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Information Fusion with the Power Average 
Operator 

Ronald R. Yager1 

Abstract. The power average provides an aggregation operator that allows 
argument values to support each other in the aggregation process.  The properties 
of this operator are described.  We see this mixes some of the properties of the 
mode with mean.  Some formulations for the support function used in the power 
average are described.  We extend this facility of empowerment to a wider class of 
mean operators such as the OWA and generalized mean.  

Keywords: information fusion, aggregation operator, averaging, data mining. 

1   Introduction 

Aggregating information using techniques such as the average is a task common in 
many information fusion processes.  Here we provide a tool to aid and provide 
more versatility in this process.  In this work we introduce the concept of the 
power average [1].  With the aid of the power average we are able to allow values 
being aggregate to support each other.  The power average is provides a kind of 
empowerment as it allows groups of values close to each other to reinforce each 
other.  This operator is particularly useful in group decision making [2]. 

2   Power Average 

In the following we describe an aggregation type operator called the Power 
Average (P–A), this operator takes a collection of values and provides a single 
value [1].  We define this operator as follows: 

P-A(a1, ..., an) = 

(1 + T(ai)) ai
i = 1

n

(1 + T(ai))
i = 1

n
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where T(ai) = Sup(ai, aj)
j = 1
j ≠ i

n
 and is denoted the support for a from b.   

Typically we assume that Sup(a, b) satisfies the following three properties: 

1.  Sup(a, b) ∈ [0, 1] 
2.   Sup(a, b) = Sup(b, a) 
3.   Sup(a, b) ≥ Sup(x, y)     if |a - b|  ≤  |x - y| 

In condition three we see the more similar, closer, two values the more they 
support each other. 

We shall find it convenient to denote Vi = 1 + T(ai) and wi = Vi

Vi
i = 1

n
.  Here 

the wi are a proper set of weights, wi ≥  0 and Σi wi = 1.  Using this notation we 

have  

P-A(a1, ..., an) = Σi wi ai, 

it is a weighted average of the ai.  However, this is a non-linear weighted average 

as the wi depend upon the arguments. 

Let us look at some properties of the power average aggregation operator.  First 
we see that this operator provides a generalization of the simple average, if Sup(ai, 

aj) = k for all ai and aj then T(ai) = k (n - 1) for all i and hence P-A(a1, ..., an) = 1
n

 

Σi ai.  Thus when all the supports are the same the power average reduces to the 

simple average. 
We see that the power average is commutative, it doesn't depend on the 

indexing of the arguments.  Any permutation of the arguments has the same power 
average. 

The fact that P-A(a1, ..., an) = Σi wi ai where wi ≥  0 and  Σi wi = 1 implies that 

the operator is bounded, Min[ai] ≤ P-A(a1, a2, ..., an) ≤ Maxi[ai]. This in turn 

implies that it is idempotent, if ai = a for all i then P-A(a1, ..., an) = a. 

As a result of the fact that the wi depend upon the arguments, one property 

typically associated with averaging operator that is not generally satisfied by the 
power average is monotonicity.  We recall that monotonicity requires that if ai 

≥ bi for all i then P-A(a1, ..., an) ≥ P–A(b1, ..., bn).  As the following example 

illustrates, the increase in one of the arguments can result in a decrease in the 
power average. 

Example:  Assume the support function Sup is such that 

Sup(2, 4) = 0.5  Sup(2, 10) = 0.3  Sup(2, 11) = 0 
    Sup(4, 10) = 0.4  Sup(4, 11) = 0 

the required symmetry means S(a, b) = S(b, a) for these values. 
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Consider first P-A(2, 4, 10), in this case 

T(2) = Sup(2, 4) + Sup(2, 10) = 0.8 
T(4) = Sup(4, 2) + Sup(4, 10) = 0.9 
T(10) = Sup(10, 2) + Sup(10, 4) = 0.7 

and therefore P-A(2, 4, 10) = 
(1 + 0.8) 2 + (1 + 0.9) 4 + (1 + 0.7) 10

(1 + 0.8) + (1 + 0.9) + (1 + 0.7)
 = 

5.22. 

Consider now P-A(2, 4, 11), in this case 

T(2) = Sup(2, 4) + Sup(2, 11) = 0.5 
T(4) = Sup(4, 2) + Sup(4, 11) = 0.5 
T(11) = Sup(11, 2) + Sup(11, 2) = 0 

and therefore 

P-A(2, 4, 11) = 
(1.5)(2) + (1.5) 4 + (1)(1.1)

1.5 + 1.5 + 1
  = 5 

Thus we see that P-A(2, 4, 10) > P(2, 4, 11). 
As we shall subsequently see, this ability to display non-monotonic behavior 

provides one of the useful features of this operator that distinguishes it from the 
usual average.  For example the behavior displayed in the example is a 
manifestation of the ability of this operator to discount outliers.  For as we shall 
see in the subsequent discussion, as an argument moves away from the main body 
of arguments it will be accommodated, by having the average move in its 
direction, this will happen up to point then when it gets too far away it is 
discounted by having its effective weighting factor diminished. 

To some degree this power average can be seen to have some of the 
characteristics of the mode operator.  We recall that the mode of a collection of 
arguments is equal to the value that appears most in the argument.  We note that 
the mode is bounded by the arguments and commutative, however as the 
following example illustrates it is not monotonic. 

Example:  Mode(1, 1, 3, 3, 3) = 3.   Consider now Mode(1, 1, 4, 7, 8) = 1, here 
we increased all the threes and obtain a value less than the original. 

As we shall subsequently see, while both the power average and mode in some 
sense are trying to find the most supported value, a fundamental difference exists 
between these operators.  We note that in the case of the mode we are not 
aggregating, blending, the values we are counting how many of each, the mode 
must be one of the arguments.  In the case of power average we are allowing 
blending of values. 

It is interesting, however, to note a formal relationship between the mode and 
the power average.  To understand this we introduce an operator we call a Power 
Mode.  In the case of the power mode we define a support function Supm(a, b), 
indicating the support for a from b, such that 

1)  Supm(a, b) ∈ [0, 1] 

2)  Supm(a, b) = Supm(b, a) 
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3)  Supm(a, b) ≥ Supm(x, y)     if |a - b|  ≤  |x - y| 
4). Supm(a, a) = 1. 

We then calculate Vote(i) = 

j = 1

n
Supm(ai, aj) and define 

           Power Mode(a1, ..., an) = ai* 

where i* is such that Vote(i*) = Maxi[Vote(i)], it is the argument with the largest 

vote.  
If Supm(a, b) = 0 for b ≠ a (Supm(a, a) = 1 by definition) then we get the usual 

mode.  Here we are allowing some support for a value by neighboring values).  It 
is also interesting to note the close relationship to the mountain clustering method 
introduced by Yager and Filev [3] and particularly with the special case of 
mountain clustering called the subtractive method suggested by Chu [4].  Some 
connection also seems to exist between the power mode and the idea of fuzzy 
typical value introduced in [5].   

3   Power Average with Binary Support Functions 

In order to obtain some intuition for the power average aggregation operator we 
shall consider first a binary support function.  Here we assume 

Sup(a, b) = K if |a - b|  ≤  d 
Sup(a, b) = 0 if |a - b| > d. 

Thus two values support each if they are less than or equal d away, otherwise  
they supply no support.  Here K is the value of support.  In the following 
discussion we say a and b are neighbors if |a - b|   ≤   d.  The set of points that are 
neighbors of x will be denoted Νx.  We shall call a set of points such that all 

points are neighbors and no other points are neighbors to those points a cluster.  
We note if x and y are in the same cluster then the subset {x} ∪ Νx = {y} ∪Νy 
defines the cluster.  

Let us first assume that we have two disjointed clusters of values A = {a1, ….,  

an1
} and B = {b1, ..., bn2

}.  Here all points in A support each other but support 

none in B while the opposite holds for B.  In this case for all i and j, |ai - aj| ≤ d, |bi 

- bj| ≤ d and |ai - bj| > d.  Here for each ai in A, T(ai) = K(n1 - 1) and for each bj in 

B, T(bj) = K(n2 - 1).  From this we get 1 + T(ai) = (1 - K) + n1 K and 1 + T(bj) = 

(1 - K) + n2K.  Using this we have 

P-A(a1, ..., an1
, b1, ..., bn2

) =

((1 - K) + n1K)ai + ((1 - K) + n2K))bj
j = 1

n2

i = 1

n1

n1(1 - K + n1K) + n2(1 - K + n2K)
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Letting a = 1
n1

 ai
i = 1

n1
 and b = 1

n2
 bj
j = 1

n2
 we have 

PA(a1, ..., an1
, b1, ..., bn2

) = ((1 - K) + n1K)n1a + ((1 - K) + n2K))n2b
n1(1 - K + n1K) + n2(1 - K + n2K)

 

We get a weighted average of the cluster averages.  If we let 

wa =  (1 - K + n1K)n1
n1(1 - K + n1) + n2(1 - K + n2K)

 and wb =  (1 - K + n2K)n2
n1(1 - K + n1) + n2(1 - K + n2K)

 

then PA(a1, ..., an1
, b1, ..., bn2

) = wa a + wb b.  We note wa + wb = 1 and 

wa
wb

 = 
(1 - K + n1K) n1
(1 - K + n2K) n2

 

We see that if k = 1, then wa
wb

 = (
n1

 n2
)2, the weights proportional to the square 

of the number of elements in the clusters.  Thus in this case wa = 
n1

2

n1
2 + n2

2
 and  

wb = 
n2

2

n1
2 + n2

2
.  On the other hand if we allow no support, K = 0, then wa

wb
 = 

 n1
 n2

, 

the weights are just proportional to the number of elements in each cluster.  In this 

case wa = 
n1

n1 + n2
 and wb = 

n2
n1 + n2

.  Thus we see as we move from K = 0 to  

K = 1 we move from being proportional to number of elements in each cluster to 
being proportional to the square of the number of elements in each cluster.  We 
now begin to see the effect of this power average.  If we allow support then 
elements that are close gain power.  This becomes a reflection of the adage that 
there is power in sticking together.  We also observe that if n1K and n2K >>  

(1 - K), there are a large number of arguments, then again wa
wb

 = (
 n1
 n2

)2.  

Furthermore we note if n1 = n2 then we always have wa
wb

  = 1, here we take the 

simple average. 
Consider now the case when we have q disjoint clusters, each only supporting 

elements in its neighborhood.  Let aji for i = 1 to nj be the elements in the jth 

cluster. In this case 

P-A = 

(1 - K + njK)aji
i = 1

nj

j = 1

q

nj(1 - K + njK)
j = 1

q
 

Σ Σ

Σ Σ

Σ



402 R.R. Yager
 

Letting 1
nj

 aji
i = 1

nj

 = aj, the individual cluster averages, we can express this 

power average as  

P-A = =
((1 - K + njK) nj aj)

j = 1

q

(1 - K + njK) nj
j = 1

q
 

Again we get a weighted average of the individual cluster averages,  

P-A = 

j = 1

q
wj aj.  In this case wi = (1 - K + niK) ni

(1 - K + njK) nj
j = 1

q
 and  

wi
wj

 = 
(1 - K + niK) ni
(1 - K + njK) nj

. 

Again we see if K= 1, then 
wi
wj

 = 
ni

2

nj
2

, the proportionality factor is the square of 

the number of elements.  Here then wi = 
ni

2

j = 1

q

nj
2

.  If we allow no support, K = 0, 

then wi
wj

 = 
nj
ni

, here we get the usual average.  We note that K is the value of 

support. 
Consider a case with small value of support, 1 - K ≈1.  Furthermore assume ni 

is a considerable number of elements while nj is a very small number.  Here  

|(1 - K) + nj K ≈ 1 while (1 - K) + ni K ≈ n1K then wi
wj

 = 
ni

2K
(1 - K)nj

 ≈ 
ni

2K
nj

. 

On the other hand if ni and nj are large, niK and njK >>> 1 then 
wi
wj

 = 
ni

2

nj
2

.  

We that if (1 – K) << njK for all j then P-A = 

nj
2 aj

j = 1

q

nj
2

j = 1

q
, the weights in 

proportion to the square of the number of elements. 
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Let us observe another interesting property of this P-A.  To most clearly 

illustrate the property we shall assign K = 1.  Assume we have two clusters then 
with K = 1 we have  

P-A = 
n1

2 a1 + n2
2 a2

n1
2 + n2

2
 

If n1 ≈ n2 = 1
2

n, they have the same number of elements then P-A = 

1
2

 a1 + 1
2

 a2.  Assume now that the second cluster is broken into two equal 

disjoint clusters.  Then P(A) = n1
2 a1 + n2

2 a2 + n3
2 a3

n1
2 + n2

2 + n3
2

 with n1 = 1
2

  n, n2= 1
4

 n 

and n3 = 1
4

 n.  From this we see that  

P(A) =
1
4

 a1 + 1
16

 a2 + 1
16

 a3

1
4

 + 1
16

 + 1
16

  = 4 a1 + a2 + a3
6

 

We see cluster one's influence (power) has greatly increased because of the 
fragmentation of cluster two.. 

We now consider a situation in which we have three sets of elements, A = {a1, 

..., an1
}, B = {b1, ..., bn2

} and C = {c1, ..., cn3
}.  We assume all the elements in 

A are a neighbors with each other as well as with those in B.  Those in B are 
neighbors with each other and also with those in both A and C.  The elements in C 
are neighbors with themselves and B.  Thus B is seen to be between A and C.  
Here we see that for all ai we have T(ai) = K(n1 + n2 - 1), for all bi T(bi) = K(n1 + 

n2 + n3 - 1) and for all ciT(ci) = K(n2 + n3 - 1).  Let a = 1
nj

Σ aj, b = 1
n2

Σ bj and 

c = 1
n3

 Σ bj.  Using this we have 

P-A = (1 - K + K( n1 + n2))n1a + (1 - K + K( n1 + n2 + n3)n2a + (1 - K + K( n2 + n3)n3a
(1 - K + K( n1 + n2))n1 + (1 - K + K( n1 + n2 + n3)n2 + (1 - K + K( n2 + n3)n3

 

Again for illustrative purposes we assume K =1 hence 

P-A = (n1 + n2)n1a + nn2b + (n2 + n3)n3c
(n1 + n2)n1 + nn2 + (n2 + n3)n3

 

P-A =  (n - n2)n1a + nn2b + (n - n1)n3c

n2 - 2n1n3

 

We see that relationship between the weights associated A and C is 
wa
wc

 = 
(n - n3)n1
(n - n1)n3

 = 
(n2 + n1)n1
(n2 + n3)n3

 

If n2 is large compared with both n1 and n3 then wa
wc

 = 
n1
n3

, their relationship is 

proportion to the number of elements in A and C.  If n2 is small compared with 
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both n1 and n3 then wa
wc

 = 
n1

2

n3
2

.  Consider the relationship between A and B, 

which is analogous to B and C, wa
wb

 = 
n1(n1 + n2)

(n)(n2)
. If n2 is large compared with 

n1 and n3 then wa
wb

 ≈ 
n1 n2

(n)(n2)
 ≈ 

n1
n

 

We consider now another situation that exemplifies the possibility for non-
monotonicity.  Let {a1, ..., an, an+1} be a collection of points in the same cluster, 

for all ai and aj , |ai - aj| ≤ d.  In this case P-A{a, ..., an+1} = 1
n + 1

 ai
j = 1

n + 1
 = a.  

Assume now that we replace an+1 by an+1 where an+1 ≥ an+1 and |an+1 - aj| > d 

for all other aj.  That is we have moved the n+1th observation all the way to the 

right.  In this case we can view the situation having two disjoint clusters one being 

{a1, ..., an} and the other {an+1}.  As we already established the power average 

of this situation is 

P-A(a1, a2, ..., an, an+1} = w1a + w2an+1 

here a = 1
n ai

i = 1

n
 and an+1 = an+1 + Δ.  We also note that 

a = 1
n+1

 an+1 + n
n+1

a hence  

a = 
(n + 1) a - an+1

n  

In the situation where K = 1 we have  
w1
w2

 = 
n1

2

n2
2
 = n

2

1
.  This gives us w1 = 

n2

n2 + 1
 and w1 = 1

n2 + 1  
and hence  

P-A(a1, ..., an+1) = n2

n2 + 1
a + 1

n2 + 1
a) = a +  

Δ - (n - 1)  (an+1 - a)

n2 + 1
 

Thus we see that if an+1 was the right most element then we get a non-

monotonicity as long as Δ is not too big. 

4   Forms for the Support Function 

The support function is a crucial part of the power average method.  The form of 
the support function is context dependent.  Here we describe some useful 
parameterized formulations for expressing the Sup function.  The determination of 
the values of the parameters may require the use of some learning techniques.  We 
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recall if R is the range of the values to be aggregated then Sup:R × R →[0, 1] such 
that Sup(a, b) = S(b, a), and Sup(a, b) ≥ Sup(x, y) if |a - b| ≤ |x - y|. 

In the preceding we assumed a binary Sup function, Sup(a, b) = K if |a - b|  ≤  d 
and Sup(a, b) = 0 if |a - b| > d.  A natural extension of this is to consider a 
partitioned type support function.  Let Ki for i = 1 to p be a collection of values 

such that Ki ∈ [0, 1] and where Ki  > Kj if i < j.  Let di be a collection of values 

such that di ≥ 0 and where di < dj if i < j.  We now can define a support function 

as  

If |a - b| ≤ d1 then Sup(a, b) = K1 

If dj - 1< |a - b| ≤ dj then Sup(a, b) = Kj       for j = 2 to p - 1 
If dp - 1< |a - b|  then Sup(a, b) = Kp  

Inherent in the above type of support function is a discontinuity as we move 
between the different ranges. 

One form of the Sup function with a continuous transition is Sup(a, b) =  

K e-α(a - b)2 where K ∈ [0,1] and α ≥ 0.  We easily see that this function is 
symmetric and lies in the unit interval.  We see K is the maximal allowable 
support and α is acting as a attenuator of the distance.  The larger the α the more 
meaningful differences in distance.  We note here that a = b gives us Sup(a, b) = K 
and as the distance between a and b gets larger,  Sup(a, b) →0. 

Using this form for support function we have  

P-A(a1, ..., an) = 
(1 + T(ai))ai

i = 1

n

(1 + T(ai))
i = 1

n
 

where T(ai) = Ke-α(ai - aj)2

j = 1
j ≠ i

n
.  Denoting Vi = 1 + T(ai) we express  

P-A(a1, ..., an) = Σi wi ai where wi = Vi

Vj
j = 1

n
.  Since e-α(ai - ai)

2
 = 1 we can 

express Vi = 1 - K + K Mi where Mi = e-α(ai - aj)2

j = 1

n
.  Noting the similarly of 

Mi to the mountain function used in mountain clustering [3] we call Mi the 

support mountain at i.  It's clear that if ap = aq then Mq = Mp and hence Vq = Vp.  

It is also noted that Mi ≥ 1 for all i. 
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We see here that  

P-A(a, ..., an) = 
(1 - K) ai + K Miai

i = 1

n

i = 1

n

n(1 - K) + K Mi
i = 1

n
 

In the special case where K = 1 then Vi = Mi and hence 

P-A(a1, ..., an) = 
Miai

i = 1

n

Mi
i = 1

n
 

A simple algorithm approach somewhat is in spirit of the mountain method is 
as follows: 

1.  For each argument value ai, i = 1 to n, initialize Mi = 0 

2.  For each data point aj j = 1 to n augment Mi, Mi = Mi + e-α(ai - aj)
2 

This builds the support mountain. 
3.  Calculate Vi = (1 - K) + K Mi - linear transformation of mountain values 

4.  Calculate wi = Vi

Vj
j = 1

n
 

5.  P-A = Σi wi ai 

As we have noted an important characteristic of this power average is its 
possibility for displaying non-monotonicity, a feature that can provide one of the 
benefits of this method.  The following example illustrates the occurrence of non-
monotonicity. 

Example: Consider the Power average of twenty elements, 10 of which are ten's 
and 10 of which are five's.  In this case the ordinary average evaluates to 7.5 and 
for any choice of K and α the power average also evaluates to 7.5.  The following 
table shows what happens as we change one of the values originally equal to 10.  
For illustrative purposes we used K = 1 and α = 0.3 

 Value AVE P-A 
 10 7.5 7.5 
 9 7.45 7.398 
 8 7.4 7.278 
 7 7.35 7.193 
 6 7.3 7.083 

Σ Σ

Σ
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 5 7.25 6.982 
 11 7.55 7.4727 
 12 7.6 7.346 
 13 7.65 7.259 
 14 7.7 7.232 
 15 7.75 7.22856 
 16 7.8 7.22828 
 17 7.85 7.22829 
 18 7.9 7.22831 
 19 7.9 7.22832 
 20 8 7.22834 

We see that as we decrease the value and move it towards the cluster of fives 
our P-A decrease, although more dramatically than the average.  Essentially the 
variable value is beginning to join the cluster of fives and increase its power.  In 
the case of increasing the value, initially the power average instead of increasing 
as does the average begins to decrease, exhibiting non–monotonicity.  This 
decrease is a reflection of the fragmentation of the cluster at 10, it is losing its 
power because it lost a member and the cluster at five has gained in power more 
than compensating for the increase in value.  This decreasing in the P-A continues 
as we increase the element until it reaches eighteen at which time we see a 
reversal and now the P-A starts increasing   At this point the increase in value 
begins overcoming the loss of power.  But still we are favoring the cluster of fives. 

We describe another approach to obtaining the support function that combines 
the partitioning of the first method with the continuity displayed by the 
exponential function.  This approach motivated by Zadeh's idea of computing with 
words [6] makes use of fuzzy systems modeling technology [7].  We shall briefly 
describe the possibilities for this approach.  Using this approach we can express 
our support function by a description of its performance in terms of a set of rules 
using linguistic values.  For example. 

If difference is very small then support is K1 

If difference is small then support is K2 

If difference is moderate the support is K3 

If difference is large the support is K4 

If difference is very large the support is K5 

Representing the italic terms as fuzzy sets, VS, S, M, L, and VL respectively and 
denoting the  difference between a and b as Δ than we have a collection of fuzzy 
if-then rules, a fuzzy systems model: 

If Δ is VS then S(a, b) = K1 

If Δ is S then S(a, b) = K2 

If Δ is M then S(a, b) = K3 

If Δ is L then S(a, b) = K4 

If Δ is VL then S(a, b) = K4 
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here Ki < Kj if i > j. 

To obtain the Sup(a, b) we use the inference mechanism of fuzzy systems 
modeling. Letting Δ = |a - b|  then the analytic formulation of our support  
function is 

Sup(a, b) = K1VS(Δ) + K2S(Δ) + K3M(Δ) + K4L(Δ) + VL(Δ)

VS(Δ) + S(Δ) + M( Δ) + L(Δ) + VL(Δ)
 

here VS(Δ) indicates the membership of Δ in the fuzzy subset VS. 
We now look at the power average in the special situation in which the 

arguments that are being aggregated, the ai, always be in the unit interval [0, 1].  

This is a situation that occurs in many environments when the arguments are 
degrees of belief.  We note a particular important situation is in the aggregation of 
fuzzy subsets. 

In the case when the arguments lie in the unit interval a very natural definition 
for the Sup function is  

Sup(a, b) = K(1 - |a - b|α) 

for α ≥ 0.  Here we see that the term |a - b| is a measure of distance between the 
arguments.  We note since a and b are assumed to lie in the unit interval then |a - 

b| must also lie in the unit interval as well as |a - b|α.  We see |a - b| → 0 indicates 
the elements are close and |a - b| → 1 indicates the elements are far.  We see that is 
Sup is related to the negation of the distance. 

We notice that because a and b always lie in the unit interval, |a - b| = 1 if and 
only if one of the arguments equal zero and the other equals one.  Furthermore we 
note that α modifies the effects of distance.  Since (a - b) < 1 then α > 1 reduces 
the effect of distance while α < 1 increase the effects of distance. We note Sup(a, 
b) = K when a = b. 

As in the preceding  P-A(a1, ..., an) = 

Vi ai
i = 1

n

Vi
i = 1

n
.  Let us consider the case 

when α = 2, Sup(a, b) = K(1 - (a - b)2).  Here Vi = 1 + T(ai) with  

T(ai) = K (1 - (ai - aj)2)
j = 1
i ≠ j

n
. Realizing 1 – (ai - ai)

2 = 1 then Vi = (1 - K) + 

K (1 - (ai - aj)2)
j = 1

n
. Letting Qi = (ai - aj)2

j = 1

n
 we have  

Vi = 1 - K + Kn – Kqi 
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Let us carefully look at the term Qi.  We shall denote a = 1n aj
j = 1

n
, it is the 

average, and denote Var(a) = 1
n (aj - a)2

j = 1

n
.  Using these notations we can 

express 

Qi = (ai - aj)2

j = 1

n
 = (ai - a) - (aj - a) 2

j = 1

n
 

Qi = (ai - a)2

j = 1

n
 + (aj - a)2

j = 1

n
 - 2 (ai - a)(aj - a)

j = 1

n
 

Realizing that 

j = 1

n
 (ai - a) (aj - a) = (ai - a)

j = 1

n
 (aj - a) = 0 we have 

Qi = 

j = 1

n
 (ai - a)2 + 

j = 1

n
 (aj - a)2 

Letting Δi = |ai - a|. we have  Qi = n  Δi
2+ n Var(a).   

From this we have Vi = (1 - K) + Kn - nK(Δi
2 + Var(a)).  Using this we get that  

i = 1

n
Vi = n(1 - K) + Kn2 - n2 K Var(a) - n K Δi

2

i = 1

n
 

Since 1
n Δi

2

i -

 = Var(a) then 

i = 1

n
Vi  = n(1 - K) + Kn2 - 2n2KVar(a) 

Let us consider the special case where K = 1, here Vi = n (1 - Var(a) - Δi
2) and 

i = 1

n
Vi = n2 (1 - 2 Var(a)). Using this  

P-A(a1, ..., an) = 

Vi ai
i = 1

n

n2(1 - 2Var(a))
 =  a + 

a Δi
2

i = 1

n
 - Δi

2ai
i = 1

n

n(1 - 2Var(a))
 

We see that if the arguments are such that there are a few large values far away 

from the the rest of the values mean then the power average tends to pull a 
downwards. 
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Another interesting case of Sup(a, b) = K(1 - |a - b|α) occurs when α = 1, here 
Sup(a b) = K(1 - |a - b|).  We note that |a - b| = Max(a, b) - Min(a, b) = (a ∨ b) -  

(a ∧ b).  Here again P-A(a1, ..., an) = i = 1

n
Vi ai

Vi
i = 1

n
 .  In this case  

Vi = 1 + (ν − 1) Κ − Κ
j = 1

n
 [(ai ∨ aj) - (aj ∧ ai)] 

Without loss of generality let us assume that the ai have been indexed in 

descending order, thus ai is the ith largest of the arguments.  In this case 

ai = Min[ai, aj] and aj = Max[ai, aj]  for j = 1 to i - 1 

aj = Min[ai, aj] and ai = Max[ai, aj]  for j = i + 1 to n 

ai = Min[ai, aj] = Max[ai, aj]  for j = 1 

If we denote Qi = 

j = 1

n
|ai - aj| then  

Qi = 

j = 1

n
 (ai ∨ aj) - (ai ∧ aj) =

j = 1

i - 1
aj + 

j = i + 1

n
ai - (

j = 1

i - 1
ai + 

j = i + 1

n
aj) 

Qi = 

j = 1

i - 1
aj - 

j = i + 1

n
aj - (

j = 1

i - 1
ai - 

j = i + 1

n
ai) =

j = 1

i - 1
aj - 

j = i + 1

n
aj + (n - 2i)ai 

Denoting SL(i) = aj
j = 1

i
 and SU(i) = 

j = i + 1

n
aj then Qi = SL(i) - SU(i) +  

(n - 2i) ai and 

Vi = 1 + (n - 1) K - K (SL(i) - SU(i) + (n - 2i) ai) 

and 

i = 1

n
Vi = n + n (n - 1) K - K

j = 1

n
 (SL(i) - SU(i) + (n - 2i) ai). 

Let us consider the special case where K = 1, hence 

Vi = n - (SL(i) - SU(i) + (n - i)ai) 

i = 1

n
Vi = n2 - 

i = 1

n
SL(i) - S(u)i + (n - 2i)ai 
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Since ai appears in n - i + 1 of the SL and in i of SU, 

i = 1

n
SL(i) - SU(i) = 

i = 1

n
 (n – 2i +1)ai then 

i = 1

n
Vi  = n2 - 

i = 1

n
 (2n - 4i + 1) ai = n2 - n(2n - 1)a + 

4

i = 1

n
i ai 

5   Empowering Alternative Mean Operators 

The average operator, 1
n

 

i = 1

n
ai, provides one example of mean type aggregation 

operators  [8].  We recall that mean type operators are characterized by 
boundedness, commutativity and monotonicity.  Other examples of mean type 
operators are the Max, Min, and Median.  In the preceding with the power average 
we extended the average operator by introducing the idea of support.  That is with 
the P-A operator we allowed arguments in the aggregation to support each.  This 
effectively result is a weights associated with the different arguments depending 
upon the support they obtained from other elements being aggregated.  In this 
section we want to generalize the idea of supported aggregation to a wider class of 
mean operators. 

We first look at the OWA operator [9] and introduce the Power-OWA 
operator.  An OWA operator can be defined in terms of function g:[0, 1] → [0, 1], 
called a BUM function, having the properties: 1.  g(0) = 0, 2.  g(1) = 1 and 3.  g(x) 
≥ g(y) if x > y.  Using this BUM function the OWA aggregation OWAg(a1, ..., an) 

can be expressed as OWAg(a1, ..., an) = 

i = 1

n
wi bi where bi is the ith largest of 

aj and the wi are a collection of weights such that wi = g( i
n

) - g(i - 1
n

).  It can be 

easily shown these weights are proper, wi ∈ [0, 1] and 

i = 1

n
wi = 1. 

By appropriately selecting g we can implement different types of aggregation 
imperative.  For example if g(x) = x then the OWA operator becomes the ordinary 

average with wj = 1
n

 for all j.  If g is such that g(x) = 1 for all x > 0 then we get the 

maximal aggregation, OWAg(a1, ..., an) = Maxi[ai].  If g is such that g(x) = 0 for 

all x < 1 the we get the minimal aggregation, OWAg(a1, ..., an) = Mini[ai].  A 

median type operator can be implemented if g(x) = 0 for x < 0.5 and g(x) = 1 for 

x ≥ 0.5.  A class of OWA operators can be obtained if g(x) = xα with α ≥ 0.  
Before preceding we shall find it convenient to use a slightly different notation 

for the OWA operator.  We shall let index be an indexing function such that 
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index(i) is the index of the ith largest of the aj.  Thus we order the argument in 

descending order and then index(i) is the index of ith element in this list.  Since bi 

is the ith largest of the aj using this index function we see that bi = aindex(i).  

Using this we can express the OWA aggregation as 

OWAg(ai, ..., an) = 

i = 1

n
wi aindex(i), 

where the wi as before are wi = g( i
n

) - g(i - 1
n

).  

As in the preceding we shall let Sup(a, b) indicate the support for a from b.  We 
note that using the index operator Sup(aindex(i), aindex(j)) still represents the 

support of the second argument for the first.  Because of the nature of the Sup 
function, Sup(a, b) ≥ Sup(x, y) when |a – b| < |x - y|, and the ordering captured by 
the index function we note that if i < j < k then Sup(aindex(i), aindex(j)) 

≥ Sup(aindex(i), aindex(k)) and Sup(aindex(j), aindex(k)) ≥ �Sup(aindex(i), 

aindex(k)).   We let T(aindex(i)) denote the support of the ith largest argument by 

all the other arguments, hence  

T(aindex(i)) = 

j = 1
j ≠ i

n
Sup(aindex(i)  aindex(j)). 

In addition we shall let Vindex(i) = 1 + T(aindex(i)) and denote TV = 

Vindex(i)
i = 1

n
.  We now can define the Power OWA operator as 

POWAg(a1, ..., an) = 

i = 1

n
ui aindex(i) 

where ui =g( Ri
TV

) - g(Ri - 1
TV

) with Ri = 

j = 1

i
Vindex(j), by definition Ri-1 = 0.  

We note that TV = Rn.  We also observe that Ri = R i-1 + Vindex(i). 

We can show in the special case where g(x) = x that this reduces to the Power 
Average.  In this case 

Another class of mean operators, called generalized means [8], are defined by 

GMα(a1, a2, ..., an) = 1
n aj

α

j = 1

n 1/α
 

where α ∈ [- ∞, ∞].  It is required when using these operators that aj ≥  0.  The 

inclusion of support in this class of mean operators can be accomplished in the 
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following manner.  Again let T(ai) =

j = 1
j ≠ i

n
Sup(ai, aj), Vi = 1 + T(ai) and TV = 

i = 1

n
Vi. the power generalized mean is defined as. 

PGMα(a1, ..., an) = ( 1
TVi = 1

n
Vi ai

α)
1
α  

We shall not further look at the properties of the Power OWA or the power 
generalized mean only to indicate that they act with respect to their mother 
operations in a manner similar to the way the power average acts with respect to 
the average. 

In the preceding we assumed that all of the objects being aggregated were of 
equal importance.  Here we shall consider the effect on the power operations of 
having differing importances associated with the objects being aggregated.  We 
assume that each being aggregated has a weight ωi ∈ [0, 1] indicating its 

importance.  The procedure for including this importance involves a simple 
modification of the value Vi which we recall is defined as  Vi = 1 + T(ai) where 

T(ai) = 

j = 1
j ≠ i

n
Sup(ai, aj).  In order to include the weights we suggest  redefining  

Vi as  

Vi = ωi (1 + 

j = 1
j ≠ i

n
ωj Sup(ai, aj)) 

and then continuing as described in preceding. 

6   Conclusion 

We introduced the power average operator to provide an aggregation operator 
which allows argument values to support each other in the aggregation process.  
The properties of this operator were described.  We discussed the idea of a power 
median.  We introduced some formulations for the support function used in the 
power average.  We extended the idea of empowerment, supported aggregation, to 
a wider class of mean operators such as the OWA and generalized mean.  
Interesting applications of this approach to aggregation can be seen in data 
mining, group decision making and information fusion. 
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