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Foreword

This volume collects the papers selected for presentation at the 9th International
Conference on Cellular Automata for Research and Industry (ACRI 2010), held
in Ascoli Piceno (Italy), September 21-24, 2010.

ACRI conferences have been offering since 1994 a biennial scientific meeting
to both scientists and innovation managers in academia and industriy to express
and discuss their viewpoints on current and future trends, challenges, and state-
of-the-art solutions to various problems in the fields of arts, biology, chemistry,
communication, ecology, economy, engineering, networks, physics, social science,
and traffic control. ACRI 2010 was organized by the Complex Systems and Ar-
tificial Intelligence (CSAI) research center of the University of Milano-Bicocca
as a forum for the presentation and discussion of specialized results as well as
general contributions to the growth of the cellular automata approach and its
application. Cellular automata represent a very powerful approach to the study
of spatio-temporal systems where complex phenomena are built up out of many
simple local interactions. The ACRI conference series was first organized in Italy
(ACRI 1994 in Rende, ACRI 1996 in Milan, and ACRI 1998 in Trieste), and after
having moved to other European and international settings, this year came back
to Italy: ACRI 2000 in Karlsruhe (Germany), ACRI 2002 in Geneva (Switzer-
land), ACRI 2004 in Amsterdam (The Netherlands), ACRI 2006 in Perpignan
(France), and ACRI 2008 in Yokohama (Japan).

In order to give a perspective in which both theoretical and applicational as-
pects of cellular automata contribute to the growth of the area, this book mirrors
the structure of the conference, grouping the 74 papers into two main parts. The
first part collects papers presented as part of the main conference and organized
according to six main topics: (1) theoretical results on cellular automata, (2)
modeling and simulation with cellular automata, (3) CA dynamics, control and
synchronization, (4) codes and cryptography with cellular automata, (5) cellular
automata and networks, and (6) CA-based hardware. The second part of the vol-
ume is dedicated to contributions presented during the ACRI 2010 workshops
on theoretical advances, specifically Asynchronous Cellular Automata (chairs:
Alberto Dennunzio, Enrico Formenti, and Marco Tomassini), and challenging
application contexts for cellular automata: Crowds and CA (3rd edition, chairs:
Sara Manzoni and Shin Morishita), Traffic and CA (chairs: Katsuhiro Nishi-
nari and Andreas Schadschneider), and the International Workshop of Natural
Computing (chairs: Ferdinand Peper and Hiroshi Umeo).

Many people contributed to the success of ACRI 2010 and to the creation
of this volume, from the initial idea to its implementation. Our first acknowl-
edgement is to all the scientists that submitted their works, and to all Program
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Committee members and reviewers for their precious collaboration. A special
thanks for their hospitality to the University of Camerino (in particular to
Emanuela Merelli and Flavio Corradini), Centro Studi Piceno, the municipality
of Ascoli Piceno, and Fondazione Casse di Risparmio della Provincia di Ascoli
Piceno, and for its generous contribution to the realization of this volume to the
University of Milano-Bicocca.

A special acknowledgement also to all the people involved in the organization
of ACRI 2010 (in particular to Paola Lembo, Giorgia Malvolta, Lorenza Manenti,
and Luca Manzoni) whose work was fundamental for the actual success of the
event.

Finally, we would like to thank the Department of Computer Science, Sys-
tems and Communication of the University of Milano–Bicocca, and those that
financially supported the congress: illycaffè and Fondazione Casse di Risparmio
della Provincia di Ascoli Piceno.

July 2010 Stefania Bandini
Sara Manzoni
Hiroshi Umeo

Giuseppe Vizzari
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Abstract. Information processing and information flow occur at many
levels in the course of an organism’s development and throughout its
lifespan. Biological networks inside cells transmit information from their
inputs (e.g. the concentrations of proteins or other signaling molecules)
to their outputs (e.g. the expression levels of various genes). Moreover,
cells do not exist in isolation, but they constantly interact with one
another. We study the information flow in a model of interacting genetic
networks, which are represented as Boolean graphs. It is observed that
the information transfer among the networks is not linearly dependent
on the amount of nodes that are able to influence the state of genes in
surrounding cells.

Keywords: Cellular Automata, Random Boolean Networks, Mutual In-
formation, Transfer Entropy, Cellular Communication.

1 Introduction

An active area of research in the field of complex systems is the study of their
information storing and processing capabilities. The amount of information that
a system is able to elaborate and store plays indeed a crucial role in networks
of many interacting units such as gene regulatory networks, social networks or
economic networks.

Random Boolean Networks (RBNs) have been employed to study under what
conditions the information processing ability of complex systems is optimized
[1,2,3,4,5,6].

Random Boolean networks were initially introduced as a simplified model of
genetic regulatory networks [7]. The most interesting feature of RBNs is that
their dynamics can be classified as ordered, disordered, or critical [8,9,10]. The
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wide availability of gene expression data has allowed interesting comparisons be-
tween the behavior of these models and that of real cells, such as the distribution
of perturbations induced by gene knock-outs [11] and the time course of syn-
chronized leukemia cells [12]. Despite their abstract properties, random Boolean
networks have proven to be able to describe significant quantitative features of
biological systems and have given indications in favour of the hypothesis that
real cells might be operating in the critical region. This seems surprising, espe-
cially in view of the discrete approximation. Although models based on ordinary
differential equations may provide a better description of gene regulation phe-
nomena, for computational reasons, the use of simplified Boolean models has the
unique advantage that allows to deal with larger networks. Furthermore, it has
been observed that - e.g. while describing cell differentiation [13] - Boolean model
share some features with important continuum models of the same phenomena.

Several authors in the last few years have shown that critical RBNs optimize
the information flow and coordination of behavior diversity among its nodes
[1,2,3,4,5,14]. We aim here at investigating the conditions for such optimization,
but among RBNs that are put into communication with one another.

We have previously introduced Multi Random Boolean Networks [15,16,17,18]
as a model for the interaction of cells based on a Cellular Automaton of locally
interacting RBNs. It may also serve as an interesting general example of intercon-
nected homologous systems that are able to show emergent dynamical behaviors.
The interaction among cells is obtained by letting the activation of some nodes
be affected by the activation of some other nodes in adjacent cells. We have con-
ceived two alternative updating schemes, which we refer to as molecule-sharing
and molecule-signaling. The first mechanism roughly imitates the diffusion of
gene products to surrounding cells, the second one is inspired to the most com-
mon form of cell communication, according to which a signaling cell secretes a
molecule and the target cell has a specific receptor that binds to the signaling
molecule, thus triggering a change in the expression level of downstream genes.
So far, the two methods have not shown relevant differences with respect to the
main properties of some measures that we considered in past studies [18]. Since
also the information measures proposed in this work seem to be robust to the
choice of the mechanism, as observed in preliminary results, we will focus our
analysis on one of the two updating rules, specifically on molecule-sharing. The
mechanism is described in Section 2.

The intensity of the coupling among the networks can be modified by varying
the fraction of nodes of each RBN that is able to communicate with neighboring
RBNs. In this work we study how the information transfer among RBNs that
are built with critical parameters is affected by such variable.

In information theory, a key measure of the information in a random variable
is the entropy, which indicates how easily message data can be compressed.
Whereas the most important measure of the amount of information in common
between two random variables is the mutual information.

Within RBNs, the entropy of a node is related to its activity. In the ordered
regime, almost all nodes are frozen, in the chaotic regime, on the other hand,
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the number of fluctuating nodes is a finite fraction of N [19]. It therefore appears
important to understand how the frozen component of critical RBNs varies when
they are put into communication with one another. We introduce also a measure
of the velocity with which a node fluctuates among different states: the variability
of a node.

In RBNs the average of the mutual information over all pairs has been pro-
posed as a global measure of how well the system can coordinate its internal
dynamics. We extend this measure to quantify the amount of information ex-
changed between nodes belonging to different interacting RBNs. We also study
a simpler measure of correlation between them and a recently proposed alter-
native measure of information transfer, i.e. the transfer entropy. All the above
mentioned measures are defined in Section 3.

We numerically analyze how such measures are affected by the coupling
strength. The results reported in Section 4 show that the relationship between
the intensity of the coupling and the amount of information either contained in
the nodes of each cell or transferred among the cells is not trivial, on the contrary
it shows a minimum point for a moderate level of the coupling strength.

2 MRBN Model

A MRBN is a two dimensional Cellular Automaton where a complete RBN is
placed in each site. The new state of each RBN at time t+1 is determined by
the current state of its n nodes and the state of some nodes belonging to its four
orthogonal neighbors, according to a fixed rule. The updating rule is identical
for each cell, does not change over time, and is simultaneously applied to the
whole grid. Periodic boundaries conditions are used.

Every cell x has a set G of n nodes or genes G = {σ1, σ2, . . . , σn}. Each
gene i is represented as a Boolean logic processing unit that receives inputs
from ki other genes q1(i), q2(i), . . . , qki(i). The inputs to each gene are chosen
at random among all the other genes of the network. The Boolean function
fi(t) ≡ fi(σq1(i) (t), σq2(i) (t), . . . , σqki(i)

(t)) is associated to gene i by randomly
selection from a distribution of all the possible Boolean rules with ki inputs.
Node i have the same inputs and same Boolean function in all the m cells
of the automaton. In this study we set ki = 2, ∀i = 1, 2, . . . , n and a uniform
distribution of the Boolean functions. These parameters delimitate the boundary
between ordered and chaotic regime in not coupled classical RBNs [8,9,10].

Only a subset S ⊂ G of the n genes is not exclusively controlled by its ki

inputs according to its Boolean function, but by nodes in surrounding cells as
well. We refer to these s nodes as communicating nodes. Note that the set of
communicating nodes is identical in every cell. If i is a communicating node
(i ∈ S) and the output of its Boolean function in cell x is 0, but in a given
fraction of neighboring cells it is 1, gene i will take value 1 in cell x as well.

Formally: let Wx be the set of four orthogonal neighbors of cell x. Let θi,x(t)
be the fraction of neighboring cells of x in which the function of gene i has
value 1 at time t and let it be called the “concentration” of gene i in cell x at
time t.
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θi,x(t) =
1
4

∑
w∈Wx

fi,w(t) (1)

The value of gene i at time t+1 depends also on the value θi,x(t) according to a
concentration function g(θi,x(t)):

g(θi,x(t)) =
{

0 if θi,x(t) ≤ τ
1 otherwise

, 0 ≤ τ ≤ 1 (2)

where τ is a fixed threshold value, and it is identical for every communicating
node.

The dynamics of each graph is described by the following equation:

σi,x(t + 1) =

⎧⎨
⎩

fi(t) if i /∈ S
fi(t) if i ∈ S and g(θi,x(t)) = 0
1 if i ∈ S and g(θi,x(t)) = 1

(3)

In this study, we limit our analysis to MRBNs with τ = 0, assuming that the
expression of a communicating gene in at least one of the neighbors is sufficient
condition for the interaction to occur.

We define the parameter χ - coupling strength - as the fraction of communi-
cating nodes over the n total number of nodes: χ = s/n.

Since the MRBN dynamics is deterministic, after a transient it will evolve to
an attractor. In the attractor, every cell will always repeat the same configu-
ration of states, which we refer to as sub-attractor. We let the networks evolve
from different initial conditions; as a consequence the m cells can be found in a
different sub-attractors, where a is a number between 1 and m. The magnitude
of a is affected by the communication among the cells. We have observed that
this relationship is not monotonous [18]; on the contrary, the number of different
sub-attractors in MRBNs made of 5x5 cells is maximized for a level of the cou-
pling strength around 0.10. For higher levels of the coupling strength the cells
tend instead to become homogenous.

3 Information Processing and Transfer Measures

The average activity of a node characterizes its typical dynamical behavior. The
activity of node i in cell x is defined as [14]:

Ai,x = 1 − | 1
T

T∑
t=1

(2σi,x(t) − 1)| (4)

where σi,x is the value of gene i in cell x and T is the length of the time series
over which the activity is measured. The so-called frozen nodes, which never
change their state over time, have an activity Ai,x = 0, whereas the nodes that
occasionally change their state have an activity 0 < Ai,x ≤ 1.

The frozen component F [6], defined as the fraction of nodes whose average
activity is 0, is a decisive quantity for the information flow among cells. If all the
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Fig. 1. Entropy and Activity as a function of p1

nodes are frozen (F = 1), the network is basically irresponsive to signals from
the environment and hence can neither process information nor adapt.

The average activity of a node is related to the information content of its
message as expressed by the Shannon entropy in information theory [20]. The
Shannon entropy is a measure of the uncertainty associated with a random vari-
able. When the variable is Boolean it is defined as:

Hi,x = −p1(σi,x)log2p1(σi,x) − [1 − p1(σi,x)]log2[1 − p1(σi,x)], (5)

where p1(σi,x) is the probability of node σi,x to have value 1. Similarly to the
average activity, Hi,x is maximized when p1 = 1/2. Figure 1 compares the basic
properties of the two measures. The activity of a node, as well as its entropy,
provides information on the values a gene can take over time but does not take
into account how often the gene oscillates between such values. For example, the
case Ai,x = 0.5 indicates that gene i in cell x takes value 1 50% of the time and
0 the remaining time, but it does not specifies whether it oscillates between the
two values every other time step or just once in the entire time series. We define
therefore the variability of a node Vi,x as:

Vi,x =
1
T

T∑
t=1

|σi,x(t) − σi,x(t + 1)| (6)

Vi,x = 0 if the node is frozen and Vi,x = 1 if the node alternates its value at
every time step.

Rohlf and Bornholdt [6] have introduced the average correlation in order to
characterize the dynamical coordination of pairs of nodes. We extend its defini-
tion to nodes belonging to different cells of the MRBN. The average correlation
between two nodes i and j respectively belonging to cell x and y is defined as:

Ci,x;j,y = | 1
T

T∑
t=1

(2σi,x(t) − 1)(2σj,y(t) − 1))|, x �= y, (7)

If the dynamics of the two nodes are correlated the two factors always have the
same sign, if they are anti-correlated they always have opposite sign. In both
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cases Ci,x;j,y has value 1. If the relationship between the two genes varies in time
0 ≤ Ci,x;j,y < 1. Note that the magnitude of the average correlation is affected
by the presence of frozen nodes.

The definition of entropy can be naturally extended to a pair of nodes in
different cells. The joint entropy Hi,x;j,y of node i in cell x and node j in cell y
is defined as:

Hi,x;j,y = −
∑

α∈{0,1}

∑
β∈{0,1}

pα,β(σi,x, σj,y)log2pα,β(σi,x, σj,y), x �= y (8)

We now introduce mutual information [20], which is a measure of the amount
of information that a variable contains about another random variable. It is
the reduction in the uncertainty of one random variable due to the knowledge
of the other one. The mutual information between two variables is obtained as
the relative entropy between their joint distribution and the product of their
distributions. The relative entropy is a measure of the distance between two
distributions, a measure of the inefficiency of assuming that the distribution is q
when the true distribution is p. The relative entropy is always non negative and
is zero if and only if p = q. We define the mutual information Ii,x;j,y between
node i in cell x and node j in cell y as:

Ii,x;j,y =
∑

α∈{0,1}

∑
β∈{0,1}

pα,β(σi,x, σj,y)log2
pα,β(σi,x, σj,y)
pα(σi,x)pβ(σj,y)

, x �= y (9)

Mutual information has been used to infer biological relationships among genes
from experimental data [21]. Nevertheless Mutual Information fails to distinguish
information that is actually exchanged from shared information due to common
history and input signals. Schreiber [22] has proposed an alternative information
measure, called transfer entropy, that aims at overcoming these limitations while
maintaining the desired properties of mutual information. The basic idea is to
measure the divergence from independence between two genes i and j by observ-
ing their transition probabilities. In the absence of information flow from i to j,
the state of i has no influence on the transition probabilities of system j. The
transfer entropy measures the incorrectness of this assumption calculating the
deviation form the generalized Markov property through the relative entropy.
The transfer entropy from i to j is defined as 1:

Ti,x→j,y =
∑

γ∈{0,1}
∑

α∈{0,1}
∑

β∈{0,1}
pγ,α,β(σi,x(t + 1), σi,x(t), σj,y(t))log2

pγ,α,β(σi,x(t+1)|σi,x(t),σj,y(t))
pγ,α(σi,x(t+1)|σi,x(t)) ,

x �= y
(10)

1 pγ,α,β(σi,x(t+1), σi,x(t), σj,y(t)) is the joint probability of σi,x(t+1) = γ, σi,x(t) = α
and σj,y(t) = β. For a detailed explanation of the equation the reader is referred
to [22].
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4 Numerical Results

Since the measures described in the previous section are not analytically solvable
yet, we numerically estimated them. The approximation accuracy increases with
the length of the time series over which the quantities are computed. Since the
attractor of the MRBN is cyclically repeated, the time series of the attractor is
adequate for the estimation. Our simulation procedure is slightly different from
the one of other similar studies on Random Boolean Networks [1,2,3,4,5,14].
Instead of collecting a long time series and discarding a partly arbitrary transient,
we collect the precise time series of the attractor. MRBN that do not reach an
attractor within the computational limit of 2500 time steps are discarded.

For each experiment, Ai, Vi, Hi are averaged over the total number of nodes of
the MRBN (sometimes the set of nodes is restricted to communicating or non-
communicating nodes), while the pairwise measures Ci,x;j,y, Ti,x;j,y and Ii,x;j,y

are averaged over 10000 randomly chosen pairs. The measures typical of each
coupling strength - 〈A〉, 〈V 〉, 〈H〉, 〈C〉, 〈I〉 and 〈T 〉 - are obtained by averaging
over 100 randomly generated MRBNs made by 5x5 cells of 100 nodes each; and
over 150 experiments from different randomly chosen initial states and commu-
nicating node sets per MRBN.
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Fig. 2. (a) Average correlation 〈C〉 and frozen component 〈F 〉 as a function of χ =
0, 0.1, 0.2, . . . , 1 (b) Average activity 〈A〉, variability 〈V 〉 and entropy 〈H〉 as a function
of χ = 0, 0.1, 0.2, . . . , 1

We analyzed the average correlation 〈C〉 and the average frozen component
〈F 〉 as a function of the coupling strength (figure 2-a). It is remarkable how the
average correlation is not linearly dependent on the coupling strength; on the
contrary it shows a maximum point for a moderate level of the coupling strength,
approximately around 0.20 and in any case between 0.10 and 0.30. As expected
〈C〉 is tightly related to the frozen component, it is maximized indeed when the
number nodes that are not transmitting information is higher2.
2 The non coincidence of the two maximum points may be to due to undersampling.

Note that the two curves are the result of different experiments on the same set of
MRBNs.
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Fig. 3. Average pairwise Mutual Information 〈I〉 and average pairwise Transfer En-
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Figure 2-b shows that also the average activity, variability and entropy are
minimized for a modest level of χ. Counterintuitively, when such a fraction of
nodes is communicating with neighboring cells, the capacity of nodes in general
to process information is reduced and is lower than their capacity within isolated
networks.

The reduced capacity to transmit and decode messages affects the ability of
the system to propagate information and thus the coordination among the cells.
The amount of mutual information contained in the time series of two elements
gives a measure of how well they coordinate their activities. Figure 3 shows in-
deed that the average pairwise mutual information is minimized by a moderate
coupling strength. Surprisingly, when the networks are isolated and communi-
cation is therefore impossible among them their mutual information is not null.
Since the interacting networks are structurally identical, this phenomenon is
plausibly due to the similarity of the processes. Regardless their history, nodes
in differing networks are likely to show similar dynamics due to the fact that
they are ruled by the same Boolean functions. Some functions may indeed give
the same output for different configurations of the input values. This feature
of the model implies that not even the transfer entropy is null when χ = 0. It
is shown in Figure 3 that this information transfer measure is minimized for a
0.10 < χ < 0.30 coupling as well.

We have seen how the typical ability of the nodes to propagate information is
influenced by the coupling strength level. It is convenient to separately analyze
the dynamical properties of communicating and non communicating nodes in or-
der to discover if they are both responsible of the observed behaviors. One may
indeed expect communicating nodes to have a lower activity due to the nature
of their updating functions. The frozen component and average activity of com-
municating nodes and non communicating nodes as a function of the coupling
strength, shown in Figure 4, reveal an intriguing phenomenon. As expected, com-
municating nodes tend to have a lower activity compared to non communicating
ones. Nevertheless the two node types have a markedly different dependency
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Fig. 4. Comparison between communicating and non-communicating nodes: frozen
component 〈F 〉 (a) and average activity 〈A〉 (b)

on the coupling strength. Consistently with the average behavior described be-
fore, non communicating nodes minimize their activity and maximize the frozen
component when 0.10 < χ < 0.30. On the contrary, the activity and frozen com-
ponent of communicating nodes respectively increase and decrease as a function
of the coupling strength. It seems that the activity of the two types of node tend
to converge when the coupling strength increases. Note that the proportions of
the two node types vary with the coupling strength, producing the bowl-shaped
average behaviors described in Figure 2. The dualism of the dynamics of com-
municating and non-communicating nodes is an emergent phenomenon that is
difficult to predict starting from the updating rules of the models. The maxi-
mum of the activity of non communicating nodes at 0.10 < χ < 0.30 may be an
outcome of the increased presence of feedbacks loops between communicating
and not communicating nodes.

5 Conclusions

We have quantified, by means of numerical estimation of theoretical measures
based on information theory, the amount of information that coupled RBNs are
capable of transferring to each other.

We have examined the influence of the fraction of genes that are able to affect
the state of surrounding cells (χ) on the information transfer among cells.

It has been observed that such relationship is not monotonous. On the one
hand, the average correlation among the cells seems to be maximized for a mod-
erate level of the coupling strength, on the other hand this maximum is an
outcome of the reduced capability of the nodes to process information, their
state being mainly frozen in time. As a consequence, the information transfer
among the cells, measured by quantities such as mutual information and transfer
entropy, is there minimized.

Although there are of course further information-theoretic measures which
may be applied, the analysis has revealed that the behavior of the amount of
information transferred among coupled cells is not intuitive and deserves further
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investigations. The exact localization of its minimum may be the object of further
research, along with its comparison with different concentration thresholds (τ >
0); coupling strength being equal, a higher τ has indeed an impact on the actual
realization of the communication among the cells.
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Abstract. An open cellular automata (CA) environment applied to the
simulation of two-dimensional granular flows is presented herein. The
CA belongs to the family of so-called “lattice-grain” (cellular) automata
(LGrA) with one particle per cell. The time evolution is governed by
a “request-exchange” synchronous mode which simulates a two-stage
interaction-advection process. The transition rule follows a simple logic
including three physical components: an external field, a set of kinemat-
ical exclusion rules and an inertial effect. After a short presentation of
the CA logic, this paper describes the open user interface structured onto
and emphasizes the versatility of the model.

Keywords: cellular automata, lattice-grain CA (LGrA), granular flow,
user-friendly interface, open source.

1 Introduction

A thorough investigation into the behavior of granular matter is of major impor-
tance for scientific and industrial applications. The theoretical methods currently
used to tackle these problems split up into the three distinct levels of: contin-
uum models, particle dynamics and cellular automata. Cellular automata may
capture the essence of physical phenomena resulting from elementary factors
and make a suitable and powerful tool to catch the influence of the microscopic
scale onto the macroscopic behavior of complex systems. Moreover, an important
feature of cellular automata is their capability of handling complicated geome-
tries and boundary conditions, where classical computational methods may fail
or involve extra difficulty to model. Characterized by a high number of cells
and a low transport of information, cellular automata can simulate a diver-
sity of complex processes as encountered in dynamical systems [1,2]. Known as
“lattice-gas” (cellular) automata (LGA) in hydrodynamics, they are an extreme
simplification of molecular dynamics and have been widely developed over the
last years for a better understanding of turbulence and stability phenomena in
fluids, before being applied to the study of a larger diversity of physical systems
[3,4,5,6,7,8]. Concerning granular media, there was a number of attempts which
in turn make a relative simplification of granular dynamics and which are often
� INSA – Computer Science Department, until 2000.
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known as “lattice-grain” (cellular) automata (LGrA); they have yielded some in-
teresting results especially for hopper flows, flows around obstacles, segregation
or stratification phenomena during free surface multiphase flows or the forma-
tion of density waves in channel flows [9,10,11,12,13,14]. A state of the art for
lattice-grain models is given in [15] with references therein.

We focus on our LGrA described in detail in [16] and on the open environment
associated with. This software is recognizable under the name “Grany–3” as a
freeware [17,18]. Our model, derived from the analytical model of Litwiniszyn-
Müllins [19,20], is purely “kinematical”, i.e. it ignores force and acceleration and
only takes into account the notion of space occupancy. The transition rule is
provided with three original features. Firstly, a two-stage “request-exchange”
synchronous logic which simulates a physical interaction-advection process and
activates all cells while ensuring a uniform operating mode; secondly, an “exclu-
sion” principle based upon an elementary logic allowing the user to diversify the
behavior of the “solid” phase; thirdly a synchronous “propagative” mode which
simulates the propagation of the “void” phase: for brevity’s sake, this mode is
not tackled in this paper. Beyond its general contribution to the simulation of
multiphase granular flows, our model offers a high versatility allowing the user
to simulate a diversity of systems by merely adjusting the initial and boundary
conditions.

This paper aims to emphasize its versatility and to display the user-friendly
interface of the free software associated with. Section 2 describes our LGrA
logic, illustrated in our software presentation in Section 3 with a case study. We
conclude in Section 4 by emphasizing the advantages that the researcher involved
in studies on granular matter could benefit by using, or at least exploring what
could bring him this open source software.

2 LGrA Logic

2.1 Topology of the Network and Space Occupancy

The automaton is constructed on the 6-valent grid. As for the “FHP” lattice-
gas [3], this 2d topology offers the greatest number of symmetries for a regular
network: herein it maximizes the number of degrees of freedom (or directions)
for a displacement as well as the upper bound of the coordination number (the
number of contacts of a particle with its vicinity). The concise notation “ndf”
(0 ≤ n ≤ 6) will be used for a law with n degrees of freedom. Owing to the
site-cell duality, a hexavalent site is the center of a hexagonal cell and every site
is connected to its six neighbors. We denote by Ns the “size” or number of sites
of the network. Since the graph is regular with degree 6, the number of links
connecting a pair of adjacent sites is clearly 3Ns.

The space occupancy principle allows one and only one particle per site,
whether it is a solid, liquid or gaseous one, the term “particle” being a purely
formal denotation. Multiphase flows are considered, where a phase φi, indiced in
the set Nφ = {1, 2, . . . , nφ} for a system of nφ phases, denotes a set of particles
provided with identical properties. Note that a “phase” refers either to different
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states of the same material or to different kinds of materials. A working feature
of the automaton is that any cell of whatever content performs the same action
synchronously, that leads to a uniform operating mode over the whole network.

2.2 A Two-Stage Interaction-Advection

The interaction-advection process is performed by a two-stage transition accord-
ing to an original “request-exchange” mechanism. We will prefer this two-stage
term to the “propagation-collision” one often used in the lattice-gas terminology
in order to avoid confusion with a long-range propagative interaction. In the
request stage, each cell autonomously performs a computation composed of a
precalculation followed by a random choice. The result is a potential direction
of displacement which becomes the direction of request. In the exchange stage,
a test is performed for each link of the network in order to detect whether an
agreement has been reached between the potential directions yielded by both
adjacent sites.

Request-Exchange Synchronous Logic. It is useful to define a “request”
graph as well as an “exchange” graph on the hexavalent lattice. The cell performs
a request for displacement in one direction at most. A request is represented by
an oriented arc, say x → x′, from one site x to another site x′ (Fig. 1a). Whenever
two arcs x → x′ and x′ → x coexist, they are replaced by the edge x ↔ x′ in the
exchange graph (Fig. 1b). The exchange graph is clearly a non-connected graph
of isolated edges and where each component stands for a binary reaction. (The
fact that each cell performs one request at most ensures thereby a conflict-free
process. So whenever two particles compete with one another to fill a common
site, arbitration is handled by the particle filling the addressed target.)

-a- -b-

Fig. 1. The two-stage interaction-advection: (a) request graph and (b) exchange graph

Scheduling the Particle-Particle Exchanges. Requests are independently
performed on each of the Ns sites whereas the particle-particle exchanges must be
reviewed on each of the 3Ns links. In order to achieve the exchange stage without
gap nor overlap a consistent scheduling is set up according to the, say, isotropic
orientation N → S, SW → NE, SE → NW in Fig. 2a. This convention yields
a N–SW–SE input pattern as well as a S–NE–NW output pattern uniformly
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distributed on any site. In practice, the cell sends a copy of its own request to
its S–NE–NW neighbors while receiving a copy of the requests from its N–
SW–SE neighbors (Fig 2b). Then the occurrence of an exchange through the
N–SW–SE pattern is analysed. Finally the exchange with the N or SW or SE
neighbor (if any) is performed.

N

NENW

S

SESW

-a- -b-

Fig. 2. (a) Orientation of the network and (b) exchange control

2.3 Phase Components and Interaction Law

The behavior of a phase in a multiphase system will be defined by three “phys-
ical” components: an external field, a set of exclusion rules and an inertial ef-
fect. It should be pointed out that it is not so much the autonomous behavior
law of a given phase that must be taken into account but the interaction law
with its local neighborhood. This fact is illustrated hereafter. In the sequel, a set
K = (0, 1, 2, 3, 4, 5) will be assigned to the six directions NE, N, NW, SW, S, SE.

Modeling the External Field. The action of an external field (in general the
gravity) is modeled by assigning a 6-fold vector W to each phase. For simplicity,
let us consider an isolated particle p1 of phase φ1, immersed in a fluid of phase
φ2 and where ρ1 > ρ2 are the respective densities. To each phase φi is assigned a
distribution of weights Wi = (w(k)

i )k∈K with non-negative integers, according to
the orientations in Fig. 2. We adopt a “3df–3df” law with W1 = (0, 0, 0, 1, 1, 1),
W2 = (1, 1, 1, 0, 0, 0) where the pattern SW–S–SE means “downwards”. One
request of φ1 downwards will then result from W1 and a swap may occur with
a fluid particle below. Assume now p1 immersed in a new fluid of phase φ′

2 with
density ρ′2 > ρ1. Moving p1 upwards requires now a distribution of the form
W1 = (1, 1, 1, 0, 0, 0), W ′

2 = (0, 0, 0, 1, 1, 1).
From this observation, it follows that the external field is represented neither

by W1 nor by W2 but by the set {W1, W2}. In a system of nφ phases, the external
field will be represented by a set {W1, W2, . . . , Wnφ

}, where Wi is the distribution
related to phase φi.

Exclusion Rules and Modes. The role of exclusion rules is firstly to ensure
“kinematical compatibility” of the model. For instance, a usual rule consists in
prohibiting the exchange of two solid particles lying in adjacent cells through
their common link. More generally, their role is to differentiate the laws governing
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the interactions between neighboring particles. They thus help to model some
morphological (size, particle geometry...) or mechanical fuzzy notion (roughness,
stiffness...) by introducing a binary parameter according to which a particle could
either appear as “rough” or “smooth” in a monodisperse medium or “large” or
“small” in a polydisperse medium... other physical scenarios are possible.

An exclusion mode is assigned to an exclusion rule and defined as follows.

– pre-exclusion: the rule is applied from the request stage onwards; to select a
displacement direction, the cell is aware of the state of its six neighbors.

– post-exclusion: the application of the rule is postponed until just before the
exchange stage; the cell performs a “blind” request with no consideration of
the local vicinity.

As a matter of fact, the pre (resp. post) mode aims to affect a less (resp. more)
frictional –or viscous– behavior to the phase which is assigned to. We define a
set of three exclusion rules R1, R2, R3, namely “frontal”, “interstitial”, “con-
strictive”, more and more coercive when taken in this order (Fig. 3). Physically,
assigning R3 to phase φ implies R2 which in turn implies R1 to it. This sequence
is shortly denoted by the implication R3(φ) ⇒ R2(φ) ⇒ R1(φ). For consis-
tency, a “neutral” rule R0 will denote no exclusion for the assigned phase. The
implementation of this exclusion logic is quite simple.

Inertial Effect. Modeling an “inertial effect” consists in saving the memory
of the particle’s displacement direction at the previous timestep, to reintroduce
it with a user-defined weight into the new weighted distribution for the current
timestep. An inertial coefficient ci, which takes on a positive integer value, is
assigned to each phase φi and ci = 1 means no inertial effect for this phase.

It may be asked what physical meaning could be attributed to the artifact
giving inertia to the void. Whenever a high value is assigned to the “memory”

Rule nameRule Configuration

InterstitialR2 ϕ'              ϕ"k k+2

k+1

ϕ

FrontalR1 kϕ        ϕ'

ConstrictiveR3 k k+3ϕ'                 ϕ"

k+1 k+2

ϕ

Fig. 3. Exclusion rules R1, R2, R3: applied to phase φ, a rule works when the neigh-
boring sites occupied by φ′, or φ′ – φ”, contain equally or more coercive phases. The
barred arrow stands for the exclusion of the target site.
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of the void phase, this tends to induce, when the void moves in a dense packing,
an “indraught” to the particle located in the active direction. During a sequence
of transitions, this void will move a row of grains one at a time but in the same
direction. Although the row only moves at a rate of one particle per timestep, a
sort of effect of void propagation may occur. Let us recall that a phase component
is meaningful, only when embedded into the interaction law.

2.4 Time Evolution Equations

Modeling a Phase. For a given timestep, a cell contains a particle of phase
φi (i ∈ Nφ) characterized by the three following physical components.

– the action of an external field, depicted by a 6–fold vector

Wi = (w(k)
i )k∈K (1)

where weights w
(k)
i are non-negative integers.

– the action of exclusion rules, precluding some direction or other depending
on the state of the local vicinity and acting according to a mode from which
the exclusion will be applied before (pre-exclusion) or after (post-exclusion)
the request. This action is depicted by the 6–fold binary vector

Ẽi = (ε̃(k)
i )k∈K : ε̃

(k)
i = ri ε

(k)
i + (1 − ri) (2)

where ε
(k)
i = 0 (or 1) whenever the site in direction k is excluded (or not)

and where ri = 1 (resp. 0) for a pre (resp. post) mode assigned to the phase.
– the action of a “memory”, or inertial effect, depicted by the 6–fold vector

Mi = (μ(k)
i )k∈K (3)

where μ
(k)
i = ci if k was the displacement direction at the previous timestep

and μ
(k)
i = 1 otherwise. Coefficient ci takes on positive integer values and

ci = 1 means no inertial effect for the phase.

Transition Algorithm. Prior to computing a request, a precalculation yields
the corrected distribution

W ∗
i = (w∗(k)

i )k∈K : w
∗(k)
i = μ

(k)
i ε̃

(k)
i w

(k)
i (4)

and according to the exclusion mode, the probability of sending a request in
direction k is given by

p
∗(k)
i = ε

(k)
i

w
∗(k)
i∑

K w
∗(k)
i

(5)
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on condition that the sum of the corrected distribution be positive (p∗(k)
i =

0 otherwise). Direction k is selected at random by a pseudorandom sequence
generated from a user-defined seed.

Let (p∗(k)
j )k∈K be now the distribution of probabilities of the neighboring

particle of phase φj in direction k and let Xk be the representative event of a
displacement in direction k for the current particle. The probability of this event
is finally

P (Xk) = p
∗(k)
i p

∗(k+3 mod 6)
j (6)

according to the exchange protocol.

3 Software Presentation

Grany-3 is a C++ application implementing a simulator of our LGrA logic de-
scribed in the previous section. It is organized around the following modules:

– a core engine which executes the two-stage request-exchange transition al-
gorithm,

– a graphical interface which allows the user to define scenes from a vector-
based geometry, to parameter the granular system from a user-friendly win-
dow set and to visualize the simulation steps,

– a file manager based on a text-based interface which saves the data of the
scene as well as the simulation in progress for further external use.

3.1 A Case Study

We illustrate the presentation through a simple granular system simulating a silo
emptying process. The silo is a container with a hopper at the bottom, provided
with an outlet1 through which bulk grain falls down.

A two-phase system Nφ = {1, 2} is considered, where φ1 denotes the “grain”
phase and φ2 the “void” phase. The initial state is a silo fully filled with grains.

We adopt a “3df–3df” law with W1 = (0, 0, 0, 1, 2, 1), W2 = (1, 2, 1, 0, 0, 0)
where the pattern SW–S–SE of Fig 2b means “downwards”.

The frontal exclusion rule R1 is assigned to φ1 with the pre-exclusion mode.
The neutral rule R0 is assigned to φ2.

No inertial coefficient is assigned neither to φ1 nor to φ2, namely, c1 = c2 = 1.
The walls of the container will be created by means of a graphical editor. The

cells in the outlet region will play a special role of “void generator” by generating
a void when a grain exits. The instantaneous flow rate is the number of voids
generated per timestep.

This parameter set defines the local interaction law at the microscopic level.
Macroscopically, it will involve a kind of last-in first-out pattern of “funnel flow”.
In this example, we are not concerned by any physical interpretation of the
observed phenomena: we are just interested by a presentation of the graphical
interface.
1 This term is preferable to “open source” in this context.
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3.2 The Graphical Interface

Preparing a Scene. When starting the application, a Scene Editor should be
open. After loading an existing scene, the scene editor activates the first Borders
tab as shown in the front window of Fig. 4. Normal boundaries are drawn in blue,
generating boundaries in red (the outlet generating “void” particles)2. To create
a new border file, to open an existing one or to modify the existing borders, the
buttons on the right side should be used accordingly.

Fig. 4. The Scene Editor window, with its Borders tab activated. The Border Editor
backwards, with its vector-based graphical tools displayed on the right of the toolbar.

When modifying the boundaries, a vector-based Border Editor is used as
shown in Fig. 4 backwards. Available geometric forms (lines, arcs of ellipses,
ellipses and polygons) are provided as buttons in the toolbar, and normal borders
–or generating borders– can be switched from there too. A light pink grid is
shown to facilitate the drawing of straight lines.

The second Phases tab of the scene editor will open a window to create the
list of the two phases in the Nφ set. This main list is not displayed here. Phases
will be edited with a Properties button and they can be set as Propagative
and-or Generated by clicking an appropriate button. We create a first phase
named grain and a second phase named void to which the Generated function
will be assigned, that will involve a generation of voids in the red outlet region
previously set up from the Border Editor. Neither the grain nor the void is
defined as Propagative.
2 We apologize for this coloured presentation in a black and white context.
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Fig. 5. The window environment to set up a selected phase. From back to front: the
General window, the Ponderations window, the Rules window. A Rule Editor can be
displayed to customize a new rule from the “Design new rule” button.

When the grain phase is selected in the Phases list, the Properties button
opens a window with a General tab activated, as shown in the upper back win-
dow on the left side of Fig. 5. The grain is distinguished as a solid phase with no
Inertia and an associated user-defined Color. The Rules tab displays a window
with a list of standard or user-defined existing rules. The FRONTAL EXCLUSION
rule is selected in pre-exclusion by the “Add in pre” button. New rules can be
customized with a Rule Editor activated by the “Design new rule” button and
displayed on the right side in a window containing a 6-neighborhood template;
since both frontal and neutral rules exist in the library, this tool will not be used
in this example. Finally, the Ponderations tab displays a window to define the
weighted vector W1. A similar environment will be activated by selecting the
void phase in the Phases list.

Activating the third Zoning tab of the Scene Editor opens a Zoning Editor
to create the initial state of a silo fully filled with grains. The back window in
Fig. 6 shows a relative mix of phases specified by the sliders on the right, with
100% for the grain phase and 0% for the void phase. The “filling” is carried out
from one of the geometric frames available in the toolbar. Note that the zoning
rectangle does not need to fit perfectly into the frame of the container: it suffices
to roughly cover it. The colour is meaningful: it is the colour chosen in Fig. 5 by
the user for the grain phase.

The last Coloration tab of the Scene Editor shows an additional layered
coloration in the front window. This artefact is not physically meaningful but
very useful: it merely overlays the normal color of the grain phase, in order to
better visually track the movement of individual grains during the simulation.
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Fig. 6. The Zoning Editor window backwards, with its vector-based graphical tools
on the toolbar to define various zoning regions. The Scene Editor in front, with its
Coloration tab activated.

The scene is now ready, so we save it from the file manager toolbar of the
Scene Editor as a “scene” file named silo.scene.

Creating a Simulation. To create a simulation, the scene file silo.scene
should be reopened from the browser of a small dialog box, not shown herein.
In this box, the user enters the three following parameters: the Network size
of the cellular automata, the required Number of steps and the seed of the
pseudorandom sequence.

Once the network size is known, the actual cells are generated to match the
borders, phases, zonings and colorations of the scene as shown in the initial state
of Fig. 7. The simulation toolbar is provided with a Stop-Play-Pause button
set. The simulation starts when clicking on the Play button. Snapshots of the
time evolution of the silo emptying process are displayed for T = 0, T = 750,
T = 1500. From the toolbar, the user has a full control on the simulation steps
and can save selected states from the file manager. Unless required otherwise,
the simulation will stop once the number of steps is reached.

Network size and seed are two important parameters. The user can adjust
the size of the model from coarse-grain (e.g. 16 x 16 = 256 cells) to fine-grain
(e.g. 512 x 512 = 262144 cells) to study scale effects and to investigate scaling
laws and critical phenomena for homogenization procedures. On the other hand,
running several simulations with different seeds of the pseudorandom sequence
allows the user to perform statistical investigations.
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Fig. 7. Simulation of a silo emptying process. The toolbar displays the file manager
tools to save data and the Stop-Play-Pause button set controlling the simulation.
The cursor in the bottom displays the current step of the simulation in progress. The
network contains 71289 cells. Snapshots at time T = 0, T = 750, T = 1500.

4 Conclusion

This software is very flexible and easy to use. In this case study, it is not diffi-
cult to modify a given parameter: for example, changing the angle of the hopper
or the diameter of the outlet and observing their influence on the flow pattern
could be readily performed, and so forth... The data produced by the file man-
ager during a simulation process are available in a post-processing context for
external use. In particular, flow patterns, flow rates, velocity profiles, density
profiles, gradients, pressures, power laws and other macroscopic entities could
be investigated. The aim of this paper was to present this open CA environment
as a freeware that the researcher, involved in the study of the complex behavior
of granular matter, may explore and customize for his own. Comparative stud-
ies with other computational methods like finite elements or granular dynamics
appear as promising challenges which come within these objectives.
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Abstract. We modeled a multi-agent system as a two-dimensional Cel-
lular Automata and searched for a rule in order to solve the all-to-all
communication task in shortest time. The rule contains two finite state
machines (FSM) controlling the behavior of the uniform agents. The
moving FSM controls the moving actions and the color FSM controls
the changing of the cell’s color. Colors are used for indirect communica-
tion. In addition the agents receive an acknowledgment whenever they
meet and communicate successfully. The FSMs were evolved by a genetic
algorithm. It could be shown that acknowledging and especially coloring
increases the performance of the agents. Certain initial configurations
cannot be solved without coloring. Even with coloring, symmetric con-
figurations cannot be solved when the initial colors are the same.

Keywords: Cellular Automata, All-to-all Communication, Active Col-
oring, Evolving Behavior, Multi-Agent System.

1 Introduction

The general goal of this paper is to design multi-agent systems within the Cellular
Automata (CA) model and to find the agents’ rules that can solve a given global
task. In this paper we investigate if and to which extent indirect communication
via colors and acknowledging by a local feedback can lead to a better behavior.

The global task is all-to-all communication: Several agents are moving around
in a two-dimensional CA grid with wrap-around in order to exchange their infor-
mation among each other. Each agent initially has got one part of the mutually
distributed information which can be exchanged when the agents meet in certain
defined local patterns (communication situations). An agent system is consid-
ered to be successful when all agents have gathered the complete information.
The communication situations (Fig. 1) are defined for patterns where two or
more agents point to the same cell (the mediator).

The behavior of the agents is part of the CA rule and defined by finite state
machines (FSM). The goal is to find optimal FSMs (needing the least num-
ber of steps for being successful) by evolving them with a Genetic Algorithm
(GA). Note that the agents have to be optimized with respect to their moving

S. Bandini et al. (Eds.): ACRI 2010, LNCS 6350, pp. 24–34, 2010.
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CC C C

Fig. 1. Communication situations. Communication is done by exchanging the infor-
mation between agents via a mediator cell C.

behavior. They should move in such a way that they meet each other with a
high probability. The coloring is supposed to help the agents to take good move-
ment decisions in order to meet other agents and exchange the information.
Furthermore an acknowledging signal is available, giving the agents a feedback
on whether information was gathered or not. More details of the CA model are
given in Sec. 2.

In this contribution we pose the following questions: (1) Can the coloring
of the cells, which is actively controlled by the agents, improve the all-to-all
communication task? (2) How effective is an acknowledging feedback? (3) Are
the agents successful on an arbitrary initial configuration?

All-to-all communication is a very common task in distributed computing. The
problem’s specification can depend on many fixed or dynamic varying parameters
like the number and location of nodes, the number and location of processes, the
number, users and properties of the communication channels and so on. All-to-
all communication in multi-agent systems is related to multi-agent problems like
finding a consensus [1], synchronizing oscillators, flocking theory or rendezvous in
space [2], or in general to distributed algorithms with robots [3]. We have already
studied the problem of all-to-all communication: In [4,5] the communication
situations were defined without a mediator cell and no feedback or coloring was
used. In [6] a simple form of coloring was used for indirect communication, but
no direct feedback. In all former investigations the possible moving actions were
limited. In this investigation we use a more powerful set of moving actions (see
Sec. 2).

In former investigations [7] we have tried to find the best behavior for the
Creatures’ Exploration Problem, in which the creatures (agents) have the task to
visit all empty cells in shortest time. The presented problem is related to it with
respect to finding an optimal movement of the agents. Our research in general
is also related to works like: evolving near optimal rules for cellular automata
(CA) [8,9], finding out the center of gravity by marching pixels by evolution-
ary methods [10], modeling multi-agent systems in CA to simulate pedestrian
movement [11] or traffic flow [12]. Modeling the behavior with a state machine
with a restricted number of states and evaluation by enumerations was already
undertaken in [13] and in [14].

The remainder of this paper is organized as follows. In Sec. 2 the CA modeling
of the multi-agent system including the abilities of the agents is explained. The
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method of evolving the agents’ behavior and the problem sets are described in
Sec. 3. In Sec. 4 the performance of the evolved agents is discussed and Sec. 5
concludes.

2 CA Modeling of the Multi-agent System

The whole system is modeled according to the cellular automata paradigm. It
consists of an n×m grid of cells without borders (wrap-around, cyclic-boundary).
We decided for the cyclic-boundary case because we know from former investiga-
tions that this case is much more difficult compared to the case with boundary.
Each cell is able to model an agent or a free cell.

Neighborhood. All neighbors that might be accessed are within the Manhat-
tan-distance of two (12 neighbors: N, E, S, W, NN, EE, SS, WW, NE, NW, SE,
SW). A free cell uses only the NESW neighborhood, whereas an agent uses only
the four neighbors in its moving direction.

Cell’s State and Agent in General. The components of the cell’s state are
(Type, Color, Direction, CommunicationVector, MoveControlState, ColorCon-
trolState). Type defines the actual functionality (rule to be applied) of the cell,
it distinguishes between an AGENT or a FREE cell. Color represents an informa-
tion stored in the environment in order to speed-up the task. We will use either
no color (for comparison) or two colors (0/1)1. Direction N, E, S, W defines the
moving direction of an agent. CommunicationVector stores the currently gath-
ered information of an agent. MoveControlState and ColorControlState define
the current state of the agents’ controlling FSM (see below). The relevant state
components depend on the type: If (Type = AGENT) all state components are
relevant. All state components are visible for the neighbors, and all state com-
ponents can be modified. If (Type = FREE) the components (Type, Color) are
visible for the neighbors.

Modeling the movement from P to Q in CA requires two consistent rules based
on the same information: (a) the cell P hosting the agent deletes the agent, and
(b) the free cell Q copies the agent from P . If an agent is copied by a free cell, all
the components except the color are copied. If no agent is moving to a free cell, the
cell’s state remains unchanged. This principle is described in more detail in [4].

An agent

– reads the information from the cell ahead (front cell) in order to detect an
agent in front.

– reads the data of its neighbors in the moving direction (e. g., the neighbors
are N, NN, NE, NW, if the moving direction is N) in order to detect a conflict
[4].

– reads and writes the color on its own location.
– updates its control state according to the control algorithm.

1 We have also experimented with more than two colors but the improvements were
not as high as expected for this application.
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If the front cell of an agent is occupied or a conflict occurs, the agent will
stay on the current cell. A conflict occurs when two or more agents want to
move to the same front cell (communication point, mediator)2. Note that con-
flicts are necessary and useful to fulfill the task, because the conflicts match the
communication situations.

A bit vector (CommunicationVector) of length k = #agents is stored in each
agent in order to accomplish the distribution of information. At the beginning
the bits are set mutually exclusive (bit(i)=1 for agent(i)). When two, three or
four agents form a communication situation, they exchange their information by
simply OR-ing their bit vectors together. The task is successfully solved when
the bit vectors of all agents obtain 11 . . . 1.

Actions. An agent can perform a moving action m ∈ M = {Sm, Rm, Lm, Bm,
S, R, L, B} and a coloring action c ∈ C = {C0, C1}. The actions are

– Sm: straight ahead move conditionally
– Rm/Lm/Bm: turn right/left/back and move conditionally
– S: stay in the same direction and wait
– R/L/B: turn right/left/back and wait
– C0: clear color g := 0
– C1: set color g := 1

“Move conditionally” means that the agent will move if it is not hindered by
other agents or a conflict.

Apart from the agent’s movement and the information exchange, an agent
has indirect communication capabilities. Each cell of the environment contains a
color which is either 0 or 1 and used as an input for the decision making process.
The color can be seen as a tracing information like a “pheromone” left by other
agents or even by the reading agent itself. In total one out of 16 actions can be
selected, mc ∈ M × C.

Behavior. The decision, which of the actions will be performed, depends on
the behavior of the agent. The behavior (algorithm) of an agent is defined by a
control automaton (FSM) (Fig. 2) which has a more complex structure compared
to the one used before [7]. The control automaton consists of a move FSM and
a color FSM. Although it is possible to use only one FSM we decided for two
separate specialized FSMs in order to reduce the overall complexity and the
effort to evolve them. Output of the color FSM is a coloring action. Output of
the move FSM is a moving action that is additionally checked for conformity (if
the action tells “move” but a moving is not possible, then the agent has to wait).

The inputs of the control automaton are

– the type and direction of the neighbors in order to compute the move con-
dition x: If (front cell == obstacle ∨ agent ∨ conflict) then x = 0 else
x = 1.

2 Alternatively the conflict detection can be realized by an arbitration logic [7] which
is available in each cell. The arbitration logic evaluates the move requests coming
from the agents and replies asynchronously by an acknowledge signal in the same
clock cycle.
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Fig. 2. The control automaton defining the behavior of the agent consists of two FSMs,
one controls the movement and one controls the setting of the colors

– the color f of the front cell, used by the move FSM.
– the acknowledgment h that becomes 1, if the communication vector changes

(amount of ones increases) when the agents are meeting, otherwise becomes
0. This information can be seen as a local feedback for a successful commu-
nication.

– the own color g, used by the color FSM.

An FSM is defined by a state transition table (Fig. 3) with current inputs
(f ,h,x)/(g,h), current state s, next state s′ and current output y. In order to
keep the control automaton simple, we restrict the number of states and actions
to a certain limit (see Sec. 3).

(a) (b)

Inputs Current State � Next State, Move Action

f h x 0 1 2 3 4 5 6 7

0 0 0 3,S 3,Sm 4,Sm 0,Lm 3,Lm 3,S 0,B 3,B

0 0 1 4,Sm 3,Sm 7,Sm 6,L 6,S 1,S 5,Sm 7,Sm

0 1 0 0,L 7,L 0,L 1,B 2,Lm 5,R 7,Sm 4,Lm

0 1 1 1,L 0,Sm 5,S 4,S 1,R 2,Sm 5,B 5,B

1 0 0 6,S 7,Sm 3,Sm 0,B 5,Lm 3,B 1,Lm 3,Rm

1 0 1 7,B 4,B 3,B 3,Sm 7,Sm 3,Sm 6,Sm 3,Sm

1 1 0 5,Rm 4,Lm 1,R 7,Bm 6,Sm 3,B 0,Bm 3,Bm

1 1 1 3,L 4,Sm 3,S 4,S 7,R 5,S 4,B 5,B

Inputs Current State � Next State, Color Action

g h 0 1 2 3 4 5 6 7

0 0 4,C1 2,C0 6,C1 0,C1 6,C1 0,C0 4,C1 1,C0

0 1 3,C0 1,C1 5,C0 7,C0 5,C0 4,C1 4,C0 7,C1

1 0 2,C1 6,C1 5,C0 0,C0 6,C0 3,C1 6,C1 7,C1

1 1 2,C1 1,C1 3,C0 1,C1 3,C1 2,C1 6,C1 5,C1

Fig. 3. Example of the state tables for (a) the move automaton and (b) the color
automaton. The best found behavior is shown here (see Sec. 4). The number of states
is restricted to 8 for both FSMs. f stands for front color, g for own color.

Cell Rule. The cell structure (Fig. 4) consists of the cell’s state components,
the control automaton and a function r. The complete cell rule, realized by the
function r and the control automaton, can be informally described as follows:
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Fig. 4. The structure of a cell. The control automaton is embedded in the cell structure.
The function r computes the new state with the inputs of the neighbors and the own
state. ComVec is an abbreviation for CommunicationVector.

– If (Type = AGENT), detect whether the movement to the front cell is pos-
sible. (a) If it is possible, change Type to FREE, use inputs g and h = 0 to
perform the state transition of the color FSM and update Color according to
the output of the color FSM. (b) If it is not possible, detect communication
situations and update CommunicationVector, perform the state transitions
of both FSMs using inputs f , g, h, x and update ColorControlState, Move-
ControlState as well as Color and Direction according to the outputs of the
FSMs. Note that a neighborhood with Manhattan distance of 2 is needed
here.

– If (Type = FREE), calculate whether exactly one neighboring cell with
Type=AGENT pointing to the own cell exists. If such an agent exists, copy
the MoveControlState, Direction and use it in the own move FSM to deter-
mine (in the own cell) the next state, and the turning decision of the move
FSM. Copy also the ColorControlState to perform the state transition in the
own cell (but do not update Color). Then update CommunicationVector by
copying it from the agent cell and finally change Type to AGENT.

3 Investigations

The goal is to find the optimal3 agents’ behavior, which is defined by a combi-
nation of a move FSM and a color FSM, for all possible initial configurations of
the CA grid. The method is to evolve the FSMs by a Genetic Algorithm (GA)
evaluating the fitness through simulation of the CA. Different initial configura-
tions vary in the size of the grid, the number of agents in it, and their position
and direction.

In order to find out the effects of the coloring ability and the acknowledging
feedback, we performed the search for a near optimal behavior in four models,
which all are special cases of the general model described in Sec. 2:
3 Since we cannot prove or reach optimality, we use the term “optimal” in the sense

of “near optimal”.
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A. agents with coloring ability and with acknowledging
B. agents with coloring ability and without acknowledging
C. agents without coloring ability and with acknowledging
D. agents without coloring ability and without acknowledging

At first we used a Training Set of 10 initial grids of size 33 × 33 with 16
randomly placed agents. This set was taken over from former investigations [6].
From former investigations we know that a number of agents between 8 and
64 in this grid size leads to a sufficient number of communication situations. In
addition we used an Extended Set (Sec. 4) in order to test for robustness.

Fitness Function. The quality of a solution is given by the fitness function
F = 105(#a − a) + 104(1 − c) + tc. It reflects three aspects:

1. The number of agents a (maximum #a) which have gathered the complete
information. If an agent has gathered the complete information it is informed.
If all agents are informed, we characterize the agent system respectively the
algorithm as successful. If the agents are successful on all given initial con-
figurations then we characterize the agent system respectively the algorithm
as completely successful.

2. The algorithm should perform at least one communication (c = 0/1).
3. The number of steps in the CA simulation to reach successfulness. We will

call this value also communication time (tc).

For successful algorithms, the relation Fitness = communication time = steps
holds. Note that a lower fitness value is better. The fitness value for the Training
Set is the average of the fitness values of all configurations.

Genetic Algorithm. The search space for different behaviors is very large,
because the number of FSMs that can be coded with #s states, #x possible
input values and #y possible output values is K = (#s#y)#s#x. Due to the
exponential growth, the number of states was restricted to #s = 8, which is
sufficient to get feasible solutions as former investigations showed [6]. In the
cases A and B a pair of two FSMs (move FSM/color FSM) has to be evolved,
whereas in the cases C and D only the move FSM has to be evolved. Exact
values of the search space for each case are given in Table 1.

A state table can be coded by a concatenation of all pairs (s′, y). s′ is the
next state, y the output to a given combination of current state and input. This
string defines a genome of one individual, a possible solution. In the cases A
and B, the concatenation of the strings of the two automata define the genome.
An Island Model Genetic Algorithm is used to evolve the pairs of FSMs. P
populations with N individuals are updated in each generation (optimization
iteration). During each iteration, M children are produced in each population.
The union of the current N individuals and the M children are sorted according
to their fitness and the N best are selected to form the next population. The
offspring is produced as follows:

1. (Get Parents) Two parents are chosen for each population. Each parent
is chosen from the own population with a probability of p1 and from an
arbitrary other population with the probability of (1 − p1).
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2. (Crossover) Each new component (s′i, yi) of the genome string is taken
from either the first parent or the second parent with a probability of 50%.
This means that the tuple (next state, output) for the position i=(input,
state) is inherited from either of the parents.

3. (Mutation) Each component (s′i, yi) is afterwards mutated with a proba-
bility of p2. Thereby the next state and the output at position i are changed
to a random value.

The probabilities were set to p1 = 98% and p2 = 0.9%. In each case six
independent runs with 10,000 GA generations were performed and the results
were averaged where it makes sense. With P = 5, N = 100 and M = 10 per
island per generation this leads to 500,000 tested behaviors in all four cases. In
total 5,000,000 simulations (10 environments · 500,000) were performed. In all
computations the simulation of the CA is by far the most time consuming part
of the calculation. Note that, because the solutions for case D are included in
the ones for case C, they can be inserted at any time into the GA process for
case C by replacing another solution. The same holds for the cases B and A.

4 Results

Completely successful behaviors could be evolved for the Training Set in the cases
A-D. The best results were achieved for case A (Tab. 1, Fig. 3). The performance
can be improved significantly by using colors. The usage of the acknowledgment
h leads to a smaller improvement. The acknowledging effect is lower than the
coloring effect because, compared to the number of color changes, it is relatively
infrequent that two agents exchange a new information.

Table 1. The best fitness values of all evolved behaviors (averaged over six runs).
“n.a.” means that some configurations are not solvable in principle.

Case Color Acknow- Search Space K Fitness on Success on

ledgment Training Set Extended Set

A yes yes (6464)(1632) ≈ 1.34 · 10154 202.8 yes
B yes no (6432)(1616) ≈ 1.16 · 1077 211.7 not evolved
C no yes (6432) ≈ 6.28 · 1057 366.7 n.a.
D no no (6416) ≈ 7.92 · 1028 395.1 n.a.

Another reason for using the coloring ability is that, for some specific configu-
rations, a solution without colors is not possible. This is the case when all agents
initially have the same direction and there is enough free space in between them;
then they will never meet in communication situations. This happens because
all agents start in the same control state and always receive the same inputs.
Thus all agents move and turn in a synchronized way (Fig. 5(a)). By the usage
of colors, this problem can be overcome in some cases, because then the inputs of
the different agents vary depending on the colors that were set by other agents,
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and as a consequence they do not behave synchronized and can possibly meet
in communication situations (Fig. 5(b)).

We designed an Extended Set of configurations by adding some manually
designed configurations (e. g., equally distributed in a row or in diagonal, similar
to Fig. 5(a)) which can only be solved with colors. We evolved a behavior for
the case A and found completely successful agents (Tab. 1).

(a)      0 2 5 …

(b)      0 10 11 …

(c)   0 10 20 …

Fig. 5. Simulation snapshots of 5 × 5 and 4 × 4 configurations with two agents: (a)
agents moving and turning in a synchronized way cannot solve this problem, (b) agents
setting colors receive a different input at step 10 in this example, and thus act differently
afterwards, (c) due to the equal distances through the wrap-around, there will be a
synchronized behavior despite coloring.

Nevertheless there is still a third type of configurations that can not even
be solved by agents with coloring ability. This is the case when there is not
only enough space between the agents but additionally the environment looks
exactly the same (symmetric) from each agent’s perspective, i. e., all distances
are equal (Fig. 5(c)). There are several ways to solve this problem. Generally
it is necessary to introduce a certain inhomogeneity. This could be done by (a)
initially set different colors, (b) start agents in different initial control states, (c)
use randomness during the decision process of the agent, (d) insert obstacles in
the configuration, (e) use agents with different behaviors or (f) use asynchronous
updating. Solution (a) was tested. The best FSM combination was simulated on
an additional set of initial configurations with equal distances between the agents
and initially set colors (c = 1) in the cells in front of half of the agents. Although
it was not evolved for these configurations, it was completely successful.

The FSM strategy (Fig. 3) of the best evolved agents on the Extended Set
seems to be straight forward. They use the ability to color the cells in order to
mark “streets”. All agents will follow the course of the main streets when reaching
them. Thus the possibility of meeting each other in communication situations
is very high. Furthermore, the agents prefer to walk on horizontal or vertical
“streets”. Since the neighborhood is a von Neumann neighborhood (NESW),
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a diagonal way could only be walked in a stair-like manner. Then this “diagonal
street” would occupy more cells and the probability of a meeting would be lower.
The simulation sequence for one of the initial configurations (Fig. 6) shows that
the cells that are most visited correspond to the cells which were colored.

initial step 0 step 120step 60 t
c

= 263step 180

Fig. 6. Patterns of the visited cells (first line) and the colors (second line) for the best
behavior during the simulation of one configuration. The agents are building a network
of streets on which they move in order to communicate successfully.

5 Conclusion

The all-to-all communication task for a multi-agent system in a CA was stud-
ied applying indirect communication and acknowledging. The behavior of the
agents was controlled by two FSMs: The move FSM controls the moving actions
and the color FSM controls actively the colors. The FSMs were evolved with a
GA. The best found behavior uses the coloring ability and the acknowledging.
In comparison to systems without these abilities, they solved the task on the
Training Set of initial configurations almost twice as fast.

It was recognized that without coloring certain initial configurations cannot
be solved because of the uniform behavior and synchronous updating. Thus,
an additional search (by GA) on an Extended Set of configurations containing
these special cases was performed. The resulting behaviors showed to be more
robust. But still there is another type of configurations, which even with the
coloring ability cannot be solved. A few methods to overcome this problem were
proposed, e. g. setting colors initially proved to be applicable.

In future investigations we will use more complex agents with extended com-
munication and acknowledging abilities. For this purpose, the genetic algorithm
shall be revised, too, as the complexity and the search space grow fast. We also
want to examine systematically inhomogeneous systems that can guarantee to
be successful on arbitrary initial configurations.



34 P. Ediger and R. Hoffmann

References

1. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked
multi-agent systems. Proceedings of the IEEE 95, 215–233 (2007)

2. Lin, J., Morse, A.S., Anderson, B.D.O.: The Multi-Agent Rendezvous Problem.
An Extended Summary. In: Cooperative Control. LNCS, vol. 309, pp. 257–289.
Springer, Heidelberg (2005)

3. Principe, G., Santoro, N.: Distributed algorithms for autonomous mobile robots.
In: 4th IFIP Int. Conf. on TCS. IFIP, vol. 209, pp. 47–62. Springer, Heidelberg
(2006)

4. Ediger, P., Hoffmann, R.: Optimizing the creature’s rule for all-to-all communica-
tion. In: EPSRC Workshop Automata-2008. Theory and Applications of Cellular
Automata, Bristol, UK, June 12-14, pp. 398–410 (2008)

5. Hoffmann, R., Ediger, P.: Evolving Multi-creature Systems for All-to-All Commu-
nication. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S.
(eds.) ACRI 2008. LNCS, vol. 5191, pp. 550–554. Springer, Heidelberg (2008)

6. Ediger, P., Hoffmann, R.: Solving All-to-All Communication with CA Agents More
Effectively with Flags. In: Malyshkin, V. (ed.) PACT 2009. LNCS, vol. 5698, pp.
182–193. Springer, Heidelberg (2009)

7. Halbach, M., Hoffmann, R., Both, L.: Optimal 6-state algorithms for the behavior
of several moving creatures. In: Yacoubi, S.E., Chopard, B., Bandini, S. (eds.)
ACRI 2006. LNCS, vol. 4173, pp. 571–581. Springer, Heidelberg (2006)

8. Sipper, M.: Evolution of Parallel Cellular Machines, The Cellular Programming
Approach. LNCS, vol. 1194. Springer, Heidelberg (1997)

9. Sipper, M., Tomassini, M.: Computation in artificially evolved, non-uniform cellular
automata. Theor. Comput. Sci. 217(1), 81–98 (1999)

10. Komann, M., Mainka, A., Fey, D.: Comparison of evolving uniform, non-uniform
cellular automaton, and genetic programming for centroid detection with hard-
ware agents. In: Malyshkin, V.E. (ed.) PaCT 2007. LNCS, vol. 4671, pp. 432–441.
Springer, Heidelberg (2007)

11. Dijkstra, J., Jessurun, J., Timmermans, H.J.P.: A multi-agent cellular automata
model of pedestrian movement. In: Schreckenberg, M., Sharma, S.D. (eds.) Pedes-
trian and Evacuation Dynamics, pp. 173–181. Springer, Heidelberg (2001)

12. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J.
de Physique 2, 2221 (1992)

13. Mesot, B., Sanchez, E., Peña, C.A., Perez-Uribe, A.: SOS++: Finding smart be-
haviors using learning and evolution. In: Standish, R., Bedau, M., Abbass, H.
(eds.) Artificial Life VIII: The 8th International Conference on Artificial Life, pp.
264–273. MIT Press, Cambridge (2002)

14. Halbach, M.: Algorithmen und Hardwarearchitekturen zur optimierten Aufzählung
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Abstract. Having resisted successful parallelization so far, this paper
shows how the sandpile cellular automaton can be efficiently parallelized
on multicore computers with shared memory. New algorithms for both
the sequential and parallel case are being introduced. Implementations
in Java show a good speed-up which increases with the grid size.

1 Introduction

With the common availability of multicore computers with shared memory the
wish arose to finally be able to parallelize the sandpile model on those machines.
Previous attempts in parallelizing this model at the IKS and elsewhere failed pre-
dominantly applying message passing parallel computers with MPI. The cause
for this failure is found in the inability to use the technique of domain decompo-
sition as only very few cells need updating in a global cellular automaton step.
Furthermore the overhead of communication between nodes of a parallel com-
puter is too slow compared to the simple calculation of the sandpile model.

As a result, previous work focused on improving sequential versions. Although
significant improvements for the sequential case had been given and proven cor-
rect, e.g. by Walter and Worsch [3], these solutions still consume a large amount
of time until computations are completed. This is especially the case for large
grid sizes of the sandpile cellular automata (CA) which are of special interest
when analyzing the model. The special characteristic of the model, self-organized
criticality, can then be observed best as it is shown more detailed.

The solutions stated in this paper use the same main idea as those existing
solutions which only take into account the smallest possible amount of cells
which are subject to be updated in the next CA step (as for example in [3]).
Yet, the algorithms introduced here will be different.

A big obstacle when it comes to parallelizing the sandpile model is the big
difference between the very short and simple process of calculation compared to
a high demand and usage of memory. This poses a problem as the speed of main
memory accesses did not develop as fast as the CPU speed in the last years and
therefore creates a bottleneck. Therefore the layout of the used data structures
in memory has to be especially optimized with respect to caches.

This paper is structured as follows: In Section 2 a quick review of the defi-
nition of CA followed by the explanation of the sandpile model as well as the
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employed notions and symbols is given. Section 3 then describes two new se-
quential algorithms before Section 4 draws attention to the actual topic of this
paper, the parallelization. In that section the concept and implementation are
explained in detail focusing on efficient means of hardware locking which forms
a central performance issue. The results of the parallelization process can be
found in Section 5. The paper concludes with an outlook in Section 6.

2 Basics

2.1 Cellular Automata

We assume the reader is familiar with the concept of synchronous and asyn-
chronous cellular automata. The following notations are used:

A d-dimensional cellular automaton A is a 5-tuple (Zd, Q, N, δ, q0). Zd being a
regular d-dimensional grid representing the structure of the CA. Q is a finite set
of cell states and N a finite set of neighborhood indexes represented as coordinate
differences, 0 not included. x + N = {x + n | n ∈ N} stands for the set which
contains all cells that are neighbors of x.

δ : Qn �→ Q is the local transition function of the CA and configurations of A
are denoted as mappings c : Zd �→ Q with cx being short for the state of cell x
in configuration c.

2.2 Sandpile Model

The sandpile model was first introduced by Bak, Tang and Wiesenfeld in 1987
and continued in further detail in 1988 [1].

It is originally defined as a two-dimensional CA with von-Neumann neighbor-
hood of radius 1. Then Q = {0, 1, 2, . . . , 7} is the finite set of states.

Each cell can hold a certain amount q ∈ Q of grains of sand. A cell is said
to be critical if it contains four or more grains. Then the local transition rule is
best described as follows:

– If a cell is critical (q ≥ 4) it takes four grains from itself and distributes one
of those to each neighboring cell. This action is called “firing”.

– If a cell is not critical (q < 4) the cell by itself remains passive. It can receive
grains of sand from critical neighbors and possibly become critical itself.

If there are no critical cells left in a configuration, this configuration is said
to be stable. Once having reached a stable configuration one new grain of sand
is added to a randomly chosen cell of the grid until one cell becomes critical.
Should a cell fire, neighboring cells may also become critical and fire. This chain
reaction is called an avalanche. Once the sandpile CA has reached the state of
self-organized criticality avalanche sizes grow rapidly.

The sandpile CA uses bounded grids only. With bounded grids cells at an
edge can lose grains of sand. This behaviour is necessary to allow for relaxation
and guaranteedly reaching a stable configuration.
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It is known that the outcome of an avalanche is independent from its actual
order of cell visits. This is equivalent to perceiving the sandpile automaton as
an asynchronous CA. This is very important for the solutions provided with this
paper. The number of global steps of a synchronous sandpile CA is the only
information which cannot be obtained from an asynchronous solution.

All computational experiments for measuring the speed of implementations
had the following structure: The grid was a square of size n×n. In the initial con-
figuration all cells were in state 0. For the simulation 2.175∗n2 grains were added
to the grid expecting self-organized criticality to consolidate at approximately
2.13 ∗ n2 throws.

3 Sequential Solutions

In contrast to the paper by Walter and Worsch [3] which makes use of two grids
that are swapped every time one of the two used update sets is empty, we use
only one grid in the two new sequential algorithms.

Both of them employ stacks as a central data structure instead of lists. By
using stacks processing cells will be more affine to caches as cells which have been
pushed onto the stack will be used again very soon afterwards. This is contrary
to lists in which an element is always enqueued at the end and therefore won’t
be processed again quickly.

Similarly to the solution by Walter and Worsch the first sequential algorithm
(see Algo. 1) uses two update data structures. These structures are stacks in
this case, called A and A′. The algorithm is quite easy to understand. The inner
while loop processes the elements in the currently active stack A (lines 5-14),
applying the transition function to it. Cells which have become critical again are
pushed onto the other stack A′ (line 11). If stack A is empty both stacks change
their roles (line 16) and the trigger process starts anew with the new stack A.
Should this stack also be empty new grains of sand are added to the grid until a
cell becomes critical again. This algorithm works synchronously and hence even
the number of global steps needed for an avalanche is available.

Taking into account the fact that a sandpile CA can also be realized using
asynchronous updating, Algo. 1 can be simplified. Lines 1-4 are then equivalent
to Algo. 1 and the continuation can be seen in Algo. 2. Now only one stack
and one while loop are necessary and this loop will only be left when a stable
configuration is reached and a new grain of sand is to be added. As a result, this
algorithm uses asynchronous updating.

The particularity with this solution is the possibility of a cell having a state
greater than 7. This situation may occur if a cell repeatedly is a neighbor of a
critical cell but due to the stack won’t be accessed immediately as calculation
progresses into other directions. In Algo. 2 the inner while loop (line 7) deals with
that problem by triggering a cell as long as the cell remains in a critical state.

An important necessity which is shown by method pushUnique in both algo-
rithms is a check for the “availability” of a cell. Once a cell is pushed onto the
stack it won’t be pushed again until it has been popped off the stack. This is
realized using one bit in the memory of each cell (see Sect. 4.3).
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Algorithm 1. Sequential algorithm with two stacks and one grid

forall Grain g ∈ grains do1

z ← cell hit by g2

if increment(cz) ≥ 4 then3

A.push(z)4

while A.containsElement() do5

while A.containsElement() do6

x ← A.pop()7
cx ← cx − 48

forall y ∈ x + N do9

if increment(cy) ≥ 4 then10

A′.pushUnique(y)11

end12

end13

end14

A.reset()15

A ↔ A′
16

end17

end18

end19

Algorithm 2. Sequential algorithm with one stack and one grid (excerpt)

while A.containsElement() do5

x ← A.pop()6

while cx ≥ 4 do7
cx ← cx − 48

forall y ∈ x + N do9

if increment(cy) ≥ 4 then10

A.pushUnique(y)11

end12

end13

end14

end15

4 Parallel Solution

4.1 Cache Optimization

We assume the reader is familiar with cache layouts and the notion of a cache line.
With a realization of the sandpile grid as a one-dimensional array allocated in
one chunk in memory, accessing an element of this array (i.e. a cell) will with a
high probability have the neighboring cells to its left and right be in the same
cache line as well. Accessing the top and bottom cells will result in cache misses.
One goal should be an optimized access so that all neighboring cells and the cell
itself are situated in one cache line.

In order to achieve this, the cells are not stored in the standard row major
order. Instead, if k denotes the number of cells that fit into one cache line,
roughly speaking the following approach is used: Square blocks of

√
k×

√
k cells

are stored in column major order in a block of memory that fits exactly into
one cache line. This optimization now allows many neighborhoods of a cell to be
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within only a few array elements instead of being stored at an array index apart
by as many elements as the CA is wide.

With a usual cache line size of 64 bytes 56.25% of all neighborhoods are now
situated entirely in one block, leading to one initial cache miss only, 37.5% have
one cell overlapping into another block, leading to two cache misses in total and
only 6.25% have again two cells in other blocks. Theoretically, the cache hit rate
rises from ≈40% in the unoptimized case to ≈70% in the optimized case. This
optimization will be evaluated in Sect. 5.

4.2 Concept for Parallelization

Generally speaking our parallel program uses threads, each of which works like
the sequential solution with one stack (see Algo. 2), and an efficient thread
handler offering waiting threads to active ones which pass on work to those
threads. Therefore, the algorithm of the threads has to be adapted slightly in
order to function in a concurrent environment. Access to a cell of the grid has
to be done exclusively in order to prevent race conditions.

Fig. 1. The ring list of thread queues

The central data structure
of the thread handler is a ring
list consisting of queues with
elements being threads (see
Fig. 1). Before the threads
start working every thread
but one is enqueued into
such a queue. The remaining
thread starts to add grains to
the grid. Once a cell fires and
further neighboring cells be-
come critical those cells are
passed on to waiting threads
in one of the queues. This ac-
tivation removes the thread
from a queue. If a thread fin-
ishes working, i.e. not having
a critical cell to trigger in its stack, it returns to the thread handler and is en-
queued to a queue in the ring list in a round-robin fashion. Dequeue operations
always try to take place at the queue which last has had an enqueue operation as
then the probability of finding a waiting thread quickly will be higher. A sketch
of the parallel algorithm can be found in Algo. 3. There a class threadHandler
and the thread workerThread represent the elements mentioned above. The re-
quested number of threads is started in parallel (line 43) before the first grain is
thrown. This is done in function throwGrain (line 12). If a cell becomes critical,
a thread is dequeued from the ring list of thread queues (member tqr) mentioned
earlier. This thread then gets assigned the task to trigger this cell (line 16).
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Algorithm 3. Parallel algorithm for parallel stack solution (lines 10 and
34 are simplifcations of the real implementation)

class ThreadHandler()1

var: ThreadQueueRing tqr2

function enq(workerThread wt)3

tqr.enqToNextQueue(wt)4

if all threads have returned then5

throwGrain()6

end7

end8

function deq()9

return tqr.deqFromCurrentQueue()10

end11

function throwGrain()12

for Grain g ∈ grains do13

z ← cell hit by g14

cz ← cz + 115

if cz = 4 then16

deq().startWith ← z17

end18

end19

end20

end21

thread workerThread()22

var: Cell startWith23

repeat24

wait until startWith gets assigned25

stack.push(startWith)26

while stack.containsElement() do27

x ← stack.pop()28

incrementCount ←
⌊

cx

4

⌋
29

cx ← cx − 4 ∗ incrementCount30

forall y ∈ getCacheOptimizedNeighbors(x) do31

cy ← cy + incrementCount32

if cy ≥ 4 ∧ ThreadHandler.isThreadAvailable() then33

ThreadHandler.deq().startWith ← y34

else if cy ≥ 4 then35

stack.pushUnique(y)36

end37

end38

end39

ThreadHandler.enq(self)40

forever41

end42

runParallel (clone(workerThread, #Threads))43

ThreadHandler.throwGrain()44
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In the thread code, every thread waits for a cell to be triggered (line 25).
Should a cell have been pushed onto the stack, then according to the sequential
solution, this cell is triggered as long as it remains critical. In order to avoid
a loop leading to more locks the number of overall trigger actions is calculated
(line 29). After that, every neighboring cell is incremented atomically by that
amount. If the neighboring cell became critical the currently running thread now
has to check whether there are threads waiting in the thread handler or not. If
there are threads, then work is passed on to a new thread by assigning it the
currently processed neighboring cell (line 34). Shouldn’t there be any waiting
threads available, the processed cell is pushed onto the stack of the current
thread and triggered by itself (lines 36, 27).

Once a thread has finished processing all elements in its stack, it enqueues
itself into a thread queue in the thread handler (line 4). Should this thread have
been the last thread to do so, new grains are thrown (line 6).

4.3 Implementation in Java

Every information mentioned before can be compacted into two bytes allowing
a rather low memory usage. This information comprises a flag whether a cell
has been assigned to be processed by a thread, the kind of cell position in the
cache-optimized array and the cell state itself. The layout of these two bytes is
illustrated below:

There are five kinds of cell positions in the cache-optimized array. Either the
neighborhood is entirely inside one block (see Sect. 4.1), overlapping into a pre-
ceding or following block, entirely in a possible smaller block at the end or in
this block but overlapping to the last preceding normal sized block. Depending
on this classification the neighboring cells are calculated manually when firing.

Making use of the java.util.concurrent framework [2] efficient and fast
hardware locking mechanisms (e.g. compare-and-swap) became available in Java.
In the sandpile CA the regions of code which have to be executed atomically
(writes to cell states) are very small and as a result, thread waiting times before
such regions are short if another thread is already occupying this region. That’s
why spinlocks can be employed as a non-blocking locking mechanism. Every
other locking mechanism would involve too much overhead for waking up and
setting threads asleep. There is exactly one lock for each cell in the sandpile grid.
The lock() method of a spinlock is simple, with lock being an AtomicInteger:

while ( ! l o c k . compareAndSet (0 , 1) ){ ; }

Accordingly, the unlock() method is as follows:

l o c k . s e t ( 0 ) ;
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Thus, the code segment in which a cell update takes place can be seen here for
the left neighboring cell. It corresponds to lines 32-37 in Algo. 3.

l e f tLock . l o ck ( ) ;
i f ( ( ( caValues [ l e f t ] += nrOfIncs ) & checkBits ) > 3) {

caValues [ l e f t ] |= setAvai lPosBi t ;
l e f tLock . unlock ( ) ;
i f ( ( tempThread = threadhand le r . deq ( ) ) != null ){

tempThread . s t a r tC e l l = l e f t ;
} else {

c e l l S t a c k . push ( l e f t ) ;
}

} else {
l e f tLock . unlock ( ) ;

}

In this code excerpt nrOfIncs indicates how many times the current trigger-
ing cell has to fire (see Sect. 4.2). All neighboring cells are then incremented
atomically by this value. checkBits is a bit mask masking only bit no. 1 and
bits 5-16 (see above). This permits easy checking for criticality as a cell would
be negative with the availability bit set at position no. 1.

Another point where locking mechanisms have to be used is in the thread
handler. There, the return procedure has to be synchronized as threads have
to be enqueued atomically. Dequeuing takes place using one lock per queue.
That distributes the load as requests for dequeuing happen a lot more often
than enqueuing which can be deduced from the above code segment (inner if-
statement) making a call to the dequeue method every time a critical cell is
encountered. Using several queues instead of one helps avoiding a bottleneck.

Something which is also important to note is that at certain points lazy be-
haviour is used in order to avoid additional locking actions. This can only be
done if the correctness is left intact. An example here is the dequeuing proce-
dure from the queues ring in the thread handler as the queue to dequeue from
might already have been emptied by another thread between the current thread
checking if a queue is full (Algo. 3, line 33) (doesn’t happen atomically in order
to only approximately find out where a new thread might be dequeued) and
actually dequeuing from it (Algo. 3, line 34) (happens atomically in order to
prevent race conditions). If the current thread fails to dequeue a new thread the
cell that would have had to be passed on is simply pushed onto its own stack.
Thus, a thread does not have to make reservations at a queue which would create
an unnecessarily long exclusive section and as a result slow down execution.

5 Evaluation

Figure 2 shows the test results on an AMD Opteron multicore computer with 16
cores using implementations of both sequential and parallel algorithms in Java.

A Java implementation of the solution in [3] is referred to as “sequential
standard solution”. For the sequential solutions in Fig. 2a it can be seen that the
solution with one stack runs considerably faster than the synchronous solution
for a grid with side length n = 4000. Runtimes for the other tested side lengths
n = 1000 and n = 2000 can’t be shown due to lack of space. For a grid size of
1000×1000 both solutions are still equally fast.



The Sandpile Model 43

In the next Fig. 2b speed-ups and efficiencies compared to the parallel solution
itself for n = 1000 and n = 4000 and 1 to 16 threads are illustrated. For n = 4000
a speed-up of approximately 11.5 is reached for 16 threads yielding an efficiency
of around 70%.

The two most important figures are Fig. 2c and 2d. Fig. 2c shows the speed-up
of the parallel solution compared to the implementation of the solution in [3]
with the parallel solution being faster than this version already with only one
thread. This also demonstrates that the parallel solution itself is efficient. Fig. 2d
then shows the speed-up compared to the fastest sequential algorithm presented
in this paper leading to speed-ups of below 2 for grids of size 2000 × 2000 and
bigger. That is a quite bad efficiency but absolute time gains are still valuable.
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Fig. 2. (continued)

For n = 1000 and n = 2000 it is clearly visible that the best performance is
available with 12 threads. Adding more threads slows down execution. That is
due to too “small” avalanche sizes which is not the case for n = 4000.

The cache optimization technique introduced in Sect. 4.1 results in accelera-
tions of around 9% with n = 2000 and 17% with n = 4000.
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The following table summarizes the speed-ups of the three presented solutions
compared to the solution by Walter and Worsch, emphasizing the fastest one.

Grid size Sequential, 2 stacks Sequential, 1 stack Parallel (Threads)
1000 × 1000 10.85 10.49 7.76 (12)
2000 × 2000 12.05 13.52 16.79 (12)
4000 × 4000 12.89 19.67 32.96 (16)

Interestingly, the Java implementation of the sequential standard solution is
7.5% faster than the one in C in [3].

6 Conclusion and Outlook

The previous sections showed that it is possible to parallelize the sandpile model
efficiently with good speed-ups. But even in the absence of a parallel computer
calculations can still be done considerably quickly using the provided sequential
solutions only.

What is still missing is a fast parallel algorithm using synchronous updating
so that the number of global update steps of the sandpile CA can be found out.
For this purpose a different approach is currently in development. This approach
is lock free and might work for other cellular automata as well. Until then, the
sequential two-stack solution will deliver those results. One could also investigate
the possibility to use two stacks for the parallel stack solution instead of one.
Each thread would then be calculating synchronously and possibly a way could
be found to calculate the overall update steps from this information.

As longer runs are now possible in less time evaluations of these long runs
have shown that the occurrences of the quiescent states in stable configurations
do not remain constant when reaching self-organized criticality. It seems to be
the case that occurrences of state 0 rise by the same amount as occurrences of
state 2 fall. The same is true for states 3 and 1 only with a slighter change.

Not only for this interesting finding may the provided solutions offer a faster
possibility for future research.
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Abstract. A special class of n cell null boundary invertible three neigh-
borhood CA referred to as Equal Length Cycle CA (ELCCA) is proposed
in this paper to represent the features of n bit symbol strings. Necessary
and sufficient conditions for generation of ELCCA has been reported.
A specific set of ELCCA cycles are selected by employing the mRMR
algorithm [2] popularly used for feature extraction of symbol strings. An
algorithm is next developed to classify the symbol strings based on the
feature set extracted. The proposed CA model has been validated for
analyzing symbol string of biomolecules referred to as Enzymes. These
biomolecules are classified on the basis of the catalytic reaction they par-
ticipate. The symbol string classification algorithm predicts the class of
any input enzyme with accuracy varying from 90.4% to 98.6%. Experi-
mental results have been reported for 22800 enzymes with wide variation
in species.

Keywords: ELCCA(Equal Length Cycle Cellular Automata), Symbol
String Analysis, Enzyme Classification.

1 Introduction

A Cellular Automata (CA) model for analysis of symbol strings is presented. It
employs a special class of CA referred to as Equal Length Cycle CA (ELCCA).
The model has been validated for classification of symbol strings of biomolecules
referred to as enzymes that control all metabolic functions of a living organism.
An enzyme is synthesized out of coding sequence of DNA string represented as a
sequence of four nucleotides - Adenine (A), Thymine (T), Cytosine (C), Guanine
(G). A triplet of three nucleotides is referred to as codon. A codon can be en-
coded as a six bit symbol while assigning two bits for each of the four nucliotides.
Thus an enzyme can be viewed as a symbol string, each symbol representing one
of 64 codons.

Symbol string analysis is traditionally handled as pattern analysis and classi-
fication problem. A large number of authors [1-2],[14-15] has contributed in the
field of pattern classification/ recognition. The model based pattern classifiers
are the Nave Bayes classifier (NB) [14] and the Gaussian (Gauss) classifier [15].
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Enzymes are classified based on their functionalities in metabolic pathways.
Automated classification procedure of enzymes from its sequence is reported
in [13],[16-17]. In [13], a machine-learning method is used to classify enzyme
without using sequence similarity. The proposed method predicts the class with
74% success rate. Most of the other classification methods [20] are based on
sequence similarity and applied on a small set of enzymes.

In the background of phenomenal growth of string processing applications
in the field of Bio-Informatics [3], this paper reports a Cellular Automata (CA)
model for analysis of symbol strings. The robustness of the model has been tested
for classifying enzymes. The proposed algorithm predicts the class of an enzyme
with accuracy varying from 90.4% to 98.6%. Experimental results on classifying
22800 enzymes are reported.

The field of Cellular Automata (CA) has been enriched by a large number
of authors [4-7],[18-19]. The CA preliminaries is reported in Section 2 followed
by ELCCA characterization in Section 3. Symbol string analysis is presented in
Section 4, while Section 5 reports the classification of biomolecules known as
enzymes.

2 Cellular Automata Preliminaries – Rule Vector Graph
(RVG)

The Rule Vector (RV) of an n cell null boundary CA is denoted as < R0R1 · · ·Ri

· · · Rn−1 > where rule Ri is employed on the ith cell. RVG construction from the
Rule Vector (RV) of a CA has been detailed in [7], that reports (a) a linear time
algorithm to identify invertibility of a CA, and (b) all the NRS (Non-Reachable
States) and Self Loop States. RVG provides the foundation for the analysis of
Equl Length Cycle CA(ELCCA) employed for string processing reported in the
current paper. RVG construction and analysis are briefly introduced, followed
by a few basic definitions used to explain RVG of a CA.

Definition 1: Rule Min Term (RMT) - The 8 Minterms of the 3 variable
Boolean function fi, corresponding to the rule Ri employed on ith cell is referred
to as RMTs. The three Boolean variables are ai−1, ai, ai+1, the current state
values of (i − 1)th, ith, (i + 1)th cells respectively, whereby the minterm m = <
ai−1 ai ai+1 >. T(m) denotes a single RMT in the text and it is noted simply as
m for clarity of figures. The symbol {T} represents the set of all of the 8 RMTs,
whereby - {T} = {T(0), T(1), T(2), T(3), T(4), T(5), T(6), T(7) } = { T(m) }.
In general, a single RMT for ith cell is also denoted as T i ∈ {T}, where T i = <
ai−1,ai, ai+1 >.

Definition 2 : 0-RMT and 1-RMT - For a specific CA rule Ri, the next
state value bi of ith cell is ‘0’ for a subset of RMTs while for the other subset
the value is ‘1’. Hence a CA rule divides the RMTs into two subsets referred to
as 0-RMT and 1-RMT respectively, which are denoted as {T i

0} and {T i
1}, where

{T i
0} ∩ {T i

1} = φ and {T i
0} ∪ {T i

1} = {T}.
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Definition 3: A Node - The symbol {V} representing a subset of RMTs is
used to denote a node in the Rule Vector Graph (RVG). The ith level RVG
corresponding to the rule Ri consists of a set of input and output nodes connected
by directed edges. An output node of ith level is derived from its input node
through RMT transition (Fig 1(b)). The output node of ith level is the input
node of (i + 1)th level corresponding to the rule Ri+1.

Definition 4 : Edge of a Level - It represents RMT transition from input to
output node. Let T i = T(m) = 〈 ai−1 ai ai+1 〉=〈1 0 1〉 be a RMT of an input
node. Consequently, T i+1(a RMT of output node) can be derived from T i as -
T i+1 = 〈 ai ai+1 ai+2 〉 = 〈0 1 0〉 = 2 and 〈0 1 1〉 = 3 by deleting ai−1 and
appending 0 and 1 as ai+2. Fig 1(b) shows this RMT transition for all the 8
RMTs.

Definition 5 : 0-edge/1-edge and edge weight - The 0-edge and 1-edge refer
to the edges from an input node of ith level corresponding 0-RMT and 1-RMT
for the rule Ri employed on the ith cell. The bi edge (bi ∈ {0,1}) is assigned the
edge weight { T i

bi
}/bi, { T i

bi
} represents the set of RMTs for rule Ri for which

the next state value is bi.

Definition 6 : RMT string - The CA state can be expressed as a RMT string
〈 T 0 T 1 .... T i .... T n−1 〉 where T i ∈ {T} = {T(0) T(1) T(2) T(3) T(4) T(5)
T(6) T(7)}, and T i = 〈 ai−1 ai ai+1 〉. Thus T i denotes the decimal value of the
bit string 〈 ai−1 ai ai+1 〉, where ai−1, ai and ai+1 represent the current state
of the (i − 1)th, ith and (i + 1)th cell respectively.

Definition 7 : Compatible RMT Pair - A pair of RMTs T i and T i+1 in a
RMT string 〈 ...T i−1 T i T i+1..... 〉 (where T i = 〈 ai−1 ai ai+1 〉 and T i+1 = 〈 a

′
i

a
′
i+1 a

′
i+2 〉) are compatible if (i) ai = a

′
i and (ii) ai+1 = a

′
i+1. The pair T i and

T i+1 is referred to as Incompatible if these are not compatible.

Definition 8 : Valid RMT String - A RMT string 〈 T 0 ..... T i−1 T i T i+1

..... T n−1 〉 representing the state of a CA is a valid RMT string if each pair T i

and T i+1 (i = 0 to (n-2)) is a compatible RMT pair.

Next state value bi for present states

〈 ai−1 ai ai+1 〉 represented

by the RMTs (Column 1)

T(7) T(6) T(5) T(4) T(3) T(2) T(1) T(0)

7 6 5 4 3 2 1 0 · · ·
0 0 0 0 1 1 0 0 12

1 1 0 0 0 0 1 1 195

1 0 1 0 1 0 1 0 170

0 1 0 0 0 0 0 1 65

(a)

RMT T i 〈 ai−1 ai ai+1 〉 A RMT T i+1 〈 ai ai+1 ai+2 〉
T(0)(000) and T(4)(100) T(0)=000(0) T(1)=001(1)

T(1)(001) and T(5)(101) T(2)=010(2) T(3)=011(3)

T(2)(010) and T(6)(110) T(4)=100(4) T(5)=101(5)

T(3)(011) and T(7)(111) T(6)=110(6) T(7)=111(7)

(b)

Fig. 1. (a)Rule Min Term (RMT) and CA rule (b) RMT transition (Note : The left
column refers to the RMTs of ith cell while the right column refers to the corresponding
RMTs of (i + 1)th cell.)

The RVG of an n cell CA (< R0R1 · · ·Ri · · ·Rn−1 >) is designed by concate-
nating ith level subgraph derived for rule Ri. Fig 2 shows the RVG and STG of
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Fig. 2. RVG of the invertible CA 〈 12 195 170 65 〉 and its evolution

a hybrid CA < 12 195 170 65 >. In this figure binary bit string of a CA state
is denoted by its decimal value. A RMT T (m) is also noted simply as m (m =
0 to 7) for clarity of figures and text. Because of null boundary, { T (0), T (1),
T (2), T (3) } represents the Root Node (RN) and only the even valued RMT can
exists on the 3rd level ((n − 1)th level) input nodes. As per Rule 12 (Fig 1(a)),
the level 0 edges are drawn from the RN - the 0-edge with weight {T (0), T (1)}/0
and 1-edge with weight {T (2), T (3)}/1. Level 0 output nodes {T (0), T (1), T (2),
T (3)} is derived out of RMTs T (0), T (1) as per RMT Transition (Fig 1(b)). The
other output node {T (4), T (5), T (6), T (7)} is derived out of RMTs T (2), T (3)
on 1-edge . Level i (i = 0, 1, 2) output nodes act as the input nodes for level
(i + 1). The ith level RVG for i = 1, 2, 3 are drawn as per rules R1 = 195, R2

= 170, R3 = 65 (Fig 1(a)). Level 3 output node is marked as SN (Sink Node).
Traversal of RVG of Fig 2(a) generates the State Transitions noted in Fig 2(b).
RVG analysis (Theorem 3 in [7]) establishes that it is an invertible CA.

If all the cycles of an invertible CA are of same length, it is referred to as
Equal Length Cycle CA (ELCCA). Fig 3 shows the RVG and its evolution of a
4 cell ELCCA having two cycles, each of length 8. An n cell ELCCA generating
cycles of length k are referred to as ELCCA(n,k).

The main contribution of the current paper in the field of CA theory follows
next.

3 Level Graph(LG) to Characterize CA Evolution

Detailed analysis of CA evolution has been formulated based on another graph
referred to as Level Graph (LG) derived out of the RVG of an n cell CA. The
Level Graph LG(i) for ith level of RVG (i = 0, 1, · · · (n− 1)) of an n cell CA can
be derived as follows.

Each node in a LG is a RMT, while its edge (v1,v2) specifies the node v2

reachable from the node v1. While number of nodes for each LG is 8, for LG(0)
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Fig. 3. An ELCCA 〈 12 102 39 17 〉

(0th Level) and LGn−1 (for (n−1)th Level) the number of nodes is 4 due to null
boundary. Generation of LG(i) for level i is noted in Algorithm 1. It accepts
(i − 1)th, ith, and (i + 1)th levels of RVG as input and generates the LG(i).
The valid path with compatible RMTs on (i − 1)th, ith, and (i + 1)th level is
considered for generation of LG(i), i=0 to (n − 1).

Algorithm 1: Generate LG(i) (for level i of RVG)
Input: The (i − 1)th, ith, and (i + 1)th levels of RVG
Output: LG(i)
Step 0: Consider RMT on ith level edge as a node.
Step 1: For each RMT (a node) at ith level consider the input of possible next
states < bi−1bibi+1 > on the valid path covering edges on (i − 1)th, ith, and
(i + 1)th level. Convert it to the decimal number and mark it as the terminating
node in the LG(i).
Step 2: Connect the two nodes with an edge.
Step 3: Repeat Step 1 and 2 for each RMT of the level i. Stop

Fig 4 illustrates the six LGs of a (6,8) ELCCA (6 cell CA with 8 cycles each of
length 8). In the subsequent discussions a node of CA evolution corresponding to
State Transition Graph (STG) (Fig 4(c)) refer to a CA state. On the other hand a
node of LG (Fig 4(b)) refers to a RMT. A LG(i) may have multiple components,
each component is a subgraph covering a subset of nodes with no incoming or out-
going edge. For example, LG(3) (Fig 4(b)) of the CA < 5 240 165 15 204 65 > has
two subgraphs - Subgraph 1 covering nodes 0, 2, 4, 6 with a self loop on node 2 and
4, while other one (Subgraph 2) covers nodes 1, 3, 5, 7 with self loop on node 3 and
5. Each CA state represented as a valid RMT string < T 0T 1 −−T i −−T (n−1) >
has its RMT T i as a node of LG(i). The 0th cycle of Fig 4(c) covers CA states
(denoted as - Decimal Value (Binary) < RMT string > ) - 0(000000) <000000>,
45(101101)<253652>, 48(110000)<364000>, 21(010101)<125252>, 12(001100)
<013640>, 33(100001) <240012>, 60(111100) <377640>, 25(011001) <136412>
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Fig. 4. An example(6,8) ELCCA - 6 cell CA < 5 240 165 15 204 65 > having 8 cycles
each of length 8 - its RVG, six LGs, and eight cycles

with RMT T 3 as 0, 6, 0, 2, 6, 0, 6, 4 (underlined in RMT string) for eight CA
states. Subgraph 1 of LG(3) covering nodes 0,2,4,6 is associated with this cycle
(marked as Cycle Number 0 in Fig 4(c)). The Subgraph 1 is also associated with
3 more cycles marked as Cycle Number 1, 4, 5. On the other hand Subgraph 2 of
LG(3)(Covering states 1,3,5,7) generates Cycle No. 2 with states 2 (< 000124 >),
46(< 253764 >), 50(< 364124 >), 22(< 125364 >), 14(< 013764 >), 34(<
240124 >), 62(< 377764 >), 26(< 252524 >) in addition to 3 other cycles with
Cycle No. 3, 6, 7.

Fig 5 illustrates the RVG and evolution of ELCCA(6,16) - 6 cell CA < 6 125
240 86 80 > with 4 cycles each of length 16. The LG1 (of level 1 RVG) has two
subgraphs, each having 4 nodes - subgraph 1 with nodes 0, 1, 2, 7, while sub-
graph 2 covers nodes 3, 4, 5, 6. The following lemma and theorem characterize
ELCCA evolution.

Lemma 1: An n cell CA generates a self loop CA state if each LG(i) of its RVG
has a self loop node/RMT with compatible RMTs for i = 0 to (n − 1).

Proof: Let a state with valid RMT string (Defn 8) be denoted as < T 0 T 1 −
− T i −− T (n−1) >. If each T i forms a self loop state in the LG(i) i = 0 to (n−1),
then the corresponding CA state is a Self Loop state.
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Fig. 5. An example(6,8) ELCCA - 6 cell CA < 6 125 240 86 80 > having 8 cycles each
of length 16 - its RVG, six LGs, and eight cycles

Theorem 1: At least one LG(i) (i = 0, 1, · · · (n − 2)) of the RVG of an n cell
ELCCA has even number of isomorphic sub-graphs with a valid RMT strings
< T 0T 1 · · ·T i · · ·T n−1 > generating the cycles of the CA.

Proof: Necessity - An ELCCA has cycles of equal length. The CA states covered
by each of these cycles is generated out of the nodes of LGs. Hence it is necessary
that at least one LG has even number of isomorphic subgraphs in order to
generate cycles of an ELCCA.

On the other hand if isomorphic subgraphs are available in a LG (say LG(i)),
then the compatible nodes (RMTs) in (i−1), (i−2), .. 0th LG and (i+1), (i+2),
.. (n − 1)th LG, generate CA states < T 0T 1 · · ·T i · · ·T n−1 > forming a cycle in
CA STG. Because of isomorphic subgraphs, even number of equal length cycles
get generated since the total number of state 2n is even. Hence the specified
condition is sufficient to generate an ELCCA.

The LG(3) of the example ELCCA of Fig 4(b) has two isomorphic subgraphs
out of which 8 cycles (Fig 4(c)) get generated. There are other interesting results
of ELCCA characterization, that can be derived out of the RVG and its LGs of
an n cell CA for any value of n. Large number of (n, k) ELCCA exists even for
small value of n.
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4 Equal Length Cycle CA (ELCCA) for Symbol String
Classification

The problem addressed in the rest of the paper deals with analysis of symbol
strings leading to their classification based on the specified features of the strings.
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Fig. 6. (a) a 6 bit symbol string with symbols expressed in decimal value and its SSG;
(b) an ELCCA(6,8) of cycle length 8 and its CG

4.1 ELCCA Modeling Feature Set of Symbol String

The feature set of the given set of n bit symbol strings are represented with
ELCCA(n, k) − n cell ELCCA having k length cycles. An n bit state in n cell
ELCCA cycle represents an n bit symbol of the string, while the cycles model its
features. A simple graph theoretic framework has been developed to implement
the Sensing Mechanism [3].

Symbol String Graph(SSG) and Cycle Graph(CG) - An n bit symbol
string is represented with a graph referred to as Symbol String Graph (SSG),
while Cycle Graph (CG) represents a cycle of ELCCA(n, k). The SSG (Fig 6(a))
of an example 6 bit symbol string is generated with 17 unique nodes, each, repre-
senting a pair of consecutive symbols. A pair of nodes having a common symbol
is connected by directed edge. Similarly, the CG for an ELCCA(n, k) cycle (Fig
6(b)) with n bit symbols is generated by considering the cycle as a string of n bit
symbols. The selection of ELCCA cycles is based on the coverage of SSG nodes
by CG nodes with a parameter referred to as Global Coverage Index (GCI).

Global Coverage index(GCI) estimation - The procedure for embedding
CG in SSG is discussed with reference to the CG of Fig 6(b) in the SSG of Fig
6(a). There are three nodes (marked dark) in the SSG which are common in
CG. The nodes are marked in black in the figure. The path length is specified
by the number of nodes traversed in the paths. In the SSG Fig 6(a), there are two
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paths, (24,18) → (18,4) of length 2 and one degenerate path with single node
(12,8) of length 1. The GCI value is computed as follows.

GCI =
∑

i N2
i , Ni = length of ith path

The GCI value on embedding CG in SSG (Fig 6) is given by -

GCI = 22 + 12 = 5

The estimated GCI value is employed in the next section to select the EL-
CCA(n,k) cycle set used for analysis and classification of n bit symbol strings.

4.2 Classification of Symbol Strings

The ELCCA based classification scheme, as proposed in [3], implements the fol-
lowing three phases.

(I) Sensing : In the sensing mechanism, each of the training symbol strings
from m number of classes are analyzed with ELCCA(n, k) cycles to generate the
parametric values GCI (Global Coverage Index).

(II) Feature Extraction : To extract features for m number of classes, mC2

number of pair-wise classifiers are used. The distinguishing features are extracted
from a pair of classes at a time. Subsequently, the mRMR algorithm [2] extracts
a feature set which can differentiate the training symbol strings into two classes
on the basis of estimated GCI. For each of the pair-wise combinations of Class
A and B, the selected features are classified into two-groups : (i) FA

present - The
features which are presented in Class A and absent in Class B; and (ii) FA

absent -
The features which are present in Class B and absent in Class A. A feature set
is represented by a collection of ELCCA(n, k) cycles. The GCI values estimated
from CG of these ELCCA(n, k) cycles and SSG of the training symbol strings
should ensure significant difference between Class A and B types of strings.

(III) Classification based on Probabilistic Decision Making System :
On the basis of the extracted feature set, a probabilistic decision making system
is developed to predict the class of an input testing symbol string. From a pair-
wise combination, a probability of the input symbol string being in each class
can be calculated from its GCI value with respect to the selected feature set.
This procedure is executed for mC2 number of pair-wise combinations. The prob-
ability values of the input testing symbol string being in each of the m classes
are computed by Compound Probability. This method predicts the class of the
testing symbol string as the one for which the computed compound probability
is maximum.

5 Enzyme Classification with 6 Cell ELCCA

Robustness of the CA model for classification of symbol string is tested for a real
life application that deals with classification of enzymes. Enzymes are protein
molecules those control metabolic functions in living organisms. Classification
of enzymes on the basis of the nature of chemical reaction they catalyze and
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their substrate specificity is an extensively researched topic in Biology [12,13].
Enzymes can be viewed as symbol strings, where each symbol is a codon rep-
resented with 6 bits. The 6 cell ELCCA cycles are employed for analysis and
classification of 6 bit symbol strings of enzymes. All the available 97812 number
of ELLCA(6,8) are considered for this classification procedure.

The training data set to build the ELCCA model is collected from Expasy
Swis-port Enzyme Nomenclature Database [8] where all enzymes are classified
according to Enzyme Commission(EC) Classification System [10]. This is a four
level (Fig 7) enzyme classification system based on chemical reaction and sub-
strate specificity. The general structure of the class nomenclature is E1.E2.E3.E4,
where E1 specifies the highest level class and E4 is the lowest one. The low-
est level of enzyme classification mainly represents the substrate specificity of
same enzymatic reactivity. For example, the difference between class 1.1.1.1 and
1.1.1.3 is the substrate Alcohol or Homoserine. Other reaction properties of both
the classes 1.1.1.1 and 1.1.1.3 are identical. For our current study, only Third
Level (e.g. 1.1.1.∗ ) Classes are classified into its sub-classes (e.g- 1.1.1.1, 1.1.1.2
etc). The ELCCA model classifies enzymes with same chemical reactivity into
sub-classes having different substrate specificity.

Fig. 7. Enzyme Commission(EC) Classification System for Homoserine Dehydrogenase
with E1 = 1, E2 = 1, E3 = 1, E4 = 1, 2, 3, − − −

5.1 Experimental Procedure

The three phases of symbol string classification, as noted in Section 4, are imple-
mented for enzyme classification based on the analysis of Coding DNA Sequence
(CDS) of the respective enzyme. These CDS are collected from Uniprot Protein
Knowledge base [9] related to Expasy Swis-port Enzyme Nomenclature Database
[10]. CDS sequences highly variant in respect of average length of the members
in that class are filtered out. The filtered dataset is organized in four-level classes
according to the Expasy Enzyme Classification. Next, the dataset is separated
into two-third and one-third population for training and testing purpose re-
spectively. For classes containing large number of entries, randomized sample
selection procedure is used to select training and testing set based on K-fold
Iteration, where K = 10 [11]. For the complete experiment, we have trained and
tested the model with 38 Third Level Classes. The ELCCA based classifier is
designed for each of the Third Level Classes which can classify an input CDS
sequence of the candidate enzyme into its sub-classes tabulated in Fig 7.The
optimal size(p) of number of features in the feature set has been identified as 50
derived out of 97182 number of ELCCAs(6,8).
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5.2 Results and Discussions

Results of 38 Multi-class classifiers are presented in Fig 8. Total number of
enzymes tested is more than 22800 with variation in species. The accuracy of
classification varies from 90.4% to 98.8%. Errors are mostly from false positive
prediction with a negligible number of false negative cases. There is only one
case of 84.2 % correct prediction for the (∗ marked) enzyme class 1.2.2 due to
non-inclusion of proper ELCCA(6,8) cycles.

Fig. 8. Results of 38 Third Level Enzyme Classifiers indicating the percentage of False
Positive and False Negative values, and Success Rate for each of the classes

6 Conclusion

A special class of CA referred to as Equal Length Cycle(ELCCA) is employed
to model classification of a symbol string based on its feature set. Robustness
of the scheme has been validated for classification of the biomolecules known as
enzymes.
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Abstract. This paper deals with the study of size segregation of parti-
cles where the size difference causes characteristic movement of particles
inside granular media according to the induced vibration. In this study,
segregation of particles due to the difference in size is simulated using
Cellular Automata. A connected lattice automaton is introduced in the
model, so that the variation of particle sizes as well as geometrical ar-
rangement between particles can be represented. The Cellular Automata
model can produce various characteristics which are observed in the ac-
tual granular systems. Furthermore, it is known from both numerical and
experimental observations that the segregation progress is dependent on
the amplitude of excitation as well as the particle size ratio.

1 Introduction

A mixture of particles whose diameter or the density are different, when filled in
a container and exposed to a certain excitation, may exhibit segregation patterns
where particles are eccentrically stabilized at positions according to each physi-
cal property. Among several types the size segregation is well known, where the
smaller particles pass through voids formed between larger particles and even-
tually the latter rises upward to a free surface. Vibratory excitation increases
the unfilled space, which then reduces friction between particles and accelerates
their mobility. Consequently, particles with different properties are inhomoge-
neously located in space and form various types of stable segregation pattern
under specific fluidization process. However, such pattern formation may cause
adverse effect on product quality due to the non-uniformity in the course of
mixture process. Segregation as a whole is thought to be undesirable phenom-
ena in industries and a number of studies have been conducted to understand
the mechanisms and to control processes.

Hayashi et. al. [1] and Ikeda et. al.[2] investigated experimentally the vibration
induced segregation process of granular systems by testing various conditions,
e. g., the way to supply granular materials and the amount of each size grain.
They have shown that how the ratio of particle diameter affected the resultant
segregation or the mixture state, and also revealed that the friction between
container wall and particles causes particle motion be different in the vicinity
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of wall and in the midsection of the container, which then induces upward flow
in the midsection and adverse flow in the peripheral region. In such a state, the
peripheral smaller particles penetrate into the central relaxed region and conse-
quently the segregation occurs. Knight[?] also pointed out that the convection
flow intermediated by the friction of the wall is a significant factor for the issue,
through similar experimental investigations.

Numerical analyses are also performed in order to understand the granular
related events both from the analytical and phenomenological point of view[4]-
[11]. Rather than the continuum treatment of granular systems, the discrete
element method (DEM) is widely used in various studies focusing on each par-
ticle behavior for understanding the gross phenomena. DEM is built on the
basis of Newtonian dynamics, where the constitutive granular system behavior
is built up by respective particle motion which is modeled by a set of equation
of motion. Studies include vibratory conveyance system of grains[4], Modeling of
fluidized beds[5], inner convective flow dynamics[6], Vibration induced segrega-
tion model[7], etc. Taguchi[6] modeled the dynamics of vibrated bed consisting of
homogenous spherical particles using DEM and simulated the typical character-
istics in granular systems such as convection and heaping at the central portion
of the media. He pointed out that convection is sensitive to the numerical fric-
tion coefficient setting so that the flow directions become consistent with actual
observations. It should also be addressed that the computational load becomes
indispensable as the number of governing equations as well as the number of
particles increases. However, the time step should be kept moderately small in
order to prevent the numerical instability.

Challenges have been made for modeling granular related problems using Cel-
lular Automata and are successful by defining relatively simple rules [8]-[11].
Sakaguchi et. al.[8] introduced a lattice-connected automaton model where the
single particle is associated with multiple lattice nodes, which thus lead to the
alleviation of lattice constraint and the variation in movement, the particle size,
the interaction between particles can be enhanced. They have also simulated
the oscillating granular bed and succeeded capturing typical aspects in granu-
lar systems as mentioned above, however, the particle behavior is not explicitly
associated with collision and friction properties.

In this paper, the Cellular Automata model is developed for simulating the size
segregation of granular system. The model consists of a mixture of two different
size particles filled in a container, where the entire system is shaken by contin-
uous tapping excitations. Based on the lattice-connected automaton model, the
local interaction rule is defined physically. Experiments are also performed for
the system equivalent to the model, where the effect of the excitation amplitude
and frequency to the segregation time is investigated. The Cellular Automata
model can produce various characteristics which are observed in the actual gran-
ular systems. Furthermore, it is known from both numerical and experimental
observations that the segregation progress is dependent on the amplitude of
excitation as well as the particle size ratio.
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Fig. 1. Experimental setup of size-segregation of grains

2 Experiment

To capture the segregation dynamics and also to verify the Cellular Automata
model as will be mentioned in the latter section, experiments are performed for
granular materials consisting of two particles which are different in diameter. In
this section, the overview of the experimental setup and the results are shown.

2.1 Experimental Setup

Size segregation is examined by an experimental setup shown in Fig. 1. The
system consists of vertically reciprocating exciter on which a cylindrical plastic
container is attached, the data analyzer, acceleration pickup, and the amplifiers.
The cylinder (inner diam.: 50 [mm], height: 150 [mm]) incorporates two types
of granular material made of glass beads. Two diameters are chosen out of five
types, 0.6, 0.8, 1.0, 5.0 and 6.0 [mm], and five types of mixture are tested, as
shown in table 1. Prior to the shaking tests, the larger particles are arranged in
a layer at the bottom of the container before proceeding to pack the rest 80 [g]
of smaller particles. Since the preliminary test has shown that the segregation
is vulnerable to the moisture, grains are kept 24 hours inside a container with
constant humidity of 80 %. Throughout experiments, the acceleration amplitude
is kept 50 [m/s2] and the plastic container is harmonically excited by the shaker
within the frequency range of 20 to 200 [Hz]. In each frequency, the time required
for the first larger particle to appear in a free surface is measured.

Table 1. Combination of particles

Diameter(larger) Diameter(smaller) Size ratio

5mm 1mm 5.0
6mm 1mm 6.0
6mm 0.8mm 7.5
5mm 0.6mm 8.33
6mm 0.6mm 10.0
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2.2 Results

The measurement result of segregation time is shown in Fig. 2. In Fig. 2(a), the
segregation time is plotted against excitation frequency. The segregation time
is found to become large as the excitation frequency increases. It is also seen
that the time become smaller with the increase of the particle size ratio. The
expression in Fig. 2(a) is converted into the time against vibration amplitude as
shown in Fig. 2(b), which signifies that the time become shorter with increase in
excitation amplitude. It is known from these results that the excitation amplitude
rather than frequency largely affects the vibration-induced segregation process.

In the course of excitation, photos are taken from above the container as shown
in Fig. 3, for the case the size ratio of 5 and the excitation frequency of 100 [Hz].
The larger particles segregate at the free surface in the middle of the container
and then move toward the peripheral wall. They remain in the vicinity of wall
without sinking into the media. The upwelling of the larger particles at center
occurs along with the smaller particles, however, the smaller particles plunge
near the wall according to the convection flow. Fig. 4 explains schematically
the segregation process mentioned above. These features are largely supported
by the past studies[1]-[3] and are commonly observed for other combinations of
diameters and excitations.

(a) Segregation time v.s. frequency. (b) Segregation time v.s. amplitude.

Fig. 2. Segregation time observed in experiment

(a) Initial state. (b) After 35 sec. (c) After 55 sec. (d) After 75 sec.

Fig. 3. Segregation process of larger particles
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Fig. 4. Schematic of segregation process

Fig. 5. Space segmentation and particle definitio

3 Cellular Automata Model of Segregation of Particles

3.1 Development of a CA Model

CA model is developed for a two-dimensional space consisting of triangular lat-
tices. State of each lattice site is defined by three types, a segment of wall,
particle and void. Additionally, apparent velocity varying within six directions
is defined for particle lattices. In the present CA model, three different size par-
ticles are constituted as shown in Fig. 5. The smallest particle corresponds to
single lattice, whereas the medium and the largest particles consist of 31 and 55
connected lattices, respectively. It is therefore possible to express the particle size
variation and voids between particles[8]. Note that the particles are supposed to
be spherical in these expressions.

3.2 Description of the Local Neighbor Rules

Three different sets of local interaction rules representing the temporal evolution
are defined for each size particle. Each set consists of particle movement, collision
between particles, and also collision between particle and wall.

i) Rule set for the small particle: Particle should have the vector and move
toward one of the lattice direction including stationary state, as shown in Fig.
6. If the multiple particles simultaneously move into the same site, one of them
is selected by equal probability with physically consistent velocity. In the case
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Fig. 6. Examples of rule for small particle movement, without and with conflict

Fig. 7. Examples of rule for small particle collision

of three-body collision where the three particles are moving into the same site,
equal probabilities are given for respective particles. The particles basically keep
the present moving direction without collisions, however, the upward-moving
particles change their moving directions to downward according to gravity if
their velocity reach zero. In the present simulation model, collisions are limited
to two-body cases and are evaluated between a focused and its adjacent particles.
The velocity of the focused particle is changed for the colliding case. Fig. 7 shows
an example of collision between small particles. In order to alleviate the lattice
orientation on the particle movement after collision, the particle rebounds to the
opposite direction with 1/2 probability, and 1/4 for the either oblique directions.
ii) Rule set for the medium particles: Since a particle is expressed by the multiple
connected lattices, the variation of relative positions and the examination of
collisions become more complex than the smaller particle case, however, the basic
ideas for the change in velocity and the treatment of collisions are roughly the
same. A couple of examples for the movement and collision of medium particles
are shown in Figs. 8 and 9. The particle can move only for the case if the multiple
adjacent lattices are simultaneously vacant. In the case of collision where the
expected rebound direction does not coincide with the lattice orientation as
shown in Fig. 9, two adjacent directions are chosen with equal probabilities, 1/2.
The change of the particle velocity after collision is determined according to the
mass ratio.
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Fig. 8. Examples of rule for medium particle movement, collision between particles

Fig. 9. Examples of rule for medium particle collision

iii) Rule set for the large particles: The rules for the large particles are basically
identical to those for the medium particles, although the constitution of the
reference neighbor on examining movement and collision with other is different.

3.3 Expression for the Container Excitation in Discrete System

Although the difficulty of representing continuously-changing excitation ampli-
tude in discrete system, it is already known from the experimental observation
that the segregation of particles is largely dependent on excitation amplitude
rather than the excitation frequency. The vibration of the container is therefore
replaced by the lift of entire granular materials at arbitrary height and the parti-
cles are let dropped freely according to gravity. Repeating this cycle apparently
corresponds to steady excitation.

4 Simulation Results

Preliminary tests are first performed in order to verify the present lattice-
connected Cellular Automata model for particle expression, which are followed
by two cases of simulation where the particle combination is varied. Segregations
are demonstrated for the granular materials consisting of small and the medium
particles, and also of small and the large particles. Before starting to excite the
granular media, the particles are poured randomly from above the container and
are deposited inside, left over time until the count of falling particle becomes the
predetermined number and the media reaches the equilibrium state. The lift of
the granular media is varied from 1 to 5 grids imitating the container excitation,
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Fig. 10. Modeling of excitation process

Fig. 11. Accumulation of homogeneous grains, (a) small, (b) medium, (c) large

and the results are compared for different excitation amplitude by measuring
the simulation cycle until the segregation ends.

4.1 The Pile of the Homogenous Particles

Simulation results are shown in Fig.11 for respective particles with homogeneous
diameter. The size of the container is given as 100 grids in both height and
width. Totally 5000 particles are randomly dispersed from the opening of the
container at every time step in the case of smaller particles, whereas 100 in total
are dispersed for the medium and the large particles. Since the size of smaller
particle corresponds to single grid, it is seen that the overall granular media is
closely packed, on the other hand, in the case of medium and large particles
the media is partly packed and also voids between particles are appeared. The
Cellular Automata model well represents the basic profiles that are seen in the
actual system related to granular materials.

4.2 Segregation of Medium Particles in Media Consisting of Smaller
Particles

The segregation of medium particles submerged in a media consisting of smaller
particles is simulated. Preliminary test is first conducted to verify the alternative
expression of the container excitation described in Fig. 10. The system incorpo-
rates 2500 of small and 40 of medium particles, and the container is excited by
lifting the gross media at h = 4 grids per cycle. From the results shown in Fig. 12,
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Fig. 12. Simulation result of small-medium particle segregation (2500 small, 40 medium
particles)

Fig. 13. The effect of friction on wall cells when lifting

the medium particles are divided into two groups, the one that segregates to the
free surface, and the other remains at the bottom. The former is explained by the
consequence of the insistent submerging of the smaller particles, and the latter
instead is thought to be the failure of submerging due to a certain equilibrium
condition between the mid and the smaller particles on lifting process. These
results conform to the investigations reported by Sakaguchi, et. al.[8], however,
as observed in the experiments all the larger particles segregated to the surface.
Such a difference may arise from the friction between particles and the container
wall, therefore, the effect is introduced in a simple manner such that the lift of
the granular media is varied across the width as shown in Fig. 13 based on the
experimental observation and the discussion in reference[1], that the particles in
the central portion of container are less affected by the internal friction and are
easy to move, whereas not for sediment adjacent to wall.

In the following simulation, the effect of the wall friction is introduced and
the calculation is performed for 200 cycles. The size of the container is changed
to 60 grids in height and 55 grids in width, and also the numbers of small
and medium particles are 800 and 4, respectively. The four medium particles are
initially located at the bottom and the maximum lift of the media is set to h = 3
grids at the center of the container. By 40 cycles of calculation, all of the four
medium size particles emerged to the surface as shown in Fig. 14. Additionally,
as observed in experiments a pile consisting of small particles is formed in the
central part of the media and the segregated medium particles subsequently move
toward the wall. The similar results are obtained for the combination of small
and large particles as shown in Fig. 15, yet the segregation time is shortened
for the larger diameter ratio. The segregation time is summarized and plotted
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Fig. 14. Simulation result of small-medium particle segregation

Fig. 15. Simulation result of small-large particle segregation

Fig. 16. Segregation time obtained by simulation

against excitation amplitude through all investigations as denoted in Fig. 16.
The amount of time required for the completion of segregation becomes shorter
as the excitation amplitude and the size ratio of particle increase.

5 Conclusions

In the present study, the segregation of particles where the difference in size
causes characteristic movement of particles inside the granular media by the
induced vibration is modeled and simulated using Cellular Automata, and the
results are also compared with experimental investigations. A connected lattice
automaton is introduced in the model, so that the variation of particle sizes
as well as geometrical arrangement between particles can be represented. The
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present Cellular Automata model can produce various characteristics such as
segregation, the heaping and convective pattern of particles which are observed
in the actual granular systems. Furthermore, it is known from both numerical
and experimental observations that the segregation progress is dependent on the
amplitude of excitation as well as the particle size ratio.
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Abstract. In the cellular automata domain, the discrete convex hull
computation rules proposed until now only deal with a connected set of
seeds in infinite space, or with distant set of seeds in finite space. We
present a cellular automata rule that constructs the discrete convex hull
of arbitrary set of seeds in infinite spaces. The rule is expressed using
intrinsic and general properties of the cellular spaces, considering them
as metric spaces. In particular, this rule is a direct application of metric
Gabriel graphs. This allows the rule and its components to be used on
all common 2D and 3D grids used in cellular automata.

1 Introduction

In abstract convexity theory[10,13], a convexity C ⊂ 2S over a set S is a collection
of subsets of S, called convex subsets or convex sets, that is closed under inter-
section. The convex hull HC(S0) of an arbitrary subset S0 ⊂ S, whose elements
will be called seeds, is the minimal convex set containing S0. For specific S and
C depending on the domain of application, finding an algorithm that realizes the
convex hull operator HC : 2S → C is a common problem.

The most known and studied convexity is defined over Euclidean spaces Rd.
A subset is Euclidean-convex if it contains all the segments joining two of its
points. For example, Fig. 1(a) shows a non Euclidean-convex set, commonly
called concave set, along with two segments that are not contained in the set.
In Fig. 1(b), it is not possible to find any missing segment. Figure 1(c) gives
an example of convex hull. Algorithms that construct Euclidean-convex hulls
for different dimensionality include Jarvis’s gift wrapping [8], Graham’s scan [6],
Kirkpatrick–Seidel algorithm [9], and Chan’s algorithm [3].

Euclidean convexity is a particular case of metric convexity. This latter is
defined over metric spaces, i.e. sets of points associated with a distance function
(also called metric). A subset is metric-convex if it contains all the shortest paths
joining two of its points. In domains like computer graphics or cellular automata,
the metric spaces typically consist of a set of pixels or cells, the length of a path
being related to the number of pixels or cells lying on it. Networks of computers,
wireless devices or sensors consider the metric space corresponding to the graph
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(a) Non-convex set (b) Convex set (c) Convex hull

Fig. 1. Euclidean convexity examples. Considered set for convexity in gray, seeds in
black. Note that (b) is also the convex hull of (a).

of communication, each edge having an arbitrary length, and the length of a
path being the sum of the lengths of its edges. More abstract metric spaces are
considered in machine learning and multivariate analysis for example.

In this article, we tackle the convex hull problem in the cellular automata
framework [7]. In this parallel computation framework, the set of processing ele-
ments themselves are the points of the space and can only communicate locally.
The problem is then to have each processing element to compute the convex
hull of a selected subset of them by selecting itself if it is in it. We start by
describing the cellular automata framework, and the metric spaces and convex-
ities related to it in Sect. 2. We review the existing results in this domain and
compare them with ours in Sect 3. We describe our solution incrementally, by
giving the intuition that leads to it in Sect 4.

2 Framework and Definitions

2.1 Cellular Automata Framework

A cellular automaton is made of an infinite set S of sites, i.e. processing elements
having a particular position in space. S is called the cellular space and forms a
crystalline graph, whose neighborhood relation is denoted as N . Being processing
elements, each site x has a particular state vt(x) ∈ V (as value) that changes
with time, V being finite. The updating of the sites is synchronous and local.
This means that all the sites update their states at the same time using the same
updating rule. The latter determines the next state vt+1(x) of each site x based
on the previous state of a finite number of its closest sites. In this framework, the
convex hull problem is formulated this way: Given a set of seeds S0, represented
by a configuration src defined as src(x) ≡ x ∈ S0, the goal is to find a rule R
such that, from some instant t, Rt(x) ≡ x ∈ HC(S0). Examples of initial and
associated final configuration for different grids are given in Fig. 4.

2.2 Cellular Spaces and Metric Spaces

Different cellular spaces may be used and, regarding convexities, different metrics
can be associated to them. The most commonly used bi-dimensional cellular
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(a) 4-square (b) 8-square (c) hexagonal (d) 8-square

Fig. 2. Grids used in this article: the polygons (squares, octagons and hexagons) cor-
respond to the sites, the lines correspond to the edges, and example paths are in black.

(a) 4-square (b) 8-square (c) 8-square-
√

2 (d) hexagonal

Fig. 3. Intervals for different grids

spaces are the square grids, with 4 or 8 neighbors per site, and the hexagonal
grids, having 6 neighbors per site. Figure 2 shows these grids, exposing the nodes
and the edges.

For the distance function, we consider the hop count metric, which associates
to each edge the unitary length. This is a natural choice for the 4-square and
hexagonal grids since all edges have the same length when we draw them. How-
ever, this is not the case for the 8-square grids, whose diagonal edges are drawn√

2 times longer than the vertical and horizontal ones. Therefore, we also con-
sider two metrics for the 8-square grids: the hop count metric, and the {1,

√
2}

metric that associates unitary and
√

2 lengths to non-diagonal and diagonal
edges respectively. With the hop count metric, paths represented on Figs. 2(a),
2(b), and 2(c) have length 5. With the {1,

√
2} metric, the path of Fig. 2(b) has

length 3 + 2
√

2. It is important to note that paths of Fig. 2(d) have the same
length for hop count and different lengths for {1,

√
2}, since this has an effect on

the notions of shortest path and convexity.

2.3 Convexities and Convex Hulls

For an arbitrary metric space, a point z lying on a shortest path joining two
points x and y is said to be between the two points. It is denoted as z ∈ [x, y],
where [x, y] is called the interval between x and y. Formally, we have [x, y] =
{ z ∈ S | d(x, z) + d(z, y) = d(x, y) } where d is the metric and S the set of
points. In Euclidean spaces, [x, y] corresponds to the segment joining the points
x and y, since it is the unique shortest path joining these points. In other metric
spaces, including square and hexagonal grids, there may be many shortest paths
between two points, leading to more complex intervals as shown in Fig. 3.



72 L. Maignan and F. Gruau

(a) 4-square (b) 8-square (c) 8-square-
√

2 (d) hexagonal

Fig. 4. Each site x is black if x ∈ S0, or gray if x ∈ HC(S0)

Using intervals, metric convexity can be defined as follows. A subset C ⊆ M
is metric-convex if and only if [x, y] ⊆ C for any pair of points (x, y) ∈ C2. If we
define the operator I(P ) =

⋃
{ [x, y] | (x, y) ∈ P 2 } that adds to a set of points

the shortest path joining them, we can say that a set C is metric-convex if and
only if I(C) = C.

The convex hull HC(S0) of a set S0 ⊂ S of seeds is the minimal con-
vex set containing S0. Using I(•), it corresponds to the limit of the sequence
I(S0), I(I(S0)), . . ., since I(•) adds points that have to be in the convex set, and
the limit L verifies I(L) = L. Our algorithm also adds points iteratively.

3 State of the Art

The research about convex hulls on cellular automata mainly studies 8-square
grids with {1,

√
2} metric. In fact, the convexity is often not defined using sets,

as we did, but using angles, and intersecting half planes. Although the definitions
are distinct, the convex hulls are the same objects. For example, the 45-convexity
is a version of the Euclidean convexity that only allows lines having angles of
multiples of 45 to be used on the boundary of the convex hull. In this frame-
work, the four metric spaces described previously correspond to the set of angles
{0, 90}, {45, 135}, {0, 45, 90, 135} and {0, 60, 120}.

3.1 Rule for Connected Set of Seeds

In [1], some of the first proposed rules for the convex hull problem are described.
The intuition is that any bordering site that does not have a local configuration
corresponding to the shape of a convex set boundary has to select itself. After
observing that all rejected local configuration have 1, 2 or 3 selected sites, the
rule is simplified to a counter that checks whether there are at least 4 selected
sites in the neighborhood. This rule can be generalized to the majority rule, since
4 can be interpreted as the half of 8, the number of neighbors. The convex hull
behavior of the majority rule is described in [7]. In fact, the set of seeds does
not need to be connected, but simply denser enough, since only their quantity
matters. Also, as more and more sites are selected by the rule, many local convex
hulls can merge to form bigger convex hulls that can also merge, etc. Using our
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(a) t=01 (b) t=02 (c) t=03 (d) t=05 (e) t=08

Fig. 5. With the set of seeds (a), we obtain a set of convex hulls

(a) t=01 (b) t=08 (c) t=10 (d) t=14 (e) t=26

Fig. 6. Shifting only one seed to its neighbors connects recursively all the hulls

notations, the majority rule can be expressed as follows, and gives the results
shown in Figs. 5 and 6 for hexagonal grids.

majot+1(x) =

⎧⎪⎨
⎪⎩

� if src(x)
� if card{ y ∈ N(x) | majot(y) } ≥ card(N(x))

2

⊥ otherwise.

3.2 Rule for Already Wrapped Seeds

In [14,4], a rule is proposed for non connected set of seeds. However, it requires
the seeds to be finitely wrapped in a connected and compact pattern. One can
also consider that this rule only works for finite spaces, considering the space
itself as the finite wrapper. The proposed rule consists of two globally successive
stages. The first one erodes the wrapper until a minimal isometric set is obtained.
Thus between any pair of points of the set, at least one shortest path is in the
set. The second stage is the application of a rule to transform this connected set
of sites into its convex hull, as done in the previous subsection. The stages are
shown in Fig. 7.

3.3 Comparison with Our Rule

In comparison with this approach, we do not require any bound on the space,
which can therefore be infinite. As a result, convergence of our cellular automaton
takes an infinite time, as there can be sites infinitely far from the seeds. Still,
each site converges locally, and the convex hull itself will be built in finite time,
if the distances between nearest seeds are upper bounded.

Our rule does not work directly for {1,
√

2} metrics, because we manipulate
distances that have to be integers in order to be encoded using finite states.
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(a) input (b) erosion (c) convex hull

Fig. 7. Stages from wrapped seeds to their convex hull: The initial wrapping (a) is
shrunk to (b) and is then grown to convex hull (c)

However, this is not a problem, since we can still produce the {1,
√

2} convex
hull having both diagonal and vertical-horizontal border, by intersecting two
convex hulls: the 4-square one, having only vertical-horizontal borders, and the
8-square one with hop count, having only diagonals.

The formulation of our rule does not use boundaries at all, which has an
important consequence for generalization: the rule applies directly to many bidi-
mensional grids, including the ones listed in Fig. 2. It also works for their tridi-
mensional counterparts. Lastly, it can be easily applied to bigger neighborhoods,
resulting in faster convergence when needed.

4 Rules for Arbitrary Set of Seeds Using Hop Count

4.1 Rule for Local Convexity

Computing the convex hull locally means that each site has to select itself if it
belongs to the convex hull of the selected sites present in its neighborhood. The
computation of the local convex hull is an easy task due to the simplicity and
finiteness of the space in the neighborhood of each site. Indeed, it is enough for
a site to check if it lies on a shortest path joining two of its selected neighbors.
This gives the following local convexity rule:

convt(x) =

⎧⎪⎨
⎪⎩

� if src(x)
� if ∃{y0, y1} ⊂ { y ∈ N(x) | convt−1(y) }; x ∈ [y0, y1]
⊥ otherwise.

Let us mention that testing x ∈ [y0, y1] with hop count metric is equivalent to
testing d(y0, y1) = 2 since x ∈ [y0, y1] ⇔ d(y0, x) + d(x, y1) = d(y0, y1) and
y ∈ N(x) ⇔ d(x, y) = 1. For the {1,

√
2} metric, the test has to be done

explicitly.
Because it follows directly from the convex hull definition, this rule is more

precise than the majo rule. It is possible to check that whenever one selects
half of the neighbors of a site x, then two of them are joined by a shortest
path containing the site x. The reverse is obviously not true, which means the
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(a) t=01 (b) t=02 (c) t=03 (d) t=04 (e) t=06

(f) t=08 (g) t=10 (h) t=15 (i) t=20 (j) t=28

Fig. 8. Evolution of the conv rule. The majo rule is stationary on (a).

conv rule is able to construct the convex hull in more cases than the majo
rule. One can also note that applying majo on an 8-square grid can only give
a {1,

√
2}-convex hull. The formulation of conv allows choosing the metric to

use, and tackles many grid topologies at once, such as the ones considered in
this article and their tridimensional counterparts. However, it exhibits roughly
the same behavior. Figure 8 shows the evolution of the conv rule with an initial
configuration on which majo is stationary.

4.2 Global Convexity with Only Two Seeds

Since we have seen solutions to transform a connected set of seeds into its convex
hull, a natural idea to obtain the convex hull of an arbitrary set of seeds is to
connect them in a minimal way that remains in the desired convex hull. We
start by studying the simpler case of only two seeds. In this setting, the goal is
to select sites of the interval, as shown in Fig. 3.

To do so, we compute the distance of each site to the nearest seed, and look
at the resulting pattern (Fig. 9(a)). We can notice distinct sites, namely the
middle sites which are exactly the middle of the shortest path joining the two
seeds. It turns out that these middles can always be detected by looking at the
distance values in a bounded neighborhood. Therefore, they will be the first
sites identified as being in the convex hull (Fig. 9(b)). All the other sites of the
interval can then be selected by back-propagating from the middles to the seeds,
by traveling towards neighbors that are closer to the seeds, again by using the
distance values (Fig. 9(c)). This achieves the desired construction, without using
any global phase transition but only local interaction. Let us now describe each
rule in more details.

Distance Field. The distance computation described earlier is what we call a
distance field. For hop count metrics, it associates to each site an integer and
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(a) Distance (b) Middles (c) Back propagation

Fig. 9. The rules dist, cent and back in action

can be expressed by the following rule. The latter converges to dist∞(x) =
min{ d(x, y) | src(y) }:

distt(x) =

⎧⎪⎨
⎪⎩

0 if src(x)
1 if ¬src(x) ∧ t = 0
min{ 1 + distt−1(y) | y ∈ N(x) } otherwise.

While this rule has an infinite number of possible state, we only need its
gradient, i.e. the differences between the distance of neighboring sites. In [11],
we have shown how to represent the gradients of some kind of integer fields
with a finite number of states, thanks to the modulo operator. Applied on the
dist rule, it allows representing it modulo 3 and gives the way to compute the
gradient from these modulo values. For brevity and readability, we use directly
dist in the rest of the paper and redirect the interested reader to [11]. Finally,
we do not have any mean to represent the distance field for {1,

√
2} metric with

finite number of states, which is the reason why the final rule can not be directly
applied to this metric.

From Middles Back to Seeds. As mentioned earlier, the middle sites are
detected using the distance values present in their neighborhood. The global
idea is to detect distance patterns that only happen when there are two nearest
seeds for the sites, such that the site is between them. Because we treat this
detection in our general framework instead of a particular grid, we delay the
discussion about this detection to the next subsection, and directly use cent(x)
to denote that a site x is a middle.

For the back-propagation, each site having a selected site in its neighborhood
has to determine if it is closer or not than the selected neighbor. If it is so, it
can select itself, since it is between the selected neighbor and the seeds. This is
expressed as:

backt(x) =

⎧⎪⎨
⎪⎩

� if centt(x)
� if t > 0 ∧ ∃y ∈ N(x), backt−1(y) ∧ distt−1(x) < distt−1(y)
⊥ otherwise

4.3 Global Convexity and Metric Gabriel Graphs

When considering the general case with many seeds, some questions naturally
arise: do the rules presented for only two seeds do all the work pairwise? Do they
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Fig. 10. Snapshots of the computation of the three layers simultaneously. The two last
snapshot show the final configuration with, firstly back hidden and then back and cent
hidden. Red: generators, gray: dist, yellow: cent, green: back.

produce a connected set? What structure is constructed? The answer is that
we produce a connected set, connecting the seeds pairwise to draw a structure
related to Delaunay graphs. A complete description is beyond the scope of this
article but can be found in [12]. We only give here the material that allows
understanding the global structure of the constructed graph.

When computing a distance field, one implicitly associates to each site its
nearest seed. It is strongly related to Voronoi diagram [2], the set of sites having
the same nearest seed being called the Voronoi region of the seed and the sites
having many nearest seeds being the boundaries between the Voronoi regions.
In our case, we detect boundary sites that are on a shortest path between the
corresponding seeds, to make sure to select only sites that are in the convex hull.

By doing so, we only connect seeds of neighboring Voronoi regions, such that
there is a shortest path going trough the boundary between the two regions.
Replacing the words “shortest path” by “segment”, we obtain one of the properties
of Gabriel graphs [5], a connected sub-graph of the Delaunay graph defined
for Euclidean spaces. In [12], we generalize the definition of Gabriel graphs to
arbitrary metric spaces and obtain metric Gabriel graphs, which identify exactly
what we need to detect in order to have a connected set of sites. We also explain
in detail the rule cent (as metric Gabriel ball centers).

By using metric Gabriel graphs, we have, roughly speaking, that back ◦ cent ◦
dist constructs a connected set of sites that is a subset of the convex hull. In order
to complete the convex hull, we simply have to consider conv ◦ back ◦ cent ◦ dist.
The final cellular automaton thus described has 7 states: (3 distance states) *
(2 “in convex hull” states) + 1 special “seed” state. Because of cent rule, it uses
a neighborhood of radius 2. The evolution of the rule without conv is shown in
Fig. 10.
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Abstract. Algorithms Design for pattern formation is an interesting science and 
many investigations are done about it. In this paper, a novel pattern formation 
method using asynchronous cellular automata for generating square Kufic pat-
terns is explored. Square Kufic is a kind of script that is used in many Islamic 
architecture buildings. In our new method, cellular automata rules causing a 
specified kind of pattern are manually extracted. The implementation results 
show this fact by using some special patterns in replicators.  

Keywords: Asynchronous Cellular Automata, Computer Graphics, Pattern 
Formation, Square Kufic script. 

1   Introduction 

Cellular automata are dynamical systems such that the current state of each cell is 
determined by its neighborhood state at the previous time step. We consider in this 
paper an interactive particle system modeled by a cellular automaton having two kinds 
of cells, occupied and empty cells.  

The main contribution of this paper is using asynchronous cellular automata to gen-
erate script patterns. These particular patterns are used in cultural heritage. Square 
Kufic patterns are based on grids and the best way for implementing such patterns is a 
grid based method like cellular automata [1]. Using cellular automata has several bene-
fits. For instance, it is simple because it is based on square grids like the forming ele-
ments of square Kufic script. Also it is scalable and flexible.    

The rest of the paper is organized as follows. Section 2, describes the basic notions 
of asynchronous two dimensional cellular automata. Section 3, provides the rule set 
for generating some patterns. Experimental results appear in section 4. The paper is 
concluded in section 5. 

2   Asynchronous Cellular Automata 

In general, it has been found that the asynchronous cellular automata evolve much 
differently from their synchronous counterparts [2]. There are various methods to  
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update cells asynchronously and these fall into two distinct categories, step-driven and 
time-driven. In this paper, we use the latter method. 

This paper uses extended Moore neighborhood in its simplest form. It simply han-
dles joint and disjoint letters. In some literatures the beginning letters of the direction 
names are used to refer neighbor cells. For example "C" points to the internal cell and 
"NE" refers to the northeast cell. We extend this method of naming to refer to the cells 
in an easy understanding way [3]. For instance, "NEE" refers to the northeast east cell, 
which means one hop to north and then two hops toward east direction.  

Next section explains about transition rules for generating square Kufic patterns.  

3   Rule Extraction 

Each cell’s state is assumed to take an integer equal either to nil or unity. The nil state 
denotes an empty cell having white color, and the other state is one occupied by a 
particle having black color.  

Figure1 (a) and (b) show two architectural buildings contain two models of "Allah" 
pattern.  

 

 

Fig. 1. (a) Model 1 of "Allah" pattern tiling from the Tughlugh Temur Mausoleum of Xinjiang.  
(b) Model 2 of "Allah" pattern tiling from the Imam Mosque of Isfahan.  

First of all, the patterns have to decompose in to their constructing letters. Then, the 
transition rules set for each letter must be extracted manually. After that, the cellular 
automata can produce the whole of each pattern asynchronously.  
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In each rule if all the mentioned cells are black, then the rule is true, and it causes 
an effect in cellular automata at the next time step. Otherwise, if even one of the men-
tioned cells isn’t black, then the rule is false which causes no effect on the cellular 
grid.  

Figure 2 demonstrates the asynchronous process for generating patterns respec-
tively. 

 

 

Fig. 2. (a) Generating process for model 1 of "Allah" pattern. (b) Generating process for model 
2 of "Allah" pattern. 

Consequently, it is possible to provide a flexible algorithm for generating these pat-
terns. Reused rules can make the algorithm shorter and simpler too [4].  

In this step, we define a transition function ϕ  that operates on the rules with xor 

“ ⊕ ” operation. 
 

ii
n

n RRRR 121 ],...,,[ =⊕=ϕ                                                             (1) 
 

Relation (1) describes that all rules Ri should be xor ( ⊕ ) with each other to intro-
duce the correct results. Note that for each letter, some functions ϕ  with different Ris 
are existing.This Algorithm is the determination of each transition that is a mapping 
from a neighborhood pattern to anther neighborhood pattern. We at first set all of the 
transitions to be “inactive”: Any patterns of neighborhood are not changed by the up-
date. In the following we will replace some inactive transitions with “active” ones that 
change the pattern of neighborhood by the update [5]. Note that, for the simplicity 
sake, in this section we were considering only a few set rules. 

The next section demonstrates some results that are obtained using above algo-
rithm. 

4   Results 

The results of our algorithms which are implemented in Visual C++ environment using 
OpenGL library are illustrated as follows. An example of executing on model 1 of 
"Allah" pattern is illustrated in figure 3 (a). In figure 6 (b), the execution of relation on 
model 2 of this pattern is shown. Result of executing relation on model 1 of "Allah" 
pattern is illustrated in figure 3 (c). In figure 3 (d), the execution on model 2 of this 
pattern is demonstrated.  
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Fig. 3. (a) Applying on model 1 of "Allah" pattern after 40 steps. (b) Applying on model 2 of 
"Allah" pattern after 24 steps. (c) Applying on model 2 of "Allah" pattern after 24 steps.  
(d) Applying on model 1 of "Allah" pattern after 24 steps. 

5   Conclusion 

Using asynchronous cellular automata leads to efficient implementation of the algo-
rithm. Because transition rules become active in a limited time steps, the algorithm is 
very simple. Also, various patterns can be generated without any rule confliction. 
Moreover, common parts in each letter will be formed by using the same rules. A 
comparison between this paper algorithm and other algorithms may be expected, but 
no other method was investigated before. Therefore, this is the first algorithm for gen-
erating square Kufic patterns by asynchronous CA.  

The Square Kufic script is a good instance in calligraphy which provides different 
versions of writing holly words. As this script is based on a square grid, the proposed 
algorithm not only provides the simplicity and flexibility for generating these patterns 
but also has the power for controlling complexity and possibility of extending the 
functionality of the rules. Examples of Square Kufic script can be found in cultural 
heritage and old literatures. Also it is so popular in modern architectures, handicrafts, 
decorations and art. One of our future works is designing more complex patterns and 
searching about making use of geometrical transformations in cellular automata.  
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Abstract. Numerical modelling is a major challenge in the prevention of risks 
related to the occurrence of catastrophic phenomena. A Cellular Automata 
methodology was developed for modelling large scale (extended for kilometres) 
dangerous surface flows of different nature such as lava flows, pyroclastic flows, 
debris flows, rock avalanches, etc. This paper presents VALANCA, a first version 
of a Cellular Automata model, developed for the simulations of dense snow 
avalanches. VALANCA is largely based on SCIDDICA-SS2, the most advanced 
model of the SCIDDICA family developed for flow-like landslides. VALANCA 
adopts several of its innovations: outflows characterized by their mass centre 
position and explicit velocity. First simulations of real past snow avalanches 
occurred in Switzerland in 2006 show a satisfying agreement, concerning avalanche 
path, snow cover erosion depth and deposit thickness and areal distribution. 

Keywords: Cellular Automata, Modelling and Simulation, Snow Avalanche. 

1   Introduction 

Snow avalanches are rapid gravity-driven movements of snow masses down mountain 
slopes. They may be included in the category of granular flows together with 
mudflows, debris flows, pyroclastic flows and rock avalanches. In fact, there is 
experimental evidence for snow avalanches exhibiting all the flow regimes identified 
in granular flows, from the quasi-static to the collisional, grain-inertia and 
macroviscous regimes [1].  

Dense avalanches have a high density core (100–500 kg/m3) at the bottom with 
particle sizes from 1 mm to 1 m, typical flow depths between 0.5 and 5 m and 
velocities in the range 5–40 m/s. They are a manifestation of the quasi-static and 
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collisional regimes. On the other extreme, powder snow avalanches are dilute flows 
of small snow particles (< 1 mm) suspended in the air by intense turbulence. The 
density is much lower than in dense avalanches (typically 1–10 kg/m3), but the flow 
depth (10–100 m) and average velocity (30–100 m/s) are much larger. In recent years, 
the important role of the fluidised regime, intermediate between these two end 
members, has been recognised ([1], [2], [3], [4]). Typical densities and flow velocities 
are 10–100 kg/m3 and 30–70 m/s, respectively. 

The urgent and increasing need for protection of settlements and traffic routes from 
snow avalanches has led to several approaches for modelling avalanches over the past 
90 years [5]. 

There is a wide variety of fluid mechanics-based models; they differ in complexity 
and also with regard to the type of avalanche they describe [5]. Dense snow 
avalanches can be described by mass-point models, e.g. [6], or continuum models 
based on the Navier–Stokes or Saint-Venant equations, with a constitutive equation 
appropriate for flowing snow. In the case of powder snow avalanches and slush flows, 
it may be necessary to use binary mixture theory to describe the dynamics of the 
particles and the interstitial fluid satisfactorily [7]. Models of the Saint-Venant type 
exploit that snow avalanches (and in particular dense avalanches) are shallow flows 
by integrating the balance equations of mass and momentum (and energy) over the 
direction perpendicular to the ground ([5], [8] ,[9]) for more details and references to 
the original works. 

A different approach, based on the computational paradigm of Cellular Automata, 
was adopted by Barpi et al. [10], that developed the model ASCA (cf. Section 2.2) for 
the simulation of snow avalanches. ASCA simulations of avalanches, that occurred in 
Susa Valley (Western Italian Alps), were able to reproduce the correct three-
dimensional avalanche path and the order of magnitude of the avalanche deposit. 

Kronholm et al.[11], instead, used a Cellular Automata based model to show how 
the spatial structure of shear strength may be critically important for avalanche 
fracture propagation.  

A Cellular Automata (CA), at the basis of the model presented in this work, 
evolves in a discrete space-time. Space is partitioned in cells of uniform size, each 
cells embeds a Finite Automaton (FA) computing unit, that changes the cell state 
according to the states of the neighbour cells, where the neighbourhood conditions are 
determined by a pattern invariant in time and space [12]. An extension of classical CA 
[12] was developed in order to model many complex macroscopic fluid-dynamical 
phenomena, that seem difficult to be modelled in other CA frames (e.g. the lattice 
Boltzmann method), because they take place on a large space scale.  

Such CA can need a large amount of states, that describe properties of the cells 
(e.g. temperature); such states may be formally represented by means of sub-states, 
that specify the characteristics to be attributed to the state of the cell and determining 
the CA evolution. It involves a large amount of states more a complicated transition 
function, not reducible to a lookup table. 

In the case of surface flows, quantities concerning the third dimension, i.e. the 
height, may be easily included among the CA sub-states (e.g. the altitude), permitting 
models in two dimensions, working effectively in three dimensions. Furthermore, an 
algorithm for the minimisation of the differences (in height) [12], [13] was found in 
this context in order to determine the outflows from a cell toward the remaining cells 



 Development and Calibration of a Preliminary Cellular Automata Model 85 

of its neighbourhood, giving rise to several models for different macroscopic 
phenomena: lava flows [12], debris/mud flows [12] and rain soil erosion [14]. 

Explicit velocity solution is adopted: moving flows toward the neighbouring cells 
are individuated by the sub-states mass, velocity and mass centre co-ordinates. The 
resulting new mass, mass centre and velocity are computed by composition of all the 
inflows from the neighbours and the residual quantities inside the cell [15], [16].  

This paper illustrates VALANCA (it is the Sicilian word for avalanche and 
acronym for “Versatile model of Avalanche propagation by LAws and Norms of 
Cellular Automata”), a new model for the simulation of snow avalanches. 
VALANCA profits of studies of Barpi et al. [10] but it included new features [13] of 
SCIDDICA-SS2, ([15], [16]), the most advanced model of the SCIDDICA family for 
flow-like landslides, developed by some authors of this paper. Some differences, with 
respect to the ACSA model by Barpi et al., are presented in Section 2.2. 

The next section defines the model VALANCA, while the simulation results of 
two snow avalanches in Davos (Switzerland) are shown in the third section. 

2   The Model VALANCA 

VALANCA is a two-dimensional CA with hexagonal cells, the state of cell is 
specified by sub-states, the transition function is constituted by local “elementary” 
processes, applied sequentially:  

VALANCA = , , , , > 

where 

• R is the set of regular hexagons covering the region, where the phenomenon evolves.  
• X identifies the geometrical pattern of cells, which influence any state change of the 

central cell: the central cell (index 0) itself and the six adjacent cells (indexes 1,..,6). 
• S is the finite set of states of the finite automaton, embedded in the cell; it is equal to 

the Cartesian product of the sets of the considered sub-states: 
 

o SA is the cell altitude. 
o SD is the snow cover depth, that could change into avalanche mass by erosion 

(Fig.1). 
o STH is the average thickness of avalanche mass inside the cell (Fig.1), SX and SY 

are the co-ordinates of the mass centre with reference to the cell centre.  
o SKH  is the kinetic head of avalanche mass inside the cell (Fig.1).. 
o SE  is the part of avalanche mass, the so called “external flow”, (normalised to a 

thickness) that penetrates the adjacent cell from central cell, SXE  and  SYE are the 
co-ordinates of the external flow mass centre with reference to the adjacent cell 
centre, SKHE is the kinetic head of avalanche mass flow. There are six 
components (one for each adjacent cell) for the sub-states SE , SXE , SYE , SKHE . 

o SI  is the part of avalanche mass toward the adjacent cell, the so called “internal 
flow”, (normalised to a thickness) that remains inside the central cell, SXI  and SYI are the co-ordinates of the internal flow mass centre with reference to the 
central cell centre, SKHI is the kinetic head of avalanche mass flow. There are six 
components (one for each adjacent cell) for the sub-states SI , SXI , SYI , SKHI. 



86 M.V. Avolio et al. 

• P is the set of the global physical and empirical parameters, which account for the 
general frame of the model and the physical characteristics of the phenomenon; the 
next section provides a better explication of the elements of the following set:  , , , , , ,  
o  is the cell apothem;  
o  is the temporal correspondence of a CA step; 
o  is the friction coefficient for avalanche outflows; 
o ,  are parameters for energy dissipation by turbulence and erosion; 
o  is the activation thresholds of the snow mobilisation; 
o  is the progressive erosion parameters; 

• :  is the deterministic state transition for the cells in R. The basic elements 
of the transition function will be sketched in the next section. 

 
At the beginning of the simulation, we specify the states of the cells in R , defining 

the initial CA configuration. The initial values of the sub-states are accordingly 
initialised. In particular, SA assumes the morphology values; SD assumes initial values 
corresponding to the maximum depth of the snow mantle cover except for the 
detachment area, where the thickness of the detached avalanche mass is subtracted 
from snowpack depth; STH is zero everywhere except for the detachment area, where 
the thickness of detached avalanche mass inside the cell is specified; all values related 
to the remaining sub-states are zero everywhere.  

At each next step, the function τ is applied to all the cells in R, so that the 
configuration changes in time and the evolution of the CA is obtained. 

 

Fig. 1. Left: three-dimensions visualization of the sub-states SA, SD, STH and SKH for a hexagonal 
cell. Right: an ideal vertical section of a snow flow. 

2.1   The VALANCA Transition Function 

Four local processes may be considered for VALANCA:  

− snow cover, kinetic head and avalanche thickness variation by snow cover 
mobilisation; 

− kinetic head variation by turbulence dissipation; 
avalanche outflows (height, mass centre co-ordinates, kinetic head) determination 
and their shift deduced by the motion equations; 

− composition of avalanche mass inside the cell (remaining avalanche more inflows) 
and determination of new thickness, mass centre co-ordinates, kinetic head.  
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In the following, a sketch of the local elementary processes will be given, which is 
sufficient to capture the mechanisms of the transition function; the execution of an 
elementary process updates the sub-states. Variables concerning sub-states and 
parameters are indicated by their abbreviations in the subscripts. When sub-states 
need the specification of the neighbourhood cell, index is indicated between square 
brackets. Δ  means variation of the value of the sub-state . 

Mobilisation Effects. When the kinetic head value overcomes an opportune 
threshold   >  depending on the snow cover features then a mobilisation of the 
snow cover occurs proportionally to the quantity overcoming the threshold: 
⋅( − ) Δ Δ   (the snow cover depth diminishes as the avalanche 

thickness increases), the kinetic head loss is: Δ ⋅( ). The mixing of 
the eroded snow cover with the earlier avalanche mass involves that the earlier kinetic 
energy of avalanche mass becomes the kinetic energy of all the avalanche mass, it 
implicates trivially a further kinetic head reduction. 

Turbulence Effect. The effect of the turbulence is modelled by a proportional kinetic 
head loss at each VALANCA step:  Δ ⋅ . This formula involves that a 
velocity limit is imposed “de facto”. A generic case with a maximum value of slope 
may be always transformed in the worst case of an endless channel with constant 
maximum value slope. In this case an asymptotic value of kinetic head is implied by 
infinite formula applications and, therefore, a velocity limit is deduced. 

Avalanche Mass Outflows. Outflows computation is performed in two steps: 
determination of the outflows minimising the “height” differences in the neighbourhood 
[12] [13] and determination of the shift of the outflows.  

The minimisation algorithm defines a central cell quantity d to be distributed, ∑  where  is the flow towards the cell i ( 0  is the part of d, which 
remains in the central cell); , 0 6 are the quantities that specify the “height” 
of the cells in the neighbourhood, to be minimised by contribution of flows: more 
precisely, the algorithm minimises the expression [16]:  |( ) ( )|( , )|  (1) 

Avalanches are rapid flows and imply a run up effect, depending on the kinetic 
head associated to debris flow. As a consequence, the height minimisation algorithm 
[17] [18] is applied, considering for the central cell  0 0 0 0]  
and the 0 ; , 1 6 for the adjacent cells; 
note that  0  accounts for the ability of climbing a slope for the flowing 
avalanche. The minimisation algorithm determines the flows , 0 6 toward 
the neighbouring cells ( 0  is the part of d which is not distributed); such flows 
minimise the expression (1). 

The mass centre co-ordinates  x  and  y  of moving quantities are the same of all the 
avalanche mass inside the cell and the form is ideally a “cylinder” tangent the next 
edge of the hexagonal cell (Fig.2). The height difference 0  determines 
an ideal slope  between the two cells 0 and ; a preliminary test is executed in 
order to account the friction effects, that prevent avalanche outflows, when  tan  . An ideal length “ ” is considered between the avalanche mass centre 
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of central cell and the centre of the adjacent cell  including the slope θ , it 
represents the maximum allowed path of the outflow.  

The  shift “sh” is computed for avalanche outflow according to the following 
simple formula, that averages the movement of all the mass as the mass centre 
movement of a body on a constant slope with a constant friction coefficient:  

⋅ ⋅( θ ⋅ θ)⋅ /2  , with “ ” the gravity acceleration, the initial 
velocity 2 · . 

The motion involves three possibilities: (1) only internal flow, the shifted cylinder 
is completely internal to the central cell; (2) only external flow, all the shifted cylinder 
is external to the central cell inside the adjacent cell; (3) the shifted cylinder is 
partially internal to the central cell, partially external to the central cell, the flow is 
divided between the central and the adjacent cell, forming two cylinders with mass 
centres corresponding to the mass centres of the internal flow and the external flow.  

The kinetic head variation is computed according to the new position of internal 
and external flows, while the energy dissipation was considered as a turbulence effect 
in the previous elementary process.  

 

 

 
Fig. 2. Determination of the outflow shift. (a) All the cylinder remains in the cell: the flow is 
only internal and contributes to change the new centre mass of the cell. (b) All the cylinder 
leaves the cell: the flow is only external. (c) Part of the cylinder crosses the cell: there are both 
internal and external flows. 

 
Flows Composition.  When avalanche mass outflows are computed, the new situation 
involves that external flows leave the cell, internal flows remain in the cell with 
different co-ordinates and inflows (trivially derived by the values of external flows of 
neighbour cells) could exist. The new value of TH is given, considering the balance of 
inflows and outflows with the remaining snow mass in the cell. A kinetic energy 
reduction is considered by loss of flows, while an increase is given by inflows: the 
new value of the kinetic head is deduced from the computed kinetic energy. The co-
ordinates determination is calculated as the average weight of X and Y considering the 
remaining snow mass in the central cell, the internal flows and the inflows. 

c 

b a
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2.2   Some Relevant Differences between VALANCA and ASCA 

ASCA [10] is a CA model for the simulation of snow avalanches, with many 
analogies with VALANCA. As a matter of fact, both are two-dimensions models 
based on hexagonal cells and are ruled by the same flow distribution algorithm [11]. 
The models distinctions are synthesized in the following points. 

ASCA shares with many CA models [12] an approach, that doesn’t permit to make 
velocity explicit: a fluid amount moves from a cell to another one in a CA step, which 
corresponds usually to a constant time. This implies a constant local “velocity” in the 
CA context of discrete space/time, even if a kind of flow velocity emerges by 
averaging on the space (i.e. considering clusters of cells) or by averaging on the time 
(e.g. considering the average velocity of the advancing flow front in a sequence of CA 
steps). VALANCA, instead, inherits characteristics of the lasts releases of SCIDDICA 
([15], [16]), that introduce coordinates of mass centre of flows and computes their 
shift.. In this case, velocity is locally explicit (cf. Section 2.1 ). The introduction of 
mass centers have introduced improvements in simulations in terms of fitness, despite 
a slight worsening in execution times over the considered simulations. 

Note that energy losses related to the kinetic head (cf Section 2.1) are handled in 
ASCA according different formulae, deduced by approaches of PDE type. 

In ASCA, the considered test-case snow avalanche was extremely rapid and thus 
characterised by relevant run-up effects, whose physical meaning is the minimum 
height of an obstacle needed to stop the motion of a mass with thickness moving at a 
certain velocity. Here, the run-up is determined by the thickness of the snow plus a 
fictitious height, which corresponds to the kinetic head and represents (Fig.1), in the 
minimization process, a conservative quantity which has to be distributed among the 
neighboring cells in order to reach the conditions of maximum stability. At the 
contrary, in the VALANCA model, the run-up effect for fast moving snow avalanches 
is expressed in a different manner. Here, the kinetic head is not considered as a whole 
with the snow (i.e., it is not considered as a mobile part during the minimization 
process) but computed separately from it in order to explicitly consider the physical 
characteristics related to energy loss and avalanche velocity related to the kinetic head 
itself (cf. Section 2.1 ). 

3   VALANCA Applications to Real Cases of Snow Avalanches 

VALANCA was developed in ANSI C++ in order to obtain both a well structured and 
extensible source code. The program is characterised by a command line interface that 
allows the user to interactively control all input/output and simulation, in order that 
the user can to visualize the simulation in real time. Through the viewer module, it is 
also possible to observe the DTM over which the phenomenon evolves and perform 
both a visual and quantitative comparison with the real case in terms of the fitness 
function fa, later defined. A first validation and calibration of the parameters of 
VALANCA have been performed by back-simulating two snow avalanches in Davos 
(Switzerland) occurred in 2006 and well described in Errera [19]. The same set of  
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parameters have permitted to reproduce the two considered snow avalanches with a 
great level of accuracy. 

First calibrations were performed as usual by a preliminary trial and error method; 
results were enough good that it was not necessary to use our automatic “long time” 
calibration  techniques [20] (e.g. by means of Genetic Algorithms). 

Simulation times depend on the number of active cells processed for each step and 
on the number of steps, necessary to complete the phenomenon: 10000 cells in a step 
last approximately 0.5 s for a 2.4GHz dual-core PC. Gotschnawang takes about three 
minutes with a 199 x 283 matrix excluding interactive graphical output.  

During winter season the Davos area is affected by a big number of events. 
Furthermore, test avalanches were selected since they were well known in terms of 
areal path, thickness, deposit, velocity during the propagation etc.  

The first event analysed (Gotschnawang) is quite challenging since it occurred in 
an open slope, while the second one (Rüchitobel) represents an interesting example of 
channelled snow avalanche. Detailed data of snow avalanches were available, among 
them the release area and volume, avalanche path, the spatial distribution and local 
thickness of the final deposit, the snow density in the snow cover and in the deposit. 
Furthermore, in a few cases the propagation velocities could be estimated at specific 
points. Snow cover entrainment occur in both cases, and also traces of fluidized flow 
were detected. However, the model simulates, as first attempt, only dense flows.  

Both events were simulated by using a 5 m cell-size DTM of the area derived from 
aereophotogrammetry. Several simulations were performed in order to calibrate the 
parameters and best results are described in what follows. 

Fig. 3. Gotschnawang avalanche. Outline of the 2006-01-20 Gotschnawang avalanche (Davos, 
Switzerland). The extent of the fracture line is indicated by the dotted line. 

A first comparison between the real events and the simulated ones is performed by 
a fitness function  [20] concerning areas and computed by the following formula (R S) (R S)⁄  , where R is the set of cells affected by the avalanche in the real 
event and  S  the set of cells affected by the avalanche in the simulation. It returns a 
normalised value between 0 (complete failure) and 1 (perfect simulation). Further 
comparisons for good values of  (>0.7) are performed on erosion and deposits. 
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deep deposits from this avalanche, stacked over those from earlier ones, while the new 
snow was eroded completely.  

On the upper parts of the gully banks and to the sides, the traces of fluidised layer 
were clearly observable to a height of 10–15 m above the gully bottom in that the 
snow was completely eroded away, without any deposits. In the most pronounced 
bend, the angle between the top flow marks of the fluidised part on either side and the 
tilt of the surface of the dense deposit indicated maximum flow velocities 28–38 m/s 
and 10–20 m/s, respectively. 

 

Fig. 5. Rüchitobel avalanche. Outline of the 2006-01-18 Rüchitobel avalanche (Davos, Switzerland). 
The extent of the fracture line is indicated by the top dotted line. 

On the left-hand side and also at the distal end of the runout area, the deposit 
showed the characteristic features expected from fluidised flow. The mass of the 
dense deposit was estimated at 4000 tons while the fluidised one was only 40–50 tons 
(1% of the avalanche mass).  

The snow avalanche was back-analysed by the VALANCA model by using a 5 m 
cells DTM by taking into account the release area, the portion of the slope covered by 
the snow mass and the erosion during the propagation. The best simulation results 
corresponded to a value of  close to 0.81 which is considered a satisfying 
preliminary result if the complex geometry of the avalanche path is taken into account 
(Fig.6). 
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Fig. 6. The 2006 avalanche in Rüchitobel: (a) snow cover with detachment area and real event, 
(b) post-event DEM, superposition (3) of real (1) and simulated (2) event 

4   Conclusions 

The CA model VALANCA has been developed which is suitable for the simulation of 
snow avalanche dynamics. Preliminary validation and calibration of the model have 
been performed by back-analysing the Rüchitobel and Gotschnawang 2006 snow 
avalanches. Preliminary results, discussed in this paper, prove the ability of the model 
to simulate such a type of events in a satisfying way. The real path of the snow 
avalanche has been well simulated in both open and channelled slopes. However in 
spite of the encouraging results several improvements (mainly in the numerical 
management of the erosion and snow entrainment and in the avalanche velocity) are 
still needed in order to use such a model for forecasting analyses of snow avalanches 
propagation and their interaction with structures and human settlements.  

Furthermore, we are confident that VALANCA could be usefully used in hazard 
analyses for snow avalanches. With this aim, applications to other cases of different 
type of snow avalanches have been already planned.  
 
Acknowledgments. The authors wish to thank Dr Dieter Issler for useful comments 
and suggestions. 
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Abstract. In this paper we conceive an interval-valued continuous cel-
lular automaton for describing the spatio-temporal dynamics of an epi-
demic, in which the magnitude of the initial outbreak and/or the epidemic
properties are only imprecisely known. In contrast to well-establish-ed
approaches that rely on probability distributions for keeping track of the
uncertainty in spatio-temporal models, we resort to an interval represen-
tation of uncertainty. Such an approach lowers the amount of computing
power that is needed to run model simulations, and reduces the need for
data that are indispensable for constructing the probability distributions
upon which other paradigms are based.

Keywords: continuous cellular automaton, epidemic spread, impreci-
sion, uncertainty.

1 Introduction

As a consequence of their rigorous formulation of macroscopic phenomena, as
well as their rich history which can be traced back to the development of mod-
ern calculus during the 17th and 18th century, and during which their efficacy
has been proven manifold, ordinary differential equations (ODEs) are generally
resorted to for describing (a)biological processes, as illustrated extensively in the
work of Murray [16], whereas partial differential equations (PDEs) are mostly
employed if one is not merely interested in the process’ temporal dynamics but
also in the spatial patterns it generates, such as the spread of an epidemic [17].
Further, in order to cope with the variability inherent to natural processes, re-
searchers have resorted to stochastic DEs [20], fuzzy DEs [11,19], and to massive
Monte Carlo (MC) simulations [26] in the hope that the simulation results ob-
tained through a model based upon one of these approaches would agree to a
larger extent with the described process than the outcome of their deterministic
counterparts do. Yet, each of these paradigms suffers from a serious drawback.
More specifically, stochastic DEs are difficult to solve analytically, or require
advanced numerical techniques in order to find an approximate solution, the
theory on fuzzy ODEs, and, especially fuzzy PDEs is still maturing, while much
computing time and effort is needed to perform MC simulations.
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To overcome these barriers, we propose an interval-valued continuous cellular
automaton (ICCA) for describing epidemic spread if there is imprecision involved
about the magnitude of the initial outbreak or the epidemic’s characteristics. In
essence, an ICCA can be regarded as a continuous CA (CCA) – also known
as a coupled-map lattice – formulated by Kaneko [9], in which a cell’s state is
represented by an interval in R, and not longer by a single real value.

A short overview of the mathematical preliminaries that are essential for a
clear understanding of this paper is given in Section 2. In the third section we
introduce the ICCA that can be used to describe epidemic spread if there is
imprecision involved in the magnitude of the initial outbreak or the epidemic’s
characteristics. The former is addressed in the first part of the final section,
while the latter is investigated more closely in the second part of this paper’s
final section.

2 Preliminaries

For the sake of clarity we state the definition of an ICCA on an arbitrary tessella-
tion of a 2-dimensional Euclidean space. This paradigm constitutes an extension
to the CCA paradigm since the states of the spatial entities are represented by
an interval-valued in R, while it also entails an extension to the classical CA
paradigm conceptualized by von Neumann [27] since it allows irregular tessella-
tions of R2.

Definition 1. (Interval-valued continuous cellular automaton)
An interval-valued continuous cellular automaton (ICCA) C can be represented
as a sextuple

C = 〈T , S, s, s0, N, Φ〉 ,

where

(i) T is a countably infinite tessellation of a 2-dimensional Euclidean space
R2, consisting of cells cj, j ∈ N.

(ii) S is an infinite set of intervals, where

S ⊆ [R] = {[y1, y2] | y1 < y2 ∧ y1, y2 ∈ R} .

(iii) The output function s : T × N → S yields the state value of cell cj at the
t-th discrete time step, i.e. s(cj , t) = [s1(cj , t), s2(cj , t)].

(iv) The function s0 : T → S assigns to every cell cj an initial state, i.e.
s(cj , 0) = s0(cj).

(v) The neighborhood function N : T →
∞⋃

p=1
T p maps every cell cj to a finite

sequence N(cj) = (cjk
)|N(cj)|
k=1 , consisting of |N(cj)| distinct cells cjk

.
(vi) Φ = (φj)j ∈N

is a family of functions

φj : S|N(cj)| → S ,
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each φj governing the dynamics of cell cj, i.e.

s(cj , t + 1) = φj

(
s̃(N(cj), t)

)
,

where s̃(N(cj), t) =
(
s(cjk

, t)
)|N(cj)|
k=1

.

In the framework of this paper, we define N in such a way that N(cj) yields
the Moore neighborhood of cj , consisting of those cells ck ∈ T that share either
a vertex or a line segment with cj . Sticking to this neighborhood function, it
becomes straightforward to map T on a undirected graph G(V, E), with vertex
set V = T , while E represents the edge set of G, containing an edge between cj

and ck if ck ∈ N(cj). Furthermore, in the remainder of this paper we restrict to
the family of ICCA for which φj is the same for all cj ∈ T .

Definition 2. (Homogeneous interval-valued continuous cellular automaton)
A homogeneous interval-valued continuous cellular automaton (ICCA) is an
ICCA fulfilling premises (i)-(v) of Definition 1 and for which there exists a
Θ :

⋃
k∈N

Sk → S such that

s(cj , t + 1) = Θ
(
s̃ (N(cj), t)

)
.

Essentially, the construction of a homogeneous ICCA is less intricate than the
composition its generalized counterpart given by Definition 1 since only one
function Θ should be chosen that governs the dynamics of every cj ∈ T . Actually,
most studied CA, such as rule 30 or the Game of Life [8], belong to this CA
family.

3 A Spatially Explicit Model for Describing Epidemic
Spread

3.1 The Model

The rich variety of CCA- and CA-based models that has been developed dur-
ing the last decade for describing various spatial biological phenomena such as
epidemics [6,14,28], population dynamics [3,5], tumor growth [13,23,24], biofilm
development [21,22] and many other phenomena [10,25] is illustrative for the
suitability of such models to mimic complex bioprocesses.

In a forthcoming work, Baetens and De Baets [2] propose a generalized CCA
for modelling various biological processes that are traditionally described by
means of PDEs. In this paper we focus on an epidemic sweeping through a
geographical region, and which involves only non-reproducing susceptible and
infected individuals. The spatio-temporal dynamics of such an epidemic can be
captured by the following set of difference equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩
H(cj , t + 1) = H(cj , t) − H(cj , t)

∑
ck∈N(cj)

wjk F (Uj , djk) U(ck, t)

U(cj , t + 1) = U(cj , t) + H(cj , t)
∑

ck∈N(cj)

wjk F (Uj , djk) U(ck, t)
(1)
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where H(cj , t), resp. U(cj , t), represent the fraction of susceptible (healthy), resp.
infected (unhealthy) individuals within polygon cj at the t-th time step such that
H(cj , t)+U(cj, t) = 1, at all t, and for all cj , F is a function describing the effect
of landscape and connectivity characteristics, embodied in Uj , on the epidemic,
djk is the distance measured on a graph between the polygons cj and ck. Further,
wjk is a weighing factor, representing the influence of every ck ∈ N(cj) in the
determination of H(cj , t + 1). A brief analysis of Eq. (1) shows that it has two
fixed points, namely

(
H∗

j , U∗
j

)
= (0, 1) and

(
H∗

j , U∗
j

)
= (1, 0). Clearly, this model

may be regarded as a discrete analog of a PDE-based SI-model, such as described
in [17].

Taking into account that H(cj , t) + U(cj , t) = 1, at all t, and for all cj ,
we observe that the epidemic’s dynamics can be tracked by considering only
one of the system’s equations. Further, by assuming that the region is spatially
homogeneous, meaning that F does not depend on Uj , we can reduce Eq. (1) to

U(cj , t + 1) = U(cj , t) + H(cj, t)
∑

ck∈N(cj)

wjk H(djk)U(ck, t) , (2)

where we introduced the function H , for which

H(djk) =
{

ν0, if djk = 0,
ν1, if djk = 1,

(3)

with ν0 and ν1 quantifications of the epidemic’s virulence. These measures have
to be chosen such that ∑

ck∈N(cj)

wjk H(djk) ≤ 1, ∀ cj , (4)

assuring that 0 ≤ U(cj , t) ≤ 1, at all t, and for all cj . Finally, we put wjk = 1
8

for all j, k and j �= k and wjk = 1 if j = k. Consequently, cj ’s eight nearest
neighbours influence U(cj , t + 1) to the same degree.

3.2 Incorporating Uncertainty in the Proposed Model

Clearly, the above outlined model is deterministic since it yields exactly the same
simulation result if its parameters and the initial condition from which it evolves
are unchanged. In order to turn it into a stochastic model that is capable of
grasping the variability inherent to natural process, commonly, it is presumed
that H(cj , 0) and U(cj, 0), or the model’s parameters follow a prescribed type
of probability distribution, and the model is simulated through extensive MC
simulations. Unfortunately, the latter require much computing time and effort,
whereas a thorough construction of the aforementioned distributions demands a
considerable amount of spatial data, which, mostly, cannot be collected easily.

For that reason, we propose to characterize uncertainty by using an inter-
val representation of the variables and parameters in Eq. (2). More specifically,
in the remainder of this paper H(cj , t) and U(cj , t) are considered intervals
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Fig. 1. Non-interactive (a) and interactive (b) intervals

in [0, 1], such that we can write H(cj , t) = [h1(cj , t), h2(cj , t)] and U(cj , t) =
[u1(cj , t), u2(cj , t)]. Since the notion of uncertainty is for most researchers in-
extricably bound up with probability distributions, we will refer to an interval
characterization of uncertainty as imprecision.

Seen the absence of derivatives or advanced mathematical functions in Eq. (2),
it is relatively straightforward to evolve the system’s spatio-temporal dynamics
by means of basic interval arithmetic [15]. However, there is one pitfall that
complicates the calculations, and inevitably leads to faulty conclusions if dis-
carded. More precisely, one has to bear in mind the coupling between H(cj , t)
and U(cj , t) through the condition H(cj , t) + U(cj , t) = 1, at all t, and for all
cj , which makes that H(cj , t) and U(cj , t) cannot take values independently of
each other, so they can be termed interactive variables [7]. Hence, mathematical
operators may not act on all couples in H(cj , t) × U(cj , t) (Fig. 1(a)), but only
on the couples contained in

{l (h1(cj , t), u2(cj , t)) + (1 − l) (h2(cj , t), u1(cj , t)) | l ∈ [0, 1]} , (5)

such as depicted in Figure 1(b).
In view of the existing interactivity, we can then write

H(cj , t) + U(cj , t) = [h1(cj , t) + u2(cj , t), h2(cj , t) + u1(cj , t)] , (6)

and, analogously,

H(cj , t) · U(cj , t) = [min (h2(cj , t) · u1(cj , t), h1(cj , t) · u2(cj , t)) ,

max (h2(cj , t) · u1(cj , t), h1(cj , t) · u2(cj , t))] . (7)

4 Simulation Study

In this section two sources of imprecision in Eq. (2) are examined more closely.
The first one concerns the initial condition U(cj , 0) that is necessary to itera-
tively solve Eq. (2), and which can be deduced from spatial epidemiological data
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that are becoming increasingly available as indicated by Beale [4]. Nonetheless,
we must be aware of the imprecision that can be present in the outbreak data,
as illustrated only recently by the outbreak of H1N1 [12]. Analogously, the pa-
rameters in Eq. (3) might only be known imprecisely. This is regarded as the
second source of imprecision. All simulations reported in this section were per-
formed in Mathematica 7.0 (Wolfram Research, Inc.) on a desktop PC with
an Intel Dual Quad Core 3.16 GHz processor. Although a square tessellation
consisting of 101 × 101 polygons was used in this paper, the described simula-
tions could easily be performed when an irregular tessellation is employed. Such
an irregular tessellation seamlessly complies with the spatio-temporal data in
vector format [1], which are commonly available through geographical informa-
tion systems and can contribute considerably to a more accurate description
of bioprocesses. No boundary conditions had to be imposed since we employed
differentiated neighborhood structures along the tessellation’s boundaries. As
such, the use of periodic boundary conditions, which is rather questionable if
one wants to simulate an epidemic over a given geographical extent, is avoided.

4.1 Imprecise Initial Conditions

Often only imprecise information is available on the magnitude of an epidemic
during its initial stage. This kind of imprecision can be incorporated easily in
the model (Eq. (2)), by choosing U(cm, 0) an interval in [0, 1], where cm repre-
sents the polygon in which the epidemic broke out. In practice, the choice of an
appropriate interval should be based upon expert opinions, though, in order to
exemplify the ability of the formerly described discrete modeling paradigm to
incorporate imprecision it suffices to adopt an arbitrary initial condition such as

U(cj, 0) =

{
[0.2, 0.4] , if j = m ,

[0, 0] , else .
(8)

Further, we assume that reliable information is available on the virulence of
an epidemic, which allows us to assess ν0 = 0.5 and ν1 = 0.5, meaning that
the spread of an infection in a polygon cj can be equally attributed to infected
individuals living in cj as to infected individuals residing in cj ’s neighborhood
N(cj).

Figure 2 shows the center of U(cj , t) at two, five, ten and fifteen time steps
after an epidemic outbreak occurred in the polygon cm, as well as the length
of the interval U(cj , t), denoted |U(cj, t)|, at the same number of time steps.
The former gives information on the expected proportion of infected individuals
in every cj , while the latter quantifies the imprecision that is related to this
proportion. For reasons of clarity, we limited the depicted spatial extent of this
figure to polygons through which the epidemic sweeps during the considered
simulation period. This figure clearly shows that the imprecision originating
from the imprecisely known proportion of infected individuals at t = 0 in the
polygon cm, propagates circularly like the epidemic wavefront. Since Figure 2(f)
clearly shows that |U(cj , t)| → 0 as t increases, we may conclude that the ICCA
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Proportion of infected individuals, more precisely, the center of U(cj , t) (a,c,e),
and the length of the interval U(cj , t), denoted |U(cj , t)| (b,d,f), two (a-b), five (c-d)
and ten (e-f) time steps after an epidemic broke out in the center polygon cm of a
square tessellation with an initial magnitude given by Eq. (8)
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evolves towards its fixed point
(
H∗

j , U∗
j

)
= (0, 1), notwithstanding we imposed

an imprecise initial condition. It should be stressed that this intuitive tendency
would not have been observed if the formerly described interactivity between
the model’s variables was discarded.

4.2 Imprecise Epidemic Properties

In this section we consider the model given by Eq. (2) with imprecise initial
conditions given by Eq. (8), but in addition we assume that also ν0 is only
known imprecisely. The imprecision related to this parameter can be taken into
account by representing it as an interval in [0, 1]. For that purpose, we choose
ν0 = [0.2, 0.5]. Figure 3 visualizes the length of the interval U(cj , t), denoted
|U(cj , t)| two, five and ten time steps after an epidemic struck cm. Comparing
Figs. 2(b), 2(d) and 2(f) on the one hand, and Fig. 3 on the other hand, one
clearly sees that U(cj , t) is considerably larger when both the initial condition
and ν0 are only imprecisely known. We verified that the maximum attainable
interval length spanned the entire unit interval in polygons more distant from
cm as the wavefront propagates, which can be attributed to the successive non-
interactive multiplication of ν0 and U(cj , t). Nevertheless, U(cj , t) tended to a
crisp number as t → ∞ since the ICCA evolves towards its fixed point (0, 1).

Fig. 3. Length of the interval U(cj , t) two (a), five (b) and ten (c) time steps after an
epidemic broke out in the center polygon cm of a square tessellation with an initial
magnitude given by Eq. (8), and ν0 = [0.2, 0.5]

5 Discussion

Notwithstanding it was shown in the previous section that the proposed ICCA
provides a means to deal with the imprecise nature of an epidemic in terms of
the size of its initial magnitude and its properties, we must emphasize that the
proposed paradigm is still to be improved in such a way that the quantities
enclosed in a given interval are assigned a possibility with which they occur.
Then, the impreciseness would no longer be represented by an interval that
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merely encloses all possible values, but by a so-called fuzzy interval as depicted
for illustration in Fig. 4. Unavoidably, this brings with it a complication of
the calculations involved that then should be done in the light of Zadeh’s [29]
extension principle making that approach computationally less efficient than
an ICCA. Naturally, an ICCA is trivially efficient since it merely requires two
parallel model simulation, one for each interval limit, whereas a multiple of them
would be required by MC methods. Off course, the additional computational
effort enables to treat uncertainty in a much more informative way. Yet, by
relying on fuzzy intervals one could combine an efficient numerical recipe, which
would still not demand as many model simulations as needed for MC methods
since Nguyen’s [18] theorem can be invoked, with a model output bearing a much
higher information degree.

Fig. 4. An exemplary fuzzy interval in which every quantity in [0, 1] is assigned a grade
of membership to the set of infected individuals

6 Conclusions

In this paper we showed that imprecise information, described by means of in-
tervals, can be used easily within a spatially explicit epidemic spread model that
is based upon the continuous CA paradigm. More precisely, we demonstrated
that uncertainty arising from both imprecise initial conditions or an epidemic’s
properties can be taken into account straightforwardly. The presented modeling
framework is perfectly suited to cope with the growing importance and availabil-
ity of spatio-temporal data. In forthcoming work, we will extend the presented
model to cover also recovered individuals such that it can serve as a full-fledged
alternative to PDE-based models. Besides, instead of representing imprecision
by means of intervals, fuzzy numbers could be employed if there is information
on the possibility with which every element in the interval occurs.
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Abstract. In the great majority of urban models based on Cellular Automata 
(CA), the concept of proximity is assumed to reflect two fundamental sources 
of spatial interaction: (1) the accessibility of places and (2) the distance “as the 
crow flies”. While the geographical space defined by the latter clearly has an 
Euclidean representation, the former, based on the accessibility, does not admit 
such a regular representation. Very little operational efforts have been under-
taken in CA-based urban modelling to investigate and provide a more coherent 
and cogent treatment of such irregular geometries, which indeed are essential 
and crucial feature of urban geography. In this paper, we suggest an operational 
approach – entirely based on cellular automata techniques – to model the com-
plex topology of proximities arising from urban geography, and to entangle 
such proximity topology with a CA model of spatial interactions. 

Keywords: urban cellular automata, land-use dynamics, proximal space, irregu-
lar neighbourhood, informational signal propagation, informational field. 

1   Introduction 

The idea of spatial interaction in CAs is strongly related to that of proximity. Indeed, 
a CA transition rule is always, by definition, a function describing the relation be-
tween a cell and its neighbouring, viz. proximal cells. And the nature of proximity 
depends fundamentally on the kind of geometry we are using to describe the underly-
ing geographical space.  

When modelling urban dynamics based on spatial interactions, we are always im-
plicitly or explicitly making assumptions on the nature of proximities within an urban 
geography, and are hence seeking for its suitable geometrical representation.  

On that account, we can start by saying that in the great majority of CA urban 
models, the “proximities” are assumed to reflect two fundamental sources of spatial 
interaction: (1) the accessibility and (2) the distance “as the crow flies”. The geo-
graphical space defined by the latter kind of proximity has clearly an Euclidean repre-
sentation, and thus the proximity may be defined in a form of a regular spatial dis-
tance, for example as a special case of the Minkowski distance. 

However, in the case of the former kind of proximity, the one based on the so called 
accessibility, the situation is profoundly different. The accessibility refers here to a 
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measure of how (how much, how easy, how quickly) places are mutually accessible 
(i.e. reachable) from one another to human beings. Such accessibility may therefore be 
further subdivided by the means of transportation (pedestrian, bicycle, automobile, 
heavy vehicle, railways and so on) as they all give rise to different accessibilities of 
places. Anyhow, in all these cases, the accessibility itself is deeply determined by the 
relevant underlying urban geography. For example, the web of pedestrian, road, rail-
ways and underground transportation networks substantially shape such geography, 
bringing about a highly irregular geometry of the accessibility-type proximity. This 
type of proximity manifestly does not admit any possibility of a regular representation, 
let alone Euclidean. Indeed, an Euclidean representation of the geometry of the acces-
sibility-type would be to a large extent inappropriate and fundamentally flawed. 

Considering these rather straightforward observations, it is remarkably surprising that 
very little operational efforts (e.g. [1]) have been undertaken in CA-based urban model-
ling to investigate and provide a more coherent and cogent treatment of such irregular 
geometries, which indeed are essential and crucial feature of urban geography. 

The lack of treatment of this feature is for instance easily seen in two families of 
urban CA models which in derived, extended, specialised or inspired-by forms have 
been often used for CA-based urban simulation: the so called Constrained Cellular 
Automata (CCA) [2-4] and those based on the SLEUTH approach [5-7]. In both these 
two families of models, the CA does not adopt a strictly local neighbourhoods, and 
therefore does indeed simulate spatial interactions over greater distances, but the 
distance is intended exclusively in the Euclidean as-the-crow-flies sense. The same 
general approach is described in the attempts to comprehensively present and discuss 
the theory and application of urban CA (see for example [8,9]). 

Being such landscape of CA applications to urban phenomena as it is, there have 
been, to be fair, invitations from theoretical standpoints to develop a more appropriate 
understanding of the concept of nearness, to give it a deeper geographical meaning, in 
a way, to entail it with a thick geographical theory. Indeed, such a line of reasoning 
may almost directly be derived from the notion of proximal space, coming from the 
research in ‘cellular geography’ [10] which set the basis for the so called geo-algebra 
approach proposed by Takeyama and Coucleis [11]. In this latter paper, the homoge-
neity of cells’ neighbourhoods has been questioned precisely on the ground that every 
cell may have different neighbourhood defined by relations of “nearness” between 
spatial entities, where “nearness” can means both topological relation or generic “be-
havioural” (e.g. functional) influence. 

In this paper, we take on the task to suggest an operational approach – entirely 
based on cellular automata techniques – to model the complex topology of prox-
imities arising from urban geography, and to entangle these and such proximity   
topology with a CA model of spatial interactions. 

2   Proximal Spaces as Informational Fields 

The approach we take to describe the irregular geometry of the accessibility-type prox-
imity is to assume that each cell emits an informational signal propagating throughout  
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the cellular space. However, the signal propagation is not uniform, but depends on the 
“propagation medium” which the signal encounters. This means that, starting from the 
emitting cell, the signal is diffused in all directions, but the decay of the signal’s inten-
sity depends on the state (e.g. land use) of the cells crossed by the signal. As a conse-
quence of this informational signals emission, each cell generates an informational 
field around itself, whose shape and intensity at every cell of the cellular space depends 
on the states of the cells along all the paths the signal propagates. 

To see how these general concepts may relate and be applied to urban context, we 
can for example think of a model in which the above described signals propagates 
better (i.e. with a lower rate of decay) along the roads, and that they easily spill over 
to the cells surrounding the roads. Another example could be a railway transportation 
network. Here, the signal would propagate smoothly along the railway, but would not 
by model design be allowed to spill over to the surrounding cells, except starting from 
the cells corresponding to railway stations. 

To sum up, the beforehand suggested method allows us to generate an irregular ge-
ography-based “informational field” around each cell. In other words, seen from an-
other point of view, every cell receives a set of signals of different type and intensity 
from other (potentially every other) cells. Once the informational fields are generated, 
the CA transition rules ought to be stated in a way to combine the received signals as 
the input information. 

The hereby suggested strategy of modelling proximities by the means of informa-
tion  signals propagating through cellular space is similar in spirit to the “at-a-distance 
interaction fields” proposed in [12]. The specific contribution of our proposal should 
therefore be seen in its attempt to apply and embed these concepts into urban CAs 
and to conceive a particular operational simulation approach for that purpose. 

3   An Application to a CA Model 

The experimental setting to demonstrate and discuss the above ideas was a 2D CA 
composed of square cells providing a raster representation of a geographical area. The 
state of every cell represents its land-use type, which can be of one of the following 
eight types: residential, industrial, commercial, agriculture, road, railways, railway 
station, public services/facilities. The latter four types are considered as static and 
thus cannot change nor be transformed endogenously during the simulation. Starting 
from a given initial configuration, the automaton evolves in discrete steps simulating 
the land-use dynamics of the area. 

At each simulation step, the execution of the CA model is divided into two distinct 
phases: (1) informational fields generation phase and (2) land-use dynamics phase. 

3.1   Informational Fields Generation Phase 

This phase of the CA execution has the task to generate the informational fields (of 
the kind described in section 2) around each cell. Specifically, at the first step of this 
phase, the cells having residential, industrial, commercial, or public services land use  
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are made to emit an informational signal . Each signal holds and carries the follow-
ing information: (1) the ID of the source cell, (2) the source cell’s land use, (3) the 
propagation rule, and (4) the signal’s intensity . During the subsequent steps, every 
signal held by a cell is transmitted to its Moore-neighbouring cells, provided that the 
signal’s intensity is above a predefined threshold. 

Signals are subject to a decay of intensity defined by their propagation rule. In 
general, a propagation rule is expressed as a function of the land uses of both the 
sender and the receiver cell. The functioning of the propagation rules is therefore 
grounded on a land-use “in-out matrix”. More specifically, this matrix defines the 
coefficients of decay of the informational signal on the basis of the land use combina-
tion of the signal’s outcoming and incoming cells. An example of such an in-out ma-
trix is shown in Table 1. The decay coefficients in this table reflect the observations 
on the accessibility signal propagation exemplified above in section 2. 

Table 1. Example of land-use "in-out matrix" of coefficients used for calculating the decay of a 
signal propagating from an outcoming to an incoming cell 

Incoming cell 
Outcoming cell 

R C I A PS Ro Rw RwS 

R (Residential) 0.60 0.60 0.60 0.10 0.60 0.90 0.00 0.95 
C (Commercial) 0.60 0.60 0.60 0.10 0.60 0.90 0.00 0.95 
I (Industrial) 0.60 0.60 0.60 0.10 0.60 0.90 0.00 0.95 
A (Agricultural) 0.10 0.10 0.10 0.10 0.10 0.90 0.00 0.95 
PS (Pub. services) 0.60 0.60 0.60 0.10 0.60 0.90 0.00 0.95 
Ro (Road) 0.90 0.90 0.90 0.90 0.80 0.95 0.00 0.95 
Rw (Railway) 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.95 
RwS (Railway station) 0.95 0.95 0.95 0.90 0.95 0.95 0.98 0.95 

 
To account for two relevant modes of spatial interaction discussed in the introduc-

tion (see section 1), two types of propagation rules are defined in the model: 
 

- Regular, Euclidean-space propagation, by which the signal decay is a function of 
the Euclidean distance from the signal’s source (and therefore does not depend on 
the land uses crossed by the signal); 

- Irregular, Proximal-geography-space propagation, by which the decay of the sig-
nal’s intensity differs depending on the land uses of the cells being crossed by the 
signal.  

 

As an example, consider Fig. 1 where the intensity of the fields originated by some 
emitting cells is depicted in an urban-like environment characterised by the presence 
of a network of roads. In case (a) the signal decay does not account for the current 
cells’ land uses: this type of propagation rule makes signals able to inform the receiv-
ing cell about the existence of the source cell and also about the level of their spatial 
distance in the Euclidean sense. In case (b) the signals’ intensity propagates with 
smaller decay along the roads and railways: this propagation rule allows a receiving 
cell for being informed about the existence and the accessibility of the source cell. 
 



110 I. Blecic, A. Cecchini, and G.A. Trunfio 

 

Fig. 1. Comparison between the diffusion of two type of signals originating from the same 
cells. In case (a) signals decay does not account for the current cells’ land uses; in case  
(b) signals’ intensity propagate preferentially along cells representing roads and railways. 

The informational fields generation phase ends when during a time step eventually 
no signal propagates further throughout the CA. This condition is satisfied when 
every cell has already sent all its signals and all the received signals are of the inten-
sity below the predefined propagation threshold. 

3.2   Land-Use Dynamics Phase 

At the end of each informational fields generation phase, every cell holds a set  of 
signals  which are used as the input information for the subsequent land-use dynamics 
phase. 

This phase is based on the computation of the so-called transition potentials 
 expressing the propensity of the land to acquire the j-th land use. In [2-4], 

where the hereby employed concepts of transitional potentials have been developed, 
the cell neighbourhood is a circular region of a given radius around the cell. There-
fore, we adapted the thereby presented rules to our circumstances of irregular 
neighbourhood patterns as drawn by informational fields. Hopefully, we succeeded in 
maintaining the spirit of the spatial interaction principles inherent in the original rules. 

Adapting and somewhat simplifying from [2], the transition potentials of every cell 
in our model are computed as: 

 

  (1) 

 

where:  
 

-  is the cell physical suitability taking into account, for each land use j, 
features like slope or terrain aspect.  

- Zj is a Boolean value defining the exclusion of the j-th land use (for example due 
to zoning regulations or physical constraints) 

-  is the so called neighbourhood effect.  
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The latter represents the sum of all the relevant attractive and repulsive effects of 
land uses and land covers on the j-th land use which the current cell may assume. In 
the present model, and critically differently than in [2-4], Nj is computed using all the 
informational signals  received by the cell: 

  (2) 

where: 
 

- i denotes the type of the signal ; 
-  is a function giving the influence of a signal  if type i on the use 

j which the cell may assume;  
-  is 1 if  and 0 if , where k denotes the current land use of the cell for 

which the transition potential is under evaluation; 
- the term  accounts for the effect of the cell on itself (zero-distance ef-

fect) and represents an inertia due to the costs of transformation from one land use 
to another 

 

Functions , accounting for different effects of a received signal on all the poten-
tial land uses, are assumed in the following form: 
 

  (3) 

where: 
 

-  denotes the intensity of the signal  of type ; 
-  is a parameter representing the maximum influence (positive or 

negative) of a signal  of type  on the use j;  
-  is a parameter defining the sensitivity of the use j on a signal of type i;  

 

Fig. 2 shows some examples of functions  used in the model. It is important to 
note that, in spite of the simplicity of functions , the combination of all contri-
butions given by Eq. (2), together with the different ways in which signals can propa-
gate throughout the automaton, are able to effectively describe a variety of relevant 
situations. Consider for example the cell ca close to a road represented in Fig. 3 and 
suppose that, according to its current land use, it emits two signals, namely an Euclid-
ean nearness signal  and an accessibility signal  (see also Fig. 1). Also consider a 
cell cb along the road, at a distance d from ca, receiving the two signals  and  
emitted by ca and suppose that  has a repulsive effect on a potential land use j of cb 

(i.e.  in Eq. 3) while  has an attractive effect on the same use j (i.e.  
in Eq. 3). The combination of the two effects, according to the model above de-
scribed, leads to the transition potential contribution represented in Fig. 3 as a func-
tion of the distance d, which is characterised by an optimum distance (i.e. the position 
in which the contribution of ca to the potential towards the use j of cb is maximum) 
and a decay of the influence as d increases. 
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Fig. 2. Example graphs of the contribution to 
the transition potential given the signal intensity 

Fig. 3. Total effect produced by the cell ca 
on different cells cb as a function of their 
distance d  

 

When all transition potential are computed, the following transition rule is applied 
to all cells of the automaton: 

 

Transition rule: a cell of the land use k is transformed into the land use j, iff 
 is the highest of all the cell’s transitions potentials, and provided that 

 and . 
 

 is a minimum threshold and  is a minimum difference threshold for a cell to be 
transformed into another land use. The threshold  incorporates the correction for age 
of the cell’s land use k, namely the younger in terms of CA steps is the current land 
use, the greater is the threshold . 

The rationale behind this transition rule is straightforward. A cell has a transition 
potential to transform into every possible land use. Of all the possible land uses, it 
will transform into the one having the strongest transition potential, provided that it is 
strong in absolute terms (greater than ) and that it is strong enough to overturn the 
current land-use k (therefore it must hold ). This latter threshold ( ) ac-
counts therefore for the inherent inertia or sunk costs of urban transformations. The 
correction for age of the threshold  puts further consideration onto this inertia, by 
imposing that the required differential of transition potentials is greater had the cell 
just recently transformed into its current land use k. Subsequently, the threshold re-
quirement  is lowered gradually as the age of the current land use grows. 

4   Example Runs 

In this section we show, through a preliminary simulation exercise, some typical ef-
fects of taking into account the accessibility-type proximity in a CA-based land use 
simulation.  
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Fig. 4. Comparison between the outcomes of two runs of the model with different models of the 
proximity (left: accessibility-type, right: as-the-crow-flies type) 

In particular, two simulations were executed, using the model described in section 3 
and assuming as initial configuration the map of a hypothetical city (“step 0” in Fig. 4.) 

In the first simulation (labelled “A” in Fig. 4), the model included the computation 
of the relevant accessibility fields (e.g. signals of the accessibility of public services 
or commercial areas) while in the second run (labelled “B” in Fig. 4) only signal 
propagating according to their Euclidean distances were admitted. Clearly, in the 
second case each cell of the automaton was not informed about accessibilities, being 
only aware of both the existence and the distance of all the relevant land uses (roads 
and railways included, in the spirit of [2-4]) within a radius given by the level of iso-
tropic decay of the signals (see Fig. 1-a).  
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Each simulation was executed for 15 land-use transformation steps which, includ-
ing the information fields generation phases, corresponded to 321 CA steps for simu-
lation “A” and 169 CA steps for simulation “B”.  

In Fig. 4, the output maps obtained for steps 10 and 15 are depicted. In particular,  
as the city evolves according to the model rules, the growth of a commercial area (see 
the highlighting circle) can be observed at step 10 in both simulations. At the same 
land-use step, the map produced by simulation “A” exhibits the development of a 
satellite residential area in a zone (see the highlighting circle) which is relatively dis-
tant from the newly developed areas but well connected by the railway. In simulation 
“B” the same satellite zone, although served by the railway, remains undeveloped (i.e. 
in case of model “B” the cells are not informed about the existence of highly accessi-
ble public services and commercial areas of new development at the other end of the 
railway connection). 

Comparing the outcomes at step 15, we can observe that both the commercial area 
and the satellite residential area had further development, but the latter continued to 
be completely missed by simulation B. 

In spite of its simplicity, the results of the above presented preliminary example in-
dicate that including an improved description of the proximities arising in an urban 
geography can lead to different, and possibly more realistic, urban patterns. 

5   Conclusions 

In this paper, our primary aim was to suggest a possible modelling of the notion of 
proximity and proximal space arising in urban geography, and to employ it in urban 
CA. The point of departure was the idea that the proximity usually held to be relevant 
for spatial interactions cannot be assumed to exist in and as a regular Euclidean space, 
since the “distortions” of urban geography bring about highly irregular and complex 
topology of proximities. To account for this complexity, we have thereafter suggested 
a description of the proximal space as a set of informational signals propagating 
through the space, hence generating informational fields around each cell. Every such 
field exhibits different strength (intensity) at different points (i.e. cells) in space, since 
the irregularity of its geometry is inherently dependant on the different “propagation 
media” (road, railways, residential, commercial or any other area) crossed by the 
informational signals. 

A cell of the automaton is then able to “know” its proximity to another by knowing 
the intensity of the signal – carrying on with the wave metaphor, shall we say “the 
radiation”? – it receives from that cell. Finally, the combination of all the received 
radiations is the information input to the CA transition rules through which to model 
the land-use dynamics.  

In the example presented, our focus was not so much on the plausibility and theo-
retical foundation of the transition rules and of the proximity-based land-use urban 
dynamics. Rather, it was a quite expedient (and probably somewhat coarse) exempli-
fication of how even existing models based on assumptions of spatial interaction may 
in a reasonably convenient manner be adapted to employ our more generalised and 
more geography-grounded notion and description of the proximal space. 
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Abstract. Bone remodelling, as many biological phenomena, is inher-
ently multi-scale, i.e. it is characterised by interactions involving different
scales at the same time. At this aim, we exploit the Complex Automata
paradigm and the BioShape 3D spatial simulator respectively (i) for de-
scribing the bone remodelling process in terms of a 2-scale aggregation
of uniform Cellular Automata coupled by a well-established composition
pattern, and (ii) for executing them in a uniform and integrated way in
terms of shapes equipped with perception and movement capabilities.

On the one hand, the proposed model confirms the high expressiveness
degree of Complex Automata to describe multi-scale phenomena. On
the other hand, the possibility of executing such a model in BioShape
highlights the existence of a general mapping - from Complex Automata
into the BioShape native modelling paradigm - also enforced by the fact
that both approaches result to be suitable for handling different scales
in a uniform way, for including spatial information and for bypassing
inter-scale homogenization problems.

1 Introduction

Nowadays, it is possible to observe biological systems in great detail: with a light
microscope one can distinguish the compartments of a human cell, and with an
electron microscope one can even see very small details such as proteins. At the
same time, models for describing and simulating biological systems have com-
parable resolution regimes and work on different spatial and temporal scales:
in the microscopic approach, molecular dynamics and Monte Carlo methods de-
scribe systems at the level of atoms or proteins while, in the macroscopic regime,
continuum-based simulations model complete biological assemblies (but do not
describe any explicit molecular information). Actually, a characteristic of biolog-
ical complexity is the intimate connection that exists between different length
scales. For instance, subtle changes in molecular structure as a consequence of
a single gene mutation can lead to catastrophic failure at the organ level, such
as heart failure from re-entrant arrhythmias that lead to ventricular fibrillation.
But information flows equally in the reverse direction: mechanoreceptors at the
cell level sense the mechanical load on the musculoskeletal system and influence
gene expression via signal transduction pathways.

S. Bandini et al. (Eds.): ACRI 2010, LNCS 6350, pp. 116–127, 2010.
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1.1 A Case Study: The Bone Remodelling Process

Old bone is continuously replaced by new tissue. This ensures that the me-
chanical integrity of the bone is maintained, but it causes no global changes in
morphology: Frost defined this as remodelling [1]. Such a phenomenon can be
considered “multi-scale” (see Fig. 1) since macroscopic behaviour and microstruc-
ture strongly influence each other.

Bone remodelling at tissutal scale. Two macroscopically different bone tis-
sue types are distinguished: the cortical one - which is a rather dense tissue
although it is penetrated by blood vessels through a network of canaliculi - and
the trabecular one - which is porous and primarily found near joint surfaces, at
the end of long bones and within vertebrae.

Fig. 1. Multiscale view of a human femur

On a macro-
scopic level, re-
modelling might
be regulated by
mechanical load-
ing, allowing bone
to adapt its struc-
ture in response
to the mechani-
cal demands. It
is well-known that
trabeculae tend
to align with maximum stresses in many bones and greatly increase their load-
carrying capacity without increasing mass, thus improving structural efficiency;
mechanical stress also improves bone strength by influencing collagen alignment
as new bone is being formed. Cortical bone tissue located in regions subject to
predominantly tensile stresses has a higher percentage of collagen fibers aligned
along the bone long axis. In regions of predominant compressive stresses, fibers
are more likely to be aligned transverse to the long axis.

Bone remodelling at cellular scale1. Two main kinds of cells, namely osteo-
clasts (Oc) and osteoblasts (Ob), closely collaborate in the remodelling process
in what is called a Basic Multicellular Unit (BMU). The organization of the
BMUs in cortical and trabecular bone differs, but these differences are mainly
morphological rather than biological.

The remodelling process begins at a quiescent bone surface (either cortical or
trabecular) with the appearance of Ocs, which attach to the bone tissue matrix,
form a ruffled border, create an isolated microenvironment, acidify it and dissolve
the organic and inorganic matrices of the bone.

Briefly after this resorptive process stops, Obs appear at the same surface
site, deposit osteoid and mineralize it. Some Obs are encapsulated in the osteoid

1 For a more detailed description, see http://courses.washington.edu/bonephys/
physremod.html.

http://courses.washington.edu/bonephys/physremod.html
http://courses.washington.edu/bonephys/physremod.html
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matrix and differentiate to osteocytes (Oy). Remaining Obs continue to synthesize
bone until they eventually stop and transform to quiescent lining cells (Lc) that
completely cover the newly formed bone surface and connect with the Oys in
the bone matrix through a network of canaliculi.

1.2 Motivations and Contribution of the Paper

The need of a multi-scale modelling approach. Bone remodelling was al-
ways subject of extensive studies in many fields of research: much of this research
is based on reduction - i.e. isolating the various components to unravel their
individual behaviour - without taking into account how mechanical forces are
translated to structural adaptation of the internal cellular architecture [2,3,4,5],
while other approaches relate density changes in bone directly to local strain
magnitudes, abstracting from the underlying cellular processes (i.e. morphology
and metabolic activity) [6,7,8,9].

Being bone remodelling an inherently multi-scale process, it is reasonable to
bet on multi-scale modelling approaches [10,11,12], i.e. modelling approaches
linking phenomena, models and information between various scales. To support
this conjecture, it suffices to consider that the actual knowledge about this bio-
logical process shows several gaps at different resolution degrees:

- (Tissue level) There are some questions as to whether the orientation of
collagen fibers in bone occurs through functional adaptation as the bone is
being remodelled or is under genetic influence during development.

- (Cell level) BMU existence indicates that a coupling mechanism must exist
between formation and resorption (i.e. among Obs and Ocs). However the
nature of this coupling mechanism is not known.

- (Cell-Tissue level) It is not so clear how mechanical forces can be expressed in
cell activity and whether they are enough to explain remodelling. The current
concept is that the bone architecture is also controlled by local regulators
and hormones (mainly insulin-like growth factors, cytokines interleukin-1,
interleukin-6 and RANKL) and that both local mechanical and metabolic
signals are detected from Oys. Whether this is true remains to be proven.

Homogenization and uniformity. Indeed, a multi-scale model is not neces-
sarily more “faithful” than a single-scale one only because it is multi-scale. It
is well-known that a multi-scale model can be more or less “faithful” accord-
ing to what “single-scale” models are taken into account (for each scale) and
how they are “homogenized” (i.e. integrated). Homogenization is in fact a very
delicate and complex task - when “single-scale” models are heterogeneous, as
well as when the biological systems to model admit different homogenization
techniques - which can lead to loss of information between scales. As a conse-
quence, a high uniformity degree among “single-scale” components implies the
possibility of defining well-established homogenization rules and increasing the
“faithfulness” of a multi-scale model in the whole.



Bone Remodelling: A Complex Automata-Based Model 119

Space and geometry. It is also well-known that the possibility of expressing
spatial information is another important element which can add “faithfulness”
to a biological model (not only multi-scale).

Consider, for instance, the microtubules: not only they have a specific geom-
etry, but their polarity arises from the geometry of their tubulin components.
Cytoplasm (of even the simplest cell) and enzymes are another excellent exam-
ples. The first contains many distinct compartments, each with its own specific
protein set; even within a single compartment, localization of molecules can be
influenced in many different ways, such as by anchoring to structures like the
plasma membrane or the cytoskeleton. The latter, acting in the same pathway,
are often found co-localised; as the product of one reaction is the substrate for the
next reaction along the pathway, this co-localisation increases substrate avail-
ability and concomitantly enhances catalytic activity, by giving rise to increased
local concentration of substrates.

Contribution of the paper. On the basis of the above observations, we exploit
at the same time Complex Automata (CxA) [13] paradigm and BioShape2 [14]
3D spatial simulator: the first for defining cellular and tissutal scale of bone
remodelling as uniform Cellular Automata (CA) and aggregating them by a well-
established composition pattern (see Section 2), while the latter for simulating,
in a uniform and integrated way, both CAs in terms of shapes, equipped with
perception and movement capabilities (see Section 3).

In particular, we deliberately approximate the biological process taking into
account only mechanical stimuli and ignoring metabolic ones (see Subsection
2.1). This approximation does not deeply influence the tissutal scale, where the
associated CA only models a lattice of BMUs; on the contrary, it is quite evident
at cellular scale, where each single BMU is in turn described as a CA of Oys,
avoiding an explicit local regulator and hormone representation. If, on the one
hand, the assumed approximation could influence the multi-scale model “faith-
fulness” w.r.t. the real phenomenon, on the other hand it does not influence the
validity of the proposed crossing approach (modelling in CxA and simulating in
BioShape) and the underlying mapping, being both CxA and BioShape able
to describe and handle spatial lattices.

Although CxA paradigm was already equipped with its own execution environ-
ment [15] and BioShape with its native modelling language [16], the proposed
crossing approach - here tested for a specific biological process - aims just to be
the first step to state an expressiveness study between CxA and BioShape (see
Section 4). In fact, the possibility of modelling bone remodelling as a CxA and ex-
ecuting it in a shape-based fashion in BioShape aims to highlight the existence
of a more general encoding from CxA into BioShape. This conjecture is enforced
by the fact that both approaches (i) are based on uniform single-scale models, (ii)
rely on a Lattice Boltzmann Model-like time step scheme, (iii) can express spatial
information and (iv) can bypass inter-scale homogenization problems.

2 http://cosy.cs.unicam.it/bioshape

http://cosy.cs.unicam.it/bioshape
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2 The Complex Automata Modelling Paradigm

The Complex Automata (CxA) [13] paradigm has been recently introduced for
modelling multi-scale systems and, in particular, the process of development of
stenosis in a stented coronary artery [17].

CxA building blocks are single-scale Cellular Automata (CA) (i) representing
processes operating on different spatio-temporal scales, (ii) characterized by a
uniform Lattice Boltzmann Model-like (LBM) update rule - and, as a conse-
quence, execution flow (see Fig. 2 (b)) - (iii) mutually interacting across the
scales by well-defined composition patterns3 (see Fig. 3).

Fig. 2. a) Scale Separation Map; b) CA execution flow.

Fig. 3. SSM and Composition patterns

3 Due to the lack of space, composition patterns are not discussed here and we refer
to [18] for further details.
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More in detail, the update rule of any CA is uniformly defined as a composition
of three operators: boundary condition B[·] and collision C[·], both depending
on external parameters, and propagation P , depending on the topology of the
domain. Given a CA, (i) the B operator is needed to specify the values of the
variable that are defined by its external environment (in the case of a LBM fluid
simulation, the missing density distributions at the wall), (ii) the C operator
represents the state update for each cell, and (iii) the P operator sends the local
states of each cell to the neighbors that need it, assuming an underlying topology
of interconnection.

Being the update rule of any CA uniformly defined, such composition patterns
only depend on the CA spatio-temporal “positions” in a Scale SeparationMap
(SSM), where each CA is represented as an area according to its spatial and
temporal scales (see Fig. 2 (a)). Formally:

Definition 1. A CxA A is a graph (V, E), where V - the set of vertices - and
E - the set of edges - are defined as follows:

- V = {Ck =def 〈(Δxk, Δtk, Xk, Tk), Sk, Φk, s0
k, uk〉|Ck is a CA} where ∀Ck ∈ V ,

- (Δxk, Δtk, Xk, Tk) denotes the spatio-temporal domain of Ck, i.e. Δxk is
the cell spatial size, Xk is the space region size, Δtk is the time step and Tk

is the end of the simulated time interval of Ck;
- Sk denote the set of states;
- s0

k ∈ Sk is the initial state;
- uk is a field collecting the external data of Ck;
- Φk is the update rule encoded in LBM style as follows

snk+Δtk

k = P ◦ C[uC
k ][snk

k ] ◦ B[uB
k ]

where snk

k , snk+Δtk

k ∈ Sk denote resp. the state of Ck obtained as the nu-
merical solution at the nk-th time step and the one at the (nk + 1)-th time
step.

- E = {Ehk|Ehk is a composition pattern between Ch and Ck}.

Finally, the numerical outcome of each Ck is denoted by sTk ∈ Sk.

2.1 Multi-scale Trabecular Bone Remodelling in CxA

Assuming that Oys act as mechano-sensors, the model - for simplicity proposed
in 2D - consists of a CA, whose cells are in turn CAs: the “macro” CA (denoted
by C1) models a portion of trabecular bone as a lattice of BMUs (macroscopic
slow process), while each “micro” CA (denoted by C(i,2), where i corresponds to
the cell i in C1) models a single BMU as a lattice of Oys and their surrounding
mineralized tissue (microscopic fast process).

A similar grid-based micro-macro spatial decoupling can be found in [19],
where a discrete, agent-based stochastic model for studying the behavior of limb
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bud precartilage mesenchymal cells in vitro is proposed. The model employs
a multiscale spatial organization for cells and molecules as a two-dimensional
discrete pixel grid. The coarsest resolution spatial scale (the cellular level) is the
base spatial scale, and the molecular one is an integer ratio size of that base
grid. Each molecule is considered to have a spatial extent of just one pixel, and
each type of molecule has its own spatial grid independent of the other molecule
types, so any number of molecule types can be defined, each with their own scale
relative to the base spatial scale.

In our case, the “macro” cell size is linearly determined from the “micro” cell
one, which is in turn derived from the Oys estimated density in bone. Assuming
that a cubic millimeter of fully mineralized tissue contains 16000 Oys, then a
3D lattice representing this unit volume should contain 25 (≈ 160001/3) cells in
each side. Therefore, a cubic millimeter of bone could be modeled as a 3D lattice
of 253 cells, matching with the data reported in [20]. As a consequence, a 2D
cell lattice with a thickness of 1/25 mm can be structured in 252 cells, matching
also with the data presented in [21].

The “macro” neighborhood layout can be defined either as the simplest 2D
Von Neumann neighborhood (4 cells) or as the 2D Moore one (8 cells), depending
on how “local” we consider the remodelling process on a trabecular region (i.e.,
in other terms, how “local” we consider the propagation of remodelling activation
state among BMUs). The “micro” neighborhood layout can be defined as the 2D
Moore neighborhood.

Micro execution flow. The state of each cell j in C(i,2) at a time t(i,2) is de-
fined by its mass fraction mj

(i,2)(t(i,2)), varying from 0 (bone marrow) to 1 (fully
mineralized). The mechanical stimulus F j

(i,2)(t(i,2)) = U j
(i,2)(t(i,2))/mj

(i,2)(t(i,2)) -
being U j

(i,2)(t(i,2)) the strain energy density of j at time t(i,2) - is calculated by
the Meshless Cell Method [12] (MCM). Each cell j modifies its mass according
to the error signal ej

(i,2)(t(i,2)) between the mechanical stimulus and the inter-
nal equilibrium state, determined by the condition ej

(i,2)(t(i,2)) = 0; when this
condition does not hold, a local collision formula4 modifies the mass fraction
(mj

(i,2)(t(i,2) + Δt(i,2))) to restore the equilibrium condition. Consequently, the
change in mass modifies the stress/strain field in the bone and, therefore, the
stimulus operating on j. This processes continues until the error signal is zero
or no possible mass change can be made. The convergence is satisfied when the
change in density is small: if there is no convergence, the process continues with
a new MCM analysis.

Macro execution flow. Similarly to the micro execution flow, the state of
each cell i in C1 is defined by the apparent density mi

1(t1), which can vary
from 0 (void) to 1 (fully mineralized tissue). An homogeneous apparent density
distribution for any i corresponds to an isotropic material, while intermediate
values represent trabecular architecture.

4 The formula can be selected from the approaches presented in [22].
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A global MCM analysis evaluates the stress field F i
1(t1) on i at a time t1, so

defining the loading conditions operating on each i. We know that i modifies the
microstructure by processes of formation/resorption (corresponding to sT(i,2) , see
below); this process results in formation and adaptation of trabeculae. Hence,
the global MCM analysis is performed over the resulting structure to update
the stress field until there is no change in the relative densities and there is no
change in the stress field.

Micro-Macro composition pattern. Each C(i,2) is linked to C1 by the “micro-
macro” composition pattern, defined in Fig. 3 and maximized in Fig. 4. More
in detail, C1 takes input from explicit simulations of C(i,2) on each lattice site i
at each time step Δt1, while each C(i,2) runs to completion, assuming that all
C(i,2) are much faster than the macroscopic process and therefore are in quasi-
equilibrium on the macroscopic time scale.

A close inspection of this coupling template shows indeed that upon each C1’s
iteration each C(i,2) executes a complete simulation, taking input from C1. In
turn, each C(i,2)’s output (sT(i,2)) is fed into the C1’s collision operator.

Fig. 4. Micro-Macro composition pattern

3 The BioShape Modelling and Simulation Environment

BioShape5 is a spatial 3D simulator which has been engineered in the perspec-
tive to be a uniform, particle-based, space-oriented multi-scale modelling and
execution environment.

BioShape’s modelling approach treats biological entities of any size as geo-
metric shapes, equipped with perception, interaction and movement capabilities.
The behaviour of every shape, i.e. the way it interacts with other shapes and
with the environment, is formally defined through a process algebra (namely, the
Shape Calculus [16]). Every entity has associated its physical movement law: this
approach guarantees granularity in entities management as everyone is treated
uniformly but independently from the other ones.

Scale-independence property just follows by the uniform way biological entities
of any size are treated. As a consequence, homogenization between single scales
5 A complete description of BioShape can be found in [14].
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simply reduces to mappings between homogeneous representations at different
granularity (i.e. zoom resolution) of the same biological system.

Time is simulated as a sequence of fixed time intervals called time frames;
specific events - namely perceptions and collisions - occur during any time frame
according to a well-established LBM-like sequence.

3.1 Multi-scale Trabecular Bone Remodelling in BioShape

BioShape can import and execute the CxA model described in Section 2 with-
out substantial arrangements, since “micro” and “macro” CAs (i) can be encoded
using a small subset of primitive (namely shapes, perception- and collision-driven
interaction, communication and internal calculus), being simple spatial lattices,
as well as (ii) can be easily homogenized, being homogeneous representations
of the same process at different zoom resolution (micro-macro). Moreover, the
BioShape software architecture has been already engineered from the perspec-
tive of supporting massive parallel computations6, a computational approach
which is intrinsic to the CA paradigm and, as an immediate consequence, to the
CxA one.

Fig. 5. Trabeculae (A). 2D grid (B). Surface
shapes (C).

The CxA model of bone re-
modelling can be also executed in
BioShape to provide a graphi-
cal simulation of the phenomenon
at tissutal level. More in detail,
the whole 2D trabecular tissue
body can be visualized as a grid of
square shapes in the fully miner-
alised part of the bone and in the
fully fluid part (resp. full/green
squares and void/black squares
in Fig. 5 (B)). The bone sur-
face can be represented also by
squares, but decomposed using, as
usual in visual graphics, five basic
shapes able to “discretize” the tra-
becular surface (green shapes in
Fig. 5 (C)).

The basic surface shapes are
square, rectangle (1:2 aspect ra-
tio), truncated square, two right angled triangles (side ratio of 1:1 and 1:2),
and a trapezium glued with a rectangle and a triangle. They are grouped into
6 element families. Allowing for rotations and mirror images of these groups,
only 29 stiffness matrices need to be defined, thus we can always find a good
6 The current version is based on the UNICAM agent-based Java framework Hermes

[23], a middleware supporting distributed applications and mobile computing. Cur-
rently, a porting on a Multiple Instruction Multiple Data (MIMD) architecture with
message passing is under development.
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representation of the border avoiding the need of a re-shaping primitive, which
is not yet available in the current version of the simulator.

Each void/full/surface shape in the cell i has an associated mineralisation
density. As a consequence, its dynamics is determined by the CxA model exe-
cution: in particular, a variation from sn1

1 to sn1+Δt1
1 involving i determines the

replacement of the shape in i with another void/full/surface shape - that one
associated with the new density value.

4 Conclusion and Future Work

The CxA paradigm has been here taken into account to propose a uniform
multi-scale model for the bone remodelling process. Such a model has been then
imported and executed in BioShape.

Scale-independence property, ability of expressing spatial information and
LBM-like time frame scheme are altogether elements which heavily draw up
both modelling approaches. However, if on the one hand the CxA here proposed
for bone remodelling confirms the high degree of expressiveness and flexibility of
the CxA paradigm, on the other hand the possibility in BioShape to associate
to each shape its own physical movement law (which can be different from that
one associated to a neighbour) could make BioShape more expressive than a
CxA. As a consequence, a formal investigation on the expressive power of the
above modelling approaches seems reasonable.

We are also exploiting BioShape alone for defining a multi-scale model for
bone remodelling where local regulators, Obs, Ocs and their relative precursors,
namely pre-osteoblasts (Pb) and pre-osteoclasts (Pc), are explicitly modelled as
particles at cellular scale. The implementation of such a model in BioShape
is quite natural, as it involves shapes that either move possibly attracted by
biochemical signals or stand still. Also the composition of Ocs from Pcs is a
primitive supported by the simulator. This is a promising approach, already
exploited in [24], where basic simulation algorithms of the Celada-Seiden model
for the immune response process are presented in terms of operations on abstract
particle types, and where new algorithms for diffusion, proliferation and cell-cell
interaction are defined as discrete versions of established continuous models.

We plan to tune and validate the new particle-based cellular model tak-
ing into account experimental data as well as those produced by the CxA-
based model here proposed and by some available continuum-based descriptions
[2,3,4,5,6,7,8,9]. We also plan to realize such tuning and validation procedures
in the opposite direction.

Our believe is that particle-based tissutal and cellular views of bone remod-
elling turn to be helpful (i) to better understand the blurry synergy between
mechanical and metabolic factors triggering bone remodelling, both in quali-
tative and in quantitative terms, and (ii) to develop a coherent theory for the
phenomenon as modulated by mechanical forces and metabolic factors in a uni-
form way.
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2 CNISM, Unità di Ricerca di Salerno and Dipartimento di Fisica “E. R. Caianiello”,
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Abstract. Cellular Automata (CA), one of the most challenging com-
putational paradigms in microscopic and macroscopic complex systems
simulation, can be successfully addressed also by using a modified CA
classical approach. In this contribution we discuss related aspects in ap-
plying the CANv2 approach in examples of micro and macro dynamics
such as: superconductive devices and forest fire simulation. Advantages
and limitations are introduced when both microscopic and macroscopic
dynamics are taken into account justifying the introduction of hybrid
components between single cellular automata, i.e. a network in which
global behavior and local interactions can coexist with side effects in
computational parallelism addressing.

1 Introduction

Today Cellular Automata (CA) are a powerful and reliable approach, alterna-
tive to differential equations, for modeling and simulation of complex dynamical
systems, whose evolution can be described by considering only local interac-
tions between their elementary parts. So, the strategy is the decomposition of a
complex phenomenon into a finite number of elementary processes, successfully
applied by Di Gregorio [1] method, the overall dynamics being the combination
of such elementary processes. Thus CA provide useful models for a lot of ap-
plications in natural sciences, ranging from the simulation of fluid dynamics to
physical, chemical and geological processes.

Our hybrid computational model, the Cellular Automata Network version 2
(CANv2) model, has been introduced [2], which is particularly suitable for the
simulation of microscopic as well as macroscopic phenomena, introducing the
possibility to have a hybrid network of standard cellular automata components
and global operators. Each automaton of the network represents, for instance, a

S. Bandini et al. (Eds.): ACRI 2010, LNCS 6350, pp. 128–137, 2010.
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component of the physical system to be simulated and the connections among
the network automata represent a disjoinable evolving law which characterizes
the evolution of the physical system. That makes possible to exploit two different
types of parallelism: a data parallelism, which comes from the use of CA classical
model, and a task parallelism, which could arise when considering the network of
CA. Furthermore the presence of global operators is mandatory when an external
influence, to the macroscopic complex phenomena, assumes a control role and
allows for expressing any mechanism that could not be expressed in terms of
local interactions. These mechanisms could not influence the evolution of the
phenomenon.

The aim of this contribution is to show, through concrete examples, how the
CANv2 approach works as a tool to model and simulate the dynamics of a wide
range of phenomena in natural science. In the following Section the CANv2
network is introduced and its power in simulating micro- and macroscopic dy-
namics is fully exploited by focusing on two examples: superconductive devices
[2] and forest fires [3]. Finally some conclusions and perspectives of this work
are outlined.

2 CANv2: A Hybrid Paradigm for Complex Systems
Simulation

In this Section we introduce the CANv2 approach and show how it works as a
simulation tool for complex systems, where the dynamical evolution is character-
ized by more than one mechanism and different scales. We focus on two concrete
examples, borrowed from both the realm of natural macroscopic phenomena and
that of condensed matter physics and microelectronics respectively, whose com-
plex dynamic evolution depends on local interactions between the components:
the operation of a topologically protected qubit based on a superconductive
device and the spread of a forest fire.

A CANv2 network in a one dimensional cellular space is the following tuple:

〈L, X, S, G, P, Pvar , f, g, F 〉 (1)

– L = {x : x ∈ N , 0 ≤ x ≤ lx} is the set of points with integer coordinates in
the finite region where the system evolves, N is the set of natural numbers,
and lx is the upper bound of the set of points, i.e. it determines the bounds
of the region of the system evolution.

– X#Ntot =
⋃M

i=1 X#Ni, where M is the number of components, #Ntot is the
cardinality of the total neighborhood set, and X#Ni = [i − r, i + r] ⊂ L,
is the set which identifies the geometrical pattern of cells which influences
the cell state change, i.e. the neighborhood set for each cell i, where r is the
radius.

– S is a finite set of states, where S = Xms

i=1Si is the Cartesian product of all
the sets of sub–states and ms is the total number of such sets.

– G is a finite set of global variables, where G ⊆ R (R is the set of real
numbers).
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– P is a finite set of parameters, where P ⊆ R.
– Pvar is the set of global parameters.
– f is the set of the cellular automata transition functions.
– g is the set of global operator functions.
– F : S#Ntot × G × P × Pvar → S × G × Pvar is the general transition for all

the cells in L. (× is the Cartesian product)

Complex systems, which are made of different components, give rise to differ-
ent transition functions, i.e. different cellular automata nodes for the network.
In such a case all the components can be enumerated according to two main
driving procedures: dependence relation constraints and consequent sequential
transition function application respectively. Sometimes, when a direct depen-
dence is not present a different sequence of application of the transition function
between components can be adopted. In order to simplify the definition of the
total transition function for the whole system, it could be useful to separately
define the CA component and the global operator components as follows. Let
f1 · · · fM be the transition functions for a system made of M components; the
total transition function of the network, denoted with f , can be expressed in
terms of a composition law such as:

f = f1 ◦ f2 ◦ · · · ◦ fM (2)

where ◦ is the composition operator. Furthermore, from an execution point of
view any transition function must be executed before the M−th.

Let g1 · · · gK be global operators for the system made of K components, then
the global function g of the network can be expressed in terms of a composition
law as follows:

g = g1 ◦ g2 ◦ · · · ◦ gK (3)

where ◦ is the composition operator. From an execution point of view, if relation
(3) holds then any global operator, but K−th, must be executed before the last
one.

Let A be a cellular automaton, whose property is denoted by p and transition
function by f, and GO a global operator, whose global variable is denoted by
gv, and whose function is denoted by g. If A needs to know the value/s of a
global variable gv at the same macro–step, defined as the whole network time
step evolution, in order to evolve at each micro–step, defined as the time step
evolution for each component cellular automaton or global operator node, then
the execution of the g function must precede the execution of the transition
function f. So, merging the previous definitions we obtain the following

F : g ◦ f (4)

F : ◦M,K
i,j=1[gj ] ◦ [fi] (5)

where the [gj ] ([fi]) symbol implies that its presence could be optional and the
corresponding precedence relations must be expressed according to it.
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The requirement of introducing components and their composition mechanism
is needed in order to have the possibility to represent a complex system as a com-
position of more than one cellular automaton or global operators. In the CANv2
model this is made possible through the abstraction of a network of cellular au-
tomata. A network of cellular automata can be represented as a graph, the CAN
precedence graph; here nodes represent cellular automata or global operators com-
ponents while edges represent the precedence relations between nodes.

In the following let us show how the CANv2 paradigm works by making
explicit reference to two applications in different contexts. In particular the ex-
ample within the forest fire context is a re–elaboration of the original forest fire
CA [3] model, developed by application of the Di Gregorio and Serra [1] method-
ology. We point out that a similar analysis has been carried out for the case of
a debris flow after a landslide, by generalizing the original SCIDDICA [4] model
in order to build up a network of cellular automata [5].

2.1 Superconductive Devices

In this Subsection we apply the CANv2 approach to build up a qualitative model
of a topologically protected qubit [2], physically realized with a fully frustrated
Josephson junction ladder (JJL) arranged in an annular geometry (see Ref. [6]
for details). In its simplest version such a device consists of a ladder with N
plaquettes closed in a ring with a half flux quantum (1

2Φ0 = 1
2

hc
2e ) threading

each plaquette. The number of plaquettes must correspond to the number of
junctions on the vertical links of the ladder, so that each plaquette contains two
junctions on the left and right link respectively. If we consider a ladder with, say,
N = 10 plaquettes, the corresponding ground state is twofold degenerate with
antiferromagnetic ordering as a result of superconductive currents circulating
clockwise and counterclockwise in odd and even plaquettes respectively. That
makes possible a mapping into a linear antiferromagnetic chain of half-integer
spins. Such a two-state device can be manipulated by performing an adiabatic
change of local magnetic fields. The tunneling between the two ground states
|0〉, |1〉 corresponds to the process of creation and annihilation of kink-antikink
pairs [6], which gives rise to a sequence of double flips in the spin pattern. A
kink–antikink pair can be produced increasing the local magnetic field, that
is applying a frustration single sawtooth pulse. Our device has N degrees of
freedom and N

2 double flips are needed to pass from |0〉 to |1〉. But there are in
general

(
N
2

)
! paths along which such processes can occur. Then, switching off

the frustration the system relaxes on the new state and the transition is carried
out. Based on such considerations, we construct an elementary NOT gate by
setting up a quasi-probabilistic model which implements logical reversibility [2].

The starting point are the following identifications: 1) a grid, 2) a boundary
condition, 3) each plaquette with each cell grid, 4) the phase differences values
at each cell side for the device initialization, 5) a set of parameters, such as the
current, the capacitance and so on, 6) a frustration single sawtooth magnetic
pulse B. Given the considerations above, see Refs. [2] for details, the formal
definition of the CANv2 model for the JJL device under study follows:
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〈L, X, S, G, P, Pvar, f, g〉 (6)

– L ⊆ N is the set of integer points in the finite region, the array, where the
system evolves; each point identifies a cell. The lattice grid is a linear array
with, for example, #L = 10 cells.

– X is the neighborhood set [x − 2, x + 2] for each cell x.
– S = S1×S2×S3×S4 is the set of state values; it is specified by the cartesian

product of the finite sets of values of the four following sub-states:

1. Pseudo S, pseudospin assuming values from {−1, 1},
2. Mp, magnetic pulse for each cell, fixed and invariant for each time step,
3. LABEL, cell label in order to identify the cell, corresponding to a mono-

tonic enumeration for all the cells, itself invariant for each time step.
4. FLIP is the flip state in order to register if pseudospin flipping has been

taken.
– G is the set of global variables: Btot is the total applied magnetic pulse and

Startc is the number of the corresponding starting cell.
– P is the finite set of global constant parameters: the current I inside the cell

and the capacitance C.
– Pvar is the finite set of the CA component variables: STEP is the step iterator

which allows to trigger the evolution.
– f : S → S is the deterministic state transition for the determination of the

pseudospin state and values.
– g : S2 → G expresses the global operator which controls the total magnetic

pulse applied on the system.
– gs : G → G is the global operator which chooses randomly the driving cell.

In view of the implementation of a protected qubit the boundary condition
topology is annular. In order to get a transition between the two ground states
the magnetic pulse period must be related to the CA time step and it is equal
to the pulse period, in order to capture the maximum pulse value. In order to
implement the flipping procedure from |0 > to |1 > our model will select out one
particular path (out of (N/2)! paths), so giving rise to a high level description
of such tunneling processes: in fact, at this preliminary stage we are interested
only in the net result, i.e. the NOT operation. For this reason we choose to use
a double step for the CA transition component, with each time step equal to the
half of the single sawtooth magnetic pulse period. The CA component has, as
initial condition, the pseudospin configuration obtained in the precedent stage
since it must obey to an antiferromagnetic arrangement and the flipping state is
zero. At the initial time, our device is in a steady state, in one of the two possible
ground states. Each parameter is fixed and the LABEL values are fixed for all
transition steps, but the variable STEP is initialized to each macro-step T. The
studied model reproduces the NOT operator in more detail: together with the
basic behavior, one of the possible flipping procedures is taken into account.

The general transition function takes into account the coupling factor, adding
an external frustration, as a single sawtooth magnetic pulse acting on each lattice



CANv2: A Hybrid CA Model by Micro and Macro-dynamics Examples 133

Fig. 1. The JJL system components according to a CANv2 simulation

cell. The system transition is assumed to be given by the possible simultaneous
applications of the two global operators followed by the transition function. The
evolution of the model obeys to the following function F : S f ×G×P ×Pvar →
S f × G × Pvar. The transition function scheme (see Fig. 1) shows two global
operators, the pulse application and the random starting cell chooser, and the
transition function repeatedly applies the cellular automata components accord-
ing to the multiplicity related to the double flips. The probabilistic behavior is
due to the Operator CHOOSER which randomly chooses at each network time
step the driving cell for the flipping procedure. Such an operator is equipped
with a global vector (a global variable which is able to store more values) which
stores at each time step the starting cell for the evolution. In this way it is much
simpler to recover the previous values as, for each time step directly accessible,
the first evolution cell can be recovered.

2.2 Forest Fires

In this section we deal with a forest fire model. According to the forest fire model
[3] the phenomenon is a two–dimensional CA with hexagonal cells and a radius
two neighborhood. The lattice expressed by CAN method remains the same that
in the original ones.

Also the set of parameters P = {pe, ps, pv, pt, pw, pwd, pwdr} such as (apothem
of the cell, time step, type of vegetation and related catch burning, current time,
weather condition depending on exposition season and atmospheric parameters
and, finally, free wind direction and rate) is the same. The finite set S of the
states of the cell is: S = SA × SV × ST × SH × SC × SD × SWD × SWR × S18

F S × S18
F A

where the substates are

– SA, altitude, takes the altitude value of the cell;
– SV , vegetation, specifies the type of vegetation, relatively to the properties

of catching fire and burning (see [3] for the specification of the value);
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– ST , temperature, takes the temperature value of the cell;
– SH , humidity, takes the relative humidity value of the cell;
– SC , combustion for the two possible fire types in the cell: surface fire and

crown fire. It takes one of the values not-inflammable, inflammable, burning
and burnt for each type;

– SD, duration, takes the value of the duration of the fire in the cell;
– SWD, wind direction, takes the values of the wind directions (the eight di-

rections of the wind rose) at the ground level (that could be different from
the free wind direction);

– SWR, wind rate, takes the values of the wind rate (Km 0-0) at the ground
level (that could be different from the free wind rate);

– SFS , fire spread, accounts for the fire spread from the central cell to the
other neighboring cells;

– SFA, fire acquire, is just a renaming of SFS and individuates the fire prop-
agation from the other neighboring cells towards the central cell.

For the moment let us postpone the discussion regarding the mapping of
substates.

The application of external influence regards some cells where the fire starts
and some cells in which there is the intervention of the fireman. When considering
cells, or a set of them, in which the fire starts, this interests a subregion of
the entire lattice as I ∈ K. This is translated in the CAN model as a global
operator and, in such a case, the application of the owner rule introduces much
more specifications regarding the substate SC . The function Γ = {γ1, γ2, γ3, γ4},
which is computed at each step, before the application of the transition function,
represents the external influence.

– γ1 determines the current time of the CA step;
– γ2 supplies the weather conditions related to sun, wind direction and its rate,

at each CA step;
– γ3 : I → SC accounts for external setting fire to cells of I at prefixed steps;
– γ4 : K → SC accounts for firemen intervention at prefixed steps.

The transition function is defined as: σ = σI3 ⊗ σI2 ⊗ σI1 ⊗ σT1.
First the following internal transformation, concerning the effects of combus-

tion in surface and crown fire inside the cell, is computed:
σT1 : SV × ST × SH × SC × SD × SWD × SWR → ST × SH × SC × SD. Then

the following local interactions are applied:

– σI1 : (SA)19 → SWD × SWR

– σI2 : (SFA)18 × SC → SC

– σI3 : (SA)19 × SV × SC × SH × ST × SD × SWD × SWR → (SFS)18

where σI1 computes the wind direction and rate at the cell altitude, σI2 computes
the change of combustion conditions in the current cell and σI3 computes the
fire spread toward the neighboring cells.
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– Internal transformation. σT1 acts when doesn’t change substate SD if
the substate SC is not burning, while the substates SH and ST vary their
previous values on the basis of the weather change (pw), the day hour (pt),
the wind (SWD and SWR) and the vegetation type (SV and Pv). When the
substate SC is burning, then the substates ST , SH , SC and SD depend on
the previous values of SH , SD and ST . The value 0 for SD determines the
change of SC to burnt. The conditions for the ignition from fire surface to
crown fire are applied in T1.

– Local interaction. I1 computes the substates SWD and SWR, wind direc-
tion and rate depend on pwd and pwr that represent the values of the free
wind. The new values of SWD and SWR are obtained by adding the altitude
vector to the corrective vector [3].

– Local interaction. I2 tests if the fire is spreading toward the central cell
starting from the other cells of the neighboring. If the combustion substate
SC is inflammable, then it changes to burning.

– Local interaction. I3 computes the spread of fire acting if the state SC

is burning; the following computation steps, depending on the substates
SV ,SH , ST , SD, SWD, SWR and the set of parameters Pv, are considered
according to the maximum spread vector, determined as the sum of the
slope effect and the wind effect, computing maximum spread (Rmax), and
considering an ellipse with a focus in the center of the cell whose area depends
on Rmax and such that the fire can propagate towards the neighboring cells
inside the ellipse, i.e. SFS (which is an alias of SFA) takes the value true.

In these considerations all the substates of the forest fire CA become properties
of the CAN network model but dealing with substate SC requires much more
attention because, according to the owner rule in CAN, it violates this principle
as the substate, i.e. the property, is written by the external transformations
γ3 and γ4 and internal transformation and local interaction σI2 At this stage
subprocesses must be considered. Regarding γ1 that determines the current time
of the CA step, in our case the global operator GO1 determines the macro time
step for all global operators and cellular automata components. On the basis of
the same considerations, GO2 supplies for the weather global condition for each
macro step. When considering γ3, it is possible to introduce the property SB

burning as boolean values as it should be assumed as the state is burning or
not and it result modified as GO3 : I → SB. According to γ4, it is possible to
introduce the property SFoff Fire off as boolean values because the state is fire
switched off or not and it results modified as GO4 : I → SF off .

As a first result all global operators could be computed simultaneously because
they don’t violate any access in the memory as in the original model for the
substates i.e. the memory location of SC .

And the automaton A1 has the following transition function:

f1 : SV ×ST ×SH ×SD ×SWD ×SWR ×SC ×SB ×SSB ×SF off → ST ×SH ×SB ×SD

where for us SC , the property combustion, takes the possible values: surface fire
and crown fire; it takes one of the values not–inflammable, inflam-mable.
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The local interactiondoesn’t changeas itmaps exactly to the automatonA2 with
the transition function corresponding exactly to σI1 : f2 : (SFA)18 × SC → SC .

Regarding the local interaction σI2 , a further substate, for us a property, SSB

sensible to burn should be introduced when we consider: if the cell is burning
or not, or, if the fire was switched off, the weather conditions, combustible type
and fire duration, all that establishes if the cell is sensible to burn according a
threshold turn–on.

Then A3 has the following transition function: f3 : (SF A)18 × SB × SC → SC ,
A4 has the following transition function: f4 : (SA)19 × SV × SC × SH × ST × SD ×
SWD × SB × SSB × SF off × SWR → (SF S)18.

Finally the entire process could be summarized in three main stages following
the corresponding order (where a component in the same stage can be computed at
the same time) : global influence (GO1,GO2,GO3,GO4), spreading condition
(A2 and A3), burning condition change A1, and fire spreading toward their
neighborhood A4; a graphical sketch is given in the figure below.

Fig. 2. CANv2 resulting graph for forest fire example mapped from the original forest
fire CA model

3 Conclusions

In this paper we deal with CANv2 methodology in applying a hybrid CA com-
putational model for micro and macro simulation. As a macro dynamics example
we choose one application modeled according to the Di Gregorio [1] methodol-
ogy. In this last case general characteristics for the mapping between the original
and our model arise:

1. the region of interest remains the same;
2. the time step for the original CA becomes the macro step for the mapped

CA network;
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3. the mapping is the final result of a sort of heuristic refinement method with
respect to the identification of local interactions and internal transformations
where:

4. the definition and mapping of the neighbor set, the transition function, the
substates set and the properties set require accurate considerations,

5. both internal transformation and local interaction generally individuate a
CAN cellular automaton,

6. in order to satisfy the owner rule, in some cases sub-elementary processes of
the original model should be introduced and consequently more transition
functions and sometimes more properties; this results in more than one com-
ponent in CAN and, as a consequence, more cellular automata and properties
should be defined,

7. each external influence individuates a global operator.

Using such an approachhas the disadvantage that,whenmodeling, the definition of
processes and sub–processes to introduce inorder to obey to theCANowner rule for
the properties components, results much more complex. Advantages arise because
a first computational and load balancing scheme is already adopted at modeling
stage, as at run–time the resulting application can exploit much more parallelism
resources than in a classical CA scheme model. Next research step will focused on
implementation aspect and demonstrate real advantages in parallel execution.
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Abstract. We have developed a Nagel-Schreckenberg cellular automata
model for describing of vehicular traffic flow at a single intersection. A set
of traffic lights operating either in fixed-time or traffic adaptive scheme
controls the traffic flow. Closed boundary condition is applied to the
streets each of which conduct a uni-directional flow. Extensive Monte
Carlo simulations are carried out to find the model characteristics. In
particular, we investigate the dependence of the flows on the signalisation
parameters.

1 Introduction

Modelling the dynamics of vehicular traffic flow by cellular automata has con-
stituted the subject of intensive research by statistical physics during the past
years [1,2,3]. City traffic was an early simulation target for statistical physicists
[4,5]. Evidently the optimisation of traffic flow at a single intersection is a pre-
liminary but crucial step to achieve the ultimate task of global optimisation in
city networks [6]. In principle, the vehicular flow at the intersection of two roads
can be controlled via two distinctive schemes. In the first scheme, the traffic is
controlled without traffic lights [7]. In the second scheme, signalised traffic lights
control the flow. Our objective in this paper is to study in some depth, the char-
acteristics of traffic flow and its optimisation in a single intersection with closed
boundary condition.

2 Description of the Problem

Imagine two perpendicular one dimensional closed chains each having L sites and
unidirectional vehicular traffic flows. They intersect each other at the middle sites
i1 = i2 = L

2 on the first and the second chain. With no loss of generality we
take the flow direction in the first chain from south to north and in the second
chain from east to west. (see Fig.1 for illustration). Cars are not allowed to turn.
Each car occupies an integer number of cells denoted by Lcar. Time elapses in
discrete steps of Δt and velocities take discrete values 0, 1, 2, · · · , vmax in which
vmax is the maximum velocity. To be more specific, at each step of time, the
system evolves under the Nagel-Schreckenberg (NS) dynamics [8]. The length of
each car is taken 4.5 metres. Therefore, the spatial grid Δx (cell length) equals
to 4.5

Lcar
m. We take the time step Δt = 1 s. Furthermore, we adopt a speed-limit
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of 75 km/h. In addition, each discrete increments of velocity signifies a value of
Δv = 4.5

Lcar
m/s which is also equivalent to the acceleration. Moreover, we take

the value of random breaking parameter at p = 0.1.

3 Fixed Time Signalisation of Lights

In this scheme the period T ,cycle time, is divided into two phases. In the first
phase with duration Tg, the lights are green for the northward street and red
for the westward one. In the second phase which lasts for T − Tg timsteps the
lights change their colour. The gap of all cars are update with their leader vehicle
except those two which are the nearest approaching cars to the intersection. For
these approaching cars gap should be adjusted with the signal in its red phase.
The streets sizes are L1 = L2 = 1350 m and we take Lcar = 5. The system is
update and after transients, two streets maintain steady-state currents denoted
by J1 and J2 which are defined as the number of vehicles passing from a fixed
location per time step. In general, the dependence of total current on ρ1 depends
on the value of Tg. Except for small values of Tg, total current increases with ρ1

then it becomes saturated at a lengthy plateau before it starts its linear decrease.
We have also examined the behaviour of Jtot for other values of ρ2. Figures (2)
exhibits the result for ρ2 = 0.05. Our simulations confirm that for small ρ2 up to
0.1 total current shows a distinguishable dependence on Tg in the entire range
of ρ1 especially in intermediate values. In contrast, for ρ2 > 0.1, we observe
no significant dependence on Tg in the intermediate ρ1 but we observe notable
dependence for large ρ1.
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Fig. 1. Total current Jtot vs ρ1 for various values of Tg at T = 30

4 Traffic Responsive Signalisation

In this section we present our simulations results for the so-called intelligent
controlling scheme in which the traffic light cycle is no longer fixed [9,10], the
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Fig. 2. Total current vs ρ1 at ρ2 = 0.05 for various values of cut-off lengths Qc and ρ2

signalisation of traffic lights is simultaneously adapted to traffic status in the
vicinity of intersection. This scheme has been implemented in simulation of traffic
flow at intersections with open-boundary conditions [11]. To be precise, we define
a cut-off queue length Qc. The signal remain red for a street until the length of the
corresponding queue formed behind the red light exceeds the cut-off length Qc.
At this moment the lights change colour. Apparently due to stochastic nature of
cars movement, the cycle time will be subjected to variations and will no longer
remain constant. In figure (3) we exhibit Jtot versus ρ1. Analogous to fixed-time
scheme, for given ρ2 a lengthy plateau in Jtot forms. The plateau height as well
as its length show a significant dependence on Qc. higher Qc are associated with
smaller length and higher current. We have also examined larger values of ρ2.
The results are qualitatively analogous the above graphs. The notable point is
that for ρ2 larger than 0.1, Jtot do not show a significant dependence on ρ2.
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Fig. 3. Space-time plot of vehicles for traffic responsive schemes
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To shed some light onto the problem, we sketch space-time plots of vehicles. It
is seen that in traffic responsive scheme, the cars spatial distribution is more
homogeneous which is due to randomness in cycle times. Lastly, we compare
our results to those obtained in simulation of a nonsignalised intersection [7]. It
can be concluded that signalisation strategies are apparently more efficient in
comparison to non-signalisation scheme.

5 Summary and Concluding Remarks

By extensive Monte Carlo simulations, we have investigated the flow character-
istics in a signalised intersection via developing a Nagel-Schreckenberg cellular
automata model. We have considered two types of schemes: fixed-time and traffic
responsive. In particular, we have obtained the fundamental diagrams in both
streets and the dependence of total current on street densities. Our findings show
hindrance of cars upon reaching the red light gives rise to formation of plateau
regions in the fundamental diagrams. This is reminiscent of the conventional
role of a single impurity in the one dimensional out of equilibrium systems. The
existence of wide plateau region in the total system current shows the robustness
of the controlling scheme to the density fluctuations.
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Abstract. We propose probabilistic cellular automata on a square lattice for 
simulating the dynamic of cancer growth in a reaction-diffusion frame. In the 
reaction step each cancerous cell can proliferate, be quiescent, or die due to 
apoptosis or necrosis phenomenon. The three-state Potts model is used for cal-
culating the probabilities in the reaction step. We consider the effect of nutrient 
in the tumor growth in order to improve the precision of the model. We use a 
simple and suitable method for the diffusion step to simplify movement of cells 
and nutrient in the model. In the diffusion step the lattice is partitioned by 3×3 
blocks. In each block we count the number of different types of cells and redis-
tribute them in the block. In the next time step, each block will be shifted one 
row down and one column to the right and the operation will be continued. The 
redistribution step for nutrient molecules is same as cells. It is shown tumor 
growths asymmetrically toward nutrient source.  It has been shown such a sim-
ple model could simulate tumor growth with good accuracy, which is based on 
the well known physical ground i.e. the three-state Potts model.  

1   Introduction 

Cancer is a disease in which cells in body divide without any control. So the cells are 
not normal and could invade to other tissues of the body. They also may immigrate to 
other parts of the body through blood vessels and lymph. Although there are different 
kinds of cancers, most of cancers have some common characteristics. They are due to 
some mutations which lead to malignant tumors. Malignant tumors could invade and 
spread to other tissues. This process is called metastasis. When a tumor is going to 
grow, its size and number of cells will increase. So it will need nutrient to obtain en-
ergy. If it could not obtain sufficient nutrient, the cells will finally die. This process 
(dying cancer cells) is called necrosis [1]. Since the treatment of cancers is a challeng-
ing issue, different attempts is going to be considered. Study of tumor growth seems 
to be useful in understanding cancer in morphological and functional properties. The 
control of the interacting elements in a tumor is a difficult task in an experimental 
work. It is also difficult to predict the situation of the tumor growth since it is a bio-
logical complex system. Hence, Mathematical modeling using different methods 
could be helpful in understanding important features of such a complex system. At-
tempts such as  using Ordinary or Partial Differential Equations (ODEs or PDEs) have 
been made for studying cancer and tumor growth [2-8]. Simulation methods like 
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Monte Carlo (MC) and Cellular Automata (CA) are also useful in which deterministic 
or probabilistic approaches are employed to obtain a final pattern. CA is a discrete 
mathematical method which is widely used from simple problems such as entertain-
ment games to complex biological networks [9]. There are several kinds of CA with 
different abilities. One of them is the Lattice Gas Cellular Automata (LGCA) which 
mainly uses for the fluid diffusion processes [10].   Since simulation of cancer in most 
cases needs solving complex differential equations or including time consuming nu-
merical methods, in this work we have tried to introduce a simple and efficient 
method to combine precision and physical aspect of the tumor growth. In a previous 
work, Ghaemi and Sahrokhi used combination of the LGCA and Cellular Potts Model 
(CPM) [11] for simulating tumor growth. The advantage of CPM is its ability for in-
troducing cell-cell interaction in correct and well known physical way. Besides, 
LGCA can simulate movement of cell in simple and correct physical way. The disad-
vantages of their work were missing nutrition effect and a complicated unrealistic 
geometry (square lattice with five cells in each site and no interaction between adja-
cent sites). Howevere, there are some features which should be considered to improve 
the simplicity and precision of the model. We have considered the effect of nutrient in 
the tumor growth in order to improve the precision of the model. In addition, we have 
used a simple and suitable method for the diffusion step to simplify the model. In the 
next section, we introduce the model and explain its details. Then, we show the results 
and discuss the advantage of the model over our previous method.  

2   Method 

The biological basis of the model consists of proliferation, motility, death, and com-
petition between healthy and cancerous cells. Nutrients (such as oxygen, glucose, 
metal ions …) diffuse to target through blood vessels. Therefore, there is a competi-
tion between cancerous and healthy cells in the case of nutrient limitation. A tumor 
consists of different types of cells, but in our model we only consider three types: 
healthy, cancerous, and necrotic cells. 

The main body of the model is like reactive-diffusion systems. In the reaction step 
each cancerous cell could proliferate, be quiescent, or die due to apoptosis or necrosis 
phenomenon. Because there is lack of information about details of cell-cell interac-
tions which arise from the complexity of the cell, it seems better to use probabilistic 
approach. We have used the CPM with Glauber algorithm for obtaining probabilities 
[12]. Coupling coefficients in the CPM could simulate the effect of cellular adhesive 
molecules present in the cell membrane. Assume Hi,j,  Ni,j, and Ci,j are the number of 
healthy, necrotic, and cancerous cells in four nearest neighbors of site(i,j), respec-
tively. So the configuration energy can be written as; 

∑=
ji

jiE
kT

E

,
,

conf  

 

(1) 

where Ei,j is the configuration energy of the site(i,j) and the sum is over the nearest 
neighbor sites. If site (i,j) is occupied by a cancer cell, 
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CC,Cancer,,, KCEE jijiji −==  (2) 

and if site (i,j) is occupied by a necrotic cell, 

NN,Necrose,,, KNEE jijiji −==   (3) 

and finally, if site (i,j) is occupied by a healthy cell, 

HH,Healthy,,, KHEE jijiji −==  (4) 

where KCC, KNN, and KHH are coupling coefficients for cancerous-cancerous, necrotic-
necrotic, and the healthy-healthy cells, respectively. Cell-cell interactions are adhesive, 
thus the couplings are positive (notice the minus sign in the equations 2-4). Equations 
2-4 come from the configuration energy of the three-state Potts model [13]. Now in 
each lattice site one of the following reactions may take place at each time step: 

 

1- If site (i,j) is occupied by a cancerous cell and if the concentration of nutrient is 
greater than 50% of initial concentration then: a) the cancerous cell can remain can-
cerous with probability Pquiescent, or b) will die according to necrosis with probability 
Pnecrosis and it will be replaced with necrotic cell, or c) dies according to apoptosis with 
probability Papoptosis and it will be replaced with healthy cell. These probabilities are 
computed as follow; 
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However, if the concentration of nutrient is smaller than 50% of initial concentration 
the cancerous cell will die and it will be replaced by a healthy or necrotic cell.  
2- If site (i,j) is occupied by a healthy cell, the concentration of nutrient is greater than 
50% of initial concentration, and at least one of its nearest neighbors is a cancerous 
cell then proliferation can happen with probability Pproliferation and the healthy cell will 
be replaced by a cancerous cell where; 
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Fig. 1. The lattice is partitioned by 3×3 blocks. In each time step, the block will be shifted one 
row down and one column to the right.  

otherwise the healthy cell remains healthy. Necrotic cells remain necrotic during 
simulation. In the diffusion (propagation and redistribution) step, each cell could 
move toward its neighbors. This step will be done based on a model which was first 
introduced by Vanag [14]. The lattice is partitioned by 3×3 blocks (Fig. 1). In each 
block we count the number of different types of cells. After that, cells will be redis-
tributed in the block. The probability that one site will be occupied is proportional to 
the number of necrotic cells in its nearest neighbors in adjacent blocks. First, necrotic 
cells are redistributed because of their less ability to movement. Then, cancerous and 
healthy cells will be redistributed over remaining sites, respectively. By this rule, ne-
crotic cells move to the core of tumor and remain near each others. In the next time 
step, the block will be shifted one row down and one column to the right and the op-
eration will be continued (Fig. 1). The redistribution step for nutrient molecules is 
same as cells but all 9 sites in each block have equal probability to be occupied and 
there is no limitation on the number of nutrient molecules in each site. Since the rate 
of diffusion of nutrient is larger than cells we can do diffusion step for nutrient n 
times in each time step. 

3   Result and Discussion 

The simulation is conducted on a 400 × 400 square lattice with initially four cancer-
ous cells in the center of lattice. According to the recent work of Gerlee et all [3], we 
set maximum length size of a tumor equal to L=1 cm so cancer cell area is about 
6.25×10-6 cm2 which is in agreement with experiment. Initial glucose concentration is 
1.3×10-8 mol cm-2 and the aerobic glucose consumption rate is considered 3.8×10-17 
mol cells-1 s-1. For simplicity, we used dimensionless number according to dimen-
sionless partial differential equation in ref. [3] for diffusion and consumption of glu-
cose. Each time step is rescaled to 16 hours which corresponds to the true prolifera-
tion age [3, 15, 16]. According to the eq.6 in ref. [3], in each lattice site non-
dimensional glucose concentration varies from 0 to 1, and glucose consumption rate is 
0.0075. For simplicity of algorithm we let glucose concentration varies from 0 to 400 
so, glucose consumption rate is 3. Nutrient source is placed at the bottom of the lattice 
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in which nutrients diffuse through the tissue. We used a gradient of nutrient for the 
initial concentration in such a way that the nutrient concentration is 400 at the bottom 
of the lattice and 0 at the top of lattice. At each time step the concentration of glucose 
at bottom row is updated to 400. The rate of consumption of glucose is set to be 6 per 
time step for each cancerous cell (twice the normal cells).    Threshold for glucose 
which induces necrosis or apoptosis is set to 50% of initial glucose concentration 
[17]. According to the work of Christley et all [18] the diffusion rate of cell is 1 pixels 
per 60 iteration and diffusion rate of chemicals is 28 -108 pixels per one iteration. In 
our model each pixels correspond to one cell and for each cell we have 400 boxes 
nutrient. We let cells diffuse in each time step so, according to above rescaled data we 
run diffusion step for nutrient approximately 7 times in each time step. Each site of 
the lattice just contains one of the three cell types. Necrotic cells are considered as 
death cells which do not consume nutrients. Multi cellular spheroids have a well-
established characteristic structure. There is an outer rim of proliferating cells (a few 
hundred μm thick) and an inner core of necrotic cells. In between there is a layer of 
quiescent cells, which are not dividing but are alive, and can begin dividing again if 
environmental conditions change. The coupling parameters values taken as KCC = 3, 
KHH = 0.5 and KNN = 3 are determined in such a way to produce multi cellular sphe-
roids shape (Fig. 2). Figure 2 shows tumor growths asymmetrically toward nutrient 
source at the bottom of the lattice. Increasing the value of KHH above 1.5 will lead 
tumor to be disappeared at a few time steps, because according to eq. 5 the probability 
of the apoptosis will increase rapidly. By increasing the value of KNN the diameter of 
the layer of quiescent cells decreases more rapidly and simultaneously the rate of 
growing the inner core of necrotic cells increase. The future of tumor strongly de-
pends on the values of KCC and KNN. For the values of KCC=KNN < 1.5 the tumor ini-
tially grows up and after some time steps the layers of proliferating and quiescent cell 
will be destroyed. The average number of cancerous cell versus time step is calculated for 
20 different samples with the coupling parameters KCC = 3, KHH = 1.5 and KNN = 3  (Fig. 3).  
 
 

  
Fig. 2. Spatial distribution of the cells at t = 60 and 100 on a lattice of size 400 × 400 for KCC = 
3, KHH = 1.5 and KNN = 3. Necrotic cells in the core of tumor are shown in red, cancerous cells 
are light blue, and healthy cells are white. 
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After an initial exponential growth phase, number of cancerous cells increase with time 
with constant slope. The advantage of this method compared to other simulation of 
cancer growth is that the present method only needs three parameters KCC, KHH and 
KNN which is based on the well known physical ground i.e. the three-state Potts 
model. The main aim of this work was to show the possibility of introducing move-
ment of cells and nutrition effect in the cellular Potts model in a very simple and effi-
cient way. The simulation has been greatly simplified by neglecting some crucial  
effects such as; the effect of oxygen and hydrogen concentrations and limited volume 
space for tumor. We expect addition of these effects may be introduced in the auto-
mata which is still under investigation. 

 

 

Fig. 3. The time evolution of average number of cancerous cells for KCC = 3, KHH=1.5 and  
KNN = 3 on a lattice of size 400 × 400 
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Abstract. In this paper we deal with mathematical modeling of team sport 
games based on cellular automata (CA). We describe some developments of 
CA models of football. Presumable learning and optimization problems in team 
modeling based on CA are discussed. Some general problems are discussed 
which are related to the accounting of mentality of game participants. 

Keywords: football, cellular automata, models, anticipation, mentality. 

I   Introduction 

Recently the simulation of sport games (especially football) serves as a source for 
developing new approaches in understanding and modelling of games. Some aspects 
of collective sport games had been considered earlier: sport statistics; reinforcement 
learning; hardware implementations of players through robot teams and Champion-
ships on robot football (RoboCup) [1]; design of moving robots for competitions and 
many others. But all authors had stressed the great complexity and multi-aspect nature 
of the existing problems. Analysis of the demands on real world applications of CA 
follows to the new field of cellular automata using – namely modelling the evolution 
of collaborative teams of agents. As the main example of such system we consider the 
football. We propose some description of rules for modelling, development of models 
for evolution investigations, some examples of modelling and some ways for ap-
proach development.  

2   Simple Football Model Based on Cellular Automata 

Here we pose (only for outline of ideas) a very schematic description of CA model of 
football. The full description will be described in forthcoming publications. 

First important assumption is that the game space is represented as the collection of 
cells just as in the cellular automata models for pedestrian movements. We consider 
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two teams of players. At each step we define all single available player movements 
within some fixed neighbourhood. In case of the Neumann’s neighbourhood we com-
pute the probabilities of player’s movement into one of four neighbouring cells. Re-
mark that we may accept extended neighbourhood for each of the players if we should 
take into account the different presumable velocities of players.  

Each player is represented by occupied cell. The rules for player concerned the 
movement of player, operations with a ball and interactions between players. Only one 
player may be at any cell. The player also can move at the lattice step by step in 
vertical and horizontal directions. The rules for player’s behavior in fact formalize the 
rules for decision of player in dependence on the situation at the field of game and in 
dependence of current score of the game. Also we set the probability to move for 
player to be zero if a neighbouring cell is occupied by a boundary, and assign non-zero 
probabilities to cells of all other directions. By increasing the probability in a chosen 
direction we model an intention of each player and the team to move simultaneously.  

Proposed models had been realized as the special computer program for the model-
ing of game. For illustration we pose one of a computation examples.  

 
 

           

Fig. 1. At the left side of picture the example of beginning of the game situation is presented. 
The right side illustrates the approach of the player with the ball to the gate of opposite team 
after some time steps at game. (Each team has four players (black squares and black circles); 
the grey circle corresponds to the ball). 

3   The Problems of Mentality Accounting in Game Simulation 

In Sections 2 we have presented the classical approach of CA without taking into 
account the mentality properties for player movements. The accounting of mentality 
of the participants of social processes (including sport games) is one of the main ten-
dencies in developing of more adequate models. There are many presumable ways of 
implementing such accounting – from the attempts to model the human consciousness 
and decision – making in artificial intelligence to the simplest statistical rules.  

Of course many aspects related to the mentality accounting should be represented 
in the complicated models of the game: monitoring and recognition of game situation; 
decision – making process on movement direction, velocity and goals; possibilities of 
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movement implementation etc. [1]. Because of simple spatial structure CA models 
allow to implement a lot of properties of a team players in rather simple way.  

Here we discuss the way for accounting one of the very important properties in 
space game namely anticipation in game. The anticipation property is that the indi-
vidual makes a decision accounting the future states of the system [2].  

One of the consequences is that the accounting for an anticipatory property leads to 
advanced mathematical models. Since 1992 starting from cellular automata the  
incursive relation had been introduced by D. Dubois for the case when ‘the values of 
state X(t+1) at time t+1 depends on values X(t-i) at time t-i, i=1,2,…, the value X(t) at 
time t and the value X(t+j) at time t+j, j=1,2,… as the function of command vector p’ 
[2]. In the simplest cases of discrete systems this leads to the formal dynamic equa-
tions (for the case of discrete time t=0, 1, ..., n, ... and finite number of elements M): 

 

( 1) ({ ( )},...,{ ( ( ))}, ),i i i is t G s t s t g i R+ = +
                           

(1) 
 
where R is the set of external parameters (environment, control), {si(t)} the state of 
the system at a moment of time t (i=1, 2, …, M), g(i) horizon of forecasting, {G} set 
of nonlinear functions for evolution of the elements states. “In the same way, the 
hyperincursion is an extension of recursion in which several different solutions  
can be generated at each time step” [2, p.98].  

According [2] the anticipation may be of ‘weak’ type (with predictive model for 
future states of system, the case which had been considered by R. Rosen) and of 
‘strong’ type when the system cannot make predictions.  

Concerning the specific case of the game problems it had been recognised earlier 
that some kinds of anticipatory property is intrinsic for game. But in fact considered 
before in sport games anticipatory properties was of ‘weak’ type (with predictive 
models). The experience of investigations of models with anticipation – in game 
“Life” with anticipation [3] and especially in crowd movements [4] allows proposing 
some ways for further accounting of anticipation in team investigations.  

At the local level each participant of the game process tries to anticipate the future 
state of game in local neighbourhood when he makes the decision on movement. Also 
the macro neighbourhood of game participants might be accounted for the common 
coach information. The adequate accounting of anticipatory property in the CA meth-
odologies is a difficult problem because it requires also complication of CA models 
by introducing the internal states of CA cells and special internal dynamical laws for 
mental parameters. But just now we are able to propose some presumable conse-
quences for game considerations. According [3, 4] the first step in anticipation ac-
counting consist in the modification of CA rules by introducing formally the values in 
cells at next moment of time into the formal rules.  

Of course the full implementation of such models is the task for further investiga-
tions but the extension of the results described in the present paper to new game mod-
els would open new possibilities for exploring behaviour of game participants. At first 
it may be considered the problem of accounting the different player’s visions of the 
field of game by different neighbourhoods for each player. 
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Fig. 2. Expanding neighbourhood of player (R corresponds to the size of the neighbourhood of 
player’s vision in learning processes and T corresponds to the number of time steps accounting 
in the CA rules; T=1 corresponds to the absent of anticipation) 

The case of MP(R, T) in upper right angle of picture illustrates important possibili-
ties in CA models with anticipation. The graph illustrates the origin of multivalued-
ness of the presumable states in the models. It corresponds to the case when each 
player anticipates existing of many presumable states of elements of the system. Such 
uncertainty generating by mentality accounting of players is the example of manifes-
tation of ‘strong’ anticipation. It follows from our investigations that anticipation and 
multivaluedness also may serve as the source of uncertainty in the systems.  

4   Conclusions  

In proposed paper we have presented some ways and tools for an improvement the 
CA based models and their software. The presented results are interesting for practical 
applications. Described models may be used as the polygon for testing new ap-
proaches and ideas in the field of cellular automata investigations. Also some new 
possibilities are proposed which are connected with the mentality of players.  
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Abstract. In this work we study the complexity of the three-dimensional
sandpile avalanches triggered by the addition of two critical configura-
tions. We prove that the algorithmic problem consisting in predicting the
evolution of three dimensional critical avalanches is the hardness core of
the three-dimensional Abelian Sandpile Model. On the other hand we
prove that three-dimensional critical avalanches are superlinear long on
average. It suggests that the prediction problem is superlinear-hard on
average.

Can we quickly predict the evolution of an avalanche if we are given a full
description of the initial conditions? The Abelian Sandpile Model has been used
to simulate dissipative dynamical process such as forest fires, earth quakes, ex-
tinction events, and (off course) avalanches [2]. Can we quickly predict sandpile
avalanches? There is some previous work concerning the computational com-
plexity of prediction problems related to The Abelian Sandpile Model (see for
example [3], and [4]). Most of those works are focused on the analysis of The
Sandpile Prediction Problem, which refers to the computation of relaxations of
unstable configurations. In this work we analyze the complexity of predicting
the final state of the avalanches triggered by the addition of two critical con-
figurations, (we focus our research on three-dimensional cubic lattices). Those
avalanches are called critical avalanches. We show that GC, the problem con-
sisting in predicting the evolution of three-dimensional critical avalanches, is at
least as hard as most of the algorithmic problems related to The Abelian Sand-
pile Model, that is: we show that GC is the hardness core of the predicting tasks
related to the model. It is important to remark that our complexity theoretical
analysis is based on the notion of NC-Turing reducibility. We have chosen to
work with this notion because all the algorithmic problems considered in this
paper are Ptime computable, and because we are interested in analyzing the
polylogarithmic time computability of those problems.

We believe that the argued Self-organized Criticality [1] of The Abelian Sand-
pile Model is the complexity source of GC and its relatives. We show that GC is
the complexity core of The Abelian Sandpile Model, and we prove that critical
avalanches are superlinear long on average. It implies that any sequential simula-
tion algorithm computing GC has a running time which is superlinear on average.
Also, we prove that the criticality of the model implies some type of average-
case hardness. We wanted to establish some links between the Self-Organized
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Criticality of The Abelian Sandpile Model and the algorithmic hardness of the
prediction problems related to it, we believe that we have partially fulfilled this
goal.

Organization of the work. This work is organized into three sections. In
section one we introduce The Abelian Sandpile Model and we review some basic
facts concerning this model. In section two we study the statistics of three-
dimensional critical avalanches and we compute their expected length. In section
three we study the algorithmic hardness of GC, we show that most algorithmic
problems related to The Abelian Sandpile Model are NC2-Turing reducible to
GC.

1 The Three-Dimensional Abelian Sandpile Model

In this section we introduce the basic definitions and some of the basic results
concerning The Abelian Sandpile Model.

Given n ≥ 1, we use the symbol Gn to denote the cubic lattice of order n,
whose vertex set is equal to [n] × [n] × [n]. We use the symbol Ln to denote the
cubic sandpile lattice of order n, which is obtained from Gn by adding to it a
special node ∗ called the sink. Furthermore, given v a node on the border of Gn,
there are 6 − degGn

(v) edges in Ln connecting v and ∗. We will use the symbol
V (Ln)∗ to denote the set V (Ln) − {∗} = V (Gn). Note that given v ∈ V (Ln)∗

we have that deg (v) = 6.
A configuration on Ln is a function g : V (Ln)∗ → N. Given g a configuration

on Ln and given v ∈ V (Ln)∗ we say that v is g-stable if and only if g (v) � 6.
We say that g is an stable configuration if and only if for all v ∈ V (Ln)∗, we
have that v is g-stable.

We can attach to any sandpile lattice Ln a Graph Automaton SP (Ln) whose
underlying graph is Ln and whose transition rule is the toppling rule defined by:

Given v ∈ V (Ln)∗ such that g (v) ≥ 6, we have that g → gv is a possible
transition, where gv is the configuration on Ln defined by

gv(w) =

⎧⎪⎨
⎪⎩

g(v) − 6, if w = v,

g(w) + 1, if v is a neighbor of w

g(w), if v is not a neighbor of w

(1)

Any transition of SP (Ln) is called a firing or a toppling. So, given g a
configuration, the transition g → gv is a firing, and if such transition occurs we
say that node v was fired (toppled) or we say that a firing (toppling) at v has
occurred. Given Ln a sandpile lattice and given g an initial configuration, we
can choose an unstable node, fire it and obtain a new configuration. A sequence
of firings g1 → g2 → . . . → gm is called an avalanche of length m− 1 with initial
configuration g1, and we say that it is an avalanche from g1 to gm. If gm is stable
we say that gm is a stabilization or a relaxation of g1. Given g a configuration on
Ln we use the symbol ST (n, g) to denote the set of relaxations of g. Furthermore,
given Ln, g and A = g → g1 → . . . → gm an avalanche, the score vector of A,
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which we denote with the symbol SCA, is equal to (tv)v∈V (Ln)∗ , where for any
v ∈ V (Ln)∗ the entry tv is equal to the number of times node v was fired during
the occurrence of A.

Theorem 1 (The fundamental theorem of sandpiles). Let n be a natural
number and let g be a configuration on Ln, we have:
1. Any avalanche beginning in g is finite.
2. |ST (n, g)| = 1.
3. Given A and B two maximal avalanches beginning in g, we have that SCA =

SCB.

A proof of this theorem can be found in [2].

Remark 1. Given n ≥ 1 we use the symbol C (n) to denote the set NV (Ln)∗

which is equal to the set of all the configurations on Ln. Given g ∈ C (n) we use
the symbol SCg to denote the vector SCA, where A is any maximal avalanche
beginning in g.

Let ST (n) be the set of all the stable configurations on Ln. We can define a
function stn : C (n) → ST (n) where stn (g) is the stabilization of g.

Note that, for any n the function stn is computable: given g a configuration
on Ln, if one wants to compute stn (g), one only has to simulate the automaton
SP (Ln) on input g.

Given Ln a sandpile lattice and given f1, f2 and f3 three configurations, we
have that

stn (f1 + f2 + f3) = stn (stn (f1 + f2) + f3) . (2)
Last equation allow us to associate to any sandpile graph a sandpile monoid.

To this end we define a binary operation ⊕ : ST (n)2 → ST (n) in the following
way

f ⊕ g = stn (f + g) = stn (f) ⊕ stn (g) . (3)
The pair (st (n) ,⊕) is a finite commutative monoid. We will use the name

Sandpile Monoid of Ln to denote the pair M (n) = (ST (n) ,⊕) . It is known
that the kernel of a finite commutative monoid is an abelian group [6]. We use
the symbol K (n) to denote the abelian group

(
Ker (M (n)) ,⊕ �(Ker(M(n)))2

)
,

which we call the critical group of Ln. The elements of K (n) will be called critical
configurations. Intuitively, critical configurations are stable configurations of high
complexity, which are very near to be unstable. This point of view is supported
by the following theorem [2].

Theorem 2. Given Ln a sandpile lattice and given f ∈ M (n) we have that f
is a critical configuration if and only if there not exists A ⊆ V (Ln)∗ such that
for any u ∈ A the inequality degA (u) � f (u) holds.

Remark 2. Given G a graph, given A ⊆ V (G)∗ and given v ∈ V (G) we use the
symbol degA (v) to denote the quantity |{w ∈ A : {w, u} ∈ E (v)}| .
Remark 3. Given M a monoid, its kernel is equal to the intersection of the ideals
included in M. It implies that Ker (M (n)) is an ideal of M (n) and it implies
that given f a configuration and given g a critical configuration, f ⊕ g ∈ K (n).
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2 The Statistics of Three-Dimensional Critical
Avalanches

We use the term critical avalanches to denote the avalanches triggered by the
addition of two critical configurations. In this section we prove that the expected
length of three-dimensional critical avalanches is Ω

(
n4
)

= Ω
(
|Ln|

4
3

)
.

Given f, g ∈ K (n) we will use the symbol L (f, g) to denote the length of the
critical avalanches triggered by f + g.

Definition 1. We say that wn is the maximal critical configuration on Ln if
for any v ∈ V (Ln)∗, wn (v) = 5.

We observe that given f, g ∈ M (n) the inequality L (f, g) ≤ L (wn, wn) holds.
Also, we have that L (wn, wn) is an upper bound on avalanche length.

Theorem 3. L (wn, wn) ∈ Ω
(
|Ln|

4
3

)
.

Proof. We prove that there exists a constant C such that, for any n ≥ 2, we
have

L (wn, wn) ≥ Cn4 ∈ Ω
(
|Ln|

4
3

)
. (4)

Given Ln a sandpile lattice, we use the symbol δ (Ln) to denote the set{
w ∈ V (Ln)∗ : ({∗, w} ∈ E (Ln))

}
. (5)

We use the symbol δn to denote the configuration defined by: given v ∈
V (Ln)∗, δn (v) = 6 − degGn

(v).
Remember that all the avalanches triggered by 2wn have the same length. Fix

n ≥ 2, we want to lowerbound the length of a very specific avalanche triggered
by 2wn. Given n ≥ 2, we can identify the sink of Ln−2 with δ (Ln) the border of
Ln. If we make such an identification, we can think of Ln−2 as embedded into
Ln, and we can express the configuration wn as wn−2 + δn + γn, where γn is
some configuration on Ln. Note that

2wn = (wn + δn) + (wn−2 + γn) . (6)

We know that

stn (2wn) = stn (stn (wn + δn) + stn (wn−2 + γn)) ,

stn (wn + δn) = wn, (7)

L (wn, δn) =
∣∣V (Ln)∗

∣∣ = (n)3 .

Thus, we have that there exists a configuration βn such that we can pass from the
configuration 2wn to the configuration 2wn−2 + βn. Furthermore, we have that
the partial avalanche carrying us from 2wn to 2wn−2 + βn has a length equal to
n3. This partial avalanche (it is not a maximal avalanche) is the first stage of the
whole stabilization process. In the second stage we work on the subgraph Ln−2
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with the configuration 2wn−2. We can claim that after (n − 2)3 topplings we can
pass from 2wn−2 to 2wn−4 + βn−1. If we continue in this way, going to the core
(center) of Ln, we have to generate

⌊
n
2

⌋
−1 partial avalanches whose lengths are

lowerbounded by n3, (n − 2)3 , . . . ,
(
n − 2

(⌊
n
2

⌋
− 2

))3 and
(
n − 2

(⌊
n
2

⌋
− 1

))3
(respectively). Therefore, we have that

L (wn, wn) ≥

⎛
⎜⎝ n

2 !−1∑
i=0

(n − 2i)3

⎞
⎟⎠ ∈ Ω

(
n4
)

(8)

Definition 2. Given f, g ∈ C (n) we use the symbol f ≤ g to indicate that for
any v ∈ V (Ln)∗ the inequality f (v) ≤ g (v) holds.

We will prove that critical avalanches are superlinear long on average. First at
all we have to remember the notion of accessibility: given f, g ∈ C (n) we say
that g is accessible from f if and only if there exists a configuration h ≥ g and
there exists a sequence of nodes such that if we begin with f and we topple the
nodes in the sequence, (according to the order determined by the sequence), we
obtain h. We will use the symbol f → g to indicate that g is accessible from f .

Lemma 1. For all f1, . . . , f70 ∈ K (n) the configuration 2wn is accessible from
f1 + · · · + f70.

Proof. Given f ∈ K (n) and given {v, w} ∈ E (Ln) we have that either f (w) � 0
or f (v) � 0 (see reference [2]). Let f1, . . . , f7 be seven critical configurations,
given v ∈ V (Ln)∗ we have that either there exists i ≤ 7 such that fi (v) � 0 or
for any w neighbor of v and for any i ≤ 7 we have that fi (w) � 0. Suppose that
for all i ≤ 7 we have that fi (v) = 0, in this case we can choose any neighbor of v,
say w, and fire it. Also, we can place at least one chip on v, taking care of leaving
at least one chip on w. It is clear that if we begin with the configuration

∑
i≤7

fi we

can choose a sequence of at most
∣∣V (Ln)∗

∣∣ topplings to obtain a configuration
h such that for any v ∈ V (Ln)∗ the inequality h (v) ≥ 1 holds. Then, given
f1, . . . , f70 ∈ K (n) we have that

∑
i≤70

fi → 2wn.

Theorem 4. (Critical configurations generate, with high probability, very long
avalanches) Given n ≥ 1 we have that

Pr
f,g∈K(n)

[
L (f, g) ≥ L (wn, wn)

270

]
≥ 1

69
. (9)

Proof. Given f1, f2, . . . , f70 ∈ K (n) we have that
∑

i≤70

fi → 2wn. It implies that

L

⎛
⎝f70,

∑
i≤69

fi

⎞
⎠ ≥ L (wn, wn) . (10)
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Also, we have that either⎛
⎝L

⎛
⎝f70,

⊕
i≤69

fi

⎞
⎠ ≥ L (wn, wn)

2

⎞
⎠ or

⎛
⎝L

⎛
⎝f69,

∑
i≤68

fi

⎞
⎠ ≥ L (wn, wn)

2

⎞
⎠ . (11)

Arguing in this way we can prove that there exists i ≤ 70 such that

L

⎛
⎝fi,

⊕
j≤i−1

fj

⎞
⎠ ≥ L (wn, wn)

270
. (12)

Thus, we have that

Pr
f1,...,f70

⎡
⎣∃i, i ≤ 70

⎛
⎝L

⎛
⎝fi,

⊕
j≤i−1

fj

⎞
⎠ ≥ L (wn, wn)

270

⎞
⎠
⎤
⎦ = 1. (13)

Note that for any f ∈ K (n) and for any i ≥ 1 we have that

Pr
f1,...,fi

⎡
⎣⊕

j≤i

fj = f

⎤
⎦ =

1
|K (n)| . (14)

Given f1, . . . , fα a sequence of critical configurations on Ln and given i ≤ α−1,
we define gi =

⊕
j≤i

fj . We have that:

1. The procedure below is a sound method to generate, uniformly at random,
two elements of K (n) .

– Choose uniformly at random f1, . . . , fα, (α ≥ 2).
– Choose uniformly at random i ∈ {2, . . . , α} .
– Compute fi and gi−1.

2. It holds that

Pr
f1,...,f70

[
∃i, 2 ≤ i ≤ 70

(
L (fi, gi−1) ≥ L (wn, wn)

270

)]
= 1. (15)

From items 1 and 2 we obtain

Pr
f,g∈K(n)

[
L (f, g) ≥ L (wn, wn)

270

]
=

Pr
2≤i≤70; f1,...,f70

[
L (fi, gi−1) ≥ L (wn, wn)

270

]
≥ 1

69
(16)

Thus, we haven proven that

Pr
f,g∈K(n)

[
L (f, g) ≥ L (wn, wn)

270

]
≥ 1

69
. (17)
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Let Xn : K (n)2 → N be the random variable defined by Xn (f, g) = L (f, g).

Theorem 5. E [Xn], the expected value of Xn, belongs to Ω
(
n4
)
.

Proof. We know that there exists a positive constant K such that

Pr
f,g∈K(n)

[
Xn (f, g) ≥ Kn4

]
≥ 1

69
. (18)

Then, we have that
K

69
n4 ≤ E [Xn] . (19)

Therefore, we have that E [Xn] ∈ Ω
(
n4
)

= Ω
(
|Ln|

4
3

)
.

2.1 The Algorithmic Hardness of GC

In this section we prove that the addition of critical configurations is, in a very
specific sense, the complexity source of The Abelian Sandpile Model. Let n ≥ 1,
it is know that if we simulate the dynamics of the model on Ln, alternating the
adding of fresh chips with the relaxation process, we will arrive after a polynomial
number of iterations to the set of critical (also called recurrent) configurations.
Furthermore, once we enter K (n) we can not exit this set. It is the case since
K (n) is the stationary state of The Abelian Sandpile Model on Ln [2]. Also, if
we want to efficiently simulate the dynamics of the model we have to be able
to compute the addition of any pair (f, g) of configurations, where f is critical
and g is stable. We introduce a related problem below, which we denote with
the symbol MC∗, and we prove that MC∗ is NC2Turing reducible to GC.

The Sandpile Prediction Problem, is the algorithmic problem defined by:

Problem 1. (SPP , sandpile prediction)

– Input: (n, g) , where n ∈ N and g ∈ C (n).
– Problem: Compute stn (g).

Remark 4. Tardos’ bound [5] implies that SPP , and each one of the algorithmic
problems introduced below, can be solved in polynomial time, because of this
we will analyze the relative complexity of those problems using the notion of
NC-Turing reducibility.

A Second problem is MC, which corresponds to the computation of the monoid
operation ⊕.

Problem 2. (MC, monoid computations)

– Input: (n, f, g), where n ∈ N and f, g ∈ M (n).
– Problem: Compute f ⊕ g.

Now, we introduce the problem GC which is the restriction of SPP to critical
avalanches.
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Problem 3. (GC, group computations)

– Input: (n, f, g), where n ∈ N and f, g ∈ K (n) .
– Problem: Compute f ⊕ g.

Let us introduce three additional problems, which will be play an important role
in our analysis.

Problem 4. (SC, computation of score vectors)

– Input: (n, f), where n ∈ N and f ∈ C (n) .
– Problem: Compute the vector SCf .

Problem 5. (MC∗, mixed computations)

– Input: (n, f, g) , where n ∈ N, f ∈ K (n) and g ∈ M (n) .
– Problem: Compute f ⊕ g.

Given Ln a three-dimensional sandpile lattice, we use the symbol eK(n) to denote
the identity of K (n) .

Lemma 2. Identities can be computed in constant time, if oracle access to GC
is provided.

Proof. In order to compute the identity of K (n) , in constant time and using an
oracle for GC, we can use the equations:

1. w−1
n = wn − (wn ⊕ wn) .

2. eK(n) = wn ⊕ w−1
n .

Lemma 3. Inverses can be computed in time O (log (n)) if oracle access to GC
is provided.

Proof. Let v ∈ V (Ln)∗ and let wv = wn − ev. It follows from theorem 2 that wv

is a critical configuration. Let f ∈ K (n) , note that

f−1 =

⎛
⎝ ⊕

v∈V (Ln)∗
f (v)wv

⎞
⎠⊕

⎛
⎜⎝w−1

n ⊕ · · · ⊕ w−1
n︸ ︷︷ ︸

‖f‖ times

⎞
⎟⎠ . (20)

It is clear that we can compute the expression on the right side of the equation
above in time O (log (n)) and using a polynomial number of processors, (if oracle
access to GC is provided).

Given v an element of V (Ln)∗ , we use the symbol ev to denote the configuration

ev (w) =

{
1, if v = w

0, otherwise
(21)
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Let en : V (Ln)∗ → K (n) be the function defined by en (v) = eK(n) ⊕ ev and

let e : N3×N →
( ⋃

i≥1

K (n)

)
∪ {∞} be the function defined by

e (v, n) =

{
en (v) , if v ∈ V (Ln)∗

∞, else
. (22)

Problem 6. (EC, computation of e)

– Input: (n, v) , where n ∈ N and v ∈ V (Ln)∗ .
– Problem: Compute e (v).

Next theorem is the main theorem of this section.

Theorem 6. (The relative hardness of sandpile prediction problems)

1. SPP and SC are NC2-Turing equivalent.
2. SPP is NC2-reducible to MC.
3. MC∗ can be computed in time O

(
log2 (n)

)
if oracle access to EC and GC

is provided.
4. EC is NC-Turing reducible to GC.
5. The problems MC∗ and GC are NC2-Turing equivalent.

Proof. The proof of item 1 can be found in [3]. The proof of item 2 is very easy,
also we prove items 3 and 4, item 5 follows from items 3 and 4.

1. (Proof of item 3) Let (n, f, g) be an instance of MC∗. We observe that

f ⊕ g = f ⊕ g ⊕ eK(n) ⊕ · · · ⊕ eK(n)︸ ︷︷ ︸
‖g‖-times

. (23)

If we express g as
∑

v∈V (Ln)∗
mvev we get

f ⊕ g = f ⊕

⎛
⎝ ⊕

v∈V (Ln)∗
mven (v)

⎞
⎠ . (24)

Also, we can use n3 processors to compute {mven (v)}v∈V (Ln)∗ , this com-
putation takes O

(
log2 (n + ‖g‖)

)
time units, since we are supposing that

we have oracle access to EC. We can use the same n3 processors to com-

pute f ⊕
( ⊕

v∈V (Ln)∗
mven (v)

)
in time O

(
log2 (n + ‖f‖ + ‖g‖)

)
, since we

are supposing that we have oracle access to GC.
2. (Proof of item 4) Observe that

en (v) = ev ⊕ eK(n) = ev ⊕
(
wv ⊕ w−1

v

)
= wn ⊕ w−1

v . (25)

Thus, if one wants to compute en (v) , one only has to compute wn ⊕ w−1
v

(note that wn, w−1
v ∈ K (n)). We can compute w−1

v in time O (log (n)) if
oracle access to GC is provided. Then, we can solve EC in time O (log (n))
using an oracle for GC.
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Next theorem follows easily from the results obtained in section 2, it brings to-
gether the results concerning the algorithmic hardness of GC and the results
concerning the statistics of critical avalanches. Let SA be the naive (sequential)
sandpile automata simulation algorithm, and let B be the parallel sandpile au-
tomata simulation algorithm (we topple all the unstable nodes at once). We will
use the symbol tSA (n, f, g) to denote the running time of SA on input (n, f, g),
(we define tB (n, f, g) accordingly).

Theorem 7. Let n ≥ 1 be a natural number

1. There exists a positive constant K such that

Pr
f,g∈K(n)

[
tSA (n, f, g) ≥ Kn4

]
≥ 1

69
. (26)

2. There exists a positive constant R such that

Pr
f,g∈K(n)

[tB (n, f, g) ≥ Rn] ≥ 1
69

. (27)

Theorem 7 suggests that the problem GC is n
1
3 -hard on average, which means

that given an algorithm M computing the problem GC, there exists two positive
constants K, D such that

Pr
f,g∈K(n)

[tM (n, f, g) ≥ Kn] ≥ D. (28)

Let us finish this work stating the following conjecture.

Conjecture 1. The problem GC is n
1
3 -hard on average.
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Abstract. This paper investigates the behaviors and the properties of
a “Give and Take” cellular automaton on a graph. Using an economical
metaphor, this model implements the exchange of cash against goods,
among the nodes of a graph G, with a local pricing mechanism. Dur-
ing the time evolution of this model, the strongly connected components
(SCC) emerge, mimicking the creation of independent sub-markets. In
the steady state, each SCC is characterized by a unique price obeying
the supply and demand law for that sub-market. We also show that the
distributions of cash and goods are proportional to the indegree of the
cells, reproducing a Zipf’s law of wealth distribution in case of a scale-
free graph topology.

Keywords: Complex system, cellular automata on a graph, complex
network, strongly connected components, economical model.

1 Introduction

A complex system is an organization which consists of many parts and the inter-
action between them [11,3]. This approach gains in popularity and offers a new
way to the scientists and the researchers to model complex phenomena in various
real world applications. Complex phenomena can hardly be solved analytically
by mathematical models and numerical simulations are needed. Complex net-
works [6] are now widely used to described interaction patterns in social or
economical systems. We can cite among other applications the evolution of the
structure of complex networks [4] or the modeling the propagation of economic
crises [14].

Cellular automata [7] are an effective tool to study complex systems and
it is natural to consider their extension to a graph topology. In [8,13] we have
defined cellular Automata on Graph (CAG), a formalism that extends the power
of classic cellular automata approach by introducing irregularity and dynamics
on the neighborhood relationship.

To illustrate the CAG approach, we consider here a particular case of a
CAG which we called the “Give and Take” model (GT model), which imple-
ments a simple economical interaction between agents. We show that this model,
interpreted as a market dynamics, produces interesting results: spontaneous
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sub-market creation, emergence of a global price in each sub-market, compli-
ance with the supply-demand law and Zipf’s type of wealth distribution.

The paper is organized as follows: we first define formally the GT-model, then
we discuss its computer implementation on the CAG engine. Finally, we present
the simulation results and formulate mathematically the properties of the model.

2 GT (Give and Take) Model Formalism

The GT-model simulates the complex interactions between agents exchanging
goods against cash. The model is built with a directed graph G which has n
cells and m edges. One cell corresponds to one agent. A directed edge (i, j) of
the graph G (see Fig. 1) models the buying and selling actions between i and
j: agent i gives cash to buy goods from agent j and, in exchange, j returns a
certain quantity of goods.

Cells (or agents) and can have both the role of a buyer or a seller. As a
buyer, a cell distributes its cash to each seller it is connected to, in a way which
is inversely proportional to the price offered by the seller. In turns, each seller
distributes its good in proportion to the money received from each buyer. For
each buyer-seller relation, a new price is computed, as the amount of money
spent over the amount good received.

Fig. 1. The flows of cash used to buy goods are indicated by the direction of the edges
of the graph G. Here, the flow comes from i to j. The dotted edge represents the
direction of the flow of goods in exchange, which is the opposite direction of the flow
of cash.

Table 1 summarizes all the notations used to describe the GT-model.
The state of each cell i at iteration t consists of the cash amount ci(t) and the

quantity of goods gi(t) owned by the cell. We assume that these quantities are
infinitely divisible. To prevent the rainy days, at each iteration, each cell invests
only a fraction λi of its cash and a fraction μi of its goods. The amount of cash
offered from agent i to agent j is denoted by cij(t) and the amount of goods
given in exchange by gji. The price proposed by seller j to buyer i is denoted as
pij(t).

The dynamic of GT-model at each time step t is composed of four phases,
treated successively as follow:
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Table 1. Summary of notation

Symbol Meaning

ci(t) Cash owned by cell i at the time iteration t
gi(t) The quantity of goods owned by the cell i at the time iteration t
λi The fraction of cash invested by the cell i to others at each iteration. 0 ≤ λi ≤ 1
μi The fraction of goods invested by the cell i to others at each iteration. 0 ≤ μi ≤ 1
ctot The total cash in the whole CAG
gtot The total amount of goods in the whole CAG
cij(t) The flow of cash from i to j at the time iteration t
gji(t) The flow of goods from j to i at the time iteration t
pij(t) The unit price of goods proposed by j at the time iteration t
kin

i The indegree of the cell i
kout

i The outdegree of the cell i
N in

i The set of the incoming neighbors of i or the buyers connected with i
Nout

i The set of the outgoing neighbors of i or the sellers connected with i

– Giving phase: During this phase, each cell gives cash to its connected sellers.
The buyers obey the following strategy: “give more cash to the sellers that
propose a better price”. This cash value is inversely proportional to the unit
price of goods proposed by the sellers. Mathematically, the resulting cash
flow can be expressed as [13]

cij(t) =
p−1

ij∑
l∈Nout

i

p−1
il (t)

λici(t), j ∈ Nout
i . (1)

At t = 0, the initial price can be defined randomly, or assumed to be equal
for each seller.

– Taking phase: In exchange, each cell returns a certain quantity of goods to its
buyers. The highest bidder wins the highest amount of goods. This quantity
of goods is proportional to the cash received at the giving phase. Thus the
the flow of goods is given by [13],

gji(t) =
cij(t)∑

l∈Nin
j

clj(t)
μjgj(t) i ∈ N in

j . (2)

– Self-adapting price: The unit price of goods at the next iteration t + 1 is the
ratio between the cash given at the giving phase and the quantity of goods
in exchange at the taking phase. From (2) we have

pij(t + 1) =
cij(t)
gji(t)

=

∑
l∈Nin

j

clj(t)

μjgj(t)
≡ pj(t + 1) . (3)

We see in (3) that the unit price of goods actually depends only on the seller
j. In other words, the seller proposes the same unit price of goods to all its



166 R.M. Razakanirina and B. Chopard

connected buyers. For this reason we can simplify the notation and write
pj(t) instead of pij(t).

– Edge dynamic: When a buyer is connected to several sellers, it may decide
to stop interacting with one of them, if the offered price is too high in com-
parison with the others. A buyer decides also to stop the transaction with
one seller if the quantity of goods offered is too low. Formally

(i, j)
{

cut if pj(t) > τ min(pl(t)) or gji(t) < ε, l ∈ Nout
i

not cut , otherwise . (4)

where τ and ε are a parameters.

Then, the state of each cell i at the next iteration t+1 is given by the balance
of cash and goods,

ci(t + 1) = ci(t) −
∑

j∈Nout
i

cij(t) +
∑

k∈Nin
i

cki(t) . (5)

gi(t + 1) = gi(t) −
∑

j∈Nout
i

gij(t) +
∑

k∈Nin
i

gki(t) . (6)

3 GT-Model Simulator and Simulations Setup

The GT-model simulator is the tool that allows the user to interact with the
settings and the evolution of the GT-model and to visualize and save the results.
It is based on the general CAG formalism described in [8]. This tool, illustrated
in Fig. 2, is composed of the following modules:

– CAG Evolution: This is the core of the architecture. It implements the
dynamics of the GT-model.

Fig. 2. The architecture of the GT-model simulator



Using Cellular Automata on a Graph 167

– Setter: This module is in charge of initializing the state of each cell, the
unit price of goods of each seller, the flow of cash and goods through the
edges at any time iteration t.

The initial conditions of the evolution are set by this module. We use
two initial conditions which are EQ and RND initial conditions. The total
amount of cash and goods in the whole GT-model are divided equally to the
cells with EQ initial conditions and on the other hands, divided randomly
with RND initial conditions. The initial unit prices of goods are either equals
or randoms or chosen by the user.

We choose the same value of λ and the same value of μ for all the cells.
– CAG File and CAG Layout Parser/Saver: The CAG Definition File

contains all the information about the states of each cell, the flows transiting
through each edge. The CAG Layout File contains all the (X, Y ) coordinates
of each cell on the visualization screen. These Parser/Saver modules parse
and convert the Definition and Layout files to the data structure used by the
CAG Evolution module. Vice versa they save the snapshot of the evolution
at given time iteration to the Definition and Layout files.

– CAG Topology Generator: This module generates GT-model based on
regular, random and scale-free-graph.

– CAG Placement and CAG Visualization: Before the visualization, the
2D coordinates of each cell are calculated by the CAG Placement module
using a Force Directed Placement algorithm. Color scale are used by the
CAG visualization module to visualize the state of each cell and the fluxes
of cash and goods through each edge. Red color for the highest value, orange
for the middle and green for the lowest value.

In addition to these modules, our implementation allows the user to modify
the data of the model at run time. For instance a new link can be created, or
the amount of cash or goods can be modified in a chosen cell.

We have performed experiments using the EQ and RND initial conditions on
the following graph topologies: Erdös-Rényi random graph [9,13] (symmetric or
not), scale-free graph [12,1,2,13] (symmetric or not), strongly connected graph
(SCG) [10]. The values we choose for the parameters are λ = 0.2, μ = 0.3,
ε = 0.01 and τ = 10.

4 Results and Discussions

The evolution of the GT-model can be first described by a transient regime in
which prices, goods and cash flows are time dependent and links can be cut.
During this phase, it is observed that the cutting rule has the effect of make the
Strongly Connected Components (SCC) of the graph emerge. The SCC [10] are
the sub-graphs such that there is a return path between any pairs of nodes in the
SCC. In other words, the GT-model is such that a link in G survives only if all
the money or goods that flow through this edge has a path back to where it came
from, even if this path is long. Figure 3 depicts the states of erd n30 m39 eq
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(a)

(b)

Fig. 3. Evolution of the erd n30 m39 eq GT-model, during its transient regime. This
topology is constructed by Erdös-Rényi algorithm with n = 30, m = 39 and simulated
with EQ initial conditions (a) at t = 0 and (b) at t = 100.

GT-model at t = 0 and t = 100. We observe clearly at t = 100 the emergence of
the following SCC: {1,18,28}, {14,19,23}, {4,6,29,27,21}.

Using the economical interpretation, each emerging SCC corresponds to an
independent submarket in which the total amount of cash and goods is constant.
When reaching the stationary state the unit price of goods inside each SCC is
observed to converge to a uniform value. Let us denote this equilibrium price
as pe. The fluxes of cash and goods transiting through each cell are also in
equilibrium. Each cell gives to its sellers the exact amount of cash received from
its buyers

λici =
∑

j∈Nin
i

cji (7)
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Therefore, from (3) we have

pe =

∑
j∈Nin

i

cji

μigi
=

λici

μigi
. (8)

Since pe is observed to be independent of i in the steady state, we have μigi =
peλici for all i in the same sub-market. When all the cells make the same invest-
ment of cash and goods (λi = λ and μi = μ), we can sum this relation over i and
we obtain that the equilibrium price is the ratio between the total investment of
cash and the total investment of goods

pe =
λctot

μgtot
. (9)

In other words the price is determined by a global supply (μgtot) and demand
(λctot) law.

We can write a mathematical equation for the distribution of cash and goods
in a sub-market. We introduce aij , the element of the adjacency matrix A of the
graph G and kout

i the outdegree of the cell i). From the stationary assumption
we have

λici =
∑

j∈Nin
i

cji =
∑

j∈Nin
i

ajicji (10)

and, since the price is uniform, we have from (1)

cij =
λici

kout
i

=
λici∑

	∈Nout
i

ai	
(11)

Therefore the values ci obey

λici =
∑

j∈Nin
i

aji∑
	∈Nout

j
aj	

λjcj (12)

Using in addition that ctot =
∑

i ci, we can solve analytically (12) for a symmetric
graph (aij = aji). We find [13]

ci =
kin

i

m
ctot . (13)

Thus the amount of cash owned by each cell is proportional to the number of its
connected buyers and inversely proportional to the market size defined by the
number of edges m of the graph G. In a scale-free graph, the node degrees obey a
power law distribution and the above relation shows that the wealth distribution
follow a Zipf’s law.

Compared with the results obtained during the simulations, the analytical
results fit perfectly well the simulation results, as illustrated in Fig. 4 in case of
symmetric graph G.
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Fig. 4. The dots show the distribution of cash of a stationary GT-model based on
symmetric random graph with n = 1000 and m = 19790 versus indegree kin. The
dotted line is the distribution of cash calculated analytically.

Fig. 5. The dots show the distribution of cash of a stationary GT-model based on
asymmetric random graph with n = 1000 and m = 19800 (a) versus indegree kin. The
dotted line is the linear estimation of the distribution given by Eq. (13).
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In the case of an asymmetric graph, one has to solve numerically (12). This is
easily done for any given adjacency matrix, as (12) is a linear system of equation
for ci. Figure 5 shows the values of the fortune as a function of the indegree of
the graph. We see that nodes with the same degree may have different amount
of cash. However, we observe that these values are globally compatible with
the prediction of (13). We believe that as the number of nodes increases the
dispersion will reduce.

5 Conclusion and Future Work

In this work, we have studied the behavior of a particular cellular automaton on
a graph (CAG) called Give and Take model (GT-model). This model simulates
the exchange of cash against goods between the cells. At each time iteration t,
each cell i gives cash to its outgoing neighbors j and in exchange takes goods
from them. This relation is represented by an edge (i, j) of the graph G of the
CAG. The graph topology also evolves: relations that become too expensive are
progressively abandoned.

We found that during the transient regime, the strongly connected compo-
nents of the graph emerge and form independent sub-markets.

In the stationary regime, and within each sub-market we observed that the
unit price of goods becomes homogeneous and obeys a supply and demand law.
By the simulations and analytic calculations, the amount of cash owned by
each cell is proportional to the number of its connected buyers and inversely
proportional to the size of the “market”. Thus, the distribution of cash and
goods in the whole automata depends only on the topology. For scale-free graph
a power law for the wealth distribution is then observed.

From an application point of view, we plan to extend the model by allowing
the production of goods and money (open systems) and by adding a work-salary
market.

From the computer science point of view, we plan to analyze the performance
of our model as an algorithm to detect the SCC. Further work are in progress
to parallelize the CAG evolution algorithm and to standardize the simulator to
allow the definition of more CAG models.
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Abstract. The dynamics of the lengthy process by which tumors arise from 
normal tissues is not well understood. We developed a stochastic cellular 
automaton model based on the ecological concept of metapopulations to ex-
plore the role of mutation, exogenous disturbance, and selection in the genesis 
of tumors. The operation of the model shows how disturbances (e.g. inflamma-
tion) acting on tissues can cause tumors by modifying the dynamics among 
metapopulations of cells. Simulations demonstrate that disturbance, without 
change in mutation rates, can drive tumor formation. Changes in the distribution 
of genetic alterations among metapopulations in the tissue can predict the emer-
gence of a tumor, thus providing a measure of risk. Modifying the disturbance 
regimen can prevent the emergence of tumors. Thus, the model provides  
insights into how mutation rates and disturbance interact in the causation of 
cancer, and illustrate how measuring metapopulation distributions can provide 
surrogate end points for preventive intervention.  

1   Introduction 

Evolutionary concepts and ecological theory have been applied to the study of cancer 
and have contributed to the generation of new hypotheses [1-6]. During the process of 
carcinogenesis, the emergence of a malignant phenotype depends on a series of fac-
tors, some of which have a strong effect on diversity (e.g., mutation rate, niche size). 
Disturbance (any exogenous cause of death) is a powerful agent altering the dynamics 
among populations, influencing both their stability and diversity. At low levels of 
disturbance, competitively dominant taxonomic species exclude subordinate species 
and excessive disturbance leads to local extinction. Intermediate levels of disturbance 
balance these two poles and maximize diversity [7-9].   

2   The Model 

The dynamic constitution of a tissue is simulated by a 200x200 cellular automaton. 
Each cell on the grid represents a microenvironment (patch) which may be occupied 
by one or more clones which can be quiescent, expand to neighboring patches or die. 
Each patch has a basal rate of division as well as senescence and death for each clone 

constituting the patch. Each cell is endowed with 102  genes. Mutations in one gene 
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can occur at 10 different alleles, all leading to an altered phenotype. This phenotype is 
characterized by an increased probability of a patch to expand into an empty 
neighboring space (proliferative potential); increased probability of cellular survival 
at each time step (e.g., an apoptotic defect), or a state of altered susceptibility to ex-
ogenous disturbances. Mutations in the great majority of genes, reflecting the delete-
rious effect of accumulating mutations, cause an increased probability of cellular 
death. This scenario simulates the metapopulation dynamics of a healthy undisturbed 
tissue under background mutational rates. The relative frequencies of 30 alleles are 
tracked to record the variational change resulting from the evolution among the cell 
populations constituting the tissue. The steady dynamic risk-free state can be altered 
by disturbances that randomly kill patch populations. The disturbance regimen is 
specified by the interval between disturbances and the intensity of the disturbance 
(probability of death of an affected patch). We simulate global disturbances which 
have an equal probability of affecting all cells in the model. Disturbance simulates 
exogenous pathologies, such as repeated trauma, cell toxicity or cytolytic infection, 
which recurrently produce tissue injury due to cell death. Repeated cell loss intro-
duces proliferative pressure within the patch and among neighboring patches as the 
loss triggers the homeostatic mechanism of tissue repair which is simulated by the 
local rule of expansion in to neighboring empty space. (The formal description and 
operation of the Montebello model is given in the supplementary material at 
http://genecube.med.yale.edu:8080/montebello). 

3   Results 

We first identify model parameters of growth, senescence and death, mutation rates so 
that in the absence of disturbance there are only minimal deviations from steady state  
 
 

 

Fig. 1. The totals of each mutant allele are plotted over the full time course (5000 time steps, or 
possible cell divisions) for twenty-seven selected examples of the simulations. Thirty mutant 
alleles (the proliferation, death, and susceptibility mutants in order) are aligned along the x axis. 
A column in each plot shows the total mutant level for that allele over the time course with the 
baseline time point at the bottom and the final time point at the top of each plot. The top row 
shows normal (undisturbed) samples in which low levels of individual mutant alleles arise, 
persist at low levels or die out without expansion. The middle row shows samples exposed to 
disturbance in which mutations arise frequently but never develop into tumors. Disturbances 
cause expansion of clones that harbor one or multiple fitness increasing mutations. Most of 
these clonal populations will collapse before realizing the complex genotype that defines a 
tumor. The bottom row shows individual simulations in which tumors do form following dis-
turbance. Values for other parameters are provided in the Supplementary Data.  
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tissue density and very low (< 1%) tumor formation rate with mutation rates consis-
tent with clinical observation in humans [10]. In this risk-free normative state, mu-
tated clones with the potential to progress to tumor arise regularly, persist for various 
periods but rarely expand (Figure 1a). Under these conditions, the time span in which 
empty patch-space persists is relatively short-lived. This fits an intuitive conception of 
structured tissue with tissue repair functions intact. In the absence of disturbance, 
tumors arise only if the mutation rate is escalated to unrealistic levels.  

The introduction of disturbance changes the composition of the tissue. Distur-
bances cause expansion of clones that harbor one or multiple fitness increasing muta-
tions. Under low levels of disturbance most of these clonal populations will collapse 
before realizing the complex genotype that defines a tumor (Figure 1b) and be re-
placed by wild type or patches with a simpler combination of genetic alterations. 
Samples of mutational spectra at time points subsequent to the instauration of a regi-
men of disturbance are clearly distinguishable from those derived from the undis-
turbed individual (Figure 1 a&b). With a frequency depending on the intensity of the 
disturbance, some clonal populations will fail to collapse, and so they will eventually 
fulfill the diagnostic criteria of tumor (Fig.1c). We find that every simulation that 
expands an allele above a threshold t2 went on to reach the tumor state (Supplemental).  
 
 

 

 
Fig. 2. A cohort of samples is studied in which tumors form in the presence of a disturbance 
intensity ( pΔ ) of 0.9 and an interval between disturbances ( kΔ ) of 10. During re-runs of the 

simulations, preventive interventions are applied through the reduction of disturbance once a 
threshold (selected as the maximum reached in a large cohort of normal undisturbed simula-
tions) is reached in the total mutation load. The effectiveness of tumor prevention by reduction 
of disturbance intensity ( pΔ ) and interval between disturbances ( kΔ ) is displayed. The rela-

tive number of times (%) that a tumor formed are plotted against the reduced intensity (modi-
fied pΔ ) following intervention on the x axis and the modified interval ( kΔ ) between distur-

bances following the intervention on the y axis. The risk of tumor decreases with reduction in 
the disturbance. There is a relatively steep drop off with nearly complete ablation of the devel-
opment of tumors past a boundary which is a function of the disturbance interval and intensity.  
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Thus repeated monitoring of the mutational spectra for an individual simulation can 
forecast the emergence of a tumor and thus be used as an early detection tool (Figure 
2c). In keeping with the intermediate disturbance hypothesis, the simulations reveal 
that for a given mutation rate, intermediate disturbance is more effective in causing 
tumors than either more extreme high or low levels. Moreover this effect can be ob-
served throughout a wide range of mutation rate (Figure 2). 

4   Conclusions 

The Montebello Model of tumor formation enables wide exploration of the parameter 
spaces that influence the emergence of tumors from a tissue at risk including the bal-
ance between proliferation and death, mutational rate, and disturbance. It provides a 
tool to test the interplay of evolutionary factors in the context of metapopulation dy-
namics, and it shows how disturbance can act as a powerful carcinogen. The simula-
tions also demonstrate how biometrics, capturing variational dynamics among cell 
populations, can be used to stratify simulated populations according to risk level, 
monitor cancer risk and assess the effectiveness of preventive measures that interfere 
with disturbance. 
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Abstract. In this paper we conceive Lyapunov exponents, measuring
the rate of separation between two initially close configurations, and
Jacobians, expressing the sensitivity of a CA’s transition function to its
inputs, for cellular automata (CA) based upon irregular tessellations of
the n-dimensional Euclidean space. Further, we establish a relationship
between both that enables us to derive a mean-field approximation of
the upper bound of an irregular CA’s maximum Lyapunov exponent.
The soundness and usability of these measures is illustrated for a family
of 2-state irregular totalistic CA.

Keywords: irregular tessellation, Jacobian, Lyapunov exponent.

1 Introduction

Since their conceptualization by von Neumann [31] more than 60 years ago,
cellular automata (CA) have proven their usefulness in applied sciences as ade-
quate modeling tools in numerous scientific fields, such as epidemiology [21,33],
demography [7,8,15], microbiology [23,24], traffic engineering [9], hydrology and
geology [10,12,13,22,29], and numerous others [1,18,20,25], while in exact sci-
ences much attention has been given to the complex spatio-temporal dynamics
of these intrinsically simple discrete dynamical systems [6,26,35,36,37]. In con-
trast to continuous dynamical systems such as ordinary and partial differential
equations (ODE and PDE) that often allow to investigate the system’s stabil-
ity properties without having to solve the ODE or PDE, adequate conclusions
about a CA’s dynamical properties can mostly only be drawn from extensive
computer simulations [17,35,37], except for the class of additive CA [34]. This
has motivated several researchers to develop quantitative measures for discrimi-
nating between the behavioral classes of CA distinguished by Wolfram [35], such
as the Hamming distance [6,35], the Langton parameter [19], Lyapunov expo-
nents [11,27,28], entropies and dimensions [16], and others [38], or by relying on
mean-field approximations [14].

Among these measures, Lyapunov exponents that were first introduced in 1D
CA as the propagation speed of the damage front originating from an initial per-
turbation of the state of one of the cells [36], and later described rigorously for
� Corresponding author.
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1D CA [26], are perhaps the most promising as indicated by their prevalent use
in papers on the phenomenology of CA [4,5,6,11,26,27,28]. Besides, their man-
ifold use for the characterization of continuous dynamical systems makes them
easily accessible for researchers that are not acquainted with the typicalities of
CA. Most frequently, Lyapunov exponents have been applied to characterize the
dynamics of 1D CA, since in this case, the damage front can propagate only to
the left or to the right of the initially perturbed cell, enabling a sound formula-
tion of right and left Lyapunov exponents [26]. Clearly, if higher-dimensional CA
are at stake, the usefulness of such directional Lyapunov exponents is strongly
hampered since the damage front in, for instance 2D CA, can propagate circu-
larly from an initial perturbation. For that reason, Bagnoli et al. [6] formulated
a non-directional Lyapunov exponent, which has been applied in combination
with a measure expressing the sensitivity of a CA’s transition function to its
inputs and based upon Boolean derivatives [30], to study 1D CA, as well as 2D
lattice gas automata [4,5]. However, the latter measure is formulated in such a
way that its use is limited to CA based upon regular tessellations of Rn since it
assumes that the neighborhood structure is fixed, which is clearly not the case
if irregular tessellations are at stake. Hence, in order to grasp the dynamics of
CA based upon irregular tessellations, described rigorously in [2], as well as to
compare the dynamics of CA defined upon different tessellations of Rn, a gener-
alized definition of this measure should be formulated, and its relationship with
the non-directional Lyapunov exponents should be readdressed.

In Section 2 we outline the mathematical preliminaries that are necessary for a
proper understanding of Section 3 in which we conceive Lyapunov exponents and
Jacobians for irregular CA, and establish a measure grasping the CA’s sensitivity
to its input by relying on the latter. An exemplary simulation study of 2-state
irregular totalistic CA concludes this paper.

2 Preliminaries

We state the definition of a cellular automaton on an arbitrary tessellation of a
n-dimensional Euclidean space, which constitutes an extension to the classical
CA paradigm that predominantly relies on regular tessellations of Rn ever since
von Neumann’s pioneering work [32].

Definition 1. (Cellular automaton)
A cellular automaton (CA) C can be represented as a sextuple

C = 〈T , S, s, s0, N, Φ〉 ,

where

(i) T is a countably infinite tessellation of a n-dimensional Euclidean space
Rn, consisting of cells ci, i ∈ N.

(ii) S is a finite set of k states, often S ⊂ N.
(iii) The output function s : T × N → S yields the state value of cell ci at the

t-th discrete time step, i.e. s(ci, t).
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(iv) The function s0 : T → S assigns to every cell ci an initial state, i.e.
s(ci, 0) = s0(ci).

(v) The neighborhood function N : T →
∞⋃

p=1
T p maps every cell ci to a finite

sequence N(ci) =
(
cij

)|N(ci)|
j=1

, consisting of |N(ci)| distinct cells cij .
(vi) Φ = (φi)i∈N

is a family of functions

φi : S|N(ci)| → S ,

each φi governing the dynamics of cell ci, i.e.

s(ci, t + 1) = φi

(
s̃(N(ci), t)

)
,

where s̃(N(ci), t) =
(
s(cij , t)

)|N(ci)|
j=1

.

Although the complexity measures in the subsequent sections are derived for
any CA that obeys the former definition, in the simulation study presented in
the final section of this paper we focus on a family of totalistic CA, which we
define a follows.

Definition 2. (Totalistic cellular automaton)
A totalistic cellular automaton (CA) is a CA for which S ⊂ N, and for which
there exists a Ω : N → S such that

s(ci, t + 1) = φi

(
s̃(N(ci), t)

)
= Ω (σi) ,

where σi =
∑|N(ci)|

j=1 s(cij , t).

For the sake of uniformity, we also set up an enumeration scheme for irregu-
lar totalistic CA in accordance with the enumeration developed for their regular
counterparts. Such a concise enumeration scheme allows to identify every φi that
can be formulated, given the number of possible states k, by means of an unique
number, commonly referred to as the rule number. To overcome the unbounded-
ness of σi that arises from allowing irregular tessellations of Rn, we introduce an
upper bound θ on σi such that Ω (σi) = Ω(θ) if σi ≥ θ. As such, the rule number
for a k-state, θ-sum irregular totalistic CA, denoted RT

θ , can then be found from
its base-k representation, containing μ = θ + 1 digits, zθ zθ−1 · · · z2 z1 z0 as

RT
θ = zθ kμ−1 + zθ−1 kμ−2 + . . . + z2 kμ−(μ−2) + z1 kμ−(μ−1) + z0 , (1)

where zf ∈ {0, 1, . . . , k − 1} represents the state value assigned to ci at the
t+1-th time step if σi = f . A total of kθ+1 different rules can be enumerated for
this family of irregular CA.

3 Lyapunov Exponents and Jacobians for Irregular CA

3.1 Lyapunov Exponents

Let s0 and s∗0 be two initial configurations of a 2-state CA for which S = {0, 1},
such that there is only one ci ∈ T for which s0(ci) �= s∗0(ci), i.e. s∗0 constitutes
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the smallest possible perturbation of s0. In what follows, we will refer to a cell
ci for which s(ci, t) �= s∗(ci, t) as a defective or perturbed cell, or in short, as a
defect. Further, if we define εt as the number of defective cells at the t-th time
step, i.e.

εt = |{i | s(ci, t) �= s∗(ci, t)}| , (2)

the quantity

λ = lim
t→∞

1
t

log
(

εt

ε0

)
, (3)

can be intuitively interpreted as a maximum Lyapunov exponent (MLE). Yet,
as indicated by Bagnoli et al. [6], we must take into account that a CA’s discrete
nature can cause defects to annihilate each other such that the quantity given by
the right-hand side of Eq. (3) approaches zero as t → ∞. Indeed, we observed this
tendency for the family of irregular CA covered in this paper. As suggested by
Bagnoli et al. [6], this artifact can be overcome by keeping track of the evolution
of all the defects that arise during the CA’s evolution, though they neglected to
include an algorithmic procedure that allows a proper evaluation of εt, and hence
of λ. For that reason, we provide a brief algorithmic procedure that enables the
calculation of the non-directional Lyapunov exponent of a CA (Algorithm 1).

Algorithm 1. Procedure for calculating the Lyapunov exponent of an
irregular CA

Create two initial configurations s(·, 0) and s∗(·, 0) such that ε0 = 1 ;
Calculate s(·, 1) and s∗(·, 1);
Determine the set D1 = {cj ∈ T ∗ | s∗(cj , 1) �= s(cj , 1)};
For any cj ∈ D1, create a replica sj(·, 1) of s(·, 1), and perturb it such that
sj(cj , 1) = s∗(cj , 1);
Store these perturbed configurations, denoted as s∗j (·, 1), in a set A;
foreach time step t do

Calculate s(·, t + 1) and s∗j (·, t + 1);
Construct the multiset Et+1 = {(ck, m(ck)) | ck ∈ Dt+1} where
Dt+1 = {ck ∈ T ∗ | ∃ j : s∗j (ck, t + 1) �= s(cj , t + 1)} and m(ck) gives the
number of replicas for which s∗j (ck, t + 1) �= s(ck, t + 1);
Calculate εt+1;
Delete all the elements in A;
Construct for any cj ∈ Et+1 a replica sj(·, t + 1) of s(·, t + 1) and perturb it
in such a way that sj(cj , t + 1) = s∗(cj , t + 1);
Store these perturbed configurations, denoted as s∗j (·, t + 1), in the set A;

end
Calculate λ using Eq. (3);

It should be emphasized that, notwithstanding Eq. (3) demands to evaluate
λ as t → ∞, practical considerations make us to calculate the MLE for finite
T , and for finite tessellations T ∗ of a compact subset of Rn. The MLE has been
used before to classify both elementary and totalistic 1D cellular automata [6,4],
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and is applied in our work to quantitatively describe the dynamics of 2-state,
5-sum irregular totalistic CA.

3.2 Jacobians

In order to express the sensitivity of a CA’s transition function φi to its input
s̃(N(ci), t), we can construct a Jacobian matrix J that has |T ∗| × |T ∗| entries:

Jij =

⎧⎨
⎩

∂s(ci, t + 1)
∂s(cj, t)

, if cj ∈ N(ci) ,

0 , else ,
(4)

where ∂s(ci,t+1)
∂s(cj ,t) is the Boolean derivative, introduced in CA by Vichniac [30]. If

altering s(cj , t) affects s(ci, t + 1), this Boolean derivative equals one, whereas it
equals zero if such an alteration has no influence on the outcome of φi (s̃(N(ci), t)).
In contrast with the Jacobian of an elementary CA, the Jacobian of a CA based
upon irregular tessellations of Rn is not tridiagonal.

Considering the variability of |N(ci)| in irregular CA, the average proportion
of cells cj in N(ci) that affects s(ci, t + 1) is given by

μ(t) =
1

|T ∗|
∑
ci

1
|N(ci)|

|N(ci)|∑
j=1

Jiij . (5)

Essentially, μ(t) expresses the sensitivity of a CA’s transition function to its
inputs. Its geometric mean μ̄ after a large number of time steps T is

μ̄ =

(
T∏

t=1

μ(t)

) 1
T

. (6)

Understandably, higher values of μ̄ indicate a higher sensitivity of φi to its
input s̃(N(ci), t). Since the sensitivity is, within the outer summation of Eq. (5),
normalized for every ci with respect to |N(ci)|, it can be used to characterize
a CA regardless of the tessellation it is based upon. Hence, it is an appropriate
measure that can be exploited to compare the dynamics of CA that are based
upon the same transition function φi, but employ different tessellations of Rn.

3.3 Assessing an Upper Bound for Lyapunov Exponents of Irregular
CA

If we define the mean connectivity of T ∗ as

V =
1

|T ∗|
∑
ci

|N(ci)| , (7)

and we indicate that the right-hand side Eq. (3) measures the average rate of
separation of two trajectories in phase space during one time step, we may argue
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that V μ̄ represents a mean-field approximation for the maximum number of cells
cj with cj ∈ N(ci) that are affected by a defect in ci during one subsequent time
step. Accordingly, we can define a function that maps a given μ̄ to the upper
bound on the MLE (λm), i.e.

λm(μ̄) = log
(
V μ̄

)
(8)

yields a mean-field approximation of λm(μ̄) if both μ̄ and V are known. We refer
to the outcome of Eq. (8) as a mean-field approximation, since it is derived using
the mean connectivity V , hence, it makes of the discrepancies between N |(ci)|,
and it is only valid for t → ∞. Clearly, the function given by Eq. (8) reaches
its maximum for μ̄ = 1, which can occur if and only if all cells cj in N(ci) are
affected by a defect present in ci at the t-th time step during one subsequent time
step, and this holds for all ci in T ∗. Furthermore, since μ̄ is confined between
zero and one, it is clear that the upper bound for the MLE drops as φi becomes
less sensitive, expressed in terms of μ̄, to its input s̃(N(ci), t).

4 Phenomenological Study of Irregular Totalistic CA

4.1 Conventions

Unless stated otherwise, the results presented in this section were obtained nu-
merically for T = 500, since by then both λ and μ̄ showed convergence in the
sense that an increase of T did not significantly alter the numerically assessed
values. Furthermore, periodic boundary conditions were applied in order to min-
imize boundary effects owing to the finiteness of T ∗ that, for the simulations
considered in this section, consisted of 675 irregular cells covering a unit square,
and were generated from random seeds in [0, 1]2 using a Voronoi tessellation. Us-
ing a Moore neighborhood, we obtained for this exemplary tessellation V = 6.97.
As an exemplary family of irregular totalistic CA we consider in the remainder of
this section 2-state, 5-sum irregular totalistic CA, for which S = {0, 1}. Hence,
in accordance with the enumeration scheme for irregular totalistic CA outlined
in Section 2 64 CA rules can be enumerated within this particular CA family.

4.2 Phenomenology

Figure 1 depicts the numerically evaluated MLE (λ) versus the geometric mean of
the proportion of non-zero entries in J (μ̄) of the 2-state, θ = 5 irregular totalistic
CA for which λ �= −∞, together with the function λm(μ̄) = log(V μ̄), which,
according to Eq. (8), for the tessellation used in these simulations equals λm(μ̄) =
log(6.97 μ̄). Besides, it displays a logarithmic function λm(μ̄) = log(V ∗ μ̄) that
was fitted to (μ̄, λ) data pairs. Since the (μ̄, λ) enclosed within the demarcated
area depicted in Fig. 1 clearly deviate from the overall trend that can be inferred
from this figure, these data pairs were excluded from the fitting procedure. As
such, we established V ∗ = 6.77 with a coefficient of determination R2 = 0.98.
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Fig. 1. Maximum Lyapunov exponent (λ) versus the geometric mean of the proportion
non-zero entries in J (μ̄) after 500 time steps, starting from a random initial condition.
Results and are only shown for those 2-state, θ = 5 irregular totalistic CA for which
λ �= −∞.

The close agreement between the fitted function and the function given by Eq. (8)
indicates the validity of the latter.

Though Figure 1 confirms the validity of Eq. (8), it also shows that the overall
upper bound on the MLE, which is given by Eq. (8) for μ̄ = 1 such that λm(μ̄) =
log(6.97) ≈ 1.94, is not attained by any of the 64 considered 2-state, 5-sum
irregular totalistic CA. More specifically, the highest MLE, equaling 1.83, is
found for rule 85, which, at the same time gives rise to the highest μ̄ that is
observed among the members of the CA family at stake, being μ̄ = 0.9. Hence,
given the fact that none of the CA contained in the considered CA family attains
the theoretical upper bound on μ̄, i.e. μ̄ = 1, meaning that there is no CA rule
for which Jij = 1 for all ci in T ∗ and cj ∈ N(ci), it is obvious that the overall
upper bound on the MLE cannot be reached by any of the investigated CA
rules. Yet, this finding gives inevitably gives rise to the question why none of
the CA evolves towards μ̄ = 1. This issue can be elucidated by reconsidering
the upper bound θ that was introduced in Section 2 to set up an enumeration
scheme for k-state irregular totalistic CA. This upper bound θ entails all σi for
which σi ≥ θ to be mapped to the same state, i.e. Ω (σi) = Ω(θ), and, as such,
makes the totalistic CA partially insensitive to its input. For instance, for the
CA family at stake, we chose θ = 5, such that Ω (σi) = Ω(5) for all σi ≥ 5.
Yet, seen the exemplary tessellation has V ≈ 7 the existence of cells ci ∈ T ∗ for
which σi ≥ 5 is certainly not unlikely, though this cannot be discerned by the
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CA since Ω (σi) = Ω(5). Clearly, the lower the upper bound θ is chosen with
respect to V , the larger becomes its influence on the CA’s dynamical properties.

Table 1, giving an overview of the λ and μ̄ that were assessed numerically for
the CA within the studied family of irregular totalistic CA, shows that 26 rules
give rise to λ = −∞ indicating that these CA evolve converging trajectories in
phase space. For comprehensiveness, we must underline that, in the framework of
this preliminary study, the values reported in Table 1 are obtained by considering
only one perturbed initial configuration s∗0 in order to curtail the amount of
computation time, whereas a profound study of a CA’s dynamical properties
should be based upon an ensemble of perturbed initial configurations [3].

Table 1. Dynamical properties of 2-state, θ = 5 irregular totalistic rules: sensitivity
to initial conditions, expressed in terms of λ, and the sensitivity of Ω to its input σi,
expressed by μ̄

rule μ̄ λ rule μ̄ λ rule μ̄ λ rule μ̄ λ

0 0 −∞ 16 0 −∞ 32 0 −∞ 48 0.06 −∞
1 0.14 −∞ 17 0.44 1.13 33 0.32 0.71 49 0.06 −∞
2 0.56 1.14 18 0.66 1.56 34 0.52 1.23 50 0.02 −∞
3 0.02 −∞ 19 0.54 1.39 35 0.34 0.88 51 0.02 −∞
4 0.53 1.38 20 0.86 1.81 36 0.37 1.44 52 0.02 −∞
5 0.21 1.27 21 0.9 1.83 37 0.22 1.22 53 0.02 −∞
6 0.42 0.85 22 0.69 1.59 38 0.21 1.04 54 0.02 −∞
7 0.03 −∞ 23 0 −∞ 39 0.18 1.01 55 0.02 −∞
8 0.01 −∞ 24 0.02 0.9 40 0.19 1.24 56 0 −∞
9 0.61 1.47 25 0.47 1.18 41 0.2 0.89 57 0 −∞
10 0.8 1.67 26 0.57 1.3 42 0.21 0.71 58 0 −∞
11 0.03 1.39 27 0.49 1.22 43 0.2 0.79 59 0 −∞
12 0.4 1. 28 0.31 0.79 44 0.18 0.01 60 0 −∞
13 0.45 0.96 29 0.36 0.91 45 0.18 0.02 61 0 −∞
14 0.34 0.74 30 0.25 0.65 46 0.17 0.01 62 0 −∞
15 0.07 −∞ 31 0.08 −∞ 47 0.16 0 63 0 −∞

5 Discussion

Despite the validity of Eq. (8) and the usability of Lyapunov exponents and
Jacobian-based measures was demonstrated for the family of 2-state, 5-sum to-
talistic CA, several issues concerning this approach are still awaiting closer in-
spection. First, the studied CA family encloses not more than 64 rules, whereas
the usefulness of the approach should be checked against a much broader family.
Second, the conclusions in this paper are drawn from one exemplary irregular
tessellation, which makes it debatable whether part of the CA behavior observed
is caused by the underlying tessellation, rather than by the CA’s intrinsic prop-
erties. Third, and closely related to the second issue, concerns the effects on CA



Towards Generalized Measures Grasping CA Dynamics 185

dynamics that may arise from using a regular rather than an irregular tessella-
tion. In forthcoming work we hope to shed some light on each of these issues,
and, by doing so, consolidating the approach discussed in this paper.

6 Conclusions

In this paper we proposed adequate measures, namely Lyapunov exponents and
Jacobian-based measure, that are able to grasp the dynamics of a CA regardless
the tessellation it is based upon, and to provide an objective means for comparing
the dynamics of CA across different tessellations of Rn. Further, the relationship
between both allows to obtain a mean-field approximation of the upper bound
on a CA’s Lyapunov exponent. The soundness of both measures is illustrated by
means of a simulation study in which we considered the family of 2-state, 5-sum
totalistic CA. In a forthcoming study, we employ both measures to quantitatively
describe the dependence of a CA’s dynamical properties on exploited tessellation.

Acknowledgments. The authors wish to acknowledge S. Wolfram and his co-
workers for their commitment in organizing the yearly New Kind of Science
Summer School, which served as a steppingstone for initiating this work.
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Abstract. We study the problem of targeted synchronization of sta-
ble chaotic extended systems, i.e., systems which are not chaotic in the
usual sense, but are unpredictable for finite perturbations. Examples are
cellular automata, which are completely discrete dynamical systems. We
show that the usual approach may lead to counter intuitive results, but
that it is possible to exploit the characteristics of the system in order to
reduce the distance between two replicas with less control.

1 Introduction

Control theory is a set of techniques for making a dynamical system behave in a
desired way by exerting an external effort. In the case of a minimum effort one
speaks of optimal control. It is obviously hard to reach the optimum limit, but
many investigations are devoted to minimize the control for a desired behavior.
In general, the problem of control of a dynamical system may be split into two
parts: the driving a system to a target area in phase space, and the stabilization
of a trajectory origiating from this area.

Chaotic systems are ideal targets for control: their sensitivity to small changes
may be exploited to drive them to the target area [1], after which chaos may
be suppressed in order to make them follow, for instance, a desired periodic
orbit [2].

The problem of driving a chaotic system may be seen as the problem of syn-
chronizing a replica with a “drive” system that happen to pass through the
desired area. This type of synchronization, that can be called master-slave, iden-
tical or replica synchronization [3], is quite different from the “spatial” synchro-
nization [4] investigated in extended systems.

While in the usual studies about synchronization one exerts little attention to
the optimization of coupling, when formulated as a control problem this becomes
a crucial issue.
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Most of the literature about control theory deals with low-dimensional,
smooth systems. In this paper we want to introduce the problem of driving
(synchronizing) extended, highly non-linear dynamical systems. There is a class
of systems, termed stable chaotic [5] which are not chaotic in the usual sense
of the sensitive dependence with respect to infinitesimal perturbations, but are
nonetheless unpredictable for finite perturbations. In particular, we shall con-
centrate on cellular automata (CA), which are discrete, deterministic dynamical
systems.

CA are widely used to model many systems in various fields, from computer
science to earth sciences, biology, physics, sociology, etc. They are usually defined
on a graph or a regular lattice, but may easily be extended to include mobile
agents. The modeling of a system using cellular automata is conceptually much
simpler than those using partial derivatives, and the evolution of such a system
is easily performed by a digital computer, without rounding errors. However,
for such systems continuity and smoothness (differentiability) do not apply. It is
therefore hard to extend the usual techniques used in control theory [7] and to
define quantities like Lyapunov exponents and chaotic trajectories. It is however
still possible to define the derivatives of discrete systems [8], which prove useful
in synchronization investigations [9].

In the case of replica synchronization, the “minimal strength” needed to syn-
chronize a system is related to its chaoticity, defined by the largest Lyapunov
exponent in low-dimensional systems. For extended systems, the correspondence
between the minimal strength and Lyapunov exponents may break down [6].

In synchronization experiments, the “force” is generally applied blindly, with-
out any relation with the dynamics. The corresponding synchronization effect
is analogous to a directed percolation phase transition. The two systems syn-
chronize when their difference goes to zero. Their difference grows due to their
“chaotic” dynamics, along the directions identified by the Jacobian matrix of the
evolution rule. The synchronization “pressure” reduces the paths along which a
difference can propagate. When this reduction overcomes the chaotic growth,
the system synchronizes.

In control problems, one wants to exploit the knowledge about a system. It is
therefore analogous to a synchronization problem of two different systems with
a “targeted” force, that tries to “kill” the growing directions of the difference
as soon as possible. We show how the concept of Boolean derivative and that of
Boolean Jacobian matrix can be used to achieve this goal.

2 Definitions

Let us start our presentation by considering two smooth, chaotic maps

x′ = f(x), y′ = g(y) + p(f(x) − g(y)),

where p is the control “strength”, f and g are two maps, x is valued at the
discrete time t, and x′ is valued at t + 1 (the same applies to y and y′). The x
map is the “master” and the y map is the “slave”. The separation between both
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maps is u = x − y and the goal of control is to keep h = |u| below a certain
threshold (which may be zero), using the minimum strength p. The two maps f
and g may be different (for instance, they may use different parameters) or the
same, in this case the synchronized state x = y is absorbing.

If the desired trajectory is a natural one for the slave, control is equivalent to
replica synchronization.

x′ = f(x), y′ = f(y) + p(f(x) − f(y)), u′ = (1 − p)
(
f(x) − f(y)

)
,

where u = x − y. For smooth maps, near the synchronization threshold pc, it is
possible to expand y(t) around the unperturbed trajectory x(t),

u′ = (1 − p)
(
f(x) − f(y)

)
# (1 − p)

df(x)
dx

u.

By iterating this map, one obtains the relation between synchronization thresh-
old pc and Lyapunov exponent λ, pc = 1 − exp(−λ). The synchronized state is
absorbing, since if for some time x(t) = y(t), then the control can be relaxed
and the trajectories stay synchronized. However, for chaotic systems, this state
is unstable.

Natural systems, however, are rarely low-dimensional. We can extend the
previous analysis by considering a lattice of coupled maps, that may be thought
as a stroboscopic view of a continuous system:

xi(t + 1) = f(g(xi−1(t), xi(t), xi+1(t))). (1)

where i = 1, . . . , N . The function g represents the coupling in the “space”, it can
be diffusive (linear) or highly nonlinear. The function f is the individual map,
and can lead, when uncoupled, either to fixed points, stable cycles or chaotic
oscillations. A perturbation may amplify exponentially in time by the action of
f , but only linearly in time through the coupling (propagation to neighboring
sites).

The dynamical properties of an extended system are generally analyzed by
means of the Lyapunov spectrum. Using vector notation, Eq. (1) can be written
as

x(t + 1) = F (x(t)), and Jij(x(t)) =
∂Fi(x(t))

∂xj

are components of the Jacobian matrix of F , i, j = 1, . . . , N . For an infinitesimal
perturbation

δ(t + 1) = J(x(t))δ(t).

For instance, the Jacobian matrix of one-dimensional systems with nearest neigh-
bor couplings has zero values except on the three central diagonals.

The eigenvectors of the Jacobian define the instantaneous tangent space of a
dynamical system. The eigenvalues ai of the time product

∏T
t=0 J(x(t)) of the

Jacobian matrices over a trajectory define the Lyapunov spectrum λ0 ≥ λ1 ≥
λ2 . . . with λi = log(ai)/T [10]. It is generally assumed that a system is chaotic
if λ0 > 0 and stable if λ0 < 0.
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Fig. 1. The map f10 for different values of the parameter a. For a > 1, this map
exhibits two attracting superstable fixed points.

The largest Lyapunov exponent λ0 (LLE) does not capture all the chaotic
characteristics of an extended system. In general, a weak diffusive coupling re-
duces the LLE (since diffusion limits the exponential expansion along tangent
space). Therefore, for small couplings, the maximum of chaoticity corresponds
to uncoupled maps, but this situation may correspond to the easiest synchroniz-
ability (see Section 3).

The scenario of extended systems may be more complex as we discuss below.
Consider the map f10 shown in Figure 1. This map is obviously stable for a > 1,
with two fixed points x0 = 0 and x1 = 1, with interleaved basins that act as a
sort of “frustration” when coupled,

xi(t + 1) = f

(
xi−1(t) + xi(t) + xi+1(t)

3

)
, (2)

i = 1, . . . , N with periodic boundary conditions. The system continues to be sta-
ble, exhibiting transient chaos (see Figure 2). After a transient, the eigenvalues
of the Jacobian matrix go to zero, and all Lyapunov exponents go to −∞. The
long-time evolution of the system is that of the cellular automaton rule 150 (see
Section 3), and is unpredictable for finite perturbations greater that 1/6 [11]. A
similar behavior can be found in other continuous systems without direct corre-
spondence to cellular automata [5]. Unpredictable stable systems are interesting
since the synchronized state is stable.
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Fig. 2. Time evolution (downward) of a lattice of coupled maps for a = 2. Color code:
white=0, black=1, gray/color=intermediate values.

3 Cellular Automata and Synchronization

Cellular automata (CA) are completely discrete systems, defined as in Eq. (1),
where xi and f can assume values in a discrete set. In particular, we shall limit
our study to Boolean CA, for which the set of discrete values is {0, 1}. Since the
function f is discrete, it can be defined by means of a complete enumeration of
outputs given all possible inputs (look-up table). We shall denote by r the size
of the neighborhood, i.e., the number of cells whose state constitutes an input
for the function f . Eq. (1) corresponds to r = 3. The case for which the function
f is symmetric with respect to all inputs defines totalistic CA, since in this case
one can consider that the value of the function f depends only on the sum of the
values of sites in the neighborhood. While generic CA with range r are defined
by 2r entries in the look-up table, totalistic CA are defined by r + 1 entries.
By arranging the output values of the look-up table as Boolean digits, one can
compactly represent a CA rule as an integer number R.

Cellular automata may exhibit a large variety of dynamical behaviors. The
number of possible states of a lattice of L Boolean cells is finite, and equal to
2L. Since the dynamics is deterministic, only limit cycles attractors are possible.
One can divide the possible scenarios according with the number of attractors,
the distribution of their basins and their period. For instance with r = 3, trivial
rules like rule 0 have only one attractor with a large basin and period equal to
one. The identity rule (which is not totalistic) has a large number of attractors
(2L), each one with one state and period 1. The majority rule 1100|2 = 12|10
has an intermediate number of fixed-point attractors with short transients (1).
“Chaotic” rules like rule 1010|2 = 10|10 exhibit cycles with very long period of
the order of the total number of possible configurations as in Figure 3. Since
in this case the period scales as an exponential of the size of the system, the
difference between a periodic and aperiodic trajectory is not relevant for large
systems (statistical quantities take similar values). Moreover, a defect or damage
typically spreads in the space-time pattern.
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(a)

(b)

(c)

Fig. 3. Typical space-time patterns of “chaotic” rules (time grows downward); (a):
r = 3, R = 10; (b): r = 3, R = 6; (c): r = 6, R = 30

It is possible [8] to extend the concept of derivative to cellular automata. The
Boolean derivative of F is the Jacobian matrix with components

Ji,j =
∂Fi(x)

∂xj
= Fi(x0, . . . , xj ⊕ 1, . . . , xN−1) ⊕ Fi(x0, . . . , xj , . . . , xN−1)

=

{
1 Fi changes when xj changes,
0 Fi does not change when xj changes,

(3)

where ⊕ denotes the sum modulo two.
Many “standard” results may be extended to Boolean derivatives, for instance

the Taylor expansion

f(x, y) =
(

∂f

∂x

)
x=y=0

x ⊕
(

∂f

∂y

)
x=y=0

y ⊕
(

∂2f

∂x∂y

)
x=y=0

xy.
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One can apply the “linear development” to discrete damages, and define a dis-
crete Jacobian matrix, Eq. (3). Similarly to continuous systems, it is possible to
define the largest Lyapunov exponent [9] related to the synchronization threshold
(see Section 3). In contrast to continuous dynamics, defects can self-annihilate,
so that the actual development of damage is different from the linearized one
and they coincide only in the limit of vanishing damage.

There are many ways of “pushing” together two extended replicas. One pos-
sibility is “uniform” pushing

yi(t + 1) = Fi(y(t)) + p (Fi(x(t)) − Fi(y(t))) ,

for which the analysis presented above applies, with pc = 1 − exp(−λ0). This
control is however quite difficult to be implemented experimentally in an ex-
tended system. Uniform synchronization of chaotic maps gives results similar to
low-dimensional systems: pc = 1 − exp(−λ0).

Another possibility is that of “pinching” synchronization

yi(t + 1) =

{
Fi(y(t)) with probability 1 − p,

Fi(x(t)) with probability p.

In pinching synchronization, one has the possibility of applying the synchroniza-
tion “strength” to a suitably chosen subset of sites. Pinching synchronization
depends on coupling: uncoupled chaotic maps synchronizes for pc = 0. In gen-
eral pc is larger for larger couplings [12].

In synchronization problems, synchronization is applied “blindly”. In control
problems, the goal is that of exploiting available information in order to apply
a smaller amount of control (or achieve a stronger synchronization).

4 Control of Cellular Automata

We study here the application of synchronization to extended systems

x′ = F (x), y′ = F (y) ⊕ p $ (F (x) ⊕ F (y)) ,

where $ is the Hadamard (component by component) product, and the effect
of synchronization pi ∈ {0, 1} may depend on the position i. Therefore, the
difference u evolves as

u′ = (1 − p) $
(
F (x) ⊕ F (y)

)
# (1 − p) $ Ju, (4)

in the limit of vanishing distance, where the matrix product Ju is computed
modulo two. The control parameter is the average synchronization effort k =
(
∑

i pi)/N . The efficacy of synchronization (order parameter) is the asymptotic
distance h = (

∑
i ui)/N .

It is possible in principle to find the absolute minimum of k by computing
the effects of all possible choices of pi, given an initial configuration x0 = x(0).
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Fig. 4. Plots of the different types of control for: (a) r = 3, R = 10 (linear rule); (b)
r = 3, R = 6 (nonlinear rule); (c) r = 6, R = 30 (nonlinear rule). For nonlinear rules,
control 2 is worse and control 3 is better than blind one (control type 1).
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This constitutes a great computational load. Since we are interested in possible
real-time applications, we impose that the choice of pi = 1 may only depend on
local information: the neighborhood configuration and a t = 1 time window.

We investigate three possible way of implementing a control p: (1) blindly with
probability p = k (standard pinching synchronization); (2) with a probability p
proportional to the sum of the first-order derivatives and (3) with a probability
p inversely proportional to the sum of first-order derivatives.

In order to keep the implementation simple, instead of fixing k and computing
the probability p, we let p be a free parameter, and measure the actual fraction
of synchronized sites k and the average asymptotic distance h. The previous
schemes only require information about x. If information about y or about the
damage distribution u is available, the cost k is reduced by a factor h, since in
this case we can apply the rule only when it is needed.

(a)

(b)

(c)

Fig. 5. Time evolution of defects for different types of control; (a): control 1; (b) control
2; (c): control 3, for r = 3 and R = 6, starting from the same configuration. The effective
probability p has been chosen so to have the same average control k in the three cases.
Clusters of defects for control 3 (c) are less dense than that of control 1 (a) and 2 (b).
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Simulation results are presented in Figure 4. As expected, for linear rules
there is no influence of the type of control, since all configurations have the
same number of derivatives. For nonlinear rules, the observed behavior is the
opposite of what is expected for continuous systems. Control 2, that minimizes
the distance h for vanishing number of damages according to Eq. (4), gives worse
results than the blind control 1. Control 3, inversely proportional to the sum of
first-order derivatives, gives better results than the blind control 1. This result
holds also for larger neighborhoods (Figure 4-c), but not for all rules.

This surprising effect may be due to the fact that defects self-annihilate, as
shown in Figure 5. In other words, we can exploit the characteristics of cellular
automata (and other stable chaotic systems) in order to achieve a better control
by exploiting the local contraction of the evolution rule.

5 Conclusions

Spatially extended stable systems (namely cellular automata) may exhibit un-
predictable behavior (finite-distance chaoticity). The pinching synchronization
threshold is related to this chaoticity. On the other hand, Boolean derivatives
and discrete Lyapunov exponents may be used to characterize this kind of chaos.
Synchronization may also be exploited for control in experimental situations. In
the control problem one aims at discovering a protocol that keeps the distance
h below a certain threshold with the minimum “effort”, given some constraints.
We have chosen to investigate the behavior of two control schemes based on the
local number of non-zero first-order derivatives, taking as reference the “blind”
pinching synchronization protocol.

We have shown that, differently from usual chaotic systems, one can exploit
self-annihilation of defects to obtain synchronization with a weaker control, cor-
responding to the case in which the control is inversely proportional to the
number of non-zero derivatives.
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Abstract. This paper presents results of the study on application of
two-dimensional, three-state cellular automata with von Neumann neigh-
borhood to perform pattern reconstruction task. Searching efficient cel-
lular automata rules is conducted with use of a genetic algorithm. Ex-
periments show a very good performance of discovered rules in solving
the reconstruction task despite minimum radius of neighborhood and
only partial knowledge about neighborhood states available. The paper
also presents interesting reusability possibilities of discovered rules in re-
constructing patterns different but similar to ones used during artificial
evolution.

Keywords: cellular automata, pattern reconstruction task, genetic
algorithm.

1 Introduction

Cellular automata (CAs) [11] are discrete dynamical systems studied in many
science disciplines, including computability theory, mathematics, physics, theo-
retical biology, etc. CA consists of identical cells arranged in a regular grid, in
one or more dimensions. Each cell can take one of a finite number of states and
has an identical arrangement of local connections with other cells called a neigh-
borhood, which also includes the cell itself. After determining initial states of all
cells (an initial configuration of a CA), states of cells are updated synchronously
according to a local rule defined on a neighborhood. When a grid size is finite,
which must be assumed in computer simulations, one must define boundary con-
ditions. There are many possible generalizations of the CAs concept including
� This research was supported by S/WI/2/2008.
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other types of rules (e.g. totalistic, probabilistic), other than a rectangular grid
(e.g. hexagonal), neighborhood changing in time and many others.

One of the most interesting feature of CAs is that in spite of their simple
construction and principle of operation, cells acting together can behave in an
inextricable and an unpredictable way. Although cells have a limited knowledge
about the system (only its neighbors’ states), localized information is propagated
at each time step, enabling more global behavior.

The main bottleneck of CAs is a difficulty of constructing CAs rules producing
a desired behavior. In some applications of CAs one can design an appropriate
rule by hand, based on partial differential equations describing a given phe-
nomenon. However, it is not always possible. In the 90-ties of the last century
Mitchell and colleagues proposed to use genetic algorithms (GAs) to discover
CAs rules able to perform one-dimensional density classification task [7] and the
synchronization task [4]. The results produced by Mitchell et al. were interest-
ing and started development of a concept of automating rule generation using
artificial evolution. Breukelaar and Back applied GAs [3] to solve the density
classification problem as well as AND and XOR problem in two dimensional
CAs. Swiecicka et al. used [10] GAs to find CA rules able to solve multiprocessor
scheduling problem. Bandini et al. proposed [1] to use several Machine Learn-
ing techniques such as GAs, Support Vector Machines and neural networks to
find automatically CA rules able to generate patterns, which are similar in some
generic sense to those generated by a given target rule.

In literature one can find several examples of CAs applications in image pro-
cessing [6,8] as well as evolving by a genetic algorithm CAs rules in image pro-
cessing task [9]. Some of them deal with image enhancement, detection of edges,
noise reduction, image compression, etc.

In this paper we present preliminary results of experiments concerning evolv-
ing CAs rules to perform pattern reconstruction task which is related to image
processing. The rest of the paper is organized as follows. Section 2 describes
pattern reconstruction task in context of CAs. Section 3 presents details of the
GA. Experimental results are reported in Section 4. The last section contains
conclusions and some remarks about future work.

2 Pattern Reconstruction Task

Digital image reconstruction is a process of restoring true image from its observed
but distorted version. Such distortions may include noise, blurred shapes or
damage in some regions. Image reconstruction is a very broad field and there are
many methods and algorithms concerning this subject described in the literature
[2]. This paper focus on one aspect of image reconstruction: complementing
missing parts of an image. We will call this task pattern reconstruction since
images used in experiments characterize some regularity, easy to observe when
looking at them.

We assume that a given pattern is defined on a two-dimensional array (grid
of cells) of size 10 × 10. Each element of an array can take one of two possible
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values: 1 or 2. Let us assume that some fraction q of values of grid elements is
not known. These are missing parts of a pattern. Based on such a not complete
pattern, it could be difficult to predict unknown states unless one is able to see
some dependencies between values of cells. Let us further assume that we have a
series of such not complete patterns, created from one given pattern in a random
way.

Pattern reconstruction task is formulated as follows. We want to find a CA
rule which is able to transform an initial, not complete configuration to the final
complete configuration.

Let us construct a two-dimensional CA of size 10 × 10, in order to describe
our pattern. Our CA will be a three-state: unknown values of grid elements will
be represented by state 0. That means that at each time step every cell of our
CA can take a value from the set {0, 1, 2}.

In the context of CAs our task can be described as follows. Let us assume
that we have a finite number of random initial configurations, each of which
is an incomplete pattern. We want to find a CA rule that is able to converge
to a final configuration identical with a complete pattern. That means, a rule
that will be able to reconstruct a pattern. We also assume that a complete
pattern is not known during searching process. The only data available during
searching process is a series of incomplete patterns, randomly created from one
given pattern. It is worth mentioning that related to our task is a problem from
data mining field described in [5], where a heuristic CA rule was proposed.

Figure 1 presents the example of a pattern of size 10 × 10 (on the left). Grid
elements with value 1 are represented by grey cells and elements with value 2
are represented by black cells. On the right side of this figure one can see the
example of this pattern with 50 states unknown. These are represented by white
cells. Indexes of unknown elements were generated randomly. Such an incomplete
pattern is interpreted as an initial configuration of a CA.

Fig. 1. The examples of a complete pattern (on the left) and an incomplete one (on
the right). The incomplete pattern has 50 states unknown (q = 0.5).

To search for a CA rule capable of performing pattern reconstruction task,
we must first define a neighborhood and boundary connditions. Assuming von
Neumann neighborhood, with three possible cell states we have 35 = 243 pos-
sible neighborhood states. Thus, the number of possible rules equals to 3243,
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which means enormous search space. In our experiments we assume null bound-
ary conditions: our grid is surrounded by dummy cells always in state 0. The
interpretation of this assumption is that we do not know the state of these cells.
In fact, they are not a part of our pattern.

3 The GA for Discovering CAs Rules

The proposed CA-based algorithm will run in two phases: the learning phase
and the normal operating phase.

3.1 Learning Phase

The purpose of this phase is searching for efficient CAs rules with the use of the
GA. The GA starts with a population of P randomly generated 243-bit CA rules.
Five cells of von Neumann neighborhood are usually described by directions on
the compass: North (N), West (W), Central (C), East (E), South (S). Using this
convention, the bit at position 0 in the rule (the top bit in the bar in Fig. 2)
denotes a state of the central cell of the neighborhood 0000000 in the next time
step, the bit at position 1 in the rule denotes a state of the central cell of the
neighborhood 0000001 in the next time step and so on, in lexicographic order of
neighborhood.

Fig. 2. The neighborhood coding (on the left) and the fragment of the rule - the
chromosome of the GA (on the right, in a bar)

The next step is to evaluate individuals in the initial population for the abil-
ity to perform pattern reconstruction task. For this purpose, at each generation,
starting from a complete pattern, we randomly generate an incomplete pattern
with q states unknown. This process proceeds as follows. We have a complete
pattern. In single step we randomly select a single cell which has not been previ-
ously chosen and this cell changes its state to 0 (unknown state). We repeat these
steps until we chose q· 100 cells. All these cells will be in the state 0 (unknown).

Then each rule in the population is evolved on that randomly generated in-
complete pattern, considered as an initial configuration of CA, for t time steps.
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At the final time step we compute the number of cells in the grid, with a state
different from 0, that have the correct state. If a given cell is in the state 1 in an
initial configuration, then the correct state for this cell in the final configuration
is 1. Similarly, if a given cell is in the state 2 in an initial configuration, then
the correct state for this cell in the final configuration is 2. The number of cells
in a final configuration with the state 1 which are in the correct state will be
denoted as n 1 and the number of cells in a final configuration with the state
2 which are in the correct state will be denoted as n 2. Since we compute the
number of correct states, we deal with maximization problem. The fitness f of
a rule i, denoted as fi, is computed according to formula:

fi = n 1 + n 2 − n 0 , (1)

where n 0 denotes the number of cells in the final configuration with the state 0.
Subtracting the number of cells with the state 0 is a kind of penalty factor and
its task is to prevent from evolving to the final configuration with many cells in
the state 0. It would be unfavorable situation from the point of view of pattern
reconstruction task. The maximal fitness value equals to the number of cells of
known states and in the case of a CA composed of 100 cells equals to 100− q· 100.

Once we have the genetic representation and the fitness function defined,
the GA starts to improve the initial population through repetitive application
of selection, crossover and mutation. In our experiments we used tournament
selection: individuals for the next generation are chosen through P tournaments.
The size of the tournament group is denoted as tsize.

After selection individuals are randomly coupled and each pair is subjected to
one-point crossover with the probability pc. If crossover is performed, offspring
replace their parents. On the other hand, parental rules remain unchanged.

The last step is a mutation operator. It can take place for each individual in
the population with the probability pm. When a given gene is to be mutated,
we replace the current value of this gene by the value 1 or 2, with equal prob-
ability. Omitting the value 0 has the same purpose as described previously: it
prevents from evolving rules with many 0s. Such rules are more likely to pro-
duce configurations containing cells with the state 0. It would be unfavorable
situation.

These steps are repeated G generations. The pseudocode of the GA is pre-
sented as Algorithm 1.

Algorithm 1: The GA discovering CAs rules
input a pattern
create an initial population of P randomly generated rules
for j:=1 to G do
begin
randomly generate a pattern with q states unknown
for i:=1 to P do
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begin
run rule i on this pattern for t time steps
compute fitness value of rule i

end
for i:=1 to P do
begin
randomly choose tournament group from the old population
copy the best rule to the next population
return chosen rules to the old population

end
randomly couple P individuals
cross each couple with a given probability
mutate rules with a given probability

end

3.2 Normal Operating Phase

At the end of the learning phase we have a population of discovered rules which
were trained to perform pattern reconstruction task. Let us remind that a com-
plete pattern was not presented during this phase. In each generation, rules were
learned on an incomplete version of a given pattern. To investigate a real quality
of discovered rules, we run each rule on 1000 random initial configurations with
q states unknown. For a given final configuration produced by rule i, we count
the fraction of cells’ states identical with these in a complete pattern. This value,
denoted as ti, is computed according to the formula:

ti =
n 1 + n 2

100
. (2)

An ideal rule will evolve an initial configuration to the final configuration with
all cells in correct states. Thus, the maximum value ti that such an ideal rule can
obtain is 1.0. That means that the final configuration is identical with a complete
pattern. Since we test each rule on 1000 random initial configurations, the final
value for a rule is the rule’s average result over 1000 initial configurations. We
denote this value as t̄i.

4 Experimental Results

We performed experiments on four patterns presented in Figure 3. They were
denoted as pattern 1, pattern 2, pattern 3 and pattern 4, respectively. For each
pattern, we tested the performance of the GA for three values of q: 0.1, 0.3 and
0.5. The maximal number of time steps t during which a CA has to converge to a
desired final configuration was set to 100. Experiments showed that such a value
is large enough to let good rules to converge to a desired final configuration.
On the other hand, when a CA converged to a stable configuration earlier, the
process of CA run was stopped.
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The parameters of the GA were the following: P = 200, tsize = 3, pc =
0.7 and pm = 0.02. Higher than the usual mutation rate results from rather
long chromosome and an enormous search space. Experiments show that slightly
greater pm helps the GA in the searching process. The searching phase was
conducted through G = 200 generations. Increasing the number of generations
had no effect on improving results.

Fig. 3. Four patterns used in experiments: pattern 1, pattern 2, pattern 3, pattern 4
(from the left to the right)

As an example, figures 4 and 5 present typical cases of the GA run for pattern
2 and pattern 4. On each plot we can see the fitness value of the best individual
in a given generation, for three values of q.
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Fig. 4. The GA runs for pattern 2

The maximal fitness value for q = 0.1 equals to 90, for q = 0.3 equals to 70
and for q = 0.5 equals to 50. One can see that in case of q = 0.1, the GA is able
to find a rule with the maximal fitness value. However, in some cases a fitness
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Fig. 5. The GA runs for pattern 4

value of the best individual slightly oscillates around its maximal value. The
main reason is that the fitness function is stochastic: a rule might have different
fitness values in each generation, depending on a concrete initial configuration.

As q increases, the quality of discovered rules usually slightly decreases, as
was to be expected. Higher values of q mean more unknown states in an initial
configuration (and less states known). In such cases, the CA rules may have
not sufficient number of opportunities to be perfectly trained. For q = 0.5 the
worst fitness value was observed for pattern 2. In last generations this value was
oscillating between 40 and 43. On the other hand, rules discovered for pattern 4
seem to be perfect. In this case, the GA quickly discovers rules with the maximal
fitness value. What is interesting is that for this pattern the value of q has no
effect on quality of discovered rules.

The real quality of discovered rules is measured during the normal operating
phase. For each pattern, we tested the final population discovered by the GA on
1000 random initial configurations. For each rule, t̄i was computed. The results
of the best rules (from the whole population), denoted as ¯tbest are gathered in
Table 1.

These data confirm results from the learning phase but they are more accurate
since CA rules were tested on 1000 random initial configurations. Slight changes
of these values may occur while another testing since initial configurations were
created in a random way.

Let us look closely at the performance of the best rules from the normal
operating phase. For example, let us take the best rule found after this phase for
pattern 4 and for q = 0.5. This rule (the chromosome of the GA) is presented
in Tab. 2. Figure 6 presents the initial configuration of the CA and further
configurations in time steps: 1, 29 and 39.
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Table 1. ¯tbest values for different patterns and different q values

q=0.1 q=0.3 q=0.5

pattern 1 0.995 0.960 0.914

pattern 2 0.971 0.918 0.760

pattern 3 0.966 0.925 0.885

pattern 4 1.0 1.0 1.0

Table 2. The chromosome of the best rule found for pattern 4 and for q = 0.5

2221221211212112221221122211222111222111111122112112221222222111212222112222
1121222211211211221112211121122221122222121222221222111222221222112122222122
1222121222222212212211211212211221211111112212111211212122211211121122222221
111211211122111

Fig. 6. Configurations of the CA in time steps: 0, 1, 29 and 39 (from the left to the
right)

Since q = 0.5, the initial configuration has 50 cells of unknown state (state 0).
In step 1 all cells with unknown state are eliminated. However, the configuration
is not proper yet. Looking closely at Figure 6 one can see that in intermediate
time steps, some cells which states are determined in the initial configuration,
change their states. From the point of view of our task this situation seems to
be undesirable. In spite of this, in subsequent time steps the CA rule corrects
cells’ states and finally, at time step 39, the CA converges to desired configura-
tion. This final configuration is identical as pattern the 4, what means perfect
reconstruction. This rule obtained ¯tbest value equal to 1.0

Our previous work [10] concerning discovery by GA of CA rules, conducted
for multiprocessor scheduling task, showed interesting possibilities of discovered
rules. Namely, rules discovered for one problem can be successfully used for
problems similar to a given one. Following those results we conducted a sequence
of experiments in which rules discovered for one pattern were used to reconstruct
another pattern, omitting the learning phase. Patterns used in these experiments
are presented in Figure 7. These patterns, named as pattern 1’, pattern 2’,
pattern 3’ and pattern 4’ were created on the base of patterns: 1, 2, 3 and 4,
respectively. Each of these new patterns is in some way similar to its original.
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Fig. 7. Four patterns used in experiments: pattern 1’, pattern 2’, pattern 3’, pattern
4’ (from the left to the right)

In the normal operating phase we tested populations of rules discovered for
four patterns from Figure 3 on their modified patterns presented in Figure 7.
More precisely, rules discovered for pattern 1 were tested on not complete pattern
1’, etc. In our experiments we used q = 0.1. The results of the best rules, denoted
as ¯tbest, for pattern 1’, pattern 2’, pattern 3’ and pattern 4’ were the following:
0.991, 0.971, 0.969 and 0.694, respectively. From these results one can conclude
that some of the rules are more general (rules for patterns 1,2 and 3) and some
are not (rules for pattern 4). This experiment confirms possibilities of discovered
rules in solving new problems [10], which are similar to the previosly solved.

5 Conclusions

In this paper we have presented a new task for CAs: pattern reconstruction
task. The aim of the work was finding a CA rule which is able to transform an
initial, not complete configuration to the final complete configuration. Results
of presented experiments show that the GA is able to discover rules suitable to
solve this task for a given instance of a problem. Found rules perform well even
when the number of unknown cells is relatively high. The issue which must be
examined closely is the influence of the neighborhood type and perhaps other
kind of rules on quality of results.

Another subject is the scalability of discovered rules. How will rules discovered
for a given grid size perform on larger grids? On the base of the CAs behavior one
may expect that such scalability exists, but this must be confirm by experiments.

An important subject addressed in the paper is reusing discovered CA rules.
Experiments show that during learning phase rules store some kind of knowl-
edge about pattern which is reconstructed. This knowledge can be successfully
reused in the process of reconstructing other patterns, which are similar to the
previously reconstructed. Another issue is the term of similarity in the context
of patterns. The idea of proper and thoughtful reusing of discovered rules will
be the subject of our future research.

Since results of conducted experiments are encouraging, we also plan to apply
our algorithm in similar, more practical and realistic problems.
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Abstract. Generalizing the Abelian Sandpile Model by Bak, Tang and
Wiesenfeld to general undirected graphs, one gets a variation of the Chip
Firing Game intoduced by Chung and Ellis in 2002, which still contains
most of the nice algebraic properties of the Abelian Sandpile Model. Par-
ticularly the group structure of the recurrent configurations is retained.

Using a Markov Chain, we show how a pair consisting of one minimal
recurrent configuration and one nearly minimal recurrent configuration
can be constructed whose sum is the same as the sum of a given pair of
recurrent configurations.

Computer simulations of this Markov Chain for the Abelian Sandpile
Model suggest that the number of steps needed to reach a final pair usu-
ally is proportional to the width of the grid, but can become proportional
to the square of the width if one chooses particular configurations.

Keywords: Chip Firing Games, Abelian Sandpile Model, Minimal Re-
current Configurations, Addition of Recurrent Configurations.

1 Introduction

The Abelian sandpile model, introduced by Bak, Tang and Wiesenfeld in 1987
[1] as a model to explain 1

f noise, was generalized by Chung and Ellis in 2002 [2]
to undirected graphs as a variant of Chip Firing Games. Chip firing is a game
played on an undirected graph, where a vertex v containing at least deg(v) can
“fire” and give one of its chips to each of its adjacent vertices.

Chung’s and Ellis’ innovation was the idea of taking chips out of the system
when they fall onto a special subset of vertices, which brings this model closer
to the notion of the sandpile model where grains of sand fall of the edge of the
grid.

As proven in [2], many of the algebraic properties Dhar found for the sandpile
model in [3] can directly be transferred to these Chip Firing Games (CFGs),
among them the fact that the set of recurrent configurations is a group.

The group operation consists of component wise adding two configurations
and then letting vertices fire until no firings are possible anymore. We show for
each pair of recurrent configurations c, d that there exists a minimal recurrent

S. Bandini et al. (Eds.): ACRI 2010, LNCS 6350, pp. 209–218, 2010.
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configuration, i.e. a recurrent configuration from which no chip can be taken
without getting a non-recurrent configuration, and an almost minimal recurrent
configuration such that the sum of these configurations is the same as the sum of
c and d, and that there are fewer firings until a stable configuration is reached.

First, we will introduce the basic concepts for Chip Firing Games, before ex-
amining the relation between minimal recurrent configurations and the sequence
in which the vertices fire for recurrent configurations.

We then define and theoretically analyze a Markov Chain before giving results
obtained when simulated this Markov Chain for sandpile models of different sizes.

2 Preliminaries

2.1 Basic Definitions

An undirected graph U = (V ∪ S, E) is called a CFG-graph iff V and S are
disjoint, each vertex v ∈ S is adjacent to exactly one vertex which lies in V and
there exists a path from each vertex v ∈ V to a vertex s ∈ S.

A Chip Firing Game (CFG) on a CFG-graph defines a transition rule for
configurations c : V → N0:

If a vertex v ∈ V satisfies c(v) ≥ deg(v), v is called a critical vertex and we
can let v ”fire” and get a new configuration τv(c) : V → N0 defined through

∀v′ ∈ V : τv(v′) =

⎧⎪⎨
⎪⎩

c(v′) − deg(v′) if v′ = v

c(v′) + 1 if {v, v′} ∈ E

c(v′) otherwise.

We can interpret a configuration c as assigning each vertex a number of chips;
if a vertex v fires, it gives deg(v) chips to its neighbors, which means one chip
to each adjacent vertex.

Note that chips which are given to vertices in S simply vanish from the game.
A configuration which contains a vertex which is able to fire is called criti-

cal ; a configuration which is not critical is called stable, and the set of stable
configurations is denoted CU .

2.2 Relaxations of Configurations

It has been shown (for example in [2]) that, starting from a critical configuration,
after a finite number of firings of critical vertices we reach a stable configuration.
We call the process of these firings the relaxation of c and the sequence of vertices
which fired the firing sequence of c.

It is also shown in [2] and [3] that the stable configuration reached does not
depend on the sequence of firings - there exists a unique stable configuration crel

a given critical configuration c relaxes into.
What is more, the number of times a given vertex fires during the relaxation of a

critical configuration also only depends upon the critical configuration in question,
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as also shown in [2]; the vector which assigns each vertex the number of times it
fires during the relaxation of c is called hte firing vector of c, denoted fc.

Throughout this paper, when comparing different firing vectors or different
configurations, we will use the relation ≤ defined through c ≤ d ⇐⇒ ∀v ∈ V :
c(v) ≤ d(v).

2.3 The Operation ⊕ and Recurrent Configurations

We define the operation ⊕ on CU through

∀c, d ∈ CU : c ⊕ d = (c + d)rel = c + d − Bfc+d.

(The operation + is the usual pointwise addition of functions.)
Then ⊕ is commutative and associative.
The introduction of the operation ⊕ also allows us to state a useful fact about

the firings when we consider the firing vectors of sums of three configurations:

∀c, d, e ∈ NV : fc+d+e = fd+e + fc+(d⊕e),

which was proven in [5].
In other words, if one lets the sum c + d + e relax, the procedure can be seen

as first relaxing d + e and ignoring c until one gets c + (d ⊕ e), which then gets
relaxed until c ⊕ d ⊕ e is reached.

A very nice property of the operation ⊕ is that there exists a subset R of
configurations in CU such that (R,⊕) is an Abelian group.

The largest subset with this quality is the set of recurrent configurations on
U , denoted RU .

From now on, let b ∈ CU be the configuration which assigns to each vertex v
the number of vertices in S which are adjacent to v. The configuration b is also
called the burning configuration of U .

Generalizing the Dhar’s Burning Algorithm from [4], we get the following
statement which makes it easy to find out whether a given configuration c is
recurrent or not:

∀c ∈ CU : c ∈ RU ⇐⇒ the firing sequence for c + b contains each vertex
exactly once.

(Note that for all c ∈ CU the firing sequence of c + b contains each vertex at
most once.)

For the rest of this paper, we will say that a sequence F of vertices is a firing
sequence for a recurrent configuration c if F is the firing sequence for c + b.

We will take a good look at such firing sequences containing each vertex
exactly once in the next section.

3 Firing Sequences and Minimal Recurrent
Configurations

We say a recurrent configuration c is a minimal recurrent configuration iff ∀v ∈
V : c− ev /∈ RU is true, i.e. if no chip can be taken away from the configuration
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without the result not being a recurrent configuration, and denote the set of all
minimal recurrent configurations RU

min.
For a sequence F = (v0, . . . , v|V |−1) which contains all vertices in V exactly

once we define the configuration cF through ∀v ∈ V : cF (v) is the number of
vertices adjacent to v which come after v in F .

3.1 Relation between Firing Sequences and Minimal Recurrent
Configurations

Let F = (v0, . . . , v|V |−1) be a sequence of vertices which contains all vertices in
V .

Then cF ∈ C ⇒ cF ∈ RU
min is true and F is a firing sequence of cF .

Proof: In this proof, we will call the vertices adjacent to v which come be-
fore/after v in F the F -predecessors/successors of v.

First, we show that cF is a recurrent configuration if c ∈ CU .
For v ∈ V , we define n+(v) as the number of F -predecessors of v, n−V as the

number of F -successors of v and ns(v) as the number of neighbors v has in S.
Then deg(v) = n+(v) + n−(v) + ns(v) holds.
Consider the configuration d = cF + b. According to definition, the number of

chips on a vertex v is n+(v) + ns(v).
This means that v still needs exactly n−(v) chips to become critical.
This means that F is a firing sequence for d: By the time the firing sequence

says a vertex v should fire, n− neighbors of v already will have fired, meaning
that v has become critical at that point and can fire.

As cF ∈ CU and because all vertices fire during the relaxation of cF +b, cF ∈ R
holds.

We now show that for all v ∈ V the configuration cF − ev cannot lie in RU ,
which is obvious if cF (v) = 0.

If cF (v) > 0, we consider the set N of all vertices u ∈ V for which a path
(v = v0, . . . , vk = u) exists, such that vi+1 always is a F -successor to vi.

Note that v ∈ N when one considers a path of length zero, and that if a vertex
u lies in N , then all F -successors of u also lie in N .

Suppose that a vertex in N can fire during the relaxation of d = cF − ev + b.
The vertex u shall be then be the first vertex in N to fire. As all F -successors
of u also lie in N , none of these neighbors can fire before u fires.

If u = v there have to be n− + 1 neighbors of v which fire before v. As there
are only n− neighbors which do not lie in N , this is not possible.

If u �= v, we consider the path (v = v0, . . . , vk = u) as described above. This
means that all vertices of the path lie in N , and especially vk−1 which is an
F -predecessor to u.

Therefore u can have at most n− − 1 neighbors which do not lie in N , and
therefore cannot become critical during the relaxation of cF − ev + b.

As there are vertices which cannot fire during the relaxation of cF − ev + b,
cF − ev cannot be recurrent.

If cF ∈ CU we therefore get cF ∈ RU
min. �
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Note that we also found that each vertex v contains exactly deg(v) chips when
it is its turn to fire during the relaxation; this is true for all minimal recurrent
configurations.

3.2 Switching Chips in Minimal Recurrent Configurations

If c ∈ RU
min is a minimal recurrent configuration and the vertex v ∈ V satisfies

c(v) + b(v) < deg(v) and c(v) < deg(v) − 1, then there exists a vertex v′ inV
with {v, v′} ∈ E such that c + ev − ev′ ∈ RU

min holds.
In other words, one can take one chip off v′ and add it to v and still gets a

minimal recurrent configuration as a result.
The idea is to take the firing sequence F = (v0, . . . , v|V |−1) which con-

tains v = vi for some i, choose vj = v′ as the last vertex in F
with {v, v′} ∈ E which comes before v in F and then set F ′ ==
(v0, . . . , vi, vj , vj+1 . . . , vi−1, vi+1, vi+2, . . . , v|V |−1).

It is easy to verify that F ′ is the firing sequence for c + ev − ev′ , which proves
the claim.

4 Markov Chain on Triples of Configurations

We define the set T = RU
min ×RU

min × CU and the relation → on the set T by

∀γ1 = (c1, c2, d), γ2 = (c′1, c
′
2, d) ∈ T : γ1 → γ2 ⇐⇒ c′2 = c1 ∧ c2 ⊕ d = c′1 + d′

The relation →∗ is the reflexive transitive closure of →.
Note that, as a firing sequence for a recurrent configuration usually is not

unique, there can be different successors to a given triple γ ∈ T .
For all triples γ = (c1, c2, d), γ′ = (c′1, c′2, d′) ∈ T with γ → γ′ we can show

that c1 ⊕ c2 ⊕ d = c′1 ⊕ c′2 ⊕ d′ and fc1+c2+d = fc′1+c′2+d′ + fc2+d (and therefore
fγ′ = fc′1+c′2+d′ ≤ fc1+c2+d = fγ) is true.

In other words, the number of firings the sum of the three configurations
causes decreases while the relaxed sum stays the same.

The claims follow directly from the fact that c′1 + c′2 + d′ = c1 + (c2 ⊕ d).

4.1 Recurrent Triples

We now define a Markov Chain with elements in T with a starting triple γ0 =
(c0

1, c
0
2, d

0), where the successor to each element γ is one of the triples γ′ satisfying
γ → γ′, and consider the set of recurrent elements of this Markov Chain, called
recurrent triples.

All recurrent elements γ ∈ T of the Markov Chain which are eventually
reached satisfy ∀γ′ ∈ T : γ →∗ γ′ ⇒ fγ = fγ′ , as fγ is monotonically decreasing
and therefore γ′ → γ would not be possible if fγ �= fγ′ would be true.

It follows that for a recurrent triple (c1, c2, d) c2 + d is a stable configuration,
since the firing vector for any successor would decrease otherwise.
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4.2 Final Triples

From now on, the subgraph of the undirected CFG-graph U = (V ∪S, E) induced
by V shall be bipartit, with V0, V1 ⊆ V being subsets which satisfy

V0 ∩ V1 = ∅, V0 ∪ V1 = V ∧ ∀{u, v} ∈ E : u ∈ V0 ⇐⇒ v ∈ V1.

We define the configuration b′ ∈ C through ∀v ∈ V : b′(v) = max(b(v) − 1, 0)
and outline how to show that for a recurrent triple (c1, c2, d) ∈ T there exist a
triple (c′1, c

′
2, d

′) ∈ T with (c1, c2, d) →∗ (c′1, c
′
2, d

′) satisfying d′ ≤ b′.
(We will call triples (c′1, c′2, d′) ∈ T satisfying d′ ≤ b′ final triples.)
First, one shows that if (c1, c2, ev) ∈ T is a recurrent triple and one always

chooses a successor to (c′1, c
′
2, ev′) to a triple (c̄1, c̄

′
2, ēv′) in such a way that v

and v′ are adjacent, one eventually reaches a triple (c̃1, c̃2, eu) for which this
is not possible. To do so, one shows that the function Θ : N0 → N0, i �→∑

v∈Vi mod 2
ci
1(v) +

∑
v∈V(i+1) mod 2

ci
2(v) decreases in each step (this is where it

is important that U is a bipartite graph); as Θ(i) can never be negative there
can only be finite many steps before one cannot find a successor with the given
property.

Subsection 3.2 and the fact that the sum of the last two cmponents of the
last triple (c̃1, c̃2, eu) do not cause any firings imply that b(u) ≥ 2 and c̃2(u) =
deg(u) − b(u).

It is easy to verify that for d1 ≤ d2 the implication

(c1, c2, d1) →∗ (c′1, c
′
2, d

′) ⇒ (c1, c2, d2) →∗ (c′1, c
′
2, d

′ + (d2 − d1))

is always true if (c1, c2, d2) is recurrent.
Lastly, we do an induction over the number k of chips d contains to show that

we can reach a final triple from each recurrent triple (c1, c2, d):
If k = 0, (c1, c2, d) already is a final triple.
If k ≥ 1, we can take a configuration d′ ≤ d containing k chips and a vertex

v ∈ V such that d = d′ + ev.
Our induction hypothesis tells us we can reach a final triple (c′1, c

′
2, d

′′) from
(c1, c2, d

′), and therefore (c′1, c
′
2, d

′′ + ev) is reachable from (c1, c2, d).
From (c′1, c

′
2, ev) we can reach a final triple (c̄1, c̄2, ev′), and therefore

(c̄1, c̄2, ev′ + d′′) is reachable from (c′1, c
′
2, d

′′ + ev) and therefore also from
(c1, c2, d).

Using the fact that for u �= v′ (d′′+ev′)(u) = d′′(u) ≤ b′(u) holds according to
our induction hypothesis, that c̄2(v′) = deg(v′)− b(v′) and that c2(v′)+d′′(v′)+
ev′ + v′ ≤ deg(v′) holds to show that d′′ + ev′ ≤ b′(v) is true and we reached a
final triple.

4.3 Corollaries

a) For all recurrent configurations c1, c2 ∈ RU there exist two minimal recurrent
configurations c′1, c′2 ∈ RU

min and a configuration d′ ∈ C, d′ ≤ b′ such that
c′1 ⊕ c′2 ⊕ d′ = c ⊕ d ∧ fc′1+c′2+d′ ≤ fc+d gilt.
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In other words, we can always find a minimal recurrent configuration and
a recurrent configuration which is ”almost” a minimal recurrent configuration
whose sum relaxes to c ⊕ d with at most as many firings as there are during
the relaxation of c + d.

This triple is a final triple one can reach from the starting triple (c′1, c
′
2, d) ∈

T with c′1 ≤ c1, c
′
2 ≤ c2 and d = (c1 − c′1) ⊕ (c2 − c′2). �

b) Let c ∈ RU be a recurrent configuration and SC = {(c1, c2) ∈ RU × RU |
c1 ⊕ c2 = c} the set of all pairs of recurrent configurations whose sum relaxes
to c.

There exist exist two minimal recurrent configurations m1, m2 ∈ RU
min as

well as a configuration d ≤ b′ such that (m1, m2 + d) ∈ Sc and the number
of firings during the relaxation of m1 + (m2 + d) is minimal among all pairs
(c1, c2) ∈ Sc.

Note that if ∀v ∈ V : b(v) ≤ 1, the configuration d is always 0 and
we get the statement that there are two minimal recurrent configurations
m1, m2 ∈ RU

min such that (m1, m2) ∈ Sc and the number of firings during
the relaxation of m1 + m2 is minimal for all pairs in Sc.

This means that it is sensible to look for the pair (d1, d2) whose relaxed
sum is a given recurrent configuration c and whose sum’s relaxation contains
as few firings as possible among all pairs in Sc among the set of all pairs of
minimal recurrent configurations whose relaxed sum is c (or c−d′ for different
configurations d′ ≤ b′ if there exists a vertex v ∈ V with b(v) ≥ 2).

We can prove this by using Corollary a) for a pair (c1, c2) ∈ Sc for which
the number of firings is minimal. �

5 Time Complexity

In this section, we look at the number of steps needed to reach afinal triple
(c′1, c

′
2, d

′) ∈ T when starting with an initial triple (c1, c2, d).
Therefore, we have to specify how we compute successors of a triple (c1, c2, d)

∈ T , which leads to an implicit assignment of transition probabilities for the
Markov Chain.

5.1 Choosing Random Firing Sequences

Given a recurrent configuration c ∈ RU , we compute a firing sequence for c as
follows:

We set the configuration d0 = c + b and create a list L0 of all vertices in V
satisfying d0(v) ≥ deg(v).

As long as di is critical, we randomly choose a vertex vi from Li (all vertices
shall be chosen with the same probability) and let vi fire to get di+1, with Li+1

being the list of all vertices critical in di+1.
Note that each firing sequence has a probability > 0 of being chosen in the

end, although not all firing sequences necessarily have the same probability of
being chosen.
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5.2 Choosing Direct Successors

Given a triple (c1, c2, d) ∈ T , we compute the direct successor (c̄1, c̄2, d̄) as fol-
lows:

– First, we set c̄2 = c1.
– Then we compute c2 ⊕ d and randomly choose a firing sequence F of c2 ⊕ d.
– We set c̄1 = cF and d̄ = (c2 ⊕ d) − cF .

Note that all triples (c̄1, c̄2, d̄) with (c1, c2, d) → (c̄1, c̄2, d̄) have a non-zero
possibility of being chosen, although not all possible successors are equally likely
to be chosen.

For the computations, the graph U = (V ∪ S, E) will always be a square grid
with S consisting of vertices added to the vertices on the edges of the square
(which means that vertices in the corners of the grid have two adjacent vertices
in S). We say U is an n × n grid if the subgraph of U induced by V is an n × n
grid, i.e. we ignore S.

We will look at different sizes of the grid and how the number of successors one
has to compute before getting a final triple (c′1, c

′
2, d

′). At first, we will randomly
initiate the starting triple (c1, c2, d) ∈ T ; then we will consider a special case,
where the number of steps is far higher than for random starting triples.

5.3 Random Initial Triples

We randomly choose a firing sequence for the configuration m ∈ RU satisfying
∀v ∈ V : m(v) = deg(v) − 1 = 3. Then every firing sequence of a recurrent
configuration is also a firing sequence of m, which means that all firing sequences
have a non-zero probability of being chosen.

We set c1 = cF .
Next, we add a number k of chips to the empty configuration, each one of

them is added to a vertex randomly chosen, with all vertices of V having the
same chance of being chosen.

If k was chosen large enough, the relaxed configuration c′ will be recurrent,
and we will choose c2 and d in such a way that c2 + d = c′ is true.

To get the configurations c2 and d, we randomly choose a firing sequence F ′

for c′ and set c2 = cF ′ and d = c′ − c2.
We computed the successors of the triple (c1, c2, d) for n × n grids with n =

16, 32, 64, 128, 256, adding k = 2500, 10000, 40000, 160000, 640000 chips to the
empty configuration to get c′.

For each size, we had ten runs, always with a new starting triple. Table 1 gives
the encountered maxima, minima and average number of successors computed
before reaching a final triple.

The numbers suggest that the average number of steps needed is proportional
to the width of the square grid, with a constant factor between 1.5 and 1.6.
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Table 1. Number of steps needed to find a final triple, starting with random triples

n Minimal number of steps Maximal number of steps Average number of steps

16 15 34 26.1

32 36 77 48.3

64 76 154 99.4

128 166 269 199.5

256 329 497 393.7

5.4 Particular Triples

As U is an n × n grid, we address each vertex v by its coordinates (xv, yv).
c1(c2) is the configuration which assigns each vertex exactly two chips, except

the vertex in the upper left (lower right) corner which has no chips. All other
vertices on the upper (lower) as well as the left (right) edge contain one chip.

We set d = e(n÷2,n÷2).
If we look at the firing sequences for c1 and c2, we see that if a vertex u comes

before a neighbor vertex v in one firing sequence, u comes after v in the other
firing sequence. This leads to the chip contained in the last component going
alternately in opposite directions, which means that it takes more steps for that
one chip to reach the edge (where it either vanishes or goes into a corner) than it
does for the many chips that vanished when we ran simulations for the random
starting triple.

Table 2 lists the number of steps needed to get to a final triple when starting
from (c1, c2, d) as defined above for n = 16, 32, 64, 128, 256, again looking at the
results of ten runs each.

Table 2. Number of steps needed to find a final triple, starting with defined (c1, c2, d)

n Minimal number of steps Maximal number of steps Average number of steps

16 60 371 207.7

32 675 1118 895.1

64 2857 3753 3222.4

128 11102 14566 12942.2

256 43912 52231 48278.9

The numbers in Table 2 suggest that the average number of steps needed to
reach a final triple is proportional to n2 with the constant factor being between
0.73 and 0.87. (However, it can be shown that actually two steps would be
sufficient to get to a final triple.)

6 Conclusion

We have defined a Markov Chain whose elements are triples consisting of two
minimal recurrent configurations and a third configuration of ”surplus” chips. We
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found that the number of firings needed to relax the sum of those configurations
decreases as we progress in the Markov Chain, and we have been able to prove
that, if the underlying graph is bipartite, from each triple we can reach a triple
whose third component is bounded by a configuration containing even fewer
chips than the burning configuration.

Computer simulations of the Markov Chain on an n × n grid suggest that
usually the average number of steps of the Markov Chain lies in O(n), ; however,
we have also found starting triples where the average number of steps needed to
reach a final triple seems to lie in Θ(n2); these, however, are conjectures which
should be dealt with more rigorously in future work.

If we consider configurations c ∈ RU for which a minimal recurrent config-
uration c′ ∈ RU

min and a configuration d ≤ b′ exist such that c = c′ + d holds
as nearly minimal recurrent configurations, we can say that amongst the pairs
of recurrent configurations whose relaxed sum is a constant configuration e, the
fewest firings during the relaxation will always occur when the pair consists of
a minimal recurrent configuration and a nearly minimal configuration, which
usually seem to be computable in an acceptable time.

Starting from these, techniques to search for better pairs of recurrent config-
urations, i.e. pairs whose sum causes even fewer firings during the relaxation,
can be developed; the structures of these pairs of configurations also is possibly
helpful for the analysis of the question whether the problem to decide whether
a sum of two recurrent configurations can cause fewer than a given number of
firings.

Lastly,it would be of interest either to generalize the findings about the
Markov Chains to graphs which are not biparte or to find a graph and a starting
triple such that no final triple as defined in this paper can be reached.
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Abstract. The firing squad synchronization problem on cellular au-
tomata has been studied extensively for more than fifty years, and a rich
variety of synchronization algorithms have been proposed for not only
one-dimensional arrays but two-dimensional arrays. In the present paper,
we propose a seven-state optimum-time synchronization algorithm that
can synchronize any square arrays of size n × n with a general at one
corner in 2n − 2 steps, which is a smallest realization of time-optimum
square synchronizer known at present. The implementation is based on
a new, simple zebra-like mapping scheme which embeds synchronization
operations on one-dimensional arrays onto square arrays.

1 Introduction

We study a synchronization problem that gives a finite-state protocol for syn-
chronizing a large scale of cellular automata. The synchronization in cellular
automata has been known as a firing squad synchronization problem (FSSP)
since its development, in which it was originally proposed by J. Myhill in Moore
[1964] to synchronize all parts of self-reproducing cellular automata. The prob-
lem has been studied extensively for more than fifty years [1-15].

In the present paper, we propose a seven-state optimum-time synchronization
algorithm that can synchronize any square arrays of size n×n with a general at
one corner in 2n− 2 steps, which is a smallest realization known at present. The
implementation is based on a new, simple zebra mapping scheme which embeds
synchronization operations on one-dimensional arrays onto square arrays. Not
only the number of states of the implementation is small, but the correctness of
the constructed transition function with 787 rules is clear and transparent.

2 Firing Squad Synchronization Problem on
Two-Dimensional Square Arrays

Figure 1 shows a finite two-dimensional (2-D) square array consisting of n × n
cells. Each cell is an identical (except the border cells) finite-state automaton.
The array operates in lock-step mode in such a way that the next state of each
� Corresponding author.

S. Bandini et al. (Eds.): ACRI 2010, LNCS 6350, pp. 219–230, 2010.
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cell (except border cells) is determined by both its own present state and the
present states of its north, south, east and west neighbors. Thus, we assume the
von Neumann-type four nearest neighbors. All cells (soldiers), except the north-
west corner cell (general), are initially in the quiescent state at time t = 0 with
the property that the next state of a quiescent cell with quiescent neighbors
is the quiescent state again. At time t = 0, the north-west corner cell C11 is
in the fire-when-ready state, which is the initiation signal for synchronizing the
array. The firing squad synchronization problem is to determine a description
(state set and next-state function) for cells that ensures all cells enter the fire
state at exactly the same time and for the first time. The tricky part of the
problem is that the same kind of soldier having a fixed number of states must
be synchronized, regardless of the size n × n of the array. The set of states and
next state function must be independent of n.
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Fig. 1. A two-dimensional square cellular automaton

The problem was first solved by J. McCarthy and M. Minsky who presented
a 3n-step algorithm for one-dimensional cellular array of length n. In 1962, the
first optimum-time, i.e. (2n − 2)-step, synchronization algorithm was presented
by Goto [1962], with each cell having several thousands of states. Mazoyer [1987]
developed a six-state synchronization algorithm which, at present, is the algo-
rithm having the fewest states for one-dimensional arrays. On the other hand, a
rich variety of synchronization algorithms for two-dimensional rectangle arrays
have been proposed [5-8, 10-14]. As for square synchronization which is a special
class of rectangles, several square synchronization algorithms have been proposed
by Beyer [1969], Shinahr [1974], and Umeo, Maeda, and Fujiwara [2002]. The
first optimum-time square synchronization algorithm was proposed by Beyer
[1969] and Shinahr [1974]. One can easily see that it takes 2n − 2 steps for any
signal to travel from C11 to Cnn due to the neighborhood size. Concerning the
time optimality of the two-dimensional square synchronization algorithms, the
following theorems have been shown.

Theorem 1.Beyer [1969], Shinahr [1974] There exists no cellular automaton that can
synchronize any two-dimensional square array of size n × n in less than 2n − 2
steps, where the general is located at one corner of the array.
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Theorem 2.Shinahr [1974] There exists a 17-state cellular automaton that can
synchronize any two-dimensional square array of size n × n at exactly 2n − 2
optimum steps, where the general is located at one corner of the array.
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Fig. 2. A synchronization scheme for n × n square cellular automaton. A horizontal
and vertical synchronization operations on Li are mapped onto a square array. A black
circle • in a shaded square represents a general on each Li and a wake-up signal for
the synchronization generated by the general is indicated by a horizontal and vertical
arrow.

The optimum-time synchronization algorithm for square arrays operates as
follows: We assume that an initial general is located on C11. By dividing the
entire square array of size n × n into n rotated L-shaped 1-D arrays, shown in
Fig. 2, in such a way that the length of the ith (from outside) L-shaped array is
2n− 2i + 1 (1 ≤ i ≤ n), one treats the square synchronization as n independent
1-D synchronizations with the general located at the bending cell of the L-shaped
array. We denote the ith L-shaped array by Li and its horizontal and vertical
segment is denoted by Lh

i and Lv
i , respectively. Note that a cell at each bending

point of the L-shaped array is shared by the two segments. See Fig. 2.
Concerning the synchronization of Li, it can be easily seen that a general is

generated at the cell Cii at time t = 2i − 2 with the four nearest von-Neumann
neighborhood communication, and the general initiates the horizontal (row) and
vertical (column) synchronizations on Lh

i and Lv
i , each of length n− i+1 via an

optimum-time synchronization algorithm which can synchronize arrays of length
� in 2�−2 steps. Thus the square array of size n×n can be synchronized at time
t = 2i − 2 + 2(n − i + 1) − 2 = 2n − 2 in optimum-steps. In Fig. 2, each general
is represented by a black circle • in a shaded square and a wake-up signal for
the synchronization generated by the general is indicated by a horizontal and
vertical arrow.
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The algorithms itself is very simple and now we are going to discuss its im-
plementation in terms of a 2-D cellular automaton. The question is: how many
states are required for its realization? Let Q be a set of internal states for the
1-D optimum-time synchronization algorithm which is embedded as a base algo-
rithm. When we implement the algorithm on square arrays based on the scheme
above, we usually prepare a different state set used by the cells on Lh

i and Lv
i ,

which is in the upper and lower triangle areas separated by the principal diag-
onal. Thus, 2 || Q || −1 states are usually required for its independent row and
column synchronization operations in order to avoid state mixing. Only a firing
state is shared by the two areas. Shinahr [1974] gave a 17-state implementation
based on Balzer’s eight-state synchronization algorithm (Balzer [1967]). Later,
it has been shown in Umeo, Maeda and Fujiwara [2002] that nine states are
sufficient for the optimum-time square synchronization:

Theorem 3.Umeo et al. [2002] There exists a 9-state 2-D CA that can synchronize
any n × n square array in 2n − 2 steps.
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Fig. 3. A zebra mapping scheme for n × n square cellular automaton

Umeo et al. [2002] constructed the nine-state implementation by applying the
Mazoyer’s 6-state one-dimensional synchronization algorithm (Mazoyer [1987]).
It has been shown that two more states can be deleted from the usual construc-
tion above, rendering nine states sufficient for optimum-time square synchro-
nization. We have tested the transition rule set for its validity on square arrays
of size 2 × 2 to 1000× 1000 on a computer, however, showing the correctness of
the 9-state implementation was very difficult due to its tricky construction. The
main objective of this paper is to explore a state-efficient, i.e., small number of
states, implementation that holds an easy way of showing its correctness.
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3 A Seven-State Time-Optimum Square Synchronizer

In this section we propose an optimum-time square synchronization algorithm
A and its seven-state implementation is provided. We show that seven states are
sufficient for the optimum-time square synchronization. The correctness of the
constructed transition rule set is clear from the simple construction.

3.1 Zebra Mapping

The proposed algorithm is basically based on the rotated L-shaped mapping
scheme presented in the previous section, however, the mapping onto square ar-
rays consists of two types of configurations: one is a one-cell smaller synchronized
configuration and the other is a filled-in configuration with a stationary state.
The stationary state remains unchanged once filled-in by the time before the final
synchronization. Each configuration is mapped alternatively onto an L-shaped
array in a zebra fashion. The mapping is referred to as zebra mapping. Figure
3 illustrates the zebra mapping which consists of an embedded synchronization
and a filled-in layer.

A key idea of our small-state implementation is:

– Alternative mapping of two types of configurations. A stationary layer sep-
arates two consecutive synchronization layers and it allows us to use a same
state set for the vertical and horizontal synchronization on each layer, help-
ing us to construct a small-state transition rule set for the synchronization
layers.

– A one-cell smaller synchronization configuration than previous is embedded,
where we can save synchronization time by two steps.

– A single state X is shared between an initial general state of the square
synchronizer, the stationary state, and a firing state of the embedded one-
dimensional synchronization algorithm used. The state X itself acts as a
pre-firing state.

– Any cell in state X, except Cn,n, enters the synchronization state at the next
step if all its neighbors are in state X or the boundary state of the square.
The cell Cn,n enters the synchronization state if and only if its north and
west cells are in state X and its east and south cells are in the boundary
state. A cell in state X that is adjacent to the cell Cn,n is also an exception.
This is an only condition that makes cells fire.

3.2 Seven-State Implementation

In our construction we take the Mazoyer’s 6-state one-dimensional synchroniza-
tion rule as an embedded synchronization algorithm. The set of the 6-states
is {G, Q, A, B, C, X}, where G is a general, Q is a quiescent, and X is a fir-
ing state, respectively. The other three states A, B and C are auxiliary states,
respectively.
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Fig. 4. A zebra implementation of six-state Mazoyer’s rule on 7 × 7 square cellular
automaton. Configurations of length 6, 4 and 2 are mapped on the odd synchronization
layers.

The seven-state square synchronizer that we construct has the following state
set: {G, Q, A, B, C, X, F}, where F is a newly introduced firing state, X is a
general, and Q is a quiescent state, respectively. The state G is the general state of
the embedded synchronization. Those states A, B and C are also auxiliary states,
respectively. The transition rule set is constructed in such a way that: The initial
general on C1,1 in state X generates a new general in state G on the cell C1,2 and
C2,1 at time t = 1. The general in state G initiates a synchronization for the
following cells {C1,2, C1,3, ..., C1,n} and {C2,1, C3,1, ..., Cn,1}, each of length
n − 1. Note that the length of the array where optimum-time synchronization
operations are embedded is shorter by one than the usual embedding in section
2. The cells on the segments are constructed to operate so that they simulate
the Mazoyer’s optimum-time synchronization operations. All cells on the two
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t = 0
1 2 3 4 5 6 7 8 9 10

1 X Q Q Q Q Q Q Q Q Q
2 Q Q Q Q Q Q Q Q Q Q
3 Q Q Q Q Q Q Q Q Q Q
4 Q Q Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q Q

t = 1
1 2 3 4 5 6 7 8 9 10

1 X G Q Q Q Q Q Q Q Q
2 G Q Q Q Q Q Q Q Q Q
3 Q Q Q Q Q Q Q Q Q Q
4 Q Q Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q Q

t = 2
1 2 3 4 5 6 7 8 9 10

1 X A C Q Q Q Q Q Q Q
2 A X Q Q Q Q Q Q Q Q
3 C Q Q Q Q Q Q Q Q Q
4 Q Q Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q Q

t = 3
1 2 3 4 5 6 7 8 9 10

1 X G B A Q Q Q Q Q Q
2 G X G Q Q Q Q Q Q Q
3 B G Q Q Q Q Q Q Q Q
4 A Q Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q Q

t = 4
1 2 3 4 5 6 7 8 9 10

1 X G C G G Q Q Q Q Q
2 G X X C Q Q Q Q Q Q
3 C X X Q Q Q Q Q Q Q
4 G C Q Q Q Q Q Q Q Q
5 G Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q Q

t = 5
1 2 3 4 5 6 7 8 9 10

1 X G B A B C Q Q Q Q
2 G X X X C Q Q Q Q Q
3 B X X G Q Q Q Q Q Q
4 A X G Q Q Q Q Q Q Q
5 B C Q Q Q Q Q Q Q Q
6 C Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q Q

t = 6
1 2 3 4 5 6 7 8 9 10

1 X G C G Q C A Q Q Q
2 G X X X C A Q Q Q Q
3 C X X A C Q Q Q Q Q
4 G X A X Q Q Q Q Q Q
5 Q C C Q Q Q Q Q Q Q
6 C A Q Q Q Q Q Q Q Q
7 A Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q Q

t = 7
1 2 3 4 5 6 7 8 9 10

1 X G B A Q A A G Q Q
2 G X X X X X B Q Q Q
3 B X X G B A Q Q Q Q
4 A X G X G Q Q Q Q Q
5 Q X B G Q Q Q Q Q Q
6 A X A Q Q Q Q Q Q Q
7 A B Q Q Q Q Q Q Q Q
8 G Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q Q

t = 8
1 2 3 4 5 6 7 8 9 10

1 X G C G Q A B B C Q
2 G X X X X X X C Q Q
3 C X X G C G G Q Q Q
4 G X G X X C Q Q Q Q
5 Q X C X X Q Q Q Q Q
6 A X G C Q Q Q Q Q Q
7 B X G Q Q Q Q Q Q Q
8 B C Q Q Q Q Q Q Q Q
9 C Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q Q

t = 9
1 2 3 4 5 6 7 8 9 10

1 X G B A Q Q B C C G
2 G X X X X X X C A Q
3 B X X G B A B C Q Q
4 A X G X X X C Q Q Q
5 Q X B X X G Q Q Q Q
6 Q X A X G Q Q Q Q Q
7 B X B C Q Q Q Q Q Q
8 C C C Q Q Q Q Q Q Q
9 C A Q Q Q Q Q Q Q Q

10 G Q Q Q Q Q Q Q Q Q

t = 10
1 2 3 4 5 6 7 8 9 10

1 X G C G G Q Q C B A
2 G X X X X X X X X X
3 C X X G C G Q C A Q
4 G X G X X X C A Q Q
5 G X C X X A C Q Q Q
6 Q X G X A X Q Q Q Q
7 Q X Q C C Q Q Q Q Q
8 C X C A Q Q Q Q Q Q
9 B X A Q Q Q Q Q Q Q

10 A X Q Q Q Q Q Q Q Q

t = 11
1 2 3 4 5 6 7 8 9 10

1 X G B A B C Q G A C
2 G X X X X X X X X X
3 B X X G B A Q A A C
4 A X G X X X X X B Q
5 B X B X X G B A Q Q
6 C X A X G X G Q Q Q
7 Q X Q X B G Q Q Q Q
8 G X A X A Q Q Q Q Q
9 A X A B Q Q Q Q Q Q

10 C X C Q Q Q Q Q Q Q

t = 12
1 2 3 4 5 6 7 8 9 10

1 X G C G Q C G G C B
2 G X X X X X X X X X
3 C X X G C G Q A C B
4 G X G X X X X X X X
5 Q X C X X G C G G Q
6 C X G X G X X C Q Q
7 G X Q X C X X Q Q Q
8 G X A X G C Q Q Q Q
9 C X C X G Q Q Q Q Q

10 B X B X Q Q Q Q Q Q

t = 13
1 2 3 4 5 6 7 8 9 10

1 X G B A Q G A G B Q
2 G X X X X X X X X X
3 B X X G B A Q G B Q
4 A X G X X X X X X X
5 Q X B X X G B A B A
6 G X A X G X X X C Q
7 A X Q X B X X G Q Q
8 G X G X A X G Q Q Q
9 B X B X B C Q Q Q Q

10 Q X Q X A Q Q Q Q Q

t = 14
1 2 3 4 5 6 7 8 9 10

1 X G C G C G C G C Q
2 G X X X X X X X X X
3 C X X G C G C G C Q
4 G X G X X X X X X X
5 C X C X X G C G B C
6 G X G X G X X X C Q
7 C X C X C X X A C Q
8 G X G X G X A X Q Q
9 C X C X B C C Q Q Q

10 Q X Q X C Q Q Q Q Q

t = 15
1 2 3 4 5 6 7 8 9 10

1 X G B G B G B G B G
2 G X X X X X X X X X
3 B X X G B G B G B G
4 G X G X X X X X X X
5 B X B X X G B G B G
6 G X G X G X X X X X
7 B X B X B X X G B G
8 G X G X G X G X G Q
9 B X B X B X B G Q Q

10 G X G X G X G Q Q Q

t = 16
1 2 3 4 5 6 7 8 9 10

1 X G G G G G G G G G
2 G X X X X X X X X X
3 G X X G G G G G G G
4 G X G X X X X X X X
5 G X G X X G G G G G
6 G X G X G X X X X X
7 G X G X G X X G G G
8 G X G X G X G X X X
9 G X G X G X G X X Q

10 G X G X G X G X Q Q

t = 17
1 2 3 4 5 6 7 8 9 10

1 X X X X X X X X X X
2 X X X X X X X X X X
3 X X X X X X X X X X
4 X X X X X X X X X X
5 X X X X X X X X X X
6 X X X X X X X X X X
7 X X X X X X X X X X
8 X X X X X X X X X X
9 X X X X X X X X X X

10 X X X X X X X X X Q

t = 18
1 2 3 4 5 6 7 8 9 10

1 F F F F F F F F F F
2 F F F F F F F F F F
3 F F F F F F F F F F
4 F F F F F F F F F F
5 F F F F F F F F F F
6 F F F F F F F F F F
7 F F F F F F F F F F
8 F F F F F F F F F F
9 F F F F F F F F F F

10 F F F F F F F F F F

Fig. 5. Snapshots of the synchronization process on 10 × 10 array
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horizontal and vertical segments of length n − 1 enter the pre-firing state X at
time t = 1+2(n−1)−2 = 2n−3. In this way, the first L1 acts as a synchronization
layer. At time t = 2, the cell C2,2 takes the state X and it extends an X-arm (a
cell segment in state X) in the right and lower direction, respectively, towards
the cells {C2,3, C2,4, ..., C2,n} and {C3,2, C4,2, ..., Cn,2}, respectively, each of
length n − 2. Every cell once entered in state X remains unchanged by the time
before it meets a local condition for the synchronization given later. At time
t = 2 + n − 2 = n, the filled-in operation with the stationary state X on the
second layer is finished. In this way, the second L2 acts as a stationary layer.

t = 0
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X Q Q Q Q Q Q Q Q Q Q Q Q
2 Q Q Q Q Q Q Q Q Q Q Q Q Q
3 Q Q Q Q Q Q Q Q Q Q Q Q Q
4 Q Q Q Q Q Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 1
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G Q Q Q Q Q Q Q Q Q Q Q
2 G Q Q Q Q Q Q Q Q Q Q Q Q
3 Q Q Q Q Q Q Q Q Q Q Q Q Q
4 Q Q Q Q Q Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 2
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X A C Q Q Q Q Q Q Q Q Q Q
2 A X Q Q Q Q Q Q Q Q Q Q Q
3 C Q Q Q Q Q Q Q Q Q Q Q Q
4 Q Q Q Q Q Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 3
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B A Q Q Q Q Q Q Q Q Q
2 G X G Q Q Q Q Q Q Q Q Q Q
3 B G Q Q Q Q Q Q Q Q Q Q Q
4 A Q Q Q Q Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 4
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G C G G Q Q Q Q Q Q Q Q
2 G X X C Q Q Q Q Q Q Q Q Q
3 C X X Q Q Q Q Q Q Q Q Q Q
4 G C Q Q Q Q Q Q Q Q Q Q Q
5 G Q Q Q Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 5
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B A B C Q Q Q Q Q Q Q
2 G X X X C Q Q Q Q Q Q Q Q
3 B X X G Q Q Q Q Q Q Q Q Q
4 A X G Q Q Q Q Q Q Q Q Q Q
5 B C Q Q Q Q Q Q Q Q Q Q Q
6 C Q Q Q Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 6
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G C G Q C A Q Q Q Q Q Q
2 G X X X C A Q Q Q Q Q Q Q
3 C X X A C Q Q Q Q Q Q Q Q
4 G X A X Q Q Q Q Q Q Q Q Q
5 Q C C Q Q Q Q Q Q Q Q Q Q
6 C A Q Q Q Q Q Q Q Q Q Q Q
7 A Q Q Q Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 7
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B A Q A A G Q Q Q Q Q
2 G X X X X X B Q Q Q Q Q Q
3 B X X G B A Q Q Q Q Q Q Q
4 A X G X G Q Q Q Q Q Q Q Q
5 Q X B G Q Q Q Q Q Q Q Q Q
6 A X A Q Q Q Q Q Q Q Q Q Q
7 A B Q Q Q Q Q Q Q Q Q Q Q
8 G Q Q Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 8
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G C G Q A B B C Q Q Q Q
2 G X X X X X X C Q Q Q Q Q
3 C X X G C G G Q Q Q Q Q Q
4 G X G X X C Q Q Q Q Q Q Q
5 Q X C X X Q Q Q Q Q Q Q Q
6 A X G C Q Q Q Q Q Q Q Q Q
7 B X G Q Q Q Q Q Q Q Q Q Q
8 B C Q Q Q Q Q Q Q Q Q Q Q
9 C Q Q Q Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 9
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B A Q Q B C C A Q Q Q
2 G X X X X X X C A Q Q Q Q
3 B X X G B A B C Q Q Q Q Q
4 A X G X X X C Q Q Q Q Q Q
5 Q X B X X G Q Q Q Q Q Q Q
6 Q X A X G Q Q Q Q Q Q Q Q
7 B X B C Q Q Q Q Q Q Q Q Q
8 C C C Q Q Q Q Q Q Q Q Q Q
9 C A Q Q Q Q Q Q Q Q Q Q Q

10 A Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 10
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G C G G Q Q C A A G Q Q
2 G X X X X X X X X B Q Q Q
3 C X X G C G Q C A Q Q Q Q
4 G X G X X X C A Q Q Q Q Q
5 G X C X X A C Q Q Q Q Q Q
6 Q X G X A X Q Q Q Q Q Q Q
7 Q X Q C C Q Q Q Q Q Q Q Q
8 C X C A Q Q Q Q Q Q Q Q Q
9 A X A Q Q Q Q Q Q Q Q Q Q

10 A B Q Q Q Q Q Q Q Q Q Q Q
11 G Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 11
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B A B C Q A A B B C Q
2 G X X X X X X X X X C Q Q
3 B X X G B A Q A A G Q Q Q
4 A X G X X X X X B Q Q Q Q
5 B X B X X G B A Q Q Q Q Q
6 C X A X G X G Q Q Q Q Q Q
7 Q X Q X B G Q Q Q Q Q Q Q
8 A X A X A Q Q Q Q Q Q Q Q
9 A X A B Q Q Q Q Q Q Q Q Q

10 B X G Q Q Q Q Q Q Q Q Q Q
11 B C Q Q Q Q Q Q Q Q Q Q Q
12 C Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 12
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G C G Q C Q A B B C C G
2 G X X X X X X X X X C A Q
3 C X X G C G Q A B B C Q Q
4 G X G X X X X X X C Q Q Q
5 Q X C X X G C G G Q Q Q Q
6 C X G X G X X C Q Q Q Q Q
7 Q X Q X C X X Q Q Q Q Q Q
8 A X A X G C Q Q Q Q Q Q Q
9 B X B X G Q Q Q Q Q Q Q Q

10 B X B C Q Q Q Q Q Q Q Q Q
11 C C C Q Q Q Q Q Q Q Q Q Q
12 C A Q Q Q Q Q Q Q Q Q Q Q
13 G Q Q Q Q Q Q Q Q Q Q Q Q

t = 13
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B A Q C Q Q B C C B A
2 G X X X X X X X X X X X X
3 B X X G B A Q Q B C C A Q
4 A X G X X X X X X C A Q Q
5 Q X B X X G B A B C Q Q Q
6 C X A X G X X X C Q Q Q Q
7 Q X Q X B X X G Q Q Q Q Q
8 Q X Q X A X G Q Q Q Q Q Q
9 B X B X B C Q Q Q Q Q Q Q

10 C X C C C Q Q Q Q Q Q Q Q
11 C X C A Q Q Q Q Q Q Q Q Q
12 B X A Q Q Q Q Q Q Q Q Q Q
13 A X Q Q Q Q Q Q Q Q Q Q Q

t = 14
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G C G Q C A Q Q C B A C
2 G X X X X X X X X X X X X
3 C X X G C G G Q Q C A A C
4 G X G X X X X X X X X B Q
5 Q X C X X G C G Q C A Q Q
6 C X G X G X X X C A Q Q Q
7 A X G X C X X A C Q Q Q Q
8 Q X Q X G X A X Q Q Q Q Q
9 Q X Q X Q C C Q Q Q Q Q Q

10 C X C X C A Q Q Q Q Q Q Q
11 B X A X A Q Q Q Q Q Q Q Q
12 A X A B Q Q Q Q Q Q Q Q Q
13 C X C Q Q Q Q Q Q Q Q Q Q

t = 15
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B A Q A A G Q G A C B
2 G X X X X X X X X X X X X
3 B X X G B A B C Q A A C B
4 A X G X X X X X X X X X X
5 Q X B X X G B A Q A A G Q
6 A X A X G X X X X X B Q Q
7 A X B X B X X G B A Q Q Q
8 G X C X A X G X G Q Q Q Q
9 Q X Q X Q X B G Q Q Q Q Q

10 G X A X A X A Q Q Q Q Q Q
11 A X A X A B Q Q Q Q Q Q Q
12 C X C X G Q Q Q Q Q Q Q Q
13 B X B X Q Q Q Q Q Q Q Q Q

t = 16
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G C G Q A B B A G C B Q
2 G X X X X X X X X X X X X
3 C X X G C G Q C Q A C B Q
4 G X G X X X X X X X X X X
5 Q X C X X G C G Q A B B A
6 A X G X G X X X X X X C Q
7 B X Q X C X X G C G G Q Q
8 B X C X G X G X X C Q Q Q
9 A X Q X Q X C X X Q Q Q Q

10 G X A X A X G C Q Q Q Q Q
11 C X C X B X G Q Q Q Q Q Q
12 B X B X B C Q Q Q Q Q Q Q
13 Q X Q X A Q Q Q Q Q Q Q Q

t = 17
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B A Q Q B A C G B Q Q
2 G X X X X X X X X X X X X
3 B X X G B A Q C Q G B Q Q
4 A X G X X X X X X X X X X
5 Q X B X X G B A Q Q B A C
6 Q X A X G X X X X X X C Q
7 B X Q X B X X G B A B C Q
8 A X C X A X G X X X C Q Q
9 C X Q X Q X B X X G Q Q Q

10 G X G X Q X A X G Q Q Q Q
11 B X B X B X B C Q Q Q Q Q
12 Q X Q X A C C Q Q Q Q Q Q
13 Q X Q X C Q Q Q Q Q Q Q Q

t = 18
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G C G G Q G C B G C Q Q
2 G X X X X X X X X X X X X
3 C X X G C G Q C G G C Q Q
4 G X G X X X X X X X X X X
5 G X C X X G C G G Q G C B
6 Q X G X G X X X X X X X X
7 G X Q X C X X G C G Q C G
8 C X C X G X G X X X C A Q
9 B X G X G X C X X A C Q Q

10 G X G X Q X G X A X Q Q Q
11 C X C X G X Q C C Q Q Q Q
12 Q X Q X C X C A Q Q Q Q Q
13 Q X Q X B X G Q Q Q Q Q Q

t = 19
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B A B A G B Q G B A Q
2 G X X X X X X X X X X X X
3 B X X G B A Q G A G B A Q
4 A X G X X X X X X X X X X
5 B X B X X G B A B A G B Q
6 A X A X G X X X X X X X X
7 G X Q X B X X G B A Q G A
8 B X G X A X G X X X X X X
9 Q X A X B X B X X G B A Q

10 G X G X A X A X G X G Q Q
11 B X B X G X Q X B G Q Q Q
12 A X A X B X G X A Q Q Q Q
13 Q X Q X Q X A X Q Q Q Q Q

t = 20
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G C G B C G C Q G C G C
2 G X X X X X X X X X X X X
3 C X X G C G C G C G C G C
4 G X G X X X X X X X X X X
5 B X C X X G C G B C G C Q
6 C X G X G X X X X X X X X
7 G X C X C X X G C G C G C
8 C X G X G X G X X X X X X
9 Q X C X B X C X X G C G C

10 G X G X C X G X G X X C Q
11 C X C X G X C X C X X Q Q
12 G X G X C X G X G C Q Q Q
13 C X C X Q X C X C Q Q Q Q

t = 21
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B G B G G B G G B G B
2 G X X X X X X X X X X X X
3 B X X G B G B G B G B G B
4 G X G X X X X X X X X X X
5 B X B X X G B G B G G B G
6 G X G X G X X X X X X X X
7 G X B X B X X G B G B G B
8 B X G X G X G X X X X X X
9 G X B X B X B X X G B G B

10 G X G X G X G X G X X X X
11 B X B X G X B X B X X G Q
12 G X G X B X G X G X G Q Q
13 B X B X G X B X B X Q Q Q

t = 22
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G G G G G G G G G G G G
2 G X X X X X X X X X X X X
3 G X X G G G G G G G G G G
4 G X G X X X X X X X X X X
5 G X G X X G G G G G G G G
6 G X G X G X X X X X X X X
7 G X G X G X X G G G G G G
8 G X G X G X G X X X X X X
9 G X G X G X G X X G G G G

10 G X G X G X G X G X X X X
11 G X G X G X G X G X X A A
12 G X G X G X G X G X A X Q
13 G X G X G X G X G X A Q Q

t = 23
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X X X X X X X X X X X X X
2 X X X X X X X X X X X X X
3 X X X X X X X X X X X X X
4 X X X X X X X X X X X X X
5 X X X X X X X X X X X X X
6 X X X X X X X X X X X X X
7 X X X X X X X X X X X X X
8 X X X X X X X X X X X X X
9 X X X X X X X X X X X X X

10 X X X X X X X X X X X X X
11 X X X X X X X X X X X X X
12 X X X X X X X X X X X X X
13 X X X X X X X X X X X X Q

t = 24
1 2 3 4 5 6 7 8 9 10 11 12 13

1 F F F F F F F F F F F F F
2 F F F F F F F F F F F F F
3 F F F F F F F F F F F F F
4 F F F F F F F F F F F F F
5 F F F F F F F F F F F F F
6 F F F F F F F F F F F F F
7 F F F F F F F F F F F F F
8 F F F F F F F F F F F F F
9 F F F F F F F F F F F F F

10 F F F F F F F F F F F F F
11 F F F F F F F F F F F F F
12 F F F F F F F F F F F F F
13 F F F F F F F F F F F F F

Fig. 6. Snapshots of the synchronization process on 13 × 13 array
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Figure 4 illustrates how the 6-state synchronization and stationary configura-
tions are embedded on a square array of size 7 × 7. Concerning the embedding
on the odd ith layer, the cell Ci,i takes the stationary state X time t = 2i−2 and
generates a new general in state G on the cell Ci,i+1 and Ci+1,i at time t = 2i−1.
The general in state G initiates a synchronization for the following cells {Ci,i+1,
Ci,i+2, ..., Ci,n} and {Ci+1,i, Ci+2,i, ..., Cn,i}, each of length n − i. All cells on
the two horizontal and vertical segments of length n− i enter the pre-firing state
X at time t = 2i−1+2(n− i)−2 = 2n−3. In this way, for odd i, the ith Li acts
as a synchronization layer. As for the even ith layer, at time t = 2i − 2, the cell
Ci,i takes the state X and it extends the X-arm in the right and lower direction,
respectively, towards the cells {Ci,i+1, Ci,i+2, ..., Ci,n} and {Ci+1,i, Ci+2,i, ...,
Cn,i}, each of length n− i. Every cell once entered in state X remains unchanged
by the time before synchronization. At time t = 2i − 2 + n − i = n + i − 2, the
filled-in operation on the ith layer for even i is finished.

At time t = 2n − 3, all of the cells, except Cn,n, on the square of size n × n
enter the state X, which is a pre-firing state. The following twelve transition rules,
shown in Table 1, are the only ones that falls into the synchronization state F in
the last stage. In each 6-tuple rule such that Y1 Y2 Y3 Y4 Y5 → Y6, the symbol
Y1 denotes the present state of a cell, Y2 the east state, Y3 the north state, Y4
the west state, Y5 the south state, and Y6 the next state of the cell, respectively.
A symbol ”*” denotes a boundary state of square arrays.

Table 1. Transition rule set used at the last synchronization step

Q ∗ X X ∗ → F; X Q X X ∗ → F; X X X X X → F; X X X X ∗ → F;

X X X ∗ X → F; X X X ∗ ∗ → F; X X ∗ X X → F; X X ∗ ∗ X → F;

X ∗ X X Q → F; X ∗ X X X → F; X ∗ ∗ X Q → F; X ∗ ∗ X X → F.

Thus we have:

Theorem 4. The seven-state synchronization algorithm A can synchronize any
n × n square array in optimum 2n − 2 steps.

Figures 5 and 6 show some snapshots of the synchronization process operating in
optimum-steps on 10×10 and 13×13 square arrays. The constructed seven-state
cellular automaton has 787 transition rules shown in Appendix I.

4 Conclusions

We have proposed a seven-state optimum-time synchronization algorithm that
can synchronize any square arrays of size n × n with a general at one corner in
2n − 2 steps. The algorithm is based on a new, simple zebra mapping scheme
which embeds one-dimensional synchronization operations onto square arrays.
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The seven-state implementation described in terms of state transition table is
a smallest realization of time-optimum square synchronizer known at present.
The embedding scheme developed in this paper would be useful for state-efficient
implementation of multi-dimensional synchronization algorithms, including rect-
angles and cubic arrays.

Acknowledgments. A part of this work has been supported by Kayamori Foun-
dation of Informational Science Advancement.
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Appendix I: Transition rule set for the 7-state square synchronizer. In each
6-tuple rule such that Y1 Y2 Y3 Y4 Y5 → Y6, the symbol Y1 denotes the present
state, Y2 the east state, Y3 the north state, Y4 the west state, Y5 the south state,
and Y6 the next state, respectively. A symbol ”*” denotes a boundary state of
square arrays (to be continued).

 Q State 

1: Q Q Q Q Q Q

2: Q Q Q Q * Q

3: Q Q Q * Q Q

4: Q Q Q * * Q

5: Q Q A A Q B

6: Q Q A B Q G

7: Q Q A C Q A

8: Q Q A G * X

9: Q Q A G Q C

10: Q Q A X * C

11: Q Q A * Q G

12: Q Q A * * C

13: Q Q B A Q G

14: Q Q B C * X

15: Q Q B G Q C

16: Q Q C Q * G

17: Q Q C A * Q

18: Q Q C A Q A

19: Q Q C C Q A

20: Q Q C C * X

21: Q Q C G Q C

22: Q Q C X Q G

23: Q Q C * Q A

24: Q Q C * * G

25: Q Q G A Q C

26: Q Q G B Q C

27: Q Q G C Q C

28: Q Q G G * X

29: Q Q G G Q X

30: Q Q G X * A

31: Q Q G * Q C

32: Q Q G * * A

33: Q Q X Q X Q

34: Q Q X A X G

35: Q Q X A * X

36: Q Q X B X Q

37: Q Q X C X A

38: Q Q X C Q G

39: Q Q X G X C

40: Q Q X X * X

41: Q Q X * Q G

42: Q Q X * * X

43: Q Q * Q Q Q

44: Q Q * Q X Q

45: Q Q * A X G

46: Q Q * A Q G

47: Q Q * B X Q

48: Q Q * C Q A

49: Q Q * C X A

50: Q Q * G Q C

51: Q Q * G X C

52: Q Q * X Q G

53: Q A X A X Q

54: Q A X B X Q

55: Q A X C X Q

56: Q A X G X Q

57: Q A * A X Q

58: Q A * B X Q

59: Q A * C X Q

60: Q A * G X Q

61: Q B X Q X Q

62: Q B X A X Q

63: Q B X B X Q

64: Q B X C X Q

65: Q B X G X Q

66: Q B * Q X Q

67: Q B * A X Q

68: Q B * B X Q

69: Q B * C X Q

70: Q B * G X Q

71: Q C G X C Q

72: Q C G * C Q

73: Q C X Q X Q

74: Q C X A X Q

75: Q C X B X Q

76: Q C X C X Q

77: Q C X G C Q

78: Q C X G X Q

79: Q C * Q X Q

80: Q C * A X Q

81: Q C * B X Q

82: Q C * C X Q

83: Q C * G X Q

84: Q C * G C Q

85: Q G X Q X Q

86: Q G X A X C

87: Q G X B X Q

88: Q G X C X G

89: Q G X G X A

90: Q G * Q X Q

91: Q G * A X C

92: Q G * B X Q

93: Q G * C X G

94: Q G * G X A

95: Q X Q X Q Q

96: Q X Q X B Q

97: Q X Q X C Q

98: Q X Q X G Q

99: Q X Q X * Q

100: Q X Q * Q Q

101: Q X Q * B Q

102: Q X Q * C Q

103: Q X Q * G Q

104: Q X Q * * Q

105: Q X A X Q G

106: Q X A X A Q

107: Q X A X B Q

108: Q X A X C Q

109: Q X A X G C

110: Q X A X * C

111: Q X A * Q G

112: Q X A * A Q

113: Q X A * B Q

114: Q X A * C Q

115: Q X A * G C

116: Q X A * * C

117: Q X B X Q Q

118: Q X B X A Q

119: Q X B X B Q

120: Q X B X C Q

121: Q X B X G Q

122: Q X B X * Q

123: Q X B * Q Q

124: Q X B * A Q

125: Q X B * B Q

126: Q X B * C Q

127: Q X B * G Q

128: Q X B * * Q

129: Q X C X Q A

130: Q X C X A Q

131: Q X C X B Q

132: Q X C X C Q

133: Q X C X G G

134: Q X C X * G

135: Q X C * Q A

136: Q X C * A Q

137: Q X C * B Q

138: Q X C * C Q

139: Q X C * G G

140: Q X C * * G

141: Q X G X Q C

142: Q X G X A Q

143: Q X G X B Q

144: Q X G X C Q

145: Q X G X G A

146: Q X G X * A

147: Q X G * Q C

148: Q X G * A Q

149: Q X G * B Q

150: Q X G * C Q

151: Q X G * G A

152: Q X G * * A

153: Q * Q Q Q Q

154: Q * Q Q * Q

155: Q * Q C Q G

156: Q * A C Q Q

157: Q * A X Q X

158: Q * C B Q X

159: Q * C C Q X

160: Q * G A Q X

161: Q * G G Q X

162: Q * X Q X Q

163: Q * X A X C

164: Q * X A Q C

165: Q * X B X Q

166: Q * X C X G

167: Q * X G Q A

168: Q * X G X A

169: Q * X X Q X

170: Q * X X * F

171: Q * * Q Q Q

172: Q * * Q X Q

173: Q * * A Q C

174: Q * * A X C

175: Q * * B X Q

176: Q * * C Q G

177: Q * * C X G

178: Q * * G Q A

179: Q * * G X A

180: Q * * X Q X

 A State 

181: A Q A X * X

182: A Q A * * X

183: A Q B X Q G

184: A Q B X * C

185: A Q B * Q G

186: A Q B * * C

187: A Q C C Q X

188: A Q C X Q A

189: A Q C * Q A

190: A Q X A X A

191: A Q X B Q G

192: A Q X B X G

193: A Q X C Q A

194: A Q X C X A

195: A Q * A X A

196: A Q * B Q G

197: A Q * B X G

198: A Q * C Q A

199: A Q * C X A

200: A A X Q X A

201: A A X A X A

202: A A X C X A

203: A A X X X X

204: A A * Q X A

205: A A * A X A

206: A A * C X A

207: A A * X X X

208: A B A X C C

209: A B A X G B

210: A B A * C C

211: A B A * G B

212: A B X Q X Q

213: A B X A X B

214: A B X B X G

215: A B * Q X Q

216: A B * A X B

217: A B * B X G

218: A C B X C C

219: A C B * C C

220: A C X Q X G

221: A C X A X C

222: A C X A B C

223: A C X B X C

224: A C X B C C

225: A C X G X C

226: A C X X X G

227: A C * Q X G

228: A C * A B C

229: A C * A X C

230: A C * B X C

231: A C * B C C

232: A C * G X C

233: A C * X X G

234: A G X A B B

235: A G X A X B

236: A G X B X C

237: A G X G X C

238: A G * A B B

239: A G * A X B

240: A G * B X C

241: A G * G X C

242: A X Q X A A

243: A X Q X B Q

244: A X Q X C G

245: A X Q * A A

246: A X Q * B Q

247: A X Q * C G

248: A X A X Q A

249: A X A X A A

250: A X A X B B

251: A X A X C C

252: A X A X G B

253: A X A * Q A

254: A X A * A A

255: A X A * B B

256: A X A * C C

257: A X A * G B

258: A X B X Q G

259: A X B X B G

260: A X B X C C

261: A X B X G C

262: A X B X * C

263: A X B * Q G

264: A X B * B G

265: A X B * C C

266: A X B * G C

267: A X B * * C

268: A X C X A A

269: A X C X Q A

270: A X C * Q A

271: A X C * A A

272: A X G X C C

273: A X G X G C

274: A X G X * C

275: A X G * C C

276: A X G * G C

277: A X G * * C

278: A X X X A X

279: A X X X C G

280: A X X * A X

281: A X X * C G

282: A * X A Q X

283: A * X B X C

284: A * X B Q C

285: A * X G X C

286: A * * A Q X

287: A * * B X C

288: A * * B Q C

289: A * * G X C

 B State 

290: B Q A X Q X

291: B Q X A Q X

292: B Q X A X G

293: B Q X B X G

294: B Q X C X Q

295: B Q X G X C

296: B Q * A X G

297: B Q * B X G

298: B Q * C X Q

299: B Q * G X C

300: B A X Q X G

301: B A X A C B

302: B A X A X B

303: B A X B C A

304: B A X B X A

305: B A X C X A

306: B A X G X C

307: B A X G G C

308: B A * Q X G

309: B A * A C B

310: B A * A X B

311: B A * B C A

312: B A * B X A

313: B A * C X A

314: B A * G G C

315: B A * G X C

316: B B X Q X B

317: B B X A X B

318: B B X B X B

319: B B * Q X B

320: B B * A X B

321: B B * B X B

322: B C A X A B

323: B C A X C Q

324: B C A * A B

325: B C A * C Q

326: B C B X A A

327: B C B X C C

328: B C B * A A

329: B C B * C C

330: B C G X C B

331: B C G * C B

332: B C X Q X Q

333: B C X A C Q

334: B C X A X Q

335: B C X B C C

336: B C X B X C

337: B C X G C B

338: B C X G X B

339: B C * Q X Q

340: B C * A C Q

341: B C * A X Q

342: B C * B C C

343: B C * B X C

344: B C * G C B

345: B C * G X B

346: B G G X A C

347: B G G X G G

348: B G G * A C

349: B G G * G G

350: B G X Q X B

351: B G X B X B

352: B G X C X Q

353: B G X G X G

354: B G X G G G

355: B G * Q X B

356: B G * B X B

357: B G * C X Q

358: B G * G G G

359: B G * G X G

360: B X Q X A G

361: B X Q X B B

362: B X Q X C Q

363: B X Q X G B

364: B X Q * A G

365: B X Q * B B

366: B X Q * C Q

367: B X Q * G B

368: B X A X Q G

369: B X A X A B

370: B X A X B B

371: B X A X C Q

372: B X A * Q G

373: B X A * A B

374: B X A * B B

375: B X A * C Q

376: B X B X Q G

377: B X B X A A

378: B X B X B B

379: B X B X C C

380: B X B X G B

381: B X B * Q G

382: B X B * A A

383: B X B * B B

384: B X B * C C

385: B X B * G B

386: B X C X Q Q

387: B X C X A A

388: B X C X G Q

389: B X C X * Q

390: B X C * Q Q

391: B X C * A A

392: B X C * G Q

393: B X C * * Q

394: B X G X Q C

395: B X G X A C

396: B X G X C B

397: B X G X G G

398: B X G X * G

399: B X G * Q C

400: B X G * A C

401: B X G * C B

402: B X G * G G

403: B X G * * G

404: B * X C X Q
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Appendix I: Transition rule set for the 7-state square synchronizer (contin-
ued).

405: B * X G X G

406: B * * C X Q

407: B * * G X G

 C State 

408: C Q A C Q B

409: C Q A X C X

410: C Q A X * B

411: C Q A * Q B

412: C Q A * * B

413: C Q B C Q C

414: C Q B X Q C

415: C Q B X C X

416: C Q B X * G

417: C Q B * Q C

418: C Q B * * G

419: C Q C A Q B

420: C Q C B Q C

421: C Q G X * B

422: C Q G X Q X

423: C Q G * * B

424: C Q X Q X C

425: C Q X B Q C

426: C Q X B X C

427: C Q X C X C

428: C Q X G X B

429: C Q X G Q X

430: C Q * Q X C

431: C Q * A Q B

432: C Q * B Q C

433: C Q * B X C

434: C Q * C X C

435: C Q * G X B

436: C A Q X A A

437: C A Q X C X

438: C A Q X G G

439: C A Q * A A

440: C A Q * G G

441: C A C X A A

442: C A C X C X

443: C A C X G B

444: C A C * A A

445: C A C * G B

446: C A X Q A A

447: C A X Q X A

448: C A X C A A

449: C A X C X A

450: C A * Q A A

451: C A * Q X A

452: C A * C A A

453: C A * C X A

454: C B X Q X G

455: C B X A X B

456: C B X C X B

457: C B X G X B

458: C B * Q X G

459: C B * A X B

460: C B * C X B

461: C B * G X B

462: C C B X C C

463: C C B * C C

464: C C X Q A X

465: C C X Q X C

466: C C X A Q X

467: C C X B Q X

468: C C X B C C

469: C C X B X C

470: C C X C A X

471: C C X C X C

472: C C * Q X C

473: C C * B X C

474: C C * B C C

475: C C * C X C

476: C G X Q X G

477: C G X Q A G

478: C G X A X B

479: C G X B X G

480: C G X C A B

481: C G X C X B

482: C G X G X B

483: C G * Q A G

484: C G * Q X G

485: C G * A X B

486: C G * B X G

487: C G * C A B

488: C G * C X B

489: C G * G X B

490: C X Q X Q C

491: C X Q X A A

492: C X Q X B G

493: C X Q X C C

494: C X Q X G G

495: C X Q * Q C

496: C X Q * A A

497: C X Q * B G

498: C X Q * C C

499: C X Q * G G

500: C X A X B B

501: C X A X G B

502: C X A X * B

503: C X A * B B

504: C X A * G B

505: C X A * * B

506: C X B X Q C

507: C X B X C C

508: C X B X G G

509: C X B X * G

510: C X B * Q C

511: C X B * C C

512: C X B * G G

513: C X B * * G

514: C X C X Q C

515: C X C X A A

516: C X C X B B

517: C X C X C C

518: C X C X G B

519: C X C * Q C

520: C X C * A A

521: C X C * B B

522: C X C * C C

523: C X C * G B

524: C X G X Q B

525: C X G X B B

526: C X G X G B

527: C X G X * B

528: C X G * Q B

529: C X G * B B

530: C X G * G B

531: C X G * * B

532: C * X A Q B

533: C * X A X B

534: C * X B Q G

535: C * X B X G

536: C * X G Q B

537: C * X G X B

538: C * * A Q B

539: C * * A X B

540: C * * B Q G

541: C * * B X G

542: C * * G Q B

543: C * * G X B

 G State 

544: G Q A X Q B

545: G Q A * Q B

546: G Q B X * G

547: G Q B X Q X

548: G Q B * * G

549: G Q C * * A

550: G Q C X * A

551: G Q G X Q B

552: G Q G * Q B

553: G Q X A Q B

554: G Q X A X B

555: G Q X B X B

556: G Q X B Q X

557: G Q X C X A

558: G Q X G Q B

559: G Q X G X B

560: G Q X X Q A

561: G Q X * Q A

562: G Q * A X B

563: G Q * A Q B

564: G Q * B X B

565: G Q * C X A

566: G Q * G Q B

567: G Q * G X B

568: G Q * X Q A

569: G A X Q X G

570: G A * Q X G

571: G B X Q X G

572: G B X A X G

573: G B X B X G

574: G B X C X G

575: G B X G X G

576: G B X X X G

577: G B * Q X G

578: G B * A X G

579: G B * B X G

580: G B * C X G

581: G B * G X G

582: G B * X X G

583: G C C X C G

584: G C C X G A

585: G C C * C G

586: G C C * G A

587: G C X Q X G

588: G C X A X G

589: G C X B X G

590: G C X C X G

591: G C X C C G

592: G C X G X G

593: G C X X X G

594: G C * Q X G

595: G C * A X G

596: G C * B X G

597: G C * C C G

598: G C * C X G

599: G C * G X G

600: G C * X X G

601: G G X B X G

602: G G X C X A

603: G G X C C A

604: G G X G X X

605: G G X X X X

606: G G * B X G

607: G G * C C A

608: G G * C X A

609: G G * G X X

610: G G * X X X

611: G X Q X A G

612: G X Q X B G

613: G X Q X C G

614: G X Q * A G

615: G X Q * B G

616: G X Q * C G

617: G X A X Q B

618: G X A X B G

619: G X A X C G

620: G X A * Q B

621: G X A * B G

622: G X A * C G

623: G X B X Q B

624: G X B X B G

625: G X B X C G

626: G X B X G G

627: G X B X * G

628: G X B * Q B

629: G X B * B G

630: G X B * C G

631: G X B * G G

632: G X B * * G

633: G X C X Q A

634: G X C X B G

635: G X C X C G

636: G X C X G A

637: G X C X * A

638: G X C * Q A

639: G X C * B G

640: G X C * C G

641: G X C * G A

642: G X C * * A

643: G X G X Q B

644: G X G X B G

645: G X G X C G

646: G X G X G X

647: G X G X * X

648: G X G * Q B

649: G X G * B G

650: G X G * C G

651: G X G * G X

652: G X G * * X

653: G X X X B G

654: G X X X C G

655: G X X X G X

656: G X X * B G

657: G X X * C G

658: G X X * G X

659: G * X B Q G

660: G * X B X G

661: G * X C X A

662: G * X C Q A

663: G * X G X X

664: G * * B Q G

665: G * * B X G

666: G * * C X A

667: G * * C Q A

668: G * * G X X

 X State 

669: X Q A A Q X

670: X Q X Q X X

671: X Q X Q * X

672: X Q X A X X

673: X Q X A * X

674: X Q X B X X

675: X Q X B * X

676: X Q X C X X

677: X Q X C * X

678: X Q X G X X

679: X Q X G * X

680: X Q X X * F

681: X Q X X Q X

682: X Q X * * F

683: X Q * * Q X

684: X A X Q * X

685: X A X Q X X

686: X A X A B X

687: X A X A X X

688: X A X A * X

689: X A X B X X

690: X A X C X X

691: X A X G C X

692: X A X G X X

693: X A X G * X

694: X A X X A X

695: X A * * A X

696: X B A X A X

697: X B X Q X X

698: X B X Q * X

699: X B X A X X

700: X B X B C X

701: X B X B X X

702: X B X B * X

703: X B X C X X

704: X B X G X X

705: X B X G * X

706: X C A X G X

707: X C B X B X

708: X C B X G X

709: X C C X X X

710: X C G X A X

711: X C X Q X X

712: X C X Q * X

713: X C X A X X

714: X C X B X X

715: X C X C X X

716: X C X C * X

717: X C X G X X

718: X G G G G X

719: X G X Q X X

720: X G X A C X

721: X G X A X X

722: X G X B C X

723: X G X B X X

724: X G X B * X

725: X G X C X X

726: X G X G X X

727: X G X G * X

728: X G X X G X

729: X G * * G X

730: X X Q X Q X

731: X X Q X A X

732: X X Q X B X

733: X X Q X C X

734: X X Q X G X

735: X X A X Q X

736: X X A X A X

737: X X A X B X

738: X X A X C X

739: X X A X G X

740: X X B X Q X

741: X X B X A X

742: X X B X B X

743: X X B X C X

744: X X B X G X

745: X X B X X X

746: X X C X Q X

747: X X C X A X

748: X X C X B X

749: X X C X C X

750: X X C X G X

751: X X C X X X

752: X X G G X X

753: X X G X Q X

754: X X G X A X

755: X X G X B X

756: X X G X C X

757: X X G X G X

758: X X G X X X

759: X X X B X X

760: X X X C X X

761: X X X C C X

762: X X X G X X

763: X X X X X F

764: X X X X * F

765: X X X * X F

766: X X X * * F

767: X X * X X F

768: X X * * X F

769: X * Q X Q X

770: X * Q X A X

771: X * Q X B X

772: X * Q X C X

773: X * A X Q X

774: X * A X A X

775: X * B X Q X

776: X * B X B X

777: X * B X G X

778: X * C X Q X

779: X * C X C X

780: X * G X Q X

781: X * G X A X

782: X * G X B X

783: X * G X G X

784: X * X X Q F

785: X * X X X F

786: X * * X Q F

787: X * * X X F
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Abstract. Cellular Automata(CA) is a well known tool to generate byte
error correcting code. In this paper, we propose a CA-based multi-byte
Error Correcting Code (ECC) which overcomes the weaknesses and lim-
itation of existing scheme. As a case study three and four bytes ECC
are discussed in detailed. A complete decoding algorithm of CA-based
3-byte error correcting code is presented in this work. Proposed 3-byte
ECC scheme can correct errors when errors are distributed within infor-
mation and check bytes or concentrated in any one of them. In case of
CA-based 4-byte ECC, at most 4-byte errors can be corrected if all the
errors are concentrated in information or check bytes.

1 Introduction

Error correcting codes have a wide range of applications in digital data commu-
nications, memory system design [1], fault tolerant computer design etc. Reed-
Solomon (RS) code is a well known non-binary, block code and popularly used for
error correction in many applications like wireless communications, high speed
modems and storage devices (CD, DVD). A number of general encoding and
decoding schemes of the RS codes may be found in the literature [10]. Many
researchers have put their effort to minimize the complexity of RS decoder for
communication applications.

Cellular automata has already established its novelty for bits and bytes er-
ror correcting codes[2][3]. A scheme for pipeline implementation of CA-based
t-byte error correcting and t-byte error detecting codes has been proposed in
[4]. Another scheme for parallel implementation of CA based single byte error
correcting-double byte error detecting, double byte error correcting-double byte
error detecting code has been reported in [5]. Application of GF (2p) CA in burst
error correcting codes has been reported in [6]. The CA-based byte error cor-
recting code in [3] is simpler to design compared to other schemes. However,
a few mistakes have been identified in the error location and error magnitude
computation algorithm of scheme [3]. In scheme [3] for t = 2, 3, 4, single equation
between syndromes is used to compute the error locations which gives a set of
solutions instead of a single solution. Also the scheme [3] has one limitation that
decoder can correct t-byte errors (t ≥ 2) provided errors are totally confined to
information or check bytes only. An improved scheme has been proposed in [7],
which eliminates the weaknesses and limitation of the previous scheme [3], for
2-byte error detection and correction only. VLSI implementation of CA-based

S. Bandini et al. (Eds.): ACRI 2010, LNCS 6350, pp. 231–240, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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improved double byte error correcting encoder and decoder [7] is presented in [8].
It is mentioned that the scheme for CA-based 2-byte ECC can be extended to
3-byte ECC, however the proposal[8] is for a restricted situation. The restriction
is that the determination of error locations and the computation of error values
are possible only if all the errors are concentrated in information bytes only. It
is also mentioned that errors can be corrected if errors are distributed between
information and check bytes. But the full decoding algorithm for 3-byte ECC
has not been provided in [8].

In this paper, we propose a multi-byte ECC using CA and as a case study,
three and four bytes ECC are discussed in detailed. A full decoding algorithm for
a 3-byte ECC is proposed, which can detect and correct at most three errors and
the scheme is independent of error position i.e. whether errors are distributed
between information and check bytes or concentrated in information bytes only.
Also the scheme has been extended for 4-byte ECC. Maximum length CA is
essential for CA-based byte error correcting code. For an 8-bit maximum length
CA the characteristic polynomial is a primitive polynomial of degree 8. There ex-
ist 16 primitive polynomials in GF (28), with the coefficients of the polynomials
are in GF (2). Different codes can be generated using different primitive poly-
nomials. These set of codes are required in several cryptographic applications
for better security. One such example is presented in [9], where an integrated
code is used for both error correction and message authentication. In this paper,
we have computed one such maximum length CA rule vector for each primi-
tive polynomial in GF (28) based on CA-rules 90 and 150. These 8-bit CA rule
vectors can be considered as a toy example for the scheme [9].

The rest of this paper is organized as follows. In the next section, proposed
CA based multi-byte error correcting code is described. The paper is concluded
in section 3.

2 CA-Based Multi-byte Error Correcting Code

In case of t-byte ECC in GF (28), it is essential to send 2t number of check bytes
with the block of information bytes. Each check byte Cb is computed by running
an 8-bit CA with characteristic matrix T b for N cycles while sequentially feeding
N information bytes using the expression.

Cb = T b(DN−1 ⊕ T b(DN−2 ⊕ ... ⊕ T b(D1 ⊕ T b(0 ⊕ D0))...)) (1)

where 0 ≤ b ≤ (2t − 1) and T is the characteristic matrix of an 8 cell maximum
length CA. The comp-check-byte algorithm explains method for computing Cb.
Decoder computes the b-th syndrome byte Sb using the following equation.

Sb = Cb ⊕ C
′
b; 0 ≤ b ≤ (2t − 1). (2)

where Cb is the b-th received check byte and C
′
b is the b-th check byte recomputed

from the received information bytes. Assume D
′
m , Em are the received m-

th information byte and the calculated m-th error byte respectively then the
corrected information byte is obtained by using the equation as follows.
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Dm = D
′
m ⊕ Em; where 0 ≤ m ≤ (N − 1) (3)

Comp-check-byte: check byte Cb computation algorithm
s denotes the state of the 8 bits CA
begin
s := 0; for k = 0 to N − 1 do

begin
s := s ⊕ Dk;
Run the CA for one cycle; (CA with characteristic matrix T b)

end;
Cb := s;

end;

2.1 8-bit CA Rule Vectors for All Primitive Polynomials

Proposed CA-based byte error correcting code is based on null boundary max-
imum length CA. Therefore, rule vectors for the 8-bit maximum length null
boundary CA is discussed in this section. We have considered the CA-rules 90
and 150 only. By simulation, we have found the rule vectors for each primitive
polynomial in GF (28) and they have been listed in Table 1. In Table 1, ‘0′ and
‘1′ correspond to rule 90 and 150 respectively. It has been observed that the mir-
ror image of each rule vector corresponds to the same primitive polynomial. For
example, 00000110 and 01100000 are two rule vectors for primitive polynomial
x8 +x4 +x3 +x2 +1, where the two rule vectors are mirror image of each other.
Different rule vectors generate different codewords for the same data block and
there is an option to select any one of the 16 rule vectors given in Table 1. As a
case study, CA-based 3-byte and 4-byte error correcting codes are discussed in
following subsection.

2.2 3-Byte Error Correcting Code

This section explains the complete decoding algorithm for the CA-based three
bytes error correcting code. Proposed scheme can detect and correct at most
three errors and it is independent of error positions. In three byte error correcting
code, six check bytes are generated by using (1) and the syndrome values are
computed using (2). Depending on the number of syndromes having value non-
zero and zero, some conclusions may be drawn. The results are shown in Table
2. In case of 3-byte ECC, four possibilities may occur: no error, one error, two
errors and three errors. The obvious distribution of errors are summarized in
Table 3 to make the analysis more systematic. In the case of three errors in
three check bytes is identified when three syndromes have non-zero value and
other three have zero value. The result is also shown in Table 2. All syndromes
having value zero indicates there is no error. In this section, we first describe
the decoding method where all three errors are concentrated within information
bytes, from [8] for the sake of completeness.
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Table 1. 8-bit CA-rule vectors for all primitive polynomials in GF (28)

No. Primitive Polynomial Corresponding CA-rule vector

1 x8 + x4 + x3 + x2 + 1 00000110

2 x8 + x5 + x3 + x + 1 01011111

3 x8 + x5 + x3 + x2 + 1 01110111

4 x8 + x6 + x3 + x2 + 1 01101100

5 x8 + x6 + x4 + x3 + x2 + x + 1 10010011

6 x8 + x6 + x5 + x + 1 11010010

7 x8 + x6 + x5 + x2 + 1 00101101

8 x8 + x6 + x5 + x3 + 1 00001111

9 x8 + x6 + x5 + x4 + 1 00111001

10 x8 + x7 + x2 + x + 1 11101111

11 x8 + x7 + x3 + x2 + 1 00101010

12 x8 + x7 + x5 + x3 + 1 01000101

13 x8 + x7 + x6 + x + 1 01011101

14 x8 + x7 + x6 + x3 + x2 + x + 1 01011011

15 x8 + x7 + x6 + x5 + x2 + x + 1 11001011

16 x8 + x7 + x6 + x5 + x4 + x2 + 1 11010101

Table 2. Number of non-zero syndromes vs. decision

Number of syndromes Decision
Value zero Value non-zero

6 0 no error

5 1 1 check byte error

4 2 2 check bytes error

3 3 3 check bytes error

2 4 4 check bytes error /
2 check bytes and 1 information byte

1 5 two/three bytes error

0 6 one/two/three bytes error

Table 3. Error distribution

Total number of Number of errors in
errors in bytes information bytes check bytes

3 3 0
0 3
2 1
1 2

2 2 0
0 2
1 1

1 1 0
0 1
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Three information bytes error. Suppose Em, En and Eo are the error magni-
tudes in the m-th, n-th, and o-th information bytes respectively with m �= n �= o.
Then the corresponding syndrome equations are as follows

S0 = Em ⊕ En ⊕ Eo ; S1 = T iEm ⊕ T jEn ⊕ T kEo

S2 = T 2iEm ⊕ T 2jEn ⊕ T 2kEo ; S3 = T 3iEm ⊕ T 3jEn ⊕ T 3kEo

S4 = T 4iEm ⊕ T 4jEn ⊕ T 4kEo ; S5 = T 5iEm ⊕ T 5jEn ⊕ T 5kEo (4)

where S0, S1, S2, S3, S4 and S5 are six syndrome bytes and i + m = N , j + n =
N , k + o = N and N is the number of information bytes in the codeword. The
required equations to compute the error locations are as follows.

T 2j(T iS2 ⊕ S3) ⊕ T iS4 ⊕ S5 = T 2k(T 2j(T iS0 ⊕ S1) ⊕ T iS2 ⊕ S3)
T 2j(T 2iS1 ⊕ S3) ⊕ T 2iS3 ⊕ S5 = T k(T 2j(T 2iS0 ⊕ S2) ⊕ T 2iS2 ⊕ S4)
T j(T 3iS1 ⊕ S4) ⊕ T 3iS2 ⊕ S5 = T k(T j(T 3iS0 ⊕ S3) ⊕ T 3iS1 ⊕ S4) (5)

Simultaneous solution of three equations estimates the three error locations.
Error magnitudes in three bytes m, n and o are calculated using the following
equations.

En = T L−a(T 2k(T iS0 ⊕ S1) ⊕ T iS2 ⊕ S3)
Eo = T L−b(T 2j(T iS0 ⊕ S1) ⊕ T iS2 ⊕ S3); Em = S0 ⊕ Eo ⊕ En (6)

where T a = (T i ⊕ T j)(T 2j ⊕ T 2k) , T b = (T i ⊕ T k)(T 2j ⊕ T 2k) and L = 28 − 1
is the cycle length of an 8-cell maximum length group CA.

Two information bytes and one check byte error. There are six possi-
bilities when any one of the six check bytes and any two information bytes are
erroneous. Assume e0, Em and En are the errors in check byte C0, m-th and
n-th information bytes respectively. Then we can write the syndrome equations
as follows.

S0 = Em ⊕ En ⊕ e0 ; S1 = T iEm ⊕ T jEn ; S2 = T 2iEm ⊕ T 2jEn

S3 = T 3iEm ⊕ T 3jEn ; S4 = T 4iEm ⊕ T 4jEn ; S5 = T 5iEm ⊕ T 5jEn (7)

From the Equations in (7), we get

T iS0 ⊕ S1 = (T i ⊕ T j)En ⊕ T ie0 ; T iS2 ⊕ S3 = T 2j(T i ⊕ T j)En

T iS4 ⊕ S5 = T 4j(T i ⊕ T j)En ; T 2iS0 ⊕ S2 = (T 2i ⊕ T 2j)En ⊕ T 2ie0

T 2iS1 ⊕ S3 = T j(T 2i ⊕ T 2j)En ; T 2iS2 ⊕ S4 = T 2j(T 2i ⊕ T 2j)En

T 2iS3 ⊕ S5 = T 3j(T 2i ⊕ T 2j)En ; T 3iS0 ⊕ S3 = (T 3i ⊕ T 3j)En ⊕ T 3ie0

T 3iS1 ⊕ S4 = T j(T 3i ⊕ T 3j)En ; T 3iS2 ⊕ S5 = T 2j(T 3i ⊕ T 3j)En (8)

Combining the equations in (8), we get

T 2j(T iS2 ⊕ S3) ⊕ T iS4 ⊕ S5 = 0; T 2j(T 2iS0 ⊕ S2) ⊕ T 2iS2 ⊕ S4 = T 2j(T 2ie0)
T j(T 3iS0 ⊕ S3) ⊕ T 3iS1 ⊕ S4 = T j(T 3ie0); T 2j(T 2iS1 ⊕ S3) ⊕ T 2iS3 ⊕ S5 = 0
T 2j(T iS0 ⊕ S1) ⊕ T iS2 ⊕ S3 = T 2j(T ie0); T j(T 3iS1 ⊕ S4) ⊕ T 3iS2 ⊕ S5 = 0 (9)
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Table 4. Equations for computing at most two errors in information bytes

U V W X Y Z Errors in Error value

0 1 1 0 1 0 C0, Dm, Dn En = T (L−α)(T iS1 ⊕ S2), Em = T (L−β)(T jS1 ⊕ S2)

0 0 1 1 1 1 C1, Dm, Dn En = T (L−γ)(T 2iS0 ⊕ S2), Em = S0 ⊕ En

1 1 0 0 1 1 C2, Dm, Dn En = T (L−δ)(T iS0 ⊕ S1), Em = S0 ⊕ En

1 0 1 1 1 0 C3, Dm, Dn En = T (L−δ)(T iS0 ⊕ S1), Em = S0 ⊕ En

1 1 1 0 0 1 C4, Dm, Dn En = T (L−δ)(T iS0 ⊕ S1), Em = S0 ⊕ En

1 0 0 1 0 1 C5, Dm, Dn En = T (L−δ)(T iS0 ⊕ S1), Em = S0 ⊕ En

0 0 0 0 0 0 Dm, Dn En = T (L−δ)(T iS0 ⊕ S1), Em = S0 ⊕ En

U = T 2j(T iS2 ⊕ S3) ⊕ T iS4 ⊕ S5, V = T 2j(T 2iS0 ⊕ S2) ⊕ T 2iS2 ⊕ S4

W = T j(T 3iS0 ⊕ S3) ⊕ T 3iS1 ⊕ S4, X = T 2j(T 2iS1 ⊕ S3) ⊕ T 2iS3 ⊕ S5

Y = T 2j(T iS0 ⊕ S1) ⊕ T iS2 ⊕ S3, Z = T j(T 3iS1 ⊕ S4) ⊕ T 3iS2 ⊕ S5

T α = T j(T i ⊕ T j), T β = T i(T i ⊕ T j), T γ = (T 2i ⊕ T 2j), T δ = (T i ⊕ T j)

Equations in (9) are used to determine the error locations m = N − i and
n = N − j. From the syndrome equations in (7), we get

T iS1 ⊕ S2 = T j(T i ⊕ T j)En or En = T L−α(T iS1 ⊕ S2)
T jS1 ⊕ S2 = T i(T i ⊕ T j)Em or Em = T L−β(T jS1 ⊕ S2) (10)

where T α = T j(T i ⊕ T j) T β = T i(T i ⊕ T j) and L = 28 − 1. Error magnitudes
Em and En are computed using equations in (10), Equations to determine the
error locations and the values for the other five cases and the case discussed in
this section are summarized in Table 4. Zero and non-zero value are represented
by ‘0′ and ‘1′ in Table 4. For any eb �= 0, T peb �= 0, where 1 ≤ p ≤ 28 − 1 and eb

is the error in b-th check byte. Hence V = 1, W = 1 and Y = 1 in the first row
of Table 4.

Two information bytes error. Assume Em and En are the errors in the m-th
and n-th information byte respectively. Then the syndromes are as follows.

S0 = Em ⊕ En ; S1 = T iEm ⊕ T jEn ; S2 = T 2iEm ⊕ T 2jEn

S3 = T 3iEm ⊕ T 3jEn ; S4 = T 4iEm ⊕ T 4jEn ; S5 = T 5iEm ⊕ T 5jEn (11)

Combining the equations in (11), we get

T 2j(T iS2 ⊕ S3) ⊕ T iS4 ⊕ S5 = 0; T 2j(T 2iS0 ⊕ S2) ⊕ T 2iS2 ⊕ S4 = 0
T j(T 3iS0 ⊕ S3) ⊕ T 3iS1 ⊕ S4 = 0; T 2j(T 2iS1 ⊕ S3) ⊕ T 2iS3 ⊕ S5 = 0

T 2j(T iS0 ⊕ S1) ⊕ T iS2 ⊕ S3 = 0; T j(T 3iS1 ⊕ S4) ⊕ T 3iS2 ⊕ S5 = 0 (12)

The error locations m = N −i and n = N −j are determined using the equations
in (12). Using the syndrome equations in (11), we can write

T iS0 ⊕ S1 = (T i ⊕ T j)En or En = T (L−δ)(T iS0 ⊕ S1); Em = S0 ⊕ En (13)



Null Boundary 90/150 Cellular Automata 237

where T δ = T i ⊕ T j and L = 28 − 1. Error magnitudes may be found using
equation in (13). Equations are also shown in the last row of Table 4.

One information byte and two check bytes error. There are fifteen situ-
ations when any two check bytes and any one information byte are erroneous.
In this section, out of the fifteen cases, the proof of one case is given as follows
and the results for the other cases are given in Table 5 for the sake of brevity.
Assume e0, e1 and Em are the error values in the check bytes C0, C1 and the m-
th information byte respectively. Hence, the corresponding syndrome equations
are as follows.

S0 = Em ⊕ e0 ; S1 = T iEm ⊕ e1 ; S2 = T 2iEm

S3 = T 3iEm ; S4 = T 4iEm ; S5 = T 5iEm (14)

From the syndrome equations in (14), we get

T iS0 ⊕ S1 = T ie0 ⊕ e1 ; T iS2 ⊕ S3 = 0 ; T iS4 ⊕ S5 = 0 ; T 2iS2 ⊕ S4 = 0
T 2iS3 ⊕ S5 = 0 ; T 2iS0 ⊕ S2 = T 2ie0 ; T 2iS1 ⊕ S3 = T 2ie1

T 3iS1 ⊕ S4 = T 3ie1 ; T 3iS2 ⊕ S5 = 0 ; T 3iS0 ⊕ S3 = T 3ie0 (15)

For any non-zero value of e0 and e1, T ge0 �= 0 and T he1 �= 0, where 1 ≤ g, h ≤
(28−1). Let A = T ie0⊕e1; then the value of A may or may not be zero, because
it depends on the value of e0, e1 and i. In Table 5, x, 1 and 0 indicate the don’t
care, non-zero value and zero value respectively.

One information byte error. Consider the case when only one information
byte is erroneous. Syndrome equations in this case are as follows.

S0 = Em ; S1 = T iEm ; S2 = T 2iEm

S3 = T 3iEm ; S4 = T 4iEm ; S5 = T 5iEm (16)

Combining the syndrome equations in (16), we get

T iS0 ⊕ S1 = 0 ; T iS2 ⊕ S3 = 0 ; T iS4 ⊕ S5 = 0 ; T 2iS2 ⊕ S4 = 0
T 2iS3 ⊕ S5 = 0 ; T 2iS0 ⊕ S2 = 0 ; T 2iS1 ⊕ S3 = 0 ; T 3iS1 ⊕ S4 = 0
T 3iS2 ⊕ S5 = 0 ; T 3iS0 ⊕ S3 = 0 (17)

If all the equations in (17) are satisfied, then one error in (N − i)-th information
byte is identified and the corresponding error magnitude is Em = S0.

One information byte and one check byte error. There are six situations
in which any one of the information bytes and any one of the check bytes are
erroneous. Consider the case when Em and e0 are the errors in m-th information
byte and the check byte C0 respectively. Syndromes are computed using (1).

S0 = Em ⊕ e0 ; S1 = T iEm ; S2 = T 2iEm

S3 = T 3iEm ; S4 = T 4iEm ; S5 = T 5iEm (18)
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Table 5. Equations for computing at most one error in information byte

A B C D E F G H I J Errors in Error value

x 0 0 0 0 1 1 1 0 1 C0, C1, Dm T L−2iS2

1 1 0 1 0 x 0 0 1 1 C0, C2, Dm T L−iS1

1 1 0 0 1 1 1 0 0 x C0, C3, Dm T L−iS1

1 0 1 1 0 1 0 1 0 1 C0, C4, Dm T L−iS1

1 0 1 0 1 1 0 0 1 1 C0, C5, Dm T L−iS1

1 1 0 1 0 1 1 1 1 0 C1, C2, Dm S0

1 1 0 0 1 0 x 1 0 1 C1, C3, Dm S0

1 0 1 1 0 0 1 x 0 0 C1, C4, Dm S0

1 0 1 0 1 0 1 1 1 0 C1, C5, Dm S0

0 x 0 1 1 1 1 0 1 1 C2, C3, Dm S0

0 1 1 x 0 1 0 1 1 0 C2, C4, Dm S0

0 0 1 1 1 1 0 0 x 0 C2, C5, Dm S0

0 1 1 1 1 0 1 1 0 1 C3, C4, Dm S0

0 1 1 0 x 0 1 0 1 1 C3, C5, Dm S0

0 0 x 1 1 0 0 1 1 0 C4, C5, Dm S0

0 0 0 0 0 0 0 0 0 0 Dm S0

1 0 0 0 0 1 0 0 0 1 C0, Dm T L−2iS1

1 0 0 0 0 0 1 1 0 0 C1, Dm S0

0 1 0 1 0 1 0 0 1 0 C2, Dm S0

0 1 0 0 1 0 1 0 0 1 C3, Dm S0

0 0 1 1 0 0 0 1 0 0 C4, Dm S0

0 0 1 0 1 0 0 0 1 0 C5, Dm S0

A = T iS0 ⊕ S1, B = T iS2 ⊕ S3, C = T iS4 ⊕ S5, D = T 2iS2 ⊕ S4

E = T 2iS3 ⊕ S5, F = T 2iS0 ⊕ S2, G = T 2iS1 ⊕ S3, H = T 3iS1 ⊕ S4

I = T 3iS2 ⊕ S5, and J = T 3iS0 ⊕ S3

Combining the syndrome equations in (18), we get

T iS0 ⊕ S1 = T ie0 �= 0 ; T iS2 ⊕ S3 = 0 ; T iS4 ⊕ S5 = 0 ; T 2iS2 ⊕ S4 = 0
T 2iS3 ⊕ S5 = 0 ; T 2iS0 ⊕ S2 = T 2ie0 �= 0 ; T 2iS1 ⊕ S3 = 0
T 3iS1 ⊕ S4 = 0 ; T 3iS2 ⊕ S5 = 0 ; T 3iS0 ⊕ S3 = T 3ie0 �= 0 (19)

If all the equations in (19) are satisfied, then one error in (N − i)-th information
byte and another error in check byte C0 are identified. The error magnitude is
Em = T L−iS1. The required equations for the other five cases are summarized
in Table 5 for the sake of brevity. Therefore, it is possible to locate and correct
all the three-byte errors. It is noted that all expressions A, B, ..., J in Table 5
and all expressions U, V, ...Z in Table 4 are part of the equations in (5). The
following section describes the CA-based 4-byte ECC.
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2.3 4-Byte Error Correcting Code

In case of CA-based 4-byte error correcting code, eight check bytes are computed
using (1) and the decoder computes the eight syndrome bytes employing (2). In
this section, we derive the equations to determine the error locations and the
error magnitudes, provided the errors are concentrated in the information bytes
only. Suppose S0, S1, S2, S3, S4, S5, S6, S7 are the eight syndromes and Em, En,
Eo, Ep are the errors in the m-th, n-th, o-th, p-th information bytes respectively,
where m �= n �= o �= p.

S0 = Em ⊕ En ⊕ Eo ⊕ Ep

S1 = T iEm ⊕ T jEn ⊕ T kEo ⊕ T lEp

S2 = T 2iEm ⊕ T 2jEn ⊕ T 2kEo ⊕ T 2lEp

S3 = T 3iEm ⊕ T 3jEn ⊕ T 3kEo ⊕ T 3lEp

S4 = T 4iEm ⊕ T 4jEn ⊕ T 4kEo ⊕ T 4lEp

S5 = T 5iEm ⊕ T 5jEn ⊕ T 5kEo ⊕ T 5lEp

S6 = T 6iEm ⊕ T 6jEn ⊕ T 6kEo ⊕ T 6lEp

S7 = T 7iEm ⊕ T 7jEn ⊕ T 7kEo ⊕ T 7lEp (20)

Using the syndrome equations in (20), the following four equations can be for-
mulated to compute four error locations, provided all the errors are concentrated
in the information bytes only.

T 2k(T 2j(T iS2 ⊕ S3) ⊕ T iS4 ⊕ S5) ⊕ T 2j(T iS4 ⊕ S5) ⊕ T iS6 ⊕ S7 =
T 2l(T 2k(T 2j(T iS0 ⊕ S1) ⊕ T iS2 ⊕ S3) ⊕ T 2j(T iS2 ⊕ S3) ⊕ T iS4 ⊕ S5);

T k(T j(T 4iS1 ⊕ S5) ⊕ T 4iS2 ⊕ S6) ⊕ T j(T 4iS2 ⊕ S6) ⊕ T 4iS3 ⊕ S7 =
T l(T k(T j(T 4iS0 ⊕ S4) ⊕ T 4iS1 ⊕ S5) ⊕ T j(T 4iS1 ⊕ S5) ⊕ T 4iS2 ⊕ S6);

T k(T j(T 3iS2 ⊕ S5) ⊕ T 3iS3 ⊕ S6) ⊕ T j(T 3iS3 ⊕ S6) ⊕ T 3iS4 ⊕ S7 =
T 2l(T k(T j(T 3iS0 ⊕ S3) ⊕ T 3iS1 ⊕ S4) ⊕ T j(T 3iS1 ⊕ S4) ⊕ T 3iS2 ⊕ S5);

T 2k(T j(T 2iS2 ⊕ S4) ⊕ T 2iS3 ⊕ S5) ⊕ T j(T 2iS4 ⊕ S6) ⊕ T 2iS5 ⊕ S7 =
T 2l(T 2k(T j(T 2iS0 ⊕ S2) ⊕ T 2iS1 ⊕ S3) ⊕ T j(T 2iS2 ⊕ S4) ⊕ T 2iS3 ⊕ S5) (21)

Simultaneous solution of the equations in (21) determines the four error positions
within the information bytes, where m = N − i, n = N − j, o = N − k and
p = N − l and N is the number of information bytes in the codeword. The
four error magnitudes Em, En, Eo and Ep are calculated using the following
equations.

En = T L−a(T 2k(T 2l(T iS0 ⊕ S1) ⊕ T iS2 ⊕ S3) ⊕ T 2l(T iS2 ⊕ S3) ⊕ T iS4 ⊕ S5)
Eo = T L−b(T 2j(T 2l(T iS0 ⊕ S1) ⊕ T iS2 ⊕ S3) ⊕ T 2l(T iS2 ⊕ S3) ⊕ T iS4 ⊕ S5)
Ep = T L−c(T 2j(T 2k(T iS0 ⊕ S1) ⊕ T iS2 ⊕ S3) ⊕ T 2k(T iS2 ⊕ S3) ⊕ T iS4 ⊕ S5)
Em = S0 ⊕ En ⊕ Eo ⊕ Ep (22)

where T a = (T j ⊕T i)(T 2j ⊕T 2k)(T 2j ⊕T 2l); T b = (T k ⊕T i)(T 2j ⊕T 2k)(T 2k ⊕
T 2l); T c = (T l ⊕T i)(T 2j ⊕T 2l)(T 2k ⊕T 2l) and L = 28 − 1 is the cycle length of
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an 8-cell maximum length group CA. Similar to a 3-byte ECC, it is possible to
correct the errors when the errors are distributed between information and the
check bytes.

One disadvantage of the proposed error correcting code is that the error loca-
tion identification block has a time complexity of N t, where N is the number of
information bytes and t is the number of errors to be corrected. But the decoding
time can be reduced by duplicating the error location identification module.

3 Conclusion

This paper presents an improved scheme for multi-byte error correcting code
using CA which overcomes the weaknesses and limitation of existing scheme.
As a case study full decoding algorithm for three byte error correcting code is
presented. Proposed CA-based four byte error correcting code can detect and
correct at most 4 errors if all errors are concentrated in information or check
bytes.
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Abstract. Non-linearity as well as randomness are essential for crypto-
graphic applications. The Linear Cellular Automata (CA), particularly
maximum length CA, are well known for generating excellent random
sequences. However, till date, adequate research has not been done to
generate maximal length Cellular Automata using non-linear rules; a fact
that limits the application of CA in cryptography. This paper devices a
method to generate non-linear Maximal Length Cellular Automata. It
manipulates the number of clock cycles, based on inputs, in a maximum
length additive CA and generates a series of non-linear boolean map-
pings. It shows that the bit streams generated in this manner are highly
non-linear and pass all the statistical tests for randomness. These maxi-
mum length CA can be used as a non-linear primitive in cryptographic
applications.

Keywords: Pseudo-Random Number Generator, Non-linearity, Maxi-
mum Length Cellular Automata, Cryptography.

1 Introduction

Cellular Automata (CA) are computational models that can perform complex
computation with only local information. The simple structure of CA has at-
tracted researchers and practitioners of different fields and has undergone rig-
orous theoretical and experimental analysis. The complex behavior of natural
systems from diverse disciplines has been modeled in very simplistic manner
by using CA. CA have also gained popularity due their simplicity in hardware
implementations. CA based architectures are regular, cascadable and also with
lesser interconnects which help VLSI design.

CA have been categorized into two broad categories: Addtive/Linear CA
where the local transformations of a CA have been driven by XOR/XNOR logic
[1] and non-linear CA where there are no such restrictions. The additive CA
have been analyzed using algebraic methods and have been used widely in the
area of VLSI design and test. The applications of CA include pattern genera-
tion/recognition, biological computing, neural networks, cryptography to name
a few.
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Using Additive CA, it is possible to generate maximal length CA where all
possible states of an n bit pattern lie in a single cycle. A lot of work has been
done to generate VLSI test patterns using linear CA [3], [4], [5], [6] which give
good randomness property. While the randomness property is necessary, the non-
linearity is also a must for cryptography. Otherwise, the key in an cryptographic
application can be recovered by solving a set of linear equations. Hence we
need a non-linear CA to utilize it effectively in the cryptographic applications.
Wolfram has introduced CA as random sequence generator, which is useful for
cryptography, and used rule 30 for non-linearity [10], [11]. However, rule 30 does
not give maximum length sequences. Using this fact, Meier and Staffelbach [12]
have found that in some cases the change in seed does not change the output
sequences. Hence, they could attack the CA based non-linear sequence generator
easily. This provides the need for a non-linear CA which is of maximum length.
However, it is not possible to generate maximum length CA using non-linear
rules.

In this paper, we address the problem of non-existence of non-linear maximal
length CA and vice versa, that is maximal length CA not having non-linearity.
We use additive CA for maximal length CA and derive the non-linearity by
varying the clock cycles based on input. We show that we can generate excellent
non-linearity using such a scheme. Also, by selecting a maximal length additive
CA, the proposed construction can have all the possible states in a single cycle.

This paper is organized as follows: Section 2 provides an introduction to Cel-
lular Automata and two related concepts. The third section describes how to
generate non-linear boolean mappings using CA. It gives the theoretical basis
with some examples and the effect of different seeds on the construction. The
section 4 provides the experimental results. The section 5 gives the statistical
evaluation for randomness performed for these bits using NIST statistical test
suit. Finally, the section 6 describes the hardware implementation and the soft-
ware implementation for proposed construction of non-linear CA.

2 Preliminaries

In this section, we describe some basic theoretical foundations of the proposed
work. We first describe some basics of Cellular Automata.

2.1 Basics of Cellular Automata

Wolfram [7] pioneered the study of CA as a mathematical model for self orga-
nizing statistical systems. The CA structure can be viewed as a lattice of cells
where every cell can take values either 0 or 1. Each cell evolves in each time step
depending on some combinational logic on itself and its neighbors as shown in
figure 1 [1]. Such a CA is called three-neighborhood CA.The next state function
for a three-neighborhood CA cell can be expressed as follows:
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Fig. 1. A Cell of Cellular Automata

Say,

i: position of an individual cell in an one dimensional array.
t: time step.
qi(t): output state of the i-th cell at the t-th time step.

Then,

qi(t + 1) = f(qi(t), qi+1(t), qi−1(t)),

where f denotes the local transition function realized with a combination logic
and is known as a rule of the CA.

A three neighborhood CA having two states (0 and 1) can have 23 distinct
neighborhood configurations. For such a CA there can be a total of 223

(256)
distinct mappings from all those neighborhood configurations to the next state.
Each mapping is called a ”rule” of the CA. Among the rules, rule 90 and rule
150 are used to generate the maximum length CA. The combinational logic for
the above rules can be given as:

rule90 : qi(t + 1) = qi+1(t) ⊕ qi−1(t)
rule150 : qi(t + 1) = qi(t) ⊕ qi+1(t) ⊕ qi−1(t)

If the rule of a CA involves XOR logic only it is called a linear rule and the
corresponding CA is called a linear CA or an additive CA.

The rules with AND-OR combination logic are called non-additive CA. Non-
additive Cellular Automata are non-linear in nature.

The state of an n-cell CA can be represented by its characteristic polynomial.
The characteristic matrix of a CA operating over GF(2) is a matrix that de-
scribes the behavior of the CA. We can calculate the next state of the CA by
multiplying the characteristic matrix by the present state of the CA. A charac-
teristic matrix is constructed as:

T [i, j] =1, if the next state of the ith cell depends on jth cell
=0, otherwise

The associated characteristic polynomial can be obtained by constructing
the matrix [T ] + x[I] where I is the identity matrix and then computing the
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determinant of the resultant matrix. If S(t) represents the state of the CA at
the t-th time step then the state at the next time instant can be represented as:

S(t + 1) = [T ]S(t) and S(t + 2) = [T ]2S(t) and so on. So we can write:

S(t + p) = [T ]pS(t)

Fig. 2. Four Cell Maximum Length Cellular Automata Using 90,150,90,150 Rules

A Group CA is one in which each of the states has a single predecessor. A
maximum length CA is a group CA with all non-zero states lying in a single
cycle. It has been established that the maximum length cycle can be produced
only if the characteristic polynomial is primitive as well as only if rule 90 and/or
rule 150 is used to construct the CA (rule 90 = xor(left neighbor, right neighbor);
rule 150 = xor(left neighbor, self, right neighbor)). A four cell maximum length
CA has rules (90,150,90,150) and is shown in figure 2.

2.2 Non-linearity

We call n tuple of elements from GF (2) as a vector space, Vn. The n tuple of
Vn can assume an integer value from [0 · · · 2n − 1] and thus each element in Vn

has an one to one correspondence with integers of this range. The Hamming
weight of a vector x of n elements is the number of ones in x. If f and g are two
functions in Vn then the Hamming distance of f and g are defined as d(f, g) =∑

f(x) �=g(x) 1, where the addition is over the integers. We call h(x) = a1x1 ⊕
a2x2 ⊕ a3x3 ⊕ · · · ⊕ anxn ⊕ c as the affine function where ai, c ∈ GF (2) and
x = (x1, x2, · · · , xn). If c = 0 the above function is called a linear function. Let
h0, · · · , h2n+1−1 be the affine functions in Vn. The non-linearity of a function f
is defined as Nf = min0,···,2n+1d(f, hi).

As studied in [13], the following Eq. 1 provides the non-linearity for the func-
tion f in Vn,

Nf = 2n−1 − 0.5max |
∑

u,x∈Vn

(−1)f(x)+u·x | (1)

From the above equation, the maximum non-linearity that can be achieved is
2n−1 − 20.5n−1.
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However, since in this paper we have generated n × n bit non-linear boolean
mappings, we should consider the linear combination of the coordinate functions
[8]. In that case the Eq. 1 should be modified as in Eq. 2.

Nf = 2n−1 − 0.5max |
∑

u,v,x∈Vn

(−1)v·f(x)+u·x | (2)

Here, the maximum non-linearity is upper bounded by 2n−1 − 20.5(n−1).

2.3 Algebraic Normal Form

The algebraic normal form is a representation of boolean functions that uses only
AND and XOR functions. Let Fn

2 be the vector space defined by n-vectors x =
(x1, x2, · · · , xn), where xi ∈ F2, i.e. each of the n elements has either value 0 or
1 and computations are defined modulo 2. A Boolean function f of n variables is
simply a mapping f : Fn

2 �→ F2. There are exactly 22n

distinct Boolean functions
of n variables, each uniquely defined by its truth table. The algebraic normal
form, f̂ : Fn

2 �→ F2, is defined by the function:

f̂ =
∑

a∈Fn

2

f(a)
n∏

i=1

xai

i

There is a unique algebraic normal form for all boolean functions f. The alge-
braic degree deg(f) is the maximum Hamming weight x that satisfies f̂(x) = 1;
this is equivalent to the length of the longest monomial (most variables) in the
polynomial representation of f.

3 Generation of Non-linearity

Any CA transformation takes two input parameters. The first one is the seed of
the CA and the second one is the number of clock cycles that needs to be run.
The relationship between the input seed and the output is completely linear as
it involves only XOR operations. However, a very little attention has been given
for the relationship between the number of cycles and the output of the CA. We
have found that the relationship between the number of cycles and the output
is highly non-linear. Also it spreads across statistically well for different inputs.

3.1 CA Based Transformation Function

If n denotes the seed, m denotes the number of cycles and y denotes the output
of a CA transformation, then, any CA transformation can be expressed as:

y = T m ∗ (n) (3)

where T (constant) is the characteristic matrix of the CA.
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If we keep the seed constant and vary the number of cycles based on input x,
the CA transformation becomes:

y = T (x) ∗ n mod p(x) (4)

where, p(x) denotes the generator polynomial that gives rise to the maximum
length CA. Hence the output varies exponentially with input giving rise to non-
linearity.

Example 1
The above theory can be clear if we take a simple four cell maximum length CA
having rule vector 〈90, 150, 90, 150〉 (for a generator polynomial X4 +X +1) and
calculate its algebraic normal form. Consider a seed 〈1, 0, 1, 0〉. Let us denote the
input vector as x = (x1, x2, x3, x4). This input vector will determine the number
of cycles to be run for the CA transformation. Let, the vector y = (y1, y2, y3, y4)
denote the corresponding outputs of the CA after running x number of cycles.
Also for an all zero input the output is hard-coded to zero.

Table 1. Generated 4 × 4 Boolean Mapping with Initial Seed 1010

INPUT Clk Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OUTPUT (Decimal Form) 0 1 3 6 11 2 5 13 9 7 8 4 14 15 12 10

The table 1 shows the input cycles vs. output of the CA mapping. The corre-
sponding algebraic normal form is given below; all operations are performed on
GF(2) which means the ’+’ operations are equivalent to XOR operations.

y1 = x0 + x1 + x2 + x1x2 + x0x1x2 + x3 + x0x3 + x0x2x3

y2 = x1 + x2 + x0x3 + x1x3 + x0x1x3 + x0x2x3 + x1x2x3

y3 = x0x1 + x1x2 + x0x1x2 + x0x3 + x0x1x3 + x2x3 + x0x2x3 + x1x2x3

y4 = x2 + x0x2 + x1x2 + x3 + x0x3 + x2x3 + x1x2x3

The above representation of algebraic normal form shows that each output
bit is dependent on all the input bits. It can also be observed that the algebraic
degree for each output bit is three. So the relationship between the number of
cycles and the output of the CA is highly non-linear and has got very good
statistical properties.

Example 2
Next consider the seed 〈1, 1, 1, 1〉. Table 2 shows a mapping thus generated be-
tween the number of cycles and the output of the CA.

Table 2. Generated 4 × 4 Boolean Mapping with Initial Seed 1111

INPUT Clk Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OUTPUT (Decimal Form) 0 12 10 1 3 6 11 2 5 13 9 7 8 4 14 15
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The corresponding algebraic normal form is shown below; all operations are
performed on GF(2) which means the ’+’ operations are equivalent to XOR
operations.

y1 = x0x1 + x2 + x0x2 + x0x1x2 + x3 + x0x1x3 + x0x2x3

y2 = x1 + x0x1 + x2 + x1x2 + x0x1x2 + x1x3 + x2x3

y3 = x0 + x0x1 + x3 + x0x3 + x1x3 + x2x3 + x0x2x3

y4 = x0 + x1 + x0x2 + x0x1x2 + x2x3 + x0x2x3 + x1x2x3

Here also, the above representation of algebraic normal form shows that each
output bit is dependent on all the input bits. It can also be observed that the
algebraic degree for each output bit is three.

3.2 The Effect of Seed

In the above construction, different seeds will lead to a different starting point of
the same cycle, which is expected from a maximum length additive CA. However,
it is possible to get a completely new Input/Output mapping, when the input
vector is the number of clock cycles, with each different seed. This is obvious
from the two examples given in the previous subsection. There, we can see that
two different seeds 1010 and 1111 produce two different Input/Output mappings
and hence produce a different algebraic normal form in the output expressions.
However, if we check carefully, the outputs in both the cases, lie in the same
state machine.

4 The Non-linearity of the Construction

In this section, we examine the non-linearity achieved through the non-linear
maximum length Cellular Automata as described in the previous sections. If we
put the output expression of the boolean mapping Eq. 4 in the non-linearity Eq.
2, the resulting expression is shown in Eq. 5.

Nf = 2n−1 − 0.5max |
∑

u,v,x∈Vn

(−1)v·(T (x)∗n mod p(x))+u·x | (5)

The actual non-linearity would depend on the choice of T matrix which, in
turn, depends on the Rule vector chosen for the construction. Hence, theoreti-
cally, it gives a very good indication that the proposed maximum length non-
linear CA will provide excellent non-linearity.

To show that the proposed construction can provide non-linearity, we provide
the experimental results of non-linearity in this section. Due to space and system
limitation in calculating the non-linearity values, we give the non-linearity values
for CAs of length 4 to 16. The table 3 shows the non-linearity of each output
bits. In these calculations, the maximum length additive CAs are used with rule
vectors as defined in [9]. The seeds used for each of these CAs are alternating
ones and zeros starting with one. The first column of the table gives the number
of cells of the CA. The last column provides the maximum possible non-linearity
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Table 3. Non-linearity of Each Output bit

No of Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Theo.
Cells 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Max

4 4 4 4 4 - - - - - - - - - - - - 5

5 10 12 10 10 10 - - - - - - - - - - - 12

6 24 24 22 22 20 20 - - - - - - - - - - 26

7 52 48 52 50 52 52 50 - - - - - - - - - 56

8 108 106 108 110 108 106 108 108 - - - - - - - - 116

9 216 226 224 224 218 220 216 218 220 - - - - - - - 240

10 470 460 466 470 464 470 468 466 470 462 - - - - - - 489

11 946 958 948 940 930 932 938 952 942 936 950 - - - - - 992

12 1944 1934 1938 1938 1922 1948 1954 1940 1922 1944 1934 1936 - - - - 2002

13 3938 3916 3940 3914 3936 3910 3928 3942 3914 3954 3944 3938 3914 - - - 4032

14 7998 7902 7888 7828 7872 7902 7898 7808 7902 7916 7922 7892 7872 7878 - - 8101

15 15998 16012 15896 16000 15998 16026 16026 15984 15990 15998 16040 16038 16016 16036 16012 16256

16 32218 32240 32144 32240 32188 32240 32278 32220 32224 32126 32224 32248 32184 32274 32252 32216 32586

according to Chabaud-Vaudenay bound [8]. We can see that the non-linearity
value in all the cases are quite close the maximum. In the table, the theoretical
maximum was taken as the nearest integer less than the value obtained by the
formula.

5 Statistical Tests

To evaluate the mappings for statistical randomness, we have used NIST [2]
statistical test tool. The NIST Statistical Test Suit was used to evaluate AES
candidates for randomness. To test the outputs against randomness, we have
used a CA of length 16 and the output for all the 216 inputs were fed to the
tool. This test tool contain sixteen statistical tests to evaluate a random number
generator. Table 4 shows the result of the statistical tests. The results are shown
for each of the output bits and all the output bits taken together. Three tests
were not run for individual output bits due to insufficient data size in a sixteen
bits CA. However, just to run these three tests, we used a 32 bit CA where these
three tests also passed.

6 Implementation

In this section, we provide both the hardware implementation and the software
implementation details of the non-linear CA.

6.1 Hardware Implementation

The hardware implementation of the maximum length non-linear cellular au-
tomata is given in figure 3. An n cell maximum length CA is loaded with a
constant initial seed. The actual input is pre-processed to control the clock sig-
nal. The input is compared with the output of an n bit counter by a compara-
tor circuit. When the input is equal to the counter value, comparator output
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Table 4. Statistical Tests Summary

Test Single Bit All Bits

Frequency MonoBit Pass Pass

Block Frequency Pass Pass

Runs Pass Pass

Longest Run of ones in a block Pass Pass

Rank Pass Pass

DFT Pass Pass

Non-overlapping template matching Pass Pass

overlapping template matching Pass Pass

Universal Statistical Test Not Run Pass

Lempel Ziv Pass Pass

Linear Complexity Pass Pass

Serial Test Pass Pass

Approximate Entropy Pass Pass

CUSUM Pass Pass

Random Excursion Not Run Pass

Random Excursion Variant Not Run Pass

Fig. 3. Hardware Implementation

becomes 0 which stops the clock signal by the use of a NAND gate. When the
counter value is less than the input, the comparator output remains at logic 1
and thus the clock signal is fed to the CA.

6.2 Software Implementation

The software implementation of the non-linear construction is to run the CA in a
loop till the input value. A simple C function for the software implementation is
given below. Note that, the below implementation will work only for CA of length
till 31. However, this code can easily be extrapolated to handle more number of
bits. input is the input to the function that will be transformed non-linearly to
give the output.

1. #define RULE /* define the rule (in decimal form)*/
2. #define INITIAL SEED /* define the initial seed in decimal form*/
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3. #define MAX INPUT /* (2n − 1) where n is the length of the CA*/
4. int i;
5. int seed=INITIAL SEED;
6. if (input==0) return 0;
7. for (i=0;i<input;i++)
8. seed=((seed'1) & MAX INPUT) ˆ (seed & RULE) ˆ ((seed(1) &

MAX INPUT);
9. return seed;

7 Conclusion

In this paper, we have shown a way to generate non-linearity using CA. This
way, we can generate maximal length CAs with excellent non-linearity. The
highly non-linear maximum length CA can be used in cryptography.
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Abstract. In this paper, a method of generating cryptographic se-
quences based on discrete linear chaotic cellular automata is presented.
The importance of the proposal is due to the fact that such cryptographic
sequences are also output sequences of a nonlinear keystream generator
known as Generalized Self-Shrinking Generator. Moreover, such a
keystream generator is still considered secure in symmetric cryptogra-
phy. Thus, it must be noticed that the linearity of the proposed chaotic
model based on additive one-dimensional cellular automata might be
used to mount a cryptanalytic attack against such a nonlinear generator.
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1 Introduction

Confidentiality in sensitive information is a crucial feature. Such a quality makes
use of an encryption function currently called cipher that converts the original
message (plaintext) into the ciphered message (ciphertext). Symmetric cryptog-
raphy or secret-key cryptography is usually divided into two large classes [17]:
block ciphers and stream ciphers depending on whether the encryption function
is applied to a bit block or to each individual bit, respectively.

At present, stream ciphers are the fastest among the encryption procedures
so they are implemented in many technological applications e.g. mobile phones
(GSM communications) or encryption procedures in Bluetooth specifications.
Stream ciphers are designed to generate from a short seed, the key, a long se-
quence of pseudorandom bits, the keystream sequence. Such a sequence is XORed
with the plaintext (in emission) in order to obtain the ciphertext or with the
ciphertext (in reception) in order to recover the plaintext. Security of a stream
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cipher resides in the characteristics of the keystream sequence: long period, good
statistical properties and high linear complexity [8].

In order to design new keystream generators, in the last decades many re-
searchers have exploited the close relationship between chaos and cryptography.
See, for instances, [1], [4], [6], [12] and [16]. In fact, the reason of such a re-
lationship is that many properties of chaotic systems have their corresponding
counterparts in traditional cryptographic systems. Among the first applications
of chaotic structures or, more precisely, chaotic Cellular Automata (CA) to sym-
metric cryptography we can enumerate the references [13], [20] and [22]. However,
other chaotic cryptographic systems have been rather disappointing since var-
ious cryptanalysis have revealed different drawbacks inherent to such schemes
[7], [15], [18] and [23]. Among the most recent contributions to the relationship
chaos-cryptography, we find the reference [19] that analyzes the evolution of
nonlinear CA generating desirable pseudorandom number sequences.

Traditionally, keystream generators make use of maximal-length Linear Feed-
back Shift Registers (LFSRs) [10] whose output sequences (the PN-sequences)
are combined in a nonlinear way in order to produce the desired keystream se-
quences. Nevertheless, it is a well known fact that certain linear chaotic CA [3]
generate exactly the same PN-sequences obtained from maximal-length LFSRs.
In this way, multiple cryptographic keystream generators designed in terms of
LFSRs can be also expressed in terms of chaotic CA. Indeed, in this work it is
shown that a wide class of LFSR-based nonlinear generators known as General-
ized Self-Shrinking Generators (GSSGs) [11] can be modelled in terms of linear
CA. Since linearity in the behaviour of a cipher may be considered as the end of
its security, the result here shown may be interpreted as a proof of cryptographic
weakness for the GSSG family.

Analyzing chaotic systems as generators of cryptographic sequences allowed us
to find an alternative way to produce the same sequences as those of the GSSG
family. Thus, the use of CA as linear chaotic models of the nonlinear GSSG
is believed to be an approach to its cryptanalysis. In addition, the building
procedure of linear CA-based models for GSSGs can be implemented by means
of simple FPGA logic.

The paper is organized as follows. In Section 2, the specific type of addi-
tive one-dimensional linear chaotic CA used in this work has been introduced.
Description and characteristics of the GSSG are given in section 3. Chaotic
modelling of GSSG exploiting its relationship with previous CA is carried out
in Section 4. Finally, conclusions in Section 5 end the paper.

2 Cellular Automata

One-dimensional cellular automata can be described as N -cell registers [21],
whose cell contents are updated at the same time according to a particular
rule. That is a k -variable function denoted by Φ. If the function Φ is a lin-
ear function so is the cellular automaton. When k input variables are con-
sidered, then there is a total of 2k different binary neighbor configurations.
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Therefore, for cellular automata with binary content cells there can be up to
22k

different mappings to the next state. Moreover, if k = 2r + 1, then the
next state xt+1

i of the cell xt
i depends on the current state of k neighbor cells

xt+1
i = Φ(xt

i−r , . . . , x
t
i, . . . , x

t
i+r) (i = 1, ..., n).

CA are called uniform when all cells evolve under the same rule while CA
are called hybrid when different cells evolve under different rules. At the ends of
the array, two different boundary conditions are possible: null automata when
cells with permanent null content are supposed adjacent to the extreme cells or
periodic automata when extreme cells are supposed adjacent. In this paper, all
the considered automata will be one-dimensional null hybrid CA with k = 3 and
linear rules 90 and 150. These rules are described as follows:

Rule 90
xt+1

i = xt
i−1 + xt

i+1

111 110 101 100 011 010 001 000
0 1 0 1 1 0 1 0

01011010 (binary) = 90 (decimal)

Rule 150
xt+1

i = xt
i−1 + xt

i + xt
i+1

111 110 101 100 011 010 001 000
1 0 0 1 0 1 1 0

10010110 (binary) = 150 (decimal)

Remark that the names rule 90 and rule 150 derive from the decimal values
of their next-state functions.

Table 1. An one-dimensional null hybrid linear cellular automaton of N = 10 cells
with rule 90 and rule 150 starting at a given initial state

90 150 150 150 90 90 150 150 150 90

0 0 0 1 1 1 0 1 1 0
0 0 1 0 0 1 0 0 0 1
0 1 1 1 1 0 1 0 1 0
1 0 1 1 1 0 1 0 1 1
0 0 0 1 1 0 1 0 0 1
0 0 1 0 1 0 1 1 1 0
0 1 1 0 0 0 0 1 0 1
...

...
...

...
...

...
...

...
...

...

Both rules belong to Class III (chaotic behaviour) in Wolfram’s terminology
[21]. For an one-dimensional null hybrid cellular automaton of N = 10 cells,
configuration rules ( 90, 150, 150, 150, 90, 90, 150, 150, 150, 90 ) and initial state
(0, 0, 0, 1, 1, 1, 0, 1, 1, 0), Table 1 illustrates the formation of its output sequences,
sequences read vertically. Within this CA class, it is easy to determine the num-
ber of different sequences generated by a particular automaton, the distinct
periods and linear complexities [17] of such sequences as well as the number of
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different sequences associated with each period and linear complexity. See [9]
and [2] for more details.

A natural form of representation for a 90/150 automaton is by means of a
binary N -tuple (rule vector), notated ΔN = (d1, d2, . . . , dN ), where di = 0 if the
i-th cell satisfies the rule 90 while di = 1 if the i-th cell satisfies the rule 150.
This rule vector allows one to determine the N -degree characteristic polynomial
PN (x) of such an automaton, that is the polynomial that defines the recurrence
relationship of the generated sequences, see [3]. In fact, PN (x) can be easily
obtained from its rule vector as PN (x) = (x + d1)(x + d2) · · · (x + dN ).

In addition, PN (x) is also the characteristic polynomial of the output se-
quences [17], that is to say it is the polynomial that express a term of any output
sequence as a linear combination of the previous terms of such a sequence. Note
that all output binary sequences produced with any rule of a 90/150 automaton
in the same state cycle have the same period and linear complexity [9].

3 Generalized Self-shrinking Generator

The generalized self-shrinking generator is a generator of pseudorandom se-
quences recently introduced by Hu and Xiao in [11]. Such a generator may be
seen as the generalization of both the shrinking generator introduced by Copper-
smith, Krawczyk and Mansour in [5], and the self-shrinking generator defined by
Meier and Staffelbach in [14]. The GSSG produces cryptographic sequences with
long periods, good correlation features, excellent run distribution, balancedness,
simplicity of implementation, etc. Furthermore, no practical attack against it
is known till now. Consequently, it is still considered a secure cryptographic
generator.

The GSSG can be formally defined as follows [11].

Definition 1. Let {an} be a PN-sequence over GF (2) with period 2L − 1 gen-
erated with a LFSR of primitive characteristic polynomial of degree L. Let G be
an L-dimensional binary vector:

G = (g0, g1, g2, . . . , gL−1) ∈ GF (2)L.

Let {vn} be a sequence defined as:

vn = g0an ⊕ g1an−1 ⊕ g2an−2 ⊕ · · · ⊕ gL−1an−L+1,

where the sub-indexes of the sequence {an} are reduced mod 2L − 1 and the
symbol ⊕ represents the XOR logic operation.

For n ≥ 0, let the decimation rule be:

– If an = 1, then vn is an output bit.
– If an = 0, then vn is discarded, and no output bit is produced.

In this way, an output sequence b0b1b2 . . . is generated. Such a sequence, denoted
by {bn} or {b(G)}, is called generalized self-shrinking sequence associated with G.
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The previously defined family of generalized self-shrinking sequences can be eas-
ily generated with a LFSR, as a result of the following two simple steps:

1. Two sequences are synchronously generated: the PN-sequence {an}, and the
shifted version of such a sequence denoted by {vn}.

2. The output generalized self-shrinking sequence is produced by applying the
described decimation rule on both sequences {an} and {vn}.

It is important to remark that the sequence {vn} is simply a shifted version
of the sequence {an}, and consequently the resulting family of generalized self-
shrinking sequences includes the self-shrinking sequence as a special case.

When G ranges over GF (2)L, then {vn} corresponds to the 2L − 1 possible
shifts of {an}. In addition, the set of sequences denoted by B(a) = {{b(G)}, G ∈
GF (2)L} is the family of generalized self-shrinking sequences based on the PN-
sequence {an}.

Let us see a simple example.

Example 1. For the 4-degree m-sequence {an} = {111101011 001000} whose
characteristic polynomial is x4 + x3 + 1, we get 16 generalized self-shrinking
sequences based on the sequence {an} (see [11]):

1. G = (0000), {b(G)} = 00000000 ∼
2. G = (1000), {b(G)} = 11111111 ∼
3. G = (0100), {b(G)} = 01110010 ∼
4. G = (1100), {b(G)} = 10001101 ∼
5. G = (0010), {b(G)} = 00111100 ∼
6. G = (1010), {b(G)} = 11000011 ∼
7. G = (0110), {b(G)} = 01001110 ∼
8. G = (1110), {b(G)} = 10110001 ∼
9. G = (0001), {b(G)} = 00011011 ∼
10. G = (1001), {b(G)} = 11100100 ∼
11. G = (0101), {b(G)} = 01101001 ∼
12. G = (1101), {b(G)} = 10010110 ∼
13. G = (0011), {b(G)} = 00100111 ∼
14. G = (1011), {b(G)} = 11011000 ∼
15. G = (0111), {b(G)} = 01010101 ∼
16. G = (1111), {b(G)} = 10101010 ∼

Note that the above generated sequences are 16 sequences, but not all are
different. In fact, there are exactly 7 different sequences. In particular, if we
refer to them by the decimal value of the binary representation G read from
left to right, we have that sequences 4 and 5 are shifted versions of the same
sequence, and the same applies for sequences 10 and 11 and to sequences 14 and
15. At the same time, sequences 2, 6, 9 and 12 correspond to a unique sequence
and sequences 3, 7, 8 and 13 also correspond to another unique sequence.
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4 CA-Based Model of the GSSG

Table 2 contains some experimental results of an implementation of the GSSG,
which show a remarkable property. For every LFSR of length L, the correspond-
ing GSSG produces always one all-zero sequence with characteristic polynomial
1, one all-one sequence with characteristic polynomial (x + 1), two sequences of
period 2 and characteristic polynomial (x + 1)2, and 2j sequences with charac-
teristic polynomials (x+1)2

L−1−2(L−1)+j+1 with j = 2, 3, . . . , L−1, respectively.

Table 2. Number of GSS sequences with characteristic polynomial of the form (x+1)p

L 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6

No. 1 1 2 4 1 1 2 4 8 1 1 2 4 8 16 1 1 2 4 8 16 32

p 0 1 2 3 0 1 2 5 6 0 1 2 11 12 13 0 1 2 25 26 27 28

Hence, the characteristic polynomial of every GSS sequence produced with a
LFSR of length L is always of the form (x + 1)p, 0 ≤ p < 2L−1. In this way,
since such a polynomial is a unique factor multiplied by itself p times, it seems
quite natural to construct the corresponding automaton that generates the same
output sequences by concatenating p times a basic 90/150 automaton associated
to that of characteristic polynomial (x + 1). The procedure of concatenation is
based on the following general result.

Theorem 1. Let B be a 90/150 cellular automaton of length L, characteristic
polynomial P (x) and rule vector ΔL = (d1, d2, . . . , dL−1, dL). Let B∗ be the
reversal version of B, with rule vector Δ∗

L = (dL, dL−1, . . . , d2, d1) and the same
length and polynomial as B. Then, the 2L-tuple (d1, d2, . . . , dL, dL, . . . , d2, d1)
(being dL the complementation of dL) is the rule vector of a 90/150 cellular
automaton of length 2L and characteristic polynomial P (x)2.

A proof of this theorem by the same authors can be found in [9].
Such a result can be iterated a number of times for successive characteristic

polynomials and rule vectors:

PL(x) = P (x) ←→ ΔL = (d1, d2, ..., dL)
P2L(x) = P (x)2 ←→ Δ2L = (d1, d2, ..., dL, dL, ..., d2, d1)
P22L(x) = P (x)2

2 ←→ Δ22L = (d1, ..., dL, dL, ..., d1, d1, ..., dL, dL, ..., d1)
... ←→

...

In this way, the concatenation of an automaton (with the least significant bit
complemented) and its mirror image allows us to synthesize CA with known
characteristic polynomials. Note that the basic automaton is concatenated with
its reversal version after the complementation of the least significant rule. The
successive applications of this result provide us with CA whose lengths are L,
2L, 22L, 23L, . . . , 2qL, respectively. Also note that for every P (x) there are two
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basic CA ΔL = (d1, d2, . . . , dL−1, dL) and Δ∗
L = (dL, dL−1, . . . , d2, d1) that may

be used in the concatenation process.
It is remarkable the fact that the automaton Δ2qL includes all the previous

sub-automata Δ2sL with 0 ≤ s < q, and consequently the automaton Δ2qL

generates all the sequences whose characteristic polynomials are P (x)p with
1 ≤ p ≤ 2q. The choice of a particular state cycle determines the corresponding
characteristic polynomial of its sequences.

In the specific case of the GSSG, as the automaton corresponding to P (x) =
(x+1) is a simple rule 150, that is to say, Δ1 = (1), the application of the previ-
ous result allows us to derive the following relationships between characteristic
polynomials and rule vectors:

(x + 1) ←→ Δ1 = (1)
(x + 1)2 ←→ Δ2 = (0, 0)
(x + 1)4 ←→ Δ2 = (0, 1, 1, 0)
(x + 1)8 ←→ Δ8 = (0, 1, 1, 1, 1, 1, 1, 0)

... ←→
...

(x + 1)2
L−1 ←→ Δ2L−1 = (0, 1, 1, . . . , 1, 1, 0)

In this way, rule vectors corresponding to 90/150 CA whose characteristic
polynomials are squared powers of (x + 1) may be easily obtained, so that the
last rule vector corresponds to the required automaton for the GSSG based on
a LFSR of length L.

Let us consider the GSSG based on the LFSR of length L = 4 and characteris-
tic polynomial x4+x+1 of the previous example. This GSSG produces sequences
with the following periods, linear complexities and characteristic polynomials:

– 1 sequence with period 1, complexity 0 and polynomial 1,
– 1 sequence with period 1, complexity 1 and polynomial (x + 1),
– 2 sequences with period 2, complexity 2 and polynomial (x + 1)2,
– 4 sequences with period 8, complexity 5 and polynomial (x + 1)5,
– 8 sequences with period 8, complexity 6 and polynomial (x + 1)6.

According to the previous results, the 90/150 linear cellular automaton that
generates such sequences has as rule vector Δ8 = (0, 1, 1, 1, 1, 1, 1, 0).

Tables 3 and 4 show Δ8 state transition, starting at 4 initial states (0, 0, 0, 0, 1,
1, 1, 1), (0, 0, 1, 0, 0, 0, 1, 0), (1, 0, 0, 0, 1, 0, 0, 0) and (0, 1, 1, 0, 0, 1, 1, 0). For the
first initial state (Table 3), the four extreme rules produce the GSS sequences 4
and 5 whilst the four central rules produce the GSS sequences 10 and 11. For
the second initial state (Table 3), we get that the four extreme rules lead to the
GSS sequences 2, 6, 9 and 12 whilst the four central rules do not produce GSS
sequences. The third initial state (Table 4) generates in the four extreme rules
the GSS sequences 3, 7, 8 and 13 and again the four central rules do not produce
any GSS sequence. Finally, the fourth initial state (Table 4) produces in all its
rules the GSS sequences 14 and 15.

Note that the proposed automaton generates all the GSS sequences produced
by all maximal-length LFSRs of length L. Therefore, the specific LFSR feedback
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Table 3. 90/150 CA generating particular GSS Sequences

0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0

0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 0
0 0 0 1 0 1 1 1 0 1 1 1 0 1 1 1
0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 1
0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1
1 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0
1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0
1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1
1 0 1 1 0 0 1 0 1 0 1 0 1 1 0 0

Table 4. 90/150 CA generating particular GSS Sequences

0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0

1 0 0 0 1 0 0 0 0 1 1 0 0 1 1 0
0 1 0 1 1 1 0 0 1 0 0 1 1 0 0 1
1 1 0 0 1 0 1 0 0 1 1 0 0 1 1 0
1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1
0 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0
0 0 1 1 1 0 1 0 1 0 0 1 1 0 0 1
0 1 0 1 0 0 1 1 0 1 1 0 0 1 1 0
1 1 0 1 1 1 0 1 1 0 0 1 1 0 0 1

polynomial is not necessary for the generation as the automaton is exactly the
same for any GSSG based in any maximal length LFSR of length L. Thus,
the knowledge of such a polynomial, which is usually a part of the key, is not
necessary for launching an attack based on the proposed CA-based model of the
GSSG.

It is also remarkable that the proposed chaotic cellular automaton generates
all the GSS sequences corresponding to LFSRs of lengths < L. That is to say,
the longest automaton always includes all the GSS sequences corresponding to
shorter automata by starting at symmetric initial states.

In this paper cryptographic generators conceived and designed as nonlinear
generators have been linearized in terms of chaotic cellular automata. Conse-
quently, the linearity of the proposed CA-based model of the GSSG might be
exploited to mount a cryptanalytic attack based on the (partial) reconstruction
of the keystream sequence from portions of intercepted sequence.

5 Conclusions

The Generalized Self-Shrinking Generator, which is a cryptographic generator
conceived and designed as a nonlinear LFSR-based generator, has been here lin-
earized thanks to the proposal of a simple and discrete time chaotic dynamical
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system producing the same output sequences. The implementation of the pro-
posed CA-based model is easy and very adequate for FPGA logic, what is useful
for developments where time execution is relevant as in stream ciphers and in
communication systems with high transmission rates.

Although generalized self-shrinking sequences are generated through irregular
decimation on a LFSR, we have here shown that in practice they may be eas-
ily generated with a chaotic model based on additive one-dimensional cellular
automata. This result establishes a link between nonlinear irregular decimation
and linearity, which might be conveniently exploited in the cryptanalysis of such
keystream generators.
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2. Caballero-Gil, P., Fúster-Sabater, A.: Using Linear Hybrid Cellular Automata to
Attack the Shrinking Generator. IEICE Transactions on Fundamentals of Elec-
tronics Communications and Computer E89-A, 1166–1172 (2006)

3. Cattell, K., Muzio, J.C.: Synthesis of One-Dimensional Linear Hybrid Cellular
Automata. IEEE Trans. Computers-Aided Design 15(3), 325–335 (1996)

4. Chaudhuri, P., Chowdhury, D., Nandi, S., Chatterjee, S.: Additive Cellular Au-
tomata. In: Theory and Applications, p. 1. IEEE Computer Society Press, Los
Alamitos (1997)

5. Coppersmith, D., Krawczyk, H., Mansour, Y.: The Shrinking Generator. In: Stin-
son, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 22–39. Springer, Heidelberg
(1993)

6. Dachselt, F., Schwarz, W.: Chaos and cryptography. IEEE Trans. Circuits
Syst. 48(12), 1498–1509 (2001)

7. Fridrich, J.: Symmetric ciphers based on two-dimensional chaotic maps. Int. J.
Bifurcat Chaos 8(6), 1259–1284 (1998)
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Abstract. Pseudorandom generation is a key to any cryptographic ap-
plication. Linear Cellular Automata are known as good pseudorandom
generators. However, for cryptographic applications nonlinearity is es-
sential for its security. But, nonlinear Cellular Automaton shows high
correlation between the input to the automaton and its generated se-
quence. Hence, for cryptography Cellular Automata rules need to be
nonlinear as well as satisfy additional properties. With this motivation,
in this paper, we analyze nonlinear Cellular Automata with a newly de-
veloped statistical measure called d-monomial test. Finally, we propose a
process of d-monomial characteristics addition to get cryptographically
suitable Cellular Automata.

1 Introduction

Cellular Automata are a self-evolving system of cells which updates itself per
cycle following a rule embedded into it. Linear Cellular Automaton (CA) is
known for its ability to generate pseudorandom sequences needed for various
applications like VLSI testing and coding theory [11]. Several researchers have
attempted to apply the pseudorandomness of CA to cryptography. The crypt-
analysis of linear CA based cryptographic techniques [4] show that nonlinearity
is needed for cryptographic applications. However, nonlinear CA shows high cor-
relation. The 3-neighbourhood nonlinear rule 30 CA has long been considered a
good pseudo-random generator and studied for cryptography [10]. It passed var-
ious statistical tests for pseudorandomness with good results, until Willi Meier
and Othmar Staffelbach proposed an attack, exploiting its high correlation, on
pseudorandom sequences generated by rule 30 CA [6], which would break any
such system of 300 cells with a complexity of about 219. Another attack on rule
30 CA is also reported in [5]. These findings show that for cryptography, the
data stream generated by CA needs to satisfy additional properties.

In this paper, we analyze the CA by modeling its rule as a Boolean function
relating output bits with input bits. Parameters like nonlinearity, balancedness,
resiliency and algebraic degree are known to be important for the cryptographic
analysis of Boolean functions [7], [8]. Recently, d-monomial tests [3] on crypto-
graphic Boolean functions have gained attention. An extension of d-monomial
test proposed in [2] serves as another important tool in analyzing cryptographic
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Boolean functions. In [7] and [8] some of the stated cryptographic properties of
3 and 4 neighbourhood CA rules are analyzed for a single iteration of the CA.
However, multiple iterations of the CA are not considered.

In this work, we explore CA over multiple iterations. At each iteration of the
CA, the relationship between the input and output of the CA is represented by a
Boolean function. Subsequently, we perform d-monomial tests on such Boolean
functions and investigate how the test performs with iterations. It can be men-
tioned that, uniform and hybrid CA have not been investigated in perspective
of cryptographic suitability in this direction before. Following the experimental
results, we derive few general conclusions about choice of rules in uniform or
hybrid CA to expect certain cryptographic advantages. We expect the findings
will also help in analysis of non-linear CA, in general.

This paper is organized as follows. Following the introduction, section 2
presents basic definitions and notations regarding Cellular Automata and the
realted cryptographic terms. The list of hybrid CA rules and the reason to
choose such rules are explained in section 3. In section 4, we briefly describe
the model of our analysis. d-monomial test is introduced in section 5 and the
main results of d-monomial tests are also presented in that section. We also
draw certain observations from the experimental results in respect of construct-
ing cryptographically suitable hybrid CA with respect to d-monomial tests in
that section. Finally, the paper is concluded in section 6.

2 Prelimineries

In this section, we present the basic definitions of CA and also of the crypto-
graphic properties.

2.1 Cellular Automata Related Definitions

Definition 1. Cellular Automata: A cellular automaton is a finite array of cells.
Each cell is a finite state machine C = (Q, f) where Q is a finite set of states and
f is a mapping f : Qn → Q. The mapping f , is called local transition function. n
is the number of cells the local transition function depends on. On each iteration
of the CA each cell updates itself with respective f .

Adjacent cells of a cell are called the neighbourhood of CA. A 1-dimensional CA,
whose rule depends on left and right neighbour and the cell itself is called a 3-
neighbourhood CA. Similarly, if each cell depends on 2 left and 2 right neighbours
and itself only, it is called 5-neighbourhood CA. A CA whose cells depend on 1
left and 2 right neighbouring cells is called a 4-neighbourhood right skew CA. A
left skewed 4-neighbourhood CA can be defined similarly.

Definition 2. Rule: The local transition function for a 3-neighbourhood CA cell
can be expressed as follows:

qi(t + 1) = f [qi(t), qi+1(t), qi−1(t)]
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where, f denotes the local transition function realized with a combinational logic,
and is known as a rule of CA [9]. Here, qi(t) represents the value of the ith cell
after t iterations. The decimal value of the truth table of the local transition
function is defined as the rule number of the cellular automaton.

For one dimensional 3-neighbourhood CA the definitions of some rules are given
below:
Rule 30: f = qi−1(t) ⊕ (qi+1(t) + qi(t)), where + is the Boolean ’OR’ operator
and ⊕ is the Boolean ’XOR’ operator.
Rule 60: f = qi−1(t) ⊕ qi(t).
Rule 90: f = qi−1(t) ⊕ qi+1(t).

A CA whose local transition function is same accross the cells is called uniform
CA. A CA whose local transition function is not same for all the cells is a hybrid
CA. Hybrid CA may be constructed by choosing different linear rules or by
choosing different linear and nonlinear rules over the automaton. A CA whose
first and last cells are connected to 0 is called null-boundary CA.

A CA whose local transition function consists of only ’XOR’ operator is
called a linear CA. A CA whose at least one local transition function con-
sists of ’AND’/’OR’ in addition to ’XOR’ is nonlinear CA. For example, rule,
f = qi−1(t)⊕qi+1(t) employed in each cell is a linear CA and f = qi−1(t).qi+1(t)
employed in each cell is a nonlinear CA, where, qi−1(t) and qi+1(t) denotes left
and right neighbours of the ith cell at tth instance of time. A uniform CA each of
whose transition function is, f = qi−1(t) ⊕ (qi+1(t) + qi(t)) is a rule 30 uniform
CA.

Any CA can be utilized to generate sequences by first selecting a seed and
then updating each cell according to its transition function. State values from
the middle cell of the cell array are output to represent generation of sequences.
This sequence can be tested for pseudorandomness.

2.2 Cryptographic Terms and Primitives

We now present definitions of related cryptographic terms and properties used
in this paper.

Definition 3. Pseudorandom Sequence: An algorithmic sequence is pseudoran-
dom if it cannot be distinguished from a truly random sequence by any efficient
(polynomial time) probabilistic procedure or circuit.

A variable or its negation (x or x̄) is called a literal. Any number of ’AND’-ed
literals is called a conjunction. For example, x.y.z̄ is a conjunction.

Definition 4. Algebraic Normal Form: Any Boolean function can be expressed
as XOR of conjunctions and a Boolean constant, True or False. This form of
the Boolean function is called its Algebraic Normal Form (ANF).

Every Boolean function can be expressed in ANF. As an example, f(x1, x2, x3) =
(x1 ⊕ x2).(x2 ⊕ x3) is not in ANF. Its ANF representation is, f(x1, x2, x3) =
x1.x2 ⊕ x1.x3 ⊕ x2 ⊕ x2.x3.
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Definition 5. Algebraic Degree: The maximum number of literals in any con-
junction of ANF of a Boolean function is called its degree. Ciphers expressible
or conceivable as a Boolean function have algebraic degree which is the same as
the degree of the ANF of the Boolean function.

Thus, f(x1, x2) = x1 ⊕ x2 ⊕ x1.x2 has algebraic degree 2.

Table 1. ANF of used 3 and 4-neighbourhood Rules

Type Rule # Nbd ANF

Linear

15 3 x̄1

60 3 x1 ⊕ x2

90 3 x1 ⊕ x3

150 3 x1 ⊕ x2 ⊕ x3

240 3 x1

Non-linear

30 3 (x2.x3) ⊕ x1 ⊕ x2 ⊕ x3

37 3 x1 ⊕ x2 ⊕ (x1.x2.x3) ⊕ 1
45 3 x1 ⊕ x3 ⊕ (x2.x3) ⊕ 1
75 4 x1 ⊕ x2 ⊕ x2 ⊕ (x1.x2) ⊕ (x1.x3) ⊕ (x3.x4) ⊕ (x1.x3.x4)
86 4 x2 ⊕ x3 ⊕ x4 ⊕ (x1.x2) ⊕ (x1.x3) ⊕ (x1.x4) ⊕ (x2.x3) ⊕ (x1.x2.x3)
91 3 x2 ⊕ (x1.x2) ⊕ (x1.x3) ⊕ (x2.x3) ⊕ (x1.x2.x3) ⊕ 1
120 3 x1 ⊕ (x2.x3)
180 3 x1 ⊕ x2 ⊕ (x2.x3)
210 3 x1 ⊕ x3 ⊕ (x2.x3)

3 Choice of CA Rules for Cryptographic Applications

Existing literature shows that only linear rules 90 and 150 and nonlinear rule 30
have been explored for cryptographic applications. Till date, uniform nonlinear
and hybrid nonlinear rules have not been studied much.

We have considered 3 and 4-neighbourhood uniform nonlinear CA con-
figurations. Combination of rule 30 and some other linear and nonlinear 3-
neighbourhood rules have also been explored. The hybrid CA configurations
are constructed by using the rules given in table 1.

The objective of the proposed construction is that the linear rules help to
reduce the correlation, while the nonlinear rule provides required nonlinearity.
The effect becomes prominent after a few initial iterations required to mix both
these types of rules. The reason rule 30 is taken for the hybrid rulesets is that, it
is nonlinear and it has good pseudorandom characteristics [10]. Though, rule 30
has good pseudorandom characteristics and it is a balanced rule, it has a strong
correlation, namely, the probability, Pr[xi(t+1) = 1⊕xi−1(t)] = 3

4 , where xi(t)
is the state of the ith cell of the CA at tth instance of time. The above property
led to its cryptanalysis described by Willi Meier and Othmar Staffelbach [6].

We provide an analytical argument in favour of the fact that the introduction
of linear rules reduce the correlation.
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Consider two CA configurations, (i) Uniform rule 30 CA, C1; (ii) Hybrid CA
having alternate rules 30 and 60, C2. The input to both the CA are denoted by
an array, xi, 0 ≤ i ≤ n, where n is the length of the CA. Now,

1. In case of C1, Pr[xi(t+1) = 1⊕xi−1(t)] = 3
4 , for all time instances t. Hence,

Pr[xi(t + 2) = xi−2(t)] = 9
16 .

2. In case of C2, due to introduction of rule 60, i.e., xi(t + 1) = xi−1(t)⊕ xi(t),
we have, Pr[xi(t+1) = xi−1(t)] = 1

2 . Hence, there is no bias in predicting the
output of the corresponding cell. This effect of unpredictibility propagates
to the nonlinear rule 30 in subsequent iterations. Therefore, Pr[xi(t + 2) =
xi−2(t)] = 3

4 × 1
2 = 3

8 . Thus, the correlation gets reduced with each iteration.
This justifies the construction of hybrid CA by alternating nonlinear and
linear rules.

Evidently introducing more linear rules with nonlinear rules reduce correlations
faster. For this reason we have considered a series of rule-30 based hybrid CA.
In other words, the combination of rules is made in expectation of obtaining
pseudorandom characteristics of rule 30 without the weakness of correlation.

For the experiment we have taken the following hybrid CA rulesets:

1. Ruleset 1 : Rules 30 and 60 spaced alternately over a 3-neighbourhood CA.
2. Ruleset 2 : Rules 30, 60 and 90 spaced alternately over a 3-neighbourhood

CA.
3. Ruleset 3 : Rules 30, 60, 90 and 120 spaced alternatively over a 3-

neighbourhood CA.
4. Ruleset 4 : Rules 30, 60, 90, 120 and 150 spaced alternatively over a 3-

neighbourhood CA.
5. Ruleset 5 : Rules 30, 60, 90, 120, 150, 180, 210, 240 spaced alternatively over

a 3-neighbourhood CA.
6. Ruleset 6 : Rules 30, 60, 90, 120, 150, 180, 210, 240, 15, 45 spaced alternatively

over a 3-neighbourhood CA.

4 Functional Model of CA for Testing Crypto-Properties

For the experiment, we have taken an n + 1-cell null-boundary CA(figure 1).
Here, without loss of generality, n is assumed to be odd. Each cell of the CA
is assumed to have an unknown value, xi, 0 ≤ i ≤ n at the beginning. Boolean
rules are set into the CA cells according to the CA configuration needed. Thus,
each cell’s output is determined by a corresponding local transition function fi.
Collectively, the functions are represented as F . The output bits of the CA are
denoted by, y0, y1, . . . yn. The middle cell’s output (yn+1

2
) is analyzed. Here, fn+1

2

is the local transition function of the n+1
2

th cell and f t
n+1

2
is defined recursively

as follows:

f t+1
n+1

2
= fn+1

2
(f t

n+1
2

)
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Fig. 1. Configurations of CA experimented

For that, we express the n+1
2

th cell’s output as a function of initial input un-
knowns, xi, 0 ≤ i ≤ n. For a 3-neighbourhood CA,

yn+1
2

= fn+1
2

(xn+1
2 −1, xn+1

2
, xn+1

2 +1)

and for a 4-neighbourhood right-skewed CA,

yn+1
2

= fn+1
2

(xn+1
2 −1, xn+1

2
, xn+1

2 +1, xn+1
2 +2)

This process is iterated for multiple clock cycles, for 3 and 4-neighbourhood CA,

yt
n+1
2

= f t
n+1
2

(xn+1
2 −t, . . . , xn+1

2
, . . . , xn+1

2 +t)

yt
n+1

2
= f t

n+1
2

(xn+1
2 −t, . . . , xn+1

2
, . . . , xn+1

2 +2t)

Thus, it is clear that at tth iteration, for a 3-neighbourhood CA, the output bit
is a function of 2t+1 bits and for a 4-neighbourhood CA it is a function of 3t+1
bits. Beyond 3rd iteration, the Boolean function acts upon 10 more variables
and hence becomes unwieldy to analyze. In this paper, we have listed results of
first 3 iterations only. We have chosen the n+1

2

th cell for our analysis because
it will be least effected by the boundary null values and more affected by the
neighbouring cells and thus better charaterize the rule of the CA. However, in
case of hybrid configurations, we have analyzed output of all nonuniform middle
cells and have selected the best rule as the output.

Historically, researchers have studied balancedness, nonlinearity, resiliency
and algebraic degree [7], [8] to explore CA as a crypto-primitive. Our emphasis
is on a new cryptographic test called d-monomial test.
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5 d-Monomial Test

d-Monomial test is a statistical test for pseudorandomness introduced indepen-
dently in [1] and [3]. It investigates the Boolean function representation of each
output bit in terms of input bits. If a Boolean function of n Boolean variables is a
good pseudorandom sequence generator, then it will have 1

2

(
n
d

)
d-degree monomi-

als. The distribution is binomial. A χ2 test with one degree of freedom is applied
to count to measure how unbiased the count is. A deviation will indicate non-
randomness. For example, consider the function f(x1, x2, x3) = x1 ⊕x2, it has 2,
1-degree monomials and 0, 2 degree monomial. The ideal number of 1, 2 and 3
degree monomials would be 1

2

(
3
1

)
= 1.5, 1

2

(
3
2

)
= 1.5 and 1

2

(
3
3

)
= 0.5. It turns out

that it has 2, 1-degree monomials more and 1 2-degree monomial less, hence it is
expected to be non-pseudorandom. On the other hand, f(x1, x2, x3) = x1⊕x2.x3

is expected to be a good pseudorandom generator.
In spite of its simplicity, this test gained huge appreciation in cryptography

community. It proved to be a good tool in analyzing the degree of pseudoran-
domness of cryptographic systems. To the best of our knowledge, d-monomial
test has not been applied to CA configurations previously. We explore different
CA configurations under this test.

The d-monomial test can be considered a stronger form of pseudorandomness
test than is captured by the cryptographic properties, balancedness, nonlinearity,
resiliency and algebraic degree. Not much work has been done on constructing
Boolean functions which satisfy d-monomial test. On the other hand, lot of work
exists for making good balanced, nonlinear, resilient and high algebraic degree
Boolean functions.

Note that, since d-monomial test does not output a single value, it is difficult
to compare d-monomial characteristics of two Boolean functions. We have given
preference to Boolean functions having ideal values in higher degree over ideal
values in lower degree. This is justified as cryptanalysis of Boolean functions
having higher degree terms is harder than Boolean functions having lower degree
terms.

Example of Calculation of Ideal d-Monomial Value: Let, number of variables
in the Boolean function be, n = 5 and let d = 4; then, ideal number of 4-degree
terms will be, 1

2

(
n
d

)
= 1

2

(
5
4

)
= 2.5 . We will approximate it to 2.

5.1 d-Monomial Test of Uniform CA

The experiment is done using Mathematica 7.0 Student Edition. Each ith cell of
the CA is assumed to be initialized with an unknown Boolean value, xi. The
Boolean rules of the CA are simulated and value of each cell is updated per
iteration. For example, if the CA operates itself uniformly with rule 30, the ith

cell will have value xi−1⊕(xi+1 +xi) after the first iteration of operation, where,
⊕ stands for Boolean ’XOR’ operator and + stands for ’OR’ operator.

3-neighbourhood CA: Among uniform rules, rule 37 and rule 91 have the
best d-monomial characteristics. Table 2 lists values of number of nth degree
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Table 2. Comparison of d-monomial characteristics of rule 30, 37 and 91

Number of nth degree terms

Rules 1 2 3 4 5 6 7

Ideal 1,2,2 1,5,10 0,5,52 0,2,52 0,0,10 0,0,3 0,0,0

30 3,3,6 3,5,11 1,2,8 0,0,4 0,0,1 0,0,0 0,0,0

37 2,3,5 0,8,13 1,4,21 0,0,26 0,1,8 0,0,1 0,0,1

91 1,2,3 3,7,8 1,6,14 0,5,12 0,1,11 0,0,6 0,0,1

Table 3. Comparison of d-monomial Characteristics of 4-neighbourhood CA

Number of nth degree terms

Rules 1 2 3 4 5 6 7 8 9

Ideal 2,3,5 3,10,22 2,17,30 0,17,210 0,10,126 0,3,210 0,0,30 0,0,22 0,0,5

75 0,0,5 0,0,13 2,6,21 1,3,26 0,2,10 0,2,8 0,0,8 0,0,2 0,0,6

86 0,0,0 0,0,0 2,0,0 1,5,0 0,6,3 0,3,14 0,4,15 0,0,8 0,0,2

terms in the generated Boolean functions over the three iterations for rules 30,
37 and 91. According to the table, rule 30 performs worse than rule 37 and 91.
It fails in generating some higher degree terms (degree 6 and 7 for example).
It also generates less number of 3, 4 and 5-degree terms than rule 37 and 91.
It generates close to ideal number of 2-degree terms compared to rule 37 and
91. But as already mentioned, ideal number of lower degree terms is not as
important as ideal number of higher degree terms in view of cryptanalysis. Rule
91 performs better than rule 37 in higher degree terms and should be given
preference. The growth rate of number of nth degree terms is quite fast for both
rules 37 and 91. Note that, even this two CA are far distant from the ideal
d-monomial characteristics.

4-neighbourhood CA: We look at their d-monomial test results of rule 75
and rule 86 in table 3. This two rules outperform the other rules exmerimented.
Both rules, 75 and 86 have many higher degree terms and few or no lower degree
terms. However, the number of higher degree terms is not ideal too. Between
rules 75 and 86 we should choose rule 75 as it generates closer to ideal number
of terms of each degree than rule 86. Again note that, even the best rules, rule
75 and rule 86 are far distant from the ideal d-monomial characteristics.

5.2 d-Monomial Test of Hybrid CA

d-monomial test results of the 6 hybrid CA rulesets are given in the table 4.
The table above shows that, rulesets 5 and 6 are better rulesets than all other
hybrid configurations, as they generate closer to ideal number of terms of almost
all nth degree terms than the other rulesets. Rules 37 and 91 have better d-
monomial characteristics but the generated functions have low resiliency and
are unbalanced compared to the hybrid counterparts.
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Table 4. d-Monomial Characteristics of Hybrid CA

Number of nth degree terms

Rules 1 2 3 4

Ideal 1,2,3 1,5,10 0,5,52 0,2,52

Ruleset 1 3,3,5 1,3,3 0,0,2 0,0,0

Ruleset 2 3,3,2 1,3,3 0,0,1 0,0,0

Ruleset 3 3,2,4 1,3,5 0,1,3 0,0,0

Ruleset 4 3,2,4 1,3,7 0,1,7 0,0,2

Ruleset 5 3,2,4 1,3,5 0,2,6 0,0,3

Ruleset 6 3,2,4 1,3,5 0,2,6 0,0,3

d-monomial characteristic is an important metric in finding which rules should
be combined in a hybrid CA. As an example, let us form a CA consisting of rules
30 and 37 spaced alternatively. The d-monomial characteristics of the CA is given
in table 5 along with characteristics of rule 30 and 37. We have seen that, rule
30 and rule 37 have good d-monomial characteristics. But, note that, the new
CA performs even better than both the rules in higher degree terms (degree 5
onwards). At higher degree terms its d-monomial values are very close to ideal. In
the middle and lower degree terms also the d-monomial values are good, though
rule 37 has better values in this region.

Both rule 30 CA and rule 37 CA are heavy on higher degree terms. Their com-
bination is expected to have more number of higher degree terms. Likewise, linear
rules can not add terms of more than degree 1 to the generated Boolean function.
But combining linear rules with higher algebraic degree rules, we will be able to
add missing degree 1, 2 and other lower degree terms in the generated Boolean
functions, which will perform better in d-monomial test. The above observation
is important in hybrid CA constructions. This may be a way of reaching ideal d-
monomial characteristics. We refer to this process as d-monomial characteristics
addition. However, no direct relationship in d-monomial values of component
rules and the hybrid rule can be inferred from the result (table 5). But, under-
standing the behaviour of this process is crucial in design of cryptographically
suitable CA or good Boolean function generator.

Table 5. d-Monomial Characteristics Addition of Hybrid CA

Number of nth degree terms

Rules 1 2 3 4 5 6 7

Ideal 1,2,2 1,5,10 0,5,52 0,2,52 0,0,10 0,0,3 0,0,0

30 3,3,6 3,5,11 1,2,8 0,0,4 0,0,1 0,0,0 0,0,0

37 2,3,5 0,8,13 1,4,21 0,0,26 0,1,8 0,0,1 0,0,1

(30, 37) 2,4,2 0,6,9 3,7,13 0,2,19 0,0,10 0,0,4 0,0,1
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6 Conclusion

We have presented experimental results of d-monomial test of different configu-
rations of uniform and hybrid CA. We have seen that it is possible to construct
hybrid CA that can provide fair d-monomial characteristics and at the same time
can be resilient, balanced and nonlinear. It is possible to improve d-monomial
characteristics of CA rules by combining rules into a hybrid CA. We referred
to this process as d-monomial charateristics addition. This property can be em-
ployed to form cryptographically suitable CA.
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Abstract. This paper reports an AES (Advances Encryption Standard)
hardware architecture based on Programmable Cellular Automata (PCA)
operated with a program. Verilog code has been designed for PCA and
associated hardware modules to realize the AES functions. The PCA re-
places the irregular logic circuit necessary for hardwired implementation
of AES. The design has been simulated on Xilinx platform using ISE
simulator.

Index Term: AES, PCA.

1 Introduction

Rijndael algorithm [5] was selected as the Advanced Encryption Standard (AES).
It is a symmetric byte-oriented iterated block cipher scheme. High popularity
of AES algorithm stems from its inherent strength in respect of security, per-
formance, and efficiency. In view of its commercial interest, the hardwired im-
plementation of AES has received considerable attention in recent years [2-4].
Simple, regular, modular, cascadable, and local neighborhood structure of a PCA
suits ideally for VLSI design of complex AES functions like multiplicative inverse
for Sub-Byte, MixColumn etc. and their inverse operations.

2 Programmable Cellular Automata (PCA) and the
Program Structure

A CA < R0 R1 · · · Ri · · · Rn−1 > evolves in discrete time steps with a specific
rule Ri employed on the ith cell (i = 0, 1, · · ·(n-1)). The generalized hardware
structure of a Programmable CA (PCA) cell (introduced in [1]) is shown in
Fig 1(a). A PCA cell allows implementation of any one of 256 three neighborhood
CA rules. It employs an 8 to 1 Multiplexer that accepts 8 binary bits of a CA rule.
The output of the Multiplexer is fed as the input to the cell memory element.
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Fig. 1. A PCA cell and Programmable CA (PCA) Structure

Multiplexer control bits are derived from (i−1)th, ith, and (i+1)th cell outputs.
Fig 1(b) shows an n cell periodic boundary PCA. In addition to n cells, the PCA
has an 8 ∗ n bit register to store the Rule Vector (RV) of the PCA.

An n cell PCA initialized with the seed S0 = < a0 a1 · · · ai · · · an−1 >
is operated with program instruction stored in memory (Fig 2). The program
instruction, as shown in Fig 2(b), has three fields. An n cell PCA has 8n bits
in Field 1 - eight bit per cell to represent the rule employed for a cell. In a
particular program step, the PCA is first configured as a specific CA as per the
Rule vector defined by Field 1. This is followed by operation of the CA for the
number of time steps (t) specified in Field 2. The input S0 gets transformed in
discrete time steps of CA evolution. At the end of execution of a program step,
the CA has the state S0+t derived on running the CA for t time steps with S0

as the seed. The Field 3 of program instruction consists of tag and control bits
used for control of program flow, boundary etc.

(b) Program Instruction

Miscellenious control
and Tag bitsCA is operated

Time Steps t

<Field 2><Field 1>

<RV>

<Field 3>

Input Seed S0

Program
Memory

Output

(a) PCA and Program Memory

PCA

Fig. 2. PCA operated by program
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3 PCA Based Processor to Realize AES

The generic PCA structure (of Fig 1) has been modified, as shown in Fig 3,
to realize AES hardware architecture. Other hardware blocks used for the pro-
cessor, as shown in Fig 4, are - Plain / Cypher Text Register (16 X 8), Key
Register (256 X 8), X-OR Unit, 32 Bit Shift Register Unit, Round Counter,
Column Counter, Row Counter. All bytes in the AES algorithm are interpreted
as finite field elements in GF(28). Multiplication operation is done over GF(28)
employing modulo of irreducible polynomial x8 + x4 + x3 + x + 1 and generator
polynomial as (x + 1). Multiplication can be implemented with the 8 cell PCA
shown in Fig 3.
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Fig. 3. Cell and PCA Structure for 8-bit processor

4 Realization of AES Algorithm with 8 Bit Processor

AES Encryption implements four different transformations - (i) Sub-Byte Trans-
formation, (ii) Mix-Column Transformation, (iii) Shift Row Transformation, and
(iv) Add Round Key. Key Expansion is another task to generate keys for differ-
ent Rounds. Multiplicative Inverse, Affine transform, and Mix-Column trasfor-
mation can be efficiently realized through PCA evolution.

The AES algorithm takes the Plain Key (K), and performs a Key Expan-
sion routine to maintain the key scheduling. PCA program for each of these
transformations has been developed. The 8 bit processor realizing AES has been
simulated on Xilinx platform using ISE simulator for encryption and decryption
of randomly generated plain text. Verilog code has been designed for PCA and
associated hardware modules to realize AES hardware.
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Conclusion. The regular and modular structure of PCA operated with program
instructions (Fig 2(b)) replaces the irregular logic employed for AES hardware
reported in published literature.
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Abstract. A cellular automata (CA) model in cryptography is inves-
tigated. A previous work analyzed the usage of reverse algorithm for
pre-image computation as an encryption method. The main conclusion
was that the simple adoption of such method is not viable, since it does
not have 100% of guarantee of pre-image existence. A new approach was
proposed that uses extra bits when the pre-image computation is not
possible. It is expected that in practice few failures happens and the ci-
phertext size will be close to the plaintext. Encryption always succeeds
and the final length of the ciphertext is not fixed. We better investigate
the secret key specification by using a more representative set formed
by all radius 2 right-toggle rules, totalizing 65536 rules. An exhaustive
analysis of this rule space has shown that using adequate specification
the method has a good protection against differential cryptanalysis and
a small increase in ciphertext length.

Keywords: Cellular Automata, cryptography, pre-image computation.

1 Introduction

Cellular automata (CA) are particularly well suited for cryptographic applica-
tion and there are several previous studies in this topic [1,3,4,5,6,7,8,9]. Since
CA rule is simple, local and discrete, it can be executed in easily-constructed
massively-parallel hardware at fast speeds. Considering the reverse interaction
of a cellular automaton, given a lattice in time t, a possible antecessor lattice is
determined for the time t−1. This process is also known as pre-image computa-
tion. In recent papers [8,9,10], the application of the reverse algorithm proposed
by Wuensche and Lesser [11] as a cipher algorithm was investigated. Besides,
static parameters were employed to specify CA rules as appropriate secret keys
in [8] and [9]. The objective of the employment of such parameters was to find
rules with 100% guarantee of pre-image existence for any possible lattice. Using
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a spatial entropy measure to evaluate the ciphering quality, the main conclu-
sion in [8] is that the simple adoption of the reverse algorithm is not possible
because the only rules with 100% guarantee of pre-image existence are not ap-
propriate for ciphering because they do not exhibit a chaotic dynamics. A new
approach has been emerged from this previous study [8]: it alternates the origi-
nal reverse algorithm and the variation that uses extra bits, when the pre-image
computation fails. This variation is similar to pre-image computation adopted
in Gutowitz model. Although this approach needs to add bits to the ciphertext
when a failure occurs, it is expected that in practice few failures happen and
the ciphertext length will be equal or close to the plaintext. CA rules used as
secret keys must be properly specified to obtain this low probability of failure
occurrence during pre-image computation. It was shown in [8] that the joint use
of symmetry (S) and Z parameters – and components Zleft and Zright - could
lead us to a good specification of rules which have low probability to fail in pre-
image computation. This analysis was performed using small samples of radius
2 and 3.

In the present work, we better investigate the secret key specification. First,
we use a more representative rule set formed by all radius 2 right-toggle rules,
totalizing 65536 rules. These rules represent 50% of the possible secrete keys in
radius 2 space, being that the other 50% are the all radius 2 left-toggle rules,
which are dynamically equivalent to the set analyzed. Based on an exhaustive
analysis of this rule space we analyze the effects of using: (i) the complete set
of rules; (ii) the restricted rule set defined by the specification proposed in [8];
(iii) the restricted rule set defined by the specification proposed in [9]. The main
conclusion is that there are a lot of undesirable behavior rules in the complete
set - considering a cryptographic purpose - that must be avoided as secrete keys.
Thus, in a subsequent phase, we employed an analysis based on several CA static
parameters, trying to capture the pattern associated to these underperforming
rules. Using them, we were able to find a good specification of rules to be used
as valid secret keys. This specification had shown to be good to filter the set of
radius 2 rules and to elaborate new radius 3 rules.

2 Cellular Automata Parameters

A cellular automaton consists of a lattice of cells and a transition rule. Each cell
presents in each time t one of k distinct states. A cell is updated in discrete time
steps and its new state depends on the states of the 2R + 1 neighborhood cells,
where R is the CA radius. In the case of a deterministic one-dimensional CA,
the state at+1

i of the cell i in time t + 1 is determined by the transition rule τ :

at+1
i = τ [at

i−R, ..., at
i, ..., a

t
i+R]. (1)

The dynamics of a CA is associated with its transition rule. In order to help
forecast CA dynamical behavior, several parameters have been proposed in the
literature [12,13], as: (i) Z derived from reverse algorithm, composed by Zleft

and Zright [14];(ii) S is the symmetry level of a rule transition (b1, b2, ..., bk)
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given by the number of pair of bits bi and bk−i+1 (i = 1, ..., k/2) that have
the same value [8];(iii) Absolute activity (AA) quantifies how much change is
entailed by the rule, in the state of the centre cell, in relation to the current state
of the centre cell, and the states of the pair of cells which are equally apart from
the centre [13].

3 Previous CA-Based Cryptographic Models

Wolfram (1986) was the first to suggest the use of CA in cryptography [1]. Sev-
eral studies on this topic have been accomplished [3,4,5,6,7,8,9,10,11]. Gutowitz
proposed a cryptographic model based on backward evolution of irreversible CA
[6]. A toggle rule with radius R is used as the secret key in his model. A CA
toggle rule is sensible in respect to a specific neighborhood cell - any modifica-
tion of the state on this cell necessarily provokes a modification on the new state
of the central cell. A pre-image of an arbitrary lattice of size N is calculated
adding R extra bits in each side of the lattice. Considering a rule transition with
right-toggle property, it guarantees that the entire N + 2R pre-image cells can
be obtained, step-by-step, from the leftmost side to the right, in a deterministic
way [6]. Plaintext is the initial lattice and P pre-images are calculated. The ci-
phertext is given by the last pre-image obtained. As 2R bits are added to each
pre-image calculated, the size of the final lattice is given by N + 2RP . Such
non-negligible increment is pointed as the major flaw in Gutowitz’s model.

An algorithm known as reverse algorithm was proposed in [11] for a generic
pre-image computation. Before starting the computation, R cells are added to
each side of the lattice corresponding to the pre-image, in a similar way to
Gutowitz’s pre-image computation. However, using a periodic boundary CA,
pre-image computation is concluded verifying if the initial bits can be equal to
the final 2R rightmost ones. If so, the extra bits are discarded returning the pre-
image to the same size of the original lattice. This algorithm finds all the possible
pre-images for any arbitrary periodic boundary lattice. Reverse algorithm was
evaluated as an encryption method in [8] and [9]. However, its application in
ciphering has the disadvantage that there is no guarantee of pre-image existence
for any given lattice and any given rule transition. Therefore, the major chal-
lenge to apply reverse algorithm as a viable cipher method was to guarantee the
existence of at least one pre-image for any possible lattice. The first attempt to
solve this problem was to use Z [14] in rule specification [8,9].

An analysis of the secret keys was performed in [8]. Parameters that have
presented more dependence to the 100% of pre-image existence were the com-
ponents of Z - Zright and Zleft - and the symmetry S. It was observed that
one component of Z must be equal to 1 and the other one must be different
of 1. Moreover, S equal to 1 also must to be avoided. The best initial experi-
ments performed in [8] have applied rules with low values both for symmetry and
Zleft/Zright balance: 0 < S < 0.25 and 0 <Zleft

< 0.25 and Zright = 1. Using
this specification the rules could find ten consecutive pre-images for almost all
evaluated plaintexts: 99.9997% of 3 × 106 of 512 bits-lattices. However, using a
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entropy measure to evaluate the quality of ciphering performed by this previous
rule set, a trade-off was recognized when specifying a rule transition to be used
with the reverse algorithm: if the rule is perfect in respect to the existence of
pre-images, it does not have a chaotic behavior; if the rule is perfect in respect
to the chaoticity, it cannot be able to calculate the pre-image for a large range of
possible plaintexts. The best experiments performed have applied rules with an
intermediate level both for symmetry and Zleft/Zright balance: 0.25 < S < 0.5
and 0.25 < Zleft < 0.5 and Zright = 1. Besides, the average of the mean en-
tropy obtained for all the rules was high indicating that they exhibit a chaotic
behavior. An important observation is that although it was possible to specify
rules with a high probability to find at least one pre-image for any lattice and
with a good perturbation spread, even the better rules evaluated can fail when
the pre-image computation is applied. The major conclusion in [8] is that the
simple adoption of the reverse algorithm is not viable because the possible rules
with 100% guarantee of pre-image existence are not appropriate for ciphering;
they only shift the lattice. An alternative approach has emerged in [8]: a method
based on reverse algorithm adopting a contour procedure to apply when pre-
image computation fails. The contour procedure guarantees the possibility to
cipher any plaintext. In the present work, we discuss this method.

In a certain sense, the method proposed in [9] is very similar to the initial
method proposed in [8], even so the methods have been proposed in an inde-
pendent way. However, no treatment was addressed in [9] to failure occurrences
when computing pre-images - an important point to discern the works in [8] and
[9]. The simple secret key discarding in the case of a failure as suggested in [9]
cannot be adopted in a communication system.

4 Variable Length Encryption Method

Since the main conclusion of the analysis in [8] is that the simple adoption of the
reverse algorithm is not possible, an alternative method is investigated here. It
is based on reverse algorithm adopting an alternative procedure to apply when
the pre-image computation fails [8]. It is expected that with an appropriate key
specification there is a low probability to this failure occurrence. The alternative
procedure adds extra bits only when the pre-image is not possible to calculate.
Therefore, it is expected to rarely use this procedure but it guarantees the possi-
bility to cipher any plaintext. For practical reasons related to encryption speed,
it can be better to limit the method to operate with only toggle rules. The
method works as it alternates rounds of pre-image computation performed by
reverse algorithm (a variation of Gutowitz’s model for periodic conditions) with
few or none steps of pre-image computation performed by Gutowitz’s model. Ci-
phering is made by computing P consecutive pre-images starting from a lattice
of size N corresponding to the plaintext. The secret key is a radius-R CA rule
τ generated with an appropriate specification based CA static parameters.

Suppose that it started to calculate pre-images using reverse algorithm and
the secret key τ and it fails in the K-th pre-image such that K ≤ P . In such
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situation the ciphering process uses the modified reverse algorithm with extra
bits to calculate the K-th pre-image. Thus, the K-th pre-image will have N +2R
cells. Ciphering returns again using the original reverse algorithm to calculate
the remaining pre-images. If all the subsequent pre-images computation succeeds
the final ciphertext will have a size of N + 2R. If the pre-image computation
fails again, the ciphering process changes and adds 2R more bits to the lattice.
If the process fails in F pre-images (F ≤ P ) the final lattice will have N +2FR.
Starting from a lattice of N cells, the size of the ciphertext after P pre-images
computation is given by N ≤ ciphertext size ≤ N + 2PR. Therefore, it is a
variable-length encryption model, named VLE. However, we expected that in
practice the ciphertext size will be next to N due to the characteristics of the
rule used as secrete key. It is important to note that the ciphertext obtained
using Gutowitz’s model will have exactly 2PR bits – the worst and improbable
situation in the proposed method. By starting from the ciphertext the recipient
needs to apply the transition rule τ forward by P steps and the final lattice will
be the plaintext. He also needs to know in which pre-images failures happened
to recover the original text. An improvement of the method in relation to the
one proposed in [8] is the usage of a non-retroceding method in a case of failure.
When the pre-image computation fail, the method changes to the computation
using extra bits without trying to backtrack to find another pre-image with lower
order.

5 Experiments

Using VLE we have the guarantee that ciphering is possible even if an unex-
pected Garden-of-Eden state occurs. However a short length ciphertext depends
on the secret key specification. Some experiments were performed in [10] to an-
alyze method’s performance and to evaluate previous rules specification. Our
expectative about the usage of the variable-length method had been confirmed
[10]: it has a good quality of ciphering entropy and the ciphertext length is close
to the original block size, specially using rules specified according to [8]. However,
a lot of open questions remain since experiments in [10] were performed based
on very limited samples of rules (500 rules of radius 2 and 3). Here, we perform
a deeper investigation about an appropriate rule specification. A representative
key set was chosen considering radius 2 rule transitions. Aiming to perform a
more exhaustive analysis new experiments were conducted using the complete
set of radius 2 right-toggle rules; all of them have Zleft = 1 and 0 ≤ Zright ≤ 1.
As a radius 2 toggle rule is defined by only 16 bits since the other 16 bits are
deterministically defined. This set is composed by 65536 (216) rules, being that
all of them have Zleft = 1. These rules represent 50% of the possible keys in
radius 2 space (restricted to use only toggle rules for faster encryption), being
that the other 50% are the left-toggle rules (Zleft = 1), which are dynamically
equivalent to the set analyzed.

We employed the environment implemented based on the VLE to cipher a
hundred 256-bits plaintexts using each right-toggle rule of the complete set. In
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previous works [8] and [10] the number of consecutive pre-images employed dur-
ing ciphering was fixed (P = 128), in which radius 2 rules and 256-bits plaintexts
were also used. In the present work, the number of consecutive pre-image steps
was dynamically defined between 16 and 128, depending on the results obtained
during ciphering. In that way, the ideal number of consecutive pre-images em-
ployed during ciphering was also experimentally investigated. Based on an ex-
haustive analysis of radius 2 right-toggle rule space we analyze the effects of
using as secret keys the following sets of rules: (i) Fullset - the complete set of
rules in which the unique restriction is the right-toggle property (Zleft = 1 is a
consequence); (ii) SubsetA - the restricted rule set defined by the specification
0.25 < Zright ≤ 0.5 and S �= 1 as proposed in [8]; (iii) SubsetB - the restricted
rule set defined by the specification proposed in [9]: 0.5 ≤ Zright < 1. Fullset is
formed by 65536 rules, SubsetA by only 21019 rules (32.1% of Fullset rules) and
SubsetB by 52801 rules (80.6% of Fullset rules). Therefore, the first distinction
between the two subsets is that in SubsetA the reduction is much more severe
and the number of available secret keys is reduced to approximate 1

3 .
The objectives of this investigation are: (i) Calculating ciphertexts final length:

applying VLE method, any rule with Zleft = 1 is able to complete the ciphering
process starting from any initial lattice. However, the final length of the cipher-
text can be between N and N + 2PR. We want to evaluate if the expected final
length is in fact close to the best case and which is the behavior of each group
in such evaluation. Table 1 presents set performances: the average length of the
final lattice or ciphertext (Lmean) and the average number of failures occurred
during ciphering process (Fmean). Each average result was computed consider-
ing the application of all rules to cipher 100 lattices of 256 bits; (ii) Comparing
ciphertexts generated by pairs of similar plaintexts: cryptanalysis methods try
to find the plaintext after getting the ciphertext without knowing the secret
key. The differential cryptanalysis is based on the analysis of some pairs of ci-
phertexts generated after similar plaintexts. Although the origins of differential
cryptanalysis are related to studies in how to break DES algorithm [16], Sen et
al. (2001) used it to analyze their CA cryptosystem named CAC and they com-
pared their results with the results obtained with DES and AES cryptosystems
[15]. In this analysis, several pairs of plaintext (X ,X´) are used, which differ one
of the other by a fixed small difference D. Each pair (X ,X´) is used to generate
a pair of ciphertexts (Y ,Y ´) which differ one of the other by a difference D´. D
and D´ are obtained by applying XOR operations between the pair members.
For each pair (Y ,Y ´), the number of 1s in D´ is counted, which corresponds
to the number of different bits between Y and Y ´. Finally, the standard devi-
ation of this measure is calculated over all the analyzed pairs. As higher is the
standard deviation in D´, as higher is the probability of the ciphertext to be
broken by differential cryptanalysis. An algorithm with standard deviation be-
low 10% is said to be protected against differential cryptanalysis [15]. Difference
D between X and X´ was fixed in only one bit in an arbitrary position and the
value of D´ was determined for each plaintext evaluated. D´ was calculated to
each pair (Y ,Y ´) to obtain the standard deviation (σ) for each rule set. Besides,
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difference D´ was also used to compute a second measure related to ciphering
quality. The goal of this measure is to verify if D´ does not keep any pattern
which eventually could help a cryptanalyst. Spatial entropy [8] was calculated
on D´ to evaluate the existence of some undesirable regularity on this differ-
ence. Entropy above 0.75 indicates a random difference enough to expect that
ciphertexts Y and Y ´ do not maintain any similarity, even so they started from
similar plaintexts. Entropy below 0.5 indicates a strong pattern in D´ [8], that
is, a low ciphering quality. Entropy between 0.5 and 0.75 had been considered
fuzzy, since it cannot guarantee the existence of an ordered or random pattern.
Therefore, if any cryptography method is applied to similar texts returning an
average of spatial entropy (Emean) above 0.75, it indicates that ciphering adds
a high entropy during the process, a necessary characteristic in any encryption
method. Table 1 shows σmean and Emean. We also used Emean to determine
when stop pre-image computation (P ). D´ entropy was calculated in some P
steps to determine in which one the ciphering will be stopped. D´ entropy is
first calculated in P = 16. If it is above 0.75 the pre-image computation stops
and the 16th pre-image is the ciphertext. Otherwise, this process is repeated to
P = 32, 64 and 128. If until P = 128 entropy does not meet 0.75, the ciphertext
is the 128th pre-image.

A mean standard deviation (σmean) below 5% was obtained for all the sets of
rules. Therefore, the proposed CA cryptographic model can be considered secure
in relation to differential cryptanalysis. The mean number of faults (Fmean)
during ciphering process is very low for all set - below 0.1 – which returns a
mean ciphertext size very close to the original size 256 bits. SubsetA returned
the best values, indicating that this specification indeed reduce the final size
as pointed in [8]. When considering the mean entropy of D´ (Emean), all sets
returned high values, above 0.87, indicating that the rules are able to add a high
entropy during ciphering. Therefore, considering only the mean values of each
set analyzed, all of them returned good values on the measures analyzed and
there was no need to reduce the set of keys.

However, as pointed in [8], the worst performing rules in Fullset indicate the
existence of secrete keys not appropriate for ciphering purpose. Such rules are
highlighted in Table 1, in which only the 500 worst performing rules in each
set are considered. The mean number of faults (Fmean) is above 5 in Fullset
and above 3 in SubsetB, indicating that these rules returning ciphertexts with
size superior to 270 bits in average. Moreover, Fmean represents the mean value
size for each rule considering all the 100 lattices used to test it. However, if
we consider the worst result in such lattices, we can find ciphertexts with a
considerable size: column Fmax shows the mean of the maximum ciphertext size
obtained considering the 500 worst rules in each set. This metric highlights the
existence of secret keys in Fullset and SubsetB returning ciphertexts with size
superior to 290 bits. This undesirable number of fails can also be recognized
observing Figure 1a: the maximum ciphertext size observed for each rule are
plotted, considering the 200 worst rules in such metric. Figure 1b plots mean
values (considering 100 plaintexts) for these rules. We can observe that there
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are more than 200 rules in Fullset and SubsetB returning ciphertext lengths
between 280 and 740 bits in the worst case and more than 270 bits in average.
There are only 17 rules in SubsetA that returns ciphertext length above 300 bits
in the worst case and only 97 rules with mean value between 260 and 280 bits.
Therefore, considering the final ciphertext length, rules of SubsetA presented
much better performance both in mean values considering the entire rule set
and in mean and maximum values considering the worst rules (Table 1 and
Figure 1). Naturally, this better performance is a consequence of the low number
of fails.

Table 1. Mean values obtained for all rules and for the 500 worst rules in each set

All rules 500 worst rules

Set Number of rules Lmean Fmean Emean σmean(%) Fmean Fmax Emean Emin

Fullset 65536 256.38 0.095 0.879 3.66 5.851 13.448 0.170 0.036

SubsetA 21019 256.10 0.025 0.872 3.65 0.932 3.212 0.396 0.037

SubsetB 52801 256.32 0.079 0.886 3.65 3.482 8.520 0.768 0.323

SubsetC 48689 256.26 0.064 0.887 3.31 1.875 5.318 0.858 0.749

No significant difference is clear in mean entropy considering all rules in
Table 1. Table 1 also presents the 500 worst performing rules considering entropy
values. The mean entropy in D´ (Emean) is bellow 0.5 in Fullset and SubsetA,
indicating that they do not perform an actual encryption of the plaintexts in av-
erage. Emin represents the worst entropy found for each rule considering all the
100 lattices. Emin is below 0.1 for Fullset and SubsetA. It indicates the existence
of lattices that are not encrypted by some few rules. The most probable behavior
of such CA rules is that they only shift the initial lattices, not performing an
actual encryption of plaintexts. Although this behavior is a minor occurrence in
the entire set of CA rules it cannot be allowed in a cryptosystem.

This undesirable low entropy can also be recognized observing Figure 1c, in
which the minimum D´ entropy observed for each rule are plotted, considering
the 1000 worst rules in such metric. Figure 1d plots the mean values (consider-
ing the 100 plaintexts evaluated) for these same rules. Considering the entropy
of D´, rules specified as SubsetB presented much better performance both in
mean values considering the worst rules and in minimum values considering the
worst rules (Table 1 and Figure 1). About 400 rules in SubsetB returned en-
tropy below 0.7 for at least one pair Y and Y ´. However, due the gravity of this
situation – where no encryption is in fact performed – the desirable number of
such underperforming rules is zero. Concluding our analysis: (i) There are a lot
of undesirable behavior rules in Fullset - considering a cryptographic purpose
- that must be avoided as secrete keys. Therefore the entire rule space formed
by all radius 2 toggle rules (totalizing 130,816 rules including left-toggle and
right-toggle and the existence of 256 left-and-right-toggle) cannot be applied as
secret keys in VLE method. Approximate 6000 rules must be avoided (3500 due
to low entropy and 2500 due to long ciphertext length). (ii) Specifications was
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proposed in [8] and [9] trying to filter such undesirable behavior keys. However,
their application is so effective. The specification in [8] was proposed with the
major goal of reducing ciphertext lengths, what is really achieved. But, the re-
duction imposed in key space is high (approximate 66%) and it could not avoid
a great number of low entropy rules. The specification in [9] was proposed with
the major goal of avoiding a gradual lead-in and lead-out of structure in the
space-time pattern. As a consequence of this limitation on Zright range, a great
number of low entropy rules are avoided. However, about 500 low entropy rules
remain in this subset and there are a lot of rules returning undesirable long ci-
phertext. A reasonable reduction is imposed in key space using this specification:
approximate 20%.

Aiming to better understand the relation between CA static parameters and
underperforming rules, several parameters was used trying to identify a pattern
to filter such rules, as Zleft, S and Absolute Activity (AA) [13]. A new parameter
was also used: it is the spatial entropy associated to the 16 bits that define the
32-bits toggle rule (the rule core), named here as core entropy (CE). All these
parameters were calculated for all the 65536 radius 2 rules. After several analyses
we have found the following rule to remove the worst performance CA transition
rules from the entire key space. Any CA toggle rule can be used as a secret
key if attempt the conditions: S �= 1 AND AA ≥ 0.46 AND CE > 0.65 AND
Zright �= 1.

We applied this rule in the Fullset to filter all rules no attending its conditions.
The filtered set named SubsetC has 48689 right-toggle rules. We employed this
rule set using the environment implemented based on VLE to cipher a hundred
256-bits plaintexts. Considering the 48689 remaining rules, Table 1 and Figure
1 show results obtained with SubsetC rules. These mean values are better than
those obtained using the entire radius 2 set. Only 32 rules with inappropriate
low entropy and 198 rules with inappropriate ciphertext length remains in this
filtered set. The performance of SubsetA related to long ciphertexts is still bet-
ter than SubsetC, but results of the latter subset approximates for the first.
Considering the aspects of our analysis - reduction of the entire key space, rules
returning low D´ entropy and rules returning long ciphertexts – we can consider
SubsetC as a trustful key space for VLE method. Besides, a mean standard
deviation (σmean) below 5% was obtained. Therefore, the proposed CA crypto-
graphic model can be considered secure in relation of differential cryptanalysis
when using SubsetC rules.

In respect to the number of pre-images P used during ciphering, the average of
the maximum number of P used for each radius 2 rule of the Fullset was of 33.10
pre-images (considering the 100 plaintexts of 256-bits analyzed). Considering
only the 48689 rules of SubsetC this mean value falls to 26.16. Thus, we conclude
that a fixed number of pre-images P = 32 could be enough to cipher 256-bits
plaintexts although P = 128 was used in previous works [8] and [10].

The performance in radius 2 space was satisfactory and the generalization
ability of the filter rule based on four CA parameters (S, AA , CE , Zright)
must be evaluated in larger rule spaces. The problem in tackle is not the discard
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Fig. 1. Underperforming rules for each set: a) Maximum ciphertext size: 200 worst
rules. b) Mean ciphertext size: 200 worst rules. c) Minimum D´ entropy: 1000 worst
rules. d) Mean D´ entropy: 1000 worst rules.

of possible keys reducing the available key space. The challenge is how to charac-
terize this behavior aiming to recognize any avoidable secret key in an arbitrary
radius CA rule space. The next space is the radius 3 toggle rules formed by
approximate 265 potential keys and an exhaustive analysis of them is clear un-
viable. A final test was performed using radius 3 rules with Zright = 1 aiming to
evaluate if the filter rule can also be applied to radius 3 rule space. A new sam-
ple with 3,000 right-toggle radius 3 rules attending the filter rule was used. We
employed them using the VLE environment to cipher a hundred 256-bits plain-
texts, by calculating 32 consecutive pre-images. Considering all radius 3 rules, we
obtained the following average values: for 256-bits plaintexts, Lmean = 267.07,
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Fmean = 1.845, Emean = 0.87 and σmean = 4.33%. They are satisfactory mean
values for radius 3 rules applied to 256-bits lattices. Moreover, no rule presented
a low entropy mean.

6 Final Remarks

We investigated a cryptographic model based on the application of the reverse
algorithm [11] in the encryption process and the usage of toggle CA rules as
secret keys. The general idea of this method was proposed in a previous work
[8]. This method alternates during the ciphering process the employment of the
original reverse algorithm [11] with a variation inspired in Gutowitz’s model [6],
which adds extra bits when a pre-image is calculated. The plaintext is encrypted
using this method to calculate P consecutive pre-images using a CA rule τ . As
the number of failures when calculating consecutive pre-images using the reverse
algorithm is variable, the final ciphertext length can also vary. Starting from the
ciphertext, the recipient needs to apply the transition rule τ forward by P steps
and the final lattice will be the plaintext. Therefore, this approach is a variable-
length encryption method named here as VLE.

The average of standard deviation found is 3.66%, showing this method is
very robust to a differential cryptanalysis-like attack being much lower than the
upper bound limit suggested in [16]: 10%. Comparing with the results presented
in [16] the superiority of VLE is clear in such criteria: 12%, 7% and 5% returned
by DES, AES and CAC [16] respectively, being the last one a CA-based method.
Besides, the absence of an ordered pattern when ciphering similar plaintexts was
evidenced by the mean entropy found: 0.876.

Using VLE we have the guarantee that ciphering is possible even if an unex-
pected Garden-of-Eden state occurs. However a short length ciphertext depends
on the secret key specification. The properly specification of the rules/key was
deeper investigated in the present work using all the 65,536 radius 2 right-toggle
rules. It became clear that there are some rules in this set inappropriate to be
used as secret keys: 1.9% of them returning long plaintexts (in contrast to what
is expected for VLE) and 2.7% of them exhibiting a more dangerous behavior,
which is not able to encrypt a plaintext. Therefore, some kind of restriction is
need. Initially, we investigated specifications based on previous works [8] and
[9], which uses static rule parameters Z and S. Our experimental results showed
that none of these previous specifications are satisfactory. Thus, in a subsequent
phase, we employed an analysis based on several CA static parameters. There-
fore, we were able to find a good specification of rules to be used as valid secret
keys. This specification had shown to be good to filter the complete set of radius
2 rules and to elaborate new radius 3 rules.

The resultant ciphering method has advantages in relation both to the original
reverse algorithm [9] and to Gutowitz’s pre-image computation [6]: it has a 100%
of guarantee of success when ciphering any initial lattice, while the original
reverse algorithm can fail in this process if a Garden-of-Eden state [11] is found;
it returns a ciphertext length close or equal to the plaintext, while the pre-image
computation in Gutowitz’s model returns a significant length increase.
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Abstract. Network decontamination (or disinfection) is a widely stud-
ied problem in distributed computing. Network sites are assumed to be
contaminated (e.g., by a virus) and a team of agents is deployed to
decontaminate the whole network. In the vast literature a variety of as-
sumptions are made on the power of the agents, which can typically
communicate, exchange information, remember the past, etc.

In this paper we consider the problem in a much weaker setting; in
fact we wish to describe the global disinfection process by a set of cel-
lular automata local rules without the use of active agents. We consider
the grid, which is naturally described by a 2-dimensional cellular au-
tomata, and we devise disinfection rules both in the common situation
where after being disinfected a cell is prone to re-contamination by con-
tact, and in a new setting where disinfection leaves the cells immune to
recontamination for a certain amount of time (temporal immunity). We
also distinguish between Von Neuman and Moore neighborhood, showing
that, not surprisingly, a bigger neighborhood allows for a more efficient
disinfection.

1 Introduction

1.1 The Problem

Consider a network where nodes are processing performing some computations,
but where some of them might be contaminated (e.g., by a virus). Once contam-
inated, a node might behave incorrectly; furthermore it could cause its neigh-
boring cells to become contaminated as well, thus propagating faulty computa-
tions. A pressing concern for fault tolerance and security is obviously to devise
strategies to correct the faulty behavior at network sites and to neutralize the
propagation of faults. To this end, nodes are endowed with antiviral software
that can be activated to perform local disinfection leaving the node clean and
possibly immune to further contamination for a certain amount of time. When
a node is disinfected however, there is no guarantee it will not be contaminated
again; when the immunity time expires in fact, it stays unprotected and becomes
contaminated if any neighbour is. The problem is that nodes cannot detect the
presence of a virus in themselves and in their neighborhood, and they cannot
� This work was partially supported by NSERC.
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control the spread of contamination. They can however detect whether the an-
tiviral process is active or has been activated in their neighborhood; moreover,
they want to sparingly activate the anti-virus because, when active, it interrupts
any other local computation (e.g., the trivial solution of simultaneously running
the anti-virus in all nodes would be unfeasible as it would completely disrupt
the computation). The goal is to devise a strategy that makes all nodes simul-
taneously clean, regardless of the initial contamination pattern, minimizing the
number of nodes simultaneously running the anti-virus at any time.

Interestingly, this process can be modelled using a cellular automaton where
different rules correspond to different strategies. At any point in time a node can
be in one of the following three states: {disinfecting, disinfected, unprotected}. A
disinfecting node is running the antiviral software that will leave the node disin-
fected (clean and protected for some time t which depends on the the antiviral
properties); a disinfected node has run the anti-viral software; an unprotected
node has never run the antiviral software. Both disinfected and unprotected nodes
are processing and running the underlying computation. In particular, we will
consider two cases regarding the local disinfecting procedure, which could leave
the node: 1) disinfected but with no immunity (basic disinfection), 2) disinfected
and immunized for a certain amount of time (temporal disinfection). In this con-
text, the goal is to start the disinfection process by setting the state of some cells
to disinfecting and letting unprotected cells activate disinfection on the basis of
local rules so that, even in the worst case when all cells are initially contami-
nated, at the end of the process they are all simultaneously clean. Note that,
when all nodes are simultaneously clean they will stay clean forever as we as-
sume contamination is already present before the disinfection begins, and cannot
“enter” the system. We are interested in minimizing the number of simultane-
ous disinfecting sites for a given immunity time or, conversely, minimizing the
immunity time for a given number of simultaneous disinfecting sites. Moreover,
we are interested in monotone disinfection strategies, where the anti-virus is run
only once at each node, that is, once a node is disinfected, we must guarantee
that, regardless of its protection level, it will stay clean forever.

We consider a common network topology: the grid, which naturally corre-
sponds to a 2-dimensional cellular automaton n × n. We first look at basic dis-
infection and we describe a simple strategy that employs the minimum possible
number of disinfecting sites k = n per time unit. We then turn to temporal disin-
fection and we show that, with Von Neumann neighborhood, disinfection can be
achieved with k = 1 disinfecting site per time unit if and only if the immunity
time is at least 4(n − 1) − 1. We also extend the technique for k = 2 and k = 4.
We then consider Moore neighborhoods. Also in this case we describe optimal
disinfection rules for the case k = 1 and immunity time at least 2n − 1. The
same set of rules allows disinfection with k > 1 simultaneously disinfecting sites
and immunity time at least  2(2n−1)

k ! (see Table 1).
Due to lack of space some proofs are sketched and some omitted.
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Table 1. Summary of results

Neighborhood Number of disinfecting sites Immunity time

Von Neumann k = 1, 2, 4 ≥ 4
k
(n − 1) − 1

Moore k ≥ � 2(2n−1)
k

�

1.2 Related Work

A large body of work exists on the network decontamination problem using
a team of mobile agents, which appropriately move from node to neighbouring
node to activate the disinfection (e.g., see [1,2,4,8,11]). In such contexts, the goal
is typically to devise a strategy for the agents to collaboratively decontaminate
the whole network using the smallest possible team in such a way that, once
cleaned, a node does not get recontaminated. In the existing work, agents are
regulated by a variety of assumptions. For example, agents usually can commu-
nicate with each other, sometimes in a face-to-face manner (i.e., when they meet
at a node) or by writing messages for each other on special spaces located at the
nodes; agents have local memory where they store information about their past
actions or about a map of the network; agents are usually identified by distinct
ids, they are sometimes coordinated by a special agent that acts as a leader,
and they might be able to clone themselves. With the exception of [6,11], no
immunity has ever been considered. In [11] immunity is defined differently and
is related to the number of contaminated neighbours; in [6] it is defined as in
this paper but it is assumed in a different setting and exclusively for the case
of trees. Determining the minimum size of a decontamination team, even with-
out any immunity, is known to be NP-hard ([12]); optimal strategies have been
devised for special topologies (typical topologies are the grid, the torus, the hy-
percube, the chordal ring), and studies on the various models have been done to
describe the computational relationship between them (e.g., see [1,2,4,8,10]). In
[3] decontamination by mobile agents has been linked to cellular automata, but
in a very different way: contamination was regulated by cellular automata rules
(either unanimity or majority rules), decontamination (called in that context
external decontamination) was instead performed by mobile agents.

2 Definitions

A 2-dimensional cellular automata (CA) can be described by a quadruple C =
〈Z2, {0, 1, •}, N, f〉 where: Z2 represents the set of cells (also called sites or
nodes); {0, 1, •} is the set of states of the cells; N is the neighbourhood of a cell,
and f : {0, 1, •}|N | → {0, 1, •} is the local transition rule (or simply local rule)
of the automaton. In the following we will be considering both von Neumann
and Moore neighborhoods at distance one. Given a cell (i, j), the von Neumann
neighborhood consists of the cell itself, plus the four cells at distance one in the
Manahattan norm. The Moore neighborhood, besides considering the cells of the
von Neumann neighborhood, also includes the four neighboring “diagonal cells”.
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Given an initial configuration, C0, that is a mapping C0 : Z2 → {0, 1, •},
cell states are synchronously updated at each time step by the local transition
rule applied to their neighbourhoods. A configuration is the resulting map Ct :
Z2 → {0, 1, •} at any time t. In the following we will denote a transition rule
by indicating the neighborhing states in clock-wise order starting from the left
neighour, for example, in the case of Von Neumann neighborhoods we will use
the following notation: (xt

i,j , x
t
i−1,j , x

t
i,j+1, x

t
i+1,j , x

t
i.j−1) → xt+1

i,j , and we will
denote an arbitrary state by an asterisk (∗). A finite 2-dimensional Boolean
cellular automaton has a finite number of non-zero states in an infinite quiescent
background. That is, Ct(z) = 0 for all but finitely many z ∈ Zd. In this case,
let n × n be the size of the finite lattice initially containing non-zero states;
moreover, let us indicate as (i, j) a cell in column i, row j with respect to the
finite lattice indicating the left-bottom corner with (0, 0). Border cells are cells
(i, n − 1)(0, j), (i, 0), (n − 1, j) with 0 < i, j < n − 1, the four corner cells are
(0, 0), (0, n − 1), (n − 1, 0), (n − 1, n − 1), all other cells are called internal. A
Circular cellular automata can be thought of a 2-dimensional grid where the
last node of a row (resp. column) is connected to the first.

3 Basic Disinfection

In this section we consider basic disinfection in finite 2-dimensional CAs, where
the disinfecting process does not provide any type of immunity and a cell could
be contaminated as soon as one of its neighbours is. In this case any disinfection
has to forbid a disinfected cell to ever be in contact with a unprotected one, which
is potentially contaminated.

Notice that with basic disinfection, a single disinfecting site per time unit
would obviously not be sufficient to perform decontamination because immedi-
ately after becoming disinfected a site would inevitably be exposed to a unpro-
tected site as at most one of its neighbors could become disinfecting. The question
is what is the minimum number of disinfecting sites which could guarantee dis-
infection without recontamination. We prove in the following that n disinfecting
sites are necessary and sufficient.

Theorem 1. Optimal basic disinfection can be achieved in a finite CA with Von
Neumann neighborhood using n simultaneous disinfecting sites.

Proof (Sketch). The proof that n is sufficient is constructive. The idea is to place
the n initial disinfecting sites in the cells of the first column of the CA and to
have the cells act according to the following very simple rules (see Table 2): re-
gardless of the neighbourhing cells’ state, a disinfecting cell becomes disinfected,
an unprotected cell becomes disinfecting at time t + 1 if its left neighbour is dis-
infecting at time t. The effect of the local rules is the sequential disinfection of
columns. In fact, it is easy to see by induction on the time steps that the CA is
fully disinfected in n time steps with no disinfected site ever in contact with an
unprotected one.
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Table 2. Basic disinfection in Finite CAs with Von Neumann neighborhood. All miss-
ing combinations of states do leave the cell unchanged.

Basic-Finite

Initial disinfecting sites: (0, j), 0 ≤ j ≤ n − 1

Configuration Next State

{•, ∗, ∗, ∗, ∗} 0

{1, •, ∗, ∗, ∗} •

To prove optimality, consider a time t during the disinfection process when
there are h disinfected cells. To avoid recontamination at time t, these cells must
be surrounded by disinfecting cells (or by quiescent cells outside the border of the
CA); we will call such cells protective cells. It is easy to see that, if the disinfected
cells form separate continuous blocks, the amount of necessary protective cells is
never smaller than if the disinfected cells belonged to a single block. Moreover,
it has been shown in [9] that for a block of size h at least min{n,  1+

√
1+8h
2 !}

protective cells are mecessary. Since  1+
√

1+8h
2 ! < n implies h <  n(n−1)

2 !, we
have that less than n simultaneous disinfecting cells can protect less than half
the cells of the CA, which then cannot be fully disinfected.

4 Temporal Disinfection

The case of temporal disinfection is quite different and more interesting. We
must design a set of local rules and choose the location of the initial disinfecting
sites in such a way that during the evolution of the CA, a disinfected node never
comes into contact with an unprotected one after its immunity time has expired
We distinguish here the two types of neighborhood: Von Neumann and Moore,
noticing that the amount of influence from neighbourhing cells highly impacts
the efficiency solutions.

4.1 Von Neumann Neighbourhood

We first show that, if we impose the use of a single disinfecting cell per time
unit, temporal disinfection can be achieved if and only if the immunity time
is ≥ 4(n − 1) − 1. In the following, and in the rest of the paper, when we
say that disinfection “propagates”, we indicate that a disinfecting cell becomes
disinfected and one or more of its neighbours become disinfecting, thus simulating
the propagation of disinfection from cell to neighbouring cell(s).

Theorem 2. With a single disinfecting site per time unit, temporal disinfection
is possible if and only if the immunity time is ≥ 4(n − 1) − 1.

Proof (Sketch). Disinfection is achieved by placing the initial disinfection site
at a corner and by applying the set of rules indicated in Table 3 (a) (Single-

Temporal-vn). It is easy to see that the effect of the local rules is the spiral
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(a) One disinfecting (b) Two disinfecting (c) Four disinfecting

Fig. 1. Propagation of disinfection with temporal immunity and Von Neumann negh-
borhood

propagation of the disinfecting site (see Figure 1) where a disinfected cell is never
in contact with an unprotected one for more than 4(n−1)−1 time units, resulting
in a situation where all nodes are simultaneously clean after n × n time units.

We now show that there exist no initial placement for which a correct set of
rules exists when the immunity time smaller than 4(n − 1) − 1, where a correct
set of rules is such that it maintains a single disinfecting site per time unit, and
eventually disinfects the whole network never leaving a disinfected site in contact
with an unprotected one for more than 4(n − 1) − 1 time units after it has been
cleaned.

We have three possible placements of the initial disinfecting site: corner bor-
der, and internal. Let us first consider the case when the initial disinfecting site
is internal, in this case we will show that, regardless of the immunity time, there
exist no set of rules that allows to maintain a single disinfecting site. Let us call
forbidden rule a rule that cannot be present in a correct set of rules. First of all
notice that r0 = {•, ∗, ∗, ∗, ∗} → 0 is necessarily part of the set of rules to insure
the presence of a single disinfecting site. Moreover, to allow the spread of disin-
fection to a single new site, one (and only one) of the following four rules must be
present (r1 = {1, •, 1, 1, 1} → •, r2 = {1, 1, •, 1, 1} → •, r3 = {1, 1, 1, •, 1} → •,
r4 = {1, 1, 1, 1, •} → •). Without loss of generality, let r1 be present and let
r2, r3, r4 be forbidden. The combination of r0 and r1 makes the disinfecting site
propagate to the right until reaching the border. At this point, for insuring the
propagation of the disinfecting site, one (and only one) of the following three
rules must be added to the set: r5 = {0, 0, 1, •, 1} → •, r6 = {1, 1, 1, 0, •} → •).
r7 = {1, 1, •, 0, 1} → •). We can show that r5 is forbidden (the disinfecting site
would propagate back to the original site where however, because of the fact that
r2 ,r3, and r4 are forbidden the only possible movement would be to the right
again giving rise to an oscillation). Let, w.l.g, r6 be present and r7 be forbidden.
Because of r6 being present, rule r8 = {1, 1, 1, •, 0} → • must be forbidden,
otherwise more than one site would be in disinfecting state. The combination
of r0 and r6 makes the disinfecting site propagating up until reaching the down
neighbour of the corner, at this point, since r3 is forbidden, we need to add a rule
to ensure propagation, and the only possible one is r9 = {1, 1, 0, 0, •} → • and
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Table 3. Rule Tables for 1/2/3 disinfecting sites in a Finite CA with temporal im-
munity and Von Neumann neighborhood. All missing combinations of states for the
neighbourhood of cell (i, j) do leave xi,j unchanged.

Single-Temporal-vn

Init: a corner
Configuration Next State

{•, ∗, ∗, ∗, ∗} 0

{1, •, 1, 1, 0} •
{1, •, 1, 0, 0} •
{1, 0, •, 1, 1} •
{1, 0, •, 1, 0} •
{1, 0, •, 0, 0} •
{1, 0, 0, •, 1} •
{1, 1, 0, •, 1} •
{1, 1, 1, 0, •} •
{1, 1, 0, 0, •} •
{1, 0, 0, 0, •} •

a)

Two-Temporal-vn

Init: two opposite
corners

Configuration Next State

{•, ∗, ∗, ∗, ∗} 0

{1, •, 1, 1, 0} •
{1, •, 1, 0, 0} •
{1, 0, •, 1, 1} •
{1, 0, •, 1, 0} •
{1, 0, •, 1, 1} •
{1, 1, 0, •, 1} •
{1, 0, 0, •, 1} •
{1, 1, 1, 0, •} •
{1, 1, 0, 0, •} •
{1, •, 0, 0, •} •
{1, 0, •, •, 0} •
{1, 0, •, 0, •} •

b)

Four-Temporal-vn

Init: all corners
Configuration Next State

{•, ∗, ∗, ∗, ∗} 0

{1, •, 1, 1, 0} •
{1, •, 1, 0, 0} •
{1, •, 1, 1, 0} •
{1, 0, •, 1, 1} •
{1, 0, •, 1, 0} •
{1, 0, •, 1, 1} •
{1, 1, 0, •, 1} •
{1, 0, 0, •, 1} •
{1, 1, 1, 0, •} •
{1, 1, 0, 0, •} •
{1, •, 1, •, 0} •
{1, •, 0, •, 1} •
{1, 0, •, 1, •} •
{1, 1, •, 0, •} •
{1, •, •, •, •} •

c)

the disinfection will reach the corner. At this point, for insuring the propagation
of the disinfecting site, one (and only one), of the following two rules must be
added to the set: (r10 = {0, 1, •, 0, 0} → •), and r11 = {1, 1, 0, •, 1} → •). Rule
r10 is forbidden because the disinfecting site would propagate back to the the
first disinfected site on the border and only an oscillation will be permitted (all
the other rules are forbidden). Following a similar reasoning, one can see that
the disinfecting site is forced to propagate left until reaching the corner with
the necessary inclusion of rule r12 = {1, 0, 0, •, 1} → •, then down following
another necessary rule r14 = {1, 0, •, 1, 1} → •. At the next step, however two
sites ((0, n − 3) and (1, n − 2)) will become simultaneously disinfecting (due to
rules r1 and r14 respectively), which contradicts our hypothesis. It follows that
starting from an internal cells we cannot decontaminate all sites with a single
disinfecting site per time unit.

If the initial disinfecting site is a border site or a corner, one can show, us-
ing similar arguments, that all combinations of possible rules either lead to an
impossibility, or to a disinfection requiring an immunity higher than 4(n−1)−1.

Interestingly, the strategy can be generalized when we allow two or four simulta-
neous disinfecting sites. In the first case we achieve disinfection initially placing
the two disinfecting sites in two opposite corners and having the rules of Table 3
(b) describe the local behavior of the cells; in the second case the four disinfecting
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sites are initially placed in the four corners and the rules are described in Table
3 (c). The global behavior of the automata corresponds to the propagation of
the disinfection in spirals (see Figure 1 b) and c)), and it is easy to see that the
immunity time is at least 2(n − 1) − 1 for the case of two disinfecting sites, and
(n − 1) − 1 for four. In fact, we can then conclude:

Theorem 3. With k = 1, 2, 4 disinfecting site per time unit, temporal disinfec-
tion is possible if and only if the immunity time is ≥ (4 − k)(n − 1) − 1.

4.2 Moore Neighbourhood

The bounds are different if we increase the neighborhood to include diagonal
neighbours. In fact, we can show that with a single disinfecting site optimality
is reached when the immunity time is at least 2n−1. We now describe a general
set of rules which achieves optimality in the particular case of a single agent
placed on a corner, but which works correctly also with more disinfecting sites.

Table 4. Rule Table for Finite CA with temporal immunity and Moore neighborhood.
All missing combinations of states for the neighbourhood of cell (i, j) do leave xi,j

unchanged.

Temporal-Moore

Configuration Next State

{•, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗} 0

{1, •, 0, 1, 1, 1, 1, 1, 0} •
{1, •, 0, 0, 0, 1, 1, 0, 0} •
{1, •, 0, 1, 1, 1, 0, 0, 0} •
{1, •, 0, 0, 0, 1, 1, 1, 0} •
{1, •, 0, 1, 1, 1, 1, 1, •} •
{1, •, 0, 1, 0, 0, 0, 1, 0} •
{1, •, 0, 1, 0, 0, 0, 0, 0} •
{1, •, 0, 0, 0, 0, 0, 1, 0} •
{1, •, •, 1, 1, 1, 1, 1, 0} •
{1, •, 0, 1, 0, 0, 0, 1, •} •
{1, •, •, 1, 0, 0, 0, 1, 0} •

Configuration Next State

{1, •, •, 0, 0, 0, 0, 0, 0} •
{1, 0, 0, •, 0, 0, 0, 0, 0} •
{1, 0, 0, •, 1, 1, 1, 1, 0} •
{1, 0, 0, •, 1, 1, 0, 0, 0} •
{1, 0, 0, •, 0, 0, 0, 1, 0} •
{1, 0, 0, •, 1, 1, 1, •, 0} •
{1, 0, 0, •, 0, 0, 0, •, 0} •
{1, 0, 0, 1, 0, 0, 0, •, 0} •
{1, 0, 0, 0, 0, 0, 0, •, 0} •
{1, 0, 0, 0, 0, 1, 1, •, 0} •
{1, 0, 0, 1, 1, 1, 1, •, 0} •

Any number of disinfecting sites (greater than 1) are initially placed on the
first column at distance greater than 1 from each other (i.e, no two consecutive
cells are initially disinfecting). Careful inspection of the rules in Table 4 shows
that disinfection “propagates” vertically to unprotected cells (an unprotected
cell becomes disinfecting when its down/up neighbour, or both, are disinfecting)
until they reach either another disinfecting cell or a clean one, in which case
they “propagate” to the next column (an unprotected cell becomes disinfecting
when its left neighbour is disinfecting and at least one of its left diagonal left
neighbours are disinfected). Figure 2 shows the effect of the local rules on some
partial configurations. Figure 3 describes instead the global propagation path of
the disinfection. In the following we prove the correctness of this set of rules.
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Vertical propagation
Horizontal propagation

Fig. 2. Examples of vertical and horizontal propagation. Black cells are disinfecting,
grey cells are unprotected, white cells are disinfected.

(a) One disinfecting (b) Several disinfecting

Fig. 3. Propagation of disinfection with temporal immunity and Moore neghborhood

Theorem 4. Let dmax be the maximum distance between two consecutive disin-
fecting cells or between a disinfecting cell and a corner at time 0. In the initial
number of disinfecting sites is at least 2, the set of rules Temporal-Moore

achieves disinfection with immunity time t = dmax.

Proof (Sketch). To prove the theorem, we need to prove that disinfection is
achieved monotonically. That is, that once disinfected, every cell stays clean
until the end of the process, when all cells are clean. Let us call entry points
of disinfection in a column, the cells in such a column that become disinfecting
due to a left disinfecting neighbour (horizontal propagation). We now prove by
induction on the number of columns that, for each column i there is a time t
when: (i) all cells in column i are either disinfected or disinfecting; (ii) all cells in
column i−1 (for i > 0) are clean; (iii) by time t+dmax all right neighbours of a
disinfected cell of column i are either disinfected or disinfecting; (iv) the distance
between any two consecutive entry points in column i + 1 (for i < n − 1) is
smaller than dmax.

1. Base - column 0: According to the set of rules Temporal-Moore the dis-
infecting state propagates vertically in both directions on the first column, and
since the maximal distance between initially consecutive disinfecting cells is dmax

by construction, within  dmax−1
2 ! time units all the cells on column 0 are ei-

ther disinfecting or disinfected. According to the local rules, disinfection then
propagates to column 1. Since the propagation to column 1 happened for all
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disinfecting cells within  dmax−1
2 ! time units from the beginning, the distance

between any two consecutive entry points in column 1 cannot be greater than
dmax. By a similar argument as for column 0, all cells in column 1 will then be-
come disinfected or disinfecting within other  dmax−1

2 ! time units. Thus, within
at most dmax time units, all the cells in column 0 and in column 1 will be either
disinfected or disinfecting.

2. Induction hypothesis: At some point during the computation, assume all cells
of column i (0 < i < n − 1) and all their right neighbours in column i + 1 are
either in disinfecting or disinfected state, their left neighbours in column i − 1
are clean, and the entry points in column i + 1 are at distance at most dmax.

3. Induction Step: Consider column i+1. By induction hypothesis we know that
there is a time t when all cells in column i − 1, are clean, the ones in columns i,
and i+1 are either disinfecting or disinfected and the entry points in column i+1
are at maximum distance dmax from each other. It follows that the disinfection
propagates vertically in column i + 1 within  dmax−1

2 ! time units from time t,
thus leaving all cells in column i clean. Disinfection propagates then to column
i+2 and within other  dmax−1

2 ! time units all the cells in the column i+2 become
either disinfected or disinfecting. We can conclude that, by time t+dmax all cells
in column i + 1 together with all their right neighbours are either disinfected or
disinfecting and the cells in column i are clean, thus concluding the proof.

Placing k > 1 disinfecting sites roughly equidistant on the first column we obtain
as a corollary that:

Corollary 1. With k > 1 disinfecting site per time unit, temporal disinfection
can be achieved when the immunity time is at least  2(2n−1)

k !.

For the case of k = 1 when the starting disinfecting cell is a corner, with an
argument similar to the one of Theorem 2 we can show that the strategy is
optimal:

Theorem 5. With a single disinfecting site per time unit, temporal disinfection
is possible if and only if the immunity time is is at least 2n − 1.

5 Note on Circular CAs

In this Section we briefly discuss how the results for finite CAs can be extended
to circular CAs.

In the case of basic disinfection, the decontamination technique can be eas-
ily extended to circular CAs with Von Neumann neighborhood with the same
immunity time, doubling the number of simultaneously disinfecting sites. The
n initial disinfecting sites are placed in the cells of any column and the cells
obey the following simple rules: regardless of the neighbourhing sites’ state, a
disinfecting site becomes disinfected; an unprotected site becomes disinfecting at
time t + 1 if one or both its horizontal neighbours (left/right) are disinfecting
at time t. It is easy to see that the effect of the local rules is the sequential
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disinfection of pairs of columns, where a disinfected site is never in contact with
an unprotected one, and we have:

Theorem 6. Basic disinfection can be achieved in a circular CA with Von Neu-
mann neighborhood using 2n simultaneous disinfecting sites.

Also in the case of temporal disinfection in CAs with Moore neighbourhood we
can easily modify the strategy employed for the finite case to obtain disinfection
with the same immunity time, doubling the number of simultaneously disinfect-
ing sites. We place the initial disinfecting cells on the first column (at distance
greater than 1 from each other). We design the rules in such a way that the
disinfection propagates in both directions (up and down) on the first column
until two disinfecting nodes become adjacent (or a disinfecting node has the two
neighbours on the column disinfected). At this point the rules will let the dis-
infection propagate in both directions (right and left) to the adjacent columns.
The procedure continues like for the finite case, but in both directions until two
disinfected columns become adjacent or a column has both left and right column
neighbours disinfected. The rules are described in Table 5.

Table 5. Rule Table for Circular CA with temporal immunity and Moore neighbor-
hood. All missing combinations of states for the neighbourhood of cell (i, j) do leave
xi,j unchanged.

Temporal-Circular-Moore

Configuration Next State

{•, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗} 0

{1, 1, 1, •, 1, 1, 1, 1, 1} •
{1, 1, 1, 1, 1, 1, 1, •, 1} •
{1, 1, 1, •, 1, 1, 1, •, 1} •
{1, •, 0, 1, 1, 1, 1, 1, •} •
{1, •, 0, 1, 1, 1, 1, 1, 0} •
{1, 1, 1, 1, 0, •, 0, 1, 1} •
{1, 1, 1, 1, •, •, 0, 1, 1} •
{1, 0, 0, •, 1, 1, 1, 1, 0} •
{1, 0, 0, 1, 1, 1, 1, •, 0} •
{1, 0, 0, •, 1, 1, 1, •, 0} •
{1, 1, 1, 1, 0, 0, 0, •, 1} •
{1, 1, 1, •, 0, 0, 0, 1, 1} •
{1, 1, 1, •, 0, 0, 0, •, 1} •
{1, •, 0, 1, 0, 0, 0, 1, 0} •

Configuration Next State

{1, 0, 0, 1, •, •, 0, 1, •} •
{1, 0, 0, 1, 0, •, 0, 1, •} •
{1, 0, 0, •, 1, •, 0, 1, 0} •
{1, 0, 0, 1, 0, •, 1, •, 0} •
{1, •, 1, •, 0, 0, 0, 1, 0} •
{1, 0, 0, 1, •, •, 0, 1, •} •
{1, •, 0, 1, 0, 0, 0, 1, 1} •
{1, 0, 0, 1, •, 1, 1, •, 0} •
{1, 1, •, 1, 0, 0, 0, •, 1} •
{1, •, 0, 1, 0, •, 0, 1, 0} •
{1, 0, 0, •, 0, 0, 0, 1, 0} •
{1, 0, 0, 1, 0, 0, 0, •, 0} •
{1, 0, 0, •, 0, 0, 0, •, 0} •
{1, 0, 0, 0, 0, 0, 0, •, 0} •
{1, 0, 0, •, 0, 0, 0, 0, 0} •

Let dmax be the maximum distance between two consecutive disinfecting cells
or between a disinfecting cell and a corner at time 0. Analogously to the case
of finite CAs, it is easy to see that, If the initial number of disinfecting sites is
at least 2, the set of rules Temporal-Circular-Moore achieves disinfection
with immunity time t = dmax. It then follows that:
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Theorem 7. With k > 2 disinfecting sites per time unit, temporal disinfection
can be achieved in a circular cellular automata when the immunity time is at
least  (2n−1)

k !.

Interestingly, for circular CAs with Von Neumann neighborhood, a straightfor-
ward extension of the technique described for the finite case cannot be proposed.
The symmetry of the CA and the small neighborhood heavily limit the possibil-
ities of disinfection. For example, we can show that:

Theorem 8. In circular CAs with Von Neumann neighborhood temporal dis-
infection is not possible with a single disinfecting site per time unit, for any
immunity time.

The general case of k > 1 is under investigation.

6 Conclusions

In this paper, we have considered the problem of decontaminating a 2-dimensional
3-states cellular automata with and without temporal immunity. We have focused
on finite cellular automata with Von Neumann and Moore neighborhoods. In each
case we have described CA rules to achieve decontamination. We have measured
the efficiency of our sets of rules by considering the number of simultaneous sites in
disinfecting state and, with this metric, we have shown that most rules are optimal.
We have also observed how to extend the rules to the case of circular CAs.

Some problems are still open and currently under investigation. For example,
with Von Neumann neighborhood we have described rules achieving optimal
disinfection which employ 1,2, and 4 simultaneously disinfecting sites, but no
optimal strategy has been proposed for 3 simultaneously disinfecting sites or for
any number between 4 and n−1. In our study we assume that the location of the
initial disinfecting sites can be chosen; another interesting problem would be to
devise optimal rules for a given arbitrary initial placement. Finally, we are now
investigating the case of circular CAs with Von Neumann neighborhood to deter-
mine whether, regardless of the amount of temporal immunity, decontamination
is possible at all with less than n agents.
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Abstract. The single attractor cellular automata (SACA) is of prime
interest in devising schemes for different applications specially in authen-
tication and cryptography. The synthesis of SACA in linear/additive do-
main has been proposed in literature. This work reports characterization
of such a special class of CA beyond linear domain. The characterization
is based on the analysis of individual CA rule and its potential to form
the single length cycle attractors (point states). The proposed character-
ization targets design of a CA based scheme for detection of faulty nodes
in a wireless sensor network. It enables identification of faults even in
multiple nodes with out major computation overhead.

1 Introduction

In 80s, Wolfram [1] studied a family of simple 1-dimensional CA that could
simulate complex behaviors [2,3,4,5,6]. The proposed CA structure was viewed
as a discrete lattice of 2-state per cell, with 3-neighborhood dependence (self, left
and right neighbors). A special class of Wolfram’s 3-neighborhood 1-dimensional
CA, called the linear/additive CA, had gained immense attention [7].

While characterizing 3-neighborhood CA state space, the researchers identi-
fied a set of CA states called attractor towards which neighboring states asymp-
totically approach in course of dynamic evolution [8]. A single length cycle at-
tractor is one where the number of states of an attractor is one [7].
� This research work is supported by the Sponsored Cellular Automata Research

Projects, Bengal Engineering and Science University, Shibpur, WB, India-711103.
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The identification of attractors, specially for linear/additive CA, is explored
in [7,9,10]. A graph based solution was proposed in [11,12]. However, character-
izations of single length cycle attractor for SACA are yet to be explored.

In this context, we concentrate on the characterization of CA rules with the
target to construct a single length cycle attractor CA. We then focus on to
identify the special class of irreversible CA, referred to as the SACA (single
attractor CA), that has great importance in developing the efficient message
authentication scheme [13], one way function [14], and other similar applications
[7,15]. However, in the present work, we target the design of an SACA based
scheme to detect faulty nodes in a wireless sensor network.

2 Cellular Automata Basics

A Cellular Automaton (CA) consists of a number of cells organized in the form of
lattice. It evolves in discrete space and time, and can be viewed as an autonomous
finite state machine (FSM). Each cell stores a discrete variable at time t that
refers to the present state (PS) of the cell. The next state (NS) of the cell at
(t + 1) is affected by its state and the states of its neighbors at time t. In this
work, we concentrate on such 3-neighborhood CA (self, left and right neighbors),
where a CA cell is having two states - 0 or 1 and the next state of ith CA cell is

St+1
i = fi(St

i−1, S
t
i , S

t
i+1) (1)

where St
i−1, St

i and St
i+1 are the present states of the left neighbor, self and right

neighbor of the ith cell at time t and fi is the next state function.
The states of the cells St = (St

1, S
t
2, · · · , St

n) at t is the present state of the
CA. Therefore, the next state of an n−cell CA is determined as
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t
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t
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t
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The next state function of the ith CA cell can be expressed in the form of a truth
table Table 1. The decimal equivalent of the 8 outputs is called Rule Ri [23].
In a 2-state 3-neighborhood CA, there can be 28 (256) rules. Four such rules
90, 150, 75 and 192 are illustrated in Table 1. The first row lists the possible
23 (8) combinations of present states of (i − 1)th, ith and (i + 1)th cells at t.
The last four rows indicate the next states of the ith cell at (t + 1) for different
combinations of present states of its neighbors, forming the rules 90, 150, 75 and
192 respectively. The following terminologies are relevant for the current work.

Table 1. RMT s of the CA < 90, 150, 75, 192 >

PS 111 110 101 100 011 010 001 000 Rule
RMT (7) (6) (5) (4) (3) (2) (1) (0)

NS 0 1 0 1 1 0 1 0 90
NS 1 0 0 1 0 1 1 0 150
NS 0 1 0 0 1 0 1 1 75
NS 1 1 0 0 0 0 0 0 192
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Definition 1. The set of rules R =< R1, R2, · · · , Ri, · · · , Rn > that configure
the cells of a CA is called the rule vector.

Definition 2. If all the CA cells obey the same rule, then the CA is a uniform
CA; otherwise it is a non-uniform/hybrid CA.

Definition 3. A CA is said to be a null boundary CA (NBCA) (Figure 1) if the
left (right) neighbor of the leftmost (rightmost) terminal cell is fixed to 0-state.

IN OUT IN IN IN INOUT OUT OUT OUT
Cell Cell Cell

(FF) (FF) (FF)(FF)
1 Cell Cell

(FF)
i−1 i i+1 n

f f f1 i n

boundarynull Combinational logic circuit null boundary

Fig. 1. An n-cell null boundary CA

Definition 4. A CA is reversible if it contains only cyclic states in its state
transition diagram (Figure 2); otherwise the CA is irreversible (Figure 3).

0

13 10

4

1

1412

9

6

2 5

8 11

3 7 15

Fig. 2. A 4-cell reversible CA < 105, 177, 170, 75 >

Definition 5. Rule Mean Term (RMT): From the view point of Switching The-
ory, a combination of the present states (as noted in the 1st row of Table 1) can
be considered as the Min Term of a 3-variable St

i−1, S
t
i , S

t
i+1 switching function.

Therefore, each column of the first row of Table 1 is referred to as Rule Min Term
(RMT). The column 011 of Table 1 is the 3rd RMT. The next states corresponding
to this RMT are 1 for Rule 90 and 75, and 0 for Rule 150 and Rule 192.
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Fig. 3. A 4-cell irreversible CA < 1, 236, 165, 69 >

Attractor: A set of states forms loop (cycle) in the state transition diagram
of a cellular automata (7→7 and 9→1→9 of Figure 3) and referred to as the
attractor. The attractors of single length cycles ((7→7 of Figure 3) are of our
current interest. In this work we concentrate on SACA, where all the states of
CA lead to a single attractor of single length cycle.

3 Characterization of CA Rules for SACA

Since the next state of a single cycle attractor is the attractor itself, there should
be at least one RMT of each cell rule (Ri) of the CA (R) for which the cell i does
not change its state in the next time step. For example, the RMT x0x (x=0/1)
of a rule is considered to find the next state of cell i when the current states
of its left neighbor ((i − 1)th cell), self and right neighbor ((i + 1)th cell) are
x, 0 and x respectively. It implies, such an RMT is 0, the state change in cell
i is 0 → 0. That is, for rule Ri, if the RMT 0(000), 1(001), 4(100), 5(101) are
0, then the CA cell i is configured with Ri does not change its state. Similarly,
if the value of RMTs 2 (010), 3(011), 6(110) or 7(111) are 1 in a rule Ri, it
ensures a cell configured with Ri can stick to its current state in the next time
step. When a CA cell is configured with the rule 204, all RMTs of it help the
formation of attractors of the CA. On the other hand, RMTs of 51 deny the
attractor formation (Figure 4).

0 01 1 1 0 0 0 0 0 01 1 1 1 1

Structure of Rule 204 Structure of Rule  51

111 110 101 100 011 010 001 000 111 110 101 100 011 010 001 000

Fig. 4. Structure of rule 204 and 51
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Property 1: A rule Ri can contribute to the formation of single cycle attractor(s)
if at least one of the RMT s 0, 1, 4 or 5 is 0, or the RMT s 2, 3, 6 or 7 is 1.

3.1 Classification of CA Rules

A CA synthesized with arbitrary rules may result in one or more attractors with
multi-length cycles (Figure 3). To synthesize an SACA, we classify the 256 CA
rules based on Property1. All these 256 rules form 9 groups (group 0-8). The
rule 200 (11001000) is in group 7 as it follows Property1 for 7 RMTs. A CA
configured with the rules that maintain Property1 for most of the RMTs can
increase the chances of single length cycle attractors. Table 2 shows all the nine
groups of CA rules. The following observations are the outcome of extensive
experimentations.

Observation 1. CA configured with the rules of group 7 or 8 forms only single
length cycle MACA.

Example 1. The rule 205 belongs to group 7. The 4-cell uniform CA < 205, 205,
205, 205 > is an MACA and all the attractors are single length cycle (Figure 5). It
is observed that the depth of any n-bit uniform CA configured with rule 205 is 2.

Observation 2. Most of the rules of group 6 form single length cycle attractor
CA. This is true for 156, 192, 198, and 201. However, some of group 6 rules

Table 2. Classification of CA rule

group Rule

0 51

1 19, 35, 49, 50, 55, 59, 115, 179

2 3, 17, 18, 23, 27, 33, 34, 39, 43, 48, 53, 54, 57, 58, 63, 83, 99
113, 114, 119, 123, 147, 163, 177, 178, 183, 187, 243

1, 2, 7, 11, 16, 21, 22, 25, 26, 31, 32, 37, 38 ,41, 42, 47, 52, 56, 61, 62, 67
3 81, 82, 87, 91, 97, 98, 103, 107, 112, 117, 118, 121, 122, 127, 131

145, 146, 151, 155, 161, 162, 167, 171, 176, 181, 182, 185, 186, 191
211, 227, 241, 242, 247, 251

0, 5, 6, 9, 10, 15, 20, 24, 29, 30, 36, 40, 45, 46, 60, 65, 66, 71, 75, 80, 85, 86
89, 90, 95, 96, 101, 102, 105, 106, 111, 116, 120, 125, 126, 129, 130, 135

4 139, 144, 149, 150, 153, 154, 158, 159, 160, 165, 166, 169, 170, 175
180, 184, 189, 190, 195, 209, 210, 215, 219, 225, 226, 231, 235, 240

245, 246, 249, 250, 255

4, 8, 13, 14, 28, 44, 64, 69, 70, 73, 74, 79, 84, 88, 93, 94, 100, 104, 109
5 110, 124, 128, 133, 134, 137, 138, 143, 148, 152, 157, 164, 168, 173, 174

188, 193, 194, 199, 203, 208, 213, 214, 217, 218, 223, 224, 229, 230, 233
234, 239, 244, 248, 253, 254

6 12, 68, 72, 77, 78, 92, 108, 132, 136, 141, 142, 156, 172, 192, 197, 198
201, 202, 207, 212, 216, 222, 228, 232, 237, 238, 252

7 76, 140, 196, 200, 205, 206, 220,236

8 204
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Fig. 5. State transition diagram of < 205, 205, 205, 205 >

(e.g. 201) form multi graph and some (e.g. 192) form single graph -that is,
SACA (Figure 6).
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15

1112

13

6 14

Fig. 6. State transition diagram of < 192, 192, 192, 192 >

Observation 3. The CA synthesized with rules from group 5 may have multi-
length cycle. Such rules are 233, 229, 218, 217, 193, 199, 188, 173, 157, 73 and 28.

Observation 4. Some rules of group 4 form both the single length and multi-
length cycles and single and multi-graphs.

Example 2. The state transition diagram of a 4-bit CA is noted in (Figure 7).
Here both the single and multi-length cycle attractors are formed and it is multi-
graph. The rules that form only single length cycle uniform CA are 0, 10, 15, 20,
24 30, 36, 40, 46, 66, 80, 85, 90, 96, 106, 120, 130, 144, 160, 166, 170, 180, 184,
219, 226, 235, 240, 249, 255. The rules 0, 10, 24, 40, 66, 80, 96, ... form single
graph -that is, SACA.

Observation 5. If a CA cell is configured with rule 51 (group 0), the CA forms
multi-length cycle attractors only.
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Fig. 7. State transition diagram of < 135, 135, 135, 135 >
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Fig. 8. State transition diagram of < 204, 51, 204, 204 >

Example 3. State transitions of a 4-bit CA < 204, 51, 204, 204 > is shown in
Figure 8. As the rule 204 belongs to group 8 and maintains Property 1 for each
RMT, it has the highest tendency, among the 256 rules, to form single length
cycle attractors in an n-cell CA. However, the presence of rule 51 dictates the
shape of attractors.

Observation 6. All rules of group 1 form multi-length cycle attractors while
designing uniform CA. If non-uniform CA is constructed with the rules from
group 1, there is rare chance of getting single length cycle attractors.

Example 4. Let us consider the 3-cell non-uniform CA of Figure 9 Its rules
are taken from group1. The state transition graph contains multi-length cycle
attractors.

Observation 7. In group 2, the uniform CA designed with rule 34/48 only
forms single length cycle attractors (Figure 10) -that is, SACA.

Observation 8. The uniform CA designed with the rules of group 3 forms single
length cycle attractors only. Some of those - 2, 16, 32, 42, 56, 98, 112, 162, and
176 form SACA.

Example 5. Let us consider the 4-bit CA < 16, 16, 16, 16 > of Figure 11. Its
state transition diagram contains only single length cycle attractor.
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Fig. 9. State transition diagram of < 50, 115, 179 >
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Fig. 10. State transition diagram of < 48, 48, 48 >

3.2 Identification of CA Rules for SACA

The earlier subsection observed that to form an SACA, the CA rule should follow
Property 1. However, a rule that maintains Property 1 for all its RMTs can’t
form an SACA (e.g. rule 204).

Property 2: For an uniform SACA, the CA rule must deny Property 1 for some
RMTs.

Example 6. The rule 48 of group 2 denies Property 1 for 6 RMTs and follows
for only 2 RMTs. On the other hand, rule 192 of group 6 denies Property 1 for
only 2 RMTs and follows for 6 RMTs. Each of these rules forms SACA for all
lengths. Table 3 displays the rules that form SACA of any arbitrary length.
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Fig. 11. State transition diagram of < 16, 16, 16, 16 >

Table 3. CA rules for SACA

group Rule

2 34, 48

3 2, 16, 32, 42, 56, 98, 112, 162, 176

4 0, 10, 15, 24, 40, 66, 80, 84, 96, 130, 144, 160, 170, 184, 226, 240, 255

5 8, 64, 128, 138, 143, 152, 168, 194, 208, 213, 224

6 136, 192

4 Faulty Sensor Node Detection Scheme

In a sensor network, hundreds of sensor nodes are deployed randomly [16]. The
nodes have the ability to sense the environment, can perform some computations,
and communicate with the neighbors. However, the sensor nodes are constrained
by the limited battery power since recharging is very difficult and sometimes
unfeasible. Therefore, any scheme devised for a wireless sensor network (WSN)
should be energy efficient.

In WSN, some of the sensor nodes may become faulty due to their low battery
power or some other physical defects [17]. These may send erroneous data and con-
sume some bandwidth as well as incur extra computational overhead. Therefore,
identification of faults in sensor network nodes is a necessity. In this work, we pro-
pose an SACA based scheme that can efficiently identifies the faults in network
nodes without consuming much computational overhead and bandwidth.
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The scheme: For a network with n nodes, we employ an n-cell CA and an n-bit all
1s seed. We assume that each sensor node Ni can check its status and whenever
communicates with the base station/coordinator, it faithfully sends its status.

Let us assume that status 0 of a node implies it is fault free and 1 is for
faulty. That is, if the network is fault free, each node sends ‘0’ to the coordinator;
otherwise coordinator assumes ’1’. For each node, the coordinator assigns a cell
of the n-cell CA. The information received from node Ni is then used to set the
rule of the ith CA cell. The ‘0’ is encoded as the rule 192 (Figure 12). As Mi=0,
NSi= xi−1 xi, NSi is equivalent to rule 192. When there is a fault in node Ni,
Mi=1, NSi= x

′
i−1 + xi. Therefore, rule 207 is set for the ith CA cell (Figure 12).

Once the message is received at the coordinator, the CA is run for t-steps
initialized with all 1s seed. The fault free CA is a uniform SACA constructed
with rule 192 and it reaches the attractor state 0 (Figure 6). The following
property of CA justifies the application of rule 207 for Cell i when the node Ni

is faulty.

Property 3: If a uniform SACA with rule Ro is hybridized by a cell rule Rh, it
can generate new attractors only if the set of RMTs of Ro for which Property 1
are denied is not a subset of the set of RMTs of Rh, for which also the property
1 are denied.

The set of RMTs of rule 192 (Ro) for which Property 1 are denied is 2,3 and
the similar set for rule 207 is 0,1. Therefore, rule 192 and 207 follow Property 3.
That is, the CA resulted from an SACA (with rule 192) due to faults at single
or multiple nodes is a non-uniform (hybrid) CA (hybridized with rule 207). It
generates multiple attractors and settles to an attractor with LSB as 1 (Figure
13) when initialized with all 1s seed. That is, by sensing the LSB of the CA the
coordinator can detect faults in its nodes.

Once the fault in a node is detected, the faulty nodes can be diagnosed by
running the CA with all 0s seed. The position of 1s in the attractors (4 of Figure
13(a), 6 of Figure 13(b), and 5 of Figure 13(c)) denote the faulty node positions.

Cell  iCell  i−1

Q QD D QD

Cell  i+1

Mi+1Mi−1 Mi

Mi = 0, implies rule 192 (NSi = xi−1 xi)
Mi = 1, implies rule 207 (NSi = xi−1’ + xi)

Message received

xi

xi−1

NSi

Fig. 12. CA rule setting for fault free and faulty nodes in a WSN



310 S. Das et al.

6

1514

7 614

0 12

10 8 9

153

11

4

5

12

7

13

1098

1 0

3

2

124

14

6 7

11

5

11

1

2

4

3

5

8 9 10

12

13

a) CA<192, 207, 192, 192> b) CA<192, 207, 207, 192>

0

15

13

c) CA<192, 207, 192, 207>

Fig. 13. State transitions of CA due to faults

5 Conclusion

The work characterizes a single attractor CA (SACA) through classification of
all the 256 rules of 3-neighborhood CA. The characterization enables design of
a CA based scheme for detection of faulty nodes in a wireless sensor network.
It identifies faults even in multiple nodes without major computation overhead,
that is desired for power constrained wireless sensor network.
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Abstract. Nowadays, remote sensing is used in many environmental
applications, helping to solve and improve the social problems derived
from them. Examples of remotely sensed applications include soil quality
studies, water resources searching, environmental protection or meteoro-
logy simulations. The classification algorithms are one of the most impor-
tant techniques used in remote sensing that help developers to interpret
the information contained in the satellite images. At present, there are
several classification processes, i.e., maximum likelihood, paralelepiped
or minimum distance classifier. In this paper we investigate a new sate-
llite image classification Algorithm based on Cellular Automata (ACA),
a technique usually used by researchers on complex systems. There are
not previous works related to satellite image classification with cellu-
lar automata. This new kind of satellite image classifier, that improves
the results obtained by classical algorithms in several aspects, has been
validated and experimented in the SOLERES framework.

1 Introduction

Remote sensing is the most relevant science that allows us the acquisition of
information about the surface of the land and environmental information values
without having actual contact with the area being observed [14]. This science
can be used in many environmental applications, helping to solve and improve
the problems derived from them. Examples of remotely sensed applications in-
clude soil quality studies, water resources searching, environmental protection
or meteorology simulations, among others.

The classification algorithms are one of the most important techniques used
in remote sensing that help developers to interpret the information contained in
the satellite images. The aim of satellite images classification is to divide image
pixels into discrete classes (spectral classes). The resulting classified image is
essentially a thematic map of the original image [15]. These algorithms have
reached a great advance in the last years. The analysts use the classification
algorithms to interpret the information contained in the satellite images. In the
literature, there are different procedures to classify satellite images.

S. Bandini et al. (Eds.): ACRI 2010, LNCS 6350, pp. 312–321, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In spite of the great number of classifiers that exist, there are several re-
searchers studying new classification methods because there is not a 100% effi-
cient classifier. In this paper we propose a new procedure for the classification of
satellite images. The new classification Algorithm based on Cellular Automata
(ACA) uses this technique for the assignment of the satellite image pixels to the
different spectral classes.

The rest of the paper is structured as follows. Section 2 describes the basic
features of the spectral and contextual image classification algorithms. Section 3
describes the basic aspects of cellular automata and the classical applications in
remote sensing. In section 4 we focus in the use of cellular automata to classify
satellite images (ACA algorithm). Section 5 shows the results obtained with the
application of ACA in the SOLERES framework. Finally, in section 6, we finish
the paper exposing future work.

2 Spectral and Contextual Classification of Satellite
Images

Common classification procedures can be broken down into two divisions based
on the method used: supervised and unsupervised classification, whose classifi-
cation methods are based on the spectral properties of the satellite image pixels.
The use of supervised or unsupervised procedures depends of the analyst know-
ledge about the zone to study [1].

In an unsupervised classification algorithm, the analyst only specifies the num-
ber of classes, and the algorithm groups the satellite image pixels based solely
on the numerical information in the data. In these algorithms, the analyst has
not to know the zone to study. There are many unsupervised classification algo-
rithms, like the Isodata algorithm, K-means, Leader, MaxiMin or Neural Model
unsupervised.

In a supervised classification, the analyst selects samples of the different ele-
ments to identify the pixels in the image. In this method the analyst knowledge
of the study area determines the quality of the training set. Then, the computer
uses an algorithm to compare each pixel in the image to these signatures. The
pixels are labelled as the class most closely resembles digitally [2]. There are
several types of statistics based supervised classification algorithms. Some of the
more popular ones are parallelepiped, minimum distance, maximum likelihood,
Fuzzy supervised, neural model and Mahalanobis distance, among others.

These spectral supervised and unsupervised classification algorithms works
well in non-noisy images and if the spectral properties of the pixels determine the
classes sufficiently well. However, if noise or substantial variations in class pixel
properties are present, the resulting image classification may have many small
(often one-pixel) regions which are misclassified. Several standard approaches
can be applied to avoid this misclassification, like using contextual information in
addition to spectral data. There are several contextual classification algorithms
that use mean values, variances or texture description from a pixel neighbour-
hood to improve that pixel spectral classification.
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Fig. 1. (a) General classification process description, (b) Supervised classification re-
sults and (c) Unsupervised classification results

3 Classical Aplications of Cellular Automata in Remote
Sensing

A cellular automaton consists of a grid of cells distributed normally in a matrix
form that has the following basic features:

– States: each cell can take an integer value that corresponds to its current
state. There is a finite set of states.

– Neighbourhood: a set of cells that interact with the current one.
– Transition function f : takes as input arguments the cell and neighbour-

hood states, and returns the new state of the current cell.
– Rules: the transition function f uses a set of rules that specify how the

states of the cells change.
– Iterations: the transition function f is applied to each cell of the grid across

several iterations.

When we work with satellite images, we consider each pixel of the image as
a cell of the cellular automaton and we normally take the 8 around pixels as
neighbourhood (Moore Neighborhood), although we can take the 4 around pixels
(von Neumann Neighborhood) or even the 24 around pixels (Extended Moore
Neighborhood).

The changes in cells states occur in discrete time form. In each iteration the
whole cells are checked and rules are applied trought the transition function f
to each cell taking into account the around neighbourhood to change its state.
Therefore cellular automata have an evolution process because the cells are al-
ways changing their states across the different iterations. From this point of view,
in recent years cellular automata have become a powerful tool applied in remote
sensing especially to simulate satellite images processes.
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Fig. 2. (a) Von Neumann Neighborhood, (b) Moore Neighborhood and (c) Extended
Moore Neighborhood

Cellular automata have been used in applications that experiment a time
evolution like environmental simulations, complex social phenomena modelling,
images treatment in artificial vision, criptography of digital information and
artificial intelligence in mathematical games.

Cellular automata have been widely used for environmental simulations like
modelling land features dynamics [4], simulating snow-cover dynamics [5], mo-
delling vegetation systems dynamics [3], detecting vibrio cholerae by indirect
measurement [6], simulating forest fire spread [11][12], modelling biocomplexity
of deforestation process [10] and simulating land use dynamics [8]. Besides we
can find cellular automata used to model complex social phenomena like stu-
dying plant population spread in controllable systems [16]. Cellular automata
have been also applied in image enhancement (noise-reduction filters) and edges
detection [13].

So far cellular automata have been applied on satellite images mainly to simu-
late processes. In the next section we propose an important and novel alternative:
cellular automata applied in remote sensing to implement contextual classifica-
tion algorithms of satellite images.

4 Classification of Satellite Images with Cellular
Automata (ACA)

The application of cellular automata in satellite image classification processes
is a new field of investigation. In this paper we propose a methodology to im-
plement a new satellite image classification Algorithm with Cellular Automata
(ACA) that classifies the pixels based on mixed spectral and contextual informa-
tion, and thus improves the classification results obtained by another classical
classification algorithms. This kind of Information System is designed to solve
environmental problems, facilitating risk analysis and improving environmental
stewardship. There are not previous works related to satellite image classifi-
cation with cellular automata, only works about cellular automata applied in
post-classification processes [9] and pattern classification [7].

ACA has been implemented with Visual C++ and Erdas Imagine 9.1 Toolkit,
and is a new classification algorithm based on a multistate cellular automaton
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that allows the user to enter new states and rules to the cellular automata in
order to customize as much as possible the satellite images classification process.
In order to implement ACA we must take into account the following correspon-
dences between a cellular automaton and the basic elements of a generic process
of satellite image classification:

– Each cell of the grid corresponds to a pixel of the image.
– Each state of cellular automaton will represent a different class of the final

classification.
– The neighbourhood of each cell will consist of the 8 nearest cells (Moore

neighbourhood).
– The transition function f must correctly classify each pixel of the image

based on the features of the current cell and its neighbourhood, using mixed
spectral and contextual data.

In order to customize the classification process, the satellite image expert analyst
has to set the desired behavior of ACA through introducing the states and rules
of the cellular automaton that defines the results wanted. For example, we have
implemented a version of ACA that try to get 3 objectives. Primarily to improve
the results obtained by supervised classification classical algorithms (eg minimun
distance) using contextual information. Secondly to get a pseudo-fuzzy classifi-
cation based on spectral proximity hierarchies, where in each iteration of cellular
automata only those pixels that are within a spectral distance of the center of
its class are classified (this distance is increased in each iteration). And thirdly,
to obtain a detailed list of the noisy and uncertain pixels, and classes edges de-
tection. So we have assigned 3 states for each of the cells: [class][quality][type],
where each state can take the following values:

– [class]=training set classes, noiseClass (noisy pixels) or emptyClass (pixels
not classified yet).

– [quality]= 1..numIterations (number of iterations of CA)
– [type]= focus (not border pixels), edge (border pixels), uncertain (caotic

pixels) and noisy (noise detection).

This version of ACA is based on the minimum distance supervised classifier, so
the cellular automaton uses the results of minimun distance spectral classification
to apply its rules. The transition function f take into account the following inputs
to apply the cellular automaton rules:

– Neighbourhood states: states of actual pixel neighbourhood.
– Spectral classification classes of minimun distance algorithm: classes set of

actual pixel (maybe one class, or several classes if is an uncertain pixel that
is near two or more classes).

– CA iteration: actual iteration of CA.

The cellular automaton rules that gets the 3 objectives that we have described
above are the following:
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– If the number of spectral classification classes is 1, and the neighbourhood
class states are emptyClass or the same as actual pixel:
[class][quality][type] = spectralClass, CAiteration, focus

– If the number of spectral classification classes is 1, and the neighbourhood
class states are different than actual pixel class:
[class][quality][type] = spectralClass, CAiteration, edge

– If the number of spectral classification classes is 1 and the spectralClass is
noiseClass :
[class][quality][type] = majority class of the neighbourhood, CAiteration,
noisy

– If the number of spectral classification classes is bigger than 1:
[class][quality][type] = majority class of the neighbourhood among the du-
bious classes, CAiteration, uncertain

In the next section we show the results obtained with this particular version of
the ACA algorithm.

5 Results and Conclusions

In this section we analyze the results obtained with this version of ACA algo-
rithm. Tests have been carried out on a multispectral Landsat image with 7
layers, with a total resolution of 301x301 pixels (90,601 total pixels). The spatial
resolution of each pixel is 30x30 meters.

Fig. 3. Complete satellite image of Almeŕıa and Granada provinces (Spain)

The image corresponds to a region of the provinces of Almeŕıa and Granada
(Spain), and the image pixels were classified in a total of 8 classes. This is a region
with a significant percentage of uncertain pixels and a minimum percentage of
noisy pixels. With this version of ACA we have achieved the following objectives:
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a) Improving the quality of the pixels classification using contextual
information.
ACA improves the results obtained by another supervised classification al-
gorithms, because in the classification process of each image pixel it uses the
around pixels as neighbourhood in the transition function f, and this rela-
tionship among the image pixels offers an optimal final classification. In this
experiment we compared the classification results obtained from the classi-
cal minimum distance algorithm with ACA based on minimum distance.
To compare these algorithms have calculated the confusion matrix between
the two classified images and an image from either ranked fieldwork. The
comparation can be seen in the following two tables:

Table 1. Confusion matrix of the minimum distance algorithm

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8

Class 1 0 0 0 0 0 0 0 0
Class 2 789 6080 355 0 0 0 0 0
Class 3 1247 0 9447 532 0 0 0 0
Class 4 1547 0 2 11998 242 0 0 0
Class 5 1555 0 0 52 12827 3 27 0
Class 6 1027 0 0 47 281 8330 35 1
Class 7 1513 0 0 0 250 12 13050 0
Class 8 1396 0 0 0 0 66 381 11242

Table 2. Confusion matrix of the ACA algorithm

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8

Class 1 0 0 0 0 0 0 0 0
Class 2 123 6326 611 54 62 11 18 14
Class 3 179 0 9648 963 240 74 73 37
Class 4 205 0 5 12282 777 252 174 73
Class 5 194 0 1 58 13254 88 713 135
Class 6 123 0 0 47 291 8699 161 330
Class 7 130 0 0 1 254 16 13724 661
Class 8 217 0 0 0 0 68 407 11966

The number of well classified pixels in each algorithm is obtained by adding
the values in the main diagonal of the table. In the case of the minimum
distance algorithm there are a total of 72.974 well classified pixels (80%
well classified), and in the ACA algorithm there are a total of 75.899 well
classified pixels (84% well classified). Therefore the quality of the final classi-
fication has improved by 4%, also we have grouped in a single algorithm a
preclassification process(noise reduction), the proper classification process
and a postclassification process(improving uncertain pixels).
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b) Obtaining a pseudo-fuzzy classification based on spectral proximity
hierarchies in feature space.
With ACA we can obtain a hierarchical classification based on spectral pro-
ximity in feature space, so that in each iteration of cellular automaton only
those pixels in the image that are within a distance from the center of its
class are classified, and this distance is increasing at each iteration. Thus,
the pixels classified in a particular iteration are more reliable than those that
fall in the next iteration, and so on.

This method of classification has similar behavior to the fuzzy classifi-
cation, although not exactly alike, so we have called pseudo-fuzzy. In the
Figure 4 we show a sequence of images where we can see the results of our
image classification by dividing the process in 6 iterations of the cellular
automaton.

The assignment of colors to each class is set to gray scale, so that black
pixels are those that have not yet been classified. As you can see in the first
iteration, the number of classified pixels are quite small. These pixels are
those that are closer from the standpoint of the average spectral classes, and
therefore are more reliable. Some of these pixels even belong to the training
set chosen by the expert. In the next iterations the threshold distance to the
average of each class will increase, so that others pixels that are spectrally
farther in its class will be classified. In the last iteration, the uncertain and
noisy pixels are classified, which are often the most problematic. Thanks
to these results, experts can detect visually much more reliable problematic

Fig. 4. Pseudo-fuzzy classification with 6 iterations of cellular automaton
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pixels in the classification process, valuable information in the process of
satellite images analysis.

c) Boundary, uncertain and noisy pixel detection.
In addition, the ACA algorithm also provides the expert with a list of bor-
der pixels of each class represented in the image as well as uncertain and
noisy pixels, in order to have more additional information related to the
classification process to improve the subsequent analysis of results obtained.
Thus, the ACA algorithm incorporates aspects of pre-sorting tasks (detection
and elimination of image noise), classification (enhanced in our case) and
postclasificacin (correction uncertain pixel) satellite imagery.

6 Future Work

Some possible future work are shown below:

a) Implementing new versions of the ACA algorithm based on new states and
rules of cellular automaton to further customize the classification process.

b) Using software agents to reduce the computational cost, touring various re-
gions of the image in parallel.

c) Creating a Erdas Imagine pluggin that allows a custom classification based
on cellular automtata.
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Abstract. We study the effects of coupling of the Distributed Denial of Service 
(DDoS) attack with routing on a packet switching network (PSN) performance 
measured by throughput. We conduct our study using PSN model that it is an ab-
straction of the Network Layer of the 7-Layer ISO OSI Reference Model. Our 
study demonstrates that even a very “weak” DDoS attack on a network using 
static routing causes degradation of the network throughput. The values of the 
throughput almost immediately decrease with each onset of a DDoS attack and 
they decrease with the increase of the number of attackers. However, this is not 
the case when the network uses an adaptive routing instead. We consider two 
different types of adaptive routings and our study shows that the adaptive rout-
ings have ability to process efficiently extra packet traffic generated by DDoS at-
tacks without compromising the network throughput when the total amount of 
the incoming packet traffic, i.e. the regular one and the one coming from an at-
tack, is lower than the one corresponding to the critical source load value.    

Keywords: packet switching network, denial of service attack, throughput.  

1   Introduction 

The purpose of Denial of Service Attacks (DDoS Attacks) is to make a computer re-
source inaccessible to its legitimate users. In DDoS, attacks are “distributed” because 
the attacker gains control of a huge number of independently owned and geographi-
cally distributed computers, called “zombies”, and almost always controls them in a 
concealed way without any knowledge of their legitimate owners. The attacker carries 
on his/her actions by means of multiple “zombies”, located at various network nodes. 
Thus, the DDoS attack is a network attack taking advantage of asymmetry between 
network-wide resources and local capacity of the target (victim) machine to process 
incoming packet traffic. In a DDoS attack the victim machine and its neighbouring 
nodes may become quickly saturated with buildup of intended congestion, such that 
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they cannot respond to legitimate traffic any longer, [1] “Ping flood” is the type of 
DDoS attack directing a huge number of “ping” requests to the target victim of the 
attack. This type of attack exploits the “Internet Control Message Protocol” (ICMP). 
“Ping is a computer network tool used to test whether a particular host is reachable 
across an IP network”, [2]. By issuing a huge number of ping ‘echo requests’ from a 
very large number of “zombies” spread all over the network, it is possible to cripple 
the target victim and make it unable to conduct any network activity other than answer-
ing the ping ‘echo requests’ and, eventually, rendering it so overloaded that it will 
come to a standstill. Examples of “ping floods” attacks are DDoS attacks of the “Esto-
nian Cyberwar” in 2007, see [3] and [4], the Mafiaboy attacks of February 2000 
against Amazon, eBay that caused millions of dollars damage and which are often 
quoted by computer experts, see [5] and [6].  

The entropy based detection of DDoS attacks of “ping floods” type was discussed 
in [7], [8] and [9]. Here, we investigate the impact of the coupling of DDoS attack of 
“ping floods” type with network routing on network performance in delivering pack-
ets to their destinations that is measured by throughput being an aggregate measure of 
network performance. We conduct our study using PSN model that is an abstraction 
of the Network Layer of the 7-Layer ISO OSI Reference Model [10]. Our study dem-
onstrates that even a very “weak” DDoS attack on a network using static routing 
causes degradation of the network throughput. The values of the throughput almost 
immediately decrease with each onset of a DDoS attack and they decrease with the 
increase of the number of attackers. However, this is not the case when the network 
uses an adaptive routing instead. We consider two different types of adaptive routing 
and our study shows that the adaptive routings have ability to process efficiently extra 
packet traffic generated by DDoS attacks without compromising the network 
throughput when the total amount of the incoming packet traffic, i.e. the regular one 
and the one coming from an attack, is lower than the total amount of traffic corre-
sponding to the critical source load value. 

The paper is organized as follows. First, we briefly describe the abstraction of the 
PSN model that we use for our research [11] and [12], its C++ simulator, Netzwerk, 
[13] and [14], and explain how they have been customized to model “ping” type 
DDoS attacks in our simulation experiments. Next, we introduce definitions of some 
network performance indicators, e.g., throughput, and describe the types of simulation 
experiments that we perform. Finally, we present selected simulation results and our 
conclusions.   

2   PSN and DDoS Attack Models Description    

To study impact of DDoS attacks on PSN performance indicators, e.g., throughput, 
we customized our PSN model described in details in [11] and [12]. The PSN model 
is an abstraction of the Network Layer of the 7-Layer ISO OSI Reference Model [10]. 
Our PSN model is concerned primarily with packets and their routings; it is scalable, 
distributed in space, and time discrete. It avoids the overhead of protocol details pre-
sent in many PSN simulators designed with different aims in mind than study of mac-
roscopic network-wide dynamics of packet traffic and aggregate measures of network 
performance.  
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A PSN connection topology is represented by a weighted directed multigraph L 
where each node/router corresponds to a vertex and each communication link is rep-
resented by a pair of parallel edges oriented in opposite directions. In each PSN model 
setup each cost of transmission of a packet along a link (an edge) is computed using 
the same type of edge cost function (ecf) that is either the ecf called ONE (ONE), or 
QueueSize (QS), or QueueSizePlusOne (QSPO). The ecf ONE assigns a value of 
“one” to all edges in the lattice L. This results in a static routing since this value does 
not change during the course of a simulation. The ecf QS assigns to each edge in the 
lattice L a value equal to the length of the outgoing queue at the node from which the 
edge originates. The ecf QSPO assigns a value that is the sum of a constant “one” plus 
the length of the outgoing queue at the node from which the edge originates. The 
routing decisions made using ecf QS or QSPO result in adaptive or dynamic routing 
because they rely on the current state of the network simulation and the packets are 
routed avoiding congested nodes during the PSN model simulation. In our PSN 
model, each packet is transmitted via routers from its source to its destination accord-
ing to the routing decisions made independently at each router and based on a mini-
mum least-cost criterion of selecting a shortest path from a packet current node to its 
destination. Thus, if the PSN model is setup with ecf ONE then the routing is the 
minimum hop routing (minimum route distance) and if it is setup with ecf QS or 
QSPO then it is the minimum length routing. It is important to notice, that in the case 
of PSN model setup with ecf QS or QSPO, because these costs are dynamic, each 
packet is forwarded from its current node to the next one that belongs to a least cost 
shortest path from the packet current node to its destination at this time. The PSN 
model uses full-table routing, that is, each node maintains a routing table of least path 
cost estimates from itself to every other node in the network. The routing tables are 
updated at each time step when the ecf QS or QSPO is used; see [11] and [12]. Since 
the values of the ecf ONE do not change over time the routing tables do not need to be 
updated for the static ecf ONE; see [11] and [12]. We update the routing tables using 
distributed routing table update algorithm [12]. 

In our simulations to study DDoS attacks and their impact on network performance 
indicators we use a version of PSN model in which each node performs the functions 
of host and router and maintains one incoming and one outgoing queue which is of 
unlimited length and operates according to a first-in, first-out policy, see [12] for 
other options. At each node, independently of the other nodes, packets are created 
randomly with probability λ called source load. In our PSN model all messages are 
restricted to one packet carrying time of creation, destination address, and number of 
hops taken.   

In the PSN model time is discrete and we observe its state at the discrete times k = 
0, 1, 2, …, T, where T is the final simulation time. In the presented simulations each 
PSN model setup is characterize by the selection of a network connection topology 
type, an ecf type, a type of routing table update (we use distributed routing table up-
date), a source load value and final simulation time T. At time k = 0, the setup of the 
PSN model is initialized with empty queues and the routing tables are computed. The 
time discrete, synchronous and spatially distributed PSN model algorithm consists of 
the sequence of five operations advancing the simulation time from k to  k + 1. These 
operations are: (1) Update routing tables, (2) Create and route packets, (3) Process 
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incoming queue, (4) Evaluate network state, (5) Update simulation time. The detailed 
description of this algorithm is provided in [11] and [12]. 

To study DDoS attacks and their impact on network performance indicators we 
modified the described PSN model by allowing selecting one victim computer and a 
user defined number of zombies either located at specified nodes or located at random. 
For each zombie start and end of attack time can be specified separately. As in most 
real life cases, zombies continue to carry on their normal jobs during an attack, i.e. they 
act also as sources, destinations, and routers of legitimate data transfers. However, each 
zombie also sends a packet to the victim at each time step of an attack simulation.  

3   PSN Model and DDoS Attack Setups and Network Performance 
Indicators 

We simulate DDoS attacks on PSN model with Lp (37, ecf, λ) setups, i.e. on PSN mod-
els with the network connection topology isomorphic to Lp (37) (i.e., periodic square 
lattice with 37 nodes in the horizontal and vertical directions) and for each of the ecf = 
ONE, or QS, or QSPO. The incoming traffic is generated, at the network nodes, by 
Bernoulli random variables with expected value λ, i.e., with λ source load value. 

In the PSN model, for each family of network setups, which differ only in the 
value of the source load λ, values of λsub-c for which packet traffic is congestion-free 
are called sub-critical source loads, while values λsup-c for which traffic is congested 
are called super-critical source loads. The critical source load λc is the largest sub-
critical source load. Thus, λc is an important network performance indicator because it 
is the phase transition point from free flow to congested state of a network. Details 
about how we estimate the critical source load value are provided in [12].  

For the PSN model setups considered here the estimated critical source load (CSL) 
values are, respectively, λc = 0.053 for Lp (37, ONE),  and λc = 0.054 for Lp (37, QS) 
and Lp (37, QSPO).  

Another very important network performance indicator is throughput. It measures 
the rate with which a network delivers packets to their destinations. Higher the rate is 
the more efficiently the network performs. We calculate throughput, Θ(k), at each 
time k, by taking the time-average of Nd(k), i.e., of a total number of packets delivered 
to their destinations up to time k. Thus, Θ(k)=k-1Nd(k). Fig. 1 shows source load de-
pendent graphs of throughput at the final simulation time k=217=131,072 for the PSN 
model with the setup Lp (37, ecf); the blue graph corresponds to ecf ONE, the green 
graph to ecf QS and the red one to ecf QSPO. In Fig. 1 we observe that the graphs of 
throughput attain their maximum values at λ=0.054, i.e. at λc for the PSN model with 
setup Lp (37, QS) or Lp (37, QSPO) and at a slightly higher value than λc for the PSN 
model with the setup Lp (37, ONE). Also, we observe that the graph of throughput of 
the PSN model with the setup Lp (37, QS) is almost identical to the one of the PSN 
model with the setup Lp (37, QSPO) and that they are similar to the graph of 
throughput of the PSN model with the setup Lp (37, ONE). Thus, from the through-
put point of view, the PSN models under normal traffic conditions perform are very 
similarly, regardless what type of the ecf they use, i.e. under normal traffic conditions  

throughput are similar ones, whether the static or one of the dynamic routings is used.  
 
 



326 A.T. Lawniczak, H. Wu, and B. Di Stefano 

 

Fig. 1. Source load dependent graphs of throughput at the final simulation time T=217=131,072. 
The blue graph corresponds to PSN model with the setup Lp (37, ONE), the green graph to 
PSN model with the setup  Lp (37, QS) and the red graph to PSN model with the setup Lp (37, 
QSPO).  

However, this is not the case when the PSN model is under DDoS attack. Under 
anomalous traffic conditions network throughput may become badly affected by the 
coupling of DDoS attack with a routing type, see Section 4.  

We carry out the simulations of DDoS attacks on PSN model setup with source 
load value λ= 0.040, i.e. for sub-critical source load value of incoming packet traffic. 
At this source load value packet traffic of each PSN model, regardless of it setup, is 
in free flow state, i.e. is free of any congestion. The number of packets in transit does 
not increase with time and fluctuates around some constant value after an initial tran-
sient time, see [9]. Recall, that we start each simulation of a PSN model setup always 
with empty queues.  

We start all DDoS attacks after the initial transient times, i.e. when each network 
operates already in its normal steady state for some time. For the presented simulation 
results we selected time k0 = 20,480 as the start time of all the DDoS attacks. This time 
is much longer than the transient times of the considered PSN model setups. All the 
DDoS attacks last until the final simulation time, T = 217=131,072, being the same for 
all the PSN model setups. In our simulations we consider a series of separate DDoS 
attacks on a victim having always the same location in all the experiments. Each attack 
is characterized by a number of active attackers/zombies. In this series of attacks, while 
increasing number of zombies we maintained always the same locations of the zombies 
from the DDoS attacks with their lower numbers, i.e. each time we only add a new 
zombie to the set of the zombies from the previous attack. During an attack each active 
zombie at each simulation time step sends a packet to the victim. Thus, the considered 
DDoS attacks are abstractions of the “ping” type of DDoS attacks.  

4   Impact of Coupling of DDoS Attack with Routing on PSN 
Throughput  

In this paper we present selected simulation results illustrating impact of the coupling 
of DDoS attack with routing on PSN model throughput. Fig. 2 to Fig. 4 display time  
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Fig. 2. Time dependent graphs of throughput functions of PSN model with the setup Lp (37, 
ONE, 0.040) being under DDoS attack characterized by the number of active zombies listed in 
the figure legend. Each attack starts at time k0 = 20,480 and last until the final simulation time T 
= 217 = 131,072. 

 

 

Fig. 3. Time dependent graphs of throughput functions of PSN model with the setup Lp (37, 
QS, 0.040)  (top figure) and with the setup Lp (37, QSPO, 0.040) (bottom figure) being under 
DDoS attack characterized by the number of active zombies listed in the figure legend. Each 
attack starts at time k0 = 20,480 and last until the final simulation time T = 217 =131,072. 



328 A.T. Lawniczak, H. Wu, and B. Di Stefano 

 
Fig. 4. Time dependent graphs of throughput functions of PSN model with the setup Lp (37, 
QSPO, 0.040)  being under DDoS attack characterized by the number of active zombies listed 
in the figure legend. Each attack starts at time k0 = 20,480 and last until the final simulation 
time T = 217=131,072. 

dependent graphs of throughput functions of PSN model being under DDoS attacks, 
when the network model uses, respectively, various ecfs, i.e., ONE, QS, and QSPO. 
The graphs display time dependent network throughput functions at time intervals of 
128 simulation time steps from the start of each simulation at k=0 to its final simulation 
time at T = 217=131,072. In Fig. 2 are displayed the graphs of throughput functions of 
PSN model with the setup Lp (37, ONE, 0.040), i.e., when PSN model uses the static 
routing. In Fig. 3 and Fig. 4 are displayed the graphs of throughput functions of PSN 
model when it uses dynamic/adaptive routing, i.e., for PSN model with the setup 
Lp (37, QS, 0.040), top plot of Fig. 3 and with the setup  Lp (37, QSPO, 0.040), bot-
tom plot of Fig. 3 and Fig. 4. In Fig. 2 and Fig. 3 are displayed the graphs of through-
put functions when the PSN model is under DDoS attacks, respectively, with the num-
ber of active attackers/zombies varying from 0 to 6, i.e. with the number of zombies 
varying from 0% to about 0.44% of the total number of 1,369 nodes in the network. 
Fig. 4 illustrates how the impact of the coupling of the dynamic routing, using ecf 
QSPO, with DDoS attacks changes when the numbers of active attackers/zombies 
increase. To better illustrate this change; in Fig. 4 we display the graphs of throughput 
functions not only for the number of active attackers/zombies varying from 16 to 20, 
but also when their numbers vary from 0 to 6. Not displayed here, the graphs of 
throughput functions when ecf QS is used instead of ecf QSPO look very similar.   

In Fig. 1 to Fig. 3 we observe that when incoming packet traffic is normal (i.e., 
when number of attackers is zero) the graphs of throughput functions behave very 
similarly, regardless which type of routing is used, i.e. which type of ecf the PSN 
model is using. In Fig. 2 and Fig. 3 we see that for the normal incoming packet traffic 
(i.e., when the number of attackers is zero) the graphs of throughput functions are 
almost constant after some initial transient times. The throughput constant values are 
almost identical ones when ecf QS or ecf QSPO is used and they differ only slightly 
from the throughput constant value when ecf ONE is used instead. The similar behav-
iours of the time dependent throughput functions are observed for other sub-critical 
source load values of the normal incoming packet traffic. However, in the presence of 
anomalous incoming packet traffic, i.e. in the presence of DDoS attacks, we observe  
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that the coupling of DDoS attack packet traffic with routing may have a big impact on 
the network performance in delivering packets to their destinations, i.e., on the net-
work throughput functions, even when the sub-critical source load values of the nor-
mal incoming packet traffic are low. This is the case of the considered examples, as 
can be seen from Fig. 2 to Fig. 4. 

When the PSN model uses the static routing, i.e. it uses ecf ONE, as soon as each 
DDoS attack starts the values of the throughput functions almost immediately de-
crease from the constant value of the throughput function corresponding to the case of 
the normal incoming packet traffic. In Fig. 2 we observe that with the increase of the 
number of attackers in DDoS attack the values of the corresponding throughput func-
tions decrease and in each case they also decrease with time, i.e. with the duration of 
each DDoS attack. The reason for this behaviour is that the network is using a static 
routing. When the PSN model uses the static routing even a “weak” DDoS attack 
(e.g., even with 1 attacker) may cause very quickly build up of congestion along the 
shortest paths from an attacker or the attackers to the victim, as can be seen from Fig. 
5 and Fig. 6. In these figures are displayed the sizes of packet queues at the nodes of 
the PSN model when a victim node is under an attack with 2 attackers and 6 attackers, 
respectively, in Fig. 5 and Fig. 6. 

 

 
Fig. 5. Snapshot of a spatial distribution of packet queue sizes in the PSN model with Lp (37, 
ONE, 0.040) setup being under DDoS attack with 2 attackers at time k = 215 = 32,768 (left plot) 
and at time k = 217 = 131,072 (right plot). The maximum packet queue size excluding the zom-
bies’ queues is 3,810 in the left plot and 34,737 in the right plot. 

 
Fig. 6. Snapshot of a spatial distribution of packet queue sizes in the PSN model with Lp (37, 
ONE, 0.040) setup being under DDoS attack with 6 attackers at time k = 215 = 32,768 (left plot) 
and at time k = 217 = 131,072 (right plot). The maximum queue size excluding the zombies’ 
queues is 5,082 in the left plot and 46,106 in the right plot. 
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When static routing is used packets do not have an ability to avoid congested nodes 
on their routes from their sources to their destinations. Thus, the local congestions 
grow very quickly along the shortest paths from the zombies to the victim, even in the 
case of a small number of attackers, while the queue sizes outside these shortest paths 
remain more or less of the same magnitude, see Fig. 5 and Fig. 6. Since even for a 
“weak” DDoS attack large number of packets becomes quickly trapped in the queues, 
these packets are not delivered to their destinations in a timely manner. This results in 
decrease of the values of Nd(k), i.e. a total number of packets delivered to their destina-
tions up to time k, with increase of time and with increase of the number of attackers. 
Thus, ultimately this results in decrease of the values of the throughput functions, i.e., 
Θ(k)=k-1Nd(k), with increase of time and with increase of the number of attackers. This 
happens even though the total amount of incoming packet traffic of the considered 
DDoS attacks (i.e., of the normal incoming packet traffic plus the one coming from a 
DDoS attack) is lower than the total amount of incoming packet traffic corresponding 
to the critical source load value of the PSN model with Lp (37, ONE) setup. 

Let us mention that for the normal incoming packet traffic the values of throughput 
functions decrease with time after some transient times only for super-critical source 
load values but not for sub-critical source load values for which they fluctuate 
slightly around respective constant values. For the super-critical source load values 
the throughput functions decrease with time because the network becomes globally 
congested and the congestion grows with time. Thus, many packets are trapped in the 
queues and they are not delivered to their destinations in the timely manner.  

In Fig. 3 we observe that the graphs of throughput functions behave very differ-
ently when the network, being under “weak” DDoS attacks, uses adaptive routing 
instead of using the static routing, i.e. when it uses ecf QS or ecf QSPO instead of 
using ecf ONE. Also, we notice that when PSN model uses ecf QS or ecf QSPO the 
qualitative and quantitative behaviours of the throughput functions are very similar 
ones, see Fig. 3.  The same holds when the number of attackers is larger. Thus, the 
dominant effect on the behaviour of the throughput functions when the ecf QSPO is 
used has the dynamic cost component QS of the ecf QSPO but not the static cost 
component ONE.  

 
Fig. 7. Snapshot of a spatial distribution of packet queue sizes in the PSN model with Lp (37, 
QSPO, 0.040) setup being under DDoS attack with 2 attackers at time k = 215 = 32,768 (left 
plot) and at time k = 217 = 131,072 (right plot). The maximum packet queue size excluding the 
zombies’ queues is 5 in the left plot and 6 in the right plot. 
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In Fig. 3 and Fig. 4 we observe that for “weak” DDoS attacks, i.e. with the number 
of attackers smaller than 6, the values of throughput functions increase with time and 
with increase of the number of attackers when the PSN model uses ecf QS or ecf 
QSPO. There are several reasons responsible for such behaviour of the throughput 
functions. The most important one is that the network uses the adaptive routing. This 
type of routing has the ability to route packets avoiding congested network nodes. 
Thus, the adaptive routing redistributes rather evenly the packets, i.e. those coming 
from the normal packet traffic and the extra ones coming from a DDoS attack, among 
the network nodes. This prevents the build up of local congestions in the network, 
except of the neighbouring nodes of the victim for stronger attacks as can be seen in 
Fig. 8 but is not Fig. 7. When the volume of the normal incoming packet traffic is low 
it may happen that for “weak” DDoS attacks the total amount of incoming packet 
traffic, i.e. of the normal one and the one coming from a DDoS attack, is lower than 
the total amount of incoming packet traffic corresponding to the critical source load 
value of the PSN model, case of Fig. 3. For such amounts of the total incoming packet 
traffic the congestion does not build up globally and, if it builds up at all, it builds up 
only at the neighbouring nodes of the victim (see Fig. 8), when the DDoS attack ex-
ceeds the victim’s capacity to absorb the incoming traffic, e.g. 4 packets at each time 
step in the case of considered network connection topology. In Fig. 7 are displayed 
snapshots of a spatial distribution of packet queue sizes in the PSN model with 
Lp (37, QSPO, 0.040) setup being under DDoS attack with 2 attackers at time k = 215 
= 32,768 on the left plot and at time k = 217 = 131,072 on the right plot. On these 
snapshots we do not see any local congestion round the victim, as this “weak” DDoS 
attack does not exceed the victim’s capacity to absorb the incoming packet traffic. 
However, we see the build up of local congestion around the victim in Fig. 8. This 
figure displays snapshots of a spatial distribution of packet queue sizes in the PSN 
model with Lp (37, QSPO, 0.040) setup being under DDoS attack with 6 attackers at 
time k = 215 = 32,768 on the left plot and at time k = 217 = 131,072 on the right plot of 
Fig. 8. However, this local congestion does not spread out globally. Thus, the major-
ity of the packets are delivered to their destinations in a timely manner even when 
their amount is increased due to a “weak” DDoS attack on the network. Hence, a total 
number of packets delivered to their destinations up to time k, i.e. Nd(k), increases  
 
 

 

Fig. 8. Snapshot of a spatial distribution of packet queue sizes in the PSN model with Lp (37, 
QSPO, 0.040) setup being under DDoS attack with 6 attackers at time k = 215 = 32,768 (left 
plot) and at time k = 217 = 131,072 (right plot). The maximum packet queue size excluding the 
zombies’ queues is 6,158 in the left plot and 55,464 in the right plot. 
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with time and the number of attackers for “weak”  DDoS attacks resulting in the in-
crease of the values of the throughput functions, i.e. Θ(k) = k-1Nd(k), as can be seen 
from Fig. 3 and Fig. 4. However, for “strong” DDoS attacks, i.e. with the number of 
attackers higher than some critical value at which the throughput functions attain their 
maximum, the values of the throughput functions decrease with the increase of the 
number of attackers, as can be seen from Fig. 4. The reason for this is that for 
“strong” DDoS attacks the routing looses its ability to handle efficiently the extra 
incoming packet traffic, the congestion spreads out outside the victim’s neighbour-
hood to the entire network. Thus, packets queue longer at the routers and they are not 
delivered in a timely manner to their destinations. This causes the degradation of the 
throughput, as can be seen from Fig. 4, the values of the throughput functions de-
crease with the increase of the number of attackers.  

5   Conclusions  

We have shown that the coupling of the routing with DDoS attack may have a big 
impact on a network performance in delivering efficiently packets to their destina-
tions. When the network using static routing operates at sub-critical source load val-
ues (even when they are low) and is under a “weak” DDoS attack we have observed 
almost immediate degradation in the network performance as measured by the net-
work throughput. The values of the throughput functions almost immediately de-
crease with each onset of a DDoS attack and they decrease with the increase of the 
number of attackers. However, this is not the case when instead the network uses an 
adaptive routing. The adaptive routing has the ability to process efficiently extra 
packet traffic generated by a DDoS attack when the attack is not very strong, i.e. 
when the number of attackers is below some critical value. For such DDoS attacks the 
values of throughput functions may even increase, i.e. when the total amount of in-
coming packet traffic, including the one coming from the normal incoming packet 
traffic and the one coming from DDoS attack, is lower than the one corresponding to 
the critical source load value. Also, we notice that when PSN model uses ecf QS or 
ecf QSPO the qualitative and quantitative behaviours of the throughput functions are 
very similar ones regardless of the strength of a DDoS attack. Thus, the dominant 
effect on the behaviour of the throughput functions has the dynamic cost component 
QS of the ecf QSPO but not the static cost component ONE. 
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Abstract. The term Ambient Intelligence refers to environments enhanced by
the presence of electronic devices that are sensitive and responsive to the presence
of people. The scenario described in the paper envisages an environment endowed
with a set of sensors (to perceive humans or other physical entities), interacting
with a set of actuators (lights) that adjust their state of illumination in an attempt
to improve the overall experience of these users. The model for the interaction
and action of sensors and actuators is an asynchronous Cellular Automata (CA)
supporting a self-organization of the system as a response to the presence and
movements of people inside it. The paper will introduce the model as well as its
implementation in a specific hardware component supporting the realization of
modular adaptive lighting systems.

1 Introduction

The main aim of research on Ambient Intelligence [1] is the definition of models and
tools for the realization of environments endowed with a large number of electronic
devices, interconnected by means of wireless communication facilities, able to perceive
and react to the presence of people. These facilities can have different goals, ranging
from explicitly providing electronic services to humans accessing the environment by
means of computational devices (e.g. personal computers or PDAs), to simply providing
some form of ambient adaptation to the users’ presence (or voice, or gestures), without
requiring an explicit interaction though a traditional computational device. An Ambient
Intelligence system can be viewed in terms of autonomous entities, managing internal
resources and interacting with surrounding ones in order to obtain the desired overall
system behaviour as a result of local actions and interactions among system compo-
nents. Approaches that take this perspective share a growing interest on models and
mechanisms supporting forms of self-organization and management of the components
(both hardware and software) of such systems.

This paper describes an asynchronous Cellular Automata (CA) based approach to
the modeling and realization of a self-organizing ambient intelligence system; the latter
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Fig. 1. Examples of different compositions of the modular Adaptive Lighting system

is viewed in terms of cells comprising sensors and actuators. The former can trigger the
behaviours of the latter, both through the interaction of elements enclosed in the same
cell and by means of the local interaction among adjacent cells. Since the modeled
system is not necessarily characterized by the presence of a global clock synchroniz-
ing system operations we adopted an asynchronous approach to the activation of cell
transition rules.

The transition rule adopted for the CA was derived by previous applications to re-
produce natural phenomena such as percolation processes of pesticides in the soil, in
specific percolation beds for the coffee industry and for the experimentation of elas-
ticity properties of batches for tires [2,3], by modeling mechanisms of reaction and
diffusion. In this specific application this rule is used to manage the interactions of cells
arranged through a multilayered architecture [4], better suited to represent an artificial
environment comprising a set of sensors that perceive the presence of humans (or other
physical entities such as dogs, bicycles, cars), and actuators that choose their actions in
an attempt to improve the overall experience of these users.

The developed model is the core component of an overall hardware-software sys-
tem supporting the realization of modular adaptive lighting systems. In particular, this
work represents an extension of a previous experience on the realization of a model
for adaptive illumination to be adopted in the renovation of a tunnel [5]: while in the
previous experience the idea was to support the realization of a large scale environment
able to detect the passage of pedestrians, bicycles, cars, etc., in this case the goal was
to realize modular lighting elements (i.e. simple tiles) able to decorate an environment
by reacting to other sensed events or conditions like the touch of user, the passage of
time, the current level of ambient light, etc. Some sample configuration of such tiles
are shown in Figure 1. In particular, this work describes both the definition of a model
for realizing a simple adaptation mechanism, that is similar to the one adopted in the
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Fig. 2. The front and back sides of the module prototype. In the front picture, the white elements
are the RGB leds, the black elements are the proximity sensors. In the back picture, the central
element is the Fujitsu F2MC-16LX microcontroller, on the edges there are the connector, on top
left the speaker.

previously mentioned experience: the mechanism is designed to realize a sort of halo
effect surrounding areas stimulated by the perception of the presence of an entity (i.e. a
hand or finger, in the case of a simple tile). The tiles are programmed to actually imple-
ment the model, and they are thus essentially aggregates of cells of the cellular automata.

The following Section will introduce the specific hardware platform that was adopted
for the implementation of the modular lighting system. Section 3 introduces the model-
ing approach, setting it in the relevant literature, while section 4 describes the developed
model in details, as well as its practical application in the described scenario. Conclu-
sions and future works will end the paper.

2 Hardware Prototype

In 2009 CSAI (Complex System and Artificial Intelligence Research Center) started a
collaboration with Egicon (stratEGIC innovatiON)1, an italian electronic engineering
company that has been founded by people with many years of experience in electronic
business. Egicon mission is to support the customer with innovative and effective so-
lutions from the design to the production. Egicon wants to be the strategic partner for
innovation.

The aim of the collaboration between CSAI an Egicon is the development of a pro-
totype of a hardware platform suitable for a modular Adaptive Lighting. The prototypal
board developed by the Egicon engineers is shown in Figure 2 and it includes the fol-
lowing components:

– 16 RGB leds
1 http://www.egicon.com
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Back View

Power

One-wire
Serial

Fig. 3. Schematization of the connections between 9 modules

– 16 proximity sensors
– a speaker
– 4 communication and power connector
– a Fujitsu F2MC-16 microcontroller

The RGB led contains three leds (red, green and blue) encased in one shell. It looks like
a single white led except that it has four leads - one for the common ground connection
and one for each led. The current through each of the leds determines its light output
(i.e. its contribution to the total output color). By controlling the current through each
led it is possible to obtain different light colors.

The proximity sensors are optical proximity switch that reacts at a typical working
distance of 20 mm. The sensors allow the users to interact with the Adaptive Lighting
system simply touching the glass covering the lights, without pushing any buttons.

As depicted in Figure 3, the board has 4 connectors on the edges. Each connector car-
ries both a bi-directional serial communication line and a power line, so only one of the
module of an Adaptive Lighting system need to be directly connected to the power sup-
ply. Moreover each connectors provide a shared one-wire serial line for communication
with an external system (e.g. a pc). This communication line is used to send command
from an external controller to all the boards (e.g. for reprogramming the boards).

The board is driven by a Fujitsu F2MC-16LX microcontroller. The family of F2MC-
16LX series microcontrollers serve for consumer (e.g. digital cameras, handheld
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electronic product), white goods (e.g. washing machines, refrigerators), industrial (e.g.
utility meters, air-conditioning systems), and automotive (e.g. body control networks,
dashboards, chassis networks) applications. The MB90347 microcontroller is a 16 bit
CISC running at 24MHz and has 128Kb Flash and 6Kb RAM.

3 Related Works

Cellular Automata (CA), introduced by John von Neumann as an environment for
studying self-replicating systems [6], have been primary investigated as theoretical con-
cept and as a method for simulation and modeling [7]. They have also been used as com-
putational framework for specific kind of applications (e.g. image processing [8], robot
path planning [9]) and they have also inspired several parallel computer architectures,
such as the Connection Machine [10] and the Cellular Automata Machine [11].

3.1 Asynchronous Cellular Automata

Cellular Automata have traditionally treated time as discrete and state updates as occur-
ring synchronously and in parallel. The state of every cell of the automaton is updated
together, before any of the new states influence other cells. The synchronous approach
assumes the presence of a global clock to ensure all cells are updated together.

Several authors (e.g. [12,13]) have argued that asynchronous models are viable al-
ternatives to synchronous models and suggest that asynchronous models should be pre-
ferred where there is no evidence of a global clock. Nehaniv [14] has demonstrated an
asynchronous CA model that can behave as a synchronous CA, due to the addition of
extra constraints on the order of updating.

Cornforth, Green, and Newth argue that asynchronous updating is widespread and
ubiquitous in both natural and artificial networks [15]. They identified two classes of
asynchronous behavior: Random Asynchronous (RAS), and Ordered Asynchronous
(OAS) updating. Random Asynchronous includes any process in which at any given
time individuals to be updated are selected at random according to some probability
distribution; Ordered Asynchronous includes any process in which the updating of in-
dividual states follows a systematic pattern. An interesting study about the effects and
implications of asynchronicity in CA models can be found in [16].

3.2 Dissipative Cellular Automata

The two main characteristics of the Dissipative Cellular Automata (DCA) are the asyn-
chronous time-driven dynamics and openness: in particular, cells can be influenced by
external influences coming from the environment in which they are set [17]. DCA are
Asynchronous Cellular Automata: according to the asynchronous dynamics [18,19], at
each time, one cell has a probability of rate λa to autonomously wake up and update its
state.

The above characteristics are typically found in complex hardware–software systems
and they can be considered as fundamental for a minimalist open agent system (or,
more generally, as a minimalist open software system). The dynamic behavior of DCA
is likely to provide useful insight into the behavior of real-world open agent systems
and, more generally, of open distributed software systems.
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Fig. 4. On the left, the schematization of the module cells. The connections between the Shell
Cell and the other cells are not shown for simplicity. On the right, a detail about the connection
between the cells and the drivers.

3.3 Cellular Automata with Memory

Standard CA are ahistoric (memoryless): the cells have no memory of previous states,
except the last one in the case the central cell is included in the neighborhood. Historic
memory can be embedded in CA increasing the number of states and modifying the
transaction function. Alonso-Sanz proposed to maintain the transaction rule unaltered,
but make them act not only to the current state but weighted mean value of their previous
states [20]. According to the author, CA with memory can be considered as a promising
extension of the basic CA paradigm.

4 The Adaptive Lighting Model

The model adopted to realize the adaptive lighting behaviour combines some of the el-
ements, mechanisms and features of the introduced CA models. In particular it realizes
a Dissipative Multilayered Automata Network [21] comprising cells of different types,
as depicted in Figure 4. The main cells types are:

– Body
– Actuator
– Edge
– Command Shell

In the rest of this section we describe the default behavior of such cells. Moreover it is
possible to reprogram such cells in order to obtain different behaviors.

4.1 Body Cell

Each body cells is characterized by three “substance levels”. To introduce a similarity
with the biological cell, each substance level represents the amount of a specific chemi-
cal substance inside the cell (e.g. CA++). The three “virtual substances” are named Q1,
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Q2 and Q3. Internally, the levels of the three substance (respectively s1, s2 and s3) are
represented by an integer number between 0 and 216 − 1.

The amount of each substance is influenced by three processes:

– Stimulus Response
– Evaporation
– Diffusion

The Stimulus Response is the reaction of the cell to an external stimulus. The body
cells are able to react to external stimuli because they are connected to the proximity
sensors. Each body cell is connected to a different sensor. When a sensor is stimulated,
the levels of the virtual substance of the related cell are increased in response to the
stimulus. Each substance level si, i ∈ {1, 2, 3} is incremented by a quantity defined by
the parameter inci, an integer number between 0 and 255.

The Evaporation is the process of gradual disappearance of a substance, i.e. the level
of the substances decreases over time. Let us define εi(v) as the function that computes
the quantity of substance i to decrement from the substance level and is defined as

εi(si) = si · e(1)
i + e

(0)
i (1)

where e
(0)
i ∈ R+ is a constant evaporation quantity and e

(1)
i ∈ R, 0 ≤ e

(1)
i ≤ 1 is the

evaporation rate (e.g. a value of 0.1 means a 10% evaporation rate).
The evaporation function evpi(si), computing the level of substance si from time t

to t + 1, is thus defined as

evpi(si) =
{

0 if εi(si) > si

si − εi(si) otherwise
(2)

The Diffusion process simulates the diffusion of the substances through the cells. The
body cell are disposed in a regular two-dimensional 4 × 4 square grid. We suppose
that the cell Cx,y is located on the grid at the position i, j, where i ∈ N and j ∈ N.
According to the von Neumann neighborhood [22], a cell Cx,y has the 4 neighbors
Cx−1,y, Cx,y+1, Cx+1,y, Cx,y−1. Also the cells on the border have four neighbors: one
or two of neighbors are Edge Cells.

For simplicity, we numbered the neighbors of a cell from 1 to 4, so for the cell Cx,y ,
N1 is Cx−1,y, N2 is Cx,y+1, N3 is Cx+1,y , and N4 is Cx,y−1. The substance level i of
the neighbor cell n is indicated with sn,i. The mean of the substance levels sni of the
neighbors cell is computed as:

sni =

4∑
n=1

sn,i

c
(3)

where c is the number of connected neighbors. A neighbor is considered connected if it
is a Body Cell or if it is a Edge Cell connected to a neighborhood module.

The new value of each substance level s1, s2, s3 is computed as:

new si =
sni · q + si · (1 − q)

2
(4)
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where q ∈ R, 0 ≤ q ≤ 1 is the sensitivity coefficient (i.e. if q is equal to 0, the new
state of a cell is not influenced by the neighbors values, if it is equals to 0.5 the new
values is a mean among the previous value of the cell and the neighbors value, if it is
equals to 1, the new value does not depend on the previous value of the cell but only
from the neighbors). The computed value are rounded to integer before the assignment
of the value to the substance level.

4.2 Actuator Cell

The actuators cells control the leds activities. Each actuator cell is connected to exactly
one RGB led and one body cell. The actuator cell control the led according to the
substance level of the Body cell. The RGB led has three independently controllable led:
one red, one green and one blue. The led actuation is controlled by an intensity value
between 0 and 255. The three intensity values, denoted with lr, lg, lb, are computed as:

lr = s1 · cr (5)

lg = s2 · cg (6)

lb = s3 · cb (7)

where s1, s2, s3 are the substance amounts and cr, cg, cb are the three components of
the color parameter.

4.3 Edge Cell

The aim of the Edge Cells is to support communication with the other adjacent modules.
Through the enclosed mirror cells, the Edge Cell makes available the relevant body cell
data of the adjacent module, which are communicate by means of the serial connec-
tion. A schematization of the mirror cell is shown in Figure 5. For the body cells, the
mirror cells appear identical to the other body cell, i.e. each mirror cell exposes three
substances levels. The mirror cells act as a remote copies of the body cell connected on
the other side of the serial connection. The activity of the edge cells can be reassumed
in two tasks:

– Transmission task - During the transmission task, the values of the body cells con-
nected to the edge cell are serialized in a message. The message is send over the
serial line by the serial driver.

– Reception task - A message received through the serial driver is deserialized and
the values of the body cells of the other module are copied into the mirror cell.

4.4 Prototype

The above described model was actually implemented in a C based programming en-
vironment specifically suited for the hardware platform introduced in Section 2. Two
sample pictures of a combination of tiles programmed according to the above described
model are shown in Figure 6. In addition to the basic model, some additional function-
alities to configure the relevant parameters by means of serial communication were also
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Fig. 5. Schematization of the interactions between the edge cells and the body cells

Fig. 6. Two snapshots of two tiles of the modular adaptive lighting system programmed with the
described model

realized. In this way it is possible to alter the overall adaptive behaviour without re-
programming the tiles (that could be not very practical and convenient, especially after
their installation in a real environment), but just by interacting by means of a simple
control protocol over serial communication.

5 Future Development

The paper introduced a CA based model for the realization of lighting system based
on autonomous interacting modules. Each of these modules encloses a set of sensors,
leds and a computational unit able to process data acquired by the sensors, manage an
internal state, communicate with neighboring modules through serial lines. The overall
hardware-software system employs a CA model to decide the intensity of leds according
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to the dynamic state of cells in which every module is subdivided. Cells of a single
module update their state according to a given transition rule that considers the previous
state of the cell, the data perceived by the sensors and the state of neighboring cells,
possibly situated in an adjacent module.

A prototypal hardware realization of this module was realized and described, and
the modules were programmed by means of a C language based implementation of
the described model. This experience led to the definition of a model and language for
asynchronous automata networks. Future works include both a concrete deployment
and installation of this prototype as well as further applications of the model and lan-
guage that was derived by this experience.
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Abstract. This paper introduces a model and a language for the specification
and simulation of networks of automata, a generalization of Cellular Automata
characterized by a possibly irregular structure, asynchronous cell transition rule
activation, heterogeneity and openness to external influences. The model as well
as the derived language are discussed in details, and its possible applications are
briefly introduced.

1 Introduction

Cellular Automata (CA), introduced by John von Neumann as an environment for study-
ing self-replicating systems [1], have been primary investigated as theoretical concept
and as a method for simulation and modeling [2]. CA based models have been employed
for the modeling and simulation of complex systems in the most different context, from
biology [3] to the social sciences [4], to traffic [5] and crowds of pedestrians [6].

In addition to these traditional fields of application, recent approaches call for the
employment of CA based models for the modeling of distributed systems, for instance
in the context of Ambient Intelligence [7], that are made up of similar components
whose local action and interaction determines the overall system behaviour. These ap-
plications, however, generally require to relax some of the basic constraints related to
CA models: from the regular lattice spatial structures to generalized graphs; from syn-
chronous (and parallel) activation of cells’ transition rules to asynchronous activation of
cells’ behaviours; from homogeneity of cells’ states and transition rules to the possibil-
ity of defining and including heterogeneous cells in the same system. Finally, generally
these systems are open to influences by external elements (e.g. sensors) and they can
generate forms of actuations as a reaction to a change in the state of some specific cell.

This paper introduces a model and a language for the specification and simulation of
networks of automata that can be suitably adopted to describe this kind of systems. This
kind of tool can be useful to envision the effects of features like heterogeneity, openness
and asynchronicity in the system by means of simulation, to effectively support the
design of systems based on this approach.

S. Bandini et al. (Eds.): ACRI 2010, LNCS 6350, pp. 345–355, 2010.
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2 MOCA Model

In this section we introduce the Multilayered Open Cellular Automata (MOCA) model.
MOCA extends the “classic” cellular automata in several ways. The main characteristics
of the models are:

– Asynchronicity - The cells can be updated according to several update schemes,
both synchronous and asynchronous.

– Heterogeneity - Cells are heterogeneous, in terms of space of the states and transi-
tion rule.

– Multilayered - The cellular space is a hierarchical structure, deriving from the struc-
ture of the Multilayered Automata Networks [8]. A schematization of the MOCA
hierarchical structure is shown in Figure 1.

– Open - The dynamic behavior of the automata is influenced by the external envi-
ronment and influences the external environment.

Such feature are useful for designing systems composed of several distributed interact-
ing components. MOCA can be used both to simulate the behavior of such distributed
systems and to actually control the real installations. Moreover it can be used in central-
ized situations to control peripheral components. In the following sections we introduce
the main elements of the model.

level 0

level 1

level 2

composite cells

basic cells

Fig. 1. Schematization of the MOCA multilayered structure

2.1 Basic Cell

As a cellular system, the fundamental element of MOCA is the cell. A cell can be either
basic or composed.

The basic cells are basic building block of the MOCA. Elaborate behaviors are de-
fined composing such basic cells. Each basic cell c, schematized in Figure 2, is charac-
terized by:

– Receptors - Rc = {Src,1 ,Src,2 , · · · ,Src,3} a finite set of “organs” of the cell able
to respond to external stimulus. Each receptor is characterized by a set of state that
it can assume Src,n . The receptor can be connected to the External state of an other
cell (in this case it assume the value of the other cells external state); in specific
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External state

Transition
function

Receptor 2Receptor 1

Fig. 2. Schematization of a basic cell

cases, when the basic cell is included in composite cell, the internal receptor could
be connected to another receptor of the enclosing cell. A receptor not connected to
any other cells assumes the null state.

– External states - Ec = {Sec,1 ,Sec,2 , · · · ,Sec,3} a finite set of states “exposed” to
the other cells; the external states are generally connected to the receptors of other
cells; in this case, the connected receptor will assume the value of the external state
of the other cell it is connected to. When the basic cell is included in a composite
cell, the “internal” external state could also be connected to the “enclosing” cell’s
external state.

– Transition rule - fc : Rc → Ec determining the new value of the external states.

The receptors and externals set of states are subset of the following primitive data
types:

– int, signed integer number
– float , floating point number
– boolean = { true, false}

For simplicity, we denoted with number, a signed integer number or a floating point
number, and with any any type of data. The dimension (in terms of numbers of bits) of
the numeric data types depends on the specific implementations.

MOCA is an open system: the dynamic behavior of the automata in is influenced
by the external environment and influences the external environment. We defined the
following “special” basic cells:

– sensor cell is a cell that can be forced by an external condition to change its state; it
is provided with an external state of a given type to be connected as input to basic
or composite cells.
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– actuator cell, instead,influences the external environment according to its external
state; it is provided with one or more receptors, of specific types, and it can be
connected to other basic or composite cells to produce actions related to the states
of the input cells.

– open cell is both a sensor and an actuator cell, therefore it can be provided with
receptors and an external state.

A set of predefined basic cells is defined by the model. Such cells fall into a number
of groups:

– Arithmetic Integer (Table 1) - These cells performs arithmetic operations on integer
numbers.

– Floating Point (Table 2) - These cells performs operations on floating point num-
bers. These cells are available only for the MOCA Virtual Machines supporting the
floating point numbers.

– Logic (Table 3) - These cells perform bitwise operations, i.e., they operate on one
or two bit patterns at the level of their individual bits.

– Miscellaneous (Table 4) - Miscellaneous cells, such as inv cell that copies the re-
ceptor state to external state, if, equal, and notEqual cells.

Table 1. Arithmetic Integer Basic Cells

Name Receptor Transition rule External State
add r1:int, r2:int e1 = r1 + r2 e1:int
sub r1:int, r2:int e1 = r1 − r2 e1:int
mul r1:int, r2:int e1 = r1 ∗ r2 e1:int
div r1:int, r2:int e1 = r1/r2 e1:int
rem r1:int, r2:int e1 = r1 mod r2 e1:int
less r1:int, r2:int e1 = r1 < r2 e1:boolean
lessEq r1:int, r2:int e1 = r1 ≤ r2 e1:boolean
great r1:int, r2:int e1 = r1 > r2 e1:boolean
greatEq r1:int, r2:int e1 = r1 ≥ r2 e1:boolean

Table 2. Floating Point Basic Cells

Name Receptor Transition rule External
State

addF r1:float, r2:float e1 = r1 + r2 e1:float
subF r1:float, r2:float e1 = r1 − r2 e1:float
mulF r1:float, r2:float e1 = r1 ∗ r2 e1:float
divF r1:float, r2:float e1 = r1/r2 e1:float
lessF r1:float, r2:float e1 = r1 < r2 e1:boolean
lessEqF r1:float, r2:float e1 = r1 ≤ r2 e1:boolean
greatF r1:float, r2:float e1 = r1 > r2 e1:boolean
greatEqF r1:float, r2:float e1 = r1 ≥ r2 e1:boolean
iToF r1:int e1 = I → F r1 e1:float
fToI r1:float e1 = F → I r1 e1:int
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Table 3. Logic Basic Cells

Name Receptor Transition rule External
State

and r1:any, r2:any e1 = r1 bitwise and r2 e1:any
or r1:any, r2:any e1 = r1 bitwise or r2 e1:any
xor r1:any, r2:any e1 = r1 bitwise xor r2 e1:any
not r1:any, r2:any e1 = r1 bitwise not r2 e1:any

Table 4. Miscellaneous Basic Cells

Name Receptor Transition rule External
State

inv r1:any r1 e1:boolean
equal r1:any, r2:any r1 = r2 e1:boolean
notEqual r1:any, r2:any r1 �= r2 e1:boolean
if r1:bool, r2:any, r3:any e1 = r1?r2 : r3 e1:any

The set of basic cells can even be extended according to requirements of the specific
applications.

2.2 Composite Cell

The composite cells are automata composed of cells, both basic and composed. Each
composed cell c is characterized by:

– Receptors - Rc = {Src,1 ,Src,2 , · · · ,Src,3} are analogous to those that were defined
for basic cells. Each receptor is characterized by a set of states that it can assume
Src,n . Moreover, each receptor can be connected to the receptor of an internal cell.

– External states - Ec = {Sec,1 ,Sec,2 , · · · ,Sec,3} are analogous to those that were
defined for basic cells.

– Sub–cells - Cc = {cc,1, cc,2, · · · , cc,n}, a finite set of internal cells, not visible out-
side the cell but used for the internal elaboration. They can be connected to recep-
tors of other cells or even to the external states of a comprising cell.

– Connections - Vc ⊂ Cc ∪ Rc × Cc ∪ Ec a set of directed arcs, connecting the
receptors with the sub–cells, the sub–cells among themselves, and the sub-cells to
the external states.

A different update scheme can be associated to each cell. Usually, the lower layer com-
posite cell (composed only of basic cells) adopt a synchronous scheme.

An example of composed cell is shown in Figure 3. In the example, we implement a
simple component having one internal state (c4), two receptors (r1, r2). The component
alternatively selects one of the receptors to obtain the external state (e1) and the new
internal state by performing an xor of this selected input and the previous internal state.

The automaton is characterized by:

– Receptors - Rc = {Src,1 ,Src,2}, where r1 ∈ boolean, r2 ∈ boolean connected to
the external state of the left and right cells.
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Fig. 3. Example of MOCA composed cell

– External states - Ec = {Sec,1 ,Sec,2}, where e1 ∈ boolean.
– Sub–cells - Cc = {c1, c2, c3, c4, c5}, the set of internal cells. The initial external

state of all the cells is False.
– Connections - the set of directed arcs, as shown in the figure.

Two cycles of computation of this automaton are shown in Table 5

Table 5. Dynamic evolution of the automata presented in the example

t r1 r2 c1 c2 c3 c4 c5 e1

0 T F F F F F F F
1 T F T F T F F F
2 T F T T T F T F
3 T F F T T T F T
4 T F F F F F F F

2.3 Update Schemes

MOCA supports several update schemes, such synchronous, cyclic, clocked. The up-
date scheme is determined by the parameters di, pi associated to each cell i. The pa-
rameter di determines the delay (in terms of time step) before the first update. The
parameter pi, determines the period of the update of the cell i, i.e. how many time steps
the cell i will wait in order to be updated.
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The default values for the parameter are di = 0 and pi = 1. This setup correspond to
the Synchronous update scheme: all the cells are updated in parallel at each time step.

The Cyclic update schemes are obtained associating to each of the n cells a different
value of di between 0 and n − 1, and the same period pi = n.

The Clocked update schemes are characterized by different values of di and pi. The
Equal Frequency Clocked is characterized by different values of di but the same value
of pi for every cells of the automaton.

An example of such update schemes is shown in Figure 4.

Fig. 4. An example of different update scheme obtained varying the di and pi parameters

3 MOCA Programming

In this section we describe the MOCA programming language and tools. The first part
of this section introduce the MOCA language, a textual cellular automata programming
language. The language allows the user to create automata creating new cells and com-
bining existing cells.

3.1 MOCA Language

The MOCA Language is a cellular automata programming language. It allows the user
to create automata creating new cells and combining existing cells.

A MOCA programs consist in a set of cells descriptions. A cell description deter-
mines the receptors, sub–cells, and external state composing the cell and their wiring.
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The order of the elements inside a cell definition is not relevance. The order of the cells
definitions is relevance: all the subcell of a cell must be defined before the cell itself.
An example of cell definition is the following:

cell rule6 {
// Receptors and external state
receptor boolean r1;
receptor boolean r2;
external boolean e1;
// Cells
cell not c1;
cell inv c2;
cell if c3;
cell inv c4;
cell xor c5;
// Initial values
c1.e1 = false;
c2.e1 = false;
c3.e1 = false;
c4.e1 = false;
c5.e1 = false;

// Wiring
c1.e1 -> c2.r1;
c2.e1 -> c1.r1;
c1.e1 -> c3.r1;
r1 -> c3.r2;
r2 -> c3.r3;
c3.e1 -> c5.r1;
c4.e1 -> c5.r2;
c5.e1 -> c4.r1;
c5.e1 -> e1;

}

The MOCA syntax is influenced by the Java syntax; it is not reported extensively for
space limits. MOCA source code is free–form which allows arbitrary use of whitespace
and ends of lines to format code. Comments may appear either between the delimiters
/* and */, or following // until the end of the line.

A MOCA programs consist in a set of cells definitions. The order of the definition
is not relevant. Each cell definitions begins with the cell keyword followed by the cells
name (identifier) and the cell definition.

Every identifier is made from the following characters, starting with a letter:

– Letters: a–z, A–Z
– Digits: 0–9
– Underscore:
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No identifier can be the same as a MOCA keyword or pre–defined cell name. The
MOCA keywords are the following: cell, receptor, external, int, float, boolean, true,
false, null.

Cells’ definitions are enclosed in braces ({ and }) to limit their scope. A cell defini-
tion consists in a list of the following elements:

– Receptor Declaration – Declaration of a cell receptor, expressed with the following
syntax:

receptor <receptor type> <receptor id>;

where the receptor type is on of the built–in data type and receptor id is an identifier.
The keywords int, float, and boolean specify built–in data types.

– External State Declaration – Declaration of a cell external state, expressed with the
following syntax:

external <ext. state type> <ext. state id>;

where the ext. state type is on of the built–in data type and ext. state identifier is an
identifier.

– Sub–Cell Declaration – Declaration of a sub–cell, expressed with the following
syntax:

cell <cell type> <cell id>;

where the cell type is an identifier of a pre–defined or a user–defined cell type and
cell id is an identifier for the sub–cell. The sub–cells scope is limited to the cell
definition.

– Initial Value Assignment – Assignment of the initial external state of a sub–cell,
expressed with the following syntax:

<sub-cell id>.<sub-cell ext. state id> =
<literal>;

where sub–cell id is an identifier of a sub–cell, sub-cell ext. state id is an identifier
of an external state of the sub–cell, and literal is the value to be assigned to the
external state of the cell. A literal is the source code representation of a value of
a built–in data type. The literals are the numberic literals, floating–point numbers
expressed according to the Java syntax, boolean literal, true and false, and the null
literal, represented by the keyword null.

– Initial Delay Assignment – Assignment of the initial delay before the rst update of
a sub–cell, expressed with the following syntax:

<sub-cell id>.delay = <number>;

where sub–cell id is an identifier of a sub–cell and number is the initial delay in
terms of time step.

– Period Assignment – Assignment of the update period of a sub–cell, expressed with
the following syntax:

<sub-cell id>.period = <number>;
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Synchronous Random Equal Frequency
Cyclic Clocked

Fig. 5. Time space diagrams a 1D CA based on the sample MOCA composed cell

where sub–cell id is an identifier of a sub–cell and number is the length of the
period expressed in time step.

– Wiring – Definition of an arc between two cells, or a receptor and a cell or a cell
an an external state. Direct arc between a receptor and an external state are not
allowed.

<source> -> <target>;

where source can be a receptor identifier or a sub–cell receptor identifier and the
target can be an external state identifier of a sub–cell external state identifier. The
sub–cell receptor and external state identifier are expressed with the following
syntax:

<sub-cell id>.<receptor/external state id>

4 Current and Future Applications

An interpreter of the introduced language has been developed and it has been used
to simulate the effects of asynchronicity in systems based on MOCA cells. Figure 5
shows a comparison of the time-space diagrams of different one-dimensional systems
composed of the sample MOCA composite cells introduced in Section 2.2: with the
Synchronous update scheme, the cell produces a dynamic evolution similar to the Sier-
pinski Triangle fractal. This typical shape is not present with any of the other update
schemes. Moreover if the automaton has periodic boundaries conditions and the num-
ber of cells is a power of two, starting from an initial configuration, the evolution of the
synchronous automata eventually reaches the fixed point. The automata with the other
update schemes does not have this behavior.

In addition to the interpreter, a compiler and a virtual machine for supporting the
programming of specific autonomous hardware modules whose behaviour is specified
according to the model have been developed. Two sample applications of this model and
language are the control system for an adaptive illumination facility [7] and a modular
lighting system [10].
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5 Conclusions and Future Works

This paper introduced a model and a language for the specification and simulation of
networks of automata, a generalization of Cellular Automata characterized by a possibly
irregular structure, asynchronous cell transition rule activation, heterogeneity and open-
ness to external influences. An interpreter of the language has been developed and it has
been used to simulate the effects of asynchronicity in systems based on MOCA cells.

Future works are directed, on one hand, towards the application of this model and
language to the realization of self-organizing modular illumination systems, extending
the work described in [7]; on the other hand this model and language represent the
empirical counterpart (in the vein of [9]) of a parallel and coordinate line of work char-
acterized by an analytic nature aimed at evaluating the possibility of effectively assuring
specific relevant global properties for asynchronous CA systems.
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Abstract. A Brownian cellular automaton (BCA)(Lee & Peper, 2008)
is an asynchronous cellular automaton, where configurations represent-
ing signals propagate randomly in the cellular space, resembling particles
under Brownian motion. Depending on merely three kinds of local tran-
sition rules, this BCA model can be used to construct all primitives
in an universal set of delay-insensitive circuit elements, such that all
well-known logic circuits can be realized in the cellular space. Though
Brownian-like movements of signals enable spontaneous searching for so-
lutions through the state space of computation, their diffusive behavior
may induce substantial overhead in the operation of the circuits. In this
paper, we propose a novel kind of primitive element that can be employed
as a new building-block for the delay-insensitive circuits. Moreover, con-
struction of this new element in the BCA can utilize the spontaneous
fluctuations of signals more effectively, while at the same time restricts
the Brownian behavior into possibly smaller configurations as compared
to the construction of the previous elements, thus will improve the effi-
ciency of the realized logic circuits in the BCA.

1 Introduction

A cellular automaton (CA) is a discrete dynamical system consisting of a huge
number of identical finite-state automata (cells) that are locally connected in a
uniform way. As a generalized model of CAs, asynchronous cellular automata
(ACA) allow cells to be updated independently at random times. Computation
in ACAs usually requires some special mechanism to control the unpredictable
update nature of cells, which in turn usually causes the increase in the com-
plexity of ACAs as compared to their synchronous counterpart. Nevertheless,
inclusion of fluctuation into ACAs promises models with less complexity, e.g.,
the Brownian cellular automaton (BCA[4,5]) which allows local configurations–
like signals–to run back and forth randomly on wires, as if they were subject to
Brownian motion.

In spite of the randomness of the fluctuations of signals, it actually forms a
powerful resource that can be employed to backtrack circuits out of deadlocks
and to equip the circuits with arbitration ability [8]. As a result, the BCA uses
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merely three kinds of transition rules to update the states of cells, which is
far less than achieved thus far in literature for computationally universal ACA
models (e.g. [3]). Furthermore, each primitive element from an universal set of
delay-insensitive (DI) circuit elements can be constructed respectively by local
configurations within the cellular space. A DI-circuit is a kind of asynchronous
circuits whose correct operation is robust to arbitrary delays on wires or elements
[1]. Thus, all logic circuits can be embedded straightforward into the BCA by
placing local configurations of each primitive at appropriate positions, followed
by connecting them with wires, according to their design schemes by DI-circuit
elements [4].

The above constructions of logic circuits confine all necessary Brownian mo-
tions to local configurations representing primitive elements, and hence, no
longer needs backward propagation of signals on a wire between two elements.
This allows the placement of Ratchets on the wire to speed up the signals.
Though Brownian motions of signals allow spontaneous searching for solutions
through the computational state space, they usually tend to slow down the oper-
ation of the circuits (BCA), because of the overhead caused by the diffusion-like
propagation of signals. Thus, how to restrict the Brownian behavior into smaller
local configurations representing primitive elements becomes crucial to further
improve the efficiency of logic circuits constructed in the BCA.

In this paper, we propose a new primitive element for DI-circuits, which will
take the place of an old building-block in the above universal set. We show that
the construction of our novel element in the BCA can utilize the spontaneous
fluctuations of signals more effectively, while at the same time restrict the Brow-
nian behavior into smaller spaces as compared to the construction of the replaced
element. Thus, logic circuits such as the AND, OR gates and the one-bit Adder
circuit can be constructed in the BCA based on the new element, and operate
more efficiently than their previous constructions.

This paper is organized as follows: Section 2 gives an overview of DI-circuits
and introduces our new build-block. Decomposing the new building-block into
Brownian circuit elements is described in Section 3, in accordance with which
the construction of logic circuits in the BCA model is shown in Section 4. This
paper finishes with the conclusions given in Section 5.

2 Delay-Insensitive Circuits and a New Building-Block

A delay-insensitive (DI) circuit is a kind of asynchronous circuits, whose correct
operation is robust to arbitrary delays involved in lines or elements. Commu-
nications between the circuit and the outside world are done via exchanging
tokens(signals) through the input and output lines. A DI-circuit is called con-
servative if it conserves the number of tokens between inputs and outputs.

Like conventional synchronously-timed circuits, all conservative DI-circuits can
be constructed from a fixed set of primitive elements. Figure 1 gives some examples
of primitive elements, in which the Merge, Conservative 2x2-Join and CSequencer
that can be used to realize any arbitrary conservative DI-circuit, i.e., they form a
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Fig. 1. Examples of conservative DI-circuit elements. (A) Merge: A signal arriving on
input line a or b is transferred to output line c. (B) Conservative 2x2-Join: A pair of
signals with one arriving on input line ai and another one arriving on bj (i, j ∈ {0, 1}),
is assimilated and results in one signals on each of the output lines cij and c′ij . (C)
CSequencer(Conservative Sequencer): An input signal on line a0 (resp. b0) together
with an input signal on line c0 are assimilated, resulting in an output signal on line b0

(resp. b1) and on line c1. If there are input signals on both a0 and b0 at the same time
as well as an input signal on c0 , then only one of the signals on a0 and b0 (possibly
chosen arbitrarily) is assimilated together with the signal on c0. The remaining input
signal will be processed at a later time, when a new signal is available on line c0. (D)
DRJoin (Dual Resettable Join): This is a new building-block for conservative DI-
circuits. A pair of signals with one arriving on input line a (or b) and another one on
input line a′ (resp. b′), is processed and results in two signals each on output lines c
(resp. d) and c′ (resp. d′), respectively. A signal arriving on input line a or a′ together
with another signal arriving on line b or b′, are assimilated and give rise to two signals
each of output line r and r′, respectively.

universal set [6]. A conventional design scheme for DI-circuits uses the CSequencer
to serialize parallel arrivals of input signals, as well as use the Merge as a fan-in
element. In addition, a Conservative 2x2-Join is employed as a fundamental logic
operator and plays the key role in accomplishing more complicated logic opera-
tions, and hence, it serves as a building-block for DI-circuits.

For example, Fig. 2(A) shows the realization of a Boolean XOR gate by the
Conservative 2x2-Join. Here we employ the dual-rail encoding to represent the
binary input and output bits of the XOR gate, i.e., using two lines to encode a
bit, this encoding scheme represents the value 0 by a signal on one line and the
value 1 by a signal on the other line. Moreover, A one bit Half-Adder is a well-
known logical circuit that performs an addition operation over two one-bit binary
numbers, and outputs a sum of the two inputs and a carry. Figure 2(B) illustrates
that a Half-Adder can be constructed straightforward using the Conservative
2x2-Join.

In this paper, we propose a new primitive element for conservative DI-circuits.
Called DRJoin (see Fig. 1(D)), this primitive element can be used to construct
logic circuits, such as the XOR gate and the Half-Adder circuit (see Fig. 3),
with the constructions being as efficient as those based on the Conservative 2x2-
Join. Furthermore, as implied by Fig. 3(C), any arbitrary conservative Di-circuit
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Fig. 2. (A) A Boolean XOR gate and the realization of a dual-rail XOR gate by
Conservative 2x2-Join and Merge. The output line c′ is used to output the surplus signal
in response to each pair of input signals, because the number of signals is conserved
throughout the whole construction. (B) A Half-Adder circuit and the realization of a
dual-rail Half-Adder based on Conservative 2x2-Join and Merge.

Fig. 3. (A) Construction of the dual-rail XOR gate in Fig. 2(A) by DRJoin and Merge
elements. (B) Construction of the dual-rail Half-Adder in Fig. 2(B) by DRJoin and
Merge elements. (C) Realization of the Conservative 2x2-Join by DRJoin and Merge,
in which the two black blobs represent two signals being assigned initially on the lines.

can be realized by the Merge, DRJoin, and CSequencer elements, i.e., {Merge,
DRJoin, CSequence} is universal.

3 Decomposing New Building-Block into Brownian
Circuit Elements

A Brownian circuit [8,5] is a special type of conservative DI-circuit, which allows
the movements of tokens(signals) on lines fluctuate randomly between going
forward and backward. The possible reversal movements of tokens enable the
circuit to backtrack from the deadlock states. Deadlocks may take place in token-
based asynchronous systems, like the Petri net, and usually requires special
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Fig. 4. Primitive elements of Brownian circuits. (i) CJoin (Conservative Join): Two
signals with one arriving on line J (or K) and another one on line J ′ (resp. K′) are
processed and give rise to two signals each on one of the lines K and K′ (resp. J and
J ′), respectively. (ii) Hub: A signal arriving on line Wi will be transferred to one of
the other lines Wj , where i, j ∈ {0, 1, 2} and i �= j. (iii) Ratchet: This element works
as a diode such that once a signal pass through it, the signal can not pass the element
any more in the backward direction.

functionality in the systems to resolve them. Random fluctuations of tokens,
however, can provide this functionality as part of their nature, thus allowing for
simpler primitive elements and circuit constructions.

As a result, three kinds of Brownian circuit elements each of which has much
simpler functionality than those primitives given in Section 2, are shown to
form a universal set from which any arbitrary conservative DI-circuits can be
constructed [5,4] (see Fig. 4). In addition, the constructions of the Merge, Con-
servative 2x2-Join, and CSequencer elements are shown in Fig. 5.

The bold dotted lines in Fig. 5 are used to denote those areas without the place-
ment of Ratchets, so that signals arriving on them will run randomly fluctuating
between the forward and backward directions. Though such Brownian motion-like
movements of signals are essential to realize the functionalities of logic circuits, as
shown in Fig. 5, they may cause substantial overhead into the processing times
of the circuits. Since propagations of signals resemble the diffusion processes of

Fig. 5. Realizations of (A) Merge, (B) Conservative 2x2-Join, and (C) CSequencer
elements by CJoin, Hub and Ratchet. For simplicity, we exploit the bold dotted lines
to denote those lines on which the placement of Ratchet is not allowed.
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Fig. 6. (A) Decomposing DRJoin into CJoin, Hub, and Ratchet elements. (B) When
two signals with one received from the input lines b and another one received from
b′ enter into the circuit, the possible repulsive force between them will push the two
signals apart so that they may be processed by the CJoin J more easily.

particles, reducing the spaces where signals fluctuate will significantly improve
the efficiency of the operations of the constructed circuits.

Figure 6(A) shows the realization of a DRJoin by the CJoin, Hub and Ratchet
elements. The construction in Fig. 6(A) may enable more efficient physical im-
plementation, for example, as implementation in cellular automata, in the sense
that sizes of the areas prohibiting the placement of Ratchet (lengths of the bold
dotted lines) can be shortened as compared to the construction in Fig. 5(B).
Moreover, another potential advantage of the construction in Fig. 6(A) is that it
allows two signals run simultaneously on the same line, as illustrated in Fig. 6(B),
such that if the two signals repel each other in a similar way as the well-known
repulsion occurring between two electrons, then the mutual repulsive force be-
tween signals may actually suppress their random behavior and accelerate their
processing by the circuit.

4 Embedding New Building-Block-Based Circuits into
Brownian Cellular Automata

A Brownian cellular automaton (BCA) is a 2-dimensional cellular automaton in
which each cell assumes a state from the state set {0, 1, 2}, denoted by white,
gray, and black, respectively. Each cell does state transitions based upon the state
of itself, along with the states of the four adjacent cells in non-diagonal directions
(the von Neumann neighborhood). The local transition function is described by
transition rules each of which is given in the form as shown in Fig. 7(A), such
that a rule not only changes the state of the central cell, but also the four
neighbors of the cell, like a block cellular automaton. Furthermore, the local
transition function is rotational symmetrical, i.e., for any rule in the function,
its rotational equivalence (see Fig. 7(B)) is included in the local function, too.

Cells are updated in accordance with three kinds of transition rules: R1, R2, R3,
as listed in Fig. 8, together with their rotational equivalences. Moreover, transi-
tions of the cells take place asynchronously as follows: At each time step, one cell
is selected randomly from the cellular space. If the state of the selected cell and
the states of its neighboring cells match the lefthand side of a transition rule, then
the rule is applied to update the states of the cell as well as its neighbors.
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Fig. 7. (A) A transition rule where a, b, c, d, h, i, j, k ∈ {0, 1, 2}, and (B) its rotational
equivalence, in which both the lefthand and righthand sides of the rule on the left were
rotated 90 degree in the clockwise direction

Fig. 8. List of transition rules, with their rotational equivalences left out

Fig. 9. (A) Random propagation of a signal on a straight line. (B) Collision of two
signals running on the same line. Local configurations representing (C) CJoin, (D) Hub,
and (E) Ratchet, along with the processing of signals arriving on their input/output
lines. For simplicity, transition rules that are used to update cells within a configuration
are denoted along with the arrows.

A line in the BCA is represented by a continuous sequence of cells in state 1,
and a signal is denoted by a cell in state 2 on a line, as illustrated in Fig. 9(A). Due
to the transition rule R1 in Fig. 8 (or its rotational equivalences), the movement of
a signal will fluctuate randomly between going forward and backward directions.
Moreover, multiple signals can appear on the same line and propagate indepen-
dently. In this case, when two signals collide with each other on a line, the only
possible update of cells will pull one cell away from the other cell (see Fig. 9(B)),
which seems like a kind of repulsion force occurring between the signals.

In addition, local configurations that are used to represent the CJoin, Hub,
and Ratchet elements are shown in Fig. 9(C)–(E), respectively. Thus, according
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Fig. 10. Local configurations representing (A) Conservative 2x2-Join and (B) DRJoin
elements, respectively

to the design schemes given in Figs. 5(B) and 6 respectively, it is able to construct
the Conservative 2x2-Join and DRJoin elements in the BCA, as shown in Fig. 10.

Comparing the two local configurations in Fig. 10, obviously the construc-
tion of DRJoin restricts indispensable random movements of input signals into
smaller regions than the construction of Conservative 2x2-Join. Furthermore,
suppose two signals received from input line a (or b′) and a′ (resp. b′) respec-
tively enter into the configuration of DRJoin. Because a signal can not leap
across another signal during their running on the same line (see Fig. 9(B)), such
repulsion-like interference between them may effectively speed up the processing
of the two signals by the DRJoin element. As a result, logical circuits like the
XOR gate and Half-Adder circuit constructed by the DRJoin can operate more
efficiently than their constructions by the Conservative 2x2-Join element.

5 Conclusions

Asynchronous cellular automata are a promising architecture for future
nanocomputers [2,7], because they may allow bottom-up fabrication based on
molecular self-assembly. The inclusion of fluctuation in cellular automata ac-
tually reduced the complexity of the BCA model substantially, as compared
to non-Brownian cellular automaton models. The key to success is due to the
Brownian circuit elements, by which any arbitrary DI-circuit can be constructed.
Thus, in accordance with the decomposing schemes of Di-circuits into Brownian
circuit elements, it is able to implement any logical circuit in the BCA.

In order to further improve the computational efficiency of the BCA, we pro-
posed a new building-block for Di-circuits in this paper. This new building-block
enables its construction in the BCA operate more effectively, in the sense that
it confine the Brownian movements of signals to possibly smaller spaces as com-
pared to the construction of the previous building-block. In addition, mutual
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repulsion between signals can be exploited in the construction to accelerate their
arrivals at desired destinations respectively, and hence, improving the efficiency
of signal processing.

Finally, the single electron technology (SET) offers potential for implemen-
tation of Brownian circuits [9]. In this case, witness the reduced complexity of
the construction by Brownian circuit elements, as well as the possibility of ac-
tive exploitation of the repulsive force between electrons, our new building-block
for Di-circuits may improve the feasibility of SET technology for implementing
Brownian circuits.
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Abstract. A practical implementation of cellular automata (CA) in the
field of architecture is presented, where a CA drives a modular shading
system of a building facade. Application of a 2-color, 1- dimension, range-
2 (2C-1D-R2) CA on a square grid for a regular type of a building facade
and the prototype of a CA controlled shading device is presented. The
problem of average grayness of a pattern is presented. The solutions
for problems of linear gradual change of average grayness as a function
of sequence of initial conditions and the sequence of initial conditions
which cause desired opacity change of the shading array are presented.
The fabrication of the CA shading prototype consists of: design of the
logic circuits, fabrication of the units, followed by design of the LCD
panel and the acrylic casings.

1 Introduction

Interesting qualities of cellular automata (CA) astonish for decades, however
their practical (physical) applications besides as pretty pictures are still rather
sparse. Already in 1940s John von Neumann designed the Universal Constructor-
a self-replicating machine in a CA environment without the use of a computer [1].
However, in fact practically all the CA activity is confined to the virtual world of
computers. On the other hand for quite a while architects have been dreaming
of architecture that can change its appearance. One of the most recognized
examples is Jean Nouvel’s Arab World Institute in Paris, where 30,000 light-
sensitive diaphragms were installed on the south facade [2]. The motivation
for such a change ranges from rational adaptation to environmental variation
according to a time of day, season, temperature etc. to pure aesthetics and
ordinary commercialism. This paper presents a modular shading system that
changes the average opacity of the building facade and takes visual advantage
of the emerging behavior of a CA as shown in Figure1.

The most important reasons for applying cellular automata (CA) in this case
are:

– Emergent behavior manifested by generated complex geometrical pattern
– Modularity with every cell having the same structure
– Low cost
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Fig. 1. Visualization showing organic behavior of a building facade, where opacity is
controlled in relation to the daylight conditions. The facade evolves to maintain a
constant level of light indoors at changing luminosity level of outdoor light.

– Robustness of the system which will operate despite local damage to the array
– Flexibility allowing CA to be applied on any topologically regular grid- not

only rectangular.

Although the presented array is twodimensional, theCAused are one-dimensional.
The convention for presenting a one-dimensional CA is to show the history of
generation changes, where each row corresponds to a step in the history. Every
row becomes the initial condition for the next row and so forth. Use of a two-
dimensional CA (2D CA) may seem more intuitive because the domain of 2D CA
is greater than 1D, so the chances of finding an amazing CA are greater, the inter-
cell wiring seems to be easier and so on. Nevertheless, there are major concerns
involved with the application of 2D CA. The most difficult problem is that,
although their behavior is often truly amazing, it is difficult to control the states
of cells. The 2D CA continuously updates all cells until it reaches equilibrium
which almost always leads to an uninteresting, mostly uniform state, that is all
the cells in this case remain black or white with some artifacts left over (small
islands of the opposite color) and often locally strobing cells (switching the state
at every step forever). Usually, the final state of the whole array is difficult or
impossible to predict due to the computational irreducibility, or not useful for
the shading device due to the strobing effect. Controlling the state of 2D arrays
is very difficult or perhaps impossible. This problem could be solved by freezing
the array at a certain step and not allowing it to evolve further, but at present it
seems to be a difficult technical problem. With the adopted common convention
of displaying 1D CA, this problem does not occur, because every row displays
the state at a certain step, so set once- maintains the state. The second major
problem with 2D CA is the setting of the initial conditions. How to set the initial
input to the given cells of a 2D array? It seems possible to use only cells on the
edges of the array- as it is done in the 1D case, but further investigation and
experimentation is required. In the presented case of a 1D CA, a row of cells
receives input from the row above and becomes the initial condition for the row
below and so forth. This process continues in a cascade and propagates down
the whole array of cells as shown in Figure2.

At first the investigation for the proper CA is shown followed by the fabrica-
tion process of the prototype.
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Fig. 2. The overall grayness of the array is controlled by the top row. Four different
initial conditions are shown: 1, 4, 10 and 20 transparent cells in the top row.

2 Search for the Proper CA

AproperCA for application on a building facade is defined as: renderingwide range
of grays, controllable (monotonic grayness function) and visually appealing.

2.1 The Grayness Function

The grayness function is the relationship between the number of black cells in the
initial condition to the number of black cells in the whole array. Figure3 shows
an example of a class 4 CA demonstrating interesting patterns, but unsuitable
for shading purposes- the grayness function is not monotonic.

Fig. 3. A Class 4 EA (Rule 110): The pattern generated is interesting visually, however
it seems impossible to control the average grayness of the array

2.2 Rule 3818817080,2,2

Since among elementary cellular automata (EA) there are no rules that generate
interesting patterns and at the same time render the proper grayness function,
the investigation moved towards more complicated ones, hoping that in greater
number of possible CA there will be some that meet both of the given criteria.
This could be done by increasing the number of possible states of a cell (colors),
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increasing the dimension or as it is done in this project- by widening the size of
the neighborhood. The search was based on rule symmetry [3], which means that
for inverted initial conditions, the generated patterns will be exactly inverted.
After finding a number of symmetric rules, test for grayness function was applied.
Final selection was done arbitrarily according to the visual attractiveness of the
pattern as shown in Figure4.

Fig. 4. Rule 3818817080,2,2. On the top: set of rules; below: incremental change from
100% to 5% black cells in the initial conditions showing both patterns and an aver-
age gray below; bottom from the left: the grayness curve and two symmetric sample
patterns

2.3 The Sequence of Initial Conditions

Setting the initial conditions is as equally important as finding the appropri-
ate rule and must meet two constraints: the kth initial condition has exactly
one black cell less than (k − 1)th and preserves all the rest of the black cells.
Such a way ensures that the changes of the shading array will not appear ex-
cessively chaotic or disturbing and the transition from one state to another can
be understood and rationally interpreted by the observer. Experiments showed
that generally, the changing sequence should be fairly scattered, since it usually
produces more interesting patterns than a consecutive way.

3 The Prototype

Since it is one of the first engineering projects involving a physical device using
the concept of a CA, the prototype intends for demonstrative purposes to be
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not only a shading device, but to explain the idea of a CA. Instead of realizing
the selected CA, and since it was decided to make the actual hardware, it was
rational to build a universal circuit capable of demonstrating all four classes of
CA behavior. A universal elementary CA unit circuit capable of emulating any
of 256 EA was designed. In order to show other possible applications of the idea
the low-tech approach was applied.

3.1 The Logic for the CA Module

The logic for an electrical circuit- an analogue of a cellular automaton cell was
designed as shown in Figure5.

Fig. 5. The smallest logic to emulate any of 256 elementary automata

3.2 An Electrical Circuit for a CA Cell

An electrical circuit based on this logic scheme utilizes four dual AND (using
all the gates of a Quad 2-Input AND CMOS), six dual XOR using all one Quad
XOR CMOS and only half of the gates of the second Quad XOR CMOS, one
Inverter gate using only one of four gates of a Hex INV CMOS and nine switches
(integrated 10-DIP switch with nine out of ten switches used). Each circuit was
equipped with 8 SIP resistor (for eight switches) + 4 resistors (ground for all
four CMOS) to prevent from floating in the circuit, and a LED lighting set with
LED, transistor and two resistors. The electric diagram of the circuit is shown
in Figure6.

3.3 A 3x8 CA Array

To document all 256 EA by generating 256 unique patterns it is sufficient to use
just 8 output cells of the second step, but for demonstration purposes, a bigger
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Fig. 6. The electrical diagram of the CA unit. The dotted rectangle on the left contains
an additional LED which was used for the test unit only.

array was built. The prototype consists of four rows, where the first row will
become the manually set initial condition, and the next three upper rows will
demonstrate three consecutive CA generation steps. Using periodic boundary
conditions, twenty four modules and eight input switches were connected into a
hardware CA array. For the ease of manipulating the input (CA initial condi-
tions), the orientation of the CA grid was reversed, that is the input cells are on
the bottom, the first step is located above and so forth as shown in Figure7. A
special acrylic casing was designed and manufactured.

Fig. 7. A photograph of the assembled array of twenty four CA cells (+ eight initial
input cells on the bottom)
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3.4 Playing with CA

The twenty four cell CA device can demonstrate the concept of elementary
cellular automaton by a ”hands-on” experience. After removing the front cover-
manual switching the settings of every cell allows students to understand how
complex behavior (of the whole array) emerges from multiple interferences of
simple ”decisions” taken by individual cells. The device is shown with LCD
panel in Figure8.

Fig. 8. A photograph of the CA shading prototype. The LCD shading panel is con-
nected to the CA device. Rule 30 EA at one cell input.

3.5 LCD Shading Panel

For demonstrating the shading action, LCD technology was used. The light
transmission through a liquid crystal cell can be varied from 0 to 100% by the
bias. The position of the two polarizers determines whether the cell is normally-
black (0% transmission at 0V) or normally-white (100% transmission at 0V). The
single layer of film has approximately 38% transmittance for unpolarized light.
Two sheets parallel (transparent state) have an average transmission of 27% and
crossed (opaque state)- 0.04%. At 550 nm, the center of the visible spectrum, the
crossed transmission is less than 0.01%. When 5V are applied on the unit, the
cell turns black (opaque), otherwise it is transparent. For proper operation and
longevity, LCDs require an alternate voltage application, thus a special inverter
circuit was designed and built. Every CA cell was slightly modified and equipped
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with a relay switch. A special acrylic casing was designed and manufactured for
the LCD panel. The complete system is shown in Figure8.

4 Conclusions

– By implementation of cellular automata, it is possible to control the average
opacity of a shading array and create very interesting patterns at the same
time.

– The project demonstrates a physical device based on a cellular automaton
with possible practical application.

– The prototype was made inexpensively in the university laboratory [4], using
very basic tools and skills.

– Since the scale of the considered application to a building facade is rather
large- the cost of a unit is an important issue. The circuit for a single CA
(even range-2) would be much simpler than the universal unit presented in
this paper, therefore mass production of an optimized integrated circuit will
result in a significantly lower price for each unit.
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Abstract. In this paper, an electronic system able to reproduce the
complex dynamic behaviors of the train movement is presented. In par-
ticular, a Cellular Automaton (CA) model inspired by Li et al. corre-
sponding model was developed in order to provide efficient control of the
railway traffic flow. The proposed model was implemented on a (Field
Programmable Gate Array) FPGA to take full advantage of the inherent
parallelism of CAs. The FPGA design which results from the automati-
cally produced synthesizable VHDL code of the CA model is considered
as basic component of a portable, low total cost electronic system. The
later also includes a high performance Global Positioning System (GPS)
wireless communication module for the monitoring of train activity in the
under study railway. The aforementioned module in conjunction with the
proposed fully automatically programmable FPGA device minimizes the
design burden offering the chance of real-time train control operation
based on the presented CA model.

Keywords: Cellular Automata, FPGA design, Train operation control,
GPS.

1 Introduction

Railway transport is a major form of passenger and freight transport in many
countries all over the world. Railway transportation is capable of high levels of
passenger and cargo utilization and energy efficiency, but is often less flexible
and more capital-intensive than highway transportation is, when lower traffic
levels are considered. On the other hand, railways are certified safe land trans-
portation systems when compared to other forms of transportation [1]. Trains
can travel at very high speed, but they are heavy, unable to deviate from the
track and require a great distance to stop. Possible accidents include derailment
(jumping the track), a head-on collision with another train and collision with an
automobile or other vehicle at level crossings. In order to maximize their over-
all performance as a trustworthy, safe and accurate transport media, the train
operation control and, in particular, construction and mainly the coordination
of train schedules and plans for existing railway networks gathers more atten-
tion worldwide. Consequently the need for appropriate computational tools and
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models able to optimize the usage of the existing railway networks is perpetual
and imperative.

During the previous years, sufficient number of works has been published re-
garding the comprehension, modeling and simulation of the train control opera-
tion system [2,3]. Additionally, some mathematical models have been proposed
for the optimization and control of train movement under different control system
conditions [4]. However, taking into account the numerous complex constraint
conditions associated with the under study mathematical model, the solution
of the proposed model often demands extensively high usage of computational
resources. In general, the simulation models for train control system can be
classified into three types, i.e. the basic model, the time-based model, and the
event-based model [5]. The basic model is suitable for simulating the train con-
trol system when the length of track conductor loop is small. The time-based
approach is easy to design and build simulation models, but it needs a high
computational demand. The advantage of the event-based model is that it can
save computational effort, but it reduces the accuracy.

In the view of foregoing and taking into account that rail transit system,
including traffic environment, railway system, control system, and individual
element aggregation of train stream, can be easily considered as a dynamic com-
plex system, some models and methods for simulating the railway traffic based
on Cellular Automata (CAs) have been proposed. This alternative arrives from
the fact that CAs are very effective in simulating systems and solving scien-
tific problems, because they can capture the essential features of systems where
global behavior arises from the collective effect of simple components which in-
teract locally. As a result, CAs have been used in the modelling and simulation
of railways since they can dynamically simulate the departure time, route choice
and the delay propagation of trains as well as simulate different types of railway
traffic by simply modifying the basic rules of each proposed CA model. Li et al.
presented a simplified one-dimensional CA model to the analysis of train tracking
and railway traffic flow for the first time [6,7], which originated from the well-
known NaSch model of road traffic [8]. The proposed model able to research the
relationship between micro-laws and macro-measures, is suitable for investigat-
ing the railway traffic, and then simulated the train flow near a railway station
and analyzed the characteristics of railway train tracking. Recently, almost the
same authors proposed a CA to simulate the tracking operation of trains in Bei-
jing subway line 2 [5] and a station model based on CAs which was composed of
the two tracks, i.e. the main track and the siding track [9]. Spyropoulou [10] pro-
posed a model for the simulation of traffic at signalized intersections which was
also originates from the NaSch model [8]. Finally, Tomoeda et al. [11] presented
a real-time Tokyo Metro Railway Network simulation tool named “KUTTY”.

In this paper, a CA model for the railway traffic flow, able to simulate the
complex dynamic behaviors of the train movement, is proposed. The proposed
model was inspired by the Li et al. model [5,6,7] providing new features to
overcome some of the previous model limitations; for example, the original rules
have to be modified and extended in order to successfully simulate more realistic
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situations of train traffic flow near the station. On the other hand, the presented
CA model is characterized by as much as low complexity as possible so that the
computational recourses are kept low while its computation speed is kept high.
Furthermore, one of the most pronounced features of the introduced model is
its ability of stand alone train control operation without any need of central
operator [7] which in some means degrades the CA local attitudes.

Moreover, because of the inherent parallelism of CAs, the proposed model
is hardware implemented with the help of Very High Speed Integrated Circuit
(VHSIC) Hardware Description Language (VHDL) synthesizable code in order
to speed up the application of CAs to the study of trains’ movement. In particu-
lar, for design automation reasons, a compilation function automatically exploits
the CA parameters values previously determined by the user and results in syn-
thesizable VHDL code that describes the CA model. It should be mentioned that
CAs are one of the computational structures best suited for hardware realization.
The CA architecture offers a number of advantages and beneficial features such
as simplicity, regularity, ease of mask generation, silicon-area utilization, and
locality of interconnections [12]. As a result, no need for high silicon overhead is
required for the implementation of the aforementioned circuit. In this paper, the
design processing of the finally produced VHDL code, i.e. analysis, elaboration
and simulation, has been checked out with the help of the Quartus II, v. 7.2
design software of the ALTERA Corporation. Test benches were automatically
constructed by our system, for the simulation needs of the VHDL code, and the
Simulator of Quartus was used to simulate the operation of the dedicated pro-
cessor described by the VHDL code obtained. Consequently, the implementation
of the resulting VHDL code results in a single Field Programmable Gate Array
(FPGA) processor, which is considered as basic component of an electronic sys-
tem able to provide real time information concerning the accurate speed of each
of the moving or stopped trains of the examined railway network and able to han-
dle the train control system. More specifically, taking into account GPS (Global
Position System) tracking with the help of a miniaturized sensor, the resulted
FPGA processor is fed with real data about the trains speed and feedbacks with
a support decision system providing on time information regarding the possi-
ble optimal control of the railway network. The proposed electronic system is
also equipped with wireless transceiver-transmitter for communication reasons
as well as with proper detectors corresponding to possible obstacles found in the
train route. As a result, the proposed FPGA design could serve as the basis of a
support decision system for monitoring train movement in real-time, providing
valuable near optimum control services.

In the length of this paper, details about the proposed CA model and the
resulting simulation results are found in Section 2. The corresponding FPGA
architecture of the proposed model and its automation design procedure are
discussed in Section 3, while the proposed GPS sensor design is described in full
details in Section 4. Finally, the conclusions are drawn in Section 5.
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2 The Proposed CA Train Control Model

CAs models have formed the theory for the development of several transportation
models to simulate various types of elements such as vehicles, pedestrians or
even railway traffic. In the NaSch traffic model [8], the network is represented
by assigning to each link a number of cells that have a specific length (that
number would result from the division of the length of the link by the space
value of the cells). The dynamics of the model are described by four simple rules
which are: 1) Find number of empty sites ahead (=gap) at time t. If u > gap
(too fast), then slow down to u = gap. 2) Else if u < gap (enough headway) and
u < umax, then accelerate by one: u = u + 1. 3) If after the above steps the
velocity is larger than zero (u > 0), then, with probability p, reduce u by one.
4) Each particle moves u sites ahead: x=x+u.

Taking into account the NaSch as well the resulting Li et al. train model, in
the proposed model 1-d CA model, the lane consists of a single lane which is
divided into L cells of equal size numbered by i = 1, 2, ..., L, and the time is
discrete. Each site can be either empty or occupied by a train with integer speed
vn = 0, 1, ..., vmax or by a station or by a station with a train stopped at it.
It should be also mentioned that the probability found in Rule 3 is not taken
under consideration and its value equals to zero. For each n train the following
parameters are taken into account: i) Dx the distance between the n train and
the train immediately ahead, i.e. the distance headway, ii) xs the distance of the
n train from the next station, iii) L the number of the CA cells corresponding to
the railway lane (in the proposed CA model only one single lane is considered),
iv) xc the distance needed for the train to slow down (break) in order to stop
in front of the station, v) vn the velocity of the n train, vi) dn the minimum
instantaneous distance, vii) sm the safety distance, ix) a the acceleration rate of
each train, x) b the deceleration rate of each train and xi) td the station dwell
time, after which the train leaves the station.

If a CA cell is occupied by a train n then the states of the cells ahead are
checked for the presence of other trains. In case there is a leading (n + 1)th

train, and the distance between the two trains, Dx is larger than distance dn,
the nth train is accelerated by a. On the other hand, if distance Dx is smaller
than distance dn, the nth train is decelerated by b. Of course, in case the two
distances equal, the velocity of the nth train remains the same. When a station
is located before nth train and distance xs equals to xc, the train will decelerate
in order to reach the station with proper zero velocity. Finally, when every cell
ahead is free, the nth train is accelerated to reach its maximum velocity. In
the proposed model, the minimum instantaneous distance dn is automatically
adjusted and depends on the train velocity at each time step. For the calculation
of this distance the worst scenario is taken into account for safety reasons. In
particular, the train is decelerated continuously by b and the resulting distance
db is summed up with the distance covered by the train in the specific velocity
v, dv:

dn = dv + (dv − db) + (dv − 2db) + (dv − 3db) + (dv − 4db) + . . . (1)
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In this equation the distance dv is summed up due to the fact that in case the
distance is minimum, the velocity remains the same. Another case that should
be taken under consideration is when the train is accelerated and is not able
to stop. As a result, the minimum distance dn should be recalculated for this
case and another check is desired for the train in order to accelerate or decel-
erate. Following the aforementioned considerations, distance xc can be adjusted
accordingly. Furthermore, as mentioned before when a station is occupied by a
train this should remain at the station for td, which also depends on the num-
ber of passengers at the station. It should be mentioned that in the proposed
model the time interval during which the train remains at station after halting,
is independent of the size of waiting crowd of passengers, assuming that there
is sufficiently large number of broad doors in the trains [13]. When this period
finishes a check is needed regarding the distance from the next occupied cell, in
other words, if it is more or less than, dnplus = (da + db), a new safety distance
for the train located on station. On the other hand, when this check results in
bigger distance, then the train will exit the station with the minimum acceler-
ation a. Consequently, the train will be able to slow down before any possible
occupied cell. In different case, thus the distance is less than dnplus the train
remains in the station for more time. When the next occupied cell is a station,
the minimum distance is decreased to da in order to exit one station and enter
immediately the other. Obviously, if no cell is occupied the train will leave the
station with acceleration a.

The proposed model works as described by the following pseudocode:

Case 1, the train n is behind the train n − 1
Acceleration of the nth train:
If Dxn > dn

then vn =min(vn + a, vmax)
ifelse Dxn < dn

then vn =max(vn − b, 0)
else vn = vn

Slowing down of the nth train:
vn =min(vn, Dxn)

Movement of the nth train:
xn = xn + vn

Case 2, the train n is behind a station.
In case the station is occupied by a train the rules are the same
as applied in Case 1.
In case the station is empty
Acceleration of the nth train:
If xs > xc

then vn =min(vn + a, vmax)
ifelse xs < xc
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then vn =max(vn − b, 0)
else vn = vn

Slowing down of the nth train:
vn =min(vn, Dxn)

Movement of the nth train:
xn = xn + vn

Case 3, the train n is behind a station.
(1) The nth train is behind another train:

If dx > dnplus
then vn = a

else vn = vn

(2) The nth train is behind another station:
If dx > a
then vn = a

else vn = vn

Some simulation results are depictured in space-time diagrams of Fig. 1 where
x -axis indicates the direction of train movement, and the y-axis corresponds to
time evolution. More specifically, a CA grid with 300 cells was considered, while
the time steps equal to T = 300. Several stations as well as trains are considered
at different cells and different distances and consequently stop and go waves

Fig. 1. Local space-time diagrams of traffic flow of L = 300 cells for vmax = 10, a = 2,
b = 1, td = 1
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have been noticed. Of course, the later is related to several parameters of the
CA model, beyond the train and station density, however more details can be
found in [5,10]. The results can be found in qualitative agreement with the ones
found in relative references [5,6,7,8,9,10].

The most engaging difference between the presented method and the previous
ones of Li et al. is the absence of any need of a central or/and area computer in
order the CA model to control the train movement. As shown in the next sections
an electronic system with the help of GPS can be used in order to implement
the presented model which can be under conditions fully auto-controlled. Fur-
thermore, as mentioned before, the minimum instantaneous distance dn as well
as distance xc are automatically adjusted at each time step based on previous
equation. Some further changes have been implemented taking under consid-
eration special cases such as boundary conditions that could help the overall
performance of the system. In the proposed system, in order to “help” the train
located at the CA boundaries to exit the CA grid with proper velocity, empty
cells are virtually added. Additionally, extra checks about zero velocity vn = 0
and minimum velocity vn = 1 have been added for different cases. For example in
Case I, in acceleration phase, the first check is enhanced as follows: If Dxn > dn

or vn = 0; while an extra check for the minimization of the time needed for a
train to reach an obstacle cell with the help of the appropriate distance and
velocity conditions has been also added. Finally, in case of presence of tunnels
along the railway tracks, where the velocity calculation would be difficult due
to the limited receiving of the GPS device, the trains are moving in the tunnels
with invariant velocity, i.e. the velocity they have reached at the beginning of
each tunnel.

3 FPGA Implementation

To take advantage of the natural parallelism of CAs models, synchronous very
large scale integrated (VLSI) circuits should be used for their implementation.
Furthermore, the hardware implementation of these models could be achieved af-
ter the manual translation of their parts into a synthesizable subset of VHDL.
The top level of the proposed CA cell digital design consists on basic functional
VHDL modules in correspondence to the simulated train network as depictured
in Fig. 2. More specifically, each block, namely Check, Load ab, max a, max b, dn,
dne, Move ab, Min v1s, Move and Load, corresponds to a different function of the
CA model implemented as a VHDL component. Check block is the main com-
ponent for checking of the states of the cells ahead in order to provide the criti-
cal details for possible obstacle, i.e. another train, station, or station with train;
while the Load ab is responsible for the acceleration/deceleration calculation tak-
ing into account the train velocity and leading the corresponding blocks max a and
max b, respectively, as indicated by the earlier described CA model pseudocode.
The components dn and dne are responsible for the calculation of the minimum
single instantaneous distance and the distance resulting from the calculations and
the considered cases described in eq. 1. Finally, blocks Move and Move ab are re-
lated with the train movement and certain checks for safety reasons, while the
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Fig. 2. CA cell block diagram

Min v1s component acts as a safety valve which is able to handle possible mal-
functions on the train velocity in conjunction with the calculated distance. The
clock signal provides the essential synchronization to the above units.

In order to generate the whole CA system, some extra VHDL components
are used for the interconnection of the CA cells as well as for handling of the
aforementioned boundary conditions. More specifically, a semi parallel module
inspired by serpentine memory and responsible for loading the initial conditions
for each CA cell has been preferred resulting on a reduced number of pins. On
the other hand, the overall system frequency has been also diminished. Regard-
ing the boundary conditions special CA cells with fewer components and zero
initial load conditions, thus empty cells, have been properly added to produce
the prospective results. It should be also mentioned that in order to escalate
the robustness and the adaptability of the proposed design a special compilation
function was developed in order to automatically generate the VHDL code of
the CA network model design, has been developed. In particular, this translation
function receives the programming code of the CA model originally written in
Matlab as its input, and automatically produces, as output, the corresponding
synthesizable VHDL code. To achieve its goal, the translation function collects
information from the presented CA model by checking its primary parameters.
More specifically, the train network topology is used to produce the interface and
the behavioral parts of the VHDL code, whereas the trains network boundary
conditions and the initial train network parameters’ values are used to produce
the structural parts of the VHDL code. No previous knowledge of VHDL is
required, since the VHDL code is directly produced from the high-level pro-
gramming language code through the translation algorithm. However, as shown
in Fig. 4, there is always a possibility of functional simulation of the VHDL code
with the use of the appropriate automatically generated test benches. Finally,
the automatically produced synthesizable VHDL CA code is translated into a
hardware schematic of the defined architecture using predetermined timing con-
straints in Quartus II, v. 7.2 design software. Design of the proposed processor
results in an ALTERA Stratix EP1S25F1020C5 FPGA device, which indicates
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a maximum clock rate around 110MHz, consists of 200 CA cells and uses 84%
of the total available logic elements. For readability reasons and in order to get
the operational principles of the CA model illuminated acutely, straightforward
simulations have been chosen. Nevertheless, all major circumstances, regarding
trains and stations have been included. More specifically, the time-space dia-
grams of train traffic flow for vmax = 10, L = 30, a = 1, b = 1, and td = 1, as
well as the corresponding functional simulation screens of the resulting FPGA
are all presented in Fig. 3 and Fig. 4, respectively. Consequently, the FPGA
simulation results are found in complete agreement with the compilation results
of the CA model.

Fig. 3. Time-space diagrams of train movement for vmax = 10, L = 30, α = 1, b = 1,
and td = 1. The stations of different size are depictured with light blue, while all other
colours are used to represent different moving trains.

4 GPS Integration

The aforementioned FPGA design could maximize its performance with the help
of a global positioning system (GPS) and wireless communicationmodule installed
all in one system in each train and every station, monitor all automotive activ-
ity across the railway network. In such a way the tracking of the train movement
as well as its velocity calculation will be straightforward. As a result, a portable,
small, high-performance wireless device has been designed as depictured in Fig.
5. The aforementioned circuit is fully programmable using a microcontroller PIC
16F877 and RS-232 interconnection and provides the ability to collect and trans-
fer both analog and digital data. Beyond its small size, it can work in any envi-
ronmental condition (from -55 to 125◦Celsius) and operate both as a server and
answer on-demand to analog and digital call, while it can change the operation to a
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Fig. 4. The corresponding functional simulation screens of the resulting FPGA in ac-
cordance with the time-space diagrams of Fig. 3.

Fig. 5. The proposed small portable high performance GPS wireless communication
module

client and send the requested information in accordance to FPGA circuit demand.
Furthermore, there are approximately 17 measurements that can be transmitted
over kilobyte with this module, providing low-cost operation as well. Thanks to
these features and flexibility, the aforementioned module in conjunction with the
proposed fully automatically programmable FPGA device minimizes the design
burden offering the chance of a fully autonomous portable electronic system able
to provide train control operation based on the presented CA model.
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In case of GPS communication the NMEA communication protocol has been
used. The NMEA 0183 although it is an old protocol compared to SIRF or other
new GPS protocols and rather slow since its operation function is reduced to
4800 baud it is preferred for the 95% of the GPS/tracking devices. The main
reason is that the data sent through the device are few and as a result even
such low performances are not prohibitive for the proper functionality of the
proposed circuit. The train or/and station position can be found at any time
through the GPS satellite network while the train velocity can be calculated
from the fundamental relationship v = s/t for two different time moments. The
above calculation is succeeded in real time by the following equation:

s =
√

(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2 (2)

where x1, y1, z1 are coordinates of the first measurement and x2, y2, z2 are
coordinates of the second measurement, in correspondence. For the x and y
GPS coordinates the EEP WGS84 is used, where WGS84 is the world geodetic
system of year 1984, and z is calculated as the absolute elevation from the sea
level as specified by geoid.

5 Conclusions

In this paper a CA model for the simulation of railway traffic flow was introduced.
The proposed model was inspired by Li et al. model [6] and aimed at efficient sim-
ulation of railway traffic while providing simplicity, adaptability, low complexity
and near optimum usage of computational resources. The presented space-time
diagrams of railway traffic flow and the trajectories of the train movement re-
produce some nonlinear real train traffic phenomena as found in the previous
works. In order to leverage the natural parallelism of CAs, the presented model
was automatically implemented with the help of VHDL code on a FPGA device.
The resulting FPGA design is found promising in terms of computational per-
formance, portability and low power consumption. Furthermore it can be easily
connected to a small portable high performance GPS wireless communication
module proposed in this paper. Consequently, the resulted FPGA processor is
fed with real data about the trains location and speed and feedbacks with a
support decision system providing on time information regarding the possible
optimal control of the railway network. As future work concerns, the expansion
of the CA model for handling more complicated situations, as for example, differ-
ent track geometries, different signalling, multiple lanes, more than one station
platforms, different and probably longer station dwell times so as the trains to
pick up large crowds of waiting passengers, etc. should be considered. At this
point, some real case experiments will be taking place in the railway network of
Eastern Makedonia-Thrace of Greece and the experimental results will validate
the calibration of the CA model as well as of the proposed electronic system.

Acknowledgments. The authors would like to thank Lamdas (λ) Electronics
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wireless module.
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Abstract. The aim of this paper is to introduce the problematics deriving from
the adoption of an asynchronous CA model. First of all, several cellular automata
update schemes and a tentative classification of such schemes are introduced.
In order to study the effects of the different update schemes, we introduced a
class of simple CA, called One Neighbor Binary Cellular Automata (1nCA). An
overview of the general features of 1nCA is described, then the effects of six
different updates schemes on all the class of 1nCA are described.

1 Introduction

Cellular Automata have traditionally treated time as discrete and state updates as oc-
curring synchronously and in parallel. However, several authors [1,2] have argued that
asynchronous models are viable alternatives to synchronous ones and suggest that asyn-
chronous models should be preferred where there is no evidence of a global clock in
the modeled reality.

There are several asynchronous cellular automata update schemes. [3] introduced
an asynchronous model characterized by different cell updating schemes, basically se-
quential ones, in which a single cell is updated at each time step. The order of the
updating sequence is defined as one of the following three methods: Random order,
Fixed Random Order, and Interlaced order.

In [4] three classes of update scheme are identified: Synchronous Update, Random
Asynchronous (RAS), and Ordered Asynchronous (OAS). The first scheme is the tra-
ditional CA updating scheme; according to the Random Asynchronous scheme, at any
given time individuals to be updated are selected at random according to some probabil-
ity distribution. In the Ordered Asynchronous update process, the updating of individual
states follows a systematic pattern. The authors consider a total of six update patterns,
including two RAS schemes and three OAS scheme: Synchronous Scheme, Random In-
dependent (RAS), Random Order (RAS), Cyclic (OAS), Clocked (OAS), and Self-Sync.
The author chose to implement local synchrony by using a coupled oscillator approach.
The period of each timer is adjusted after an update so as to more closely match the
period of other cells in its neighborhood.

The aim of this paper is to provide a comprehensive analysis of different asyn-
chronous update schemes and to evaluate the effect of their adoption in a simplified CA

S. Bandini et al. (Eds.): ACRI 2010, LNCS 6350, pp. 385–394, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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model; the paper is organized as follows: the following Section formally introduces a
comprehensive set of relevant updating schemes, while Section 3 introduces the model
in which the different update schemes will be tested. Section 4 describes the effects
of the adoption of the different update schemes for this model, while conclusions and
future developments end the paper.

2 A Classification of Update Schemes

In order to classify the update schemes, we define the following parameters:

– p
(t)
i determines the period of the update of the cell i at the time step t, i.e. how

many time steps the cell i will wait in order to be updated. The value of p can
change during the time, e.g. in the Self-Sync update scheme.

– l
(t)
i determines the length (in terms of time step) of the updating of the cell i at the

time step t, i.e. after how many time steps the neighbor cells taking into account
the new state during their updated.

– di, determines the delay (in terms of time step) before the first update.
– U (t) is the set of cells beginning the update process at the at the time step t.
– u(t) = |U (t)| is the number of cells starting the update process at the time step t.

Given the above parameter, a set of relevant update schemes will now be presented and
discussed. For each update scheme, we give a formal definition that are successively
employed for the classification of the update schemes.

2.1 Relevant Update Schemes

Synchronous Scheme – All individuals are updated in parallel at each time step. The
updating of a cell takes 1 time step.
∀ t ∈ Z t > 0 ∀ i ∈ Z 0 ≤ i < N p

(t)
i = 1 l

(t)
i = 1 di = 0 u(t) = N

Random Independent – At each time step, one and only cell, chosen at random, is
updated. The updating of a cell takes 1 time step.
∀ t ∈ Z, t > 0 ∀ i ∈ Z 0 ≤ i < N l

(t)
i = 1 u(t) = 1 ∃ t, i p

(t)
i > 1

Random Order – All nodes are updated in random order. After the updating off all the
nodes, the order is changed. The updating of a cell takes 1 time step. The maximum
length of the update period is less than 2N .
∀ t ∈ Z t > 0 ∀ i ∈ Z 0 ≤ i < N p

(t)
i < 2N l

(t)
i = 1 di < N u(t) = 1

We can define an update interval [α, ω] so that
∀ z ∈ Z, z > 0 α = 1 + z N ω = (z + 1) N
In every update interval, each cell is update exactly one time:
∀ i ∈ Z 0 ≤ i < N, ∀ tn ∈ Z, α ≤ tn ≤ ω, ∀ tm ∈ Z, α ≤ tm ≤ ω,
ci ∈ U (tn), ci ∈ U (tm) ⇐⇒ tn = tm
Cyclic – At each time step a node is chosen according to a fixed update order.
∀ t ∈ Z t > 0 ∀ i ∈ Z 0 ≤ i < N p

(t)
i = N l

(t)
i = 1 di < N u(t) = 1
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We can identify three subtypes of this update scheme:
Random Cyclic – The update order is decided at random during initialisation of the

automaton. This update scheme correspond to the Kannada’s Fixed Random [3] and
Cornforth’s Cyclic OAS [4].

Fixed Cyclic-Sequential Ordered – The update order is fixed in the automaton defi-
nition. The cells are updated one-by-one according to their natural order:
di = 1 + i; qt = (t − 1) mod N ; u(t) = {cqt}.

Fixed Cyclic-Interlaced Cyclic – Called Interlaced Order in [3]. The set of cell u(t)

to be update at time step t is calculated as qt = C (t−1)modN ; u(t) = {cqt}, where
C is a parameter prime to N .
Generic Cyclic – It is a generalization of the Cyclic update scheme, obtained relaxing
the constraint on the updating length. In this update scheme, the updating length is
limited only by the period. Formally:
∀ t ∈ Z t > 0 ∀ i ∈ Z 0 ≤ i < N p

(t)
i = N l

(t)
i ≤ p(t) di < N u(t) = 1

Clocked – A timer is assigned to each cell, so that updating is autonomous and proceeds
at different rates for different cells. The update frequency of each cells is fixed:
∀ t ∈ Z t > 0 ∀ i ∈ Z 0 ≤ i < N p

(t)
i = p

(0)
i l

(t)
i ≤ p

(0)
i di ≤ p

(0)
i

As subtype of the Clocked update scheme is the Equal Frequency Clocked. Accord-
ing to this update scheme, every cells has the same update frequency:
∀ t ∈ Z t > 0 ∀ i ∈ Z 0 ≤ i < N p

(t)
i = p

(0)
0

Generic Clocked – It is a generalization of the Cyclic update scheme, obtained relaxing
the constraint on the fixed update frequency. The two subtypes of this update scheme
are the Clocked and Variable Clocked. According to the Variable Clocked scheme, a
timer is assigned to each cell, so that updating is autonomous and proceeds at different
rates for different cells. The updating frequency is not fixed: ∃t, i : p

(t)
i �= p

(0)
i . The

Self-Sync update scheme is an example of Variable Clocked scheme.

3 One Neighbor Binary Cellular Automata

One Neighbor Binary Cellular Automata (1nCA) is a one-dimensional Cellular Au-
tomata, with two possible states per cell. Each cell has two neighbors, left and right,
defined to be the adjacent cells on either side, but the update rule consider only one
neighbor per step. The neighborhood includes the cell itself and the left or the right
adjacent cell and alternates between these two situations at even and odd time steps.

The size of the neighborhood is always 2, so there are 4 possible patterns for the
neighborhood and only 16 possible rules. The number of possible rules is small com-
pared to the 256 possible rules of the Elementary Cellular Automata, so it is easier to
exhaustively study the dynamic behavior of the all rules.

These 16 1nCA rules will be referred using the Wolfram notation, with the rule
numbers followed by the * symbol to avoid confusion with the Elementary Cellular
Automata rules (e.g. “Rule 10” is an Elementary Cellular Automata rule, “Rule 10*”
is an 1nCA rule).

We call One Neighbor Binary Cellular Automata the cellular automata (L,S,N ,F )
where
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– L = [c0, c1, . . . , cn] is an array of n cells,
– S = {0, 1} is the set of states ( k = 2 ),
– Nc is neighborhood of the cell c and ∀c : L |Nc| = 2,
– f : S2 → S is a transition function.

Denoting the cell c at position i as ci, the neighborhood N (t)
ci of the cell ci at time t is

defined as N (t)
ci = [ci, n

(t)
ci ] where n

(t)
ci is the neighbor of the cell, given by

n
(t)
ci =

{
ci+1 if t is even
ci−1 otherwise

Following the Wolfram’s notation, the rules are characterized by a sequence of binary
values (βi ∈ S) associated with each of the 4 possible patterns for the neighborhood.
The transition function is defined as:

f(ci, n
(t)
ci ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β0 if ci = 0, n
(t)
ci = 0

β1 if ci = 0, n
(t)
ci = 1

β2 if ci = 1, n
(t)
ci = 0

β3 if ci = 1, n
(t)
ci = 1

There are 16 possible transition functions, identified by a rule number R =
3∑

i=0

βi2i.

The configuration of a cellular automata is a mapping q : L → S which assigns
to each cell of the array L a state from S. We denoted with qt the configuration of
a cellular automata at time t; in particular qt = [s0, s1, . . . , sn] ∈ Sn (16) where
n is the number of cells of L. Given an initial configuration q0, the evolution of an
automaton is represented by a sequence of configurations q0 → q1 → q2 → . . . → qt.
A deterministic finite cellular automaton eventually falls into a cycle (with period p >
1) or a fixed point (p = 1):
qt → qt+1 → qt+2 → . . . → qt+p

qt = qt+p; qt+1 = qt+p+1; qt+2 = qt+p+2; . . . ; qt+p = qt+2p.
We defined two constant configurations 0 and 1 as: 0 = [0, 0, . . . , 0] ∈ Sn; 1 =

[1, 1, . . . , 1] ∈ Sn.
In the following section a classification of the 1nCA Rules is presented. A central

issue in the theory of cellular automata is the classification, i.e. understanding how cel-
lular automata can be meaningfully grouped according to their structure and behavior.
There are mainly two approach for the classification of the cellular automata: the direct
way, called Phenotypic Classification, to classified cellular automata is to observe their
behavior through the spatial-temporal patterns they generates out of several random
initial conditions, and then to use statistical metrics to quantify the observed behav-
ior [5]. Another approach, called Genotypic Classification, is based on the analysis of
the automaton transition rules.

There are several works (e.g. [6,7,8,9,10]) focusing on the classification of the one
dimensional cellular automata and in particular on the Elementary Cellular Automata.
In this section we present an approach of genotypic classification applied to the One
Neighbor Binary Cellular Automata. The idea of a genotypic classification of cellular
automata is to divide a population of automata into groups according to the intrinsic
properties of the rules. The aim is that some features of the cellular automata behaviors
are predictable on the basis of a genotypic classification.
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3.1 Totalistic Rules

A cellular automaton is called totalistic if the value of a cell depends only on the sum
of the values of its neighbors at the previous time step, and not on their individual
values [11]. Therefore, half of the possible rules for 1nCA are totalistic. The sum n of
the neighborhood cells is computed n = ci + n

(t)
ci and 0 ≤ n ≤ 2. The following rules

are totalistic:

Rule 0* f(n) = 0 Rule 8* f(n) =

⎧⎨
⎩

0 if n = 0
0 if n = 1
1 if n = 2

Rule 1* f(n) =

⎧⎨
⎩

1 if n = 0
0 if n = 1
0 if n = 2

Rule 9* f(n) =

⎧⎨
⎩

1 if n = 0
0 if n = 1
1 if n = 2

Rule 6* f(n) =

⎧⎨
⎩

0 if n = 0
1 if n = 1
0 if n = 2

Rule 14* f(n) =

⎧⎨
⎩

0 if n = 0
1 if n = 1
1 if n = 2

Rule 7* f(n) =

⎧⎨
⎩

1 if n = 0
1 if n = 1
0 if n = 2

Rule 15* f(n) = 1

3.2 Neighbor-Independent and Self-Independent

A rule is Neighbor-Independent if the value of a cell depends only on its previous
value and not on the value of the neighbors. Formally, a rule is Neighbor-Independent
if ∀s ∈ S, f(s, 0) = f(s, 1) so, according to the definition of the transaction function,
a rule is Neighbor-Independent if β0 = β1, β2 = β3.

A rule is Self-Independent if the value of a cell depends only on the value of the
neighbors and not on its previous value. Formally, a rule is Self-Independent if ∀s ∈
S, f(0, s) = f(1, s) so, according to the definition of the transaction function, a rule is
Self-Independent if β0 = β2, β1 = β3.

3.3 λ-parameter

An even cruder piece of information about a rule is the number of non-quiescent outputs
in a rule-table. For the One Neighbor Binary Cellular Automata, this parameter is equal

to the number of β parameters that are equal to one and can be calculated as c =
3∑

i=0

βi.

Langton [12] proposed the so called λ-parameter as an order-chaos parameter for
Cellular Automata. This parameter measures the density of non-quiescent (not zero)
outputs in a rule-table. For the One Neighbor Binary Cellular Automata the λ-parameter

can be calculated as: λ =
c

kn
=

1
4

3∑
i=0

βi where k is the number of states and n is

the neighborhood size. λ varies between 0 (order) to 0.5 (chaos) to 1 (order). As λ is
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increased from 0 to 0.5 (or decreased from 1 to 0.5), the automata move from having
the most homogeneous rule tables to having the most heterogeneous.

Langton presented evidence that there is some correlation between the λ parameter
and the behavior of an “average” Cellular Automata on an “average” initial configura-
tion [12]. Behavior was characterized in terms of quantities such as single-site entropy,
two-site mutual information, difference-pattern spreading rate, and average transient
length. Generally the correlation is quite good for very low and very high λ values,
which predict fixed-point or short-period behavior. However, for intermediate λ values,
there is a large degree of variation in behavior [13].

3.4 Sensitivity

[14,15] proposed the sensitivity parameter μ, motivated by the observation that the
Wolfram classes are characterized by its sensitivity to changes in the state of a unique
cell of the neighborhood of the transition rule.

Sensitivity is defined as the number of changes in the outputs of the transition rule,
caused by changing the state of each cell of the neighborhood, one cell at a time, over all

possible neighborhoods of the rule being considered: μ = 1
nm

∑
n

m∑
j=1

δf

δsj
where m is

the number of cells in the neighborhood and n is the number of possible neighborhoods
in the rule table. For 1 Neighbor Cellular Automata, m = 2, and n = 2m = 4. The
Boolean derivate for Cellular Automata [16] δf

δsj
is equal to 1 if f(s1, . . . , sj , . . .) �=

f(s1, . . . ,¬sj , . . .), otherwise is equal to 0.
The sensitivity parameter takes on three different values: 0, 0.5, and 1. The sensitivity

parameter helps to relatively discriminate null and chaotic behaviors: the null behavior
happens in rules with low sensitivity and the chaotic behavior happens in rules with
high sensitivity. Fixed-point and periodic behaviors are concentrated around 0.5.

3.5 Rule Density

The Rule density is a simply parameter introduced to describe the rules behavior. The

rule density, Rρ, is computed as Rρ = (λ − 1
2 ) 2(β3−β0) +

1
2

.

Roughly speaking, rule density indicates the average fraction of sites whose value
is one in the rule dynamic evolution. The rule density value is comprised between zero
and one. A value of zero indicated that a rule converges (for most of the initial configu-
rations) to zero state in all the cells, a value of one indicated a convergence to one.

3.6 Rules Symmetries

One means of verification of the consistence of the rule density parameter (and also the
other parameters) is the use of symmetries: if two rules are conjugate, the rule density
of one rule is equals to 1 − Rρ of the other rule.

In [17] the author defines the reflected, conjugate and reflected conjugate symme-
tries for the Elementary Cellular Automata. The only possible symmetry for the 1nCA
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Table 1. The rules divided according to the symmetries. The value of rule density is reported for
each rule. The classes marked with T are formed by totalistic rules, N by Neighbor-Independent
rules, and S by Self-Independent rules.

Class 0�TNS : Rule 0� (Rρ = 0) Rule 15� (Rρ = 1)
Class 1�T : Rule 1� (Rρ = 0.375) Rule 7� (Rρ = 0.625)
Class 2� : Rule 2� (Rρ = 0.25) Rule 11� (Rρ = 0.75)
Class 3�N : Rule 3� (Rρ = 0.5)
Class 4� : Rule 4� (Rρ = 0.25) Rule 13� (Rρ = 0.75)
Class 5�S : Rule 5� (Rρ = 0.5)
Class 6�T : Rule 6� (Rρ = 0.5) Rule 9� (Rρ = 0.5)
Class 8�T : Rule 8� (Rρ = 0) Rule 14� (Rρ = 1)
Class 10�S : Rule 10� (Rρ = 0.5)
Class 12�N : Rule 12� (Rρ = 0.5)

is when f∗, the conjugate rule of f , is defined as ∀(ci, nci) ∈ S2, f∗(ci, nci) =
f(¬cl,¬nci) where ¬ denotes the operation of changing the zeros into ones and ones
into zeros. The β∗ parameters of the conjugate rule are defined as β∗

3 = ¬β0; β∗
2 =

¬β1; β∗
1 = ¬β2; β∗

0 = ¬β3.
We identified 6 classes of rules, shown in Table 1, according to the symmetries: we

can group in one class all the rules that are symmetric (reflected, conjugated or reflected
conjugated). The classes are named according to the lowest member index. Each class
is formed by totalistic or non-totalistic rules.

This kind of classification of the One Neighbor Binary Cellular Automata is impor-
tant because we can restrict the study of the dynamic behavior to only one member of
each class and the behavior of the other members can be simply inferred according to
the symmetric relations.

4 1nCA Spatiotemporal Patterns

In this section we present the effects of several update schemes on 1nCA automata
dynamic evolutions. In Figure 1 the time evolutions of all the 16 rules according with
synchronous update scheme and periodic boundaries conditions, starting from an initial
random configuration of 60 cells. As shown in the following sections, the different
update schemes produce tremendous effects on the several automata.

The tested the following update schemes on all the 1nCA rules:

– Synchronous
– Random Cyclic
– Equal Frequency Clocked
– Random Order
– Random Independent

4.1 Class 6�T

In this paragraph, we present the observation results for the Class 6*, as an example of
dynamic evolution. The rules of this class are Rule 6* (Rρ = 0.5, λ = 0.5, μ = 1) and
Rule 9* (Rρ = 0.5, λ = 0.5, μ = 1). The rules of this class are Chaotic: these rules
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Rule 0� (Class 0�TNS) Rule 1� (Class 1�T) Rule 2� (Class 2�) Rule 3� (Class 3�N)
Rρ = 0 Rρ = 0.375 Rρ = 0.25 Rρ = 0.5

λ = 0, μ = 0 λ = 0.25, μ = 0.5 λ = 0.25, μ = 0.5 λ = 0.5, μ = 0.5

Rule 4� (Class 4�) Rule 5� (Class 5�TS) Rule 6� (Class 6�T) Rule 7� (Class 1�T)
Rρ = 0.25 Rρ = 0.5 Rρ = 0.5 Rρ = 0.625

λ = 0.25, μ = 0.5 λ = 0.5, μ = 0.5 λ = 0.5, μ = 1 λ = 0.75, μ = 0.5

Rule 8� (Class 8�T) Rule 9� (Class 6�T) Rule 10� (Class 10�S) Rule 11� (Class 2�)
Rρ = 0 Rρ = 0.5 Rρ = 0.5 Rρ = 0.75

λ = 0.25, μ = 0.5 λ = 0.5, μ = 1 λ = 0.5, μ = 0.5 λ = 0.75, μ = 0.5

Rule 12� (Class 12�N) Rule 13� (Class 4�) Rule 14� (Class 8�T) Rule 15� (Class 0�T)
Rρ = 0.5 Rρ = 0.75 Rρ = 1 Rρ = 1

λ = 0.5, μ = 0.5 λ = 0.75, μ = 0.5 λ = 0.75, μ = 0.5 λ = 1, μ = 0

Fig. 1. 60 steps of the time evolution of all the 16 One Neighbor Binary Cellular Automata with
the default synchronous update scheme and periodic boundaries conditions starting from an initial
random configuration of 60 cells
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Table 2. Classification summary

Rule Bin Wolfram Li-Packard Symmetry Tot. Ind. λ Rρ μ
Class Class Class

0� 0000 W1 Null 0� T NS 0 0 0
1� 0001 W2 Two-Cycle 1� T 0.25 0.375 0.5
2� 0010 W2 Two-Cycle 2� 0.25 0.25 0.5
3� 0011 W2 Two-Cycle 3� N 0.5 0.5 0.5
4� 0100 W1 Fixed-Point 4� 0.25 0.25 0.5
5� 0101 W2 Two-Cycle 5� S 0.5 0.5 0.5
6� 0110 W3 Chaotic 6� T 0.5 0.5 1
7� 0111 W2 Two-Cycle 1� T 0.75 0.625 0.5
8� 1000 W1 Null 8� T 0.25 0 0.5
9� 1001 W3 Chaotic 6� T 0.5 0.5 1
10� 1010 W2 Two-Cycle 10� S 0.5 0.5 0.5
11� 1011 W2 Two-Cycle 2� 0.75 0.75 0.5
12� 1100 W2 Fixed-Point 12� N 0.5 0.5 0.5
13� 1101 W2 Fixed-Point 4� 0.75 0.75 0.5
14� 1110 W1 Null 8� T 0.75 1 0.5
15� 1111 W1 Null 0� T NS 1 1 0

Synchronous Random Equal Frequency Random Random
Cyclic Clocked Order Idependent

Fig. 2. Time space diagrams of Rule 6� using different update schemes starting from a single
seed

are characterized by the exponential divergence of its cycle length with the system size,
and for the instability with respect to perturbations. If the number of cells is finite, for
the Synchronous, Random Cyclic, and Equal Frequency Clocked schemes, the evolution
eventually falls into a cycle (with period p > 1) or a fixed point (p = 1). The configura-
tion 0 is the fixed point of the Rule 6*, the configuration 1 is the fixed point of the Rule
9*. These configurations are fixed points also using the Random update schemes.

Changing update scheme has dramatic effect on the rule of this class. As shown
in Figure 2, with the Synchronous update scheme, the Rule 6* produces a dynamic
evolution similar to the Sierpinski Triangle fractal. This typical shape is not present
with any of the other update schemes.

Moreover if the automaton has periodic boundaries conditions and the number of
cells is a power of two, starting from an initial configuration, the evolution of the syn-
chronous automata eventually reaches the fixed point. The automata with the other up-
date schemes does not have this behavior.
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5 Conclusions and Future Developments

The paper has presented a discussion on asynchronicity in CA models, comparing dif-
ferent types of update scheme and proposing an ontology to classify them. The implica-
tions of the different update schemes have been presented by introducing a very simple
CA based model and testing it adopting different update schemes. Future developments
of this work, in the vein of [18], are aimed at evaluating the possibility to define asyn-
chronous models in which some global dynamic properties are preserved even adopting
different asynchronous update schemes.
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Abstract. A method of constructing asynchronous cellular automata
(ACA) as a parallel composition of two interacting ACA is presented.
The resulting ACA is intended to simulate a process with more than
one species being involved in it. Two cases of such a composition are
considered: (1) when one ACA is functioning independently affecting
the evolution of the other, and (2) when both ACA evolute interacting
at each iteration.

1 Introduction

In spite of the fact that physical-chemical spatial processes are asynchronous
by nature, the majority of mathematical models intended for simulating them
are synchronous. This contradiction exists both in traditional continuous math-
ematics and in cellular automata (CA). Three main reasons of synchronous CA
predominance are as follows: 1) the original von-Neumann’s CA is a synchronous
one; 2) synchronous mode corresponds both to numerical analysis principle and
to hardware mode of operation; 3) synchronous computation process is more
deterministic, and, hence, easier for programming and parallel implementing.

Recently, the scientific interest has been moved towards nonlinear self orga-
nizing processes, where two or more species are involved. Most of them deal with
synchronous CA, e.g. biological examples implicitly given in [1,2] and physical
and chemical complex phenomena studied in [3]. To eliminate the discrepancy
between synchronous models and asynchronous behavior of real life phenomena
a method for constructing an ACA as a parallel composition of two (or more)
ones, each for one species, is presented.

The paper contains a brief description of the method, and illustrates it by two
examples: one way composition of pattern formation on heated surface (one-way
composition), and prey predatory interactions (two-way interaction). The paper
concludes by some considerations about the results and future work.
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2 Parallel ACA Composition Method

In [4] a CA-model of complex phenomenon, where several species are involved, is
classified as a parallel CA composition. It suggests functioning of n interacting
CA, each simulating the evolution of a corresponding species. For clearness, and
aiming at asynchronous CA investigation, the composition of two ACA ℵ1 and ℵ2

is further considered. Each ACA is determined by three sets: ℵk = 〈Ak, Xk, Θk〉,
k = 1, 2, where Ak is a state alphabet, Xk - is a set of cell names, and Θk is
a local operator. The alphabets A1 and A2 may be different and of any type
(Boolean, real, symbolic). Between X1 = {xi1}, and X2 = {xi2}, i = 1, 2 . . . , M ,
there exists an one-to-one correspondence ξ, such that xi2 = ξ(xi1 ), and xi1 =
ξ−1(xi2 ). For simplicity, in the expressions valid for both ACA components,
indices indicating ACA numbers are further omitted. In the sets Xk, k = 1, 2, the
following templates are defined: Tk(xi) = {xjk

: jk = 1, . . . , q}, Tk(xi) ∈ Xk, and
Sk(xi) = {xj1 : j1 = 1, . . . , s}∪{xj2 : j2 = 1, . . . , m}, Sk(xi) ∈ X1∪X2, xjk

being
cells in the close vicinity of xik

, k = 1, 2. Each cell xi at any moment t is endowed
with a state vi(t) ∈ A. The array of all cells states Ω(t) = {vi(t) : i = 1, . . . , |X |}
is a global configuration.

The two ACA are functioning in parallel, Θ1 being applied to the cells of
Ω1, and Θ2 – to the cells of Ω2. The application of Θk, k = 1, 2, to a cell
xi ∈ Xk replaces the states in its neighborhood Tk(xi) ∈ Xk by the values v′j ,
(j = 1, . . . , q) of transition functions fkj (Vk(xi)), where Vk(xi) is a set of states
in the cells of Sk(xi) ∈ X1 ∪X2. Functioning of the composed ACA proceeds by
repeating the following steps: (1) a cell name xi ∈ X1 is chosen randomly, (2)
local operator Θ1 is applied to the chosen cell, (3) a cell name xi ∈ X2 is chosen
randomly, (4) local operator Θ2 is applied to the chosen cell. The above steps are
repeated until the simulation terminates either when it achieves a stable state
or when the the prescribed number of iterations T is exhausted.

3 One Way Parallel Composition of Asynchronous CA

One-way composition suggests ℵ1 and ℵ2 playing different roles. Let ℵ1 =
〈A1, X1, Θ1〉 represent the process under investigation, and ℵ2 = 〈A2, X2, Θ2〉
operate autonomously playing a controlling role. Hence, S1(x1) ∈ X1 ∪ X2,
S2(x2) ∈ X2.

Example 1. Pattern formation process on an unevenly heated surface is simu-
lated by a composition of two ACA: ℵv = 〈Av, Xv, θv〉, and ℵu = 〈Au, Xu, θu〉,
where Av = Au = A = {0, 1} and |Xv| = |Xu| = {(i, j) : i, j = 0, . . . , 300}, sat-
isfying (1). ACA ℵv simulates heat propagation acting as a naive diffusion CA
given in [5]. Initial temperature distribution is represented as Ωv(0) (Fig.1a).
Θv performs the exchange of states between the cell (i, j) and one of its four
neighbors (vk): v0 ↔ vk .

v′0 = vk, if 0.25k < rand < 0.25(k + 1),

v′k =
{

v0 if 0.25k < rand < 0.25(k + 1),
vk otherwise.

k = 0, . . . , 3. (1)
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Fig. 1. Initial state Ωv(0) − (a), and three snapshots of the evolution of ℵu with t=2
(b), t=20 (c), t=150 (d)

ACA ℵu, simulates pattern formation process. Ωu(0) has randomly distributes
”ones” with the mean density 〈u〉 = 0.5. Θu changes the state of a cell (i, j)
according to the transition function which depends on states of cells of Sv(i, j)∪
Su(i, j), where

Sv(i, j) = Su(i, j) = {(i + g, j + h) : g, h = −3, . . . , 3}. (2)

u′
0 =

{
1, if

∑3
g,h=−3 wghui+g,j+h > 0.1

0, otherwise,
,

wgh =
{

1, if |g| ≤ 1 & |h| ≤ 1,
−〈vi+g,j+h〉 otherwise. , where 〈vα,β〉 = (2r + 1)−2

10∑
a,b=−10

vα+a,β+b.

4 Two Way Parallel Composition of Asynchronous CA

A two-way composition is intended for simulation two interdependent processes.
Hence, both ACA have local operators defined on subsets from both cellular
arrays.

Example 2. On a certain area there are two species interpreted as predator and
prey. If there is enough of prey for predatory to eat, predator density increases
with the probability which depends on satiated predator density. In case of food
shortage predator density diminishes. Prey always attempts to propagate. Both
species diffuse. Predator being more agile is characterized by diffusion coefficient
much larger that that of prey (dv >> du). ACA ℵv = 〈Av, Xv, Θv〉 stands
for predator, ℵu = 〈Au, Xu, Θu〉 — for prey. Local operators Θv and Θu are
sequential compositions of two local operators: 1) θdv and θdu simulate diffusion
using transition function (1) which are applied with the probabilities pu(du)
and pv(dv), respectively; 2) θbv and θbu simulate predator and prey behavior.
In their transition functions the templates Tv(i, j) = (i, j)v, Tu(i, j) = (i, j)u,
Sv(i, j) and Su(i, j) given by (2) are used.

The predator transition function computes the next state v′0(i, j) as follows:

v′0(i, j) =
{

0, if U(i, j) > V (i, j) & (rand) < pv→0,
1, if V (i, j) > U(i, j) & (rand) < pv→1,

(3)
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where V (i, j) and U(i, j) are sums of states in the cells of Sv(i, j) and Su(i, j),
respectively. The probabilities pv→0 and pv→1 are computed as follows

pv→0 = (V (i, j) − U(i, j))/V (i, j), if V (i, j) > U(i, j),
pv→1 = 0.5V (i, j)/|Sv|(1 − V (i, j)/|Sv|), if U(i, j) > V (i, j).

The prey transition function of θbv is similar to (3), differing in the probabilities
pu→0 and pu→1.

Fig. 2. Three snapshots of the evolution of the predator ACA

The important thing is that the composed ACA is very stable. All initial con-
figurations having any area (sometimes very small) with nonzero species densities
of both species tend to the same stable pattern.

5 Conclusions

Parallel composition method of asynchronous cellular automata is presented.
Two particular cases are considered in detail and experimentally tested: one-way
composition allows to introduce a controlling effect in the evolution of a process
under simulation; two-way composition allows to construct ACA, simulating
self organizing behavior. The results allow to hope that the approach might be
helpful to create some techniques for constructing ACA when some behavioral
properties of its evolution are given.
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Abstract. Overview and experimental comparative study of parallel al-
gorithms of asynchronous cellular automata simulation is presented. The
algorithms are tested for the model of physicochemical process of sur-
face CO + O2 reaction over the supported Pd nanoparticles on different
parallel computers. For testing we use shared memory computers, dis-
tributed memory computers (i.e. clusters), and graphical processing unit.
Characterization of these algorithms in respect of methods of parallelism
maintenance is given.

1 Introduction

Asynchronous cellular automata (ACA) are used for simulation of physical and
chemical processes on molecular level, for example, to study oscillatory chemical
surface reactions [1,2], absorption, sublimation and diffusion of atoms in the
epitaxial growth processes [3]. Simulation of natural processes requires huge
cellular space and millions of iterative steps for obtaining the real scene of the
process. Therefore, it requires a lot of computing power. Unfortunately, ACA
can not be parallelized so easily as synchronous cellular automata (SCA). As
distinct to SCA, ACA functioning is a sequential application of transition rule
to randomly selected cells. The cells are selected with equal probabilities and
irrespective of the process history.

Parallelization of the ACA is performed by domain decomposition method:
each process hosts its own domain of cells and stores the copies of boundary
cells of neighboring processes. A parallel algorithm simulation should preserve
the behavioral properties of ACA: Independence, Fairness, Correctness, and
Efficiency. Independence means independent selection of cells during simula-
tion. Fairness means that different cells are selected with equal probabilities.
Correctness means deadlock-absence and coherence of boundary cell states and
corresponding copies in different processes. Efficiency implies that Tk is less
then T1 for some k. Here Tk is the total time of parallel algorithm execution on
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k processors, and T1 is the total time of sequential algorithm execution on one
processor.

There are several parallel algorithms of ACA simulation on computers with
different architectures. In [4] an algorithm suitable for shared memory comput-
ers only is proposed. Parallel algorithms for distributed memory computers are
presented in [5,6]. In addition, [7] and [8] describe a practical approach to paral-
lel simulation of ACA. Where the given ACA is transformed into a synchronous
one, called block-synchronous cellular automata (BSCA), that approximates its
evolution and also provides easy parallelization.

This paper presents comparative study of the mentioned above parallel algo-
rithms and their efficiency on computers with different architectures. Section 2
gives a formal definition of ACA. Section 3 gives main ideas of the mentioned
algorithms and briefly characterizes them in respect of four properties given
above. In section 4 the following parallel computer systems are overviewed:
shared memory computers, distributed memory computers (i.e. clusters), and
graphical processing unit (GPU) supporting CUDA [9]. These systems are used
for testing implementations of the mentioned algorithms. Section 5 describes an
ACA model of physicochemical process of surface CO+O2 reaction over the sup-
ported Pd nanoparticles [2]. Also this section presents results of testing of the
mentioned parallel algorithms implemented for this model on different parallel
architectures. All tested combinations of computer architectures and parallel al-
gorithm implementations are presented at Table 1. We do not present results for
the algorithm given in [5] as far as additional costs of the parallel computations
maintaining are too large for the model under consideration.

Table 1. Tested combinations of computer architectures and parallel algorithm imple-
mentations

Shared memory Distributed memory Graphical processing unit

[4] + – –
[6] + + –

[7,8] + + +

2 Asynchronous Cellular Automata

Asynchronous cellular automaton is specified by the following tuple:

ACA = 〈Zd, A, Θ〉,

where Zd is a finite set of cell coordinates, and A is an alphabet, i.e. a finite set
of cell states, and Θ is a transition rule.

Further we use a two dimensional rectangular space Z2:

Z2 = {(i, j) | 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny}
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A pair (x, a) ∈ Zd × A is called a cell, where a ∈ A is a state of the cell
and x ∈ Zd are its coordinates. Set of cells Ω = {(xi, ai)} ⊂ Zd × A is called a
cellular array if there does not exist a pair of cells with equal coordinates and
{x | (x, a) ∈ Ω} = Zd. Since between the cells in a cellular array and their
coordinates there exists a one-to-one correspondence, we will further identify
each cell with its coordinates.

The transition rule Θ is a probabilistic function:

Θ : A|T | → A|T |

Where the template T is a set of naming functions φi : Z2 → Z2, T =
{φ1, φ2, . . . , φ|T |}. The template determines a neighborhood of a cell x :

T (x) = {φ1(x), φ2(x), . . . , φ|T |(x)}.

Further we use the following templates:

T13(x) = {x + v0,x + v1, . . . ,x + v12}

T5(x) = {x + v0,x + v1, . . . ,x + v4}
T1(x) = {x + v0}

V = {v0,v1, . . . ,v12} =

{(0, 0), (0, 1), (1, 0), (0,−1), (−1, 0),

(1, 1), (1,−1), (−1, 1), (−1,−1), (0, 2), (2, 0), (0,−2), (−2, 0)}
An application of the transition rule to a cell x results in updating neighboring

cells T (x) with new states Θ(T (x)).
As usual the transition rule can be expressed as a substitution or a as compo-

sition of several transition rules. The most used rules of composition are random
execution (R), sequential execution (S), and randomly ordered sequential execu-
tion (RS). These rules can be given by

ΘR = R(Θ1, p1; Θ2, p2; . . . , Θn, pn) (1)

Θ′
R = R(Θ1, Θ2, . . .Θn) (2)

ΘS = S(Θ1, Θ2, . . .Θn) (3)

ΘRS = RS(Θ1, Θ2, . . .Θn) (4)

TΘR = TΘ′
R

= TΘS = TΘRS =
n⋃

i=0

TΘi (5)

The result of ΘR application to x coincides with result of Θi application to x
with probability pi. If probabilities pi are omitted (2), then they are equal to
1/n. The result of ΘS application to x coincides with sequential applications of
Θ1, Θ2, . . . , Θn to x. The result of ΘRS application to x coincides with sequential
applications of randomly ordered Θ1, Θ2, . . . , Θn to x.
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Elementary transition rule can be written as a substitution in the following
form:

Θsub : {a1, a2, . . . , an}
p−→ {a′

1, a
′
2, . . . , a

′
n}. (6)

Application of Θsub to a cell x results in replacing the states of the cells TΘsub
(x)

with probability p. Here probability p and states a′
i can be functions of current

states, p = p(a1, a2, . . . , an), a′
i = fi(a1, a2, . . . , an).

An ACA simulation process is split into iterations. An iteration comprises
|Z2| = Nx · Ny transition rule applications to randomly chosen cells.

3 Parallel Algorithms

In papers [4,5] ACA is defined as a discrete event model that evolves in contin-
uous time. Transition rule applications at different cells occur asynchronously
at random times. These applications form a Poisson process for each cell. For
different cells these Poisson processes are independent, and the application rate
is the same for each cell. Parallelization of the ACA model is performed by do-
main decomposition: each process hosts its own domain of cells and the copies of
boundary cells of neighboring processes. For correct simulation of Poisson process
for each cell, every computing process controls its own local time. The process’
local time is the next time of transition rule application to a newly selected cell
from its domain. A process increments its own local time by an exponentially
distributed pseudorandom number after each transition rule application.

In [4] an algorithm suitable for shared memory computers is proposed. Each
process repeats the following steps while its own local time is less than predefined
Tmax: (1) selects a random cell from its domain, (2) waits for the situation when
minimal local time of neighboring processes is greater than its own local time
for the cells belonging to the domain boundary, (3) applies transition rule to
the cell, and (4) increments its own local time according to Poisson distribution.
Independence and Fairness of the algorithm are provided by independence and
fairness of random cell selection from the domain and the way of local time
incrementing. Correctness is provided by the synchronization based on domain’s
local time briefly described in step (2). Efficiency is provided by the property
that boundary cells are selected infrequently in large domains.

In [5] a modified Time Warp algorithm is presented. Time Warp [10] is an
optimistic parallel algorithm for simulation of any discrete event model on dis-
tributed memory computers. The main idea of the parallel Time Warp algorithm
is as follows. In contrast to the previous algorithm, application of the transition
rule and computing new local time are performed without waiting for neighbor-
ing processes (each process “hopes” that neighboring processes will not change
boundary cell states). If a process changes a boundary cell state, then it sends
a message to its neighbors called a positive message. When a process receives
a positive message “from the future” (i.e., its own local time is less than that
of the sender) it saves the message for the future processing. A situation when
process receives a positive message “from the past” is called causality error. In
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this situation a recovery mechanism should be initiated. Recovery from the pre-
maturely executed steps results in two things to be rolled back: the cellular array
and the messages sent to the other processes. Rolling back the cellular array is
accomplished by periodically saving updated cell states and restoring boundary
cell states valid for the rolled back local time. Rolling back previously sent posi-
tive messages is accomplished by sending anti-messages. If a process receives an
anti-message that corresponds to an unprocessed positive message, then these
two messages annihilate each other and the process proceeds. If there arrives an
anti-message that corresponds to a positive message already processed, then the
process has made an error and is to be also rolled back. A consequence of the
recovery mechanism is that more anti-messages can be sent to other processes re-
cursively. Independence and Fairness of the algorithm are provided in the same
way as in the previous algorithm. Correctness is provided by recovery mechanism
from causality errors (for detail see [5]). In few words, Efficiency is provided by
optimistic behavior of processes. However, there are some costs for saving the
history of message sendings and updatings of boundary cell states. If the costs
are large (with respect to effective work), then efficiency of the algorithm de-
creases. Also efficiency significantly depends on the following two parameters of
the transition rule [5]: amount of work to be performed for the rule computing
and average number of actually changed cell states after application of the rule.

In [6] an algorithm suitable for distributed memory computers is presented.
ACA is defined as described in Section 2. Let us consider a sequence of ran-
domly selected coordinates X = x1,x2, . . . ,xn for an iteration. According to
the decomposition of the cellular array into domains d1, d2, . . . , dp, we can di-
vide the sequence X into 2p parts: for each domain dk we take its internal Ik and
boundary Bk subsequences. The subsequences Ik and Bk can be formed by use
of uniform, exponential, and binomial pseudorandom number generators. The
algorithm is based on the stochastic properties of Ik and Bk, and on planning
the order of interactions between processes. The main idea of the parallel algo-
rithm is as follows. Firstly, a process k (hosting a domain dk) forms the pair
(Ik, Bk) independently of other processes. Secondly, each process avoids unnec-
essary synchronizations because it is informed about neighbors’ subsequences
Bk′ . It means that the process waits only for those new boundary cell states
that will be actually used by it. Note that in the first [4] algorithm process has
to wait in any case. Independence and Fairness of the algorithm are provided
by the method in which Ik and Bk are formed, for detail see [6]. Correctness
is provided by means of synchronization based on Bk. Efficiency is provided by
avoiding of unnecessary synchronizations.

In [7,8] a practical analogue of ACA is described. This model is called Block-
Synchronous Cellular Automata due to the ways of asynchronism reduction.
Iteration of BSCA is a sequence of m stages. On each stage the transition
rule is synchronously applied to all cells from a randomly selected set Si ⊂ Ω,
where {S1, S2, . . . , Sm} is a partitioning of cellular array Ω with the following
properties:
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m⋃
i=1

Si = Ω (7)

∀i ∀j : Si ∩ Sj = ∅ (8)

∀i ∀j : |Si| = |Sj| (9)

∀i ∀a ∈ Si ∀b ∈ Si : T (a) ∩ T (b) = ∅ (10)

Such a reduction of asynchronism (at the expense of Independence) results in
very simple parallel algorithm. In this algorithm processes have to synchronize
each with other (send and receive new boundary cell states) only between stages.
High efficiency of the algorithm is provided by rare process synchronizations.
Correctness and Fairness are provided by properties (10) and (7-9), respectively.

4 Computers’ Architecture Overview

For testing the algorithms given above, we use computers with three types of
architecture: multicores and multiprocessors with shared memory, a cluster with
distributed memory and graphical processing unit (GPU). Parameters of com-
puters with shared memory Core-i7 and SMP-8 are given at the Table 2.

Table 2. Multicores’ and multiprocessors’ parameters

Processors GHz Total cores Memory controller

Core-i7 1×Intel Core i7 2.6 4 integrated
SMP-8 2×Intel Xeon 5140 2.3 8 separate

Cluster MVS-100k consists of SMP-8 nodes connected through Infiniband.
GPU GTX-280 consists of a 240-core processor and 2Gb off-chip global mem-

ory. The cores are grouped in 8-core multiprocessors. Each multiprocessor has
its own 16Kb on-chip shared memory and 32Kb register file. Note, that multi-
processor belongs to SIMD (Single Instruction Multiple Data) class in Flynn’s
taxonomy: at each clock all eight cores perform the same instruction but using
different arguments.

Parallel program intended for running on GTX-280 consists of thousands of
threads grouped in blocks. Each block consists of not more than 512 threads. One
block of threads can be run on one multiprocessor only. But one multiprocessor
can manage up to 8 blocks. Threads of the same block can communicate all to all
through the shared memory of multiprocessor and synchronize. But threads from
different blocks can not communicate and can not synchronize in the same way.

Unfortunately, one can not directly implement parallel algorithms of ACA
simulation mentioned above with exception to BSCA. The reason is in SIMD
architecture of multiprocessor and impossibility of synchronization of threads
belonging to different blocks.
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5 Simulation of Surface Reactions on Palladium

The model of oscillatory dynamics of the CO + O2 reaction over the supported
Pd nanoparticles is described in [2]. This model is a combination of the model
for the CO + O2 reaction over the Pd(110) single crystal [11] and the stochastic
model for the imitating the supported nanoparticle with dynamically changing
shape and surface morphology [12]. The model consists of the following processes:
CO adsorption (Θ1, Θ2, Θ6), CO desorption (Θ3, Θ4, Θ7), O2 adsorption (Θi

9),
CO diffusion (Θi

11, Θ
i
12, Θ

i
13), Pd’s atoms diffusion (Θi

14), subsurface oxygen Oss

formation (Θ5), CO+O and CO+Oss reaction (Θ8, Θ
i
10, Θ

i
15). In terms of ACA

this model can be described as follows.
State a of a cell x is written as [n, α], where n is the number of Pd atoms, n ∈

{0, 1, 2, . . .}, and α is the state of the Pd surface, α ∈ {∅, CO, O, Oss, CO.Oss}.

A = {0, 1, 2, . . .} × {∅, CO, O, Oss, CO.Oss}

Θ = R(Θ1, Θ2, Θ3, Θ4)

Θi = S
(
R
(
Θ1, p1; . . . Θ8, p8; Θi

9, p9; Θi
10, p10; S

(
Θi

11, . . . Θ
i
14

)
, p11

)
Θi

15

)
Θi

15 = RS
(
Θ1,0

15 , . . . , Θ5,0
15 , Θ0,1

15 , . . . , Θ0,5
15 , Θ1,i

15 , . . . , Θ5,i
15 , Θi,1

15 , . . . , Θi,5
15

)
TΘ(x) = TΘi(x) = T13(x)

TΘj (x) = T1(x)

TΘi
j
(x) = T1(x) ∪ T1(x + vi), j = 9, 10, 11, 12, 13

TΘi
j
(x) = T5(x) ∪ T5(x + vi), j = 14, 15

TΘk,m
15

(x) = T1(x + vk) ∪ T1(x + vm)

Θ1 : {[n, ∅]} → {[n, CO]}

Θ2 : {[0, ∅]} → {[0, CO]}

Θ3 : {[n, CO]} → {[n, ∅]}

Θ4 : {[0, CO]} → {[0, ∅]}

Θ5 : {[n, O]} → {[n, Oss]}

Θ6 : {[n, Oss]} → {[n, CO.Oss]}

Θ7 : {[n, CO.Oss]} → {[n, Oss]}

Θ8 : {[n, CO.Oss]} → {[n, ∅]}

Θi
9 : {[n, ∅], [n, ∅]} → {[n, O], [n, O]}

Θi
10 : {[n, CO], [n, Oss]} → {[n, ∅], [n, ∅]}

Θi
11 : {[n, CO], [m, ∅]} → {[n, ∅], [m, CO]}

Θi
12 : {[n, CO], [m, Oss]} →

{[n, ∅], [m, CO.Oss]}

Θi
13 : {[n, CO.Oss], [m, Oss]} →

{[n, Oss], [m, CO.Oss]}

Θi
14 : {[n+1, ∅], a1, . . . , a4, [m, ∅], a6, . . . , a9}

p′
−→ {[n, ∅], a1, . . . , a4, [m+1, ∅], a6, . . . , a9}

Θk,j
15 : {[n, CO], [n, O]} → {[n, ∅], [n, ∅]}
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Here for Θi
14 the states ai are ai = [ni, αi], and the probability p′ is the prob-

ability of actual Pd atom movement, which depends on changing of total energy
of atoms connections ΔE, p′ = exp(−ΔE/kT ). The probabilities pi depend on
rates of processes ki, pi = ki/

∑11
j=1 kj . For concrete values k1, k2, . . . , k11 and

concrete energies of atoms connections see [2].
The algorithm [4] is implemented as a multithreaded program using POSIX

Threads. Each thread controls its own local time and hosts a part of the cellular
array (domain). The algorithm [6] is implemented using MPI (Message Passing
Interface). For sending short messages containing new cell states MPI Bsend
(buffered mode) is used. The algorithm [7,8] is implemented using MPI and
OpenMP. In each SMP-8 node one process with eight threads is executed. Using
of OpenMP reduces the number of actually executed processes and therefore, also
reduces communication costs. For GTX-280 the algorithm [7,8] is implemented
using CUDA [9]. Each thread deals with the neighborhood of a particular cell.
First, it loads states of the neighboring cells to the shared memory. Then the
thread computes new states for the neighborhood. After that the thread puts
new states back to the global memory.
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Fig. 1. Efficiency of the parallel algorithms ((a, d) for [4], (b, e) for [6], and (c, f) for
[7,8]) for Core-i7 (a, b, c) and SMP-8 (d, e, f). Along x-axis are the numbers of used
cores, along y-axis efficiency is shown.
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Fig. 2. Efficiency of the parallel algorithms ((a) for [6], and (b) for [7,8]) for MVS-100k.
Along x-axis are the numbers of used cores, along y-axis efficiency is shown.
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Results of testing on shared memory computers, cluster and GPU are pre-
sented at Fig. 1, Fig. 2, and Table 3, respectively. All tests are performed with
several cellular array sizes (1000× 1000, 2000× 2000, 4000× 4000, 8000× 8000).
As usuall, the efficiency of parallelization is Ep = T1/(pTp).

Table 3. Acceleration of the [7,8] algorithm implemented on GPU in comparison with
that on Core-i7

1000 2000 4000 8000

GTX-280 25 31 34 35

6 Conclusion

Results of testing show that efficiency of the algorithm [4] is high on modern
multicore computers (Core-i7) even for relatively small cellular arrays. The al-
gorithm [6] delivers good efficiency only for large cellular arrays but can be run
on cluster with several nodes. The reason is in additional costs of MPI sendings
and receivings. Further improvement of the algorithm should be focused on mul-
tithread extensions to reduce the costs of communications. The algorithm [7,8]
shows high efficiency for all sizes of cellular array and on all parallel architec-
tures. The reason of such high performance is in reduction of asynchronism (at
the expense of Independence). For some models it is shown [7,8] that such re-
duction does not affect the simulation process. Nevetheless, for each new model
one has to make sure that the model allows such reduction.

Acknowledgment. I would like to thank Dr. O. L. Bandmanand Dr.V. I. Elokhin
for fruitful discussions and advise.
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Abstract. The dynamics group of an asynchronous cellular automaton
(ACA) relates properties of its long term dynamics to the structure of
Coxeter groups. The key mathematical feature connecting these diverse
fields is involutions. Group-theoretic results in the latter domain may
lead to insight about the dynamics in the former, and vice-versa. In
this article, we highlight some central themes and common structures,
and discuss novel approaches to some open and open-ended problems.
We introduce the state automaton of an ACA, and show how the root
automaton of a Coxeter group is essentially part of the state automaton
of a related ACA.

Keywords: Asynchronous cellular automaton, Coxeter group, dynam-
ics group, sequential dynamical system.

1 Introduction

An asynchronous cellular automaton (ACA) is defined in the same manner as a
classical cellular automaton (CA) in all aspects except the evaluation mechanism.
As the name suggests, the maps associated to the vertices (or nodes) are applied
synchronously for a CA, and asynchronously for an ACA. In general, there are
many ways that one can apply maps asynchronously. For example, one may
select a vertex at random according to some probability distribution, apply the
corresponding map, and repeat this procedure. Alternatively, one may select a
fixed permutation over the vertices and apply the maps in the sequence specified
by this permutation. This permutation evaluation process would correspond to
increasing the time by one unit, and would be applied repeatedly to generate
the system dynamics. An important aspect of having a fixed permutation update
sequence is that one obtains a dynamical system. This is not necessarily the case
in the more general situation, such as when the individual states are updated at
random.

The analysis of CAs and ACAs does not have the support that the study
of ODEs has from established fields such as analysis and differential geometry.
As such, a key goal of CA/ACA research is to make connections to existing
mathematical theory. We will consider the class of π-independent ACAs – those
whose periodic points (as a set) are independent of the permutation update se-
quence. While this may seem to be a rather exotic property, we have shown that

S. Bandini et al. (Eds.): ACRI 2010, LNCS 6350, pp. 409–418, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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roughly 40% of the elementary CA rules give rise to π-independent ACAs [8].
Given a π-independent ACA, one can define its dynamics group. This permuta-
tion group on the set of periodic points is a quotient of a Coxeter group, and
it captures the possible long-term dynamics that one can generate by suitable
choices of update sequence. Its structure can answer questions about the exis-
tence and non-existence of periodic orbits of given sizes.

In this paper, we will revisit the notions of Coxeter systems and sequential dy-
namical systems (SDSs). An SDS is a generalization of an ACA (assuming a fixed
update sequence) where the underlying graph is arbitrary, and is not limited to
being a regular lattice or circle (i.e., a one-dimensional torus). We will show how
the word problem for Coxeter groups is related to functional equivalence of SDS
maps. This forms the basis for our next result, on how conjugation of Coxeter
elements corresponds to cycle equivalence of SDS maps, and additionally, how
this extends from conjugacy classes to spectral classes. After defining dynamics
groups and showing how they arise as quotients of Coxeter groups, we show how
key features of mathematical objects in both the fields of SDSs and Coxeter
groups are encoded by finite (or infinite) state automata. We illustrate this by
explicit examples, and then close with a table summarizing these connections.

2 Background

A Coxeter system is a pair (W, S) consisting of a group W generated by a set
S = {s1, . . . , sn} of involutions given by the following presentation

W = 〈s1, . . . , sn | s2
i = 1, (sisj)m(si,sj) = 1〉 ,

where m(si, sj) ≥ 2 for i �= j. Let S∗ be the free monoid over S, and for each
integer m ≥ 0 and distinct generators s, t ∈ S, define

〈s, t〉m = stst · · ·︸ ︷︷ ︸
m

∈ S∗ .

The relation 〈s, t〉m(s,t) = 〈t, s〉m(s,t) is called a braid relation, and is additionally
called a short braid relation if m(s, t) = 2. Note that s and t commute if and
only if m(s, t) = 2. A Coxeter system can be described uniquely by its Coxeter
graph Γ , which has vertex set V = {1, . . . , n} and an edge {i, j} for each non-
commuting pair of generators {si, sj}, with edge label m(si, sj).

Switching to ACAs and SDSs, let Γ be an undirected graph (called the base
graph or dependency graph) with vertex set V = {1, . . . , n}. We equip each vertex
i with a state xi ∈ K where K is a set called the state space, and a vertex function
fi that maps (or updates) xi(t) to xi(t + 1) based on the states of its neighbors
(itself included). Unless explicitly stated otherwise, we will assume that K =
F2 = {0, 1}, which is the most commonly used state space in cellular automata
research. If the vertex functions are applied asynchronously, it is convenient to
encode fi as a Γ -local function Fi : Kn → Kn defined by

Fi(x1, . . . , xn) = (x1, . . . , xi−1, fi(x1, . . . , xn), xi+1, . . . , xn) .
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If fi does not depend on all n states, it may be convenient to omit the fictitious
variables. Given a sequence of local functions and a word w = w1w2 . . . wm ∈ V ∗

called the update sequence, the SDS map Fw is the composition of the local
functions in the order prescribed by w, i.e.,

Fw : Kn −→ Kn , Fw = Fwm ◦ Fwm−1 ◦ · · · ◦ Fw2 ◦ Fw1 .

SDSs represent a generalization of ACAs, which are usually defined over a regular
grid, such as Z or Zn. The following example illustrates some SDS concepts –
see [14] for a more complete treatment.

Example 1. We take Γ = Circ4 as base graph (see Figure 1) and use K =
{0, 1} as the state space. Also, we take all vertex functions to be Boolean
nor-functions given by nor: K3 → K where nor(x, y, z) equals 1 if x = y =
z = 0 and 0 otherwise. In this case we have, for example, F1(x1, x2, x3, x4) =
(nor(x4, x1, x2), x2, x3, x4). Using the update sequence π = 1234, we obtain

F1(0, 0, 0, 0) = (1, 0, 0, 0)
F2 ◦ F1(0, 0, 0, 0) = (1, 0, 0, 0)

F3 ◦ F2 ◦ F1(0, 0, 0, 0) = (1, 0, 1, 0)
F4 ◦ F3 ◦ F2 ◦ F1(0, 0, 0, 0) = (1, 0, 1, 0) ,

and thus Fπ(0, 0, 0, 0) = (1, 0, 1, 0). The phase space of the map Fπ is the directed
graph containing all global state transitions and is shown in Figure 1.

1 2

34

π = 1234

1000
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00011010
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1101

0110 1110
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1100

Fig. 1. The base graph Γ = Circ4 and the phase space of Fπ from Example 1

3 The Word Problem

A fundamental question given any finitely presented group 〈S | R〉, is when do
two words

w = w1w2 · · ·wm , and w′ = w′
1w

′
2 · · ·w′

k

in S∗ yield the same group element? This is the word problem, and it is in gen-
eral undecidable. However, there are many classes of groups for which the word
problem is solvable. A classic result in Coxeter groups, known as Matsumoto’s
theorem [5, Theorem 1.2.2], says that any two reduced expressions for the same
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element differ by braid relations. Matsumoto’s theorem provides an algorithmic
solution to the word problem for Coxeter groups.

There is an analog of the word problem for SDSs. Specifically, given two
update sequences w, w′ ∈ V ∗, when are the corresponding SDS maps

Fw = Fwm ◦ Fwm−1 ◦ · · · ◦ Fw2 ◦ Fw1 , Fw′ = Fw′
k
◦ Fw′

k−1
◦ · · · ◦ Fw′

2
◦ Fw′

1

equal as functions, or equivalently, when do they have identical phase spaces?
This is clearly solvable because there are only finitely many functions Fn

2 → Fn
2 .

However, it would be desirable to solve this problem algorithmically for general
SDSs, without resorting to checking the image of all 2n global states.

4 Equivalences on Dynamics and Acyclic Orientations

In this section, we show how topological conjugation of SDS maps corresponds
to conjugation of elements in a Coxeter group, and how this connection leads
to a coarser equivalence relation when the graph Γ has non-trivial symmetries.
Acyclic orientations are mathematically convenient to capture several types of
equivalences on permutation SDS maps, as well as on Coxeter elements in Cox-
eter groups. A Coxeter element is the product of the generators of S in some
order. Every Coxeter element defines a partial ordering on S, which we can rep-
resent by an acyclic orientation of Γ . Specifically, for a Coxeter element c, define
the orientation (Γ, c) so that edge {i, j} is oriented (i, j) if si appears before sj

in c. It is easy to show that this is well-defined, and that it defines a bijection be-
tween the set Acyc(Γ ) of acyclic orientations of Γ and the set C(W ) of Coxeter
elements of W .

Next, consider conjugating a Coxeter element c = sx1 · · · sxn by the initial
letter s = sx1 , which results in a cyclic shift of the word:

scs = sx1(sx1sx2 · · · sxn)sx1 = sx2sx3 · · · sxnsx1 .

The corresponding acyclic orientations (Γ, c) and (Γ, scs) differ by converting
the source vertex of (Γ, c) into a sink. This source-to-sink conversion generates
an equivalence relation ∼κ on Acyc(Γ ), and it was recently proven (see [4]) that
(Γ, c) ∼κ (Γ, c′) if and only if c and c′ are conjugate. (Note that the “if” direction
is obvious; the “only if” direction is difficult).

Turning to SDSs, let Sn ⊂ V ∗ be the set of words where each vertex appears
precisely once, which we may identify with the permutations of V . Each permu-
tation π ∈ Sn defines a partial ordering on V , and there is a natural map from
Acyc(Γ ) to the set of permutation SDS maps (π is mapped to Fπ). Two finite
dynamical systems φ, ψ : Kn → Kn are said to be cycle equivalent if for some
bijection h : Kn → Kn we have ψ|Per(ψ) ◦h = h ◦φ|Per(φ) , where Per(φ) denotes
the set of periodic states of φ. The following result provides the connection be-
tween κ-equivalence of acyclic orientations and cycle equivalence of permutation
SDS maps.
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Theorem 1 ([12]). If (Γ, π) ∼κ (Γ, σ), then Fπ and Fσ are cycle equivalent.

If the automorphism group Aut(Γ ) is non-trivial, we can say even more. The
group Aut(Γ ) acts on Aut(Γ )/∼κ by γ · [(Γ, π)] = [(Γ, γπ)], which gives rise
to the equivalence relation ∼κ̄ on Aut(Γ )/∼κ. This coarser equivalence relation
also has an interpretation in the settings of both Coxeter groups and SDSs.

If (W, S) is a Coxeter system with |S| = n, let V be an n-dimensional real
vector space with basis {α1, . . . , αn}. Put a symmetric bilinear form B on V ,
defined by B(αi, αj) = − cos

(
π/m(si, sj)

)
. The group W acts on V by

si : v �→ v − 2B(v, αi)αi , (1)

and the set of elements Φ = {wαi | w ∈ W , i = 1, . . . , n} are called roots. This
action is faithful and preserves the bilinear form B. Geometrically, the root siv
is the reflection of v across the hyperplane α⊥

i , and so there is a representation
ρ : W → GL(V), defined on the generators by

ρ : si �−→
(
v

Fi�→ v − 2B(v, αi)αi

)
, (2)

called the standard geometric representation of W (see [1,7]). This allows us to
view elements in W as matrices, and hence we can speak of the characteristic
polynomial of any given w ∈ W .

Now, if (Γ, c) and (Γ, c′) differ by some γ ∈ Aut(Γ ), then ρ(c) and ρ(c′) are
similar as linear transformations. Specifically, they are conjugate in GL(V) by
the permutation matrix Pγ of γ. In this case, we say that c and c′ have the same
spectral class, because ρ(c) and ρ(c′) have the same multiset of eigenvalues.
Clearly, this is a weaker condition than conjugacy, and so all Coxeter elements
in the same κ̄-equivalence class have the same spectral class.

Similarly, in the context of SDSs, if (Γ, π) ∼κ̄ (Γ, σ), then the SDS maps Fπ

and Fσ are cycle equivalent, due to the following argument. If γ ∈ Aut(Γ ), then
the permutations π and γπ give topologically conjugate SDS maps, Fπ and Fγπ.
Strictly speaking, this requires the maps fi to be Aut(Γ )-invariant (see [12]),
a condition which is frequently satisfied in practice, such as when all vertices
of the same degree share the same symmetric function (e.g., logical AND, OR,
Majority, Parity, threshold functions, etc.). Since topologically conjugate maps
are cycle equivalent, our statement follows.

It is worth mentioning the role of the Tutte polynomial here [15]. The Tutte
polynomial of a graph Γ is a 2-variable polynomial TΓ (x, y) that satisfies a re-
currence under edge deletion and contraction, and plays a central role in graph
theory. Many graph counting problems are simply the evaluation of the Tutte
polynomial at some (x0, y0) ∈ Z × Z. For example, |Acyc(Γ )| = TΓ (2, 0) and
|Acyc(Γ )/∼κ| = TΓ (1, 0). Thus, TΓ (2, 0) counts the number of Coxeter elements
in the Coxeter group with Coxeter graph Γ , and it bounds the number of per-
mutation SDS maps in an SDS with dependency graph Γ . This bound is known
to be sharp for certain classes of functions [14]. Similarly, TΓ (1, 0) counts the
number of conjugacy classes of Coxeter elements (see [4,10]), and it bounds the
number of cycle equivalence classes of SDS maps (see [12]).
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5 Groups

A sequence F = (F1, . . . , Fn) of local functions is π-independent if Per(Fπ) =
Per(Fσ) for all π, σ ∈ Sn. Note that this is an equality of sets; we do not assume
anything about the organization of the respective periodic points into periodic
orbits. In this case, each Fi permutes the periodic points, and these permutations
generate the dynamics group of F , denoted DG(F ). Let F ∗

i denote the restriction
of Fi to Per(Fπ). Because Fi only changes the ith coordinate of a state, and since
we assume that K = F2, F ∗

i ◦F ∗
i is the identity function on Per(Fπ). If we define

mij := |F ∗
i ◦ F ∗

j |, then there is a surjection

〈s1, . . . , sn | s2
i = 1, (sisj)mij = 1〉 −→ DG(F ) , (3)

showing that dynamics groups are quotients of Coxeter groups. The particular
homomorphism is determined by adding relations to the presentation of the
Coxeter group, and these relations arise because the state space is F2. Thus,
dynamics groups are in a sense “reflection groups over F2.” An open-ended
research problem is to give an efficient presentation of the dynamics groups of
an SDS based on the functions, i.e., to determine these extra relations.

When the base graph Γ of an SDS is the circular graph Zn, and the local
functions are all identical, the resulting SDS is an elementary ACA. Each local
function Fi takes {xi−1, xi, xi+1} as input, and is completely described by the
following rule table

xi−1xixi+1 111 110 101 100 011 010 001 000
fi(xi−1, xi, xi+1) a7 a6 a5 a4 a3 a2 a1 a0

Clearly, there are 223
= 256 such choices of functions, which can be indexed

by k =
∑

ai2i ∈ {0, . . . , 255}. The corresponding sequence of local functions is
denoted ECAk. In [8], it was shown that ECAk is π-independent for precisely
104 values of k. Moreover, this holds for all n > 3. The dynamics groups of these
104 rules were classified in [11]. Among some of the interesting groups were
DG(ECA60) = SLn(F2) and DG(ECAk) = Zn

2 for k ∈ {28, 29, 51}. Moreover,
other dynamics groups were found computationally to be either the symmetric
or alternating groups, with the size depending on the nth Fibonacci or Lucas
number, leading to a few conjectures.

6 The Root Automaton

The dynamics of all possible SDSs given a sequence of Γ -local functions F =
(F1, . . . , Fn) can be encoded by the state automaton of the sequence. This is
a directed graph Φ with vertex set Kn – the set of global system states, and
directed edges (x, Fi(x)) for each x ∈ Kn and each i ∈ V . Label such an edge
with the index i corresponding to its vertex function; see Figure 2 for an example.
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Fig. 2. The state automaton Φ for the SDS in Example 1. Horizontal/vertical dashed
lines and arrows indicate horizontal/vertical wrap-around, and arrowheads are omitted
from the bidirectional edges for clarity.

The image of a state x ∈ Kn under an SDS map Fπ , where π = π1π2 · · ·πn, is
represented on the state automaton by a path in Φ. Specifically, start at vertex
x and traverse the path

x , Fπ1(x) , Fπ2Fπ1(x) , . . . , Fπn · · ·Fπ2Fπ1(x) = Fπ(x) .

The phase space of Fπ can be easily derived from the state automaton – it is
the graph with vertex set Kn and an edge (x, y) for every directed path from
a state x to y that traverses a path of edges labeled π1, π2, . . . , πn. Note that if
F is π-independent, then DG(F ) acts on Per(F ). In this case, all of the edges
within Per(F ) are bidirectional, and so we may view them as undirected.

This is the SDS analog of the action of W on Φ ⊂ V , as described in (1). Since
V is any n-dimensional vector space, we can identify it with Rn, and assume that
the basis elements are αi = ei, the standard unit normal vectors. This associates
roots with vectors in Rn, and we partially order Φ by ≤ componentwise (z , z′

iff zi ≤ z′i for each i) to get the root poset. It is well-known that for every root,
all non-zero entries have the same sign, thus we have a notion of positive and
negative roots, and the root poset has a positive side Φ+ and a negative side,
Φ−, with Φ = Φ+ ∪ Φ−. The image of si under the geometric representation
from (2) is a linear map Fi : Rn → Rn, where

Fi : (z1, . . . , zn) �−→ (z1, . . . , zi−1, zi +
n∑

j=1

2 cos(π/mi,j)zj , zi+1, . . . , zn) . (4)

To summarize, Fi changes the ith entry of a vector by flipping its sign and then
adding each neighboring state zj weighted by 2 cos(π/mij).

In 1993, Brink and Howlett proved that Coxeter groups are automatic [2], and
soon after, H. Eriksson developed the root automaton [3]. The root automaton
has vertex set Φ and edge set {(z, siz) | z ∈ Φ, si ∈ S}. For convenience, label
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each edge (z, siz) with the corresponding generator si. It is clear that upon
disregarding loops and edge orientations (all edges are bidirectional anyways),
we are left with the Hasse diagram of the root poset. We represent a word
w = sx1sx2 · · · sxm in the root automaton by starting at the unit vector ex1 ∈ Φ+

and traversing the edges labeled sx2 , sx3 , . . . , sxm in sequence. Denote the root
reached in the root poset upon performing these steps by r(W, w). The sequence

ex1 = r(W, sx1) , r(W, sx1sx2) , . . . , r(W, sx1sx2 · · · sxm) = r(W, w) ,

is called the root sequence of w. If r(W, sx1sx2 · · · sxi) is the first negative root
in the root sequence for w, then a shorter expression for w can be obtained by
removing sx1 and sxi . By the exchange property of Coxeter groups (see [1,7]),
every word w ∈ S∗ can be made into a reduced expression by iteratively removing
pairs of letters in this manner. Thus, the root automaton can algorithmically
detect reduced words.

We conclude with an example that illustrates these concepts, and shows how
the root automaton of a Coxeter group is essentially a connected component of
the state automaton of an sequential dynamical system with state space K = R.

Example 2. Let W = H4, which has Coxeter graph as shown in Figure 3, and
presentation (using a, b, c, d instead of s1, s2, s3, s4):

H4 = 〈a, b, c, d | a2, b2, c2, d2, (ab)5, (bc)3, (cd)3, (ac)2, (ad)2, (bd)2〉 .

It is well-known (see [7]) that H4 is a finite group of order 14400, and is the
isometry group of the 120-cell and its dual, the 600-cell, two of the six regular
4-polytopes. Thus, the root poset Φ consists of 14400 roots. A portion of the
root automaton is shown in Figure 4. Recall that the root automaton is built on
top of the root poset – stripping away the self-loops and edge labels leaves the
Hasse diagram of Φ. The dotted-line in Figure 4 shows the boundary between
the positive roots Φ+ and negative roots Φ−. The non-loop edges of the root
automaton are all bidirectional – arrowheads are omitted for clarity.

Consider the word w = abdcabacbca ∈ H4. Starting at ea = (1, 0, 0, 0) (see
Figure 4), and traversing the edges labeled b, d, c, a, b, a, c, b, c, a in sequence, we
see that the first negative root in the root sequence of w is r(W, abdcabacbc).
Therefore, removing the first instance of a and the last instance of c from w
results in bdcabacba, a shorter expression for w. It is easily checked that no matter
where we begin in bdcabacba, the corresponding path in the root automaton
consists of only positive roots. Therefore, bdcabacba is a reduced word in H4.

a b c d

5

Fig. 3. The Coxeter graph Γ of the group W = H4. As is customary, edge labels of 3
are suppressed.
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(−1,0,0,0) (0,−1,0,0) (0,0,−1,0) (0,0,0,−1)

(1,0,0,0) (0,1,0,0) (0,0,1,0) (0,0,0,1)

(1,φ,0,0) (φ,1,0,0) (0,1,1,0) (0,0,1,1)

(1,φ,φ,0) (φ,φ,0,0) (φ,1,1,0) (0,1,1,1)

(1,φ,φ,φ) (φ,φ,φ,0) (φ,φ2,1,0) (φ,1,1,1)
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Fig. 4. Part of the root automaton of the group W = H4. Here, φ = 2 cos(π/5), the
golden ratio. The dotted line separates the positive roots from the negative roots.

7 Summary

This paper presented a collection of results connecting properties of Coxeter
groups and properties of the dynamics of ACAs/SDSs (see Table 1). These newly
established connections provide possible avenues for ACA research. In a larger
setting, we hope that our example linking properties of asynchronous, finite
dynamical systems and group theory can provide inspiration for other approaches
seeking to better understand the dynamics of ACAs through the use of existing
mathematical structures and theory.

Table 1. Summary of the connections between Coxeter groups and SDSs

Coxeter groups Sequential dynamical systems

Graph Γ ←→ Coxeter graph Dependency graph

Acyc(Γ ) ←→ Coxeter elements Permutation SDS maps
w = sπ(1)sπ(2) · · · sπ(n) Fπ = Fπ(n) ◦ · · · ◦ Fπ(2) ◦ Fπ(1).

κ-equiv. ←→ Conjugacy classes Cycle-equivalence classes
of Coxeter elements of SDS maps

κ̄-equiv. ←→ Spectral classes Cycle-equivalence classes
of Coxeter elements of SDS maps (coarser)

Φ ←→ Root poset / automaton State automaton
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Abstract. We study the dynamical behaviour of asynchronous cellu-
lar automata by considering some formal properties of classical cellular
automata and adapting them to the asynchronous case.

1 Introduction

Cellular automata (CA) are a simple formal model for complex systems that is
used in many scientific fields [21,9,10,3,29,25]. Synchronicity is one of the main
features of this model. Indeed, a CA is made of identical finite automata which
at the same (here comes synchronicity) time update their own state by a local
rule on the basis of their current state and those of a fixed set of neighbours.
For recent results on CA dynamics and an up-to-date bibliography see for in-
stance [31,8,28,20,19,14,13,2,11,17,6,16,12,15,1,7].

Although CA have found success in modelling various phenomena, synchronic-
ity may restrict their application on some real problems. In fact, a synchronous
behaviour is a rare event in a real system. This pushed researchers to intro-
duce asynchronism in the model. In the last 20 years, many empirical analy-
ses [4,5,22,32,36,35] have been carried out. They highlighted that the behaviour
of a CA considerably changes when relaxing the synchronicity constraint. This
fact motivated subsequent theoretical studies on asynchronous CA. However,
the few formal analyses of asynchronicity concern either examples [26,27,34] or
peculiar classes [23,24] of probabilistic cellular automata.

In this paper we study a more general setting relaxing the synchronicity con-
straint. There are many possibilities of dealing with the asynchronicity in CA.
Most of them involve probabilistic CA, i.e., the ones in which the updating of
a cell happens with a certain probability p. In this work we consider a fully
asynchronous updating: at each time step the local rule is applied only at one
cell (a situation described by p = 0 in [35]). Indeed, we are interested in study-
ing systems in which the synchronicity assumption of classical CA is completely
overturned: no component is synchronized with any another one.

In classical CA the behaviour of the system is studied by some formal prop-
erties which give important information either on the CA global map (e.g., in-
jectivity, surjectivity) or the CA dynamics (e.g., transitivity, sensitivity to initial
conditions). These notions cannot be directly used for studying asynchronous CA.
In this paper we suitably adapt them to the asynchronous case and we study them.

S. Bandini et al. (Eds.): ACRI 2010, LNCS 6350, pp. 419–428, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



420 L. Manzoni

2 Basic Notions

In this section we briefly recall standard definitions about CA as discrete time
dynamical systems. For all i, j ∈ Z with i ≤ j (resp., i < j), let [i, j] =
{i, i + 1, . . . , j} (resp., [i, j) = {i, i + 1, . . . , j − 1}). Let N+ be the set of pos-
itive integers.

Let A be an alphabet. A configuration is a function from Z to A. The config-
uration set AZ is usually equipped with the metric d defined as follows

∀x, x′ ∈ AZ, d(x, x′) = 2−n, where n = min
{
i ≥ 0 : xi �= x′

i or x−i �= x′
−i

}
.

If A is finite, AZ is a compact, totally disconnected and perfect topological space
(i.e. it is a Cantor space). For any pair i, j ∈ Z, with i ≤ j, and any configuration
x ∈ AZ we denote by x[i,j] the word xi · · ·xj ∈ Aj−i+1.

A 1D CA is a structure 〈A, r, f〉, where A is the set of states or alphabet,
r ∈ N is the radius and f : A2r+1 → A is the local rule of the automaton. The
local rule f induces a global rule F : AZ → AZ defined as follows,

∀x ∈ AZ, ∀i ∈ Z, F (x)i = f(xi−r, . . . , xi+r) .

Note that F is a uniformly continuous map w.r.t. the metric d. For any CA, the
structure 〈AZ, F 〉 is a (discrete time) dynamical system. From now on, for the
sake of simplicity, we identify a CA with the dynamical system induced by itself
or even with its global rule F . A rule f : A2r+1 → A is rightmost (resp., leftmost)
(resp., center) permutive iff ∀u ∈ A2r, ∀b ∈ A, ∃!c ∈ A such that f(uc) = b (resp.,
f(cu) = b) (resp., f(u[1,r]cu[r+1,2r]) = b). Given a CA F , a configuration x ∈ AZ

is an ultimately periodic point for F if there exists p ∈ N+, q ∈ N such that
F p+q(x) = F q(x). If q = 0, then x is a periodic point, i.e., F p(x) = x. If the set
of all periodic points of F is dense in AZ, we say that the CA has dense periodic
orbits (DPO). A CA F is sensitive to initial conditions (or simply sensitive) if
there exists ε > 0 such that for any x ∈ AZ and any δ > 0 there is an element
y ∈ AZ such that d(y, x) < δ and d(Fn(y), Fn(x)) > ε for some n ∈ N. A CA
F is positively expansive if there exists a constant ε > 0 such that for any pair
of distinct elements x, y ∈ AZ we have d(Fn(y), Fn(x)) ≥ ε for some n ∈ N.
Recall that a CA F is (topologically) transitive if for any pair of non-empty open
sets U, V ⊆ AZ there exists an integer n ∈ N such that Fn(U) ∩ V �= ∅. A
configuration x ∈ AZ is an equicontinuity point for F if ∀ε > 0 there exists δ > 0
such that for all y ∈ AZ, d(y, x) < δ implies that ∀n ∈ N, d(Fn(y), Fn(x)) < ε.
A CA is said to be equicontinuous if ∀ε > 0 there exists δ > 0 such that for all
x, y ∈ AZ, d(x, y) < δ implies that ∀n ∈ N, d(Fn(x), Fn(y)) < ε.

3 Asynchronous Cellular Automata

This section introduces asynchronous cellular automata (ACA), surjectivity and
injectivity are extended to the new setting.
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Let f : A2r+1 �→ A be a local rule of radius r. We consider the following
asynchronous updating for f . At each time t the local rule f is applied on one
and only one cell. A sequence (at)t>0 of integers specifies the index at ∈ Z of
the cell which is updated at the time step t > 0.

Definition 1. An ACA is a quadruple (A, f, r, a) where A is a finite alphabet,
f : A2r+1 �→ A is the local rule of radius r ∈ N and a = (at)t>0, with at ∈ Z is
a sequence of cell positions.

Every ACA A = (A, f, r, a) induces a global behaviour described as follows. For
any fixed k ∈ Z, let Fk : AZ �→ AZ be the map such that:

∀x ∈ AZ, ∀i ∈ Z, Fk(x)i =

{
f(xi−r, . . . , xi, . . . , xi+r) if i = k

xi otherwise

For any t ≥ 0, A transforms the generic configuration x ∈ AZ at the time step t
into the configuration Fat(x) at the time step t+1. The dynamics of an ACA is de-
scribed by the family of functions TA = {Id, Fa1 , Fa1◦Fa2 , . . . , Fa1◦· · ·◦Fat , . . .}.
Remark that all the elements from T are a continuous maps w.r.t. d. The orbit of
a configuration x ∈ AZ is the sequence γx = (x, Fa1(x), (Fa1 ◦ Fa2) (x), . . .) as-
sociating with each time step t the configuration γx(t) = (Fa1 ◦ . . . Fat) (x) of the
ACA at that time.

In many situations we are interested in properties that do not depend on the
particular sequence a. In those cases, we will refer to the class C = (A, f, r) of
ACA in which the sequence a is not fixed. We will call C = (A, f, r) uninstanti-
ated ACA such a class C and we will omit the term uninstantiated when it will
be clear by the context.

Injectivity and surjectivity are important properties for classical CA. Their
adaptation to ACA takes into account the whole family of functions {Fk}k∈Z.

Definition 2. An ACA C = (A, f, r), is said to be α-injective if ∀k ∈ N, ∀x, y ∈
AZ, x �= y ⇒ Fk(x) �= Fk(y).

In other words, an uninstantiated ACA is injective if every instantiated ACA
has all the global functions Fk injective.

Definition 3. An ACA C = (A, f, r), is said to be α-surjective if ∀k ∈ N, ∀x ∈
AZ, F−1

k (x) �= ∅.

In other words, an uninstantiated ACA is surjective if every instantiated ACA
has all the global functions Fk surjective.

In classical CA injectivity implies surjectity [33]. A stronger relation holds
between α-injectivity and α-surjectivity:

Proposition 1. Let C = (A, f, r) be an ACA. Then, the following statements
are equivalent: i) C is α-injective. ii) C is α-surjective. iii) f is center permutive.

Proof. i)⇔ii). Fix k ∈ Z. Consider the function h : A2r+1 �→ A2r+1 defined as
h(u) = Fk(x)[k−r,k+r] where x is any configuration such that x[k−r,k+r] = u.
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Then, Fk injective ⇔ h is injective and Fk surjective ⇔ Fk is surjective. Since
the domain and the codomain of h are equal and of finite cardinality h injective
⇔ h is surjective.

i)⇔iii). Suppose that C is α-injective and fix u, v ∈ Ar and b ∈ A. Since h is
injective there exists only one c ∈ A such that h(ucv) = ubv and in particular
f(ucv) = b. Thus f is center permutive. Vice versa, if f is center permutive,
then any block w = ubv ∈ A2r+1 has an unique preimage h−1(w) = ucv for a
certain c ∈ A. -.

Remark 1. Unlike classical CA, ACA defined by a rightmost/leftmost permutive
local rule are not necessarily α-surjective. As an example consider the local rule
f : {0, 1}3 �→ {0, 1} such that f(a, b, c) = a. The rule is leftmost permutive but
not center permutive, hence it is not α-surjective.

4 Dynamical Properties of ACA

The adaptation of CA dynamical properties to ACA needs to take into ac-
count that there are infinite possible updating sequences. We will distinguish
behaviours that can emerge for every sequence from the ones that can only
appear for one particular sequence.

A sequence (st)t∈N is ultimately periodic iff there exists a period n ∈ N+ and
a preperiod q ∈ N such that ∀i ∈ N sp+q+i = sq+i.

The dynamics of an ACA is strictly related to the structure of the updating
sequence. In particular the following property holds.

Proposition 2. Let C = (A, f, r, a) be an ACA. If a is ultimately periodic, then
the orbit γx of every configuration x ∈ AZ is ultimately periodic.

Proof. If the sequence a is ultimately periodic then the set K = {k1, . . . , kn} ⊂ Z
of all the distinct values that appear in a is a finite set. There are at most |A||K|

different configurations in the orbit of a generic x ∈ AZ. We now associate with ev-
ery configuration its time step. Since a is eventually periodic with a certain prepe-
riod q and period n, we can consider only n + q different time steps. The possi-
ble configurations associated with these time steps form a finite set of cardinality
(n + q)|A||K|. So, the dynamics over it has to be ultimately periodic. -.

The classical notion of sensitivity to initial conditions is adapted to both in-
stantiated and uninstantited ACA. Recall that a nonempty family T of maps is
sensitive if there exists ε > 0 such that for any x ∈ AZ and any δ > 0, there is
an element y ∈ AZ such that d(x, y) < δ and d(T (x), T (y)) ≥ ε for some T ∈ T .

Definition 4. An instantiated ACA Ca = (A, f, r, a) is α-sensitive if its family
TCa is sensitive. An uninstantiated ACA C = (A, f, r) is α-sensitive if there exists
a sequence (at)t>0 such that the instantiated ACA Ca = (A, f, r, a) is sensitive.

Remark 2. α-sensitivity means that at least one of the instantiated ACA from
the class C is α-sensitive to initial conditions. Requiring that all the instanti-
ated ACA are α-sensitive is a meaningless condition. Indeed, choose an integer
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k > 0 and consider the sequence a = {k, k, k, . . .}. The orbits of two arbitrary
configurations x and y such that d(x, y) < 2−k cannot separate by a distance
greater than 2−k.

Recall that a nonempty family T of maps is said to be expansive if there exists
a constant ε > 0 such that for every pair of distinct elements x, y ∈ AZ, we have
d(T (x), T (y)) ≥ ε for some T ∈ T .

Definition 5. An instantiated ACA Ca = (A, f, r, a) is α-expansive if its family
TCa is expansive. An uninstantiated ACA C = (A, f, r) is α-expansive if there
exists a sequence a = (at)t>0 such that the instantiated ACA Ca = (A, f, r, a) is
α-expansive.

Like classical CA, α-expansivity implies α-sensitivity.

Proposition 3. Let C = (A, f, r) be an ACA with r > 0. If f is either leftmost-
permutive or rightmost-permutive then C is α-sensitive.

Proof. Suppose that f is rightmost-permutive Set ε = 2−r and define the se-
quence a as a = ( 0︸︷︷︸, 1, 0︸︷︷︸, 2, 1, 0︸ ︷︷ ︸, 3, 2, 1, 0︸ ︷︷ ︸, 4, 3, 2, 1, 0︸ ︷︷ ︸ . . .). Choose an arbitrary

x ∈ AZ and n ∈ N. Let y ∈ AZ with d(x, y) < 2−n and xn+1 �= yn+1. There exists
a first time t1 ∈ N such that at1 + r = n+1. Since f is rightmost-permutive and
γx(t1 − 1)i = γy(t1 − 1)i for i = {−n, . . . , n}, the smaller cell position in which
γx(t1) and γy(t1) differ is n− r + 1. Repeat the previous argument k times with
k =  n+1

r !. In this way, for any 1 ≤ j ≤ k there exists tj such that γx(tj) and
γy(tj) differ in position n − jr + 1 (this is possible since a contains any positive
integer infinitely many times). So, at a certain time tk, the smallest cell position
in which γtk

(x) and γtk
(y) differ will be smaller than r. In other words, there

exists a time tk such that d(γx(tk), γy(tk)) < 2−r = ε.
If f is leftmost permutive the proof is similar by considering the sequence

a′ = (0,−1, 0,−2,−1, 0, . . .). -.

Remark 3. As for classical CA, leftmost/rightmost-permutivity is not a neces-
sary condition for α-sensitivity. For example consider the alphabet A = {0, 1, 2},
the function f : A3 �→ A defined as f(x1, x2, x3) = 0 if x3 = 0, f(x1, x2, x3) = 1
otherwise. The ACA C = (A, f, r, a) where a = (0, 1, 0, 2, 1, 0, . . .) is sensitive
but f is neither leftmost nor rightmost permutive.

Proposition 4. Let C = (A, f, r) be an ACA with r > 0. If f is both leftmost-
permutive and rightmost-permutive then C is α-expansive.

Proof. We show that C is α-expansive with expansivity constant ε = 2−r. We
exhibit a sequence a′′ that interleaves the sequences a and a′ as in the proof
of Proposition 3. This sequence defines and ACA whose dynamics “pushes” the
difference between two arbitrary configurations into the window [−r, r]. Such a
sequence is a′′ = (0, 0, 1, 0,−1, 0, 2, 1, 0,−2,−1, 0, 3, 2, 1, 0, . . .) If the difference
between two configurations is at a positive (resp., negative) cell position, then
the ACA “pushes” it towards the center by the sub-sequence a (resp., a′). -.
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Another interesting dynamical property of CA is transitivity. As with sensitivity
and expansivity, the notion of transitivity can be adapted to ACA. Recall that a
nonempty family T of maps is said to be transitive if for any pair of non-empty
open sets U, V , T (U) ∩ V �= ∅ for some T ∈ T .

Definition 6. An instantiated ACA Ca = (A, f, r, a) is α-transitive if its family
TCa is transitive. An uninstantiated ACA C = (A, f, r) is α-transitive if there
exists a sequence a = (at)t>0 such that the instantiated ACA Ca = (A, f, r, a) is
α-transitive.

Lemma 1. Let C = (A, f, r) be an ACA with r > 0. Let B ⊆ Z be a set of
positions (called tabu set) and i ∈ Z. If f is rightmost-permutive (resp., leftmost-
permutive) and ∃j ∈ Z \ B such that j = i + qr (resp., j = i − qr) for some
q ∈ N+ then: ∀x ∈ AZ, ∀b ∈ A∃a = (a1, a2, . . .) and ∃y ∈ AZ with ∀k ∈ Z \ {j}
xk = yk and such that (

Fa1 ◦ Fa2 ◦ · · · ◦ Faq

)
(y)i = b (1)

Proof. Suppose that f is rightmost permutive (the leftmost permutive case is
similar). Choose x ∈ AZ and b ∈ A. We incrementally build the sequence a
and the configuration y for a certain q = n + 1 using a sequence for q = n.
If q = 1 then let a = (i, a2, a3, . . .). Since f is rightmost-permutive for every
b ∈ A there exists c ∈ A such that f(xi−r , . . . , xi, . . . xi+r−1, c) = b. Define
y = x(−∞,i+r−1]c x[i+r+1,+∞). It is immediate to see that Fa1(y)i = b.

Suppose that we constructed sequences for q = n verifying (1) for position
i′ = i + r. We can also construct sequences for q = n + 1. Since have sequences
for q = n, for all b′ ∈ A we can obtain a sequence ab′ = (a1, a2, . . . , aq, . . .)
and a configuration yb′ such that after n time steps the symbol b′ appears in
position i′. Since f is rightmost-permutive, for every b ∈ A there exists a symbol
b′ ∈ A such that f(xi−r , . . . , xi, . . . , xi+r−1, b

′) = b. Then, for q = n + 1 and
position i, the configurations and the sequence verifying (1) are yb′ and a =
(a1, a2, . . . , aq, i, . . .), respectively. -.

Proposition 5. Let C = (A, f, r) be an ACA with r > 0. If f is permutive then
C is α-transitive.

Proof. Suppose that f is rightmost permutive (the leftmost permutive case is
similar). Choose x, y ∈ AZ and m ∈ N. Let us build a sequence a defining
an α-transitive ACA Ca = (A, f, r, a). The sequence a is build incrementally:
the first t0 terms for the case m = 0 followed by t1 terms for m = 1 etc. We
will construct a configuration x′ with x′

[−m,m] = x[−m,m] and such that at a
certain time t γx′(t)[−m,m] = y[−m,m]. For every m we need to set the states
of 2m + 1 cells (from position −m to +m) inside γx′(t). Since f is rightmost-
permutive we will set the states starting from position −m up to +m. Fix m =
n and a position i ∈ [−m, m]. Since the sequence is build incrementally, the
first h terms of a have already been determined (i.e., the terms for m − 1, m −
2, . . . , 0 and for m = n but when the positions inside [−m, i−1] are considered).
Even the configurations x′ is build incrementally. A part of x′ has already been
determined and individuates a corresponding configuration x′′ ∈ AZ. Now set
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B = {ak+r | k ≤ h}∪{−m, . . . , m}. Apply Lemma 1 with the tabu set B and the
configuration (Fa1 ◦ . . . ◦ Fat) (x′′). This gives a sequence b1, b2, . . . bk−1, i such
that exists x′′′ that differs from x′′ only in position b1 and verifying (1). In this
way we can fix the term between h + 1 and h + k of a (ah+1 = b1, . . . , ah+k = i)
and a sequence x′′′ such that d(x, x′′′) < 2−m and γx′′′(t + k)[−m,i] = y[−m,i].
This gives a sequence a such that for every x and y there exist a configuration
x′ and a time t ∈ N with d(x, x′) < 2−m and d(γx′(t), y) < 2−m. This means
that the ACA C = (a, f, r) is α-transitive. -.

Example 1. As an example consider a rightmost-permutive rule f with r = 2.
The sequence given by Proposition 5 is:

a = ( 0︸︷︷︸
m=0

, 1,−1, 2, 0, 3, 1︸ ︷︷ ︸
m=1

,

for pos. -2︷ ︸︸ ︷
4, 2, 0,−2,

for pos. −1︷ ︸︸ ︷
5, 3, 1,−1,

for pos. 0︷ ︸︸ ︷
6, 4, 2, 0,

for pos. 1︷ ︸︸ ︷
7, 5, 3, 1,

for pos. 2︷ ︸︸ ︷
8, 6, 4, 2︸ ︷︷ ︸

m=2

, . . .)

Remark 4. The terms of the sequence needed to obtain α-sensitivity and α-
transitivity have to be unbounded. Indeed for α-sensitivity, we need to consider
differences that can be arbitrarily far from the center. For α-transitivity, the
reason is similar: to generate a central block of an arbitrary size it is necessary
to have a sequence containing arbitrarily far positions.

Another important notion regarding the dynamics of a CA is DPO. To define
α-DPO we need the notion of periodic point for an ACA.

Definition 7. Let Ca = (A, f, r, a) be an instantiated ACA. A point x ∈ AZ is
called periodic if there exists p ∈ N+ such that for all n ∈ N, γx(n) = γx(n + p).

Definition 8. Let Ca = (A, f, r, a) be an instantiated ACA. Ca has α-DPO if
its set of periodic points is dense in AZ. An uninstantiated ACA C = (A, f, r)
has α-DPO if there exists a sequence a = (at)t>0 such that the instantiated ACA
Ca = (A, f, r, a) has α-DPO.

Proposition 6. Let C = (A, f, r) be an ACA. If C is α-surjective then it has
α-DPO.

Proof. Consider the sequence a = (k, k, k, . . .) for a generic k ∈ N. Fix x(−∞,k−1]

and x[k+1,+∞) and consider the possible values that γx(t)k can assume. For every
b = Fk(x)k there exists exactly one a ∈ A such that Fk(x(−∞,k−1]a x[k+1,+∞)) =
b. Because only the cell in position k changes, we cannot have neither an aperiodic
orbit (indeed the number of states in the orbit of x is finite) nor an ultimately
periodic orbit (indeed every state has exactly one preimage). This means that
every orbit is periodic, hence the ACA has α-DPO. -.

Remark 5. There exists an α-injective uninstantiated ACA that is α-surjective,
in other words, an ACA that is α-sensitive, α-transitive and α-DPO. As an
example consider the set A = {0, 1} and the rule f : {0, 1}3 �→ {0, 1} de-
fined as f(xi−1, xi, xi+1) = xi−1xorxi. The function is both leftmost-permutive
and center-permutive. Then, by Proposition 1,3,5,6 the ACA ({0, 1}, f, 1) is α-
surjective, α-sensitive, α-transitive and α-DPO.
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Proposition 7. Let C = (A, f, r, a) be an ACA which has α-DPO. If all the
Fat are not the identity, then a is a bounded sequence.

Proof. For the sake of argument, suppose that an unbounded sequence a =
(a1, a2, . . .) can be a sequence of a regular CA C = (A, f, r, a). Since a is un-
bounded there is an infinite set B of positions inside a appear either in a finite
number of time or an infinite number of time but in an aperiodic way inside
the sequence. Since C has α-DPO, for every i ∈ B Fi(x) = x for all x ∈ AZ

(otherwise we would have a state in position i that would not reappear in a pe-
riodic manner). In fact, consider a generic i ∈ B. Because Fi is not the identity
there exists x ∈ AZ such that Fi(x) �= x. Now pick δ = 2−max{|i+r|,|i−r|}. Every
y ∈ AZ such that d(x, y) < δ has the property that Fi(y) �= y. Since the position
i is not changed in a periodic manner, all the y are not periodic. This means
that the sequence a cannot be the sequence of the given ACA. -.
Corollary 1. There are no instantiated ACA C = (A, f, r, a) which are both
α-sensitive and α-transitive and have α-DPO.

Proof. The sequence a need to be unbounded to have sensitivity and transitivity
but bounded to give α-DPO. -.
The previous Corollary states that it is impossible to have an instantiated ACA
C = (A, f, r, a) that respects the traditional definition of Devaney chaos[18].

An other important property of classical CA is equicontinuity. Recall that
a family of functions T is said to be equicontinuous at a point x ∈ AZ if for
all ε > 0 there exists δ > 0 such that for all y ∈ AZ, d(x, y) < δ implies
that d(T (x), T (y)) < ε for all T ∈ T . The family is equicontinuous if it is
equicontinuous at every point.

Definition 9. An instantiated ACA Ca = (A, f, r, a) is α-equicontinuous if
its family TCa is equicontinuous. An uninstantiated ACA C = (A, f, r) is α-
equicontinuous if for every sequence a = (at)t>0 the instantiated ACA Ca =
(A, f, r, a) is α-equicontinuous.

Our extension of this property to uninstantiated ACA use a different technique
than the one used for α-sensitivity, α-DPO and α-transitivity. In fact, the exis-
tence of a sequence a = (a1, a2, . . .) such that the resulting family TCa is equicon-
tinuous is a condition that is always true. Consider the sequence a = (0, 0, . . .)
and δ = 2−r. It is immediate than the resulting family is equicontinuous. There-
fore we need to use a different definition for α-equicontinuity.

From the previous definition follow immediately that every α-equicontinuous
ACA cannot also be α-sensitive. Some examples of α-equicontinuous ACA are
the one defined by the identity function (Fk = Id for all k) and the ones defined
by a local function in the form f(u) = b for every u ∈ A2r+1.

In classical CA equicontinuity is equivalent to ultimate periodicity [30], but in
ACA this is not true. As an examples consider A = {0, 1} and f : A �→ A defined
as f(x) = 0 for all x. The resulting CA is α-equicontinuous, but the dynamics
of at least one point with at least one sequence is not ultimately periodic. As an
example consider x = 1∞ and a = (0, 1, 2, 3, 4, . . .). The dynamics of x with the
sequence a is obviously aperiodic.
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5 Conclusions

In this work a new kind of asynchronous cellular automata has been introduced.
The classical notions of surjectivity, injectivity, sensitivity, transitivity, DPO
and equicontinuity has been defined for ACA. The notion of permutivity has a
central role since it is strictly linked to these properties. Further investigations
involve the study of other relationships between the properties of ACA and an
adaptation of other notions of classical CA to the asynchronous case.
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Abstract. We present a framework based on genetic algorithms to au-
tomatically generate cellular automata rules under four different asyn-
chronous update models (fixed random sweep, random new sweep, clock
and independent random ordering). We consider four different rules (18,
56, 110 and 180) with well known dynamics under synchronous update
scheme. We try to reconstruct the same dynamics by means of a genetic
algorithm using asynchronous update schemes. We show that in many
cases it is impossible, by means of an asynchronous update scheme, to
perfectly reconstruct these dynamics. Nevertheless, we show that the ge-
netic algorithm finds the rules that more closely approximate the target
behavior and the dynamics of the rules found by the genetic algorithm
are rather similar to the target ones. In particular, we can always recog-
nize a similar patter and we can also identify some differences in small
details, which can be minimal (as for rule 18) or rather visible (as for
rule 110). This paves the way to a deeper investigation on this track: does
using asynchronous updates allow us to find more stable rules, i.e. rules
that are less affected by noise, and thus do not overfit training data?
This question remains open and answering it is one of the main goals of
our current research.

1 Introduction

Cellular automata (CAs) are discrete dynamical systems where several cells,
characterized by a state, evolve according to the states of their neighboring
cells. They have been studied theoretically for years due to their architectural
simplicity and the wide spectrum of behaviors they are capable of [6,32]. CAs
can perform universal computation and, given that their time evolution can
be complex, they are often used to model complex phenomena. Nevertheless,
many CAs show interesting dynamical properties such as fixed points and cyclic
attractors, which make them an attracting field for theoretical studies.

Historically, CAs have been studied under synchronous dynamics where all the
cells update at the same time, given that this makes them easier to formalize
and their properties easier to study. Nevertheless, many real-life phenomena
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clearly have an asynchronous nature; it is the case for instance of biological
systems, systems of chemical reactions, crowds and many other complex systems.
Given the difficulty of the formalization of such a variant of CAs, relatively few
studies of asynchronous CAs have appeared to date. For instance, some studies
focus on a CA model evolving synchronously but where some random errors can
occur, like in [31], where Toom defines a 2D CA capable of remembering one
bit of information in presence of random error. This result is used in [12] to
develop a 3D CA capable of reliable computation. Later on the existence of a
1D CA exhibiting the same reliability was proven in [11]. In [1] the authors try
to apply the mean field approach on a probabilistic model of CAs and show that
complex behaviors cannot be explained by this method. Several empirical studies
have shown that the behavior of CAs changes drastically under asynchronous
dynamics [3,5,8,18,24]. Only few theoretical results are known. Mainly, either
they concern specific CAs or show that it is difficult to describe the global
behavior of CAs under asynchronous updates [1,11,10,22,9,23].

In the absence of solid theoretical basis, machine learning [21] is a possibility
for trying to find the rule of an asynchronous CA that exhibits given dynamics.
The idea of automatically generating a rule that performs a given computational
task has been widely explored in literature (see for instance [29,16,13]). However,
these and many other studies generally deal with synchronous CAs, and even
for them the task of automatically determining rules is generally considered a
very hard one. In addition to the often huge size of the search space (i.e. the set
of all the possible rules), another factor that contributes to make this problem
hard is the fact that the behavior of a CA rule is not easy to predict just by
looking at the syntactical representation of the rule itself, and two rules with
extremely similar representations can result both in almost identical or largely
different global dynamics [33]. These factors, among the others, have favored the
development of the use of Genetic Algorithms (GAs) [15,14] to explore the rule
space, given their implicit parallelism and their ability to search difficult and
complex spaces. Potential solutions (or individuals) evolved by the GAs are CA
transition rules represented as strings of characters as in [33] (this representation
is also used here and presented in Section 3).

A wide amount of literature exists about the use of GAs for evolving
synchronous CA rules. A review can be found in [20]. The work of Sipper and
colleagues represents a noteworthy contribution to the field (see for instance
[25,26,27]). Furthermore, GAs have also been used for pattern recognition in
CA and complex systems [2]. In [13,19] the use of GAs was proposed to design
Multiple Attractor CA to perform pattern classification.

However, very few studies have appeared to date dealing with the problem of
evolving rules for asynchronous CAs, noteworthy exceptions being represented
by [28,30,17] where asynchronous rules are evolved for the well known density
task. In this paper we approach this problem, presenting a GA framework to
evolve asynchronous CA rules, using different models of asynchronous update
strategy and trying to evolve rules for different dynamics than the ones of the
density task.
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Even though we know that many readers may not be expert in the field of GAs,
the space limitation prevents us from including in this paper an introduction
to GAs. The interested reader is referred to [15,14]. The rest of the paper is
organized as follows: Section 2 presents the studied models of asynchronous
update; in Section 3 we show how our experimental study is organized and we
discuss the experimental setting; in Section 4 we discuss the obtained results;
finally Section 5 concludes the paper.

2 Asynchronous CA Models and Case Studies

In [28] and in [30] the authors evolve rules for three different models of asyn-
chronous CAs: independent random ordering, fixed random sweep and random
new sweep and they concentrate on the well known and widely studied density
task, where the configuration of the CA must relax to a fixed-point pattern of
all 1s if the initial configuration of states contains more 1s then 0s and to a
fixed-point pattern of all 0s otherwise.

In this paper we also evolve CA rules for the three previously considered asyn-
chronous models (independent random ordering, fixed random sweep and random
new sweep), but we also consider another schema of asynchronous update that has
been called clock in [7], and that will be defined shortly in this paper. To the best of
our knowledge this paper represents the first attempt of evolving CA rules using
this asynchronous model. Furthermore, instead of concentrating on the density
task, we consider a set of different CA dynamics, typically induced by well-known
rules under synchronous update scheme, and we try to evolve the rules for asyn-
chronous CAs that more closely approximate those dynamics. This extends the
previous studies concerning the evolution of rules for asynchronous CAs to a set
of tasks that had never been considered before.

In this section, we first describe the four considered models of asynchronous
CAs and successively we present the dynamics that we want to approximate
with the rules found with our GA framework.

The models of asynchronous CAs that we consider are (see [7] for a more
detailed and complete introduction to these models): (1) Fixed random sweep:
at each iteration all CA cells are updated in a pre-defined random order that
stays the same at each subsequent iteration. (2) Random new sweep: at each
iteration all CA cells are updated in a random order and this order changes
at each iteration. (3) Clock: A frequency fi is associated to each cell ci of the
CA. For each i = 1, ..., n (with n equal to the number of cells in the CA),
ci is updated at every fi iterations. (4) Independent random ordering: at each
iteration, n updates are done (where n is the number of cells) and the updated
cell is chosen randomly with uniform probability at each step. This choice is
done with replacement, in the sense that once a cell has been chosen, at the
subsequent step it can be chosen again.

The dynamics that we want to reconstruct are the ones induced by the follow-
ing well-known elementary rules under synchronous update scheme: 18, 56, 110,
180. These rules and their dynamics under synchronous update scheme are doc-
umented for instance in [6,32] (and a graphical representation of their dynamics
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under synchronous update scheme are presented in the upper row of Figure 4).
Here we want to find the rules that better approximate these dynamics under
the asynchronous update schemes presented above.

3 Experimental Settings

In the GA, a rule e is represented as a binary string of length 22r+1 where
r is the radius of the neighborhood of the cells considered for applying the
update rule. If j is the number obtained interpreting the neighborhood of a cell
c as a binary number, the new state of c according to e is the jth character of
this string (this is the same method for representing CA rules as GA potential
solutions as in [33]). The length of a configuration of the CA was set to 101 bits.
To rate the performance of a rule e in mimicing the dynamics of a target rule t
under an asynchronous update schema s, we consider the list of 50 consecutive
configurations obtained using the rule e when the starting configuration i consist
of a 1 in the center surrounded by 0s. For each configuration in the list, we
compute the Hamming distance from the corresponding configuration in the
list of the target rule, then the values are summed up and scaled to fit in the
interval [0, 1]. We used the following formula:

f(e, s, t) =
∑50

c=1 H(ec
s(i), t

c(i))
50 · 101

When a non deterministic update schema is used (i.e. random new sweep or inde-
pendent random ordering), the error at each step is averaged over 30 repetitions:

f ′(e, s, t) =
∑50

c=1

∑30
1 H(ec

s(i), t
c(i))

50 · 101 · 30

The tests were divided into two series according to the values of the radius of
the neighborhood of candidate solutions. In the first series we evolve elementary
rules (radius 1), therefore individuals have length 8 bits and the search space is
composed by 256 elements; the GA uses standard mutation and crossover, fitness-
proportionate selection, a small population and a low number of generations.
In the second series, even though the target dynamics remain the same (and
they can be obtained by synchronous updates using radius 1), we have tried
to approximate them using rules of radius 2 and then there are 232 ≈ 4 · 109

candidate solutions; in the GA the size of the population, mutation rate and the
maximum number of generations are increased accordingly. Furthermore, in all
our experiments we have used elitism, i.e. we copy the best individual into the
next population at each generation. The values of the parameters used by the
GA are shown in Table 1.

To measure the performance of the GA, we executed 100 independent runs for
each target rule and update schema. For comparison, also the results obtained
using the synchronous schema are included.
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Table 1. Values of parameters used by the Genetic Algorithm in the two series of tests

Series I Series II

Individual length 8 32
Population size 10 100
Generations 15 50
Selection proportionate tournament, size 5
Crossover rate 0.9 0.9
Mutation rate 0.125 0.03125
Elitism Yes Yes

4 Experimental Results

Before presenting the results that show how we have been able to reconstruct the
target dynamics, it is natural to answer a question: is it possible to reconstruct
these dynamics in a perfect way using an asynchronous update scheme? In order
to give a hint on how to answer this question, Figure 1 reports the fitness of all
the potential solutions (CA rules) in the search space in case of radius 1 (thus
we have 256 possible solutions), when independent random ordering has been
used as the model of asynchronous updates. Figure 1(a) (respectively 1(b), 1(c)
and 1(d)) reports the results for update rule 18 (respectively 56, 110 and 180).

These figures should give the reader an idea of the shape of the fitness land-
scape of these problems. It must be clear that this is just a rough approximation,
given that solutions are sorted on the horizontal axis according to the number
their binary code represents, and this has in principle no relationship with the
neighborhoods induced by the genetic operators employed by the GA (we could
informally say that the landscapes represented in Figure 1 are not the landscapes
“seen” by the GA). Nevertheless, we believe that these histograms can give some
useful insight on the search spaces we are studying. For instance, it is possible
to remark that no solution in the search space has a fitness value exactly equal
to 1. This means that it is impossible (at least for the cases we are showing, i.e.
radius 1, independent random ordering update and rules 18, 56, 110 and 180 as
target) to obtain, by means of an asynchronous update, exactly the same behav-
ior that is obtained using the traditional synchronous update. In particular, we
can see that for rules 18 and 110 it is slightly larger than 0.85, while for rules 56
and 180 it is approximately equal to 0.95. Even though the histograms are not
reported here for lack of space, we can confirm that, in case of radius 1, the same
trend is visible also for all the other studied models of asynchronous update.

Furthermore, it is interesting to point out that the target rules themselves
(i.e. the ones that would have a perfect fitness if the synchronous update was
used) have a fitness value smaller than 1 when the asynchronous update models
are used. In particular, in case of independent random ordering, rule 18 has a
fitness value equal to 0.457 (which is remarkably worse than the best possible
fitness, which is around 0.85), rule 56 has a fitness value equal to 0.987, rule 110
has a fitness value equal to 0.863 and rule 180 has a fitness value equal to 0.968.
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Fig. 1. The fitness of all the candidate rules for the independent random ordering
asynchronous model and radius 1. Histogram (a) (respectively (b), (c) and (d)) reports
the results for update rule 18 (respectively 56, 110 and 180)

As a consequence, it is only normal that our GA system returns rules that are
different from the target synchronous one.

The experimental results of the GA system are reported in Figures 2 and 3.
Figure 2 refers to the first series of experiments, while Figure 3 refers to

Series II. Each figure shows the mean best fitness and the average number of
generations needed by the GA to terminate (either by finding an optimal solution
or reaching the maximum number of generations). A series of bars refers to the
tests performed using the corresponding target rule and each bar is relative
to a different update model. We can see that in all cases all update models
obtain approximately the same performance (the differences between the mean
best fitness values obtained using the different update rules, in fact, are not
statistically significant). Furthermore, if we compare the results in Figure 2 with
the histograms in Figure 1, we can observe that, at least for radius 1, our GA
system has allowed us to find the solutions with the best possible fitness value
in the whole search space. Finally, we point out that if we compare the results
in Figure 2 with the ones in Figure 3, we can see that in the case of radius 2 the
results obtained using the different update models are very similar to the ones
obtained in the case of radius 1. This hints that in the case of radius 2 the search
space might have a similar shape to the one of radius 1 reported in Figure 1. In
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Fig. 2. Experimental results obtained evolving rules having radius one using different
update schemes. Each series of bars correspond to a different target rule. (a): mean
best fitness at termination; (b): average number of generations needed to terminate
(either because an optimal solution has been found or because the maximum number
of generations has been reached).
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Fig. 3. Experimental results obtained evolving rules having radius two using different
update schema’s. Each series of bars correspond to a different target rule.(a): mean
best fitness at termination; (b): average number of generations needed to terminate
(either because an optimal solution has been found or because the maximum number
of generations has been reached).

particular, we believe that also for radius 2 no individual in the search space has
a fitness value exactly equal to 1.

The fact that no solution in the search space has a fitness value equal to 1
implies that no rule using an asynchronous update model can return exactly
the same temporal behavior (dynamics) as the target rule executed with the
traditional synchronous update. Thus a question arises naturally: what dynamics
the rules found by our GA system have, when executed with the considered
update models? And what is the relationship between this temporal behavior
and the well known behavior shown by the target rule under the traditional
synchronous update? Figure 4 answers this question for independent random
ordering (but the other considered models, although not reported here for lack
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(a) Target rule 18 (b) Target rule 56 (c) Target rule 110 (d) Target rule 180

(e) Rule found (f) Rule found (g) Rule found (h) Rule found

Fig. 4. The upper row reports the target dynamics for rules 18, 56, 110 and 180 under
synchronous update. The lower row reports the dynamics produced by the best rule
found by our GA framework under independent random ordering update.

of space, allow us to reconstruct very similar dynamics). The upper row reports
the dynamics of the target rule under the traditional synchronous update. The
lower row reports the dynamics of the best solution found by our GA system over
all the runs we have executed using independent random ordering update. As we
can see, the dynamics of rule 18, 56 and 180 are reconstructed rather faithfully
(although with some small differences compared to the traditional schema) by
the rule found by the GA system. For rule 110, the general pattern has been
correctly reconstructed, but many details of the target rule are not replicated
when using independent random ordering (in particular the white spaces inside
the black triangle have not been reconstructed).

5 Conclusions

A framework based on Genetic Algorithms (GAs) to automatically generate
Cellular Automata (CA) rules under four different asynchronous update models
(fixed random sweep, random new sweep, clock and independent random or-
dering) is presented in this paper. The process we have followed consisted in
considering four CA rules (rules 18, 56, 110 and 180) whose dynamics under
synchronous update are well known, and looking for the rule that more closely
simulates those dynamics using the different studied asynchronous models by
means of our GA framework.

First of all, we have shown that perfectly reconstructing the target behavior
by means of an asynchronous update model is often impossible. In fact, at least
for the restricted case of radius 1, no candidate rule scores a perfect fitness. Fur-
thermore, our GA system is able to find the rules that have the best fitness values
among all the candidate ones, and no significant difference is observed among the
different asynchronous models. Analyzing the dynamics of those rules, we have
remarked interesting similarities with the target, in the sense that the general
spatial pattern is reconstructed, but some details are not. We deduce that asyn-
chronous update models can roughly approximate the dynamics of synchronous



A Study on the Automatic Generation of Asynchronous CA Rules 437

ones. Our current research activity consists in the analysis of the generalization
ability of our GA framework: does the fact that we roughly approximate the
target behavior, often abstracting from some details, allows us to obtain better
generalization ability? Can the amount of information that is not reconstructed
by our framework be considered as “noise”, or as information that causes the
overfitting of training data? Can we say that our GA framework is able to recog-
nize dynamic patters? All these questions are important and open the door to a
new and stimulating research activity. Furthermore, we also plan to investigate
one more asynchronous update scheme introduced in [4]: a stochastic scheme in
which each cell has a certain probability to be updated at every time step. In
other words, at every time step a random collection of cells is updated in this
scheme. This scheme is a generalization of the synchronous updating scheme,
which corresponds to the update probability 1. This scheme offers the possi-
bility to study updating schemes corresponding to a continuum of probabilities
ranging from just above 0 (very asynchronous) to 1 (completely synchronous).
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11. Gács, P.: Reliable cellular automata with self-organization. Journal of Statistical
Physics 103(1/2), 45–267 (2001)
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23. Regnault, D., Schabanel, N., Thierry, É.: Progresses in the analysis of stochastic
2d cellular automata: a study of asynchronous 2d minority. In: Kučera, L., Kučera,
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Abstract. The paper presents the agent-based model we developed to
study crowd dynamics in multi-cultural aggregation contexts. Social and
cultural aspects (in particular derived from proxemics theory) are ex-
plicitly modeled in order to study the social network resulting from local
spatial interactions and cultural differences. To this aim, an agent-based
model based on SCA*PED (Situated Cellular Agents for PEdestrian Dy-
namics) is presented, where pedestrian dynamics result from the local
interaction and behavior of an heterogeneous system of autonomous en-
tities situated into a structured environment. The proposed model repre-
sents pedestrians’ behaving according to local information and knowledge
on two separated yet interconnected layers representing different aspects
of the overall system dynamics (i.e. Spatial and Proxemic layer). The
model explicitly represents on Proxemic layer how cultural differences
can influence the perception of neighbors. The model is presented as a
formal approach to study comfort properties in spaces where multicul-
tural crowds share a limited structured environment.

1 Introduction

In this paper we describe partial results of a multidisciplinary research we are
conducting in order to develop a modeling and computational model for het-
erogeneous crowd systems in which cultural differences of crowd members are
explicitly considered. Social and cultural aspects are explicitly represented in the
agent-based model in order to take into account heterogeneity in the system of
pedestrians who behave locally (i.e. according to local information) and interact
at a physical level (i.e. due to limited shared space).

Traditional modeling approaches (mainly in computer science, fire engineer-
ing, building and urban design and planning) focus on pedestrian dynamics with
the aim of supporting decision-makers and managers of crowded spaces and
events [1] [2] [3]. However, some multidisciplinary proposals have recently been
suggested to tackle the complexity of crowd dynamics by taking into account
emotional, cultural and social interaction concepts [4] [5] [6] as well.

In this paper we propose an extension of an agent-based approach previ-
ously presented to study pedestrian dynamics (i.e. SCA*PED, Situated Cellular
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Agents for PEdestrian Dynamics [7]) towards a multi-layered model. According
to agent-based modeling and simulation, crowds are studied as complex sys-
tems whose dynamics result from local behavior among individuals and their
interactions with their surrounding environment [3] [8] .

After an outline of the main concepts of Hall’s theory [9] [10] on perceived
distance and proxemic behavior, we will describe the model based on SCA*PED
modeling approach in which proxemic behavior and perceived distance concepts
are included. SCA*PED models pedestrian dynamics as resulting from the local
interaction and behavior of an heterogeneous system of autonomous entities.
The proposed multi-layered model represents pedestrians behaving according
to local information and knowledge on two separated yet interconnected layers
representing different aspects of the overall system dynamics (i.e. Spatial and
Proxemic layer). The Proxemic layer explicitly models heterogeneities in system
members from the view point of the perception of neighboring individuals due to
cultural differences. Whenever a local spatial interaction occurs at Spatial layer,
the involved entities react differently according to their cultural specifications.
In this paper we represent cultural differences according to Hall’s theory. Such
differences imply different perceptions which on their side allow the study of
dynamic comfort properties given a multicultural crowd sharing a structured
environment.

2 Perceived Distance and Proxemic Behavior

Proxemic behavior includes different aspects which could it be useful and inter-
esting to integrate in crowd and pedestrian dynamics simulation. In particular,
the most significant of these aspects being the existence of two kinds of distance:
physical distance and perceived distance. While the first depends on physical
position associated to each person, the latter depends on proxemic behavior
based on culture and social rules. The term proxemics was first introduced by
Hall with respect to the study of set of measurable distances between people as
they interact [9]. In his studies, Hall carried out analysis of different situations
in order to recognize behavioral patterns. These patterns are based on people’s
culture as they appear at different levels of awareness.

In [10] Hall proposed a system for the notation of proxemic behavior in order
to collect data and information on people sharing a common space. Hall defined
proxemic behavior and four types of perceived distances: intimate distance for em-
bracing, touching or whispering; personal distance for interactions among good
friends or family members; social distance for interactions among acquaintances;
public distance used for public speaking. Perceived distances depend on some ele-
ments which characterized relationships and interactions between people: posture
and sex identifiers, sociofugal-sociopetal1 (SFP) axis, kinesthetic factor, touching
code, visual code, thermal code, olfactory code and voice loudness.

1 These terms were first introduced in 1957 by H. Osmond in [11].
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3 The Two-Layered MAS

In order to integrate some aspects of proxemic behavior into an agent-based
model of a crowd, we defined a constellation of interacting Multi Agent Systems
(MAS) situated on a two-layered structure (i.e. Spatial and Proxemic layers
in Figure 1). Following the SCA*PED approach definition, in each structure,
the agents are defined as reactive agents that, as effect of the perception of
environmental signals and local interactions with neighboring agents, can change
their internal state or their position on the environment. According to SCA
framework, each layer is defined by a triple

〈Space, F, A〉

where Space models the environment in which the set A of agents is situated,
acts autonomously and interacts through the propagation/perception of the set
F of fields. The Space is modeled as an undirected graph of sites (i.e. p ∈ P ).
Each p ∈ P is defined by 〈ap, Fp, Pp〉, where ap ∈ A ∪ {⊥} is the agent situated
in p, Fp ⊂ F is the set of fields active in p and Pp ⊂ P is the set of sites adjacent
to p. Fields can be propagated and perceived in the same or different layers. In
order to allow this interaction, the model introduces the possibility to export
(import) fields from (into) each layer.

In each layer, pedestrians and/or relevant elements of the environment (i.e.
active elements) are represented by different types of agents. An agent type
τ = 〈Στ , P erceptionτ , Actionτ 〉 is defined by:

Fig. 1. Two-layered MAS model is shown. Spatial layer describes the environment in
which pedestrian simulation is performed while Proxemic layer refers to the dynamic
perception of neighboring pedestrians according to proxemic differences. When an agent
ay ∈ Aspa enters the neighborhood of an agent ax ∈ Aspa, both agents emits a field
fpro that is perceived by a′

y and a′
x in Apro.
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– Στ : the set of states that agents of type τ can assume;
– Perceptionτ : a function to describe how an agent is influenced by fields

defining a receptiveness coefficient and a sensibility threshold for each field
f ∈ F ;

– Actionτ : a function to allow the agent movement between spatial positions,
the change of agent state and the emission of fields.

Each agent is defined as a triple 〈s, p, τ〉 where τ is the agent type, s ∈
∑

τ is
the agent state and p ∈ P is the site in which the agent is situated.

In the remaining of the paper Spatial and Proxemic layers will be described.
The first describing the environment in which pedestrian simulation is performed
while the second referring to the dynamic perception of neighboring pedestrians
according to proxemic distances.

3.1 The Spatial Layer

In the Spatial layer, each spatial agent aspa ∈ Aspa emits and exports to Prox-
emic layer a field to signal changes on physical distance with respect to other
agents. This means that when an agent ay ∈ Aspa enters the neighborhood of an
agent ax ∈ Aspa, both agents emits a field fpro with an intensity id proportional
to the spatial distance between ax and ay. In particular, ax starts to emit a field
fpro(ay) with information related to ay and intensity idxy, and ay starts to emit
a field fpro(ax) with information related to ax and intensity idyx. Obviously,
idxy = idyx due to the symmetry property of distance and the definition of id.

When physical condition changes and one of the agents exits the neighbor-
hood, the emitting of the fields ends.

Fields are exported into Proxemic layer and influences the relationships and
interactions between proxemic agents. How this field is perceived and influences
the agent interactions in the Proxemic layer, will be described in the next section.

3.2 The Proxemic Layer

As previously anticipated, Proxemic layer describes the agents behavior taking
into account some aspects of Hall’s theory. Proxemic layer hosts a heterogeneous
system of agents where several types of agents τ1, .., τn represent different atti-
tudes of a multicultural crowd. Each type τi is characterized by a perception
function perci and a value of social attitude sai. This value takes into account
all the Hall’s categories introduced before and indicates the attitude to sociality
for that type of agent.

In this layer, space is described as a set of sites where each site is occupied by
a proxemic agent apro ∈ Apro and connected to the corresponding site at Spatial
layer. Proxemic agents are influenced by fields imported from Spatial layer by
means of their perception function. The latter interprets the field fpro perceived,
modulating (amplifying or reducing) the value of its intensity id on the basis of
sa value associated to agent type.
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When in the Spatial layer ax ∈ Aspa emits a field with information on ay, in
the Proxemic layer a′

x ∈ τi perceives the field fpro(ay) as:

perci(fpro(ay)) = sai × idxy = ipxy (1)

In the same way a′
y ∈ τj perceives the field fpro(ax) as:

percj(fpro(ax)) = saj × idyx = ipyx (2)

Values ipxy and ipyx quantify the different way to perceive the physical distance
between ax and ay from the point of view of ax and ay respectively.

Each apro ∈ Apro is also characterized by a state s ∈ Σ which dynamically
evolves on the basis of the perceptions of different fields fpro imported from the
Spatial layer. The transition of state represents the local change of comfort value
for each agent2.

Fig. 2. A system of four agents where the state of agent a′
z ∈ Apro results from the

composition of its perceived neighbors (i.e. a′
1, a

′
2, a

′
3 ∈ Apro)

In particular, the state evolves according to the composition of the differ-
ent ip calculated on the basis of interactions which take place in the Spatial
layer. Figure 2 shows an heterogeneous system composed of four neighboring
agents where the comfort state of each agent results from the composition of all
perceived neighbors, that is for each a′

z ∈ Apro:

sz = compose(ipz1, ipz2, .., ipzn)

where a′
1, .., a

′
n ∈ Apro are the corresponding proxemic agents of a1, ..an ∈ Aspa

which belong to the neighborhood of az ∈ Aspa.

2 State change may imply also a change in the perception. This aspect may be
introduced into the model by specifying it into the perception function (i.e.
perci(fpro, s) = perci(fpro). Future works will investigate on this issue.
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After the perception and modulation of fields perceived, it is possible to con-
sider the relationship between i and j in (1) and (2).

If i = j the two agents belong to the same type (i.e. τi = τj) and the values ipxy

and ipyx resultant from the perception are equal (i.e. sai = saj and idxy = idyx

for definition). Otherwise, if i �= j the two agents belong to different types (i.e.
τi �= τj) and the values ipxy and ipyx resultant from the perception are different
(the agents perceive their common physical distance in different way).

Proxemic relationships among agents are represented as an undirected graph
of sites where edges are dynamically modified as effect of spatial interactions
(occurring at Spatial layer) and social attitude sa. When a field is perceived
from agent a′

x with information on ay, an edge between a′
x and a′

y is created.
When field emission ends (due to the exit of the neighborhood by one agent),
the edge previously created is eliminated. The edge (x, y) is characterized by a
weight wxy:

wxy = |ipxy − ipyx|

and represents the proxemic relationships between agents x and y. Obviously,
only if ipxy �= ipyx the wxy is non null.

3.3 Network Evolution on the Proxemic Layer

The evolution of the graph on the Proxemic layer is a dynamical process which
depends from spatial changes, so it is possible to study how graph evolves. Let
us consider the graph G = (V, E) on Proxemic layer, where V is the set of
nodes and E is the set of edges that connect pairs of nodes. In general, the
graph G will be composed of areas with connected nodes and areas with non
connected nodes. In particular, considering situations in which the density of
spatial agents is medium, we can study the properties of the system identifying
the heterogeneous and homogeneous areas, their changes and movements. In
particular, two interesting cases are:

1. G = (V, ∅): the graph is a null graph in which there are no edges. This
situation occurs when all proxemic agents belong to the same type τ or when
spatial agents are far from each other and there are not fields imported from
Spatial layer;

2. G = (V, E) and G is a connected graph (i.e. at least one path connects each
couple of agents): this situation occurs when the system is characterized by
high heterogeneity at Proxemic layer and high density at Spatial layer.

4 Future Works

This work is part of an ongoing research project with the aim of supporting crowd
management of multicultural aggregation contexts, by taking into account cul-
tural attitudes and comfort properties. Studying the dynamics of the Proxemic
layer can fruitfully suggest feedback actions on the physical spatial structure
that drives pedestrian movement. Preliminary investigations are ongoing about
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the study of network properties in order to identify available formal tools for
this aim (e.g. ‘small worlds’ networks, the identification of clustering coefficient
and the degree distribution [12]).
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the Capacity Drop Phenomenon in the Motion of Crowd 
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Abstract. In this paper we propose a CA  movement model based on the ‘‘Cell 
Transmission Model’’ developed by Daganzo. The cell transmission model was 
developed as a discrete approximation to the hydrodynamic theory of vehicular 
traffic flow. The proposed movement model refers instead to the motion of 
crowd and is required to simulate the dynamic of an egress process in tall build-
ings taking into account not only queue and spillback phenomena but also the 
capacity drop phenomenon.  In fact we performed experiments that show im-
portant evidence that, for a given cross section, in presence of jam upstream the 
section, the pedestrian flow through the section is not always equal to the sec-
tion capacity but suddenly it can drop (dropped capacity).  This finding is  
coherent with recent empirical studies of pedestrian behavior at an exit and in 
contrast with many previous works where it is assumed that in presence of jam 
upstream a cross section, the flow through the section equals its capacity. The 
movement model has been used for simulating evacuation processes in high rise 
buildings. The target is to assess to which extend the capacity drop phenomenon 
affects the building evacuation time.  

Keywords: Capacity Drop; Movement model; Cellular Automaton; Pedestrian 
Dynamical Phenomenon. 

1   Introduction  

The capacity of a cross-section of an escape facility is defined as the maximum of the 
flow-density function for the given cross-section. It is generally assumed that a jam 
occurs when the incoming flow exceeds the capacity of a cross-section.  

In many previous works, it is assumed that in the presence of a jam upstream of a 
given cross-section, the flow through the section equals its capacity. In the literature, 
it is possible to find different specifications to estimate the capacity of a pedestrian 
facility:  Seyfried et al. [1] give a good literature review about this topic. In many 
studies [2,3,4], capacity is assumed to be a linear function of the cross-section width, 
in others it is assumed to be a step wise function of the width. In fact, Hoogendoorn 
and Daamen [5] observed that inside a bottleneck the formation of lanes occurs: this 
would imply that the capacity increases only when an additional lane can develop. 
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Recent empirical analysis give evidence that the evacuation time through a door 
doesn’t depend only on geometrical factors, like the door width, but also on the num-
ber of conflicts upstream the door. In fact, observations have shown a phenomena 
called arching, which appears when a big crowd with a high desired velocity tries to 
pass through a door. In this case the number of conflict is high, the door gets clogged 
and the crowd gets arch-shaped. 

In a laboratory, physicists at the University of Tokyo timed 50 women as they ex-
ited as fast as possible through a door 50 cm wide [6]. The average outflow (i.e. the 
number of evacuees divided by the evacuation time and by the exit width) in case of 
evacuation in a line was larger than the average outflow in case of a the normal 
evacuation since there was no conflict. Moreover the data show that the evacuation 
time decreases if an obstacle is put in front of the exit in a proper way. They got evi-
dence that the pedestrian average outflow increases since the obstacle decreases con-
flicts at the exit by blocking the pedestrian movements. Therefore the obstacle re-
duces the inter-pedestrian pressure in front of the door and decreases the magnitude of 
clogging. They also discovered that the average outflow depends on the position of 
the obstacle. 

Microscopic models have the advantage to take into account pedestrian flow as a 
collective motion of individuals and are able to represent important features of flow 
dynamic, like location of moving queues in the network, spillbacks and their dissipa-
tion. According to these approaches, the flow patterns result from the impulsive reac-
tions of each single pedestrian to other pedestrians or to the environment within his 
local surrounding.  

Microscopic models are able to take into account conflicts between pedestrians and 
thus the arching phenomenon from which the average outflow depends are the Social 
Force model by Helbing and the Floor Flied Model by Schadschneider et alii. The So-
cial Force model is continuous in space and uses Newton's equation; to specify the 
behavior of people in panic, Helbing includes a Heavyside-function, which starts to 
contribute as soon as the forces or the density get to high [7]. The Floor Field model 
uses Cellular Automata and therefore is discrete in space; it takes into account con-
flicts by the frictional function which is a function of the number of pedestrians in-
volved in the conflict [6].  

These models are a useful support in the design of the environment details since 
they are able to assess the effects on the evacuation process of obstacle size and posi-
tion and of emergency exit widths. 

We studied pedestrian flow against time through a bottleneck.. Our experiment 
outcomes confirm that, given a bottleneck, the average outflow changes a lot as a 
function of pedestrian speed and accumulation upstream the bottleneck. Moreover the 
experiment results provide evidence that, in the presence of a jam upstream of the bot-
tleneck, the flow through the bottleneck section is not always equal to the maximum 
capacity but it can suddenly drop (dropped capacity).  

The fact that a bottleneck capacity might change in time and specifically can drop 
when high density conditions happen upstream should be taken into account in pedes-
trian evacuation.  

The proposed movement model refers to the motion of crowd and is required to 
simulate the dynamic of an egress process in tall buildings taking into account not 
only queue and spillback phenomena but also the capacity drop phenomenon. A first 
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release of the model was presented in [8]. Afterwards the model has been improved 
and the capacity drop phenomenon has been introduced [9]. 

The paper is structured in the following way. Section 1 concerns the capacity drop 
phenomenon in pedestrian flows. Outcomes from empirical studies of the phenome-
non and of its activation conditions are reported in this section. In section 2 the pro-
posed movement model is described and in section 3 its application to a case of study 
is presented. Conclusions follow. 

2   The Capacity Drop Phenomenon in Pedestrian Flows 

For studying deeply pedestrian behaviour in oversaturated conditions experiments 
were organised within the SPIRAL project founded by the Royal Society. The ex-
periments took place in the PAMELA laboratory which is a controlled environment at 
the University College London [10].  

We set a corridor with a fixed width of 140 cm followed by a restriction: this 
change in geometry acts as a bottleneck. The restriction width was 90 cm. 

47 participants came to take part in the experiments: the majority of them were 
students. In each experiment the participants were asked to walk at a predefined speed 
through the corridor and the restriction.  

Since there was only one bottleneck in the experiment layout, congestion occurred 
only at the bottleneck entrance and not downstream. 

Pedestrians were asked to walk at different speeds: at their normal speed (NS), as 
quick as possible (AQAP) and then we tried to force the pedestrian flow: some ‘spies’ 
were placed among the pedestrians to force the speed a little (F). We repeated each 
experiment twice and therefore we collected data on 6 experiments (1 restriction 
width, 3 speeds and 2 runs for a given width and a given speed). 

Pedestrian flow was videotaped from above at three cross sections: the InFS cross 
section, held at 3.6m before the restriction, at the beginning of the bottleneck and at 
the OutFS cross section, held at 2m down the bottleneck. The data were analysed 
manually.  

Figure 1 refers to the passage of 45 students walking as quick as possible through 
the 90 cm width restriction. The cumulative number of pedestrians through the OutFS 
cross section is plotted against time. The line is the regression on the experimental 
data: it has two inclinations meaning that the flow through the cross section assumes 
two values: a higher one (1.9 pedestrians per second) first and a lower one (1.5 pedes-
trians per second) latter. Since there was congestion upstream the bottleneck when we 
registered these two values for the outflow, we call the maximum value capacity and 
the lower one dropped capacity.  

In almost all the experiments with the 90 cm wide bottleneck, the flow through the 
bottleneck equals first the bottleneck capacity and then, when pedestrian accumula-
tion increases upstream, the capacity drops. 

In figure1 the flow breakdown is about 23% and takes place at second 271. 
In table 1 are summarised the results of the experiments. The rows refer to the ex-

periment runs (for instance,  NS1 is the first run of the experiment where pedestrians 
walked at normal speed).  Nf and Nl are the orders of the first and of the last pedes-
trian that passed the section at a constant flow rate. Tf e Tl are the evacuation times of 
the first and last pedestrian respectively. We call capacity the higher constant flow  
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Fig. 1. Result of the experiments held at PAMELA laboratory 

Table 1. Results of the experiments 

BN 
90cm Nf Tf Nl Tl 

 Capac-
ity 
(ped/s) Nf Tf Nl Tl 

Dropped 
capacity 
(ped/s) 

Average 
capacity  
(ped/s) 

Outflow 
(ped/s) 

NS1 1 67.7 23.0 81.7 1.6 23.0 81.7 47.0 103.3 1.1 1.3  

NS2 1 158.4      47.0 194.6  1.3 1.3 

AQAP1 1 260.7 21.0 271.2 1.9 21.0 271.2 44.0 287.2 1.4 1.6  

AQAP2 1 344.8 25.0 358.4 1.8 26.0 359.0 46.0 374.2 1.3 1.5 1.6 

F1 1 429.0 27.0 441.5 2.1 27.0 441.5 45.0 453.6 1.5 1.8  

F2 1 520.6 18.0 529.4 1.9 18.0 529.4 45.0 547.4 1.5 1.6 1.7 

 
rate, and dropped capacity the lower one. Average capacity refers to the time required 
by all the pedestrians to cross the bottleneck in the given experiment run. Outflow is 
the average of the “average capacities” related to the two runs of the same experiment. 

The table shows that the outflow can assume quite different values and it depends a 
lot from pedestrian speed. The outflow increases when pedestrian speed increases. We 
had evidence of capacity drop in 5 over 6 experiments: it ranged from 18 % to 28.5%.  

It seems that, for a given geometry, capacity drop is higher when pedestrian speed 
is higher. The mechanism of these drops was initiated when pedestrian accumulations 
near the restriction became too high (above a critical value). Having an accumulation 
above the critical value resulted a necessary but not sufficient condition for a drop. In 
fact the data from the experiments confirm that capacity drop is a stochastic event in 
pedestrian flow. 
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3   The Movement Model  

The movement model is based on the “Cell Transmission Model” developed by Car-
los Daganzo [11]. The movement model is discretized in space and time.  

The time steps have equal duration and the space discretization is strictly linked to 
the chosen time step.  

The building environment is modeled as a cellular automata network. 
The corridors/stairways have been divided into homogeneous sections (cells) 

whose lengths equal the distance travelled by free-flowing traffic in one time step. 
Thus cells with the same length are cells on which the maximum individual free flow 
speed is the same. Stairwell cells are shorter than the corridor cells because individual 
speed downstairs is lower than the one obtained on a flat surface. 

The building we are able to take into account neglects flow diverging: the model is 
able to reproduce pedestrian flow through a sequence of cells or the merging of flows 
from two different cells.  

When evacuation starts, all the building population is assumed to be in the rooms. 
Each room is a source of pedestrians. When the simulation starts, all pedestrians in 
the same room start to travel to the exit. The movement model does not take into ac-
count pre-movement times.  

The state of each cell is defined by the following parameters: 
 

(t)ni  = number of individuals contained in cell i at the beginning of time step t; 

( )tyi  = inflow to cell i during time step t; 

)(tQi = maximum number of individuals that can flow into cell i during time 

step t; 

iN  = maximum number of individuals that can be present on cell i. 
*
iN  = critical value of pedestrian accumulation on cell i: when pedestrian accumu-

lation on cell i reaches this value, capacity drop occurs on the downstream cell. 

iQ = maximum capacity of cell i; 

k    = capacity drop entity, where ∈k [0;1] 
The maximum number of individuals that can flow into cell i during time step t can 

assume two values, depending on the circumstances: 
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When the accumulation on the upstream cell is below or equal to the critical value, 
the maximum number of individuals that can flow into cell i during time step t is 
given by the maximum cell capacity. When the accumulation on the upstream cell is 
above the critical value, the maximum number of individuals that can flow into cell i 
during time step t is lower since capacity drop takes place. We assume an average 
value for the drop and a deterministic activation condition. 
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A new generation is created (advancing t by 1), according to the following fixed 
rule that determines the new state of each cell in terms of the current state of the cell 
and the states of the cells in its neighborhood. 

In case of a sequence of cells: (i-1, i, i+1), the cell’s neighborhood includes the 
previous cell and the following one, and the flow propagation  is described by the fol-
lowing equations (2.2): 

( ) ( ) ( ) ( )
( ) ( ) ( ){ }      tnN,)t(Q,t n minty

tytytn1tn

iii1ii

1iiii

−=
−+=+

−

+

                             

2.2. 

The first equation updates the cell state at the beginning of time step t+1. The updat-
ing refers only to the previous time step. The number n i (t+1) of individuals on cell i 
at the beginning of time step t+1 is a function of:  
 

• how many individuals were on the cell at the beginning of the previous 
time step: n i (t),  

• how many individuals entered the cell during the previous time step: yi(t) ,  
• how many individuals left the cell during the previous time step. This 

number equals, for flow conservation, the number of individuals that en-
tered the adjacent downstream cell during the same time step: yi+1(t).  

 

The second equation determines the number y i (t) of individuals that can enter cell i 
during time step t.  

The flow y i (t) that can enter cell i is the minimum between the demand that would 
like to enter the cell and the cell constraint. The demand is given by the maximum 
flow that can be sent by the upstream cell n i – 1  (t). The cell constraint is determined 
by the minimum between: 

 

• the maximum number of individuals that can flow into cell i during time 
step t, Q i (t);  

• the space availability on the cell, which is given by the difference between 
the maximum number of individuals that could be contemporaneously 
present on the cell,  

• and the current number of individuals on the cell, Ni  – n i (t).  
 

In case of merging cells, we address the reader to Cepolina [8]. 
The movement model has been implemented in an object-oriented simulator.  Cells 

are objects and are seen as being ‘intelligent’ – albeit static - agents which are able to 
move individuals forward according to the movement model previously described.  
Cells’ internal state is described by n i (t), yi (t) and Q i (t). 

4   Case Study 

The model has been applied to calculate the evacuation time (i.e. the time required for 
empting a building) from high-rise buildings. The evacuation time is firstly calculated 
according to the capacity drop phenomenon, then neglecting this phenomenon.   

The time step is assumed equal to 1s.  
Each floor of the building has an unique central corridor about 17 m long and 1,4 

m wide. The corridor cells are 1.2 m long, because the maximum pedestrians’ speed is 
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assumed equal to 1.2 m/s. The central corridor is therefore represented by a sequence 
of 14 cells. Each floor has 4 rooms, which are connected directly to the corridor and 
each room has a load of 20 pedestrians. 

Floors are connected together through two stairs: each end of the corridor in the 
floor is connected to a stairwell. The two stairwells are near the emergency exits, 
which are located at each end of the ground floor’s corridor. Each stair is long 9m and 
wide 1.4m.  Because the maximum speed on stairs is assumed equal to 0.9 m/s, the 
stairway cells are 0.9 m long.  

The egress paths are fixed: at each floor people in two rooms on the right hand side 
exit the building through the right stairwell and emergency exit 1, people in the two 
rooms on the left hand side exit through the left stairwell and emergency exit 2.  Thus, 
all the cells can be crossed only by unidirectional flow. 

Room doors and exit doors have a width of 0.9 m, therefore they represent bottle-
necks. At bottlenecks, and at the merging sections, in which critical density can be 
exceeded, capacity drop may occur. 

 Five different scenarios have been considered, i.e. the building having one (i.e. the 
ground floor), two, three, four and five floors. The scenarios in exam are represented 
in figures 2. A detailed representation of corridors and stairs is given in figure 2 only 
for the ground floor. 
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Fig. 2. The simulated scenarios 

The model has been calibrated through data collected in the experiments carried 
out in the PAMELA laboratory. 

Cell characteristics are reported in Table 2.  We assume k = 0.27 since the capacity 
drop which occurs in the case of forced flow is equal to 27%.  
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Table 2. Cell characteristics; τ is the time step 

 length (m) width (m) Qi (n° ped / τ) Ni  (n° ped) N*i (n° ped) k 

Room/exit   0.9 3 50 3 0.27 

Corridor cells 1.2 1.4 4 4 4 0.27 

Stairway cells 0.9 1.4 4 3 3 0.27 

 
During the simulation activity we incurred in the following problem due to time 

discretisation. Since k is a real number; (1-k)Qi is a real number. As it represents the 
possible number of people able to enter a section in a time step, it has to be an integer. 
If the decimal portion of (1-k)Qi is 0.5 or greater, the return value is equal to the 
smallest integer greater than (1-k)Qi. Otherwise, the simulator returns the largest inte-
ger less than or equal to (1-k)Qi. This has two kind of consequences: first, if (1-k)Qi 
results lower than 0.5 because  Qi is small or the capacity drop is high, the simulator 
does not allow anybody to enter cell i until the capacity drop is active there. Secondly, 
if Qi is small, for instance 2 pedestrians per second, the simulation results show that a 
capacity drop of 50% has the same effects as a drop of 30%. These drawbacks could 
be avoided if Qi assumes proper values: this could be achieved with a proper time 
step selection. 

In figure 3, evacuation times, expressed in seconds, are reported, and their values 
are obtained both under the hypothesis of the capacity drop phenomenon and without 
this assumption.  

The simulation results show that obviously the evacuation time is strongly depend-
ent on the number of floors in the building (and therefore the building population). 
Moreover, capacity drop occurrences affect heavily the results, and neglect the capac-
ity drop phenomenon leads to a great underestimation of evacuation times. This un-
derestimation increases with the number of floors of the building (and therefore with 
the building population), as shown in figure 3, in particular when the number of floors 
goes from 3 to 4.  
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Fig. 3. Evacuation time referred to number of floors 
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5   Conclusions 

The movement model discussed in the paper refers to the motion of crowd and is re-
quired to simulate the dynamic of an egress process in tall buildings taking into account 
not only queue and spillback phenomena but also the capacity drop phenomenon.  

With the target of understanding and quantifying this phenomenon empirical stud-
ies have been performed. The data have been used to calibrate the movement model. 
However, the statistical distribution of capacity drops is not known because enough 
empirical data have not yet been collected. Thus, the accuracy of the results has not 
yet been examined. 

The cellular automata approach resulted convenient since it is easy adaptable to dif-
ferent buildings and since it is frugal on CPU power and thus can handle greater 
amounts of pedestrians. This last aspect is very important since the target of the move-
ment model is to reproduce the dynamic of an egress process in high rise buildings.   
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Abstract. In this paper, a crowd evacuation model based on Cellular Automata 
(CA) is described. The model takes advantage of the inherent ability of CA to 
represent sufficiently phenomena of arbitrary complexity and to be simulated 
precisely by digital computers as well. Pedestrian movement depends on their 
distance from the closest exit, which is defined dynamically. The adoption of 
Manhattan distance as the reference metric provides calculation simplicity, 
computational speed and improves significantly computational performance. 
Moreover, the model applies an efficient method to overcome obstacles. The 
latter is based on the generation of a virtual field along obstacles. A pedestrian 
moves along the axis of the obstacle towards the direction that the field in-
creases its values, leading her/him to avoid the obstacle effectively. Distinct 
features of crowd dynamics and measurements on different distributions of pe-
destrians have been used to evaluate the response of the model. 

Keywords: Cellular Automata, Crowd Modeling, Pedestrian Evacuation, Ob-
stacle Avoidance. 

1   Introduction 

Various models that try to efficiently approach crowd movement during evacuation 
have been presented in literature, proposing theoretical and applicable solutions. Deep 
insight in crowd dynamics has resulted in better understanding of pedestrian behaviour 
as well in substantial changes regarding the architecture of such constructions. Crowd 
safety and comfort in highly congested places not only depend on the design and the 
function of the area, but also on the behaviour of each individual. Results prove that 
people under panic tend to lose their individuality, display herding behaviour and it is 
possible not to make use of means of emergent evacuation effectively [1]. 

Pedestrian dynamics have been reported following a great variety of approaching 
methods, thus indicating the importance of the issue. In particular, CA-inspired meth-
ods as well as lattice-gas and social force models or agent-based and fluid-dynamic 
methods have been proposed to investigate and reveal the attributes of crowd evacua-
tion [2]. All approaches can be qualitatively distinguished, focusing on different char-
acteristics that each of them dominantly display. 
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On the other hand, evacuation could be defined as a non linear problem with nu-
merous factors affecting it. A system of partial differential equations could effectively 
approach it, but this would lead to a very computationally demanding system, in terms 
of processing time, complexity as well as power consumption. CA can certainly act as 
an alternative to such systems, because they can compute values of physical quantities 
over finite areas (CA cells) at discrete time steps. Literature reports various CA-based 
models investigating crowd behaviour under various circumstances. Interactions 
among pedestrians, friction effects [3] and herding behaviour [4] as well as the impact 
of environmental conditions [5] and bi-directional pedestrian behaviour [6] has been 
examined. Furthermore, CA models that focus on human behaviours, such as inertial 
effects, unadventurous effect and group effect have been also developed [7]. 

2   The CA Model and Characteristic Measurements 

The presented model is based on CA; hence its simulation mechanism is matrix-
driven, discretising a floor area into a grid. The grid of the automaton is homogeneous 
and isotropic, while the CA cells are able to exist in two possible states; either free or 
occupied by exactly one particle. Each cell is equivalent to the minimum area, which 
a person could occupy and defined equal to 0.4m×0.4m [8]. During each time step, an 
individual chooses to move in one of the eight possible directions of its closest 
neighbourhood. Each particle moves towards the direction which is closest to an exit. 

The motion mechanism issues from a potential field approach, based on Manhattan 
metric, which is calculated by the following equation: 

 

yxx
                                          

(1) 
 

The gradient descent on the potential function defines the direction of movement, 
thus introducing a kind of global space knowledge for pedestrians. The model is in-
herently emergent, as the interactions among simple parts can simulate complex phe-
nomena such as crowd dynamics.  

The method used for the calculation of the potential field is a flood fill method, 
where the distance is calculated by moving a cell to closest neighbour cell and sum-
ming up the distances [9]. This operation is recursively applied to all surrounding 
cells. If a cell is occupied by an obstacle then this obstacle cell will not flood its 
neighbours. Algorithmically, the aforementioned method is based on an n×9 matrix, 
calculated for each occupied cell. The elements represent all possible updated spatial 
and temporal states of the occupied cell (Fig. 1). Variable n indicates the number of 
the exits. Each element of the i-th row (i=1, …, 9) specifies the distance of the occu-
pied cell and its eight neighbours from the i-th exit. The occupied cell is always repre-
sented by the fifth cell of each row, whereas all other cells represent the eight closest 
neighbours, i.e. the north-west (NW), north (N), north-east (NE), west (W), east (E), 
south-west (SW), south (S) and south-east (SE) neighbour, respectively. As soon as 
all possible routes are detected, i.e. as soon as each of the n×9 elements of the matrix 
is calculated, the shortest prevails. Consequently, both the destination exit and the 
direction during next step are defined. The former is represented by the row of the 
minimum value element and the latter is indicated by its column. 
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Fig. 1. The n×9 matrix 

Fig. 2 further clarifies the operation of the matrix, assuming the special case of a 
unique exit (n=1). Then, the size of the matrix becomes 1×9 and its elements can be 
rearranged in a 3×3 form. The latter form illuminates the value of each element. It 
corresponds to the distance of each cell, i.e. the occupied cell and its closest 
neighbours, from the exit. Distance definition originates from Manhattan metric; the 
minimum number of steps, in order a pedestrian to reach the exit moving strictly ver-
tically or horizontally is calculated. More details regarding the structure and applica-
tion of the Manhattan distance to the CA crowd model can be found in [10]. 
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Fig. 2. The special case of unique exit; n=1 and the corresponding rearrangement of the n×9 
matrix to a 3×3 form. 

3   The Auto-Defined Obstacle Field Effect 

A distinct feature of the model is an automated process that enables obstacle avoid-
ance based on the effect of a virtual field generated near obstacles. Inside the field, a 
pedestrian moves towards the direction of greater field values. Following that direc-
tion a pedestrian is enabled to overcome efficiently even complex obstacles. Specifi-
cally, in the general case, obstacle field values are increasing forming a parabola, 
which is described by the following equation: 
 

0pxx
p2
1xF 2
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0xx0xxxx BwrwlAwrwl ,
                     

(2)
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2
xxx AB

o
                                                       (3) 

In equation (2), p corresponds to the parameter of the parabola, which also defines 
the distance between the two branches of the graphical representation of the function. 

In fact, as 0
2
1
p

 

, then the width of the parabola increases. Moreover, (xA, yA), (xB, yB) 

represent the coordinates of the edges of the obstacle, whereas, xwl, xwr correspond re-
spectively to the very left and very right x-axis coordinate of the walls. Equation (3) de-
fines xo, which corresponds to the x-axis coordinate of the middle point of the obstacle. 

In case that the obstacle is bonded to a wall, then the field is generated according 
to the common coordinate of the obstacle and the wall, as described by equations  
(4) and (5): 

2
wlwlA xx

p2
1xF0xx )(

 
(4)

2
wrBwr xx
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(5)

The length of the obstacle is given by: 

ABobstacle xxL
 

(6)

whereas the length of the area between walls is given by: 

wlwr xxm
 (7)

 

Finally, in the case of complex obstacles the corresponding field is generated by 
the superposition of fields that correspond to fundamental obstacles. Fig. 3 clarifies 
the effect of the auto-defined obstacle field to the direction of pedestrian movement, 
in correspondence to the location and the shape of the obstacle. It should be men-
tioned that above mathematical presentation takes into account geometrically shaped 
obstacles, however with slight modification can be successfully applied to arbitrary 
shaped obstacles as well. 

Fig. 4 displays successive snapshots of a simulation example that display the appli-
cation in software of the aforementioned mathematical method for overcoming com-
plicated obstacles. It is proved the proper application of the method and its qualitative 
validity as well. 

As far as the validity of the model concerns, simulation results prove that distinct at-
tributes of crowd behaviour [11], such as collective effects, blockings in front of exits 
and random to coherent motion due to a common purpose, transition to incoordination 
(arching) due to clogging as well as mass behaviour qualitatively characterise the 
model as well. The model has been further evaluated by means of computer-generated 
distributions of pedestrians, in order to estimate how well it reproduces flow-density 
dependence, i.e. to reveal its fundamental diagram response. Specifically, in  
practice, the global density was measured by counting all pedestrians in the area of 
interest and then dividing by that area, whereas the global flow was defined by  
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(a) (b) 

(c) (d)  

Fig. 3. (a) The graphical representation of the obstacle field in case that the obstacle lays be-
tween walls. The values of the field increase in the direction from left to right for half the 
length of the obstacle and the vice versa for the other half. Thus, the pedestrian is enabled to 
move following the one direction or the other, as indicated by arrows. (b) The response of the 
obstacle field, in case that the exit is closer to the left edge of the obstacle (XA=Xwl). (c) The 
case of a vertical obstacle and the corresponding field. (d) The case of a complex obstacle. The 
final field is generated by the superposition of field cases (b) and (c). 

the number of people passing a long cross section per unit time, divided by its length 
(Fig. 5). The corresponding diagrams quite match with that of A. Johansson et al [12] 
enhancing the validation of the model. Fig. 6 displays the response of the model in the 
case of a large number of people walking through a broad corridor with obstacles 
hampering their movement. 
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(a) (b) 

(c) (d)  

Fig. 4. Successive snapshots of a simulation example that displays the way that pedestrians 
overcome complicated obstacles based on the auto-defined obstacle field effect.  

 

Fig. 5. Global density measurement method. The global density is measured by counting all 
pedestrians in the area of interest and then dividing by this area. 

In order to evaluate in what extent the model is appropriate for quantitative and 
qualitative of pedestrian flow, its response is compared to empirical velocity-density 
relations. Assuming that pedestrians move smoothly according to the flow-density 
relationship derived from fluid-dynamics, the flow per meter width follows the rela-
tionship below: 



 A Cellular Automaton Model for Crowd Evacuation 461 

(a) (b)  

Fig. 6. Snapshots of the simulation example 

VQ                                                        (8) 
where Q represents the flow per meter width and ρ is the pedestrian density [13-14]. 
Equation (8) is often used for designing pedestrian facilities, for safety and evacuation 
studies. Empirical measurements are often restricted up to 4-6 persons/m2 only. In the 
study [14], for example, the maximum density ρmax is 5.4 persons/m2 and the corre-
sponding speed-density relationship is  

max

exp 111VV o

                                      
(9)

 

where Vo=1.34 m/sec is the free speed in low densities and a=1.913 persons/m2 a fit 
parameter. According to the principles of the model, each person can cover a mini-
mum area of 0.4×0.4=0.16 m2, hence the maximum density is equal to 6.25 per-
sons/m2, which is found in agreement with other literature approaches related to that 
issue [15-16]. 

Regarding the simulation example, the scenario adopted is that of a gradually in-
creased number of people walking through a broad corridor. The whole area corre-
sponds to a CA grid of 50×30 cells that is equal to an area of 240 m2. The area of in-
terest (AoI), i.e. the one that takes part in density measurements covers 90 CA cells, 
that is an area of AoI=90 (cells) × [0.4 (m) × 0,4 (m)]/cell = 14.4 m2. For each of the 
total 190 times steps of the simulated experiment, the number of people inside the 
area of interest is measured and the corresponding density is calculated, according to 
the following relationship: 

AoI
insideAoIpersonsNo

t                                        
(10)

 

where t corresponds to a specific time step, i.e. t=1, …,190. 
As soon as all time steps are completed, the maximum density ρmax (=3.611 per-

sons/m2 for the specific example) is detected and then the global velocity is computed 
for each time step, according to equation (9). Finally, the flow per meter width, Q, is 
evaluated according to equation (8) leading to the graphical representation of the re-
sults. Table 1 displays a selection of results derived from simulation. 
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Table 1. All types of results for randomly selected times steps 

Time step People inside AoI Total No of 
people 

Density 
(per-
sons/m2) 

Speed 
(m/sec) 

Flow 
(peo-
ple/m/sec) 

15 2 25 0.139 1.340 0.186 
78 41 1450 2.847 0.176 0.500 
134 52 3840 3.611 0.007 0.025 
185 35 6169 2.431 0.302 0.735 

 
In the following, three characteristic diagrams derived from simulation results are 

presented. Particularly, the global flow-global density diagram is given in Fig. 7, 
whereas the speed-density diagram is showed in Fig. 8 and the cumulative flow of 
pedestrians in Fig. 9. For each curve the corresponding one from A. Johansson et al. 
[12] is also depicted, in order the response of the model to be compared with existing 
literature results. 
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Fig. 7. (a) The global flow-global density diagram as derived by the model. (b) Global flow as a 
function of the global density in the video-based experiment of A. Johansson et al. [12]. Symbols 
correspond to the empirical data of Mori and Tsukaguchi [16] (circles), Polus et al. [17] (squares), 
Fruin et al. [18] (triangles), and Seyfried et al. [13] (dots). The solid fit curve is from Weidmann [14]. 
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Fig. 8. (a) The speed-density diagram of the simulation example. (b) Global speed as a function 
of the global density in the video-record based experiment of A. Johansson et al. [12]. Symbols 
correspond to the empirical data as clarified in the caption of Fig. 7. 
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Fig. 9. (a) Cumulative flow of pedestrians in the simulated example. (b) The corresponding 
diagram in the case of the pilgrims’ flow example of A. Johansson et al. [12]. 

4   Conclusions 

A CA model for the simulation of crowd evacuation with auto-defined obstacle avoid-
ance approach has been described. Crowd consists of individuals and macroscopical 
features of its motion emerge from the local interaction of pedestrians. Motion mecha-
nism stems from a potential field based on the Manhattan distance of each pedestrian 
from the exits. Each obstacle defines a field around it according to its shape and posi-
tion. The field affects a pedestrian that reaches it by guiding her/him to move along the 
axis of the obstacle, towards the direction of increasing field values. Model evaluation 
includes extended simulation processes that prove the existence of macroscopic char-
acteristic features of crowd dynamics. Pedestrian distribution measurements produce 
the fundamental relationship between flow and density as well as that of speed-density 
in good quantitative and qualitative agreement with literature reports [12]. Several dif-
ferent cases with different shaped obstacles and different crowd distributions have 
been successfully tested. Finally the model is in process of calibration with the use of 
real data under conditions of increased density, i.e. video-recorder evacuation process 
of people leaving a football stadium of Greek Super League.  
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Abstract. Cellular Automata was applied to model the pedestrian flow, where 
the local neighbor and transition rules implemented to each person in the crowd 
were determined automatically by the experience of pedestrians. The experi-
ence was based on two parameters; the number of continuous vacant cells in 
front of the cell to proceed, and the number of pedestrian in the cell to proceed. 
The experience was evaluated numerically, and a pedestrian selected the cell to 
proceed by the evaluated index. The flow formations by pedestrians in the op-
posite direction on a straight pathway and on a corner were simulated, and the 
number of rows was discussed in relation to the density of pedestrian on the 
simulation space. 

Keywords:  Pedestrian Flow, Learning Algorithm, Local Neighbor Rule, Tran-
sition Rule, Density of Pedestrian, Number of Row. 

1   Introduction 

Cellular Automata (CA) has been considered to be one of the strong tools in modeling 
complex phenomena such as pattern formation of natural system, multi-phase fluid 
flow, traffic flow, city logistics or economical activities1-6. Corresponding to the ap-
plication field, CA has been given various names in each field. CA has also been 
applied to solve partial differential equations. Most of all, CA may be applicable in 
the simulation of complex systems, where a great number of elements consisting of 
the phenomena are affected to each other in the system. Pedestrian flow is a typical 
example of the complex systems; one person walks toward the destination, paying 
attention to other persons around him or her, and the pedestrian flow may be build up 
as assemblage of movement of each person. 

In the modeling of CA, local neighbor rules and transition rules should be imple-
mented to simulate time evolution of the phenomena to be considered. But these rules 
have large effect on the simulation results, and careful consideration is required in 
defining these rules. 

In this paper, CA has been applied to the simulation of pedestrian flow, in which the 
cell for a pedestrian to proceed was determined automatically by experience of each 
pedestrian. The experience was based on two parameters; the number of continuous 
vacant cells in front of the cell to proceed, and the number of pedestrian on the cell to 
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proceed. The experience was evaluated numerically, and a pedestrian selected the cell 
to proceed by the evaluated index. As examples, the flow formations by pedestrians in 
the opposite direction on a straight pathway and on a corner were simulated. 

2   State Variables and Corresponding Rules 

In this chapter, the definition of technical terms used as state variables, the proposed 
learning algorithm, the local neighbor rules and the transition rules are briefly introduced. 

2.1   State Variables 

Three types of cell state variables were defined; “pedestrian”, “floor” and “wall” as 
shown in Fig. 1. The state variable of “pedestrian” indicated the existence of pedestri-
ans in a cell. The movement of pedestrians was simulated by changing the state vari-
able from “pedestrian” to “floor” or from “floor” to “pedestrian” along time progress. 
In addition, “position coordinate”, “the number of pedestrian” and “guide sign” were 
defined as state variables. In the simulation, more than one pedestrian were permitted 
to exist in one cell at the same time. The guide sign represented the information sign 
in the design space and controlled the movement of pedestrians.  

The state variable of pedestrian included additional information; “position”, 
“goal”, “sight”, “velocity”, “directional degree” and “Learned data”. The goal was the 
target cell where the pedestrian was heading for. This information was given when a 
pedestrian was first positioned to the simulation space at the entrance. The state vari-
able of sight was defined as the sight area of a pedestrian as shown in Fig. 2. This 
information was composed of sight radius and degree. The simulation in this paper 
defined the sight degree as 0. Velocity was the maximum velocity and the current 
velocity. The maximum velocity was given when a pedestrian first positioned to the 
simulation space. Directional degree was defined as movement direction of a pedes-
trian. This information was composed of the heading and current degree. 

The Learned data was composed of the assembly of situation pattern which was 
composed of “Pattern number” and 5 “Destination cell data”. The Pattern number was 
a number which indicated the situation of sight area, and expressed by 8 digit-number. 
This number included the number of same directional pedestrians, the number of 
opposite directional pedestrians which might cross of the marked pedestrian, the 
number of opposite directional pedestrians which might not break in course of the 
marked pedestrian, and the number of wall cells. 

The Destination cell data was composed of “candidate cell” to proceed, “experi-
enced value”. The candidate cell was one of five cells shown in Fig. 3. The Experi-
enced value was an indicator of how comfortable the candidate cell was, and was 
evaluated by the number of vacant cells in front of the candidate cell (α), and the sum 
of pedestrians in the candidate cells (β). The experienced value (γ) is defined as; 

1+
=

β
αγ  

Unit value is added to the denominator, because the minimum of β could be zero. 
 



 A Learning Algorithm for the Simulation of Pedestrian Flow by Cellular Automata 467 

Pedestrian Cell Floor Cell
Wall Cell  

Fig. 1. Simulation Space and the Meaning of Each Cells 
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2.2   Learning Algorithm 

Individual learning procedure had 3 steps; sight area recognition, checking situation 
of local area after moving, and updating situation pattern. 
 

Step 1: Sight Area Recognition 
The situation of cells in the sight area should be evaluated by the Pattern number 

expressed by 8 digit-number described in previous section.  
Step 2: Checking Situation of Local Area after movement 

After all pedestrians had moved, the Experienced value should be evaluated for 
each candidate cell, that is, the number of vacant continuous cells (α) and the sum of 
pedestrians in the candidate cells (β). The number of the pedestrians in the candidate 
cell did not include the marked pedestrian. 
Step 3: Updating Situation Pattern 

After finding the situation pattern which had the same pattern number from step 1, 
add the situation in the step 2 to each experienced value in the situation pattern. The 
each experienced values were updated in the situation pattern. 

 
After the individual learning procedure, the information was shared by the all pe-
destrians walking into the simulation space at the entrance cell. The shared informa-
tion was the pattern 8 digit-number and the average of the Experienced values (α, β 
and γ) for five candidate cells. The shared information might be updated when a 
pedestrian went out from the exit, and the new information would be shared by 
other pedestrians. 
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2.3   Local Neighbor and Transition Rules 

2.3.1   Selection of the Candidate Cell 
The cell where a pedestrian might move in the next time step was selected from 5 
candidate cells. Evaluation value was setup to each candidate cell, and the cell which 
had the largest evaluation value was selected to move. Evaluation values of 3 candi-
date cells (front cell, left front, and right front) were compared at first. If more than 2 
cells had equal evaluation value and front cell was included, the front one might be 
selected. If front cell was not included, either left or right front one was selected at 
random. If the 3 evaluation values were all zero, either of left cell or right cell was 
selected to move. 

2.3.2   Update Information of Pedestrians 
In each time step, heading degree, current degree were updated. Heading degree was 
updated after sight area recognition. The guide sign should be recognized at first in 
the sight area. If the distant between the guide sign and the goal was less than a cer-
tain value, the heading degree was updated to the degree to the guide sign. 

At the same time, the current degree was updated after sight area recognition. The 
direction was determined by the vector of avoiding other pedestrian 

pedestriana
r  and the 

vector of referring guide signs 
guidea
r . The vector of avoiding other pedestrian was 

determined in reference to the direction of a nearest pedestrian in opposite direction. 
This vector was define 

pedestriana
r  as a unit vector which has degree as 180 degree 

added to the current degree of the opposite directional pedestrian. The vector of refer-
ring guide signs was defined from all guide signs which had the same goal to the 
pedestrian in the sight area. 

3   Simulation Results and Discussions 

In this chapter, initial and boundary conditions are briefly introduced. Two examples 
of pedestrian flow simulation, the counter flow along the straight pathway and on the 
corner were shown. 

The counter flow was simulated in a straight pathway with 2 entrances. The pedes-
trians entered from each side of entrance and walked out from the other side of exit. 
In this simulation, the number of crash of pedestrians on the pathway was counted to 
check the effectiveness of learning procedure. The flow pattern of pedestrian was 
discussed in relation to the pedestrian density. 

The corner flow in L-shaped concourse with 2 entrances was also simulated. In this 
simulation, some image files are shown to check the formation of rows by the pro-
posed learning algorithm. 

3.1   Basic Setting and Conditions 

The basic setting, initial and boundary conditions of the simulation are shown as follows; 
 

 A cell was a square with 75cm each side. 
 A pedestrian could move 1 cell in each step. 
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 Entrance cell was specified in advance. 
 Pedestrians walked into the simulation space from entrance cell at constant 

rate. 
 If the number of pedestrians on the entrance cell was bigger than 0, new pe-

destrian could not walked into the cell. 
 The width of the entrance is 10 cells. (It means that the width of the con-

course is 7.5m) 
 The number of crash was counted as the number of cells where the number of 

pedestrian was more than 1. 

3.2   Counter Flow Simulation 

The basic setting in the counter flow simulation is as follows; 
 The pathway had length of 100 cells and width of 10 cells. 
 The entrance and the exit were placed at the end of pathway in each case of 

simulation. 
 

3.2.1   Effect of Leaning Procedure 
The number of times of crash for all pedestrians in the simulation space along time 
procedure is shown in Fig. 4, comparing the case with learning function and that 
without learning. The pedestrian walked into the pathway by the probability of 6 % at 
the entrance cells. In Fig. 4, the number of times of crash was averaged by 1,000 
times, because the crash number scattered widely in each simulation. 

There seemed no crash up to 50 steps, because the groups of pedestrians from both 
entrance did not meet to each other. After the step 50, the number of crash quickly 
increased, and around the step 100 to 200, the number of crash came to the peek. This 
is because there were pedestrians coming into the pathway at the probability of 6%, 
and the rate of pedestrians walking into the simulation space decreased.  
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Fig. 4. The number of crash against time step by percentage of 6% 
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(a)

(b)

(c)

 

Fig. 5. The pedestrian flow pattern (a) 0.6%, (b) 7.0%, (c) 14.0% 

The peak of learned result came after the result without learning and the peak value 
was larger than that without learning. This may be caused by the movement of pedes-
trians to avoid crashing under the condition of insufficient learning. The crash number 
quickly decreased after about the step of 140 and took steady value of a little over 1.0. 
On the other hand, the result without learning converged to around 3.0, which showed 
the effectiveness of learning procedure proposed in this paper. 

3.2.2   Pattern of Pedestrian Flow on Straight Pathway 
The flow patterns on the straight pathway are shown in Fig. 5, at different rate of 
pedestrian walking into the simulation space of 0.6, 7.0 and 14.0%. The simulation 
was performed with learning procedure. 

At low density of pedestrian, people walked through the pathway on their own 
way, and there appeared no distinct pattern. On the contrary, as the density was in-
creased, the pedestrians on the pathway tended to follow other persons in order to 
avoid crashing, which followed formation of the row of pedestrians. 

The row formation is considered to be characterized by the number of rows and the 
number of people in each row. It is not easy to count the number of column in each 
scene of animation, because the length and width of a column varies in each time step 
on the simulation. Then, in reference to Fig. 6, the number of rows and the average 
number of people in the rows were estimated. 

At first, a specific point is calculated on each row of cells. Each person walking 
from left to right corresponds to +1, and the person from right to left to -1. By adding 
the each point in every row of cells, the total point may be calculated for each row of 
cells. There may appear some boundaries of total points where the sign of point 
changes from positive to negative or vice versa. The number of rows may be charac-
terized by this number of boundaries in the pathway7. There are two rows in the ex-
ample scene shown in Fig. 6. 

In this way, the number of rows were estimated in the results shown in Fig. 5. The 
relationship between the number of rows in the pathway and the density of pedestrian 
is shown in Fig. 7. The number of rows were estimated by the average of 10,000 
steps. As the density was increased, the number of rows increased and showed a peak 
around 0.15-0.2 person/m2. After the peak, the number of rows decreased and  
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Fig. 7. Number of Rows against the Pedestrian Density  

converged to around 2.0 at the density of 0.5 person/m2, which means the counter 
flow was divided into upstream and downstream clearly. 

At the same time, the average number of crash is shown in Fig.7. The peak of 
the number of row located at the density of 0.15 to 2.0 persons/m2 might have 
some relation to the number of crash. It should be noted that, pedestrians on a 
passage had tendency to make crash in tapering rows, and to make rows wider for 
avoiding crash. It resulted in two-layerd flow in opposite direction as shown in 
Figs.5(b) and (c). 

3.2.3   Flow Pattern on a Corner 
The flow pattern of pedestrians on a corner is shown in Fig. 8. In the result without 
learning, there appeared no distinct pattern, and people walked along the pathway 
crashing to each other. The simulation results with learning showed dynamic pattern 
formation of pedestrians. A pedestrian followed another pedestrian which induced a 
crowd flow, and that, the flow swayed dynamically in the width of pathway. The 
streams changed from inside to outside and vise versa. 
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Step 280

Step 125

Step 100

Step 60
Without Learning With Learning

 
Fig. 8. Flow Patterns on a Corner  

4   Conclusions 

In this paper, CA was applied to the simulation of pedestrian flow, and a learning 
procedure to local neighbor and transition rules was proposed. The learning procedure 
was based on the number of continuous vacant cells in front of the target cell to pro-
ceed, and the number of pedestrian on the target cell. With this simple procedure, 



 A Learning Algorithm for the Simulation of Pedestrian Flow by Cellular Automata 473 

pedestrians show the tendency to avoid crashing and to make rows on the pathway. 
Though there may exist various proposals of learning technique to model phenomena 
relating to human activities, one of the best and simplest ways to model them may be 
tracing the way how we think and behave. 
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Abstract. In this paper we show an effect that a shape of way con-
tributes to dynamics of one Cellular Automata pedestrian movement
model. The fundamental diagrams for a closed and strait pathes are pre-
sented and discussed.
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1 Introduction

Here we present some investigation of dynamics of our model. The model is
stochastic discrete CA model and supposes short-term decisions made by the
pedestrians [1]. A possibility to move according the shortest path and the short-
est time strategies are implemented to the model. From the comprehensive theory
of pedestrian dynamics [2] such model may be refereed to tactical level.

It is obvious that a shape of a way influences on dynamics of people flow in
real life. Here we focus on the influence of turns. The fact is that the pedestrian
flow velocity goes down on turns; and model should be able to reproduce it. We
investigated the realization of the same effect in our pedestrian movement model.
The people flows were simulated under approximately constant densities on a
straight path and a closed path. Differences between two cases were investigated
comparing fundamental diagram.

In the next section the model is presented. Section 3 contains description of
the case study and results obtained.

2 Description of the Model

2.1 Space and Initial Conditions

The space (plane) is known and sampled into cells 40cm×40cm which can either
be empty or occupied by one pedestrian (particle) only (index fij = {0, 1}). Cells
may be occupied by walls (index wij = {0, 1}) and other nonmovable obstacles.
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The model imports idea of a map (static floor field S) from floor field (FF)
CA model [3] that provides pedestrians with information about ways to exits.
Our field S increases radially from exit cells. It doesn’t evolve with time and
isn’t changed by the presence of the particles.

A target point for each pedestrian is the nearest exit. Each particle can move
to one of four its next-neighbor cells or to stay in present cell (the von Neumann
neighborhood) at each discrete time step t → t + 1; i.e., vmax = 1[step].

A direction of the movement of each particle at each time step is random and
determined in accordance with the distribution of transition probabilities and
transition rules.

2.2 Update Rules and Transition Probability

A scheme typical of the stochastic CA models is used. At the first stage, some
preliminary calculations are made. Then, at each time step the transition prob-
abilities are calculated, and the directions are selected. In the case, when there
are more than one candidate to occupy a cell, a conflict resolution procedure is
applied. Finally, a simultaneous transition of all the particles is made.

In our case, the preliminary step includes the calculation of FF S. Each cell
Si,j stores the information on the shortest discreet distance to the nearest exit.

The probabilities of movement from cell (i, j) to, e.g., up neighbor is1

pi−1,j = N−1
i,j exp

[
kS*Si−1,j − kP Fi−1,j(r∗i−1,j)−

− kW (1 −
r∗i−1,j

r
)1̃(*Si−1,j − max*Si,j)

]
(1 − wi−1,j); (1)

where

– Ni,j = p̃i−1,j + p̃i,j+1 + p̃i+1,j + p̃i,j−1;
– *Si−1,j = Si,j −Si−1,j , kS ≥ 0 is the (model) field S sensitive parameter (the
higher kS , the better directed the movement);
– r > 0 is the visibility radius (model parameter) representing the maximum
distance (number of cells) at which the people density and obstacles influence
on the probability in the given direction;
– r�

i−1,j is the distance to the nearest obstacle in the given direction (r�
i−1,j ≤ r);

the people density lies within 0 ≤ Fi−1,j(r∗i−1,j) ≤ 1;
– kP is the (model) people sensitivity parameter which determines the effect of
the people density, the higher parameter kP , the more pronounced the shortest
time strategy;
– kW ≥ kS is the (model) wall sensitivity parameter which determines the effect
of walls and obstacles.

1 Probabilities pi,j+1, pi+1,j , pi,j−1 are calculated similarly. pi,j = 0: the probability of
retaining the current position is not calculated directly. Nevertheless, the decision
rules are organized so that such opportunity could be taken.
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The decisions rules are the following:

1. If Ni,j = 0, motion is forbidden.
2. If Ni,j �= 0, target cell (l, m)∗, (l, m)∗ ∈ I = {(i − 1, j), (i, j + 1), (i +

1, j), (i, j − 1), (i, j)} is chosen randomly using the transition probabilities.
3. (a) If Ni,j �= 0 and (1 − f∗

l,m) = 1, then target cell (l, m)∗ is fixed.
(b) If Ni,j �= 0 and (1 − f∗

l,m) = 0, then the cell (l, m)∗ is not available as
it is occupied by a particle. In such case pi,j =

∑
(y,z)∈I:(1−fy,z)=0

py,z and

py,z = 0∀(y, z) ∈ I : (1 − fy,z) = 0. Again, the target cell is chosen
randomly using the transformed probability distribution.

4. Whenever two or more pedestrians have the same target cell, movement of all
the involved pedestrians is denied with probability μ. One of the candidates
moves to the desired cell with the probability 1− μ. The pedestrian allowed
to move is chosen randomly.

5. The pedestrians that are allowed to move perform motion to the target cell.
6. The pedestrians that appear in the exit cells leave the room.

The above rules are applied to all the particles at the same time; i.e., parallel
update is used.

3 Case Study

To investigate the contribution of turnes to model dynamics we use two case
studies, see fig. 1. The first path is strait; the other one is closed path. A set
of densities was considered. During each experiment the initial density was kept
approximately constant.

In all experiments we investigate the directed movement kS = 4; the attitude
to walls is “loyal” (kW = kS).

The simplest type of the way, the strait path, supposes that strategy of the
shortest path coincides with the shortest time strategy for the whole way. Ge-
ometry of the way does not influence on the movement, and the shape of the

a) Strait path. b) Closed path.

Fig. 1.
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flow and velocity are only determined by the density. To realize only the shortest
path strategy the model density sensitive parameter kP has to be low (kP < kS).

If there are turns on the way, congestions appear before turns (depending on
density), and some people start to use detours facilities (that means to follow
the shortest time strategy) and not to wait when the shortest path will free.
As a result the average velocity and flow go down. In the model the shortest
time strategy is pronounced under kP > kS . The mechanism is the follow-
ing. If the shortest path direction has a high density, F (r�) ≈ 1, the proba-
bility of this direction goes down. At the same time, the probability of direc-
tion(s) that are more favorable to movement (F (r�) ' 1) rises, and the detours
around high-density regions are made. One can say that the model is density
adjustable.

In figures 2a, 2b the fundamental diagrams presented for strait and for closed
pathes correspondingly. Comparing figures one can see that the flow 2 goes down
(approximately in half) from the strait path case to the closed one. Shapes of
the fundamental diagrams change. Maximum of the flow shifts to lower densities.
Thus, general expectations are realized.

We tested different sets of parameters. These sets reproduce the different
people movement: from using only one strategy (the shortest path) when kP < kS

to combining both strategies if kP > kS .
In fig. 2a one can see that the flows are the highest and approximately coincide

for 3 sets of parameters (kS = 4, kP = 2, r = 1; kS = 4, kP = 4, r = 1; kS =
4, kP = 4, r = 10). In all of this cases the shortest path strategy is mainly
reproduced by the model; the influence of the people density sensitive term is
reduced to minimum by low parameter kP .

The other curves in fig. 2a give flows for cases when the the shortest time
strategy is already reproduced by the model. But the type of the path does
not suppose using of this strategy. And realizing of the shortest time strategy
delivers some disturbance to the directed movement, average velocity of the flow
slows down, and this results in the lower flow.

Note that for wide range of low densities and for high densities all sets of
model parameters give the same flow. This says that for such type of way the
model is sensitive to model parameters only under middle flow density.

At the same time a comparison of figures 2a and 2b shows that for the closed
path starting with the lowest densities the model is sensitive to the parameters.
Curves in figure 2b diverge for the whole range of densities and approximately
coincide only for extreme density values. But value of maximal divergence is
considerably less then in fig. 2a.

Moreover dynamics of the model, on the whole, is very sensitive to the shape
of way. Only for ρ < 0, 75[1/m2] flows for parameters considered in figure 2a and
figure 2b approximately coincide. Starting with ρ > 0, 75[1/m2] presence of turns
results in a slowing down of the velocities and flows (approximately in half).

2 We use specific flow J = 1000/Tst/2 [1/step/m], where Tst – number of steps that
1000 particles need to cross the control line under given density.
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Fig. 2. Fundamental diagram for different sets of parameters kS, kP , r (J kS kP r)

Interesting facts are: the most divergent curves from fig. 2a (J 4 2 1 and
J 4 18 10) approximately coincide in the closed path case; the most coincident
curves from fig. 2a (J 4 2 1 and J 4 4 1) are the most divergent in fig. 2b.

The first fact may be explained in the following way. Parameters kS = 4, kP =
2, r = 1 and kS = 4, kP = 18, r = 10 deliver opposite extreme strategies of move-
ment (see above); and for the straight path this gives expected very divergent
curves. For the closed path these opposite properties gives coincident the lowest
flows because the type of the way implies the combining of the strategies.

4 Conclusion

At the moment we have no appropriate real data for the similar closed path to
compare with. But simulation results obtained show the expected decreasing of
the flow comparing the straight and the closed pathes. We believe that specific
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feature of CA model, i.e., discreteness of the space and the von Neumann neigh-
borhood, gives some contribution to the decreasing. But nevertheless the proper
model “senses” the shape of the way.

At the same time simulation results show that model parameters play impor-
tant role. Of course the fundamental diagram could not depict the all variety of
the difference in model dynamics for different parameters and type of ways, and
more criterions should be investigated for thorough identifying the all features
of the model dynamics. But time and spatial adaptation of model parameters
becomes clear to make the model geometry adjustable.
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Abstract. This contribution discusses the application of a fast and
sloppy solution of the Eikonal equation – namely the dynamic distance
potential field – for the simulation of the flow of a group of pedestrian
agents through two bottlenecks with different capacity (width) but iden-
tical walking distance toward the destination. It is found that using the
method leads to a better distribution of agents on the two corridors.

1 Introduction

It is a wide spread paradigm in the modeling of pedestrian dynamics [1] to
include three basic elements in the model: 1) a pedestrian wants to move (spa-
tially) closer to the destination; 2) a pedestrian evades other pedestrians; 3) a
pedestrian evades obstacles. There’s the – often unsaid – implicit assumption
that in combination these elements act together to make the simulated pedes-
trians (agents) move not on the shortest but the quickest path to an extent that
corresponds to real pedestrians’ behavior. This, however, in many cases does not
work as intended as a situation as simple as the flow around a corner shows [2,3].

1.1 Quickest Path for Road Networks

For vehicular traffic it is a central problem to find the user equilibrium of a given
transportation network and demand [4,5]. For a system in user equilibrium it is
impossible for a single driver to reduce the travel time by changing the route. For
a single driver this is equivalent to finding the quickest route under consideration
of the restrictions imposed by the presence of all other drivers.

Finding the equilibrium is simpler for a road network than for a pedestrian
“areawork” as the route choices are discrete and the number of routes is finite –
although the generation of the contemplable routes is not trivial [6]. In a sense
for vehicles the routes can be used as input while they (the trajectories) are a
result of the simulation of pedestrians. For vehicular dynamics the equilibrium
is found by iterative simulation or calculation. Apart from methods that lead
to results close to the equilibrium in some situations there’s no way to get rid
of the iterative approach. The iterative approach is possible as the routes stay
exactly the same from one iteration step to the other. On the contrary pedestrian
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trajectories are individual properties that usually do not re-occur identically in
subsequent iteration steps.

For this reason the method discussed in this contribution in fact addresses the
problem of an individual to try to minimize remaining travel time but it refrains
from iterative simulation. Therefore it is obvious right from the beginning that
the result can not be an equilibrium in the rigid sense. The aim is that by using
the method the system obviously – already visually – is closer to an equilibrium
state than when the method is not used.

1.2 Quickest Path in Continuous Space

Fermat observed that light travels on the path of least time, provided that the
starting and end points A and B are fixed. In environments with a variable
speed of light (different materials, but also a spatially continuously changing
concentration of a solvent in a solution) light therefore can considerably deviate
from the shortest path – the most famous consequence being Snell’s law.

Put in a more general mathematical formulation light follows the gradient of
the solution of the Eikonal equation [7,8]

|∇T (x|2 =
1

|v(x)|2 (1)

with v(x) as travel speed at location x and T (x) as remaining travel time toward
the destination B.

The Fast Marching Method is a well established and widely used numerical
method to solve and integrate the Eikonal equation [9,10]. While it is considered
to be fast, it still has a major impact on computation times, if it is integrated
into a model of pedestrian dynamics for time-step-wise recalculation. Neverthe-
less it has already been used in a model of pedestrian dynamics [11]. There the
effects of distance, travel time and discomfort are combined to calculate one sin-
gle potential field which then exclusively determines the motion of the agents.
Another application of the Fast Marching Method for the simulation of pedestri-
ans has recently been presented in [12]. Most applications there are static such
that computation time is a less important issue, but it is shown that the method
can easily be transfered to other lattice geometries, as in this case the model of
pedestrian dynamics is formulated on a hexagonal lattice.

The method used in this work is simpler and accepts limited precision in the
solution of the Eikonal equation in exchange for quicker computation.

Solving the Eikonal equation numerically means calculating values for nodes
of a mesh. This mesh can be chosen according to the spatial structure of a CA
model of pedestrian dynamics. While using numerical solutions of the Eikonal
equation is not limited to CA models of pedestrian dynamics it appears therefore
to be especially suited for them.

No matter what method is used for solving the Eikonal equation and no
matter how small its errors are, one problem remains: the solution is calculated
instantaneously. This means that the value of the field T (x) at position x0 of
an agent A depends on the conditions downstream toward the destination as
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they are now. Relying on a solution of the Eikonal equation to calculate quickest
paths means that either the conditions (the travel speeds) are constant – which
typically is the case for light – or that one knows about how the conditions will
develop. For pedestrians the conditions typically will develop, as the distribution
of pedestrians will develop and as the local distribution of pedestrians is crucial
for the travel speed one can assume to exist at a certain location. This is again
different for light: the distribution of light (photons) influences the propagation
of light only marginal.

To find the quickest path therefore agent A would have to be informed on the
pedestrian density as it will be when he is there at some later time. Yet to know
about this one would be in need to know the results of the simulation. The only
way to escape this dilemma would be a converging iterative process, which is
not possible in a straight-forward way for reasons stated above.

As real pedestrians do not have perfect information on the conditions on their
remaining path, they normally are not able to choose the quickest route as well.
Nevertheless one must be aware that using a solution of the Eikonal equation as
one of the determinants of motion will not necessarily in general yield perfectly
realistic walking directions. Again here the reasoning of the last paragraph of
the preceding applies: the intention is to have not a perfect but a better agent
behavior by applying the method.

Recently the Dynamic Distance Potential Field was introduced as a heuristic
method to make simulated pedestrians value the quickest path better compared
to the shortest path [13]. It has so far mainly been tested in geometries, where an
alternative longer path has the same capacity (bottleneck width) as the shorter
path [14,15]. In the remainder of this work at first the method is sketched and
then applied to an example geometry that is basically symmetric in distances,
but asymmetric in capacities. This is to be understood as completion of previous
works with examples with symmetric capacity but varying walking distances.

2 The Dynamic Distance Potential Field

For the calculation of the dynamic distance potential field an additional lattice is
used. It shares spatial properties with the lattice of the cellular automata model
of pedestrian dynamics (here the F.A.S.T. model [16,17,18] was used, but the
method can be combined with any other CA model of pedestrian dynamics just
as well). The values for this lattice are calculated by propagating a front from
the destination outward. When propagating over lattice cells which are free (not
occupied by a pedestrian) a value of 1 is added, when propagating over occupied
cells a value sadd > 1 is added. This is done two times: once the propagation only
floods over common edges and second over common corners as well. In the former
case the resulting field is called DM (with the M from Manhattan metric), in
the latter case DC (with the C from Chebyshev metric). The dynamic distance
potential field DV1 is a combination of both:

DV1 =
√

D2
C + (DM − DC)2 (2)
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This combined field exhibits smaller errors than the two composite fields alone
[19]. To reduce the error further the value influencing the motion is not the
field itself but the difference between the field and the field calculated for the
geometry without pedestrians

ΔDV1(t) = DV1(t) − DV1(empty). (3)

3 Geometry

The geometry is an alternation of RIMEA’s test case 11 (RTC 11). While in
RTC 11 1,000 agents have to leave a room via one of two equally sized doors,
of which one is more remote than the other, here 1,000 agents have to leave a
room by one of two doors that are equally far away compared to the starting
area of the pedestrians, but of which one is twice as wide as the other. Of this
basic structure two variants have been considered: one with short (40 cm) and
one with long (10 m) bottlenecks). See figure 1.

Fig. 1. Investigated geometries: 1,000 agents start on the red area, which has 6.25 x
10 m. The bottlenecks are 80 resp 160 cm wide and 0.4 resp 10 m long. The exit is
marked with the green light at the right side.

4 Simulation Model and Basic Considerations

The study was done using the F.A.S.T. model for simulation. In the F.A.S.T.
model agents move on a discrete regular lattice with a distance of 40 cm between
the nodes. In other words there are square shaped cells with an edge length of
40 cm and each cell can be occupied by at most one agent. An agent is always
located exactly on one cell.

This implies that the starting area is densely packed with 25 x 40 agents. As
the central axes of both bottlenecks are placed symmetric to the starting area,
the horizontal symmetry axis of the starting area is a bit closer to the inner
edge of the wider bottleneck than to the narrow bottleneck. One row of cells on
the starting area is equally far away from the inner edges of both bottlenecks.
From this one would expect a 487.5 : 512.5 distribution of agents on the two
bottlenecks, if it were only for the shortest path.

If one would only have the agents of one bottleneck group as a waiting crowd
half-circle shaped around the bottleneck, one sees that a part of the half-circle
is closer to the other bottleneck. Those agents then would use this other bot-
tleneck. Thus, energy (in the static potential) minimizing effects can lead to a
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re-distribution with regard to the bottlenecks. This does not happen to full ex-
tend, as both groups are there at the same time. But as the flow through the
wider bottleneck is larger, the effect exists to some extend. If the effect would
be present in full extend in the direction narrow to wide bottleneck, by simple
geometric considerations one would expect a distribution of about 393 : 607.

The distribution according to capacities trivially is 333.3 : 666.7.

5 Results

The number of agents that use the narrow corridor (see figure 2) is generally
larger for the short bottleneck. This is a consequence of the effect described in
the previous section. The whole process needs less time at the short bottleneck
(as can be seen in figure 3). Therefore the re-distribution is less pronounced at
the short bottleneck compared to the long. With the dynamic distance potential
field switched off (sadd = 1 or kSdyn = 0), the number of agent walking the
long narrow corridor is even smaller than calculated in the previous section and
significantly larger than this value in the case of short bottlenecks.

Fig. 2. Asymmetry plot, resp. number of agents using the narrower corridor. The ad-
ditional horizontal lines mark the special values discussed in section 4. Each data point
is the average of 100 simulation runs.
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With increasing sadd and increasing kSdyn the number of agents dwindles that
use the narrow bottleneck and this as much for the short as the long bottleneck.
Only for very large values of kSdyn and sadd there is a difference: At the short
bottleneck there appears to be a saturation, while at the long bottleneck the
number reduces more and more, even below the value of 333.3. This is an effect
of the number of barriers that can build in the long bottleneck. Whenever there
is a “bridge” of occupied cells from one edge of the bottleneck to the other, the
dynamic distance potential field cannot flow around the agents but must pass
them. Then sadd determines the value of up-potential cells and not the size of
the block of occupied cells. For the long bottleneck theoretically there are 25
occasions for this, for the short bottleneck, there is only one.

The total evacuation time (figure 3) shows a minimum in the case of a long
bottleneck at moderate values of sadd and kSdyn and then clearly increases again.
One reason is that less agents than in the capacity-balanced case pass the narrow
bottleneck, but the increase begins at values of sadd and kSdyn that are even
smaller than those for which the number of agents using the narrow bottleneck
crosses this value downwards. For the short bottleneck the increase for large sadd

and kSdyn is much smaller. The average individual egress times show the same
tendency as the corresponding total evacuation times, but much less pronounced.

Fig. 3. Egress times. “total” is the evacuation time (time until the last agent has left)
and “ind.” is the average of individual times to reach the exit.
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Fig. 4. The evacuation graph

All this can be understood looking at the evacuation graph (figure 4). With
dynamic distance potential field the outflow rate (the slope of the graph) in the
case of the long bottleneck during the long “steady state” period is not larger
but smaller than without dynamic distance potential field. Only at the end the
more balanced distribution of agents on the two bottlenecks leads to an earlier
completion of the process. If one takes a very close look, for the case of the short
bottleneck one can see that in contrast the outflow rate is larger with dynamic
distance potential field than without. The reason is that in the F.A.S.T. model
the dynamic distance potential field slightly increases the average speed of an
individual agent in very low densities, but reduces the flow in densities at and
right above capacity.

This is similarly illustrated by the global directed flow shown in figure 5.

Fig. 5. Global directed flow: In this plot the flow is defined as sum over all agents of
changes in the value of the static potential of their current compared to their position
in the preceding time step. This is normalized by the size of the unobstructed area (the
number of accessible cells). I.e. it is average destination directed speed times global
density [20]. It can clearly be seen, how the better distribution on the two bottlenecks
leads to a higher flow in the end, if the dynamic distance potential field is applied. For
each of these functions 40,000 simulations have been done to get a smooth average.
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6 Summary

The dynamic distance potential field method has been tested at a geometry with
two almost equally long routes with different capacity. The method is able to
distribute the agents more according to the bottlenecks’ capacity. In the case of
the short bottleneck the ratio of bottleneck usage comes closer to the ratio of
widths and in the case of the long bottleneck it’s even possible to overcompensate
the asymmetry of widths. As this is an unwanted side-effect, it shows that one
has to take care when setting the parameters kSdyn and sadd.

The effect on the evacuation time is comparatively small and the effect on
individual egress times almost negligible. This is because even without influence
of the dynamic distance potential field the distribution on the two bottlenecks
is not as bad as it is, if one of two routes is longer (where it can easily be 0:100).
The evacuation time becomes minimal at about kSdyn ·sadd = 5. For larger values
it becomes larger again and can even increase above the case without dynamic
distance potential field.

Future options which are currently in parts under development for the pedes-
trian simulation in VISSIM [21,22], include the following items:

Using the method in a spatially continuous model poses a number of technical
challenges which do not exist when the lattice of agents’ positions and the one
of the dynamic distance potential field have identical properties.

Linked to this is the question, if it yields the best results, if only the directly
occupied cells receive the value sadd or if the results can be improved if also for
unoccupied locations as well density is calculated in one way or another [23,24]
and for a non-zero density a value sadd > 1 is assigned to the cell. This would
entail the need to set the dependence of speed on density and by that make the
model more first order-like. As the dependence of speed on density is as well
calculated by the model, the model could become inconsistent.

The parameter sadd can be calculated variably depending on if an agent is
heading into the same or opposite direction as those who share the destination.

Recently a method [25] has been developed that reproduces the results of the
Fast Marching Method and therefore has much smaller errors than the method
used here. In principle the method is slower in calculation than the Fast Marching
Method, but it is much more suited for parallel computation and exploitation of
the specific abilities of GPUs.
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Abstract. Models for pedestrian dynamics are often based on micro-
scopic approaches allowing for individual agent navigation. To reach a
given destination, the agent has to consider environmental obstacles.
We propose a direction field calculated on a regular grid with a Moore
neighborhood, where obstacles are represented by occupied cells. Our
developed algorithm exactly reproduces the shortest path with regard to
the Euclidean metric.

Keywords: direction field, regular grid, Moore neighborhood, Euclidean
metric, error compensation, flood fill, algorithm.

1 Distances and Directions

To give robots or simulated pedestrians (agents) their main direction of move-
ment, for at least three decades there have been two main methods: one uses a
set of navigation points to steer the agent around obstacles [1], the other one –
which this contribution deals with – relies on a grid in which each grid cell holds
the information on the walking distance to the destination and/or the direction
to move on to be on the shortest or roughly quickest path considering the lo-
cation of obstacles. This grid is often called a “potential” or a “distance look
up table”. An early usage of the notion and method of a potential was made
by Khatib [2] in robot motion planning. But this potential did not consider the
location of obstacles but just held the bee-line distances from the location of the
robot to the destination. This makes sense in the motion planning of autonomous
robots, which only have a very limited knowledge of their environment and need
an elaborate method to escape dead-ends anyway [3].

The most prominent and most widely used method that calculates Euclidean
distances as a numerical solution of the Eikonal equation [4, 5] comparatively fast
and with a comparatively small error is the Fast Marching Method (FMM) [6–8].
Concerning computation time the FMM shows optimal worst-case behavior and
the relative error in general decreases with increasing distance from the destina-
tion, implying that with a finer grid the error can be reduced. With the change
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of computing power progress from improving single CPU processing to multi-
core computation, slight changes in the algorithm of the up-winding scheme have
become useful and recently new methods as for example the Fast Sweeping [9]
and the Fast Iterative Method [10] (FSM and FIM) have been introduced. For
a study of computation times of such methods see [11] for example.

Apart from optimizing the numerical Eikonal equation solver algorithmically,
it’s also possible to trade exactness for computation speed and use simpler meth-
ods for the calculation. The two most prominent examples for this are a simple
flood fill over common edges or common edges and common corners which lead
to metrics in vector norms (1), p = 1 (Manhattan metric) or p → ∞ (Chebychev
metric) respectively.

dn
p = ‖x‖p :=

(
n∑

i=1

|xi|p
) 1

p

(1)

With Euclidean metric (i.e. vector norm p = 2) as correct solution, these meth-
ods lead to relative errors which remain constant over distance or even increase,
which means that a finer grid size does not improve the precision arbitrarily.
However, it is possible to reduce the error by making some slight modifications
upon the simple flood fill methods [12]. Just for completeness we want to add
that to our knowledge no other than ray tracing methods exist, that are able
to reach in general cases the minimal error possible, which is given by the grid
resolution [12]. However, with such methods compared to FMM, FSM or FIM
normally one pays with a tremendous increase of computation time for a small
gain in exactness.

In many models of pedestrian (or robot) dynamics only the desired walking
direction (i.e. the gradient of walking distances) but not the walking distances
themselves are inputs for the calculation of the dynamics. Therefore in this
contribution we put forward a new method to calculate the (in terms of the
Euclidean metric) exact walking directions without having to calculate the exact
Euclidean walking distances. The method does neither rely on a computation
time expensive sorting of distances of currently active cells, nor does it even
has the need for the calculation of rather computation-time expensive functions
(e.g. square roots). This is achieved on the expense that the method can only
be used to calculate directions based on shortest distance and not shortest time
[13–20] and that only the directions but not the distances are calculated exactly
regarding to the Euclidean metric.

2 Algorithm

A common practice for creating a distance potential is a flood fill approach.
The following flood fill algorithm describes the essential steps for the creation
of the potential field (breadth first search algorithm applied for von Neumann
neighborhood [21]).

– The target cell T is initialized with the distance dT = 0, the other n cells
get the distance dn = ∞.
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– Put T in a first-in, first-out queue Q.
– While cells available in Q do:

→ poll (get and remove) the first cell (C) from Q
→ set C as center cell
→ for all adjacent cells Cn:
→ calculate distance to the target cell regarding to the center

cell dn = min(dn, dC + Δd)
→ if dn changes, put Cn in Q

The distance between adjacent cells depends on the relative position (diagonal
or horizontal/vertical). Using a geometry G, non-accessible cells (e.g. environ-
mental obstacles) possess a distances of Δd = ∞. For Δd three different cases
exist:

∞ , if Cn is a infrastructure cell,√
2 , if Cn is diagonal located regarding to C, and
1 , if Cn is horizontal/vertical located regarding to C.

In comparison to the Manhattan (quadrant I, see fig. 1), Euclidean (II) and
Chebychev (III) metrics, the flood fill approach for Moore neighborhood points
out a fourth distance metric (IV):

‖x‖ := |Δxi| +
√

2 min(|xi|) . (2)

As shown in fig. 1 the presented flood fill metric approximates the Euclidean
metric in a roughly way and it tends to overestimate the distance (except at the
grid symmetry axes). However, the flood fill approach is often used to create the
potential field for agent navigation. The corresponding agent rule is: ”Choose
the cell with the closest distance to the target”.

I

IVIII

II I

IVIII

II

Fig. 1. Distance metric characteristics: transition from black to white corresponds with
decreasing potential (left), equipotential lines (right)
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3 Direction Field

Despite to the significant deficiency of the flood fill metric, we will demonstrate
that this approach can be used for creating a precise direction field [22]. To create
a simple direction field D (represents an array of motion vectors) the distance
field is created for a test scenario (see fig. 2). Close inspections of the color-coded
distance field at fig. 2 (right) already reveals the distance metric for the Moore
neighborhood.

x

Fig. 2. Test scenario with a centered target and three obstacles (left) together with
the corresponding color-coded distance field (decreasing target distance from white to
black, right)

The flood fill algorithm stores the shortest target distance for each cell,
whereas the cell specific distance always will base on a diagonal or horizon-
tal/vertical located adjacent center cell. The location of the upstream center cell
depends on the processing sequence of the adjacent cells, which is defined by the
algorithm. To determine the direction field, the derived cell based motion vector
points to the particular center cell. Detailed verifications show, that the charac-
teristics of the simple direction field depends on the particular implementation
(see fig. 3). First implementations determine the sequence of the adjacent ran-
domly, followed by sequences where the cells are clockwise and counter-clockwise
calculated.

As fig. 3 shows, characteristic Moore neighborhood patterns evolve and con-
stantly alternate in steps of π

4 . The change of the sequence form clockwise to
counter-clockwise results in a complementing structure (D+ → D−, fig. 3). Ar-
eas those before contain diagonal vectors are now contain horizontal/vertical
motion direction vectors. Considering the Moore metric (2) the designated paths
are equivalent to their walking distance.

Each of the previously created direction fields (D+ and D−) represents one
component of the final direction field. At the first step the cell based motion
direction vectors have to be combined, so sequently aligned vectors are summed
up to the point where the direction changes (fig. 4, left). Now each particular cell



Solving the Direction Field for Discrete Agent Motion 493

Fig. 3. Different characteristic of simple direction field based on the expansion of the
flood fill algorithm. Expanding cells clockwise (D+, left) and counter-clockwise (D−,
right).

Fig. 4. Combining the particular motion direction vectors from D+ and D− results in
the precise direction field

contains a diagonal and a horizontal/vertical direction component (fig. 4, right).
The final direction field indicates no directional artifacts and the declared paths
are consistent to the Euclidean metric.

4 Summary and Outlook

The proposed algorithm efficiently prevents the directional artifacts by com-
bining two different simple direction fields, which are based on Moore metric
distance calculation. Due to the fact, that the flood fill algorithm for creating
a distance potential is widely used in agent simulation, our enhanced approach
provides a fundamental contribution to existing simulation systems. The intro-
duced direction field is an essential part of the route planning component inside
the virtual terminal environment [22] of the Institute of Logistics and Aviation.
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Future investigations regarding to group dynamic behavior or route planning in
the airport terminal environment at normal operations or emergency cases will
benefit from our proposed algorithm.
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Abstract. Experimental results for congested pedestrian traffic are pre-
sented. For data analysis we apply a method providing measurements on
an individual scale. The resulting velocity-density relation shows a co-
existence of moving and stopping states revealing the complex structure
of pedestrian fundamental diagrams and supporting new insights into
the characteristics of pedestrian congestions. Furthermore we introduce
a model similar to event driven approaches. The velocity-density relation
as well as the phase separation is reproduced. Variation of the parame-
ter distribution indicates that the diversity of pedestrians is crucial for
phase separation.

Keywords: crowd dynamics, velocity-density relation.

1 Introduction

The velocity-density relation is one of the most important characteristics for
the transport properties of any traffic system. For pedestrian traffic there is
currently no consensus even about the principle shape of this relation which is
reflected e.g. in conflicting recommendations in various handbooks and guidelines
[1]. Discrepancies occur in particular in the high-density regime which is also
the most relevant for applications in safety analysis like evacuations or mass
events. At high densities stop-and-go waves occur indicating overcrowding and
potentially initiating dangerous situations due to stumbling etc. However, the
densities where the flow breaks down due to congestion ranges from densities
of ρmax = 3.8 m−2 to ρmax = 10 m−2 [1]. This large variation in values for
ρmax reported in the literature is partly due to insufficient methods of data
capturing and data analysis. In previous experimental studies, different kinds of
measurement methods are used and often a mixture of time and space averages
are realized. Especially in the case of spatial and temporal inhomogeneities the
choice of the measurement method and the type of averaging have a substantial
influence on the results [2].

Up to now, congested states in pedestrian dynamics have not been analyzed
in much detail. This is in contrast to vehicular traffic where the congested phase
is well-investigated, both empirically and theoretically [3,4].
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In this contribution we show that even improved classical measurement meth-
ods using high precision trajectories but basing on mean values of density and
velocity fail to resolve important characteristics of congested states. For a thor-
ough analysis of pedestrian congestion we apply a new method enabling mea-
surements on the scale of single pedestrians.

2 Experimental Data

For our investigation we use data from experiments performed in 2006 in the
wardroom of Bergische Kaserne Düsseldorf with a test group of up to N = 70
soldiers. The length of the circular system was about 26 m, with a l = 4 m long
measurement section. Detailed information about the experimental setup and
data capturing providing trajectories of high accuracy (|xerr| ≤ 0.02 m) is given
in [2,5].

In Fig. 1 the x-component of trajectories is plotted against time. For the
extraction of the trajectories, the pedestrians’ heads were marked and tracked.
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Fig. 1. Trajectories for the runs with N = 39, 56, 62 and 70 (left to right, top to
bottom). With increasing density the occurrence of stop-and-go waves accumulate.
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Backward movement leading to negative velocities is caused by head movement
of the pedestrians during a standstill. Inhomogeneities in the trajectories increase
with increasing density. As in vehicular traffic, jam waves propagating opposite
to the movement direction (upstream) occur at higher densities.

Stopping is first observed during the runs with N = 45 pedestrians, at 70
pedestrians they can hardly move forward. Macroscopically one observes sepa-
ration into a stopping area and an area where pedestrians walk slowly. In the
following we analyze how macroscopic measurements blur this phase separation
and apply a technique introduced in [6] enabling a measurement of the funda-
mental diagram on a ‘microscopic’ scale.

2.1 Macroscopic Measurement

Speed vi of pedestrian i and the associated density ρi are calculated using the
entrance and exit times tini and tout

i into and out of a measurement section of
length lm = 2 m,

vi =
lm

tout
i − tini

, ρi =
1

tout
i − tini

∫ tout
i

tini

ρ(t) dt with ρ(t) =
∑

Θi(t)
lm

. (1)

The speed vi is a mean value over the space-time interval Δti = tout
i − tini

and Δx = lm. By integration over the instantaneous density ρ(t) the density is
assigned to the same space-time interval. To reduce the fluctuations of ρ(t) we
use the quantity Θi(t), introduced in [7], which measures the fraction of space
between pedestrians i and i + 1 that is inside the measurement area.

Results of the macroscopic measurement method are shown in Fig. 2. In com-
parison to method B introduced in [2] (see Fig. 6 of [2] which uses data based
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Fig. 2. Velocity-density relation using an improved macroscopic measurement method.
There is no indication of phase separation since stopping states (v ≈ 0) occur only at
large densities where no moving states (v > 0) are observable.
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on the same trajectories as this study) the scatter of the data is reduced due
to an improved density definition and a better assignment of density and ve-
locity. However the resulting velocity-density relation does not allow to identify
phase-separated states although these are clearly visible in the trajectories.

2.2 Microscopic Measurement

To identify phase separated states we determine the velocity-density relation
on the scale of single pedestrians. This can be achieved by the Voronoi density
method [6]. In one dimension a Voronoi cell is bounded by the midpoints zi =
(xi+1 + xi)/2 of the pedestrian positions xi and xi+1. With the length Li =
zi − zi−1 of the Voronoi cell corresponding to pedestrian i and Δt = 0.5 s we
define the instantaneous velocity and density by

v′i(t) =
xi(t + Δt/2) − xi(t − Δt/2)

Δt
, ρ′i(x) =

{
1/Li : x ∈ [zi, zi+1[

0 : otherwise . (2)
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Fig. 3. Left: Velocity-density relation on an individual scale. At each density ρ′ >
1.5 m−1 both stopping and moving states are observable. Right: Probability distribu-
tion of the velocities for different density intervals. The double peak structure indicates
the coexistence of moving and stopping states. The height of the stopping peak increases
with increasing density.

The fundamental diagram based on the Voronoi method is shown on the left
side of Fig. 3. Regular stops occur at densities higher than 1.5 m−1. On the right
side of Fig. 3 the distribution of the velocities for fixed densities from 1.8 m−1

to 2.6 m−1 are shown. There is a continuous change from a single peak near
v = 0.15 m/s, to two peaks, to a single peak near v = 0 m/s. The right peak
represents the moving phase, whereas the left peak represents the stopping phase.
At densities around 2.2 m−1 these peaks coexist, indicating phase separation into
a flowing and a jammed phase.
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2.3 Phase Separation in Vehicular Traffic

In highway traffic, phase separation into moving and stopping phases typically
occurs when the outflow from a jam is reduced compared to maximal possible
flow in the system. Related phenomena are hysteresis and a non-unique fun-
damental diagram. At intermediate densities two different flow values can be
realized. The larger flow, corresponding to a homogeneous state, is metastable
and breaks down due to fluctuations or perturbations (capacity drop). The origin
of the reduced jam outflow is usually ascribed to the so-called slow-to-start be-
haviour (see [3,4] and references therein), i.e. an delayed acceleration of stopped
vehicles due to the loss of attention of the drivers etc.

The structure of the phase-separated states in vehicular traffic is different from
the ones observed here. For vehicle traffic the stopping phase corresponds to a
jam of maximal density whereas in the moving phase the flow corresponds to the
maximal stable flow, i.e. all vehicles in the moving phase move at their desired
speed. This scenario is density-independent as increasing the global density will
only increase the length of the stopping region without reducing the average
velocity in the free flow regime. The probability distribution of the velocities (in
a periodic system) shows a similar behaviour to that observed in Fig. 3. The
position of the free flow peak in the case of vehicular traffic is independent of
the density.

The behaviour observed here for pedestrian dynamics differs slightly from
that described above. The main difference concerns the properties of the moving
regime. Here the observed average velocities are much smaller than the free
walking speeds. Therefore the two regimes observed in the phase separated state
are better characterized as “stopping” and “slow moving” regimes.

Further empirical studies are necessary to clarify the origin of these differ-
ences. One possible reason are the different acceleration properties of vehicles
and pedestrians as well as anticipation effects. It also remains to be seen whether
in pedestrian systems phenomena like hysteresis can be observed.

3 Modeling

3.1 Adaptive Velocity Model

In this section we introduce the adaptive velocity model, which is based on an
event driven approach [9]. A pedestrian can be in different states which determine
the velocity. A change between these states is called event. The model was derived
from force-based models, where the dynamics of pedestrians are given by the
following system of coupled differential equations

mi
dvi

dt
= Fi with Fi = F drv

i + F rep
i and

dxi

dt
= vi, (3)

where Fi is the force acting on pedestrian i. The mass is denoted by mi, the
velocity by vi and the current position by xi. Fi is split into a repulsive force
F rep

i and a driving force F drv
i . The dynamics is regulated by the interrelation
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d

st

β__
2

β__
2

Fig. 4. Left: Connection between the required space d, the step length st and the safety
distance β. Right: The adaptive velocity: acceleration until tdec1 than deceleration
until tacc1, again acceleration until tdec2 and so on.

between driving and repulsive forces. In our approach the role of repulsive forces
are replaced by events. The driving force is defined as

F drv
i =

v0
i − vi

τi
, (4)

where v0
i is the desired speed of a pedestrian and τ the relaxation time of the

velocity. By solving the differential equation

dvi

dt
= F drv

i ⇒ vi(t) = v0
i + c exp

(
− t

τi

)
, with c ∈ R, (5)

the velocity function is obtained. This is shown in Fig. 4 together with the
parameters governing the pedestrians’ movement. In this model pedestrians are
treated as bodies with diameter d [9]. The diameter depends linearly on the
current velocity and is equal to the step length st in addition to the safety
distance β

di(t) = sti(t) + βi(t) (6)

Step length and safety distance are introduced to define the rules for the
dynamics of the system. We determine the model parameters from empirical
data which allows to judge the adequacy of the rules. Based on [10] the step
length is a linear function of the current velocity with following parameters:

sti(t) = 0.235m + 0.302[s] vi(t). (7)

The required quantities for the safety distance can be specified through em-
pirical data of the fundamental diagram d̄i = 1/ρ = 0.36 + 1.06 v, see [7]. With
these experimental results the previous equations can be summarized to

βi(t) = di(t) − sti(t) = ai + bi vi(t) (8)
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with ai = 0.125 m and bi = 0.758 s. No free model parameter remain with
these specifications. In the following we describe the rules for the movement. A
pedestrian accelerates to the desired velocity v0

i until the distance Δxi,i+1 to the
pedestrian in front is smaller than the safety distance. From this time on, he/she
decelerates until the distance is larger than the safety distance. To guarantee a
minimal volume exclusion, case “collision” is included, in which the pedestrians
are too close to each other and have to stop. Via Δxi,i+1, di and βi the velocity
function for the states deceleration (dec.), acceleration (acc.) and collision (coll.)
can be defined, see Eq. 9:

vi(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vdec exp
(
− t−tdec

τ

)
for Δxi,i+1 − δi(t) ≤ 0 (dec.)

v0
i (1 − exp

(
− t−t0

τ

)
for Δxi,i+1 − δi(t) > 0 (acc.)

0 for Δxi,i+1 − δi(t) ≤ −βi(t)/2 (coll.)

(9)

where δi(t) = (di(t) + di+1(t))/2 is the distance between the centers of both
pedestrians. The current velocity vi(t) of an pedestrian i depends on his/her
state. tdec denominates the point in time where a change from acceleration to
deceleration takes place. Conversely tacc is the change from deceleration to ac-
celeration. vdec = v(tdec) and vacc = v(tacc) are defined accordingly. At the
beginning t0 = 0 s with a change from acceleration to deceleration a new calcu-
lation of t0 is necessary:

t0 = tacc + ln
(

1 − vacc

v0
exp

(
−tacc − tdec

τ

))
(10)

The discreteness of the time step could lead to configurations where overlap-
ping occurs. To ensure good computational performance for high densities, no
events are explicitly calculated. Instead in each time step, it is checked whether
an event has taken place and tdec, tacc or tcoll are set to t accordingly. To avoid
too large interpenetration of pedestrians and to implement a reaction time in
a realistic size we choose Δt = 0.05 s. To guarantee a parallel update a recur-
sive procedure is necessary: Each person is advanced one time step according to
Eq. 9. If after this step a pedestrian is in a different state because of the new
distance to the pedestrian in front, the velocity is set according to this state.
Then the state of the next following person is reexamined. If the state is still
valid the update is completed. Otherwise, the velocity is calculated again.

3.2 Model Validation and Influence of Individual Differences

In the following we face model results with experimental data and study how
the distribution of individual parameter influences the phase separation. For all
simulations the desired velocity is normal distributed v0

i ∼ N (μ, σ2) with average
μ = 1.24 m/s and variance σ2 = 0.05. Fig. 5 and Fig. 6 show the simulation
results for two different choices of parameter distributions.
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Fig. 5. Validation of the modeled fundamental diagram and trajectories with same
parameter ai, bi and τi for all pedestrians Left: Comparison of fundamental diagrams
of modeled and empirical data. Middle: Trajectories for N = 62 (model). Right:
Trajectories for N = 70 (model).
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Fig. 6. Validation of the modeled fundamental diagram and trajectories, with normal
distributed individual parameter. Left: Comparison of fundamental diagrams of mod-
eled and empirical data. Middle: Trajectories for N = 62 (model). Right: Trajectories
for N = 70 (model).

The model yields the right macroscopic relation between velocity and density
even if ai, bi, sti and τi are the same for all pedestrians, see Fig. 5 (left). The
trajectories display that phase separation does not appear. Even at high den-
sities the movement is ordered and no stops occur. For further simulations we
incorporate a certain disorder by choosing the following individual parameter
normal distributed: ai ∼ N (0.125, 0.1), bi ∼ N (0.758, 0.5) and τi ∼ N (1.0, 0.1).

Variation of the personal parameters affects the scatter of the fundamental
diagram, see Fig. 6, left. Phase separation appears in the modeled trajectories
as in the experiment, see Fig. 6 middle and right. It is clearly visible that long
stop phases occur by introducing distributed individual parameters. Then the
pattern as well as the change of the pattern from N = 62 to N = 70 are in good
agreement with the experimental results, see Fig. 1. Even the phase separated
regimes match qualitatively. However, the regimes appear more regular in the
modeled trajectories.
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In Fig. 7 microscopic measurements of fundamental diagram and the related
velocity distributions are shown. Separation of phases is reproduced well. But
the position of the peak attributed to the moving phase is not in conformance
with the experimental data, compare Fig. 3 (right). The experimental data show
that the peak position is independent from the density at v around 0.15 m/s.
At the model data the position of the peak changes with increasing density.
Measurements with different time steps show that the size of the time step
influences the length and shape of the stop phase at high densities. But the
density where first stops occur seems independent from the size of the time
step. Further model analysis is necessary to study the role of the reaction time
implemented by discrete time steps in this special type of update. Furthermore
we will study how the change of the peak could be influenced by including a
distribution for the step length and other variations of the distribution for the
safety distance.
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Fig. 7. Left: Microscopic fundamental diagram of the modeled data with normal dis-
tributed individual parameters. Right: Distribution of v at fixed densities.

4 Conclusion

We have investigated the congested regime of pedestrian traffic using high-
quality empirical data based on individual trajectories. Strong evidence for phase
separation into standing and slow moving regimes is found. The corresponding
velocity distributions show a typical two-peak structure. The structure of the
trajectories is well reproduced by an adaptive velocity model which is a variant
of force-based models in continuous space.

Future studies should clarify the origin of the differences to the phase sepa-
rated states observed in vehicular traffic. Here phase separation into a stopping
and a moving phase occurs such that the average velocity in the moving regime
is independent of the total density.
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Zürich (1993)



Stochastic Transition Model for Discrete Agent

Movements

Michael Schultz and Hartmut Fricke

Institute of Logistics and Aviation, Technische Universität Dresden,
Hettner Str. 1-3, D-01062 Dresden, Germany

{schultz,fricke}@ifl.tu-dresden.de

Abstract. We propose a calibrated two-dimensional cellular automaton
model to simulate pedestrian motion behavior. It is a vmax= 4 (3) model
with exclusion statistics and random shuffled dynamics. The underlying
regular grid structure results in a direction-dependent behavior, which
has in particular not been considered within previous approaches. We
efficiently compensate these grid-caused deficiencies on model level.

Keywords: multi-agent, transition matrix, stochastic approach, cali-
brated model.

1 Introduction

The different model approaches for microscopic person dynamics are based on the
particular discipline analogies, ranging from hydro-dynamic models to artificial
intelligence and multi-agent systems [1]. The complex dynamic human behav-
ior is induced by individual decisions, which are classified to be of short-range
(operational) and long-range type (strategic/tactical). The self-organization of
persons is a further essential characteristic of human behavior. In contrast to
the social force model [2–4] or the discrete choice model [5, 6] the developed mo-
tion model [7–9] is based on a stochastic approach to handle the unpredictable
behavior by individual path deviations. The stochastic motion model is an appro-
priate and fast method for analysis the dynamic pedestrian behavior. However,
to derive valid results several simulation runs (>100) have to be performed. The
focus concentrates on the evaluation of application oriented simulation scenar-
ios instead of the characteristics of individual interactions or specific pedestrian
trajectories.

2 Stochastic Motion Model

The presented motion model is based on a stochastic approach [10], which is
comparable to a common cellular automaton. It utilizes a regular grid structure.
In contrast to the cellular automaton, the new model is developed on the basis
of a fundamental paradigm shift: instead of changing the cell status depending
on the status of its surrounding cells (neighbors), the agent is able to move

S. Bandini et al. (Eds.): ACRI 2010, LNCS 6350, pp. 506–512, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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over the regular lattice and to enter those cells, which are not occupied by
other agents or obstacles (e.g. walls). To describe the motion behavior of an
agent, the motion vector is separated into a desired motion direction and a
transversal deviation [10]. Using the spatially discrete grid structure and defining
three transition states (forward | stop | backward or left | on track | right) the
normalized transition probability (p) into these states is generally defined by the
following equations.

p+ =
1
2
(
σ2 + μ2 + μ

)
, for forward or left

po = 1 −
(
σ2 + μ2

)
, for stop or on track

p− =
1
2
(
σ2 + μ2 − μ

)
, for backward or right

(1)

In the case of the desired motion direction, μ denotes the desired speed and σ2

the corresponding variance. If the transversal deviation is concerned, μ is the av-
erage and σ2 is the range of the fluctuations. Considering a symmetric transversal
deviation (μdeviation = 0) and a connection of desired speed and the correspond-
ing variance (no step backward p− = 0, so that σ2

speed = μspeed(1 − μspeed), the
above equations are simplified to the following equations for the desired motion
direction (2) and for the transversal motion direction (3).

pforward = μspeed | pstop = 1 − μspeed (2)

pleft,right =
1
2
σ2

deviation | pon track = 1 − σ2
deviation (3)

Finally, the motion components are combined to a 3x3 transition matrix (Mij)
as shown in the following fig. 1. The emphasized cell (marked gray at the fig-
ure) contains the transition probability of moving forward without transversal
deviations. In fact, the transition matrix possesses a two-dimensional character-
istic, but it only defines an one-dimensional transition considering a transversal
deviation (1.5-dimensional).

backward stop forward

left

on-track

right

backward stop forward

backward stop forward

backward stop forward

left

on-track

right

left

on-track

right

left

on-track

right

=

Fig. 1. Generation of the transition matrix due to combination of desired motion speed
and transversal motion deviation
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To allow for a three-dimensional agent motion behavior, two independent mo-
tion directions are needed. Based on the developed horizontal transition matrix
(M̂) a diagonal transition matrix (M̃) is derived by re-indexing the horizontal
matrix (turning the matrix by π

4 , [10]). The motion direction (α) is integrated
into the stochastic model by superpose these matrices with λ.

M =

⎧⎪⎨
⎪⎩

(1 − λ) M̂ + λM̃ , λ = tanα, 0 ≤ α < π
4

1√
2

(1 − λ) M̂ +
√

2λM̃ , λ = tan
(

π
4 − α

)
, π

4 ≤ α ≤ π
2

(4)

The rotation of M (4-fold symmetry) allows for determining the entire spec-
trum of the motion direction. The underlying regular grid structure results in
a direction dependent behavior (e.g. entering diagonal cells implies walking a
longer way in comparison to horizontally located cells). Therefore the first model
modification is to adjust λ within the parameters of π

4 ≤ α ≤ π
2 .

It’s obvious, that the stochastic motion model allows for horizontal and diag-
onal movements (fig. 2, Moore-Neighborhood).

�y

�x

Destination

Start

Fig. 2. The distance metric d results from the Moore-Neighborhood

The shortest distance between two points (start, destination) is given by the
metric d (5) which differs from the defined p-norms (Manhattan, Euclidean and
Chebychev norm).

d = |Δx − Δy| +
√

2min (Δx, Δy) (5)

3 Model Constraints, Improvements and Validation

Due to the utilization of a regular grid structure, the transition matrix does
not fulfill the criteria of independent agent motion behavior. So, the speed and
the variance of the agent depend on the agent motion direction. If the agent
enters diagonal cells his walking distance is longer (approx. 41%) in comparison
to the use of horizontally located cells. This model constraint is equivalent to a
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significant higher motion speed depending on the direction of motion. Algorithms
to compensate this grid-based speed effect can be found at [7, 11]. A detailed
model analysis points out that the expected value of the transition matrix μM

(6), defined by cell based transition probability Mij and the relative location
eij , differs from μspeed, which is specified in the motion model.

μM =
∑

i

∑
j

eijMij , with eij =
(

i
j

)
(6)

Fig. 3 points out the correlation of speed and motion angle. With increasing α
the corresponding speed (μspeed) increases as well, whereas the stepwise change of
the transversal deviation (σ2

deviation) mitigates the α-depending characteristics.
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Fig. 3. Model deficiency due to motion angle α depending characteristic of speed

The stochastic motion model allows for absolute cell transitions (Mij = 1
with σ2

deviation = 0) only at motion angle of α = 0 and α = π
4 . If the agents

choose another angle he always has to choose between two cells at least. Because
of the superposition of the horizontal (M̂) and diagonal (M̃) transition matrices,
a model immanent variance from desired agent motion direction occurs, even if
the model defines σ2

deviation = 0). The characteristic of this overall motion model
variance is shown in fig. 4.

The angle depended variance of motion implies to major issues. The model
shows an immanent motion deviation, which is not considered in previous equa-
tions and the different variances lead to different avoiding behavior. Using the
parameter set μspeed = 1 and σ2

deviation = 0 as an example, at α = 0 no variance
is allowed by the model and an agent cannot move if the chosen cell is blocked.
Using the same scenario with a different motion angle (e.g. α = π

8 ), the agent gets
the probability of approx. 20 % to pass the blocked cell. To ensure homogeneous
variance, an appropriate compensation on model level is needed. The expected
value μM of the matrix depends on μspeed and σ2

deviation whereas the parameters
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are directly coupled. For each parameter set a specific characteristic over the
angle has to be calculated. The following fig. 5 shows these characteristics.

Further model investigations point out that the model has to be extended to
reproduce the representative shape of the fundamental diagram [12, 13]. Using
the transition matrix, an agent is able to react to the status of the adjacent cells
(empty, occupied). The fundamental diagram indicates an interaction range of
about 1.3 m, because the speed of an agent starts to decrease if the density
relations ρ/ρmax reaches a level of 10 % (considering an agent with a dimension
of 0.4×0.4 m and a maximum density of ρmax = 6.25 Person/m2). If the agent
moves three/four steps at once, he will be able to interact with distant agent
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and the developed model is found to reproduce the characteristic shape of the
fundamental diagram (fig. 6). Therefore the motion model has to provide the
following agent properties:

– Always move, no waiting (occupied cells increase transition probability of
the other matrix cells).

– Move four steps at once and decrease the steps depending on agent density,
at least in the case of ρ/ρmax > 0.6 the number of steps should be reduced
from four to three to fit the shape.

– Agent leaves a trace, at each time step all entered cells will temporarily
blocked.
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Fig. 6. Fundamental diagram of stochastic motion model using different agent operat-
ing distances (3-4 steps at once) depending on agent density

The stochastic model meets all criteria for a scientifically reliable motion
model. It exhibits the absence of significant model-caused limitations and re-
produces all common self-organizing effects (e.g. row formation or oscillation).
Besides the operational motion definition by the stochastic transition matrix,
strategic/tactical motion components are taken into account as well. The stochas-
tic model allows for the reaction of the agent to objects/agents at immediate
vicinity. It additional provides the capability of considering distant constellation
of agents (jam) and potentially blocked bottlenecks.

4 Summary and Outlook

Model specific parameter corrections ensure that the motion vector is equal
to the expected value of the corresponding transition matrix. This issue has
in particular not been considered within previous approaches. The calibrated
motion model is thus the first approach, which allows for a specific stochastic
description of agent movements without model restrictions.
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The passenger related evaluations and simulations of dispatch processes at
Dresden Airport exemplarily show that the developed stochastic motion model
is able to reproduce the behavior of passengers in an appropriate way [8, 9].
Therefore the developed motion model is implemented in a corresponding ap-
plication environment which allows for a various application, e.g. investigations
regarding to group dynamic behavior or route planning in the airport terminal
focused on normal operations and emergency cases.
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Abstract. This is a study on a situation where pedestrians walk through a 
crowded area. The 1-D Cellular Automata model ultimately resulting to the 
Asymmetric Simple Exclusion Process is studied. Numerical and analytical 
study is carried out to investigate how pedestrian behaviour is affected. 

Keywords: Cellular Automata, ASEP, Pedestrian, Crowd, Burgers’ equation. 

1   Introduction 

Congestion always appeared to be a great social problem over the course of recorded 
history. Although pedestrian dynamics has been studied through physics [1], it is 
important to carry out the study with a consideration of a more realistic situation in 
mind, as the experience of “walking through a crowd” cannot be avoided for 
individuals living in the city. This study focuses on such a phenomenon, proposing a 
Cellular Automata (CA) model to describe a situation where pedestrians walk through 
a crowded area to investigate how crowds may interfere with pedestrian behaviour. 

2   Modelling 

This is a study on a situation where pedestrians walk through a crowded area. In this 
model, a crowded area is expressed as the area where obstacles are randomly moving 
and pedestrians walk through such a crowded area in a straight line. The model 
ultimately applies the Asymmetric Simple Exclusion Process (ASEP) with additional 
white noise.  

The schematic diagram of this situation is illustrated in Fig. 1a. Each of these cells 
in the lattice can exclusively contain either a “Pedestrian” or an “Obstacle”. The 
“Empty” cell contains neither a Pedestrian nor an Obstacle. Here the crowd is 
considered as a set of Obstacles behaving under the random walk principle. The 
diagram illustrates the situation where Pedestrians enter the crowded area and walk 
through in a straight line, coming out of the exit. The dynamics of the Obstacles are 
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assumed as random walk with the speed faster than Pedestrians. When the number of 
random walk takes place fast enough during the update interval of the Pedestrians’ 
dynamics, it is assumed that the position of the Obstacles are fairly random at each 
given time. Thus, it is reasonable to simplify the dynamics of the Obstacles into a 
simple random replacement. This means that the position of the Obstacles is randomly 
reshuffled for each time step.  
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Fig. 1. Model description. a) Illustrates pedestrians passing through the crowded area. Where 
the open star and open circle denotes the Obstacles and Pedestrians, respectively. L and M 
denote the number of cells in lateral and vertical directions. The highlighted row illustrates the 
pedestrian’s passage. b) Illustrates the reduced obstacle-pedestrian system in one-dimension. c) 
Illustrates the transition rules for the reduced one-dimensional model. i and t denote the 
position of the site and time, respectively. P denotes the corresponding hopping probability of 
the pedestrians’ move to the adjacent cell. 

The dynamics of the Pedestrians are as follows. The Pedestrians enter and move 
through the crowded area towards the exit and Pedestrians do not overtake the 
Pedestrian in front of it. The entrance and exit are contralaterally positioned in the 
same row in the direction of abscissa. In this situation, it can be considered that the 
spatial dependencies of the Obstacles’ position are eliminated. Thus, the dynamics of 
the Pedestrian and Obstacle can be extracted in a one-dimensional lattice since the 
Pedestrians move along a straight line between the entrance and exit. Fig. 1b 
illustrates the reduced one-dimensional model of the Pedestrians passing through a 
crowded area. The dynamics fundamentally follows the ASEP but interfered by 
obstacles. This kind of one-dimensional CA often used for modelling motor proteins 
[2] in which the Obstacles in this paper has a similar function as Attachment and 
Detachment.  

The update rules for dynamical evolution of the system with corresponding 
hopping probabilities P are shown in Fig. 1c. By formulating these rules and 
considering the mean-field approximation and taking the continuous limit, the 
Burgers’ equation can be derived. Comparison between the Burgers’ equation derived 
from the ASEP and this model indicates that the Obstacle has an effect of reducing 
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the given hopping probability P. i.e. When the hopping probability of the ASEP is 
defined as PASEP, the relationship between the hopping probabilities of this model and 
obstacle density is derived as PASEP = P (1- ρ). The update algorithm of the pedestrian 
dynamics is as follows. Defining ρ as the density of the Obstacles in the crowded area 
shown in Fig. 1a. The density can be written as ρ = N / ML when the number of 
Obstacle is defined as N; and the obstacle density ρ means the probability of existence 
of an Obstacle in an arbitrary cell. Then the possible number of Obstacles in the one-
dimensional lattice O is given as O = N / M. Subsequent to O obstacles being 
randomly allocated to empty cells at a given time, the lattice are randomly updated 
with the rules defined in Fig. 1c. 

3   Simulations and Results 

In order to investigate the effect of the crowd to the Pedestrian flow, entrance interval 
and the exit interval of the pedestrians are investigated. At first, it is assumed that 
Pedestrians periodically enter into the crowded area. This means that the intervals 
between each Pedestrian entering the system are constant. Possibilities exist that a 
Pedestrian may not be able to enter the entrance in the event of a congestion. Such a 
deadlock condition may occur if the density of Obstacle increases. Pedestrians 
“queue” rather than selecting to “call loss” at the entrance in order to avoid a 
deadlock, conserving the number of Pedestrians. This means that if a Pedestrian could 
not enter the entrance, the Pedestrian must wait outside until there is a space to enter. 
The simulation conditions are shown schematically in Fig. 2. 
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Fig. 2. The schematic interpretation of the simulation. Where k denotes the order of the 
Pedestrians entering and exiting the crowded area. ΔTi

n,n-1 and ΔTo
n,n-1 denote entrance interval 

and exit interval, respectively. Interval means that a time interval between n-1 th and n th 
Pedestrian. 

If there is no Obstacle in the system, then the Pedestrian’s dynamics follows the 
ASEP and thus there would be no difference between the Pedestrian’s interval at the 
entrance and exit. In this study, two kinds of simulations are carried out to compare 
the exit interval of Pedestrians. Initially, the entrance interval ΔTi

n,n-1 is set at 30 steps 
with Obstacle density ranging from 0.01 to 0.4. Secondly, the entrance interval ΔTi

n,n-1 
is set at 10 steps and the Obstacles density ranges from 0.1 to 0.4. For both cases the 
calculation is carried out for 50000 pedestrians and the hopping probability P of the 
Pedestrian is taken as P = 1 and the lattice size L is taken as 50. Fig. 3 illustrates the 
time-space diagrams obtained by this simulation of first 200 time steps for various 
Obstacles densities. 
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a) 

 

b) 

 

Fig. 3. Time-space diagram obtained by numerical simulations of first 200 time steps for 
various Obstacles density of ρ=0.01, ρ=0.1, ρ=0.3 and  ρ=0.4. a) Entrance interval ΔTi

n,n-1 = 30. 
b) Entrance interval ΔTi

n,n-1 = 10. Where the dirk solid line shows the track of Pedestrians and 
the grey speckles shows the Obstacles. 

It is seen that the diagram shows the situation where Pedestrians walk through a 
crowded area. From the point of view of Pedestrian congestion, the travel time 
increases as Obstacles density increases due to the flow of Pedestrian interruption by 
the Obstacles. Further, shorter Pedestrian entrance interval causes larger interaction 
and congestion starts to occur. 
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Fig. 4 illustrates the resulting histogram of exit interval ΔTo
n,n-1 for each entrance 

interval case. Fig. 4a shows that the distribution of exit interval has a mean peak at 30 
steps, which has the same value as the entrance interval and appears as a Gaussian 
type distribution. The variance of the distribution gets larger as Obstacle density 
increases. Although the Pedestrian flow is interrupted by Obstacles, there is no 
pedestrian traffic congestion since entrance interval is relatively large. Contrary to 
this, Fig. 4b illustrates the result where the entrance interval is set at 10 steps. The 
figure shows that when the Obstacle density is small, the histogram of the exit interval 
exhibits the same feature as the former case. As Obstacle density increases, the mean 
peak shifts to a shorter interval and a larger deviation is evidenced. This characteristic 
indicates that more Pedestrians exit within shorter intervals than the entrance 
intervals. The longer intervals indicate that some Pedestrians are crammed inside the 
crowded area for a longer time. These effects are resulting from the congestion of 
Pedestrians created by the Obstacles. This is because as the entrance interval becomes 
shorter, more friction is applied by the Obstacles. Note that deadlock at the entrance 
has not occurred for both 10 and 30 step interval simulations. 
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Fig. 4. The resulting histogram of exit interval for various obstacle density ρ. a) Entrance 
interval ΔTi

n,n-1 = 30. b) Entrance interval ΔTi
n,n-1 = 10. 

4   Analytical Expression for Continuum Limit 

The one-dimensional model described in the previous section is further investigated 
analytically to show how this ASEP-like model is relating with known ASEP. Fig. 5 
illustrates the transition rules of the Pedestrian. The rules show the occurrence rules of 
the site i is occupied by a Pedestrian at time t+1. The notations used in the following 
sections are as follows. P denotes the hopping probability of a Pedestrian hops to the 
adjacent empty site. ni

t denotes the existence probability of a Pedestrian at time t in 
site i. mi

t denotes the existence probability of a Obstacle at time t in site i. Ei
t denotes 

the probability of the site i is empty. ρ denotes the density of Obstacles. 
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Fig. 5. The transition rules with corresponding transition probabilities. Where P denotes the 
hopping probability of pedestrian hopes to the adjacent empty site. 

Then the normalising condition is defines as follows. 
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Taking the summation of Eq. 3 gives, 
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Then using the expression of Eq. 1 and Eq. 2, 
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Taking the ensemble average of Eq. 5 gives, 
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Assuming that there is no correlation between ni
t and its neighbourhood. 
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Let <ni
t> = ui

t and rewriting Eq. 7 gives. 
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The continuum limit of Eq. 8 can be derived by rewriting it into difference equation. 
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Then taking the limit of Δt and Δx to 0, Eq. 9 becomes as follows. 
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Finally an expression in partial differential equation is derived as follows. 
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The analytically obtained expression of this CA model in continuum limit is shown 
in Eq. 11 which is known as the Burgers’ equation. It is also known that the 
continuum limit of ASEP is also expressed in Burgers’ equation as shown in Eq. 12 
where PASEP denoted as the hopping probability of ASEP.  
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Then the relationship between this model and ASEP can be seen by comparing the 
factors in each differential terms. Then the hopping probability P of this model can be 
transformed into PASEP by the following equation. 

)1( ρ−= PPASEP . (13) 

This expression indicates that this CA model can be transformed into the equivalent 
ASEP by using Eq. 13. Moreover, this CA model can also be interpreted as a model 
expressing the ASEP system with additional white noise. Also the consistency can be 
seen when there is no Obstacles, such that, ρ = 0 and PASEP = P therefore Eq. 13 
becomes Eq. 12. This result suggests that the relationship between this model and 
ASEP in a continuum limit is also applicable in the discrete system of CA. 

Further, numerical investigation is performed to compare the behaviour of this CA 
model and the equivalent ASEP. Fig. 6 illustrates the time-space diagram to compare 
the evolution of this model and the equivalent ASEP. In this model, when P = 1, only 
the Obstacle has the effect to restrict the pedestrian’s motion. Contrary to this, the 
hopping probability P has a significant meaning for restricting its motion in ASEP. 
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a) b) c) d) 
 

Fig. 6. Time-space diagram obtained by numerical simulations of first 200 time steps. a) 
Obstacle density ρ =0.1 , P=1 and ΔTi

n,n-1 = 30. b) Equivalent ASEP with P = 0.9 and ΔTi
n,n-1 = 

30. c) ρ =0.4 , P=1 and ΔTi
n,n-1 = 10. d) Equivalent ASEP with P = 0.6 and ΔTi

n,n-1 = 10. 

Fig. 7 illustrates the comparison of resulting histogram of exit intervals. The 
densities of Obstacle ρ are taken as 0.1 and 0.4 and hopping probability P =1, 
whereas P = 0.9 and 0.6 in the equivalent ASEP. Again, the entrance intervals are 
taken as 30 and 10 then the exit intervals are counted. The solid line illustrates the 
result when Obstacle density is non-zero and the dashed line shows the result of 
corresponding ASEP where Obstacle density is zero. It is seen from the figure that the 
qualitative agreement between these two behaviours are fairly satisfactory. 
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Fig. 7. The comparison of histograms of exit intervals obtained by this model and equivalent 
ASEP. a) Entrance interval ΔTi

n,n-1 = 30. b) Entrance interval ΔTi
n,n-1 = 10. 
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5   Averaged Pedestrian Flow in Periodic Boundary Condition 

In addition, averaged Pedestrian flow under the periodic boundary condition is 
studied. When Obstacle density ρ = 0, flow Q is equivalent to that of ASEP. Let φ be 
the density of Pedestrian then Q is well given as shown in Eq. 14. [3]. Which is the 
expression of the Pedestrian flow for ASEP as well as this model when ρ = 0. 

[ ])1(411
2

1 φφ −−−= PQ . (14) 

In the previous section, the continuum limit for the open boundary condition is 
discussed and proved that this model is equivalent to the Burgers’ equation. Knowing 
that the ASEP is also equivalent to the Burgers’ equation in continuum limit, the 
hopping probability of ASEP can be expressed in terms of hopping probability and 
Obstacle density as shown in Eq. 13. Such relationship of the hopping rate between 
this model and ASEP is applied to obtain the averaged flow of this system. In Eq. 14, 
the term (1-φ) shows the density of the empty site in ASEP. This aspect can be 
applied to derive how this term would be affected. The density of empty site of this 
model is expressed as (1- φ - ρ) which has the same interpretation as the normalising 
condition shown in Eq. 1. Applying this expression to Eq. 14 gives as follows. 

[ ])1(411
2

1 ρφφ −−−−= PQ . (15) 

Which is the expression of averaged flow of Pedestrians in this model. Further, the 
analytical expression of Eq. 15 is compared with numerical solutions by means of 
fundamental diagram. Fig. 8 illustrates the fundamental diagram of this model 
calculated both analytically and numerically under the periodical boundary condition. 
In the numerical simulation, the flow Q can be defined as the number of pedestrians 
moved in each time step divided by the total number of cells. In this simulation the 
total cells L are taken as 50 and Pedestrians are randomly allocated with given density 
at time t=0. Then count the number of Pedestrians moved at every update to obtain 
the flow at each time step. The averaged flow Q is obtained after 5000 time steps. The 
figure shows that the fundamental diagram for P is 1 and 0.6. Good agreement 
between the analytical and numerical solution is seen in each case. 
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Fig. 8. The fundamental diagrams of this model for the case of a) P = 1 and b) P = 0.6. Where 
the solid line shows the analytical solution of Eq. 14 and the open circle shows the numerical 
results. The Obstacle densities of 0 to 0.7 are parametrically taken for each case. 
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6   Conclusions 

In this study, pedestrian’s motion in a crowded area is modelled in one-dimensional 
CA. When pedestrians enter a crowded area with a constant interval, the exit interval 
is highly affected by obstacle density. Variance on exit interval remains fairly small at 
low obstacle density. Whereas, congestion occurs and correlation among pedestrians 
increases when obstacle density is high. And also, analytically proven that this model 
can be expressed in Burgers’ equation in the continuum limit and the relationship with 
well-known ASEP are derived. Moreover, the analytical expression of average flow 
of Pedestrian in periodic boundary condition that has a good agreement with 
numerical solution is shown. We believe that this model is an initiative and a starting 
point in improving city life and reducing congestion. 
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Abstract. We have introduced excluded volume effect, which is a signif-
icant factor to model a realistic pedestrian queue, into queueing theory.
The model has been exactly solved. Concretely, probability distributions
and means of the number of waiting pedestrians, length of a queue,
and waiting time have been derived. Due to the excluded volume ef-
fect, the process of closing up is included in our new model, so that the
mean number of pedestrians increases as pedestrian arrival probability
(λ) and leaving probability (μ) increase even if the ratio between them
(i.e., ρ = λ/μ) remains constant. Moreover, interval distance between
pedestrians is included in our model because of the excluded volume ef-
fect, thus, length of a queue is considered more realistically than previous
model. A queueing experiment is also performed to verify the validity of
our model.

1 Introduction

Queue is an important phenomenon as evacuation in pedestrian dynamics [1]
since it is observed everywhere in large cities and might cause congestion. Queue-
ing theory [2], which has been considerably studied since Erlang started designing
telephone exchanging system in 1909, is widely used to study many social sys-
tems [3]; however, it is not fully appropriate to apply for a pedestrian queue.
In the normal queueing model (N-Queue) in the queueing theory, the state of
a queue is represented by the number of waiting pedestrians and difference in
interval distances between pedestrians are neglected. This identification makes
it impossible to calculate correct length of a queue. Furthermore, in N-Queue,
when there are some pedestrians in the queue, one pedestrian is always receiving
service, and when he/she leaves the queue, the service for the next pedestrian
starts immediately as shown in Fig. 1 (a). This phenomenon is suitable for a
queue of packets in networks since operation for next packet starts instantly by
a computer. However, it is not realistic for a queue of pedestrians since there is
a delay of moving to service window as shown in Fig. 1 (b). Thus, we construct

S. Bandini et al. (Eds.): ACRI 2010, LNCS 6350, pp. 523–531, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Schematic views of N-Queue and E-Queue

the exclusive queueing model (E-Queue), taking the excluded volume effect into
account, and compare it with N-Queue. We have also performed queueing ex-
periment with real pedestrians to verify the validity of E-Queue model.

2 Queueing Models and Theoretical Analysis

2.1 Normal Queueing Model: N-Queue

We consider parallel dynamics models with discrete time in this paper because it
is realistic for one dimensional pedestrian dynamics [4]. In N-Queue a pedestrian
arrives at the queue with probability λ ∈ [0, 1] and leaves with probability μ ∈
[0, 1] at each time step as shown in Fig. 1 (a). The master equations of PN (n),
which represents the probability that there are n ∈ Z≥0 pedestrians in the queue
in the stationary state, could be obtained as follows:

PN (0) = (1 − λ)PN (0) + (1 − λ)μPN (1), (1)
PN (1) = λPN (0) + (1 − λ)μPN (2) + {λμ + (1 − λ)(1 − μ)}PN (1), (2)
PN (n) = λ(1 − μ)PN (n − 1) + (1 − λ)μPN (n + 1)

{λμ + (1 − λ)(1 − μ)}PN (n) (n ≥ 2). (3)

Note that the stationary state exists only when λ < λcr(= μ) is satisfied. λcr is a
critical value of λ, and when λ ≥ λcr, queue length tends to infinity. By solving
these recurrence equations among three terms, we obtain PN (n) and PW (t)
(t ∈ [0,∞)) (Probability distribution of the waiting time, i.e., time between
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Fig. 2. Schematic views of the stationary states of E-Queue in the case n = 2. The
service window is occupied by a pedestrian in the Group A, while it is vacant in the
Group B.

a pedestrian arrives at the queue and leaves there). Then, mean number of
pedestrians in the queue (N) and mean waiting time (W ) are calculated as
follows:

N =
∞∑

n=0

nP (n) =
(1 − λ)ρ

1 − ρ
, (4)

W =
∞∑

t=0

tPW (t) =
1 − λ

μ(1 − ρ)
, (5)

where ρ = λ/μ is ratio between the arrival probability and the service probability.

2.2 Exclusive Queueing Model: E-Queue

In E-Queue, the state is determined not only by pedestrian number n. Fortu-
nately, due to deterministic movement of pedestrians in the queue (i.e., pedes-
trians move one cell in one time step if their proceeding cell is vacant), two
consecutive vacant cells never appear in the stationary state. As a result, there
are 2n states when there are n pedestrians in the queue since we only need
to consider whether there is a vacant cell or not in front of each pedestrian.
Schematic views of the stationary states in the case n = 2 are depicted in
Fig. 2.

Here, we focus on obtaining probability distributions of number of waiting
pedestrians and waiting time, so that the 2n states do not need to be distin-
guished completely. The important point is that whether the service window is
occupied or not. Thus, the 2n states are divided into two groups A and B. The
service window is occupied in group A and is vacant in group B. For instance,
two states belonging to group A, and the other two states belonging to group B
in the case n = 2 as shown in Fig. 2.

We describe the sum of the probabilities of the stationary states in group A as
PA(n) and that in group B as PB(n) when there are n pedestrians in the queue.
Thus, PN (n) = PA(n) + PB(n). Note that in the case n = 0, we have PA(0) = 0
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Fig. 3. State transition diagram of E-Queue

and PB(0) = PN (0). The state transition diagram of E-Queue is depicted as
Fig. 3 and the master equations in the stationary state are described as follows:

PA(1) = (1 − λ)(1 − μ)PA(1) + λPB(0) + (1 − λ)PB(1), (6)
PA(n) = λ(1 − μ)PA(n − 1) + (1 − λ)(1 − μ)PA(n)

+λPB(n − 1) + (1 − λ)PB(n) (n ≥ 2), (7)
PB(0) = (1 − λ)PB(0) + (1 − λ)μPA(1), (8)
PB(n) = λμPA(n) + (1 − λ)μPA(n + 1) (n ≥ 1). (9)

The probability distribution of the waiting time PW (t) is also calculated as

PW (t) = f(t, 1)P (0) +
Q(t,2)∑
n=1

[f(t − n, n)μPA(n)]

+
Q(t−1,2)∑

n=1

[
f(t − n, n + 1){(1 − μ)PA(n) + PB(n)}

]
, (10)

where Q(a, b) returns a quotient of a/b, and f(t, n) =
(

t − 1
n − 1

)
μn(1−μ)t−n is the

negative binomial distribution. Solving the equations (6-9) with normalization
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condition
∑∞

n=0 PN (n) = 1 and using (10), we obtain the explicit form of PN (n)
and PW (t) (see [5]) in the case λ < λcr(= μ/(1 + μ)). The mean number of
waiting pedestrians N and the mean waiting time W are obtained as

N =
ρ

1 − ρ
1−λ

, (11)

W =
1

μ
(
1 − ρ

1−λ

) . (12)

The master equations where all 2n states are distinguished are considered
in [6] and the probability distribution of length of a queue, which includes the
number of vacant cells, is obtained by solving them. The mean length of a queue
L is described as

L =
ρ

1 − λ − ρ
. (13)

3 Comparison between N-Queue and E-Queue

In this section, we compare physical quantities of N-Queue and E-Queue. The
physical quantities are described by three parameters, which are λ, μ, and ρ.
However, since ρ = λ/μ, there are only two independent variables; thus, we use
ρ and μ as independent ones in the following. Then, λ becomes a function of ρ
and μ described as λ(ρ, μ) = ρμ.

3.1 Critical Value λcr

In N-Queue, the critical value λcr = μ. In E-Queue, λcr = μ/(1 + μ). Since
μ/(1+μ) ≤ μ , the region where stationary state exists in ρ−μ space is smaller
in E-Queue than in N-Queue. Due to time needed to close up vacant cells, which
equals to one time step, the length of E-Queue diverges easier than that of
N-Queue.

3.2 Mean Number N and Mean Length L

We compare N (mean number of pedestrians in the queue) in N-Queue and E-
Queue, and L (mean length of the queue) in E-Queue in the stationary state.
Figure 4 shows N and L against ρ. N and L monotonically increase with the
increase of ρ. There are three remarkable points in Fig. 4. First, we can see
that N in E-Queue is larger than that in N-Queue. In E-Queue there is delay of
service since the waiting pedestrians have to proceed by one cell before they start
to receive service, while there is no delay in N-Queue; therefore, the number of
waiting pedestrians becomes larger in E-Queue than in N-Queue. Secondly, given
ρ and μ, L is larger than N in E-Queue since L includes the length of vacant cells
in the queue, whereas, N does not. Thirdly, we see that N in N-Queue decreases
but N and L in E-Queue increase with the increase of μ. Since we adopt discrete
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Fig. 5. Mean waiting time W against the mean service time 1/μ

time model, the variances of arrival and service time decrease with the increase of
λ and μ. According to Pollaczek-Khintchine formula, Little’s theorem, and Ref.
[2], N decreases as the variances of arrival and service time decrease, thus, N in
N-Queue decreases when μ increases. In E-Queue, a pedestrian takes “the time
of closing up” plus “the service time” to go through the service window. When
μ increases the sum does not significantly decrease since the time of closing up
remains as a constant. At given ρ, the increase of μ implies the increase of λ,
hence, N and L increase as μ increases in E-Queue.
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3.3 Mean Waiting Time W

Figure 5 shows the variation of W against 1/μ, which is a mean service time, in
the case ρ is constant. With the increase of 1/μ, W increases quasi-linearly in
N-Queue, which coincides with our intuition. W also increases quasi-linearly in
E-Queue when 1/μ is large; however, when 1/μ is small, it surprisingly achieves
minimum Wmin(= ρ/(1 − √

ρ)2) at 1/μmin (= ρ/(1 − √
ρ)), increases as 1/μ

further decreases, and diverges at 1/μcr (= ρ/(1−ρ)). Since the Little’s theorem
N = λW [2] is satisfied in all three models, W = (1/μ)(N/ρ). At a given ρ, with
the increase of 1/μ, N increases in N-Queue, thus W increases. In contrast, N
decreases with the increase of 1/μ in E-Queue, hence, the minimum could be
reached.

As we have seen in Fig. 5, E-Queue becomes similar to N-Queue when service
time is large and different from it when service time is small. Thus, it is useful to
know quantitatively when we should consider the excluded volume effect from
the perspective of application. In Fig. 6, the ρ-μ plane is divided by the curve
R = 1.1, where R is a ratio between W in N-Queue and E-Queue described as

R(ρ, μ) =
WE-Queue

WN-Queue
. =

1 − ρ

1 − (1 + μ)ρ
. (14)

In the lower-left region in Fig. 6 R < 1.1, and the difference of W is not critically
large, so that it may be allowed to use N-Queue for simple calculation when both
ρ and μ are small. In contrast, R > 1.1 and the difference is crucial in the upper-
right region, therefore, the excluded volume effect should be considered when
both ρ and μ are large. Note that Fig. 6 is an example of the dividing curve,



530 D. Yanagisawa et al.

6

6.5

7

7.5

8

8.5

9

9.5

10

Slow Fast

1.4

1.42
1.44

1.46
1.48

1.5

1.52
1.54

1.56
1.58

1.6

N
N/L

N N/L

N
N/L

Fig. 7. Experimental mean number N and ratio between number and length N/L
[m−1]

and it is possible to depict the other curves by determining R as a different
value. Thus, this diagram is helpful to know the error quantitatively and make
a decision whether to use N-Queue or E-Queue for designing a queueing system
for pedestrians.

4 Experiment

We have performed queueing experiments with real pedestrians to confirm that
E-Queue model is more realistic. We have prepared the arrival gate and the
service window. Computers give us random arrival time and service time. First,
participants of the experiment stay at the arrival gate. When there is a signal
from the computer, one of them gets in the queue. The participants proceed in
the queue if there is enough space for them. Note that we do not tell them how
to close up the queue. Thus, the queue is closed up in a natural way. Finally,
they reach the service window and leave the queue when there is another signal
from the computer. Two experimental conditions, which are Slow (1/λ = 15 [s],
1/μ = 12 [s], Small λ and μ) and Fast (1/λ = 9.47 [s], 1/μ = 7.58 [s], Large λ
and μ) are performed. Note that ρ = 0.8 in both conditions.

We focus on the following two points: with the increase of μ (Slow → Fast),
(A) whether mean number of waiting pedestrians increases or decreases, (B)
whether N/L remains constant or not. First, we consider (A). In Fig. 7, N
obtained from videos of the experiment are shown. We surprisingly see that N
is small in Slow case and large in Fast case. This implies that E-Queue is more
realistic than N-Queue, since in E-Queue N increases with the increase of μ when
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ρ is constant as we see in Sec. 3. Next, we examine (B). N/L is also depicted in
Fig. 7. It is observed that N/L does not remain constant: it is large in Slow case
and small in Fast case. N/L is constant in N-Queue; however, it is described as
1 − λ = 1 − ρμ in E-Queue and decreases as μ increases. Therefore, E-Queue
is also more realistic than N-Queue from the point (B). N/L is considered as
an average density in the queue. When μ is small (Slow case), pedestrians have
enough time to close up the queue, so that the density is large. By contrast, when
μ is large (Fast case), the service for a pedestrian finishes before all pedestrians
in the queue close up, thus, the density becomes small. The two experimental
phenomena are clearly reproduced in E-Queue since both the delay by closing up
and the length of vacant cells, which are neglected in N-Queue, are considered.
Therefore, E-Queue is more realistic model for pedestrian queueing system.

5 Conclusion

We have introduced the excluded volume effect into normal queueing model and
exactly obtained the mean number of waiting pedestrians, length of the queue,
and waiting time in the stationary state. Queueing experiment is also performed
and its results agree well with the characteristics of our new queueing model
with the excluded volume effect since it includes both the delay by closing up
the queue and the interval distances between pedestrians.
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Abstract. Vehicle emission has become a major source of air pollution. In this 
paper, the brake-light cellular automaton model incorporated with a vehicle 
emission model is utilized to investigate emitted exhaust pollution by traffic 
flow. First, both macro- and microscopic features of traffic flow are reproduced 
quantitatively and compared with empirical findings. Then the model is used to 
simulate the vehicle emission of a moving fleet of vehicles. It is shown qualita-
tively that the emission rate is significantly increased in the medium density 
range with considering instantaneous velocity and acceleration together. Usu-
ally the total amount of pollutant discharge from vehicles is underestimated by 
considering average velocity alone. It is believed that a good driving strategy, 
e.g. eco-driving, is an effective way to reduce vehicle emission.  

Keywords: cellular automata model, vehicle emission, free flow, traffic jam. 

1   Introduction 

In recent years, urban air pollution is increasingly getting serious and constitutes a 
great threat to human health. In big cities, vehicle emission has become a major 
source of air pollution. Over 60% CO and over 40% NOx come from vehicle sources. 
Detrimental air pollution generated by traffic flows on roads has reached the critical 
level in many cities, especially in downtown areas. The reduction of air pollution, 
mainly caused by the high level of vehicle emissions, is a prime requisite for the fu-
ture sustainable development of a green transportation.  

It is well known that the vehicle emission is closely related to the state of traffic flow. 
The transient driving patterns formed by the repeated decelerations and accelerations of 
vehicles often occur at intersections or in self-organized jamming phase on roads (e.g., 
the stop-and-go traffic), produce substantial additional amounts of emitted exhaust pol-
lution. It is found that even for vehicle trips with the same average velocities, their fuel 
consumption and emissions rates are significantly different. A variable velocity trip 
emits much more exhausts than a constant velocity trip. Hence, it is necessary to inves-
tigate the detailed evolution of vehicular flow by microscopic models, which provides a 
powerful way to predict the vehicle emission. Micro-simulation of traffic flow is able to 
give detailed description of a queue of moving vehicles. Traditionally, car-following 
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models were used to simulate the behaviors of single vehicles. Recently, cellular 
automaton (CA) models begin to serve as a promising method for micro-simulation, 
which are discrete in both space and time. The Nagel-Schreckenberg model (cited as 
“the NaSch model” for short) is a probabilistic CA model for the description of single-
lane highway traffic [1]. Although the model is simple and involves fewer parameters, it 
is able to reproduce the basic phases in real traffic, i.e., free flow and traffic jam. Since 
then this model has been generalized in many aspects and applied widely in studying 
various traffic phenomena in reality [2]. Compared with other models, the CA models 
are simple, flexible and suitable for parallel computation of traffic flow.  

However, as was pointed out by Knospe et al [3], most of the existing models, fail 
to reproduce the microscopic features observed in real traffic. The comparison of 
simulation results with empirical data at a microscopic level is not so satisfactory. 
Recently, new CA models have been proposed to depict the synchronized flows, 
which is another basic traffic phase in real traffic [4]. The brake-light CA model pro-
posed by Knospe et al [5] was based on the NaSch model but introduced the effect of 
brake light and velocity anticipation. Therefore, this model can reproduce all three 
traffic phases and provide better agreement with empirical findings [6]. However, to 
the authors' knowledge, most of CA models have not been used to evaluate the emis-
sion from vehicle fleets. Therefore, it is worthy to propose a dynamic emission model, 
which combine vehicle emission model with a proper CA model.  

In this paper, we investigate the exhaust pollution emitted from a vehicle fleet 
with the brake-light CA model incorporated with a vehicle emission model. We 
discuss some macro- and microscopic features given by simulation results with the 
CA model. More attention will be paid on microscopic features of traffic flow, espe-
cially the variation of acceleration, which is closely related to the vehicle emission. 
Then we calculate the average emission rate of two typical pollutants by taking in-
stantaneous velocity and acceleration into account. The simulation results are com-
pared with those merely considering average velocity to show the effectiveness of 
the presented model. 

2   Traffic Flow Model with Emission 

The dynamic emission model for vehicle fleet consists of two main parts: a micro-
scopic CA model and a microscopic emission model. The brake-light CA model (the 
BL model for short) is adopted in the paper, which is defined on a one-dimensional 
lattice of L cells with periodic boundary condition. The length xδ of a cell is given by 
1.5 m. Each vehicle has the same dynamical length 5l = cells, i.e., 7.5 m in average. 
Vehicles move from the left to the right on a lane, and they are numbered in the 
driving direction. The state of the n-th vehicle is characterized by its position ( )nx t  

and speed ( )nv t  ranging from 0 to maxv  at time t. The gap between consecutive cars is 

defined as 1( ) ( ) ( ) 1n n nd t x t x t+= − − and nb is the status of the brake light 

(on/off 1 / 0nb = ). At each discrete time-step, these vehicles are updated in parallel 

according to the following rules: 
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Step 0. Determining the randomization parameters 
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( 1) 0nb t + =  

The randomization parameter p is determined by the current velocity of the n-th car 
and the status of the brake light of the preceding car. The two times ( )h n nt d v t=  and 

min( ( ), )s nt v t h=  are introduced, where h determines the range of interaction with brake 

light. The braking parameters dp , bp and 0p  for cars are determined according to dif-

ferent states (See [4] for details). 
 

Step 1. Driving as fast as possible:  
 

1 max( ( ) 0 ( ) 0) ( ) ( ) min( ( ) 1, )n n h s n nif b t and b t or t t v t v t v+ ′= = ≥ → = +  

Step 2. Braking due to safety consideration:  

( ) min( , ( )).

( ( ) ( )) ( 1) 1.

eff
n n n

n n n

v t d v t

if v t v t then b t

′′ ′=
′′ < + =

 

The effective gap ( )eff
nd  is defined as max( ,0)n anti sd v gap+ − , where the expected ve-

locity of the preceding car 1 1min( , )anti n nv d v+ +=  and the parameter sgap is used to con-
trol the effectiveness of the anticipation. 

Step 3. Including noise due to individual variations of driver behavior:  

( () ) ( 1) max( ( ) 1,0)

( ( 1) ( 1) 1) ( 1) 1.
n n

b n n n

if rand p then v t v t

if p p and v t v t then b t

′′< + = −
= + = + − + =

 

Step 4. Giving vehicle movement:  

( 1) ( ) ( 1)n n nx t x t v t+ = + +  

Step 5. Determining acceleration: 

( 1) ( 1) ( )n n na t v t v t+ = + −  

Step 6. Calculation of vehicle emission 

( ) ( ( 1), ( 1))n n nE t G v t a t= + +  

where na and nE are the acceleration and emission rate of the nth vehicle respectively. 

G is a function of instantaneous velocity and acceleration, which measures the emis-
sion of different pollutants. In general, emission rates can be expressed as a function 
of the type and age, average velocity, operating mode and other properties of vehicles. 
Here we only consider the effect of velocity and acceleration on emission rates.  

A general function for all pollutant emission is given as 

2 2
0 1 2 3 4 5 6

( ) ( ( ), ( ))

max( , ( ) ( ) ( ) ( ) ( ) ( ))

n n n

n n n n n n

E t G v t a t

E f f v t f v t f a t f a t f v t a t

=

= + + + + +
  (1) 

where 1f  to 6f  are emission constants specified for each vehicle and pollutant type 

determined by the regression analysis. Two main pollutants emitted from cars and 
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heavy duty vehicles (HDV, diesel) were modeled, i.e., carbon dioxide (CO2) and 
volatile organic compounds (VOC). These particular pollutants were chosen based on 
their potential health impacts and external costs [7]. 

The functions (including the lower emission limit 0E  and the constants) are deter-

mined for the two pollutants and for cars and HDVs. These coefficients are listed in 
Table 1. Usually the lower emission limit 0E  is set to zero. Then each function can be 

used to predict the emissions of a car and a trip not included in the data set used for 
the regression analysis to check the accuracy of the predicted value [7]. 

Table 1. Coefficients of emission function for car and hdv 

Pollutant f1 f2 f3 f4 f5 f6 
CO2 (CAR) 5.53e-1 1.61e-1 -2.89e-3 2.66e-1 5.11e-1 1.83e-1 
VOC(CAR) 
a≥-0.5 m/s2 

4.47e-3 7.32e-7 -2.87e-8 -3.41e-6 4.94e-6 1.66e-6 

VOC(CAR) 
A<-0.5 m/s2 

2.63e-2 0 0 0 0 0 

CO2 (HDV) 1.52 1.88 -6.95e-2 4.71 5.88 2.09 
VOC(HDV) 1.04e-3 4.87e-4 -1.49e-5 1.27e-3 2.10e-4 1.00e-4 

3   Simulation and Discussion 

The parameters of the BL model were calibrated by empirical data and their values 
are max 108v =  km/h, 0.1p = , 0 0.5p = , 0.94bp = , 7sgap = and 6h =  respectively. We 

simulate a system with 410L =  cells, which corresponds to the length of the actual 
lane about 15 km. The global density under the periodic condition is given by 

1000 ( )N L xρ δ= × ×                     (2) 

The mean velocity 
0

0

1

1

1
( )

T T N

n
t T n

v v t
NT

+ −

= =

= ∑ ∑                   (3) 

and the flux is calculated by 

q vρ=                     (4) 

The fundamental diagram is obtained by this formula. Here N denotes the total num-
ber of cars in the system. Each run of simulation is first conducted 5

0 10T =  time steps to 

reach the stationary state and the data are recorded in successive 510T =  time steps. 
The mean emission rate is calculated by 

0

0

1

1

1
( )

T T N

n
t T n

E E t
NT

+ −

= =

= ∑ ∑                        (5) 

And the emission rate calculated from average velocity v  is give by 

 ( ,0)vE G v=                   (6) 

Most of numerical results are obtained from the random initial condition, i.e., vehicles 
are randomly distributed on the lane and their speeds are set to be zero at the beginning 
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of simulations. And the system is investigated under the periodic condition, i.e., a fleet 
of vehicles run on a ring road. 

3.1   Macro- and Microscopic Features 

Firstly we reproduce some results to show the basic features of the BL model reported 
in [5] and [8]. Then we provide the velocity distribution of all cars in the steady 
states, which give a qualitative description of traffic phases in the spatial-temporal 
diagram. More attention is paid on the distribution of acceleration, which is a key to 
get a correct evaluation of emission for vehicle fleet. 

The fundamental diagram for the BL model is given in Fig. 1, which is obtained 
from three different initial conditions, i.e., random (R), homogeneous (H) and mega-
jam (M) distributions. It is shown that the BL model is not sensitive to different initial 
conditions as the NaSch model. 

 

Fig. 1. Fundamental diagram via numerical simulation from a random initial distribution. The 
discontinuity is due to the finite size effect. 

 
Three density regimes can be distinguished. (1) For the density lower than 1cρ , it is 

the free flow. (2) For the density between 1cρ and 2cρ , it is the coexistence state of free 

flow and congested flow, the latter consisting of synchronized flow and traffic jam. 
(3) For the density higher than 2cρ , the free flow disappears and only synchronized 

flow and traffic jams coexist.   
The one-minute average data sampled locally by a virtual detector are plotted in 

Fig. 2. From the local fundamental diagram, the free flow branch is reproduced quite 
well. The slope is in agreement with the empirical findings [6]. For congested traffic, 
the model can reproduce some features of synchronized traffic. This interpretation of 
the flow data is supported by measurements of the cross-correlation function [5]. In 
the presence of wide jams the flow is proportional to the densities as was found by 
empirical observation. In real measurements the branch extends up to quite high den-
sities 70 vex/km. The simulation result coincides with this observation, which is bet-
ter than that in the NaSch model. 
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Fig. 2. Local fundamental diagram via numerical simulation from a random initial distribution 

 

(a)

(b)  

Fig. 3. The space-time plot in the case of different densities. (a) 13ρ =  veh/km, 

(b) 30ρ = veh/km 
 

From the space-time plot in Fig. 3, we can find the free flow qualitatively (Fig. 3a). 
In contrast to the NaSch model, it is clearly shown that there exists the coexistence of 
flee flow, synchronized flow and jam in Fig. 3b.  

The quantitative description of the steady state in the case of typical densities is 
given in the Fig.4, i.e., the distribution of velocity of all cars in the system. It is found 
that there are new peaks around the velocity 5 in the congested flow instead of only 
two peaks for free flow ( maxv v= ) and jam ( 0v = ). It is a signal that there may exist a 

new phase and not merely a transient phase between free flow and jam. The new 
phase is actually identified as the synchronized flow according to more criteria. It is 
also confirmed that the BL model can reproduce heavy synchronized flow (with low 
velocities) and fails to reproduce light synchronized flow (with high velocity) [8].  

Usually, more attention has been paid on the flux or average velocity of vehicles in 
simulation of traffic flow. However, the acceleration of vehicles plays a vital role in 
predicting the emission of vehicles. In fact, vehicle emissions are more sensitive to 
acceleration than to velocity.  
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Fig. 4. Distribution of speed of all cars in the BL model in free flow and congested flow for 
different densities when the system reaches the steady state 

 
The acceleration distributions of the BL model is shown in Fig. 5. For free flow traf-

fic, the distribution is almost symmetrical due to random deceleration. For congested 
traffic, the distribution becomes asymmetrical and larger decelerations appear when a 
high-velocity vehicle is approaching its preceding vehicle at rest. The follow-the-leader 
data reveals that empirical accelerations and decelerations are usually limited to the range 
between -3 and +4 m/s2 [9]. The simulation results are in agreement with empirical facts.  

The fractions of acceleration at different densities are plotted in Fig. 6, where three 
regions were distinguished by the sign of acceleration. For lower densities ( 1cρ ρ< ), the 

ratio of acceleration ( 0a > ) is almost equal to that of deceleration ( 0a < ) which is due 
to randomness and less interaction between successive cars. For medium densi-
ties 1 2c cρ ρ ρ< < , both fractions of acceleration and deceleration states are increasing 

significantly due to the existence of three phases. For higher densities ( 2cρ ρ> ), both of 

them begin to decrease and constant-velocity states increase due to the growth of jam.  

 

Fig. 5. Distribution of acceleration of all cars in the BL model in free flow and congested flow 
for different densities when the system reaches the steady state 
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Fig. 6. Fraction of acceleration for all cars in the BL model for different densities when the 
system reaches the steady state 

3.2   Vehicle Emission 

Fig. 7 and 8 show the emissions of CO2 and volatile organic compounds (VOC) for 
cars and heavy duty vehicles (HDVs), in which numerical results are calculated by 
both instantaneous velocity and acceleration. The results calculated by average veloc-
ity alone are shown together for comparison. As was expected, emissions from HDVs 
are significantly larger than that from cars. In general, the emissions for most pollut-
ants, e.g., CO2, PM etc. calculated by instantaneous velocity and acceleration (Eq. 5) 
is larger than that calculated by average velocity (Eq. 6), since acceleration or decel-
eration usually leads to additional emissions. It is not the case that the emission of 
VOC for HDVs calculated by average velocity is higher for the density between 1cρ  

and 2cρ . The reason is that the states with low constant-velocity generate considerable 

emission of VOC and negligible emission of other pollutants. 
 

 

Fig. 7. Average emission rate of CO2 as a function of the density. The squares and triangles 
indicate the numerical results obtained with Eq. (5) and the others with Eq. (6) 
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Fig. 8. Average emission rate of VOC as a function of the density. The squares and triangles 
indicate the numerical results obtained by Eq. (5) and the others by Eq. (6) 

 

 
Fig. 9. Emission factor of VOC as a function of the density 

 

Fig. 10. Emission factor of PM as a function of density 
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It is convenient to convert the above results from g/s to g/km by calculating 
1000E v . Figures 9 and 10 show the emission amount of CO2 and VOC for different 

velocities in kilometers respectively, which are calculated by instantaneous velocity 
and acceleration. It is shown that the free flow states generate least emissions for 
lower densities. With increasing density, more and more emissions generate. It is 
consistent with daily experience. In contrast to most exhaust pollution generated by 
HDVs, they produce less emission of VOC than cars. This results can be confirmed 
by Fig. 8 that the emission rate of VOC from HDVs is more than that from cars in 
most cases. 

4   Conclusions 

We have simulated vehicle emission with the BL model, which has been calibrated 
with empirical facts. The BL model can exhibit all three phases of traffic and repro-
duce reliable numerical results compared with real traffic. Then we investigate some 
macro- and microscopic features simulated by this model. Furthermore, we evaluated 
the emission rate of two typical pollutants generated by cars and HDVs. Numerical 
simulations show that the model can capture the main features of emission from vehi-
cles. It is turned out that emissions are more sensitive to the level of vehicle accelera-
tion than to vehicle velocity. It is concluded that calculating the vehicle emission by 
average velocity alone usually underestimate the total amount of pollutant discharge. 
Experimental investigations should be performed to verify numerical results. More-
over, good driving styles (e.g., eco-driving) will lead to the reduction of vehicle emis-
sion. It is should be studied further to reduce air pollution with better driving styles.  
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Abstract. Intracellular transport involves the processive displacement
of molecular motors on microtubules. These motors are specialized to
walk in one or the other direction on the microtubule. It is not known
yet how this bi-directional traffic is organized in order to be efficient.
Here we use some modeling based on cellular automata models to point
out the problems caused by bidirectional transport, we discuss the role of
confinement around the microtubule, and we illustrate how the dynamics
of the microtubules could help preventing jam formation.

Keywords: intracellular transport, bidirectional transport, dynamical
network, cellular automata simulations.

1 Introduction

Biological cells are complex objects, which are kept alive by a multitude of active
processes. They are the elementary building blocks of complex organisms but also
complex objects themselves with their own transport infrastructure.

The transport is driven by specialized proteins, which enable objects on the
nano- and microscale e.g. to pass barriers and to be transported over large dis-
tances. The long distance transport is carried out by molecular motors which are
using the cytoskeleton, i.e. the intracellular filament network, as tracks. Here we
concentrate on transport on microtubules, which are of particular importance
for the transport from the nucleus to the membrane.

Microtubules are cylindrical structures resulting from the polymerization of
tubulin units. They are polarized, and as a result, some motors - such as kinesins -
walk predominantly towards the plus end of the microtubule, while some others -
e.g. dyneins - process towards the minus end. It is not understood yet how nature
organizes such a bi-directional flow in order to get efficient transport. On the
other hand, such a knowledge would be of great interest, first from a fundamental
point of view to understand the mechanisms taking place in a living cell, but
also because it has been observed that some jamming of molecular motors is
occurring in axons in some neuronal diseases such as Alzheimer [8].

S. Bandini et al. (Eds.): ACRI 2010, LNCS 6350, pp. 542–551, 2010.
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The processive motion of molecular motors is performed through cyclic
changes of conformation of the motors. One cycle can be called a “step”. The
typical amplitude of such a step is of the order of one tubulin unit, i.e. 8 nanome-
ters, while the total length of the microtubule can range from a few to hundreds
of microns. Due to the discrete nature of the steps, it has become now usual to
model motor motion with cellular automata.

In cellular automata models, a microtubule is represented by a one dimen-
sional lattice. Motors attach and detach with certain rates, and in the meantime
hop from site to site with again appropriate probabilities. First models were
monodirectional, a setup that is appropriate for motility assays ([4,6,5,9]). The
intracellular traffic between cell center and membrane however is bidirectional.

Also bidirectional stochastic transport on one-dimensional lattices has been
extensively investigated. Compared to the realistic intracellular motion of molec-
ular motors, most models differ in some respect. Many models allow for particle
exchanges on the track. Klumpp and Lipowsky [3] introduced a model for two
species of motors processing in opposite direction. However, the diffusive reser-
voir around the microtubule was not represented explicitely: after detachment,
motors can attach again anywhere in the system, i.e. there is no memory of their
previous attachment point. This could be a good representation for an isolated
microtubule in an infinite empty space. However, the cell is not empty at all.
Many obstacles create steric constraints. Molecular motors are rather small, but
the cargos that they carry are often much larger (e.g. vesicles or mitochondria),
and thus may not diffuse very far from the microtubule.

In this paper, we shall present how a jamming transition is occurring when the
diffusive reservoir confined around the microtubule is explicitely represented by
a second lane in the model - at least beyond a certain density of motors. We shall
discuss how this transition is modified when the confinement constraint is more
or less relaxed. Then we shall show how, in the confined case, an efficient flow
can be recovered when the microtubule is represented by a dynamical filament
instead of a static one.

2 Definition of the Model

In this section, we consider only static filaments, as in [2]. The case of dynamical
filaments will be considered only in section 5.

The microtubule is represented by a one-dimensional lattice of size L. As we
are interested in the bulk transport properties, we consider periodic boundary
conditions. On this lattice, motors undergo processive motion. Two types of
motors are considered, moving in opposite directions. We shall refer to them as
positive and negative motors. During an infinitesimally small time step dt, each
motor can hop to the next site in its processive direction with probability p dt,
if the target site is empty. An exclusion constraint imposes that no more than
one motor can occupy a given site on the microtubule. As a consequence, motors
moving in opposite directions cannot pass each other unless at least one of them
leaves the microtubule.
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The surroundings of the microtubule is represented by another one-dimensional
lattice. On this second lane, there is no exclusion principle, and the motors un-
dergo some symmetric diffusion motion: during a time step dt, they can jump to
their left or to their right with equal probability D dt.

Motors go from one lane to the other according to predefined attachment and
detachment rates (resp. ωa and ωd). The whole set of rules is summarized in
figure 1.

D

ω

aω aω dωp

D D D

pd

Fig. 1. Sketchy representation of the evolution rules. The two types of motors are
represented respectively with disks and triangles. They move in opposite directions,
but with the same rate p, on the lower lane representing the microtubule, on which
there is an exclusion principle. Motors hop in both directions and without any exclusion
constraint, on the upper lane representing the space around the microtubule in which
diffusion can take place.

3 Bidirectional Traffic on a Static Filament Surrounded
by a Confined Diffusive Reservoir

In [2], M. Ebbinghaus and L. Santen have shown that for the model described
in the previous section, a transition to jamming occurs beyond a certain number
of particles (i.e., for a constant density, beyond a certain system size).

This jamming has two negative consequences:

– First, the flux of each of the species of motors tends to zero as the system
size becomes large, i.e. transport becomes very inefficient.

– Second, the remaining small flux depends on the system size - and not on
the density of motors. Indeed, the jam that is formed involves a macroscopic
fraction of the total number of motors present in the system - a quantity
which is itself proportional to the system size.

This second point means that in large systems such as axons, jamming would
indeed lead to a vanishing flux. Open systems, where the input flow of motors
is not limited, and thus where the total number of motors is virtually infinite,
would also lead to a vanishing flux.

Fig. 2 illustrates how the flux is vanishing for an increasing attachment rate
ωa - i.e. when more particles are sent on the processive filament. This transition



Bidirectional Traffic on Microtubules 545

0 0.02 0.04 0.06 0.08 0.1
Attachment rate ωa

0.01

0.015

0.02

0.025

F
lu

x 
of

 p
ar

tic
le

s 
al

on
g 

fil
am

en
t j

b

0 0.02 0.04 0.06 0.08 0.1

ρtot = 1.0
ρtot = 1.2
ρtot = 1.4
ρtot = 1.6
ρtot = 1.8
ρtot = 2.0

Fig. 2. Flux of positive particles on the microtubule lane, as a function of the attach-
ment rate ωa, for a fixed system size L = 1000, for ωd = 0.01, D = 0.1, p = 1, and
for different total numbers of particles. The circles indicate from which simulations the
snapshots of fig. 3 were taken.

(a) (b) (c)

Fig. 3. Spatio-temporal snapshots in the various phases when ωa is increased, for a
fixed number of particles and a fixed system size L = 1000, for D = 0.1, p = 1, and
ωd = 0.01. Green and red points indicate locations of positive and negative motors.
(a) Free flow phase, no clusters are seen. (b) Transient clusters appear in the vicinity
of the transition. (c) One large cluster inhibits processive motion on the filament. The
corresponding points in fig. 4 are indicated as circles.

occurs for smaller value of ωa when the system size increases. Around the jam-
ming transition, as shown on the snapshots of fig. 3, some short lived clusters
start to be formed. And beyond, a single large cluster containing a macroscopic
fraction of the motors inhibits directed motion.

As seen in fig. 4, the density of the large cluster increases when ωa increases
(or, equivalently, when the system size increases). Indeed, there is then a strong
correlation of the densities on both lanes, i.e. the density in the diffusive reservoir
becomes high above the jam. As a consequence, the small holes in the jam are
filled by attaching particles. As shown in [2], the number of attached particles
grows linearly with the system size, while the length of the cluster grows sub-
linearly.
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Fig. 4. Number of positive particles as a function of the attachment rate ωa, for a fixed
system size L = 1000, for ωd = 0.01, D = 0.1, p = 1, and for different total numbers
of particles. The circles indicate from which simulations the snapshots of fig. 3 were
taken.

4 Relaxation of the Confinement Constraint in the Case
of a Static Filament

We have seen in the previous section that the explicit representation of the
diffusive space as a unique line parallel to (i.e. close to) the microtubule was
leading to a jamming transition. This would hold if the microtubule is placed in
a crowdy environment, which we believe to be the case in the cell - in particu-
lar, microtubules are never unique in the cell, they rather form some intricate
bundles.

However, in different types of cells, the density of filaments can differ quite
a bit. So we would like to study the effects of a larger diffusive volume on the
general behavior. In the limit of no confinement at all, there would be almost
no correlations between the motors detachment and attachment positions. As a
consequence, jamming does not occur, as emerging jams are dissolved through
evaporation in the environment (at least for a large enough detachment rate).

In this section, we consider an intermediate model that allows to crossover
from one behavior to the other. We still consider the two lane model of section 2,
but now the upper lane represents a diffusive reservoir with a certain depth. With
this larger reservoir, we expect that after detaching from the microtubule, the
motors will diffuse in the reservoir before coming again close to the microtubule -
and eventually attaching. More precisely, if the reservoir is a cylinder with radius
R, the average first return time to the center of the cylinder would scale as R2. We
take this effect into account by taking an affective attachment rate ω̃a = ωa/R2.
On the other hand, assuming a constant average density of particles, the to-
tal number of particles in the system would scale as R2 too. Actually we took
for the total number of particles N = (1+R2)ρ0, assuming that the central line of
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the cylinder represents at the same time the microtubule filament and the close
diffusive neighborhood of the filament.

We should notice that the detachment rates control the length of a typical
path on the microtubule, while the geometry around the microtubule influences
the effective attachment rate.

In the limit of a vanishing attachment rate, and an infinite density of motors,
we recover the models which were considering an infinite reservoir of particles,
and no jamming transition is expected to occur for a realistic value of the de-
tachment rate. On the other hand, for the value of ωa considered in the previous
section, we have seen that a jamming transition was occurring for large enough
systems. Now we explore the crossover between the two behaviors.
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Fig. 5. Flux of positive particles on the microtubule lane, as a function of the radius R
of the cylindrical reservoir, for ωd = 0.01, rho0 = 0.5, D = 0.1, p = 1, and for different
system sizes

Fig. 5 shows indeed a crossover from a system size dependent state (under
confinement) to a density dependent state (large reservoir). For small radius R,
the density in the reservoir is affected by the state of the microtubule. Beyond
a certain value of the radius R, the variations due to the microtubule become
negligeable in front of the large total number of particles in the reservoir, and
an asymptotic regime is reached.

In this asymptotic regime, there is no macroscopic jam and as we said, flux is
density dependent. However, there are still some small jams forming along the
microtubule, and the flux values that are reached are not very high (compare with
the next section for example). Thus, for a given density, the flux improvement
due to the dynamics of the filament (see next section) can be much greater than
the one due to non-confinement.

In nature, it is probable that there exists the whole range of situations, from
confined to non-confined.
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5 Bidirectional Traffic on a Dynamic Filament
Surrounded by a Confined Diffusive Reservoir

If we consider the confined case, we have seen that bidirectional motion leads to
jamming for systems of large size.

It turns out that microtubules are not stable structures; in fact, their plus end
exhibits alternating phases of polymerization and depolymerization. According
to one of the suggested scenarios, during polymerization, the plus end of the
microtubule is covered by a GTP cap. As long as the cap is present, polymeriza-
tion is favored. But it may happen that the GTP cap hydrolyzes to GDP+Pi,
and then the plus end becomes unstable and depolymerizes rapidly. This event
is called a catastrophe. Some mechanism, called rescue, allows to stop the catas-
trophe. It occurs stochastically and may prevent the microtubule from entirely
depolymerizing. For small cells, where the microtubules cannot be very long,
it is not rare that a microtubule is completely destroyed by depolymerization.
By contrast, in mature axons, where microtubules are believed to measure a
few hundreds microns, depolymerization is in general localized around the tip
of the microtubule. Anyhow, the dynamics of the microtubules occur on time
scales which are similar to those involve in jam formation - and thus a coupling
is likely to take place. An illustration of the dynamics of the filaments can be
found in the videos given as supplementary material of [7]. The polymerizing
ends are made visible through fluorescence.

At this stage, we considered much simplified filament dynamics, in order to
illustrate how the jamming transition can be hindered. The three types of dy-
namics that we considered were the following

– D1 : some sites of the microtubule are suppressed at random with rate kd

and restored with rate kp.
– D2 : same rule, except that a site is eliminated with rate kd only if it is

occupied (this could happen for example if the motors were inducing a strain
on the filament).

– D3 : regularly spaced holes in the lower lane propagate synchronously but
stochastically (oversimplification of the so-called treadmilling of filaments).

We must define how the filament dynamics affects the motors (see fig. 6 for a
sketchy representation). If a motor arrives at the end of a microtubule, i.e. if the
motor wants to hop on a missing microtubule site, then it goes in the diffusive
lane instead. If a microtubule site depolymerizes while there is a motor on it, the
motor is also sent to the diffusive reservoir. As a result, the effective detachment
rate is increased compared to the case of the static filament.

In [1], we have presented how a density dependent flux is recovered above a
certain depolymerization rate kd for dynamics D1 and D2, and above a certain
density of holes for dynamics D3. As shown on Fig. 7, a maximum flux is ob-
tained for an optimum compromise between a too low depolymerization rate (for
which jams are not dissolved) and a too high one (for which there is not enough
microtubule left to allow for efficient processive motion). The maximum flux



Bidirectional Traffic on Microtubules 549

(i)

(ii)

Fig. 6. Sketchy representation of the evolution rules (i) when a motor arrives on a
missing microtubule segment; or (ii) when a microtubule segment on which a motor is
present depolymerizes. Again, the diffusive lane is represented at the upper lane, and
the microtubule as the lower lane.

0 0.5 1 1.5 2
Depolymerization rate kd

0

0.02

0.04

0.06

0.08

F
lu

x 
of

 p
ar

tic
le

s 
al

on
g 

fil
am

en
t j

b

0

simple elimination
occupation breakup
static network

Fig. 7. Flux of positive particles on the microtubule lane, as a function of the depoly-
merization rate kd. Other parameters are fixed to ωa = 0.33, ωd = 0.02, D = 0.33,
p = 1, kp = 1, and the system size L = 1000. The green, black, and red curves cor-
respond respectively to a static filament, a filament undergoing dynamics (D1), and
(D2). Note that the attachment rate considered here are much larger than in the figures
of section 3, i.e. flow on the static filament is completely jammed.

values that are obtained are of the same order for the three types of dynamics
(D1 and D2 shown on fig. 7).

As a summary, we find that, for quite different types of dynamics of the
microtubule network, and for a large range of parameters:

– first, flux is increased, up to about 1/3 of the value it would have if oppositely
motors would not “see” each other.
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– second, flux now depends only on the density of motors, and not on the
system size (at least beyond a certain system size threshold).

This type of mechanism could thus allow to recover efficient transport also in
large systems, where the flux breakdown was expected to be the most severe in
the static case.

6 Discussion and Conclusion

We have shown that a simple model of bidirectional transport leads to vanishing
flux, and that this effect should be worse in large systems such as axons, as the
remaining flux decreases with the system size.

It is an open question to know how nature turns this difficulty around. One
possibility would be that motors interact in such a way that different species of
motors would walk on different tracks [3]. But there is no experimental evidence
yet of interactions that would be strong enough to lead to such segregation.
This seems to be all the more difficult that motors are attached to quite large
cargos, and thus cannot come close to each other, while the interactions that
were pointed out between kinesins are rather short range.

Thus, though this scenario cannot be ruled out, it seems interesting to ex-
plore alternative possibilities. Here we have evidenced a counter intuitive effect,
namely that suppressing some parts of the “road” can improve transport. Indeed,
the dynamics of the network can prevent jam formation. As a consequence, larger
values of the flux are obtained, and these values depend only on the density of
motors - and not on the system size.

There would be a need for a better understanding of the microtubule network
dynamics in particular in the axons. Various studies have shown that during
the axon growth, microtubules were quite short and highly dynamic. It is less
obvious how important this effect would be in mature axons. The importance of
the steric effects due to the cargos needs also to be explored.
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Group GRK 1276 for financial support.
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Cellular Automata for a Traffic Roundabout
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Abstract. We propose a cellular automaton model for a typical traffic
roundabout to regulate traffic flow from four different directions. In the
four-way symmetrical case, the number of parameters reduce from six-
teen to four. As these four parameters change, we observe three distinct
traffic phases: free flow, congestion, and gridlock. As the inflow increases,
free flow transits to congestion when the interweaving traffic is light.
When the interweaving traffic is heavy, free flow transits directly to grid-
lock instead. The traffic interweave is characterized by a new parameter
X. We present both numerical simulations and analytical discussions.

Keywords: Traffic Flow, Congestion, Gridlock, Intersection.

1 Introduction

Traffic-related problem can be one of the major challenges in modern society.
With the mathematical tools of differential equations, traffic dynamics has been
analogized to hydrodynamics via partial differential equations and to force dy-
namics via ordinary differential equations [1]. More recently, cellular automata
become another useful tool to explore the traffic dynamics [2,3]. For the traf-
fic flow on a simple and homogeneous roadway, different approaches can all be
applied to reach more or less the same result. However, cellular automata can
be much more convenient to use when the roadways become more and more
complicated.

At the most basic level, traffic dynamics is often discussed on a homogeneous
roadway. To go next step, it becomes necessary to consider the road intersection.
At an intersection, the limited space has to be shared by vehicles from different
directions. Various schemes have been used to resolve the obvious traffic conflicts.
One type of schemes requires a vehicle to come to a full stop, e.g. stop sign and
traffic signal. The other type of schemes tries to avoid the full stop of vehicles,
e.g. traffic circle, rotary, and roundabout [4]. In this work, we propose a cellular
automaton model to analyze the traffic flow at a typical roundabout. We simply
adopt the characteristics of a roundabout: (a) traffic entering the roundabout
must yield the right-of-way to traffic already in the circle; (b) no lane changes
occur within the circle; (c) vehicle speeds are low. Compared to traffic signal, the
advantage of a roundabout seems to be that vehicles are able to keep on moving
without a full stop. However, the roundabout cannot guarantee the fluidity of
traffic at the intersection. We will also analyze the gridlock at the roundabout.
We present the model in the next section, followed by the results of numerical
simulations. Some analytical properties will be discussed later.

S. Bandini et al. (Eds.): ACRI 2010, LNCS 6350, pp. 552–556, 2010.
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2 Model

The system configuration is shown in Fig. 1 (left), where eight single-lane road-
ways are connected to a single-lane ring. Traffic toward the ring is labeled by an
odd number; traffic away from the ring is labeled by an even number. In the ring,
vehicles move counter-clockwise. The number of vehicles is not conserved in the
system. Vehicles move into the system through the odd-numbered boundaries,
After travelled various distances in the ring, vehicles move out of the system
through the even-numbered boundaries. The roundabout can be taken as four
connected T-shaped intersections [5] shown in Fig. 1 (right). In the model, road-
ways are divided into discrete cells. Each cell can be either empty or occupied by
one vehicle. The motion is in one direction only, which is shown by the gray-bold
arrow in Fig. 1. The vehicle on each cell has an unique direction to follow. If an
empty cell is available, the vehicle will move forward in the next time step. The
only exception is the shaded cell shown in Fig. 1 (right), which locates right at
the intersection. On the shaded cell, the vehicle may turn right to exit the ring,
or move straight forward to remain in the ring. These two choices are determined
by a quench variable assigned to each vehicle while entering the system. It can
be reasonable to assume that vehicles approaching the roundabout have their
own predestined journeys.

We adopt the stochastic boundary condition for vehicles to enter the system.
At the odd-numbered boundaries, if the first cell is empty, a new vehicle is
added stochastically with a finite probability αi. Basically the parameter αi

controls the inflow through boundary i. The destiny of this newly added vehicle
is also selected stochastically. With a finite probability Pij , the vehicle enters the
system through boundary i and exits through boundary j, where i = 1, 3, 5, 7,
and j = 2, 4, 6, 8. At the even boundaries, vehicles will leave the system freely.
The dynamics is described by the Asymmetric Simple Exclusion Process (ASEP)

1

8

7 6

5

4

32

Fig. 1. Left. Configuration of a roundabout, which consists of four T-shaped inter-
sections. Right. Configuration of a T-shaped intersection. Traffic direction on each
roadway is indicated by the gray-bold arrow.
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with parallel update. Whenever the next cell is empty, vehicle moves forward.
This simple rule is applied to all vehicles synchronously. A traffic conflict can be
expected at the intersection shown in Fig. 1 (right). Without further regulations,
two vehicles might move into the cell next to the shaded cell simultaneously. To
avoid such a conflict, we adopt a conventional regulation: entering vehicle should
yield to vehicle in the ring. The vehicle occupied the shaded cell has the right-
of-way to move forward. In this model, the traffic conditions are specified by the
injection αi and the distribution Pij , where i = 1, 3, 5, 7, and j = 2, 4, 6, 8. With
the four normalizations for Pij , there are sixteen parameters in total.

3 Numerical Results

Congestion emerges whenever traffic demand exceeds roadway capacity. We anal-
ysis the emergent patterns of congestion due to the increase of inflow. In this
section, we further assume the four-way symmetry, i.e. P12 = P34 = P56 = P78,
P14 = P36 = P58 = P72, P16 = P38 = P52 = P74, P18 = P32 = P54 = P76,
and α1 = α3 = α5 = α7. The twenty parameters can be reduced to P12, P14,
P16, P18, and α1, with a constraint P12 + P14 + P16 + P18 = 1. As these param-
eters change, the system displays three different phases: free flow, congestion,
and gridlock. In the free flow, all vehicles are able to move freely. The incoming
roadways and the outgoing roadways have the same vehicular density; while the
density in the ring assumes a higher value owing to the traffic interweave. In the
congestion, the traffic in the ring becomes congested. The incoming roadways
are also congested and have a higher density than the density in the ring; while
the outgoing roadways remain free flowing and have a lower density. In the grid-
lock, both the ring and the incoming roadways are jam-packed with vehicles.
No further vehicles can enter the system. And the outgoing roadways become
empty.

As the injection α1 increases, with fixed distribution Pij , we observe only one
transition. The free flow transits into either congestion or gridlock depending on
the distribution P1j . In Fig. 2 (left), we show a typical example of traffic response
when the traffic flow from different directions does not interweave too much.
With the parameters P12 = 0.9, P14 = 0.1, and P16 = P18 = 0, we prescribe
90% of incoming vehicles to travel a quarter of the ring and then to make a
right turn at the first exit to leave the system. The remaining 10% of vehicles
will travel half of the ring and then leave the system at the second exit. The
congestion emerges as the conventional phase transition. Before the transition,
vehicular densities increase with the increase of injection. After the transition,
vehicular densities saturate and become independent of the injection. When the
traffic flow interweaves heavily, the gridlock appears swiftly. A typical example
is shown in Fig. 2 (right). With the parameters P12 = P14 = 0.1, P16 = 0.8, and
P18 = 0, we prescribe 80% of incoming vehicles to travel three-quarters of the
ring and to leave the system at the third exit. At the first exit, 10% of vehicles
leave the system; another 10% of vehicles leave at the second exit. Before the
transition, free flow can be observed. After the transition, the density on the
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Fig. 2. Vehicular density as a function of injection. Left. Free flow transits to con-
gestion when the interweaving traffic is light (X = 1.1). Right. Free flow transits to
gridlock when the interweaving traffic is heavy (X = 2.7).

incoming roadways and the ring shoots to one. As a consequence, the density on
the outgoing roadways drops to zero.

4 Discussions

In the free flow, traffic dynamics is controlled by the injection α. The vehicular
densities can be written as

ρi =
α

1 + α
= ρo =

1
X

ρr , (1)

where ρi, ρo, and ρr denote respectively the densities of the incoming roadway,
the outgoing roadway, and the ring. The parameter X characterizes the inter-
weave traffic in the ring and is related to the distribution P1j as

X = 4 − 3P12 − 2P14 − P16 , (2)

where the parameter has a range of 1 < X < 4. As α increases, all the densities
increase accordingly. The phase transition point can be determined when the
density in the ring reaches the maximum, i.e. ρr = 1

2 . The critical injection can
be obtained as

α =
1

2X − 1
. (3)

As X increases, the interweave traffic becomes heavier and the phase transition
appears at a lower injection.

In the congestion, traffic flow is independent of α. The relations among the
densities become

ρi = 1 − ρo =
1
X

ρr +
(

1 − 1
X

)
, (4)
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Fig. 3. Left. Vehicular density as a function of parameter X. Right. Cluster size as
a function of parameter X. The parameters are α1 = 1 and various P1j .

where ρ0 = (1−ρr)/X . We find that the saturated densities are mainly controlled
by the parameter X . In Fig. 3 (left), data from various P1j collapse into the
same curve. As X increases, the congestion becomes severe and the traffic flow
diminishes. The densities increase both in the incoming roadway and in the ring;
and the density in the outgoing roadway decrease accordingly. Around a critical
value of X = 1.7, the gridlock begins to emerge and the traffic flow drops to zero.
We observe that the decrease of traffic flow can be attributed to the increase of
vehicular cluster. In the free flow, all the vehicles are separated with at least one
empty cell, i.e. the cluster size is one. In the congestion, the cluster size begins
to increase, see Fig. 3 (right). When the cluster size reaches the order of the ring
segment, gridlock becomes inevitable. It would be interesting to further develop
a mean field theory for the critical behavior of congestion. The work is under
progress for the cases where the symmetry assumption for parameters (Pij , αk)
is relaxed. We expect that this simple system of roundabout will present more
complicated and interesting behaviors in such asymmetrical cases.
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Abstract. We propose a simple cellular automaton model to study the
dynamics of a cyclic bus. The nontrivial fluctuations are prescribed by the
stochastic moving of bus interacting with the stochastic arrival of passen-
gers. As passengers increase, the bus schedule shows a clear transition.
Both numerical and analytical results are presented. The divergence of
bus schedule can be taken as an analogy to the gridlock of 4-way traffic.
We also comment on the strategy to keep a stable schedule.

Keywords: Traffic Flow, Congestion.

1 Introduction

Recently, traffic dynamics has attracted much attention from physicists[1,2,3].
One of the research interests concerns the intrinsic fluctuations of the dynamics.
For a highway system, the dynamics can be simple and deterministic; each vehi-
cle follows the preceding smoothly down the road. However, as vehicular density
increases, a small fluctuation in one of the headways will lead to instability of
the whole system, then the congestion emerges inevitably without any specific
causes. For the urban traffic, the situations can be much more complicated. Fur-
ther fluctuations should be considered, e.g., traffic from different directions[4],
operation of traffic lights[5], and the interaction with pedestrians[6]. It is inter-
esting to note that the fluctuations can be nontrivial even in the case of a single
vehicle[7,8]. In this paper, we will focus on such a case where a cycling bus moves
along a closed route and interacts with the passengers waiting to get on the bus.

2 Bus Route Model

The travelling bus is taken as a particle hopping along a discrete lattice period-
ically. Consider a cyclic bus route consisting of M stops; at each bus stop, the
passengers arrive at a rate γ. As a bus hops along the route, the hopping rate p is
strongly influenced by the number of passengers N waiting at each stop. When
N increases, p decreases accordingly to prescribe a delayed bus. In the original
bus route model[9], there was no such dependence; later, a linear dependence
was considered[10]. Subsequently, a much stronger dependence was proposed[8].
Here, we adopt a simple quadratic form,

p =
1

1 + aN2
. (1)
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As a naive scaling of (a · γ2) is expected, we assume a = 1 without loss of
generality. In the model, there are only two parameters M and γ. When there is
no passenger to delay the hopping, γ = 0, the bus completes the route at a fixed
schedule ΔT = M . As γ increases, ΔT is expected to increase accordingly. When
a bus is delayed, there would be more passengers waiting at the bus stop, and
as more passengers are accumulated, the bus would be further delayed. Thus,
an instability can be expected as γ increases.

In the mean-field approximation, the stochasticity is suppressed. With a sched-
ule of ΔTi, the average number of passengers waiting at each bus stop is (γ ·ΔTi)
and the next recurrence bus would spend an average time [1 + (γ ·ΔTi)2] there.
Thus we obtain the following nonlinear map of a single variable ΔT ,

ΔTi+1 = M
[
1 + (γ · ΔTi)2

]
, (2)

where the subscripts of ΔT denote the recurrence index. In this mean-field the-
ory, ΔT diverges as γ increases. The critical value can be obtained as

γ >
1

2M
. (3)

With a small γ, the stable bus schedule is as following

ΔT =
1 −

√
1 − 4γ2M2

2γ2M
. (4)

A scaling of (M · γ) is also observed. At the limit of γ → 0, the above analytic
formula reproduces the fixed point of ΔT = M ; at the other limit of γ → 1/(2M),
ΔT approaches its maximum of (2M). In between these two limits, ΔT increases
smoothly with the increase of γ.

In the cellular automaton simulations, the averaged ΔT increases with the
increase of γ much faster than the prediction of mean-field theory. The critical
value appears to be much less than the mean-field prediction at γ = 1/(2M), see
Fig. 1 (left). For each recurrence i, wide fluctuations of ΔTi can be noticed. In
Fig. 1 (right), we plot the probability for a bus to have a stable schedule. With
a smaller γ, the bus recurs stably; with a larger γ, the schedule diverges easily.

To look into more details, we plot the probability distributions of ΔT at var-
ious γ, see Fig. 2 (left). With the above mean-filed results, we would naively
expect a simple distribution prescribing an increasing ΔT with an increase γ.
Instead, we observe an interesting distribution still dominated by the fixed sched-
ule of ΔT = M . As γ increases, the probability to keep the schedule decreases
exponentially. Only when the dominant peak at ΔT = M subsides, did the sec-
ondary distribution at ΔT > M become obvious. For the broad distribution
of the secondary structure, the mean of ΔT shifts toward larger values as γ
increases.

The probability to keep the schedule can be expressed as[
M∑

N=0

CM
N (1 − γ)M−NγN · 1

1 + N2

]M

∼ exp
(
−M2

2
γ

)
. (5)
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Fig. 1. Left. Averaged recurrence schedule ΔT as a function of γ, where M = 20.
The dotted line shows the mean-field prediction, which terminates at γ = 1/(2M) with
a maximum ΔT = 2M . Right. Ratio of stable schedule as a function of γ, where
M = 20. A stable schedule is defined as being able to recur at i = 100, where the
divergence is taken as ΔTi > 10M .
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Fig. 2. Left. Probability distributions of ΔT at various γ, where M = 20. A dominant
peak at ΔT = M superimposes on the secondary structure at ΔT > M . Right. Decay
of the primary peak at ΔT = M . The solid line shows the analytical result of a simple
exponential distribution, Eq. (5).

The binomial distribution represents the probability of N passengers waiting at
a bus stop in a time span of M . With these passengers, the bus has a finite
probability of keeping the schedule as prescribed in Eq. (1), and the same factor
for each bus stop results in the power M . For a large M , the above analytic
expression can be well approximated by a single exponential distribution. The
numerical simulations can be fairly reproduced, especially for small γ.
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3 Discussions

In this paper, we propose a cellular automaton model to study the dynamics of
a cycling bus. The intrinsic fluctuations in the traffic dynamics are prescribed by
the stochastic moving of bus coupled with the stochastic arrival of passengers.
When the passengers increase, the schedule diverges suddenly, i.e., the bus was
delayed indefinitely and unexpectedly. In reality, such phenomena can be found
in the situations where the number of passengers waiting to get on the bus
far surpasses the capacity of transportation. This is analogous to the gridlock
appeared in an intersection where a few vehicles from different directions block
each other and all the traffic is stopped indefinitely.

We also compare the results with previous finding based on the nonlinear
maps, which prescribes an abrupt transition at γ = 1/(2M). In the cellular
automaton simulations, where the fluctuations were properly taken care of, we
observe a smoother transition at a much small critical value. In the deterministic
mean-field theory, the critical value was overestimated by a factor of two. As the
fluctuations play an important role in traffic phenomena, the conjectures based
on deterministic theory can be misleading. For example, a strategy was proposed
to avoid the divergent schedule: by skipping a few stops, the bus will be able to
keep a stable schedule[8]. As shown in this study, the stable schedule can only be
reached by limiting the value (M ·γ). With a fixed γ, the only option is to reduce
the number of stops M . We point out that the conclusion in Ref. [8] was based
on a unrealistic presumption that when the bus skips a stop, those passengers
waiting at the bus stop disappear. We find that at a fixed γ, the only feasible
strategy to stabilize the recurrent schedule is to add more buses to the route. It
is well known that the same instability will lead these buses to bunch together
as the passengers increase[9,11]. By instructing the bus drivers to skip a few
stops will keep these buses more or less equal distanced, which would provide an
effectively reduced M without presuming a reduced γ. Thus the stable scheme
can be restored by the strategy of adding more buses in addition to skipping a
few stops when necessary.
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Abstract. We consider the one-dimensional totally asymmetric asym-
metric simple exclusion process. We particularly concentrate on the case
where each hopping rate depends on each particle. In the step initial con-
dition, where all sites from the left of some site are occupied and all other
sites are empty, we discuss a dynamics of a particular particle (tagged
particle). We show that the position fluctuation of the tagged particle is
equivalent to the largest eigenvalue fluctuation of the Gaussian Unitary
Ensemble (GUE) in the random matrix theory.

1 Introduction

The asymmetric simple exclusion process (ASEP) is one of the most fundamental
stochastic cellular automata. It is described by the following two rules. 1. Each
particle hops to the right and left neighboring sites with different hopping rates
(asymmetric diffusion effect). 2. If the target site is occupied by another particle,
the particle cannot hop to this site (exclusion effect). Because of the interplay of
these effects, the ASEP shows various interesting phenomena such as a boundary-
induced phase transition, shock wave and so on [1,2].

The remarkable feature of the ASEP is that the physical quantities such as
current, density profile and so on can be calculated exactly. In particular, since
the work of Derrida, Evans, Hakim and Pasquier [3], many studies on steady
state properties of the ASEP and related models have been made [4].

On the other hand, It is also interesting problem to understand the non-
stationary properties of the ASEP such as a relaxation to a steady state. Recently
Johansson [5] exactly analyzed the distribution function of the current in the
ASEP under a non-stationary situation and found a surprising connection with
the random matrix theory. Since then, the dynamics in the ASEP has been
vigorously discussed [6].

In this paper, we discuss dynamics of a particular particle (called a “tagged”
particle) in the ASEP using the random matrix approach. In our previous
study [7], we considered this problem in the case of a single hopping rate and
the case where in an infinite number of “normal” particles, there are a few (a
finite number of) “slow” particles whose hopping rate is smaller than that of
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the normal particles. Here we are interested in the case where the particles have
their own hopping rates. The purpose of this study is to understand how such
an effect of particle-wise disorder affects the dynamics of a tagged particle.

The paper is organized as follows. In the next section we describe the model
and summarize the tagged particle properties studied in [7]. In Sec. 3 we present
our main result. The conclusion and discussion are given in Sec. 4.

2 Tagged Particle in the ASEP

2.1 Model

In this paper we consider the one-dimensional totally asymmetric simple exclu-
sion process(TASEP) with parallel update rule. We consider particles on the
one-dimensional infinite lattice as illustrated in Fig.1(a). Each particle moves
stochastically obeying the following rules (Fig.1(a)):

1. During each time step between t ∈ {0, 1, · · · } and t + 1, the particle labeled
i moves to the right neighboring site with probability 1 − qi or stays with
probability qi if the right neighboring site is empty. (The particles do not go
to the left neighboring sites.)

2. If the right neighboring site is occupied by the particle labeled j −1, the jth
particle cannot move to this site.

i i-1 i-2

1-qi

M 2 1

x
0 M-2 M-1 M

(a)

(b) tagged particle

Fig. 1. (a) A schematic diagram of the TASEP. (b) The step initial condition.

2.2 Tagged Particle Dynamics

Under the step initial condition, where all sites from the left of a certain site are
occupied by the particle and all right sites are empty as depicted in Fig. 1(b),
we consider the dynamics of the particle labeled M .

Let X(t) be the position of the Mth particle. (Here we set the site occupied
by this particle at t = 0 as the origin as depicted in Fig 1(b).) In this paper we
focus on this quantity.
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In [7], we obtained the multi-time probability distribution of X(t) as follows.
When t ≥ M , we have

Prob (X(t1) ≥ �1, X(t2) ≥ �2, · · · , X(tm) ≥ �m) = det (1 + Kg) . (2.1)

Here det(1 + Kg) is the Fredholm determinant defined by

det (1 + Kg) =
∞∑

k=0

1
k!

m∑
n1=1

∞∑
x1=−∞

· · ·
m∑

nk=1

∞∑
xk=−∞

g(tn1 ; x1) · · · g(tnk
; xk)

× det
(
K(tnl

, xl; tnl′ , xl′)
)k
l,l′=1

, (2.2)

where

g(tn; x) = −χ(tn−M+1−	n,∞)(x), (n = 1, 2, . . . , m),

χ(a,b)(x) =

{
1, if a < x < b,

0, otherwise,
(2.3)

and the kernel K(t1, x1; t2, x2) is given by

K(t1, x1; t2, x2) = K̃(t1, x1; t2, x2) − φt1,t2(x1, x2), (2.4)

K̃(t1, x1; t2, x2)

=
1

(2πi)2

∫
CR1

dz1

z1

∫
CR2

dz2

z2

z1

z1 − z2

(1 + 1/z2)t2−M+1

(1 + 1/z1)t1−M+1

M∏
i=1

1 − qi − qiz2

1 − qi − qiz1

zx2
2

zx1
1

,

(2.5)

φt1,t2(x1, x2) =

{
1

2πi

∫
C1

dz
z

(
1 + 1

z

)t2−t1
zx2−x1 , t1 < t2,

0, t1 ≥ t2.
(2.6)

Here CR in (2.5) and (2.6) denotes a contour enclosing the origin anticlockwise
with radius R and Ri (i = 1, 2) in (2.5) satisfy the conditions R2 < R1 and
1 < R1 < (1− qi)/qi. The process characterized by the Fredholm determinant is
called the Schur process [9,10,11].

Using this, we consider asymptotic behavior of X(t) when both t and M go
to infinity with the ratio t/M fixed. Here we assume that all hopping rates are
the same,

q1 = q2 = · · · = qM = q. (2.7)

Let x(τi) and τi be the scaled position and scaled time of a tagged particle
defined by

x(τi) =
X(ti) − A(ti/M)M

D(u)M1/3
, (2.8)

ti = uM + C(u)M2/3τi, (2.9)
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where

A(u) = (1 − q)u − (1 − 2q) − 2
√

q(1 − q)(u − 1), (2.10)

C(u) = 2(u − 1)
5
6

(
1 +

√
1 − q

q(u − 1)

) 1
3 (√

u − 1 −
√

q

1 − q

) 1
3

, (2.11)

D(u) = (u − 1)
1
6 q

1
2 (1 − q)

1
2

(
1 +

√
1 − q

q(u − 1)

) 2
3 (√

u − 1 −
√

q

1 − q

) 2
3

.

(2.12)

Now let us confirm the meaning of x(τ). The solid line of Fig.2 shows the sim-
ulation of X(t) when M is quite large (M = 3000). Note that due to the step
initial condition, the particle cannot move until t = M . The dashed line in-
dicates its average position A(t/M)M . Now we would like to understand the
fluctuation of X(t) around the average position. For this purpose, we fix the
scaled time u = t/M and focus on the dynamics when the time is around uM .
We subtract the average position A(t/M)M from X(t) and scale the position
axis (vertical axis) as M1/3 and time axis (horizontal axis) as M2/3. Then we
can see the fluctuation of the tagged particle. We define this stochastic process
as x(τ). (See Fig.2.) Note that the the set of exponent (1/3, 2/3) is different
from the case of the one-particle simple random walk (1/2,1). The hard-core re-
pulsive interaction (the exclusion effect) causes the deviation. These exponents
characterizes the one-dimensional Kardar-Parisi-Zhang (KPZ) universality class
in non-equilibrium systems [8].

We obtained the following result on x(τ).

lim
M→∞

Prob (x(τ1) ≥ s1, x(τ2) ≥ s2, · · · , x(τm) ≥ sm) = det (1 + K2G) . (2.13)

Here the right hand side is the Fredholm determinant defined as

det (1 + K2G) =
∞∑

k=0

1
k!

m∑
n1=1

∫ ∞

−∞
dξ1 · · ·

m∑
nk=1

∫ ∞

−∞
dξk G(τn1 , ξ1) · · · G(τnk

, ξk)

× det(K2(τnl
, ξl; τnl′ , ξl′))k

l,l′=1 (2.14)

where G(τj , ξ) (j = 1, · · · , m) are defined in terms of χ(a,b)(x) (2.3), as

G(τj , ξ) = −χ(sj ,∞)(ξ) (j = 1, · · · , m), (2.15)

and the kernel K2(τ1, ξ1; τ2, ξ2) is given by

K2(τ1, ξ1; τ2, ξ2) =

{∫∞
0 dλe−λ(τ1−τ2)Ai(ξ1 + λ)Ai(ξ2 + λ), τ1 ≥ τ2,

−
∫ 0

−∞ dλe−λ(τ1−τ2)Ai(ξ1 + λ)Ai(ξ2 + λ), τ1 < τ2.

(2.16)
The stochastic process characterized by the Fredholm determinant with the ker-
nel (2.16) is called the Airy process [12].
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tM

X(t)

X(t)
a(t/M)M

M2/3

M1/3

uM

τ

x(τ)

Fig. 2. The Monte-Carlo simulation of X(t) (M = 3000)

The Airy process initially appears in the random matrix theory [13]. Let us
consider the N × N hermitian matrix.⎛

⎜⎜⎜⎝
a11(t) a12(t) + ib12(t) · · · a1N (t) + ib1N(t)

a12(t) − ib12(t) a22(t) · · · a2N (t) + ib2N(t)
...

...
. . .

...
a1N (t) − ib1N(t) a2N (t) − ib2N(t) · · · aNN (t)

⎞
⎟⎟⎟⎠ , (2.17)

where aij(t), bij(t) are described by the independent Brownian motions
(Ornstein-Uhlenbeck processes). This random matrix model is called the GUE
Dyson’s Brownian motion model. In particular, when we fix the time t, this is
called the Gaussian Unitary Ensemble (GUE). In this matrix, we focus on the
eigenvalues λ1(t) ≥ λ2(t) ≥ · · · ≥ λN (t). Although the elements aij(t), bij(t) are
independent random variables, the eigenvalues are not independent but corre-
lated random variables with a repulsive interaction. We are especially interested
in dynamics of the largest eigenvalue λ1(t). We scale it as λ̄1(τ) = (λ1(t =

N2/3τ) −
√

2N)
√

2N
1/6

where N represents the rank of the matrix (2.17). The
scaled process λ̄1(τ) is described by the Airy process:

lim
N→∞

Prob
(
λ̄1(τ1) ≤ s1, · · · , λ̄1(τm) ≤ sm

)
= det (1 + K2G) . (2.18)

When m = 1, the distribution is called the GUE Tracy-Widom distribution [14].
We find from (2.13) and (2.18) that in the TASEP with the step initial con-

dition, the (scaled) dynamics of a tagged particle is equivalent to that of the
largest eigenvalue in the GUE Dyson’s Brownian motion model.
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3 ASEP with Particle-Wise Disorder

In the previous section, we consider the asymptotics of the tagged particle in
the case of a single hopping rate (2.7). In this section, we discuss the case where
the hopping rate depends on each particle.

Let F (q) be the probability density function on 0 < q < 1. In the step
initial configuration (Fig.1(b)), we determine the hopping rate qi(i = 1, · · · , M)
independently using the probability density function F (q). (Once we generate
them, we fix the values.) Under this initial condition, we consider the position
fluctuation of the Mth particle as in the previous section.

Before doing this, we focus on the dynamics of all M particles. Fig.3. shows
the Monte-Carlo simulation with M = 400 and 4000 time steps. We consider the
cases of two typical probability density function F (q). The left figure represents
the case of the unit density F (q) = 2 × 1(0,1/2)(q) where 1(a,b)(q) = 1 for a <
q < b and = 0 otherwise. The right figure corresponds to the case F (q) =
6(1 − 2q2)1(0,1/2)(q). The vertical axis represents the position of the particles
and horizontal one represents the time. There are two time scales τ1 and τ2 in
these figures

τ1 =
〈

1
1 − q

〉
, τ2 =

〈
q − 2qqmax − q2

max

(q − qmax)2

〉
. (3.1)

Here qmax = max(s|F (s) = 0) and 〈·〉 indicates the averaging over the function
F (q). The time τ1 is the time scale when the Mth particle(the tagged particle)
starts to move. The time τ2 represents the time scale from which the configu-
ration of the particles changes. Before τ2, the particles move in a single group
whereas after τ2, the “platoon” structure appears. Note that in the left case in
Fig.3, τ2 = ∞ and thus the particles keep going in a single group. On the other
hand in the right case, we find that τ2 is finite (τ2 = 3) and we see in this figure
that during τ1M(∼ 693) < t < τ2M(= 1200), they moves in a group while from
τ2M < t, they split into two group. There is a extremely slow particle in a group
of the particles and at t = τ2M this particle begins to delay and makes the
second group.

Now we discuss the dynamics of the Mth particle during τ1M < t < τ2M .
We scale X(tj) and tj as

x̃(τi, F ) =
X(ti) − Ã(ti/M, F )M

D̃(u, F )M1/3
, (3.2)

ti = uM + C̃(u, F )M2/3τi, (3.3)

where Ã, C̃, and D̃ are some constants which depend on u and F . Under the
scaling, we have the following result:

lim
M→∞

Prob (x̃(τ1)≥s1, x̃(τ2) ≥ s2, · · · , x̃(τm) ≥ sm|q1, · · · , qM )=det (1 + K2G) .

(3.4)
Here the right hand side represents the Airy process defined by Eqs. (2.14)-
(2.16). In one time case (m = 1 in Eq. (3.4)), the corresponding result has been
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Fig. 3. Particle configurations in the TASEP with particle-wise disorder. (M = 400,
0 ≤ t ≤ 4000) (a) F (u) = 2 × 1(0,1/2)(q) (unit density). τ1 = log 2 and τ2 = ∞ (b)
F (q) = 6(1 − 2q)21(0,1/2)(q). τ1 = 6 log 2 − 3 and τ2 = 3.

obtained by [15] in a disorderd growth model. The result (3.4) is the generation
to the multi-time case.

We find that the Airy process also appears in the TASEP with particle-wise
disorder. That is, the Airy process is universal in the sense that it is not destroyed
by the disorder effect during τ1M ≤ t ≤ τ2M . However for τ2M ≤ t, the
fluctuation property is expected to change. According to Ref. [15], we can expect
that it is described by the simple Brownian motion. The verification of the
conjecture would be an important topic in the future.

4 Concluding Remarks

In this paper, we have discussed the tagged particle property of the Totally
Asymmetric Simple Exclusion process. Based on the technique in [7], we obtained
the the multi-time distribution function of the position of the tagged particle in
the situation where the hopping rates are generated independently by function
F . We find that in the step initial condition (Fig. 1(b)), it is given by the Airy
process, the largest eigenvalue process of a random Hermitian matrix (the GUE
Dyson’s Brownian motion model).

It has been known that the distribution of a tagged particle position depends
on initial configuration. In the alternating initial condition, where an occupied
and empty sites are repeated alternately and in the case of a single hopping rate,
the scaling limit is also described by the Fredholm determinant (2.14), but the
kernel is not K2 (2.18) but K1 defined by

K1(τ1, ξ1; τ2, ξ2) = − e
− (ξ2−ξ1)2

4(τ2−τ1)√
4π(τ2 − τ1)

θ(τ2 − τ1)

+ Ai(ξ1 + ξ2 + (τ2 − τ1)2)e(τ2−τ1)(ξ1+ξ2)+2(τ2−τ1)
3/3, (4.1)
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where θ(x) = 1 (x > 0) and 0 (x ≤ 0) [16]. The stochastic process charac-
terized by this Fredholm determinant is called the Airy1 process [17]. In the
single time case (m = 1), this is equivalent to the GOE Tracy-Widom distribu-
tion [18], the largest eigenvalue distribution of the random real symmetric ma-
trix called the Gaussian Orthogonal Ensemble(GOE). It would be an interesting
topic to study the fluctuation property of a tagged particle in more general initial
configurations.

In the “two species ” case where there are two types of particles with small
and large hopping rates in the alternating initial condition, the tagged particle
dynamics has been discussed recently [19]. The generalization to many-species
cases would also be interesting topic. How such kind of disorder affect the dy-
namical property of the TASEP is a challenging problem in the future.
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Abstract. We study here a recently proposed theme of one group chas-
ing another, called “group chase and escape”. Rather rich and complex
behavior such as self-organized structures can arise from a model with
simple rules. We discuss models with various cases of different speeds
between the two groups, search ranges, and motion fluctuations.

Keywords: Chase and Escape, Pursuit and Evasion, Diffusion,
Computer simulations.

1 Introduction

“Chase and Escape” or “Pursuit and Evasion” has been a topic of mathematics
with a long history[1,2,3]. Original problems dealt with the case of one chaser
pursuing a single target. Examples include a vessel chasing another, a lion chasing
a prince with different conditions of speed ratios and boundaries. Rather complex
trajectories have been found for these problems, often being challenging problems
for obtaining analytical solutions.

With computational systems, this topic has been developing further. One such
development is to consider problems of multiple chasers and/or evaders. Exam-
ples include predator-prey models that consider multiple entities chasing a single
target or prey[4,5], multi-agent systems with applications to robotics[6,7], col-
lective motions of self-driven particles[8,9] and Brownian particles with pursuit-
and-escape interactions[10]. However, the problem of separate groups consists of
large number of chasers and evaders has not been investigated.

Against this background, we have recently proposed a new paradigm of re-
search problems called “group chase and escape” in which one group chasing
another[11]. This research could find applications such as hunting of biological
and computational viruses in real and cyber spaces[12,13], tracking of multiple
vehicles or vessels. In this paper, we present some of the computational results
of a simple model in this theme of group chase and escape.

S. Bandini et al. (Eds.): ACRI 2010, LNCS 6350, pp. 570–579, 2010.
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2 Model

We describe our model in this section. The field is a two-dimensional square
lattice Lx×Ly with periodic boundary conditions. Each site of the field is empty
or occupied by one particle: a chaser or an evader (target).

The chasers and targets play tag by hopping between sites by chasing or
getting away from the nearest opponent. Let us denote the positions of target
and chaser as (xT , yT ) and (xC , yC), respectively. For each target, the distance
to each chaser is calculated as d =

√
(xT − xC)2 + (yT − yC)2. Then a chaser

with a minimum d is the nearest to the target. Here, if there are multiple nearest
chasers, the target chooses one of them randomly. Then the target hops to its
nearest site in the direction to increase the distance from this nearest chaser.
The hopping rule is shown in Fig. 1. Generally, the target has two possible sites
to which to hop, as shown in Fig. 1(a). In this case, one of the two sites is chosen
with an equal probability 1/2. If the |xT −xC |(|yT −yC|) is zero, then the target
has three possible sites to increase the distance, one of which is chosen with an
equal probability 1/3( see Fig. 1(b) ). If it happens that the chosen next hopping
site is occupied by another target, it remains in its original site.

The moving rule for chasers is similar. They hop to get closer to their nearest
targets. In the same manner as for the targets, we determine the nearest target
for every chaser. The chaser hops to its nearest site to decrease the distance.
Generally, the chasers choose one of their two possible sites to which to hop
with an equal probability 1/2. Here, if the |xT − xC |(|yT − yC |) is zero, then
the chaser hops only in y−(x−) direction because hopping in x−(y−) direction
increases the distance. It does not move if the chosen next site is occupied by
another chaser.

When a target is in the nearest site of a chaser, the chaser catches the target
by hopping to the site, and then the target is removed from the system. After
the catch, the chaser pursues the remaining targets in the same manner.

In accordance with the above hopping step, every chaser and target hops by
one site. Here, we introduce hopping speeds of chasers and targets, denoted by
VC and VT (VC , VT ∈ N ) , respectively. We introduce discrete simulation steps
and assume that, in each step, chasers and targets try to hop by VC and VT

times, respectively. When VC = VT = 1, chasers and targets hop by one site in
accordance with the above hopping rule. When the speed of chasers is faster,
like when VC = r(r > 1) and VT = 1, we first move both chasers and targets
by one site, and after that we repeat the above procedure only for chasers by
(r − 1) times. When the speed of targets is faster, like when VT = s(s > 1) and
VC = 1, we repeat it for targets by (s − 1) times after the one-site movement.

Initially, N0
C chasers and N0

T targets are randomly distributed over the lattice
field. The number of targets, NT , monotonically decreases along with the catch
events, while the number of chasers, NC , remains a constant N0

C . We run the
simulations until all targets have been caught by chasers, i.e., NT = 0, and the
results are averaged over 104 runs.
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Fig. 1. The hopping rule for chasers(light grey circles) and targets(black circles). While
chasers hop to get closer to their nearest targets, targets hop to get away from their
nearest chasers. The dotted arrows from the chaser to the target indicate that the chaser
hops to get closer to the target. The solid arrows show possible hopping directions with
the indicated probabilities. (a) In the general case, they have two choices. (b) When
the chasers or targets are in the same x or y-axis, chasers have one choice, while targets
have three choices.

3 Simulation Results

3.1 Cost of Group Chase

Let the entire catch time T be the time it took the chasers to catch all the
targets. Their distribution is shown in Fig 2(a). Since T can also be interpreted
as a “lifetime” of the final target, Fig. 2(a) gives the probability distribution of
its lifetime. When NC is larger than NT , we note this distribution basically shows
a parabolic shape in the log-log scales, suggesting a lognormal distribution. This
distribution is deduced even in a pure diffusion model (see appendix). However,
as NC ≈ NT , it deviates from the lognormal distribution, reflecting the effect of
chase and escape.

The average length of time T decreases as the number of chasers increases.
In the case where the speeds of chasers and targets are equal, VC = VT , an
individual chaser can not catch up with targets, so it can not finish the job by
itself. Instead, a group of chasers catches a target by surrounding it so that the
target cannot escape from them. Although an individual chaser independently
tries to catch a target, it seems as if the group of chasers cooperates to catch a
target.

If we look at the lifetime distribution of all targets, then we obtain the results
in Fig. 2(b). The distribution shows large drops at the left at first, then increases,
and peaks at a typical time. After the peak, it decreases again. The first drop
suggests that there is a large number of targets whose lifetime is one. This is
because in the initial condition, targets can be positioned in the sites nearest
to chasers, i.e., d = 1. Thus, the targets are caught by the chasers in the next
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Fig. 2. (a) Distribution of the time for entire catch T , and (b) the lifetime distribution
of targets for different NC . The parameters for both plots are Lx = Ly = 100, N0

T = 10,
VC = VT = 1.

step and its lifetime equals one. If the initial distances between targets and
chasers are larger than one, the targets can momentarily get away from the
chaser, causing the drop. After the drop, the frequency increases and we can see
this distribution peaks, which can be inferred as a typical lifetime. This lifetime
represents a timescale at which the group of chasers gathers around targets from
the initial conditions and catches them. As the number of chasers increases, the
timescale decreases. For comparison, we note the distribution in other cases. If
we look at the distribution in the random walk model, we can see it exponentially
decreases, so it does not drop or peak. If we examine a model in which chasers
get closer to targets but targets follow the random walk processes, the peak
appears to represent the timescale. However, the drop does not appear because
the targets do not get away from chasers, so there is no drastic drop from the
lifetime one to two.

In addition to the time for the entire catch T , we can introduce a “cost
function” defined as c = TNC/N0

T . This quantity represents the unit cost for
the group of chasers to finish the job per target. (The amount of work-hours
NC for which chasers are deployed (total cost) divided by the number of targets
NT .) We ask the question whether there is a “good” number of chasers NC to
deploy for a given number N0

T of targets.
In Fig. 3, we examine the cost by changing NC for a fixed N0

T . We see that
when the targets are as fast or faster than the chaser, there is a minimum in this
unit cost. This means there is an optimal number of chasers N∗

C to finish the
given group chase task most efficiently. When chasers are faster, however, we do
not see such an optimal number of chasers. In this case, individual efficiency of
the chasers are higher, a smaller number of them can finish the job in shorter
time, and the cost monotonically rise along with the number of chasers.

When the targets are as fast or faster than the chasers, an individual chaser
cannot catch up with targets, so it can not finish the job by itself. Instead, a
group of chasers catch a target by surrounding it so that the target can not
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escape from them. In this case, a number of chasers sufficiently larger than
that of targets is necessary to finish the job efficiently. On the other hand, as
the number of chasers exceeds the optimal number necessary to surround the
targets, excessive chasers result in the increase of the cost.

101

102

103

104

105

100 101 102 103 104

C
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t: 
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NC

NT
0 = 10NT
0 = 10
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VC = 2, VT = 1
VC = 1, VT = 2

Fig. 3. The cost c = TNC/N0
T vs. the number of chaser NC for a fixed N0

T = 10 with
different VC and VT

It is interesting to note that such a minimal cost is realized as a result of
both of chase and escape processes. To illustrate this, we show the costs in
different cases in Fig 4: both or either chaser and target follow a random walk
process (see appendix). We see that when the targets are random walkers, the
cost monotonically rises along with the number of chasers. On the other hand,
when the chasers or both are random walkers, it monotonically decreases. The
right side of the figure NC = 9990 confirms that the system is fully occupied
so that irrespective of their strategies, the targets are caught in one simulation
step, leading to the cost c = 1 ∗ 9990/10 = 999 ∼ 103.

3.2 Issues of Range of Each Chaser

In our model, both chaser and targets have abilities to pick out the closest
opponent. That means chasers can find targets over a limitless distance over the
field. However, in reality, chasers search for targets in their vicinities. This is
also the same for targets. Targets can recognize the existence of nearby chasers.

In order to reflect this factor, we introduce the search range l as follows.
When a chaser searches for the nearest target, the search area is limited to
the range

√
(xT − xC)2 + (yT − yC)2 < l, where xi, yi denote the positions

of targets(i = T ) and chasers(i = C) in x and y-directions, respectively. If
the chaser finds a target in the search range, it moves with the chase and es-
cape hopping. If not, it follows the random-walk hopping (see appendix). The
search range can be introduced in the same manner for the movement of targets.
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Fig. 4. The cost c vs. the number of chasers NC for N0
T = 10 in the following four

cases: original chasers and targets(C&T), both are random walkers(RW), Targets are
random walkers(TRW) and Chasers are random walkers(CRW)

If the value of l equals zero, the movement is equivalent to the random walkers.
On the other hand, the movement approaches the chase and escape hopping as
the range increases to the system size.

Between these two cases, we have observed that the systems can show inter-
esting behavior. One such example is shown in Fig. 5. Here, we set parameters
so that there is no limit in the search range of targets, while the range of chasers
is sufficiently short. For an appropriately low number of chasers, targets gather
in relatively low-density areas of chasers and momentarily hide from chasers be-
cause the short-search-range chasers cannot recognize their existence. Only after
a long time, chasers can find the group of targets and finally catch them. Such
formations of spatial patterns and their relation to density fluctuations can be
interesting issues.

Fig. 5. The snapshots of the system with a time evolution from left to right. While
targets(black circles) have unlimited search range, chasers(light grey circles) have the
search range l = 5. The numbers of chasers and targets are fixed to NC = N0

T = 100.
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3.3 Issues of Long-Range Chaser Doping

We now further extend our model by introducing a non-homogeneity in the
search ability among chasers. For example, in the group of chasers, some have a
long search range, while the others follow the random walk hopping or have a
short search range. We examine the cost c in such an example.
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Smart chasers + RW

Fig. 6. The cost c = TNC/N0
T by changing the number of smart chasers Ns

C for a fixed
N0

T = 10. For the case of smart chasers and random walkers, we fix NC = 100 so that
NC −Ns

C random walkers also join tag. For the case of only smart chasers, NC = Ns
C .

The group of chasers consists of two types: smart chasers and random walkers.
The smart chasers have an unlimited search range, while the random walkers
have search ranges of zero. In Fig. 6, we show the cost c by changing the number
of smart chasers Ns

C with a fixed NC . Hence, NC −Ns
C random-walking chasers

also join the catch in the system. For comparison, we also show the case in which
only Ns

C smart chasers are in the system and play tag. In both cases, we assume
that targets have unlimited range. The left end 0 corresponds to the case in
which all of the chasers are random walkers. The right end 100 corresponds to
the case in which all chasers have unlimited ranges. As the ratio of smart chasers
increases, the cost monotonically decreases. It is interesting to see that even a
small number of smart chasers, say five to ten, can drastically drop the cost.

Comparison of the two cases is also of interest. If only a small number of
smart chasers is available, which strategies will be better: let only the smart
ones chase targets, or have random walkers join them? The group of random
walkers also contributes to the catch events so we initially expect that the latter
case is better. However, if we have to pay the salary per working hour to the
chasers, the more chasers join, the more we have to pay. Our result in Fig. 6
indicates that for small number of smart chasers, the addition of random walkers
helps to reduce the cost as it shortens the termination time T . However, as the
number of smart chasers increases to 30 or 40, the former strategy with only
smart chasers is better.
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4 Discussion

In this paper, we have investigated a simple model under a theme of “group chase
and escape”. By developing the cost function, we found characteristic behavior
of group chase processes and evaluated efficiencies that have an optimum number
of chasers. The values of the function were also compared among several cases,
including the random walk. Our results confirm that the microscopic chase and
escape rule has a scheme completely different from that of a reaction-diffusion
system.

From another point of view, the problem of group chase and escape is an
extension of studies of granular materials[14,15,16] to traffic problems[17,18],
which have been actively investigated in recent decades. In the traffic problems,
so-called “self-driven particles” are the basic constituents rather than physical
particles like in granular materials. By giving them the aim of chase or escape,
we are extending each unit further.

Even in biological molecule system, such as translation process of
ribosomes[19], traffic jams are observed, and there have been studies of treating
ribosomes as self-driven particles since 1969[20]. We recently proposed a dynam-
ical model in which ribosomes and the other related molecules to translation feel
simple inter-molecule potentials and thermal noise. Still, we found they behave
as if they are self-driven particles[21]. We may further consider how the nature of
chase and escape emerges from interactions among biological molecules in vivo,
e.g. neutrophil and bacterium[12].

In addition, we can include the effect of swarms[22,23]. The advantages and
disadvantages of forming swarms are commonly studied in the fields of socio-
biology, such as risk dilution. By comparing cases in which the targets/chasers
are together or solitary, efficient survival/catch-up strategies could be developed.
For example, instead of sensing the nearest target/chaser, each side could use
“center of mass” of the locations, or more information about distributions of the
opponent.

We may also include the effect of information transmission delay for chasers
and targets to recognize the other particles’ positions. Delays often introduce
unexpectedly complex effects into otherwise simple dynamical systems[24,25,26].
Some examples of applications are the modeling of blood cell reproduction[27],
human posture and balance controls[28,29,30], traffic jams[31,32], and so on.
Delays may induce interesting behavior in the context of chases and escapes.
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Appendix

In order to compare with the chase-and-escape hopping model, we consider ran-
dom walk processes in which a particle hops to one of the four nearest sites with
an equal probability 1/4, irrespective of the positions of chasers and targets.
Targets are caught when a chaser in the nearest site tries to hop to the site of
the target.

When both chasers and targets follow the random walk processes, we call it
the diffusion model. In this situation, dynamics of the number of targets NT can
be interpreted as a reaction-diffusion system in which targets are annihilated
when they meet chasers, leading to a rate equation,

dNT

dt
= −kNT NC , (1)

where k denotes a rate constant. As the number of chasers remains a constant,
the solution gives NT (t) = NT (0) exp(−kNCt). By rewriting the equation as
d log(NT )/dt = −kNC , we can also note the effect of fluctuations. If we assume
that the rate constant k fluctuates with a normal distribution, the fluctuation
of NT will be given by a log-normal distribution.
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Abstract. In this article, we investigate the velocity-clearance relation
of vehicles in CA models for traffic flow using a calibration of the cell
size (length) which we already proposed. We can mimic a more realistic
behaviour of vehicles in traffic flow changing the cell size according to
the density of particles in cellular automaton models. As a result, the
velocity of particles in the rule-184 cellular-automaton model becomes
dependent on the clearance, i.e., the distance to the next particle in front
(in the right-hand side). Also, we show that the calibration is valid in
that it reproduces a realistic flow-density diagram.

1 Introduction

Cellular automata (CA) have been used in physics [1,2,3] to model a wide variety
of phenomena in a simple and intuitive manner. Also, there are actual discrete
systems like CA, e.g., molecular motors on a microtubule [4]. In such systems,
particles have a finite volume, and in principle, both collision and overtaking
are forbidden. As a result, we often observe some particles stemming the flow
by themselves. The above situation can be precisely mimicked with the so-called
exclusion rule in CA models.

One of the most basic models [5,6,7,8,9,10,11,12] for traffic flow is the asym-
metric simple exclusion process [13,14] (ASEP), a CA model incorporating ran-
domness into an elementary CA rule 184 [1]. Particles in the ASEP hop to the
next site with a given probability if it is not occupied. We should remark here
that there are some possible choices to update cells [15,16], e.g., random sequen-
tial updating and shuffled dynamics [17], whereas all sites are synchronously
updated in a CA [1]. However, we do not adhere to only the parallel update case
in the following discussion.

The validation of traffic-flow models is carried out by comparing the simula-
tion result to observational data [7,9,10,18,19,20,21]. Normal traffic data contains
the density, velocity and flow, and one usually plots the velocity against the flow,
the velocity against the density and the flow against the density. In particular,
the significant properties of a traffic flow are summed up in the flow-density
diagram [22]. Some simple models such as the ASEP are known to be exactly
solvable [15,16,23,24], which means that one can obtain an exact flow-density
diagram. Note that the flow-density diagram for the ASEP has the so-called

S. Bandini et al. (Eds.): ACRI 2010, LNCS 6350, pp. 580–588, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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hole-particle symmetry: i.e., inverting all the cells in concert, one sees that the
diagram is symmetric in the density. In the next section, we discuss a calibration
of CA models for traffic flow focusing on these exactly solvable ones.

2 Calibration of the Cell Size in Cellular-Automaton
Models

In this work, we simply consider ν vehicles of the same size c on a circuit of
length l. The real-world density of vehicles, which is conserved in simulations, is
accordingly defined as

ρRW =
νc

l
(0 ≤ ρRW ≤ 1) . (1)

Meanwhile, in the corresponding CA model the particle density is defined as

ρCA =
N

L
(0 ≤ ρCA ≤ 1) , (2)

where N is the number of occupied cells, and L is the total number of cells. Let
d be the cell size. Since ν = N and l = Ld, we then have

ρCA

ρRW

=
d

c
. (3)

In this article, we shed light on the following condition with respect to vehicle
size c and cell size d:

c ≤ d ≤ 2c . (4)

This is justified because if d < c then vehicles could not be contained in each
single cell, or if 2c < d then one should reduce the cell size d to half. The CA
models for traffic flow admit of optimizing the cell size according to the particle
density. We therefore assume that the cell size d is determined depending on the
density ρRW as d = cf(ρRW), where f(ρ) is a function such that 1 ≤ f(ρ) ≤ 2
due to (4). Accordingly, (3) yields

ρCA = ρRWf(ρRW) . (5)

Note that since 0 ≤ ρCA ≤ 1 by definition, we have to refine the condition on
f(ρ) to

1 ≤ f(ρ) ≤ min
{
2,

1
ρ

}
. (6)

Function f should be chosen according to the target real-world system. In the
next section, we show some elementary examples of the calibration applied for
traffic-flow models.
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3 Examples of the Calibration

As far as traffic-flow models are concerned, one may use a larger cell size while
the density is low but a smaller one while it is high. Thus, we define f(ρ) as a
non-increasing function in ρ. For example, a simple choice, f(ρ) = 2 − ρ, leads
to

ρCA = ρRW(2 − ρRW) . (7)

In the following, we show the effects of this calibration applying (7) for basic
traffic-flow models.

3.1 Asymmetric Simple Exclusion Process

As mentioned above, the ASEP is exactly solvable. The flow Qrandom is described
as a function of the density ρCA:

Qrandom(ρCA) = pρCA(1 − ρCA) , (8)

where p is the hop probability. Note that (8) is for the random sequential up-
dating. Then, using (7), the flow-density diagram, (8), is calibrated as

Qrandom(ρRW) = pρRW(2 − ρRW)(1 − ρRW)2 . (9)

(Note that we often denote different functions by the same symbol for the sake
of simplicity.) In Fig. 1(a), we show the graphs of eqs. (8) and (9), finding that
the calibration (7) helps to reproduce a more realistic flow-density diagram; in
particular, the maximum-flow density moves from 1/2 to 1 − 1/

√
2 (# 0.29).

Also, we consider the average velocity of vehicles as a function of the density.
Following the assumption [22], Q = ρv, with respect to flow Q, density ρ, and
velocity v, we have

vrandom(ρCA) = p(1 − ρCA) ,

vrandom(ρRW) = p(2 − ρRW)(1 − ρRW)2 . (10)

Figure 1(b) shows the graphs of (10). We see density dependence of the mean
hop probability in the ASEP. Note that since the cell size becomes larger than
the vehicle size after the calibration, the average velocity is no longer equivalent
to the mean hop probability and can take values larger than 1. Precisely to say,
the cell length is multiplied by f(ρRW) = 2 − ρRW as well as in (7).

In Fig. 1(c), we show the velocity-clearance diagram. We note here that both
velocity and clearance mean their mean values in the steady state. The clearance
of a vehicle is defined as the distance to the next vehicle ahead. Accordingly, the
average clearance, denoted by h, is obtained from the density as

h =
1 − ρ

ρ
. (11)
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Fig. 1. The ASEP with random sequential updating and hop probability p = 1: (a) The
flow-density diagram, (b) The velocity-density diagram and (c) The velocity-clearance
diagram; (solid)calibrated and (dashed)non-calibrated

Using (10) and (11), we have

Vrandom(hCA) = p
hCA

1 + hCA

,

Vrandom(hRW) = p
hRW

2(1 + 2hRW)
(1 + hRW)3

. (12)
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Note that one may regard such a velocity-clearance relation as the so-called
optimal velocity function introduced in the optimal velocity model [25] or in the
Newell model [26].

3.2 Rule-184 Cellular Automaton

Next, we consider the rule-184 CA, and also the ASEP with the parallel updating
for comparison. (Note that the ASEP with parallel updating includes the rule-
184 CA as a special: p = 1.) The flow-density diagram for the parallel update
case, which is described as [23]

Qparallel(ρCA) =
1
2
[
1 −

√
1 − 4pρCA(1 − ρCA)

]
(13)

is calibrated, using (7), to be

Qparallel(ρRW) =
1 −

√
1 − 4pρRW(2 − ρRW)(1 − ρRW)2

2
. (14)

In Fig. 2(a), we show the graph of (14). The maximum-flow density calibrated
is equal to 1 − 1/

√
2, and is independent of p. Moreover, it is identical to that

for the random sequential update case. In the special case of the rule-184 CA,
we have

Qparallel(ρCA) = min{ρCA, 1 − ρCA} ,

Qparallel(ρRW) = min{ρRW(2 − ρRW), (1 − ρRW)2} . (15)

In this case (p = 1 and the parallel updating), we see a first-order phase transition
at the maximum-flow density, which distinguishes the model from the other ones.
The phase transition implies that a traffic jam never occurs until the density
exceeds the maximum-flow density. (By contrast, we find a traffic jam occurring
at rather lower densities in the other cases.)

As well as in the previous case, the average velocity is obtained from the flow
via v = Q/ρ. In particular, from (15), those for the rule-184 CA are given by

vparallel(ρCA) = min
{
1,

1 − ρCA

ρCA

}
,

vparallel(ρRW) = min
{
2 − ρRW,

(1 − ρRW)2

ρRW

}
. (16)

Figure 2(b) shows the graphs of (16), which presents how the proposed cali-
bration works. Once the cell size is fixed, dynamics of the real-world vehicles
is transformed into a coarse-grained motion in the CA model: Particles therein
hop at most one site, with a constant probability and the exclusive interaction.
The calibration then helps one restore the original dynamics. Compare Figs. 1
and 2 with the simulated/observed diagrams given in Refs. 7, 8, 21, 23, and 24
to see the effect of the present calibration.
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Fig. 2. The ASEP with the parallel updating and hop probability p = 0.9, and those
of the rule-184 CA (p = 1): (a) The flow-density diagram, (b) The velocity-density dia-
gram and (c) The velocity-clearance diagram. The curves therein are distinguished by
the line style: (black)ASEP and (gray)Rule-184 CA; (solid)calibrated and (dashed)non-
calibrated.

Figure 2(c) shows the velocity-clearance relation for the rule-184 CA obtained
from (11) and (16) as
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Vparallel(hCA) = min{1, hCA} ,

Vparallel(hRW) = min
{1 + 2hRW

1 + hRW

,
hRW

2

1 + hRW

}
. (17)

Note that the derivative of function Vparallel(hRW) is discontinuous at hRW =
1 +

√
2 (# 2.4). This discontinuity is specific in the parallel-update dynamics;

by contrast in the random-update dynamics, such a phase transition is lost.
We think that the parallel update brings a kind of global correlation into the
system and which plays a crucial role at the phase transition point. Among the
researchers of traffic dynamics, the parallel updating is considered to be the best
for CA modelling.

4 Summary and Remarks

In this article, we investigate the velocity-clearance relation of vehicles in CA
models for traffic flow using the calibration of the cell size (length). Changing the
cell size according to the density of particles in CA models, we can mimic more
realistic behaviours of vehicles in traffic flow even if using one of the simplest CA
models, i.e., the rule-184 CA. (For the avoidance of doubt, in the present work we
does not intend a calibration-and-validation [27,28,29] of traffic-flow models.) In
particular, the flow-density diagrams become realistic beyond the hole-particle
symmetry, although further modification will be necessary to reproduce detailed
structures such as a metastable branch observed in real-world traffic data.

Another motivation of ours is to reduce the cost of large-scale traffic simula-
tions such as city traffic, using some simple model which reproduces a realistic
traffic flow. In large-scale simulations, rapid computations are more important
than realistic depictions. We remark that our central idea is that the cell size,
which is usually set to the vehicle size, may also depend on other parameters
(e.g., the number of vehicles conserved in each simulation), and it is not difficult
to apply this idea for general CA models, such as two-dimensional CA models
for pedestrian flow.

Finally, this article supplements a preceding work of ours [30] by a large extent
with an investigation of the microscopic behaviour of vehicles by revealing a
dependence of the velocity on the clearance. We will report in detail a close
relation of the present calibration method to the optimal velocity model, as well
as an extension for the open boundary conditions, in our subsequent publications.

The author is supported by Global COE Program, “The research and training
center for new development in mathematics,” at Graduate School of Mathemat-
ical Sciences, The University of Tokyo.
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Abstract. This is a contribution to the discussion of the interrelation
between multi agent systems (MAS) and cellular automata (CA). The
claim is that the Nagel Schreckenberg Model is a MAS, while at the same
time it can perfectly be formulated as a CA. To underline this and to
demonstrate the difference to and the benefit of a MAS formulation the
rule table for the NaSch Model with vmax = 2 is given.

1 Introduction

The Nagel Schreckenberg Model [1] is one of the most prominent examples to
describe a physical system using a cellular automaton. The property that it is a
cellular automaton shows best with its deterministic limit (p = 1) for vmax = 1
being identical in the system’s dynamics with CA-184 in Wolfram’s notation of
the 1-d, 3 cell neighborhood CA [2,3]. However, the Nagel Schreckenberg Model
is only rarely formulated as a CA, it is always formulated in a driver’s perspec-
tive with four action steps in each time step (accelerating, braking, dawdling,
moving), a formulation, which here is argued to be a MAS. The CA formulation
is – while it leaves the dynamics unchanged – very different, as can be seen in
section 3 for vmax = 2.

2 Short Notes on Rule 184

Calling the left, central and right cell (l, c, r) and (b, w) as possible states black
and white CA-184 (figure 1) can be formulated in logical form:

if
(((

lt = b
)
∧
(
ct = w

))
∨
((

ct = b
)
∧
(
rt = b

)))
then

(
ct+1 := b

)
else

(
ct+1 := w

)

Fig. 1. Rule table for CA-184 - The state of three cells determines the state of the
center cell for the next round in the given way
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Fig. 2. Compacted rule table for CA-184. Cells whose state does not matter (logical
OR) are split diagonally.

This shows that the rule table for CA-184 can be formulated in a more compact
way, as shown in figure 2. The compact representation immediately gives rise to
two more interpretations of the rule, of which one is sufficient to determine the
behavior of the system:

– For a black cell: “If there is no black cell to the right, move one cell to the
right, otherwise stay.”

– For a white cell: “If there is no white cell to the left, move one cell to the
left, otherwise stay.”

What happens in this interpretation step - without any change in the dynamics of
the system – is that the cell-oriented view (the CA formulation) of a continuously
existing static cell that can take one of two states changes to a particle-oriented
view (in a sense a simple-MAS formulation) of a continued existence from one
round to the other of either white or black particles. This of course is only
possible for CA rules where the number of cells taking a certain state is conserved
which is the case for CA-184.

3 Rule Table for the NaSch Model with vmax = 2

It is possible to formulate any deterministic vmax version of the Nagel-Schrecken-
berg model in just the same way as the original formulation of CA-184. The only
thing one needs is a larger area of influence to the left and more colors to repre-
sent the different speeds. If one wants to distinguish between cars with vmax − 1
and vmax between the rounds (which is not necessary due to the acceleration
step) the rule table contains (vmax + 2)(vmax+2) elements. Already for vmax = 2
there are 256 elements. However, as shown in figure 2 quite a few reductions
are possible. These lead to figure 3, which shows the compact rule table for the
deterministic vmax = 2 version of the Nagel-Schreckenberg model.

The considerations so far show that even for p = 0 the CA formulation appears
to be more complicated than the car-oriented formulation – not for a computer
but for the human mind. This holds maybe even for vmax = 1 but in any case
for vmax = 2 and other higher speeds. One also quickly realizes that the CA
formulation becomes ever more complicated for increasing vmax as the number
of possible elements in the rule table increases due to the increase of states and
area of influence. For vmax = 5 one would have 77 = 823543 elements. This
could be reduced as it was done for vmax = 2 but the reduction process as well
includes ever more computation steps. The car-oriented formulation however can
be handled as easily for any vmax as it can be handled for vmax = 2.



CA and MAS – With the NaSch as Example 591

Fig. 3. CA formulation of the deterministic vmax = 2 version of the Nagel-
Schreckenberg model. A white cell does not contain a car.

Fig. 4. CA formulation of the vmax = 1 version of the Nagel-Schreckenberg model.
The brackets enclose alternatives of which one is chosen probabilistically. In cases
where dawdling is possible, the state of two cells is fixed for the next round.

The last two steps are not necessary, but they reduce the number of elements.
On the negative side they make the application of the rules appear more compli-
cated. For vmax = 2 the result is shown in figure 5. In the context of complexity
the crucial point is that the generation algorithm for the rule table becomes ever
more complex in actual execution as well as it has an ever larger amount of input
data (the deterministic rules) to be processed for increasing vmax.

Fig. 5. CA formulation of the probabilistic vmax = 2 version of the Nagel-
Schreckenberg model. Of the elements in the lower line, the left version (in the groups
with two) is chosen with probability p and the right with 1 − p.

It is suggested to view the (acceleration, braking, dawdling, moving) formu-
lation of the model as a MAS formulation. In this formulation the probabilistic
braking can be interpreted as reaction on a belief of the driver on what is go-
ing to happen, his desire is to reach his destination as soon as possible, and
thus his intention to accelerate. Surely these elements of a MAS is modeled in
a very basic way, but model complexity is not a good criterion to distinguish
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MAS from non-MAS as “complexity” is a continuous quantity and it’s not clear
where to make a cut. The evolution of models of pedestrian dynamics [4] over
the years shows how it can happen that starting with clear CA models gradually
one can loose central features and advantages of CA and develop models that
would come closer to what clearly would be called MAS, while it still appears
to be possible to re-formulate such models strictly as CA. See for example the
model by Kaneda [5] which comes rather close to the cell-oriented formulation
of the NaSch and is implemented in “artisoc”, an “agent based simulator” [6].

Clearly the CA formulation of the vmax = 2 Nagel Schreckenberg Model is
far more complex than the vmax = 1 CA formulation. Already writing down the
vmax = 3 CA formulation appears to be very arduous. In the MAS formulation,
however, just a parameter changes from vmax = 1 to vmax = 2 to vmax = 3.
Part of the reason for this difference might be that in a MAS formulation the
number of agents is conserved manifestly, while it needs to be built into a CA
formulation by carefully defining the rules.

While the cell-oriented (CA) and the particle-oriented (MAS) formulations ap-
pear to be quite different from each other, it appears difficult to find a clear crite-
rion to distinguish MAS from non-MAS models. Since it is a discrete distinction,
the clearest criterion appears to be, if a model is formulated particle-oriented
(as distinguished from cell-oriented). As a consequence any particle-oriented mi-
croscopic model of a real multi agent system is a multi agent system itself and
should be called such. This does not oppose the existence of very simple (low
level) and very complex (high level) MAS.
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Abstract. We propose a simple model of a production plant that is
based on the ASEP and simulate the dependence of the lead time T on
the lot size r. Then, we derive an analytical description of the simulation
results based on exact results for the single-species ASEP. Furthermore,
we determine the optimum lot size rc and investigate dependence of rc

on several parameters used in the simulations.

1 Introduction

For any production site, chosing the appropriate lot size is essential to improve
production efficiency. Although methods for the determination of the optimum
lot size have been proposed by management engineering [1] it is so far not possible
to calculate this optimum for an actual production site.

In this study, we propose a simple model of a production plant that is based on
the ASEP (asymmetric simple exclusion process) and is investigated by computer
simulations and theoretical analysis. It allows to take into account the lot size
and its influence on the productivity.

2 Definition of the Model

2.1 Modeling a Production Plant

A production plant is in general characterized by a complex network struc-
ture where many processes join and diverge each other. In order to simplify
things, we first consider a one-dimensional model with a strictly linear structure
(Fig. 1).

Let us assume that the plant produces N products which are divided into
lots of r products1. In other words, the total production consists of X = N/r
sets where each set has r products. The production process contains n steps,
corresponding to sites in the ASEP, in which the X sets move downstream the
production line. Each step represents a process that has to be performed before

1 In the following we will always assume that the lot size r is a positive divisor of N .
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the product gets finished. We here assume that all processes require on average
the same time. This is described as a stochastic process where each step forward
occurs with the transition probability p(r) if the next site of the production line
is empty. Sets are inserted into the production line with the inflow probability
α(r) and are removed at the end with the outflow probability β(r).

Thus our model of a production line corresponds to a multispecies ASEP
if each lot size r is identified with a different type of particle. Each species
moves according to the rules of the ASEP with parallel dynamics, but the
transition probabilities p(r), α(r), β(r) are in general different. In the follow-
ing we will only the case of homogeneous lots, i.e. all lots have the same size
r. Then the model reduces to the standard single-species ASEP with parallel
dynamics.

( )rα

Start Goal

n steps

( )p r ( )rβ( )rα

Start Goal

n steps

( )p r ( )rβ

Fig. 1. Schematic representation of the production plant model

2.2 Transition Probabilities

Although the form of transition probability functions p(r), α(r), β(r) is in prin-
ciple arbitrary, they should satisfy certain conditions if we want to apply the
model to realistic situations.

The bulk transition probability p(r) is related to the time t(r) required at
each step per set:

t(r) =
1

p(r)
. (1)

In realistic situations, this time will become shorter, the smaller the lot number
is, reflecting the advantage of making small lots. Mathematically this implies
that t(r) should be a monotonously increasing function, i.e. p(r) is monotonically
decreasing

If r1 ≤ r2 then p(r1) ≥ p(r2) . (2)
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On the other hand, there is also an advantage of making bigger lots since then the
required time for each step per product becomes shorter. This can be expressed
by the condition

If r1 ≤ r2 then
t(r1)
r1

≥ t(r2)
r2

, (3)

or, equivalently,

r1p(r1) ≥ r2p(r2) . (4)

A simple set of functions which satisfies the two conditions (2), (4) is given by
the power law

p(r) = r−γ (0 < γ ≤ 1) . (5)

When the exponent γ is small, the time required for each step per product
decreases quickly for large r. On the other hand, when γ is close to 1, this
decrease is rather small. Therefore, γ can be considered as an index of efficiency
for the mass production. The efficiency becomes smaller for increasing γ.

3 Results from Computer Simulations

In the following we choose the transition probability function p(r) = r−γ and
set α(r) = β(r) = p(r). Mainly we are interested in the lead time T required
until all X sets have been finalized, i.e. reached the end of the production line.
The parameters used in the simulations are summarized in Table 1.

Table 1. Parameters used in the simulations

Number of products N = 4320
Number of steps n = 50

Transition probability p(r) = r−γ

Inflow probability α(r) = p(r)
Outflow probability β(r) = p(r)

Fig. 2 shows the lead times T obtained in the simulations as function of the
lot size r in a double-logarithmic graph. Each points is obtained by averaging
the result of 100 times simulations. The main results observed in the simulations
are:

– When γ is small, T decreases monotonously.
– When γ is large, T increases monotonously.
– For intermediate values of γ, T has a local minimum.
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Fig. 2. Dependence of the lead time on the lot size

4 Theoretical Analysis

In the following we derive an analytical description of the simulation results
based on exact results for the single-species ASEP.

In the simulation we have assumed that

p(r) = α(r) = β(r) . (6)

For the single-species ASEP with parallel dynamics this corresponds to a point
in the maximum current phase which is realized for2 α, β > 1 −

√
1 − p [2,3,4].

Here, the current Q in the steady state is given by

Q =
1 −

√
1 − p(r)
2

. (7)

The current Q expresses the number of sets that pass a certain point per unit
time. Therefore, when all steps are in the steady state, the total time T1 required
before all X sets reach the end of the production line

T1 =
X

Q
=

2N

r
(
1 −

√
1 − p(r)

) . (8)

Since the downstream process of the first set is always empty, the time T2 re-
quired before the first set reaches the last (nth) step is,

T2 =
n

p(r)
. (9)

2 For the case α = β = p studied here this is satisfied for all p < 1.
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We now assume that all steps become stationary when the first set reaches the
last step. Thus, the lead time T is

T = T1 + T2 =
2N

r
(
1 −

√
1 − p(r)

) +
n

p(r)
. (10)

Substituting p(r) = r−γ for p(r) we have

T =
2N

r
(
1 −

√
1 − r−γ

) + nrγ . (11)

The results of this analytical theory are compared with simulations in Fig. 3.
For all values of γ both are in excellent agreement.
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Fig. 3. Comparison of the simulation results (points) and the analytical theory (lines)

4.1 Other Transition Probability Functions

In derivation of the result (10) for the lead time T we have not used any specific
assumptions about the transition probability function p(r). Therefore, it is valid
also for other choices than p(r) = r−γ . Fig. 4 show results for the cases

p1(r) = 1 −
( r

N

)γ

and p2(r) = e−γr . (12)

which also satisfy the criteria (2) and (4) We see that also for these choices of
the transition probability function the agreement with the simulations is very
good.
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Fig. 4. Lead times as function of the lot size for the transition probability p1(r) =
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r
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)γ
(left) and p2(r) = e−γr (right)

4.2 Analysis of the Optimum Lot

We now determine the optimum lot size rc which minimizes the lead time T
from our theoretical solution. In the following we will use again the transition
probability function p(r) = r−γ . Differentiating (10) with respect to r gives

dT

dr
= − 2N

r2
(
1 −

√
1 − p(r)

) − Np′(r)

r
(
1 −

√
1 − p(r)

)2√
1 − p(r)

− np′(r)
p(r)2

. (13)

Substituting p(r) = r−γ for p(r) then yields the following condition for the
optimum lot size rc:

dT

dr
=− 2N

r2
c

(
1 −

√
1 − r−γ

c

)+
Nr−γ

c γ

r2
c

√
1 − r−γ

c

(
1 −

√
1 − r−γ

c

)2 +nr−1+γ
c γ =0. (14)

This is a transcendental equation which has to be solved numerically for given
parameters γ, N , n. Fig. 5 shows the dependence of rc on the number N of
products for a fixed number of steps n. Fig. 6 shows the dependence on n for
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Fig. 5. Dependence of the optimum lot size on N for n = 50. For the case γ = 1, we
have rc = 1.
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Fig. 6. Dependence of the optimum lot size on n for N = 4320. For the case γ = 1, we
have rc = 1.

a fixed number of products. For all values of γ, the optimum lot size increases
linearly with N and decreases monotonously with n.

5 Conclusion

The lead time T can be approximated by the resulut (10). This resulut is valid
also for other choices than p(r) = r−γ . When p(r) = r−γ , the optimum lot size
increases linearly with N and decreases monotonously with n. In real operations,
α(r), β(r) and p(r) may be defined by a deterministic rule. However since there
are inevitable fluctuations in reality such as troubles of machines and delay in
supply, we have treated them stochastically. Study on the other cases, such as
α �= β �= p, or extensions of this model to a realistic production network will be
presented elsewhere.

Acknowledgement

This work is financially supported by the Economic and Social Research Insti-
tute, Japan.

References

1. Fujimoto, T.: Introduction of Production Management. Nikkei Publishing Inc.
(2001)

2. Rajewsky, N., Santen, L., Schadschneider, A., Schreckenberg, M.: The Asymmetric
Exclusion Process: Comparison of Update Procedures. J. Stat. Phys. 92, 151 (1998)

3. Evans, M.R., Rajewsky, N., Speer, E.R.: Exact solution of a cellular automaton for
traffic. J. Stat. Phys. 95, 45 (1999)

4. de Gier, J., Nienhuis, B.: Exact stationary state for an asymmetric exclusion process
with fully parallel dynamics. Phys. Rev. E 59, 4899 (1999)

5. Johansson, K.: Shape Fluctuations and Random Matrices. Commun. Math.
Phys. 209, 437–476 (2000)



S. Bandini et al. (Eds.): ACRI 2010, LNCS 6350, pp. 600–612, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Multilane Single GCA-w Based Expressway Traffic 
Model 

Anna T. Lawniczak1,2 and Bruno Di Stefano2,3  

1 Department of Mathematics and Statistics, University of Guelph,  
Guelph, Ontario N1G 2W1, Canada 

2 The Fields Institute for Research in Mathematical Sciences, 222 College Street, 
Toronto, Ontario M5T 3J1, Canada 

3 Nuptek Systems Ltd., Toronto, Ontario M5R 3M6, Canada 
alawnicz@uoguelph.ca, bruno.distefano@nupteksystems.com  

Abstract. We show how, by applying relaxation and extension of Elementary 
Cellular Automata Rule 184, we can model realistic highway traffic. In particu-
lar, we examine some of the available options for modeling variable accelera-
tion, variable speed, multi-lane traffic, lane-changing for the purpose of  
avoiding obstacles or overtaking slower vehicles, suddenly stalled vehicles, and 
drivers’ ability to account for the “brake lights” information and react to it. We 
describe the main features of our multilane expressway model developed adopt-
ing such extensions of Cellular Automata as “Global Cellular Automata” and 
“Global Cellular Automata with Write access”.    

Keywords: Cellular Automata, Global Cellular Automata, Global Cellular 
Automata with Write access, Highway/Expressway Traffic Modeling.  

1   Introduction 

Traditional highway traffic models of the 50s were macroscopic models considering 
vehicles like infinitesimally small particles in a fluid, i.e. the LWR model (Lighthill, 
Whitham, Richards), [1] and [2]. One problem of the LWR model and of models 
derived from it is a large number of parameters without an immediately intuitive 
equivalent when conducting empirical investigations. Microscopic traffic flow models 
were developed to solve this problem and explicitly describe vehicle interactions of 
the type that could be easily measured in the field, e.g. [3]. Road traffic is intrinsically 
discrete as each vehicle is one entity. The discrete entity point of view leads to con-
sider Cellular Automata (CA) and Individual Based Modeling Methodologies 
(IBMM) allowing the development of “Virtual Laboratories”, i.e. interactive envi-
ronments for creating and conducting simulated experiments, capturing the emer-
gence of large scale phenomena from discrete, local interactions and the effects of 
individual drivers’ behaviour and local traffic fluctuations on the dynamics. Virtual 
laboratories can be used to study phenomena on various space and time scales, and 
test “what-if” and “how” hypothesis. 
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Elementary Cellular Automata (ECA) Rule 184 is often called “the traffic rule” 
and has been used for many road traffic models, e.g. see [4], [5], and [6]. Rule 184 is 
a rather simple traffic predictor, but it allows visualizing some of the well known 
patterns of real highway traffic, i.e.: platoons of moving cars separated by stretches of 
open road, when traffic is light, and “traffic waves” moving upstream, that is in oppo-
site direction to the movement of the vehicles, i.e., waves of stop-and-go traffic, when 
traffic is heavy. ECA Rule 184 is good at modeling and visualizing, if adequate soft-
ware is available, of qualitative properties of macroscopic, global, highway traffic 
phenomena. However, its usefulness to realistically model actual highway traffic at 
individual vehicle level is rather limited. In fact, ECA Rule 184, with periodic bound-
ary conditions, can be used to model only unidirectional single-lane traffic, with no 
intersections and no entry or exit ramps, characterized by constant speed and null 
acceleration.  

Even if one were to solve the problem of modeling variable speed, one would have 
to deal with other limitations such as the inability to distinguish a slow moving vehicle 
from a stalled vehicle or the inability to account for the “brake lights” information that 
actual drivers can see and react to.  Dealing with multilane highway, vehicle passing, 
and different types of intersection (e.g., Yield-controlled, Stop-controlled, Signal-
controlled, and Roundabout-based intersection) are even more complex problems. 

In this paper we show how, by applying relaxation and extension of Rule 184, we 
can model more realistic highway traffic scenarios. Additionally, by extending the 
Cellular Automata (CA) paradigm to “Global Cellular Automata” (GCA) and to 
“Global Cellular Automata with Write access” (GCA-w) developed by Rolf Hoff-
mann and his collaborators we can mimic all deterministic qualitative behaviours of 
highway traffic, both at a global level and at individual vehicle level, [7], [8], [9], 
[10], [11], [12], and [13]. 

In this paper we do not present performance evaluation results which will soon be 
presented elsewhere.  Also, we do not discuss modeling techniques in relations to 
entry & exit ramps, intersections, and road traffic in urban areas. Each subject re-
quires much more space than available and each subject would justify one full paper. 
However, our model, presented in section 6, features entry & exit ramps and we 
briefly describe our implementation.  

The scope of this paper is to present the architecture of our model and to explain 
how the adoption of the GCA and GCA-w paradigms can reduce the number of ma-
chine cycles to simulate the model and, thus, model longer expressways and longer 
periods of time. 

2   CA & CA-Like Highway Traffic Modeling    

Regardless how one represents an ECA, e.g. “truth table” or explicit Boolean expres-
sion, evolving a CA means computing equation (1) inside two loops, a space loop in 
which variable i varies from zero to the maximum size of the CA and a time loop in 
which variable t varies from zero to the maximum number of required discrete time 
steps. Equation (2) is the explicit form of equation (1) when the ECA rule under con-
sideration is Rule 184. 
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c[t, i] := f[c[t-1, i-1], c[t-1, i], c[t-1, i+1]] (1) 

ci,t = ci-1,t-1 ∩ ( ¬  ci,t-1) ∪ ( ci-1,t-1 ∪ ci,t-1 ) ∩ ci+1,t-1 , 
 

which in C/C++ notation is: 
 

ci,t = ci-1,t-1 && (!ci,t-1) || ( ci-1,t-1 ||  ci,t-1 ) &&  ci+1,t-1 . 
 

 
 

(2) 

 
This architecture (i.e. this double loop) is extremely simple and powerful, but it re-

quires being structurally unchanged whenever equation (1) is replaced by more com-
plex rules of motion. Most practically applicable models are based on heuristics. As 
new information emerges while testing and validating the model, a large number of 
“If…Then” and “If …Then …Else” statements sneak stealthily into the code with 
many function calls. Consequently, the code becomes hard to verify for correctness 
and even harder to modify. Because of this, care must be taken to make sure that all 
situations to be accounted for can be expressed analytically as much as possible and 
that proper formalism of transmission rules and of data structures is maintained. A 
large number of models have been developed modeling realistic topologies, but as far 
as we know all of them have departed from the CA paradigm, e.g. [14], [15], [16], 
[17], [18], and [19]. 

Boccara and Fuks have generalized Rule 184 to higher velocities, [20] and [21]. 
However, their work seems to be applicable only to periodic boundary conditions. 

3   The Nagel – Schreckenberg Model  

In 1992, Nagel and Schreckenberg proposed a stochastic model that probably estab-
lished CA as a valid method of highway traffic, [22]. They extended the neighbour-
hood from one cell (as in ECA Rule 184) to five cells. They introduced six discrete 
velocities.  

The model consists of four steps that have to be applied simultaneously to all cars: 

• Acceleration 

• Safety Distance Adjustment (“slowing down due to other cars”) 

• Randomization  

• Change of Position 
 

During the “Acceleration” phase, at each time step, if the velocity of the vehicle at the 
end of the previous time step is v<vmax, the velocity is incremented by one unit:    v -> 
v+1. If the velocity of the vehicle at the end of the previous time step is v=vmax, the 
velocity is left unchanged (null acceleration). 

During the “Safety Distance Adjustment”, if a vehicle has d empty cells in front of 
it and its velocity v, after the Acceleration phase, would cause the vehicle to cover a 
distance larger than d, then the vehicle decelerates, that is, it reduces its velocity to d: 
v -> min{d,v}. If the d cells in front of the vehicle are empty, no deceleration is  
required. 
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As stated by Nagel and Schreckenberg, the randomization “is essential in simulat-
ing realistic traffic flow since otherwise the dynamics is completely deterministic. It 
takes into account natural velocity fluctuations due to human behaviour or due to 
varying external conditions.” [22]. Randomization is an extension to the traditional 
deterministic paradigm of ECA and can be found in all realistic highway traffic mod-
els based on CA. The “Change of Position” assumes that the new velocity vn for each 
car n causes advancing by vn cells: xn -> xn+vn. 

It has been observed that the Nagel - Schreckenberg model is a “minimal model”, 
“in the sense that any further simplification leads to a loss of realism”, see [23]. 

The implementation of this model requires to modify the CA paradigm and to 
make the evolution of the CA not only dependent on the state of the neighbourhood 
but also on the current velocity of each vehicle. This implies that each cell is charac-
terized not only by presence or absence of a vehicle but also by a pointer to a data 
structure containing the current velocity of the vehicle. Here we do not use the word 
“pointer” in the sense of the C/C++ programming language, but in the sense of “link, 
connection”. 

Almost all models that we have examined implement variable velocity as in the 
Nagel - Schreckenberg model, the only substantial difference being the number of 
cells that the vehicle may need to advance to achieve its maximum speed. 

Nagel and Schreckenberg write that “Through the steps one to four very general 
properties of single lane traffic are modeled on the basis of integer valued probabil-
istic cellular automaton rules.” We discuss multilane traffic modeling in next section. 

4   Modeling Multilane Traffic  

We know of: 

• 2-D CA implementations 

• Multi-CA implementations (i.e., one per lane) 

• 1-D single GCA implementation 
 

In the case of 2-D implementations the highway is represented by a CA consisting of 
a number of rows equal to the number of lanes being modeled and by a large number 
of cells representing the entire length of the highway. Lane changing is accomplished 
by simply moving to the adjacent cell on a different row. We developed a model of 
this type in the early stages of our research, [26]. 

Multi-CA implementations threat every CA as a separate road. The transition rules 
apply equally to every CA. Lane changing simply implies moving to the cell having 
the same cell number in the adjacent CA. 

The 1-D single GCA implementation requires the extension of the CA model to a 
“Global Cellular Automata” (GCA), see [7], [8], [9], [10], and [11]. While a CA is 
characterized by the fact that the neighbourhood of each cell consists only of adjacent 
cells, the GCA is characterized by the fact that each cell has a neighbourhood consist-
ing of all cells in the GCA.  

In practical terms if one is modeling a highway long n cells and wide L lanes, we 
have the following situation: 
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• lane l = 0 spans from cell c = 0 to cell c = n – 1,  

• lane l = 1 spans from cell c = n to cell c = 2 x  n – 1 

• lane l = 2 spans from cell c = 2 x  n to cell  c = 3 x  n – 1 

• ……… 

• lane l = L spans from cell c = (L - 1) x  n to cell c = L x  n – 1 
 
While this could be regarded as a matter of simple implementation, it has profound 
implications when implementing lane changing. In fact, while lane changing simply 
implies moving to the cell having the same cell number in the adjacent CA, when 
using a modeling the highway by means of a Multi-CA implementations (i.e., one CA 
per lane), in the case of 1-D single GCA implementation, if the vehicle is in cell ci,, 
any move to the next lane on the left is indeed a move to cell ci+n-1  any move to the 
next lane on the right is indeed a move to cell ci-n-1, assuming that the lane l = 0 is the 
rightmost lane. Most compilers allow converting this operation to a single “base plus 
index plus offset” assembly language instruction, an extremely efficient, machine 
cycle parsimonious instruction. 

The difference between a 2-D CA implementation and a 1-D single GCA imple-
mentation is that the first requires two space loops for each time step, while the sec-
ond requires only one space loop. Even if the number of cells to be “visited” during 
each time step is identical, the one loop solution is more parsimonious in terms of 
machine cycles, because only one end-of-loop test must be performed instead of two 
loops prior to the increment of the loop counter. 

5   Modeling Stalled Vehicles and Obstacles 

One of the difficulties of modeling and simulating highway traffic by means of CA is 
that, at every time step, only the neighbourhood is known. The only information about 
past history is what can be derived from the current state of the neighbourhood. Thus, 
from the point of view of the vehicle moving at full speed, a fixed obstacle ahead 
(e.g., a stalled vehicle) is not distinguishable from a slow moving vehicle ahead. In 
real life, drivers do not have this problem because, at each time step, they: 

• see further ahead then the location where their vehicle will move at the 
next time step 

• can estimate the distance of the next vehicle ahead of them (sometime 
they can estimate even the distance of various vehicles ahead of them) 

• remember where the vehicle was at the previous time step 
 

The best way of modeling the driver’s reaction to a slow vehicle or to a stalled vehicle 
is to do exactly what a real driver does. If the leading vehicle moves at the maximum 
speed allowed, the distance between the two vehicles will remain unchanged. If the 
leading vehicle moves at a speed lower than the maximum speed allowed, after a few 
time steps the trailing vehicle will catch up and get very close, eventually to the point 
of having to slow down and, maybe, even stop. However, if we allow the trailing 
vehicle to look beyond its current position incremented by its maximum velocity, the 
trailing vehicle may estimate if the leading vehicle is moving slowly or if it is not 
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moving at all, i.e. it is stalled. In a multilane model, this information may be required 
to change lane and pass. 

Modeling an unexpected obstacle other than a stalled vehicles, e.g. a fallen bridge 
or the load of a leading vehicle dropped on the road, introduces a new element in the 
CA or CA-like model. Traditional models assume that each cell is either empty or 
occupied by a vehicle. If we consider obstacles other than a stalled vehicle, we can 
have either an empty cell or a cell occupied by a vehicle or by an obstacle, i.e. a new 
species of particle.  

One way of dealing with obstacles other than stalled vehicles, is to represent each 
cell with a class Cell consisting, among other things, of two private member Boolean 
variables, one indicating if the cell is occupied by a vehicle an the other indicating if 
the cell is occupied by an obstacle. If we call “B” (for “block”) private Boolean mem-
ber variable Obstacle of cell i, formula (4) is the modified ECA Rule 184 capable of 
handling a hard, permanent, obstacle. In absence of any obstacle at cell i, B i,t-1 = 0 
and B i+1,t-1 = 0, formula (4) is equivalent to (3), i.e. ECA Rule 184. If B i,t-1= 1, ci,t = 0, 
regardless of the value of B i+1,t-1, any vehicle is prevented from reaching the cell oc-
cupied by the obstacle. If B i,t-1= 0 and B i+1,t-1= 1, cell i will be empty if no vehicle 
will reach it, otherwise it will be filled. 

 
Ri,t = ci-1,t-1 && (!ci,t-1) || ( ci-1,t-1 ||  ci,t-1 ) &&  ci+1,t-1 , 

 
ci,t = (Ri,t  || ci,t-1 && B i+1,t-1) && (!B i,t-1) . 

(3) 
 

(4) 
 

This is just a simple example, presented here for simplicity’s sake.  In a similar and 
much more space consuming fashion, it is possible to derive and write formulas for 
handling obstacle when the model is capable of accounting for variable speed. 

Modeling brake light has been implemented by various authors, see for instance 
[24] and [25]. In these models drivers react to the brake lights of the leading vehicle 
by braking too. The drivers observe only the brake lights of the nearest neighbour. For 
multilane models, the driver must decide if he/she should attempt to pass. 

6   Our Model 

We model the expressway as a number of adjacent lanes, where each lane is divided 
into cells. Each cell is assumed to be m 7.5 in length as in most of the literature, e.g. 
[22] and [27]. This has been chosen because it corresponds to the space occupied by 
the typical car plus the distance to the preceding car in a situation of dense traffic jam. 
The traffic jam density is given by 1000/7.5m approximately equal to 133 vehicles 
per km. 

Traffic is modeled applying the same algorithm at each time step, when each cell of 
each lane is examined in sequence and, if occupied by a vehicle, the vehicle navigation 
algorithm is applied. Thus, modeling traffic is equivalent to executing two large loops, 
an external time loop and an internal space loop. In reality, as we will see when describ-
ing the implementation the space loop is replaced by a number of loops where various 
operations are performed in sequence. Thus, after an initialization of all data structures 
used in the model, all execution time of the model is spent in these two loops. 
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Fig. 1. Simplified flow chart showing the execution at each time step of the simulation 

Figure 1 presents a simplified flow chart showing the execution at each time step 
of the simulation.  

At each time step, vehicles are generated at each entry ramp according to a prede-
fined vehicle generation probability that can be specified individually for each entry 
ramp. In the implementation, the software reads an input configuration file containing 
a description of the entire expressway. One of the predefined commands describes 
each entry ramps and the characteristics of the vehicles entering at that ramp. This 
command can be repeated multiple times for each entry ramp, indicating the different 
traffic characteristics at various times of the day (e.g., rush hour, day time, night time, 
work day, weekend, etc). For each instance of this command it is possible to specify: 
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• “Entry lane number” (always lane zero, that is the rightmost lane, except 
when entry cell is cell number zero, that is the entry to the expressway); 

• “Entry cell number” (the location of the entry ramp from the beginning 
of the highway); 

• “Start Time”  and “End Time” measured in time steps from the begin-
ning of the simulation when the specified creation probability applies; 

• “Vehicle creation probability” during the specified time interval; 

• Probability that the vehicle will be instantiated with the last cell of the 
expressway as its destination; 

• “Maximum speed” that the vehicle will be able to reach while travelling 
on the expressway;  

• Probability that the vehicle will be instantiated with a maximum speed 
equal to the one specified in the command. 

 
The final destination probability and the maximum speed probability define not only 
the obvious probabilities implied by their names, but also the behaviour of the com-
plementary probabilities. In other words if Pd is the probability that the vehicle is 
instantiated with last cell as its destination, (1- Pd) is the probability that the vehicle 
will go elsewhere, to other exit ramps. The specific exit ramp is assigned randomly. 
Similarly, if Pvmax is the probability that the vehicle will be instantiated with the speci-
fied maximum speed, (1-Pvmax ) is the probability that the vehicle will be instantiated 
with a different maximum allowable speed. The specific different speed will be as-
signed randomly.  

After all vehicles have been generated for each entry ramp, they are queued and 
placed on the ramp data structure (a first-in-first-out queue). 

At this point, each vehicle on the highway, represented by a different instance of an 
agent, executes its navigation algorithm, that is the algorithm allowing changing lane, 
if required, advance, accelerate, decelerate, etc. The navigation algorithm is what we 
have described as a large conceptual space loop. Once the execution of this loop has 
been completed, time is incremented. We compare the predefined destination (exit 
ramp) of each vehicle with a neighbourhood of the cell where the vehicle is currently 
located. Those vehicles that have reached their exit ramp are removed from the ex-
pressway. Exit ramps are listed in the input configuration file without any other pa-
rameter than a keyword and the number corresponding to the cell where the exit ramp 
is located. 

Information about all vehicles is logged to an output data file. This information is 
not aggregate information, but it is individual information about the location of each 
vehicle at the end of the execution of each time step. This output file allows calculat-
ing, off line, at the end of the simulation, the exact travel time of each vehicle, from 
entry ramp to exit ramp. The average of all the individual travel times is the travel 
time as earlier defined, see [28]. Aggregate information is output to a different data 
file where we store: current time step number, total number of vehicles instantiated, 
total number of vehicles on the road, and total number of vehicles delayed in entry 
ramps. Thus, it is possible to infer how many vehicles have exited at this time. 
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When the maximum simulation time, as defined in the input configuration file, is 
reached, some housekeeping work is carried on and the execution is terminated. 

The navigation algorithm is divided into the following subsets: 
 

• Change lane to the right if required (e.g., if no vehicle must be passed, 
as required by the rules of traffic, or if the vehicle is approaching its exit 
ramp); 

• Change lane to the left if required (e.g., if a slower vehicle has to be 
passed or an obstacle has to be avoided); 

• Advance, either at constant speed, if travelling at maximum (vehicle 
specific) speed, or accelerating/decelerating as it may be required by the 
traffic situation; 

• Randomly, as specified by a command in the input configuration file, 
according to a predefined probability, execute an erratic behaviour if  
required. 

 
Each subset of the navigation algorithm is executed as shown in Figure 2. For each of 
the above subsets, lane number and cell number are initialized to zero. Two buffers 
(i.e., arrays) are setup: OldBuffer is set up to contain a snapshot of the current traffic 
situation, with the location of each vehicle; NewBuffer is empty. For each lane, all 
cells are examined individually. If the cell is empty, i.e. there is no vehicle at that cell, 
nothing happens. If a vehicle is located in the cell under consideration, the algorithm 
required by the subset being executed is applied. All algorithms are of CA (Cellular 
Automata) like algorithms and are applied to the cell and a neighbourhood, i.e.  a 
number of cells around it. Each lane is treated as a CA. Changing lane is logically 
equivalent to jumping from one CA to another one. However, the actual implementa-
tion uses 1-D single GCA, as previously described in Section 4. When all cells have 
been scanned and the related processing has been done, NewBuffer is copied into 
OldBuffer and the display is refreshed if the model is being executed in graphic mode. 

Modeling multilane highway traffic with CA introduces some potential conflict 
whenever more than one vehicle “wants to move” to the same cell. This is not differ-
ent from what happens in real life when, for example, a car is arriving at high speed 
on the leftmost lane and another car is changing lane from the centre lane to the left-
most lane. In real life, drivers can change their actions because time is continuous and 
because decision making is continuous and instantaneous. In a CA model, because all 
decisions are made based on the state of the CA at time t-1 and implemented at time t, 
we can have a conflict.  In a traditional ECA, no vehicle can move ahead of another 
vehicle, so there is no conflict. In a 1-D CA, even if higher speeds are modelled, no 
vehicle can move ahead of another vehicle, so there is no conflict. In a 2-D CA, there 
is a potential conflict.  

The “Global Cellular Automata with Write access” (GCA-w) developed by Rolf 
Hoffmann and his collaborators allows solving the potential conflicts, [12] and [13]. 
In the GCA-w model each occupied cell can have write access to the neighbours and 
can update its neighbours’ private member variable. Thus, before moving, a vehicle 
can issue a signal to the other vehicles in potential conflict and give them an early 
warning of its intention of moving to a given cell. This is simply done by setting a 
flag in a private member variable of the other vehicle. 
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Fig. 2. Simplified flow chart showing the execution at each time step of the simulation 

We have decided to assign the value of 3 seconds to each time step. Thus, the 
minimum speed of a vehicle advancing by one cell at each time step is equivalent to 9 
km/h (that is, 7.5 x 3600/3 = 7.5 x 1200 = 9000 m/h). This allows representing most 
realistic and legal speeds observed in Canadian expressways, with a vehicle advancing 
by a maximum of 11 cells per time step, that is, 99 km/h, as the speed limit is at 100 
km/h. This is different from the model of Nagel and Schreckenberg, which uses 1 
second per time step. We are currently comparing the results of our model with realis-
tic traffic data in Ontario to decide if our choice is appropriate or needs to be revisited.  

7   Software Implementation 

We implemented our model using the C++ programming language. The execution can 
be in graphic mode and in non graphic mode. For graphic mode we used GLUT, the 
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OpenGL Utility Toolkit, [29]. We tested the graphic mode operation under MS Win-
dows XP and MS Windows Vista. We tested the non graphic mode operation under 
MS Windows XP, MS Windows Vista, and Linux using SHARCNET, see [30]. Al-
most all storage data structures used in the code are vectors as defined the C++ Stan-
dard Template Library. All code written by us is compatible with ISO/IEC 
14882:1998. 

We used a pseudorandom number generator previously developed by us in the 
course of a different research project, [31] and [32]. We implemented the pseudoran-
dom number generator as a class because the sequence of each instance used in the 
program must be independent of the others. “We are not content with one sequence of 
random numbers in the simulation system because we use them for different pur-
poses”, see [32]. 

We called this implementation of our model Freeway.exe. 

8   Future Work 

We are currently validating our model with information from traffic engineers. We 
plan on using this model for practical traffic engineering applications, to estimate how 
some technological innovations affects travel time between two access ramps, an 
entry ramp and an exit ramp, once certain highway traffic parameters are known at 
certain points of the highway. Our concern is primarily with effects of flow and con-
gestion through a long highway on travel time. The technological innovations include 
wireless communication from roadside transmitters to vehicles, wireless communica-
tion among vehicles, etc. While our model is intrinsically parallel, the current imple-
mentation is not parallel, but we are considering parallelizing our code for execution 
under SHARCNET, a consortium of Canadian academic institutions who share a 
network of high performance computers, see [30].  
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Abstract. The on-ramp, as a typical bottleneck, has been widely stud-
ied by using Cellular Automata model. There are two different kinds of
Cellular Automata models for on-ramp. This paper investigate the dif-
ference in traffic dynamics between the two kinds of models. The results
show that they both have realistic and unrealistic features. The strong
points of the two kinds of models should be combined together to model
the on-ramp system.

1 Introduction

Nowadays, Cellular Automata (CA) model has become an excellent tool for
simulating vehicular traffic flow [1,2]. It can reproduce most of the empirical
features of traffic flow and has fast performance in computer simulation. In
1992, Nagel and Schreckenberg proposed the well-known NaSch model [3].

A traffic bottleneck is a section of road with a carrying capacity substantially
below that characterizing other sections of the same road. It is the origin of
traffic congestion. So that understanding the traffic dynamics around bottleneck
is the key to solve traffic congestion. The on-ramp is a kind of representative
bottlenecks. Many works have been done to investigate the traffic dynamics
around the on-ramp [4,5,6,7,8]. There are two kinds of CA models for on-ramp:
the acceleration lane model and the dummy ramp model. In the dummy ramp
model, a ramp region is selected on the main road. Within each time step, the
region is searched successively or stochastically for a vacant cell. Then a vehicle
will be inserted into the cell with a probability. In the acceleration lane model,
the ramp lane is also depicted by cells. The part of the ramp lane adjacent to
the main road is called acceleration lane. The vehicle has to change from the
acceleration lane to the main road.

In this paper, the properties of the two kinds of CA models for on-ramp system
are analyzed and compared. Some common features of CA model for on-ramp
are explored and the limitations of current model are given.

2 Model

In cellular automata traffic flow model, the road is divided into L cells, and a
vehicle has a length of l cell(s). It is usually assumed that the length of a vehicle
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is 7.5 m, then the length of a cell corresponds to 7.5/l m. So as l increasing, the
space discretization is more finer. In the original NaSch model, l = 1 is selected.
Here the refined NaSch model, in which l can be larger than 1, is used to describe
the forward movement of vehicles. Next, we briefly recall the updating rules of
the refined NaSch model. There are 4 sub-steps: (i) acceleration: vn(t + 1/3) →
min(vn(t) + 1, vmax); (ii) deceleration: vn(t + 2/3) → min(vn(t + 1/3), dn); (iii)
randomization: vn(t + 1) → max(vn(t + 2/3) − 1, 0) with probability p; (iv)
position update: xn(t + 1) → xn(t) + vn(t + 1). Here vn(t) and xn(t) denote the
velocity and position of the vehicle n respectively; vmax is the maximum velocity;
dn = xn+1(t)−xn(t)− l denotes the number of empty cells in front of the vehicle
n; p is the randomization probability.

Fig. 1. Schematic illustrations of the on-ramp system. (a) the dummy ramp model; (b)
the acceleration lane model.

The two common methods to model the on-ramp system are shown in Fig.1.
In the dummy ramp model, the main road is represented by one lane, and the
vehicle inserting region starts at the position xon and has a length of Lramp × l
cells. The gaps of the vehicles in the region are calculated. Then the vehicle with
the largest gap dmax is signed and its position is denoted as xin. If dmax ≥ k1,
which means the entrance gap is large enough for a vehicle, then a vehicle is
inserted at the position xin +  dmax/2! with probability α2, and the velocity
is set as the minimum value between the velocity of the leading vehicle and
 dmax/2!. The function  x! denotes the integer part of x.

In the acceleration lane model, besides the lane of the main road, there is
also a ramp lane. The main road and the ramp lane joint together in the ramp
section with the length of Lramp × l. In the ramp section, the vehicle on the
right lane must change to the left lane before it reaches the end of ramp section,
and the vehicle on the left lane is not allowed to change to the right lane. If the
condition

dn,other ≥ max(0, l + k2) and dn,back ≥ vob (1)

is met, the lane-changing is performed by vehicle n. Here dn,other, dn,back denote
the number of free cells between the nth vehicle and its two neighbor vehicles on
the destination lane at time t, respectively. If there is a vehicle on the destination
lane drives side by side with vehicle n, dn,back = −l. vob denotes the velocity of
the following vehicle on the destination lane at time t. Condition dn,other ≥
max(0, l + k2) means “I can move on the destination lane at next time step”;
and condition dn,back ≥ vob is a safety criterion.
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The open boundary conditions are adopted in the simulation. The inflow rates
of the main road and the on-ramp lane are α1 and α2 respectively.

3 Simulation and Analysis

In this section, the simulation results are presented. In the simulations, the length
of the main road is L = 2000l, and the ramp section starts at xon = 1000l. The
length of the ramp lane is L/2. The parameters Lramp = 5, vmax = 5l and p = 0.3
are used. One time step corresponds to 1 s. The flux on the left part of the main
road is qleft and that on the right part of the main road is qright. The flux on
the ramp lane is qramp. In the dummy ramp model, qramp equals to the number
of inserted vehicles per second. There is a relation that qright = qleft + qramp.
So qright is the total flux of the ramp system.

The parameter l determines the acceleration rate of vehicle. As l increasing,
the acceleration rate decreases. And the parameters k1 and k2 reflect the lane
changing behavior of vehicle. As k1 and k2 increasing, the acceptance gap for
lane changing becomes larger, that is to say, the lane changing behavior is more
careful. The traffic dynamics influenced by those parameters have been inves-
tigated in our previous work [9,10]. Here we mainly focus on the difference in
traffic dynamics between the two kinds of CA model.
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Fig. 2. The total flux as a function of α2 with different l. (a) the acceleration lane
model; (b) the dummy ramp model. The parameters α1=0.5, k1=2l and k2=0 are
used.

The total flux as a function of inflow rate of on-ramp are shown in Figs.2
and 3. Fig.2 shows the result with different l, and it reflects the influence of
acceleration rate. One can see that as l increasing, the saturated flux decreases.
Fig.3 shows the result with different k1 and k2, and it reflects the influence of
lane changing behavior. One can see that as k1 and k2 increasing, the saturated
flux increases. The difference can be summarized as follows:
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Fig. 3. The total flux as a function of α2 with different k1 and k2. (a) the acceleration
lane model; (b) the dummy ramp model. The parameters α1=0.5 and l = 3 are used.

1) In the acceleration lane model, the total flux decreases to a saturated value
as α2 increasing. While in the dummy ramp model, the total flux decreases
gradually as α2 increasing. In the acceleration lane model, the vehicle changes
into the main road according to the lane changing rule. When the traffic on
the main road becomes saturated, the chance for lane changing is fixed. Then
the flux on the ramp lane is also saturated. But in the dummy ramp model,
the vehicle is inserted into the main road with certain probability when an
acceptance gap has been found. The flux on the ramp lane is determined
by the chance for finding an acceptance gap and the inserting probability.
When the traffic on the main road is saturated, the chance for finding an
acceptance gap is also fixed. Then the flux on the ramp lane is only deter-
mined by the inserting probability. It increases as α2 increasing. Inversely,
much disturbance is brought to the traffic on the main road. The total flux
decreases gradually.

2) In general, the total flux of the dummy ramp model is higher than that of
the acceleration lane model. In the dummy ramp model, the inserted vehicle
is given an initial speed, which is equal to the speed of the former vehicle.
Thus it can drive ahead with a speed and brings little disturbance to the
traffic on the main road. In the acceleration lane model, the vehicle on the
acceleration lane has to wait for a chance to change into the main road when
the traffic on the main road is saturated. Thus it usually has a speed of 0
and needs to accelerate. This brings much disturbance to the traffic on the
main road.

3) The acceleration lane model is more sensitive to the parameter l than the
dummy ramp model. While the later is more sensitive to the acceptance
gap. The disturbance to the traffic on the main road is determined by the
acceleration time of lane changing vehicle from low speed to free speed. In
the acceleration lane model, the lane changing vehicle usually has a speed of
0. The acceleration time is determined by the acceleration rate. While in the
dummy ramp model, the lane changing vehicle is given a speed of the former
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vehicle. Only when the acceptance gap is very small (k1 = l), it could has
a speed of 0. So the acceleration time in the dummy ramp model is mainly
determined by the parameter k1.

In the acceleration lane model, most of the vehicles change lane with a speed
of 0. This behavior is definitely unrealistic. The fact is that the vehicle on the
ramp lane moves to the main road then it completes the lane change. So it has
always gained a speed during the lane changing process. The acceleration lane
model should reflect the realistic lane changing behavior. Considering that an
initial speed is set to the inserted vehicle in the dummy lane model. We believe
that the lane changing vehicle should also be set an initial speed when it changes
into the main road in the acceleration lane model. This work will be done in our
future work.

4 Conclusion

In this paper, simulations are carried out to study the traffic dynamics around an
on-ramp. Different features of the acceleration lane model and the dummy ramp
model are analyzed. In the acceleration lane model, the total flux qright reaches a
saturated value as α2 increasing. While in the dummy ramp model, it decreases
gradually as α2 increasing. The acceleration lane model is more sensitive to
the acceleration rate, while the dummy ramp model is more sensitive to the
acceptance gap.
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Abstract. For easing heavy traffic jams on weaving and merging sec-
tions on highway traffic, we compare the efficiency of zipper merging
and non-zipper merging. Zipper merging is the merging of vehicles on
two lanes by turns and achieved by only vehicle-to-vehicle interactions
before merging. Non-zipper merging is the merging without any inter-
actions before merging. In this comparison we use a cellular automaton
model on multiple lanes with slow-to-start rules. Simulations and mean-
field analysis show that the flux of zipper merging is larger (smaller) than
that of random merging in the case of large (small) slow-to-start effect.

Keywords: Traffic flow, Zipper merging, Slow-to-Start Rule.

1 Introduction

In recent years, traffic dynamics has attracted much interest of mathematicians
and physicists, so that it has been studied more and more diligently [1,2,3].
Researchers have mainly analyzed the traffic flow on one-lane roads by using
car-following models [4,5] and cellular automaton (CA) models [6,7,8,9]. These
days, vehicular traffic on multiple-lane roads with an intersection or a junction
is expected to be analyzed in order to ease traffic jams and has been studied
by using game theory [10,11], agent based simulations [12], and the simulations
which includes the effect of cooperation between vehicles on two lanes [13].

However, these previous works did not study in detail the configuration of
vehicles before merging, which is crucial to the efficiency of merging. Among
various configurations, our previous work [14] discussed the alternative config-
uration because it realizes “zipper” merging, which is the merging of vehicles
on two lanes alternatively. To induce it, we proposed a simple and bottom-up
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method, which is to draw a compartment line between two lanes on the area
inside merging sections as shown in Fig. 1 (a-b). This line prohibits vehicles
from changing lanes, while permits them to see other vehicles on another lane.
Vehicles moving along this line are expected to see other vehicles on another lane
and to adjust their own configuration to alternative one. Our method is incred-
ibly inexpensive than other methods for easing traffic jams, e.g., constructing
cubic merging. Moreover, our method does not demand all vehicles to attach
wireless communication instruments [15,16]. In our previous work we focused on
the transformation of configurations before merging, and showed that alterna-
tive configurations are emergently achieved only by repulsive vehicle-to-vehicle
interactions, by using CA simulations and mean-field calculations.

For further study, in this paper we discuss the effect of vehicle-to-vehicle inter-
actions on the flux of merging. Thus, we compare the flux with vehicle-to-vehicle
interactions before merging and that without any interactions by numerical sim-
ulations and mean-field calculations. In this investigation we use a multiple-lane
CA model with slow-to-start rule [17,18,19,20].

Disorderly lane-change

alternative 

configuration

Compartment line :

forbidding lane-change

Zipper 

merging

Compartment line

Traffic Jam

Fig. 1. (a) Disorderly lane-changes, which are caused by vehicles encountering suddenly
with others, lead to traffic jams. (b) A compartment line drawn between two lanes
makes zipper merging. Vehicles moving along this line see those on another lane and
adjust their configurations to the alternative configurations. (c) A model of road (a)
by using a two-lane lattice merging into a one-lane lattice. Vehicles on lattice (c) move
irrespective of vehicles on another lane before merging. (d) A model of road (b). Vehicles
on lattice (d) interact with others on another lane before merging.

2 Modeling

Here we define the dynamics of vehicles. We define (ξt
i , ζ

t
i ) ∈ (Z, {0, 1/2, 1}) as

the coordinates of the i ∈ Z th vehicle at time t ∈ {0, 1, 2, . . .}. ζt
i = 0 and

ζt
i = 1 is the coordinate of vehicles on the two lanes, and ζt

i = 1/2 denotes the
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coordinate of vehicles changing lanes. The i th vehicle move at most one cell
between time t and t + 1 with probability vt

i as

(
ξt+1
i , ζt+1

i

)
=

{(
ξt
i + 1, ζt

i,aim

)
, with prob. vt

i ,
(ξt

i , ζ
t
i ) , with prob. 1 − vt

i .
(1)

ζt
i,aim ∈ {0, 1/2, 1} denotes the lane where the i th vehicle tries to stay at time

t + 1, e.g., ζt
i,aim = ζt

i denotes that it try to move straight, whereas ζt
i ∈ {0, 1}

and ζt
i,aim = 1/2 denote that it tries to change lanes.

The hopping probability vt
i is given the following equation

vt
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, Δξsame(i, t) = 0,
r, Δξsame(i, t) ≥ 1, and Δξanthr(i, t) = 0,
q, Δξsame(i, t) ≥ 1, and Δξanthr(i, t) = 1,
1, Δξsame(i, t) ≥ 1, and Δξanthr(i, t) ≥ 2,

(2)

where Δξsame(i, t) is the distance between the ith vehicle and the one in front of
it occupying the same lane at time t, and Δξanthr(i, t) is the difference between
the positions of the ith vehicle and the one in front on the nother lane at time
t. Δξsame(i, t) and Δξanthr(i, t) are given as

Δξsame(i, t) =

{
ξt
s(i,t) − ξt

i − 1, if the s(i, t)th vehicle exists,
∞, else,

(3)

Δξanthr(i, t) =

{
ξt
a(i,t) − ξt

i , if the a(i, t)th vehicle exists,
∞, else,

(4)

where the s(i, t)th vehicle is defined as the one in front of ith vehicle at time t
which occupies the same lane with the ith vehicle, i.e., |ζt

s(i,t)−ζt
i | ≤ 1/2 and the

a(i, t)th vehicle is defined as the one in front of ith vehicle at time t on another
lane, i.e., |ζt

a(i,t) − ζt
i | = 1.

Vehicles obey the slow-to-start rule [18], which expresses the delay of acceler-
ation caused by the inertia of vehicles. The hopping probability of the ith vehicle
is not given as vt

i but as svt
i under the condition that the ith vehicle are blocked

by other one between time t− 1 and t and not blocked between time t and t+1,
i.e., Δξsame(i, t − 1) = 0 and Δξsame(i, t) ≥ 1. s ∈ [0, 1] is the parameter of
slow-to-start rule. Small s denotes the large slow-to-start effect, i.e., the large
inertia of vehicles. The model composed of (2) with SlS rule is named Multiple
Lanes Slow-to-Start (MLSlS) model.

3 Simulations and Mean-Field Analysis

We investigate the effect of zipper merging induced by the compartment line.
In this paper we treat for simplicity that all vehicles change lanes and vehicles
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Fig. 2. G versus ξ (left) and Q versus s (right) for q = r = 1 (lattice (c)) and q = r ∈
{0.5, 0.75} (lattice (d)). In the case of q = r = 0.5, G becomes 1 at ξ = d1 − 2, and Q
in this case intersects Q in other cases.
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change lanes at the first cell where they are permitted. Thus, we have performed
numerical simulations by using the lattices as shown in Fig. 1 (c-d). They are
two-lane lattices merging into one-lane lattice. These lattices do not demand
complicate rules of lane-changes in two-lane lattices, and hold the essence in
merging, i.e., the bottleneck effects due to disorderly lane-changes. The coordi-
nate is defined as (ξ, ζ) ∈ ({0, 1, . . . , d1 + d2 − 1} , {0, 1/2, 1}), where (d1, 1/2) is
the coordinate of the merging cell. The difference of lattice (c) and lattice (d) is
the existence of the compartment line. Lattice (c) does not have it, on the other
hand, lattice (d) has it at 0 ≤ ξ ≤ d1. Accordingly, vehicles on lattice (c) do not
interact with others on the neighboring lane at 0 ≤ ξ ≤ d1 − 1, on the other
hand, vehicles on lattice (d) do. The boundary conditions are given as follows.
Vehicles try to enter in (0, ζ) (ζ ∈ {1, 2}) with probability α when the cell is
empty. Vehicles go out from (1/2, d1 + d2 − 1) with probability 1. ζt

i,aim is given
as ζt

i,aim = 1/2 as long as ξt
i = d1 − 1 and ζt

i,aim = ζt
i for the other cases.

We measure flow rate Q versus s together with G versus ξ for 0 ≤ ξ ≤ d1 − 2,
where G is defined as the degree of the alternative configurations of vehicles
[14]. The simulation conditions are given as follows. Vehicles are updated in
parallel. The parameters are given as α = 0.33, s ∈ {0, 0.05, . . . , 1}, d1 = 200,
and d2 = 10. The period of the measurement is given as 104 ≤ t ≤ 2 × 104 − 1.
Different q and r are given between lattice (c) and lattice (d). We use q = r = 1
for lattice (c), which denotes no interactions across the lanes at 0 ≤ ξ ≤ d1 − 1
and q = r ∈ {0.5, 0.75} for lattice (d), which denotes that vehicles decrease their
hopping probability in responding to others on the neighboring lane. Note that
in this paper we do not treat the accelerations in responding to others because
it increases the danger of collisions.

The results of the simulations are shown in Fig. 2. G becomes 1 at ξ = d1 − 2
only in the case of q = r = 0.5, and we observe one crossing of Q between q =
r = 0.5 and others. G = 1 denotes that zipper merging is achieved. Moreover, the
crossing denotes that flux becomes larger (smaller) by achieving zipper merging
with the hesitative interactions as long as s is small (large). Note that G < 1 in
the case of q = r = 0.75 suggests that the length of the line is not enough.

In addition to the simulations, we also calculate the stationary flux by using
mean field analysis. This theoretical flux agrees well with simulations as shown
in Fig. 2.

4 Conclusive Discussions

It is shown that zipper merging is achieved by only the local hesitative interac-
tions, and it is observed that the flow rate becomes larger in the zipper merging
when inertia of vehicles are large. Moreover, theoretical flow rate coincides with
simulation results. Our results are expected to be applied for the real traffic.
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Abstract. Traffic efficiency of the public conveyance system on a given
route is numerically and analytically investigated by introducing a new
quantitative measure, so-called transportation volume, which is defined
by the product of velocity and the number of on-board passengers. In
terms of this measure, the optimal density of vehicles, at which the av-
erage velocity becomes maximum or the flow of particles becomes maxi-
mum, does not always make the transportation volume maximum. More-
over, under both with and without information-based control system, we
have shown that this transportation volume shows some constant value
almost everywhere in the density, even though the average velocity and
the number of on-board passengers per unit bus decrease in the higher
density of vehicles.

1 Introduction

Recently, various kinds of jamming phenomena, such as the dynamics of vehicu-
lar traffic, pedestrian flow and public transportations, are actively investigated
from a point of view of statistical mechanics and non-equilibrium dynamics of
interacting self driven particles [1,2,3]. Especially, the essential features of these
jamming phenomena are well described as the extensions of the basic stochas-
tic cellular automaton model such as the totally asymmetric simple exclusion
process (ASEP) [4,5].

Until now, public conveyance traffic system such as buses, bicycles and trains
have also been modeled by an extension of ASEP as the following similar ap-
proaches [6,7,8,9]. A simple bus route model [7] exhibits clustering of the buses
along the route. The quantitative features of the coarsening of the clusters have
strong similarities with coarsening phenomena in many other physical systems.
Under normal circumstances, such clustering of buses is undesirable in any real
bus route as the efficiency of the transportation system is adversely affected by
clustering. In our previous study [8], a new public conveyance model (PCM)
applicable to buses and trains is proposed by introducing the realistic effects of
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the field, which are the number of stops and passengers behavior of getting on a
vehicle at stops. In this model, we have discussed the efficiency of the bus route
system which includes the hail-and-ride system and have found that the clus-
tering of vehicles is quite similar to that observed in the ant-trail model [10,11].
Moreover, we have found that a big cluster of buses is divided into small clusters,
by incorporating information of the number of vehicles between successive stops.

Now let us review our PCM for the bus operation system [8], that is, the
particle and the field variable are buses and passengers at each bus-stops, re-
spectively. The one-dimensional road is considered as a periodic and partitioned
into L identical cells such that each cell can accommodate at most one particle
at a time. A total of S (0 ≤ S ≤ L) equispaced cells is identified in the beginning
as bus stops. At any given time step, a passenger arrives with probability f to
the system. Here, we assume that a given passenger is equally likely to arrive
at any one of the bus stops with probability 1/S. Thus, the average number
of passengers that arrive at each bus stop per unit time is given by f/S. The
hopping probability H of each bus entering into next cell is defined by the form

H =
Q

min(Ni, Nmax) + 1
, (1)

where Q is the hopping probability without correlations between buses and pas-
sengers. Ni and Nmax are the number of waiting passengers at stop i ∈ {1, · · · , S}
and maximum boarding capacity of a bus, respectively. The form (1) is motivated
by the common expectation that the time needed for the passengers embarking
a bus is proportional to their number. Note that, this model reduces to ASEP in
the case that H is constant such as H = Q. In principle, this hopping probability
H in real bus operation system would also depend on the number of disembark-
ing passengers. However, in order to keep the model theoretically simple and
tractable, we ignore the situation that passengers get off only at those stops
where waiting passengers to get into the bus and assume that the time taken by
embarking passengers is always adequate for the disembarking passengers.

Furthermore, we introduce a traffic control system that exploits the informa-
tion on the number of buses in each segment between successive bus stops, as
a block section of railway system. Every bus stop has information Ii which is
the number of buses in the i-th segment between i-th and next i + 1-th bus
stops. If Ii is larger than the average value I0 = m/S, where m indicates the
total number of buses, a bus remains stranded at a stop i as long as Ii exceeds
I0. As shown in Fig. 1, the head distribution is dispersed by the effect of the
information. The average headway distance with the information-based control
system is much longer than that without control. Thus, the availability of the
information Ij and implementation of the traffic control system based on this
information, significantly reduce the undesirable clustering of buses.

In order to calculate the efficiency of the public conveyance system, we have
also introduced two different quantitative measures of the efficiency, namely
the average velocity of the vehicles 〈V〉 and the number of waiting passengers
〈N〉, and hence, an efficient system is considered as the higher 〈V〉 and lower
〈N〉. As shown in Fig. 2, one of the significant results in [8] shows that the
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Fig. 1. The distribution plot of headway distance against the ranking in [8]
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Fig. 2. Two efficiency plots 〈V 〉, 〈N〉 in [8] for the parameters S = 5, Q = 0.9, q = 0.5,
and f = 0.9

information-based traffic control system does not necessarily always improve the
efficiency of the public conveyance system. In the middle density (0.3 < ρ < 0.7)
the average velocity 〈V〉 is rather higher if the information-based control system
is not executed. Unfortunately, however, the flow of the transportation system
has hardly discussed in the previous study. Thus, the main aim of this paper
is to discuss the flow of passengers, by introducing a new quantitative measure,
so-called transportation volume.

2 Fundamental Diagrams in Public Conveyance System

In order to know the essences of traffic flow such as critical density, functional
relation between the vehicle flow Q and the vehicle density ρ, which is called
fundamental diagram, is mostly used. In this paper, we investigate two different
kinds of the flow for the fundamental diagram, i.e., the flow of vehicles and the
flow of carrying transportation volume. In this paper, we set L = 500, S = 5, Q =
0.9, q = 0.5, and Nmax = 60.

The former typical fundamental diagrams for the flow of vehicles in the public
conveyance model are given in Fig. 3. The flow of vehicles without information-
based control system gradually decreases as the arrival rate of passengers in-
creases. In contrast, the flow with information-based control system drastically
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Fig. 3. Fundamental diagrams for the flow of vehicles. The left figure corresponds to
the case without information-based control system and the right one corresponds to
the case with information-based control system.

decreases in the middle density, where there are no waiting passengers in Fig. 2,
and shows the trapezoidal shape. This trapezoidal shape is similar to the funda-
mental diagram in [12] and [13], where a blockage effect is artificially introduced
into the rule-184 cellular automaton to take a flow bottleneck into account. Thus,
under the absence of waiting passengers, implementation of the information-
based control system corresponds to create the bottleneck effect and decreases
the flow of vehicles.

Moreover, we introduce the transportation volume R as a new measure to
estimate the efficiency of the system. The transportation volume R is defined by

R =
m∑

i=1

MiVi, (2)

where Mi(0 ≤ Mi ≤ Nmax) and Vi ∈ {0, 1} are the number of on-board passen-
gers and the velocity of i-th bus, respectively.

Here, we have obtained another kind of the fundamental diagram which is
shown in Fig. 4, by considering the flow as the transportation volume. Under
the given arrival late f , the transportation volume of the system is maintained
substantially constant except the low density limit in both cases, even though
the density of vehicles increases. Note that in Fig. 4, the transportation volume
at the lowest and highest density is not 0, since the lowest and highest density
of numerical simulations is not ρ = 0.0 and 1.0, but ρ = 0.002 and 0.952,
respectively. From the results, it is not always efficient for the system where the
higher 〈V 〉 and lower 〈N〉 in terms of transportation volume.

As shown in Fig. 2, the average velocity decreases in the region ρ > 0.4 (0.2)
for the case without (with) information-based control system.

However, we have found that the number of buses with passengers at the high
density ρ = 0.502 is more than that at the low density case ρ = 0.202 from Fig. 5,
which shows the distribution of transportation volume against the ranking, where
we arrange the order of magnitude according to the transportation volume of
buses in descending order. Note that, the absence region for ρ = 0.202 in Fig. 5
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Fig. 4. Fundamental diagrams for the transportation volume. The left figure corre-
sponds to the case without information-based control system and the right one corre-
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Fig. 5. Distribution of transportation volume against the ranking for the parameter
f = 0.9 in the case without information-based control system

indicates the buses with no passengers. Therefore, the transportation volume
is maintained substantially constant, since the number of buses with the small
transportation volume increases even though the average velocity decreases. The
number of empty buses in both cases is shown in Fig. 6. The diagonal line
corresponds to the number of buses existing on a route based on its density. It
is found that the number of empty buses increases as the density increases in
both cases. Therefore, the difference between the diagonal line and the number
of empty buses corresponds to the number of buses with passengers. The number
of buses with passengers is quite similar in both cases except the high density. In
the case without information-based control system, the transportation volume
decreases, since the number of empty buses increases in Fig. 6, if the control
system is switched off at the high density. Thus, the excess buses cause the
inessential empty buses, since the transportation amount does not change even
though the density increases.
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Fig. 6. The number of empty bus against the density for the parameter f = 0.9. The
left figure corresponds to the case without information-based control system and the
right one corresponds to the case with information-based control system.

Moreover, these results reveal that the transportation volume does not change
between both conditions, where the information-based control system is switched
on and off. That is, the transportation volume makes no difference between both
cases with the clustering of vehicles and without the clustering.

3 Mean Field Analysis

Let us theoretically estimate the transportation volume R derived from 〈V 〉 for
the fully packed bus in the low density limit ρ → 0. Suppose, T is the average
time taken by a bus to complete one circuit of the route, denoted by L as noted
before. The number of hops made by a bus with probability

q =
Q

Nmax + 1
, (3)

during the average period T is S, and hence the time T for a bus is obtained by

T =
L − S

Q
+

S

q
. (4)

Thus, the average velocity 〈V 〉 is approximated by

〈V 〉 =
L

T
=

LQ

L + SNmax
. (5)

Therefore, the transportation volume R for m = 1 is described as

R = Nmax〈V 〉 =
NmaxLQ

L + SNmax
. (6)

For example, we have estimated R = 33.8 from the mean field approximation
for the parameters L = 500, Q = 0.9, Nmax = 60, S = 5, and m = 1. The
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corresponding value we have obtained directly from computer simulations is
R = 34.2 (without information, f = 0.9) and R = 33.5 (with information, f =
0.9). This mean field estimation agrees almost perfectly with the corresponding
simulation data, if the parameters satisfies the following condition

mSNmax < fT, (7)

where this condition signifies that the number of arrival passengers fT exceeds
the maximum transporting capacity mSNmax for m buses during time T . That
is, the condition for arrival rate f is obtained by

f >
mQSNmax

L + SNmax
. (8)

If arrival rate f does not satisfy this condition, it is not sufficient number of
passengers in the system to pack a bus.

4 Conclusions and Acknowledgments

In this contribution, we have investigated two different kinds of the fundamental
diagram for the public conveyance system. In the case of vehicles’ flow, imple-
mentation of the information-based control system decreases the flow due to the
bottleneck effect under the absence of waiting passengers. Whereas, in the case
of the transportation volume, the optimal density which shows higher 〈V 〉 and
lower 〈N〉 does not always correspond to the most efficient operation for the
transportation volume, since that is maintained substantially constant except
the low density, even though the density of vehicles increases. This reason is
considered that the number of buses with the small transportation volume in-
creases even though the average velocity decreases. Thus, we have found that
the excess buses cause the inessential buses which has no passengers since the
transportation volume is same. In the near future, we would analytically exhibit
that the transportation volume takes constant value.

Finally, the author (AT) is grateful to the Meiji University Global COE Pro-
gram “Formation and Development of Mathematical Sciences Based on Modeling
and Analysis” and the Ministry of Education, Culture, Sports, Science and Tech-
nology (MEXT) “Grant-in-Aid for Young Scientists (B)” for the support. The
author (RN) acknowledges the support of the Japan Society for the Promotion
of Science.
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Abstract. The formation of clusters in Helbing’s improved model is
studied by an iterative method. It is shown that after certain density we
will always obtain a density profile which has the structure of a soliton.
Its characteristics such as the amplitude and width are determined by
the parameters in the model.

1 Introduction

The macroscopic traffic flow models represent a possible approach to study vehi-
cle behavior in a highway. They are based on an analogy between compressible
flow in a Navier-Stokes fluid and the traffic flow. In this work we have chosen
the improved Helbing’s model [1] which considers the continuity equation for
the density ρ(x, t), the equation describing the average speed V (x, t) and, the
speed variance equation Θ(x, t). This model introduced the length of vehicles as
well as a safe distance between them and experimental information is used to
calculate them. This work concerns the formation of traveling waves in a closed
circuit.

2 The model

The model introduced by Helbing [1] is written in the conservative form

∂w

∂t
+

∂F (w)
∂x

= s(w), (1)

where w = (ρ, ρV, ρΘ),

F (w) =

⎡
⎣ ρV

ρV 2 + P
ρV Θ + λ∂Θ

∂x

⎤
⎦ (2)

and

s(w) =

⎡
⎣ 0

(Ve(ρ)−V )
τ

2(Θe(ρ)−Θ)
τ − 2P ∂V

∂x

⎤
⎦ . (3)
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The traffic pressure P is proposed with a viscosity coefficient η0 and, a size
correction for vehicles s(V ) = l + V ΔT where l = 7 m is the vehicle length and
ΔT = 0.75 s is the reaction time. These assumptions drive to a traffic pressure
given by

P (x, t) =
ρ(x, t)Θ(x, t)

1 − ρ(x, t)s(V )
− η

∂V

∂x
. (4)

The coefficients η = η0/(1− ρs) and λ = λ0/(1 − ρs) contain the size correction
and, τ is the relaxation time. On the other hand the speed Ve(ρ) corresponds to
the fundamental diagram

Ve

Vmax
= −3.72 × 10−6 +

[
1 + exp

( ρ
ρmax

− 0.25

0.06

)]−1

, (5)

and Θe(ρ) = A(ρ)Ve(ρ)2, where A(ρ) is the variance prefactor given in terms of
experimental data correlations [2].

3 Stability

The homogeneous steady state we = (ρe, Ve(ρe), Θe(ρe)) is a solution of the
equations of motion and a small perturbation around it will tells us the conditions
for stability. The perturbation is given through w = we + w̃exp(ikx + γt) and
the dispersion relation allows the calculation of roots. Then, when Re γ < 0
the solution will be stable. There are three values of such quantity and the final
condition is obtained taking the lowest order in the wave vector k, it is given as

(ρeV
′
e )2 ≤ αΘe(1 + αρese) + α2ρ2

eΘeΔT + αρeΘ
′
e, (6)

a result which implies that the model is linearly stable for densities lower than
11.73 veh/km. The unstable region produces a nonhomogeneous profile with the
soliton characteristics.

4 The Soliton Structure

The presence of a soliton solution in this model is exhibited by means of writing
the equations of motion in a moving reference frame z = x − cst. An iterative
method is applied taking into account the existence of two different time scales,
one is given through τ and the other one is carried with the stability condition
(6) [3]. The equation describing the profile is the well known Korteweg-de Vries
equation,

η0τα(Ve − cs)
ρe(c − cs)

ˆρzzz +
β

(c − cs)
ρ̂ρ̂z + ρ̂z = 0, (7)

its solution is given as

ρ̂ =
3(cs − c)

2V ′
e + ρeV ′′

e

sech2

[
1
2

√
ρe

η0τα

c − cs

Ve − cs
z − z0

]
, (8)
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where c = Ve(ρe) + ρeV
′
e (ρe) is the propagation speed of long wavelength per-

turbations, α = 1 − ρese and, all primes indicate derivative with respect to the
density. The soliton amplitude and its width are given as

B =
3(cs − c)

2V ′
e + ρeV ′′

e

, D =
π2

12

√
4η0ατ

ρe

(Ve − cs)
(c − cs)

. (9)

Both are determined by the parameters in the model.

5 Simulation

We solve the nonlinear equations (2) and (3), with periodic boundary conditions
and take highway length as L = 6 km. Concerning the initial conditions we
have taken an homogeneous traffic state ρe = 28 veh km−1 in the unstable
region plus a small perturbation on the density, as the one given by (10) with
C1 = C2 = 4 veh km−1, ω1 = ω2 = 0.5, x0 = −3.0 km and x1 = 3.0 km,

ρ(x, 0) = ρe + C1 cosh−2

(
x − x0

ω+

)
− C2

ω+

ω−
cosh−2

(
x − x1

ω−

)
, (10)

ρ(x, 0)V (x, 0) = ρeVe(ρe), Θe(ρ(x, 0)) = Θe(ρe). (11)

The figures (1,2) give us a traveling profile which moves with speed cs in the
opposite direction of vehicles. Figure (3) represents the profile obtained for a
bigger density ρe given the same initial conditions.
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Fig. 1. Density profile at t = 100 min

6 Concluding Remarks

The Helbing’s improved model shows a permanent profile with soliton structure.
It is slightly asymmetric, its amplitude and width depend on the parameters in
the model. Figures (1,3) show clearly that the density ρe plays an important
role. This kind of structure represents a traveling cluster moving with constant
speed. Some other macroscopic models have similar properties [3], [4], [5], [6].
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Abstract. A probabilistic cellular automaton for cargo transport is pre-
sented that generalizes the totally asymmetric exclusion process with a
defect from continuous time to parallel dynamics. It appears as an under-
lying principle in cellular automata for traffic flow with non-local jumps
for the kinetic constraint to drive as fast as possible. The exactly solvable
model shows a discontinuous phase transition between two regions with
different cargo velocities.

Keywords: asymmetric exclusion process, matrix-product state.

1 Introduction

Non-equilibrium phase transitions can rarely be calculated exactly, i.e. without
need of approximations or fits of numerical data. One paradigmatic system where
this is possible is the totally asymmetric simple exclusion process (TASEP) (see
[1] and references therein). The model is defined on a 1d discrete lattice with sites
being either empty (holes) or occupied by a single particle. A randomly chosen
particle moves to the right at rate 1 provided that the site is empty. For open
boundaries with particle input at rate α and output at rate β this leads to three
different phases: a low-density, a high-density and a maximum-current phase. For
finite systems the process can be solved exactly by the matrix-product Ansatz
(see [2] for a recent and exhaustive review) and the complete thermodynamic
behavior that is relevant for understanding the phase diagram can be extracted
from the asymptotics of this solution. On the ring the process has a uniform
groundstate [1]. However the presence of a defect particle leads to a rich phase
behavior [3]. In the defect TASEP usual particles move 10 → 01 at rate 1, the
single defect particle moves itself forward 20 → 02 at rate α and can be overtaken
by usual particles 12 → 21 with β The solution is formally related to the open-
boundary case. There is one shock phase and three phases where it behaves
once like a particle, once like a hole and once like a second-class particle. The
second-class particle case corresponds to α = β = 1. To the left the second-class
particle looks like a hole (as seen from a particle) and to the right it looks like a
particle (as seen from a hole). This case was studied in [4] since it can be used
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to study the shock in the TASEP on the infinite line with step-initial condition.
The connection is that, due to its very special dynamics, the defect 2 samples
the random shock position on preferring configurations like 000021111.

The defect TASEP can alternatively be understood as a cargo transport pro-
cess: The defect is a usual particle carrying a cargo which can be handed over to
a particle behind. See [5] for a different definition of cargo in the same context.
These mechanisms play a fundamental role in the biology of intracellular trans-
port. Processive motors like kinesin transport cargo over long distances [6]. The
cargo can alternatively be interpreted as virus particles that use carrier particles
in order to attain the interior of a cell, see [5] for further references.

The Nagel-Schreckenberg model [7] is often referred to as the minimal model
for one-lane traffic-flow on a freeway. There it is essential to allow for faster and
slower cars to get a realistic flow-density relation: cars can move up to vmax

sites per time step. Further all cars are updated simultaneously according to
a parallel update and move independently with probability p. For vmax = 1 it
is equivalent to the TASEP with parallel dynamics. The steady state on the
ring shows nearest-neighbor correlations and has a simple pair-factorized form
[8]. For open boundaries the matrix-product technique could be generalized to
obtain the exact steady state [9,10]. It can be interpreted as a pair-factorized
state as on the ring modulated by a matrix-product state [11].

In this article we introduce a generalization of the cargo-transport process
to discrete time with parallel updating and give its exact solution. Here we
restrict ourselves to light cargo, i.e. the case where the speed of a particle is not
lowered by the presence of cargo. This appears naturally in the steady state of a
traffic cellular automaton [11]. We will see that non-local jump processes where
particles drive as fast as possible can lead for non-deterministic hopping to a
discontinuous phase transition on the ring.

2 The Cellular-Automaton Model and Its Solution

Consider a periodic one-dimensional lattice with sites being either occupied by a
particle (in state τ = 1) or empty (τ = 0). One of the particles carries a cargo to
which we refer to as a defect (τ = 2). The particles are updated simultaneously
and every particle (with or without cargo) moves forward with probability p. If
the site behind it is occupied, the cargo carrying particle can independently give
its cargo back at probability β. This simple dynamics is encoded in detail in the
transitions

10 → 01, at rate p, (1)
020 → x02, at rate p, (2)
120 → 210, at rate β(1 − p), (3)

→ 102, at rate (1 − β)p, (4)
→ 201, at rate βp, (5)

121 → 21x, at rate β, (6)
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with x being either 0 or 1 indicating that the site can be either empty or occupied
due to the parallel update. For example the evolution of the pattern 020 can be
affected by a particle to the left moving itself forward. This is quite a general
scenario that might apply to biological intracellular cargo transport. The parallel
update reflects highly active transport where many particles move at the same
time.

For β = 0 the cargo is attached to one special particle for all times and its
dynamics is the same as for the other particles. This corresponds to the usual
TASEP (with parallel update) and the single occupation τ = 2 can be replaced
by τ = 1. The steady state for a lattice with L + 1 sites (with one of them
occupied by the defect) is

P (τ1, τ2, . . . , τL+1) =
L+1∏
i=1

P ({τi−1, τi}), (7)

thus it factorizes [8] into symmetric two-site factors P (τi−1τi) ≡ P ({τi−1, τi})
with

P (00) = 1 − ρ − J/p, (8)
P (10) = J/p, (9)
P (11) = ρ − J/p. (10)

Here J is the particle current

J(ρ) =
1 −

√
1 − 4pρ(1 − ρ)

2
. (11)

We found [11] that the steady state for β > 0 can be calculated exactly too.
Here (7) is generalized to

P (2, τ1, . . . , τL) ∝ f̃(τ1)f(τ1τ2) . . . f(τL−1τL)f̃(τL)

× 〈W |

⎡
⎣∏

i≥1

τiD + (1 − τi)E

⎤
⎦ |V 〉 (12)

This is a pair-factorized state (mainly the steady state for β = 0) modulated
by a matrix-product state. Up to the normalization this is very related to the
TASEP with open boundaries [9,11]. The vectors 〈W | and |V 〉 represent the
defect and the matrices D and E represent particles and holes respectively. The
operators obey the algebra

〈W |EE = (1 − p)〈W |E, (13)
〈W |ED = (1 − p) (〈W |D + p) , (14)

DE = (1 − p) [D + E + p] , (15)

D|V 〉 =
p(1 − β)

β
|V 〉, (16)
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for details see [11]. Note that the relations (15) and (16) are quadratic and the
other relations are cubic. Accordingly the dynamical rules in (1-6) are quadratic
(for 10 and 12) and cubic (for 20) respectively. The thermodynamic particle
current (11) obviously is unaffected by the cargo.

This steady state appears also in cellular-automaton models for traffic flow
with non-local jumps under kinetic constraint. Consider the following process
on a periodic one-dimensional lattice with sites being either occupied by one car
(in state τ = 1) or empty (τ = 0). The update rules applied simultaneously to
all cars (≡ particles) are

100 → 001, with probability p,

101 → 01x, with probability β,

where x denotes either a particle or hole. The maximum velocity vmax thus is two
sites per time step instead of one in the usual TASEP and the kinetic constraint is
that cars can not drive at reduced speed 1 if they could move at maximum speed.
This leads under the parallel dynamics to a non-local repulsion between cars, so
that finally in the thermodynamic limit only even gaps (0, 2, 4, . . . holes) have
non-vanishing probability. Figure 1 a) shows schematically the allowed moves in
a stationary configuration. For even number of holes the process is equivalent to
the TASEP and for odd number of holes it is equivalent to the cargo-transport
process. In this case a single hole in an environment of particles and hole pairs
is formed that plays the role of cargo attached to varying particles. In figure 1
b) one sees that the particle movement of a single site is equivalent to backward
movement of the 01 position. The 01 pair plays the role of the defect, having the
characteristic ‘Janus face’, looking to the left like a hole and to the right like a
particle. Usual holes are replaced by hole twins 00. To be precise, the probabilities
(8,9) would be rewritten here as P (00) ≡ P (0000), P (01) ≡ P (001) ≡ P (0001).
In the following we restrict ourselves in the terminology to the cargo-transport
process.

Fig. 1. a) Allowed moves in a stationary configuration: only one odd gap between
particles b) Equivalence of moves and according reduction of lattice units
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3 The Phase Diagram

There is a discontinuous phase transition at [11] the density

ρc =
β(1 − β)
p − β2

. (17)

For ρ < ρc and ρ > ρc one finds different velocities of the defect which can be
calculated through

v = p(1 − ρ+)(1 − βρ−) − βρ−. (18)

Here ρ− and ρ+ are the densities directly behind and in front of the defect 2.
The dynamics of the defect is obtained from (1-6). It moves either forward with
probability p if it has a hole in front while at the same time there is no particle
directly behind that simultaneously catches the cargo: first term in (18). Or it
moves backwards with probability β if it has a particle behind: second term in
(18). The neighboring densities are in terms of the current J(ρ) defined in (11):

ρ− =

⎧⎪⎪⎨
⎪⎪⎩

1
β(1 − ρ)2

J2(ρ − J)2

p(ρ − J)2 + (1 − p)J2
, for ρ < ρc,

pρ − J

pρ − βJ
for ρ > ρc,

(19)

1 − ρ+ =

⎧⎪⎪⎨
⎪⎪⎩
(

J

pρ

)2

, for ρ < ρc,

p − β

p2(1 − β)
J

ρ
for ρ > ρc.

(20)

Note that there are many ways to express the results due to the relation J(1−J) =
pρ(1− ρ). In other words the square root in J appears in every power of J with a
certain prefactor. Equations (19,20) yield

v(ρ)
p

=

⎧⎪⎨
⎪⎩

1 − 2ρ

1 − 2J
, for ρ < ρc,

J − βρ

pρ − βJ
for ρ > ρc.

(21)

The defect velocity vanishes for

ρ0 =

⎧⎨
⎩

p − β

p − β2
, for β < 1 −

√
1 − p,

1/2, for β > 1 −
√

1 − p,
(22)

and is positive for ρ > ρ0 and negative for ρ < ρ0. This leads to the phase
diagram, depicted in figure 2. The formulae (17) and (22) can alternatively be
interpreted in terms of a critical value βc ≡ β(ρc) and β0 ≡ β(ρ0). This gives

βc = J(ρc)/(1 − ρc), β0 = J(ρc)/ρc. (23)

The value of βc and β0 respectively then is essentially the absolute velocity of
holes and particles at the transition. Figure 3 shows the character of the defect
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Fig. 2. The phase diagram shows the ρ-β plane for p = 3/4. The thick line separates
the two phases and on the dashed line the velocity of the defect changes its sign.
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Fig. 3. Velocity of the defect for p = 3/4 for varying β. Continuous line: result for
ρ < ρc(β). The broken lines correspond to β = 0, β = 0.25, β = 0.5, β = 0.67 from
top (dashed) to bottom (dotted) and are valid for ρ > ρc(β). The segmented line is the
velocity of holes.

and the discontinuous phase transition. For β = 0 its velocity is given by the
upper curve and equals the velocity of particles. In the zero-density limit the
velocity is independently of β equal to p. For increasing β the second phase
appears: The velocity of the defect jumps at ρ = ρc(β) from the continuous
curve to the corresponding dashed curve. ρc increases with β until β = p where
ρc = 1, so that the system is completely in the second phase for all densities.
Note that for β = 1/2 one has ρc = 1/2. Finally in the limit of the fully occupied
lattice ρ = 1 and ρc ≤ 1 the velocity equals β for β ≤ p. However for ρc > 1
it can never increase the value of p which there is the corresponding velocity of
the holes given by the segmented line.
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Table 1. Continuous-time limit p ≡ dt, β ≡ β̃dt: Values to the order O(dt) of velocity,
empty-space density in front and particle density behind the defect in the two phases.
Here ρc ∼ β [1 − β(1 − β)dt].

ρ v 1 − ρ+ ρ−
ρ < ρc (1 − 2ρ)dt (1 − ρ)2 [1 + 2ρ(1 − ρ)dt] ρ2/β̃ [1 − (1 − ρ)(1− 3ρ)dt]

ρ > ρc (1 − β̃ − ρ)dt (1 − β̃)(1 − ρ)
[
1 + (β̃ + ρ(1 − ρ))dt

]
ρ
[
1 − (1 − ρ)(1 − β̃ − ρ)dt

]

For the phase ρ < ρc, which is purely present for β ≥ p, it is important to stress
that the quantities ρ+, βρ− and v are independent of β. The density profile is
symmetric around the defect and has an algebraic decay. This corresponds to the
second-class particle phase in the defect TASEP mentioned in the introduction.
As in continuous time the defect velocity (21) is given by v = dJ/dρ which has
the form of a group velocity and becomes v = 1−2ρ for small p, compare table 1.
Thus the defect travels with the velocity of the density disturbance.

4 Limits

Table (1) shows the limit of small hopping probabilities: p ≡ dt, β = β̃dt with
dt → 0. Note in comparison that the velocity of normal particles is always J/ρ
which gives p(1− ρ) + p2(1 − ρ)2 + . . . This limit has been studied in the traffic
picture in [12,13] and corresponds to the defect TASEP. As mentioned before,
in the limit β = 0 the defect moves only forward and loses its role as a defect.
Therefore the steady state is the same as for the TASEP. Thus one has the
expressions given in table (2). In comparison the results from (19,20,21) for
ρ > ρc are rewritten and expanded around the TASEP value:

ρ−(β) =
P (11)

ρ − βP (10)
=

P (11)
ρ

[
1 +

P (10)
ρ

β + . . .

]
(24)

1 − ρ+(β) =
p − β

p(1 − β)
P (10)

ρ
=

P (10)
ρ

[
1 − 1 − p

p
β − . . .

]
(25)

v(β) =
J − βρ

ρ − βP (10)
=

J

ρ
−
(

1 − J2

pρ2

)
β − . . . (26)

One sees that ρ− is mainly the same as for β = 0 but the density to which the
numerator is adressed is reduced by backward moving so that ρ− is increased.
The same holds for the velocity v. 1 − ρ+ is even the same as for β = 0 up to a
scale which is, using (17) and (22), given by ρc/ρ0.

Table 2. Limit of the discrete-time TASEP β = 0

v 1 − ρ+ ρ−

p
P (10)

ρ
=

J

ρ

P (10)

ρ
=

J

pρ

P (11)

ρ
= 1 − J

pρ
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For p = 1 (24)-(26) yield the results displayed in table 3. For ρ < 1/2 all
particles are separated and move deterministically as in the TASEP. For ρ > 1/2
the effect of β on the velocity remains for all possible values and the phase
transition disappears.

Table 3. The partially deterministic case p = 1: Velocity, empty-space density in front
and particle density behind the defect

ρ v 1 − ρ+ ρ−
ρ < 1/2 1 1 0

ρ > 1/2
1 − ρ − βρ

ρ − β(1 − ρ)

1 − ρ

ρ

2ρ − 1

ρ − β(1 − ρ)

5 Conclusions

A cellular automaton for cargo transport was introduced that generalizes the
(continuous-time) defect TASEP. The parallel update is often more realistic in
describing active many-particle transport and makes the link between determin-
istic and random-sequential dynamics. The point of interest was a single defect,
i.e. a particle carrying light cargo in an environment of particles and holes on a
periodic 1d lattice. Particles move forward with probability p and if a particle is
directly behind the particle that carries the cargo it may catch the cargo with
probability β. We found a discontinuous phase transition between two phases
with different cargo velocities. Successively increasing β lowers its velocity only
until β = p. Then a saturation effect appears where the velocity becomes inde-
pendent of β. The same holds for the stationary state of a cellular automaton
for traffic where the ‘cargo’ corresponds to small headway that is formed dy-
namically. It is attached to one car from behind. If the subsequent car comes
close enough it will catch it up. The fact that the cargo process appears in a
seemingly unrelated non-local jump process underlines its universal role. The
exact matrix-product state and its cubic algebra holds also for the two-species
case where multiple cargo is present. It is also trivially generalized to case where
cargo lowers the speed of the particle to α < p. For p = β and in the presence
of several second-class particles it serves also as a model system for the study of
shocks on the infinite line.
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Abstract. Traditional computers work numerically only with finite
numbers. Situations where the usage of infinite or infinitesimal quan-
tities is required are studied mainly theoretically. In this lecture, a new
computational methodology (that is not related to non-standard analysis
approaches) is described. It is based on the principle ‘The part is less than
the whole’ applied to all quantities (finite, infinite, and infinitesimal) and
to all sets and processes (finite and infinite). The new methodology has
allowed the author to introduce the Infinity Computer working numer-
ically with infinite and infinitesimal numbers. The new computational
paradigm both gives possibilities to execute computations of a new type
and simplifies fields of Mathematics and Computer Science where in-
finity and/or infinitesimals are required. Examples of the usage of the
introduced computational tools are given during the lecture.

Keywords: Numeral systems, infinite and infinitesimal numbers, Infin-
ity Computer, numerical computations, Turing machine.

There exist different ways to generalize traditional arithmetic for finite numbers
to the case of infinite and infinitesimal quantities (see, e.g., [1,2,4,5] and refer-
ences given therein). However, arithmetics that have been developed so far to
deal with infinite quantities are quite different with respect to the finite arith-
metic we are used to work with. In fact, arithmetics working with infinity can
have undetermined operations (for example, ∞−∞, ∞

∞ , etc.) or they use repre-
sentation of infinite numbers based on infinite sequences of finite numbers. These
difficulties did not allow people to create computers working with infinite and
infinitesimal quantities numerically.

In this lecture, we describe a new methodology (see survey [8] and applications
in [6,7,9,11,14,15]) for treating infinite and infinitesimal quantities expressed in
a new numeral1 system. It has a strong numerical character and is based on
the principle ‘The part is less than the whole’ applied to all numbers (finite,
1 We remind that numeral is a symbol or group of symbols that represents a number. A

number is a concept that a numeral expresses. The same number can be represented
by different numerals. For example, the symbols ‘8’, ‘eight’, and ‘VIII’ are different
numerals, but they all represent the same number.
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c© Springer-Verlag Berlin Heidelberg 2010

http://wwwinfo.deis.unical.it/~yaro


A Computational Methodology Using Infinite and Infinitesimal Numbers 647

infinite, and infinitesimal) and to all sets and processes (finite and infinite). The
new methodology has allowed the author to introduce the Infinity Computer
(see European patent [12]) working numerically with infinite and infinitesimal
numbers. The new computational paradigm both gives possibilities to execute
computations of a new type and simplifies fields of Mathematics and Computer
Science where infinity and/or infinitesimals are required.

In order to understand how it is possible to look at the problem of infinity in a
new way, let us consider a study published in Science by Peter Gordon (see [3])
where he describes a primitive tribe living in Amazonia - Pirahã - that uses a very
simple numeral system for counting: one, two, many. For Pirahã, all quantities
bigger than two are just ‘many’ and such operations as 2+2 and 2+1 give the
same result, i.e., ‘many’. Using their weak numeral system Pirahã are not able
to see, for instance, numbers 3, 4, 5, and 6, to execute arithmetical operations
with them, and, in general, to say anything about these numbers because in their
language there are neither words nor concepts for that. Moreover, the weakness
of their numeral system leads to such results as

‘many’ + 1 = ‘many’, ‘many’ + 2 = ‘many’,

which are very familiar to us in the context of views on infinity used in the
traditional calculus

∞ + 1 = ∞, ∞ + 2 = ∞.

This observation leads us to the following idea: Probably our difficulty in working
with infinity is not connected to the nature of infinity but is a result of inadequate
numeral systems used to express infinite numbers.

Thus, it is proposed to introduce a new numeral system having a possibility to
express finite, infinite, and infinitesimal numbers in a unique framework and to
execute arithmetical operations with all of them. An infinite unit for measuring
infinite sets is used as the radix of the new positional numeral system. It is
necessary to emphasize that the new approach is not a contraposition to the ideas
of Cantor and Robinson. In contrast, it is introduced as an applied evolution
of their ideas. The problem of infinity is considered from the point of view of
applied Mathematics and theory and practice of computation. The following
methodological consideration should be also mentioned.

Note that foundations of the Set Theory dealing with infinity have been de-
veloped starting from the end of the XIX-th century until more or less the first
decades of the XX-th century. Foundations of the classical Analysis dealing both
with infinity and infinitesimal quantities have been developed even earlier, more
than 200 years ago, with the goal to develop mathematical tools allowing one
to solve problems arising in the real world in that time. As a result, they reflect
ideas that people had about Physics more than 200 years ago. Thus, these parts
of Mathematics do not include numerous achievements of Physics of the XX-th
century.

Even the brilliant results of Robinson were made in the middle of the XX-th
century and have been also directed to a reformulation of the classical Analysis
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(i.e., Analysis created two hundred years before Robinson) in terms of infinites-
imals and not to the creation of a new kind of Analysis that would incorporate
new achievements of Physics.

The point of view on infinite and infinitesimal quantities presented in this lec-
ture uses strongly two methodological ideas borrowed from the modern Physics:
relativity and interrelations holding between the object of an observation and
the tool used for this observation. The latter is directly related to connections
between numeral systems used to describe mathematical objects and the objects
themselves.

Numerals that we use to write down numbers, functions, etc. are among our
tools of investigation and, as a result, they strongly influence our capabilities to
study mathematical objects. Moreover, we are able to write down and to study
only those numbers that are expressible by numeral systems we know.

The new methodology and the corresponding language allow one to look at
problems related to infinity with a higher precision with respect to traditional
numeral systems. In [14], infinite processes and Turing machines have been stud-
ied using the new approach. In that paper, a deep investigation is performed on
the interrelations between mechanical computations and their mathematical de-
scriptions emerging when a human (the researcher) starts to describe a Turing
machine (the object of the study) by different mathematical languages (the in-
struments of investigation). Together with traditional mathematical languages
using such concepts as ‘enumerable sets’ and ‘continuum’ the new computational
methodology allowing one to measure the number of elements of different infinite
sets is used. It is shown how mathematical languages used to describe the ma-
chines limit our possibilities to observe them. This analysis is done with respect
to deterministic and non-deterministic Turing machines.
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Abstract. Cellular Automata (CA) have a long history as computation
models, but only in the last few years have serious attempts started to im-
plement them in terms of molecules. Such nano-technological innovations
promise very cost-effective fabrication because of the regular structure
of CA, which allows assembly through molecular self-organization. The
small sizes of molecules combined with their availability in Avogadro-
scale numbers promises a huge computational power, in which the mas-
sive parallelism inherent in CA can be effectively exploited. This paper
discusses critical background aspects of our recent results on the im-
plementation of a CA by a molecular assembly (Bandyopadhyay et al.,
Nature Physics 2010).

1 Introduction

From its inception in the 1950’s by von Neumann, CA have attracted interest
from researchers in a wide range of fields. The development of the logical base of
biological self-reproduction, the raison d’être of CA, was soon superseded by the
realization of the computing abilities of CA. Over the years this has prompted
several attempts towards physical implementations of CA. Prominent in those
efforts was the Cellular Automaton Machine (CAM) by Toffoli and colleagues
[14]in the 1980’s. In the same decade, the chemist Forrest L. Carter conducted
research on implementing CA by molecules, in which the exchange of chemical
bonds could be used to process information [5].This endeavor created heated
debate at the time, probably due to the yet insufficient levels of technology that
could support its realization. The 1990’s saw the inception of Quantum-Dot CA
and their physical implementations, whereby cells contain four or five dots on
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which electrons can reside in certain configurations [12]. In 2002, Heinrich et al.
[8]reported a molecular cellular automaton in which CO molecules arranged on
a copper surface are able to conduct simple logical operations, be it extremely
slow.

The distributed nature of CA has prompted comparisons with neural archi-
tecture based computers. An important issue in this context is whether different
hardware elements can reach a collective decision in an instantaneous way—a
mode of operation that is impossible for traditional models [10].A possible path
to such a design is by connecting one device with many others radially through a
wireless connection. If thousands of such devices operate synchronously in a mas-
sive parallel way, then the resulting processing would enable us to mimic the way
a natural phenomenon evolves in reality, revealing unknown features beyond its
well-established mechanism. These computers may evolve unique solutions from
its astronomical set of choices using configurations never seen before. Recently,
proposals for such unconventional computation have attracted great interest
[1];however, they face copious challenges in practical realizations. In these meth-
ods, a problem is represented as a logic pattern in the distributed cells, which
spontaneously evolves to a distinct logical output pattern as an explicit solution
of the problem. Self-evolving logic patterns following particular rules for birth
and death of cell states are usually referred to as artificial life, but most of such
models lack a physical realization and thus remain limited to theory [7].In most
of the proposals thus far, diffusion or collision of particles/pixels are at the basis
of the formation of these patterns; therefore they do not provide atomic scale
control [9].A better degree of control could be achieved using arrayed quantum
dots or molecules. However, most such efforts are directed only toward the real-
ization of logic gates and toward proving universal computing abilities [11],rather
than focusing on pattern-based computing, which would more effectively be able
to exploit the inherent massive parallelism. Our previous model that allows 16-
bit parallel processing in molecules [3]is a significant advance in this respect,
since it uses of wireless communication to enable one cell to talk to many others
at a time, unlike in CMOS-based CA architectures [6].

2 Basic Cellular Automaton Model

By self-assembly, 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) molecules
form a honey-comb structure via weak interactions on an atomic flat Au (111) sur-
face, as shown in the Scanning Tunneling Microscope (STM) image in Fig. 1(A)
[4]. Each DDQ molecule connects to six neighboring molecules via atomic con-
tacts over a distance of approximately 2 Å. The resulting monolayer represents
a hexagonal cellular automaton (HCA), wherein each molecule represents a cell,
which communicates with its six neighbors simultaneously and which changes
its state following particular rules. The STM image shows an interference pat-
tern of local electron density waves, which suggests that all the molecules are
quantum mechanically coupled. The cells have four possible states, which can be
observed through differences in contrast of its tunneling-current image. There-
fore, we represent a monolayer by a 2-dimensional hexagonal matrix of the four
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Fig. 1. (A) A 3-dimensional plot of a DDQ hexagon. (B) Structural equivalent of the
STM image of the DDQ hexagon; the color codes to identify the atoms are: green
(chlorine), red (oxygen), blue (nitrogen), and white (carbon). The blue hexagon is
divided into three parts P, Q and R. Arrows denote Cl–Cl and N–N channels. (C) Red
hexagon is the ideal one; when the central DDQ is shifted to Y, the upper molecule 1
may or may not shift to the location X, but a distorted blue hexagon is created. Shaded
black region is the range where the DDQ can change its position. A larger hexagon has a
1.08 nm side-arm and the smallest hexagon arm observed is 0.8 nm. (D-top) Schematic
presentation of energy minimization computed by DFT demonstrating a cone-shaped
rotational path of N-O axis of a DDQ in a monolayer. (D-bottom) 2-dimensional array
of real gears rotating randomly on a surface. (E) Six columns showing 00, 01, 10, 11,
RL (relaxation), and RST (reset) events respectively. There are three rows: in the first
row the scan biases are given, the second shows the corresponding STM images with
heights varying between 0.10 nm and 0.38 nm, and the third row shows schematics of
hexagons revealing the origins of the STM patterns. The scale bar is 1 nm. All images
are scanned at respective biases and at 0.05 nA tip current. This schematic is generated
by comparing the simulated local densities of states of equivalent molecular structures
with the STM images.

numbers 0, 1, 2, 3. These four states correspond with different distributions of
electrons on the binding sites of a molecule. States on the surface of the matrix
change according to transition rules that originate from the weak interactions.
Observation of the changes in the matrix over time gives important information
about the rules, which are so versatile that the evolution of a pattern could be
manipulated significantly by tuning the initial matrix. In a simple logic pat-
tern, for example, we have encoded basic functions of natural phenomena like
heat flow or evolution of cancer cells, and the surface spontaneously created the
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solution as a pattern as if it understood the equation assigned to the phenomena
in the established theories.

Because of the DDQ’s prolate shape (i.e. like a rugby ball pointing up), the
central molecule of a basic seven-DDQ assembly shifts with respect to its origin
in the course of a rotation. Such a rotation (and translation) of the molecule is
triggered by the STM tip during the exchange and tunneling of electrons. Con-
sidering all possible origin-shifts due to the reconfiguration of atomic contacts,
we found that the DDQ centers trace circular paths. This particular rotation
creates unique iso-potential channels connecting atomic contacts between DDQ
molecules, which extend throughout the monolayer (Fig. 1(C)). Physically, this
corresponds to the creation of distinctly interconnected iso-potential channels
traversing between the DDQ molecules in a complicated network [4].

Numerical simulations have been conducted on smaller subsets of the system
to better understand the interactions involved. Four molecular conformers of
DDQ similar to DRQ [2]were energy-minimized using Density Functional Theory
(DFT) computation in a Gaussian 03 platform, using a 6-311G** basis set.
At the B3LYP level, states 0 and 2 were obtained by varying the constraint
between force and energy. The structure was placed between two gold electrodes
composed of a 3 × 3 matrix of two layers. The gold surface facing the molecule
was in a 111-configuration. Self-consistent DFT computation was carried out
using Local Density Approximation (LDA), using a numerical basis set, and a
strict convergence criterion was employed to a resolution of 0.0001.

It was found that a nitrogen atom of the DDQ that is closer to the Au sur-
face shares its lone pair electron with the s-orbitals of gold atoms, and one of
the oxygen atoms forms another bond with the neighboring gold atom. Our cal-
culations further suggest that the molecule essentially survives its boat shape
(bent along the O-O axis) even after adsorption with both oxygen atoms point-
ing towards the gold surface, and the molecule is tilted along the nitrogen side.
Periodic density functional theory within the local density functional approach
is used to determine the isolated DDQ structure on the Au (111) surface. The
super cell structure is constructed from 74 atoms: 60 Au atoms and 14 atoms
in a single molecule. From the two layers of Au atoms used in the supercell, the
layer that is nearer to the molecule is allowed to relax along with the molecule
during structural optimization; the layer that is away from the molecule is kept
fixed at the bulk position. The computation is carried out using the VASP code
(Vienna Ab-initio Simulation Package, which simulates atomic-scale properties
of systems) that uses a plane wave basis set and an ultra-soft pseudo-potential to
describe the valence-core interaction. During the optimization we used a 111k-
point mesh within the Monkhorst-Pack scheme to sample the Brillouin zone. A
minimum force criterion of 0.01 eV/Åwas used for each individual atom during
the structural relaxation. The convergence threshold for energy was taken to be
10−6eV.

To understand the survival of non-zero DDQ states inside a monolayer that
generate the changes in the observed STM image, we positioned 6 molecules in
a hexagonal pattern around a central DDQ in the same initial configuration as
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the monolayer and the seven-molecule system was placed inside a potential box
and potential barriers, which atoms can not cross during relaxation. Using initial
random orientations of 7 DDQs, we generated optimized orientations, which gave
a similar simulated STM image as the experimentally derived one.

3 Some Elementary Cell Patterns

We have created several molecular matrices and applied electronic pulses se-
quentially in a 13 × 17 matrix as demonstrated in [4].In a continuous scan with
a 20 seconds interval at 0.68 V bias, we observed that the targeted input matrix
spontaneously changed into a different output matrix at the next scan. More-
over, under similar conditions particular changes occurred repeatedly at different
parts of the matrix. To identify the fundamental rules behind this spontaneous
reconfiguration, we analyzed the reorganization of logic states locally in a 4 × 5
matrix based on matrices with the minimal possible sizes.

We have mapped changes in a potential distribution at the atomic contacts,
when the cell states were expanding through the monolayer according to the
CA’s rules. Six side-groups of DDQs, at equilibrium, remain in contact (< 2
Å) with the particular side groups of its neighboring DDQs. During structural
re-organization, they orient at a maximum of approximately 60 ◦, which makes
another side-group restore a one-to-one atomic correspondence. To retain the
atomic contacts, the Center of Mass of each prolate-shaped DDQ rotates around
a virtual circular periphery inside the matrix. This particular rotation creates
unique iso-potential paths along the atomic contacts, and since these contacts
determine how electrons flow between molecules, they define the CA’s rules.
An STM image simulation by a quantum chemistry computation of a molecular
structure on a gold (111) surface shows that if any DDQ conformer rotates
clockwise inside the matrix around 60 ◦ then the Cl and CN groups do not
face each other, and eventually for all four states the central DDQ becomes
potentially isolated from its neighbors. In this way a non-zero cell state survives
when it is created amidst cell states 0. States 3 and state 1 can thus remain
localized in this matrix.

A structural analysis of STM images shows that (Fig. 1(A)) inside the blue
hexagon the pattern is divided into three parts, two of them of equal size denoted
as P and R, and the remaining much smaller one denoted as Q. Because of DDQ’s
prolate shape, the central molecule in the course of a rotation shifts from its
origin. As a result, the area distributions of P, Q, and R are redefined (Fig. 1(B)).
Notably, the formation of an N–N atomic contact separates the DDQs by 1.08
nm (center to center (CC) distance). All contacts formed with N generate a
0.85 nm separation and the rest of the possible atomic contacts generate a CC
distance of approximately 0.80 nm. Motions of the DDQs in all hexagons formed
by connecting molecules of a monolayer follow a circular domain in which the
center of mass (CM) of a DDQ moves during reconfiguration of the atomic
contacts by 2 Å(shaded circular region in Fig. 1(C)). As ab initio computation
has shown that the nitrogen atom of DDQ is nearer to the surface gold atoms
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by 1 Å, as compared to an oxygen atom, the rotational path of CM does not
traverse on a planar disk, but rather follows a conical surface (Fig. 1(D-top)).
The motion of the molecules inside a monolayer is similar to an array of a large
number of gears in a machine, where the gears stabilize themselves only when
the teeth of two different gears face each other (Fig. 1(D-bottom)).

The potential distribution for the atomic arrangement of a particular hexag-
onal architecture is calculated again using DFT to understand the effect of the
asymmetric rotations demonstrated above. In contrast to previous simulations,
additional changes in the CM position and a lifting up of a DDQ are included
in the computation. A planar rotation by approximately 60 ◦ and an additional
lifting up of a particular region of DDQs by 1 Åduring a change in the CM
results in an additional separation of 2 Åbetween the nearest neighbor groups
that form a minimal potential contact with the central molecule (Fig. 1(E)).
This makes the central DDQ completely isolated potentially from its neighbors.

4 Cell Patterns Used in Simulations of Physical
Phenomena

Computation on CA is a local process: the next state of a cell is determined by
the interactions between the cell and its nearest neighbors only. Each cell is a
finite state machine, and several cells, as well as cell configurations representing
classical logic gates, have been built experimentally using quantum dots, single
molecules, etc. However, computation in which a decision pattern is generated
through the interactions among a large number of cells has not been realized yet,
even though theoretical models are in abundance in the literature. If realized,
one would obtain a fast evolution toward the solution of a problem, i.e. many
cells would be involved simultaneously in the emergence of a solution.

In this way, the essential mechanisms of different natural phenomena can be
captured by varying the initial pattern and the proper combination of DDQ
conformers inside the sub-patterns. Classically, to solve a differential equation,
we consider a generalized solution and then determine the coefficients following
rules according to certain assumptions. However, in a pattern-based solution,
only the key features of the phenomenon are encoded. The encoded pattern and
the CA rules are so correlated that every single step taken by the pattern fol-
lows the equation; in particular the end-points of patterns continuously provide
solutions of differential equations. Thus, man-made equations are not required
in such a CA universe or in nature. This encoding process would be as versatile
as our day-to-day computer programming if a distinct pattern could be used as
a basic unit that would remain constant during pattern evolution.

Different regions of the bi-layers of a DDQ molecule on an Au (111) surface re-
orient into distinctly different ordered arrangements as soon as excess electrons
are injected to the assembly. Similar to a circuit, the assembly then triggers the
excess elections to propagate following particular rules and finally form a new
map of electrons. Manipulating the local architecture, we tune the propagation
of electrons as if they diffuse through the surface similar to a heat flow or to
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the redistribution inside a circle as if normal cells mutate to cancer cells inside
a tissue. Since electron propagation is visible in the tunneling current image, we
represent the complete event as interplay of balls with four colors representing
the four cell states. Thus, electron propagation rules encode cellular automata
(CA) rules, and the monolayer will act like a CA grid. The electrons either enter
a molecule (birth of a CA cell), remain there (survive) or leave (death), similar
to artificial life simulations.

For each particular input pattern, we observed spontaneous flipping of weak
bonds between molecules, building a new communication circuit by creating and
destroying several optional paths connecting hundreds of cells. Building a new
circuit turns it creative, simply because the total number of circuits that could
be generated for a particular kind of problem is nearly infinite. Unlike supercom-
puters, the hardware itself talks to multiple cells at a time, corrects error in the
process, and thus it exhibits a form of intelligence. During execution, exchange
of an electron or a few kilo-calories of energy enables wireless computation with
minimum external power supply. While a Pentium IV processor with a device
density of < 109/cm2 dissipates approximately 100 W/cm2, the DDQ-HCA
with a device density of 1014/cm2 dissipates approximately 1 W/cm2; thus heat
generation is significantly minimized. In principle, a solution is generated collec-
tively, so even if some cells stop working suddenly, the entire computation does
not collapse, but rather the system reaches a solution.

5 Discussion and Conclusions

DDQ molecules tend to act in coordination with many other molecules in large
areas, whereby the electrical charge density in an area makes the molecules in-
cline in similar ways. The area-wise inclination of molecules results in structures
called networks (or circuits)—a name adopted because of the tendency of elec-
trical charges to travel from molecule to molecule via the geometrically shortest
path between molecules. Areas of molecules are distinguished by their type, sev-
eral of which are shown in [4].The type of a network to which a molecule belongs
is not to be confused with the state of the molecule, which is only determined
by the distribution of electrical charge on the molecule. A network type has no
counterpart in traditional models of CA. It does, however, influence the domi-
nance of transition rules, which means that the probability that a rule is applied
to a certain cell increases or decreases depending on the network type, as demon-
strated in [4].This characteristic of DDQ-based CA makes them very useful from
a computation point of view, since it gives control over the type of rules that
can be applied on molecules via a single parameter that is the charge density in
localized areas. It allows the complicated functionality of the molecular layers to
be represented by relatively simple molecules. The formation of networks on the
molecular layer appears to be simultaneous: molecules in an area tend to change
their network type as a massively parallel operation, affecting all of them in the
area. This brings us to the topic of timing.

Timing in CA was originally thought to be synchronous by von Neumann,
meaning that all cells will be updated at the same time in successive discrete
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time steps. This mode of updating according to a central clock signal has set
the tone for most CA research to date, but there have been efforts by a minority
of CA researchers to follow a more flexible update mode. Called asynchronous
updating, this timing mode is everything what synchronous updating isn’t: the
selection of cells for update and the update times are determined in a random
fashion, thus abandoning the strict requirement of simultaneous updating of
cells. Asynchronous updating has found its way in CA simulations of processes
in nature for the obvious reason that those processes are usually not (micro-
)managed by a central clock signal. It has also found application for CA intended
for models of computation on nanometer scales [13],for similar reasons: it is
likely easier to let molecules process in their own natural way than trying to
synchronize them.

So, do the DDQ molecules in our model behave in an asynchronous way?
Though the lack of a central clock may suggest an affirmation to this question,
surprisingly the answer is not as straightforward. Since networks of molecules
change their type simultaneously, as pointed out above, there is an element of
synchronicity involved, but network types tend to remain within areas of similar
charge densities. The change of network types thus appears as a mixture of
synchronous and asynchronous timing. For the update of cell states, the picture
looks different, however: this appears to be a purely asynchronous affair. That
does not exclude determinism of behavior: like the asynchronous CA in [13],the
DDQ-based CA are able to conduct certain deterministic operations.

Nature exhibits sophisticated collective information processing capabilities
that show similarities to our brain, the reproduction of multi-cellular organisms,
and so on. In this context, global co-ordination emerges from the decentralized
communication between simple components. This particular feature has impor-
tant advantages over man-made supercomputers where a central unit explicitly
controls all computation processes. The first advantage is that all functional
parts no longer need to be connected to the central control via physical wiring
in order to increase the speed (approximately 10 km wiring/cm2 area of an inte-
grated chip). The second advantage is that the loss of connection with a central
control unit will not jeopardize the entire system, thus making it more robust.
The third advantage is that allocated resources are equally divided. In the past
such wireless and powerless computation has been proposed in theoretical models
cellular automata.

Cellular automation may be used to model artificial life that follows defining
characteristics of living systems. We have demonstrated the existence of such
artificial life forms as a logic pattern that evolves in hundreds of molecules in
a molecular layer. The layer consists of DDQ molecules that reversibly switch
between four states. A molecule may change states of its six (or, depending on
the local network configuration: four) neighbors at a time following particular
transition rules for the birth, survival and death of cells and thus create a new
electron transport circuit for a new problem. The way patterns change over
time is thus strongly dependent on their arrangement on the molecular layer,
and we have especially observed this for two types of patterns, i.e. linear and



658 S. Sahu et al.

circular patterns. For the first, the pattern changes over time as if electrons
diffuse throughout the surface, and for the second the pattern changes as if
normal tissue cells mutate continuously to give rise to cancer cells [4].

Individual molecules are wired quantum-mechanically to each other, and com-
munication between them enables wireless information transport without any
power supply required. Since CA can accurately model numerous real-world
phenomena and systems ranging from genetics to economics, the physical real-
ization of such CA would lead to a better understanding of the world around
us. Even though we have reproduced only a few kinds of supercomputing pro-
cesses on the molecular layer, other fundamental properties like those found in
the central nervous system such as adaptation, plasticity, and self-organization,
might be realized in the near future on molecular layers.
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Abstract. We show how natural universal computations can be achieved
on one-dimensional cellular automata. That model of computation is ob-
viously Turing complete but how can we effectively program any given
computation is far less known. In this paper we are interested in intrinsic
universality; we want a CA in which any other CA can be represented and
simulated with no intermediate coding relevant to another computation
model. The first step is to abstract from the space-time diagram in favor
of a more essential dependency graph. Then such dependency graph can
be projected on grids. This work shows that grids put forward causality
in place of space-time contingencies.

1 Introduction

In this paper, we first exhibit very simple computations on one-dimensional
cellular automata, CA. We observe how usual algorithms are fundamentally
parallel and can be easily implemented on CA. By observing how information
flows during the process we are able to explain how the task of programming on
such a model can be done by abstracting the contingencies of the machine —
in particular space and time — to a more general concept of causality. This is
how the space-time diagram is replaced by a grid. A grid is simply the universal
basic dependency graph of any CA and can then realize any CA computation.

A simulation is first achieved by the dynamical construction of a grid into the
space-time diagram of a CA viewed as the hardware, and by the projection of
the space-time diagram of a CA to be simulated into the grid.

Universality is then built by injecting the coding of the transition rules of a
CA into the whole process.

2 Examples of Computations

2.1 Clocking and Subclocking

That first example is probably of no practical use, but will serve us as an illus-
tration of a very simple but fundamental principle for CA programming.

The construction produces a family of clocks all derived from a main clock.
Each successive subclock ticks one tick over two of the previous clock, so that if
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the main clock is periodic withf period p, on cell i the period will be 2ip. The
behavior is quite simple and exactly reflects what one would have done in real
life: if someone ticks you, you just have to wait two ticks before ticking yourself
as in Fig. 1. In this figure, ticks are represented by black squares.

(a) p = 2 (b) p = 6

Fig. 1. Two clocks of period p and their subdivisions. (Time going downward.)

Let us emphasize the nature of the construction. In fact, whatever the first
cell produces (regular clocking or not, even if not algorithmically produced),
the algorithm produces for each cell a subclock (one tick over two) of the one
produced by the previous cell. We distinguish here two important things:

– the initial process (what is produced on the first cell);
– the iterative process (what is produced from the flow of information trans-

mitted by the previous process). This locality feature is the crux of program-
ming, and the source of modularity.

Processes are standing against one another: the previous providing inputs for
the next. This geometrical construction is the main idea which underlies the
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concept of grids and leads to a very natural implementation of computation
composition.

2.2 From Clocks to Firing Squad Synchronization Solutions

In the previous example the construction tightly intermixes the machine and the
algorithm realized by the machine. It may seem that the construction is tricky
whereas explanations are quite simple. In fact, what really matters is the logic
of the construction. The hardware contingencies may be a source of confusion if
the logic has not been properly clarified. We now give a much more interesting
example.

The problem can be stated as the following:

Whatever be the length of the line, from an “empty” initial configuration
— empty except for the first cell — the transition rules should make all
cells enter simultaneously in the same state for the first time.

Among the numerous solutions, we focus on one that has interesting properties
for our discussion. That solution is due to Mazoyer (see [7]) and is illustrated in
Fig. 2.

Fig. 2. Mazoyer’s solution on a line of length 32. (Time going downward.)

What can be observed is that the recursive process uses some kind of clock
division process. One can see a kind of period made of three states that fills



Achieving Universal Computations on One-Dimensional Cellular Automata 663

the first main triangle, its first subdivision in the second triangle which stands
against the first (the frontier is represented by the blank signal), etc.

Except for technical details, one can see that the algorithm in this solution is
based on a kind of clock division algorithm similar to the previous example. The
main difference is that no clock is located on a single cell anymore: each clock
has to be realized by some computation that takes place in a dedicated part of
the space-time diagram. Each clock runs in a triangle delimited by blank signals.
For each clock what exactly happens inside the dedicated zone of other clocks is
of no importance, only the communication that takes place at blank signals is
meaningful. If it seems odd to the reader that the quiescent state has been used
as a signal, this is just a trick used by Mazoyer to optimize the total number
of states of his solution. The reader may imagine that this could be another
dedicated state. That “frontier” signal is the border of triangles one standing
against another.

So what makes the real difference in both examples is that in the second
one the main direction of any clock (see Sablik [11]) is not vertical but a line
with some slope. Further it moves in the space during the computation and uses
more and more cells as time grows. These moves constraint the moves of the
next subclock, thus producing related speeds of clock moves (they are related in
the same way as are their periods).

2.3 Addition and Multiplication

In the previous examples, we started from implemented computations and ab-
stracted them to kinds of blocks of computations together with their geometrical
organization. Now we proceed in the converse way. We start with the two ele-
mentary arithmetical operations, plus and times, and use them to illustrate how
we can organize computations in the space-time diagram of CA.

1 4 8
+ 2 7 4

4 2 2
(a) Addition

1 4 8
× 2 7 4

5 9 2 =148×4
1 0 3 6 . =148×70
2 9 6 . . =148×200
4 0 5 5 2

(b) Multiplication

Fig. 3. The usual addition and multiplication algorithms

What should be remarked is that in these two algorithms results are produced,
on each line, digit by digit and from right to left. This is due to propagation of
carries which induces dependencies between digits as illustrated in Fig. 4.

A simple rotation of those graphs, as in Fig. 5, shows how these graphs are
just space-time diagrams of treillis automata.
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224

(a) Addition

.

5 9 2

6301

692

25504

.

.

(b) Multiplication

Fig. 4. Dependency graphs as treillis automata

Observe that we removed many unnecessary technical details of the algorithms
like carry management, value bounding, etc. For more information about this,
we refer to [1] for the multiplication and to [8] for these computations in the
context of grids.

2

2

4

(a) Addition

.

5

9

2

6

3

0

1

6

9

2

2

5

5

0

4

.

.

(b) Multiplication

Fig. 5. Dependency graphs

One can remark that the dependency graphs we obtain can be projected in the
space-time diagram of any CA. There were two approaches to this question which
are due to Cole (see [3]) and Choffrut & Čulik (see [2]). Whatever approach is
taken, the result is the same and the general idea is the following (from section 5.1
in [8]):

It is sufficient to have two independent communication channels to be
able to simulate any one-dimensional CA whatever be its neighborhood.

Every dependency graph of a CA computation is the Cayley graph of a monoid
with two generators and every such Cayley graph can be embedded in a depen-
dency graph. Thus, in a fundamental sense, this means that what really matters
is the dependency graph, not the way it is embedded into a CA machine. The
programmer must focus on the underlying dependency graph of the computation
to be implemented. He/she must formalize it, and the compiler will embed it as
needed.

Observe that in a dependency graph there is no concept of space or time.



Achieving Universal Computations on One-Dimensional Cellular Automata 665

3 Computing on Grids

We previously stressed that what matters is the dependency graph: the imple-
mentation should not interfere with the logic. Of course to compute something,
one needs to exhibit an adequate embedding of the dependency graph into the
space-time diagram of the machine. So a question arises: how can we embed it?
A first answer is provided by Cole (see [3]) and Choffrut & Čulik (see [2]) embed-
dings. These embeddings are just as regular as the Cayley graph is. We want to
overcome any physical contingency related to such a regularity: it should be an
abstract regularity rather than a physical one given by neighborhoods {−1, +1},
{0, +1} or {−1, 0} as in Cole and Choffrut & Čulik. This leads to the concept
of grids: roughly, a grid is any representation — possibly quite irregular — of a
treillis. The sole constraint is that any causality in the representation has to be
a causality in the implementing machine (i.e. respects the dependency cones).
We refer the reader to [10] for question on complexity relative to neighborhood
equivalence.

(a) Rational (b) Irregular

Fig. 6. Different embeddings of a treillis in classical CA. (Time going downward.)

Given a CA with neighborhood {−1, 0, +1} one can construct in this CA
many different representations of the dependency graph of a given computation.
What does mean construct? A possible informal answer is to draw such a graph
in the space-time diagram of the given CA. The generators of the monoid of the
dependency graph can be represented by CA signals (see [12]) that meet. Any
meeting corresponds to an element of the monoid. Though it is easy to imagine a
very regular embedding as shown in Fig. 6(a) (this is called a rational grid since
slopes of signals are rationals and constant), it is possible to use more general
embeddings as illustrated in Fig. 6(b). Note that any usable embedding must
be constructible by a CA with neighborhood {−1, 0, +1} from a finite initial
configuration.
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3.1 Simulation

Suppose that on a given elementary initial configuration (a unique cell not qui-
escent), the CA G is able to construct a grid as defined in the previous section.
Example of such a grid constructor are shown in figures 7(a) and 7(b). Given
another CA S to be simulated on its initial configuration IS (an example is
shown in Fig. 7(c), it is possible to construct a CA Sim, that is able to embed
the space-time diagram of S on IS in the grid constructed by G.

Fig. 8 shows how the whole process is done. Fig. 8(a) shows a rational embed-
ding of the space-time diagram of CA of Fig. 7(c). Things are pretty clear when
the grid is rational: it is easy to see that each column embeds the trace of the
simulated CA. When the grid is irregular, as show in Fig. 8(b), it is much more
difficult to see the original space-time diagram, but it is sufficient to remark that
one can simply bend the rational embedding as needed.

(a) G1

Initial elementary configuration

(b) G2

Initial configuration

(c) Excerpt of some S
computing a sum mod-
ulo 2

Fig. 7. Elements of a simulation. (Time going downward.)

In the illustrations, we omit many technical details concerning the relative
positionning of the two initial configurations of G and S, we refer the interested
reader to [8]. Let us stress that this construction is uniform.

3.2 Universality

To achieve universality it is necessary to be able to inject a coding of the tran-
sition rules of the machine to be simulated into the simulating machine so as to
be able to execute any needed transition rule at each node of the grid.
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Initial configuration

(a) S embedded in G1

Initial configuration

(b) S embedded in G2

Fig. 8. Simulation. (Time going downward.)

In previous embeddings, meeting points correspond to elementary cells of
the underlying machine. This can be generalized: a meeting point can be a
piece of the underlying space-time diagram. The idea is that in this piece of
the space-time diagram any complex computation can be done. In particular,
a computation that produces the result of the local transition function of the
simulated CA. Such a computation can be, for example, the one by Martin
(see [6]) or by Ollinger (see [9]).

The injection of the transition rules to the nodes of the grid, can be made by
a very similar construction of the injection of the initial configuration of the CA
to be simulated.

4 Towards Grids

Let us recall the notions of intrinsic universality. The one by Durand & Róka,
see [5], requires that a single step of an automaton is simulated by a fixed
number of steps of another automaton (up to some coding of configurations).
The second one by Ollinger, see [9], introduces a grouping operation. These
definitions preserve the strong regular nature of CA (either temporal or spatio-
temporal regularity). In our work such a regularity can be kept or removed
as wanted. In a grid, computations can be made asynchronously. This gives a
powerful flexibility to implement interesting operations with grids.
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For example, a composition is easy to obtain. It is sufficient to distort two
computations such that outputs of one of the computations correspond to inputs
of the other. Moreover, as any treillis distortion is a suitable grid (remind that
this means that the distortion respects causality of the machine), one can even
imagine dynamic distortions, i.e. distortions driven by another computation or
by the computation itself. A simple example of the latter could be obtained when
output bits of a computation are located on some non regular frontier. Then, any
computation can stand against it, thereof uses an irregular border as its inputs
and thus computes on a dynamic grid. Thus, when programming some function,
it is no more necessary to output bits of results along some regular frontier.
Whatever way the output is generated, the computation can be injected on a
grid as it is, and even combined into a composition. In some way, this leads to
computations that synthesize their circuits during their runs.

The general schema does not require any regularity. What is essential is to
focus on causality. Afterall, this is the only unavoidable feature in computing:
if you want a machine to execute a program, the causalities induced by the
machine must be compatible with the causalities expressed by the program.

Acknowledgments. The author would like to thank Pr. Jacques Mazoyer for
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2. Choffrut, C., Čulik II, K.: On real-time cellular automata and trellis automata.
Acta Informatica 21, 393–407 (1984)

3. Cole, S.N.: Real-time computation by n-dimensional iterative arrays of finite-states
machines. IEEE Transactions on Computers C-18/4, 349–365 (1969)

4. Delorme, M., Mazoyer, J.: Cellular Automata: A Parallel Model. In: Mathematics
and Its Applications, vol. 460, ISBN: 0-7923-5493-1. Kluwer Academic Publishers,
Dordrecht (1999)
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