the distribution μ. In principle, the expectation
can be approximated by linear functions on explicit features:

Zx =
[
cos(gγ1(x) + b1), cos(gγ2(x) + b2), . . . , cos(gγk

(x) + bk)
]

(5)

Basically, the algorithm has the following steps: 1) Generate k random samples
γ1, . . . , γk from the distribution μ; 2) Compute Zx as the RF feature for all train-
ing examples and use linear methods to perform the learning task. In practice,
gγ uniquely decides γ, and the group G defines the form of gγ . In Rd for example,
the form is gγ(x) = rT

γ x (dropping the constant scaling factor 2π), where rγ is a
real vector with the same length as x [4]. Therefore, sampling only needs to be
done on rγ . The distribution is decided by the Fourier transform of the kernel.
For example, in the case of a Gaussian kernel, the distribution is still Gaussian.
See [4] for details on other kernels.
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3 The Skewed Multiplicative Group

3.1 Fourier Transform of the Skewed Multiplicative Group

We make use of a group operation that combines multiplication and addition,
The inclusion of an additive part makes the group sensitive to scaling:

x⊗ y = (x + c)(y + c)− c (6)

The group is defined on (−c,∞) with c ≥ 0. Here 1 − c is the identity element,
since (1− c)⊗ y = y. Then x−1 could be solved from x⊗ x−1 = 1− c, to obtain
x−1 = 1

x+c − c. Therefore, the translation-invariant kernel on this group is

k(x, y) = f(x⊗ y−1) = f

(
x + c

y + c
− c

)
, (7)

The Haar measure and the Fourier transform are given next.

Proposition 1. On the skewed multiplicative group ((−c,∞),⊗), the following
results hold:

1) The Haar measure is given by μ(S) =
∫

S
1

t+cdt.
2) The characters are γη(x) = e2πη log(x+c)i, with η ∈ R.
3) The Fourier transform is given by F [f ](η) =

∫∞
−∞ f(ex − c)e−2πηxidx.

Proof. 1) Since m([d ⊗ a, d ⊗ b]) =
∫ (d+c)(b+c)−c

(d+c)(a+c)−c
1

t+cdt = log(d + c)(b + c) −
log(d + c)(a + c) = log(b + c) − log(a + c) =

∫ b

a
1

t+cdt = m([a, b]), the measure
is translation-invariant. Since the Haar measure is unique, we conclude that
μ(S) =

∫
S

1
t+cdt is the Haar measure on the group.

2) We only need to verify (1): γη(x⊗ y) = e2πη log((x+c)(y+c))i

= e2πη log(x+c)ie2πη log(y+c)i = γη(x)γη(y).
3) From (2), F [f ](η) =

∫∞
−c

f(x)
x+c e2πη log(x+c)idx =

∫∞
−c

f(x)e2πη log(x+c)id(log(x +
c)) =

∫∞
−∞ f(ex − c)e−2πηxidx.

When c = 0, we obtain the regular multiplicative group on R+, denoted as
(R+,×). The identity on this group is 1. The translation-invariance property in
this group is scale invariance, since translation-invariant kernels have k(x, y) =
f(x× y−1) = f(x

y ) = f(d×x
d×y ). For this group, the Fourier transform is known to

be F [f ](ex) in R [19] which is equivalent to Proposition 1.

3.2 Kernels

Only a few functions have explicit Fourier transforms. Here we consider two
functions

f1(x) =
2

√
x + c +

√
1

x+c

, f2(x) = min
(√

x + c,
1√

x + c

)
(8)
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which correspond to kernels that we refer as the skewed χ2 and the skewed
intersection kernels, respectively:

k1(x, y) =
2
√

x + c
√

y + c

x + y + 2c
, k2(x, y) = min

(√
x + c

y + c
,

√
y + c

x + c

)
(9)

From Proposition 1, the corresponding Fourier transforms can be computed. In
this case, they are the hyperbolic secant and Cauchy distributions, respectively:

F1(ω) = sech(πω),F2(ω) =
2

π(1 + 4ω2
i )

(10)

The multidimensional kernels are defined as a product of one-dimensional ker-
nels: k(x,y) =

∏d
i=1 k(xi, yi), where d is the dimensionality of the data. The

multi-dimensional Fourier transform is just the product of the transform on
each dimension, F(ω) =

∏d
i=1 F(ωi). In the case of F1(ω) and F2(ω), this just

means that the Fourier transform of the kernel is a joint distribution on ω, where
each dimension is independent of others.

In the skewed multiplicative group, the form of gγ is gγ(x) = rT
γ log(x + c).

To apply the RF methodology, one would need to sample from (10), in order to
obtain rγ to compute the random features (5). We use the inverse transforma-
tion method: sampling uniformly from U[0, 1] and transforming the samples by
multiplying with the inverse CDF of the distribution.

4 Motivation for the Skewed Approximations

The exponentiated χ2 kernel k(x, y) = exp(−
∑

i
(xi−yi)2

xi+yi
) has achieved the best

performance to-date on histogram features for visual object detection and recog-
nition [9]. However, for the multiplicative group of R+, we would need to compute
the equivalent Fourier transform of f(exp(x

y )) in R. In the case of any exponen-
tiated kernel, we might need to compute the Fourier transform of a function
represented as exp(−γg(exp(x

y ))), for some g(x). With two exponentials, it is
difficult to find analytical forms for the transform.

Our motivation is to design a kernel within the RF framework that preserves
some properties of the χ2 kernel, while being at the same time tractable to
approximate. To do this, we develop some intuition on why the χ2 kernel works
better than others. First, we conjecture that the exponentiated χ2 kernel works
well because it adapts to different scales in the input features. Secondly, we
conjecture that its multiplicative properties might be an advantage over additive
kernels. We will explain these two conjectures in the sequel.

The scale in a histogram feature is proportional to the number of occurrences
of a random variable (its frequency). The χ2 kernel is based on the Pearson χ2

test, designed to favor variables that are observed more frequently. The gist is
that higher frequencies are more stable finite-sample estimators of probabilities.
Hence, kernel dimensions with higher frequency should be emphasized when two
histograms are compared. The translation-invariant Gaussian kernel does not
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Table 1. A list of kernels used in visual recognition. Previous work empirically showed

that the exponentiated χ2 kernel performs best among the kernels listed.

Name k(x, y) Group Mult. or Add. RF proved in

Gaussian exp(−γ||x − y||2) (Rd, +) Multiplicative [4]

1 − χ2 ∑
i

(
1 − (xi−yi)

2

xi+yi

)
(Rd

+,×) Additive [12]

Exponentiated χ2 exp

(
−γ

∑
i

(xi−yi)
2

xi+yi

)
N/A Multiplicative N/A

Intersection
∑

i min(xi, yi) (Rd
+,×) Additive [12]

Linear Kernel
∑

i xiyi N/A Additive N/A

Skewed-χ2
∏

i
2
√

xi+c
√

yi+c
xi+yi+2c

((−c,∞),⊗) Multiplicative This paper

Skewed-Intersection
∏

i min

(√
xi+c
yi+c

,
√

yi+c
xi+c

)
((−c,∞),⊗) Multiplicative This paper

have this property. This may explain why the χ2 kernel significantly outperforms
the Gaussian in visual learning problems.

In Table 1, several other kernels that adapt to the scale of the features are
shown. E. g., the 1−χ2 kernel is based on exactly the same χ2 statistic as the ex-
ponentiated one. We conjecture that one difference is important: the 1−χ2 kernel
and the other kernels are additive, i.e. the kernel value on multiple dimensions
is a sum of the kernel value on each dimension. In contrast, the exponentiated
kernel is multiplicative: exp

(
−γ

∑
i

(xi−yi)2

xi+yi

)
=

∏
i exp

(
−γ (xi−yi)2

xi+yi

)
.

Moreover, we argue that a multiplicative kernel is more sensitive to large de-
viations between x and y in one or a few dimensions. Assuming χ2(xi, yi) ≤
χ2(xu, yu) for all i, we have exp(−γχ2(x, y)) ≤ exp(−γχ2(xu, yu)). Therefore,
one extremely noisy dimension may negatively impact the exponentiated kernel
severely. Otherwise said, to make k(x, y) large (i.e., x, y similar), the two his-
tograms must be similar in almost all dimensions. For an additive kernel, this
effect is much less obvious. k(x, y) is high if x and y match on some important
bins, but not necessarily all.

Why is matching all bins important? Intuitively, in localization tasks, under
relatively weak models, the number of negative object hypotheses one must go
over is usually huge. Therefore, if the similarity between two object hypotheses
is large when they are only partially matched, there might be simply too many
hypotheses with good similarity to the ground truth. In such circumstances the
false positive rate may increase significantly.

5 Related Work

RF belongs to the class of methods that replace the kernel with a low-rank
approximation. In [13,14], the authors proposed incomplete Cholesky decom-
position methods that compute a low-rank approximation to the kernel matrix
while simultaneously solving the SVM optimization. These methods are com-
putationally powerful but to predict new data, kernel values still have to be
computed between all test and training examples, which is slow for large-scale
problems. Alternatively, one can use Nyström methods [15] to subsample the
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training set and operate on a reduced kernel matrix. However the convergence
rate of this approximation is slow, (O(m− 1

4 )) [16], where m is the number of
samples used.

In computer vision, the exponentiated χ2 kernel was known to be both the
best-performing and the most expensive to compute. A cheaper variant is the
histogram intersection kernel [17], for which a computational trick for fast test-
ing is available [18]. However, training time remains a severe problem in this
approach since the speedup does not apply. Therefore, many systems directly
use linear kernels. Vedaldi et al. proposed a 3-step approach starting with 2 fast
linear filtering steps, followed by a non-linear SVM on the exponentiated χ2

kernel [9]. Bo and Sminchisescu proposed EMK to learn low-dimensional kernel
approximations and showed comparable performances with RF for the Gaussian
kernel [6].

The work of [12] complements ours, in that it also seeks a low-dimensional
linear approximation based on the Fourier theory. However, their development
is based on the result of [19], which only applies to scale-invariant kernels in
R+. To adapt to scale, one has to use a kernel that is additive, so that the
scale of the data

√
x is multiplied to the kernel on each dimension. Using this

approach one could approximate the 1− χ2 and the intersection kernels (Table
1). However, the technique does not immediately extend to the important case
of multiplicative kernels. When one has null components in some dimensions,
multiplying by

√
x sets the entire kernel to 0. Although one may palliate such

effects e.g., by multiplying with exp(−x) instead of
√

x, it may be difficult to
identify the form of the kernel after such transformations.

6 Experiments

We conduct experiments in a semantic image segmentation task within the PAS-
CAL VOC 2009 Challenge, widely acknowledged as one of the most difficult
benchmarks for the problem [20]. In this task, we need to both recognize objects
in an image correctly, and generate pixel-wise segmentations for these objects.
Ground truth segments of objects paired with their category labels are avail-
able for training. A recent approach that achieves state-of-the-art results train
a scoring function for each class on many putative figure-ground segmentation
hypotheses, obtained using a parametric min-cut method [21]. This creates a
large-scale learning task even if the original image database has moderate size:
with 90 segments in each image, training on 5000 images creates a learning
problem with 450, 000 training examples.

We test a number of kernels on the VOC 2009 dataset. training on the VOC
train and test on the validation, which has approximately 750 images and
1600 objects each. Using the methodology in [21,22], we select up to 90 putative
segments in each image for training and testing. Altogether, there are 62, 747
training segments and 60, 522 test segments. Four types of descriptors are used:
a bag of words of dense gray-level SIFT, and three pyramid HOGs, as in [22].
The total number of dimensions is 3270. The final kernel is a weighted sum of
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Fig. 1. (left) Approximation quality when a linear kernel K = zμzT
μ is used to estimate

the original kernel matrix K0. Both the L∞ error (maximal error) and the average L1

error are shown. It could be seen that the convergence rate of the multiplicative kernel

is consistent with the theoretical O(m−1/2) rate for Monte Carlo methods. The rate of

the additive kernel is dependent on the input dimension, hence much slower. (right) The

accuracy as a function of the number of dimensions needed to approximate the kernel.

kernels on each individual descriptor. The kernel parameters are estimated using
the approach in [22]. Other parameters, such as c in the skewed kernel and the
regularization parameter are chosen by cross-validation on the training set.

In the first experiment we test the quality of the RF approximation for the
skewed-χ2 kernel. Computing the full kernel matrix would require a prohibitive
amount of memory. Therefore, testing is done on a 3202 × 3202 kernel matrix
by selecting only the ground truth segment and the best-overlapping putative
segment for each object. We plot the result for one HOG descriptor with 1700
dimensions (fig. 1(a)). Notice that the convergence rate of the RF is quite con-
sistent with the theoretical O(m−1/2). We also compare with the approximation
of the additive χ2 kernel given in [12]. It can be clearly seen that a skewed
multiplicative kernel needs fewer dimensions for good approximation accuracy.

Speed of Training and Testing: Next we compare the speed of the RF ap-
proach with a previous nonlinear SVM regression approach [22]. For RF fea-
tures, we use 2000 dimensions for each type of descriptor, for a total of 8000
dimensions. For RF features on additive kernels, 3 dimensions are used for each
input dimension, to make the dimensionality of the RF feature comparable to
our multiplicative ones. The results are obtained on an 8-core Pentium Xeon
3.0GHz computer. Since no fast linear SVM regression algorithms are available,
we use ridge regression in conjunction with RF features.

Training and testing times for different methods are given in Table 2. One
could see that RF offer a substantial speed-up over previous approaches, and is
able to scale to much larger datasets1.

1 The code for the nonlinear χ2 kernel is more heavily optimized (using Christoph

Lampert’s SIMD-optimized χ2 code) than the skewed kernels, hence Table 2 should

not be used to compare speeds among the nonlinear versions of those kernels.
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Table 2. Running times (in seconds) for nonlinear and linear approaches. The nonlinear

and linear RF histogram intersection [18,12] has fast testing time, but is slower than

the skewed kernels due to higher dimensionality.

Kernel Name Nonlinear Linear by Random Fourier Features

training testing Feature Generation Training Testing

Exponentiated χ2 20647.82 34027.86 N/A N/A N/A

Skewed χ2 70548.20 102277.78 519.22 914.70 57.39

Histogram Intersection 30082.08 742.36 3716.07 1498.05 69.91

Skewed Intersection 53235.17 79821.94 505.37 913.87 56.81

Table 3. Segment classification accuracies (for the best segments in our pool, as de-

termined by ground truth data) for both original non-linear kernels and their approx-

imation using RF.

Kernel
Accuracy

Kernel
Accuracy

Nonlinear Fourier Approx. Nonlinear Fourier Approx.

Gaussian 21.31% 24.71% Exponentiated χ2 29.54% N/A

1 − χ2 20.63% 23.75% Skewed χ2 26.68% 27.16%

Intersection 22.08% 23.65% Skewed Intersection 26.34% 26.73%

Results on Different Kernels: Having established that random features offer
a substantial speed-up, the question is how good the prediction accuracy of the
proposed skewed kernels is. In Table 3 we compare the classification accuracy
on all the segments and skip the post-processing step in [22]. Usually this result
correlates linearly to the VOC criteria. For the skewed χ2 kernel, we plot the
performance against the number of RF dimensions in fig. 1 (b). One can see
that approximations based on random Fourier features can even improve perfor-
mance of the original kernel. This might be caused by the difference in learning
algorithms used (squared loss vs. hinge loss) or the fact that the RF function
class is richer than the kernel method: the kernel can be represented by the inner
product on RF, but some other functions may also be represented by weighted
inner products on RF. Our skewed χ2 kernel outperforms all the other kernels,
but there is still a 2% performance lag with respect to the exponentiated kernel.

7 Conclusion

In this paper, we extend the random Fourier feature methodology to locally com-
pact abelian groups, where kernels on histogram features are considered. Based on
empirical observations on the exponentiated χ2 kernel, we propose a new group
on which we build kernels that are not scale-invariant, yet can be approximated
linearly using random Fourier features. The experiments show that our kernels
are much faster to compute than many nonlinear kernels, and outperform kernels
for which approximations are previously known. However, the performance of the
proposed kernels is still inferior to that of the exponentiated χ2 kernel. Designing
better kernels to close the gap is an interesting avenue for future work.



RF Approximations for Skewed Multiplicative Histogram Kernels 271

Acknowledgments. This work was supported, in part, by the European Com-
mission, under a Marie Curie Excellence Grant MCEXT-025481.

References

1. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: Rcv1: A new benchmark collection for

text categorization research. JMLR 5, 361–397 (2004)

2. Attenberg, J., Dasgupta, A., Langford, J., Smola, A., Weinberger, K.: Feature

hashing for large scale multitask learning. In: ICML (2009)

3. Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: Labelme: A database

and web-based tool for image annotation. IJCV 77(1-3), 157–173 (2008)

4. Rahimi, A., Recht, B.: Random features for large-scale kernel machines. In: NIPS

(2007)

5. Shi, Q., Patterson, J., Dror, G., Langford, J., Smola, A., Strehl, A., Vishwanathan,

V.: Hash kernels. In: AISTATS (2009)

6. Bo, L., Sminchisescu, C.: Efficient match kernels between sets of features for visual

recognition. In: NIPS (2009)

7. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: A library

for large linear classification. Journal of Machine Learning Research, 1871–1874

(2008)

8. Shalev-Shwartz, S., Singer, Y., Srebro, N.: Pegasos: Primal estimated sub-gradient

solver for svm. In: ICML (2007)

9. Vedaldi, A., Gulshan, V., Varma, M., Zisserman, A.: Multiple kernels for object

detection. In: ICCV (2009)

10. Chapelle, O., Haffner, P., Vapnik, V.: Support vector machines for histogram-based

image classification. IEEE Transactions on Neural Networks 10 (1999)

11. Rudin, W.: Fourier Analysis on Groups (1962)

12. Vedaldi, A., Zisserman, A.: Efficient additive kernels via explicit feature maps. In:

CVPR (2010)

13. Fine, S., Scheinberg, K.: Efficient svm training using low-rank kernel representa-

tion. JMLR 2, 243–264 (2001)

14. Bach, F., Jordan, M.I.: Predictive low-rank decomposition for kernel methods. In:

ICML (2005)

15. Williams, C.K.I., Seeger, M.: Using the nyström method to speed up kernel ma-

chines. In: NIPS (2001)

16. Drineas, P., Mahoney, M.: On the nyström method for approximating a gram

matrix for improved kernel-based learning. JMLR 6, 2153–2175 (2005)

17. Grauman, K., Darrell, T.: The pyramid match kernel: Efficient learning with sets

of features. JMLR 8, 725–760 (2007)

18. Maji, S., Berg, A.C., Malik, J.: Classification using intersection kernel support

vector machines is efficient. In: CVPR (2008)

19. Hein, M., Bousquet, O.: Hilbertian metrics and positive definite kernels on proba-

bility measures. In: AISTATS (2005)

20. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The

PASCAL Visual Object Classes Challenge, VOC 2009 Results (2009),

http://www.pascal-network.org/challenges/VOC/voc2009/workshop/

index.html

21. Carreira, J., Sminchisescu, C.: Constrained parametric min cuts for automatic

object segmentation. In: CVPR (2010)

22. Li, F., Carreira, J., Sminchisescu, C.: Object recognition as ranking holistic figure-

ground hypotheses. In: CVPR (2010)

http://www.pascal-network.org/challenges/VOC/voc2009/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2009/workshop/index.html


Gaussian Mixture Modeling with Gaussian
Process Latent Variable Models

Hannes Nickisch1 and Carl Edward Rasmussen2,1

1 MPI for Biological Cybernetics, Tübingen, Germany
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Abstract. Density modeling is notoriously difficult for high dimensional

data. One approach to the problem is to search for a lower dimensional

manifold which captures the main characteristics of the data. Recently,

the Gaussian Process Latent Variable Model (GPLVM) has successfully

been used to find low dimensional manifolds in a variety of complex

data. The GPLVM consists of a set of points in a low dimensional latent

space, and a stochastic map to the observed space. We show how it can

be interpreted as a density model in the observed space. However, the

GPLVM is not trained as a density model and therefore yields bad den-

sity estimates. We propose a new training strategy and obtain improved

generalisation performance and better density estimates in comparative

evaluations on several benchmark data sets.

Modeling of densities, aka unsupervised learning, is one of the central problems
in machine learning. Despite its long history [1], density modeling remains a
challenging task especially in high dimensional spaces. For example, the gen-
erative approach to classification requires density models for each class, and
training such models well is generally considered more difficult than the alterna-
tive discriminative approach. Classical approaches to density modeling include
both parametric and non parametric methods. In general, simple parametric
approaches have limited utility, as the assumptions might be too restrictive.
Mixture models, typically trained using the EM algorithm, are more flexible,
but e.g. Gaussian mixture models are hard to fit in high dimensions, as each
component is either diagonal or has in the order of D2 parameters, although the
mixtures of Factor Analyzers algorithm [2] may be able to strike a good balance.
Methods based on kernel density estimation [3,4] are another approach, where
bandwidths may be set using cross validation [5].

The methods mentioned so far have two main shortcomings: 1) they typically
do not perform well in high dimensions, and 2) they do not provide an intuitive or
generative understanding of the data. Generally, we can only succeed if the data
has some regular structure, the model can discover and exploit. One attempt
to do this is to assume that the data points in the high dimensional space lie
on – or close to – some smooth underlying lower dimensional manifold. Models
based on this idea can be divided into models based on implicit or explicit

M. Goesele et al. (Eds.): DAGM 2010, LNCS 6376, pp. 272–282, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Gaussian Mixture Modeling with GPLVMs 273

representations of the manifold. An implicit representation is used by [6] in a
non-parametric Gaussian mixture with adaptive covariance to every data point.
Explicit representations are used in the Generative Topographic Map [7] and
by [8]. Within the explicit camp, models contain two separate parts, a lower
dimensional latent space equipped with a density, and a function which maps
points from the low dimensional latent space to the high dimensional space
where the observations lie. Advantages of this type of model include the ability
to understand the structure of the data in a more intuitive way using the latent
representation, as well as the technical advantage that the density in the observed
space is automatically properly normalised by construction.

The Gaussian Process Latent Variable Model (GPLVM) [9] uses a Gaussian
process (GP) [10] to define a (stochastic) map between a lower dimensional latent
space and the observation space. However, the GPLVM does not include a density
in the latent space. In this paper, we explore extensions to the GPLVM based on
densities in the latent space. One might assume that this can trivially be done,
by thinking of the latent points learnt by the GPLVM as representing a mixture
of delta functions in the latent space. Since the GP based map is stochastic, it
induces a proper mixture in the observed space. However, this formulation is
unsatisfactory, because the resulting model is not trained as a density model.
Consequently, our experiments show poor density estimation performance.

Mixtures of Gaussians form the basis of the vast majority of density estimation
algorithms. Whereas kernel smoothing techniques can be seen as introducing a
mixture component for each data point, infinite mixture models [11] explore the
limit as the number of components increases and mixtures of factor analysers
impose constraints on the covariance of individual components. The algorithm
presented in this paper can be understood as a method for stitching together
Gaussian mixture components in a way reminiscent of [8] using the GPLVM map
from the lower dimensional manifold to induce factor analysis like constraints
in the observation space. In a nutshell, we propose a density model in high
dimensions by transforming a set of low-dimensional Gaussians with a GP.

We begin by a short introduction to the GPLVM and show how it can be
used to define density models. In section 2, we introduce a principled learning
algorithm, and experimentally evaluate our approach in section 3.

1 The GPLVM as a Density Model

A GP f is a probabilistic map parametrised by a covariance k(x,x′) and a
mean m(x). We use m(x) ≡ 0 and automatic relevance determination (ARD)
k(xi,xj) = σ2

f exp
(
− 1

2 (xi − xj)�W−1(xi − xj)
)
+ δijσ

2
η in the following. Here,

σ2
f and σ2

η denote the signal and noise variance, respectively and the diagonal
matrix W contains the squared length scales. Since a GP is a distribution over
functions f : X → Z, the output z = f(x) is random even though the input x
is deterministic. In GP regression, a GP prior is combined with training data
{xi, zi}i∈I={1..N} into a GP posterior conditioned on the training data with
mean μ∗(x∗) = α�k∗ and covariance k̄(x∗,x′

∗) = k(x∗,x′
∗) − k�

∗ K−1k′
∗ where
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(a) Dirac latent mixture (b) spherical Gaussian mixture (c) data points (d) full mixture model (e) Gaussian latent mixture

Fig. 1. The high dimensional (D = 2) density of the data points zi in panel (c) is mod-

elled by a mixture of Gaussians P(z) = 1
N

∑
i N (z|μxi , Σxi) shown in panel (b,d) where

the means μxi and variances Σxi are given by the predictive means and covariances of

a set of independent Gaussian processes fj : X → Z conditioned on low-dimensional

(d = 1) latent locations xi. A latent Dirac mixture (a) yields a spherical Gaussian

mixture with varying widths (b) and a latent Gaussian mixture (e) results in a fully

coupled mixture model (d) smoothly sharing covariances across mixture components.

k∗ = [k(x1,x∗), .., k(xN ,x∗)]�, K = [k(xi,xj)]ij=1..N , Σ∗ = [k̄(xi,xj)]ij=1..N

and α� = [z1, .., zN ]K−1. Deterministic inputs x lead to Gaussian outputs and
Gaussian inputs lead to non-Gaussian outputs whose first two moments can
be computed analytically [12] for ARD covariance. Multivariate deterministic
inputs x lead to spherical Gaussian outputs z and Gaussian inputs x lead to
non-Gaussian outputs z whose moments (μ∗, Σ∗) are given by:

x ∼ δ(x∗)
f∼GP−→ z ∼ N (μ∗, σ

2
∗I) x ∼ N (x∗,Vx)

f∼GP−→ z
(≈)∼ N (μ∗, Σ∗)

μ∗ = A�k̃∗ σ2
∗ = k∗∗ − k�

∗ K−1k∗ ∈ [σ2
η, σ2

η + σ2
f ] μ∗ = A�k̃∗ Σ∗ =

(
k∗∗ − tr(K−1K̂∗)

)
I + A�(K̂∗ − k̃∗k̃�

∗ )A

Here, A� = [α1, .., αD]� = [z1, .., zN ]K−1 and the quantities k̃∗ = E[k] and
K̂∗ = E[kk�] denote expectations of k = k(x) = [k(x1,x), .., k(xN ,x)]� w.r.t.
the Gaussian input distribution N (x|x∗,Vx) that can readily be evaluated in
closed form [12] as detailed in the Appendix. In the limit of Vx → 0 we recover
the deterministic case as k̃∗ → k∗, K̂∗ → k∗k�

∗ and Σ∗ → σ2
∗I. Non-zero

input variance Vx results in full non-spherical output covariance Σ∗, even for
independent GPs because all the GPs are driven by the same (uncertain) input.

A GPLVM [9] is a successful and popular non-parametric Bayesian tool for
high dimensional nonlinear data modeling taking into account the data’s mani-
fold structure based on a low-dimensional representation. High dimensional data
points zi ∈ Z ⊂ RD, Z = [z1, . . . , zN ], are represented by corresponding latent
points X = [x1, . . . ,xN ] from a low-dimensional latent space X ⊂ Rd mapped
into Z by D independent GPs fj – one for each component zj of the data. All the
GPs fj are conditioned on X and share the same covariance and mean functions.
The model is trained by maximising the sum of the log marginal likelihoods over
the D independent regression problems with respect to the latent points X.

While most often applied to nonlinear dimensionality reduction, the GPLVM
can also be used as a tractable and flexible density model in high dimensional
spaces as illustrated in Figure 1. The basic idea is to interpret the latent points
X as centres of a mixture of either Dirac (Figure 1a) or Gaussian (Figure 1e)
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distributions in the latent spaceX that are projected forward by the GP to produce
a high dimensional Gaussian mixture P(z) = 1

N

∑
iN (z|μxi , Σxi) in the observed

space Z. Depending on the kind of latent mixture, the density model P(z) will ei-
ther be a mixture of spherical (Figure 1b) or full-covarianceGaussians (Figure 1d).
By that mechanism, we get a tractable high dimensional density model P(z): A
set of low-dimensional coordinates in conjunction with a probabilistic map f yield
a mixture of high dimensional Gaussians whose covariance matrices are smoothly
shared between components. As shown in Figure 1(d), the model is able to cap-
ture high dimensional covariance structure along the data manifold by relatively
few parameters (compared to D2), namely the latent coordinates X ∈ Rd×N and
the hyperparameters θ = [W, σf , ση,Vx] ∈ R2d+2

+ of the GP.
The role of the latent coordinates X is twofold: they both define the GP,

mapping the latent points into the observed space, and they serve as centres
of the mixture density in the latent space. If the latent density is a mixture of
Gaussians, the centres of these Gaussians are used to define the GP map, but
the full Gaussians (with covariance Vx) are projected forward by the GP map.

2 Learning Algorithm

Learning or model fitting is done by minimising a loss function L w.r.t. the latent
coordinates X and the hyperparameters θ. In the following, we will discuss the
usual GPLVM objective function, make clear that it is not suited for density
estimation and use leave-out estimation to avoid overfitting.

2.1 GPLVM Likelihood

A GPLVM [9] is trained by setting the latent coordinates X and the hyperpa-
rameters θ to maximise the probability of the data

P(Z|X, θ) =
D∏

j=1

P(zj |X, θ) = −DN

2
ln 2π − D

2
ln |K| − 1

2
tr

(
K−1Z�Z

)
(1)

that is the product of the marginal likelihoods of D independent regression
problems. Using ∂L

∂K= 1
2K

−1(Z�Z−DK)K−1, conjugate gradients optimisation
at a cost of O(DN3) per step is straightforward but suffers from local optima.

However, optimisation of LZ(X, θ) does not encourage the GPLVM to be a
good density model. Only indirectly, we expect the predictive variance to be
small (implying high density) in regions supported by many data points. The
main focus of LZ(X, θ) is on faithfully predicting Z from X (as implemented by
the fidelity trace term) while using a relatively smooth function (as favoured by
the log determinant term). Therefore, we propose a different cost function.

2.2 General Leave-Out Estimators

Density estimation [13] constructs parametrised estimators P̂θ(z) from iid data
zi ∼ P(z). We use the Kullback-Leibler divergence J(θ) c= −

∫
P(z) ln P̂θ(z)dz
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to the underlying density and its empirical estimate Ĵe(θ) = −
∑

i∈I ln P̂θ,I(zi)
as quality measure where I emphasises that the full dataset has been used for
training. This estimator, is prone to overfitting if used to adjust the param-
eters via θ∗ = argminθ Ĵe(θ). Therefore, estimators based on K subsets of
the data Ĵv(θ) = − 1

K

∑K
k=1

∑
i/∈Ik

ln P̂θ,Ik
(zi), Ik ⊂ I are used. Two well

known instances are K-fold cross-validation (CV) and leave-one-out (LOO) es-
timation. The subsets for CV are Ik ∩ Ik′ = ∅, I =

⋃K
k=1 Ik, |Ik| ≈ |Ik′ | and

K = N, Ik = I\{k} for LOO. Both of them can be used to optimise θ.

2.3 GPLVM Leave-One-Out Density

There are two reasons why training a GPLVM with the log likelihood of the data
LZ(X, θ) (Eq. 1) is not optimal in the setting of density estimation: Firstly, it
treats the task as regression, and doesn’t explicitly worry about how the density
is spread in the observation space. Secondly, our empirical results (see Section 3)
indicate, that the test set performance is simply not good. Therefore, we propose
to train the model using the leave-one-out density

−LLOO(X, θ) = ln
N∏

i=1

P¬i(zi) =
N∑

i=1

ln
1

N − 1

∑
j �=i

N
(
zi|μxj , Σxj

)
. (2)

This objective is very different from the GPLVM criterion as it measures how
well a data point is explained under the mixture models resulting from projecting
each of the latent mixture components forward; the leave-out aspect enforces that
the point zi gets assigned a high density even though the mixture component
N

(
zi|μxi , Σxi

)
has been removed from the mixture. The leave-one-out idea is

trivial to apply in a mixture setting by just removing the contribution in the sum
over components, and is motivated by the desire to avoid overfitting. Evaluation
of LLOO(X, θ) requires O(DN3) assuming N > D > d.

However, removing the mixture component is not enough since the latent
point xi is still present in the GP. Using rank one updates to compute inverses
and determinants of covariance matrices K¬i with row and column i removed,
it is possible to evaluate Eq. 3 for mixture components N

(
zi|μ¬i

xj , Σxj

)
with

latent point xi removed from the mean prediction μ¬i
xj – which is what we do

in the experiments. Unfortunately, going further by removing xi also from the
covariance Σxj increases the computational burden to O(DN4) because we need
to compute rank one corrections to all matrices K̂�, � = 1..N . Since Σ¬i

xj is only
slightly smaller than Σxj , we refrain from computing it in the experiments.

In the original GPLVM, there is a clear one-to-one relationship between latent
points xi and data points zi – they are inextricably tied together. However,
the leave-one-out (LOO) density LLOO(X, θ) does not impose any constraint of
that sort. The number of mixture components does not need to be N , in fact
we can choose any number we like. Only the data visible to the GP {xj , z̄j}
is tied together. The actual latent mixture centres X are not necessarily in
correspondence with any actual data point zi. However, we can choose Z̄ to be
a subset of Z. This is reasonable because any mixture centre μxj = Z̄K−1k(xj)
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(corresponding to the latent centre xj) lies in the span of Z̄, hence Z̄ should
approximately span Z. In our experiments, we enforce Z̄ = Z.

2.4 Overfitting Avoidance

Overfitting in density estimation means that very high densities are assigned to
training points, whereas very low densities remain for the test points. Despite
its success in parametric models, the leave-one-out idea alone, is not sufficient
to prevent overfitting in our model. When optimising LLOO(X, θ) w.r.t. (X, θ)
using conjugate gradients, we observe the following behaviour: The model cir-
cumvents the LOO objective by arranging the latent centres in pairs that take
care of each other. More generally, the model partitions the data Z ⊂ RD into
groups of points lying in a subspace of dimension ≤ D − 1 and adjusts (X, θ)
such that it produces a Gaussian with very small variance σ2

⊥ in the orthogonal
complement of that subspace. By scaling σ2

⊥ to tiny values, LLOO(X, θ) can be
made almost arbitrarily large. It is understood that the hyperparameters of the
underlying GP take very extreme values: the noise variance σ2

η and some length
scales wi become tiny. In LZ(X, θ), this is penalised by the ln |K| term, but
LLOO(X, θ) is happy with very improbable GPs. In our initial experiments, we
observed this “cheating behaviour” on several of datasets.

We conclude that even though the LOO objective (Eq. 3) is the standard
tool to set KDE kernel widths [13], it breaks down for too complex models. We
counterbalance this behaviour by leaving out not only one point but rather P
points at a time. This renders cheating tremendously difficult. In our experiments
we use the leave-P -out (LPO) objective

LLPO(X, θ) = −
K∑

k=1

∑
i/∈Ik

ln
1

N − P

∑
j∈Ik

N
(
zi|μ¬i

xj , Σxj

)
. (3)

Ideally, one would sum over all K =
(
N
P

)
subsets Ik ∈ I of size |Ik| = N − P .

However, the number of terms K soon becomes huge: K ≈ NP for P ( N .
Therefore, we use an approximation where we set K = N and Ik contains the
indices j that currently have the smallest value N

(
zk|μ¬i

xj , Σxj

)
.

All gradients ∂LLPO

∂X and ∂LLPO

∂θ can be computed in O(DN3) when using μ¬i
xj .

Since the expressions take several pages, we will only include them in the docu-
mentation of the code once the paper is accepted. We use a conjugate gradient
optimiser to find the best parameters X and θ.

3 Experiments

In the experimental section, we show that the GPLVM trained with LZ(X, θ)
(Eq. 1) does not lead to a good density model in general. Using our LLPO training
procedure (Section 2.4, Eq. 3), we can turn it into a competitive density model.
We demonstrate that a latent variance Vx ) 0 improves the results even further
in some cases and that on some datasets, our density model training procedure
performs better than all the baselines.
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3.1 Datasets and Baselines

We consider 9 data sets1, frequently used in machine learning. The data sets dif-
fer in their domain of application, their dimension D, their number of instances
N and come from regression and classification. In our experiments, we do not
use the labels. dataset breast crabs diabetes ionosphere sonar usps abalone bodyfat housing

N ,D 449,9 200,6 768,8 351,33 208,60 9298,256 4177,8 252,14 506,13

We do not only want to demonstrate that our training procedure yields better
test densities for the GPLVM. We are rather interested in a fair assessment of how
competitive the GPLVM is in density estimation compared to other techniques.
As baseline methods, we concentrate on three standard algorithms: penalised
fitting of a mixture of full Gaussians (gm), kernel density estimation (kde) and
manifold Parzen windows [6] (mp). We run these algorithms for three different
type of preprocessing: raw data (r), data scaled to unit variance (s) and whitened
data (w). We explored a large number of parameter settings and report the best
results in Table 1.

Penalised Gaussian mixtures. In order to speed up EM computations, we
partition the dataset into K disjoint subsets using the K-means algorithm2. We
fitted a penalised Gaussian to each subset and combined them using the relative
cluster size as weight P(z) = 1

N

∑
k NkPk(z). Every single Gaussian Pk(z) has

the form Pk(z) = N (z|mk,Ck + wI) where mk and Ck equal the sample mean
and covariance of the particular cluster, respectively. The global ridge parameter
w prevents singular covariances and is chosen to maximise the LOO log density
−L(w) = ln

∏
j P¬j(zj) = ln

∏
j

∑
k NkN (zj |mk

¬j,C
k
¬j + wI). We use simple

gradient descent to find the best parameter w ∈ R+.

Diagonal Gaussian KDE. The kernel density estimation procedure fits a
mixture model by centring one mixture component at each data point zi. We
use independent multi-variate Gaussians: P(z) = 1

N

∑
iN (z|zi,W), where the

diagonal widths W = Dg(w1, .., wD) are chosen to maximise the LOO density
−L(W) = ln

∏
j P¬j(zj) = ln

∏
j

1
N

∑
i�=j N (zj |zi,W). We employ a Newton-

scheme to find the best parameters W ∈ RD
+ .

Manifold Parzen windows. The manifold Parzen window estimator [6] tries to
capture locality by means of a kernel k. It is a mixture of N full Gaussians where
the covariance Σi = wI + (

∑
j �=i k(zi, zj)(zi − zj)(zi − zj)�)/(

∑
j �=i k(zi, zj)) of

each mixture component is only computed based on neighbouring data points.
As proposed by the authors, we use the r-nearest neighbour kernel and do not

store full covariance matrices Σi but a low rank approximation Σi ≈ wI+VV�

with V ∈ RD×d. As in the other baselines, the ridge parameter w is set to
maximise the LOO density.

Baseline results. The results of the baseline density estimators can be found in
Table 1. They clearly show three things: (i) More data yields better performance,
1
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

2
http://cseweb.ucsd.edu/~elkan/fastkmeans.html

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://cseweb.ucsd.edu/~elkan/fastkmeans.html
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Table 1. Average log test densities over 10 random splits of the data. We did not

allow Ntr to exceeded N/2. We only show the method yielding the highest test den-

sity among the three baseline candidates penalised full Gaussian mixture gm(K,ρ),

diagonal Gaussian kernel density estimation kde(ρ) and manifold Parzen windows

mp(d,r,ρ). The parameter K = {1, .., 13} is the number of cluster centers used

for gm, d = �D · {5, 12, 19, 26, 33, 40}/100� is the number of latent dimensions and

r = �N · {5, 10, 15, 20, 25, 30}/100� the neighbourhood size for mp and ρ is saying which

preprocessing has been used (raw r, scaled to unit variance s, whitened w). The Gaus-

sian mixture model yields in all cases the highest test density except for one case where

the Parzen window estimator performs better.

dataset breast crabs diabetes ionosphere sonar usps abalone bodyfat housing

Ntr = 50 −9.1 gm(10,s) 0.9 gm(5,r) −11.0 gm(4,r) −34.1 gm(10,r) −67.7 gm(1,r) 18.4 gm(1,r) 12.5 gm(8,r) −36.0 gm(1,w) −33.4 gm(6,s)

Ntr = 100 −8.6 gm(4,r) 1.9 gm(7,r) −10.0 gm(3,w) −30.5 gm(13,r) −62.0 gm(1,r) 124.8 gm(1,r) 13.9 gm(5,r) −35.2 gm(2,w) −30.6 mp(6,21,s)

Ntr = 150 −8.4 gm(9,s) −9.6 gm(3,w) −33.9 gm(6,s) −61.5 gm(4,w) 185.4 gm(1,r) 14.3 gm(10,r) −34.7 gm(5,w) −29.1 mp(6,32,s)

Ntr = 200 −8.2 gm(9,r) −8.3 gm(4,w) −31.8 gm(6,w) 232.6 gm(3,w) 14.2 gm(13,r) −23.5 gm(4,s)

Ntr = 250 −8.1 gm(11,r) −8.2 gm(5,w) 261.6 gm(6,w) 14.3 gm(13,r) −16.0 gm(3,w)

(ii) penalised mixture of Gaussians is clearly and consistently the best method
and (iii) manifold Parzen windows [6] offer only little benefit. The absolute values
can only be compared within datasets since linearly transforming the data Z by
P results in a constant offset ln |P| in the log test probabilities.

3.2 Experimental Setting and Results

We keep the experimental schedule and setting of the previous Section in terms of
the 9 datasets, the 10 fold averaging procedure and the maximal training set size
Ntr = N/2. We use the GPLVM log likelihood of the data LZ(X, θ), the LPO
log density with deterministic latent centres (LLPO-det(X, θ), Vx = 0) and
the LPO log density using a Gaussian latent centres LLPO-rd(X, θ) to optimise
the latent centres X and the hyperparameters θ. Our numerical results include 3
different latent dimensions d, 3 preprocessing procedures and 5 different numbers
of leave-out points P . Optimisation is done using 600 conjugate gradient steps
alternating between X and θ. In order to compress the big amount of numbers,
we report the method with highest test density as shown in Figure 2, only.

The most obvious conclusion, we can draw from the numerical experiments,
is the bad performance of LZ(X, θ) as a training procedure for GPLVM in the
context of density modeling. This finding is consistent over all datasets and
numbers of training points. We get another conclusive result in terms of how
the latent variance Vx influences the final test densities3. Only in the bodyfat
data set it is not beneficial to allow for latent variance. It is clear that this is
an intrinsic property of the dataset itself, whether it prefers to be modelled by
a spherical Gaussian mixture or by a full Gaussian mixture.

An important issue, namely how well a fancy density model performs com-
pared to very simple models, has in the literature either been ignored [7,8] or
only done in a very limited way [6]. Experimentally, we can conclude that on
some datasets e.g. diabetes, sonar, abalone our procedure cannot compete

3 In principle, Vx could be fixed to I because its scale can be modelled by X.
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Fig. 2. Each panel displays the log test density averaged over 10 random splits for

three different GPLVM training procedures and the best out of 41 baselines (penalised

mixture k = 1..13, diag.+isotropic KDE, manifold Parzen windows with 36 different

parameter settings) as well as various mixture of factor analysers (MFA) settings as

a function of the number of training data points Ntr. We report the maximum value

across latent dimension d = {1, 2, 3}, three preprocessing methods (raw, scaled to unit

variance, whitened) and P = {1, 2, 5, 10, 15} leave-out points . The GPLVM training

procedures are the following: LLPO-rd: stochastic leave-P -out density (Eq. 3 with latent

Gaussians, Vx � 0), LLPO-det: deterministic leave-P -out density (Eq. 3 with latent

Diracs, Vx = 0) and LZ : marginal likelihood (Eq. 1).

with a plain gm model. However note, that the baseline numbers were obtained
as the maximum over a wide (41 in total) range of parameters and methods.

For example, in the usps case, our elaborate density estimation procedure
outperforms a single penalised Gaussian only for training set sizes Ntr > 100.
However, the margin in terms of density is quite big: On Ntr = 150 prewhitened
data points LLPO(X, θ) with deterministic latents yields 70.47 at d = 2, whereas
full LLPO(X, θ) reaches 207 at d = 4 which is significantly above 185.4 as ob-
tained by the gm method – since we work on a logarithmic scale, this corresponds
to factor of 2.4 · 109 in terms of density.

3.3 Running Times

While the baseline methods such as gm, kde and mp run in a couple of minutes
for the usps dataset, training a GPLVM with either LLPO(X, θ), Vx = 0 or
LZ(X, θ) takes considerably longer since a lot of cubic covariance matrix opera-
tions need to be computed during the joint optimisation of (X, θ). The GPLVM
computations scale cubically in the number of data points Ntr used by the GP
forward map and quadratically in the dimension of the observed space D. The
major computational gap is the transition from Vx = 0 to Vx ) 0 because in
the latter case, covariance matrices of size D2 have to be evaluated which cause
the optimisation to last in the order of a couple of hours. To provide concrete
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timing results, we picked Ntr = 150, d = 2, averaged over the 9 datasets and
show times relative to LZ . alg gm(1) gm(10) kde mp mfa LZ LLPO-det LLPO-rd

trel 0.27 0.87 0.93 1.38 0.30 1.00 35.39 343.37

Note that the methods LLPO are run in a conservative fail-proof black box
mode with 600 gradient steps. We observe good densities after considerably less
gradient steps already. Another straightforward speedup can be obtained by
carefully pruning the number of inputs to the LLPO models.

4 Conclusion and Discussion

We have discussed how the basic GPLVM is not in itself a good density model,
and results on several datasets have shown, that it does not generalise well. We
have discussed two alternatives based on explicitly projecting forward a mixture
model from the latent space. Experiments show that such density models are
generally superior to the simple GPLVM.

Among the two alternative ways of defining the latent densities, the simplest
is a mixture of delta functions, which – due to the stochasticity of the GP map
– results in a smooth predictive distribution. However, the resulting mixture of
Gaussians, has only axis aligned components. If instead the latent distribution
is a mixture of Gaussians, the dimensions of the observations become correlated.
This allows the learnt densities to faithfully follow the underlying manifold.

Although the presented model has attractive properties, some problems re-
main: The learning algorithm needs a good initialisation and the computational
demand of the method is considerable. However, we have pointed out that in
contrast to the GPLVM, the number of latent points need not match the number
of observations allowing for alternative sparse methods.

We have detailed how to adapt ideas based on the GPLVM to density modeling
in high dimensions and have shown that such models are feasible to train. Code
can be obtained from http://www.kyb.mpg.de/~hn.
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Appendix

Both K̂∗ = E[kk�] = [k̂∗(xi,xj)]ij and k̃∗ = E[k] = [k̃∗(xj)]j are the following
expectations of k = [k(x,x1), .., k(x,xN )]� w.r.t. N (x|x∗,Vx):

k̃∗(xi) = σ2
f

∣∣VxW−1 + I
∣∣− 1

2 ρ
(
Vx + W,xi − x∗

)
, ρ(D,y) = e−

1
2y�D−1y, and

k̂∗(xi,xj) =
k(xi,x∗)k(xj ,x∗)√

|2VxW−1 + I|
ρ

(
1
2
WV−1

x W + W,
xi + xj

2
− x∗

)
.
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Laura Leal-Taixé1,�, Matthias Heydt, Sebastian Weiße2, Axel Rosenhahn2,3,
and Bodo Rosenhahn1

1 Leibniz Universität Hannover, Appelstr. 9A, Hannover, Germany
2 Applied Physical Chemistry, University of Heidelberg, INF 253, Heidelberg, Germany
3 Institute of Toxicology and Genetics (ITG), Forschungszentrum Karlsruhe, Germany

leal@tnt.uni-hannover.de

Abstract. Digital in-line holography is a 3D microscopy technique which has
gotten an increasing amount of attention over the last few years in the fields of
microbiology, medicine and physics. In this paper we present an approach for au-
tomatically classifying complex microorganism motions observed with this mi-
croscopy technique. Our main contribution is the use of Hidden Markov Models
(HMMs) to classify four different motion patterns of a microorganism and to
separate multiple patterns occurring within a trajectory. We perform leave-one-
out experiments with the training data to prove the accuracy of our method and
to analyze the importance of each trajectory feature for classification. We fur-
ther present results obtained on four full sequences, a total of 2500 frames. The
obtained classification rates range between 83.5% and 100%.

1 Introduction

Many fields of interest in biology and other scientific research areas deal with intrinsi-
cally three-dimensional problems. The motility of swimming microorganisms such as
bacteria or algae is of fundamental importance for topics like pathogen-host interac-
tions [1], biofilm-formation [2], or biofouling by marine microorganisms [3].

Understanding the motility and behavioral patterns of microorganisms allows us to
understand their interaction with the environment and thus to control environmental
parameters to avoid unwanted consequences such as infections or biofouling. To study
these effects in 3D several attempts have been made: tracking light microscopy, capable
of tracking one bacterium at a time [4], stereoscopy [5] or confocal microscopy [6].

Fully automated analyzing tools are becoming necessary given the huge amount of
data that can be obtained with these imaging techniques. Besides generating motion tra-
jectories from microscopic data, a classification afterwards allows the biologists to get
in a compact and compressed fashion the desired information from the large image sets.
Indeed, the classification of motion patterns in biology is a well-studied topic [7] but
identifying these patterns manually is a complicated task. Recently, machine learning
and pattern recognition techniques have been introduced to analyze in detail such com-
plex movements. These techniques include: Principal Component Analysis (PCA) [8],
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(a) (b)

Fig. 1. (a) Projections obtained with digital in-line holography (inverted colors for better visual-
ization). Sample trajectory in red. (b) Four patterns colored according to speed: orientation (1),
wobbling (2), gyration (3) and intensive surface probing (4)

a linear transformation used to analyze high dimensional data; Bayesian models [9]
which use a graph model and the rules of probability theory to select among different
hypotheses; or Support Vector Machines (SVM) [10], which use training data to find
the optimum parameters of the model representing each class. A comparison of machine
learning approaches applied to biology can be found in [11].

In order to classify biological patterns, we need to use an approach able to han-
dle time-varying signals. Hidden Markov Models [12] are statistical models especially
known for their application in temporal pattern recognition. They were first used in
speech recognition and since then, HMMs have been extensively applied to vision. Ap-
plications vary from handwritten word recognition [13], face recognition [14] or human
action recognition [15, 16].

In this paper, we focus on the classification of four motion patterns of the green alga
Ulva linza with the use of Hidden Markov Models. Furthermore, our system is able to
find and separate different patterns within a single sequence. Besides classification of
motion patterns, a key issue is the choice of features used to classify and distinguish the
involved patterns. For this reason we perfom an extensive analysis of the importance of
typical motion parameters, such as velocity, curvature, orientation, etc. Our developed
system is highly flexible and can easily be extended. Especially for forthcoming work
on cells, microorganisms or human behavior, such automated algorithms are of pivotal
importance for high throughput analysis of individual segments in motion data.

2 Digital in-line Holography (DIH)

An alternative to conventional optical microscopy is provided by digital in-line holog-
raphy, a lensless microscopy technique which intrinsically contains three-dimensional
information about the volume under investigation.

The important requirements are a sample of sufficient transparency and a diver-
gent, coherent wave. The holographic microscope setup follows directly Gabors initial
idea [17] and has been implemented for laser radiation by Xu et al. [18]. A divergent
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wavefront is generated by diffraction of a laser beam at a pinhole. A so-called hologram
is then recorded by a CCD- or CMOS-chip. This hologram is then reconstructed back
into real space by a Kirchhoff-Helmholtz transformation [18]:

K(r) =

∫
S

I(ξ) exp

[
ikrξ

|ξ|
]

dξ (1)

The integration extends over the 2D surface of the screen with coordinates ξ=(X, Y, L),
where L is the distance from the source (pinhole) to the center of the detector (CCD
chip), I(ξ) is the contrast image (hologram) on the screen obtained by subtracting the
images with and without the object present and k the wave number: k = 2π/λ.

From the reconstruction 3 projections XY , XZ and Y Z are obtained (see Figure
1(a)) as described in [19]. These projections contain the image information of the com-
plete observation volume, i.e. from every object located in the light cone between pin-
hole and detector. The extraction of the particle coordinates in combination with a time
series of holograms enables one to track multiple objects in 3D over time [3, 20].

Determining 3D trajectories is a complex task which still presents some major chal-
lenges. We make use of the system described in [21], which uses the multi-level Hungar-
ian to obtain the full 3D trajectories from 3 projections. Trajectories are then manually
verified by specialists and tagged according to their motion pattern.

3 Hidden Markov Models

Hidden Markov Models [12] are statistical models of sequencial data widely used in
many applications in artificial intelligence, speech and pattern recognition and modeling
of biological sequences.

In an HMM it is assumed that the system being modeled is a Markov process with
unobserved states. This hidden stochastic process can only be observed through another
set of stochastic processes that produce the sequence of symbols O = o1, o2, ..., oM .
An HMM consists of a number N of states S1, S2, ..., SN . The system is at one of
the states at any given time. Every HMM can be defined by the triple λ = (Π, A, B).
Π = {πi} is the vector of initial state probabilities. Each transition from Si to Sj can
occur with a probability of aij , where

∑
j aij = 1. A = {aij} is the state transition

matrix. In addition, each state Si generates an output ok with a probability distribution
bik = P (ok|Si). B = {bik} is the emission matrix.

A detailed introduction to HMM theory can be found in [12].

4 HMMs for Motion Pattern Classification

In this section we describe the different types of motion patterns to classify, as well as
the design of the complete HMM and the features used for classification.

4.1 Types of Patterns

In our experimental setup we are interested in the four patterns depicted in Figure 1(b):
Orientation(1), Wobbling(2), Gyration(3) and intensive surface probing or Spinning(4).
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They show a high similarity with the patterns observed before in [22] for the brown
algae Hincksia Irregularis.

Orientation. Pattern 1 in Figure 1(b) is an example for the Orientation pattern. This
pattern typically occurs in solution and far away from surfaces. The most important
characteristics of the pattern are the high swimming speed (a mean of 150μm/s) and
a straight swimming motion with moderate turning angles.

Wobbling. Pattern 2 is called the Wobbling pattern and its main characteristic is a
much slower mean velocity of around 50μm/s. The spores assigned to the pattern of-
ten change their direction of movement and only swim in straight lines for very short
distances. Compared to the orientation pattern this leads to less smooth trajectories.

Gyration. Pattern 3 is called the Gyration pattern. This pattern is extremely important
for the exploration of surfaces as occasional surface contacts are observable. The be-
havior in solution is similar to the Orientation pattern. Since in this pattern spores often
switch between swimming towards and away from the surfaces, it can be interpreted as
a pre-stage to surface probing.

Intensive surface probing and Spinning. Pattern 4 involves a swimming in circles
close to the surface within a very limited region. After a certain exploration time, the
spores leave the surface to the next position and start swimming in circular patterns
again. This motion is characterized by decreased mean velocities of about 30μm/s in
combination with a higher tendency to change direction (see Figure 1(b), case 4).

4.2 Features Used for Classification

An analysis of the features used for classification is presented in this section. Many of
the features are typical and can be used in any motion analysis problem. An intrinsic
characteristic of digital in-line holography is the lower resolution of the z position com-
pared to the x, y resolution [23]. Since many of the following features depend on the
depth value, we compute the average measurements within 5 frames in order to reduce
the noise of such features. The four characteristic features used are:

– v, velocity: the speed of the particles is an important descriptive feature as we can
see in Figure 1(b). We use only the magnitude of the speed vector, since the direc-
tion is described by the next two parameters. Range is [0, maxSpeed]. maxSpeed
is the maximum speed of the particles as found experimentally in [19].

– α, angle between velocities: it measures the change in direction, distinguishing
stable patterns from random ones. Range is [0, 180].

– β, angle to normal of the surface: it measures how the particles approaches the
surface or how it swims above it. Range is [0, 180].

– D, distance to surface: this can be a key feature to differentiate surface-induced
movements from general movements. Range is (mz , Mz], where mz and Mz are
the z limits of the volume under study.
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In order to work with Hidden Markov Models, we need to represent the features for
each pattern with a fixed set of symbols. The number of total symbols will depend on
the number of symbols used to represent each feature Nsymbols = NvNαNβND.

In order to convert every symbol for each feature into a unique symbol for the HMM,
we use Equation (2), where Y is the final symbol we are looking for, Y1..4 are the
symbols for each of the features, ranged [1..NY1..4], where NY1..4 are the number of
symbols per feature.

Y = Y1 + (Y2 − 1)NY1 + (Y3 − 1)NY1NY2 + (Y4 − 1)NY1NY2NY3 (2)

In the next sections we present how to use the resulting symbols to train the HMMs.
The symbols are the observations of the HMM, therefore, the training process gives us
the probability of emitting each symbol for each of the states.

4.3 Building and Training the HMMs

In speech recognition, an HMM is trained for each of the phonemes of a language. Later,
words are constructed by concatenating several HMMs of the phonemes that form the
word. HMMs for sentences can even be created by concatenating HMMs of words, etc.
We take a similar hierarchical approach in this paper. We train one HMM for each of
the patterns and then we combine them into a unique Markov chain with a simple yet
effective design that will be able to describe any pattern or combination of patterns.
This approach can be used in any problem where multiple motion patterns are present.

Individual HMM per pattern. In order to represent each pattern, we build a Markov
chain with N states and we only allow the model to stay in the same state or move
one state forward. Finally, from state N we can also go back to state 1. The number
of states N is found empirically using the training data. The HMM is trained using the
Baum-Welch algorithm to obtain the transition and emission matrices.

Complete HMM. The idea of having a complete HMM that represents all the patterns
is that we can not only classify sequences where there is one pattern present, but se-
quences where the particle makes transitions between different patterns. In Figure 2(a)
we can see a representation of the complete model while the design of the transition
matrix is depicted in Figure 2(b). The four individual HMMs for each of the patterns
are placed in parallel (blue). In order to deal with the transitions we create two special
states: the START and the SWITCH state.

The START state is just created to allow the system to begin at any pattern (orange).
We define Pstart = PSwitchToModel = 1−Pswitch

NP
where NP is the number of patterns.

As START does not contain any information of the pattern, it does not emit any symbol.
The purpose of the new state SWITCH is to make transitions easier. Imagine a given

trajectory which makes a transition from Pattern 1 to Pattern 2. While transitioning,
the features create a symbol that neither belongs to Pattern 1 nor 2. The system can
then go to state SWITCH to emit that symbol and continue to Pattern 2. Therefore,
all SWITCH emission probabilities are 1

Nsymbols
. Since SWITCH is such a convenient

state, we need to impose restrictive conditions so that the system does not go or stay
in SWITCH too often. This is controlled by the parameter Pswitch, set at the minimum
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Fig. 2. (a) Complete HMM created to include changes between patterns within one trajectory. (b)
Transition matrix of the complete HMM

value of all the Pmodel minus a small ε. This way, we ensure that Pswitch is the lowest
transition probability in the system.

Finally, the sequence of states given by the Viterbi algorithm determines the motion
pattern observed. Our implementation uses the standard MatLab HMM functions.

5 Experimental Results

In this section we present several experimental results to prove the use of Hidden
Markov Models to classify biological patterns.

5.1 Evaluation of the Features Used for Classification

The experiments in this section have the purpose of determining the impact of each
feature for the correct classification of each pattern. We perform leave-one-out tests on
our training data which consists of 525 trajectories: 78 for wobbling, 181 for gyration,
202 for orientation and 64 for intensive surface probing. The trajectories are obtained
automatically with the method in [21] and verified and classified manually by experts.

The first experiment that we conduct (see Figure 3) is to determine the effect of each
parameter for the classification of all the patterns. The number of symbols and states
can only be determined empirically since they depend heavily on the amount of training
data. In our experiments, we found the best set of parameters to be N = 4, Nv = 4,
Nα = 3, Nβ = 3 and ND = 3, for which we obtain a classification rate of 83.86%.

For each test, we set one parameter to 1, which means that the corresponding feature
has no effect in the classification process. For example, the first bar in blue labeled ”No
Depth” is done with ND = 1. The classification rate for each pattern (labeled from 1 to
4) as well as the mean for all the patterns (labeled Total) is recorded.
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Fig. 3. Classification rate for parameters N = 4, Nv = 4, Nα = 3, Nβ = 3 and ND = 3. On
each experiment, one of the features is not used. In the last experiment all features are used.

As we can see, the angle α and the normal β information are the less relevant fea-
tures, since the classification rate with and without these features is almost the same.
The angle information depends on the z component and, as explained in section 4.2,
the lower resolution in z can result in noisy measurements. In this case, the trade-off
is between having a noisy angle data which can be unreliable, or an average measure
which is less discriminative for classification. The most distinguishing feature accord-
ing to Figure 3 is the speed. Without it, the total classification rate decreases to 55.51%
and down to just 11.05% for the orientation pattern.

Based on the previous results, we could think of just using the depth and speed in-
formation for classification. But if Nα = Nβ = 1, the rate goes down to 79.69%. That
means that we need one of the two measures for correct classification. The parame-
ters used are: N = 4, Nv = 4, Nα = 1, Nβ = 3 and ND = 3, for which we obtain a
classification rate of 83.5%. This rate is very close to the result with Nα = 3, with the
advantage that we now use less symbols to represent the same information. Several tests
lead us to choose N = 4 number of states.

The confusion matrix for these parameters is shown in Figure 4. As we can see,
patterns 3 and 4 are correctly classified. The common misclassifications occur when
Orientation (1) is classified as Gyration (3), or when Wobbling (2) is classified as Spin-
ning (4). In the next section we discuss these misclassifications in detail.

0.75

0.68

0.94

0.98

0.07 0.01 0.24

0.09 0.16

0.01 0.05

0.024 - Spin 

3 - Gyr

2 - Wob

1 - Ori

4 - Spin 3 - Gyr2 - Wob1 - Ori

Fig. 4. Confusion matrix with parameters N = 4, Nv = 4, Nα = 1, Nβ = 3 and ND = 3
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5.2 Classification on Other Sequences

In this section, we present the performance of the algorithm when several patterns ap-
pear within one trajectory and also analyze the typical misclassifications. As test data
we use four sequences which contain 27, 40, 49 and 11 trajectories, respectively. We
obtain classification rates of 100%, 85%, 89.8% and 100%, respectively. Note that for
the third sequence, 60% of the misclassifications are only partial, which means that the
model detects that there are several patterns but only one of them is misclassified.

(a) (b)

Fig. 5. (a) Wobbling (pattern 2) misclassified as Spinning (4). (b) Gyration (3) misclassified as
Orientation (1). Color coded according to speed as in Figure 1(b)

One of the misclassifications that can occur is that Wobbling (2) is classified as Spin-
ning (4). Both motion patterns have similar speed values and the only truly differentiat-
ing characteristics are the depth and the angle α. Since we use 3 symbols for depth, the
fact that the microorganism touches the surface or swims near the surface leads to the
same classification. That is the case of Figure 5(a), in which the model chooses pattern
Spinning (4) because the speed is very low (dark blue) and sometimes the speed in the
Wobbling pattern can be a little higher (light blue).

As commented in section 4.1, Gyration (3) and Orientation (1) are two linked pat-
terns. The behavior of gyration in solution is similar to the orientation pattern, that is
why the misclassification shown in Figure 5(b) can happen. In this case, since the mi-
croorganism does not interact with the surface and the speed of the pattern is high (red
color), the model detects it as an orientation pattern. We note that this pattern is difficult
to classify, even for a trained expert.

On the other hand, the model has been proven to handle changes between patterns
extremely well. In Figure 6(a), we see the transition between Gyration (3) and Spinning
(4). In Figure 6(b), color coded according to classification, we can see how the model
detects the Orientation part (red) and the Gyration part (yellow) perfectly well. The
model performs a quick transition (marked in blue) and during this period the model
stays in the SWITCH state. We have verified that all the transition periods detected by
the model lie within the manually annotated transition boundaries marked by experts,
even when there is more than one transition present in a trajectory.

The classification results on a full sequence are shown in Figure 7.
Finally, we can obtain the probability of each transition (e.g. from Orientation to

Spinning) for a given dataset under study. This is extremely useful for experts to under-
stand the behavior of a certain microorganism under varying conditions.
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(a) Orientation (1) + Spinning (4). Zoom on the spinning
part. Color coded according to speed as in Figure 1(b).

1

3

(b) Orientation (1, red) + Gyration
(3, yellow). Transition marked in
blue and pointed by an arrow.

Fig. 6. Sequences containing two patterns within one trajectory

6 Conclusions

We presented a fully automatic method to classify four different motion patterns of a mi-
croorganism observed with digital in-line holography. We used Hidden Markov Models
for classification, since it allows us to encode the dynamic information of each pat-
tern. We presented a simple yet effective hierarchical design which combines multiple
trained HMMs (one for each of the patterns), which has proved successful to identify
different patterns within one single trajectory. The changes between one pattern and
another are correctly detected by the complete HMM. The experiments performed on
four full sequences result in a total classification rate between 83.5% and 100%. Fur-
thermore, we presented a detailed analysis of the impact of each of the features used
for classification. The proper use of a powerful machine learning tool, such as Hidden
Markov Models, can be extremely useful to study microorganism motility, providing a
vast amount of analyzed data to the experts.
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Abstract. Atrial fibrillation is the most common sustained arrhyth-

mia. One important treatment option is radio-frequency catheter abla-

tion (RFCA) of the pulmonary veins attached to the left atrium. RFCA

is usually performed under fluoroscopic (X-ray) image guidance. Over-

lay images computed from pre-operative 3-D volumetric data can be

used to add anatomical detail otherwise not visible under X-ray. Un-

fortunately, current fluoro overlay images are static, i.e., they do not

move synchronously with respiratory and cardiac motion. A filter-based

catheter tracking approach using simultaneous biplane fluoroscopy was

previously presented. It requires localization of a circumferential track-

ing catheter, though. Unfortunately, the initially proposed method may

fail to accommodate catheters of different size. It may also detect wrong

structures in the presence of high background clutter. We developed a

new learning-based approach to overcome both problems. First, a 3-D

model of the catheter is reconstructed. A cascade of boosted classifiers

is then used to segment the circumferential mapping catheter. Finally,

the 3-D motion at the site of ablation is estimated by tracking the re-

constructed model in 3-D from biplane fluoroscopy. We compared our

method to the previous approach using 13 clinical data sets and found

that the 2-D tracking error improved from 1.0 mm to 0.8 mm. The 3-D

tracking error was reduced from 0.8 mm to 0.7 mm.

1 Motivation

Recent research in the area of X-ray guidance for electrophysiology (EP) proce-
dures found that augmented fluoroscopy using overlay images rendered from 3-D
images (CT, MRI, C-Arm CT) facilitates more precise catheter navigation and a
reduction in fluoroscopy time [1,2,3]. Critical structures like the esophagus and the
left atrial appendage are invisible under regular fluoroscopy unless contrast agent
is applied. Thus, rendering overlays of such structures for visual procedure guid-
ance further improves safety. Unfortunately, current image overlay methods still
lack motion compensation. A first approach tracking a commonly used mapping
catheter has been proposed in [4]. This circumferential mapping catheter measures
the electrical potentials at the ostium of the pulmonary vein (PV) considered for

M. Goesele et al. (Eds.): DAGM 2010, LNCS 6376, pp. 293–302, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(a) ROI (b) Filtering (c) Classification

Fig. 1. (a) A region-of-interest around the catheter is presented on the left. (b) The

result of the segmentation by filter methods [4,7,8]. (c) Segmentation using a boosted

classifier cascade.

ablation. Catheter tracking was accomplished by calculating a 3-D model of the
catheter, a filter-based segmentation and 2-D/3-D registration of the catheter
model to biplane fluoroscopic images. Various methods for catheter tracking
have been proposed. They involve filter-based techniques [5] as well as template-
matching and learning-based approaches [6]. For electrophysiology procedures,
different types of catheters are available. They differ in width, number of elec-
trodes and electrode spacing. These parameters have to be considered explicitly
for a filter-based catheter tracking approach. This adds additional complexity
often reduces the robustness of filter-based approaches. This is why learning-
based methods are often preferable for more complicated pattern recognition
problems. They can reach a better performance if the training set is sufficiently
comprehensive to capture all relevant catheter features encountered in clinical
practice. Learning-based algorithms are usually superior with respect to sup-
pressing interfering structures that are not of interest. This is demonstrated
in Fig. 1 presenting a comparison between segmentation results obtained using
filtering [4,7,8] and by classification. We used a boosted classifier cascade to seg-
ment the circumferential mapping catheter. In the next step, the 3-D catheter
model is generated as proposed in [4,7,8]. Tracking itself is performed by a 2-
D/3-D registration. These steps are explained in more detail below.

2 Catheter Model Generation

Our method requires the generation of a 3-D catheter model, which is based on
the assumption that the perspective projection of the circumferential mapping
catheter, when fit to the pulmonary veins, can be approximated as a 3-D ellipse.
The circumferential mapping catheter can also be approximated as an ellipse in
2-D, because a 3-D elliptical object remains elliptical when perspectively pro-
jected onto a 2-D imaging plane. The ellipses on the 2-D fluoroscopic images are
denoted as CA/B ∈ R3×3, with the index A or B indicating the corresponding
imaging plane of the C-arm. A 3-D elliptical cone can then be spanned with the
projection matrix PA/B ∈ R3×4 and the ellipse within the imaging plane. The
base of the elliptical cone is the ellipse in the imaging plane and the vertex is
the optical center. It can be shown that the elliptical cone can be represented as
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QA/B = P T
A/BCA/BP A/B (1)

in matrix presentation [9]. The 3-D ellipse representing the 3-D mapping catheter
is reconstructed by intersecting the two elliptical cones QA and QB correspond-
ing to plane A and plane B of a biplane system respectively. The solution is
found by calculating η such that the quadric

Q(η) = QA + ηQB (2)

is of rank 2 [9]. As pointed out in [4,7,8], there are two possible solutions. Prior
knowledge about the pseudo-circular shape of the mapping catheter is used and
the result that is more circular is chosen.

3 Classifier Cascade

The catheter segmentation method not only has to be reliable, but it needs to
be fast as well. Speed is necessary to ensure that the catheter can be tracked
in real-time at the frame rate set at the X-ray acquisition system. We found
that a combination of Haar-like features and a cascade of boosted classifiers met
both requirements to differentiate the live fluoroscopic images into catheter and
background. Haar-like features [10] calculate various patterns of intensity differ-
ences. Several feature prototypes are listed in Fig. 2(a). Some features detect
edges, whereas others focus on line structures. Especially the latter are useful
for detecting the circumferential mapping catheter, which often appears as a
thin, elongated object with a loop at its end, see Fig. 1(a). Actual features are
obtained by shifting and scaling the prototypes within a predefined window. In
our case, a window size of 15 × 15 was found to be sufficient for good results.
Thereby, contextual information around the center pixel is considered, which is

(a) Feature

Types

(b) Classification and Regression Tree (c) Cascade

Fig. 2. Features types and classifier structure for catheter segmentation. (a) Sev-

eral prototypes of Haar-like features. (b) Exemplary classification and regression tree

(CART) with five feature nodes θ1, . . . , θ5 and six leaves α1, . . . , α6. (c) Classifier cas-

cade consisting of N stages with strong classifiers ξ1, . . . ξN ; each strong classifier ξi

consists of a linear combination of weak classifiers, here CARTs.
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important to differentiate between catheter and background structures. How-
ever, even for moderate window sizes, the resulting number of features is large
and easily amounts to several hundreds of thousands. Features are calculated ef-
ficiently through integral images [10]. To achieve reliable and fast segmentation,
the most suitable features for discriminating between catheter and background
have to be chosen and integrated into a classifier in a suitable manner. This is
carried out by the AdaBoost algorithm [11]. The idea is to combine several weak
classifiers, to form a strong classifier. The classifier minimizing the classification
error is added to a linear combination of weak classifiers until the overall error
is below the desired threshold. After each training iteration, the importance of
individual samples is re-weighted to put more emphasis on misclassifications for
the next evaluation. Instead of single features and intensity thresholds, we use
classification and regression trees (CARTs) [12] as weak classifiers. A CART is
a small tree of fixed size. At each node, a threshold θj associated with a fea-
ture partitions the feature space. This way, flexibility is increased and objects
with complex feature distributions can be handled. The result of a CART is the
value αk of the classifier reached as leave node. An exemplary CART is shown
in Fig. 2(b). We organize N strong classifiers ξi, . . . , ξN composed of weighted
combinations of CARTs into a cascade, which is illustrated in Fig. 2(c). In our
case, four strong classifiers (N = 4) yielded good results. At each stage, a sam-
ple is either rejected (−1) or passed on to the next stage. Only if the sample is
accepted (+1) at the final stage, it is accepted as part of the object. Thus during
training, the focus is on maintaining a high true positive rate while successively
reducing the false positive rate, either by adding more weak classifiers to a stage
or by adding an entirely new stage. The training data set consisted of 13 clinical
data sets with a total of 938 monoplane frames. For evaluation, the classifier
cascade was trained on a leave-one-out basis, i.e., 12 sequences were used for
training and the remaining sequence was used for segmentation and tracking.

4 Tracking by Registration

The elliptical shape of the circumferential mapping catheter is used for tracking.
Catheter tracking itself is performed by rigid registration [13] of the catheter
model to the segmentation result derived from the previous step. To this end,
the same ROI as for the classification is used. As the size of the mapping catheter
may not be available beforehand, the previous approach in [4,7,8] used normals
to the ellipse to simulate the width of the catheter. As the length and the sam-
pling of the normals depends on further parameters that need to be adjusted, we
use a thinning algorithm as proposed in [14]. By thinning, we generate a skeleton
of the catheter, which involves far fewer parameters than needed otherwise. A
distance map IDT,A/B is calculated from the skeleton as proposed in [15] for
each imaging plane. It encodes the absolute distance from a pixel to its closest
segmented catheter pixel. It also provides a smooth representation of the fluo-
roscopic image with a pronounced minimum around the shape of the mapping
catheter to increase the capture range. Model-based catheter tracking in 3-D is
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Fig. 3. Flow diagram of the filter-based catheter tracking approach for motion compen-

sation [8]. The objective is to obtain a dynamic fluoroscopic overlay image for improved

catheter navigation.
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Fig. 4. Flow diagram of our learning-based motion compensation approach. Image

pre-processing has been replaced by classification-based segmentation followed by a

post-processing step. The goal is to obtain a distance map.
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achieved by performing 2-D/3-D registration. Hence, the reconstructed catheter
model is rotated by R ∈ R4×4 and translated by T ∈ R4×4 first. It is then
projected onto the two imaging planes of the bi-plane C-arm system. The aver-
age distance between the projected points and the closest feature point (i.e. the
circumferential mapping catheter) in fluoroscopic images is efficiently calculated
using the distance map introduced above. A suitable rotation and translation is
found by optimizing

R̂, T̂ = argmin
R,T

∑
i

IDT(P A · T · R · wi) +
∑

i

IDT (P B · T · R · wi) (3)

with the 3-D catheter model points wi ∈ R4 in homogeneous coordinates. The
projection matrices P A and P B do not need to be identical to the ones in
Eq. 1. The parameters used for optimizing are three rotation angles around the
main axes in 3-D, combined in R, as well as a three-dimensional translation,
represented in T . As optimization strategy, a nearest neighbor search [16] is
used, i.e., the position of the local optimum on a large scale is taken as starting
point for the optimization on a smaller scale. The estimated 3-D rotation and
translation can be directly applied to the 2-D overlay to move it in sync with
the tracked device. An overview of the reference method [4,7,8] is presented in
Fig. 3 and an overview of our proposed algorithm is given in Fig. 4.

5 Evaluation and Results

Our approach was evaluated on 13 clinical data sets, collected from 6 different
patients at one clinical site. Three different circumferential mapping catheters
were used. For evaluation, we calculate the 2-D tracking error as the average
2-D distance between the projection of the 3-D catheter model and a 2-D gold-
standard segmentation of the circumferential mapping catheter provided by a
cardiologist. We compare our results with those in [4,7,8], see Fig. 5. Clinical data
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Fig. 5. Comparison of the different catheter tracking approaches. (a) The result of

the reference method presented in [4,7,8]. This method yielded an average 2-D track-

ing error of 1.0 mm ± 0.4 mm. (b) Our improved algorithm using a boosted classi-

fier cascade to segment the circumferential mapping catheter yielded a 2-D error of

0.8 mm ± 0.4 mm.



300 A. Brost et al.

set No. 6 contains a barium swallow of the patient to outline the esophagus, a
critical structure during ablation. Unfortunately, in one frame of this sequence,
the barium hides the mapping catheter, resulting in a rather high maximum
error. This single frame was not excluded. Since catheter tracking is performed
in 3-D, we follow the evaluation in [7,8] to estimate the 3-D motion correction.
Therefore, the tip of the mapping catheter was manually localized throughout
all sequences by triangulating its 3-D position from bi-plane frames to get a
reference point. In the next step, we applied our motion estimation approach
to the catheter tip to move it from its 3-D position in the previous frame to
the next frame. Because of that, we can compare the 3-D position reached by
applying the estimated motion to the actual 3-D reference point obtained by
triangulation [17]. Finally, the error was calculated as the Euclidean distance in
3-D space. Moreover, an error without performing motion compensation can be
calculated was well. To this end, the 3-D distance between the first frame to all
remaining frames is used to estimate the observed 3-D motion. A comparison
of the observed 3-D motion to both motion correction approaches is shown in
Fig. 6(a). A direct comparison of the filter-based approach versus the learning-
based method is given in Fig. 6(b).
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Fig. 6. Comparison of the different catheter tracking approaches. (a) The result of

the filter-based method [4,7,8] and the learning-based method compared to the actual

3-D motion. An average 3-D motion of 4.5 mm ± 2.4 mm has been observed in our

clinical data. (b) Direct comparison of the 3-D tracking error of the filter-based and

the learning-based method. The filter-based method yielded an average 3-D tracking

error of 0.8 mm ± 0.5 mm, whereas the learning-based approach yielded an average

error of 0.7 mm ± 0.4 mm.

6 Discussion and Conclusions

We presented a method for 3-D motion estimation for radio-frequency catheter
ablation of atrial fibrillation. It is based on tracking of a circumferential mapping
catheter in biplane fluoroscopy imaging. Catheter tracking is performed by 2-
D/3-D registration of a 3-D elliptical catheter model to 2-D biplane images. The
method assumes that the circumferential mapping catheter remains anchored
at the pulmonary vein during ablation. Our clinical data suggests that the cir-
cumferential mapping catheter indeed moves very little with respect to the PV
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(a) (b) (c)

Fig. 7. Motion compensation can be visually assessed by contrast injection into a

pulmonary vein. (a) One image of a fluoroscopic sequence showing the administra-

tion of contrast agent. (b) Misfit of a static overlay due to motion. (c) Visual overlay

with improved positioning of the (red) fluoroscopic overlay image thanks to motion

compensation.

ostia when used to measure the electrical signals at the pulmonary ostia. When
comparing the two tracking approaches, it can be seen, that the learning-based
approach performs better than the filter-based approach overall. The 2-D track-
ing error could be reduced from 1.0 mm ± 0.4 mm to 0.8 mm ± 0.4 mm and the
3-D error from 0.8 mm ± 0.5 mm to 0.7 mm ± 0.4 mm. This has been displayed
in Fig. 1 showing one frame of Seq. 5. Here, the learning-based method reduced
the average 3-D tracking error from 2.0 mm to 1.2 mm. The benefit of mo-
tion compensation for X-ray fluoroscopy guidance can be appreciated by looking
at contrast-enhanced anatomical structures. An example is presented in Fig. 7.
The main advantage of the proposed learning-based approach is its robustness.
In particular, it generates fewer false positives as obtained when using the filter-
based approach. The advantage of 2-D/3-D registration with biplane images is
that it provides a more robust 3-D tracking compared to a monoplane situation.
The quality of the segmentation could be further improved by using either more
cascades or an increased number of features, but this goes hand in hand with
higher computational time. Our current implementation reaches a processing
speed of one frame-per-second (fps), as this frame rate is used at our clinical
partner for simultaneously biplane fluoroscopy. The presented method has not
yet been optimized for multi-core CPUs or GPUs. Further speed improvements
can be expected by taking advantage of parallel processing options. Moreover,
a classifier cascade was used to segment the catheter, but other segmentation
approaches could be applied as well. Beyond improving the technology, future
work will also focus on clinical evaluation of this method.
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Abstract. Image fusion in high-resolution aerial imagery poses a chal-

lenging problem due to fine details and complex textures. In particular,

color image fusion by using virtual orthographic cameras offers a com-

mon representation of overlapping yet perspective aerial images. This

paper proposes a variational formulation for a tight integration of redun-

dant image data showing urban environments. We introduce an efficient

wavelet regularization which enables a natural-appearing recovery of fine

details in the images by performing joint inpainting and denoising from

a given set of input observations. Our framework is first evaluated on

a setting with synthetic noise. Then, we apply our proposed approach

to orthographic image generation in aerial imagery. In addition, we dis-

cuss an exemplar-based inpainting technique for an integrated removal

of non-stationary objects like cars.

1 Introduction

In general, image fusion integrates information of multiple images, taken from
the same scene, in order to obtain an improved result with respect to noise, out-
liers, illumination changes etc. Fusion from multiple observations is a hot topic
in computer vision and photogrammetry since scene information can be taken
from different view points without additional costs. In particular, modern aerial
imaging technology provides multi-spectral images, which map every visible spot
of urban environments from many overlapping camera viewpoints. Typically, a
point on ground is at least visible in ten cameras. The provided, highly redundant
data enables efficient techniques for height field generation [1], but also methods
for resolution and quality enhancement [2,3,4,5,6]. On one hand, taking into ac-
count redundant observations of corresponding points in a common 3D world,
the localization accuracy can be significantly improved using an integration of
range data e.g. for 3D reconstruction [7]. On the other hand, accurate height
fields can also be exploited to align data, such as the corresponding color infor-
mation, within a common coordinate system. In our approach we exploit derived
range data to compute geometric transformations between the original images
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Fig. 1. An observed scene with overlapping camera positions. The scene is taken from

different viewpoints. We exploit computed range images to transform the point cloud

into a common orthographic aerial view. Our joint inpainting and denoising approach

takes redundant observations as input data and generates an improved fused image.

Note that some observations include many undefined areas (black pixels) caused by

occlusions and non-stationary objects.

and an orthographic view, which is related to novel view synthesis [2,3,4,8]. Due
to missing data in the individual height fields (e.g. caused by non-stationary
objects or occlusions) the initial alignment causes undefined areas, artifacts or
outliers in the novel view. Figure 1 depicts an urban scene taken from different
camera positions and a set of redundant images, geometrically transformed to
a common view. Some image tiles show large areas of missing information and
erroneous pixel values. Our task can also be interpreted as an image fusion from
multiple input observations of the same scene by joint inpainting and denoising.
While inpainting fills undefined areas, the denoising removes strong outliers and
noise by exploiting the high redundancy in the input data.

This paper has several contributions: First, we present a novel variational
framework for gray and color image fusion, which provides a smooth solution
over the image domain by exploiting redundant input images. In order to com-
pute natural appearing images we further introduce a wavelet transform [9], pro-
viding an improved texture prior for regularization, in our convex optimization
framework (Section 3). In the experimental section we show that our framework
can be successfully applied to image recovery and orthographic image generation
in high-resolution aerial imagery (Section 4). In addition, we present results for
exemplar-based inpainting, which enables an integrated removal of undesired,
non-stationary objects like cars. Finally, Section 5 concludes our work and gives
an outlook on future work.

2 Related Work

The challenging task of reconstructing an original image from given (noisy) ob-
servations is known to be ill-posed. Although fast mean or median computation
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over multiple pixel observations will suppress noisy or undefined areas, each
pixel in the result is treated independently. A variety of proposed algorithms
for a fusion of redundant information is based on image priors [2,8], image
transforms [10], Markov random field optimization procedures [3] and gener-
ative models [4]. Variational formulations are well-suited for finding smooth and
consistent solutions of the inverse problem by exploiting different types of reg-
ularizations [7,11,12,13,14]. The quadratic model [11] uses the L2 norm for reg-
ularization, which causes smoothed edges. Introducing a total variation (TV)
norm instead leads to the edge preserving denoising model proposed by Rudin,
Osher and Fatemi (ROF) [12]. The authors in [13] proposed to also use a L1 norm
in the data term to estimate the deviation between sought solution and input ob-
servation. Thus the resulting TV-L1 model is more effective in removing impulse
noise containing strong outliers than the ROF model. Zach et al. [7] applied the
TV-L1 to robust range image integration from multiple views. Although TV-
based methods are well suited for tasks like range data integration, in texture
inpainting the regularization produces results that look unnatural near recovered
edges (too much contrast). To overcome the problem of synthetic appearance,
natural image priors based on multi-level transforms like wavelets [9,15,16] or
curvelets [17] can be used within the inpainting and fusion model [14,18]. These
transforms provide a compact yet sparse image representation obtained with low
computational costs. Similar to [14], we exploit a wavelet transform for natu-
ral regularization within our proposed variational fusion framework capable to
handle multiple input observations.

3 Convex Fusion Model

In this section we describe our generic fusion model which takes into account
multiple observations of the same scene. For clarity, we derive our model for gray-
valued images, however the formulation can be easily extended to vector-valued
data like color images.

3.1 The Proposed Model

We consider a discrete image domain Ω as a regular grid of size W ×H pixels
with Ω = {(i, j) : 1 ≤ i ≤ W, 1 ≤ j ≤ H}, where the tupel (i, j) denotes a pixel
position in the domain Ω.

Our fusion model, which takes into account multiple observations and a
wavelet-based regularization, can be seen as an extension of the TV-L1 denois-
ing model proposed by Nikolova [13]. In the discrete setting the minimization
problem of the common TV-L1 model for an image domain Ω is formulated as

min
u∈X

⎧⎨⎩‖∇u‖1 + λ
∑

i,j∈Ω

|ui,j − fi,j|

⎫⎬⎭ , (1)

whereX = RWH is a finite-dimensional vector space provided with a scalar prod-
uct 〈u, v〉X =

∑
i,j ui,jvi,j , u, v ∈ X . The first term denotes the TV of the sought
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solution u and reflects the regularization in terms of a smooth solution. The second
term accounts for the summed errors between u and the (noisy) input data f . The
scalar λ controls the fidelity between data fitting and regularization. In following
we derive our model for the task of image fusion from multiple observations.

As a first modification of the TV-L1 model defined in (1), we extend the con-
vex minimization problem to handle a set of K scene observations (f1, . . . , fK).
Introducing multiple input images can be accomplished by summing the devia-
tions between the sought solution u and available observations fk, k = 1 . . .K
according to

min
u∈X

⎧⎨⎩‖∇u‖1 + λ
K∑

k=1

∑
i,j∈Ω

|ui,j − fk
i,j |

⎫⎬⎭ . (2)

Since orthographic image generation from gray or color information with sam-
pling distances of approximately 10 cm requires an accurate recovery of fine
details and complex textures, we replace the TV-based regularization with a
dual-tree complex wavelet transform (DTCWT) [9,16]. The DTCWT is nearly
invariant to rotation, which is important for regularization, but also to trans-
lations and can be efficiently computed by using separable filter banks. The
transform is based on analyzing the signal with two separate wavelet decom-
positions, where one provides the real-valued part and the other one yields the
complex part. Due to the redundancy in the proposed decomposition, the direc-
tionality can be improved, compared to standard discrete wavelets [9]. In order
to include the linear wavelet-based regularization into our generic formulation we
replace the gradient operator ∇ by the linear transform Ψ : X → C. The space
C ⊆ CD denotes the real- and complex-valued transform coefficients c ∈ C. The
dimensionality of CD directly depends on parameters like the image dimensions,
the number of levels and orientations. The adjoint operator of the transform Ψ ,
required for the signal reconstruction, is denoted as Ψ∗ and is defined through
the identity 〈Ψu, c〉C = 〈u, Ψ∗c〉X .

As the L1 norm in the data term is known to be sensitive to Gaussian noise
(we expect a small amount), we use the robust Huber norm [19] to estimate
the error between sought solution and observations instead. The Huber norm
is quadratic for small values, which is appropriate for handling Gaussian noise,
and linear for larger errors, which amounts to median like behavior. The Huber
norm is defined as

|t|ε =
{

t2

2ε : 0 ≤ t ≤ ε
t− ε

2 : ε < t
. (3)

Because of the height field driven alignment of the appearance information, unde-
fined areas can be simply determined in advance for a geometrically transformed
image fk. Therefore, we support our formulation with a spatially varying term
wk

i,j ∈ {0, 1}WH , which encodes the inpainting domain. The choice wk
i,j = 0

corresponds to pure inpainting at a pixel location (i, j).
Considering the wavelet-based regularization, the encoded inpainting domain

and the Huber norm, our extended energy minimization problem for redundant
observations can now be formulated for the image domain Ω as
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min
u∈X

⎧⎨⎩‖Ψu‖1 + λ

K∑
k=1

∑
i,j∈Ω

wk
i,j |ui,j − fk

i,j|ε

⎫⎬⎭ . (4)

In the following we highlight an iterative strategy, based on an optimal first-order
primal-dual algorithm, to minimize the non-smooth problem defined in (4).

3.2 Primal-Dual Formulation

Note that the minimization problem given in (4) poses a large-scale (the di-
mensionality directly depends on the number of image pixels e.g. for a small
color image tile: 3 × 16002 pixels) and non-smooth optimization problem. Fol-
lowing recent trends in convex optimization [20,21], we use an optimal first-order
primal-dual scheme [22,23] to minimize the energy. Thus we first need to con-
vert the formulation defined in (4) into a classical convex-concave saddle-point
problem. The general minimization problem is written as

min
x∈X

max
y∈Y

〈Kx, y〉 + G(x) − F ∗(y) , (5)

where K is a linear operator, G and F ∗ are convex functions and the term F ∗

denotes the convex conjugate of the function F . The finite-dimensional vector
spaces X and Y provide a scalar product 〈·, ·〉 and a norm ‖ · ‖ = 〈·, ·〉

1
2 . By ap-

plying the Legendre-Fenchel transform to (4), we obtain an energy minimization
problem as follows

min
u

max
c,q

{
〈Ψu, c〉 − δC(c) +

K∑
k=1

(〈
u− fk, qk

〉
− δQk(qk) − ε

2
‖qk‖2

) }
. (6)

In our case, the convex sets Q and C are defined as follows

Qk =
{
qk ∈ RWH : |qk

i,j | ≤ λwk
i,j , (i, j) ∈ Ω

}
, k = 1 . . .K, (7)

C =
{
c ∈ CD : ‖c‖∞ ≤ 1

}
, (8)

where the norm of the coefficient vector space C is defined as

‖c‖∞ = max
i,j

|ci,j | , |ci,j | =
√

(c1i,j)2 + (c2i,j)2 . (9)

Considering (6), we can first identify F ∗ = δC(c) +
∑K

k=1

(
δQk(qk) + ε

2‖qk‖2
)
.

The functions δC and δQk are simple indicator functions of the convex sets and
are given with

δC(c) =
{

0 if c ∈ C
+∞ if c /∈ C

δQk(qk) =
{

0 if qk ∈ Qk

+∞ if qk /∈ Qk . (10)

Since a closed form solution for the sum over multiple L1 norms cannot be
implemented efficiently, we additionally introduce a dualization of the data
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term with respect to G, which yields an extended linear term with 〈Kx, y〉 =
〈Ψu, c〉 +

∑K
k=1

〈
u− fk, qk

〉
. According to [22,23], the primal-dual algorithm

can be summarized as follows: First, we set the primal and dual time steps with
τ > 0, σ > 0. Additionally, we construct the required structures with u0 ∈ RWH ,
ū0 = u0, c0 ∈ C and qk

0 ∈ Qk. Based on the iterations proposed in [22], the iter-
ative scheme is then given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

cn+1 = projC (cn + σΨūn)

qk
n+1 = projQk

(
qk

n+σ(ūn−fk)
1+σε

)
, k = 1 . . .K

un+1 = un − τ
(
Ψ∗cn+1 +

∑K
k=1 q

k
n+1

)
ūn+1 = 2un+1 − un .

(11)

In order to iteratively compute the solution of (6) by using the primal-dual
scheme, point-wise Euclidean projections of the dual variables q and c onto the
convex sets C and Q are required. The projection of the wavelet coefficients c is
defined as

projC(c̃i,j) =
c̃i,j

max(1, |c̃i,j |)
. (12)

The corresponding projections for the dual variables qk with k = 1 . . .K are
given by

projQk(q̃k
i,j) =

q̃k
i,j

min(+λwk
i,j ,max(−λwk

i,j , |q̃k
i,j |))

. (13)

Note that the iterative minimization scheme mainly consists of simple point-wise
operations, therefore it can be considerably accelerated by exploiting multi-core
systems such as graphics processing units. In the next section we use our model
to perform image fusion of synthetic and real image data.

4 Experimental Evaluation

In this section we first demonstrate our convex fusion model on synthetic data,
then we apply it to real world aerial images.

4.1 Synthetic Experiments

To show the performance with respect to recovered fine details, our first experi-
ment investigates the fusion and inpainting capability of our proposed model
using images with synthetically added noise. We therefore take the Barbara
gray-valued image (512 × 512 pixels), which contains fine structures and highly
textured areas. In order to imitate the expected noise model, we add a small
amount of Gaussian noise (μ = 0, σ = 0.01) and replace a specified percentage
of pixels with undefined areas (we use 10% and 50%), which can be seen as sim-
ulation of occluded regions caused by perspective views. An evaluation in terms
of peak signal-to-noise ratios (PSNR) for different amounts of undefined pixels
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Fig. 2. Quantitative results for the Barbara image: PSNR depending on synthetically

added noise (averaged noise values: 10%: 14.63 dB and 50%: 8.73 dB) and a varying

number of input observations. Our proposed model using the wavelet-based regulariza-

tion yields the best noise suppression.

and quantities of observations is shown in Figure 2. We compare our model to
the TV-L1 formulation, the mean and the median computation. For the TV-L1

and our model we present the plots computed for the optimal parameters deter-
mined by cross validation. One can see that our joint inpainting and denoising
model, using the parameter setting τ = 0.05, σ = 1/8/τ , ε = 0.1, λ = 1.2 and 3
levels of wavelet decomposition (we use 13,19-tap and Q-shift 14-tap filter ker-
nels, respectively), performs best in both noise settings. Moreover, it is obvious
that an increasing number of input observations improves the result significantly.
Compared to the TV-L1 model, the wavelet-based regularization improves the
PSNR by an averaged value of 2 dB.

4.2 Fusion of Real Images

Our second experiment focuses on orthographic color image fusion in aerial im-
agery. The images are taken with the Microsoft UltraCam out of an aircraft in
overlapping strips, where each image has a resolution of 11500×7500 pixels with
a ground sampling distance of approximately 10 cm. Depending on the overlap
in the imagery, the mapped area provides up to ten redundant observations for
the same scene. To obtain the required range data for each input image we use
a dense matching algorithm similar to the method proposed in [1]. By taking
into account the ranges and available camera data, each pixel in the images
can be transformed to common 3D world coordinates forming a large cloud of
points, which are then defined by location and color information. Introducing
virtual orthographic cameras, together with a defined pixel resolution (we use
the same sampling distance provided by the original images), enables a projec-
tion of the point cloud of each scence observation to the ground plane (we simply
set the height coordinate to a fixed value). Computed fusion results for different
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Fig. 3. Some fusion results. The first column shows results obtained with the TV-L1

model (three input observations). The second column depicts corresponding images

computed with our fusion model using a DTCWT regularization, which yields images

with an improved natural appearance (λ = 1.0). Larger fusion results are given in the

third column, where we exploit a redundancy of ten input images. The color fusion

(1600 × 1600 pixels) can be obtained within two minutes. Best viewed in color.

dimensions are shown in Figure 3. The obtained results show an improved natural
appearance, resulting from the wavelet-based regularization in our fusion model.

4.3 Removal of Non-stationary Objects

Non-stationary objects such as cars disturb in orthographic image generation.
We therefore use our model to remove cars by simultaneous inpainting. Car
detection masks can be efficiently obtained by an approach as described in [24].
In order to fill the detected car areas, our strategy is inspired by the work of
Hays and Efros [25]. We perform scene completion with respect to the detection
mask by using a pool of potential exemplars. To do so, we randomly collect
image patches (the dimension is adapted for a common car length) and apply
image transformations like rotation and translation in order to synthetically
increase the pool. To find the best matching candidate for each detected car
we compute a sum of weighted color distances between a masked detection and
each exemplar. The weighting additionally prefers pixel locations near the mask
boundary and is derived by using a distance transform. The detection mask with
overlaid exemplars is then used as an additional input observation within the
fusion model. Obtained removal results are shown in Figure 4.
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Fig. 4. Inpainting results using a car detection mask. From left to right: The car

detection mask, the fusion result computed without using a car detection mask, the

result obtained by pure inpainting and the inpainting with supporting exemplars. The

car areas are successfully removed in both cases, however the exemplar-based fill-in

appears more naturally. Best viewed in color.

5 Conclusion

We have presented a novel variational method to fuse redundant gray and color
images by using wavelet-based priors for regularization. To compute the solution
of our large-scale optimization problem we exploit an optimal first-order primal-
dual algorithm, which can be accelerated using parallel computation techniques.
We have shown that our fusion method is well suited for orthographic image gener-
ation in high-resolution aerial imagery, but also for an integrated exemplar-based
fill-in to remove e.g. non-stationary objects like cars. Future work will concentrate
on synthetic view generation in ground-level imagery, similar to the idea of [3], and
on computing super-resolution from many redundant observations.

References

1. Hirschmüller, H.: Stereo vision in structured environments by consistent semi-

global matching. In: Proc. Conf. on Comp. Vision and Pattern Recognition (2006)

2. Fitzgibbon, A., Wexler, Y., Zisserman, A.: Image-based rendering using image-

based priors. In: Proc. Int. Conf. on Comp. Vision (2003)



312 S. Kluckner, T. Pock, and H. Bischof

3. Agarwala, A., Agrawala, M., Cohen, M., Salesin, D., Szeliski, R.: Photograph-

ing long scenes with multi-viewpoint panoramas. ACM Trans. on Graphics (SIG-

GRAPH) 25(3) (2006)

4. Strecha, C., Gool, L.V., Fua, P.: A generative model for true orthorectification.

Int. Archives of Photogrammetry and Remote Sensing 37, 303–308 (2008)

5. Goldluecke, B., Cremers, D.: A superresolution framework for high-accuracy multi-

view reconstruction. In: Denzler, J., Notni, G., Süße, H. (eds.) DAGM 2009. LNCS,
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A Convex Approach for Variational
Super-Resolution

Markus Unger, Thomas Pock, Manuel Werlberger, and Horst Bischof
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Abstract. We propose a convex variational framework to compute high

resolution images from a low resolution video. The image formation pro-

cess is analyzed to provide to a well designed model for warping, blurring,

downsampling and regularization. We provide a comprehensive investi-

gation of the single model components. The super-resolution problem

is modeled as a minimization problem in an unified convex framework,

which is solved by a fast primal dual algorithm. A comprehensive eval-

uation on the influence of different kinds of noise is carried out. The

proposed algorithm shows excellent recovery of information for various

real and synthetic datasets.

1 Introduction

The reconstruction of highly resolved images out of multiple smaller images is an
important problem that occurs in surveillance, remote sensing, medical imaging,
video restoration, up sampling and still image extraction. Video frames are repre-
sentations of a scene that undergo arbitrary motion from frame to frame, degra-
dation by the optical system and the digitization process. Although motion might
seem to be a problem, exactly these sub-pixel shifts caused by moving objects
or the camera, provide the necessary information utilized in super-resolution re-
construction. The super-resolution problem is difficult to solve because one has
to deal with two kinds of image degradation: First, the camera system, that
adds blur (eg. by the optical system like lenses and filters) and performs spatial
integration on the sensor (often these are not square pixels). With exact knowl-
edge of the Point Spread Function (PSF) of the camera system and sufficiently
enough samples by shifted images this degradation is invertible up to the limits
posed by Shannon [1]. Unfortunately the second group of degradation, namely
noise, cannot be undone [2], making super-resolution an ill-posed problem. Noise
occurs in different forms: Gaussian type of noise (eg. caused by sensor heating
and analog processing), Outlier noise (eg. occlusions) and systematic noise (eg.
quantization and compression).

The limitations of super-resolution were already studied by Kosarev [2] who
stated a logarithmic dependence of quality on the signal-to-noise ratio of the
input. Later, the limits on image super-resolution were analyzed by Baker and
Kanade [3]. They provided experimental results using 8bit images, showing a
degradation of image quality with increasing magnification. This experiments

M. Goesele et al. (Eds.): DAGM 2010, LNCS 6376, pp. 313–322, 2010.
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already demonstrated that the limited dynamic range causes a dramatic loss
of information. In Section 5, we will provide a deeper analysis of various types
of noise. To overcome the limitations of noise some prior information might be
used in the reconstruction process. Baker and Kanade [3] proposed a learning
based recognition approach (called ’hallucination’) to improve super-resolution
on a limited class of images. More general approaches try to utilize redundant
structures in images. Potter et al. [4] use a Non-local-Means algorithm for super-
resolution reconstruction. A similar approach is taken by Glasner et al. in [5],
where patch redundancy over various scales of a single image is used to signifi-
cantly improve zooming for pictures with redundant structures.

There is also a great number of super-resolution approaches that rely on a
more general prior [6]. Some of these approaches use Total Variation (TV) reg-
ularization as eg. the approach by Mitzel et al. [7]. Farsiu et al. [8], use bilateral
TV (that is closely related to Non-local TV) to overcome stair-casing artifacts
usually induced by TV regularization. Our approach is closely related to the
variational approach of Mitzel et al. [7]. While Mitzel et al. used L1-norms for
regularization and in the data term, we replace them in our model (see Section
3) with Huber-Norms [9]. The Huber-Norm has the advantage of smooth gray
values while preserving strong edges. Another improvement over [7] is the used
first-order primal dual algorithm in Section 4. Additionally we provide a compre-
hensive investigation of the crucial super-resolution operators used for warping,
blurring and downsampling. Another energy minimization based approach is in-
vestigated by Schoenemann [10] that combines motion layer decomposition with
super-resolution. He introduces an additional term that imposes regularity on
the geometry of the layers.

As the input images are related by some arbitrary unknown motion, the ac-
curate estimation of this motion is obviously very important. For small motions
this can be done implicitly eg. by Non-local methods [4] or by performing joint
space-time super-resolution as done by Shechtman [11]. There are also semi-
implicit methods eg. using steering kernels as done by Takeda et al. [12]. For
large arbitrary motion an explicit optical flow calculation is required. Fortu-
nately dense optical flow algorithms have become very accurate and sufficiently
fast [13]. We will do motion estimation by the variational optical flow proposed
by Werlberger et al. [14], for which GPU-binaries are available.

Contribution: The contribution of this paper is threefold: First, we extend
the variational model by Mitzel et al. [7] by the usage of the Huber-Norm and
an exact choice of the crucial linear operators (Section 3). The choice and im-
plementation of these operators as well as the discretization are described in
sufficient detail that the proposed method can easily be reimplemented. Second,
we provide a fast minimization procedure in Section 4. Therefore we adapt the
first-order primal-dual algorithm from Pock et al. [15]. Finally, we investigate the
effects of different kinds of noise on super-resolution reconstruction in Section
5. We also compare the algorithm to [7,10], and show superior results obtained
with the proposed algorithm, demonstrating its robustness for arbitrary motion
and occlusions.
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2 Discretization

Before describing the super-resolution model we have to make some thoughts on
discretization. An image is given on a two dimensional regular Cartesian grid of
the size M ×N :

{(ih, jh) : 1 ≤ i ≤M, 1 ≤ j ≤ N} , (1)

with the indices of the discrete locations given by (i, j) and the pixel size (or
spacing) h. We define a finite dimensional vector space X = RMN with a scalar
product

〈v, w〉hX = h2
∑
i,j

vi,jwi,j , v, w ∈ X . (2)

Furthermore, we define a vector space Y = RMN × RMN , with the gradient
operator as a linear mapping ∇h : X → Y using finite differences and Neumann
boundary conditions:

(∇hv)i,j =
(
(δh+

x v)i,j , (δh+
y v)i,j

)T
, (3)

where

(δh+
x v)i,j =

{ vi+1,j−vi,j

h if i < M
0 if i = M

, (δh+
y v)i,j =

{ vi,j+1−vi,j

h if j < N
0 if j = N

. (4)

Given two vectors p = (px, py)T , q = (qx, qy)T ∈ Y we define the scalar product
as following:

〈p, q〉hY = h2
∑
i,j

px
i,jq

x
i,j + py

i,jq
y
i,j . (5)

Additionally we have to define a divergence operator divh : Y → X by choosing
it to be adjoint to the gradient operator in (3), and thus fulfilling the equality〈
∇hu,p

〉h

Y
= −

〈
u, divhp

〉h

X
. Therefore, the discrete divergence operator is

given as:
(divhp)i,j = (δh−

x px)i,j + (δh−
y py)i,j , (6)

with

(δh−
x px)i,j =

⎧⎪⎨⎪⎩
0 if i = 0
px

i,j−px
i−1,j

h if 0 < i < M

− px
i−1,j

h if i = M

, (δh−
y py)i,j =

⎧⎪⎨⎪⎩
0 if j = 0
py

i,j−py
i,j−1

h if 0 < j < N

− py
i,j−1
h if j = N

(7)

3 The Super-Resolution Model

In this section the super-resolution model is defined as a convex minimization
problem, and we discuss the operators in detail. The exact minimization proce-
dure follows in Section 4.

As input for the super-resolution algorithm, n input images f̌i ∈ X̌ of size
M̌ × Ň and pixel size ξh are given. We denote the scale factor as ξ ∈ R+. The
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input images are warped, blurred and noisy samples of some continuous image
g : Ω → R. Based on the redundancy of the input images we aim to find one
higher resolved super-resolution image û ∈ X̂ of size M̂ × N̂ with pixel size h.
Note that we use the .̌ accent to indicate that a variable belongs to the coarse
(input) level with pixel size ξh and the .̂ accent to indicate everything that is
related to the fine (super-resolution) level with pixel size h.

A Convex Minimization Problem: We define the super-resolution model as
the following convex minimization problem:

min
û

{
λ
∣∣∣∣∇hû

∣∣∣∣h
εu

+
n∑

i=1

∣∣∣∣DBWiû− f̌i

∣∣∣∣ξh

εd

}
, (8)

with regularization using the Huber-Norm [9] that is defined as:

||x||hε =
∑

0≤i,j≤MN

|xi,j |ε h
2 and |x|ε =

{
|x|2
2ε if |x| ≤ ε
|x| − ε

2 if |x| > ε
. (9)

While Total Variation based approaches [16] favor flat gray value regions causing
staircase artifacts, the Huber-Norm has the advantage of smoothing small gra-
dients while preserving strong edges. The linear operators D, B and W denote
downsampling, blurring and warping operators and will be explained in detail in
the following. The free parameter λ models the tradeoff between regularization
and data term.

Warping Operator W: An exact warping to align the input images is a crucial
factor for super-resolution. To allow for arbitrary motion, sub-pixel accurate
optical flow is required. There are already various dense approaches with very
high accuracy available [13]. Throughout this paper we used the GPU-based
implementation from Werlberger et al. [14]. This approach utilizes a variational
minimization problem using Huber-Norm regularization and an L1 based data
term to model the optical flow constraint. For optical flow calculation we used
bicubic upsamplings f̂i of the input images f̌i. We denote the reference image
that is used for super-resolution as f̂k with 1 ≤ k ≤ n. From the image f̂k we
calculate the optical flow to all input images. As a result we get n flow vector
fields ŵi : Ω → R2. In the super-resolution model (8) we denoted the optical
flow as a linear operator Wi : RM̂N̂ → RM̂N̂ . As Wi has a size of (M̂N̂)2,
direct storage and computation is not feasible. Therefore, we directly utilize
the flow fields ŵi to warp the super-resolution image to the input images using
bicubic interpolation. For the proposed minimization algorithm we also need
the transposed operator WT

i such that 〈Wia, b〉X =
〈
a,WT

i b
〉

X
, as detailed in

Section 4. This inverse warping can again be realized using the flow fields ŵi,
but this time the input images are warped to the reference image. Therefore, in
each pixel of the reference, the flow is used to find the corresponding position
in the input image. The pixel values in the input image are weighted by the
coefficients of the bicubic interpolation and added up in an accumulator image.
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Blurring Operator B: To account for blurring introduced by atmospheric
effects, the optical system and the sensor with preceding filters can get very
complex. More specifically one has to measure the point spread function for one
specific configuration. As the aim of this paper is to present a general super-
resolution algorithm one has to provide a generic model. Therefore the blurring
operator B is modeled by a simple Gaussian kernel. We chose the standard de-
viation σ = 1

4

√
ξ2 − 1 and 3σ for the kernel size. Again the transposed blurring

operator BT is not the same as a simple Gaussian blur as which B is imple-
mented. In turn, one has to perform the operation using an accumulator to
obtain correct results.

Downsampling Operator D: We first define

Fig. 1. Illustration of the down-

sampling process that is mod-

eled as an area integral

the formation of a pixel value fi,j at position
(ih, jh) and size h2 by calculating the mean of
the continuous image g : Ω → R in the region of
the pixel fi,j = 1

h2

∫
Δh

i,j
g(x)dx, with the pixel

region Δh
i,j = (ih, jh) +

[
−h

2 ,
h
2

)2
. The input

images and the super-resolution image are just
samplings with different pixel size h. Since we
only know the discretized input images we have
to model the downsampling process in the dis-
crete setting. This is done using a weighted area
integral over the region of the low resolution pixel (see Fig. 1 for an illustration):

ǔk,l =
1

μ(Δξh
k,l)

∑
0≤i,j≤M̂N̂

μ(Δh
i,j ∩Δ

ξh
k,l)ûi,j , (10)

with the Lebesgue measure μ(Δ) denotes the area of the pixel region. The pro-
posed definition of the downsampling operator D has the advantage that the
scale ξ ∈ R+ and is not restricted to integer values. Again, an accumulator is
used to calculate DT .

4 A First Order Primal-Dual Algorithm

Recently, in [15] and [17], a first order primal-dual algorithm was proposed to
solve convex-concave saddle-point problems of the type:

min
x∈X

max
y∈Y

{〈Kx,y〉 +G(x) − F ∗(y)} , (11)

with a continuous linear operator K : X → Y , and G : X → [0,∞) and F ∗ :
Y → [0,∞) being convex functions. Basically, the algorithm consists of taking
simple gradient steps in the primal variables x and dual variables y. In addition
a leading point x̄ is computed to ensure convergence of the algorithm [15]. The
basic iterations of the algorithm are defined as
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yn+1 = (1 + σ∂F ∗)−1(yn + σKx̄n)

xn+1 = (1 + τ∂G)−1(xn − τK∗yn+1)

x̄n+1 = 2xn+1 − xn ,

(12)

with ∂F ∗ and ∂G the subgradients of F ∗ and G. The operators (1 + σ∂F ∗)−1

and (1+ τ∂G)−1 denote the usual resolvent operators. The primal and dual step
sizes τ > 0 and σ > 0 are chosen such that τσL2 ≤ 1, where L = ‖K‖ is the
norm of the linear operator K.

In order to apply the primal-dual algorithm to the proposed super-resolution
model, we have to transform the minimization problem (8) into the form of
(11). Using duality principles (in particular the Legendre-Fenchel transform), we
arrive at the following primal-dual formulation of the super-resolution model:

min
û

sup
p̂,q̌

{〈
∇hû, p̂

〉h

Y
− εu

2λh2 ||p̂||2 − δ{|p̂|≤λh2}

+
n∑

i=1

(〈
q̌i,DBWiû− f̌i

〉ξh

X
− εd

2 (ξh)2
||q̌i||2 − δ{|q̌i|≤(ξh)2}

)}
,

(13)
with p̂ ∈ Ŷ and q̌ ∈ X̌ denoting the dual variables. The indicator function δΣ

for the set Σ given as δΣ (x) =
{

0 if x ∈ Σ ,
∞ else .

Now, applying the basic iterations (12) to our saddle-point problem (13), we
obtain the following iterative algorithm:

p̂n+1 = Π
Bλh2

0

(
p̂n + σh2∇hun

1 + σεu

λh2

)
,

q̌n+1
i = Π

B
(ξh)2
0

(
q̌n
i + σ (ξh)2 (DBWiu

n − fi)
1 + σεd

(ξh)2

)
,

ûn+1 = ûn − τ

(
−divhp̂n+1 + (ξh)2

n∑
i=1

(
WT

i BT DT q̌n+1
i

))
,

un+1 = 2ûn+1 − ûn .

(14)

The projector ΠBr
0

denotes the orthogonal projection to a L2 ball with radius r.
In the 2D-case this can be computed as Π

Bλh2
0

= p̂/max
{
1, |p̂|

λh2

}
. While the 1D-

case Π
B

(ξh)2
0

results in a simple clamping to the interval [− (ξh)2 , (ξh)2]. Based

on experiments, we are using the step sizes τ = ξ√
L2λ

and σ = 1√
τL2 .

5 Experimental Results

The proposed algorithm (14) was implemented on the GPU using the CUDA
framework. We will prove that the chosen model genaralizes very well by us-
ing different input sources for all experiments. First we evaluated the influence
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Quantization Gaussian Noise Impulse Noise

Input Input float 16bit 8bit Input σ=0.01 Input 10%

4x
29.77 dB 106.95 dB 47.59 dB 39.09 dB 29.5 dB 34.1 dB 16.59 dB 33.67 dB
0.94079 1 0.99838 0.99887 0.92747 0.96136 0.4668 0.96934

16x
24.92 dB 47.95 dB 40.21 dB 32.58 dB 24.84 dB 30.65 dB 15.62 dB 32.01 dB
0.83238 0.99834 0.99166 0.95394 0.82358 0.92639 0.50452 0.95136

64x
21.09 dB 39.98 dB 35.73 dB 30.26 dB 21.08 dB 27.46 dB 14.78 dB 24.84 dB
0.63877 0.99108 0.97322 0.91862 0.63697 0.86119 0.41485 0.87617

256x
19.88 dB 35.32 dB 32.58 dB 25.98 dB 16.52 dB 24.78 dB 13.16 dB 24.73 dB
0.55709 0.97172 0.92639 0.81105 0.37576 0.75237 0.30003 0.75077

Fig. 2. Comparison of the influence of different noise on the superresolution recon-

struction for the scales 2, 4, 8 and 16 using synthetic data. The input columns always

depict the input image that was chosen as reference image (using bicubic upsampling).

of different types of noise, namely quantization noise, Gaussian noise and salt
and pepper noise. In Fig. 2 the results are depicted for different scale factors.
The input data was generated artificially such that the exact warping, blur and
downsampling operators are known. The results are compared to the original im-
age, and the Signal-to-noise ratio (SNR) and the Structural Similarity (SSIM)
[18] were calculated. Fig. 2 demonstrates that quantization noise using an 8bit
representation causes a dramatic loss of information for large scale factors, while
using 16bit quantization the visual appearance for ξ = 16 still recovers most of
the fine details. Unfortunately even weak Gaussian noise causes strong degen-
eration. It also shows that the proposed super-resolution model can handle a
reasonable amount of outliers due to the robust Huber-Norm in the data term.

The effect of quantization noise is also investigated for real data in Fig. 3. We
used a Prosilica GC1600 together with a Pentax 4.8mm 1:1.8 lens to capture a
8bit and a 12bit video. Unfortunately, in this case no notable visual gain can
be seen when comparing the super-resolution results. A thorough evaluation of
different cameras is left for future investigations.
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Input Super-resolution

8 bit 12 bit

Fig. 3. Comparison of the influence of quantization using a real dataset. The bottom

row depicts contrast adapted crops of the top images.

Frame 90 Flow 90 ← 99 Frame 99 Flow 99 → 106 Frame 106

Super-resolution with ξ = 2.67 Bicubic

Schoenemann [20]

Proposed method

Fig. 4. Demonstration of superresolution on real data with heavy occlusions. The flow

images in the first row use Middlebury color coding.

In Fig. 4, a scene with strong motion is used as input. Optical Flow was cal-
culated using [14]. To demonstrate the capability of using arbitrary scale factors,



A Convex Approach for Variational Super-Resolution 321

we chose ξ = 2.67 as scale factor. The results demonstrate that the proposed
algorithm can easily handle strong occlusions due to the robust Huber-Norm. It
shows that we obtain good results that are comparable to the more complex super-
resolution motion layer decomposition approach of Schoenemann [10].

Finally, we compare our algorithm to the closely related work of Mitzel et al.
[7]. In Fig. 5, super-resolution was done on a public car sequence 1. Note that we
clearly improve the sharpness and detail recovery in the super-resolution image.
Using the proposed algorithm on can easily read the cars license plate which is
not the case for the other algorithm.

16 input images Super-resolution ξ = 3 Bicubic

... ...

Mitzel et al. [7]

Proposed method

Fig. 5. Comparison to the closely related work of Mitzel et al. [7] using super-resolution

to recover a license plate. (Contrast adapted for crops)

6 Conclusion

We presented a variational super-resolution approach that uses a robust Huber-
Norm for regularization as well as in the data term. A fast primal-dual algorithm
was used to solve a convex saddle-point problem. We put particular emphasis
to the accurate design of the model, the used operators and discretization. The
exact choice of warping, blurring and downsampling operators was discussed,
and results demonstrate that we obtain state of the art results even for very
difficult scenes. The proposed approach can handle large occlusions as well as
arbitrary scale factors. An extensive evaluation of the influence of noise was
carried out. It showed that in theory a higher dynamic range can significantly
improve the recovered results. Though for real data, sensor noise is the limiting
factor. We hope this will trigger further research on the practical implications
of bit depth on superresolution. In future work we will also study more powerful
regularization terms (e.g. wavelets).

1
http://users.soe.ucsc.edu/~milanfar/software/sr-datasets.html

http://users.soe.ucsc.edu/~milanfar/software/sr-datasets.html
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Incremental Learning in the Energy
Minimisation Framework for Interactive

Segmentation

Denis Kirmizigül and Dmitrij Schlesinger�

Dresden University of Technology

Abstract. In this article we propose a method for parameter learning

within the energy minimisation framework for segmentation. We do this

in an incremental way where user input is required for resolving segmen-

tation ambiguities. Whereas most other interactive learning approaches

focus on learning appearance characteristics only, our approach is able

to cope with learning prior terms; in particular the Potts terms in binary

image segmentation. The artificial as well as real examples illustrate the

applicability of the approach.

1 Introduction

Energy minimisation techniques are proven to be a powerful tool for image
segmentation. However, one of the most important questions – how to learn
unknown model parameters – still remains on the agenda. There are many ap-
proaches addressing this problem. One possible way is to exploit the probabilistic
nature of commonly used energy minimisation functions – they are Maximum
A-posteriori decisions for corresponding Markov Random Fields. Consequently,
the task of parameter learning can be formulated using established statistical
methods, like e.g. Maximum Likelihood principle [1]. Although this approach
has many advantages (it is well grounded, the learning can be sometimes done
in a fully unsupervised manner etc.), it has also certain drawbacks. First of all, it
is often computationally infeasible (the corresponding tasks are NP-complete).
There are many approximate solutions, but in most cases there is no estimation
for the approximation quality. Second, these methods attempt to find parame-
ters of the underlying probability distributions, rather than the parameters of
the corresponding classifiers/algorithms. It is known that e.g. the Maximum A-
posteriori decision is biased in a certain sense – it does not reflect the model
statistics (see e.g. [2]). Consequently, the parameters of the probability distribu-
tion are not necessarily optimal for a classifier, if the latter is rated according to
an arbitrary measure (e.g. the number of misclassified pixels).

Another way is to consider classifiers “as is” without probabilistic background.
A rather straightforward approach is to use cross-validation on test images with
� This work was supported by Grant 13487 of the Sächsische Aufbaubank (SAB) and

DFG Grant FL307/2-1.

M. Goesele et al. (Eds.): DAGM 2010, LNCS 6376, pp. 323–332, 2010.
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ground truth. Usually, the parameter under consideration is resampled within
some reasonable range. For each value the inference is performed and a rating
score is computed. It can be for instance the one, which minimises the number of
misclassified pixels. More elaborated techniques (see e.g. [3]) can be used as well.
The parameter value with optimal score is chosen as the optimal one. The main
drawback of this method is, that its direct extension to more than one param-
eter leads to computational explosion. Another disadvantage is the following.
The dependency of the chosen rating score from the parameter value needs not
necessarily be smooth – i.e. the resampling (substitution of a continuous range
by a discrete set) may lead to a parameter, that is far from optimal.

There is a group of methods based on Parametric Flow [4]. They allow (for
certain models) to compute all solutions for a predefined continuous parameter
range, rather than for a discrete set as in the previous case. The optimal param-
eter value is then chosen according to a given quality measure. A comprehensive
review of such methods can be found in [5].

It is worth mentioning that all non-probabilistic methods described above
need classified data in order to work at all – i.e. ground truth segmentation.
This fact motivated development of interactive segmentation schemes. Promi-
nent representatives are e.g. [6,7]. In these schemes there is no ground truth
in advance. A non-complete ground truth (in some pixels only) is produced by
user during the segmentation. Usually, the overall scheme consists of a loop. In
each iteration there is a set of actual parameters, according to which the actual
segmentation is performed. The user has the possibility either to accept the seg-
mentation (to break the loop and finish the work) or to correct it manually. In
the latter case parameters are re-estimated according to the user interaction and
the whole procedure is repeated again. One important characteristic feature of
almost all recent interactive segmentations is that only appearance characteris-
tics are learned by user interactions. Prior terms are specified in advance and
remain unchanged.

In this work we propose a novel approach for parameter learning, which is
based on the idea of incremental learning. In contrast to other methods there is
no single parameter in each iteration of the algorithm, but a set of feasible ones,
i.e. those, which do not contradict to the user inputs. If this set is ambiguous –
more than one optimal segmentation is possible for different parameter values
from the set – the user is asked to resolve this situation. His feedback is used to
restrict the set of feasible parameters. The difference from known approaches is
twofold. First, the proposed scheme produces a range of feasible unambiguous
parameters, rather than a single “optimal” one. Second, interactions between
the algorithm and the user are initiated not by the user but by the algorithm –
i.e. unlike other interactive methods (e.g. [8,6]) there is a clear stopping criterion.
Finally, the approach can be used for learning of prior parameters. In particular,
we consider in this work in detail how to learn the strength of Potts interaction
for binary segmentation.

The rest of the paper is organised as follows. In the next section we present the
model and formulate the task we are interested in. We also recall the Parametric
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Flow approach, which our method is based on. In Section 3 we present the idea of
the incremental learning and show how to apply this idea to the task introduced
before. In the next section we present experiments and finalize with conclusions
and open questions.

2 Model

In this article we are concerned with binary segmentation of images. Let R be
a set of pixels. The image x : R → C is a mapping that assigns a colour value
c ∈ C to each pixel r ∈ R. The colour value in a pixel r is denoted by xr .
In binary segmentation a label l ∈ {0, 1} (background/foreground) should be
assigned to each position r forming a labelling s : R → {0, 1} (a label chosen by
the segmentation in a pixel r is denoted by sr). A common way is to formulate
the segmentation task as an Energy minimisation problem as follows. The pixels
are considered as vertices of a graph G = (R,E), where the edges {r, r′} ∈ E
connect neighbouring pixels (usually the 4-neighbourhood structure is used).
The task is to find the labelling of the minimal energy, i.e

s∗ = arg min
s

E(x, s) = arg min
s

⎡⎣∑
r∈R

q(xr, sr) +
∑

{r,r′}∈E

g(sr, sr′)

⎤⎦ . (1)

The functions q : C × {0, 1} → � (usually called data terms) are penalties for
assigning the label sr to the colour value xr in the pixel r. In the simplest case
they are negated logarithms of corresponding conditional probability distribu-
tions p(c|l) to observe the colour value c ∈ C given the label l. The second
summation in (1) (usually called model term) captures prior assumptions about
the labellings. In many applications one favours compact segments. This corre-
sponds to the Potts model g(l, l′) = λ · 1(l �= l′), where λ is the strength of the
Potts interactions. Summarizing the energy of a labelling s is1

E(λ, s) =
∑
r∈R

qr(sr) + λ
∑

{r,r′}∈E

1(sr �= sr′) . (2)

The parameter λ ∈ �
+
0 weights the relative importance of the prior assumptions

about the labellings against the observation penalties. Of course, the segmenta-
tion heavily depends on its choice. For example λ = 0 leads to the segmentation
that purely depends on the observation – the assignment of a label in one pixel
is not influenced by the label assignments of its neighbours. On the other hand,
if λ > λmax = minl∈{0,1} [

∑
r qr(l)] is used, the optimal labelling is constant:

sr = arg minl∈{0,1} [
∑

r qr(l)] for all r. Therefore it is possible to restrict the
range of λ to the interval Λ = [0, λmax] ⊂ �

+
0 . The main issue of this article is

the investigation of the set Λ of possible λ values. Informally said, the goal is to
chose an “optimal” subinterval of Λ that coincides with user inputs.
1 Since the image x is given, we sometimes omit it for readability. For data terms we

use the notation qr(sr) instead.
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λ

E(λ, s2)
E(λ, s1) E(λ, s3)

E(λ, s4)
E(λ, s5)

Ē(λ)

λ4λ3λ2λ1

Fig. 1. The graph of Ē(λ)

At this point we would like to recall the basic idea of Parametric Flow, which
is used in our method. Denoting by Ē(λ) = mins E(λ, s), the graph of Ē(λ)
is illustrated in Fig. 1. The graph of Ē(λ) is the lower envelope of piecewise
linear (with respect to λ) functions E(λ, s). The points where Ē(λ) changes
its slope are referred as breakpoints. These breakpoints correspond to values
of λ where transitions from one minimizing segmentation s of (2) to another
minimizing segmentation s′ take place. The slope of each linear part of the
graph is the number of edges {r, r′}, for which different labels are assigned by the
corresponding minimizer s to r and r′. Consequently, the number of breakpoints
in Ē(λ) is bounded by the number of edges.

The aim of the Parametric Flow algorithm is to find all breakpoints λ0 =
0, λ1, . . . , λm = λmax. This is done recursively by subdividing the initial in-
terval Λ. In [5] a subdividing-scheme is given, which we adapted to our case.
The idea is as follows. Starting with an initial interval [λi, λj ] the labellings
si = argmins E(λi, s) and sj = argmins E(λj , s) are calculated. This can be
done exactly e.g. via MinCut/MaxFlow algorithms. We used the implementa-
tions presented in [9,10,11] for this. If si and sj are equal, then the interval cannot
be further subdivided and the labelling associated to this interval is si. If si and
sj are different, then a new breakpoint λk ∈ [λi, λj ] is calculated as the intersec-
tion of the linear functions E(λ, si) and E(λ, sj), i.e. solving E(λ, si) = E(λ, sj)
with respect to λ. With λk the initial interval is subdivided into [λi, λk]∪ [λk, λj ]
and the procedure is separately applied to these two subintervals. Applying this
scheme until all the occurring intervals cannot be further subdivided gives all
intermediate breakpoints λi and the minimizers si which correspond to the in-
tervals [λi, λi+1].

3 Incremental Learning

The general idea of incremental learning is as follows (see [12] for details). Let
X be a set of observations and K be a set of hidden classes. A classifier f :
X → K is a mapping that assigns a class k ∈ K to each observation x ∈ X .
Usually, a classifier is known up to an unknown parameter (we denote it by Θ).
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The conventional learning task is to find a parameter Θ∗ that classifies a given
training set L =

(
(xi, ki)|i = 1 . . . l

)
correctly, i.e. f(xi;Θ∗) = ki holds for all

i. After the learning phase is performed, the recognition phase (classification)
consists of the application of the learned parameter, i.e. k = f(x;Θ∗) to each
unknown x.

In contrast to the conventional scheme, in the incremental learning there is no
separation between the learning and the recognition phases. The idea is to esti-
mate at a time not only a single parameter, but the set of all feasible ones, which
do not contradict to the training set. The latter may be thereby incomplete. The
procedure is as follows. Starting from a “full set” θ of classifiers repeat:

(1) Observe current x;
(2) Perform recognition for all Θ ∈ θ – calculate the subset K ′ ⊂ K of classes

that can be obtained using current parameter set:

k ∈ K ′ ⇔ ∃Θ ∈ θ|f(x;Θ) = k

(3) If the recognition is not unique, i.e. |K ′| > 1:
(a) Ask teacher for the correct k∗ ∈ K ′,
(b) Restrict θ in order to satisfy teacher input:

θnew = {Θ|Θ ∈ θ, f(x;Θ) = k∗}.

Our approach is based on the observation that the Energy Minimisation formu-
lation is in fact a classifier, where: a) the set of observations X is the set of all im-
ages; b) the set of classesK is the set of all labellings; c) unknown parameter Θ is
the strength of the Potts interaction λ, i.e. f(x;Θ) = f(x;λ) = mins E(x, s;λ).2

Let us consider this in more detail. Step (2) of the above scheme can be done
by Parametric Flow as considered in the previous section. The speciality of our
case is a huge set of classes. Fortunately it is not the set of all labellings because
the number of optimal ones for the full range of λ is bounded by the number of
edges as mentioned previously. However, it is still to large to be convenient for
the user. To avoid this problem, we need to modify the step (3a) to meet our
needs. It can be noticed that it is not necessary to decide for a particular labelling
in order to restrict the set of feasible λ-s. For example, the user can just assign
manually the right label in a single pixel. Obviously, such an action is profitable
only for those pixels, where different labels are possible according to the actual
set of minimizing labellings. Summarizing, the algorithm should ask the user to
fix a label in such a pixel, that after the user’s assignment the set of feasible λ
is restricted as much as possible. We refer to this activity – i.e. proposition for a
pixel – as “user request”. In particular, we use the following very simple request
strategy. For each pixel a label histogram hr(l) is computed, i.e. for each label
how many minimizing labellings assign label l to the pixel r. The pixel with low-
est difference |hr(0) − hr(1)| is proposed the user for evaluation. Summarizing,
the learning schema for one image x looks as follows:
2 Moreover, the Energy Minimisation is a Fisher classifier, because the energy

E(x, s; λ) can be written as a scalar product (see e.g. [13] for detail).
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(1) Compute the set of minimizers S = {s1, s2, . . . , sm} by Parametric Flow;
(2) Repeat:

(a) Formulate the user request: compute the label histograms

hr(l) =
∑

s∈S|sr=l

1

for all pixels and ask user to fix the label l∗ in the pixel

r∗ = argmin
r

|hr(0) − hr(1)|.

(b) Restrict S (and therefore also the set of feasible λ values): keep only
those labellings, where the assigned label coincide with the user input:

Snew = {s|s ∈ S, sr∗ = l∗}

The loop (2) is repeated as long as the set S consists of more than one labelling.

4 Experiments

Since we wanted to evaluate our interactive segmentation scheme not only on
“isolated” image examples, we automated the user interaction by replacing the
real user with a “RoboUser” [14]. In cases that the above segmentation scheme
requests user input for resolving ambiguous label assignments in one pixel, the
RoboUser assigns this pixel according to the ground truth label. First, we evalu-
ated our method on artificially generated images. They were created by sampling
ground truth labellings according to the prior model with different generating
Potts weights denoted by λgen. The sampling was done by Gibbs Sampler with
about 2000 sampling iterations. To obtain the final image samples the segments
were filled in with different grey-values (96 and 160) and disturbed by Gaussian
noise of a variance σ. For λgen we used 9 different values ranging from 1.0 to
3.0 in steps of 0.25. The parameter σ was set to the values 10, 20, 30 and 50.
The experiments were carried out on two image samples for each combination
of (λgen, σ) values.

In order to evaluate the method we chose a labelling (and the corresponding
λ interval), that can be understood as ”the best possible in the scope of the used
model“. It was chosen as follows: we applied the Parametric Flow algorithm as
described in section 2 to get the set of all minimizing labellings S within the
interval Λ. Thereby the negative logarithms of the generating Gaussian noise
distributions served as the q functions in (1). Among all minimizers from S
the one having minimal Hamming distance from the real ground truth and the
corresponding λ interval is chosen. We denote the minimal Hamming distance
(averaged over the two image samples) as H∗ and the mean of the corresponding
λ interval as λ∗. The aim of the experiments is to compare H∗ and λ∗ with the
values reached by the interactive learning scheme.
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Fig. 2. Optimal λ∗ (solid lines) and found λ intervals (dashed and dotted lines) with

respect to λgen for different σ values

The results of the method – the minimal and maximal values of the subintervals
the interactive learning algorithm led to – are shown in Fig. 2 as dashed and dotted
lines respectively, whereas λ∗ is plotted as a solid line. In Fig. 3 the Hamming
distances of the labelling corresponding to the found subintervals are depicted as
dashed lines and the minimal Hamming distances H∗ as solid lines. In the latter
figure we omitted plotting the Hamming distances for σ = 10 and 20 because of
their small values. Note that in Fig. 2 different colours represent different image
samples and in Fig. 3 different colours represent different values for σ.

The following effects can be observed. In most of the experiments the inter-
active learning scheme found the same λ value as the Parametric Flow did (in
the corresponding points of the plots in Fig. 2 solid line lies between dashed
and dotted ones). In some seldom cases they do not correspond exactly (see
e.g. λgen = 2.75 in Fig. 2(c)). However, the corresponding Hamming distances
are almost equal (see the same λ value in Fig. 3) – i.e. different Potts parameters
lead to the same recognition result. These effect becomes more distinctive with
increasing of σ and λgen. Finally, there are “outliers” – experiments, in which
the found λ interval (as well as the reached Hamming distance) has nothing
in common with the true one. The presence of these cases can be explained
by the very simple request strategy used in the experiments. Not surprisingly,
such cases are observed much more often for big σ values. In these situations even



330 D. Kirmizigül and D. Schlesinger

H
am

m
in

g 
di

st
an

ce

 4000

 3500

 3000

 2500

 2000

 1500

 1000

 500

 0
 1  1.25  1.5  1.75  2  2.25  2.5  2.75  3

λgen

������� ��

������� 	�


��� 	�


��� ��

Fig. 3. Optimal Hamming distances H∗ (solid lines) and reached Hamming distances

(dashed lines) for artificially generated images with σ = 30 and σ = 50

the best possible Hamming distance is still very big, because the Gaussians for
different segments heavily overlap. Consequently, there are many pixels, having
the following property. The label which corresponds to the best possible seg-
mentation and the label in the ground truth are different. If in an early stage of
the algorithm such a pixel is proposed for evaluation, the best (according to the
Hamming distance) labelling is removed from the set of feasible labellings, that
leads to the wrong learning result.

An interesting effect can be observed especially for small σ-s. In these cases
the data terms in (2) are very distinctive, i.e. they practically determine the
labelling even for “wrong” λ values. Consequently, the found range of λ becomes
larger. According to this, the length of the reached λ range can serve as a quality
measure for the “goodness” of data terms in practice.

For the experiments on real images (see Fig. 4) we used the database [15] and
segmentation results of the GrabCut [6] algorithm as ground truth. Furthermore
we also used the data terms GrabCut had learnt during its segmentation for our
q functions. The image in Fig. 4(b) shows the corresponding confidence values

(a) Original image (b) Pixel confidences (c) Segmentation

Fig. 4. A real example
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|hr(0)−hr(1)| based on the initial minimizing labelling set S (scaled for visibility).
In Fig. 4(c) the final segmentation is presented, which was obtained by our scheme
after 11 RoboUser iterations. This example just demonstrates the applicability of
our approach for real images as well.

5 Conclusions

In this work we presented a novel learning approach for the Energy Minimisation
framework, which is based on incremental learning. We applied it to binary seg-
mentation problem for interactive learning of the strength of Potts interactions
between neighbouring pixels. The main differences from the known methods are
the following:

– The method is able to learn prior parameters.
– The method produces a range of parameters, rather than a single one. It

makes possible to combine the method with other ones, using it e.g. as an
additional constraint.

– The interactions between the algorithm and the user is initiated by the algo-
rithm, but not by the user. First of all it leads to the clear stopping criterion.
Second, this situation is in a certain sense more user friendly, because often
it is much more easier for the user to answer a simple question as to control
the system – i.e. to decide, whether to accept the actual segmentation, which
pixels to mark otherwise etc.

The presented work is the first trial at most. Consequently, there are many di-
rection for further development. The most intriguing question is how to extend
the approach to the case of more then one parameter. This problem is com-
mon for almost all learning schemes, mentioned in the paper (cross-validation,
pure Parametric Flow, our approach etc.). Therefore, its reasonable (may be ap-
proximate) solution would essentially extend the capabilities of all approaches.
Interestingly, in the case of incremental learning the task can be formulated in a
slightly another way, because here it is not necessary in general to enumerate all
feasible solutions – it is enough only to answer, whether the current parameter
set is ambiguous, in order to initiate request to the user.

In the proposed interactive scheme we used a very simple request strategy
– the user should fix label just in one pixel, this pixel is chosen by the system
in a very simple manner. Of course, other strategies are possible as well, which
formulate more elaborated requests. Obviously, they would lead to the reduction
of the number of user interactions, demanding at the same time more elaborated
user feedback. A related question is how to combine incremental learning with
other interactive learning techniques, e.g. to learn strength λ and appearance
characteristics q simultaneously.

Last but not least, a very interesting question is, how to adapt our scheme
(as well as for example Parametric Flow) to the situation, that the task is not
exactly solvable for a fixed parameter value.
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of Nasal Cavity and Paranasal Sinus Boundaries
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Abstract. We present a model-driven approach to the segmentation of

nasal cavity and paranasal sinus boundaries. Based on computed tomog-

raphy data of a patients head, our approach aims to extract the border

that separates the structures of interest from the rest of the head. This

three-dimensional region information is useful in many clinical appli-

cations, e.g. diagnosis, surgical simulation, surgical planning and robot

assisted surgery. The desired boundary can be made up of bone, mucosa

or air what makes the segmentation process very difficult and brings

traditional segmentation approaches, like e.g. region growing, to their

limits. Motivated by the work of Tsai et al. [1] and Leventon et al. [2],

we therefore show how a parametric level-set model can be generated

from hand-segmented nasal cavity and paranasal sinus data that gives us

the ability to transform the complex segmentation problem into a finite-

dimensional one. On this basis, we propose a processing chain for the au-

tomated segmentation of the endonasal structures that incorporates the

model information and operates without any user interaction. Promising

results are obtained by evaluating our approach on two-dimensional data

slices of 50 patients with very diverse paranasal sinuses.

1 Introduction and Related Work

Three-dimensional model data of nasal cavity and paranasal sinuses is useful in
many clinical applications. It can be used for e.g. diagnosis of sinus pathologies,
simulation of endonasal surgeries, surgical planning and robot assisted surgery.
In the last few years, Functional Endoscopic Sinus Surgery (FESS) has been
established as the state of the art technique for the treatment of endonasal
pathologies. One important disadvantage of this approach is that the surgeon has
to keep the endoscope in his one hand during the whole surgery and consequently
has only one hand left for the other surgical instruments. Robot Assisted FESS
(RAFESS) may help to overcome this problem by passing the tedious job of
endoscope guidance to a robot [3].

M. Goesele et al. (Eds.): DAGM 2010, LNCS 6376, pp. 333–342, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(a) (b) (c) (d)

Fig. 1. Example slices in coronal view from two different CT datasets, showing (a,c) the

great inter-patient variability and (b,d) the overlaid desired segmentation boundaries

To exactly define the workspace of the robot, the three-dimensional model
data is needed. In order to quickly generate such a model from computed to-
mography (CT) data, segmentation of the structures of interest is unavoidable.
Manual segmentation takes about 900 minutes [4] what is infeasible for daily sur-
gical workflow. Consequently, automatic segmentation approaches are required.
From our knowledge, no fully-automatic approach to the segmentation of para-
nasal sinuses exists so far. This is because of the anatomical complexity and the
high inter-patient variability of the endonasal structures (see Fig. 1).

In 2004, Apelt et al. [5] published a semi-automatic framework for segmenta-
tion of the paranasal sinus boundaries. In each second to tenth slice of the CT
dataset, the user has to define a Volume of Interest (VOI) around every object
that should be segmented. Afterwards, an interactive watershed transform is ap-
plied inside the user-defined regions. They reported segmentation times of about
1 hour for a complete segmentation of the paranasal sinuses what is still not fea-
sible for daily surgical workflow. Thereby, most time is spent for the manual
selection of the different VOIs.

To further speed up the segmentation process, Salah et al. [6] proposed an-
other semi-automatic approach based on 3D region-growing with an intensity
threshold criterion that does not require per-slice user-interaction. Nevertheless,
post-processing is required because the region-growing approach usually leaks
into unwanted parts. They reported segmentation times of about five to ten
minutes. However, it seems that they concentrated on segmenting the air-filled
parts of the paranasal sinuses. As reported in [5] and [7], even more user action
is required when the goal is to segment the outer border of the paranasal si-
nuses, including the mucosa, which is especially necessary in case of pathological
sinuses like modified mucosa or sinusitis.

In summary, it is apparent that the segmentation of the paranasal sinuses is a
complicated task. Even medical experts interpret CT data in different ways [8].
For a non-expert it is practically impossible to produce a correct segmentation
because high anatomical knowledge is required to identify the boundaries of the
paranasal sinuses. Due to this, we believe that a fully-automatic segmentation is
only possible with approaches that include model information of the endonasal
structures into the segmentation process.
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A first attempt in this direction was made by Cootes et al. [9] by introduc-
ing the Active Shape Models. They manually labeled a set of training shapes
and built a point distribution model by applying Principal Component Analy-
sis (PCA) on the covariance matrix of vectors describing the training shapes.
Following this idea, Leventon et al. [2] published an approach for incorporating
model information into the evolution process of geodesic active contours [10].
They enhanced the shape model of [9] by representing a set of training shapes
through their signed distance functions and computing the inter-shape variation
by performing PCA on the covariance matrix of these signed distance functions.
This helped to overcome the problem of manual labeling the training shapes. The
resulting distribution was used to guide the curve evolution to more-likely solu-
tions that are in correspondence with the prior shape model. Other approaches
that tried to incorporate model information into the level-set segmentation ap-
proach were published by e.g. Chen et al. [11], Cremers et al. [12], Bresson et
al. [13] and Rousson et al. [14]. The large amount of publications shows the
importance of model-based segmentation in medical-imaging.

In 2003, Tsai et al. [1] tried an approach different from the curve evolution
framework. They adopted the implicit representation of [2] and extended it by
calculating the model-parameters to minimize the region-based Mumford-Shah
functional [15] directly in the subspace spanned by the training shapes. This
reduced the optimization problem to a finite-dimensional one and showed great
potential in 2D as well as 3D medical-image segmentation. They evaluated their
approach by segmenting the left ventricle in two-dimensional and the prostate
in three-dimensional image data.

Inspired by this attempt, our contribution in this work is to transfer the
approach of [1] to the segmentation of the nasal cavity and paranasal sinuses.
According to [5], our goal is to segment the outer paranasal sinus boundaries
because these are the critical structures in RAFESS.

2 Data-Based Shape Model

Training Data. To construct our deformable model, we build up on a database
of hand-segmented CT datasets [7] in which the nasal cavity and paranasal
sinuses are separated from the other anatomical structures inside the head (as
depicted in Fig. 1(b,d)). Using five anatomical landmarks (right styloid process,
left styloid process, crista galli, anterior nasal spine and posterior nasal spine),
a similarity transformation is computed that scales the datasets to equal size
and aligns them with regard to rotation and translation (see e.g. [16] for a
detailed description). Afterwards, a corresponding slice is extracted from each
aligned dataset which is used for further processing. Up to now, we concentrated
on segmenting the nasal structures from a single two-dimensional slice of each
complete CT dataset only. Nevertheless, the following approach can be easily
applied to three-dimensional data as well.

Model Representation. From the training data described in section 2, we
obtain a set {C1, C2, ..., Cn} of closed shapes, one for each of the n CT datasets.
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Every single shape describes the outer border of the endonasal structures for
the chosen CT data. In conformity with [2] and [1], we use an Eulerian level-
set representation, as introduced by Osher and Sethian [17], to describe the
shapes: Each paranasal boundary Ci ⊂ Ω, with Ω ⊂ Nd representing the CT
data domain, is defined as the zero level-set of a higher-dimensional function
Φi : Ω → R so that

Ci = {x |Φi (x) = 0} . (1)

These level-set functions Φi are given by signed distance transforms [18] yielding

Φi (x) = sign(x) min
u∈Ci

‖x − u‖ . (2)

In (2), sign(x) takes the value −1 if the point x lies inside the closed shape Ci and
+1 otherwise. The mean level-set functionΦmean is calculated by averaging over all
training shapes. The result is subtracted from all of the signed-distance functions
{Φ1, Φ2, ..., Φn} to obtain a new set of zero-mean functions {Φ̄1, Φ̄2, . . . , Φ̄n} with

Φ̄i (x) = Φi (x) − Φmean (x) . (3)

Each of these functions Φ̄i contains information about the offset of the corre-
sponding training shape from the mean signed-distance function Φmean.

To better identify the variances in shape, a PCA is performed on the set of
zero-mean functions. Therefore, each function Φ̄i is rearranged as a row-vector
to form the (n×|Ω|)-dimensional shape-variability matrix S. The n−1 nonzero
eigenvalues and eigenvectors of the covariance matrix 1

n−1SS
T are computed

using Singular Value Decomposition. For further usage, the eigenvectors must
be arranged back in the d-dimensional space Ω to obtain the n− 1 eigenshapes
{Φ̃1, Φ̃2, . . . , Φ̃n−1}. They agree with the (orthogonal) principal modes of shape
variation and the eigenvalues {σ2

1 , . . . , σ
2
n−1} represent the variance of data on

each of these main axes.
The level-set function Φw of our deformable shape model is finally obtained by

combining the mean level-set function Φmean with linear combinations of the m ≤
(n− 1) eigenshapes Φ̃i that have most influence on shape variation. So, we get

Φw (x) = Φmean (x) +
m∑

i=1

wiΦ̃i (x) (4)

with w = (w1, w2, . . . , wm)T being a vector of weighting factors for the incor-
porated eigenshapes. The corresponding segmentation shape is then given as

C = {x |Φw (x) = 0} . (5)

3 Contour Extraction

Problem Definition. Given any CT data I that is rigidly aligned with the av-
erage shape model, we want to find the outer nasal cavity and paranasal sinus
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border. With the help of our deformable shape model Φw, defined in eq. (4), the
goal is to find a vector w of weighting parameters that minimizes a given objective
function on the data I with regard to the segmentation shape C defined in eq. (5).

In contrast to [1], we do not try to minimize the region-based Chan-Vese en-
ergy functional [15] on the whole data domain Ω. This is because the assumption
made in [15], that the CT data consists of two regions of approximately constant
intensities, does not hold for our segmentation problem. As clearly visible in Fig.
1(b,d), the region inside the desired segmentation shape consists of bone, mucosa
and air with the corresponding intensities being completely different from one
another. Also the approach proposed in [1], to transform the data into a bimodal
set by calculating the magnitude of the gradient, is not applicable. There ex-
ist large intensity changes not only on the desired segmentation shape but also
inside and outside the segmented region.

Instead, we follow the lead by [2] and try to minimize a gradient-based ob-
jective function along our segmentation shape C. This choice was made because
the desired segmentation border is mostly located in areas that contain high gra-
dient values. As explained in detail in section 3, we use the objective function

Ow = −
∮

C(Gσ ∗ E)(x) dx∮
C

1 dx
(6)

where Gσ defines a Gaussian smoothing kernel with variance σ2 and E is an
intensity-weighted gradient volume. For the energy defined in eq. (6), only the
properties on the current shape are of interest so that high gradient values in
other regions do not effect the result.

Processing chain. Our processing chain for extracting the outer border of
nasal cavity and paranasal sinuses is depicted in Fig. 2.

I |∇I|2 E Gσ ∗ E

Ebin

Edist

w0
wm w

Gradient
calculation

Intensity
weighting

Gaussian
smoothing

Non-maxima
suppr. and
thresholding

Distance
transform

Minimization
of Odist

w

Minimization
of Ow

Fig. 2. Processing chain of our presented approach to the segmentation of nasal cav-

ity and paranasal sinuses: Based on the given CT data I and the initial weights

w0 = (σ2
1 , . . . , σ2

n−1)
T , the final weights w of our deformable model Φw are estimated

At first, we take the given CT data I and approximate the squared magnitude
of the gradient |∇I|2 by using central differences. To suppress edges in dark
regions and emphasize the ones in regions being more likely to contain the desired
boundary, we calculate the intensity-weighted gradient volume E with
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(a): |∇I|2 (b): E (c): Gσ ∗ E (d): Ebin

Fig. 3. Intermediate steps of our approach applied to the CT data in Fig. 1(a)

E(x) = |∇I(x)|2 · 1√
2πσe

exp

(
−1

2

(
I(x) − μe

σe

)2
)

. (7)

This volume is subsequently smoothed with a Gaussian convolution kernel Gσ

so that we arrive at our objective function Ow defined in eq. (6). Besides noise
reduction, the reason for the smoothing step is to get a smoother objective
function so that our segmentation shape is not so likely to get trapped in local
minima.

Now that we have specified our objective function, we can use the well es-
tablished Nelder-Mead simplex method [19] for minimization of Ow. However,
informal tests showed that Ow tends to be very sensitive to the initial values of
the weights w. To circumvent this drawback, we introduce an intermediate step
to define good start values for w by minimizing a second objective function Odist

w

that contains a distance transform of the smoothed gradient volume Gσ ∗E. By
this means, Odist

w has a wider capture range than Ow but is not as accurate.
For the calculation of the distance volume Edist, we take the smoothed gradi-

ent volume Gσ ∗ E from eq. (6) and perform non-maxima suppression followed
by thresholding with threshold t to generate a binary edge volume Ebin. On
this binary volume a distance transform [18] is applied that yields the distance
volume Edist. The metric used therein is the squared euclidean distance. With
the help of Edist, the objective function Odist

w is defined as

Odist
w =

∮
C Edist(x) dx∮

C
1 dx

. (8)

We found out that it is more robust to minimize the objective function Odist
w sep-

arately on each of the m principal axes used in our shape model (eq. (4)) to get
sufficient initial values for the final optimization of Ow. So, the task is to solve m
one-dimensional optimization problems. Employing again the simplex method,
we begin optimizing the weight w1 to get its optimal value wopt

1 . Based on the ini-
tial weights w0 = (σ2

1 , . . . , σ
2
n−1)

T , the resulting vector w1, after optimization of
w1, differs only in σ2

1 being replaced by wopt
1 giving w1 = (wopt

1 , σ2
2 , . . . , σ

2
n−1)T .

Continuing from the vector w1, we then optimize w2 to obtain the vector
w2 = (wopt

1 , wopt
1 , σ2

3 , . . . , σ
2
n−1)T . This procedure is kept on for all m dimen-

sions of our shape model so that the final output after separate minimization in



A Model-Based Approach to the Segmentation of Nasal Cavities 339

all dimensions is represented by the vector wm = (wopt
1 , . . . , wopt

m )T . This vector
can be used as a good initial value for the optimization of the energy function
Ow defined in eq. (6). In contrast to optimizing Odist

w , the optimization of Ow is
treated as one m-dimensional problem in the subspace spanned by the principal
shapes so that potential mutual dependencies are also considered.

4 Evaluation

Experimental Setup. To evaluate our contribution, we use a leave-one-out
approach. From our 50 hand-segmented datasets, we incorporate n = 49 datasets
in the generation of our model (as explained in section 2). The remaining CT
data is used to compare the result of our approach with the hand-segmentation.
Leaving out each dataset in turn, we thereby get an automatic segmentation
result for each dataset. Please note that each deformable model is based solely
on the data of the remaining datasets and not on the CT data being currently
evaluated.

As already mentioned in section 2, we evaluate our approach in d = 2 di-
mensions. Each slice I has a resolution of 512 × 366 pixels and a pixel spacing
of 0.46 mm. In our deformable shape model, we use the m = 10 most influent
eigenshapes. The gradient data |∇I|2 is weighted by a Gaussian distribution with
μe = 650 and σe = 250. It is subsequently smoothed by means of a Gaussian
kernel with zero mean and σ = 1. Thresholding is performed with t = 0.35.

We calculate two error measures to evaluate the accuracy of our approach. The
first one is the maximal root mean squared (euclidean) distance erms between
our resulting shape Cres and the reference shape Cref. It is defined as

erms =

√√√√max

{∮
Cres

infy∈Cref ‖x − y‖2
dx∮

Cres
1 dx

,

∮
Cref

infx∈Cres ‖x − y‖2 dy∮
Cref

1 dy

}
. (9)

Second, we use the Hausdorff distance eh that measures the maximal absolute
(euclidean) distance between our resulting shape and the reference shape:

eh = max
{

sup
x∈Cres

inf
y∈Cref

‖x − y‖ , sup
y∈Cref

inf
x∈Cres

‖x − y‖
}

. (10)

Experimental Results. The outcomes of both error measures are depicted in
Fig. 4. Using unoptimized Matlab code, the calculation takes about 40 seconds
for each dataset. The average root mean squared distance erms for all 50 datasets
is 3.74 mm with a standard deviation of 2.42 mm. There are only 5 datasets which
exceed a distance of 6 mm. These datasets all have in common that the frontal
sinuses are very distinctive (compare Fig. 5(i-l)). The average Hausdorff distance
eh is 12.39 mm with a standard deviation of 7.66 mm. The maximum peaks are
also due to distinctive frontal sinuses so that they occur for the same datasets
as those in the mean squared distance (e.g. 40.83 mm for dataset 21).
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Fig. 4. Results of the error measures (eq. (9) and (10)) plotted against each dataset

(a): erms = 1.55mm (b): erms = 1.79mm (c): erms = 1.85mm (d): erms = 1.86mm

(e): erms = 1.89mm (f): erms = 1.97mm (g): erms = 2.10mm (h): erms = 2.16mm

(i): erms = 6.47mm (j): erms = 9.24mm (k): erms = 13.11mm (l): erms = 13.17mm

Fig. 5. Chosen CT slices, showing the segmentation result Cres (solid line) and the

hand-segmented reference Cref (dashed line). They depict in descending order the eight

best results (a - h) and the four worst results (i - l) according to the outcomes of erms.

In Fig. 5(a-h) the eight best segmentation results, according to the outcomes
of erms, are depicted and in Fig. 5(i-l) the four worst segmentation results are
depicted, respectively. It can be clearly seen that the overall shape of the nasal
cavity, ethmoidal cells and maxillary sinuses is well approximated in all these
datasets. However, it is also visible that our approach comes to its limits when the
task is to adapt to local deviations that are not represented in our global shape
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model. This is especially the case for the frontal sinuses in Fig. 5(i-l). Each closer
adaptation would implicitly force the model to depart from the remaining para-
nasal boundaries because of the strong coupling of the various paranasal sinuses
in our proposed model. Nevertheless, the results obtained from our model-based
approach represent a very good initial solution that, in most cases, can easily be
adapted to the desired paranasal boundaries with a traditional level-set approach
like the one presented in [10].

5 Conclusion and Future Work

We have presented a model-driven approach to the segmentation of the outer
nasal cavity and paranasal sinus boundaries. Based on a set of hand-segmented
training data, we built up a deformable model that can be used for finding the
structures of interest. The key contribution was the integration of this deformable
model into a processing chain for the automated segmentation of the complex
endonasal structures.

Although showing already great performance in the segmentation of the over-
all shape of nasal cavity, ethmoidal cells and maxillary sinuses, our model is cur-
rently not able to properly capture individual differences of the various datasets
(e.g. diverse frontal sinuses). This is because the optimization is performed in a
global manner. We are currently trying to extend our model so that the weighting
parameters can be optimized separately for local data regions.

We think that this can give us great performance improvements because of
the possibility to focus on the mutual variations of the individual datasets. Ap-
proaches that try to identify local attributes in the parameter space of the de-
formable model, like the ones presented by Blanz and Vetter [20] and Hasler et
al. [21], could be the key to the solution of this problem.
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Abstract. We propose several algorithmic extensions to inpainting that

have been proposed to the spatial domain by other authors and apply

them to an inpainting technique in the wavelet domain. We also intro-

duce a new merging stage. We show how these techniques can be used to

remove large objects in complex outdoor scenes automatically. We eval-

uate our approach quantitatively against the aforementioned inpainting

methods and show that our extensions measurably increase the inpaint-

ing quality.

1 Introduction

The digital nature of most images that are used today, make it fairly easy to
alter the image content using image processing tools. The removal of entire
objects from images, however, is a very complicated task that usually requires
the expertise of professionals to achieve sufficient results in the altered image. It
is, therefore, an even greater challenge to automate this process such that the
results are perceived as un-altered.

Our need for inpainting came from a project that required removal of objects,
a colour checker in particular, from a series of highly structured images. Fig. 1
shows an example from the test set. In an initial processing step, the colour
checker is located in the image and a binary mask is generated identifying the
pixels belonging to this object. It is then removed using image inpainting.

We propose a modified approach for image inpainting based on an approach
described by Ignácio et al. [1] using wavelet coefficients to determine the order
in which the unknown region is filled. Their idea is adapted from Criminisi et
al. [2] where the authors apply the same technique in the spatial domain. Our
approach defines extensions to improve the wavelet-based inpainting approach
by Ignácio et al. [1]. These extensions are similar to those proposed by Cheng et
al. [3] to improve [2].

We outline related work in section 2, briefly introduce the idea of the wavelet-
based inpainting approaches in section 3, describe our extensions to Ignácio et
al. [1] in section 4 and provide the corresponding experimental results in section
5. We conclude in section 6.
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c© Springer-Verlag Berlin Heidelberg 2010



344 S. Vetter, M. Grzegorzek, and D. Paulus

Fig. 1. Images from our test set showing the original (left) and the inpainted image

using our approach with the colour checker removed (right)

Fig. 2. Some original scenes used in the test

2 Related Work

The removal of objects from still images has been the subject of many research
projects. Initially, approaches only had to deal with missing data in the size of a
few pixels. These damages could be repaired by using well-known interpolation
techniques which are incorporated into almost any image processing application
available.

Reconstructing larger regions of missing data, as they occur when removing
objects from images is much more difficult. This task usually requires the exper-
tise of professionals to provide a sufficient quality of results. Even more difficult
is the development of automated algorithms that allow inpainting of such re-
gions. Approaches in this field have slowly emerged from two fields of research,
namely texture synthesis and structure inpainting. Research concerned with tex-
ture synthesis expects a small texture sample and tries to create a much larger
texture image automatically. In contrast, structure inpainting initially focusses
on the removal of small damages by reproducing intensities based on neighbour-
ing pixels.

A popular attempt has been described by Harrison [4] who removes an ob-
ject using exemplar-based texture synthesis, sampling from a given texture to
fill the unknown intensities. This is closely related to the ideas of Garber and
Sawchuk [5] as well as Efros and Leung [6] who proposed algorithms to create new
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intensity values by sampling their best-matching neighbouring pixels. Wei and
Levoy [7] extended the latter approach by combining a texture- and example-
based technique working through different levels of coarseness in a pyramid
scheme to circumvent the size restrictions of sample pixels that apply to [6].

Structure inpainting, in contrast, looks at the problem of filling in missing
data from an artistic point of view. As part of their work, Bertalmio et al. [8]
consolidated inpainting artists to examine their method of operation restoring
a painting; they tried to replicate manual inpainting by propagating the known
intensities into the unknown region along so called isophotes, representing the
smallest spatial change of intensities, i.e. structure. The authors continued work-
ing on that problem and discovered that “different techniques work better for
different parts” [9] and started to develop a new approach based on the decom-
position of an image into two parts. One part represents the structure, the other
part the texture of the damaged image and structure inpainting and texture syn-
thesis are applied to the separated components. In a similar approach, Drori et
al. [10] used adaptive circular fragments operating on different scales capturing
both, global and local structures and approximating the missing region.

Criminisi et al. [2] proposed an approach employing rectangular patches that
are iteratively filled depending on calculated priorities along the boundary of
known and unknown region. Due to its intuitive principle, it was applied not only
to object removal but also to remove rifts in puzzles of archaeological fragments
as described in Sagiroglu and Ercil [11]. Cheng et al. [3] extended the priority
equation of Criminisi et al. [2] and made it adjustable to the structural and
textural characteristics specific to an individual image.

The simplicity of the concept in Criminisi et al [2] was taken up by Ignácio
et al. [1] who applied it in the wavelet domain. They transform the image and
binary mask and then use wavelet coefficients to determining the fill-order guided
by a similarly defined priority.

3 Wavelet-Based Image Inpainting

Applying the approaches [2,3,1] to our images revealed that they all struggle
with images of highly structured content such as buildings, pavements, etc. The
extension described by Cheng et al. [3], however, shows an improvement com-
pared to [2]. Further experiments revealed that results produced by [1] are of
similar quality to those obtained by [3]. An example is shown in Fig. 3.

We observed that the results for [2] and [1] are largely dependent on the
content of each individual image which is described Cheng et al. [3] as the ratio
of structural and textural content. Their proposed extension to [2] incorporates
these observations and provides an adjustable algorithm for inpainting images.
In accordance with their observations, we decided to develop a similar extension
to [1] to make it adjustable while exploiting its high-frequency coefficients. They
provide the edge-related information suitable for correctly inpainting structures
in highly complex images.

We expect an input image I and a binary mask specifying the object to be
removed resulting in a region of unknown intensities Ω. Samples to fill Ω are
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(a) Criminisi [2] (b) Cheng [3] (c) Ignácio [1]

Fig. 3. The images show the improvement achieved by Cheng et al. [3] towards the

approach by Criminisi et al. [2] and Ignácio et al. [1].

taken from Φ holding I = Ω ∪ Φ. The filling algorithm operates on small image
regions called patches where a patch is defined as a set of pixel locations Ψ(p)
centred at location p. Each patch has a square size of M ×M pixels.

In accordance to [1], we transform both, input image and binary mask, into
the wavelet domain using a Haar wavelet and apply an iterative process of three
consecutive steps in the wavelet domain: determine the fill-order (A), find the
best match (B) and fill the search patch (C).

In step (A) we calculate a priority value for each patch Ψ(p) that is centred on
the boundary δΩW between the target region ΩW and source region ΦW in the
transformed image. This is called the fill-order. In step (B) we use the search
patch Ψ(p̂) with the highest priority and search for the most similar sample
patch Ψ(q̂) in ΦW providing the coefficients unknown in Ψ(p̂). In step (C) we
fill Ψ(p̂) by simply copying the corresponding coefficients from Ψ(q̂).

After the entire target region ΩW is filled with sampled coefficients we trans-
form the result back into the spatial domain and obtain an image where Ω has
been reconstructed by sampling from Φ.

4 Modified Wavelet Inpainting

In accordance to the original approach, the key concept of our approach remains
its fill-order. The priority value determining the fill-order of ΩW is calculated
for each search patch Ψ(p) centred on δΩW . Ignácio et al. [1] define the priority
value P (p) as

P (p) = K(p) SS(p) SO(p) , (1)

where K(p) denotes the confidence, SS(p) the structure significance, and SO(p)
is the structure orientation at the pixel location p.

The last two terms correspond to those named edge strength and edge orien-
tation in [1]. We refrain from using these terms because the high frequencies in
the wavelet domain are different from edge strength and edge orientation in the
spatial domain as used in [2].

As in [1], we use the concept of a fill-order determined by priorities calculated
for each search patch Ψ(p) centred on δΩW . We, however, introduce several
modifications to the priority equations based on modifications to [2] proposed
in [3]. We observed that corresponding modifications to equation 1 resulted in
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Criminisi [2] Ignácio [1] Additive method Mixed method Blending

Fig. 4. Excerpts showing the inpainting results generated by [2] and [1] compared

to our modifications. Each of our modifications show an increase in quality. Added

blending produces the best results.
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Fig. 5. The plot shows that priorities calculated using (2) vary more then priorities

used in [1] which reduces the influence of noise and outliers. The difference in results

is illustrated for Ignácio [1] (left) and our Additive approach (right)

higher inpainting quality and, as a side effect, allowed adjusting the fill-order to
the relative occurrence of structure and texture in an image. This allows us to
counterbalance the high impact of K(p) on P (p) in [1] which resulted in a fill-
order mainly driven by high reliability instead of structural properties, reducing
the inpainting quality as shown in Fig. 4 where K(p) outweighs the structural
components and mainly inpaints the textures.

To evade this negative influence ofK(p), we propose to change the equation for
P (p) used in [1] to equation (2). This modification corresponds to the proposal
of Cheng et al. in [3] to modify the priority equation in [2]. Fig. 5 illustrates the
increase in variation of priorities. This makes the equation more resilent to noise
and outliers in either component. We apply the same strategy to reduce the impact
of the other components on P (p). This leaves us with a modified equation for the
priority obtained by adding the respective components. We define it as

P (p) = K(p) + SS(p) + SO(p) (2)
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4.1 Weighting the Components

The inpainting results respond immediately to these changes. Fig. 4 shows that
inpainting the same image using the Additive approach increases the continua-
tion of isophotes and reduces artefacts.

This modified equation, as the original, applies the same structure-texture
ratio to every image which is inaccurate for most images. This was already
observed in [3] and inspired our next modification making equation (2) adjustable
to the different characteristics of images.

We introduce the concept of adapting equation (2) by introducing two weight-
ing parameters ωS and ωC to adjust the proportional dominance of the com-
ponents. We name ωS the structure weight and use it to control the relative
importance of structure orientation and significance resulting in a weighted struc-
ture value S(p) defined as

S(p) = (1 − ωS) SO(p) + ωS SS(p) (3)

with 0 ≤ ωS ≤ 1. Increasing ωS stresses the structure significance SS which
resembles the strength of isophotes in a patch Ψ(p). Reducing it boosts the
orientation-related characteristic of isophotes disregarding their possible differ-
ence in significance.

We then weight the obtained S(p) against the K(p) using weight ωC . This
parameter controls the relative influence of confidence and structure components
on the priority:

PA(p) = (1 − ωC) K(p) + ωC S(p) (4)

whereS(p) is the weighted structure value in equation 3 and ωC holds 0 ≤ ωC ≤ 1.
In case the settings hold ωS = ωC = 0.5, the calculated priority corresponds to
an unweighted Additive priority using a separate normalisation. Altering the fill-
order by using a higher ωC results in a dominance of the structural component
where inpainting is mainly isophote-driven.

4.2 Reducing Adjustable Parameters

Experiments with this extension showed that finding suitable parameters ωS

and ωC for equation (4) can be difficult and time consuming. This motivated
the reduction to a single weight ωC combining the structure orientation and sig-
nificance into a single component making ωS obsolete. We call this new priority
value mixed priority and define it as

PM (p) = (1 − ωC)K(p) + ωC (SO(p) · SS(p)) (5)

with 0 ≤ ωC ≤ 1. Fig. 4 shows that results produced by Mixed priorities approach
are similar to those produced using the Additive priorities. The most important
isophotes are continued correctly and the remaining artefacts are very similar
with the improvement of one parameter less.
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4.3 Alpha Blending

So far we modified the fill-order by making it adjustable to image properties. Sev-
eral visible artefacts remain: displaced isophotes, patch-shaped artefacts caused
by adjoining textures and repetitive patterns in the background texture. To re-
duce these artefacts we intervene in the step of filling Ψ(p̂) at the end of each
iteration and introduce a blending of coefficients into the filling process.

Manual inpainting tools in image processing applications, e.g. the healing
brush, use a blending mask for the brush to provide a smooth transition between
added intensities and the background. We adapted this concept and added a
blending method to the filling of Ψ(p̂).

We use coefficients from Ψ(q̂) to fill Ψ(p̂) by copying corresponding values to
ΩW equivalent to [1]. Source coefficients in Ψ(q̂) however are now blended with
corresponding coefficients from Ψ(p̂). We consider each pixel in the source region
of Ψ(p̂) in the blending process weighting it against its corresponding coefficient
in Ψ(q̂).

Let ri be a pixel in Ψ(p̂) holding ri ∈ ΦW ∩ Ψ(p̂) and its correspondence
si ∈ Ψ(q̂). The new coefficient ri is calculated by weighting the current coefficient
ri with the one corresponding to si. The weight is

ωG =
1

2πσ2 exp

(
−
d2

x + d2
y

2σ2

)
(6)

where dx and dy denote the distance of si to its patch centre in horizontal and
vertical direction respectively. The weight ωG is determined by a Gaussian distri-
bution weighting each pair of coefficients. The blending is carried out accordingly
for each subband which is defined as

Wn(r̂i) = (1 − ωG) ·Wn(ri) + ωG ·Wn(si) (7)

where n = a, v, h, d correspond to the four wavelet subbands. ωG holds 0 ≤ ωG ≤
1 to ensure that it does not exceed 1, hence, retaining its original energy.

5 Experiments

We applied these modifications to our campus images (Fig. 2) and examined
the inpainting results. As the example in Fig. 4 shows, our first modification
proposing two parameters to adjust the fill-order to the image-specific proper-
ties performs much better then the original approach which introduces visible
artefacts. Our adjustable approach adapts to the characteristics of the image
and increases perceived quality.

As an alternative, we proposed the Mixed approach in section 4.2 reducing the
complexity of finding the correct set of parameters producing results equivalent
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BibFront ColourChecker

(a) Additive (b) Mixed (c) Additive (d) Mixed

Fig. 6. Samples inpainted with the Mixed approach, shown in (b) and (d), yield better

results compared to the Additive modifications, shown in (a) and (c)

to those of the Additive approach. Fig. 6 illustrates this with slight improvements
using the Mixed approach.

We also introduced a blended filling process at the end of each iteration. The
results in Fig. 4 show that using our blended approach reduces the amount of
artefacts introduced by patches, improves the fill-order and smooths the transi-
tion of different textures.

Hence, the most reliable modification providing the best quality of results is
the Mixed approach extended by our blending method. Its reduced parametric
complexity with similar or even improved results, compared to the other ap-
proaches, makes it the favoured combination of our extensions. Table 1 shows
that our extensions provide improved results compare to Ignácio et al. [1] and
Criminisi et al. [2] and provides similar to better results when compared to
Cheng et al. [3]. In addition, these result show that our extension provides a
more consistent quality for all images whereas they can vary extensibly for the
other approaches.

Table 1. PSNR for selected images from the series inpainted with [2], [3], [1] and our

modifications

PSNR (dB)

Image Criminisi [2] Cheng [3] Ignácio [1] Additive Mixed Blended

Entrance 44.62 49.17 46.45 46.73 46.67 47.37

G Entrance Top 44.61 48.72 47.45 47.34 46.79 48.11

Drain 44.26 44.52 43.89 44.15 43.97 44.52

LibFront HorizLong 40.93 39.82 39.99 39.53 40.30 41.60

Shutter 31.23 40.55 40.25 42.28 42.56 42.74

Gravel 35.30 34.74 35.50 35.85 35.85 36.32

Menseria 42.55 43.76 41.91 42.39 42.56 43.04

Menseria Top 36.48 28.90 33.60 35.61 35.97 36.80

Obelisk 29.66 29.38 33.74 34.01 34.03 34.17

CampusWater 31.889 37.05 35.06 34.61 34.88 36.31
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BibFront Obelisk Gravel CampusWater

Original

Criminisi [2]

Cheng [3]

Ignácio [1]

Mixed method

Mixed method with alpha blending

Fig. 7. Excerpts showing the inpainting results generated by [2] and [1] compared

to our modifications. Each of our modifications show an increase in quality. Added

blending produces the best results.
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6 Conclusion

We conclude that our Mixed approach with blended filling increases quality for
highly structured images. We achieved a higher stability with an improved fill-
order and increase the inpainting quality adjusting the weight in equation (5)
to the characteristics of each image individually. The optimal weights, however,
have to be retrieved empirically.

We state that there is no generic solution to automatically remove an object
from an image. Although the content of our images are very similar in terms of
their texture-structure ratio, the remaining differences still require an adjustable
solution to provide sufficient results. An approach proposing an automated solu-
tion, therefore, depends on the identification and classification of different image
properties for an automated adjustment of the described parameters.
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Abstract. Graphical models with higher order factors are an impor-

tant tool for pattern recognition that has recently attracted considerable

attention. Inference based on such models is challenging both from the

view point of software design and optimization theory. In this article, we

use the new C++ template library OpenGM to empirically compare in-

ference algorithms on a set of synthetic and real-world graphical models

with higher order factors that are used in computer vision. While infer-

ence algorithms have been studied intensively for graphical models with

second order factors, an empirical comparison for higher order models

has so far been missing. This article presents a first set of experiments

that intends to fill this gap.

1 Introduction and Related Work

Graphical models have been used very successfully in pattern analysis, usually as
probabilistic models in which the graph expresses conditional independence re-
lations on a set of random variables [1,2]. Graphical models are not restricted to
probabilistic modeling and have also been used more generally to represent the
factorization of arbitrary multivariate functions (w.r.t. a given operation) into fac-
tors that depend on subsets of all variables [3]. Factor graphs [3,4] are a common
way of representing this factorization. In this article, we focus on functions which
depend on discrete variables that can attain only finitely many values.

The optimization of such functions is important to perform MAP estimation
(inference) under the assumption of a probabilistic model as well as to find con-
figurations with minimal energy in non-probabilistic models. In several special
cases the optimization problem can be solved in polynomial time (in the number
of variables), in particular if the graphical model is acyclic [1] or if the energy
function is (permutation) submodular [5,6,7]. However, if the model does not be-
long to either of these classes, exact optimization is NP-hard in the general [6].

For several years, research efforts focused mainly on functions which decom-
pose into factors that depend on at most two variables. However, in order to
model more complex problems, higher order factors have recently become an
active field of research [8,9,10,11]. While second order factors are conceptually
simple, higher order factors are challenging from the view point of optimization
theory and implementation.
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At least two types of algorithms exist : message passing algorithms
(e.g. Loopy Belief Propagation (LBP) [1,12,13] and Tree-Reweighted Belief
Propagation (TRBP) [14,15]) and search-based algorithms (e.g. A* search [16],
Iterated Conditional Modes (ICM) [17], and a generalization if ICM called the
Lazy Flipper [18]). While message passing algorithms implicitly approximate
the objective function, search-based algorithms either restrict the search space
or else have a runtime that is in the worst case exponentially large in the number
of variables. All these algorithms output upper bounds on the global minimum
(when used for minimization). TRBP in addition affords a lower bound on the
global minimum.

For the sake of comparability, it is essential that these different algorithms are
used with the same underlying data structures. While data structures for factors
that depend only on binary variables are simple, consisting mostly of low-level
functions close to machine code, similar data structures which allow the variables
to have different domains are non-trivial and require unavoidable overhead. To
quantify the effect from using different data structures on the absolute runtime
of a particular algorithm, the same algorithm needs to be run with different
underlying data structures.

We developed the extendible C++ template library OpenGM for this com-
parison. OpenGM allows the programmer to use different inference algorithms
and different factor data structures interchangeably. While the experiments in
this article are restricted to graphical models with discrete variables (binary and
non-binary), OpenGM is general enough to also work with parameterized factors
that depend on continuous variables. In contrast to Infer.NET [19] which has
been published without source code under a fairly restrictive licence and libDAI
[20] which is open source and published under a General Public Licence that
forces the user to publish derived code under the same licence (so-called copyleft
terms), the OpenGM source code will be published under the MIT licence that
imposes almost no restrictions and does not contain copyleft terms.

We show in this article that the examined algorithms perform very differently,
depending on the structure of the graphical model, both in terms of the upper
bound on the global minimum as well as in terms of absolute runtime. Moreover,
we show that the absolute runtime crucially depends on the data structures that
are used to represent factors. In contrast to the Middleburry MRF Benchmark [21]
and the quantitative comparison in [22], our comparison includes graphical models
with higher order factors, different topologies, and different variable domains.

2 Optimization Problem and Algorithms

The models considered in this article are given in factor graph notation. A factor
graph G = (V, F,E) is a bipartite graph that consists of three sets: a set of
variable nodes V , a set of factor nodes F , and a set of edges E ⊆ V × F that
connect variables to factors. For each factor node, ne(f) := {a ∈ V : (a, f) ∈ E}
denotes the set of all variable nodes that are connected to the factor.

With each variable node a ∈ V , a variable xa ∈ Xa is associated. For a
set of variable nodes A ⊆ V , XA =

⊗
a∈A Xa denotes the Cartesian product
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of the respective variable domains. Corresponding sequences of variables are
written as xA = (xa)a∈A. Moreover, with each factor node f ∈ F , a function
ϕf : Xne(f) → R is associated. Together with some commutative and associative
operation (addition throughout this article), the factor graph describes a function
over X := XV :

J(x) =
∑
f∈F

ϕf (xne(f)) . (1)

We will consider the following discrete optimization problem:

x∗ = arg min
x∈X

∑
f∈F

ϕf (xne(f)) (2)

where, for all a ∈ V , Xa = {1, . . . , L}.
Five algorithms to tackle this problem are compared in this article, the mes-

sage passing algorithms LBP and TRBP as well as the search-based algorithm
A* search, ICM, and the Lazy Flipper.

Motivated by Pearl’s Belief Propagation algorithm [1] which is exact for tree
structured models, LBP [12,13] is one of the toady’s standard methods. It ap-
plies the message passing rules for acyclic graphs to graphs with cycles, without
providing any convergence guarantees. Even if this method is rather heuristic,
it shows quite good performance in real-world applications.

The more mathematically sound message passing algorithm TRBP was pre-
sented by Wainwright [14] who considers a convex relaxation of the problem
by a tree-decomposition. The resulting message passing algorithm can be seen
as a fixed point iteration on this convex outer relaxation. In subsequent work
[15], Kolmogorov proposed a sequential version (TRW-S) which is guaranteed to
converge to fix-points satisfying the so-called week tree agreement.

Very recently, several methods [16,23] have been suggested which solve discrete
minimization problems in computer vision by branch and bound search. We
implemented the methods presented in [16] which transform the optimization
problem (2) into a shortest path problem on a graph whose size is exponential in
the size of the graphical model. The shortest path problem is then solved by A*
search using a tree-based approximation of the original graph to approximate the
further cost while searching. This algorithm is guaranteed to converge to global
optima and performs well on some classes of models. However, the worst-case
runtime is exponential in the number of variables.

ICM [17] is a simple algorithm that keeps all variables except one fixed in each
step and adjusts the free variable such that the objective function is minimized.
The variables are visited repeatedly in a certain order until no alteration of a
single variable can further reduce the value of the objective function.

The Lazy Flipper [18] is a generalization of ICM for models with binary
variables. It extends the ICM search to subsets that contain more than one
variable. The Lazy Flipper is more efficient than exhaustive search (by an amount
that can be exponential in the number of variables) because the search space is
restricted to a set of variables which are connected via factors in the graphical
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model and which have not been visited in previous iterations. The maximum size
of subsets can be supplied as a parameter to the algorithm. When set to infinity,
the Lazy Flipper is guaranteed to converge to a global optimum. Its runtime is
exponential in the worst case.

3 Empirical Comparison of Inference Algorithms

For a comparison of the algorithms, we consider both synthetic and real-world
graphical models with discrete variables that appear in computer vision appli-
cations. Synthetic models have the advantage that several instances of the same
model can be generated which allows us to decide whether differences in perfor-
mance and runtime are significant.

3.1 Synthetic Models

We characterize models by their graph structure, the number of variables, the
number of values each variable can attain, the order of factors, and the distribu-
tion of factor values. For simplicity, we let the number of values be equal for all
variables and let each model contain only factors of the orders 1 and M . Two
different graph structures are considered, each with two different orders:

1. Fully connected models with second and third order factors, respectively,
consisting of 8 variables each of which can attain 20 different values. These
models are often used in part based object detection [16].

2. Grid graph models with first order factors as well as second and fourth order
factors, respectively, which are frequently used in image segmentation. A
grid with 40 times 40 (1600) variables is used, each variable attaining 2 and
5 different values, respectively. For the grid-based models, the additional
parameter λ ∈ [0, 1] controls the coupling strength between first and higher
order factors according to

J(x) = (1 − λ)
∑

f∈F,|ne(f)|=1

ϕf (xne(f)) + λ
∑

f∈F,|ne(f)|>1

ϕf (xne(f)) (3)

The four different graph structures for the synthetic models are depicted in
Fig. 3.1 for a small number of variables. The factors of all models are sampled
independently, an assumption which may not hold in real data. Two different
types of factors are considered: The values of uniform factors are sampled uni-
formly from the interval [0, 1]. For log-uniform factors, values v are sampled
uniformly from the interval (0, 1], and the values of factors set to − log(v). This
results in very selective factors which in this form often appear within part based
models [16,23]. For each model, an ensemble of 10 instances is generated.

3.2 Real-World Models

In addition, we consider 100 graphical models obtained from the 100 natural
test images in the Berkeley Segmentation Dataset [24] that are used to remove
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(a) FULL2(4, ·) (b) FULL3(4, ·) (c) GRID2(9, ·) (d) GRID4(9, ·)

Fig. 1. Graph structures of the synthetic models with less variables

excessive boundaries from image over-segmentations. These real-world models
have on average 8800 binary variables, 5700 third order and 100 fourth order
factors. Each variable corresponds to a boundary between segments, indicating
whether this boundary is to be removed (0) or preserved (1). Unary factors relate
these variables to the image content while non-submodular third and fourth
order factors connect adjacent boundaries, supporting the closedness and smooth
continuation of preserved boundaries.

3.3 Results

In the tables below, the mean upper bounds E(J) on the minimum energy and
the mean runtimes E(t) (in seconds) over these ensembles are shown. Runtimes
are measured on one core of an Intel Pentium Dual Core at 2.00 GHz. In addition,
we note in the tables how often each algorithm outputs the smallest upper bound
on the minimum energy among the compared algorithms. When algorithms use
a data structure that is specialized for binary variables, this is marked with a 2
at the end of the algorithm name.

Results for the fully connected synthetic models are shown in Tab. 1. While
A* search guarantees global optimality, LBP, TRBP, and ICM show inferior

Table 1. Results for fully connected models with 8 variables and 20 labels: On the 2nd

order model FULL2(8, 20) A* search outperforms LBP and TRBP in terms of energy

and runtime. LBP sometimes also ends up in a global optimum for 2nd order models.

On the 3rd order model FULL3(8, 20), A* search still calculates the global optima,

contrary to all other algorithms

2nd order 3rd order

uniform log uniform log

E{J} E{t} best E{J} E{t} best E{J} E{t} best E{J} E{t} best

LBP 8.21 0.88 40% 12.70 1.06 20% 24.14 197.69 0% 51.69 197.38 0%

TRBP 10.19 1.54 0% 21.36 1.58 0% 25.55 99.00 0% 55.52 76.63 0%

ASTAR 4.82 0.82 100% 6.12 0.55 100% 14.19 20693 100% 20.05 16881 100%

ICM 10.37 0.00 0% 20.29 0.00 0% 22.58 0.00 0% 40.45 0.00 0%
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performance. The Lazy Flipper cannot be applied because these models have
non-binary variables.

Results for the synthetic grid models are shown in Tab. 2–5. The Lazy Flipper
consistently outperforms LBP, TRBP, and ICM in terms of quality. Surprisingly,
LBP performs overall better than TRBP. While the use of an optimized data
structure for binary variables results in a speed-up factor of 2 for LBP, TRBP,
and ICM, the change is marginal for Lazy Flipper because the Lazy Flipper
spends most of the time on graph traversal, while LBP and TRBP sum up and
minimize multi-dimensional factors during message passing and ICM mostly
evaluates factors for certain assignments of values to the variables. It is hard
to make any general claims on the runtime of LBP and TRBP since they do
not convergence, and so the runtime usually depends linearly on the maximal
number of iterations.

Table 2. Results for the binary second order grid model GRID2(1600, 2) consisting

of 40 times 40 variables. For smaller coupling strength λ = 0.25, LBP and TRBP

perform comparable with the Lazy Flipper. For larger coupling strength, the Lazy

Flipper consistently outperforms LBP and TRBP in comparable runtime.

uniform

λ = 0.25 λ = 0.75

E{J} E{t} best E{J} E{t} best

LBP 754.76 7.30 90% 995.65 31.60 0%

TRBP 754.78 18.44 80% 995.62 39.65 0%

LF 754.76 10.36 90% 993.68 10.77 100%

ICM 790.51 2.67 0% 1303.53 2.77 0%

LBP2 754.76 3.40 90% 995.65 14.58 0%

TRBP2 754.78 8.24 80% 995.62 17.66 0%

LF2 754.76 10.00 90% 993.68 10.56 100%

ICM2 790.51 1.37 0% 1303.53 1.42 0%

log

λ = 0.25 λ = 0.75

E{J} E{t} best E{J} E{t} best

LBP 1229.87 17.04 30% 1599.70 31.35 0%

TRBP 1229.89 23.58 20% 1594.76 39.74 0%

LF 1229.60 10.31 90% 1588.69 10.87 100%

ICM 1379.28 2.70 0% 2542.86 2.82 0%

LBP2 1229.87 7.90 30% 1599.70 14.48 0%

TRBP2 1229.89 10.47 20% 1594.76 17.54 0%

LF2 1229.60 10.03 90% 1588.69 10.61 100%

ICM2 1379.28 1.38 0% 2542.86 1.46 0%
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Table 3. Results for the binary 4th order grid model GRID4(1600, 2) consisting of 40

times 40 variables. Compared to the 2nd order model, the energy functions are much

more challenging which results in a 17-times longer runtime for the Lazy Flipper.

Similar to the 2nd order model, the Lazy Flipper outperforms LBP and TRBP, even

for the weakly coupled models.

uniform

λ = 0.25 λ = 0.75

E{J} E{t} best E{J} E{t} best

LBP 562.19 142.68 0% 497.22 142.90 0%

TRBP 570.41 161.19 0% 555.47 142.37 0%

LF 558.44 170.07 100% 449.93 222.45 100%

ICM 589.86 1.85 0% 700.53 1.85 0%

LBP2 562.19 64.55 0% 497.22 64.68 0%

TRBP2 570.41 71.60 0% 555.47 62.63 0%

LF2 558.44 167.28 100% 449.93 217.22 100%

ICM2 589.86 1.01 0% 700.53 1.03 0%

log

λ = 0.25 λ = 0.75

E{J} E{t} best E{J} E{t} best

LBP 874.94 142.77 0% 786.36 142.00 0%

TRBP 891.07 161.69 0% 888.04 163.44 0%

LF 863.72 170.50 100% 683.87 238.41 100%

ICM 975.74 1.88 0% 1339.57 1.93 0%

LBP2 874.94 64.68 0% 786.36 64.08 0%

TRBP2 891.07 71.77 0% 888.04 71.98 0%

LF2 863.72 164.88 100% 683.87 231.82 100%

ICM2 975.74 1.01 0% 1339.57 1.05 0%

Table 4. Results for the 2nd order grid models with 5 labels, GRID2(1600, 5). For this

non-binary problem, we compare LBP, TRBP and ICM. For small coupling strength,

LBP and TRBP perform comparable; LBP shows significantly better performance for

larger coupling strength

uniform —log—

λ = 0.25 λ = 0.75 λ = 0.25 λ = 0.75

E{J} E{t} best E{J} E{t} best E{J} E{t} best E{J} E{t} best

LBP 514.55 10.71 10% 706.35 10.75 100% 710.62 10.70 60% 1035.78 10.87 100%

TRBP 514.22 13.70 90% 772.77 13.71 0% 711.08 13.73 40% 1164.19 13.67 0%

ICM 591.13 8.27 0% 1235.02 8.30 0% 1024.98 8.22 0% 2426.99 8.58 0%
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Table 5. Results for the 4th order grid models with 5 labels, GRID4(1600, 5). LBP

outperforms TRBP when both run the same number of iterations.

uniform

λ = 0.25 λ = 0.75

E{J} E{t} best E{J} E{t} best

LBP 344.87 271.34 100% 354.92 271.24 90%

TRBP 414.42 284.81 0% 368.98 284.87 10%

ICM 390.75 5.96 0% 636.23 5.96 0%

log

λ = 0.25 λ = 0.75

E{J} E{t} best E{J} E{t} best

LBP 452.70 271.48 100% 467.57 271.61 100%

TRBP 547.41 285.03 0% 527.51 284.66 0%

ICM 622.89 5.98 0% 1226.44 6.06 0%

Table 6. Results for the irregular 4th order segmentation models with binary variables.

The Lazy Flipper consistently outperforms LBP and ICM in terms of energy and

runtime. Due to the irregularity, the construction of a meaningful set of spanning trees

is non-trivial. TRBP is therefore not applied.

E{J} E{t} best

LBP 1053.16 99.67 0%

LF 870.52 26.12 100%

ICM 2360.76 79.23 0%

LBP2 1053.16 48.51 0%

LF2 870.52 25.34 100%

ICM2 2360.76 55.48 0%

Results for the real-world segmentation models are shown in Tab. 6. The Lazy
Flipper consistently outperforms LBP and ICM in terms of energy and runtime.
Due to the irregularity of the model, the construction of a meaningful set of
spanning trees is non-trivial. TRBP is therefore not applied.

We run 400 LBP and TRBP iterations on the fully connected models and on
GRID2(1600, 2), 1000 iterations on GRID4(1600, 2), 300 iterations on the irregu-
lar segmentation models, and 100 iterations, otherwise, with a message damping
of 0.3 for all models. Message passing is terminated when the maximal change
in all messages is less than 10−6. For the fully connected models, all spanning
trees are considered for TRBP. For the grid graphs, we set the probability that
a factor appears in a sub-tree to the reciprocal of its order. The heuristic for A*
search is based on a fan-graph rooted in the last node. The Lazy Flipper is run
with a maximal subgraph size of 6.
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4 Conclusion

This article presents an empirical comparison of inference algorithms on graph-
ical models with higher order factors. The experiments show that search-based
algorithms such as A* search and the Lazy Flipper are powerful tools which can
outperform message passing algorithms in these settings. While the set of exper-
iments is far from being exhaustive, it demonstrates the flexibility and modular-
ity of the OpenGM library, in particular the exchangeability of data structures
and inference algorithms. More inference algorithms as well as specialized data
structures can therefore be examined in the future.

Acknowledgement. This work is connected to the Heidelberg Research Train-
ing Group (GRK 1653) on Probabilistic Graphical Models (http://graphmod.
iwr.uni-heidelberg.de/). Authors acknowledge corresponding support by the
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Abstract. The segmentation of foreground silhouettes of humans in

camera images is a fundamental step in many computer vision and pat-

tern recognition tasks. We present an approach which, based on color

distributions, estimates the foreground by automatically integrating data

driven 3d scene knowledge from multiple static views. These estimates

are integrated into a level set approach to provide the final segmen-

tation results. The advantage of the presented approach is that ambi-

guities based on color distributions of the fore- and background can be

resolved in many cases utilizing the integration of implicitly extracted 3d

scene knowledge and 2d boundary constraints. The presented approach

is thereby able to automatically handle cluttered scenes as well as scenes

with partially changing backgrounds and changing light conditions.

1 Introduction

The problem of segmenting foreground silhouettes of humans in camera images
is a fundamental problem in computer vision. High quality silhouettes are an
essential prerequisite for dense camera based 3d reconstruction or image based
human pose estimation. Camera based dense 3d reconstruction of humans can,
hence, be partitioned into three main blocks: Modality of image acquisition,
foreground estimation and -separation and finally, dense 3d reconstruction.

Regarding the modality, image based human motion capture has been done
monocular [1], with stereo [2], multi view [3,4,5] or multi view stereo setups [6].

The estimation of foreground from the image data can be realized by image
differencing over time [7], by using color model coherence by integrating ap-
propriate a priori knowledge of fore- and background [8,9] or by integrating 3d
knowledge from stereo [2] or n-view reconstructions [4,5]. If colors are used for
foreground segmentation, the approaches can be separated in simple per channel
differencing approaches, codebooks models [10] and mixture models [11].
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Based on the color models, the segmentation is usually performed based on
probabilities [5] or energy minimization, e.g. level set approaches [12,13] or graph
cuts [14]. The 2d information of multiple cameras can be fused by the voxel
carving approach [3], by probabilistic data based fusion [15], probabilistic fusion
with integration of a priori knowledge about the appearance of human silhouettes
[1] or energy based formulations [4,6].

Most of the mentioned approaches for detailed 3d reconstruction focus on the
segmentation and 3d reconstruction in artificial or laboratory like scenarios with
homogenous but mostly disjunct colors of fore- and background. The approaches,
which take into account clutter and occlusions, often need a manual initializa-
tion step [6,9,16]. We, thus, present an approach, which conjoins probabilistic
3d fusion and energy based level set approaches, which enables auto initializa-
tion and adaptivity to scenes with cluttered, moderately changing backgrounds.
Based on our recordings with a calibrated multi camera setup in realistic, clut-
tered and partially changing environments, we can show that our approach is
able to produce high quality foreground segmentation results of human silhou-
ettes. Utilizing these silhouettes for dense 3d reconstructions gains convincing
results in these difficult scenarios.

2 Segmentation by Probabilistic 3d Fusion

The segmentation via probabilistic 3d fusion proposed in [5] is based on two
ideas: First, a probabilistic 2d segmentation of fore- and background in all camera
images of a static, calibrated multi camera setup is performed based on color
distribution models. To make this segmentation more robust and adaptive, the
second part integrates 3d scene information reconstructed from all cameras. The
3d information is used as a feedback mechanism to the segmentation task. Hereby
the color distributions are adapted automatically to achieve better segmentation
results. The basic assumption is that observed objects are surrounded by multiple
cameras to obtain complete 3d reconstructions of the foreground.

The steps of the approach are depicted in Fig. 1. First, coarse fore- and back-
ground models are generated. They are used with the current camera images to
create a probabilistic 3d voxel reconstruction of the scene. Probabilistic in this
context means that each reconstructed voxel has a specific occupation probabil-
ity derived from the probabilities of the corresponding pixels in all views to be
foreground. The 3d reconstruction is projected into the camera images, thresh-
olded and in this way provides a masked area of foreground in the images. Image
areas which are not covered by this mask are used to update the background
model. By utilizing this updated model a segmentation is performed to pre-
cisely determine the foreground silhouettes. The silhouettes are used to update
the foreground model accurately in a succeeding step. The fore- and background
models are then used to create a probabilistic 3d reconstruction of the foreground
by using the next camera frame and the loop restarts.
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Reconstruction

Projection

Init FG/BG
Models

Probabilistic 3d

Update BG Model

Update FG Model

Segmentation

Fig. 1. Segmentation loop utilizing probabilistic 3d fusion as data driven feedback

mechanism to enhance the segmentation by automatically adapted color distributions.

2.1 Fore- and Background Model

To model fore- and background, the random variable F ∈ {0, 1} decides whether
a pixel at a given time t is fore- or background (F = 1 respectively F = 0).
Based on a given color vector c the color distribution p(c|F = 1) models the
foreground and is used to infer the conditional probability P (F = 1|c). The
foreground model is generated based on the foreground segment for each frame
separately and consists of two parts A and B:

p(c|F = 1) = (1 − PNF)
Kfg∑
k=1

ωkη(c,μk,Σk)︸ ︷︷ ︸
A

+PNF U(c)︸︷︷︸
B

. (1)

The first part A models known foreground in terms of a Gaussian Mixture Model
(GMM) with the density function η(c,μ,Σ) where μk and Σk are mean and
variance of the kth of Kfg components of the mixture and ωk is the component’s
weight. B models a uniform color distribution which is necessary to integrate
suddenly arising new foreground. Both parts are coupled by the probability
PNF = 1

2 of new foreground. The model is generated continuously by utilizing
k-means clustering of the colors of the foreground silhouette during consecutive
frames. The background model consists of two parts as well:

p(ct|Ft = 0) = (1 − PS)
Kbg∑
k=1

ωk
t η(ct,μ

k
t ,Σ

k
t )︸ ︷︷ ︸

C

+PS

Kbg∑
k=1

ωk
t p(ct|Sk

t = 1)︸ ︷︷ ︸
D

. (2)

Part C models the color distribution of the background similar to the model in
eq. 1 with Kbg components. In contrast to eq. 1, the model is updated over the
whole observation time t. The second part D models the occurrence of shadows
and highlights. Both parts are again coupled with an additionally probability of
shadows PS = 1

2 . The shadow and highlight model D is modeled in analogy to
the background color model C, i.e. the weightings of C are reused. To determine
shaded areas or areas of highlights, the colors are examined in the YUV color
space. A luminance ratio λ is calculated in the Y channel: λ = Yt

YB
= c1

t

μk,1
t

. Two
thresholds are introduced to detect shadows, if τS < 1, and highlights, if τH > 1.
The resulting shadow model is:
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p(ct|Sk
t = 1) =

⎧⎨⎩
1

(τH−τS)μk,1
t

∏
d=2,3

η(cdt , μ′k,d
t , Σk,d

t ) if τS ≤ λk
t ≤ τH

0 else
. (3)

The scale factor 1
(τH−τS)μk,1

t

is needed to achieve the density’s integration to
result in 1. The background model in eq. 2 is updated continuously by integration
of all previous frames over time by utilizing an online Expectation Maximization
(EM) approach as presented in [5].

2.2 Probabilistic 3d Fusion

To update fore- and background models, a method is needed to reliably identify
foreground in the camera images. In case of multi camera setups it is feasible to
exploit the strong prior of geometric coherence of the scene observed from mul-
tiple views by using the approach of a bayesian probabilistic 3d reconstruction
[15]. The volume seen by the cameras is discretized into voxels V ∈ {0, 1}. For
each voxel the probability of being foreground is derived from the foreground
probabilities of the corresponding pixels in all cameras according to the model
definition in [5]. Four a priori probabilities are introduced into the reconstruc-
tion model. First, the probability of voxel occupation: P (V) = 1

2 . Additionally,
three error probabilities PDF, PFA and PO. PDF means a detection failure, i.e.
a voxel should be occupied but is not due to e.g. camera noise. PFA means a
false alarm, i.e. a voxel should not be occupied but erroneously is, e.g. due to
shadows. Finally, PO means an obstruction, i.e. a voxel should not be occupied
but is on the same line of sight as another voxel which is occupied and, hence,
classified incorrectly. The conditional probability of foreground of an unoccupied
voxel is, thus, V : P (Fn = 1|V = 0) = PO(1 − PDF) + (1 − PO)PFA. The con-
ditional probability of background of an unoccupied voxel is V : P (Fn = 0|V =
0) = 1− [PO(1−PDF)+(1−PO)PFA]. Values of 5% for PDF, PFA and PO provide
reasonable results. We use the joint probability distribution defined in [5], and
marginalize over the unknown variables Fn by observing the colors c1, . . . , cN

at the corresponding pixels in the images of the cameras 1, . . . , N by eq. 4:

P (V = 1|c1, . . . , cN ) =

N∏
n=1

∑
f∈{0,1}

P (Fn = f |V = 1)p(cn|Fn = f)

∑
v∈{0,1}

N∏
n=1

∑
f∈{0,1}

P (Fn = f |V = v)p(cn|Fn = f)
. (4)

The resulting probabilistic 3d reconstruction is backprojected into the camera
images and then used to identify fore- and background segments (cf. sec. 2).

2.3 Probabilistic Foreground Detection

By using the probability densities p(c|F = 1) and p(c|F = 0) (sec. 2.1) the
conditional probability P (F = 1|c) that a pixel belongs to the foreground based
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on an observed color value c can be calculated using Bayes’ rule which un-
der assumption of no a priori knowledge about the unconditional probabilities
P (F = f) and a resulting uniform distribution cancels out to:

P (F = 1|c) =
p(c|F = 1)∑

f∈{0,1}
p(c|F = f)

. (5)

3 Variational Segmentation

The problem of segmentation has been formalized by Mumford and Shah as the
minimization of a functional [17]. The level set method was introduced by Osher
and Sethian [18] to implicitly propagate hypersurfaces by evolving an appropriate
embedding function to find minimizers to such a functional. The variational
approach used in our segmentation framework is based on the works of [12,13].
In this section we will shortly review this variational framework and the way
the different information is fused. The basis of our segmentation framework is a
variation of the very well known energy functional for image segmentation:

E(ϕ) = −
∫

Ω

H(ϕ)
k∑

j=1

log p1,j(c) dΩ −
∫

Ω

(1 −H(ϕ))
k∑

j=1

log p2,j(c) dΩ

+ ν1

∫
Ω

|∇H(ϕ)| dΩ ,

(6)

where c ∈ Rk is the image feature vector, H(ϕ) is a regularized Heaviside func-
tion and pi,j are specific, independent object (i = 1) and background (i = 2)
distributions for the different image feature channels j. These distributions can
be inferred from the respective regions (divided by ϕ(x)) by fitting parametric
distributions or by performing the nonparametric Parzen density estimates [19]
to histograms of the feature channels.

Instead of multiplying the different probabilities arising from the feature chan-
nels, which leads to the above formulation of the segmentation energy, we gen-
eralized this approach and use Dempster-Shafer theory of evidence [20] to fuse
information arising from different feature channels. The key idea, which makes
it different from other Bayesian frameworks, is the use of Dempster’s rule of
combination to fuse different information [20]. This allows to favor feature chan-
nels that support a specific region instead of favor channels with low support
for a region. We will make use of this property to fuse the image data of tradi-
tional segmentation frameworks and the information arising from segmentation
by probabilistic foreground detection.

The energy functional, which uses evidence theory can be expressed as follows:

E(ϕ) = −
∫

Ω

H(ϕ) logm(Ω1) dΩ −
∫

Ω

(1 −H(ϕ)) logm(Ω2) dΩ

+ ν1

∫
Ω

|∇H(ϕ)| dΩ ,

(7)
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where m = m1 ⊗m2 ⊗ . . .⊗mk is the mass function, fusing k feature channels
with Dempster’s rule of combination. The single mass functions mj are defined
by the object and background distributions pi,j :

mj(∅) = 0 , mj(Ω) = 1 − (p1,j(c) + p2,j(c)) ,
mj(Ω1) = p1,j(c), mj(Ω2) = p2,jc , (8)

for j ∈ {1, . . . , k}. The mass mj(Ω) = mj({Ω1, Ω2}) introduces a way to repre-
sent inaccuracy and uncertainty of the feature channels, while the mass mj(Ωi)
can be interpreted as the belief strictly placed on foreground- (Ω1) and back-
ground (Ω2) regions. Dempster’s rule of combination is defined by:

m(ρ1) = m1(ρ1) ⊗m2(ρ1) =

∑
ρ2∩ρ3=ρ1

m1(ρ2)m2(ρ3)

1 −
∑

ρ2∩ρ3=∅
m1(ρ2)m2(ρ3)

, (9)

where ρ1, ρ2, ρ3 ∈ ℘{Ω1, Ω2} = {∅, Ω1, Ω2, {Ω1, Ω2}}.
The minimization of the energy (7) with respect to ϕ can be performed using

variational methods and a gradient descent [16]. Thus, the segmentation process
works according to the EM principle with an initial partitioning.

4 Integrating Probabilistic 3d Fusion into Variational
Segmentation

Given the probabilities P (F = 1|c) for each feature vector c arising from the
probabilistic foreground detection (5) we build the following mass function:

mfg(∅) = 0 , mfg(Ω) = 1 − ν2 ,

mfg(Ω1) = ν2 · P (F = 1|c), mfg(Ω2) = ν2 · (1 − P (F = 1|c)) , (10)

with a weighting parameter ν2 ∈ [0, 1]. This parameter can be interpreted as
the belief we put on the probabilistic foreground detection. With a parameter
ν2 < 1 we integrate inaccuracy. As a consequence, the evolving boundary is
directly driven by the intensity information of the image and the result of the
probabilistic 3d fusion.

The mass function mfg is now integrated into the variational approach for
image segmentation (7) using Dempster’s rule of combination:

mnew = m⊗mfg = m1 ⊗m2 ⊗ . . .⊗mk ⊗ mfg . (11)

The energy functional for segmentation fusing image features and probabilistic
foreground detection can be written as:

E(ϕ) =−
∫

Ω

H(ϕ) logmnew(Ω1) dΩ −
∫

Ω

(1 −H(ϕ)) logmnew(Ω2) dΩ︸ ︷︷ ︸
fusion of image features and probabilistic foreground detection

+ ν1

∫
Ω

|∇H(ϕ)| dΩ .

(12)
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Compared to the Bayesian approach the proposed framework is able to correct
wrong classifications coming from the probabilistic foreground detection and vice
versa, because channels with a strong support are favored.

5 Evaluation

We present a qualitative and a quantitative analysis of our algorithm based on
the images of the Dancer Sequence in [5] and our own recordings of gymnasts
with seven Prosilica GE680C cameras in a circular setup. The quantitative anal-
ysis is performed based on hand labeled data.

In a qualitative analysis we compare the results of the approach of [5] with the
results of a variational segmentation, with GrabCut [14] and the results of the
proposed combined approach. The probabilistic segmentation of [5] is initialized
with a priori recorded background images. These images varied in lighting and
details which was automatically compensated by the presented approach. In case
of the variational segmentation and GrabCut, the result of the probabilistic 3d
fusion is used as the initial boundary. In the combined approach the information
from the probabilistic 3d fusion is used as the initial boundary and integrated
into the variational segmentation framework as proposed in eq. (12).

In Fig. 2 we present exemplary results of all four approaches performed on a
difficult scene with very similar color distributions of fore- and background. It is
clearly observable that neither the variational approach nor the segmentation by
probabilistic fusion are able to fully cope with that ambiguity. The variational
approach integrates large parts of the wooden background into the foreground
silhouette while the approach of [5] leads to very low probabilities of foreground
in the ambiguous areas. Solely, the proposed approach leads to satisfying results
in such difficult scenarios. As an alternative to variational segmentation, the
results of the probabilistic segmentation could also be used as initialization for
GrabCut. But we found that only the combination of initialization by proba-
bilistic segmentation and fusing this information utilizing the Dempster-Shafer
approach can close erroneous holes and, thus, recover from false classifications.

Due to the convincing results of Fig. 2 we performed a quantitative analysis
of the three approaches and measured the error compared to hand labeled data.
Exemplary results of the cameras 6 and 7 are presented in Fig. 3. Camera 6
has been chosen because this view contains background motion and we want
to demonstrate that the adaptivity of [5] is not compromised by the presented
approach. The results of Camera 7 are selected to link the qualitative results in
Fig. 2 with quantitative results to clarify the benefits of the presented approach.
In all cases the proposed approach provides better results over the full sequence.

Finally, we performed a qualitative analysis of the proposed approach on the
dancer from [5]. We were able to show, that again, our approach gains better
segmentation results (cf. Fig. 4) than the probabilistic segmentation. We could
also additionally demonstrate that the proposed approach is applicable in these
kinds of difficult scenarios with occluding noise and, thus, unites the benefits of
robust segmentation and robust dense 3d reconstruction results.
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Fig. 2. Frames 100, 300, 500 and 700 of camera 7. First row: Variational segmentation

only. Second row: Segmentation by probabilistic fusion only without post processing.

Third row: Combined approach with GrabCut segmentation. Fourth row: Proposed

combined approach with variational segmentation. Fifth row: Input image and detected

contour of combined approach. All single approaches have difficulties in areas with

nearly identical color distributions of fore-/background. Only the proposed combined

approach is able to cope with these kinds of ambiguities.
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Fig. 3. Silhouette error percentage in steps of 100 frames in cameras 6 and 7 of the

gymnast sequence. The proposed approach generates the best results with the fewest

errors compared to the variational approach and the approach of [5].

Fig. 4. Column 1, top: Probabilistic segmentation of the second frame (after first

model update) of camera 6 of the dancer sequence; Bottom: Segmentation of proposed

approach. Column 2: Resulting 3d reconstruction of proposed approach. Column 3,

top: Probabilistic segmentation of frame 645; Bottom: Segmentation of the proposed

approach. Column 4: Resulting 3d reconstruction.

6 Conclusion

In the presented work we developed a new approach for color based foreground
segmentation with multi camera setups which implicitly integrates geometric pri-
ors of the used camera setup and energy based constraints to allow an adaptive,
purely data driven high quality segmentation of foreground in cluttered, chang-
ing and, thus, realistic scenarios. The new approach combines the segmentation
by probabilistic 3d fusion and the variational approach of level set segmentation
based on Dempster-Shafer theory of evidence. We revealed that both algorithms
on their own have massive difficulties in scenarios with very similar color distri-
butions of fore- and background. However, we were able to show, that with our
specific approach the integration of both methods allows tremendous improve-
ments of the segmentation results in these kinds of scenarios. To attest the im-
pact of our method, we performed qualitative as well as quantitative evaluations
on natural image sequences. We showed that the combination of probabilistic
3d fusion and the level set segmentation based on Dempster-Shafer theory of
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evidence produces much better foreground extractions, which is an important
prerequisite for many tasks in computer vision.
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Abstract. In this paper, a segmentation method for spherically- and elliptically-
shaped objects is presented. It utilizes a user-defined seed point to set up a di-
rected 3D graph. The nodes of the 3D graph are obtained by sampling along 
rays that are sent through the surface points of a polyhedron. Additionally, sev-
eral arcs and a parameter constrain the set of possible segmentations and en-
force smoothness. After the graph has been constructed, the minimal cost closed 
set on the graph is computed via a polynomial time s-t cut, creating an optimal 
segmentation of the object. The presented method has been evaluated on 50 
Magnetic Resonance Imaging (MRI) data sets with World Health Organization 
(WHO) grade IV gliomas (glioblastoma multiforme). The ground truth of the 
tumor boundaries were manually extracted by three clinical experts (neurologi-
cal surgeons) with several years (> 6) of experience in resection of gliomas and 
afterwards compared with the automatic segmentation results of the proposed 
scheme yielding an average Dice Similarity Coefficient (DSC) of 80.37±8.93%. 
However, no segmentation method provides a perfect result, so additional edit-
ing on some slices was required, but these edits could be achieved quickly be-
cause the automatic segmentation provides a border that fits mostly to the de-
sired contour. Furthermore, the manual segmentation by neurological surgeons 
took 2-32 minutes (mean: 8 minutes), in contrast to the automatic segmentation 
with our implementation that took less than 5 seconds. 

Keywords: glioma, segmentation, polyhedra, graph, minimal s-t cut. 

1   Introduction 

Gliomas are the most common primary brain tumors, evolving from the cerebral sup-
portive cells. The histological type is determined by the cells they arise of, most fre-
quently astrocytomas (astrocytes), oligodendrogliomas (oligodendrocytes) or 
ependymomas (ependymal) cells. Furthermore, there are mixed forms containing 
different cell types, such as oligoastrocytomas. With over 60%, astrocytic tumors are 
the most common tumors. The grading system for astrocytomas according to the 
World Health Organization (WHO) subdivides grades I-IV, whereas grade I tumors 
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tend to be least aggressive [1]. 70% count to the group of malignant gliomas (anaplas-
tic astrocytoma WHO grade III, glioblastoma multiforme WHO grade IV). According 
to its histopathological appearance, the grade IV tumor is given the name glioblas-
toma multiforme (GBM). 

The glioblastoma multiforme is the most frequent malignant primary tumor and is 
one of the highest malignant human neoplasms. The interdisciplinary therapeutical 
management today contains maximum safe resection, percutaneus radiation and most 
frequently chemotherapy. Still, despite new radiation strategies and the development of 
oral alcylating substances, the survival rate is still only approximately 15 months [2]. 

Although in former years the surgical role was controversial, several studies have 
been able to prove maximum surgical resection as a positive predictor for patient 
survival [3]. Microsurgical resection is today optimized with the technical develop-
ment of neuronavigation containing functional data sets such as diffusion tensor imag-
ing (DTI), functional MRI (fMRI), magnetoencephalography (MEG), magnetic reso-
nance spectroscopy (MRS), or positron-emission-computed-tomography (PET). 

For clinical follow-up, the evaluation of the tumor volume in the course of disease 
is essential. The volumetric assessment of a tumor applying manual segmentation is a 
time-consuming process. 

In this paper, a graph-based segmentation method for spherical and elliptical ob-
jects is presented. The approach utilizes a user-defined seed point inside the object to 
create a directed graph. Then, the minimal cost closed set on the graph is computed 
via a polynomial time s-t cut, providing an optimal segmentation. To evaluate the new 
scheme, gliomas in Magnetic Resonance Imaging (MRI) data sets have been seg-
mented. The results of the automatic segmentation have been compared with manual 
segmentations of three neurological surgeons that are experts in their fields and have 
several years of experience in resection of gliomas. The outcomes were evaluated by 
calculating the Dice Similarity Coefficient (DSC). 

The paper is organized as follows. Section 2 reviews related work. Section 3 pre-
sents the details of the proposed approach. In Section 4, experimental results are dis-
cussed. Section 5 concludes the paper and outlines areas for future work. 

2   Related Work 

Several algorithms for glioma segmentation based on MRI data have been proposed. 
A good overview of different deterministic and statistical approaches is given by 
Angelini et al. [4]. Most of them are region-based, more recent ones are based on 
deformable models and include edge information. 

Gibbs et al. [5] have introduced a combination of region growing and morphological 
edge detection for segmenting enhancing tumors in T1 weighted MRI data. Based on a 
manually provided initial sample of tumor signal and surrounding tissue, an initial 
segmentation is performed using pixel thresholding, morphological opening and clos-
ing and fitting to an edge map. The authors have evaluated their method with one 
phantom data set and ten clinical data sets. However, the average segmentation time 
for a tumor was ten minutes and they did not exactly classify the tumors they used. 

An interactive method for segmentation of full-enhancing, ring-enhancing and 
non-enhancing tumors has been proposed by Letteboer et al. [6] and evaluated with 
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twenty clinical cases. Depending on a manual tracing of an initial slice, several mor-
phological filter operations were applied to the MRI volume to separate the data in 
homogenous areas. 

Depending on intensity-based pixel probabilities for tumor tissue, Droske et al. [7] 
have presented a deformable model, using a level set formulation, to divide the MRI 
data into regions of similar image properties for tumor segmentation. This model-
based segmentation was performed on the imaging data of twelve patients. 

Clark et al. [8] have introduced a knowledge-based automated segmentation on 
multispectral data in order to partition glioblastomas. After a training phase with 
fuzzy C-means classification and clustering analysis and a brain mask computation, 
initial tumor segmentation from vectorial histogram thresholding has been postproc-
essed to eliminate non-tumor pixels. The presented system has been trained on three 
volume data sets and then tested on thirteen unseen volume data sets. 

Segmentation based on outlier detection in T2 weighted MR data has been pro-
posed by Prastawa et al. [9]. The image data is registered on a normal brain atlas to 
detect the abnormal tumor region. The tumor and the edema are then isolated by sta-
tistical clustering of the differing voxels and a deformable model. However, the au-
thors have applied the method only to three real data sets. For each case, the time 
required for the automatic segmentation method was about 90 minutes. 

Sieg et al. [10] have introduced an approach to segment contrast-enhanced, intrac-
ranial tumors and anatomical structures of registered, multispectral MR data. Multi-
layer feedforward neural networks with backpropagation have been trained and a 
pixel-oriented classification has been applied for segmentation. The approach has 
been tested on twenty-two data sets, but no computation times were provided. 

3   Methods 

Our overall method starts by setting up a directed 3D graph from a user-defined seed 
point that is located inside the object. For setting up the graph, the method samples 
along rays that are sent through the surface points of a polyhedron with the seed point 
as center. The sampled points are the nodes n∈V of the graph G(V, E) and e∈E is the 
corresponding set of edges. There are edges between the nodes and edges that connect 
the nodes to a source s and a sink t to allow the computation of a s-t cut (the source 
and the sink s, t∈V are virtual nodes). The idea of setting up the graph with a polyhe-
dron goes back to a catheter simulation algorithm where several polyhedra were used 
to align the catheter inside the vessel [11]. In the segmentation scheme, this idea is 
combined with a graph-based method that has been introduced for the semi-automatic 
segmentation of the aorta [12], [13], [14] and diffusion tensor imaging (DTI) fiber 
bundle segmentation [15]. However, in this case, setting up the graph was performed 
by sampling the nodes in several 2D planes and therefore is not useful for the segmen-
tation of spherical or elliptical 3D objects. Other publications that introduce ap-
proaches for segmenting objects in 2D images with graph-cuts are those of Veksler 
[16] and Ishikawa et al. [17]. Additionally the publication of Grady et al. [18] presents 
a method that finds partitions with a small isoperimetric constant in an image graph. 
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Fig. 1. Polyhedra with 12, 32, 92, 272, 812 and 2432 surface points (recursively refined) [11] 

    
a b c d 

    
e f g h 

Fig. 2. Principle of graph construction: a) five sampled points (red) along each of the 12 rays 
that provide the nodes for the graph. b) edges between the nodes belonging to the same ray. c) 
edges between nodes of different rays for Δr=0, d) Δr=1, e) Δr=2 and f) Δr=3. g) complete graph 
for Δr=0. h) complete graph with 32 surface points, 3 nodes per ray and Δr=0. 

 
Polyhedra with different numbers of surface points are shown in Figure 1. These 

polyhedra are just for illustration and should give an idea were the sampled points in 
Figure 2 are coming from. For a later segmentation, even more surface points (e.g. 
7292) are used, depending on the size of the object that has to be segmented. 

The principle of the graph construction is shown in Figure 2 (a-h). In (a), five 
points (red) are sampled along 12 rays that are sent to a polyhedron with 12 surface 
points. These points plus the source and the sink define the whole set of nodes for the 
graph when a polyhedron with 12 surface points is used. 

The arcs <vi, vj>∈E of the graph G connect two nodes vi, vj. There are two types 
of ∞-weighted arcs: z-arcs Az and r-arcs Ar (Z is the number of sampled points along 
one ray z=(0,…,Z-1) and R is the number of rays sent out to the surface points of a 
polyhedron r=(0,…,R-1)), where V(xn,yn,zn) is one neighbor of V(x,y,z) – in other 
words V(xn,yn,zn) and V(x,y,z) belong to the same triangle in case of a triangulation of 
the polyhedron (see also Figure 1): 

}0|)1,,(),,,({ >−= zzyxVzyxVAz  

})),0max(,,(),,,({ rnnr zyxVzyxVA Δ−=  

(1) 
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Fig. 3. Principle of a cut of edges between two rays for Δr=1. Left and middle: Same cost for a 
cut (2·∞). Right: Higher cost for a cut (4·∞). 

The arcs between two nodes along a ray Az ensure that all nodes below the polyhe-
dron surface in the graph are included to form a closed set (correspondingly, the inte-
rior of the object is separated from the exterior in the data). The arcs Ar between the 
nodes of different rays constrain the set of possible segmentations and enforce 
smoothness via the parameter Δr. The larger this parameter is, the larger is the number 
of possible segmentations (see Figure 3). 

After graph construction, the minimal cost closed set on the graph is computed via 
a polynomial time s-t cut [19]. A Markov Random Field (MRF) approach where each 
voxel of the image is a node is definitely too time-consuming for the data we used 
(512x512xX). A MRF approach in a recent publication needed already several min-
utes for the cut of one small 2D image [20]. We also considered an Active Contour 
Approach (ACM) [21] where the initial contour is a polyhedron with an initial radius 
definitely smaller than the object (tumor). However, ACMs can get stuck in local 
minima during the iterative segmentation (expansion) process. In contrast, a graph cut 
approach provides an optimal segmentation for the constructed graph. 

The s-t cut creates an optimal segmentation of the object under influence of the pa-
rameter Δr that controls the stiffness of the surface. A delta value of 0 ensures that the 
segmentation result is a sphere. The weights w(x, y, z) for every edge between v∈V 
and the sink or source are assigned in the following manner: weights are set to c(x,y,z) 
when z is zero and otherwise to c(x,y,z)-c(x,y,z-1), where c(x,y,z) is the absolute value 
of the intensity difference between an average grey value of the desired object and the 
grey value of the voxel at position (x,y,z) – for a detailed description, see [13] and [14]. 

The average grey value that is needed for the calculation of the costs and the 
graphs weights is essential for the segmentation result. Based on the assumption that 
the user-defined seed point is inside the object, the average grey value can be esti-
mated automatically. Therefore, we integrate over a small cube of dimension d cen-
tered on the user-defined seed-point (sx, sy, sz): 
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4   Results 

The presented methods were implemented in C++ within the MeVisLab platform 
[22]. Using 2432 and 7292 polyhedra surface points, the overall segmentation  
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(sending rays, graph construction and mincut computation) in our implementation 
took less that 5 seconds on an Intel Core i5-750 CPU, 4x2.66 GHz, 8 GB RAM, Win-
dows XP Professional x64 Version, Version 2003, SP 2. The ray length is a fixed 
parameter (10 cm), determined via the largest tumor of the 50 cases (all tumors had a 
diameter less that 10 cm). 

To evaluate the approach, three neurological surgeons with several years of experi-
ence in resection of tumors performed manual slice-by-slice segmentation of 50 WHO 
grade IV gliomas. The tumor outlines for the segmentation were displayed by the 
contrast-enhancing areas in T1 weighted MRI data sets. Afterwards, the manual seg-
mentations were compared with the one click segmentation results of the proposed 
method via the Dice Similarity Coefficient (DSC) [23], calculated as follows: 

 

)()(

)(2
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RAV
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+
∩⋅=  (3) 

 

The Dice Similarity Coefficient is the relative volume overlap between A and R, 
where A and R are the binary masks from the automatic (A) and the reference (R) 
segmentation. V(·) is the volume (in cm3) of voxels inside the binary mask, by means 
of counting the number of voxels, then multiplying with the voxel size. The average 
Dice Similarity Coefficient for all data sets is 80.37 ± 8.93% (see Table 1). 

Table 1.  Summary of results: min., max., mean μ  and standard deviation σ  for 50 gliomas 

Volume of tumor (cm3) Number of voxels  

Manual automatic manual automatic 
DSC (%) 

Min 0.47 0.46 524 783 46.33 

Max 119.28 102.98 1024615 884553 93.82 

σμ ±  23.66 ± 24.89 21.02 ± 22.90 145305.54 137687.24 80.37 ± 8.93 

 
However, additional editing on some slices was required, but these edits were 

achieved quite quickly (in about one minute) because the automatic segmentation pro-
vides a border that at least fits partially to the desired contour. The pure manual seg-
mentation by neurological surgeons took about 2-32 minutes (µ=8 minutes, σ =5.7), 
compared with an automatic segmentation of a data set with our implementation that 
took less than 5 seconds plus about one minute to review the result and correct some 
parts of the recovered tumor border. Compared with existing methods for (semi-) 
automatic brain tumor segmentation (see Section 2), we used much more data sets (50) 
for evaluation (in contrast: existing methods ≤ 22 cases). Additionally, the existing 
methods have a much higher computing time (if specified) than our method. 

Figure 4 and Figure 5 show different 3D views of two automatically segmented 
tumors (red). Additionally, the voxelized tumor masks are shown (rightmost images 
for Figure 4 and Figure 5). The presented tumors of Figure 4 and Figure 5 belong to 
the slices of Figure 6 and Figure 7, respectively. Figure 6 and Figure 7 show parts of 
the results of the automatic segmentation of the two gliomas (the whole tumors are 
located over 60 slices for Figure 6 and 38 slices for Figure 7). 



Nugget-Cut: A Segmentation Scheme for Spherically- and Elliptically-Shaped 3D Objects 379 

    

Fig. 4. Different 3D views of the automatically segmented tumor (red) of Figure 6 and the 
voxelized tumor mask (rightmost image). 

    

Fig. 5. Different 3D views of the automatically segmented tumor (red) of Figure 7 and the 
voxelized tumor mask (rightmost image). 

  

Fig. 6. Result of automatic tumor segmentation (DSC=81.33%). The yellow point (inside the 
tumor) in the fourth image from the left side is the user-defined seed point. Manual segmenta-
tion performed by a neurological surgeon took 16 minutes for this data set. 

  
 

Fig. 7. Result of automatic tumor segmentation (DSC=76.19%). The yellow point (inside the 
tumor) in the fourth image from the left side is the user-defined seed point. Manual segmenta-
tion performed by a neurological surgeon took 9 minutes for this data set. 

As shown in Figure 6 and Figure 7, the segmentation works also with more ellipti-
cally shaped tumors. The algorithm only assumes that the object of interest is not 
extremely tubular, like vessels or the spinal cord. Also, the user defined seed point 
does not have to be exactly in the center of the tumor, as shown in Figure 6 (yellow). 
Even with a seed point that was located far from the center, the border of the tumor in 
Figure 6 (red) could be still recovered with a DSC of over 80%. 

In the meantime, we already enhanced our segmentation scheme [24]: the user can 
improve the results by specifying an arbitrary number of additional seed points to 
support the algorithm with grey value information and geometrical constraints. Using  
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Fig. 8. Four 3D models of (semi-) automatically segmented tumors. 

this enhanced scheme for 12 selected MRI datasets, the DSC could be improved from 
77.72% to 83.91% (Figure 8). 

5   Conclusions 

In this paper, a graph-based segmentation scheme for spherically- and elliptically-
shaped objects was presented. The introduced method uses only one user-defined seed 
point inside the object to set up a 3D graph and to perform the segmentation. There-
fore, rays are sent out radially from the seed point through the surface points of a 
polyhedron to generate the directed graph. After the graph has been constructed, the 
minimal cost closed set on the graph is computed via a polynomial time s-t cut, creat-
ing an optimal segmentation of the object. 

The presented method has been tested on 50 MRI data sets with World Health Or-
ganization grade IV gliomas (glioblastoma multiforme). The ground truth of the tu-
mor boundaries were manually extracted by three neurological surgeons with several 
years of experience in resection of gliomas and was compared with the automatic 
segmentation results, yielding an average Dice Similarity Coefficient of 80.37± 
8.93%. However, additional editing on some slices was required for every case, but 
these edits could be achieved quickly because the automatic segmentation provides a 
border that at least fits partially to the desired contour. 

There are several areas of future work. For example, some parameter specifications 
(e.g. Δr) of the proposed algorithm can be automated. Additionally, the method can be 
enhanced with statistical information about the shape and the texture of the desired 
object [25]. Furthermore, we plan to evaluate the method on MRI data sets with 
World Health Organization grade I, II and III gliomas. As compared to high-grade 
gliomas, low-grade tumors lack gadolinium enhancement. Thus, for these tumors, 
outlines cannot be expressed by contrast-enhancing T1 weighted images, but by sur-
rounding edema in T2 weighted images. Moreover, we want to apply the scheme to 
segment other spherically- and elliptically-shaped organs and pathologies, e.g. pitui-
tary adenoma [26] and cerebral aneurysms [27]. 

Furthermore, we considered increasing the sampling rate (for the nodes) near the 
tumor border, because with an equidistant sampling rate, there are more nodes near 
the center of the polyhedron, and less nodes going farther out. However, for objects  
like the brain tumors we segmented and with a few thousand surface points, this is not 
an issue. But for (larger) objects (e.g. the whole brain or the liver), the segmentation 
quality is probably going to be poorer near the boundaries, and there it can make 
sense to increase the sampling rate near the object border. 
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The user-defined seed point position that is located inside the object is also an issue 
that can be analyzed in a next step. The method can be improved by performing the 
whole segmentation iteratively: After the segmentation is performed, the center of 
gravity of the segmentation can be used as a new seed point for a new segmentation 
and so on. This might result in more robustness w.r.t. the initialization. However, for 
our evaluation tests, we needed no more than five attempts to achieve a satisfying 
segmentation result and for the automatic segmentation time of less than 5 seconds 
this is not time critical at all – especially if it is compared with the average manual 
segmentation time of 8 minutes. 
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Benchmarking Stereo Data
(Not the Matching Algorithms)

Ralf Haeusler and Reinhard Klette
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Abstract. Current research in stereo image analysis focuses on improv-

ing matching algorithms in terms of accuracy, computational costs, and

robustness towards real-time applicability for complex image data and

3D scenes. Interestingly, performance testing takes place for a huge num-

ber of algorithms, but, typically, on very small sets of image data only.

Even worse, there is little reasoning whether data as commonly applied

is actually suitable to prove robustness or even correctness of a partic-

ular algorithm. We argue for the need of testing stereo algorithms on

a much broader variety of image data then done so far by proposing a

simple measure for putting image stereo data of different quality into

relation to each other. Potential applications include purpose-directed

decisions for the selection of image stereo data for testing the applica-

bility of matching techniques under particular situations, or for realtime

estimation of stereo performance (without any need for providing ground

truth) in cases where techniques should be selected depending on the

given situation.

1 Introduction

Performance evaluation of stereo algorithms became increasingly popular since
the availability of various test sites such as [17] at Middlebury University. Such
evaluations were speeding up progress in the design of stereo matching algo-
rithms. Ranking is typically done by comparing a few error measures, calculated
with respect to given ground truth and a relatively small number of images.
Evaluations lead to particular insights, for example about the role of used cost
functions [7], or of image preprocessing methods.

Necessity and limitation of such evaluations have been extensively discussed
in the literature. Issues often treated are missing ground truth for real-world
scenes [4] and a lack in theoretical understanding that prevents from making
intelligent predictions of stereo performance on yet unseen imagery [18].

Stereo image data, depending on recorded scenes, sensor quality and so forth,
can be of very different characteristics and origin (e.g., synthetic, controlled in-
door, real-world outdoor). The question arises: Given a stereo image pair, what
is the minimum error we may expect? This question should be answered for a
wide range of different types of stereo image data, ultimately allowing to quan-
tify this material in terms of quality. However, for the most interesting scenarios
– outdoor real-world, highly dynamic and complex scenes with potentially very

M. Goesele et al. (Eds.): DAGM 2010, LNCS 6376, pp. 383–392, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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poor image quality – the common evaluation approach of stereo matching tech-
niques is not feasible due to the lack of ground truth. Previous work [10,13] that
does not require ground truth needs at least three time-synchronous views of a
scene. We propose an alternative approach that only needs binocular imagery.

The objective of the paper is to demonstrate that it might be possible to
quantify the quality of recorded stereo images with respect to some measures.
We also suggest that those measures may be used to indicate domains of relevant
imaging scenarios when performing evaluations for some particular test data.

The proposed approach is based on Lowe’s SIFT-descriptor [11], which in gen-
eral outperforms other descriptors in terms of discriminative power [12]. SIFT-
matching supports the definition of similarity measures that allow us to derive
spatial relations between (e.g.) millions of images [14]. Such results suggest that
SIFT-matching can be used to define a measure for establishing some relation-
ships between different sets of stereo image data. There is space for more ad-
vanced proposals in future, but a simple SIFT-based measure of matching counts

Fig. 1. Illustration of sparse stereo matching with SIFT-features (not constrained by

epipolar geometry, but on rectified images) applied to stereo pairs of different charac-

teristics (top row: Tsukuba and synthetic EISATS stereo pairs; bottom row: real-world

scenes of poor quality). Straight connectors of locations of matched features are over-

laid to the left image of the used image pair. Synthetic or engineered images generally

show a majority of same-row matches.
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(Figure 1 illustrates SIFT matches in four stereo pairs) is sufficient to initiate a
discussion about this type of data evaluation.

We envision four major benefits of assessing stereo image data independently
from geometric ground truth. First, it can guide the selection of applied methods
as already mentioned above. Second, it may make processing of real-world stereo
images more tractable by providing an additional measure of confidence. Third,
we can identify “problematic” situations in real-time; this gives a chance to iden-
tify unexpected problems when doing an on-line stereo analysis of real-world
stereo image sequences, and to be aware of those when further improving stereo
matching. Fourth, it may advance theoretical knowledge about stereo match-
ing by implementing performance evaluation on sophisticated synthetic scenes
(i.e., using progress in physics-based rendering) and showing its conclusiveness
regarding relevance to real-world scenarios.

The paper is structured as follows. Section 2 introduces two measures based on
SIFT matching counts. Section 3 provides details of data used in this study and
presents results from experiments to point out the feasibility of the approach.
Section 4 explains potential applications in more detail and concludes.

2 Our Method

SIFT features are defined by extrema in a difference-of-Gaussians scale-space,
also applying sub-pixel accuracy and rejection of poorly defined locations. To-
gether with a well-constructed descriptor, these are called distinctive features.

Our hypothesis is that sparse matching of distinctive features provides mea-
sures strongly correlated to the outcome of a dense stereo matching process. The
chosen implementation [19] together with the method outlined below seems to
be sufficient to illustrate this correlation according to our experiments.

For a rectified stereo pair and known ground truth, a match between a feature
location (il, jl) in the left image and a feature location (ir, jr) in the right image
is correct up to known constraints if

(ir − εi < il < ir + εi) ∧ (jl + dij − εj ≤ jr ≤ jl + dij + εj) (1)

for small εi, εj > 0 with known disparity values dij (i.e., the ground truth). If
ground truth is not available, then we evaluate by testing for

(ir − εi < il < ir + εi) ∧ (jl ≤ jr ≤ jl + dmax) , (2)

where dmax is the maximum disparity between both stereo views. We choose
εi = εj = 1.

Equation (2) appears to be very much “forgiving”. However, note that in this
case of modeled unavailable ground truth, the probability of the event that “a
mismatch is wrongly classified as being correct up to known constraints” has
a very small probability of at most (2εidmax − 1)/(I · J) in an image of size
I × J . This assumption can be violated, for example, for images with repetitive
textures in some areas.
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We analyze the counts of correct matches (up to known constraints) and the
ratio between detected and matched features for given stereo pairs. Assume that
the feature detector identifies n features in the base image that lead tommatches
in the match image, and that from those m matches, o are classified as being
incorrect. In this case, we define that

x = n/m and y = 100 × o/m , (3)
where x is the matching rate and y the mismatch rate. Thus, x ≥ 1 and y ≤ 100%.

The matching rate x expresses how many features on average lead to one
match (no matter whether correct or not), while the mismatch rate y identifies
the percentage of incorrect matches.

3 Experiments

Our experiments are designed to demonstrate that the information provided by a
selective stereo matching process of distinctive features may be suitable to label
stereo image data with an expected quality of disparity calculations, without
requiring any ground truth except the value of dmax.

Comparison of SIFT-matches on various data sets. In particular, we com-
pare recorded stereo pairs, both “engineered” and real-world, to synthetic pairs,
and we attempt to modify the synthetic stereo pairs in a way such that they
quantify similar to the recorded pairs for the proposed measures. We compare
values of our measures with values of the normalized cross correlation (NCC)
derived from prediction errors following [13], on stereo sequences showing “prob-
lematic” situations. We use the following stereo image data:

(1) Synthetic data:
• EISATS 2, Sequence 1, see [2]: a sequence of 100 frames with low object

complexity showing views from a simulated moving vehicle.
• EISATS 2, Sequence 2, same source: a more complex sequence of 300

frames, containing vegetation modelled with L-Systems.
• Synthetic stereo data of high complexity, rendered by the authors with

physically correct simulation of the light distribution, using path-tracing
[16]. Different image sensor distortion effects are applied to study their
effect, including blooming and chromatic aberration.

(2) Engineered test images (i.e., photos taken under controlled lighting):
• Middlebury 2001 and 2003, see [17], in particular the stereo sets

named Tsukuba, Venus, Cones, and Teddy.
• Middlebury 2006, see [7], a more extensive stereo test set, containing

21 images; each image is available for three different illuminations and
three different exposures (normal, two f-stops under- and overexposed).

(3) Real-world sequences (150 - 200 stereo frames per sequence) of public road
scenarios captured with industrial b/w cameras from a moving vehicle:
• EISATS 1, "Construction site", see [2]: a 10-bit stereo recording.
• NZ Road 1-3, traffic scenes on New Zealand roads, 8-bit trinocular

recordings as made available by [13]; these sequences support an error
estimation without ground truth based on calculating the third view.
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Fig. 2. Mismatch rate y (in percent) and matching rate x in logarithmic scales. Symbols

show how stereo data of different origin and quality is discriminated by the proposed

measures. Filled black disks for physics-based synthetic data are numbered as follows: 1

(original), 2,3,5 (low, moderate, or severe blooming), 4,6 (moderate or strong chromatic

aberration), and 7 (comparison to ordinary raytracing).
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Figure 2 illustrates feature matching relationships between the listed stereo
image data when always applying the same SIFT matcher and measures x and
y as defined in (3). The test set Middlebury 2001 evaluates similar to synthetic
images of medium complexity, but is significantly different from real world scenes
captured with industrial cameras. The quantization resolution (8-, 10- or 12-bit)
is of minor relevance, optimal exposure and contrast provided.

We also see that the more extensive (and somehow “closer” to uncontrolled
scenarios) dataset Middlebury 2006, which is not yet widely used for testing,
spans a much wider region in our xy-space. However, our xy-space still shows a
clear separation of this dataset from real-world outdoor scenes.

The attempt to synthesize stereo image data using physics-based rendering, also
including physics-based imaging distortions, leads to distributions of xy-values
which are very close to those of uncontrolled image data. Interestingly, applying
further distortions does not produce the results we might expect: Chromatic aber-
ration increases both, matching rate and mismatch rate. Adding sensor blooming
slightly increases the mismatch rate but improves matching. This indicates to us
that either our xy-space is somehow incomplete, or the applied model for the sim-
ulation of blooming and chromatic aberration is still “too simple”.

Comparison with results based on third-view analysis. This subsection
discusses how our simple SIFT-based evaluation relates to a particular kind of
“ground truth-based evaluation” when testing stereo matching techniques on
real-world data. In fact, providing theoretical evidence for this relationship is
rather difficult, as there seems to be no common underlying model. However,
there are some strong statistical dependencies between our SIFT-based evalua-
tion on two views, and the third-eye approach for stereo algorithm evaluation
as proposed in [13]. For illustrating those, we use real-world stereo sequences as
provided in Set 5 of [2].

We process each stereo sequence with five different stereo matching algo-
rithms, namely belief propagation (BP) [3], semi-global matching (SGM) [6]
using either the Birchfield-Tomasi (BT) or a mutual information (MI) cost func-
tion, graph cut (GC) [9], or dynamic programming (DP) [15].1 Each of those
algorithms run either on the original stereo sequence, a Sobel operator prepro-
cessed stereo sequence, or on residual images [1] with respect to 40-times re-
peated 3×3 mean filtering (or one run of a comparable large smoothing kernel).
In uncontrolled image data, suitable preprocessing often has a dramatic effect
on the quality of stereo results. We compare altogether 15 different matching
results, used for generating a virtual third view, compared by normalized cross
correlation with the recorded third view. For a simple comparison to the pro-
posed SIFT test, we use the mean (x + y)/2 of matching and mismatch rate.
The distribution of observed values in Fig. 2 suggests that this even more sim-
plified measure is sufficiently discriminative. See Fig. 3 and Fig. 4 for results
on real-world stereo sequences with 150 stereo frames. For this visual com-
parison, all these error measures are normalized as follows: if T is the num-
ber of frames and NCC(t) is the error measure for a particular frame t with
1 Sources of used matching programs are as acknowledged in [13].
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Fig. 3. Normalized error measures for stereo frames 1 to 150 of a day-light highway

sequence. We compare results of the proposed SIFT-measure with prediction error

based on third-view-synthesis using 15 different stereo matching schemes. For clarity

of presentation, only the mean of selected values is displayed.

1 ≤ t ≤ T , we display (NCC(t) − μT )/σT , where μT = 1/T
∑T

t=1 NCC(t) and
σ2

T = 1/(T − 1)
∑T

t=1(NCC(t) − μT )2. The same normalization is applied to the
results of SIFT matching.

Statistical relation between error measures. Normalized cross correlation
was used again to examine the relationship between error measures of all stereo
matching algorithms and between stereo and SIFT-matching counts, for long
sequences as illustrated by the previous two figures. The correlation coefficients
and p-values were computed. Table 1 summarizes the correlation between those
stereo algorithms. Due to space limitations, we only display results for the mean
of NCC values for the three different preprocessing options of the two sequences
already illustrated in Figs. 3 and 4.

Table 1 indicates a moderate correlation between errors of the SIFT-measure
and all stereo algorithms except DP. Strongest correlations are mostly found
between global algorithms, but all measures in the highway sequence are signif-
icantly correlated (p < 0.001) except the combinations SIFT – DP (p = 0.59),
and SGM(MI) – DP (p = 0.17). In the night-time sequence, all measures are sig-
nificantly correlated(p < 0.001). Reasons for outliers in particular frames leading
to weaker correlation between BP and SIFT based measures are as follows:

In the highway sequence, the most obvious deviation is in Frames 39 and 40. In
these images, a large area (a big truck on the highway) is coming close (less than
ten times the baseline) to the camera, resulting in semi-occluded areas at the
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Fig. 4. Same measures as in Fig. 3 but on a night-time sequence of 150 stereo frames

image border. Many stereo algorithms do not cope with this situation. However,
for the method described above this simply results in no matches being found
in this area, thus no mismatches can occur. Frames 120 to 150 are subject to
major brightness differences, where belief propagation stereo performs poorly.

For the night-time sequence, significant deviations occur in Frames 1 to 16, and
50 to 60. Outliers in Frames 111, 128 and 136 are caused by time-synchronization
problems. Frames 50 to 60 are big objects coming closer and becoming increasingly
semi-occluded by the image border. Of interest are Frames 1 to 16, where strong
blooming (caused by strong light sources nearby) is present. This is not very well
detected by counting matches.

Table 1. Pearson correlation between error measures

Algorithm Sequence BP SGM(BT) DP GC SGM(MI) SIFT

Highway 1 0.95 0.30 0.81 0.69 0.63
Belief propagation

Night 1 0.97 0.85 0.97 0.96 0.57

Highway 1 0.35 0.88 0.60 0.64
Semi-global matching (BT)

Night 1 0.83 0.94 0.94 0.52

Highway 1 0.55 0.11 0.05
Dynamic programming

Night 1 0.88 0.82 0.40

Highway 1 0.50 0.56
Graph cut

Night 1 0.97 0.62

Highway 1 0.43
Semi-global matching (MI)

Night 1 0.66
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We see that for many artifacts in uncontrolled image data there is no cor-
relation between matching statistics and stereo performance. These need to be
addressed by different methods.

4 Future Work and Conclusions

It is certainly of general interest in computer vision to have some evaluation of
stereo data at hand, for judging its complexity, or qualitative relation to other
sequences of stereo data (also covering the common case that ground truth is
not available). This evaluation is of interest for the following:

Identification of crucial scenarios in large datasets of stereo images: Crucial 3D
scenarios, defined by special events in the real world, need to be identified when
testing stereo matching in the real world. Such events have to be isolated from
a sufficiently diversified database of real world data (e.g., when running a stereo
analysis system for days or weeks in real-world traffic). As ground truth is gener-
ally not available, our approach helps in identification of these critical datasets.

Realtime check of stereo data in real world applications: In our method, com-
puting feature descriptors and matching depends on the number of detected in-
terest points, which are numerous in highly structured images. Ensuring realtime
here requires to limit their number to a fixed upper bound. For SIFT-features
such kind of pruning is described in [5]. In its application to image-database
retrieval, an insignificant decline in performance was reported even if the num-
ber of features is very small. Such realtime checks may be crucial for reliable
safety-relevant decisions in, for example, driver assistance systems.

Purposeful design of synthetic sequences for stereo testing: Synthetic data will
remain important for testing stereo matching, especially due to having full con-
trol about the image formation process. Simulations of interesting situations
(rarely appearing in reality, but possible) such as for weather, poor light condi-
tions, or deficiencies in cameras systems, need to come with some evidence of its
adequacy for testing stereo vision algorithms.

We have shown that even a simple measure, such as the matching count based
on SIFT-features, can provide error measures significantly correlated to a third-
view error measure. We pointed out the necessity to benchmark a fairly “huge
amount” of stereo image data, and to put those data into qualitative relation to
each other.

Future research may aim at more complex measures, allowing to analyze more
detailed quality aspects of stereo images. In continuation of the simple count
measure as presented here, this could be based on statistics of spatial distri-
butions of matches or mismatches in stereo image pairs. (Note that a simple
root-mean square or NCC error value in relation to ground truth does not yet
give any information about the spatial distribution of errors.)

Models as presented in [8] may be of very high interest, yet their use is limited
due to prohibitive computational costs.
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Abstract. In this paper, a robust real-world video based open-set face

recognition system is presented. This system is designed for general

small-scale convenience applications, which can be used for providing

customized services. In the developed prototype, the system identifies a

person in question and conveys customized information according to the

identity. Since it does not require any cooperation of the users, the ro-

bustness of the system can be easily affected by the confounding factors.

To overcome the pose problem, we generated frontal view faces with a

tracked 2D face model. We also employed a distance metric to assess

the quality of face model tracking. A local appearance-based face repre-

sentation was used to make the system robust against local appearance

variations. We evaluated the system’s performance on a face database

which was collected in front of an office. The experimental results on

this database show that the developed system is able to operate robustly

under real-world conditions.

1 Introduction

There is a large demand for building robust access control systems for the
safety and convenience of modern society. Among different biometric identifi-
cation methods, face recognition is a less obtrusive technique which does not
require too much cooperation of the users. Due to the absence of user coop-
eration and due to uncontrolled conditions, building a robust real-world face
recognition system is still a challenging task and has attracted broad interest. In
real-world systems, there are many sources of variabilities in facial appearance
which may significantly degenerate the performance of the system. The major
four confounding factors are pose, illumination, expression, and partial occlusion
(i.e. glasses or facial hair). In many previous systems, numerous approaches have
been proposed to deal with one or two specific aspects of variations [1,2,3].

The active appearance model (AAM) [4] was proposed as a 2D deformable
face model for modeling pose changes, facial expression and illumination vari-
ations. The shape of the face model is optimized by minimizing the texture
representation error. Once the model is fitted on an input image, the corre-
sponding model parameter vector can be used as a feature vector. In [5], linear

M. Goesele et al. (Eds.): DAGM 2010, LNCS 6376, pp. 393–402, 2010.
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discriminant analysis (LDA) was utilized to construct a discriminant subspace
for face identification. Later in [6], the authors found that the shape parameters
of AAMs can be used to estimate the pose angle. A frontal view of an input
face image can be synthesized by configuring the shape parameters that control
the pose. Face recognition with this pose correction method was evaluated by
Guillemaut et al. in [7]. However, they corrected the appearance of the rotated
faces with some nonlinear warping techniques instead of synthesis. This texture
warping approach has the advantage of preserving the textural information such
as moles and freckles contained in the original image, which will be lost in the
synthesis-based approach in which small local details may not be modeled.

In this paper, we present a face recognition system which is robust against
the aforementioned confounding factors. Three key techniques are employed to
achieve the goal of this system: 1) A generic AAM is used to track a set of facial
landmarks on the face images. With these facial landmarks, we generate shape-
free frontal view faces with a nonlinear piecewise affine warping. The variations in
pose and expression are normalized to a canonical shape. 2) A distance metric is
employed to assess the quality of AAM fitting. According to this distance metric,
we filtered out some frames where the model fitting failed. 3) A local appearance-
based face representation is used for face recognition. This representation is
considered to be invariant to local appearance changes such as expression, partial
occlusion, and illumination changes [8]. Experiments in [9] showed that this
approach is also robust against the errors introduced in the face model fitting.

The presented open-set face recognition system is suitable for small-scale con-
venience applications, which can be easily customized for a small group of people
such as family members or laboratory members. The system identifies a person
in question and conveys customized information or provides personalized ser-
vices according to the identity of the person. An example system can be a smart
TV set, which is able to show personalized TV programs according to the iden-
tity of the person in front of the television. It can also be integrated in a smart
household robot so that it can identify the family members and customize the
dialogue. The prototype application for this presented system is a visitor inter-
face. The system is mounted in front of an office. A welcome message is displayed
on the screen. When a visitor appears in front of the system before knocking on
the door, the system identifies the visitor unobtrusively without any special co-
operation. According to the identity of the person, the system customizes the
information that it conveys about the host. For example, if the visitor is un-
known, the system only displays availability information about the host. On the
other hand, if the person is known, depending on the identity of the person,
more detailed information about the host’s status is displayed.

The remainder of this paper is organized as follows. In Section 2, we describe
the implementation details for building a robust open-set face recognition sys-
tem. We present the evaluation procedure and discuss the experimental results
in Section 3 and give concluding remarks in Section 4.



Robust Open-Set Face Recognition for Small-Scale Convenience Applications 395

2 Methodology

This section explains the processing steps of the developed robust open-set face
recognition system.

2.1 Active Appearance Models and Model Fitting

The AAM is a generative parametric model which utilizes both shape and ap-
pearance information to represent a certain object such as the human face. A
shape in AAM is defined as a set of normalized 2D facial landmarks. An in-
stance of the linear shape model can be represented as s = s0 +

∑n
i=1 pisi,

where s0 is the mean shape, si is the ith shape basis, and p = [p1, p2, . . . , pn]
are the shape parameters. The appearance model is defined inside the mean
shape, which explains the variations in appearance caused by changes in illu-
mination, identity, and expression, etc. It represents an instance appearance as
A = A0 +

∑m
i=1 λiAi, where A0 is the mean appearance, Ai is the ith appearance

basis, and λ = [λ1, λ2, . . . , λm] are the appearance parameters.
Given an input facial image I(x), the goal of fitting an AAM is to find the

optimal model parameters such that the synthesized model appearance is as
similar to the image observation as possible. This leads to a minimization of a
cost function defined as:

E =
∑
x∈s0

[
I(W(x;p)) −A(x, λ)

]2
, (1)

where I(W(x;p)) is the warped input facial image, and A(x, λ) is the syn-
thesized appearance instance. The minimization problem is usually solved by
gradient descent methods, which iteratively estimate the incremental update
of the shape parameter Δp and the appearance parameter Δλ, and update
the current model parameters respectively. The Inverse Compositional (IC) and
Simultaneously Inverse Compositional (SIC) methods proposed by Baker and
Mathews [10] formulated the problem in a more efficient way, where the role of
the appearance template and the input image is inversed when computing Δp.
The shape is updated by composing an inverse incremental warping ΔW (x;p)
which is estimated where p = 0. This framework enables the time-consuming
steps of parameter estimation to be pre-computed outside of the iterations. We
implemented the SIC fitting algorithm for its better generalization ability to
unseen data [11].

It is known that the gradient-descent-based optimization problem usually re-
quires a reasonable initialization. A poor initialization may cause the search to
get stuck in a local minimum. We used the responses of a face and eye detector
based on Viola & Jones’ approach [12] to initialize the face shape with a 2D
similarity transformation. This initialization usually suffices for fitting frontal
faces. However, when fitting semi-profile faces, part of the initialized shape does
not cover the face. Thus the optimization can be affected by the included back-
ground pixels. To avoid bad initialization, we adopted a two stage progressive
model fitting as used in [9].
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2.2 Fitting While Tracking

In the context of tracking AAMs in video sequences, the model parameter
{pt, λt} at time t can be initialized with the successfully optimized parame-
ter {pt−1, λt−1} at time t − 1. To improve AAM fitting in video sequences,
Liu [13] extended the SIC algorithm to enforce the frame-to-frame registration
across video sequences. The proposed algorithm assumes that the warped images
will not change over a few frames. This assumption is considered as a prior to
the cost function of the SIC, which constrains the parameter searching to the
right direction.

The cost function is then reformulated as follows:∑
x

[
It(W(x;p)) −A(x, λ)

]2 + k
∑
x

[
It(W(x;p)) −Mt(x)

]2
, (2)

where the first term is the fitting goal of the SIC algorithm. The prior term is de-
fined as the sum of squared error between the current warped image It(W(x;p))
and the appearance from previous frames,Mt(x). For simplicity, we define Mt(x)
as the warped image of the video frame at time t− 1:

Mt(x) = It−1(W(x;pt−1)). (3)

The benefit of this term is clear; it presents the specific appearance information
of the subject being fitted, which may not be modeled by the generic face models.
This information can compensate the mismatch between the face models and the
input images being fitted.

2.3 Tracking Quality Assessment

A simple way to verify the result of the fitting is to check the residual error,
which is also been considered as the stop criterion for the fitting algorithm. The
residual error indicates the reconstruction error of the eigenspace decomposition
and the measure is referred to as the ”distance from feature space” (DFFS) in
the context of ”eigenfaces”. However, the error of the AAM fitting is composed
of the reconstruction error and the search error. The residual error alone is not
able to assess the quality of the fitting results. Eigenfaces, especially higher-order
ones, can be linearly combined to form images which do not resemble faces at
all. In this sense, the coefficients of the eigenfaces should also be taken into
consideration. For this purpose we employed a modified DFFS definition which
was introduced in [14]:

DFFS(λ1, . . . , λm, ε) = K × (
m∑

i=1

{λ
2
i

σ2
i

} +
ε2

σ2
residue

). (4)

Here ε = Ix−(A0 +
∑m

i=1 λiAi) is the residue, and σi = maxt∈T |λt,i|, σresidue =
maxt∈T |εt|, which correspond to the worst outliers of the weights and residue in
the training set T . Note that K is an arbitrary constant used as a scale factor.
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The modified DFFS value can be used to assess the quality of the AAM fitting
result since it yields low values for good face model fitting and high values for
poor fitting. It is not exactly zero for a perfect fitting since only the mean face is
located precisely in the center of the cloud representing the distribution. All the
other face instances have a distance from the center of the cloud and thus have
a non-zero value. If the value is larger than a threshold τ , the AAM tracking
will be re-initialized.

2.4 Pose Normalization

The most straightforward method to normalize the pose of a face image is the
piecewise affine warping which is also used in the fitting algorithm for sampling
the texture inside the face mesh. The warp is realized by mapping the pixels in
each fitted triangular mesh s to the base mesh s0. For each pixel x = (x, y)T

in a triangle in the base mesh s0, it can find a unique pixel W(x;p) = x′ =
(x′, y′)T in the corresponding triangle in the mesh s with bilinear interpolation.
The implementation for the piecewise affine warp is detailed in [10]. Another
nonlinear warping technique based on thin-plate splines (TPS) was also studied
in [9]. However, the recognition based on piecewise affine warping outperforms
TPS despite its simplicity.

2.5 Open-Set Face Recognition

Face Representation. The pose normalized facial images are masked with the
AAM mean shape. All salient facial features are warped to the canonical loca-
tions. However, feature points around the chin area might be misaligned, which
may create strong edges. As demonstrated in [15], the chin area does not con-
tribute too much discriminative information compared to other facial features.
For this reason, we cropped the chin area in the pose normalized facial image.
Following the approach in [8], we scaled the cropped images to 64 × 64 pixels
size and then divided them into 64 non-overlapped blocks of 8×8 pixels size. On
each local block, the discrete cosine transform (DCT) is performed. The obtained
DCT coefficients are ordered using a zig-zag scanning. The first component is
skipped because it represents the average pixel intensity of the entire block. The
following five low frequency coefficients are retained which yields a five dimen-
sional local feature vector. This local feature vector is then normalized to unit
norm. Finally, the feature vectors extracted from each block are concatenated to
construct the global feature vector. For details of the algorithm please see [8].

Classification. Open set face recognition is different from the traditional face
identification in that it also involves rejection of impostors in addition to identify
accepted genuine members that are enrolled in the database. We formulate the
open-set face recognition as a multiple verification problem as proposed in [16].
Given a claimed identity, the result of an identity verification is whether the
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claimed identity is accepted or rejected. Given a number of positive and negative
samples it is possible to train a classifier that models the distribution of faces for
both cases. Based on this idea, we trained an identity verifier for every one of the
n known subjects in the gallery using support vector machines (SVMs). Once a
new probe is presented to the system, it is checked against all classifiers; if all
of them reject, the person is reported as unknown; if one accepts, the person is
accepted with that identity; if more than a single verifier accepts, the identity
with the highest score wins. Scores are linearly proportional to the distance to
the hyperplane of the corresponding SVM classifier.

Temporal fusion. Since a person’s identity does not change during the video
capture, we can enforce temporal consistency. In order to make it possible to
revise a preliminary decision later on, instead of relying on a single classification
result for every frame an n-best list is used. N -best lists store the first n highest
ranked results. We choose n = 3 in this work. For each hypothesis a cumulated
score is stored that develops over time. If the face model tracking fails over
multiple frames, the cumulated scores are reset assuming that the person has left
or is not facing the camera. Resetting scores allows the whole process to restart
once a face is located and the face model tracking is successfully initialized.

3 Experiments

To evaluate the performance of the presented system, we carried out experiments
on the database collected in [16]. Totally 54 people were recorded in front of an
office, with natural or artificial lighting conditions depending on the time of the
day. These recordings were split into two groups, a group of known people and
a group of unknown people. Different sets of data were used for training and
testing. Known people’s recordings were split into training and testing sessions
which do not overlap. Unknown subjects used for training are different from
those used for testing. Fig. 1 depicts some example frames in the database. The
recorded subjects were free to move, even out the sight of the camera. The
depicted example frames show different recording conditions as well as subjects
with various poses.

(a) (b) (c) (d) (e) (f)

Fig. 1. Recordings from the data set, different illumination and face sizes. (a) Artificial

light, motion blur. (b) Day light, dark, partial occluded. (c) Artificial light, bright, near.

(d) Artificial light, far away. (e) Head rotate in plane. (f) Head rotate in depth.
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3.1 Performance Measure for Open-Set Face Recognition

In closed-set face recognition, the false classification rate (FCR) is a common
measure for evaluating the performance of the system. However, in open-set face
recognition, there are two more types of error which can occur. The impostors
can be erroneously accepted by the system (false accept rate (FAR)), while the
genuine members can also be rejected (false rejection rate (FRR)). All the three
errors have to be traded-off against each other, as it is not possible to minimize
them at the same time. The equal error rate (EER = FAR = FCR+FRR)
performance measure is employed to trade off against the three error terms.
A system with a lower EER is considered to be more robust and accurate.

SVMs automatically minimize the overall error and try to find the global
minimum. To fine tune the system performance to equalize the accept error and
reject error, the receiver operating characteristic (ROC) curve for SVM-based
classification was created by using a parameterized decision surface. The decision
hyperplane {x ∈ S : wx + b = 0, (w, b) ∈ S × R} is modified to wx + b = Δ,
where Δ allows to adjust the FAR and the CCR (correct classification rate)
accordingly. A polynomial kernel with degree 2 is used as in [16].

3.2 Performance Comparison

Table 1 lists the data configuration for training and testing. The unknown train-
ing data was down-sampled so that the total number of frames from unknown
subjects and each known subject is balanced. Note that only the frames fitted
under a certain threshold of the modified DFFS value were accepted for training
and testing. The threshold was selected empirically so that it discards all possible
failed fittings. Here we choose the threshold τ = 10.0. After face pose normal-
ization through the known training sequences, we obtained approximately 600
known training samples for each subject. For the unknown training, 25 sessions
of different subject were used, each session was under-sampled to 30 frames.
Sample pose normalized face images are plotted in Fig. 2.

We first started with frame-based classification. The results are listed on the
first row of Table 2 where Δ = −0.108 and EER = 3.0%. The ROC curve which
plots the correct classification rate against the FAR is illustrated in Fig. 3(a).

Another frame-based test was also carried out on the same data set to verify
the effectiveness of the pose correction. Instead of synthesizing a face with a

Table 1. Data set for open set experiments

Training data

Known 5 subjects 4 sessions and ≈ 600 frames per person

Unknown 25 subjects 1 session, 30 frames per subject

Testing data

Known 5 subjects 3-7 sessions per person

Unknown 20 subjects 1 session per person
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(a) (b) (c) (d)

Fig. 2. Pose normalization. (a),(c) Face images overlaid with tracked AAM shape.

(b),(d) Pose normalized face images.
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Fig. 3. (a) Frame-based ROC curve with pose normalization. (b) Frame-based ROC

curve without pose normalization.

piecewise affine warp after AAM fitting, a simple Euclidean transformation was
performed according to the eye center coordinates in the fitted AAM shape. The
corresponding results are listed on the third row of Table 2 where EER = 4.0%
and Δ = −0.167. The ROC curve for this test is depicted in Fig. 3(b).

The frame-based face recognition in video sequences makes a decision on every
single frame. The results, therefore, return some insight on the general perfor-
mance of the registration and classification scheme employed. The EER obtained
with pose normalization is 1.0% lower than the one obtained without pose nor-
malization. This means that the AAM-based pose normalization improves the
robustness of the system against pose variations. It prevents the system from

Table 2. Classification results with AAM face warping vs. simple alignment

Alignment Classification CCR FRR FAR CRR FCR

AAM Frame-based 97.1% 2.7% 3.0% 97.0% 0.2%
Progressive-score 100.0% 0.0% 0.0% 100.0% 0.0%

Euclidean trans. Frame-based 95.8% 4.1% 4.0% 96.0% 0.1%
Progressive-score 99.7% 0.3% 0.4% 99.6% 0.0%
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accepting unknown identities with similar poses to the enrolled person or re-
jecting genuine members with unmatched poses. The frame filtering with the
modified DFFS metric also improves the robustness of the system as the frames
with bad alignment are discarded. Compared to the results reported in [16], the
equal error rate decreases by 4.5% even without pose normalization.

The temporal fusion-based classification was also applied as a progressive-
score-based approach by accumulating frame scores over time. This can be
thought of as classifying every frame as if it were the end of a sequence and
taking the final score. The results with progressive-score-based classification are
listed on the second and fourth row of Table 2, respectively for the two registra-
tion approaches.

Observing the results based on the progressive-score-based classification, we
noticed that the results were improved compared to the frame-based scheme.
The Euclidean transformation-based alignment achieved 0.4% EER, which is
already much better than the frame-based classification. With the AAM-based
pose normalization the temporal fusion smoothed out all erroneous decisions and
the ERR is 0.0%.1

4 Conclusions

In this paper, an open-set face recognition system is presented, in which AAM-
based pose normalization is employed to improve its robustness. The system
operates fully automatically and runs in near real-time (at 15 fps) on a laptop
computer with a 2.0GHz Intel Core 2 Duo processor. It has been observed that
normalizing the pose changes improves the recognition performance, because the
gallery may not contain the corresponding pose for a given probe. The employed
distance metric is able to filter out some misaligned frames, which improved
the results further. The local appearance-based face representation makes the
system invariant to other confounding factors as well as the misalignment errors.

Currently we only evaluated the system with five known subjects. The perfor-
mance of the system may decrease as the number of known subjects increases.
However, for small-scale convenience applications such as the smart visitor in-
terface, the system is able to operate very robustly with moderate number of
group members. In the future, more known subjects will be evaluated and the
scalability of the system will be analyzed.
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Belief Propagation for Improved Color Assessment in
Structured Light
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Abstract. Single-Shot Structured Light is a well-known method for acquiring
3D surface data of moving scenes with simple and compact hardware setups.
Some of the biggest challenges in these systems is their sensitivity to textured
scenes, subsurface scattering and low-contrast illumination. Recently, a graph-
based method has been proposed that largely eliminates these shortcomings. A
key step in the graph-based pattern decoding algorithm is the estimation of color
of local image regions which correspond to the vertex colors of the graph. In this
work we propose a new method for estimating the color of a vertex based on
belief propagation (BP). The BP framework allows the explicit inclusion of cues
from neigboring vertices in the color estimation. This is especially beneficial for
low-contrast input images. The augmented method is evaluated using typical low-
quality real-world test sequences of the interior of a pig stomach. We demonstrate
a significant improvement in robustness. The number of 3D data points generated
increases by 30 to 50 percent over the plain decoding.

1 Introduction

Structured Light is a general term for many different methods for measuring 3D surface
data. The main idea is to project a known illumination pattern on the scene. Shape in-
formation is then extracted from the observed deformation of the pattern (figure 1). The

(a) Input image taken inside a pig stomach (b) Result of the proposed decoding method
with color enhancement

Fig. 1. Example input image and color coded depthmap result. Range is 142mm to 164mm
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most basic hardware setup consists of one camera and one projector, but the details of
the implementations vary widely. A survey of the various pattern designs that have been
proposed in the literature can be found in [1]. Range data is generated by triangulation
of the camera ray and the projection ray to a point in the scene. This requires solving
the correspondence problem: determining which pairs of rays belong together.

One way to address this issue is temporal encoding, like the Gray Code and the Phase
Shifting techniques (e.g. [2]). In these methods, the correspondences are determined by
illuminating the scene with a sequence of patterns which is unique for each single pixel.
This imposes the limitation that the object may not move while the sequence is ac-
quired. Another approach to solve the correspondence problem is through the use of
spatial encoding, where the necessary disambiguating information is encoded in a spa-
tial neighborhood of pixels. This requires that the neighborhood stays connected, which
means that the object must be relatively smooth. Nonetheless, spatial encoding has the
advantage that only one pattern suffices to generate 3D data. This makes it particularly
suitable for moving scenes. It also allows the use of simpler hardware, which in turn
results in high scalability from millimeter to meter range. Miniaturization is of high
interest in order to build Structured Light-based 3D video endoscopes for medical as
well as industrial applications.

We recently proposed a graph-based Single-Shot Structured Light method [3], which
shows considerable improvement in robustness in the presence of texture and noise. An
essential component of the algorithm is the extraction of the representative color for
local regions in the striped image. Ideally, such a color descriptor should be relatively
invariant to cross-channel effects and surface reflectivity. The original algorithm used
simply the median color of all the pixels in a local region. Though statistically robust,
such a measurement does not explicitly address the properties that the region-color de-
scriptor should satisfy. Thus, we propose a belief propagation-based color enhancement
step that specifically tries to infer the illuminant color for the particular region using
cues from neighboring regions. Thus the influence of the object color is minimized and
contrast is enhanced. We evaluate the method with real-world example image sequences,
and show an increase of 30% to 50% in the number of data points generated.

2 Single-Shot Structured Light

The performance of a Structured Light-based sensor depends crucially on the pattern
that is used. Many different single-shot pattern designs have been proposed. Most of
them are based on pseudorandom sequences (1D) or arrays (2D) [4],[5]. They have the
property that a given window of size N or NxM occurs at most once. This is known
as the window uniqueness property. Observing such a window suffices for deducing its
position in the pattern. Pattern design involves two trade-offs. One concerns the size of
the building blocks of the pattern, the so-called primitives. To achieve a high resolution,
small pattern primitives are needed, but the smaller the primitives, the harder it is to
reliably detect them. The other one is the alphabet size of the code, i.e. the number
of different symbols that are used. Ideally, one wants to use a large alphabet for a long
code with a small window size. However, the smaller the differences between individual
code symbols, the less robust the code.
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A well known single-shot 3D scanning system is the one by Zhang et al. [6]. The
color stripe pattern used in that system is based on pseudorandom De Brujin sequences
[7]. The decoding algorithm works per scanline and is based on dynamic programming.
Its largest drawback seems to be the high processing time of one minute per frame.
Koninckx and van Gool [8] present an interesting approach based on a black-and-white
line pattern with one oblique line for disambiguation. It runs at about 15Hz and the
resolution is given as 104 data points per frame, which is also relatively low. A recent
paper by Kawasaki et al. [9] uses a pattern of vertical and horizontal lines. It is one
of the few articles containing quantitative data about the accuracy of the methodology,
which is given as 0.52mm RMS error on a simple test scene. The runtime is 1.6s per
frame, but there is no information on the number of points reconstructed per frame.
Forster [10] uses a color stripe pattern with scanline-based decoding, running at 20Hz
and with up to 105 data points per frame. The RMS error of a plane measured at a
distance of 1043mm is given as 0.28mm. Our system [3] is also based on color stripes
but uses a graph-based decoding algorithm which offers superior robustness. With our
method we can generate up to 105 data points per frame at 15 frames per second. The
accuracy is 1/1000 of the working distance. We improve upon this method by including
an additional graph-based inference step to enhance the observed colors of the pattern.

3 Graph-Based Pattern Decoding

In [3] we describe a series of steps for decoding the observed pattern. They are:

1. Finding a superpixel representation of the image: This is achieved with a watershed
transform [11].

2. Building the region adjacency graph: Each basin of the watershed segmentation
corresponds to one vertex of the graph. Neighboring basins are connected by edges.

3. Assigning edge symbols and probabilities: Edges usually connect vertices of dif-
ferent color. Given the knowledge about the projected pattern, there is only a finite
number of possibilities of how color can change between adjacent vertices. The
probabilities for each color change are computed.

4. Find a unique path of edges: Use the window uniqueness property of the pattern to
solve the correspondence problem.

5. Recursively visit all neighbors in a best-first-search: Once the stripe number of a
start vertex is known, propagate this information to all its neighbors, as long as the
connecting edges are in accordance with the pattern.

We improved this method by adding an optional additional step 2b: Recover the pro-
jected color for each vertex. In the original algorithm the colors of the vertices are deter-
mined with a median filter over all image pixels belonging to the corresponding water-
shed basin. However, this observed color is not the original projected color. There are
many alterations introduced by the object texture, scattering, blurring, camera crosstalk
and so on. To recover the projected color, we can use an inference algorithm. The output
of step 2 and thus the input for the new step 2b is a set of vertices and a set of edges.
The color of the vertices is to be re-estimated by explicitly incorporating information
about the color changes C across the edges to all neighbors.
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C = [cr cg cb]
T ∈ R3 (1)

The elements of the vector are equalized and normalized so that the maximum absolute
value is 1. For details refer to [3]. Each edge also has a scalar edge weight w, which is
defined as the L∞-norm of the original unnormalized color change Ĉ .

w = ||Ĉ||∞ = max(|ĉr|, |ĉg|, |ĉb|) (2)

In the pattern used in [3] there are only eight projected colors (the corners of the RGB
cube). This means that the number of labels is rather low and the inference can be
performed in real time. Furthermore, the three color channels are independent. Thus we
can perform a per-channel inference with binary labels. At a given vertex, a given color
channel can only be either on or off.

4 Color Enhancement

We use Belief Propagation [12,13] to implement the color enhancement. BP is an iter-
ative message passing algorithm. Each node of the graph receives messages from its
neighbors containing their current beliefs about their state. This incoming information
is combined with local evidence and passed on. Assuming pairwise cliques, the update
equation for the message from node i to node j at time t is

mt+1
ij (xj) =

∑
i

fij(xi, xj)gi(xi)
∏

k∈Ni\j

mt
ki(xi) (3)

Here fij(xi, xj) is the smoothness term for assigning labels xi and xj to nodes i and
j, gi(xi) is the data term for assigning xi to node i and Ni \ j is the neighborhood of
node i excluding node j. After convergence, the final belief bi is

bi ∝ gi(xi)
∏

k∈Ni

mt
ki(xi) (4)

In our case there is no data term, i.e. gi(xi) = 1, as we do not judge the absolute color
values but only the color changes. Since we split the inference into three binary prob-
lems (one per RGB channel), there are only two labels, namely channel on or off. The
smoothness term fij(xi, xj) can therefore be written as a 2x2 compatibility matrix F.

F =
[
pconstant prising

pfalling pconstant

]
(5)

On the diagonal we have the probability of the channel state being constant, as both
nodes have the same label. If node i is in “off” state (index 0) and j in “on” state (index
1) the channel must rise, or fall in the opposite case. The values are computed with a
truncated linear model:

p =

⎧⎪⎨⎪⎩
max(0, 1 − hbp − clhbp) iffalling

max(0, 1 − |cl|hbp) ifconstant

max(0, 1 − hbp + clhbp) ifrising

(6)
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Here cl is an indiviual normalized channel of the color change vector from eq.1 and hbp

is the slope of the probability function. This means the that the probability for a falling
channel is 1 if cl is -1 and goes down to 0 as the deviation of cl from the ideal value
approaches 1

hbp
. For the cases of constant and rising channels, the ideal values are 0 and

+1. A typical value for hbp is 3
2 .

The most widely used message update equation in BP is the sum-product formula
shown in 3. It is used when the focus is to approximate marginals. Other variants, how-
ever, have been used. For example, a popular variant is the max-product (or max-sum
in the log domain) [12]. In this latter formulation, beliefs no longer estimate marginals.
Instead, they are scoring functions whose maxima point to most likely states. In our
application, we want a belief estimate that can capture the fact that not all messages
are equally reliable. A belief that better captures the influence of the neighboring nodes,
and is at the same time more robust to outliers, is one based on weighted sums. Thus
we replace the products in eqs. 3 and 4 by weighted sums.

mt+1
ij (xj) =

∑
i

fij(xi, xj)
∑

k∈Ni\j

mt
ki(xi)wk (7)

bi ∝
∑

k∈Ni

mt
ki(xi)wk (8)

This has two advantages. The first is that we can include our information about the edge
weights (eq.2). High weight edges are more reliable as they are less likely to be distorted
by noise. The second is that when using products to combine the incoming messages,
one “bad” message with a probability of zero makes the product zero. This is especially
the case for the so called null edges (see [3]). For this type of edges many entries in
fij are zero and we end up with all-zero messages. In the weighted sum this does not
happen. In fact, null edges have only a small influence because of their low weight.

We initialize the messages as m0
ij(xj) = 1, i.e. we make no assumptions whether

a given channel is on or off in the beginning. Because of the low number of labels the
message passing converges in only two iterations. Afterwards, we can form a belief
vector B that gives the probability of each of the color channels being in “on” state.
This belief vector can be interpreted as a color again. We call this the enhanced color.
Note that since the estimation of B is based solely on the color changes between the
superpixels it ideally contains only information on the projected light. The result is
shown in figure 2 and 3.

Although the image looks confusing, the contrast between the new colors is better
and they are better suited for decoding in the following steps. We therefore compute new
color change vectors C for each edge in the graph, this time representing the change in
our belief in the colors. Table 1 shows the improvement numerically on the basis of the
blue and green regions shown in the center of figure 3c. The enhanced values are much
closer to the ideal.

Note that this inference approach can also be applied to patterns with more colors.
In that case there are more than two labels per channel and F is larger. We also ex-
perimented with a Graph-Cut optimization [14] to find the optimal labeling. This also
works, but the results were inferior, as the output was a “hard” labeling as opposed to
the “soft” labeling produced by BP.
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(a) Original colors (b) BP-enhanced colors

Fig. 2. Color enhancement example

(a) Original image (b) Median filtered colors
(gamma adjusted)

(c) Color belief scaled to [0;255]

Fig. 3. Detail view of color enhancement results

Table 1. Example of enhanced region colors. Note that the range of the original colors is [0;255]
and the range of the enhanced colors is [0;1]. The color changes are normalized.

ideal median color BP-enhanced color
region color a (0,0,1) (15,22,25) (0.31,0.36,0.92)
region color b (0,1,0) (14,24,21) (0.20,0.87,0.40)
color change (0,+1,-1) (-0.20,+0.50,-1.00) (-0.21,+0.97,-1.00)

5 Results

The proposed decoding method inherits the robustness of [3], which is due to: a) the
rank filtering used to assign the superpixel colors, and b) the graph decoding algorithm
that allows it to sidestep disruptions in the observed pattern. The BP-based enhanced
color deduction further increases the robustness, especially in low-contrast situations,
where single edges may be unreliable. In that case integrating the information from all
neighbors before making a decision is especially helpful. This is a crucial improvement
for medical purposes, where it can counteract the sub-surface scattering in skin and
other tissue.
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(a) Results for pig stomach sequence 6 with higher
image quality.

(b) Results for pig stomach sequence 3 with poor
image quality.

Fig. 4. The number of recovered pixels without (red) and with (green) the color enhancement

The biggest benefit of the proposed method is the increase in the number of recov-
ered pixels. The image gradients used for the final triangulation of the distance are
unaffected. Experiments with ground truth data have confirmed that the accuracy of the
recovered depth map does not change. A detailed analysis on the accuracy of the overall
methodology can be found in our prior work [3]. Here we focus on the improvement in
the number of data points achieved with the additional color enhancement step. Figure 4
shows the number of data points that could be generated for each frame of two example
videos. In sequence 6, which has the better image quality, the overall improvement was
32%, in sequence 3 with very poor image quality we gained 51%. The sequences were
recorded with a handheld prototype scanner submersed in a liquid-filled pig stomach.

Figure 5 shows the results for two individual frames from each test sequence. For
further comparison we also include the output of a reimplementation of the classic
dynamic programming decoding method [6]. As can be seen, [6] is more susceptible to
low image quality. Another example image with results is displayed in figure 7. Without
the color enhancement [3] generated 29391 data points, with color enhancement we get
40107 points. This is again an improvement of 36%.

(a) Frame 90 of sequence 6 (b) Frame 90 of sequence 3

Fig. 5. Single frames from sequence 6 and sequence 3
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(a) Result with plain decoding (b) Result with color enhance-
ment

(c) Result with Dynamic Pro-
gramming decoding

(d) Result with plain decoding (e) Result with color enhance-
ment

(f) Result with Dynamic Pro-
gramming decoding

Fig. 6. Color coded depthmap results for the image in figure 5a (first row, range is 137mm to
146mm) and the image in figure 5b (second row, range is 148mm to 166mm)

(a) Input image (b) Result with plain decoding (c) Result with color enhance-
ment

Fig. 7. “Palm” image and color coded depthmap result. Range is 119mm to 134mm.

6 Conclusion and Future Work

We presented an extension to the robust decoding algorithm for Single-Shot Structured
Light patterns presented in [3]. It works even under very adverse imaging conditions,
where previous methods like Dynamic Programming fail. It improves the data yield in
the test sequences by 30% respectively 50% over the plain graph-based decoding. The
method can tolerate low contrast, high noise as well as other artifacts and can run at 10
Hz with input images of 780x580 pixels on a 3Ghz machine, generating up to 105 data
points per frame. As before, the typical accuracy is 1/1000 of the working distance. We
have also demonstrated the miniaturization potential with the pig stomach images.
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Abstract. In this paper we present a novel approach for expanding

spherical 3D-tensor fields of arbitrary order in terms of a tensor valued

local Fourier basis. For an efficient implementation, a two step approach

is suggested combined with the use of spherical derivatives. Based on this

new transformation we conduct two experiments utilizing the spherical

tensor algebra for computing and using rotation invariant features for

object detection and classification. The first experiment covers the suc-

cessful detection of non-spherical root cap cells of Arabidopsis root tips

presented in volumetric microscopical recordings. The second experiment

shows how to use these features for successfully detecting α−helices in

cryo-EM density maps of secondary protein structures, leading to very

promising results.

1 Introduction

With the increasing performance of modern computers and the rapid develop-
ment of new 3D image recording techniques, the amount of volumetric image
data has drastically increased during the last years. Due to this fact, there is a
need for adapting existing techniques from 2D image analysis to the third di-
mension. One major problem in image analysis is the extraction of information
which is reduced in size as much as possible while still containing all characteris-
tics necessary to describe, analyze, detect, compare or classify different objects.
Many methods widely used for extracting features from 2D images make use
of the gradient direction to get rid of the rotation. These approaches can often
be directly adapted into the 2D+time domain (e.g. SIFT [1]). However, when
working with volumetric images the gradient direction gives us only information
about two rotation angles leaving the third angle undetermined.

In this work, we introduce a new method for realizing a fast voxel-wise lo-
cal spherical Fourier transformation of spherical tensor-valued 3D images. The
expansion coefficients are used to compute rotation invariant features in an an-
alytical way. From a practical point of view, our method does exactly this: For

M. Goesele et al. (Eds.): DAGM 2010, LNCS 6376, pp. 412–421, 2010.
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each Gaussian windowed surrounding of each voxel of a tensor-valued volume, we
simultaneously compute the expansion coefficients of a spherical Fourier tensor
expansion up to a certain band. Using spherical tensor algebra (the interested
reader is referred to [2,3]), the resulting expansion coefficients can be combined
to analytically form rotation invariant features. These voxel-wise features can be
used for e.g. object detection, segmentation or object classification. The method
proposed here needs a small number of image convolutions followed by suc-
cessively applying point-wise operations that can run in parallel in a memory
efficient way. Outperforming all existing methods we are aware of doing voxel-
wise spherical harmonic expansions realized by a huge number of convolutions
(e.g. [4]).

This paper is organized as follows: In section 2 we recapitulate the basics
and requirements necessary for our mathematical framework. In section 3 we
introduce the fast spherical Fourier tensor transformation. Finally, in section
4, two applications are introduced where local rotation invariant features are
computed and used for successfully detecting and classifying objects.

2 Preliminaries

We denote scalars in unbold latin face and vectors in latin bold face. Typically,
vectors are elements of C2+1 whose basis is written as {e

m}m=−.... Depending
on the context we will express the coordinate vector r = (x, y, z)T ∈ R3 in
spherical coordinates (θ, φ, r), where θ = arccos(z/‖r‖), φ = atan2(y, x) and r =
‖r‖. By Y 

m(θ, φ) we denote the usual spherical harmonics [2] in Schmidt semi-
normalized form. All harmonics for a fixed � are arranged in a vector Y ∈ C2+1.
The functions Y 

m build a complete orthogonal basis for representing functions
on the 2-sphere, with 〈Y 

m, Y
′
m′〉 = 4π

2+1δ′δmm′ . Furthermore, we denote by
R : R3 → C2+1 the commonly known solid harmonics [2], whose (2� + 1)
components R

m are defined by R
m(r) = rY 

m(θ, φ).

2.1 Spherical Tensor Fields

In the following we give a short introduction on spherical tensor algebra based on
the definitions and notation used in [5]. The spherical tensor algebra is necessary
for expanding higher order tensor fields (e.g. vector fields) in terms of tensor-
valued Fourier basis functions. We also use spherical tensor algebra for computing
rotation invariant features in an analytical way [6].

The central role of spherical tensor algebra play the Wigner D-matrices D
g ∈

C(2+1)×(2+1) which are the unitary irreducible representations of the 3D rota-
tion group. Each D-matrix is associated with an element g of the rotation group.
They behave like ordinary rotation matrices in the sense that D

gD

h = D

gh,
but act on the high-dimensional complex Hilbertspace C2+1. A fundamental
property of the Wigner D-matrices is their behavior with respect to spherical
harmonic expansion coeffcients. Suppose you have expanded some function f in
spherical harmonics a = 〈Y, f〉. Then the expansion coefficients of the rotated



414 H. Skibbe et al.

function gf are related to the a just by the Wigner D-matrices a′ = D
ga

.
Spherical Tensor algebra utilizes this behavior in a much more general way. We
call a function f : R3 → C2+1 a spherical tensor field of rank � if it transforms
with respect to rotations as

∀g ∈ SO(3) : (gf)(r) := D
gf(U

T
g r) (1)

where Ug ∈ R3×3 is the corresponding real valued ordinary rotation matrix.
The space of all spherical tensor fields of rank � is denoted by T. Note that
for � = 1 a spherical tensor field is just an ordinary vector field. Interpreting
solid harmonics (or spherical harmonics) as spherical tensor fields shows their
importance, namely (due to eq. (1)) gR = R, i.e. they are ’fix’ with respect to
rotations.

Similar to cartesian tensor fields, where Kronecker products connect tensor
fields of different rank, there exist spherical products [5,2] that connect spherical
tensor fields of different rank. In fact, for two given spherical tensor fields v ∈ T1

and w ∈ T2 , there exists a whole set of different products ◦ to build new
spherical tensor fields. More precisely, for every � ≥ 0 that obeys the triangle
inequalty |�1 − �2| ≤ � ≤ �1 + �2 there is a bilinear form ◦ : C21+1 × C22+1 →
C2+1 that takes two spherical tensors and gives a new one, i.e

(D1
g v) ◦ (D2

g w) = D
g(v ◦ w) (2)

holds for any v ∈ T1 and w ∈ T2 . Again the spherical harmonics show a
special behavior. In fact, multiplying two spherical harmonics results in another
harmonic, i.e. Y1 ◦ Y2 = c,1,2Y

, where c,1,2 is a constant related to the
Clebsch Gordan coefficients (for details see [2]).

Finally, we present the third important ingredient of spherical tensor calculus:
the spherical derivative. In ordinary vector calculus differential operators like the
gradient, divergence or the Hessian connect cartesian tensor fields of different
rank. There are also spherical counterparts. In the following we need just one
type of spherical deriviative, the spherical up-derivative ∇1, which increases the
rank of the spherical field (see [7] for further details and proofs). If f ∈ T is a
tensorfield of order �, then the spherical up-derivative ∇1 : T → T+1 maps f
onto a field of rank �+ 1. For multiple application of the spherical derivative we
write ∇ : T0 → T0+. For example, applying ∇1 on a scalar field gives just the
spherical counterpart of an ordinary gradient of the field. The result of applying
∇1 twice is linearily related to the traceless Hessian of the scalar field.

Relation between Cartesian and Spherical Tensors. The theories of carte-
sian and spherical tensors are basically equivalent. Up to rank 2 the relations
connecting both worlds are well known and reported e.g. in [2] or [8]. To get an
impression; a general real cartesian tensor of rank 2 (basically a 3 × 3 matrix)
can be decomposed into a spherical tensor of rank 0 (the trace), of rank 1 (the
antisymmetric part) and of rank 2 (the traceless symmetric part).
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3 Spherical Fourier Tensor Transformation

In this section, we introduce the Fourier basis which we use for spherical tensor
field expansion. This basis can be seen as an extension to [9], replacing the
spherical harmonics by tensorial harmonics. With this we are able to decompose
spherical tensor fields of any order into basic Fourier patterns.We further show
how to expand fast and efficiently by utilizing the spherical derivatives.

3.1 Tensorial Bessel Harmonics

In order to obtain a representation of spherical tensor fields with tensor valued
Fourier basis functions having the same convenient rotation properties known
from the spherical harmonics, we perform a spherical tensor field expansion based
on tensorial harmonics [5]. In addition to the tensorial harmonic expansion given
in [5] for representing spherical tensor fields on the 2-sphere, we use the spherical
Bessel function j(r) for representing the radial part (see [10] for definition). This
directly extends the spherical Fourier basis B

k(r) := Y(r)j(kr) presented in [9]
to higher order tensor fields, where k ∈ R>0 represents the frequency in radial
direction. The spherical Fourier tensor field expansion of f ∈ TJ in terms of ◦
and the Fourier basis B

k is given by

f(r) =
∫ ∞

0

∞∑
=0

j=J∑
j=−J

c
jk ◦J (α

1
2
jkB


k(r))dk , (3)

where αjk = 2k2

π
2(+j)+1

2J+1
2+1
4π are scalar valued normalization factors, and c

jk ∈
C2(+j)+1 are the spherical tensor valued expansion coefficients of f .

The expansion coefficients c
jk can be computed by directly projecting onto

tensorial Bessel harmonics, with cjkm = 〈f , e+j
m ◦J B

k〉. However, it would be
quite expensive to do this voxel by voxel in a large volume. According to [8], we
suggest to compute the expansion coefficients c

jk of f ∈ T in two steps. First,
we separately transform all 2J + 1 components of f into the harmonic domain,
i.e. we express each component of fM in terms of B

k, with

fM (r) =
∫ ∞

0

∞∑
=0

aM
k

T
B

k(r)dk , (4)

where aM
k are the expansion coefficients representing the M -th component of f .

Given the coefficients aM
k we then compute the expansion coefficients c

jk:

cjkm = 2(+j)+1
2J+1

∑
M aM

kn 〈(�+ j)m, �n |JM〉 , (5)

where m = −2(� + j), . . . , 2(� + j) and n = M − m. Until now we have not
reached any computational benefit, but we show in the following section that
we can use the spherical derivatives for the computation of the expansion coeffi-
cients aM

kn . This avoids explicit convolutions and precomputation of convolution
kernels, which makes the computation practical in terms of speed and memory
consumption.
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3.2 Differential Formulation of the Tensorial Bessel Expansion

In this section we show how to compute the expansion coefficients a
k (eq. (4))

with respect to all positions x ∈ R3 of a given 3D image simultaneously by uti-
lizing the spherical derivatives. As a consequence of having a fast transformation
for computing the coefficients a

k we directly get a fast method for computing
the tensorial Bessel harmonic coefficients c

jk (see eq. (5)).
One possible solution to transform efficiently is separately convolving a func-

tion f ∈ T0 with all (2�+ 1) scalar valued components B
kn ∈ T0 of all B

k ∈ T .
In our scenario, doing a transformation using K different values for k and an an-
gular expansion up to the L-th band, we would need K(L+1)2 convolutions! In
contrast, the method proposed here makes use of an iterative differential formu-
lation of the B

k for realizing the transformation in angular direction. Hence we
only need K convolutions followed by L times applying the spherical derivative
operator ∇. In this case, the number of convolutions does not depend on the pa-
rameter L. Furthermore, the spherical derivative operator can be implemented
efficiently using finite differences, widely used for fast computing derivatives
from scalar valued fields which can be executed in parallel in a memory efficient
way. This enables us to process huge volumetric images in seconds rather than
minutes (e.g. given an image of size 2563 and doing the voxel-wise expansion
up to order 15 (double precision) takes 1.3 minutes by convolutions using the
multithreaded fft [11] with planning flag FFTW MEASURE and 14.1 seconds
using our approach. The experiments are run on a 6×quad-core system, each
core with 2,7 GHz.). The relation between the convolution based approach and
our differential based approach is given by:

a
k(x) = 〈fx,B

k〉 = (f ∗ B


k)(x)︸ ︷︷ ︸
(2+1) scalar

valued convolutions

= (−1)

k 〈fx,∇B0
k〉 =

[
∇1

(−k)

]

(f ∗ B
0
k)(x)︸ ︷︷ ︸

1 scalar
valued convolution

,

where fx(r) := f(r + x) and ∇
is the complex conjugate of ∇ (for proof see

appendix A). As a result the expansion coefficients a0
k, . . .a


k can be computed

iteratively by � times applying the spherical derivative operator:

a
k(x) = (−1

k ∇1
. . . (−1

k ∇1
(−1

k ∇1
(f ∗ B

0
k)︸ ︷︷ ︸

= a0
k

)

︸ ︷︷ ︸
)

= a1
k

)

︸ ︷︷ ︸
= a

k

(x) , (6)

We finally obtain the expansion coefficients c
jk(x) of the spherical tensor field by

first doing a component-wise transformation of the tensor field (eq. (4)) utilizing
the spherical derivatives (eq. (6)) followed by coupling the expansion coefficients
according to eq. (5).
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Fig. 1. Left image: a) Training dataset. b) Test dataset. Right PR-graph: Comparing

the performance of our detection and classification to the detection rate of the spherical

hough transformation.

4 Applications and Experiments

We conduct two experiments demonstrating the performance of our method. In
the first experiment we detect nuclei of root cap cells of Arabidopsis root tips.
In the second experiment we detect α-helices in secondary protein structures.
Since we aim to describe local image structures and further need a finite convo-
lution kernel, we use a Gaussian windowed Bessel function in both experiments.
The Gaussian windowed convolution kernel is given by (gσ(r)j(kr))Y(θ, φ) =
B0

k(r)gσ(r) where σ determines the width of the gaussian window function

gσ(r) = e−
r2
σ . Scaling is done by assuming different voxel sizes. Considering

the Fourier transform of this function, the parameter k determines the distance
of a spherical harmonic from the origin, while the parameter σ determines the
size of the Gaussian with which the spherical harmonic is convolved.

There are several ways for obtaining rotation invariant features based on
spherical tensor fields (see e.g. [3,9,6]). Similar to [6] we are utilizing the spherical
tensor product (eq. (2)) for coupling expansion coefficients of equal rank. By cou-
pling coefficients with themselves we obtain the power-spectrum known from or-
dinary Fourier analysis, with ( 1√

2+1
(ak

 ◦0ak
 ))

1
2 = 〈ak

 ,a
k
 〉

1
2 = ‖ak

 ‖. We further
can couple expansion coefficients corresponding to Bessel functions j(rk1) and
j(rk2) of different frequencies k1 and k2, with ( 1√

2+1
(ak1

 ◦0ak2
 ))

1
2 = 〈ak1

 , ak2
 〉 1

2 .
In the experiments this feature is called the Phase-feature.

First Experiment: Detection and Classification of Cells. In this exper-
iment we aim to detect DAPI1-stained nuclei of root cap cells represented in
volumetric images of Arabidopsis root tips. The data was recorded using a con-
focal laser-scanning microscope. Experiments have shown, that, in contrast to
inner cells, root cap cells can hardly be detected by strategies suitable for detect-
ing roundish structures, e.g. using the spherical Hough transform [12]. For this
scenario a voxel-wise feature computation and classification approach is suitable
for first learning the shape and structure of root cap cells using rotation invariant
1 4’-6-Diamidino-2-phenylindole.
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features, followed by a detection and classification of cells in unclassified data
sets. The experiment is organized as follows: We select one image for training
(size 461 × 470 × 101) and one further image for testing (size 239 × 522 × 105)
(depicted in the left image of figure 1 a) and b) ). The voxel size of each images
is 1μm. Each image contains several hundred cells. The center of the nuclei of
the cells were labeled manually and divided into two classes: Root Cap Cells and
Inner Cells. We compute rotation invariant voxel-wise features for k = 1, 3, 5, 7, 9
and a band-with limit � ≤ 5. σ is set to 2π. The kernel is scaled by a factor of
6 approximately covering a whole cell. We separately normalize each feature di-
mension with respect to the mean and the variance of the whole set of features
computed for a single dataset. For training we select all features representing
cells from the training image. We further randomly select features describing lo-
cations not belonging to cells representing the background. We train a two-class
cSVM [13] using an RBF kernel with γ=1 and cost=1. We first conduct exper-
iments comparing features based on the power-spectrum to the phase-features.
For the voxel-wise classification we use the local maxima of the decision values
of the SVM. We have a true positive detection if correctly classifying a root
cap cell in a 3μm surrounding of a positive label and a false negative for each
root cap cell, which is not detected. All remaining voxels, wrongly classified as
root cap cells count as false positives. Results are depicted in the upper left PR-
graph shown in figure 2. Surprisingly the phase-feature performs much better
than the power-spectrum feature. We belief that this is caused by the textural
information of cells in radial direction which is better preserved in the features
when coupling coefficients representing different radial frequency components.
However, as expected, coupling all possible coefficients leads to the best re-
sults (Powerspectrum+Phase). Although we often successfully use the spherical
Hough transformation for cell detection, it is not possible using it to detect more
than 60% of the cells due to their non-roundish shape. In the right PR-graph
of figure 1 we show the performance of our method outperforming the detection
rate of the spherical Hough transformation significantly.

We further conduct experiments for different numbers of radial and angular
frequency components. As expected the performance increases when considering

Fig. 2. Left: Comparing the features obtained by only coupling coefficients with them-

self (power-spectrum), coupling all possible coefficients (phase+power) and finally only

coupling coefficients with different values of k (phase). Middle: Performance for differ-

ent band-width limits �. Right: Performance for different numbers of radial functions.



3D Object Detection 419

further higher frequency components. This is true for both increasing the number
of spherical Bessel functions and increasing the order of the spherical harmonics.
The results are depicted in the middle and right graph of figure 2.

Second Experiment: α-Helices in Secondary Structures of Proteins.
Electron cryomicroscopy is a powerful technique for analyzing the dynamics and
functions of large flexible macromolecule assemblies. One major challenge in
analyzing such density maps is the detection of subunits and their conformations.
One important step in this procedure is the detection of secondary structure
elements, mainly the α-helices.

The database for our experiments consists of simulated electron microscopic
volumes of 56 polymers with an EM-resolution of 10Å and 1Å per voxel [14]. The
data is divided into a training set (4 files) and a test set (52 files). We first try to
detect helices using Helixhunter [15], mainly based on an eigen-analysis of the sec-
ond moment tensor of local structures. We further use a harmonic filter of order
5 [7]. For pre- and post-smoothing we use a Gaussian with σ = 1.5. Finally we
perform experiments using our own rotation invariant power-spectrum-features,
based on the coefficients of the Fourier tensor transformation. We compute fea-
tures directly based on the intensity values. We further compute a second order
tensor field by computing the structure tensor at each voxel position. We use eq.
2.1 for representing the traceless, symmetric parts of the resulting cartesian tensor
field in terms of a spherical tensor field. We compute features for both the intensity
values and the structure-tensor field with k = 1, 3, 5 and � ≤ 5. We scale the kernel
by a factor of 2 and use σ = 2 for the Gaussian window function. The features are
normalized by weighting the components with respect to their frequency using the
weights kλk�λ . We obtain the best results when suppressing the lower frequency
components by amplifying the higher frequency components using λ = 3 and
λk = 5. For voxel-wise classification we use a 20KNN-classifier using the l1-norm.
We only count voxels correctly classified as α-helices as true positives. The results
of our experiments are depicted in figure 3. In our experiments Helixhunter has
major problems to determine the exact locations of helices. For the experiments
based on the harmonic filter, we vary the size of the Gaussian convolution kernels

Fig. 3. From left to right: PR-graph showing the performance of the detection proce-

dures used in the experiments. Surface rendering representing the secondary structure

with PDB code 1m3z. Corresponding detections of helices using our method.
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as well as the order of the filter. The order which works best here is 5. Increasing
the order to a higher extent does not noticeable increase the performance. This
is caused by the low resolution of the data. The same behavior can be observed
for our features, too. Similar to the order of the harmonic filter, the bandwidth
limit � ≤ 5 restricts the number of tensorial harmonics representing the signal in
angular directions. We experienced that in contrast to the intensity features, it is
much easier to obtain good results without having much effort for finding good
parameters using the structure-tensor based features.

5 Conclusion

In this paper we extended the spherical Fourier transformation presented in [9]
to higher order tensor fields and further presented a new method for performing
the transformation in a fast and memory efficient way. We have shown how to
utilize the spherical tensor algebra to compute rotation invariant features from
the Fourier coefficients in an analytical way. We introduced all details necessary
for an implemention, and gave two examples where our rotation invariant local
features are used for successfully detecting and classifying objects in volumetric
images leading to very promising results.

Acknowledgement. This study was supported by the Excellence Initiative of
the German Federal and State Governments (EXC 294).

References

1. Scovanner, P., Ali, S., Shah, M.: A 3-dimensional sift descriptor and its application

to action recognition. In: Proc. of the 15th international Conference on Multimedia,

pp. 357–360. ACM Press, New York (2007)

2. Rose, M.: Elementary Theory of Angular Momentum. Dover Publications, Mineola

(1995)

3. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical har-

monic representation of 3d shape descriptors. In: SGP 2003: Proc. of the 2003 Eu-

rographics/ACM SIGGRAPH Symposium on Geometry processing, pp. 156–164.

Eurographics Association (2003)

4. Ronneberger, O., Fehr, J., Burkhardt, H.: Voxel-wise gray scale invariants for si-

multaneous segmentation and classification. In: Kropatsch, W.G., Sablatnig, R.,

Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 85–92. Springer, Heidelberg

(2005)

5. Reisert, M., Burkhardt, H.: Spherical tensor calculus for local adaptive filtering.
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A Differential Formulation of Spherical Fourier Functions

We obtain B
k by � times applying ∇1 to B0

k. Proof:

〈eikT r, B
k′m(r)〉 = 2

π

∫∞
0 (i)′ (2�′ + 1) j′(kr)j(k′r)r2

∑
′ Y

′
m (k) 1

(2+1)δ′dr

= 2
π (−i)Y 

m(k)
∫∞
0 j(kr)j(k′r)r2dr︸ ︷︷ ︸

π
2k2 δ(k−k′)

= (−i)Y 
m(k) 1

k2 δ(k − k′) . (7)

This means that a Bessel function B
k in the Fourier domain is a spherical har-

monic living on a sphere with radius k. Consider the representation of both
the Bessel function B0

k and the operator ∇ in the frequency domain (eq. (7)

and according to [5] ∇̃ = iR(k)). In this scenario we can observe, that

∇̃B0
k′ = iR(k) 1

k2 δ(k − k′). Performing the inverse transformation into the
spatial domain we obtain

〈e−ikT r, ˜∇B0
k′〉 = (−1)k′

j(rk′)Y(r) = (−1)k′
B

k′ (r) .

It follows, that we obtain higher order Bessel functions B
k by iteratively applying

the spherical derivative operator ∇1 to B0
k, namely ∇B0

k = (−1)kB
k ��.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
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Abstract. Super-resolution of the alpha matte and the foreground ob-

ject from a video are jointly attempted in this paper. Instead of super-

resolving them independently, we treat super-resolution of the matte and

foreground in a combined framework, incorporating the matting equation

in the image degradation model. We take multiple adjacent frames from

a low-resolution video with non-global motion for increasing the spatial

resolution. This ill-posed problem is regularized by employing a Bayesian

restoration approach, wherein the high-resolution image is modeled as

a Markov Random Field. In matte super-resolution, it is particularly

important to preserve fine details at the boundary pixels between the

foreground and background. For this purpose, we use a discontinuity-

adaptive smoothness prior to include observed data in the solution. This

framework is useful in video editing applications for compositing low-

resolution objects into high-resolution videos.

1 Introduction

Video matting pulls the matte of a foreground object from a video sequence with
a natural background. It enables composition of the object or person seamlessly
into a new video. This is different from applying still-image matting methods,
such as closed-form matting [1], to each frame. Video matting by spatio-temporal
method utilizes information from previous frames and hence is more accurate
than matting on a frame-by-frame basis. The video matting problem for compli-
cated scenes was first described and a Bayesian solution proposed in [2]. Mattes
with high resolution (HR) are desirable since we can better discern fine details.
Note that single-image interpolation is not same as super-resolution, since the
former cannot recover the high-frequency components degraded by LR sampling
[3]. Due to the limitation of data available in a single image, the quality of the in-
terpolated image is inadequate. It must be emphasized that matting applications
especially require accurate edge information.

Multiple image super-resolution deals with the inverse problem of finding
high-resolution image from several low-resolution inputs. To overcome the re-
strictions of the image sensor, signal processing methods can be used to get
HR video from the observed low-resolution (LR) sequence. Post-processing has
many advantages: savings in computation time, camera cost, memory and band-
width usage. It is also to be noted that cameras have a trade-off between frame
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rate and resolution, which can also be avoided by using signal processing. The
LR video consists of frames which are down-sampled and warped versions of the
same scene. Frequency-domain methods of super-resolution, although simple and
efficient, are restricted to global translational motion models. Spatial-domain
approaches are preferred, since they can easily incorporate spatial-domain prior
information from the observed image for regularization [3]. In a typical video,
each of the frames have relative sub-pixel motion due to object motion as well as
camera movement. We make the general assumption that the movement between
adjacent video frames is smooth and gradual, and contains no sudden jerks. The
temporally-correlated LR frames from the video have different local sub-pixel
shifts, which implies that each LR image has new information. This additional
data must be exploited while reconstructing the super-resolved image [3].

The advances and open issues (such as robustness) in the super-resolution
area were described in a survey [4]. Super-resolution using images with global
shifts, using iterated conditional modes (ICM) [5], was described in [6]. A motion-
compensating sub-sampling observation model, that accounts for both scene and
camera motion was considered in [7], where a Huber Markov random field prior
was proposed. A MAP approach for joint motion estimation, segmentation, and
super resolution appeared as [8]. However, unlike the segmentation problem,
matting requires accurate sub-pixel or opacity values at the boundary between
the object and the background. Joint estimation of disparity and image intensity
at higher resolution for stereo images was described in [9]. The authors of [9]
use a discontinuity-adaptive prior which makes HR image estimation robust to
errors in disparity. Super-resolution of range images with camera motion was
illustrated in [10], which also models the HR range image (representing depth)
as a Markov random field (MRF). Super-resolution without parametric con-
straints on motion between video frames was discussed in [11]. They describe an
Expectation-Maximization algorithm to reconstruct the HR image, interleaved
with optical flow estimation.

The concept of compositing was utilized in an edge-directed technique for
super-resolution using a single image, proposed in [12], which employs a multi-scale
tensor voting scheme. Single image super-resolution using a soft-edge smoothness
prior, from the alpha matte, was described in [13]. The prior favors smooth edges,
which is found to be consistent with human perception. However, they do not uti-
lize the matting equation during HR reconstruction; they simply super-resolve the
matte independently, and obtain a visually pleasing super-resolved image using
the HR matte alone. Matte super-resolution by defocus matting approach was at-
tempted in [14]. This method uses three cameras, of which one camera must have
the desired high-resolution. Besides, this method is learning-based and is bound to
propagate matting errors to the prediction stage. One disadvantage of performing
matting and then super-resolution independently, is that errors in the matte will
get magnified after super-resolution [14].

We discuss multi-frame super-resolution, using frames extracted from a video
containing arbitrary motion. Our goal is to implement matte super-resolution,
which simultaneously obtains the matte as well as foreground at a higher
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resolution. The matting equation is included in the HR reconstruction model;
hence the solution is optimized from the observed image by keeping the matting
constraint. Motion estimation is done on the LR images a priori by using an ac-
curate optical flow method from [15], using the implementation given in [16]. It
has already been shown [6] that robustness to small errors in motion estimation
is achieved by modeling the image as an MRF. Hence, the original HR image is
modeled by a discontinuity-adaptive MRF (DAMRF) prior [17], which serves to
regularize the solution as well as to preserve discontinuities at borders between
the foreground and background.

The paper is organized as follows. Section 2 describes the observation model
used for video matte and foreground super-resolution. In Section 3, we discuss
our optimization approach using ICM algorithm. The DAMRF prior used to
regularize the solution as well as to obtain distinct edges, is also described in the
same section. Finally, the results of the proposed method and the conclusions
drawn, are presented in Section 4.

2 Video Matting with Super-Resolution

The alpha matte values indicate the opacity/sub-pixel coverage of the foreground
object at every pixel. The compositing equation using natural image matting at
a pixel is given as

x(j, k) = α(j, k)f(j, k) + (1 − α(j, k))b(j, k) (1)

where x is the composite image intensity, f is the foreground and b is the back-
ground contribution. The range of the alpha matte is 0 ≤ α ≤ 1, where α = 1
specifies sure foreground and α = 0 specifies sure background. The fractional
values of α signify mixture of foreground and background at a pixel. This equa-
tion is severely under-constrained as it has three unknowns and only one known
quantity, i.e., the observed image. The ill-posed matting problem requires user-
specified constraints, provided by trimaps. For videos, trimaps are drawn for a
few frames only [2] and rest of the frames can be propagated by optical flow [15].
For simplicity, we consider gray-scale images in formulating our algorithm. The
method presented here can be easily extended to color images by super-resolving
each color plane independently.

Super-resolution is an inverse problem for which we must first construct a
forward model based on motion-compensated sub-sampling. Let the HR images
x = [x1, x2, .., xM ]T be of sizeN1xN2 each and the LR images y = [y1, y2, .., yM ]T

of size Z1xZ2. The low-resolution images are formed by the following linear
observation model

ym = DWmx + ηm , m = 1, 2..M (2)

where the observed LR image y and the HR image, x are arranged lexicograph-
ically as column vectors. W denotes the warping matrix, m denotes the frame
number of the sequence, and η is random noise. D is the down-sampling factor,
which isN1/Z1 andN2/Z2 in the two spatial directions. We consider blurring only
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(a) (b)

Fig. 1. (a) HR from LR pixels. (b) Down-sampling

by averaging due to down-sampling, so a separate blur matrix is not included in
the degradation model. Down-sampling is implemented by averaging four adja-
cent pixels, as shown in Fig. 1, where L1 = (H1 +H2 +H3 +H4)/4, etc. Since
all video frames are taken from the same camera, D is common for all frames.

It is important to note that Wm matrix consists of different values not only
for each frame but also at each pixel. Unlike many previous methods for super-
resolution, we consider non-global motion. Therefore, the relationship between
HR and LR frames, as shown in Fig. 1 is valid locally, i.e., within the neighbor-
hood at a pixel. After warping, the pixels of a frame will not maintain the same
relative positions, as the motion is not global but arbitrary. The foreground ob-
ject moves in a different manner from the background. Since the foreground is
a non-rigid object or person, the displacement of parts of the foreground will be
dissimilar. The warping operation, which is performed on the HR image, is actu-
ally estimated from the LR images by a suitable motion estimation method. The
final warp matrix is approximated by nearest-neighbor interpolation of the LR
warping, as the motion in most videos is smooth. While motion-compensating
the LR frames with respect to the reference frame, semantically corresponding
pixels should be aligned. The displacement at a pixel can be assumed to be
purely translational within the local pixel neighborhood. The warp parameters
representing the apparent motion of the scene are computed separately by an
accurate and robust optical flow method. The optical flow constraint relates two
pixels of images in adjacent frames (m and m+ 1) of a video as follows

x(j, k,m) = x(j + u, k + v,m+ 1) (3)

where (u, v) is the displacement vector or flow field between the two frames.
The optical flow estimation we use is a multi-scale implementation, with a
discontinuity-preserving spatio-temporal smoothness constraint. The image to
be reconstructed is fixed as the reference frame, and the displacement velocities
of subsequent M − 1 frames are defined with respect to the reference.

We solve for the super-resolved matte and foreground simultaneously. First, we
need to incorporate the natural matting equation into the HR reconstruction
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model. The proposed model obtained by combining equations (1) and (2),
is as follows

ym = DWm(αmfm + (i − αm)bm) + ηm (4)

where the matte α, the foreground f and background b are arranged as column
vectors and i has all unity elements. The above inversion model is valid be-
cause the down-sampling and warping operations affect the composite image as
a whole. Wherever α = 0 or α = 1, the motion corresponds to the displacement
of the background or foreground, respectively. At places where α is fractional,
the displacement of both foreground and background will contribute to the over-
all apparent motion, although it is difficult to separate the two contributions.
Integrating the matting and super-resolution problems leads to better results at
the outlines of the foreground, rather than solving them separately, which might
introduce errors [14].

3 Regularization by ICM Using DAMRF Prior

We now formulate the method for solving the matte and foreground super-
resolution problem. Given the observed video frames y1, y2, ...yM , we solve for the
maximum a posteriori (MAP) estimate of α and f within a Bayesian framework.
One popular approach for regularized solutions to the super-resolution problem
is the MAP estimation. In the MAP procedure, we treat super-resolution as a
stochastic inference problem. Observed information is explicitly included in the
form of a prior probability density. Bayesian estimation involves maximization
of the posterior probability, using the prior and conditional probability. We use
Markov Random Field (MRF) model which obeys the Markovian property, i.e.,
image label at a pixel depends only on its neighbors. We need to minimize energy
of the form

E = E1(α, f) + E2(α) + E3(f) (5)

where E1(α, f) is the data term; E2(α) and E3(f) are priors corresponding to the
matte and foreground, respectively. The solution minimizes the reconstruction
error between observed image and generated LR from recovered HR image, which
is given by

E1 = ‖ym −DWm(αmfm + (i − αm)bm)‖2 (6)

The minimization is done using iterated conditional modes (ICM) method. We
solve for high-resolution matte as well as foreground using double ICM loops.
ICM is a deterministic algorithm implemented locally at each clique in a se-
quential manner [5]. It facilitates faster convergence for maximization of local
conditional probabilities for MRF models. It finds widespread applications for
image segmentation optimization [8].

Super-resolution is an ill-posed inverse problem due to down-sampling, shift-
ing and noise. We thus need to include image-based priors in the regularization
process in order to obtain a physically meaningful solution. Smoothness is a
common assumption made in computer vision models [17], which also acts as
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a noise-removal tool. However, undesirable over-smoothing at edges must be
avoided. For the matting problem, the edge information, especially at pixels on
the boundary between the foreground and background, are important and must
be preserved. We therefore include a smoothness prior which preserves discon-
tinuities [6], to regularize the under-determined problem. We model the prior
probabilities for E2(α) and E3(f) (in equation (5)) as discontinuity-adaptive
Markov random fields (DAMRFs) as follows

E2(j, k) = γ2 − γ2exp(−(α(j, k) − α(j1, k1))2/γ2)

E3(j, k) = γ3 − γ3exp(−(f(j, k) − f(j1, k1))2/γ3)
(7)

where (j1, k1) is the first-order neighborhood of the current pixel (j, k), which
consists of: (i−1, j), (i+1, j), (i, j−1) and (i, j+1). γ2 and γ3 denote smoothness
parameters for α and f . The value of γ controls the shape of the function; a large
value of γ makes the DAMRF function convex. Different values of γ must be used
for estimation of α and f . At every iteration, we find the matte and foreground
value at each pixel, by labeling as one of the numbers 1, 5, .. 255 (for f) and 0.1,
0.05, 0.2, .. 1 (for α). Then the energy terms in equation (5) are computed and
compared with previous values. If the new energy value is less, then the present
labels are accepted, otherwise the previous labels are retained.

3.1 ICM Algorithm

1. Inputs: Initial bilinear interpolated estimates of α, f , and trimap; optical flow
velocities of LR images, up-sampled by nearest-neighbor interpolation
2. Compute initial data cost and smoothness costs for α and f
3. for i = 1 : T

for j = 1 : N1; for k = 1 : N2
old alpha = α(j, k), new alpha = 0;
old fore = f(j, k), new fore = 0;

repeat
α(j, k) = new alpha; f(j, k) = new fore;
if Ep(α(new), f(new)) ≤ Ep(α(old), f(old))
α(old) = α(new); f(old) = f(new);
Ep(α(old), f(old)) = Ep(α(new), f(new))

else
α(j, k) = old alpha; f(j, k) = old fore;
new alpha = new alpha + δ2; new fore = new fore + δ3;
until new alpha ≤ 1 and new fore ≤ 255
end

end
4. α̂ = α(new) and f̂ = f(new)
Here, Ep(α, f) is the posterior energy function, T is the number of iterations; δ2
and δ3 are increments in the labels of α (0 to 1) and f (0 to 255).
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4 Results and Conclusions

In this section, we show two examples to demonstrate the results of the proposed
algorithm. Both are frames taken from videos with non-global motion, and are
typically used to demonstrate matting (from [18]). We have shown color image
examples for better visualization of the foreground and more accurate matte
(please see color version of results in the softcopy). We compute HR matte and
foreground using four adjacent LR frames, which have local motion. The LR
frames were generated by cropping and resizing from the original frames from
the video in [18], using Irfanview, which is free-ware graphic viewer. This was
done to ensure that we use an unknown resizing method, which may be different
from our down-sampling model. Thus, the examples are representative of real
cases. The LR matte and foreground can be extracted from any matting method.
Displacement vectors are found from the LR observations, using code provided
in [16]. The optical flow velocities are up-sampled using nearest-neighbor inter-
polation for the HR frames. To save time and computations, the trimap is used
to determine which pixels are super-resolved. Those pixels which fully belong
to the background are not considered. For the alpha matte, only the unknown
pixels of the interpolated trimap are super-resolved; whereas for the foreground,
both the sure foreground and the unknown region are super-resolved. We require
T = 10 number of iterations for the ICM-based method. The increments of labels
used are: δ2 = 0.05 for α and δ3 = 5 for f .

In Fig. 2, the top row shows the first LR frame, extracted LR foreground and
the LR matte. The bicubic interpolated matte and foreground (with magnifica-
tion factor of two) are shown in Figs. 2(d) and (f). The results of our ICM-based
super-resolution method are shown in Figs. 2(e) and (g). Comparing Figs. 2(d)
and (e), it is obvious that fine details of the hair structure are more prominent in
the matte results of the proposed method, than in the interpolated matte. The
facial features in Fig. 2(g) are visibly sharper than in Fig. 2(f), where the eyes
and lips look more smoothed-out. As a consequence of a more accurate matte,
the hair strands also appear more well-defined.

Another example is given by Fig. 3. The first LR frame, extracted LR fore-
ground and the LR matte are shown in Figs. 3(a)-(c). The HR matte and fore-
ground from our approach are shown in Figs. 3(e) and (g). For comparison, again
the bicubic interpolated matte and foreground are shown in Figs. 3(d) and (f).
It can be seen from the left side of the HR matte and foreground (Figs. 3(e)
and (g)), that it shows sharper hair structure than the interpolated matte (Figs.
3(d)). From the interpolated foreground in Fig. 3(f), the right side of the face
and neck appears to have white streaks at the edges. This undesirable effect is
visibly reduced in the foreground extracted by our method (Fig. 3(g)), as a result
of greater matte accuracy (Fig. 3(e)). Besides, the eyebrow appears washed-out
in Fig. 3(f), while it is much clearer in Fig. 3(g).

In this paper, we have proposed a joint framework for super-resolving the
matte and foreground from a low-resolution video. A discontinuity-adaptive
smoothness prior was incorporated to maintain fine edges often encountered
in video editing applications. We have demonstrated the effectiveness of our
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approach on typical matting video examples, which contain both object and
camera motion. We are currently working on a faster super-resolution method,
using a gradient-descent approach, to obtain the super-resolved matte from the
LR trimap itself.

(a) (b) (c)

(d) (e)

(f) (g)

Fig. 2. (a) First LR frame. (b) LR matte. (c) LR foreground. (d) Interpolated matte.

(e) HR matte. (f) Interpolated foreground composited. (g) HR foreground composited.
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(a) (b) (c)

(d) (e)

(f) (g)

Fig. 3. (a) First LR frame. (b) LR matte. (c) LR foreground. (d) Interpolated matte.

(e) HR matte. (f) Interpolated foreground composited. (g) HR foreground composited.
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Abstract. Content-based image retrieval requires a natural image (e.g,

a photo) as query, but the absence of such a query image is usually the

reason for a search. An easy way to express the user query is using a

line-based hand-drawing, a sketch, leading to the sketch-based image re-

trieval. Few authors have addressed image retrieval based on a sketch as

query, and the current approaches still keep low performance under scale,

translation, and rotation transformations. In this paper, we describe a

method based on computing efficiently a histogram of edge local orienta-

tions that we call HELO. Our method is based on a strategy applied in

the context of fingerprint processing. This descriptor is invariant to scale

and translation transformations. To tackle the rotation problem, we ap-

ply two normalization processes, one using principal component analysis

and the other using polar coordinates. Finally, we linearly combine two

distance measures. Our results show that HELO significantly increases

the retrieval effectiveness in comparison with the state of the art.

1 Introduction

Due to the progress in digital imaging technology, image retrieval has become a
very relevant discipline in computer science. In a content-based image retrieval
system (CBIR), an image is required as input. This image should express what
the user is looking for. But, frequently the user does not have an appropriate
image for that purpose. Furthermore, the absence of such a query image is usually
the reason for the search [1]. An easy way to express the user query is using a
line-based hand-drawing, a sketch, leading to the sketch-based image retrieval
(SBIR). In fact, a sketch is the natural way to make a query in applications like
CAD or 3D model retrieval [2].

Although there are many publications on CBIR, a few authors have addressed
image retrieval based on sketches. Some of these works are Query by Visual
Example(QVE) [3], Edge Histogram Descriptor (EHD) [4], Image Retrieval by
Elastic Matching [5], Angular partitioning of Abstract Images [6], and Structure
Tensor [1], that will be briefly discussed in the next section. Although these
methods are applied to SBIR, they still show poor effectiveness under scale,
translation, and rotation issues.
� Partially funded by CONICYT(Chile) through the Doctoral Scholarship.
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The main contribution of this work is to propose a novel method based on
edge orientations that gets a global representation of both the sketch and the
test image. We improve the effectiveness of SBIR by estimating local orientations
in a more precise way, obtaining a histogram of edge local orientations. The local
orientations are computed using a strategy applied for computing directional
fields of fingerprints, in the context of biometric processing [7]. Our proposed
approach is invariant to scale and translation transformations. To tackle the ro-
tation problem, we apply two different normalization processes, one using prin-
cipal component analysis and the other using polar coordinates. Finally, we use
a combined distance as similarity measure. We experimentally show that our
proposed method significantly outperforms the state of the art.

The rest of this paper is organized as following. Section 2 describes the current
methods for SBIR. Section 3 describes in detail the proposed method. Section 4
presents the experimental evaluation. Finally, Section 5 presents conclusions.

2 Related Work

There are a few works on sketch-based image retrieval. One of the first proposals
is QVE [3]. The test image and the query are transformed into abstract repre-
sentations based on edge maps. To measure similarity between two abstract rep-
resentations, this method uses a correlation process based on bitwise operations.
To get translation invariance, the correlation is carried out under horizontal and
vertical shifts. This method is expensive and not rotation invariant. In addition,
this approach does not permit indexing [6].

Another approach was presented by Del Bimbo and Pala [5]. This approach
is based on elastic deformation of a sketch to match a test image. The necessary
effort to adjust the query to the test image is represented by five parameters that
are the input to a multi-layer neural network. This method is also expensive and
not rotation invariant, and to get a good performance the query and the test
image need to have similar aspect ratios, narrowing its scope.

Other methods use edge information such as edge orientation or density. One
of this methods is that proposed by Jain and Vailaya [8]. They proposed a shape
descriptor using a histogram of edge directions (HED) among their work on
combining shape and color descriptors for CBIR. The idea is to quantize the
edge orientation and to form a B-bins histogram. Although this approach may
be scale and translation invariant, it is not robust to rotation changes.

Another edge-based approach is the Edge Histogram Descriptor (EHD) that
was proposed in the visual part of the MPEG-7 [9]. An improved version of EHD
was proposed by Sun Won et al. [4]. The idea is to get a local distribution of
five types of edges from local regions of the image. The juxtaposition of local
distributions composes the final descriptor. Although this approach is invariant
to scale and translation transformations, it is not rotation invariant.

The histogram of distance distribution (HDD) is another descriptor that could
also be applied for SBIR. HDD consists in selecting a sample of points from an
edge map and then computing distances between random pairs of points. This
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descriptor has been used for 3D model retrieval [10] and for shape matching like
in Shape Context [11]. Although this descriptor is invariant to translation, scale,
and rotation, it is strongly dependent on the size of the sample.

An important work on SBIR was presented by Chalechale et al. [6]. This ap-
proach is based on angular partitioning of abstract images (APAI). The angular
spatial distributions of pixels in the abstract image is the key concept for feature
extraction. The method divides the abstract image into K angular partitions or
slices. Then, it uses the number of edge points falling into each slice to make up
a feature vector. To get rotation invariance, the method applies Fourier trans-
form to the resulting feature vector. Although the method is partially invariant
to translation, scaling, and rotation, it requires to recover almost 13% from the
database to retrieve the correct one, so its effectiveness is low.

Recently, Eitz et al. [1] presented a new approach for SBIR. In this approach,
the test image and the query are decomposed into a× b cells. Then, this method
computes gradients at each edge point. To represent a unique orientation in each
cell, the method computes the structure tensor (ST) over the local gradients.
Similarity between a test image and a query is computed comparing correspond-
ing local structure tensors. This approach is not rotation invariant.

We observe that the sketch-based image retrieval is still an open problem,
because the current methods show poor effectiveness under scale, translation,
and rotation changes. Thus, the main contribution of this work is to improve
the effectiveness of image retrieval having as query a line-based hand-drawing.

3 Proposed Method

Our method is based on estimating local edge orientations and forming a global
descriptor named HELO (Histogram of Edge Local Orientations). Since noise af-
fects adversely the edge orientation computation [12], its presence in an image may
cause descriptors to have low performance for image retrieval. So, we use a local
method, which is robust to noise, to estimate edge orientations. In addition, using
a local estimation, the sketches do not need to be drawn with continuous strokes.

3.1 HELO Descriptor

Our method works in two stages. The first one performs preprocessing tasks to
get an abstract representation of both the sketch and the test image, while the
second one make up the histogram. A detailed description is shown below:

– Preprocessing: In this stage, the test images are preprocessed off-line. First,
the method uses the Canny algorithm [13] to get an edge map from each test
image. For the Canny algorithm, we use a 9 × 9-size gaussian mask and a
σ = 1.5. Then, the method applies a cropping operation to the result using
horizontal and vertical projections in a similar way to that applied in the
context of text recognition [14].

The sketch is preprocessed on-line. First, the method uses a simple thresh-
olding to get a binary representation of the sketch. Then, the method applies
a cropping operation to the result in a similar way as in the previous case.
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– Histogram Computation: Here, our approach computes a K-bin his-
togram based on local edge orientations. We propose to use a method applied
for estimating directional fields of fingerprints [7], that allows us to minimize
the noise sensitivity by a orientation local estimation. The main idea is to
double the gradient angle and to square the gradient length. This has the
effect that strong orientations have a higher vote in the local average orien-
tation than weaker orientations [7]. This improves the retrieval effectiveness
on the SBIR. The local orientation estimation works as follows:

• Divide the image into W ×W blocks. We regard each block as a local
area where we will estimate the local orientation. In this approach the
block size is dependent on the image size to deal with scale changes.

• Compute gradient respect to x and to y for each pixel in a block, which
will be called Gx and Gy , respectively. Here, we use Sobel masks [15].

• Compute local orientations as follows:
∗ Let bij be a block and αij its corresponding orientation ( i, j = 1..W ).
∗ Let Lx and Ly be the set of local gradients of an image respect to x

and y, computed on each block bij as follows:

Lij
y =

∑
(r,s)∈bij

2Gx(r, s)Gy(r, s) (1)

Lij
x =

∑
(r,s)∈bij

(Gx(r, s)2 −Gy(r, s)2) (2)

here, Lij
β is the gradient on bij in the direction β.

∗ Apply a gaussian filter on Lx and Ly to smooth the components. We
use a gaussian filter with σ = 0.5 and a 3 × 3-size mask.

∗ Calculate the local orientation αij as follows:

αij =
1
2
tan−1

(
Lij

y

Lij
x

)
− π

2
(3)

At this point, we normalize αij to the range between 0 and π.
• Create a K-bin histogram to represent the distribution of the local ori-

entation in the image.
• Map each local orientation αij to the corresponding histogram bin to

increase it by one. Blocks with a few edge points are neglected. We use a
threshold thedge to filter those blocks. We call the resulting histogram the
histogram of edge local orientation (HELO). Fig. 1 shows an orientation
field of a test image, computed by HELO.

HELO is invariant to translation because the orientation is independent of edge
positions. In addition, since the block size depends on the image size, HELO
is also invariant to scale changes. Moreover, we measure similarity between two
HELO descriptors using the L1 distance (Manhattan distance).
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Fig. 1. An image with its corresponding orientation field. Here, W = 25.

3.2 HELO under Rotation Invariance

To get rotation invariance, we need to normalize both the sketch and the test
image before computing HELO descriptor. We use two different normalization
processes and then we compute two HELO descriptors, one for each normal-
ization process. After that, we measure similarity by combining linearly partial
distances. For normalization, we use principal component analysis (PCA) and
polar coordinates (PC). We present a detailed description of this approach below:

– Preprocessing: This stage is similar to the previous one (Section 3.1), ex-
cept that in this case the cropping operation is performed after the normal-
ization process.

– Orientation normalization:
• Using PCA: We compute a 2-d eigenvector v representing the axis

with higher variance of the pixel (with value 1) distribution using PCA.
We normalize both the sketch and the test image abstract represen-
tation rotating them −α degrees around their center of mass. Here,
α = tan−1(vy/vx) .

• Using PC: We transform both the test image and the sketch abstract
representation into polar coordinates. In this case, two rotated images
containing the same object become similar images only affected by an
horizontal shifting.

– Histogram Computation: Exactly similar to the previous one (Sect. 3.1).

We compute similarity between a test image I and a sketch S combining PCA-
based HELO and PC-based HELO. Let IPCA and SPCA be the PCA-based HELO
descriptors computed over I and S, respectively. Let IPC and SPC be the corre-
spondent PC-based HELO descriptors. The similarity measure sm(I, S) is:

sm(I, S) = wPCAL1(IPCA, SPCA) + wPCL1(IPC , SPC) (4)

where, wPCA+wPC = 1, wPCA ≥ 0, wPC ≥ 0 and L1 is the Manhattan distance.
Our proposal is configurable for working with or without rotation invariance.

This is an advantage, because the rotation invariance requirement commonly de-
pends on the application. For example, in the context of handwriting recognition
rotation invariance may result in confusing the digit 6 with digit 9.
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4 Experimental Evaluation

Considering that there is no standard benchmark for SBIR, we have developed
one to evaluate different approaches, and to compare them with our proposal.
For the test database, we have randomly selected 1326 images. We selected 1285
color images from Caltech101 [16], and we added 46 images containing castles
and palaces. Many of the test images consist of more than one object or are
cluttered images. For the query database we have chosen 53 images from the
database. For each query image, a line-based sketch was hand-drawn. Thus, we
have 53 sketches 1. An example sketch and its corresponding target image appear
in Fig. 2.

Fig. 2. A sketch on the left and its corresponding target image on the right

We compare our method with five others methods according to the state of
the art. Four of these methods are: APAI [6], ST [1], HED [8], and EHD [4],
which were implemented following the specification described in the correspond-
ing papers. Additionally, we compare our method with the histogram of distance
distribution (HDD) as explained in Section 2.

The evaluation of the methods was performed by querying each sketch for
the most similar images and finding the target image rank. We called this rank
query rank. For measuring our results, we use two metrics. First, we use Mean
of Query Rank (MQR), for which the average of all query ranks is computed.
Second, we use the recall ratio Rn, which shows the ratio to retrieve the target
image in the best n-candidates. Rn is defined as follows:

Rn =
target images among first n responses

total number of queries
× 100 (5)

To evaluate translation, scale, and rotation robustness, we divide the experiments
in two parts. First, we evaluate our method with sketches having different scale
and position from the corresponding target images. Second, we evaluate our
method with sketches that have been rotated by three different angles (30◦, 60◦,
and 90◦), having 212 sketches.

1 http://prisma.dcc.uchile.cl/archivos publicos/Sketch DB.zip
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Fig. 3. Mean Query Rank of the evaluated methods

Our method needs three parameters to be specified, the histogram length
(K), the number of horizontal and vertical blocks (W ), and a threshold (thedge).
We fix K = 72, W = 25, and we set thedge as 0.5 times the maximum image
dimension. These parameter values were chosen experimentaly.

4.1 Translation and Scale Invariance Comparison

Fig. 3 shows the MQR for each evaluated method. We observe that our method
is more robust than the other methods when scale and position changes exist. We
achieve 24.60 as MQR value. This indicates that HELO needs to retrieve less than
25 images from the database to recover the target image. In comparison with
the other methods, EHD is the closest to the ours with a significance difference.
EHD achieves 208.26 as a MQR, i.e, EHD would require to retrieve almost 208
images to find the target one. Thus, our method improves effectiveness on recall
over 8.4 times respect to the state of the art.

Fig. 4 shows the recall ratio graphic. This graphic shows that HELO outper-
forms the state of the art methods for any value of n. In addition, an example
of image retrieval using HELO is shown in Fig. 5.

4.2 Rotation Invariance Comparison

First of all, we evaluate HELO descriptor using separately PCA and PC. Using
PCA, we obtain a MQR value of 197.04. The principal axis is computed over the
edge point distribution. However, a sketch is a simple rough hand-made drawing
without details as those appearing in the target image. Due to these facts, the
input sketch and the target image may have very different principal axis affecting
the retrieval effectiveness. Using PC, sketches affected by different angular shifts
have similar representations in polar coordinates. This is the reason for what PC
gives a better MQR value (156.09) than that given by PCA. However, PC changes
drastically the edge point distribution decreasing the discriminative power.
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Fig. 4. Recall ratio graphic for the evaluated methods

Fig. 5. Example of the first six retrieved image using HELO. The first is the query

Therefore, to take advantage of each orientation normalization method we
propose a linear combination of PC-based HELO and PCA-based HELO, that
allows us to improve the retrieval effectiveness. Using our approach we get MQR
value to 101.09. We described this method in the Section 3.2. We will refer to
the combined-based HELO descriptor as HELO R. To implement the HELO R
descriptor, we use wPCA = 0.3 and wPC = 0.7.

Fig. 6 shows the MQR for the evaluated methods under rotation distortions.
Clearly, under this kind of changes, our proposal improves the effectiveness on
recall over 2.6 times respect to the state of the art. To visualize how many images
are needed to retrieve the target image, Fig. 7 shows the recall ratio graphics
comparing the six evaluated methods.
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Fig. 6. Mean Query Rank of the evaluated methods under rotation invariance

Fig. 7. Recall ratio graphic for the evaluated methods under rotation invariance

5 Conclusions

In this work, we have observed that SBIR is still an open problem, and that
the current methods for SBIR do not work well enough. We have presented a
novel method for SBIR that uses an efficient algorithm to compute a histogram
of edge local orientations. First, we focused on SBIR under scale and translation
transformations. Then, we extended our proposed approach to work under rota-
tion invariance. We applied principal component analysis and polar coordinates
to get orientation normalization.

Our achieved results show that HELO outperforms significantly the state of
the art, improving recall over 8.4 times under scale and translation distortions,
and over 2.6 times under rotation distortions. Furthermore, the query sketches
do not need to be drawn with continuous strokes.
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In our ongoing work, we are analyzing the performance of HELO under dif-
ferent values of its parameters. In addition, SBIR under orientation invariance
must be studied in depth. For the future work, we will focus both on the rotation
invariance problem and on multi-object sketch queries.
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Abstract. We propose a novel curvature estimation algorithm which is

capable of estimating the curvature of digital curves and two-dimensional

curved image structures. The algorithm is based on the conformal pro-

jection of the curve or image signal to the two-sphere. Due to the geo-

metric structure of the embedded signal the curvature may be estimated

in terms of first order partial derivatives in R3. This structure allows

us to obtain the curvature by just convolving the projected signal with

the appropriate kernels. We show that the method performs an implicit

plane fitting by convolving the projected signals with the derivative ker-

nels. Since the algorithm is based on convolutions its implementation is

straightforward for digital curves as well as images. We compare the pro-

posed method with differential geometric curvature estimators. It turns

out that the novel estimator is as accurate as the standard differen-

tial geometric methods in synthetic as well as real and noise perturbed

environments.

1 Introduction

The estimation of curvature in two-dimensional images is of interest for several
image processing tasks. It is used as a feature indicating corners or straight line
segments in the case of digital curves [1], in active contour models [2] or for
interpolation [3]. In the case of digital plane curves the most common ways to
estimate the curvature rely on the estimation of the tangent angle derivative
[4], or the estimation of the osculating circle touching the curve [5]. Most of
these methods require the segmentation of the curve into digital straight line
segments as a preprocessing step [6,7]. Furthermore the application of the these
algorithms is limited to digital curves. If it is desired to estimate the curvature
of yet unknown curves in images, e.g. isophotes in grayscale images, one has to
use the classical definition of curvature known from differential geometry.

We present a curvature estimator based on the idea introduced in [8] which
is based on simple convolutions and may be applied to digital curves as well as
images.
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2 Spherical Signal Embedding

We assume a circular signal model in the Euclidean plane with center m =
r(cos θm, sin θm)T ∈ R2

fm(u) = f̃(||u − m||) (1)

where u ∈ R2, f̃ ∈ L2(R) and || · || denotes the Euclidean norm in R2. The
isophotes γm(u) of f through u are circles around m with radius ‖ u − m ‖
given by

γm(u) = {v ∈ R2 : ||v − m|| = ||u− m||}. (2)

We will estimate the curvature of an isophote γm(u) by estimating the radius
rm(u) of the osculating circle touching the isophote γm(u). Since the isophotes
are circles, the radius of the osculating circle at every v ∈ γm(u) is the radius of
the isophote itself. The curvature of γm(u) at u is then obtained as the inverse
of the radius rm(u) as κm(u) = 1

rm(u) = 1
||u−m|| [9]. We seek for a fast and

exact method to obtain the radius rm(u) just from the two-dimensional signal
fm. The signal fm is projected to the sphere S2 with center (0, 0, 1

2 )T ∈ R3 and
radius 1

2 via the inverse stereographic projection

S−1(u) =
1

1 +
∑2

i=1 u
2
i

(u1, u2, u
2
1 + u2

2)
T . (3)

It is well known, that the stereographic projection is a conformal mapping and
maps circles in the Euclidean plane to circles on S2 (see e.g. [10]). Hence the
circular signal fm is mapped to a circular signal on S2

gm(x) =
{
fm(S(x)) if x ∈ S2 ⊂ R3

0 else (4)

where S denotes the stereographic projection from the sphere S2 to R2.
To illustrate the geometric idea of our method (compare also Figure 1) we fix a

single isophote γm(u) and choose a coordinate system in such a way, that u is the
origin and coincides with the southpole (0, 0, 0)T of the sphere S2. Furthermore,
we project γm(u) to S2 as S−1(γm(u)). Since γm(u) is a circle through u we
know, that S−1(γm(u)) is a circle on S2 passing through the southpole of S2. Let
v = (0, 0, 1)T denote the northpole of S2 and define w = S−1(2m). S−1(γm(u))
is completely characterized by the intersection of a plane Pm and S2 with normal
vector nm = (sinϕm cos θm, sinϕm sin θm, cosϕm)T and distance dm from the
origin. Since S−1(γm(u)) passes through (0, 0, 0)T it follows that (0, 0, 0)T ∈ Pm

such that dm = 0. Now we claim that

v − w
||v − w|| = nm. (5)

It is sufficient to showthatw−v is perpendicular tou−w such that 〈w−v,u−w〉 =
0, where 〈·, ·〉 denotes the inner product in R3. Since v = (0, 0, 1)T ,u = (0, 0, 0)
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and w = 1
2 (sinϕ cos θ, sinϕ sin θ, cosϕ + 1)T equation (5) follows immediately.

Further by considering the triangle u, 2m,v it follows that

tanϕm(u) = 2||m|| = 2rm(u) ⇒ κm(u) =
1

rm(u)
=

2
tanϕm(u)

. (6)

We conclude that the radius of the osculating circle of γu(u) can be obtained
from the angle ϕm which we can obtain from the normal vector of Pm. The
problem of estimating the radius of the osculating circle is therefore equivalent
to the problem of estimating the normal vector nm characterizing the plane
which intersects S2 resulting in γm(u).

S2

m
2m

Pm

γm(u)

S−1(γm(u))

v

u

w
ϕm

Fig. 1. Illustration of an isophote γm(u) and its projection S−1(γm(u)) to S2. The

radius ||m|| can be calculated from angle ϕm as tan ϕm = 2||m||. The vector w−v
||w−v||

is equal to the normal vector of the plane Pm. Therefore ϕm can be obtained from the

normal vector of Pm.

To address the reformulated problem we introduce the Radon transform and
its inversion in R3

R[g](t, ξ) =

∫
g(x)δ(t− 〈ξ,x〉)dx (7)

R−1
[R[g]](x) =

∫
|ξ|=1

h(〈x, ξ〉, ξ)dξ with h(t, ξ) = − 1

8π2

∂2

∂t2
R[g](t, ξ) (8)

with g ∈ L2(R3),x ∈ R3 and ξ ∈ R3, |ξ| = 1. The Radon transform integrates
a function g over all two-dimensional hyperplanes in R3. The hyperplanes are
characterized by their normal vectors with orientation ξ and a distance from the
origin t = 〈ξ,x〉. For a fixed hyperplane orientation ξ, R[g](t, ξ) describes a one
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dimensional function in the Radon domain depending on the distance t of the
planes from the origin. We refer to these one-dimensional functions as slices.

Consider the projected circular signal gm(x) at x ∈ R3. If you imagine the
integration over all two-dimensional planes in R3, than there exists exactly one
plane Pm, such that the whole projected circle is located in that plane (compare
also Figure 1). The angles (θm, ϕm) of the normal vector characterizing this plane
describe the one-dimensional slice in the Radon domain we are interested in.
Therefore we seek for a method to obtain the angles describing exactly this slice
in a closed form expression. We use the relationship between partial derivatives
in the spatial- and the Radon domain given by (see e.g. [11])

R[
∂

∂xi
gm](t, ξ) = ξi

∂

∂t
R[gm](t, ξ) (9)

which states that the Radon transform of every partial derivative with respect
to the xi-axis in the spatial domain is just the partial derivative of the Radon
transform of g along each one-dimensional slice in the Radon domain multiplied
by the slice angle. Due to our assumed signal model there exists only one slice
which is non-constant along t. The slice is exactly the slice described by (θm, ϕm).
If we now apply the inverse Radon transform to Eq. (9) we are able to move the
angular components of the normal vector out of the inversion integral such that

∂

∂xi
gm(S−1(u)) = nm,iR−1[

∂

∂t
R[gm]](S−1(u)). (10)

We gain access to the angles of the normal vector

nm = (nm,1, nm,2, nm,3)T = (sinϕm cos θm, sinϕm sin θm, cos θm)T (11)

by taking the partial derivatives in R3 without ever actually performing a Radon-
or inverse Radon transform. The angles at u ∈ R2 are obtained as

θm(u) = arctan
nm,2R−1[ ∂

∂t
R[g]](S−1(u))

nm,1R−1[ ∂
∂t
R[g]](S−1(u))

= arctan

∂
∂x2

g(S−1(u))

∂
∂x1

g(S−1(u))
(12)

ϕm(u) = arctan

√
(nm,1R−1[ ∂

∂t
R[g]](S−1(u)))2 + (nm,2R−1[ ∂

∂t
R[g]](S−1(u)))2

nm,3R−1[ ∂
∂t
R[g]](S−1(u))

(13)

= arctan

√
( ∂

∂x1
g(S−1(u)))2 + ( ∂

∂x2
g(S−1(u)))2

∂
∂x3

g(S−1(u))
(14)

where θm is the orientation angle of the center m in the Euclidean plane and
ϕm is the angle describing the radius of the osculating circle as stated in Eq.
(6). Note that the above formulas are only valid at the origin. Nonetheless this
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is no restriction, since we may always treat a point of a plane curve as the origin
of a chosen coordinate system, such that the curvature evaluation yields a valid
curvature value. For a better understanding of the method introduced above
we draw the following analogy: Imagine you want to estimate the curvature of
a sampled curve in the Euclidean plane. Then you can estimate the curvature
at every sampled point by estimating the osculating circle for a neigborhood of
that point. This osculating circle can be estimated by fitting a circle through the
points of the neighborhood. The circle fitting is a minimization problem which
is, if the geometric distances of the points with respect to the unknown circle are
minimized, nonlinear in its nature. By projecting the points on S2, the nonlinear
regression problem turns into a linear one. The circle can now be estimated by
fitting a plane through these points. Since the plane has to pass through the
origin, the fitting further simplifies. Referring to [12], the minimizing normal
vector describing the regression plane is the eigenvector of the moment matrix,
obtained from the sample points, corresponding to the smallest eigenvalue. If you
further describe this least squares regression as a locally weighted least-squares
regression using the Gaussian derivative kernels in R3, you arrive at the method
we introduced by using the relationship of the first order derivatives and the
Radon transform in R3.

2.1 Scale Space Embedding

In general images we want to be able to estimate the curvature of image struc-
tures with respect to a certain scale. The embedding of the conformal method in
a scale space concept is straightforward. Obvious choices are the Gaussian or the
Poisson scale space. Since the curvature is calculated either in terms of partial
derivatives, as in this paper, or Riesz transforms as in [8], one may precalculate
the convolution kernels resulting in Gaussian derivative kernels or conjugate
Poisson kernels (see [13] and [14] for further informations on both scale spaces).
The curvature then reads

κs(x) = 2
Gs

3(x)√
Gs

1(x)2 +Gs
2(x)2

(15)

Gs
i (x) = (g ∗Ks

i )(x) =
∫

R2
g(y)Ks

i (S−1(x − y))dy (16)

where x = S−1(u),u ∈ R2 and Ks
i (x) either denotes the Gaussian derivative

or the conjugate Poisson kernel with respect to xi in R3. Further it is possi-
ble to implement the method using kernels with bandpass characteristic such
as the Difference-Of-Gaussian (DOG) or Difference-Of-Poisson (DOP) kernels,
depending on the chosen scale space, as

Gs1,s2
i (x) = (g ∗Ks1

i )(x) − (g ∗Ks2
i )(x). (17)
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3 Experiments

3.1 Plane Curves

We first evaluate the proposed method for plane curves. Let l(t) = (x(t), y(t)), t ∈
[a, b] be a part of a parameterized plane curve. Then we sample l as li =
(x(i d), y(i d)), i ∈ {1, . . . , N}, d = |a−b|

N , N ∈ N. The estimation of the cur-
vature relies on the choice of a scale described by the neighborhood or win-
dow size W ∈ N with respect to the current point of interest. For each point
li we first shift the neighborhood NBW (li) = {li−W , . . . , li, . . . , li+W } to the
origin and project it to the sphere S2 such that NB′

W (li) = {S−1(li−W −
li), . . . , (0, 0, 0), . . . ,S−1(li+W − li}). The curvature is then obtained as

κW (li) = 2

∑W
j=−W KW

3 (S−1(li+j − li)))√
(
∑W

j=−W KW
1 (S−1(li+j − li)))2 + (

∑W
j=−W KW

2 (S−1(li+j − li)))2

(18)

where KW
i denotes either the Gaussian or the Poisson kernel in the upper half

space R3
+ with respect the scale W . We compare our method to curvature es-

timation obtained by a circle fitting through the points of the neighborhood
NB′

W (li). To fit a circle through these points we use two different distance
functions which are minimized, an algebraic distance according to [15] and a
geometric distance according to [16]. The distance functions are minimized by
solving the corresponding least-squares problems. As a result we obtain the cen-
ter and the radius r of the fitted circle. The radius serves as a curvature measure
due to the already mentioned relation κ = 1

r . Figure 2 shows the comparison
of our method with the algebraic and geometric fitting method for three test
curves with and without noise. We measured the absolute average error over all
curve points for different window sizes as

EW (l) =
|l|∑

i=1

|κ(li) − κ̃W (li)| (19)

where κ(li) denotes the ground truth curvature and κ̃W (li) the estimated curva-
ture of the curve at li. It turns out that our novel method converges to the true
radius of curvature in the case of the assumed signal model, a circle. Compared
to the two methods based on circle fittings, it is robust against noise resulting
in accurate curvature estimations.

3.2 Digital Images

The method introduced above has the advantage, that it is not limited to digital
curves but can also be applied to images, where the curves are not known in ad-
vance, e.g. for isophotes in grayscale images. In these cases the curvature is often
supposed to serve as a feature indicating corners or straight line segments in the
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Fig. 2. First row: Test curves sampled at 200 points. Second row: Gaussian white noise

perturbed test curves, σ = 0.1. Third and fourth row: Average absolute curvature errors

EW over all curve points depending on the window size W (abscissa) without and with

noise (see also Equ. (19)).
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case of high or low curvature. The standard method to obtain the isophote cur-
vature in digital images uses first and second order derivatives. To be comparable
to our method, which we introduced in a scale space embedding, we introduce
the classical derivative based method to calculate the isophote curvature as [17]

κ =
2Gs1,s2

1,0 Gs1,s2
0,1 Gs1,s2

1,1 − (Gs1,s2
1,0 )2Gs1,s2

0,2 − (Gs1,s2
0,1 )2Gs1,s2

2,0

((Gs1,s2
1,0 )2 + (Gs1,s2

0,1 )2)3/2 (20)

where Gs1,s2
i,j denotes the convolution with the i-th and j-th order derivatives

of Difference-Of-Gaussian kernels with scales s1, s2 along the x1 and x2 axis.
To study the accuracy of our estimator we apply it to the artificial signal
f(x) =

√
x2

1 + x2
2. Since the test signal depends linearly on the distance from

the origin, its ground truth isophote curvature reads κ(x) = (x2
1 + x2

2)(−1/2).
Figure 3 shows the test signal with and without noise and the average absolute
error of both methods for different convolution mask sizes. With increasing con-
volution mask size the accuracy of our proposed estimator increases. Further it
performs better than the derivative based method on the noise perturbed signal
even for small convolution mask sizes. Another important aspect of the isophote
curvature information is the ability to obtain the ridge curves of an image [17].
The ridge curves are the isophotes for which the gradient vanishes such that the
curvature obtained by Equ. (20) is degenerate. Due to their invariance properties
concerning translation, rotation and monotonic intensity changes, ridges serve as

Fig. 3. Left column, top: Ground truth image f(x) =
√

x2
1 + x2

2. Left column, bottom:

Ground truth image perturbed with Gaussian white noise, σ = 0.1. Middle column:

Average absolute curvature errors over the whole images for scales (s1, s2) = (2x, 2x+1)

calculated for the conformal and the derivative based method, where x is the abscissa.

Right column: Estimated curvature of the ground truth image for the slice f(x1, 0) and

scales (s1, s2) = (8, 16) of the conformal method.
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Fig. 4. Top row: Isophote curvatures calculated with the proposed method in Eq. (15)

at scales (s1, s2) = (2, 4), (4, 8), (8, 16). Bottom row: Isophote curvatures calculated

with the classical method in Eq. (20) at scales (s1, s2) = (2, 4), (4, 8), (8, 16).

a useful feature, especially if their evolution is considered across multiple scales.
Figure 4 shows the ridge curves (degeneracies of the isophote curvature) of the
Lenna test-image obtained by the proposed method using Eq. (15) and the cur-
vature obtained according to the classical Eq. (20) using Difference-of-Gaussian
convolutions kernels across different scales.

4 Conclusion

We have presented a novel curvature estimator suitable for digital curves and
grayscale images. We were able to extract the curvature information by simple
linear shift-invariant filters. These filters are applied by convolutions, resulting
in a simple and short algorithm. In terms of accuracy our estimator performs
at least as accurate as the classical methods. More important is the nature of
the construction. Using tools from classical signal processing we transformed
the nonlinear problem to a linear one and implicitely developed a method for
solving the problem of fitting a circle to a set of points which is classically solved
using a least-squares approach. We noticed that our method is equivalent to a
corresponding locally weighted least-squares problem. This insight serves as a
motivation to construct explicitely the mappings to transform nonlinear image
processing problem into linear ones in an appropriate feature space, which was
the inverse stereographic projection in this case. The spherical embedding was
the first step of investigating certain signal structures in higher dimensional
spaces by suitable embeddings.
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Abstract. Fitting statistical models is a widely employed technique for

the segmentation of medical images. While this approach gives impressive

results for simple structures, shape models are often not flexible enough

to accurately represent complex shapes. We present a fitting approach,

which increases the model fitting accuracy without requiring a larger

training data-set. Inspired by a local regression approach known from

statistics, our method fits the full model to a neighborhood around each

point of the domain. This increases the model’s flexibility considerably

without the need to introduce an artificial segmentation of the struc-

ture. By adapting the size of the neighborhood from small to large, we

can smoothly interpolate between localized fits, which accurately map

the data but are more prone to noise, and global fits, which are less

flexible but constrained to valid shapes only. We applied our method

for the segmentation of teeth from 3D cone-beam ct-scans. Our exper-

iments confirm that our method consistently increases the precision of

the segmentation result compared to a standard global fitting approach.

1 Introduction

Statistical shape models have become a commonly used tool in computer vision,
especially for automated segmentation purposes. Oftentimes statistical models
lack the flexibility to accurately represent all valid shapes, as the the number of
training data-sets is insufficient to learn the shape-space. Many approaches have
been proposed to mitigate that problem. These approaches can be grouped into
three categories: The first possibility is to artificially increase the model flexibil-
ity by introducing synthetic variations of the training data at model build time
[1,2,3]. Another option is to relax the model restrictions at fitting time [2,4,5,6,7].
This is achieved either by finding other features in an image and then to restrict
them with plausible model shapes [2,6,7] or by fitting a statistical model which
is subsequently relaxed to match other local information [4,5]. The problem with
the above approaches is that they allow for deviations that are not explained by
the training shapes. The relaxation of the shape model constraint does not guar-
antee anymore that the resulting shape is a likely instance of the model. Also it is
a delicate matter to define artificial deformations that capture exactly the charac-
teristics of the shape. The third class of methods tries to segment the model either
spatially [8,9,10] or in the frequency domain [11,12,13]. While this increases the
flexibility without above mentioned disadvantages, the main problem here is how

M. Goesele et al. (Eds.): DAGM 2010, LNCS 6376, pp. 452–461, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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to choose the segments. For natural shapes, neighboring points always strongly
correlate and therefore any spatial segmentation must be arbitrary. Furthermore
no natural decomposition in frequency bands is known.

The method proposed in this paper focuses on fitting a model locally in the
spatial domain and thus increasing its flexibility implicitly. The method is in-
spired by local linear regression which is commonly used in statistics [14]. We
fit a complete shape model to a neighborhood around a given point of the im-
age to segment. The fitting result is used to predict the value at this particular
point only. By repeating this procedure for every point, we finally obtain a fit
of the whole model. The neighborhood size determines how flexible our model
is. In the extreme, considering only a single point allows any arbitrary shape to
be matched. In contrast, having the neighborhood correspond to the full image
leads to the global fit, which strictly adheres to the model constraint. For any
local neighborhood we do adhere to the shape constraint, whereas the global
shape constraint is nevertheless relaxed. We thus have the advantages of a seg-
mented model without ever actually having to segment the model. Neither do
we have to introduce artificial deformations which are not motivated by the data
to increase the model’s flexibility.

This flexibility comes at the cost of an increased computational overhead.
Performing a full fitting at every point becomes infeasible for large images. To
lessen the computational burden we further present a method to interpolate
between such local fittings, which no longer need to be created for every point
but rather once for a region of definable size.

Our work was motivated by a project in which we aimed to perform model
based segmentation of teeth from 3D Cone Beam CT data. The manual segmen-
tation of such data-sets is tedious and even human experts are not always able to
distinguish the tooth from the surrounding bony structure and to clearly separate
neighboring teeth. With the more wide-spread use of this 3D imaging technology
to plan surgical interventions, the segmentation of teeth becomes a routine task
and automated procedures needs to be employed to be able to perform it effi-
ciently. Due to the difficulty of obtaining good reference segmentations, we did
not have enough data-sets available to build a shape model that represents the
large anatomical variability of these shapes. Our quantitative evaluation, using
a leave-one-out procedure on seven manually segmented data-sets, confirms that
our localized fitting nevertheless yields accurate segmentation and consistently
improves the segmentation accuracy compared to a global fitting approach.

2 Background

2.1 Statistical Shape and Deformation Models

The idea behind statistical models is to learn the normal shape of an anatomical
structure from given example shapes. The resulting model is specific to a given
structure and thus can be used to perform image processing tasks, which would
not be feasible otherwise. In the area of computer vision and medical image anal-
ysis, the main application of statistical models is image segmentation [15]. There
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are several variants of statistical shape models, such as the Active Shape model
[16], the Morphable Model [10] or Statistical Deformation Models [17]. They all
apply Principal Component Analysis (PCA) to a number of example data sets
S1, . . . , Sn to model typical deformations. The examples are assumed to be suit-
ably discretized and in correspondence. This means that for each example Si,
there exists a mapping φi : Ω → Rd from a reference domain Ω = {x1, . . . , xN}
such that φi(x) and φj(x) denote corresponding points of the examples Si and
Sj . It is well known that a PCA model can be written as a generative model of
the form:

M[α] : Ω → Rd x �→ μ(x) +
∑n

i=1 αiui(x) (1)

where μ : Ω → Rd denotes the sample mean μ(x) := 1
n

∑n
i=1 φi(x) and ui : Ω →

Rd, i = 1, . . . , n are the principal components, computed from the examples
[18]. Note that the model is completely defined by the parameter vectors α =
(α1, . . . , αn). For the case of statistical shape models, the domain Ω is usually
a discretized reference surface, or a parametrization domain. The set of points
{M[α](x) |x ∈ Ω} defines the surface induced by the parameter vector α. In the
case of statistical deformation models, Ω is usually an image domain, and M[α]
defines a deformation field that relates the given reference and target image. To
distinguish between these models, we write MS for shape models, and MD for
the deformation model.

2.2 Statistical Model Fitting

Statistical model fitting aims at finding the set of parameters of the model (1),
such that it optimally explains a given target structure. We assume in the fol-
lowing that the target structure has already been rigidly aligned with the model,
such that only the non-rigid part of the mapping needs to be found.1 There are
various different methods for shape model fitting (see Heimann et al. [15] for a
recent overview). The most simple case of shape model fitting is to directly fit
a given target surface ΓT ⊂ Rd. Such a surface representation can often be ob-
tained from an image using simple, intensity based segmentation methods. This
rough first segmentation can then be constrained to a valid shape by fitting the
shape model. The problem is formulated as an optimization problem: The goal
is to find a shape, which for each point xi minimizes the distance to the closest
point in the target shape ΓT :

α∗ := arg min
α∈Rn

∑
xi∈Ω

( min
x′∈ΓT

‖x′ −MS [α](xi)‖)2 + λ‖α‖2. (2)

The term λ‖α‖2 serves as a regularization term, which penalizes shapes that
strongly deviate from the modeled mean shape. While this approach is simple, its
main problem is that the cost function (2) includes only boundary information of
the modeled shapes. An approach that includes the complete image information
1 This can be achieved, for example, by performing a Procrustes Alignment [19] on a

number of landmark points defined on the reference and target shape.
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has been proposed by Rückert et al.[17]. The idea is to directly build a statistical
model of the deformation fields MD[α], which relate the image intensities of a
reference image IR : Ω → R, to given examples images. The goal of model
fitting is to find the deformation represented by this model, which best relates
the reference image IR to a new target image IT : Ω → R:

α∗ := arg min
α∈Rn

∑
xi∈Ω

(IR(xi + MD[α](xi)) − IT (xi))2 + λ‖α‖2. (3)

Note that (3) establishes point-to-point correspondence between the images. It
can therefore be used to map labels defined on the reference image onto the
target. In particular, given a segmentation of the reference image BR : Ω →
{0, 1}, the warped image BR(x+MD[α∗](x)) yields a segmentation of the target
image. Although the Problems (2) and (3) differ in the way they use the image
information, their solution depends only on the model coefficients α. The strategy
for increasing the fitting accuracy that we are proposing in the next section holds
unchanged for both approaches. For clarity of presentation we will discuss our
method on the simpler case of shape model fitting (Equation 2). For the practical
application that we present in Section 4 we will, however, apply deformation
model fitting (Equation 3).

3 Local Shape Model Fitting

The use of model fitting to obtain a segmentation result, which is restricted to
valid anatomical shapes, is appealing. However the models are often not suffi-
ciently flexible to represent complicated structures accurately. It has been shown
in the literature that spatial segmentation of the model can increase the fitting
accuracy [8,9,10]. The reason for the improved accuracy is that each segment
only has to represent a local part of the shape, which, by itself, is less complex
than the complete global shape. These segments can therefore be accurately rep-
resented using fewer example shapes. Our approach exploits the same idea, but
instead of partitioning the model we consider local areas of the target structure
to which we fit the full model. Similar to a local regression approach known from
statistics [20], we fit the model to a local neighborhood around each data point
of the target. This strategy avoids completely the problem of having to segment
the model into independent parts.

We illustrate the method for the case of shape model fitting using a 2D ex-
ample of hand shapes. Let MS be a statistical shape model and ΓT ⊂ Rd a
target shape. For each point x0 ∈ Ω we fit the entire shape model, but weight
the influence of each point x ∈ Ω on the total cost with a weight wx0 depending
on its distance to the point x0:

α∗
x0

:= arg min
α∈Rn

∑
xi∈Ω

wx0(xi)( min
x′∈ΓT

‖x′ −MS [α](xi)‖)2 + λ‖α‖2, (4)

Although the solution α∗
x0

defines a full shape, it is only used to determine the
result Γ ∗ at the point x0:

Γ ∗(x0) := M[α∗
x0

](x0) (5)
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(a) Global (b) Local fit (c) Interpolated local fit

Fig. 1. A comparison between a global fit (a) and local fitting results (b), (c) for a

shape model which was built from 15 hand shapes. The target hand shape was not

part of the model’s training data. The result shown in (b) has been computed by

fitting every point, whereas in (c) only 20 points were fitted and the remaining ones

interpolated.

The fitting is performed at every point x0 ∈ Ω, and therefore we eventually
obtain a result for the whole shape. Every fit strives to minimize the error around
x0, and thus the resulting shape explains the target better than any global fit
would. As the local neighborhoods of two nearby points greatly overlap, the
resulting fits are similar and the resulting target shape Γ ∗(x0) is nevertheless
smooth. The problem of discontinuous segments, as observed with segmented
models, is completely avoided.

A typical choice for wx0 is the Epanechnikov kernel [14]:

wx0(x) := κσ(x0, x) = D(
dist(x, x0)

σ
) (6)

with

D(t) =
{ 3

4 (1 − t2) if |t| ≤ 1
0 otherwise. (7)

The weight function κσ is compact and its support determined by σ. For surface
fitting, the distance dist(x, x0) is taken to be the geodesic distance on Ω, as we
wish to match neighboring points on the surface. Figure 1 shows an example of
how our procedure improves the fitting accuracy.

The fitting procedure is only useful if the shape constraints are still enforced to
the degree that artifacts and noise in the data are not fitted. This is determined
by the parameter σ in our kernel (6), which acts as a regularization parameter.
If σ is small the fitting is local and the target shape is accurately represented. In
the extreme case when we fit the model to the point x0 only, the shape statistics
is completely ignored. On the other hand, if σ is large, all points of the shape
have nearly the same influence, and we arrive at the global fitting. The effect
of this parameter is illustrated in Figure 2, where we fitted a hand shape with
a number of manually introduced artifacts. We observe that by increasing σ we
can reduce the influence of the artifacts, and still accurately represent the actual
target shape.
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(a) (b) (c)

Fig. 2. An example of a local fitting on noisy data. (a) shows the hand with manually

introduced artifacts (red line). Fitting only a small neighborhood leads to overfitting

(black line). Increasing the size of the neighborhood eliminates the influence of the

artifacts almost completely.

3.1 Interpolated Local Shape Model Fitting.

Evaluating Equation 4 at every point x ∈ Ω quickly results in an excessive
computational burden for densely sampled shapes. To address this problem, we
perform the fitting only at a subset of the points Ω̃ := {x0, . . . , xK} ⊂ Ω.
Observe that to define the fitting result Γ ∗ at point xk in Equation 5, we used
only the single point M[α∗

xk
](xk), even though α∗ defines a full shape

Γ ∗
xk

:= M[α∗
xk

].

Thus, the idea is to combine these local predictions in a smooth way:

Γ ∗(x) :=
∑K

k=1 ŵk(x)Γ ∗
xk

(x)∑K
k=1 ŵk(x)

, x ∈ Ω (8)

where we choose ŵk again to be the Epanechnikov kernel (6). Note that since ŵk

is compactly defined, for (8) to be well defined, the support of the kernel needs
to be chosen such that for each point x ∈ Ω at least one of the weight functions
ŵk(x) is non-zero.

4 Results

In this section we show how our method can be applied for the automatic seg-
mentation of teeth from Cone Beam CT images. Each image has a resolution of
90×71×31 voxels. Figure 3a shows a sample slice through such a tooth ct-image.
The automatic segmentation of such images is a challenging task. Especially at
the roots, the tooth is virtually indistinguishable from the surrounding bony
structure. Furthermore, neighboring teeth can be touching and are thus difficult
to separate. To address these problems, we manually segmented seven data-sets
to create a deformation model, which we subsequently used for segmentation.
We choose one image as the reference, to which we aligned all the images using
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(a) ct-image (b) ground truth (c) global fit (d) local fit

Fig. 3. A typical ct-scan of a tooth is shown in (a) which features typical problems

faced in ct-image segmentation. The image is noisy and a neighboring tooth is touching

our target tooth (red circle). The local fit (d), while robust enough not to leak into the

neighboring tooth at the top, segments the root section better than the global fit (c)

(blue circle), compared to the ground truth (b).

Procrustes alignment [19] on eight manually defined landmarks. For solving the
optimization problem, we used a standard LBFGS-B optimizer [21].

The shape of the tooth can vary greatly among individuals, and a model
built from only seven datasets is not sufficient to span this variation. By using
our interpolated local shape model fitting, we get more accurate segmentation
results, as shown in Figure 4. Especially at the roots of the tooth, which exhibit
most variation, the local fitting clearly leads to a large improvement.

4.1 Distance Measure

For the shape fitting example discussed in Section 3, we used the geodesic dis-
tance to determine the local neighborhood. This is not possible for the defor-
mation model, which is defined on the image domain. However, we would still like

(a) global (b) local (c) global (d) local

Fig. 4. Fitting results (blue) for two sample teeth are compared to ground truth (grey).

Especially at the roots, our local approach (b) and (d) is more precise than the global

one (a) and (c).
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Fig. 5. Comparison of our distance measure (left) to the Euclidean distance (right),

measured from a point at the lower right root. Note the difference of the obtained

distance in the left root as our distance measure is notably higher than the Euclidean

distance in this area.

to quantify the distance in terms of the shape that we model. We therefore define
the distance between two points that lie within the structure as shortest path
between those points with the constraint that the path always resides within
the structure’s volume. Figure 5 shows a comparison of the Euclidean distance
and our distance function. With the Euclidean distance, the tips of the roots are
rather close to each other, in our distance measure they are far apart.

4.2 Global Fit versus Interpolated Local Fit Comparison

We performed a leave-one-out test to asses the fitting quality. We used six man-
ually segmented data sets, similar to the one shown in Figure 3a, for model
building. We then fitted the left-out tooth with the global approach as well as
our interpolated local fitting method. We used 35 equidistant points within the
tooth as our local region defining Γ ∗

xk
(Cf. Section 3.1). In all cases the interpo-

lated local fitting method provided better fitting results than the global method.
Table 1 shows the quantitative results of this leave-one-out test. We used the
average Hausdorff Distance to measure the quality of our fittings to the ground
truth. Informally the average Hausdorff Distance tells us how far away, on aver-
age, the other shape is to be expected, if a random point in a shape is chosen.
It measures how well two shapes match each other. More precisely the average
Hausdorff Distance between two volumes S1 and S2 is defined as the total sum
of the shortest path of each point in shape S1 to the closest point in S2 and vice
versa, divided by the total number of points of both shapes.

Table 1. Measured error based on the ground truth of a global fit and an interpolated

local regression based fit

Average Hausdorff Distance [pixel]

tooth # 1 2 3 4 5 6 7

global fitting error 0.084 0.089 0.301 0.221 0.203 0.138 0.151

local fitting error 0.071 0.075 0.240 0.143 0.086 0.119 0.113
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5 Discussion

We presented an approach for the fitting of statistical models. Our method is
based on the local regression method known from statistics. The core idea is to
fit the model to a local region around a point for each point of the model. In this
way we obtain a fitting result which is solely based on the model information
but still allows for more flexibility than a global fitting method. In contrast to
previous methods, no segmentation of the structure needs to be performed, nor
do artificial deformations need to be included. The size of the neighborhood that
is considered for each fit determines the trade-off between obtaining a fit that
strictly adheres to the global shape constraint, and one that accurately explains
all the data. This parameter should be chosen such that it reflects the noise
properties of the images and the quality of the model.

For large images, fitting a full model at every point is computationally too
expensive. To reduce the computational burden of such an approach, we proposed
a method to interpolate local shape model fits performed only for a subset of
all model points. In this way it becomes feasible to apply the method for the
segmentation of large 3D images. We presented an application of our method
for the segmentation of teeth from Cone Beam CT images. Our tests confirmed
that the local fitting method improves the segmentation results consistently,
compared to the global fitting results.

The number of points we choose for the interpolated fitting determines how
many times we have to perform the fitting. It would therefore be interesting
to choose the points, such they most effectively increase the fitting accuracy.
The exploration of strategies for choosing these point optimally, is an interesting
problem that will be the subject of future work.
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Abstract. For every segmentation task, prior knowledge about the ob-

ject that shall be segmented has to be incorporated. This is typically

performed either automatically by using labeled data to train the used

algorithm, or by manual adaptation of the algorithm to the specific ap-

plication. For the segmentation of 3D data, the generation of training

sets is very tedious and time consuming, since in most cases, an expert

has to mark the object boundaries in all slices of the 3D volume. To avoid

this, we developed a new framework that combines unsupervised and su-

pervised learning. First, the possible edge appearances are grouped, such

that, in the second step, the expert only has to choose between relevant

and non-relevant clusters. This way, even objects with very different edge

appearances in different regions of the boundary can be segmented, while

the user interaction is limited to a very simple operation. In the presented

work, the chosen edge clusters are used to generate a filter for all rele-

vant edges. The filter response is used to generate an edge map based

on which an active surface segmentation is performed. The evaluation

on the segmentation of plant cells recorded with 3D confocal microscopy

yields convincing results.

1 Introduction

The segmentation of volumetric data is a difficult, some say ill-posed problem.
Depending on the specific application as well as on the imaging technique, the
desired object boundary can have very different appearances. Thus, for every
new problem setting, the used method needs to be adapted and special prior
knowledge about the application has to be included. Important questions can
be: What is the appearance of the objects boundary? What edges are we looking
for? What is the texture of the object? In the same dataset, e.g. of a plant
cell, the user could be looking for either outer (the cell wall) or inner borders
(plasmalemma), or intracellular compartments (as the nucleus or chloroplasts).

M. Goesele et al. (Eds.): DAGM 2010, LNCS 6376, pp. 462–471, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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This information can either be acquired by learning from ground truth data
(e.g. in [1]), if sufficient labeled data is available, or learned from user interaction.
In most cases of 3D image analysis, the generation of ground truth segmentations
(needed as input for the learning step) is a very tedious work, because the expert
has to draw correct object boundaries in every single slice of the volume. This
is why we are presenting a semi-supervised, user-guided segmentation method.

In [2], a user-guided tool for the segmentation of medical data is presented.
There, the authors propose a twofold strategy: they create a graph description of
contour fragments with a tesselation of the image plane. The actual segmentation
is formulated as a path optimization, where the user has to manually select
control points on the contour. In [3], a user guided level set segmentation is
presented, that allows the user, similarly to our method, to define the edge map
before starting a level set segmentation. The edge map is defined by a threshold
either on the data itself or on the gradients. Thus, the method works satisfyingly
only if the edge information is homogeneous over the whole dataset.

We are presenting a segmentation framework, that uses K-means clustering of
the original object edges in order to enable the user to choose between different
possible edge appearances in one sample dataset. This information is used to
design an edge filter for the entire database, that can handle different appear-
ances of an object’s boundary. Then, a first segmentation with active surfaces is
performed, using the force field derived from the edge filter response. The filter
can be refined by adding more training samples. The needed user interaction is
a very simple, quick and intuitive operation.

Since we are working on biological cell data, we have adapted the presented
framework to the segmentation of star-shaped objects. The evaluation was per-
formed on 3D confocal recordings of developing plant cells.

2 Framework

The general workflow of the presented method is displayed in figure 1. We assume
that in the given database of recorded objects, the object detection step is already
solved and for every object, the estimated position of the center c is given.
For spherical objects, this detection step can be performed using the Hough
transform as e.g. in [4]. Given this set of objects, the first step is to choose a
random sample dataset. In this dataset, we find candidate positions at which edge
profiles are extracted. These edge profiles are used as features and are grouped
into different clusters. The processing up to this step will be presented in detail
in 2.1. The result of the clustering is mapped into the original dataset: edges
belonging to the same cluster are displayed in the same color. The next and most
important step is the user interaction. From the displayed edge distributions
presented in a 3D slice viewer, the user can decide which edges lie on the desired
object contour. This information is used to design a filter for the specified edges,
which is applied to the entire database. The generation of the filter is described
in 2.2. The filter response is used to perform a parametric 3D active surface
segmentation using spherical harmonics. This step will be described in 2.3. The



464 M. Keuper et al.

c

Fig. 1. Schematic overview over the whole workflow

user can now verify the resulting segmentations and, if it is not sufficient for
all datasets, choose the next training sample. The edge appearances in this new
sample are used to refine the filter and accordingly, to refine the segmentation.

2.1 Profile Extraction and Grouping

In most applications, the user is interested in laying a boundary on certain
positions with high gradient magnitude, i.e. image edges. In positions where
the information is lacking, the user usually wants a smooth interpolation of the
boundary. As candidate positions at which the profiles will be extracted, we
thus choose points with high gradient magnitude. To avoid finding too many
candidates and to ensure that we are looking at the most important positions in
the sample, we perform a non maximum suppression in gradient direction and
take all the maxima in gradient magnitude as candidates. At these positions
grayvalue profiles are extracted in radial direction from the center. This makes
sense because we are assuming that the objects are star-shaped (i.e. there exists
a point c such that each line segment connecting c to the object’s boundary
lies completely within the shape). When looking at more general shapes with
spherical topology, one should extract profiles that are normal to the surface at
this position, instead. For the extraction of the profiles, two parameters can be
adjusted: the step size of the profile and its length. These have to be chosen such
that the desired edge appearance can be captured and resolved.

We want to use these profiles as features to describe the appearance at the
respective position. For microscopic data we are expecting strong variations in
the absolute grayvalues even within the same recording due to absorption. To
make our features robust against these variations, we use the derivative of the
profile grayvalues, which is invariant against a graylevel offset. The continuous
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profile derivative p is a function of the radial length l ∈ R and the position x.
With respect to the center c, p(x, l) is given by

p(x, l) =
d
dl
I

(
x + l · x − c

|x − c|

)
, (1)

where I is the sample dataset. Thus, the discrete profile vector px is given by
px(i) = p(x, λ ·

(
i− L

2

)
), where 0 ≤ i < L ∈ N is the position on the profile, L

is the profile length and λ is the stepsize. In order to be also invariant against
multiplicative grayvalue changes, we normalize the features by the maximum
absolute value.

p̄x(i) =
px(i)

maxi(|px(i)|) (2)

The p̄x are clustered using K-means clustering (see e.g. [5]). This basic clustering
method is suitable for our purpose, because it directly measures the similarity
between the profiles and discriminates as soon as the euclidean distance is too
large. The number of clusters scales with the number of extracted profiles. In
our implementation, there are on average 4000 profiles in one cluster.

2.2 User Specified Filtering

Once the profiles are grouped into different clusters Cj , the user has to decide
which of the clusters are relevant for the actual application. Therefore, the data
must be presented such that it is easy to distinguish between relevant and non
relevant clusters. For every cluster, we generate a 3D overlay plot in which all
the points belonging to this cluster are marked in the original 3D sample data.
The user can view this overlay and decide, whether the marked points lie on
the desired boundary or not. This information is used to generate a Gaussian
probability density function (PDF) for every chosen cluster, with

fCj
(p̄) =

1
(2π)l/2|ΣCj |1/2 · e−

1
2 (p̄−μCj

)T Σ−1
Cj

(p̄−μCj
)
, (3)

where ΣCj
is the covariance matrix of all profiles p̄Cj

in the chosen cluster Cj

and μCj
the expected value. With these PDFs, the edge filter is already defined

and can be applied to all objects in the database. In the filtering step, we have
to extract the profile p̄x at every position x in the dataset. For this profile, we
compute the Mahalanobis distance

DM(p̄x,Cj) =

√(
p̄x − μCj

)T

Σ−1
(
p̄x − μCj

)
(4)

to every chosen cluster. The filter response is then given by

A(x) = min
Cj

(DM(p̄x,Cj)) . (5)

A has low values, where the distance to the closest cluster center is small, i.e.
where the profiles are similar to those belonging to the selected clusters. In order
to have high responses at these positions, we compute Ā = 1−A/max(A). Ā is
used to generate the external force field for the parametric active surfaces.
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2.3 Parametric Active Surfaces

Active surfaces are a common tool for the segmentation of 3D biological data.
Given a rough estimate of the objects position and size, i.e. its center c and radius
r, an accurate fitting of the model to the underlying data can be performed.

Active surfaces classically have internal energies Eint, depending only on the
shape of the model itself, and are exposed to external energies Eext coming
from the underlying dataset. The total energy of an active surface s is thus
E(s) = Eint(s) + Eext(s). The active surface adaptation, i.e. the minimization
of E(s), leads to an Euler-Lagrange equation that can be considered as a force
balance system Fint + Fext = 0 (see [6]). It can be performed in the spatial
domain, using a suitable surface mesh as it was done e.g. in [7] or in the Spherical
Harmonic domain using parametrically deformable models based on (truncated)
spherical harmonic expansions

f(θ, φ) =
B∑

l=0

l∑
m=−l

f̂m
l Y m

l (θ, φ), (6)

where

Y m
l (θ, φ) =

√
(2l + 1)(l −m)!

4π(l +m)!
Pm

l (cos θ)ejmφ (7)

and the f̂m
l are the spherical harmonic coefficients with degree l and order m,

B is the maximal bandwidth. The Pm
l are the associated Legendre polynomials,

j is the imaginary number. Parametric active surfaces have e.g. been used in
[8] and have the advantage that they not only yield smooth surfaces but also a
parametric shape description.

Parameterization. The first step of the active surface implementation is the
choice of an appropriate parameterization. For the segmentation of star-shaped
objects, an easy way of parameterizing a shape is describing it in spherical co-
ordinates (θ, φ, r) with the two polar variables θ and φ, where 0 ≤ θ ≤ π and
0 ≤ φ < 2π and r = s(θ, φ) (compare [9]). r is the Euclidean distance of the sur-
face from the center. For a so parameterized active surface s(θ, φ), we can directly
compute the corresponding shape descriptor as d = (ŝ00, ŝ

−1
1 , ŝ01, ŝ

1
1, . . . , ŝ

l
l)

T . For
a perfect sphere, s(θ, φ) = const. and ŝm

l = 0 for all l,m �= 0.
Alternatively, for the more general case of objects with spherical topology,

[10] proposes a suitable parameterization that assigns to every pair of angles
a three-tuple of coordinates: s(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ))T , thus laying a
latitude-longitude grid over the shape. This parameterization has been used e.g.
in [8] to perform a parametric deconvolution of 3D images. However, for our ap-
plication, the first and easier parameterization is sufficient because when dealing
with cells, we always expect to find star-shaped objects. This easier parameter-
ization also has the advantage that no explicit internal energy is needed. The
regularization can be done implicitly by limiting the bandwidth of the spherical
harmonic expansion. This is more difficult when the second parameterization is
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used: this parameterization tends to artificially introduce sharp edges even at
low bandwidth values (compare [8]).
External Forces. The external forces Fext are computed from the filter re-
sponse Ā. This filter response is usually well representing all positions, where
the edges are similar to those chosen by the user in the sample data. Due to
the normalization, we can even handle linear gray scale variations. On the other
hand, the normalization also causes some spot-like filter responses in the back-
ground (compare fig. 3d). Accounting for the fact that we are searching for object
surfaces, i.e. locally plane-like structures, we can get rid of these wrong filter re-
sponses simply by applying the steerable filter for plane detection described in
[11]. The filter response is used as edge map. On the gradients of the edge map,
we compute the gradient vector flow (GVF) [6] to get a smooth force field . Then
we can start with the surface adaptation.
Active Surface Evolution. As we are initializing the active surface as a sphere,
at the beginning we have s(θ, φ) = const.. For every iteration, we project the
forces that act on the surface onto their radial components, and compute their
spherical harmonic expansion. The actual surface update can be performed in
spherical harmonic domain. To get the new surface positions in the spatial do-
main, we then need to perform an inverse spherical harmonic transform.

When the process is finished on the whole database, the user can again inter-
act. If the segmentation is not sufficient for all datasets, the user chooses a new
sample and runs through steps 2.1 and 2.2. The new appearance clusters are
added to the model and all wrongly segmented datasets of the previous iteration
are segmented using this new model.

3 Experiments

The evaluation was performed using three sets of 3D recordings of living tobacco
leaf protoplasts (cells lacking the cell wall). Plant protoplasts are a unique tool
to study e.g. the function of the plasma membrane, cellular reprogramming and
development [12]. An exact segmentation of the cells is needed for various ap-
plications, such as the description of the cell anatomy itself or of developmental
processes in a meaningful anatomical coordinate system.

3.1 Data

Samples containing one to three single cells were recorded by confocal laser scan-
ning microscopy (CLSM). Single cells were detected using a voter-based Hough
transform for spheres [4], which provides us with a good estimate of the object’s
center c and the radius r, and cropped to separate volumes. The processed data
volumes have dimensions ranging from 159 × 118 × 71 voxels for small cells to
509 × 350 × 269 voxels for larger cells. The spatial resolution in xy-direction is
0.28 × 0.28μm2 while the resolution in z-direction is either 0.4 or 0.5μm. The
used imaging technique imposes some special image properties, like artefacts
from the point spread function (PSF), noise that is generated at the different
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Fig. 2. (a-c) Slices of the recorded channels: a) transmitted light. b) protein pattern

(Cyt). c) chloroplasts. (d-e) maximum intensity projections in z-direction (top) and in

y-direction (bottom) of the protein stainings: d) Cyt. e) ER. f) GA.

stages of the signal chain and absorption resulting in signal intensity attenuation
in recording direction, i.e. z-direction (see bottom row in fig. 2). The cells have
been recorded on three successive days resulting in different cell shapes from
roundish over elongated to more complex deformed shapes. Three channels have
been recorded, a transmitted light channel and two confocal fluorescence chan-
nels, one showing the auto-fluorescence of the chloroplasts and another showing
the fluorescence of the tagged protein (see fig. 2a-c). Here we used the protein
pattern channel for segmentation. Three different protein patterns have been
recorded which all have a different appearance (see fig. 2d-f). While the cyto-
plasm (Cyt, 55 cells in the database) fills the space between the chloroplasts,
the endoplasmatic reticulum (ER, 46 cells) forms a mesh structure and the golgi
apparatus (GA, 86 cells) is organized in spot-like structures. All protein patterns
are located in the outer shell of the cell, i.e. between outer cell membrane and
inner vacuole membrane (cf. fig. 2b).

3.2 Segmentation

The whole segmentation process was performed on slightly smoothed data, we
applied a Gaussian smoothing with σ = 0.28μm. For the user specified boundary
filtering step, we had to specify certain parameters. The chosen profile length
is 8 at a stepsize of 0.56μm which is the double voxel size in xy-direction. The
steerable filter, which was used for filtering out spot-like filter responses in the
background, also has a parameter σs that specifies the thickness of the planes
it searches for. We have set σs to 0.56μm. Finally, the active surfaces were
initialized with the estimated radius r from the detection step. The bandwidth
was limited to 16 bands. For the cells with stained Cyt, we have displayed the first
training sample and the results of the different steps of the presented framework
in fig. 3 in two orthogonal views.
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Fig. 3. a) Sample with Cyt staining. b) The clustering result from the K-means cluster-

ing with six clusters. Inner and outer boundaries lie, as expected, in different clusters.

One can clearly see, that the absorption in z-direction leads to less candidates for edges

and thus less training examples for the edge appearance in the lower z-regions. c) The

two clusters colored in green were chosen as relevant. d) The filter response Ā. e) The

used edge map (after the application of the steerable filter). f) The segmentation result.

3.3 Evaluation and Results

To evaluate our method, we applied the segmentation to all 187 cells in our
database. For each of the three patterns, one cell was randomly chosen as first
training cell. The segmentation results for all cells were visually inspected in a
3D slice viewer by two experts, who gave label 1 if the segmentation was correct,
and label 0 if not. For those cells that were not correctly segmented after the
first iteration, a second training step was performed: one of the cells with label 0
was chosen for each pattern as training sample. Altogether, we performed three
iterations. The results can be seen in table 1. Most of the cells were already
correctly segmented after the first iteration. Some results can be seen in fig. 4.

For further evaluation, we compared the segmentation carried out with our
method to the results that could be achieved with the ITK segmentation tool
ITK-SNAP [3], which is based on 3D geodesic active contours. The internal
forces are based on the gradient magnitude in the dataset. The preprocessing
as well as the active contour parameters have to be manually adjusted for each
dataset, which is why we performed this segmentation only for three datasets.
The ITK-SNAP preprocessig parameters are: the scale of the Gaussian blurring
σ, which we set to 0.56μm, the edge contrast κ, which we set to 0.1 and the
edge mapping exponent, which we set to 1.6. For the geodesic active surfaces,
some parameters have to be adjusted as well. Here, we could not use the same
parameters for all three cells. We manually initialized the contours from outside,

Table 1. Results of our method after 1, 2 and 3 iterations

Experiment # of cells Iteration 1 Iteration 2 Iteration 3

Cytoplasm 55 85.5% 94.6% 94.6%
Golgi 86 86.1% 88.4% 96.5%
ER 46 91.3% 95.7% 97.8%
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Fig. 4. Segmentation results in three orthogonal views. We have displayed two exam-

ples for every stained pattern.

Fig. 5. Segmentation results with ITK-SNAP for the same cells as in fig. 4, second row.

because the internal structures of the cells made an initialization from inside
impossible. The balloon force was set to a value between −0.7 and −0.9, the
curvature force, that ranges from 0 (detailed) to 1 (spherical) was set to 0.8 and
the advection force, that pushes the boundary back as it tries to cross edges, was
set to 4.0. Additionally, the iteration has to be stopped manually. We needed
between 461 and 791 steps to get the results displayed in fig. 5. As it can be
seen, this segmentation tool can, despite all manual interaction, not handle the
heterogeneous boundary and the absorption in z-direction.

4 Conclusion

We have presented a semi-supervised segmentation method for volumetric data-
sets, that can handle heterogeneous edge appearances. In our framework, edge
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models are learned from user input, while the user interaction is limited to very
simple and intuitive operations and no further low-level parameters have to be
adjusted. Although current 3D confocal recordings of single plant cells pose
numerous challenges, such as inhomogeneous object boundaries, strong gray-
value attenuations and noise, the segmentation of the datasets using the proposed
method resulted in a highly reliable identification of cell boundaries.
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K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 182–191.

Springer, Heidelberg (2006)

5. Xu, R., Wunsch, D.C.: Clustering. Wiley, Chichester (2008)

6. Xu, C., Prince, J.: Snakes, shapes, and gradient vector flow. IEEE Trans. Imag.

Proc. 7/3, 321–345 (1998)

7. Keuper, M., Padeken, J., Heun, P., Burkhardt, H., Ronneberger, O.: A 3d active

surface model for the accurate segmentation of drosophila schneider cell nuclei and

nucleoli. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J.,

Wang, J.-X., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A., Encarnação,

M.L., Silva, C.T., Coming, D. (eds.) ISVC 2009. LNCS, vol. 5875, pp. 865–874.

Springer, Heidelberg (2009)

8. Khairy, K., Howard, J.: Spherical harmonics-based parametric deconvolution of 3d

surface images using bending energy minimization. Medical Image Analysis 12,

217–227 (2008)

9. Ballard, D.H., Brown, C.M.: Computer vision. Prentice-Hall, NJ (1981)
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Abstract. We propose a new approach for integrating geometric scene

knowledge into a level-set tracking framework. Our approach is based

on a novel constrained-homography transformation model that restricts

the deformation space to physically plausible rigid motion on the ground

plane. This model is especially suitable for tracking vehicles in automo-

tive scenarios. Apart from reducing the number of parameters in the

estimation, the 3D transformation model allows us to obtain additional

information about the tracked objects and to recover their detailed 3D

motion and orientation at every time step. We demonstrate how this in-

formation can be used to improve a Kalman filter estimate of the tracked

vehicle dynamics in a higher-level tracker, leading to more accurate ob-

ject trajectories. We show the feasibility of this approach for an applica-

tion of tracking cars in an inner-city scenario.

1 Introduction

Object tracking from a mobile platform is an important problem with many po-
tential applications. Consequently, many different approaches have been applied
to this problem in the past, including tracking-by-detection [1,2,3,4], model-
based [5,6], template-based [7,8] and region-based [9,10] methods. In this paper,
we focus on the latter class of approaches, in particular on level-set tracking,
which has shown considerable advances in recent years [9,11].

Level-set tracking performs a local optimization, iterating between a segmen-
tation and a warping step to track an object’s contour over time. Since both
steps only need to be evaluated in a narrow band around the currently tracked
contour, they can be implemented very efficiently [9]. Still, as all appearance-
based approaches, they are restricted in the types of transformations they can
robustly handle without additional knowledge about the expected motions.

In this paper, we investigate the use of geometric constraints for improving
level-set tracking. We show how geometric scene knowledge can be directly in-
tegrated into the level-set warping step in order to constrain object motion.
For this, we propose a constrained-homography transformation model that rep-
resents rigid motion on the ground plane. This model is targeted for tracking
vehicles in an automotive scenario and takes advantage of an egomotion estimate
obtained by structure-from-motion (SfM).

An advantage of our proposed approach, compared to pure 2D tracking, is
that it restricts the deformation space to physically plausible rigid-body mo-
tions, thus increasing the robustness of the estimation step. In addition, the 3D
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transformation model allows us to directly infer the tracked object’s detailed 3D
motion and orientation at every time step. We show how this information can
be used in a higher-level tracker, which models the vehicle dynamics in order to
obtain smooth and physically correct trajectories. The additional measurements
provided by our geometrically constrained level set tracker make the estimation
more robust and lead to smoother trajectories. We demonstrate our approach on
several video sequences for tracking cars on city roads under viewpoint changes.

The paper is structured as follows. The next section gives an overview of
related work. Section 2 then presents the details of our proposed level-set tracking
approach and Section 3 shows how its results can be integrated with a high-level
tracker. Section 4 finally presents experimental results.

Related Work. Tracking-by-detection approaches have become very popular
recently, since they can deal with complex scenes and provide automatic re-
initialization by continuous application of an object detector [1,2,3,4]. However,
for elongated objects with non-holonomic motion constraints, the raw detection
bounding boxes often do not constrain the object motion sufficiently, making
robust trajectory estimation difficult. Model-based tracking approaches try to
obtain more information about the tracked objects by estimating their precise
pose [5,6]. However, they require a 3D model of the target object, which makes it
hard to apply them for complex outdoor settings where many different objects
can occur. The complexity can be reduced by limiting pose estimation to a
planar region, for which efficient template-based tracking schemes can be used
[7]. By decomposing the homography estimated from the template deformation,
information about the 3D object motion can be obtained [8]. However, this
approach heavily relies on sufficient texture content inside the tracked region,
which restricts it mainly to tracking fiducial regions.

In the context of region-based tracking, little work has been done in order to
incorporate dedicated 3D scene constraints. [12] explore affine motion models in
order to track multiple regions under 3D transformations. [13] and [14] propose
different ways of combining level-set tracking with direct 3D pose estimation.
However, they both assume a detailed 3D model of the target object to be
available, which is not the case in our application. [10] propose a globally optimal
approach for contour tracking which is also applied to an automotive scenario,
but this approach does not use knowledge about the geometric meaning of the
changed contour.

2 Approach

2.1 Level-Set Tracking

We use a probabilistic level-set framework for segmentation and tracking similar
to the one introduced by [11]. The target object is first segmented, then tracked
through the subsequent image frames. In the following, background denotes the
area around and foreground the area containing the object. The object’s contour
is represented implicitly by the zero level-set of the embedding function Φ(x)
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Fig. 1. Detection box (green), foreground initialization (red) and object frame (white)

with foreground and background pixels and the corresponding evolved level set embed-

ding function Φ

(see Fig. 1). The color y of pixels x is used to build foreground and background
models Mf and Mb, in our case color histograms.

Segmentation. To obtain a segmentation of an object, the level set is evolved
starting from an approximate initialization, e.g. a bounding box provided by an
object detector. We use a variational formulation with three terms which penalize
the deviation fromMf and Mb [11], the deviation from a signed distance function
[15] (a constraint on the shape of the embedding function), and the length of
the contour (to reward a smoother contour, similar so [15]). Eq. 1 shows the
gradient flow used to optimize the segmentation:

∂P (Φ,p|Ω)
∂Φ

=
δε(Φ)(Pf − Pb)
P (x|Φ,p,y)︸ ︷︷ ︸
deviation from
fg/bg model

− 1
σ2

[
∇2Φ− div

(
∇Φ
|∇Φ|

)]
︸ ︷︷ ︸

deviation from
signed distance function

+λδε(Φ)div
(
∇Φ
|∇Φ|

)
︸ ︷︷ ︸

length of contour

(1)

where P (xi|Φ,p,yi) = Hε(Φ(xi))Pf + (1 −Hε(Φ(xi)))Pb, ∇2 is the Laplacian
operator, Hε is a smoothed Heaviside step function, δε a smoothed Dirac delta
function and Ω denotes the pixels in the object frame.

Pf and Pb are the pixel-wise posteriors for pixels’ probabilities of belonging
to the foreground and background. During segmentation, Mf and Mb are rebuilt
in every iteration; during the later tracking stage the models are only slightly
adapted to achieve high robustness while still adapting to lighting changes.

Tracking. In the following frames the obtained contour is tracked by perform-
ing a rigid registration, i.e. by warping its reference frame to another position
without changing the contour’s shape. Similar to inverse compositional image
alignment [16] the content of the new frame is warped such that it looks more
like the old frame. The inverse of the resulting warp with parameters Δp can in
turn be used to warp the contour onto the new frame.

Δp=

[
N∑

i=1

1
2P (xi|Φ,p,yi)

[
Pf

Hε(Φ(xi))
− Pb

(1−Hε(Φ(xi)))

]
JTJ

]−1

×
N∑

i=1

(Pf −Pb)JT

P (xi|Φ,p,yi)
(2)

with J = δε(Φ(xi))∇Φ(xi) ∂W
∂Δp , where ∂W

∂Δp is the Jacobian of the warp.
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(a) Coordinate Systems (b) Transformation Model

Fig. 2. Visualization of the coordinate systems and the proposed transformation model

used in our approach

2.2 Geometric Transformation Model

In addition to the image based tracking approach as described above, we model
the 3D position of a tracked object. This allows us to make assumptions about
an object’s movement by the projective distortions that arise on the 2D image.

Coordinate Systems. Figure 2(a) shows the used coordinate systems. The
image itself consists of a number of pixels with 2D coordinates. The colors of
these pixels correspond to points in the world which were projected onto the
image plane. The 3D coordinates of those points cannot however be inferred
directly from one image without additional depth information. We use a ground
plane, which was obtained with structure-from-motion (SfM), to estimate the
base point of a detected object. We approximate the object to be a plane in
world coordinates that is orthogonal to the ground plane. This object plane can
be described with a point q0 and two direction vectors q1 and q2.

xi =

⎡⎣xi

yi

wi

⎤⎦=Pxw =PQxo, with Q=
[
q1 q2 q0
0 0 1

]
, xo =

⎡⎣xo

yo

1

⎤⎦ , xw =

⎡⎢⎢⎣
xw

yw

zw

1

⎤⎥⎥⎦ (3)

where xo is a 2D point on the object plane and xw are its corresponding world
coordinates. The point xi in the image that corresponds to this world point can
be obtained by projection with the camera matrix P.

3D Transformation Model. The level-set tracking framework requires us to
specify a family of warping transformations W that relate the previous object
reference frame to the current one. In the following, we show how this warp can
be used to incorporate scene knowledge by enforcing geometric constraints on
the object motion.

Our target scenario is an automotive application where the goal is to track
other vehicles’ motions relative to our own vehicle. In this scenario, we can
assume that the tracked object parts are approximately planar and that the
target objects move rigidly on the ground plane. This means that their 3D shape
will not change between two frames; only their position relative to the camera
will. The resulting projective distortions in the image can therefore be modeled
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by a homography. However, an unconstrained homography has many degrees of
freedom, which makes it hard to keep the tracking approach robust. Instead, we
propose to use the available scene knowledge by modeling W as a constrained
homography that requires fewer parameters and can be estimated more robustly.

Figure 2(b) illustrates our proposed transformation model. We represent ob-
ject motion by a 3D homography, consisting of a rotation Wα around an axis
orthogonal to the ground plane and a translation Wt along the vector t =
[tx, ty, tz ]

T. In order to compare the object points with the stored level-set con-
tour of the previous frame, we then project the object into the image using an
estimated camera matrix P obtained by SfM. Finally, we compute a 2D ho-
mography Wobj which warps the content of the object window (defined by the
projections of its four corner points) onto the level-set reference frame.

W = Wobj P WtWαQ

⎡⎣xo

yo

1

⎤⎦ (4)

Wα can be computed as a sequence of several transformations: a translation
TP moving the rotation axis into the origin; a rotation Rxz into the xz-plane;
another rotation Rz onto the z-axis; and finally a rotation Rz(α) about the
z-axis with the desired angle α, followed by the inverse of the first three steps.

Wα =T−1
P R−1

xz R−1
z Rz(α)RzRxzTP , Wt =

[
I t
0 1

]
(5)

In the above formulation, we have assumed a general translation Wt. In prin-
ciple, this could be restricted further to only allow translations parallel to the
ground plane. However, the estimated ground plane is not always completely ac-
curate and in any case does not account for uneven ground, especially at farther
distances. We have therefore found that allowing a small movement component
in the direction of the ground plane normal is necessary to achieve robustness.

Optimizing for the Transformation. The tracking framework uses the
Gauss-Newton method to optimize the warp between two image frames. This
requires the Jacobian of the overall warp W, which contains the partial deriva-
tives of W with respect to the parameters α, tx, ty and tz.

∂W
∂Δp

with Δp =
[
α tx ty tz

]T (6)

The parametersΔp available for optimization restrict the possible movements of
the contour and the gradient ∂W

∂Δp indicates the effect a certain parameter value
has on the position of the contour in the image. (6) is substituted into (2) and is
evaluated for every point x in the band around the contour which is determined
by δε(Φ). In this way, pixel locations with a low probability of belonging to
the foreground contribute a warp towards the outside of the contour and vice
versa. A lower probability results in a larger step and the total step size is thus
determined automatically. The algorithm has converged when the step size has
become sufficiently small.
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(a) frame i (b) frame i+1 (c) frame i+1

Fig. 3. (a) 3D position and synthetic view of object frame. (b) Before warp: 3D position

as in frame i. (c) After warp: tracked 3D position. Notice how the contour moved in 3D

and its projection onto the image plane changed accordingly; its shape did not change.

Final Tracking Algorithm. Putting the above steps together, we can sum-
marize the proposed tracking algorithm as follows:

1. Initialize the object position, e.g. using a detection bounding box.
2. Apply the level-set segmentation (in our implementation for 200 iterations).
3. Compute the object plane’s world coordinates Q by projecting the detection

box base points onto the ground plane. (This box does not need to be aligned
with the image borders and can also be used to initialize rotated objects).

4. For the following frames: Track the object’s shape, i.e. compute Δp for the
warp between two images i and i+1 :

(a) Assume the object is still located at the same 3D position. Interpolate
synthetic views for both object frames (Fig. 3(a), 3(b)) with Wi

obj ,W
i+1
obj .

(b) Use eq. (2) with eq. (6) to find a set of parameters Δp such that the
contour in the warped object frame i+1 better matches object frame i.

(c) Use the inverse of the estimated homography (WtWα)−1 to warp the
modeled 3D coordinates of the object and obtain a new 3D position
estimate of the object in frame i+1 (Fig. 3(c)). (E.g. if image i+1 needs
to be warped “closer” to the camera in order to look like image i, the
object in fact moved to the back.)

(d) Use the new 3D coordinates to obtain an improved synthetic view of the
object in frame i+1.

(e) Repeat steps (b) to (d) until the step size is small enough: ‖Δp‖ < ε.
(f) Apply the level-set segmentation for 1 iteration to update the contour.

The results of this procedure are a level-set contour and a bounding box for each
frame, as well as the estimated 3D position and orientation of the object.
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3 Integration with a High-Level Tracker

The level-set tracking approach described in the previous section can robustly
follow an individual object over time. However, it requires an initialization to pick
out objects of interest, and it does not incorporate a dynamic model to interpret
the observed motion. For this reason, we integrate it with a high-level tracker.
In this integration, the task of the level-set tracker is to generate independent
tracklets for individual objects, which are then integrated into a consistent scene
interpretation with physically plausible trajectories by the high-level tracker.

System Overview. We apply a simplified version of the robust multi-hypothe-
sis tracking framework by [3]. Given an estimate of the current camera position
and ground plane location from SfM, we collect detected vehicle positions on the
ground plane over a temporal window. Those measurements are then connected
to trajectory hypotheses using Extended Kalman Filters (EKFs). Each trajec-
tory obtains a score, representing the likelihood of the assigned detections under
the motion and appearance model (represented as an RGB color histogram). As
a result, we obtain an overcomplete set of trajectory hypotheses, from which we
select the best explanation for the observed measurements by applying model
selection in every frame (Details can be found in [3]).

Motion Model. For modeling the vehicle trajectories, we use an EKF with the
Ackermann steering model (e.g. [17]), as shown in Fig. 4(a). This model incor-
porates a non-holonomic motion constraint, enforcing that the velocity vector
is always perpendicular to the rear wheel axis. The state vector is given as
st = [xt, yt, ψt, vt, δt, at], where (x, y) is the position of the car, ψ the heading
angle, δ the steering angle, v the longitudinal velocity, and a the acceleration.
The prediction step of the Kalman filter is then defined as follows:

st+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

xt + vtcos(ψt)Δt+ 1
2atcos(ψt)Δt2

yt + vtsin(ψt)Δt+ 1
2atsin(ψt)Δt2

ψt + vt

L tan(δ)Δt
vt + atΔt

δt

at

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
nδ

na

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (7)

L is the distance between the rear and front wheel axes and is set to a value
of 3.5m. Multi-vehicle tracking-by-detection using a similar motion model was
demonstrated by [4] based on a battery of object detectors with discretized
viewing angles. We use a similar coarse discretization of the viewing angle with
three separate, HOG-style [18] vehicle detectors in order to initialize our level-set
tracker (Fig. 4(b)). However, after this initialization, we only use the observations
provided by the low-level tracker and integrate them into the motion model.

Discussion. Our proposed approach has several advantages. Compared to
a pure tracking-by-detection approach, the level-set tracker yields much finer-
grained measurements of the viewing angle at which the target vehicle is seen.
In addition, the level-set tracker can continue tracking objects even when they
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(a) (b)

Fig. 4. (a) Ackermann steering model used for modeling the motion of the vehicle (as-

sumes rolling without slippage). (b) Discretization of the the detected viewing angles.

partially leave the image and the object detector would fail. Compared to a level-
set tracker with a simpler 2D transformation model (i.e., just using translation
and scale, without ground plane constraints), our model has the advantage of
being able to estimate the target vehicle’s location and its current orientation.
This orientation estimate is beneficial in two respects. It allows us to extrapolate
from the tracked car trunk location and infer the true object center, resulting
in better position estimates (which is especially important for elongated objects
such as cars). And it enables the use of orientation as observed quantity in the
motion model, resulting in better predictions. All of those factors contribute to
more robust tracking performance, as will be demonstrated in the next section.

4 Experimental Results

Data. We demonstrate our approach on three parts of a challenging sequence
from the Zurich Mobile Car corpus, generously provided by the authors of [4].
The sequence was captured using a stereo setup (13-14 fps and 640×480 resolu-
tion) mounted on top of a car. We use SfM and ground plane estimates provided
with this data set, but restrict all further processing to the left camera stream.

Qualitative Results. Fig. 5 shows qualitative results of our approach on three
test sequences which contain cars turning corners, demonstrating its capability
to accurately track vehicles under viewpoint changes. (The corresponding result
videos are provided on www.mmp.rwth-aachen.de/projects/dagm2010). As can be
seen, the estimated vehicle orientation from the level-set tracker enables the
high-level tracker to compute smooth vehicle trajectories.

Comparison with Baseline Approach. Fig. 6 presents a comparison of our
3D estimation approach with the results of our level-set tracker using only a 2D
(translation + scale) transformation model. As can be seen from those results,
our approach achieves better tracking accuracy and manages to closely follow
the target vehicles despite considerable viewpoint changes. In contrast, the 2D
baseline method slips off the car in all cases, since the 3D position of the car’s
center is incorrectly estimated, resulting in a wrong trajectory.

www.mmp.rwth-aachen.de/projects/dagm2010
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Fig. 5. Tracking results of our approach on three test sequences. The integrated 3D

estimation results of the high-level tracker show that it is able to accurately follow cars

turning corners and to produce smooth trajectories.

Fig. 6. Comparison with the results of a 2D baseline model. (Left columns) Level-set

tracking results; (Right columns) High-level tracker’s results. The lacking orientation

estimate causes the high-level tracker to slip off the vehicles during viewpoint changes.
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5 Conclusion

In conclusion, we have presented an approach for incorporating geometric scene
constraints into the warping step of a level-set tracker. Our approach allows to
estimate both the location and orientation of the tracked object in 3D, while at
the same time restricting the parameter space for more robust estimation. As we
have shown, the estimation results can be used to improve the performance of a
higher-level multi-hypothesis tracker integrating the measurements with vehicle
dynamics into physically plausible trajectories. A possible extension could be to
incorporate detections for different vehicle orientations, as well as stereo depth
information, in order to initialize tracking also for other vehicle viewpoints.
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Abstract. Interactive motion segmentation is an important task for

scene understanding and analysis. Despite recent progress state-of-the-

art approaches still have difficulties in adapting to the diversity of spa-

tially varying motion fields. Due to strong, spatial variations of the mo-

tion field, objects are often divided into several parts. At the same time,

different objects exhibiting similar motion fields often cannot be distin-

guished correctly. In this paper, we propose to use spatially varying affine

motion model parameter distributions combined with minimal guidance

via user drawn scribbles. Hence, adaptation to motion pattern variations

and capturing subtle differences between similar regions is feasible. The

idea is embedded in a variational minimization problem, which is solved

by means of recently proposed convex relaxation techniques. For two re-

gions (i.e. object and background) we obtain globally optimal results for

this formulation. For more than two regions the results deviate within

very small bounds of about 2 to 4 % from the optimal solution in our

experiments. To demonstrate the benefit of using both model parame-

ters and spatially variant distributions, we show results for challenging

synthetic and real-world motion fields.

1 Introduction

Motion segmentation refers to grouping together pixels undergoing a common
motion. It aims at segmenting an image into moving objects and is a powerful
cue for image understanding and scene analysis. For a semantic interpretation of
a sequence motion is an important feature just like color or texture. For tracking
and video indexing it is often desirable to divide the scene into foreground and
background objects and to perform independent motion analysis for both classes.
Another perspective application is video compression, where several encoding
standards such as MPEG represent a sequence as objects on a series of layers
and, hence, require the objects to be identified before encoding.

Most motion segmentation methods identify objects by grouping pixels with
approximately constant motion vectors. This approach leads to several problems.
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a) Input image b) HSV Motion Field c) User Scribbles d) Interact. Segment.

Fig. 1. Segmentation of a motion field where traditional motion segmentation ap-

proaches fail. The proposed algorithm allows to compute interactive image segmen-

tations based on a spatially varying partitioning of the velocity field (motion field

input data courtesy of Eberhard Bänsch, University of Erlangen-Nuremberg).

1. Object motion is often characterized by complex motion patterns such as
vortices or curls, which are impossible to be segmented based on constant
motion vectors (Figure 1 shows a water vortex with motion vectors pointing
in all directions along the current). The computation of affine model param-
eters instead in combination with a spatially varying distribution allows for
the grouping of vectors belonging to the same motion pattern.

2. Objects sometimes undergo similar motion as other objects or the back-
ground. In such cases, segmentation approaches not taking into account the
spatial variance of the motion will fail to separate between similarly moving
objects.

3. Moving objects, which are not planar, exhibit different motion in different
parts of the object due to changing depth. Also in such cases segmentation
based on a constant motion field will fail to recognize all parts belonging to
the moving object, e.g. a human with fast moving arms but head and legs
almost at rest.

4. Frequently, there are several similar foreground objects which follow dif-
ferent motion patterns, e.g. cars on a road. Similarity based segmentation
approaches will not assign all of them to the same class.

To summarize, automatic motion segmentation is often problematic and even for
humans it is not clear, where a motion pattern begins and where it ends. Take for
example neighboring vortices in water or heat flows (Figure 1) or sequences with
several distinct foreground objects belonging to the same object class (Figure 4).
By means of minimal user interaction such semantic problems can be overcome.

1.1 Related Work

Non-interactive motion segmentation has been studied in the literature in par-
ticular within the scope of optical flow estimation. In [1], Cremers and Soatto
introduce the concept of motion competition, i.e. a variational model that, given
two consecutive frames of a video, estimates the motion between the given frames
and jointly segments the image domain based on the estimated motion. Therein,
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a parametric motion model is used and particularly the case of piecewise affine
motion is considered. Their target functional can be understood as an extension
of the Mumford–Shah functional [2] and the applied minimization techniques
include a multiphase level set formulation based on the Vese–Chan model [3].
Brox et al. [4] propose a variational approach that combines optic flow estimation
with the segmentation of the image domain into regions of similar optical flow,
extending the motion competition concept to non-parametric motion and a more
elaborate data term for the motion estimation while still using a multiphase level
set formulation.

Independently, interactivity has proven itself as a feasible method to facilitate
difficult image segmentation tasks. For instance, Bai and Sapiro [5] presented an
interactive framework for image and video segmentation. Their technique calcu-
lates weighted geodesic distances to scribbles interactively provided by the user,
where the weighting is based on spatial or temporal gradients. The segmenta-
tion then is obtained automatically from these distances. More related to our
approach is the TVSeg algorithm by Unger et al. [6] that also incorporates user
interaction in the segmentation of images into foreground and background. The
actual segmentation uses an geodesic active contour model [7] that integrates
the user input as local constraint and is minimized numerically in a globally
optimal manner using a total variation based reformulation.

1.2 Contribution

The contribution of this paper is the introduction of locally adaptive model pa-
rameter distributions into a variational motion segmentation approach. Instead
of learning a global motion vector distribution for each object, we make two
important modifications. First, we do not estimate the probability of the motion
vectors directly but of their motion model parameters instead. In this way, the
similarity of vectors belonging to the same moving object is preserved and issue
1 solved. Second, as different objects and object parts can still exhibit varying
affine motion we model a spatially variant distribution, which allows for chang-
ing motion at different image locations. We, thus, solve issues 2 to 4. The locally
adaptive parameter distributions are introduced into a variational framework
which allows for globally optimal segmentation results in case of two regions and
near globally optimal results for more than two regions.

2 A Bayesian Approach to Motion Segmentation

Let v : Ω → R2, Ω ⊂ Rb, b ∈ N denote a given motion field. Motion segmentation
is the computation of such a labeling function u : Ω → {1, .., n} assigning a
specific label u(x) to each pixel x ∈ Ω based on the motion vector v(x), such
that the Ωi = {x ∈ Ω|u(x) = i} are disjoint and Ω =

⋃n
i=1Ωi.

2.1 A Parametric Motion Field Representation

Typical motion vectors resemble specific motion patterns. The easiest pattern
would be a constant planar motion, more difficult ones are for example rotations,
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curls or vortices with spatially varying motion vectors. Only in the first case a
simple grouping of motion vectors can be successful. In order to preserve the
similarity of different motion vectors belonging to the same object, we describe
the motion field by means of model parameters. Similar model parameters then
hint at a common motion pattern. In this paper, we assume an affine motion
model and compute the affine model parameters s : Ω → R6 by solving the
following minimization problem for each pixel x ∈ Ω

s(x) = arg min
s∈R6

∫
Ω

Gσ(y − x) |p(y) · s− v(y)|2 dy, (1)

where p(y) =
(

y1 y2 1 0 0 0
0 0 0 y1 y2 1

)
and Gσ(x) is a Gaussian function with variance σ

and mean 0. In our experiments, we set σ to the pixel size. The optimization
problem can be solved by means of a weighted least squares approach. If we only
aim at the identification of particular types of affine motion we can replace the
general model p(y) by a more specific one. E.g. in case of vortices we consider
skew symmetric affine maps, i.e. looking for a vector of five affine parameters
s : Ω → R5 and replacing p by p(y) =

(
y1 y2 1 0 0
0 −y1 0 y2 1

)
. Alternatively, one could

keep s and p as they are and penalize the defect from the desired family of affine
motion by an additional energy term, e.g. in our case |s2(x) + s4(x)|2.

2.2 The Bayesian Formulation

We want to maximize the conditional probability of u in a Bayesian framework
given the motion parameter field s

arg max
u

P(u | s) = arg max
u

P(s |u) P(u)
P(s)

= argmax
u

P(s |u) P(u). (2)

Assuming that all affine parameter vectors are independent of each other – but
in contrast to previous approaches not independent of space – we obtain

arg max
u

P(s |u) P(u) = argmax
u

(∏
x∈Ω

(
P(s(x) |x, u)

)dx
)

P(u), (3)

where the exponent dx denotes an infinitesimal volume in Rb and assures the
correct scaling for decreasing pixel size. Preserving the dependence of the model
parameters on the spatial position is an indispensable prerequisite to cope with
objects effected by different and frequently non constant motion patterns. Such
important information is entirely lost in the traditional space-independent for-
mulation. Consequently probability density functions that can be easily sepa-
rated in parameter-location-space can overlap and make the separation of objects
impossible if only the parameter space is taken into account.

Since the probability of a parameter vector is independent of labels of other
pixels, we deduce from (3) that∏

x∈Ω

(
P(s(x) |x, u)

)dx

=
n∏

i=1

∏
x∈Ωi

(
P(s(x) |x, u(x) = i)

)dx

. (4)
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2.3 Spatially Varying Parameter Distributions

P(s(x) |x, u(x) = i) denotes the conditional probability of a parameter vector
s(x) at location x in the motion field provided x belongs to region Ωi. These
spatially varying probability distributions for each object class i are learned
from user scribbles. Let Ti := {(xj

i , s(x
j
i )), j = 1, ..,mi} denote the set of user

markings consisting of locations xj
i and corresponding model parameter vector

s(xj
i ) for xj

i ∈ Ωi. We can estimate the probability from user scribbles by means
of the Parzen-Rosenblatt [8,9] estimator

P̂(s(x) , x|u(x) = i) =
1
mi

mi∑
j=1

GΣ

(
(x, s(x)) − (xj

i , s(x
j
i ))

)
. (5)

Here, GΣ denotes the multivariate Gaussian kernel centered at the origin with
covariance matrix Σ. For uniformly distributed samples this estimator converges
to the true probability distribution for mi → ∞ [10]. In case of user scribbles,
however, the samples are spatially not uniformly distributed. Therefore, we make
use of the separability of the Gaussian kernel and choose Σ such that

GΣ

(
(x, s(x)) − (xj

i , s(x
j
i ))

)
= Gρ(x− xj

i )Gσ(s(x) − s(xj
i )) (6)

Commonly, the spatial variance, Gρ(x− xj
i ), has been neglected so far. We will

call this previous approach the spatially invariant approach.
We now introduce a spatially variable kernel function by choosing the spatial

kernel width ρ(x) at image location x proportional to the distance from the k-th
nearest sample point xvk

∈ Ti, ρ(x) = α‖x− xvk
‖2.

P̂(s(x) , x|u(x) = i) =
1
mi

mi∑
j=1

Gρ(x)(x− xj
i )Gσ(s(x) − s(xj

i )). (7)

Thus, the influence of each sample point in Ti at a given location x is deter-
mined by the distance of the k-th nearest neighbor to x. If many sample points
are close to x, ρ(x) becomes small and the corresponding kernel becomes peaked.
Hence, the influence of the samples further away is reduced. In contrast, if no
samples are close by Gρ(x) tends towards a uniform distribution as in the spa-
tially independent approach. Therefore, the spatially variant approach can be
understood as a generalization of the original, spatially independent approach.
The spatially variant approach yields a different parameter distribution for each
location in the motion field, whereas the original, invariant approach yields the
same distribution at all locations. Using

P̂(s(x) |x, u(x) = i) =
P̂(s(x) , x|u(x) = i)

P̂(x|u(x) = i)
=

P̂(s(x) , x|u(x) = i)∫
s
P̂(s, x|u(x) = i)ds

(8)

we can now derive the conditional probability of a parameter vector s(x) given
at location x and label i based on user scribbles Ti.
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a) original flow b) α = 0.1 c) α = 0.3 d) α = 0.5

Fig. 2. The influence of the user scribbles on their neighborhood is determined by the

parameter α and can be examined by means of motion synthesis. Here, for each pixel

we randomly draw a motion vector from the spatially varying distribution. The smaller

α the more local is the influence of the user scribbles and the more deterministic is the

drawn motion vector.

The parameter α directly determines the variance of the kernel function k and,
thus, the locality of the user input. The smaller α the more locally limited is the
influence of the user scribbles. This effect can be examined by means of motion
synthesis shown in Figure 2. Motion synthesis means that we randomly draw
samples from the foreground distribution by means of the inverse distribution
function. For all experiments done in Section 3, we set α = 0.3 and k = 10.

2.4 The Variational Approach

To solve the optimization problem (3) we specify the prior P(u) favoring shorter
boundaries between different regions, i.e. P(u) ∝ exp

(
−λ

2

∑n
i=1 Per(Ωi, Ω)

)
,

where Per(Ωi, Ω) denotes the perimeter of Ωi in Ω, cf. [11]. The optimization
problem can be solved by minimizing its negative logarithm

E(Ω1, . . . , Ωn) =
λ

2

n∑
i=1

Per(Ωi, Ω) +
n∑

i=1

∫
Ωi

fi(x) dx, with (9)

fi(x) = − log
mi∑
j=1

kρ(x)(x− xj
i )kσ(s(x) − s(xj

i )) + log
mi∑
j=1

kρ(x)(x− xj
i ). (10)

Using the coarea formula in BV, the function space of bounded variation (cf. [11]),
we can replace the sum of the perimeters by the total variation of u and arrive
at energy minimization problem

∑n
i=1

∫
Ωi
fi(x) dx + λ

∫
Ω
|Du| dx → min . To

transform this energy minimization into a convex variational problem we ap-
ply the multilabel approach [12] in combination with [13] by Pock et al., which
is solved numerically in a primal-dual-minimization scheme. To this end, the
multilabel function u : Ω → {1, . . . , n} is expressed in terms of its upper level
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sets, i.e. θi(x) = 1 if u(x) ≥ i + 1 and else 0 for all i = 1, . . . , n − 1, where
θ ∈ BV(Ω, {0, 1})n and θ0 = 1 and θn = 0. The final energy to be minimized is

min
θ∈B

sup
ξ∈K

{
−λ

n−1∑
i=0

∫
Ω

θi div ξi dx+
∫

Ω

|θi(x) − θi+1(x)| fi(x) dx

}
(11)

with B and K defined as

B = {θ = (θ1, .., θn−1) ∈ BV(Ω, {0, 1})n−1
∣∣ 1 ≥ θ1 ≥ . . . ≥ θn−1 ≥ 0} (12)

K =

{
ξ = (ξ1, .., ξn−1) ∈ C1

c (Ω,Rb)n−1

∣∣∣∣∣
∣∣∣∣∣ ∑

i1≤i≤i2

ξi(x)

∣∣∣∣∣ ≤ 1 ∀i1 ≤ i2

}
(13)

where ξi ∈ C1
c (Ω,R2) denotes the dual variable and C1

c the space of smooth
functions with compact support.

Proposition 1. Let u′ ∈ B be the global minimizer of the original problem (11),
u∗ ∈ B the binarized solution of the relaxed problem and ũ ∈ B̃ the result of the
proposed algorithm, where

B̃ = {θ = (θ1, .., θn−1) ∈ BV(Ω, [0, 1])n−1
∣∣ 1 ≥ θ1 ≥ . . . ≥ θn−1 ≥ 0}. (14)

Then an energy bound γ(u∗, ũ) exists such that E(ũ) − E(u′) ≤ γ(u∗, ũ).

Proof. Since B ⊂ B̃, we have E(u∗) ≤ E(u′). Therefore,

E(ũ) − E(u′) ≤ E(ũ) − E(u∗) =: γ(u∗, ũ). (15)

3 Results

In this section we provide experimental results for the interactive segmentation
of real and synthetic motion fields. We compare four settings: model-independent
and model-based (see section 2.1), spatially invariant and spatially varying dis-
tributions (see section 2.3).

3.1 Model Based vs. Non Model Based

Since motion vectors belonging to the same motion pattern often exhibit very
different direction and length, it is important to segment model parameter maps
instead of the motion field itself. Difficulties arise next to motion boundaries,
where different motion models coincide. These situations lead to large residuals
in the least squares approach (1) and can, thus, easily be detected. We set all data
terms to 0 in these situations. Figure 3 shows a segmentation example, which
demonstrates that segmentations based on affine parameter maps usually yield
better results than segmentations based on the motion field itself. It displays
four planes varying in depth, which strongly influences the speed at different
locations of the planes. The parameter map reduces this effect and even reveals
underlying structure and, thus, makes an (almost) correct segmentation possible.
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a) image b) HSV c) affine d) no model e) model

Fig. 3. Comparison of segmentation results based on the original flow field and on affine

parameter maps using the spatially invariant dataterm, a) underlying image data, b)

HSV-coded motion field with user scribbles, c) affine parameter map, d) segmentation

based on motion only, e) segmentation based on affine parameter map

a) image b) HSV c) invariant d) variant

Fig. 4. Segmentation results based on the spatially variant compared to the spatially

invariant dataterm, a) underlying image data, b) HSV-coded motion field with user

scribbles, c) segmentation based on spatially invariant dataterm, d) segmentation based

on spatially variant dataterm

3.2 Spatially Variant vs. Spatially Invariant Distributions

There are several situations where the spatial adaptability of the estimated mo-
tion distributions is indispensable, e.g. in case of different objects exhibiting
similar motion or in case of one or similar objects exhibiting different motion
patterns in different locations. Figure 4 shows results for spatially variant com-
pared to spatially invariant distributions on a dataset with three cars on a road
exhibiting very different motion direction and speed. These variations are cap-
tured by the spatially variant distribution.

3.3 Model Based Spatially Variant Distributions

In order to allow for spatially changing motion models we combine the spatially
variant and the model based approach by computing spatially variant param-
eter distributions. Figure 5 shows original HSV-coded motion fields with user
scribbles, the original segmentation result without parameter maps based on
spatially invariant distributions and the improved segmentation result based on
parameter maps and spatially adaptive parameter distributions. In case of more
than two regions, a global optimal solution cannot be guaranteed.

In our experiments, the energy gap between the binarized relaxed and the
optimal solution lies between 2 and 4 % of the original energy (numerically
evaluated using Proposition 1) and confirms that the solutions for more than
two regions are very close to the globally optimal solution.
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a) image b) HSV field c) no model, invar. d) model, variant

Fig. 5. Segmentation results based on the spatially variant, affine parameter distribu-

tions for HSV coded motion fields. a) underlying image data, b) HSV-coded motion

field, c) result of non-model based, spatially invariant approach, d) result of model-

based, spatially variant approach

4 Conclusion

In this paper, we proposed an algorithm for interactive motion segmentation,
which is based on spatially variant motion model parameter distributions. The
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suggested segmentation algorithm provides two advancements: 1) it reliably de-
tects regions of difficult motion patterns such as vortices or curls due to its
operation in the motion model parameter space, 2) it can handle even spatially
varying motion patterns due to the spatial adaptivity of the parameter distri-
butions. Few user indications are sufficient to accurately segment objects with
strongly varying motion. The approach is formulated as a convex energy mini-
mization problem, which yields the global optimum for two regions and nearly
optimal results for more than two regions.
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Abstract. A successful approach to tracking is to on-line learn dis-

criminative classifiers for the target objects. Although these tracking-

by-detection approaches are usually fast and accurate they easily drift in

case of putative and self-enforced wrong updates. Recent work has shown

that classifier-based trackers can be significantly stabilized by applying

semi-supervised learning methods instead of supervised ones. In this pa-

per, we propose a novel on-line multi-view learning algorithm based on

random forests. The main idea of our approach is to incorporate multi-

view learning inside random forests and update each tree with individual

label estimates for the unlabeled data. Our method is fast, easy to im-

plement, benefits from parallel computing architectures and inherently

exploits multiple views for learning from unlabeled data. In the track-

ing experiments, we outperform the state-of-the-art methods based on

boosting and random forests.

1 Introduction

Tracking of a priori unknown objects is still a big challenges in computer vision.
Despite the huge amount of research spent on this task it is still hard to de-
sign robust tracking systems that can achieve human-level performance. Visual
trackers have to cope with all variations that occur in natural scenes such as
shape and appearance changes, different illuminations as well as varying poses
or partial occlusions. Numerous methods to approach the tracking tasks have
been proposed, such as global template-based trackers, shape-based methods,
probabilistic models using mean-shift, particle filtering, local key-point based
trackers, or flow-based trackers. See also [1] for a detailed review.

A recently dominating trend is to apply classifiers – trained on object versus
background – to track objects because they are able to deliver highly accurate
results in real-time. Such tracking-by-detection systems [2] usually train a classi-
fier at the very first frame versus its local background and perform re-detection
in the succeeding frames. In order to handle rapid appearance and illumination
changes, they use on-line classifiers that learn the target object based on their
own predictions, e.g., [3]. However, as these classifiers perform self-learning it is
difficult to decide autonomously where exactly to take the positive and negative
� This work has been supported by the Austrian FFG project MobiTrick (825840) and

Outlier (820923) under the FIT-IT program.

M. Goesele et al. (Eds.): DAGM 2010, LNCS 6376, pp. 493–502, 2010.
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updates, respectively. Even if the object is tracked correctly, the alignment may
not be perfect, which can lead to slightly wrong updates of the tracker (a.k.a
label jitter). If these errors accumulate over time and self-reinforce the classifier
in its wrong decisions, the tracker can easily drift [4].

Recent approaches try to tackle the drifting problem by formulating the
tracking-by-detection task as one-shot semi-supervised learning. For instance,
Grabner et al. [5] proposed an on-line semi-supervised boosting algorithm (On-
line SemiBoost) where supervised updates are only performed at the beginning,
i.e., the first frame. All the subsequent frames are considered as unlabeled data
used in order to regularize the learner with an unsupervised loss function. Al-
though this method has shown to be less susceptible to drifting and is still more
adaptive than a static classifier, it looses the capability of self-learning classifiers
to adapt fast in case of rapid appearance changes. Also highlighting this problem
of Online SemiBoost, recently Babenko et al. [6] formulated the tracking task as
a multiple-instance learning (MIL) problem. Using MIL, the classifier in prin-
ciple is still performing self-learning; however, the allowed positive update area
around the current tracker can be increased and the classifier resolves the am-
biguities by itself, yielding a tracker that is more robust than a pure supervised
learner but less inertial than SemiBoost.

Another semi-supervised learning method that has been recently applied to
tracking [7] is co-training, where the main idea is that two classifiers train each
other on unlabeled data using distinct views [8]. Co-training can be very powerful
but has the main drawback that it requires classifiers which are conditional
independent given the class in order to converge, which is hard to fulfill in
practice. One way to weaken this condition is to use two different classifiers [9]
instead of different sufficient views. However, since this is still often not stable
enough [10] showed that for such an approach it is necessary to take at least three
classifiers. In practice, using different kinds of classifiers is complicated because
it is still an open research problem how to compare the outputs. That is, the
classifiers need to yield comparable performance in order to train each other.
Also, the computing overhead grows with the number of classifiers and not for
all of the learners on-line algorithms exist. Hence, what we need in practice is
a single classifier approach that is able to emulate the multi-view robustness of
using several classifiers.

In this work, we propose a novel on-line semi-supervised learning approach
based on random forests. The method is inherently able to learn from mul-
tiple views and is thus called MVForests. The motivation for taking random
forests [11] for our approach stems from the facts that they are fast and ac-
curate learners, inherently parallel and multiclass capable and less suscpetible
to class-label noise. We grow a common on-line random forest, similar to the
recently proposed method by Saffari et al [12], and hence during evaluation our
algorithm is identical to [12]. However, for learning, our method is able to ex-
ploit both labeled and unlabeled data, where the latter one is necessary in order
to increase the stability of the tracking results. In order to incorporate the un-
labeled data, we create a multi-view learning setting for each of the individual
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trees; that is, each tree is trained individually with a possibly different set of
label predictions for the unlabeled data. In particular, each tree is trained by
a random sub-set of the remaining trees. Thereby, we guarantee that no single
tree is performing self-learning and due to the random selection of trees we fur-
ther achieve that no single tree is provided with the same label estimates for
the unlabeled data set, which preserves the diversity among the trees. We in-
corporate multiple features into learning by restricting each tree to a subset of
feature types. For instance, if we use color features and simple Haar features,
trees of the type Haar features are trained by color-trees and vice versa. This
setting can be extended to an arbitrary number of features. However, as we will
show in the tracking experiments, our method is able to deliver highly accurate
results even when using a single feature type. Our algorithm has several advan-
tages: First, it provides an easy, fast an inherent way to learn from multiple
views. This is necessary in order to ensure repeatability and real-time perfor-
mance. Second, since we use more than two learners, we have weaker theoretical
conditions in order to show convergence of our method [10]. As we will show in
the experiments, our method outperforms the state-of-the-art tracking methods
based on boosting and, on average, performs better than using fully self-learned
random-forests [12] or off-line random forests [13].

The reminder of this paper is as follows. In the following section, we will
introduce the basic notations and shortly review related work. Then, in Section 3,
we will introduce our novel on-line learning method. We will evaluate our method
on the task of visual object tracking in Section 4. Section 5 concludes the paper
and discusses ideas for future work.

2 Notations and Related Work

In supervised learning one deals with a labeled dataset DL ⊆ X × Y =
{(x1, y1), . . . , (x|DL|, y|DL|)}, where xi ∈ X = IRP and yi ∈ Y = {+1,−1}.
In contrast, unsupervised methods aim to find an interesting (natural) structure
in X using only unlabeled input data DU ⊆ X = {x1, . . . ,x|DU |}. Although
supervised learners usually yield better results, most of the time unlabeled data
can be obtained significantly easier than labeled samples. Hence, there exist in-
creased interest in semi-supervised learning methods [14], such as co-training [8],
which are able to exploit both labeled DL and unlabeled DU data. In co-training,
the main idea is that two initial classifiers h1 and h2 are trained on labeled data
(x1

i , yi), (x2
i , yi) ∈ DL, where x1 and x2 shows two views of the same data point.

Then, these classifiers update each other using the unlabeled data set DU , if one
classifier is confident on a sample whereas the other one is not. Co-training clas-
sifiers minimize the error on the labeled samples while increasing the agreement
on the unlabeled data. Thus, the unlabeled data helps to improve the margin
of the classifiers and to decrease the generalization error [15]. The approach has
proven to converge, if two assumptions hold: (i) the error rate of each classifier
is low, which means each classifier is in principle able to solve the given task,
and (ii) the views must be conditionally independent [8]. Especially the second
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condition is more of a theoretical requirement and is hard to fulfill in practice.
However, the independence condition can be relaxed (e.g., [16,10,15]), for in-
stance, by applying more than two classifiers. If more than two classifiers are
used, co-training becomes multi-view learning1. For practical usage, this means
that co-training can even be applied if the learners are slightly correlated.

Computer vision naturally offers many physical “real-world” views, which
can be exploited by co-training and multi-view learning. For instance, [17,18]
combined different simple cues based on shape, appearance, or motion to train
visual classifiers. Co-training has also been applied to tracking. For instance,
Tang et al. [19] used an SVM-based co-training approach that was later extended
by Yu et al. [20]. Recently [7] presented an on-line boosting approach which
outperforms the previous methods based on SVMs.

2.1 On-line Random Forests

Random Forests (RFs) were originally proposed by Amit and D. Geman [21],
extended by Breiman [11] and consist of ensembles of T independent decision
trees ft(x) : X → Y = {1, . . . ,K}. For a forest F = {f1, · · · , fT } the predictive
confidence can be defined as Fk(x) = 1

T

∑T
t=1 pt(k|x), where pt(k|x) is the esti-

mated density of class labels of the leaf of the t-th tree, where sample x resides.
A decision is made by simply taking the maximum over all individual probabil-
ities of the trees for a class k with C(x) = argmax

k∈Y
Fk(x). Breiman [11] showed

that the generalization error of random forests is upper bounded by

GE ≤ ρ̄
1 − s2

s2
, (1)

where ρ̄ is the mean correlation between pairs of trees in the forest2 and s is
the strength of the ensemble (i.e., the expected value of the margin over the
entire distribution). In order to decrease the correlation of the trees, each tree
is provided with a slightly different subset of training data by subsampling with
replacement from the entire training set, a.k.a bagging [22]. Trees are trained
recursively, where each split node randomly selects binary tests from the fea-
ture vector and selects the best according to an impurity measurement. The
information gain after node splitting is usually measured with

ΔH = − |Il|
|Il| + |Ir |

H(Il) −
|Ir |

|Il| + |Ir|
H(Ir), (2)

where Il and Ir are the left and right subsets of the training data, respectively.
H(I) = −

∑K
i=1 p

j
i log(pj

i ) is the entropy of the classes in the node and pj
i is

1 Note that in the literature the term “multi-view learning” is mainly used for learning

from two views or classifiers, respectively. In this work, we distinguish between the

two terms in a way that “co-training” only uses two views and is a special case of

multi-view learning, where in the latter case always more than two views are used.
2 The correlation is measured in terms of the similarities of the predictions.
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the label density of class i in node j. The recursive training continues until a
maximum depth is reached or no further information gain is possible.

RFs have demonstrated to be better or at least comparable to other state-of-
the-art methods in both classification [11,23] and clustering [24]. Especially, the
speed in both training and evaluation is one of their main appealing properties.
Additionally, since the trees are trained and evaluated independently, RFs can
easily be parallelized, which makes them interesting for multi-core and GPU
implementations [25]. Finally, compared to boosting and other ensemble meth-
ods, RFs are more robust against label noise [11]. This resistance to noise, is
especially important when learning from unlabeled data where wrong label esti-
mates are an inherent problem. These advantages of random forests have also led
to increased interest in the computer vision domain. For instance, recently [26]
presented an efficient object detection framework based on random forests, [27]
presented a real-time algorithm for semantic segmentation based on randomized
trees, and [28] presented state-of-the-art categorization results using RFs. Ran-
domized trees have also successfully been applied to visual tracking, either in
batch mode using keypoints [13] or on-line using tracking-by-detection [12].

Random forests, as reviewed above, is an off-line learning method. Recently,
Saffari et al. [12] proposed an on-line version of RFs, which allows to use them
as on-line classifiers in tracking-by-detection systems. Since recursive training of
decision trees is hard to do in on-line learning, they propose a tree-growing proce-
dure similar to evolving-trees [29]. The algorithm starts with trees consisting only
of root nodes and randomly selected node tests fi and thresholds θi. Each node
estimates an impurity measure based on the Gini index (Gi =

∑K
i=1 p

j
i (1 − pj

i ))
on-line, where pj

i is the label density of class i in node K. Then, after each on-line
update the possible information gain ΔG during a potential node split is mea-
sured. If ΔG exceeds a given threshold β, the node becomes a split node, i.e., is
not updated any more and generates two child leaf nodes. The growing proceeds
until a maximum depth is reached. Even when the tree has grown to its full size,
all leaf nodes are further on-line updated. The method is simple to implement
and has shown to converge fast to its offline counterpart. Additionally, [12] also
showed that the classifier is faster and more noise-robust compared to boosting,
which makes it an ideal candidate for our tracking system.

3 On-Line Multi-view Training

As we have seen in the previous section, co-training is a popular approach in
order to incorporate unlabeled data and has been used in many computer vision
tasks. In this section, we will introduce a novel multi-view learning approach
called MVForests, which extends the idea of co-training to an arbitrary number
of views using random forests.

In particular, consider a random forest F = {f1, · · · , fT }, where T is the
number of trees. Further, assume an on-line setting, where the training samples
xi arrive sequentially. If xi is provided along with its class label yi we can simply
update the forest using [12]. If xi is an unlabeled sample, we have to estimate
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its label ỹi; however, without using self-learning to reduce drifting. Therefore,
we propose the following strategy: For each tree ft we randomly select with
replacement a sub-forest F∗

t , with |F∗
t | = T , i.e., the forest consists of the

same amount of trees as the original forest. This strategy can be interpreted as
performing bagging on trees and results in forests where some trees of F are used
multiple times, whereas on average one third (see [22]) of the total available trees
are left out. We call the sub-forest F∗

t for the tth tree parent forest. Note that
for each tree its corresponding parent forest indices are created at the beginning
of the learning and are kept fix during the on-line learning. Then, each ft uses
its corresponding parent forest in order to predict the label for xi; i.e.,

ỹt
i = arg max

k∈Y
F∗

t,k(xi). (3)

We further use the confidence-rated predictions of each parent in order to
encode uncertainties about a label in form of weight estimates. In particular,
we take the confidence of the parent ensemble as weights in form of w̃i =
1
T

∑T
t=1 pt(ỹi|x). For evaluation and testing, we take the original forest F . The

overall algorithm is depicted in detail in Algorithm 1.

Algorithm 1. On-line Multi-View Forests
Require: Sequential training example 〈xi, yi〉 or 〈xi〉
Require: The size of the forest: T
1: // For all trees

2: for t from 1 to T do
3: //sub-sample parent tree ensemble

4: F∗
t ← SubSampleTreeIndices(T )

5: end for
6: // For each arriving sample xi

7: for t from 1 to T do
8: if ∃yi then
9: ft ← updateT ree(ft, xi, yi)

10: else
11: // Estimate label and weight

12: ỹt
i = arg max

k∈Y
evalForest(F∗

t ,xi)

13: w̃t
i = getForestConfidence(F∗

t ,xi, ỹ
t
i)

14: ft ← updateT ree(ft, xi, ỹ
t
i , w̃

t
i)

15: end if
16: end for
17: Output the forest F .

Discussion. Although a random forest acts from the outside as a single classi-
fier, it consists already of a committee of classifiers, i.e., its trees. This suggests
to bring multi-view learning inside a forest. However, there are two important
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things that have to be considered: first, in order to get reliable label predictions
for training each tree, we have to create sub-trees or parents that are strong
enough to deliver accurate predictions. It is clear that for a tree ft the strongest
prediction that it can get out of the forest, though excluding itself, consists of the
averaged prediction of the rest of the trees, i.e.,

∑T
m I(t �= m)ft, where I is the

indicator function. However, it is also clear that if T is a large number, leaving out
one tree will not change the overall predictions at all, which means that using this
strategy each tree will get the same label estimates for xi. Therefore, MVForests
create the parent forests in form of bagged classifiers from the entire forest, which
results in parents where some trees are taken eventually several times and some
trees are not taken at all. On average, 1 − 1

e non-identical trees form a parent
ensemble. We enforce the agreement of the trees on the unlabeled data, which
overall increases the classification margin and improves the generalization. This
strategy ensures that the predictions are reliable but not the same, thus yielding
a typical multi-view setting, which overall preserves the diversity among the trees
(see also Eq. (1)). To the best of our knowledge, this is the first approach that
applies the bagging idea of [22] on sampling from a large amount of classifiers
and not data, as in the typical setting.

Our work is related to the tri-training algorithm [10], where the main idea
is to take three classifiers hi and the ith classifier is trained by the remaining
two classifiers if they agree on the prediction of an unlabeled datum and simu-
latenously each hi has an error below a given threshold. MVForests differ from
tri-training in three important aspects: (i) MVForests are not limited to three
views but perform on an arbitrary number of views, only limited by the number
T of trees that form an ensemble. (ii) Each unlabeled sample is incorporated,
regardless of the agreement and the error of concomitant trees, which makes
our approach much simpler. (iii) MVForest is an on-line algorithm. A second
approach, which is related to MVForests is the recently proposed DAS-RF al-
gorithm [30]; however, in this work an off-line optimization procedure is used
which needs several parameters to be set, and it is not designed to learn on-line
from multiple views.

4 Experiments

Within this section, we demonstrate the performance of our learning method
for the task of object tracking, where we assume no prior knowledge about the
object class available except its initial position. We use eight publicly avail-
able sequences including variations in illumination, pose, scale, rotation and
appearance, and partial occlusions. The sequences Sylvester and David are
taken from [31] and Face Occlusion 1 is taken from [32], respectively. Face oc-
clusion 2, Girl, Tiger1,Tiger2 and Coke are taken from [6]. All video frames
are gray scale and of size 320 × 240. To show the real accuracy of the com-
pared tracking methods, we use the overlap-criterion of the VOC Challenge [33],
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which is defined as Aoverlap = RT ∩ RGT /RT ∪RGT , where RT is the tracking
rectangle and RGT the groundtruth. We compare MVForests to supervised on-
line random forests (On-line RF) [12], off-line random forests (Off-line RF) [13],
MILBoost [6], SemiBoost [5] and CoBoost [7]. We skip the related SVM-based co-
training approaches as they were all outperformed by CoBoost. All methods are
implemented in C++ and run in real-time, i.e., > 25fps. Note that although
MVForest are able to incorporate an arbitrary number of features, to ensure
fair comparison in our experiments we evaluate the tracking performance of
the different approaches using only Haar-features. We use forest sizes of 100
trees, with a maximum depth of 15. For the boosting classifiers, we use 2 × 50
selectors for CoBoost and the original settings for MILBoost [6]. We initialize the
classifiers using virtual samples generated out of the first frame [13], 10 samples
for on-line approaches and 500 for off-line approaches, respectively.

As depicted in Table 1, our approach is able to automatically cover the gap
between supervised on-line training [12] and off-line training [13]. MVForests
perform best in four out of eight sequences, and second best in three. Notably,
we frequently outperform MILBoost, which is currently known to be the best
performing method on these sequences. We also outperform CoBoost, the current
state-of-the-art method for on-line co-training. Please refer to supplamentary
material for the result videos.

Discussion. Semi-supervised tracking methods virtually increase the tracking
robustness by updating with lower weights in case of reduced confidence. The
dilemma, however, arises in case of rapid appearance changes because this also
results in lower confidence measurements. In such cases, semi-supervised trackers
usually perform inferior to supervised ones [6]. The tracking results suggest that
our method is a good compromise in this ambivalent setting, in terms that
MVForest reduce their update weights in case of occlusions but due to the multi-
view set-up are also adaptive when it comes to appearance changes. See also
Figure 1 for a further illustration of MVForest’s update behavior.

Table 1. Accuracy comparison of different approaches using single views measured

using the Pascal VOC overlap criterion. Best performing method marked bold-face.

Second best method marked underlined.

Sequence MVForest CoBoost On-line RF Off-line RF MILBoost SemiBoost

sylv 0.54 0.53 0.53 0.50 0.60 0.46

david 0.71 0.52 0.69 0.32 0.57 0.31

faceocc2 0.78 0.79 0.72 0.79 0.65 0.63

tiger1 0.51 0.41 0.38 0.34 0.49 0.17

tiger2 0.45 0.13 0.43 0.32 0.53 0.08

coke 0.28 0.41 0.35 0.15 0.33 0.08

faceocc1 0.79 0.78 0.71 0.77 0.60 0.71

girl 0.77 0.69 0.70 0.74 0.53 0.69
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(a) Frame# 10 (b) Frame# 88 (c) Frame# 540 (d) Frame# 880

(e) Frame# 10 (f) Frame# 88 (g) Frame# 540 (h) Frame# 880

Fig. 1. Comparison of supervised updates ((a) to (d)) and MVForest’s updates ((e) to

(h)) (red circles: positive updates; blue circles: negative updates; circle radius corre-

sponds to sample update weights). MVForests inherently update with smaller weight if

the sample is noisy whereas supervised updates are hand-crafted and always weighted

equally high (best viewed in color).

5 Conclusion and Future Work

In this paper, we have proposed a novel on-line multi-view learning algorithm us-
ing random forests called MVForests. MVForests learn from unlabeled data by
emulating a multi-view setting inside the random forests, where each tree receives
label estimates by a randomly selected sub-set of the trees forming the forest.
We outperform the state-of-the-art learning methods on the task of visual object
tracking. It should be noted that our multi-view learning approach is not limited
to RFs, and in principle, can be applied to any ensemble of classifiers. MVForests
are by no means limited to tracking. Hence, in future work, we plan to apply our
method to additional vision problems such object detection and classification.
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Abstract. A multi-class traffic scene segmentation approach based on

scene flow data is presented. Opposed to many other approaches using

color or texture features, our approach is purely based on dense depth and

3D motion information. Using prior knowledge on tracked objects in the

scene and the pixel-wise uncertainties of the scene flow data, each pixel

is assigned to either a particular moving object class (tracked/unknown

object), the ground surface, or static background. The global topological

order of classes, such as objects are above ground, is locally integrated

into a conditional random field by an ordering constraint. The proposed

method yields very accurate segmentation results on challenging real

world scenes, which we made publicly available for comparison.

1 Introduction

Traffic scene segmentation and categorization is an active field of research in
the computer vision community. Remarkable results on monocular images using
color, intensity, or texture features have been achieved, e.g., by [1], [2], or [3].
Additionally, structure from motion is used for labeling static scenes in [4]. Traffic
scenes are highly challenging since the cameras are (quickly) moving through
an unknown environment with uncontrolled illumination or weather conditions,
highly dynamic interaction of multiple objects, and a variety of different object
classes in the scene. In practice, reliable color information is often not available.

Recent advances in scene flow computation allow for the reconstruction of
dense 3D motion fields from stereo image sequences in real-time [5], [6]. With
such methods, depth and motion information is available at almost every pixel in
the image, enabling new opportunities for object detection and scene segmenta-
tion. In [7], Wedel et al. use graphcuts to separate moving points from stationary
points in the scene flow data (two class problem).

We extend this idea to a multi-class segmentation problem, replacing the
threshold-based reasoning as in [7] by a probabilistic hypothesis competition.
At this, we focus on traffic scenes where the vision sensor is mounted behind
the windshield of the ego-vehicle, which moves in a mainly static, but unknown
structured environment. In our model, the world consists of a ground surface
(typically the road), static elevated obstacles on the ground surface (buildings,
traffic signs,...), as well as a finite number of independently moving objects

M. Goesele et al. (Eds.): DAGM 2010, LNCS 6376, pp. 503–512, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. System overview. Motion, depth, height, and surface normal features are ex-

tracted from 3D scene flow data and transferred into CRF class potentials for (known)

moving objects, the ground surface, and the static background. Both smoothness and

ordering constraints are integrated at the inference step.

(other cars, pedestrians, bicyclists,...). The objective of our approach is to pro-
vide a pixel-wise labeling, assigning each pixel in the current image to one of the
disjunct classes static background/obstacle, ground, or moving object.

The moving object class is further separated into a set of known objects, which
have been tracked before, and an unknown moving object class. This means, we
directly exploit object information (position, orientation, velocity,...), available
from previous time steps. The indiviual likelihood of each pixel belonging to a
particular class based on the scene flow data is defined. The interaction of neigh-
boring pixels is incorporated by modeling the problem as a Conditional Random
Field (CRF), a widely used representation for segmentation problems. Beside
requiring smoothness of the segmentation result, we integrate model knowledge
on the scene topology such as objects are above the ground into our labeling.
Fig. 1 gives an overview on the system.

Defining the potentials based on scene flow features has several advantages
compared to similar stereo vision based approaches using gray value distances,
for example, [8]. Issues such as robustness to varying illumination or denoising of
the flow field are already addressed at the scene flow computation level. The seg-
mentation directly benefits from all improvements at this level without changing
the actual segmentation approach. Furthermore, we are able to apply the same
segmentation algorithms to scene flow data provided by other sensors.

We will first introduce the generic mathematical framework in Section 2. Then,
an exemplary realization of the CRF potential functions is given in Section 3.
The system will be evaluated based on challenging real-world scenes in Section 4.
Section 5 concludes the results and gives an outlook on future work.

2 General CRF Segmentation Framework

Let L = {l1, . . . , lI} denote a labeling for a given image, where the label li ∈
{C1, . . . CJ} assigns a particular classCj to the i-th pixel. The objective is to find a
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labelingL∗ from the set of all possible labelings, L, that maximizes the conditional
probability p(L|z,Θ), i.e., L∗ = argmaxL∈L p(L|z,Θ). Here, the feature vector
z, with z = [zT

1 , . . . , z
T
I ]T, contains the pixel-wise input data for the segmentation

process, and Θ represents a set of global parameters. We model p(L|z,Θ) as CRF
[9] aligned to the pixel grid with a maximum clique size of two as

log(p(L|z,Θ)) =
I∑

i=1

Φ(li, zi,Θ) +
∑

(s,t)∈N

Ψ(ls, lt, zs, zt,Θ). (1)

In our model, the positive function Φ defines the unary potentials for each class
Cj . At this point it is assumed that the potential at pixel i depends only on
the parameters and the feature data at this position. The potentials between
neighboring pixels are given by the positive function Ψ , where N denotes the
set of all pairs of neighboring pixels.

There exist several inference methods, such as graph cuts or loopy belief
propagation (LBP) [10], to minimize the energy of a CRF. For a comparative
study on these methods see [11]. The segmentation method proposed in this
paper utilizes LBP, but is generic in a sense that it does not depend on the
actual choice of the inference method. In the following, we will give a concrete
realization of the potential functions.

3 Scene Flow-Based Traffic Scene Segmentation

In our approach, the feature vector zi of the i-th pixel consists of a position
and velocity vector of the corresponding 3D point with respect to a static world
coordinate system, i.e., zi = [Xi, Yi, Zi, Ẋi, Ẏi, Żi]T. For each zi a covariance
matrix is computed as in [7]. The parameter set Θ includes the intrinsic and
extrinsic parameters of the camera, ego-motion, as well as a ground surface model
Ω with parameters ΘΩ , and a list of M tracked objects O = {O1, . . . ,OM}.

For the labeling decision, each class provides a certain expectation on particu-
lar elements of the feature vector. For example, the ground surface gives a strong
constraint on a point’s height, while the motion state of a known tracked object
forecasts the velocity of a point that belongs to this object. This means, we can
extract different criteria based on the feature vector that each are discriminative
for a subset of our target classes. Thus, we compose the total potential function
Φ by the sum of K single potential functions Φk, 1 ≤ k ≤ K, that incorporate
these criteria:

Φ(li, zi,Θ) =
K∑

k=1

Φk(li, zi,Θ). (2)

These functions could be learned from sufficiently large training data. Alterna-
tively, this concept also allows for an intuitive modeling of the scene. Below we
will propose K = 4 realizations of unary potentials for traffic scene segmentation
based on scene flow, including motion, distance, height, and surface normal cri-
teria. Other knowledge on the expected scene could be easily added accordingly.
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Fig. 2. Base functions used for defining the potentials

3.1 Basic Functions

The single potential functions Φk are defined based on different parametrization
of three basic functions scaled to the range κ = [κmin, κmax] (see Fig. 2).

Gaussian: A bell-shaped, zero-mean, multi-dimensional Gaussian function g
with covariance matrix �x, defined as

g (x,�x,κ) = (κmax − κmin) exp
(
−1/2 xT

�
−1
x x

)
+ κmin (3)

The function is scaled in a way that its maximum is κmax and it converges
towards a minimum value of κmin. For κmax = (

√
(2π)|�x|)−1 and κmin = 0 it

corresponds to a normal distribution.

Sigmoidal: A one-dimensional sigmoidal function s with width λ and turning
point at x = 0, scaled to the range κ with

s(x, λ,κ) = (κmax − κmin)/(1 + exp (−x/λ)) + κmin. (4)

Π-shaped: A gating function Π that is composed of two opposite sigmoidal
functions with slope λ

Π(x, xmin, xmax, λ,κ) =(κmax − κmin) (s(x− xmin, λ, 0, 1)
−s(x− xmax, λ, 0, 1)) + κmin (5)

It has its maximum value κmax within xmin and xmax, respectively, and converges
towards κmin outside this range. To limit the number of parameters, κmin and
κmax will be assigned to one of three basic potential levels κVL, κUL, and κDK for
very likely, unlikely, and don’t know. Each level can be increased by the constant
offset κSP to be able to slightly prefer a given class (notation: κ+

XX = κXX + κSP).

3.2 Unary Potentials

In the following, the main ideas of the function design are presented. In our
approach, the classes C1, . . . , CJ are denoted as BG (static background/ obstacle),
GS (ground surface), O1 (tracked object no. 1), . . . , OM (tracked object no. M),
and UO (unknown moving object), i.e., J = M + 3. Each potential function Φk

must be defined for all candidate classes Cj .
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Motion Potential. The larger the distance of the velocity vector V i

= [Ẋi, Ẏi, Żi]T to the expected velocity Ṽ i(Cj ,Θ) at this position, the more un-
likely belongs this point to classCj . If it is very close to the expectation, we do not
know whether this pixel belongs to the given class, since there might be another
class of similar motion in the scene, but we want to slightly prefer this hypothesis.
For all classes beside UO we are able to specify Ṽ i. The background and ground
are stationary and, thus, move only according to the known camera motion. The
velocity vector of tracked objects is also assumed to be known. This yields

Φ
(motion)
1 (li = Cj , zi,Θ) = log g

(
V i − Ṽ i(Cj ,Θ),�ΔV ,κ

(j)
1

)
, Cj¬UO (6)

where �ΔV denotes the covariance matrix of the velocity difference and κ
(j)
1 =

[κUL, κ+
DK]. For Cj = UO, a constant potential of κ+

UL is defined.

Distance Potential. Assuming we have an idea on the m-th tracked object’s
pose and dimension in 3D space, we are able to specify an expected distance
range [Z̃min,i(Om), Z̃max,i(Om)] for the class Om. If Zi lies outside this range,
the i-th point does very unlikely belong to the given object class. On the other
hand, if it is within the range, the likelihood for the object class increases. This
is modeled by the Π-shaped basic function. For the class GS, we can directly
predict the distance Z̃i(ΘΩ) of the i-th point based on the surface model Ω. As
for the motion potentials, a Gaussian function is used to transform the distance
into a potential. There is no expectation on the distance for the classes BG and UO.
However, we define points above a maximum distance Zmax to be very likely to
belong to the background, and unlikely to belong to an unknown object. Points
closer than Zmax are equally likely to belong to either background or an unknown
object based on the distance, which is expressed by a sigmoidal function. The
distance potential function Φ

(dist)
2 is thus defined as Φ(dist)

2 (li = Cj , zi,Θ) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
log s

(
Zi − Zmax, λ

(j)
2 ,κ

(j)
2

)
, Cj ∈ {BG, UO}

log g
(
Zi − Z̃i(ΘΩ), σ2

ΔZ ,κ
(j)
2

)
, Cj = GS

logΠ
(
Zi, λ

(j)
2 , Z̃min,i(Om), Z̃max,i(Om),κ(j)

2

)
, Cj = Om

(7)

with κ
(j)
2 : [κUL, κ+

DK]
(Om,GS), [κDK, κVL](BG), [κUL, κDK](UO) ; λ(BG)

2 > 0, λ(UO)
2 < 0, and

σ2
ΔZ corresponding to the variance of the distance difference.

Height Potential. Analog to the distance potential we can define an expected
height range [Ỹmin,i(Om), Ỹmax,i(Om)] for a given known object class as well as
for the expected ground height Ỹi(ΘΩ). For the unknown object class a con-
stant height range is assumed. We do not have an expectation on the height of
the background class. However, what we know is that points above a maximum
height Ymax are unlikely to belong to moving objects or the ground surface and,
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thus, are likely to belong to the background class. The height potential function
Φ3(height) is given by Φ

(height)
3 (li = Cj , zi,Θ) =⎧⎪⎪⎪⎨⎪⎪⎪⎩

log s
(
Yi − Ymax, λ

(j)
3 ,κ

(j)
3

)
, Cj = BG

log g
(
Yi − Ỹi(ΘΩ), σ2

ΔY ,κ
(j)
3

)
, Cj = GS

logΠ
(
Yi, λ

(j)
3 , Ỹmin,i, Ỹmax,i,κ

(j)
3

)
, Cj ∈ {Om, UO}

(8)

with κ
(j)
3 : [κDK, κVL](BG), [κUL, κDK](GS), [κUL, κ+

DK]
(Om,UO) ; and λ

(BG)
2 > 0.

Surface Normal Potential. In traffic scenes, the class GS differs from all
other modeled classes by its surface normal. The predicted surface normal of
the ground surface at a given position i is defined by ñi(ΘΩ). The expected
normal of any other class is assumed to be perpendicular to the ground surface
normal. Thus, we can formulate a separation criteria based on the angle α be-
tween ñi(ΘΩ) and the measured surface normal ni by a sigmoidal function as

Φ
(normal)
4 (li = Cj , zi,Θ) = log s

(
α (ñi(ΘΩ), ni) − 45◦, λ(j)

4 ,κ
(j)
4

)
, ∀Cj (9)

with κ
(j)
4 = [κUL, κVL] for all classes, and λ

(GS)
4 < 0, λ(BG,Om,UO)

4 > 0.
At pixels with no scene flow data available, e.g., at stereo occlusions, a con-

stant potential is added for all classes that slightly prefers the BG class above the
horizon and GS below.

3.3 Binary Potentials

The binary terms Ψ in (1) define the interaction of two neighboring pixels con-
cerning the labeling decision, where the neighborhood structure is defined by
the four neighborhood of the image grid. In this contribution the modeling of
the binary terms is based on two assumptions. First, we claim smoothness for
the labeling result by defining neighboring pixels to be assigned to the same
class with a high likelihood τ1 and to be labeled different with a low likelihood
τ2 (Potts model). Second, prior knowledge on the global topological order of
classes in the image is locally integrated by an ordering constraint.

Since cars and pedestrians move on the ground surface and are not assumed to
fly, pixels representing one of the object classes are likely to be above GS labeled
pixels, while BG pixels are likely to be above all other classes with respect to the
image rows. Instead of learning the order of labels, as for example in [12], our
ordering assumption is directly modeled by the relation ’≺’, defining the strict
topological ordering of the class labels GS ≺ {O1, ..., OM, UO} ≺ BG from bottom to
top in the image. For two neighboring pixels at image rows vs and vt, assuming
w.l.o.g. vs ≤ vt, the binary terms are given by

Ψ(ls = Cjs, lt = Cj t, zs, zt,Θ) =

⎧⎨⎩ τ1 , js = jt
τ2 , js �= jt ∧ (js ≺ jt ∨ vs = vt)
τ3 , js �= jt ∧ js ⊀ jt ∧ vs < vt

, (10)

with Cjs, Cj t ∈ {BG, GS, . . . , UO}, and τ1 > τ2 � τ3 > 0, i.e., τ3 represents the
very small likelihood that the ordering constraint is violated.
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4 Experimental Results

The proposed segmentation method is tested based on representative traffic scenes
with manual ground truth available. The rectified stereo image pairs at two con-
secutive time steps together with the camera parameters, ego-motion information,
as well as the ground truth labeling and prior information on moving objects in
the scene is made publicly available.1 We encourage other researchers in the field
of scene flow segmentation to compare their methods based on these examples.

4.1 Data Set and Experimental Setup

Three classes of scenes have been selected (see Fig. 3).

(a) INTERSECTION (b) STROLLER (c) LEAD VEHICLE

Fig. 3. The test scenes (mask: pixels w/o scene flow data, e.g. due to stereo occlusions).

INTERSECTION: An intersection scene with four oncoming cars. This scene con-
tains partial occlusions, distant objects, as well as two nearby objects that move
in the same direction with approximately equal velocity.
STROLLER: A pedestrian with a stroller is walking in front of a crossing car. The
pedestrian casts a strong stereo shadow on the object, i.e., there are large regions
that can only be seen from one camera.
LEAD VEHICLE: The ego-vehicle follows the lead vehicle at approximately the
same velocity through dense urban traffic, including two oncoming cars, a slow
moving trailer ahead, and one car entering the visible field from the right.

In all scenes, the distance range and velocity of object O1 is known from
tracking using a similar method as proposed in [13]. The velocity of the ego-
vehicle and the intrinsic and extrinsic camera parameters are also known. The
scene flow is computed based on [5], however, any other method could be used
alternatively. A flat ground plane surface model is used here for simplicity. The
only parameter of this model is the pitch angle of the camera relative to the
ground, which is estimated from the measured 3D points. The constant camera
height over ground is known in advance. The parameterization of the unary base
potential levels is κVL = 0.9, κUL = 0.1, κDK = 0.5, and κSP = 0.05. We further
use Zmax = 50 m, Ymax = 3 m, and τ1 = 0.95, τ2 = 0.05, and τ3 = 0.0001 for the
binary terms in all experiments. However, the actual choice of these parameters
is uncritical. Even larger changes influence the result only marginally.
1
http://www.mi.auckland.ac.nz/EISATS

http://www.mi.auckland.ac.nz/EISATS


510 A. Barth et al.

4.2 Labeling Results

The segmentation results for the INTERSECTION scene are depicted in Fig. 4 for
different configurations. In (a) the final labeling after 40 iterations of message
passing is shown, including all proposed unary and binary potentials. The manual
ground truth labeling is depicted in (b). As can be seen, the resulting labeling
correctly assigns most pixels on the first object to the tracked object class O1.
Two of the three remaining cars are correctly assigned to the class UO (non-
colored regions). Segments of this class can be used to initialize new object
tracks. The white car behind the tracked object is too slow in this scene to
be separated from the stationary background and, thus, is labeled as BG. The
road surface is reconstructed very well. Only ground regions close to the objects
are wrongly identified as O1 or UO due to moving shadows on the ground. The
confusion matrices for all investigated scenes are given in Table 1.

In (c), only the unary potentials are considered, yielding several background
blobs within the ground surface region and the objects. From (d) to (g) the ef-
fect of skipping single unary potentials is demonstrated. Without motion informa-
tion, the unknown moving objects are assigned to the background, while without
the distance information, the two nearby objects are merged to one tracked object
due to the similarity in motion. The missing surface normal potential in (f) leads

(a) final labeling (b) ground truth (c) unary only

(d) w/o motion (e) w/o distance (f) w/o surface normals

(g) w/o height (h) w/o known object (i) w/o ordering c.

Fig. 4. Labeling results at different system configurations. The colors encode the max-

imum class potentials at a given pixel (blue=static background, green=ground surface,

red=tracked object, black=unknown moving object).
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Table 1. Confusion matrices for INTERSECTION, STROLLER, and LEAD VEHICLE scene.

BG=background, GS=ground surface, O1=tracked object, UO=unknown moving object.

GT\Est. % BG GS O1 UO % BG GS O1 UO % BG GS O1 UO

BG 72.9 99.3 0.7 0 0 75.5 99.8 0.1 0.1 0 61.7 93.9 2.4 0.1 3.6
GS 21.3 1.9 94.3 2.2 1.6 15.4 11.0 80.5 3.1 5.4 25.7 1.2 96.6 0 2.2
O1 3.6 4.9 0.1 94.9 0.1 4.8 14.0 4.4 74.5 7.1 6.5 1.4 18.1 78.5 2.0
UO 2.2 29.1 0.1 3.3 67.5 4.3 29.4 0.2 0 70.4 6.1 5.5 8.1 0 86.4

(a) ground truth (b) unary only (c) total

Fig. 5. Segmentation results of STROLLER (top) and LEAD VEHICLE (bottom) scene. Mid-

dle: Result if data is evaluated for each pixel independently. Right: Result if smoothness

and global ordering constraints are incorporated via local neighborhood inference (re-

sult after 40 iterations of loopy belief propagation).

to a degradation for a larger ground region at the left-hand side that is wrongly
assigned to background, however, it also indicates that the surface normal is re-
sponsible for the discontinuities between ground and background at the horizon
in the final labeling. The absence of the height potential alters the segmentation
result only marginally in this scene, since there is not much structure about 3 m
in the considered distance range. Without the information on the tracked object,
all objects are assigned to the UO class in (h) as expected. The ordering constraint
eliminates implausible background blobs that would occur within the road surface
without this constraint as shown in (i).

In Fig. 5, large parts of the tracked car and the pedestrian with the stroller are
correctly labeled as O1 and UO, respectively. Note that the currently stationary
leg is assigned to the background, since it is a non moving obstacle. The stereo
occlusion is filled with GS from below and BG from the top. The LEAD VEHICLE
results show a very good reconstruction of the ground surface (freespace) and
the moving objects in the scene, although the ego-vehicle is also moving.

5 Conclusion

In this contribution a generic framework for precise segmentation of traffic scenes
based on scene flow data and object priors has been proposed. This framework is
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generic in a way that it is independent of the actual scene flow implementation,
CRF inference method, or object tracking algorithm. The proposed potential
functions represent an intuitive model of traffic scenes, including four class types
as well as ordering constraints for these classes. The model can be easily extended
by more complex features, other class types, or sophisticated surface models.

The experimental results have shown that the proposed segmentation method
performs very well on the considered test scenes. The main problems arise at
pixels with missing or error-prone scene flow data. In such situations, appearance
features, such as intensity edges or texture information, could provide useful
information to further improve the segmentation results, especially at the object
boundaries. Appearance potentials could be easily integrated into our framework.

Based on our segmentation algorithm and the published ground truth, it is
possible to evaluate and compare different scene flow implementations in future.
We are excited to see how other methods perform on our test scenes.
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Abstract. If one considers only local neighborhoods for segmenting an

image, one gets contours whose strength is often poorly estimated. A

method for reevaluating the contour strength by taking into account

non local features is presented: one generates a fixed number of ran-

dom germs which serve as markers for the watershed segmentation. For

each new population of markers, another set of contours is generated.

”Important” contours are selected more often. The present paper shows

that the probability that a contour is selected can be estimated without

performing the effective simulations.

1 Introduction

Image segmentation aims at extracting from an image the contours of the objects
of interest. This task is extremely difficult and problem depending. We propose
here a stepwise approach, in which we first extract from the image all contours
which may be pertinent. These contours are the frontiers of a fine partition of the
image. Each tile represents a region which is homogeneous for some criterion. In
general these contours are far too numerous and the image is oversegmented. In a
second step one orders the contours according to their importance in the image.
A dissimilarity between adjacent tiles is estimated. Coarser partitions are then
produced by merging all regions whose dissimilarity is below a given threshold
;every time two regions are merged, one reevaluates their dissimilarity with their
neighborhood, and the process is stopped as soon some additional criterion is
satisfied. Each new fusion produces a finer partition ; these partitions are nested
and may be ranked according their coarseness. The weight of a contour is then
simply the first level of coarseness where this contour is no more present.

Such nested partitions are called hierarchies. There a two main classes of
methods for extracting the contours of interest from the hierarchy, in order to
get the final segmentation. In the first a functional is defined and the set of
contours maximizing this functional is extracted from the hierarchy [1,2]. An-
other approach to segmentation uses seeds or markers for the regions of interest
(including the background). Only the strongest contours separating each pair
of markers are retained. For the resulting segmentation to be satisfactory, two
conditions are to be met : a) the finest partition should contain all contours of
interest ; b) the strength of the contours has to be correctly estimated, otherwise,
the wrong contours separating markers will be selected.

M. Goesele et al. (Eds.): DAGM 2010, LNCS 6376, pp. 513–522, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Unfortunately, some contours of objects are intrinsically weak since they corre-
spond to transitions between similar color shades for instance, or objects having
almost the same luminance as their background. When such objects are large
enough and appear on a clean background, they are nevertheless easily rec-
ognized by the human eye, but not easily segmented by the computer. Local
methods will estimate these contours as very weak as noticed in [3]. We present
in this paper a set of new methods able to produce useful and reliable estimates
of the contour strength.

Authors of [4] have described such a method in the context of the water-
shed segmentation of gradient images. Random germs are spread all over the
image and server as markers for the watershed segmentation of a gradient im-
age. Large regions, separated by low contrast gradient from neighboring regions
will be sampled more frequently than smaller regions and will be selected more
often. On the other hand, high gradient watershed lines will often be selected
by the watershed construction, as there are many possible positions of markers
which will select them. So the probability of selecting a contour will offer a nice
balance between strength of the contours and size of the adjacent regions. The
method produces good results for multimedia types of images as well as for 3D
granular material but suffers from a major drawback : in order to obtain a ro-
bust estimation of the contour strength a relatively large number of simulations
has to be made, typically on the order of 50 simulations, implying the construc-
tion of 50 watershed. This paper shows how to obtain estimates of the contour
strength without simulations. Analyzing under which conditions a given piece
of contour will be selected by the watershed makes it possible to compute the
contour strength without the need of any simulation. More precisely, one has to
determine for each contour the two zones, separated by this contour, where a
marker has to be present in order for the contour to be selected.

The paper is organized as follows. In a first section we explain how to produce
a hierarchy to start with, obtained with the watershed transform ; we explain
why in this case, the strength of the contour is often badly estimated. We then
describe an efficient representation of a hierarchy, as a weighted tree. The last
part of the paper presents how to implement the stochastic watershed on this
tree, in order to estimate a contour strength compatible with the features one
desires to stress.

2 Producing and Representing Hierarchies

2.1 Producing a Hierarchy with the Watershed Transform

The watershed associates to each regional minimum of a topographic surface its
catchment basin. Morphological segmentation applies the watershed transform to
the gradient of the image to segment. Like that, one obtains a fine partition where
each region is the catchment basin associated to a minimum of the gradient image.

Suppose now that this same topographic surface is flooded up to some level
λ. A number of lakes are created, some of them are still regional minima of the
topographic surface, covering one or more minima of the initial surface ; others
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are ”full”, in the sense that the level of the lake reaches the lowest pass point
leading to another minimum: such lakes are not regional minima anymore. The
catchment basins of this flooded relief form a partition which is coarser than the
partition associated to the unflooded surface ; a number of adjacent regions of
the fine partition will have merged to form larger regions.

For a level μ > λ, the same process can be repeated, leading to a yet coarser
partition. Hence, the partitions formed by the catchment basins of a topographic
surface, for increasing levels of flooding of this surface, form a hierarchy. This
hierarchy can be represented by the fine partition formed by the catchment
basins of the unflooded surface plus a dissimilarity measure between adjacent
regions, equal to the flooding level for which these regions merge.

2.2 Dissimilarity Associated Hierarchies

More generally, we may associate a hierarchy to each partition for which a dis-
similarity between adjacent regions has been defined. Merging all regions with a
dissimilarity between some level λ produces a coarser partition. For increasing
levels λ the partitions become coarser and coarser, producing again a hierarchy.

2.3 Representing a Hierarchy as a Tree

In order to give a visual support to the algorithms presented below, we associate to
each hierarchy a topographic surface defined as follows. This surface is completely
flat, except along the edges of the tile of the finest partition Π in the hierarchy.
A 0 thickness wall is erected along each piece of contour, with a height equal to
the dissimilarity between both adjacent regions. Fig.1 illustrates this construction
process. The bottom row shows the successive levels of a hierarchy, where from
level to level the most similar regions have merged ; the left most image represents
the finest partition. The central row of fig.1 presents the construction of a tree
representing the hierarchy. In the left most image, this tree is reduced to isolated
nodes, representing each a tile of the partitionΠ . Each region ρi is represented by
a node νi of the tree, weighted by the area of the region.

We then flood this topographic surface in order to construct a tree representing
the hierarchy. The upper row shows the topographic surface during flooding.
The left most level shows the walls separating the tiles ; the color of each tile
being the color of the source which will flood this tile. As the level of the flood
increases, it first reaches the level of the lowest wall : the two adjacent lakes
are merged and get a uniform color. As these lakes merge for the first time, an
edge is created between the corresponding nodes, with a weight equal to the
dissimilarity between both regions ; we write eij for the edge linking the nodes
νi and νj .

At level 2 in fig.1, again two lakes meet for the first time along a wall which
separated both lakes and a new edge is created. The same happens at level 3,
for which the surface is entirely flooded and the tree which has been constructed
spans all nodes. However there exists pieces of walls still emerging from the lakes.
As the flood further increases and reaches the level of such a wall, there are not
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Fig. 1. Construction of the minimum spanning tree by flooding a topographic surface

two lakes which meet for the first time, as it is the same lake which is present
on both sides of the wall ; in this case no edge is created.

In summary, as the flood reaches the level of a wall separating two regions ρi

and ρj of Π , there are two possibilities : the lakes on each side of the wall are
distinct lakes which merge and an edge (eij) is created between the correspond-
ing nodes νi and νj ; or both lakes form in reality one and the same lake, created
by mergings of lakes at a lower level, in this case, no edge is created between
them. This shows that regions may merge at a lower level than the dissimilarity
between them : it is sufficient that they belong to a chain of lakes which have
merged at lower flooding levels. Based on this remark, we may replace the initial
dissimilarity between adjacent regions by the flooding dissimilarity, that is the
level for which both regions belong to the same lake during flooding, which is
lower (in mathematical terms, this new dissimilarity is a distance, called sub-
dominant ultrametric distance associated to the initial dissimilarity). In Fig.2
we see on the left the initial image and in the center its gradient. The catch-
ment basins of the watershed constitute the finest partition ; the dissimilarity
between tiles being the lowest pass point on the gradient image between adjacent
regions. The right image shows as dissimilarity the flooding level for which the
tiles merge for the first time. The grey tone values on the right are well below
the values of the gradient image, specially for large regions, as it is the case for

(a) (b) (c)

Fig. 2. (a) Initial image. (b) Gradient value on the contour lines of a segmented image.

(c) Contours weighted by the level of flooding for which they disappear.
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the coat of the cameraman. On the contrary some small contrasted regions are
surrounded by extremely bright pieces of contour. This is due to the fact that
for larger regions, there are often some parts of the contour which are weaker,
leading to early mergings with neighboring regions.

Remark 1. The tree T defined above is the minimum spanning tree of the region
neighboring graph defined as follows : each region is represented by a node ;
adjacent nodes are linked by an edge with a weight equal to the dissimilarity
between both regions. Edges weights along paths of the minimum spanning tree
are minimizing the maximum dissimilarity between each pair of nodes [5]. The
construction of the flooding tree corresponds also to the single-linkage hierarchy
in the context of data clustering.

2.4 Marker Based Watershed Segmentation

The flooding tree also plays an important role in the marker based watershed
construction. Some regions, called markers, are selected and play the role of
sources from which the topographic surface will be flooded. Their flow is such
that they create lakes with a uniform and growing altitude. Consider now the
evolution of a particular lake Λi when the flooding level increases and reaches
the lowest pass point leading to another region. If there is a lake on the other
side, there are two possibilities : this lake is a distinct lake Λj, produced by
another source and these lakes meet for the first time. The pass point where
they meet corresponds to an edge of the flooding tree. This edge will be assigned
a dissimilarity 1. If on the contrary the lake on the other side is the same lake
Λi, originating from the same source, the corresponding edge does not belong
to the flooding tree. If the region on the other side is still dry, it will be flooded
by the overflood of our lake and they will form a unique lake ; in this case, the
corresponding edge belongs to the flooding tree, but does not correspond to a
contour of the marker based segmentation : it is assigned a dissimilarity 0. It is
noteworthy that all significant events such as mergings of lakes and overflood of
a lake into its neighbor take place along the tree constructed above.

The new binary distribution of weights on the flooding tree represents the
marker based segmentation. Cutting all edges with weight 1 produces a forest.
Each tree of this forest has its root in a distinct marker. The union of all regions
belonging to a same tree of the forest constitutes a region of the marker based
segmentation. In mathematical terms, marker based segmentation results in a
minimum spanning forest of the neighborhood graph, in which each tree is rooted
in a marker [5].

3 Stochastic Evaluation of the Strength of the Contours

3.1 Stochastic Marker Based Watershed

The stochastic evaluation of the contour strength as defined by Angulo et al.
[4] assigns to each piece of contour the probability to appear as contour in a
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watershed segmentation, with random markers. As we have seen, marker based
segmentation results in a forest derived from the flooding tree by cutting some
edges of this tree. In order to compute the probability that such an edge becomes
a contour we have to understand for which marker distribution this happens. We
have defined markers as particular regions of the hierarchy which act as sources.
One way to select such regions as markers is by drawing random punctual germs
onto the surface. If at least one germ falls in a given region, this region is selected
as markers ; a region without a germ is not a marker and will be flooded through
sources placed in other regions.

Let us first consider two markers m1 and m2. Both markers become sources
which pour water. Their flow is such that they create lakes with a uniform and
growing altitude. These two lakes keep separated until they finally meet on the
lowest edge, at an altitude λ separating them, which becomes a contour edge.
Each lake will have covered a number of catchment basins separated by walls
with a lower altitude than λ. Both lakes L1 and L2 are separated from the rest
of the topographic surface by edges higher than λ.

If one of the regions, for instance L1 is without a marker, it can only be flooded
through a neighboring region. The lowest connecting edge to a neighboring region
is the edge e12 of altitude λ. So if the region L2 has a marker, it will flood the
region L1 through e12, which is not selected as a contour edge.

If both regions L1 and L2 are without markers, then the union of both regions
L1∪L2 will be flooded from outside, through a pass point of altitude greater than
λ and again the edge e12 between both regions will not be selected as contour edge.

The same analysis may now be reformulated using the flooding tree. Consider
and edge e12 with an altitude λ of the tree, joining two nodes ν1 and ν2. Cutting
all edges of the tree with an altitude higher than or equal to λ produces a forest.
Let us call T1 and T2 the trees of the forest containing respectively the nodes ν1
and ν2. The edge e12 will be a contour edge in a marker based segmentation, if
and only if each of the trees T1 and T2 has at least one node which is a marker.

The next section will propose several modes for promoting randomly a node
to a marker in the tree. For each mode, we then compute the probability of the
edges of the tree to become contour edges.

3.2 Contour Strength for Various Random Distribution of Markers

Uniform Poisson distribution of germs on the surface : the surfacic
stochastic watershed. We first use points as germs. The simplest distribution
of germs is a Poisson distribution. For a fixed number N of germs this reduces
to a uniform distribution of N germs on the topographic surface. As soon one
or more germs fall into a region R1 of the fine partition Π , the corresponding
node is selected as marker. The probability that a germ falls into a region A of
area A obeys a binomial distribution of probabilities p = A

S and 1 − p, where S
is the area of the domain occupied by the function f . So the probability that
out of N germs no one falls into A is (1 − A

S )N .
Using the same notations as above, we consider an edge e12 of altitude λ. We

cut all edges higher or equal than λ and consider the trees T1 and T2 of the forest
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adjacent to e12. The edge e12 is a contour edge in a marker based segmentation,
if and only if each of the trees T1 and T2 adjacent to e12 has at least one node
which is a marker. This means that at least one germ has fallen in each of the
regions L1 and L2 spanned by both trees. We have to compute the probability
of the event {there is at least one germ in L1} and {there is at least one germ
in L2}. The opposite event is the union of two non exclusive events {there is no
germ in L1} or {there is no germ in L2}. Its probability is p{there is no germ in
L1} + p{there is no germ in L2} - p{there is no germ in L1 ∪ L2}, which is:

Pe1,2 = 1 −
(

1 − L1

S

)N

−
(

1 − L2

S

)N

+
(

1 − L1 + L2

S

)N

. (1)

As we have assigned to each node νi of the tree T the area of the underlying
region, the area L1 is simply the sum of the weights of the nodes of the tree T1
in the forest obtained after cutting the edges above λ. We write meas(T1) = L1.

The volumic stochastic watershed. In order to give more importance to
the contrast an alternative measure may be used: we suppose that the marker
is not thrown on the surface but within the volume of the lakes. Considering
again the edge eij of altitude λ, the adjacent regions spanned by the subtrees T1
and T2 may be flooded up to level λ and will then be covered by two lakes L1
and L2 with volumes (V1 = λ× meas(T1)) and (V2 = λ× meas(T2)). If Λ is the
highest dissimilarity between two regions of the hierarchy, the volume occupied
by a lake covering the total surface is (V = Λ× meas(T )). The probability that
eij is selected as an edge is then:

Pe1,2 = 1 −
(

1 − V1

V

)N

−
(

1 − V2

V

)N

+
(

1 − λ
V1 + V2

V

)N

. (2)

The surfacic stochastic watershed with non punctual seeds. In what
precedes we have imagined punctual seeds, able to fall at any point of both
regions Li and Lj adjacent to the edge eij . If the seeds are not points, but a set
B, the probabilities will be changed, as the probability that the set B falls within
a region X will be proportional, not to the area of X , but to the area X �B of
the set X eroded by the structuring element B. This value does depend upon
the shape of X and we have to measure it on the initial image.

Mutatis mutandis, the area stochastic watershed will weight the edges with
the probability:

P (e1,2)=1−
(

1 − L1 �B

S

)N

−
(

1 − L2 �B

S

)N

+

(
1 − L1 �B) + L2 �B

S

)N

.

(3)
As previously we observe that this probability becomes 0 if a regions becomes
too small for containing the set B.
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Likewise, the volumic stochastic watershed will weight the edges with the
probability:

P (e1,2) = 1 −
(

1 − V ′
1

V

)N

−
(

1 − V ′
2

V

)N

+
(

1 − V ′
1 + V2

V

)N

. (4)

where V ′
1 = w(e) × L1 �B and V ′

2 = w(e) × L2 �B.

Results. Fig.3 illustrates the results one obtains for the different methods.
Fig.3(a) and (b) show the initial image and the level for which the contours van-
ish during uniform flooding. Fig.3(c) shows the result of the surfacic stochastic
watershed where one uses random points spread over the surface as seeds. If the
random points are spread within the volume of the lakes, one obtains Fig.3(d),
with large regions and small ones if they are contrasted enough. For balls of a
given size taken as random seed, all regions where the ball cannot enter vanish
yielding the segmentation of Fig.3(e).

Fig.3(c) and Fig.3(e) compares the stochastic watershed where points are used
as markers with the result obtained if one uses disks as seeds. Notice that in this
last case, many small regions have vanished, but not all ; some small regions are
created as they lie between the contours of larger regions.

(a) (b) (c)

(d) (e) (f)

Fig. 3. (a) Initial image. (b) Flooding level for which the contours disappear. (c)

Surfacic stochastic watershed with point seeds. (d) Volumic stochastic watershed with

point seeds. (e) Surfacic stochastic watershed with disks as seeds. (f) Stochastic water-

shed with point seeds followed by a stochastic watershed with disk seeds.
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Furthermore, the methods presented so far start all with a hierarchy defined
by a set of weights on the minimum spanning tree and produce a new set of
weights which express a preference for a type of regions compared to others
(large or contrasted regions for instance). This homogeneity in the representa-
tion of the hierarchies permits to chain the process. Fig.3(f) has been obtained
by computing first a surfacic stochastic watershed and on the results compute a
stochastic watershed obtained with disks as markers. One sees some difference
with Fig.3(e) where only the last stochastic watershed has been used. Figure 4
illustrates some hierarchies of contours obtained on images of the Berkeley Seg-
mentation Dataset [6]. Segmentation results were obtained by thresholding the
contour strength map obtained with volumic stochastic watershed with point
seeds. The Volumic stochastic measures permits to obtain a good trade-off be-
tween size and contrast of the object to be detected.

(a) (b) (c)

Fig. 4. Volumic stochastic watershed with point seeds. Segmentation is obtained by

thresholding the contour strength.

4 Conclusion

The stochastic framework is excessively rich as it permits infinite variations :
other probability laws for the distribution of seeds, random choice of seeds be-
longing to a family of shapes, regionalised distribution of seeds according some
properties of the domain they will fall [7], etc. An additional nice feature, is
that the result always is a probability distribution. That is, whatever the rules
which are adopted, the edges get weights between 0 and 1, which makes it easy
to combine hierarchies. Given two hierarchies H1 and H2 with distinct dissim-
ilarities, it is possible to combine them, by taking for each edge the minimum
(resp. maximum) of its dissimilarity in H1 and H2.

Furthermore, these reevaluation methods of the contours may be chained:
use a first distribution of random germs and on the resulting hierarchy, apply
a second and then a third, before, ultimately use a marker based segmentation
with markers introduced either in an interactive way or through an automated
analysis of the scene.
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Abstract. Feature hierarchies are essential to many visual object recog-

nition systems and are well motivated by observations in biological sys-

tems. The present paper proposes an algorithm to incrementally compute

feature hierarchies. The features are represented as estimated densities,

using a variant of local soft histograms. The kernel functions used for

this estimation in conjunction with their unitary extension establish a

tight frame and results from framelet theory apply. Traversing the fea-

ture hierarchy requires resampling of the spatial and the feature bins. For

the resampling, we derive a multi-resolution scheme for quadratic spline

kernels and we derive an optimization algorithm for the upsampling.

We complement the theoretic results by some illustrative experiments,

consideration of convergence rate and computational efficiency.

1 Introduction

The computation of feature hierarchies is an essential step in many state-of-
the-art visual object recognition systems. The hierarchical processing is well
motivated by observations in biological systems [1]. The present paper proposes
an algorithm for incremental computation of feature hierarchies.

Feature hierarchies can be build with respect to abstraction levels or resolu-
tion [2], p. 8–9, or a combination of both [3,4]. Here, we focus on the resolution of
soft histograms as used in, e.g., [5], where matching is performed on histograms
with increasing resolution, i.e., coarse to fine. In this work, increasing spatial
resolution goes in hand with decreasing resolution in feature space. This is plau-
sible from a practical (computational effort) and statistical (significance) point
of view, and the reciprocal relation of resolution in the spatial and the feature
domain has an theoretical upper bound [6].

Computations in the joint spatio-featural space require a common framework
for spatial positions and generic features. Biological systems have been observed
to use a representation called population codes [7], in earlier work also called
channel codes [8,9]. Channel representations as a computational framework, e.g.
for object recognition, have been introduced in [10], and are directly related to
kernel density estimation [11]. Channel representations of features are basically
soft-histograms or Parzen estimators with a smooth kernel function. They are
beneficial in many tasks due to their robustness [11,23].

Applying channel representations to spatial coordinates results in low-pass fil-
ters or point-spread functions. Subsampled low-pass filters give rise to resolution

M. Goesele et al. (Eds.): DAGM 2010, LNCS 6376, pp. 523–532, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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pyramids [12,13] and multi-resolution analysis. The complementing high-pass fil-
ters became very popular in terms of wavelets [14], where signals are decomposed
based on a orthonormal basis. The main drawback of discrete wavelets is that if
the scaling function (low-pass filter) is smooth, the wavelet becomes highly non-
smooth [15]. In contrast to wavelets, framelets can be selected to be smooth,
which is beneficial for stability, and contain redundancy, which improves ro-
bustness. Similar to wavelets, framelets are compact, which results in limited
interaction and thus sparseness and efficiency in computations, e.g. exploited for
super-resolution still image extraction using C0 framelets [16].

In this paper, we extend the existing work in two ways: a) We derive a
multi-resolution scheme for quadratic spline channel representations (C1 kernels)
using frame theory. b) We derive an algorithm for incrementally compute spatio-
featural hierarchies. Since we consider linear and periodic features, any feature
represented as a combination of linear and periodic parameters is covered.

The paper is structured as follows. The second section on methods gives the
required background and explains the proposed novel methods. In the subsequent
section on experiments and results we explain the performed tests, discuss the
results, and analyze the computational complexity. We conclude the paper with
a summary of achieved results.

2 Methods

2.1 Channel Representations and CCFMs

The channel representation as a computational framework goes back to [10]. In
channel representations features are represented by weights assigned to ranges
of feature values, similar to histograms but exploiting smooth bins. The closer
the current feature value ξ to the respective feature interval center n, the higher
the channel weight fn (for an example, the reader might refer to Section 3.3):

fn(ξ) = k(ξ − n) n ∈ N , (1)

where k(·) is a symmetric, unimodal kernel function and where ξ has been scaled
such that it has a suitable range (note that the channel centers are integers).

In what follows, we have been using quadratic B-splines as kernel function,
since they are smooth and easy to formulate in the z-domain [11]:

B2(ξ) =

⎧⎪⎨⎪⎩
3/4 − ξ2 |ξ| ≤ 1/2
(|ξ| − 3/2)2/2 1/2 < |ξ| < 3/2
0 |ξ| ≥ 3/2

(2)

Comparing (1) with a kernel density estimator, the only difference is that the
kernel function is placed at equidistant positions and not on the samples drawn
from the distribution. Since the kernel is symmetric, the estimated coefficient
at the discrete position is the same in both cases and the distribution of the
stochastic variable ξ, pξ, is approximated by fn in expectation sense [11]:

Eξ{fn(ξ)} = (pξ ∗ k)(n) = (pξ ∗B2)(n) . (3)
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A multi-dimensional channel representation for a set of features is formed by
taking the Cartesian product of the respective one-dimensional representations.
If the spatial coordinates are contained in the feature set, a channel-coded fea-
ture map (CCFM) [17] is generated by local averaging, representing the spatio-
featural density. For instance one might consider local orientation, hue, and
saturation as local image features, resulting in a 5D CCFM. For practical (com-
putational effort) and statistical (significance) reasons, the number of spatial
and featural channels is not independent, but should be chosen reciprocally [6].

As motivated in the introduction, many object recognition approaches require
a hierarchical spatio-featural representation, e.g., a pyramid of CCFMs. As an
example, let us consider an orientation-based CCFM scale-space. At the finest
spatial resolution, we have a minimum number of four orientation channels,
representing e.g. positive and negative responses of a Gaussian derivative. On the
second level, we obtain eight orientation channels, which, if combined with four
by four spatial channels, yields a structure similar to the SIFT descriptor [18],
although with quadratic histogram bins instead of linear ones.

Single level descriptors like SIFT are directly computed from filter outputs,
but if several different levels are to be considered, a staged process that builds
the pyramid successively is beneficial. This means that higher-resolution feature
density estimates are estimated from several lower-resolution estimates when
traversing the pyramid towards lower spatial resolutions, c.f. Fig.1 left.
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Fig. 1. Left: Going upwards in the spatio-featural pyramid reduces spatial resolution

and increases feature resolution. Top right: Downsampling for periodic boundary con-

ditions. The kernel functions are re-entering the domain from the respective opposite

side, i.e., the left most connection refers to the solid grey kernel. Bottom right: Down-

sampling for the zero padded case. The connections outside the existing channels get

zero weight. The four connections have the weights 1/8, 3/8, 3/8, 1/8 in both cases.



526 M. Felsberg

2.2 Multi-Resolution Analysis of Density Estimates

The first step to find a staged computation of the CCFM pyramid is to derive
the scaling function for quadratic B-splines (2). According to [19] it is given as

m0 =
1
8
[1, 3, 3, 1] . (4)

The scaling function allows to compute the scaled quadratic B-spline channel
directly from the unscaled B-spline channel coefficients. This is easily verified
either in the z-domain or by elementary calculus using (2).

If we combine (4) with a downsampling scheme, we compute new channel val-
ues between existing channels and leave out every other channel. This process
is illustrated in Fig. 1, right. For periodic features (periodic boundary condi-
tions), the corresponding matrix operator (subscript p) is a circular matrix with
every other row left out. For linear features, the channel vector is zero padded,
cf. Fig. 1, bottom right. The corresponding matrix operator (subscript l) is a
Toeplitz matrix with every other row left out.

Tp,0 =
1
8

⎛⎜⎜⎜⎜⎜⎝
3 3 1 0 . . . . . . 0 1
0 1 3 3 1 0 . . . 0
...

. . . . . .
...

0 . . . 0 1 3 3 1 0
1 0 . . . . . . 0 1 3 3

⎞⎟⎟⎟⎟⎟⎠ Tl,0 =
1
8

⎛⎜⎜⎜⎜⎜⎝
3 1 0 . . . . . . 0 0
1 3 3 1 0 . . . 0
. . . . . . . . . . . .
0 . . . 0 1 3 3 1
0 0 . . . . . . 0 1 3

⎞⎟⎟⎟⎟⎟⎠ (5)

The subscript p respectively l is omitted if it is obvious from the context.
Let f denote a channel vector. Assume further that g is a low-pass filtered

(with m0) and downsampled copy of f . In matrix notation we obtain

g = 2T0f , (6)

where the factor 2 is required to keep the channel vector g normalized.
We form tight frame filters by applying the unitary extension principle [20]

resulting in the two high-pass filters [21]

m1 =
1
8
[1, 3, −3, −1] m2 = −

√
3

4
[1, −1, 0, 0] . (7)

The matrix operators corresponding to m1 read

Tp,1 =
1
8

⎛⎜⎜⎜⎜⎜⎝
−3 3 1 0 . . . . . . 0 −1
0 −1 −3 3 1 0 . . . 0
...

. . . . . .
...

0 . . . 0 −1 −3 3 1 0
1 0 . . . . . . 0 −1 −3 3

⎞⎟⎟⎟⎟⎟⎠ Tl,1 =
1
8

⎛⎜⎜⎜⎜⎜⎝
3 1 0 . . . . . . 0 0
−1 −3 3 1 0 . . . 0
. . . . . . . . . . . .
0 . . . 0 −1 −3 3 1
0 0 . . . . . . 0 −1 −3

⎞⎟⎟⎟⎟⎟⎠
and the matrix operators corresponding to m2 are formed accordingly. By basic
calculations, we verify the reconstruction formula
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1
2
I =

2∑
j=0

TT
j Tj , (8)

where I is the identity and the factor 1
2 originates from the downsampling.

2.3 Upsampling Channel Vectors

If we traverse the spatio-featural hierarchy upwards, we downsample spatially
after1 having upsampled the feature dimensions. The downsampling is fully cov-
ered in terms of the matrices (5). The upsampling of g is achieved by combining
the reconstruction formula (4.13) in [21] with the iterative scheme in [20]. Plug-
ging (6) into (8) results in

1
2
f =

2∑
j=0

TT
j Tjf =

1
2
TT

0 g + TT
1 T1f + TT

2 T2f . (9)

Using an explicit approach, we obtain the iterative scheme

f (k+1) = TT
0 g + 2(TT

1 T1 + TT
2 T2)f (k) . (10)

Iterating this equation results in the solution of the underdetermined problem

min
f

‖g − 2T0f‖2
2 . (11)

Unrolling the iteration (10), we obtain

f (k+1) = Δk+1f (0) + (Δk + . . .+Δ+ I)TT
0 g (12)

where Δ = 2(TT
1 T1 + TT

2 T2). The M rows of T0 are linearly independent and
span an M -d space. Let PM denote the N × N projection matrix onto this
M -dimensional subspace (non-zero eigenvectors of TT

0 T0). We obtain

f (k+1) = Δk+1f (0) + (ΔkPM + . . .+ΔPM + I)TT
0 g

= Δk+1f (0) + ((ΔPM )k + . . .+ΔPM + I)TT
0 g

because PM = P2
M and PM commutes with Δ = I − 2TT

0 T0. In the limit, we
obtain

f (∞) = (I − PM )f (0) + (I −ΔPM )−1TT
0 g (13)

because ΔPM has a spectral radius smaller than one.
This means that the N -dimensional solution f of our iteration is determined

by an M -dimensional constraint given in terms of g. The remaining N − M
dimensions, i.e., the null-space of PM , is determined to have norm zero if we
start from f (0) = 0, i.e., we obtain the minimum norm solution of (11). In
our particular problem, however, we are not interested in the minimum norm
solution, but we require to have a non-negative solution instead, since kernel
1 If we downsampled first, we would lose information.
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density estimates are non-negative. Hence, we should choose f (0) such that f (∞)

is non-negative everywhere.
For the periodic case, we know that N = 2M and for the linear case, we obtain

N = 2M − 2 since all channels are doubled except for those at the boundaries.
Hence, we need 2M −M = M respectively 2M − 2−M = M − 2 equations that
are not linearly dependent on the rows of T0. These can be obtained in terms of
I−PM , but we can easily derive another set of vectors spanning the null-space
of T0. Define the two matrices

Sp =
1
8

⎛⎜⎜⎜⎜⎜⎝
−3 3 −1 0 . . . . . . 0 1
0 1 −3 3 −1 0 . . . 0
...

. . . . . .
...

0 . . . 0 1 −3 3 −1 0
−1 0 . . . . . . 0 1 −3 3

⎞⎟⎟⎟⎟⎟⎠ Sl =
1
8

⎛⎜⎝ 1 −3 3 −1 0 . . . 0
. . . . . . . . . . . .
0 . . . 0 1 −3 3 −1

⎞⎟⎠ .

We verify that
SpTT

p,0 = 0 and SlTT
l,0 = 0 (14)

i.e., Sp (Sl) is in the null-space of Tp,0 (Tl,0). Furthermore, since Sp is of rank
M and Sl is of rank M − 2, we conclude that they span the null-space of Tp,0
respectively Tl,0.

In order to obtain a solution according to (11) with non-negative coefficients,
a straightforward idea is to simply set all negative coefficients to zero in each
iteration of (10). However, this does not lead to stable results in our experiments.
Instead, we compute the projection of the negative coefficients onto the null-
space. For this purpose, we define the vector fneg component-wise

fneg,n =

{
fn fn < 0
0 fn ≥ 0

n = 1, . . . , N . (15)

This vector is then projected onto the null-space (·† denotes the pseudoinverse)

fnull = STST †
fneg . (16)

Subtracting this vector from the current solution brings us closer to the non-
negative solution without leaving our solution space, but we need to determine
the step-length λ. A greedy approach is to use the ratio of the largest negative
value of fneg and the corresponding coefficient of fnull:

n0 = arg min
n

fneg,n λ = fneg,n0/fnull,n0 . (17)

To achieve numerical stability, the coefficient λ must be bounded in the positive
and negative range, e.g., by requiring |fnull,n0 | > 10−5. Finally, we update

f (k+1) ⇐ f (k+1) − λfnull . (18)

3 Experiments

We have applied our algorithm (10,15-18) in three experiments: Convergence
tests, image reconstruction from upsampled densities, and orientation pyramids.
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3.1 Convergence Behavior

For analyzing the convergence behavior of our upsampling algorithm, we have
generated sets of samples from a linear ramp function. One data set consists of
the function values without noise and the second contains 5% Gaussian noise.
The samples have been collected in soft histograms (channels vectors) with 3, 4,
and 6 bins respectively. These vectors have then been upsampled to 4, 6, and 10
bins and compared to the directly encoded noise-free data h, using the Hellinger
distance (which is often used in kernel-based matching [22]

d2(f ,h) =
1
2

∑
n

(
√
fn −

√
hn)2 = 1 −

∑
n

√
fnhn (19)

where the right hand-side is obtained since the coefficients of f and h sum to
one. The right-most term is called Bhattacharyya coefficient [22].

The plots in Fig. 2 show the Hellinger distance as a function of the num-
ber of iterations. We can clearly see that the more iterations are required the
more channels are to be reconstructed. On the other hand, achieving the same
Hellinger distance for a larger number of bins means to achieve a higher accu-
racy per bin, and thus more information needs to be recovered. If the number
of iterations is normalized with the number of bins, convergence speed is about
the same.

One conclusion of this observation is that if the upsampling of feature distribu-
tions is combined with a downsampling in the 2D spatial domain, the algorithm
has constant computational complexity, independent of the actual level in the
pyramid. This complexity is linear in the number of pixels and the number of
initial channels. This has been confirmed by the observed runtimes, which were
all in the sub-second range (Matlab implementation).

Another observation we make in Fig. 2 is that convergence speed seems to
be unaffected by noise, but the final error level depends on the noise. Since the
reconstruction is compared against the noise-free density estimates, the fixed
Gaussian noise has growing influence for decreasing kernel widths.

Fig. 2. Convergence of our algorithm: Hellinger distance plotted versus the number of

iterations. Left: no noise. Right: Gaussian noise (5% standard deviation).
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Fig. 3. A car image from [23] reconstructed from CCFMs, clipped to 512 × 256. Left:

reconstruction from direct CCFM encoding. Right: reconstruction from successive en-

coding using the proposed algorithm.

3.2 Image Reconstruction

In this experiment we visualize the similarities and differences of direct encoding
of CCFMs and successiv encoding using the proposed algorithm. The images are
taken from [23], size 512 × 512. We have reproduced the experiment from [6],
generating CCFMs with a resolution of 66×66×10 channels, and reconstructing
images with a resolution of 512 × 512 using the method from [6]. The encoding
has been done in two different ways: a) by directly encoding the CCFM at the
final resolution and b) by encoding into three channels point-wise and subsequent
three-fold upsampling of the feature (greyscale) channel and downsampling of
the spatial channels, resulting in the sequence 514× 514× 3 → 258× 258× 4 →
130×130×6 → 66×66×10. The two reconstructions for one example (an image
of a police car) are depicted in Fig. 3. In the ideal case, the two images should
be identical; the absolute reconstruction quality is not of relevance here.

Up to minor differences, the two reconstructions are identical. The main dif-
ferences occur at some few edges of medium greyscale difference, which are more
crispy in the direct encoding case. The reason for this minor difference is presum-
ably that some information loss is caused by the fact that spatial downsampling
is performed in 2D while the feature upsampling is only 1D. However, the level at
which edges are blurred is far beyond the original scale of channels. Using three
channels to encode the whole range is identical to linear smoothing of the image,
i.e., the proposed algorithm has succeeded in recovering robust smoothing from
initially uni-modal representations. In addition to that, the striking advantage
of the new method is that all intermediate CCFMs are also available, whereas
the direct method needs to encode from scratch for any change of resolution.

3.3 Illustration of Orientation Density Estimates

This experiment illustrates the spatio-featural hierarchy for orientation. We have
chosen a siemens star as input since its orientation channels are easy to analyze
visually. The orientation channels respond on respective antipodal sides and the
bow length corresponds to the width of the kernel, see Fig. 4. The first orientation
channel (out of four) at level n = 1 responds with a quite large variance.
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Fig. 4. Orientation pyramid. From left to right: image and hierarchy levels n = 1, . . . , 4

Running our upsampling algorithm results in eight channels and the first two
are depicted, together covering about the same range as the previous one. After
another run, we obtain 16 channels, of which we show the first four. Finally, we
obtain 32 channels of which we show eight.

This illustrates how we obtain increasingly distinct estimates of the orienta-
tion by gathering information from a growing spatial support. We can repeat the
procedure until we reach a global histogram. The features are not at all restricted
to either greyscale or orientation. Any (combination) of features including color,
texture, depth, motion, etc. is possible, but more difficult to illustrate.

4 Conclusion

We have presented a framelet-theory based framework for resampling channel-
based density estimates up and down. We have further derived an optimiza-
tion algorithm that produces the required high-pass components for upsampling
density estimates with a non-negativity constraint. The algorithm is stable and
converges rapidly towards the correct solution. The presented framework is well
suited to generate feature hierarchies. Such hierarchies can be traversed up and
down, allowing for bottom-up driven detection and top-down driven priming and
adaptation of lower levels by simply multiplying prior distributions to the higher-
level representations. In some illustrative experiments, we have shown that the de-
rived framework can be applied as intended. The optimization converges rapidly
and is efficient to compute. The greyscale reconstruction results are as close to the
direct encoding as it can be expected. A periodic feature (orientation) has been
illustrated on four levels of the hierarchy. What remains for future work is to apply
the new framework in an object recognition system and to verify its benefits on a
more applied level.
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From Box Filtering to Fast Explicit Diffusion
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Abstract. There are two popular ways to implement anisotropic diffusion filters
with a diffusion tensor: Explicit finite difference schemes are simple but become
inefficient due to severe time step size restrictions, while semi-implicit schemes
are more efficient but require to solve large linear systems of equations. In our
paper we present a novel class of algorithms that combine the advantages of both
worlds: They are based on simple explicit schemes, while being more efficient than
semi-implicit approaches. These so-called fast explicit diffusion (FED) schemes
perform cycles of explicit schemes with varying time step sizes that may violate the
stability restriction in up to 50 percent of all cases. FED schemes can be motivated
from a decomposition of box filters in terms of explicit schemes for linear diffusion
problems. Experiments demonstrate the advantages of the FED approach for time-
dependent (parabolic) image enhancement problems as well as for steady state
(elliptic) image compression tasks. In the latter case FED schemes are speeded up
substantially by embedding them in a cascadic coarse-to-fine approach.

1 Introduction

Anisotropic diffusion filters with a diffusion tensor instead of a scalar-valued diffusivity
offer additional degrees of freedom that allow to steer them according to a task at hand
[1]: Coherence-enhancing diffusion filters, for example, are well-suited for processing
seismic data sets [2], while edge-enhancing diffusion filters have attractive qualities for
lossy image compression [3]. However, since such anisotropic diffusion filters require
a diffusion tensor, their efficient implementation is much more difficult than for their
isotropic counterparts with a scalar-valued diffusivity such as the Perona-Malik filter
[4]. For the latter ones one can use e.g. additive operator splitting (AOS) schemes [5,6],
while there is no efficient full operator splitting in the general anisotropic case.

Although there has been a number of proposals for numerical schemes for aniso-
tropic diffusion processes (see e.g. [7,8,9]), probably the two most popular ways to
implement anisotropic diffusion filters are explicit and semi-implicit finite difference
schemes. Explicit schemes are very simple to implement and allow a direct computa-
tion of the values at a new time level without solving linear or nonlinear systems of
equations. However, they suffer from severe time step size restrictions which render
them inefficient. Semi-implicit schemes, on the other hand, permit to use large time
step sizes and can be more efficient than explicit approaches. Unfortunately, they are
more difficult to implement and require to solve a large linear system of equations in
each time step.

M. Goesele et al. (Eds.): DAGM 2010, LNCS 6376, pp. 533–542, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Our Contribution. The goal of the present paper is to show that it is possible to com-
bine the advantages of explicit and semi-implicit schemes while avoiding their short-
comings. To this end we introduce a novel class of numerical schemes that we call Fast
Explicit Diffusion (FED) Schemes. They perform cycles of explicit diffusion schemes
with varying time step sizes. Since within each cycle up to 50 percent of all steps may
violate the stability condition, one can achieve very large diffusion times. In this way
one cycle can become even more efficient than one semi-implicit step. Moreover, we
show that one can embed FED cycles within a coarse-to-fine strategy to solve stationary
problems in an even more efficient way than with multigrid approaches. These findings
are illustrated by applying the FED idea to edge- and coherence-enhancing diffusion
filters. The starting point that has led us to the development of FED schemes was the
observation that one can factorise a (stable) 1-D box filter into a cycle of explicit linear
diffusion schemes with stable and unstable time step sizes. This idea can be generalised
in a straightforward way to nonlinear and anisotropic problems in arbitrary dimensions.

Organisation of the Paper. Our paper is organised as follows: In Section 2 we derive
the FED idea from the factorisation of a 1-D box filter into explicit linear diffusion
steps, and we relate this approach to the so-called Super Time Stepping (STS) method of
Gentzsch et al. [10,11]. In Section 3 we show how FED can be generalised to arbitrary
diffusion processes, and we show in Section 4 how this can be adapted to edge- and
coherence-enhancing diffusion filters. After this, we perform numerical experiments in
Section 5, and we conclude the paper in Section 6.

2 Filter Factorisation

2.1 Equivalence between 1-D Discrete Box Filtering and Linear FED

In order to motivate our FED approach, we restrict ourselves to the 1-D case first and
consider linear diffusion processes. Since it is well-known that linear diffusion filtering
is equivalent to Gaussian convolution and Gaussians can be approximated by iterated
box filtering, we explore the connection between a box filter and explicit schemes for
linear diffusion.

Let f = (fi)i∈N be a discrete 1-D signal given on a grid with mesh size h > 0. We
define the discrete box filter of length (2n+ 1)h, n ∈ N, as well as the discrete second
order derivative by

(
Bh

2n+1(f)
)

i
:=

1
2n+ 1

n∑
k=−n

fi+k and (Δhf)i :=
fi+1 − 2fi + fi−1

h2 . (1)

The explicit discretisation of the linear heat equation for a function u(x, t),

∂tu = ∂xxu , (2)

evaluated at a spatial-time-grid point (xi, tk) with xi :=
(
i− 1

2

)
h and tk := kτ , can

then be formulated as
uk+1

i = (I + τΔh) uk
i , (3)
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where I is the identity operator, τ > 0 the time step size and uk
i ≈ u(xi, tk) a numer-

ical approximation.
The following theorem states a connection between 1-D discrete box filtering and

explicit schemes with different time step sizes:

Theorem 1. A discrete one-dimensional box filter Bh
2n+1 is equivalent to a cycle with

n explicit linear diffusion steps:

Bh
2n+1 =

n−1∏
i=0

(I + τiΔh) , (4)

with the varying time step sizes

τi =
h2

4 cos2
(
π 2i+1

4n+2

) (5)

and corresponding stopping time

tn :=
n−1∑
i=0

τi =
h2

3

(
n+ 1

2

)
. (6)

The corresponding proof can be found in the Appendix.
We call one cycle of this novel scheme a Fast Explicit Diffusion (FED) cycle. Be-

cause of its equivalence to box filtering, FED is also stable. Interestingly, the time step
sizes τi in Eq. (5) partially violate stability conditions. Table 1 shows both the smallest
three and largest three time step sizes for different n. Since the stability restriction for
the time step size of an explicit scheme in one dimension is given by τ ≤ h2

2 , it is easy
to show that the FED scheme consists of

⌈
n−1

2

⌉
unstable time steps, where �a� denotes

the next largest integer k ≥ a. Hence, for even n, half of the time steps are unstable.
For n ≥ 3, one FED cycle reaches the stopping time tn faster than any other explicit
scheme with stable time step sizes τ ≤ h2

2 .
Since we want to approximate a diffusion process – or equivalently Gaussian con-

volution – one should use several iterated box filters – or equivalently FED cycles. Let
M ≥ 2 denote this number of FED cycles. This number M of outer cycles should not
be confused with the number n of inner steps.

Before we explore extensions of FED to nonlinear, anisotropic and multidimensional
problems, let us discuss some related work first.

2.2 Connection to Super Time Stepping

Our FED scheme uses different time step sizes, where some of them may violate stabil-
ity limits. A similar method has been introduced under the name Super Time Stepping
(STS) by Gentzsch et al. [10,11]. Contrary to our derivation, they used a direct approach:
Gentzsch et al. wanted to find a set of different time step sizes, which keeps stability
after each cycle, and at the same time maximises the stopping time of such a cycle.
Instead of factorising a box filter, one can show that their method intends to factorise
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Table 1. First three and last three step sizes of FED (1-D) with h = 1 (rounded). tn denotes the
stopping time of one FED cycle including n inner time steps

n 10 25 50 100 250 500 1000

τ0 0.251404 0.250237 0.250060 0.250015 0.250002 0.250001 0.250000
τ1 0.263024 0.252147 0.250545 0.250137 0.250022 0.250006 0.250001
τ2 0.288508 0.256024 0.251518 0.250382 0.250061 0.250015 0.250004
...

τn−3 1.33 7.40 28.79 113.79 706.52 2820.19 11269.25
τn−2 2.88 16.55 64.68 255.93 1589.57 6345.33 25355.72
τn−1 11.25 65.97 258.48 1023.45 6358.01 25381.06 101422.61

tn 18.33 108.33 425.00 1683.33 10458.33 41750.00 166833.33

the mask
( 1

2 , 0, . . . , 0,
1
2

)
. Since this mask is very sensitive w.r.t. high frequencies, they

have to introduce an additional damping parameter ν ≥ 0 that ensures better attenua-
tion properties of high frequencies. This parameter can be seen as a trade-off between
efficiency and damping quality, since larger values for ν scale down the stopping time.
In our FED framework, such a damping parameter is not necessary.

While the ordering of the explicit diffusion steps does not matter in exact arithmetic,
it can influence the result in practice due to numerical rounding errors when n is large.
In order to improve robustness, Gentzsch et al. have proposed to rearrange the explicit
steps within so-called κ-cycles. We will also use this approach. For further details on
STS, we refer to the above cited works and e.g. Alexiades et al., who have done an
experimental evaluation [12].

3 Fast Explicit Diffusion (FED) for Arbitrary Problems

3.1 Extension to Arbitrary Diffusion Problems

While the FED scheme has been motivated in the 1-D setting with linear diffusion filter-
ing, it is actually a general paradigm that can be applied to multidimensional, nonlinear
and anisotropic diffusion processes. This can be seen as follows.

First, let us reconsider the 1-D diffusion equation (2) and its explicit discretisation
(3). By assuming homogeneous Neumann boundary conditions and denoting uk ∈ RN

as the vector with entries uk
i , Eq. (3) can be written as a matrix-vector product:

uk+1 = (I + τAh)uk , (7)

with τ ≤ h2/2. According to Gerschgorin’s theorem, the eigenvalues of the matrix
Ah ∈ RN×N lie in the interval

[
−4/h2, 0

]
. These eigenvalues determine the stability

in the Euclidean norm: A stable explicit step requires a time step size τ such that all
eigenvalues of the matrix I + τAh lie in the interval [−1, 1].

Keeping this in mind, it is straightforward to replace the matrix Ah by any negative
semidefinite matrix P that results from a discretisation of a diffusion process. This
process can be one- or multidimensional, linear or nonlinear, isotropic or anisotropic.
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In this case, one FED cycle is not any more equivalent to box filtering, but it corresponds
to a first order approximation of the above-mentioned diffusion process. All one has to
do is to adapt the time step size limit to the largest modulus of the eigenvalues of P .
More precisely, let μi ≤ 0 be the eigenvalues of P and define μmax := maxi |μi|.
Then the explicit scheme in Eq. (7) with P instead of Ah is stable for time step sizes
τ̃ := c · τ , where

c :=
4

h2 · μmax
(8)

is the adjustment factor. Since μmax can easily be estimated using e.g. Gerschgorin’s
theorem, this adaptation is no problem at all in practice. Fig. 1 gives a summary of
the general FED algorithm. Note that it is essentially an explicit scheme with some
overhead that is not time critical.

3.2 Cascadic FED (CFED) for Stationary Problems

So far our FED scheme was designed for diffusion problems where we are interested
in the temporal evolution. This refers to parabolic partial differential equations (PDEs)
that are used for denoising and enhancement purposes.

However, in the case of inpainting and PDE-based compression problems, one is
interested in the nontrivial steady state when Dirichlet boundary data are specified.
The corresponding elliptic PDE results from the parabolic evolution for t → ∞. To
reach this steady state as quickly as possible, we embed our FED into a coarse-to-fine
strategy [13], i.e. we use results computed on a coarse scale as an initialisation for a finer
scale. Therefore, we scale down both the image and the reconstruction mask via area-
based interpolation to a certain coarse level and apply the FED scheme on this image.
Afterwards, we interpolate the corresponding solution and the mask to the next finer
level and apply again FED on it. We apply this procedure recursively until the finest

1. Input Data:
image f , stopping time T , number M of outer FED cycles, and model parameters

2. Initialisation:
(a) Compute the smallest n such that the stopping time tn of one FED cycle fulfils

tn ≥ T/M , and define q := T/(M · tn) ≤ 1.
(b) Compute the time step sizes τ̃i := q · c · τi with c according to (8), and τi

according to (5).
(c) Choose a suitable ordering for the step sizes τ̃i according to [10].
(d) If the diffusivity or diffusion tensor is constant in time, compute the corresponding

matrix P .

3. Filtering Loop:
(a) If the diffusivity or diffusion tensor is time-variant, update it and compute the cor-

responding matrix P .
(b) Perform one FED cycle with the above ordering of the n explicit time steps τ̃i.
(c) Go back to (a), if the stopping time T is not yet reached.

Fig. 1. General FED algorithm for diffusion filtering
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level is reached. To simplify matters, we always use the same parameter settings for the
diffusion process on each level. We call this cascadic fast explicit diffusion approach
CFED. It saves a lot of computational effort, since then a small or midsize stopping
time is already sufficient on each level.

4 FED and CFED for Anisotropic Diffusion Filtering

In this section we review two specific two-dimensional anisotropic diffusion filters that
we are going to use in our experiments as demonstrators for the potential of the FED
and CFED algorithms.

4.1 Edge-Enhancing Diffusion (EED)

Edge-enhancing anisotropic diffusion inhibits diffusion across edges and instead prefers
smoothing within the image regions [1]. It follows the evolution equation

∂tu = div (D (∇uσ)∇u) , (9)

where D ∈ R2×2 is the symmetric positive definite diffusion tensor, and uσ is the
image u convolved with a Gaussian of standard deviation σ. Its diffusion tensor is

D (∇uσ) = g
(
|∇uσ|2

)
· ∇uσ∇u�σ

|∇uσ|2
+ 1 · ∇u

⊥
σ ∇u⊥�

σ

|∇u⊥σ |2
, (10)

where ·� means the usual matrix transposition and
(
a
b

)⊥ :=
(−b

a

)
. In our experiments

we shall use the so-called Charbonnier diffusivity function

g
(
s2
)

=
(
1 + s2/λ2)−1/2

. (11)

It has proven to be highly useful for image interpolation purposes such as the compres-
sion method in [3]. In this case one computes the elliptic steady state solution.

We assume a uniform two-dimensional grid with the mesh sizes hx = hy = 1 and
set the adjustment factor c = 1/(2h2), which is sufficient for stability with respect to
the standard discretisation [14].

4.2 Coherence-Enhancing Diffusion (CED)

Coherence-enhancing diffusion filtering enhances line- and flow-like structures. Its dif-
fusion tensor has the same eigenvectors as the so-called structure tensor

Jρ (∇uσ) := Kρ ∗
(
∇uσ∇u�σ

)
, (12)

where Kρ is a Gaussian of standard deviation ρ, and its eigenvalues are given by

λ1 := α (13)

λ2 :=

{
α, if μ1 = μ2 ,

α+ (1 − α) exp
(

−λ
(μ1−μ2)2

)
, else

, (14)

whereμ1 andμ2 are the eigenvalues of the structure tensor such thatμ1 ≥ μ2. For further
details we refer to [1]. As a space discretisation for CED, we have used the one in [9]. It
has low dissipativity and allows to use the same c as for the preceding EED scheme.
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5 Experiments

In order to evaluate FED for parabolic problems, we enhance a fingerprint test image
with CED. First we compute a reference solution by applying a semi-implicit scheme
with very small time step sizes. The original image and the filtered result can be seen
in Fig. 2.

Fig. 2. Test image and reference image computed by a semi-implicit scheme. Left: Original image
(finger, 300 × 300, rescaled to [0,255] for better visualisation). Right: CED-filtered reference
image (T = 300, λ = 1, σ = 0.5, ρ = 4, α = 0.001, τ = 0.1), rescaled to [0,255]

Our error measure is the relative mean absolute error (RMAE),
∑

i
|ui−ri|
‖r‖1

with

‖r‖1 :=
∑

i |ri|. The filtered image is denoted by u, and r is the corresponding refer-
ence solution.

Table 2 shows that FED and the semi-implicit method yield comparable results with
respect to the RMAE. In some cases, FED is even better than the semi-implicit scheme.

In order to show the efficiency of the novel FED compared to semi-implicit methods,
we have conducted an experiment analysing the trade-off between the running time
(CPU: Pentium 4, 3.2 GHz) and the RMAE. The result is depicted in Fig. 3. As one
can see, the FED scheme shows a better trade-off, i.e. is more efficient than the usual
semi-implicit scheme with a conjugate gradient (CG) solver.

Table 2. Comparison between FED and the
semi-implicit method for different numbers
of FED cycles/semi-implicit steps using the
RMAE

cycles/steps FED semi-impl.

1 0.028106 0.020914
5 0.010587 0.009639

10 0.007206 0.006638
25 0.003922 0.003731
50 0.002074 0.002234

100 0.001063 0.001265
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Fig. 3. CPU time (seconds) vs. RMAE
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Fig. 4. Test setting for EED-based image reconstruction. Left: Original image (trui, 257 × 257).
Middle: Inpainting mask where the pixels are specified. Right: Reconstruction with EED-based
inpainting in the unspecified regions (semi-implicit, T = 250000, τ = 2.5, λ = 0.1, σ = 1.5)

Let us now consider an elliptic problem, where we evaluate the performance of our
FED and CFED scheme. As a testbed we use an interpolation problem that is relevant
for image compression with EED [3]. For the coarse-to-fine setting, we use three levels:
257 × 257, 129 × 129 and 65 × 65 pixels.

Fig. 4 depicts the test setting. We use the same error measure as above and compare
our results to the reference reconstruction shown in Fig. 4. The comparison concerning
the trade-off between the CPU time and the RMAE, which is illustrated in Fig. 5 for
the stopping time T = 5000, emphasises the superior efficiency of FED and CFED
respectively. In both cases, the corresponding semi-implicit schemes are less efficient.
Moreover, CFED further improves the efficiency of FED. If one wants to have for ex-
ample a solution whose RMAE is below 1%, CFED can manage this in less than a
quarter of a second, because already a small stopping of T = 100 is sufficient.
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Fig. 5. CPU time (seconds) vs. RMAE for T = 5000. Left: FED and semi-implicit. Right: CFED
and cascadic semi-implicit

6 Conclusions and Future Work

We have presented a new framework for explicit diffusion schemes, FED, which has
been derived by the theory of one-dimensional box filters. This means we have es-
tablished an interesting connection between a symmetric linear filter and an explicit
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scheme with varying time step sizes that partially violates stability limits. FED is very
easy to implement, since existing explicit schemes with only few additional code lines
can be used. Furthermore, we have successfully applied FED to anisotropic diffusion
processes and PDE-based image reconstruction, where we have additionally used a
coarse-to-fine strategy. Due to the large time step sizes, explicit schemes can become
more efficient than semi-implicit ones, as we have shown in the experimental section.
The cascadic strategy CFED can even improve the results of FED with respect to in-
painting applications.

In our ongoing work, we are currently working on parallelisation techniques as well
as GPU-based implementations. With the help of them, it might be possible to yield
even faster anisotropic diffusion filtering and real-time decoding with anisotropic dif-
fusion via explicit schemes. Another research field are higher-dimensional problems,
since semi-implicit schemes become cumbersome for such tasks due to the large neigh-
bourhood structure. In this case, the benefit of FED is expected to increase even further.

Acknowledgements. Sven Grewenig gratefully acknowledges funding by the Deutsche
Forschungsgemeinschaft (DFG), project WE 2602/7-1.
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Appendix: Proof of Theorem 1

After some calculations, one can represent the box filter as a finite operator series:

Bh
2n+1 =

n∑
m=0

h2m

2m + 1

(
n + m

2m

)
Δm

h , (15)

where Δ0
h := I (identity operator). Replacing Δh by (−z) in Eq. (15) defines the

polynomial pn(z). It follows that pn can be related to the Chebyshev polynomial of
first kind,

C2n+1(x) =
2n + 1

2

n∑
m=0

(−1)m

2n + 1 − m

(
2n + 1 − m

m

)
(2x)2(n−m)+1 , (16)

and it holds for z > 0:

pn(z) = (−1)n ·
2C2n+1

(
h
√

z
2

)
(2n + 1)h

√
z

. (17)

Hence, the roots zi of pn are related to the first n (positive) well-known roots of C2n+1,
namely x0, . . . , xn−1:

zi =
4
h2 x2

i =
4
h2 · cos2

(
π 2i+1

4n+2

)
> 0 . (18)

Thus, we can represent pn as a product of n linear factors (1 − z/zi) , and by the back
substitution (−z) → Δh we finally get

Bh
2n+1 =

n−1∏
i=0

(
I + z−1

i Δh

)
. (19)

This shows that Bh
2n+1 is equivalent to an explicit linear diffusion scheme using the n

time step sizes τi = z−1
i , and the stopping time tn is equal to the coefficient of Δh

(m = 1) in Eq. (15).
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Abstract. This contribution discusses the 3D reconstruction of deform-

able freeform surfaces with high spatial and temporal resolution. These

are conflicting requirements, since high-resolution surface scanners typ-

ically cannot achieve high temporal resolution, while high-speed range

cameras like the Time-of-Flight (ToF) cameras capture depth at 25 fps

but have a limited spatial resolution. We propose to combine a high-

resolution surface scan with a ToF-camera and a color camera to achieve

both requirements. The 3D surface deformation is modeled by a NURBS

surface that approximates the object surface and estimates the 3D object

motion and local 3D deformation from the ToF and color camera data.

A set of few NURBS control points can faithfully model the motion and

deformation and will be estimated from the ToF and color data with

high accuracy. The contribution will focus on the estimation of the 3D

deformation NURBS from the ToF and color data.

1 Introduction

In this paper we address the problem of reconstruction and tracking of de-
formable freeform surfaces. If both, the 3D surface geometry and the surface
deformation over time need to be analyzed simultaneously, this is a difficult
problem. 3D shape analysis with laser scanners, for example, render a high reso-
lution static model, but are not suitable to track deformations over time. Recent
range cameras like the Time-of-Flight (ToF) cameras, on the other hand, allow
for capturing scene depth with high frame rates of up to 25 fps, but with limited
spatial resolution and considerable noise level. In our approach we propose to
combine both techniques by first acquiring a high resolution 3D surface model
with a laser triangulation system, and then tracking the surface deformation
over time with a combined color-depth camera system. 3D surface deformations
are modeled by a NURBS spline approximation controlled by 2D image flow
and 3D depth measurements from the ToF-camera system in low depth reso-
lution but high color resolution. The smoothing and interpolating properties of
the NURBS allow for handling measurement noise. The 3D surface deformation
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can be decomposed into a hierarchy of 3D global object motion and 3D local
deformation. These transformations can also be applied to the high resolution
surface model, leading to a surface deformation with high spatial and temporal
resolution. In the following section we will first review related work, then derive
the deformation estimation using the NURBS in section 2, discuss the propa-
gation of the deformation onto the high-resolution model in section 3, and give
experimental results in section 4.

1.1 Related Work

There exist many different parametrizations and representations of deformable
surfaces. A good survey by Montagnat et al. can be found in [1]. There NURBS
surface representation is sorted into the class of explicit polynomial finite support
representations. It is stated that these models lead to more stable results if a
limited number of parameters is estimated. According to Cohen et al. in [2], who
uses NURBS to fit a surface to a scattered data set of 3D points, NURBS are
the most efficient way to represent surfaces and additionally implicitly provide a
smoothing effect. Most of the work on deformation estimation however, was done
using triangle meshes as surface representation [3],[4] which comes with a high
number of unkowns that have to be handled by applying additional constraints.

(a) (b) (c)

Fig. 1. (a) Setup for laser triangulation, consisting of a line laser and two CCD cameras.

(b) A Swissranger SR4000 ToF-camera, coupled with a CCD-camera. (c) Mesh acquired

by laser triangulation (left) and ToF-camera (right)

In a face recognition survey by Browyer et al. [5] p. 11, different modalities
(2D/3D data) and acquisition methods are compared regarding their suitability
for geometry and deformation capturing. According to this, stereo is in general
capable of capturing geometry at high frame rates but suffers from errors on
sparsely textured regions. Structured-Light approaches suffer from artifacts due
to object motion and spike artifacts frequently occur. It is concluded that it
would be optimal to capture the geometry at a single time instant. This matches
our motivation to use a ToF-camera, which records the current geometry with
a single shot and provides a frame rate of 25 fps at a reasonable noise level.
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Zhang et al. use a Structured Light stereo algorithm in [6] to capture the dynamic
geometry of faces during deformation. The impressive results of face deformation
capturing go along with a highly complicated setup consisting of six cameras
and two projectors. A, in point of complexity, comparable system is used by
Walder et al. in [7] to record facial expressions and other object deformations.
Both approaches are specially designed for these scenarios and are, due to their
dimension, not flexible. Our proposed approach, consisting of one ToF- and one
CCD-camera is much more flexible and can for example be mounted to a robot
arm to capture deformations of objects while they are manipulated by the robot.

2 Low Resolution Deformation Estimation

To expediently analyze complex surface deformations and movements simulta-
neously, the 3D surface changes are divided into three separate classes of trans-
formations, each handled separately:

– The rigid body movement, i.e. the translation and rotation of the whole
object. This displacement is also referred to as global pose change G(·)

– The remaining 2D deformation N (·,P ), which is the movement in the
image after the global pose change has been compensated.

– The Z-fitting N (·, C), which describes the depth displacement of the object
after the two previous deformations have been removed.

To describe and store the deformation acquired in the latter two steps we choose
to use NURBS surface functions N . These function come with a set of useful
features for the task at hand: A NURBS surface is described by a set of control
points, which serves as a distinct deformation descriptor in our system. At the
same time NURBS functions are very versatile allowing to approximate all kinds
of surfaces. Furthermore, any global pose change can be applied easily to such a
surface by simply applying the transformation to its control points. A NURBS
function is efficiently fitted into point data because of the linear relationship
between a surface point and the control points. This guarantees fast optimization
without the need to fear local minima.

2.1 Time-of-Flight Camera

A ToF-camera is an active camera which emits intensity non-coherent modulated
near infrared light using special LEDs and calculates the distance of objects to
the camera from the reflected signal with a special sensor. Typically a modula-
tion frequency between 10 and 40MHz is chosen for distance measurement with
ToF-cameras. Because of the limited operation area and increased accuracy with
higher modulation frequencies we use 40MHz in our experiments which results in
an operation range of≈ 3.75 meters. For further details on the operation principle
please consult Xu et al. [8] and Lange et al. [9]. To obtain color and depth infor-
mation we combine the ToF-camera with a standard CCD-Camera and calibrate
the two cameras internally and externally using the approach described in [10].
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2.2 Global Pose Estimation

In this first step the global pose change, which is independent of local defor-
mation, is estimated. We use a feature-based approach using a set K of 2D
KLT-features kn [11] on the object, where kn is one feature in multiple images
and kn,i ∈ [0, 1]2 is the position of this feature in image i ∈ I. The depth image is
not aligned with the CCD image but has to be transferred to the perspective of
the CCD camera. Therefor a triangle mesh of the depth image provided by the
ToF-camera is generated on the GPU and the mesh is rendered in the perspec-
tive of the CCD camera with the corresponding internal and external camera
parameters. The corresponding 3D features are then taken from the rendered
depth image. To isolate the object from the background, color-segmentation in
the HSL color space is applied, removing all none-object features.

The current pose change of the object Gi(·) : (x, y, z) �→ (x′, y′, z′) is a global
transformation, consisting of a rotation and a translation, which describes the av-
erage modification in position and orientation of the object for every 3D coordi-
nate in the initial frame 0 to the current one i. It is estimated from the 2D/3D
correspondences using the standard DLT approach as in [12] p.173. The transfor-
mation G′

i(·) : (x, y) �→ (x′, y′) unprojects a 2D point in frame 0 to the object
surface, applies Gi and reprojects the 3D point to the image. Hence, G′

i is a dis-
placement function approximating the 2D feature movement in the image from
frame 0 to frame i, as far as it can be approached by a rigid 3D body movement.
The inverse transformationsG−1 andG′−1 to remove the described change in the
global pose/image position can be calculated directly from G and G′.

Figure 2 shows three pairs of input images (a)-(c) in which the depth is on top
the color images. The darker the closer is the object to the camera. A bag, filled
with an object, is observed while the object is removed from the bag. During this
operation the bag’s movement and deformation estimated. Images (d) and (e) show
the textured mesh of the depth values, rendered with G−1

i of the current frame.

(a) 0 (b) 340 (c) 390 (d) 340 (e) 390

Fig. 2. (a)-(c) Captured depth and CCD images of a bag at time 0, 340 and 390. (d)-(e)

Pose compensated rendered and segmented images of frame 340 and 390. Note that

the rotation of the bag is reverted (G−1
i is applied) in images (d) and (e) to match the

pose in image (a).
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2.3 2D Deformation NURBS

The challenging goal to track the object’s deformation for every surface point
implies that every surface point can be tracked throughout each image. Since
such a dense pixel registration is not feasible, we use the KLT features introduced
in section 2.2 as the set of “trackable” image points. These features are used
to create a dense 2D deformation map, which can be evaluated in every pixel
coordinate, by fitting a 2D NURBS function N (·,P ) into the KLT movement
data. A NURBS (surface) function of equally weighted control points pj ∈ P is
defined for m control points by:

N ((u, v),P ) =
m∑

j=0

Rj(u, v)pj (1)

where Rj(u, v) is a function providing the weights defining the influence on the
surface point (u, v) for each control point pj . For the complete definition refer
to e.g. [13].

Equation (1) reveals the linear relationship between each surface point and
each control point and it is obvious, that the output dimension of the NURBS
function is entirely defined by the dimension of the control points.

To interpolate the movement of a set of 2D features K, a control point vector
P has to be found such that N (·,P ) defines a 2D deformation map as close as
possible to the known deformations kn,0 → kn,i for each image i ∈ I. This is the
case for the minimal argument Pi of the squared error sum

Pi = argmin
P∈R3·m

∑
n∈K

(Ni(kn,0,P ) − kn,i)
2 (2)

To ensure contour alignment in surface regions without features, an additional
error term for the contour fitting is added to the squared sum. Let B be a set of
contour points b ∈ [0, 1]2 in the first image and Δi(·) a function providing the
distance of a point to the contour of image i. Δi(x, y) = 0 for all border pixels. If
(x, y) is inside the contour of the object,Δi(x, y) yields the distance in pixels from
the center of mass to the border. If (x, y) is outside the object’s contour, Δi(x, y)
provides the distance from the center of mass to the corresponding contour border.
The NURBS error term (2) is therefore extended by the contour error:

Pi = argmin
P∈R3·m

∑
n∈K

(Ni(kn,0,P ) − kn,i)
2 +

∑
l∈B

Δi(bl) (3)

We use a Levenberg-Marquardt optimizer to minimize this error function which
yields the 2D control point vector P ∗

i for each image i ∈ I. Since also the inverse
function N−1(·,Pi) is required in our system, a second control point vector P−1

is generated in the same way, such that N (·,P−1
i ) ≈ N−1(·,Pi).

2.4 3D Deformation NURBS

As a result of the two previous steps, a function N (G(·),P ) approximating the
dense 2D deformation in the images is available along with the inverse approx-
imation G′−1(N (·,P−1)). To create a full 3D surface deformation function, the
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global pose data, the 2D NURBS and the depth data remaining after the 2D
compensation have to be combined into a 3D NURBS.

Spread function. Up to this point the description of the object contour has not
influenced the NURBS shape explicitly, but only through additional constraints
ensuring the alignment of the object border. The NURBS parameter domain is
usually defined as [0, 1]2. If the contour information is ought to be stored in the
NURBS surface, an initial transition from the NURBS domain into the ”object
shaped domain“ has to be defined, such that the squared border of the NURBS
domain becomes aligned with the contour of the object. Let Si(·) be this function
to “spread” the object domain into the 2D NURBS domain for every image i ∈ I
and let S−1

i (·) be the corresponding “shrinking” function for the transformation
from the 2D NURBS domain into the object domain.

Z-Fitting. Using the inverse function to the global pose change G and the 2D
NURBS deformation P , a sequence of images can be generated out of the original
image sequence, in which every surface point of the object remains on the same
pixel coordinate. Fitting a three dimensional NURBS surface into the depth data
processed by G−1 and P−1 is now straight forward: A uniformly distributed set
of points is placed in the bounding box of the object and “shrunk” by S−1.

These points provide the x- and y- image coordinates of the three dimensional
control points. The remaining (depth) dimension is fitted into the processed
depth image data, analog to the two dimensional fitting process described in
2.3. Let C′ be this vector of control points.

Combining the Deformations. The control points C for the global deforma-
tion function N (·, C) can now be defined. The z-fitting provides a 3D NURBS
without the global pose change G and 2D deformation N (·,P ). First, the control
points C′ are moved according to the 2D deformation N (·,P ), and afterwards
they are rotated and translated according to the global pose change G:

C = G(N (C′,P )) (4)

The resulting NURBS function N (·, C) does not only approximate the surface
provided by the segmented depth images, it also maps to the same three dimen-
sional surface point N ((u, v), Ci) in each image i for a constant (u, v), despite
its movements in the image.

3 Propagation of Deformation Parameters to High
Resolution Model

After estimating the deformation on the low resolution surface measured by
the ToF-camera we want to propagate the deformation to a model with higher
spatial resolution.
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3.1 High Resolution Model Acquisition

The acquisition of the high resolution model is done using a line laser and two
CCD cameras. Using a line laser the resolution is only limited by the resolution
of the CCD cameras and the thickness of the used laser. Figure 1a shows the
used setup for laser triangulation and figure 1c (left) shows a model acquired
with the laser triangulation approach which is comparable to [14]. The proposed
deformation method is of course able to handle any differently originated high
resolution model as well.

3.2 Deformation Application

To apply the detected deformation sequence to the high resolution mesh, a map-
ping for each high resolution vertex position in 3D to the corresponding two
dimensional NURBS coordinate in [0, 1]2 has to be found. If chosen carefully,
each vertex is assigned to the coordinate in the NURBS domain which is tracing
the original surface point throughout all input images.

The most suitable way to create such a mapping is to reproduce the as-
signment step from the low resolution process in this high resolution case. Let
M : R3 → R2 be an projection for the high resolution model equivalent to the
first deformation image. For this first image, the global pose change is 0, as
well as the 2D deformation. Hence, the 2D NURBS coordinates can be acquired
directly from the spread function: (u, v) = S(M ′((x, y, z)).

For image i, a transformed vertex vi following the deformation is given by

vi = v −N0(S(P ′(v)) + Ni(S(P ′(v))) (5)

The surface registration is constant in respect to the NURBS domain as well
as to the high resolution model. This allows to interpolate and smooth C in an
arbitrary way without causing unwanted deformations. One way to interpolate
and smooth at the same time is the application of dynamic NURBS [15], which
include the time domain as a third parameter in the NURBS domain.

4 Results

To evaluate the results quantitatively we chose the following scenario. A bag
made of cloth was filled with an object and scanned with the laser scanner.
Afterwards the object is removed from the bag while the bag is observed by
the ToF- and CCD-camera. After flattening the bag it is again scanned with
the laser scanner for comparison of the scanned geometry with the NURBS
approximated final geometry. The setup to acquire the results is shown in figure
1a. The NURBS surface representation aims at approximating the real geometry
and therefor we rely on a visual validation of the obtained results. The results
are presented in figure 3.

Initially the bag is filled (a), then a hand lifts the handle (b), goes inside the
bag (c) and removes the object from the bag (d). Finally the empty bag is moved
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(a) 0 (b) 49 (c) 159

(d) 270 (e) 360 (f) 471

Fig. 3. Deformation of high resolution model (≈ 470000 triangles) of the bag. Images

show input color images above the deformed high resolution textured model which is

shown above the NURBS surface with control points. Numbers below images indicate

frame indices.

to the original position (e) and (f). To quantitatively evaluate the approach,
the RMS (root mean squared) deviation of the deformed high resolution model
at frame 471 (object completely removed) and the laser scanned empty bag
has been measured (figure 4c and d). The size of the filled recontructed bag
was 26.5 × 40 × 9.5cm and the deviation (RMS of distances between surfaces
considering each vertex) was found to be 5.86 mm for the presented scene.

The proposed algorithm is applicable to various objects. Figure 5 shows its
application to a hand during a movement in a relaxed and a deformed state.
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(a) (b) (c) (d)

Fig. 4. Comparison of scanned filled bag (a) with reconstructed filled bag (b) and

scanned empty bag (c) with reconstructed empty bag (d)

Fig. 5. Deformation applied to a high resolution model of a hand

5 Conclusion

This contribution presents an approach to capture and reconstruct the defor-
mation of objects. We are using a laser scanner to obtain a high resolution 3D
model of the object and a ToF-camera to capture the deformation at 25 fps. The
choice to use the ToF-camera is motivated by its small size and flexibility, com-
pared to other approaches that use e.g. structured light stereo approaches with
projectors. This enables the usage of our approach in less controlled environ-
ments and for mounting to robot arms for example. The choice to use NURBS
to represent the deformation is motivated by the implicit surface smoothing that
is provided by the estimation of the NURBS control points during optimization
of the parameters as all points on the object surface contribute to the parameter
estimation but the effect of false measurements and outliers is narrowed. Part of
our contribution is the decomposition of the object’s transformations in several
steps. The rigid transformation the object might undergo is estimated by feature
tracking and pose estimation. This pose is reverted by rendering the model with
the inverse of the estimated pose. The 2D transformation in the image plane
the object undergoes is tracked using KLT-features and approximated using a
2D NURBS function. Finally the change in depth is again approximated with
a NURBS function. Essential to this processing chain is, that all steps can be
reverted easily to map the estimation to the initial shape of the object.

Finally the approximation is applied to the high resolution laser scanned
model of the object, by which the deformation of this model is simulated at
a spatial and temporal resolution that can not be achieved by other comparable
setups and approaches we have knowledge of. Furthermore the recorded defor-
mation could be applied to other objects, making it possible to simulate the
deformation of rigid objects.



552 A. Jordt et al.

References

1. Montagnat, J., Delingette, H., Ayache, N.: A review of deformable surfaces: topol-

ogy, geometry and deformation. Image and Vision Computing 19(14), 1023–1040

(2001)

2. Cohen, F.S., Ibrahim, W., Pintavirooj, C.: Ordering and parameterizing scattered

3d data for b-spline surface approximation. IEEE Transactions on pattern analysis

and machine intelligence 22(6), 642–648 (2000)

3. Cagniar, C., Boyer, E., Ilic, S.: Iterative mesh deformation for dense surface track-

ing. In: 12th International Conference on Computer Vision Workshops (2009)

4. Zhu, J., Hoi, S.C.H., Xu, Z., Lyu, M.R.: An effective approach to 3d deformable

surface tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part

III. LNCS, vol. 5304, pp. 766–779. Springer, Heidelberg (2008)

5. Bowyer, K.W., Chang, K., Flynn, P.: A survey of approaches and challenges in

3d and multi-modal 3d+2d face recognition. Computer Vision and Image Under-

standing 101(1), 1–15 (2006)

6. Zhang, L., Snavely, N., Curless, B., Seitz, S.M.: Spacetime faces: High-resolution

capture for modeling and animation. In: ACM Annual Conference on Computer

Graphics, pp. 548–558 (August 2004)

7. Walder, C., Breidt, M., Buelthoff, H.H., Schoelkopf, B., Curio, C.: Markerless

3d face tracking. In: Denzler, J., Notni, G., Süe, H. (eds.) DAGM 2009. LNCS,
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Abstract. In this paper a new approach to find an optimal surface rep-

resentation is described. It is shown that the minimum description length

(MDL) principle can be used to select a trade-off between goodness-of-

fit and complexity of decimated mesh representations. A given mesh is

iteratively simplified by using different decimation algorithms. At each

step the two-part minimum description length is evaluated. The first

part encodes all model parameters while the second part encodes the

error residuals given the model. A Bayesian approach is used to deduce

the MDL term. The shortest code length identifies the optimal trade-off.

The method has been successfully tested by various examples.

1 Introduction

Detailed surface models are used by various disciplines such as geometric mea-
surement, computer aided design oder scientific visualization. Although a high
level of detail is generally required, there is always the need of compact represen-
tations for many reasons. The most obvious intention for a simplification is to
reduce the amount of data and thus minimize memory and computation costs.
Another interesting aspect is roughly stated by Occam’s razor saying that things
should be described as simple as possible. A very simple solution often captures
the major principles of an entity and yields a certain amount of knowledge and
understanding.

Consider a geometric scene that basically consists of very simple objects like
cubes, pyramids and so forth. If a human is supposed to describe the setup, he
intuitively focuses on the general structure in a semantic-oriented matter and his
understanding of the given scene influences the way of describing it. A cube can
be defined by a few characteristic points rather than by a dense mesh including
a high number of vertices and facets. Now, considering that the cube holds
some irregularities or small deformations, a human still refers to the cube and
just adds that there are some small bumps on the cube’s surface. Accordingly,
the underlying task is to find laws or regularities in order to describe the data
efficiently. If that idea is taken to an extreme and the description is not given
verbally but coded in bits, regularities can be used to reduce the number of bits
needed to entirely transmit the data. This leads to a generic concept named the
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minimum description length principle which states, that the model achieving the
highest data compression should be used among a specific class of models [1].

This work discusses the application of a rather general principle to the repre-
sentation of polyhedral surfaces. In section two a short overview of related efforts
is given. A Bayesian model for polyhedral surface data is derived in section three.
Finally, the two part minimum description length is composed in section four
while the evaluation of the presented method can be found in section five. A
conclusion and possible applications are given in the last section.

2 Related Work

The simplification of meshes has gained high attention in recent years and there
exist several promising techniques. Some approaches focus on a simplification
algorithm while others are emphasizing a specific error metric or the approxi-
mation quality [2]. However, the automatic selection of an appropriate trade-off
between goodness-of-fit and model complexity is often not considered. Most algo-
rithms must be supplied with a certain quality or error parameter. Fidelity-based
approaches let the user define some kind of threshold that ensures a minimum
approximation quality of the simplified mesh.

Hoppe et al. [3] present a global optimization method using an energy function
with a similar structure as the term used in this paper. The function to be
optimized is composed of the mesh complexity and the sum of the squared
distances from the vertices to the mesh. However, it is shown that the minimum
of this function does not necessarily lead to the optimal mesh configuration.
The authors face that problem by introducing a spring term representing the
sum over all squared edge lengths multiplied by a spring constant. Cignoni et
al. [4] present a method to evaluate the quality of a mesh approximation. The
method compares two triangular meshes and no further knowledge is required.
One of the surfaces, which is called the pivot surface is resampled at a user
defined resolution. The normalized surface integral of the shortest distance of all
points to the simplified surface is then the desired error measure. The approach
by Garland et al. [5] uses an efficient evaluation scheme called quadric error
metrics to assign a cost value to each edge. A quadric error measures the squared
distance of a given point to a plane. A plane is defined by its normal vector and
a point that lies on the plane. The error associated to each vertex is the sum of
squared distances to the adjacent faces, weighted by the corresponding area. The
algorithm iteratively removes vertices until a user defined number of remaining
faces is reached. Lindstrom et al. [6] present an approach that iteratively collapses
edges which are then replaced by new vertices. The costs of a replacement are
characterized by the change of several geometric properties such as volume,
area or shape. The cost scheme only considers local properties and a history of
the original geometry is not required which makes this approach very efficient.
However, the algorithm does not provide a global error and the process is iterated
until the mesh is reduced to a certain number of polygons, which is controlled by
the user. Although the algorithm delivers good and reasonable results, it tends
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to smooth edges and works best for organic models. A slightly modified version
is used for the evaluation of the approach presented in this paper.

3 Model Order Selection

If we are looking for a model that explains a given data set appropriately, we
try to find a compromise between good fit and small complexity. This problem
is known as model selection and formalized in the following. Typically, only a
specific class of models are considered. In this context, a model class is defined
to be an ordered set of models that are derived from a superior definition and
share major properties:

Θ = {Θ0, Θ1, Θ2...Θn} . (1)

Each member is assigned with an index that shall equate to the degrees of
freedom of that model. The model Θi can be seen as a function with i linear
independent parameters. In the context of fitting problems we are interested in
a model Θγ , with γ = γopt, which gives an optimal trade-off between a good fit
and small complexity, that means a small index in the associated set of models.
A good fit of a specific model Θk ∈ Θ means maximizing the probability of the
data given that model:

θ̂k(D) = θ̂k = arg max
θk∈Θk

P (D|θk) , (2)

where θk is a k−dimensional parameter vector and θ̂k(D) is a maximum likeli-
hood estimator.

4 Optimal Mesh Representation

Consider that we have measured a number of noisy points which lie on a surface.
Such a dense and unstructured point cloud is a typical result of a reconstruction
algorithm. The data points are only measured observation but somehow related
to hidden variables representing the original geometry. The acquisition process
adds noise to the data and we assume the following relation between observation
yj and hidden variable xj :

yj = xj + nj , nj ∼ N (0, I · σj) . (3)

Our observation yj is a measured point and xj is a ”hidden” point. The mea-
surement adds noise to the original data. The presented approach is independent
from a specific sensor device and we assume a simple Gauss-model. The proba-
bility distribution for the observation yj , given xj turns out to be:

P (yj |xj) = (2 πσ2
j )−

3
2 exp(−

∣∣xj − yj

∣∣2
2 σ2

j

) , (4)
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where the variance is σj
2 in all dimensions. The probability function depends on

the Euclidean distance between yj and xj .The hidden points are not statistically
independent. They are related by a surface model that yields several constraints
such as smoothness or density. Consider a surface model Sk with k degrees
of freedom. According to [7], we can define the probapility space of possible
original surfaces as a set of discrete point clouds that has been sampled from
our model Sk. It is implicitly assumed that the closest correspondence xj ∈ Sk

yields the measurement yj. The technical problem of how to find the closest
corresponding point is related to orthogonal distance fitting and not focused in
this work [8]. It is assumed that there exists a vector-valued function T (yj) = xj

that associates a measured point yj to its closest correspondence xj ∈ Sk on
the surface with respect to the topology. Given the model Sk, we can use the
independence assumption and obtain:

log P (D|Sk) = −
n∑

j=1

[
3
2

log(2πσ2
j ) +

(xj − yj)
2

2σ2
j

]
. (5)

If we assume constant variances for all data points, the term is simplified to:

log P (D|Sk) = −3n
2

log(2πσ2) − 1
2σ2

n∑
j=1

(xj − yj)
2 , (6)

which is the probability distribution for the measured data D, given Sk.

4.1 Polygonal Surfaces

In the context of surface simplification, we consider polygonal meshes as surface
models. The simplification process iteratively derives a sparse version from the
original mesh and the result is again a polygonal mesh. In contrast to para-
metric models we avoid complex fitting problems including high computation
costs. We need to define the function associating a measured point with the
closest correspondence on the surface. In this work we use a triangular surface
representation. The iterative scheme of common simplification algorithms allows
to track the history of each triangle and we can easily find the corresponding
triangle of the model for each point [9]. The problem of finding the minimal
distance d is then reduced to a closest distance problem between a point and a
triangle. We use the definition of closest distance presented in [10]. The modified
log-likelihood-function is:

− log P (D|Sk) =
3n
2

log(2πσ2) +
1

2σ2

n∑
j=1

d(yj , T̂ (yj))
2 , (7)

where d(yj , T̂ (yj)) is the distance between a measured point yj and T̂ (yj) the
associated triangle of the polyhedral surface model Ŝk with respect to the surface
topology.
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5 Minimum Description Length of a Polyhedral Surface

We want to identify an optimal surface representation. The model that yields a
minimum of code-length needed to transmit a given data set D is supposed to
be optimal [11]. This approach is based on the two-part description length:

L = L(M) + L(D|M) , (8)

where L(M) is the code-length needed to encode the model and L(D|M) encodes
the data given the model. The MDL principle is used to minimize this term. Even
if we will never actually develop a coding scheme or intend to transmit data,
the MDL approach can be used to evaluate the compactness of a certain model
description [12]. The mapping to a common space such as bytes or a universal
code makes both components, data and model comparable. Consider that we
want to design an optimal code for a scalar sample drawn from a Gaussian
distribution. The data could be coded according to a general converting scheme
resulting in constant code lengths for each number. Instead, we encode the values
according to their probability in order to minimize the code length. Shannon has
shown in [13] that there is always a code which assures:

L(X) = − log(P (X)) . (9)

This relation states that high probability values are corresponded to short code
lengths and vice versa. Note, that the given relation implies that values with
an infinite code-length never occur while values with a probability of one do
not need to be transmitted. In practical applications code lengths are integer
numbers. However, the requirement of integers can be ignored if the number of
bits is sufficiently high. We use non discretized code lengths in this work.

5.1 Model Parameters

Before we start encoding the model, we need to identify all parameters that
represent the model completely. A polyhedral surface representation consists of
vertices and triangles (V, T ), where each vertex is a triplet of real numbers and
each triangle is a triplet of integer indices of the corresponding vertices:

L(M) = L(V ) + L(T ) . (10)

The configuration of the vertices and triangle indices in a polyhedral mesh can be
arbitrary and it is difficult to assume any probability distribution. The optimiza-
tion process should be independent of specific classes of surfaces or particular
applications. If the probability distribution is unknown, the theorem becomes
useless. However, Rissanen [14] introduces universal priors for communicating
parameters with unknown probability distributions. The length of the corre-
sponding prefix-free code is:

L(i) = log∗(i) = c+ log2(i) + log2(log2(i)) + log2(log2(log2(i))) , (11)
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where log2(i) is the encoding of the actual number and log2(log2(i)) is the length
of that encoding and so forth. c is a constant included for consistency [12]. The
given encoding ensures that the message is decodable without any additional
knowledge. For large numbers, log∗(i) can be sufficiently approximated by the
binary logarithm. The representation of real numbers turns out to be more dif-
ficult since we need an infinite number of bits to encode a number with infinite
precision. If we assume a fixed minimum precision ρ, we can convert a real num-
ber r to a corresponding integer i by performing a right shift [12]:

i = �( r
ρ
)� . (12)

The remaining fractional part is neglected. Now we can apply the encoding
scheme for integer numbers. The resulting code length for all model parameters
is then given by the sum of the lengths of all vertices:

L(V ) =
n∑

i=1

((log2(�(xiρ
−1)�) + log2(�(yiρ

−1)�) + log2(�(ziρ
−1)�)) , (13)

where we need to consider xi, yi and zi values for each vertex i. Each triangle is
represented by three integer numbers and we could encode them with the scheme
presented above. It is obvious that there must be an encoding scheme that is
significantly more efficient than the simple index-based triangle list. Empirical
investigations show, that state of the art compressions usually produce results
with 0.5 − 1 bits per triangle [15]. Assuming a regular structure, we obtain:

L(T ) = cbit · t , (14)

where cbit is a constant of discussed dimension and t is the number of triangles.
In order to achieve a maximum compression we use (14) to obtain L(T ).

5.2 Encoding of the Data

The data, which represents the residuals between the model and the original
surface is encoded in the second part. The length is a measure for the goodness-
of-fit of the model. Shannon stated in [13], that there exists a code that assures:

L(D|M) = − log(P (D|M)) · log(2)−1 , (15)

where the factor log(2)−1 is added in order to express the description length in
bits instead of natural units [16]. The probability function of the data given the
model has been derived in section three and the description length for the data
turns out to be:

L(D|M) =
3n log(2πσ2)

2 log(2)
+

1
2σ2 log(2)

n∑
j=1

d(yj , T̂ (yj))
2 . (16)
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Now, L is completely determined up to the variance σ2 and the precision param-
eter ρ. The variance is a model parameter and we can maximize the likelihood
and minimize L(D|M) respectively by [14]:

σ2 =
1
n

n∑
j=1

d(yi, T̂ i)2 . (17)

Making an assumption about the precision is challenging and one of the crucial
parts of the approach. One could say, that the precision of our model just needs
to be as high as the precision of the original data. The precision of the original
data is either obtained through the characteristics of the measuring process or
by a naive estimation. In our approach we assume that the measured points
came from a surface with a certain smoothness property. If we consider a small
epsilon environment of a point xi including the k-nearest neighbors, we expect
only an infinitely small change in the normal direction of the surface that can
be classified as noise. Although this assumption only works for areas with low
curvature, we obtain a stable value if the average deviation is calculated. Given
that, we demand a minimum sampling resolution compared to the level of mea-
sured details in order to limit the variance in between small neighborhoods. The
estimated noise variance for a point in its corresponding neighborhood Ni is:

σ̂2
i =

1
|Ni|

∑
j∈Ni

(ni(xj − x̄i))2 , (18)

where ni is the normal vector based on the third principle component of Ni and
x̄i is the mean vector of Ni [17]. We consider only neighbours of first order in
the triangular mesh. Please note, that σ is a parameter of the gaussian model,
while σ̂i describes the estimated variance of a data point. The square root of the
averaged variance could be seen as estimated precision which is:

ρ = ¯̂σ =

√√√√ 1
n

n∑
i=1

σ̂2
i . (19)

6 Evaluation

Even if this work is rather theoretically motivated, the following investigations
show reasonable results in practical applications. The presented scheme is tested
on three different examples. The MDL term is evaluated for stepwise simplified
meshes. In all cases, a global minimum of the description length can be clearly
identified.

The first application example investigates two models with the same number
of vertices. The capsule (e) and the augmented model (g) are shown in Fig. 2. We
use a slightly modified edge-collapsing scheme to generate the simplified models
[6]. The optimal models selected by the MDL criterion can be seen in (f) for the
capsule and in (h) for the augmented model. The center plot in Fig. 1 shows the
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Fig. 1. The left plot shows the normalized description length with respect to the vertex

ratio of the mechanical model in low (continuous line) and high resolution (dashed

line). The center figure shows the description length of the capsule (continuous line)

and the augmented model (dashed line). The right plot shows the description length

L (continuous line) as well as L(D|M) (dashed line) and L(D) (dotted line) of the

armadillo mesh

minimum description length in bits with respect to the vertex ratio r = nsimpn
−1
orig

for both models. nsimp is the vertex count of the simplified model, while norig is
the vertex count of the original mesh. Note that the MDL plot of the augmented
model (dashed line) has a similar shape but is slightly shifted with respect to the
MDL plot of the capsule (continuous line). Apparently, we need to afford more
vertices to keep the error sufficiently low. The result shows, that the selection is
automatically adapted to higher detailed models.

The second example represents an industrial component with simple shapes
and sharp edges. We evaluate the simplification at two different resolutions. The
low resolution version consists of 6130 vertices and can be found in (b), Fig. 2.
The congruent model with a higher resolution consists of 12260 vertices and is
shown in (a) of Fig. 2. The evaluation results are shown in the left plot of Fig. 1,
where the vertex ratio r is defined with respect to the vertex count of the smaller
mesh. The normalized description length L̂ = Ln−1

orig is plotted for the mechan-
ical model at a high (dashed line) and at a low resolution (continuous line). In
both cases, the MDL criterion selects nearly the same degree of simplification, as
can be seen in the right plot of Fig. 1. The image in (c) shows, that a reasonable
representation is selected among unnecessarily complex (a, b) or significantly
degenerated models (d). This example shows that the MDL criterion is usefull
to extract the actual geometry of a given mesh.

While the previous examples investigate particular properties, the mesh shown
in (i) of Fig. 2 represents a rather realistic application with complex features and
many details. The right plot in Fig. 1 shows L (continuous line), L(M) (dotted
line) and L(D|M) (dashed line) in bits with respect to the vertex ratio. The
MDL-graph starts at a relatively high level mainly characterized by a high error
rate represented by L(D|M). The description length decreases steadily until
the number of model parameters become the dominant component. Beyond the
minimum, the description length increases rapidly as the vertex ratio converges
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Fig. 2. The figures in the upper row show the result of the simplification of the mechanic

model at a high (a) and at a low (b) resolution. Regardless of the initial number of

vertices, the MDL criterion identifies a similar model (c) with nearly the same number

of vertices among unneccesarily complex (a, b) and too simple models (d). The lower

row shows the original mesh of the capsule (e) and of the rather complex model (g)

with the same number of vertices. The corresponding simplified versions identified by

the MDL criterion can be seen in (f) and (h). The image in (j) shows the optimal model

of the armadillo in (i).

to one. The optimal model in terms of MDL can be seen in (j), Fig. 2. Please
note that significant features like fingers, toes and ears are well preserved while
the number of vertices is reduced drastically (r ≈ 0.013). The armadillo dataset
is a courtesy of the Stanford 3D scanning repository.

7 Conclusion

The minimum description length principle is a convincing and quite elegant way
to reasonably identify an optimal model among a set of considered models. In
contrast to polygon-budget or fidelity-based approaches, the presented method
identifies an optimal model without further knowledge.

If we consider planar shapes, it is intuitive to identify redundant points that
can be removed without changing the general geometry. In real world applica-
tions we are often faced with rather complex geometry and noisy data. It might
be a matter of interpretation or context to decide if a given geometric detail is
important or can be neglected in an optimal representation. However, if a small
geometric feature is supported by a sufficent number of points, a removal of the
corresponding part in the model will lead to a significant increase of the mini-
mum description length. Obviously, we consider a ”ratio” of vertex density and
amount of details or information, although the model selection does not directly
depend on the number of vertices.
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In future work, we will improve the model itself and the estimation of required
parameters. More complex models like parametric surfaces or geometric primi-
tives such as spheres or cylinders will also be considered. Furthermore, we will
try to incorporate simplification and MDL based evaluation in order to formu-
late a global optimization strategy. Next to simple mesh decimation tasks, we
will use the efforts of that work as a theoretical basis for a semantic-oriented
analysis of geometric data.
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Abstract. We present a method to classify materials in illumination

series data. An illumination series is acquired using a device which is

capable to generate arbitrary lighting environments covering nearly the

whole space of the upper hemisphere. The individual images of the illu-

mination series span a high-dimensional feature space. Using a random

forest classifier different materials, which vary in appearance (which itself

depends on the patterns of incoming illumination), can be distinguished

reliably. The associated Gini feature importance allows for determining

the features which are most relevant for the classification result. By link-

ing the features to illumination patterns a proposition about optimal

lighting for defect detection can be made, which yields valuable informa-

tion for the selection and placement of light sources.

1 Introduction

The illumination of objects is of fundamental importance for many vision tasks.
Often, like in the case of automated visual inspection, the placement of light
sources can be controlled. By acquiring multiple images of the same object with
different illumination settings the properties of objects (like shape or reflectance)
can be investigated more robustly. Generally, it is desirable to 1) reduce the
number of illumination settings and to 2) obtain information about the optimal
placement of light sources. These issues are addressed in this paper.

Appearance of an object can be defined as the visual impression we have. It
depends on the object’s shape (on various scales), on its material properties,
and on the illumination environment. In the absence of subsurface scattering,
the material properties can be characterized by the bidirectional reflectance dis-
tribution function (BRDF), which defines how light is reflected at an opaque
surface. This function specifies the radiance observed in any outgoing direction
when the surface is irradiated by light of a certain wavelength from any incoming
direction. Appearance can be measured by irradiating a camera sensor. In our
work we assume the camera position and orientation to be held constant with
respect to the object.

Central to our investigation is the fact, that for given shape and for given
material properties the appearance of an object changes if illumination is varied.
Acquiring multiple images recorded at different illumination settings allows us to
discriminate the materials an object is composed of. The additional information
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in such an illumination series facilitates the classification of materials, which is
typically difficult just using a single image. The lighting environment depends on
the angular and spectral distribution of the light sources surrounding the object.
We implemented a device, which is capable to generate arbitrary extended light
sources covering nearly the whole space of the upper hemisphere.

Such illumination series are used as input data for a supervised learning ap-
proach. Each object is recorded under various illumination settings, thus span-
ning a high dimensional feature space. We apply random forests to achieve a
pixel-wise classification. For training, data is labeled according to the mem-
bership of the different material classes. Then, the trained classifier is used to
predict new data samples according to the different material classes. The final
segmentation is performed on these probability maps.

The associated Gini feature importance allows for determining the features
which are most relevant for the classification result. Since each image in the
illumination series is linked to a distinct illumination setting, the process of
automatic feature selection allows us to determine the lighting environments
being most relevant for a specific problem.

Related Work. Classification of materials based on their reflection properties is
a well-studied topic. Exemplarily, [1] use single images to cluster similar materials
based on their texture. Recently, [2] presented a set of features and a Bayesian
framework for high-level material category recognition using single images.

Multiple images from different viewpoints are exploited in the context of re-
mote sensing by [3], who applied neural networks to classify multispectral and
multiangle data. Multiple images recorded under different illumination settings
can be used in techniques based on photometric stereo to classify materials (e.g.
[4]). Koppal and Narasimhan [5] cluster the appearance of objects by analyzing
a scene which is illuminated by a smoothly moving distant light source.

In the field of BRDF measurement [6] apply dimensionality reduction tools
for determining reflectance functions. Lensch et. al. [7] optimized both camera
and light source placement w.r.t. measuring the BRDF of 3D objects.

Closest related to our work are the material segmentation approaches by [8,9].
The authors use illumination-dependent reflectance properties to enlarge the
class of material types that can be separated. In contrast to their work our ap-
proach allows us to reduce the number of illumination settings and thus propo-
sitions about optimal light source placements can be made.

Organisation. In section 2 the acquisition of illumination series is elucidated.
Our classification algorithm is described in section 3. We verify the proposed
technique in section 4 with real-world data.

2 Generation of Illumination Series

We are interested in acquiring a series of images, where the camera position is
fixed and the angular distribution of the light source Li(θ, φ) is varied, where i
stands for the three components of RGB-color space. Debevec et al. [10] acquired
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Fig. 1. Sketch and photograph of the parabolic lighting facility. Light emitted by an

LCD projector is directed to an object by a parabolic mirror. The reflected light is

recorded by a camera aligned to the mirror’s rotational axis.

images of a human face under a dense sampling of incident illumination direc-
tions using a two-axis rotation system and a directional light source. Instead of
using such a mechanical gantry, in our setup a mirror is employed to sample
lighting directions. Similar setups have been proposed in the context of BRDF
measurement [11,12].

Arbitrary extended, directional light sources can be produced by illuminating
a parabolic mirror1 using parallel light. The light reflected by the mirror is
directed to the mirror’s focal point. The source of the light is a digital projector2

which is located in the focal point of a Fresnel lens3. We call this setup the
parabolic lighting facility (see Fig. 1).

By varying the position of the impinging light ray relative to the optical
axis one can vary both the polar angle θ and the azimuth angle φ. Thus, the
illumination angle (θ, φ) can be transformed into the distance from the optical
axis (x, y) via the following formulas:

x = 2f tan(θ/2) cosφ and y = 2f tan(θ/2) sinφ , (1)

where f is the focal width. Since the mirror has a central hole of radius 0.75”
for camera access, a lower bound for the azimuth angle is θmin = 7.15◦.

For the experiments following basic illumination patterns are used: 1) The
whole field of illumination is subdivided into equally spaced rings. Here, the
polar angle θ is limited, while the azimuth φ covers the whole range between 0◦

and 360◦. 2) The whole field of illumination is subdivided into equally spaced
sectors. Here the polar angle φ is limited, while the azimuth θ covers the whole
range between 7.15◦ and 90◦. Ring and sector patterns can be combined to
produce lighting which is limited both in polar and azimuth angle (see Fig. 2).

1 Edmund Optics NT53-876, diameter 24”, focal length 6”.
2 Sanyo PLC-XU101, LCD-technology, resolution 1024×768 pixels, brightness 4000

ANSI-lumen, contrast-ratio 1:400.
3 Edmund Scientific N31,139, size 31”×41”, focal length 40”, thickness 3/16”.
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Fig. 2. Illumination patterns. Left: Rings with polar angles. Center: Sectors with az-

imuth angles. Right: Combination of rings and sectors.

Following issues have to be considered for acquisition:

1. As a photometric technique, our approach is heavily dependent on the correct
gray values of the images to be processed. Especially dealing with specular-
ities it is important that the dynamic range of the images is high, so that
under- resp. overexposures can be avoided. Thus an HDR-image is generated
by combining multiple photographs taken with different exposure times (e.g.
texp = {0.1ms, 1ms, 3ms, 10ms, 30ms}) using the technique by [13].

2. Because our digital projector exhibits a significant black level (the intensity
of a pixel with RGB-value (0, 0, 0) in the illumination pattern is not per-
fectly zero), the HDR-images are corrected as follows: We acquire an HDR
background image (setting the RGB-value of the whole illumination pattern
to (0, 0, 0)) and subtract it from the images in the illumination series.

3. The parabolic mirror setup assumes, that the object is located exactly in the
focal point; i.e., the dimensions of the object are negligible compared to the
mirror. In our case, the object size is up to 20 mm, which is significantly less
than the mirror’s diameter (600 mm). However, because the object is still of
finite size leading to irregular illumination. To avoid this, the inhomogeneous
illumination is corrected by dividing a reference HDR image of a Lambertian
object recorded under the same illumination pattern.

3 Analysis of Illumination Series

First, we explain the overall procedure before we have a closer look at the random
forest algorithm and its associated variable importance.

Overall Procedure. The starting point is an illumination series composed
by N floating point images (which are derived from the acquired HDR-images
by taking the logarithm). For each of the N images M feature responses are
computed applying generic image descriptors at different scales. The following
experiments are performed using simples Gaussian convolutions of adjustable
bandwidth σ. The feature space dimension is the number of illumination patterns
N times the number of image feature responses M .

Since we deal with supervised learning, the user is requested to label regions
of the input object belonging to different materials (which distinguish in BRDF
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Fig. 3. Overview of our classification approach. For a detailed description we refer to

section 3.

and texture). The labeled regions correspond to different classes. These labels
are used to train a random forest classifier on all feature responses.

The classifier assigns a soft label (ranging from 0 to 1) to every pixel in the
whole image, which can be interpreted as probability map for a specific object
class. By thresholding the probability map, each pixel can be assigned to a
distinct class, which yields the segmentation result.

The Gini variable importance measures quantifies the role of a feature dimen-
sion in discriminating the classes. This measure is useful for automatic feature
selection, i.e. to reduce the dimensionality of the classification problem. Which
means in our context, to find the few illumination environments which are most
important for the segmentation task.

Random Forests. Random forest is a procedure that grows an ensemble of
NT decision trees and collects their class votes, injecting several moments of
randomness along the way. Random forests were introduced by Breiman [14]
and have shown excellent performance in other image processing applications
[15,16,17]. We use the Gini impurity criterion (Eq. 2) to compute the best split
threshold by applying an exhaustive search over all possible thresholds.

Q(m) =
K∑

k=1

pmk(1 − pmk) , (2)

where m is the considered tree node, K the total number of classes, and pmk

the fraction of training samples in node m having class k. The procedure is ran-
domized with regard to 1) the selection of candidate samples for training the
individual trees (bootstrap sampling) and 2) the random selection of mtry can-
didate features at each specific node among which the best feature is selected
(according to Eq. 2). Random forests are suitable for problems with a large
number of variables but a small number of observations (due to random feature
selection). Each tree is constructed using a different bootstrap sample from the
original data. A certain fraction of the data is left out of the bootstrap sam-
ple. These out-of-bag samples can be used to evaluate the classifier after each
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tree construction and therefore approximates the test error of the classification
process, which is called the out-of-bag error.

Gini variable importance. The difference between Gini impurity at a node
m and the weighted sum of Gini impurities at the two descendant nodes ml and
mr is computed by:

ΔQ(m) = Q(m) − (plQ(ml) + prQ(mr)), (3)

where pl and pr are the fractions of training samples belonging to the nodes ml

and mr. For each node in the tree construction the variable i and thresholds
θi is determined for which ΔQ(m) is maximized. One can get an importance
score by accumulating the differences of Gini importance from this optimal split
ΔQi(m,T ) for all nodes m in all trees T in the random forest individually for
the variable i.

I(i) =
∑
T

∑
m

ΔQi(m,T ), (4)

This yields a measure I(i) for the mean Gini decrease that variable i achieves
and hence indicates its overall discriminative value for the classification.

4 Results

We demonstrate the feasibility of the approach using a mosaic composed of
small steel plates. Each plate is a square of 5 mm edge length and its surface
is finished in a particular manner: 1) Unfinished steel plate, where the isotropic
BRDF exhibits a forward scattering lobe of a distinct width. 2) Polished, where
the BRDF is close to specular. 3) Blasted, where the isotropic BRDF exhibits
a forward scattering lobe (being wider than in the unfinished steel case). 4)
Anisotropically smoothed, where the BRDF is clearly anisotropic such that the
width of the forward scattering lobe depends on the orientation. The plates can
be arranged horizontally or vertically.

To create the training data set, three small mosaics are configured, each one
consisting of five plates with differently finished surfaces. In each of these mosaics
different plates are used and the order of the plates has been varied. The test
data set is composed of a matrix of 4×4 plates, so that each surface type is used
three to four times. From each of the mosaics a series of M = 8 HDR-images is
acquired using the parabolic lighting facility, each one recorded under a different
illumination setting. See Fig. 4 for the illumination series of the test data set.

From each of the images only N = 1 feature response is computed using
Gaussian smoothing with bandwidth σ = 1. The materials of the training data
set are labeled according to the material classes using “scribbles” via a graphical
user interface. For this five-class problem the classifier is trained on the whole
set of feature responses using the settings NT = 100 and mtry =

√
NK. The

trained classifier is used to predict the probability of the pixels of the test data
set belonging to the material classes and segmentation is performed afterwards
by assigning the pixels to a distinct class according to the highest probability.
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Fig. 4. Test data set. The mosaic is composed of 4× 4 small quadratic plates of 5 mm

edge length having differently finished surfaces. The illumination series consists of

8 HDR-images (logarithmized). Top row: Images recorded under a selection of ring

illumination. Bottom row: Images recorded under a selection of combined sector/ring

illumination. The specifications of the illumination patterns are given below images.

Fig. 5. Variable Importance for the different materials (first five diagrams from left)

and overall variable importance (right)

Fig. 6 shows the results of the segmentation. Each column represents a differ-
ently finished surface. While the top row represents the ground truth, the second
row shows the segmentation outcome considering all illumination environments.
Our algorithm can classify all materials almost correctly on the test data set,
which becomes evident from the misclassification rates listed in Tab. 1.
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Fig. 6. Segmentation results of the test dataset. For each material a map of the associ-

ated segmented regions is given. The left column represents the ground truth which is

used to validate the segmentation results. The other columns correspond to the distinct

images of the illumination series being used for segmentation (description see text).

Next, we lower the number of the considered illumination environments. If we
use only the simulated ring light (varying polar angle θ) environments for classi-
fication (#4–7), we arrive at a rather bad performance, especially for the correct
recognition of the anisotropically finished surfaces. If we use only the simulated
ring/sector lights (varying azimuth angle φ, #0–3), the misclassification rate for
the blasted surfaces increases considerably.

By considering Gini variable importance (see Fig. 5), illumination environ-
ments can be identified, which are most relevant to the classification result.
Thus a sparse set of lighting environments can be created (#1,3,5), which works
on the test data set as well as the full set. We also performed experiments, where
only the one illumination environment was used, which is most appropriate for
a special material of interest (see the latter four columns of Tab. 1). In all cases
the Gini variable importance is capable to propose the optimal lighting.
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Table 1. Percentage of pixels classified incorrectly (misclassification rate). The num-

bers in the first 5 rows correspond to the differently finished surfaces. The columns

correspond to the distinct images of the illumination series being used for segmenta-

tion (description see text). The latter 4 columns refer to illumination arrangements

which are optimized w.r.t. a single material. Also the mean misclassification rate and

the out-of-bag error are given.

Configuration all θ only φ only sparse Polished Blasted Stpl./Sm. h. Sm. v.

Selected channels #0–7 #4–7 #0–3 #1,3,5 #0 #5 #1 #3

Blasted 2.5% 0.9% 15.8% 1.3% 42.5% 19.7% 38.2% 25.4%

Polished 0.6% 0.5% 3.2% 0.8% 1.7% 2.7% 24.4% 5.7%

Steel plate 0.3% 4.9% 0.7% 0.1% 18.9 % 40.0 % 3.9 % 19.9%

Smoothed horiz. 0.0% 38.0% 0% 0.0% 80.4% 73.1% 0.1% 40.7%

Smoothed vert. 0.1% 89.8% 0% 0.2% 80.7% 72.1% 48.6% 1.7%

Mean MCR 0.8% 26.8% 3.9% 0.5% 44.8% 41.5% 23.0% 18.7%

Out-of-bag error 0.014% 2.37% 0.012% 0.008% 36.3% 27.9% 1.23% 12.4%

5 Conclusion and Outlook

We demonstrated the feasibility of our technique to material classification: Mul-
tiple images were recorded under the same viewpoint but under different il-
lumination conditions. This individual images of the illumination series span
a high-dimensional feature space which forms the input of a supervised learn-
ing approach. Using Gini variable importance (which is implicitly provided by
our classifier) the most discriminative features can be identified. Because these
features are linked to illumination environments the number of lighting condi-
tions, which are necessary to classify materials of interest, can be drastically
reduced. In our experiment three illumination settings (which are associated to
the features with highest variable importance) suffice to yield good classification
accuracy. This technique could be used to propose a simple setup for visual in-
spection tasks, where the lighting is adapted to the objects’ properties. While
we focused on the material classification in this paper, we plan to extend our
approach to objects which differ in their BRDF and in their shape properties.
We also investigate the use of more elaborated feature descriptors.
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Krüger, Jörg 121

Kuhnt, Daniela 373



574 Author Index

Last, Carsten 333
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Muyan-Özçelik, Pınar 162

Nickisch, Hannes 272

Nickolay, Bertram 121

Nieuwenhuis, Claudia 141, 483

Nimsky, Christopher 373

Ong, Cheng Soon 202

Ota, Jeffrey M. 162

Owens, John D. 162

Palme, Klaus 412, 462

Paulus, Dietrich 101, 343

Pflugfelder, Roman 21

Picus, Cristina 21

Pock, Thomas 303, 313

Pollefeys, Marc 1

Popp, Jürgen 81

Prabhu, Sahana M. 422

Rajagopalan, Ambasamudram N. 172,

422

Rasmussen, Carl Edward 272

Reisert, Marco 412
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