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This volume is dedicated to Professor Mario Fedrizzi, our distinguished colleague 
and dear friend, on the occasion of his 60th anniversary which was celebrated by 
the scientific community during the TRENTO 2009 international workshop on 
Preferences and Decisions, held in Trento (Italy) on April 6-8, 2009. 

 

Professor Mario Fedrizzi received his B.Sc. in Mathematics from the University 
of Padua and his M.Sc. in Operational Research from the University of Venice. 
Since then he has been associated with the University of Trento, where he 
founded the Applied Mathematics group at the Faculty of Economics around 25 
years ago, remaining ever since the scientific and organizational leader of the group. 

Moreover, Professor Mario Fedrizzi has over the years been appointed to 
prominent academic positions as Head of Department, Dean of Faculty, and Vice-
Rector, and has also been entrusted with prestigious top management positions 
within the economic community of Trento and beyond.   

The TRENTO 2009 international workshop was chosen to best celebrate  
Professor Mario Fedrizzi's anniversary by gathering a group of top scientists to 
present papers in areas in which he has long been active. The international work-
shop has also been an excellent opportunity to celebrate the close friendship and 
long term research collaboration between Trento and the Catania and Naples 
groups coordinated respectively by Professor Benedetto Matarazzo and Professor 
Aldo Ventre. For this reason, the organizing committee of TRENTO 2009 was 
extended to our colleagues from Benevento, Catania, and Naples. 

As members of an informal seminal network of distinguished Italian scholars 
with strong international research connections, Professors Mario Fedrizzi, 
Benedetto Matarazzo, and Aldo Ventre have all played for years a leading role in 
the study and development of fuzzy set theory in Italy and worldwide, and our 
research community is greatly indebted for their devotion, support, advice, and 
encouragement. 



Preface

Decision making is an omnipresent, most crucial activity of the human being, and 
also of virtually all artificial broadly perceived “intelligent” systems that try to 
mimic human behavior, reasoning and choice processes. It is quite obvious that 
such a relevance of decision making had triggered vast research effort on its very 
essence, and attempts to develop tools and techniques which would make it 
possible to somehow mimic human decision making related acts, even to automate 
decision making processes that had been so far reserved for the human beings. The 
roots of those attempts at a scientific analysis can be traced to the ancient times 
but – clearly – they have gained momentum in the recent 50 or 100 years 
following a general boom in science. 

Depending on the field of science, decision making can be viewed in different 
ways. The most general view can be that decision making boils down to some 
cognitive, mental process(es) that lead to the selection of an option or a course of 
action among several alternatives. Then, looking in a deeper way, from a 
psychological perspective this process proceeds in the context of a set of needs, 
preferences, rational choice of an individual, a group of individuals, or even an 
organization. From a cognitive perspective, the decision making process proceeds 
in the context of various interactions with the environment. On the other hand, 
from a normative, formal perspective, the decision making process proceeds in the 
context of formal tools for the representation of sets of options (alternatives), 
preferences and utility functions, rationality, and mathematical tools that can be 
employed; that is, is concerned with a logic of decision making. 
The perspective assumed in this volume is mainly within the formal approach to 
decision making. We will present some promising new developments that can help 
either get a deeper insight into the traditional formal models of decision making or 
show new conceptual tools that may lead to new models of a greater generality, an 
enhanced expressive power or a better computational efficiency. The authors deal 
with many types of decision making settings, notably with broadly perceived 
decision making under uncertainty, risk, imprecision (fuzziness), etc., and use a 
wide array of tools including probability theory, statistics, fuzzy logic, rough sets 
theory, etc.  

A notable feature of contributions included in this volume is that they span a 
whole array of topics in the sense that they include – first – works dealing with 
mathematical tools which are indispensible for a meaningful analysis of virtually 
all realistic decision making models, exemplified by the modeling of various kinds 
of uncertainty and imprecision of information. Second, new developments in 
crucial underlying elements of decision making models, exemplified by preference 
modeling, are discussed. Third, multicriteria and multiperson decision making 
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models are presented, notably those related to a crucial problem of consensus 
reaching. However, some papers are also included that present new mathematical 
tools that at present may only be viewed as a conceptually viable alternative to 
traditional mathematical tools. The above mentioned more basic works are 
complemented by a large group of papers which are concerned with the 
applications of various decision making models, notably in economics, finance, 
management, etc. Applications to problems related to new challenges related to, 
for instance, social networks are noteworthy. 

Now, to give the reader a more detailed view of what is considered in this 
volume, we will present a brief description of the contents of the particular 
contributions in the order in which they appear. This may help the interested 
readers find the paper of interest. 

Gianni Bosi and Romano Isler (“Continuous utility functions for nontotal pre-
orders: a review of recent results”) present some recent and significant results 
concerning the existence of a continuous utility function for a not necessarily total 
preorder on a topological space. First, the authors recall an appropriate continuity 
concept, a so-called weak continuity relative to a preorder on a topological space. 
Then, they provide a general characterization of the existence of a continuous 
utility function for a not necessarily total preorder on a topological space and 
show some relevant consequences, for the theory and applications. 

Christer Carlsson and Robert Fullér (“Risk assessment of SLAs in grid comput-
ing with predictive probabilistic and possibilistic models”) developed a hybrid 
probabilistic and possibilistic technique for assessing the risk of a service level 
agreement (SLA) for a computing task in a cluster/grid environment. The prob-
ability of success with the hybrid model is estimated higher than in the probabilis-
tic model since the hybrid model takes into consideration the possibility distribu-
tion for the maximal number of failures derived from a resource provider’s obser-
vations. The hybrid model shows that one can increase or decrease the granularity 
of the model in accordance to needs. One can reduce the estimate of the P(S*=1) 
by making a rougher, more conservative, estimate of the more unlikely events of 
(M+1, N) node failures. The authors note that M is an estimate which is dependent 
on the history of the nodes being used and can be calibrated to “a few” or to 
“many” nodes.  

Erio Castagnoli and Gino Favero (“From benchmarks to generalised expecta-
tions”) are concerned with the case of the possibility of considering random vari-
ables as sets (hypo- or epigraphs), instead of mere functions which allows to treat 
random variables in the language and with the tools of measure theory, instead of 
the commonly adopted functional analysis. They show that, when looking at a 
random variable as a set, the concepts of the expectation and the expected utility 
(either “classical” or of the Choquet type) turn out to be slight variations of the 
same procedure of measuring a set (the truncated hypo- or epigraph corresponding 
to the given random variable) by means of a product measure (or capacity). They 
propose to extend this line of reasoning by using a generic (“non-product”) meas-
ure or capacity to evaluate the set under examination, thus obtaining a broader 
concept of an expectation that includes dependence of the utility function on the 
state (or dependence of the probability on the amount). Basically, they justify the 
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argument that the expectation of a random variable equals its own certainty 
equivalent, thus pointing out the equivalence between any random variable and a 
corresponding degenerate one. They also recover two different ways for defining 
the associative property of a generalized expectation. 

Roy Cerqueti and Giulia Rotundo (“Memory property in heterogeneously popu-
lated markets”) deal with the long memory of prices and returns of an asset traded 
on a financial market. They consider a microeconomic model of the market, and 
prove theoretical conditions on the parameters of the model that give rise to long 
memory. In particular, the long memory property is detected in an aggregation 
framework of agents under some distributional hypotheses on the market's  
parameters. 

Giulianella Coletti and Barbara Vantaggi (“From comparative degrees of belief 
to conditional measures”) are concerned with the “best” definition of conditional 
model for plausibilty functions and its subclass of possibility functions. They 
propose to use the framework of the theory of measurements by studying the 
comparative structure underlying different conditional models. This approach 
gives an estimate of the “goodness” and “effectiveness” of the model by pointing 
out the rules necessarily accepted by the user. Moreover, the results obtained by 
the authors that are related to the characterization of comparative degree of belief 
by means of conditional uncertainty measures are shown to be useful in decision 
theory. It is shown that they are in fact necessary when we need a model for a 
decision maker taking simultaneously into account different scenarios. 

Salvador Cruz Rambaud and María José Muñoz Torrecillas (“Delay and inter-
val effects with subadditive discounting functions”) consider delay effect that 
appears as an anomaly of the traditional discounted utility model according to 
which a decrease of the discount rate is performed as waiting time increases. Since 
in this description it is not clear if the benchmark or the discounted amount avail-
ability is fixed or variable, and hence some authors use the terms like common 
difference effect, immediacy effect, interval effect, etc., the authors try to clarify 
the concepts of delay and interval effect and deduce some relationships between 
these concepts and certain subadditive discounting functions. 

Bice Cavallo, Livia D'Apuzzo and Gabriella Marcarelli (“Pairwise comparison 
matrices: some issue on consistency and a new consistency index”) consider mul-
ticriteria decision making with the pairwise comparisons  of alternatives as an 
useful starting point for determining the ranking on the set of alternatives. The 
authors consider consistency conditions of the pairwise comparison matrix that  
allows to determine a weighted ranking that perfectly represents the expressed 
preferences. With reference to the new general unifying context proposed, the 
authors provide some results on a consistent  matrix and a new measure of consis-
tency that is  easier to compute. Moreover, they provide an algorithm to check the 
consistency of a pairwise comparison matrix and an algorithm to build consistent 
matrices. 

Fabio Baione, Paolo De Angelis and Riccardo Ottaviani (“On a decision model 
for a life insurance company rating”) consider a rating system which is meant as a 
decision support tool for analysts, regulators and stakeholders in order to evaluate 
capital requirements of a firm under risky conditions. The authors define an  
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actuarial model to measure the economic capital of a life insurance company bas-
ing the model on option pricing theory. In order to asses a life insurance company 
economic capital, they involve coherent risk measures already used in the assess-
ment of banking Solvency Capital Requirements, according  to Basel II standards. 
The authors show some results obtained by the application of the actuarial model 
to a portfolio of surrendable participating policies with minimum return guaran-
teed and option to annuitize. 

Didier Dubois and Hélène Fargier (“Qualitative bipolar decision rules: toward 
more expressive settings”) reconsider their previous approach to multicriteria 
decision-making whose idea is to choose between alternatives based on an analy-
sis of the pros and cons, i.e. positive or negative arguments with various degrees 
of strength. Arguments correspond to criteria or affects of various levels of impor-
tance and ranging on a very crude value scale containing only three elements: 
good, neutral or bad. The basic decision rule considered in this setting is based on 
two ideas: focusing on the most important affects, and when comparing the merits 
of two alternatives considering that an argument against one alternative can be 
counted as an argument in favor of the other. It relies on a bipolar extension of 
comparative possibility ordering. Lexicographic refinements of this crude decision 
rule turn out to be cognitively plausible, and to generalize a well-known choice 
heuristics. It can also be viewed in terms of the cumulative prospect theory. The 
paper indicates several lines of future research, especially an alternative to the 
bicapacity approach to bipolar decision-making that subsumes both the cumulative 
prospect theory and our qualitative bipolar choice rule. Moreover, an extension of 
the latter to non-Boolean arguments is outlined.  

Mario Fedrizzi, Michele Fedrizzi, Ricardo Alberto Marques Pereira and Matteo 
Brunelli (“The dynamics of consensus in group decision making: investigating the 
pairwise interactions between fuzzy preferences”) present an overview of the soft 
consensus model in group decision making and investigate the dynamical patterns 
generated by the fundamental pairwise preference interactions on which the model 
is based. The dynamical mechanism of the soft consensus model discussed is 
driven by the minimization of a cost function combining a collective measure of 
dissensus with an individual mechanism of opinion changing aversion. The dis-
sensus measure plays a key role in the model and induces a network of pairwise 
interactions between the individual preferences. The collective measure of dissen-
sus is based on nonlinear scaling functions of the linguistic quantifier type and 
expresses the degree to which most of the decision makers disagree with respect to 
their preferences regarding the most relevant alternatives. In the extended formu-
lation of the soft consensus model the extra degrees of freedom associated with 
the triangular fuzzy preferences, combined with non linear nature of the pairwise 
preference interactions, generate various interesting and suggestive dynamical 
patterns which are discussed. 

János Fodor (“Fuzzy preference relations based on differences”) introduces 
quaternary fuzzy relations in order to describe difference structures. He develops 
and discusses three models which are based on three different interpretations of an 
implication. Moreover, the author determines functional forms of the quaternary 
relation by solutions of functional equations of the same type. 
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Cesarino Bertini, Gianfranco Gambarelli and Angelo Uristani (“Indices of col-
lusion among judges and an anti-collusion average”) propose two indices of collu-
sion among judges of objects or events in the context of subjective evaluation, and 
an average based on these indices. Their work may be viewed to have different 
aims, notably to serve as a reference point for appeals against the results of voting 
already undertaken, to improve the quality of scores summarized for awards by 
eliminating those that are less certain, and, indirectly, to provide an incentive for 
reliable evaluations. The authors present a computational algorithm and point out 
possible applications of their technique in various fields, from economics to fi-
nance, insurance, arts, artistic sports, etc. 

José Luis García-Lapresta, Bonifacio Llamazares and Teresa Peña (“Scoring 
rules and consensus”) consider that voters rank order a set of alternatives and a 
scoring rule is used for obtaining a set of winning alternatives using the scoring 
rule that is not previously fixed, but analyzing how to select one of them in such a 
way that the collective utility be maximized. In order to generate that collective 
utility, the authors ask voters for additional information in that agents declare 
which alternatives are good and their degree of optimism. With that information 
and a satisfaction function, for each scoring rule they generate individual utility 
functions such that the utility an alternative has for a voter should depend on 
whether this alternative is a winner for that scoring rule and on the position this 
alternative has in the individual ranking. Taking into account all these individual 
utilities, the authors aggregate them by means of an OWA operator and generate a 
collective utility for each scoring rule. By maximizing the collective utility, we 
obtain the set of scoring rules that maximizes consensus among the voters. Then, 
applying one of these scoring rules a collective weak order on the set of alterna-
tives is obtained, that is, a set of winning alternatives. 

Salvatore Greco, Benedetto Matarazzo and Roman Słowi ski (“Dominance-
based rough set approach to interactive evolutionary multiobjective optimization”) 
present an application of the dominance-based rough set approach (DRSA) to 
interactive evolutionary multiobjective optimization (EMO). The preference in-
formation elicited by the decision maker in successive iterations consists in sorting 
some solutions of the current population as “good” or “bad”, or in comparing 
some pairs of solutions. The “if ... then ...” decision rules are then induced from 
this preference information using the dominance-based rough set approach 
(DRSA). The rules are used within EMO to focus on populations of solutions 
satisfying the preferences of the decision maker. This makes possible to speed up 
convergence to the most preferred region of the Pareto front. The resulting interac-
tive solution schemes, corresponding to the two types of preference information, 
are called DRSA-EMO and DRSA-EMO-PCT, respectively. Within the same 
methodology, the authors propose the DARWIN and DARWIN-PCT methods make 
it possible to take into account robustness issues in multiobjective optimization. 

Janusz Kacprzyk and Sławomir Zadro ny (“Supporting consensus reaching 
processes under fuzzy preferences and a fuzzy majority via linguistic summaries”) 
consider the classic approach to the evaluation of  of degrees of consensus due to 
Kacprzyk and Fedrizzi in which a soft degree of consensus is a degree to which, 
for instance, “most of the important individuals agree as to almost all of the rele-
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vant options'”. The fuzzy majority, expressed as fuzzy linguistic quantifiers (most, 
almost all, …) is handled via Zadeh's classic calculus of linguistically quantified 
propositions and Yager's OWA (ordered weighted average) operators. The soft 
degree of consensus is used for supporting the running of a moderated consensus 
reaching process along the lines of Fedrizzi, Kacprzyk and Zadro ny. Linguistic 
data summaries, in particular in its protoform based version proposed by Kacprzyk 
and Zadro ny are employed to indicate in a human consistent way some interest-
ing relations between individuals and options to help the moderator identify cru-
cial (pairs of) individuals and/options with whom/which there are difficulties with 
respect to consensus. An extension using ontologies representing both knowledge 
on the consensus reaching process and domain of the decision problem is  
discussed 

Gabriella Marcarelli and Viviana Ventre (“Decision making in social actions”) 
consider decision making in social action that involves both individual optimal 
choices and social choices. The theory of “perverse effects” by Boudon shows that 
the sum of rational individual choices can produce a very undesirable global ef-
fect. Then, decision making in social action must take into account the theory of 
cooperative games with many players in order to obtain the optimal strategies. 
Because of the semantic uncertainty in the definition of social actions, it is prefer-
able assume that the issues are represented by fuzzy numbers. This is the basic 
idea proposed by the authors. 

Antonio Maturo, Massimo Squillante and Aldo G.S. Ventre (“Coherence for 
fuzzy measures and applications to decision making”) consider coherence, which 
is a central issue in probability, in a class of measures that are decomposable with 
respect to Archimedean t-conorms, in order to interpret the lack of coherence. 
Coherent fuzzy measures are utilized for the aggregations of scores in multiperson 
and multiobjective decision making. Furthermore, a geometrical representation of 
fuzzy and probabilistic uncertainty is considered in the framework of join spaces 
and, more generally, algebraic hyperstructures. The consider extensions of the 
coherence principle in nonadditive settings, exemplified by ambiguous or fuzzy 
settings, that is relevant for non-additive models in decision making, e. g., non-
expected utility models. 

Paola Modesti (“Measures for firms value in random scenarios”) proposes a set 
of axioms in order to characterize appropriate measures of the (random) value of a 
company which provides a (sublinear) valuation functional consistent with the 
existence of a financial market. It makes it possible to give an upper and a lower 
bound to the value of a firm. The author considers also, in a random context, some 
classical valuation methods and test them with respect to the axioms. 

Hannu Nurmi (“Thin rationality and representation of preferences with implica-
tions to spatial voting models”) is concerned with some aspects of thin rationality 
that is of a primary concern in the current micro economic theory and formal po-
litical science. This concept refers to the behavioral principle stating that rational 
people act according to their preferences. Provided that the individual's preference 
is a binary, connected and transitive relation over alternative courses of action, one 
can define a utility function that represents the individual's preferences so that 
when acting rationally – i.e. in accordance with his/her preferences –  he or she 



Preface XIII

acts as if maximizing his/her utility. In the case of risky alternatives, i.e. probabil-
ity mixtures of certain outcomes, a similar representation theorem states that the 
individual's preferences can be represented as a utility function with an expected 
utility property. These utility functions assign risky prospects utility values than 
coincide with weighted sums of the utility values of those outcomes that may 
materialize in the prospect. The weights, in turn, are identical with the probabili-
ties of the corresponding outcomes. The author discusses also spatial models in 
which the individuals are identified as their ideal points in a space, and similarly 
the decision alternatives are represented as points in the space. The author ap-
proaches the spatial voting games from the angle of aggregation paradoxes, nota-
bly those of Ostrogorski,  Simpson, the exam paradox, etc.. 

C.M. Sarris and A.N. Proto (“Quantum dynamics of non-commutative algebras: 
the SU(2) case”) discuss the application of the maximum entropy formalism 
(MEP) which makes it possible to find the dynamics of Hamiltonians associated 
with non commutative Lie algebras. For the SU(2) case, it is easy to show that the 
Generalized Uncertainty Principle (GUP) is an invariant of motion. The temporal 
evolution of the system is confined to Bloch spheres whose radius lay on the in-
terval (0;1). The GUP defines the fuzziness of these spheres inside domain for the 
SU(2) Lie algebra. 

Rita A. Ribeiro, Tiago C. Pais and Luis F. Simões (“Benefits of full-
reinforcement operators for spacecraft target landing”) discuss the benefits of 
using full reinforcement operators for site selection in spacecraft landing on plan-
ets. Specifically, the authors discuss a modified uninorm operator for evaluating 
sites and a fimica operator to aggregate pixels for constructing regions that will act 
as sites to be selected at lower spacecraft altitude. An illustrative case study of 
spacecraft target landing is presented to clarify the details and usefulness of the 
proposed operators.  

Giulia Rotundo (“Neural networks for non-independent lotteries”) shows the 
density of the set von Neumann –  Morgenstern utility functions on the set of 
utility functions that can represent arbitrarily well a given continuous but not in-
dependent preference relation over monetary lotteries. The main result obtained by 
the author is that without independence it is possible to approximate utility func-
tions over monetary lotteries by the von Neumann – Morgenstern ones with arbi-
trary precision. The approach used is a constructive one. Neural networks are used 
because of their approximation properties in order to get the result, and their func-
tional form provides both the von Neumann – Morgenstern representation and the 
necessary change of variables over the set of lotteries. 

Romano Scozzafava (“Weak implication and fuzzy inclusion”) defines a weak 
implication (H weakly implies E under P'') through the relation P(E|H)=1, where 
P is a (coherent) conditional probability. In particular (as a by-product) the author 
obtains “inferential rules” that correspond to those of default logic, and discusses 
also connections between the weak implication and the fuzzy inclusion. 

M. Socorro García-Cascales, M. Teresa Lamata and José Luís Verdegay (“The 
TOPSIS method and its application to linguistic variables”) modify the known 
TOPSIS model to allow for the same linguistic values as the input and output of 
the process. The proposed method is applied to the process of quality assessment 
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and accreditation of the industrial engineering schools within the Spanish univer-
sity system. 

Ronald R. Yager (“Information fusion with the power average operator”) deals 
with the concept of a power average that provides an aggregation operator which 
allows argument values to support each other in the aggregation process, and de-
scribes the properties of this operator. Some formulations for the support function 
used in the power average are described. The author extends the facility of em-
powerment to a wider class of mean operators such as the OWA and generalized 
mean.  

We wish to thank, first of all, all the authors for their excellent contributions 
and a great collaboration in this editorial project. Moreover, we wish to appreciate 
input and suggestion from the participants at long and inspiring discussions at 
TRENTO – 2009 The 5th International Workshop on Preferences and Decisions 
held in Trento, Italy on April 6 – 8, 2009 where the idea of publishing this volume 
has been conceived and then thoroughly discussed among the participants.  

We wish to thanks Dr. Thomas Ditzinger and Ms. Heather King from Springer 
for their multifaceted support and help in the editorial process of this volume. 

June 2010 Salvatore Greco 
Ricardo Alberto Marques Pereira 

Massimo Squillante 
Ronald R. Yager 
Janusz Kacprzyk 
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Continuous Utility Functions for
Nontotal Preorders: A Review of
Recent Results

Gianni Bosi and Romano Isler

Summary. We present some recent and significant results concerning the ex-
istence of a continuous utility function for a not necessarily total preorder on
a topological space. We first recall an appropriate continuity concept (namely,
weak continuity) relative to a preorder on a topological space. Then a gen-
eral characterization of the existence of a continuous utility function for a
not necessarily total preorder on a topological space is presented and some
consequences of this basic result are produced.

1 Introduction

Since the seminal papers of Aumann [2] and Peleg [27], the existence of a
continuous utility function for a not necessarily total preorder on a topolog-
ical space has been deeply studied by several authors.

If (X,�, t) is a topological preordered space, then a function
u : (X,�, t) −→ (R,≤, tnat) is said to be a continuous utility function à
la Richter-Peleg (see Peleg [27] and Richter [29]) or simply a utility function
if u : (X,�) −→ (R,≤) is an order-preserving function and u : (X, t) −→
(R, tnat) is continuous.

Despite of the fact that a utility function u for a nontotal preorder � does
not allow to recover � (i.e., to characterize it), one may think that it pro-
vides enough information about �. On the other hand, a representation of
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2 G. Bosi and R. Isler

this kind is based upon the existence of only one real-valued function and
therefore it is simpler than other representations of nontotal preorders (such
as, for example, the multi-utility representation studied by Evren and Ok
[16], according to which a preorder � on X is representable if there exists
a family U of increasing real-valued functions u on (X,�) such that for all
x ∈ X and all y ∈ X the inequalities x � y mean that for all u ∈ U the
inequalities u(x) ≤ u(y) hold).

Herden [17, 18] characterized the existence of a continuous utility function
for a not necessarily total preorder on a topological space by using the concept
of a (linear) separable system in a preordered topological space and showed
that the theorems of Debreu and Eilenberg can be obtained as corollaries of
his main result. Herden continued Mehta’s work (see e.g. Mehta [22, 24]), who
followed the spirit of Nachbin [25] as regards the combination of the classical
approach to mathematical utility theory with some of the most important
results in elementary topology.

Then Herden and Pallack [21] introduced the concept of a weakly con-
tinuous preorder in order to generalize in the most appropriate way the
notion of continuity to the case of a not necessarily total preorder on a
topological space. According to Definition 2.3 in Herden and Pallack [21],
a preorder � on a topological space (X, t) is said to be weakly continu-
ous if for every pair (x, y) ∈≺ there exists a continuous increasing function
uxy : (X,�, t) −→ (R,≤, tnat) such that uxy(x) < uxy(y).

Herden and Pallack then showed that the utility representation theorem
of Debreu is generalizable to the case of a non total preorder while this is
not the case of the utility representation theorem of Eilenberg (see Example
2.14 and Theorem 2.15 in the above mentioned paper of Herden and Pallack).
This means that there always exists a continuous utility function for a weakly
continuous preorder on a second countable topological space while there exist
weakly continuous preorders on connected and separable topological spaces
which are not continuously representable.

In a slightly more general framework, recently Bosi and Herden [5, 6] dis-
cussed the property according to which a topology t on a set X satisfies
the weakly continuous analogue of the Szpilrajn theorem (i.e., every weakly
continuous preorder on (X, t) can be refined or extended by a continuous
linear (total) preorder, or equivalently for every weakly continuous preorder
� on (X, t) there exists a continuous total preorder � on (X, t) such that
�⊂� and ≺⊂<). It is clear that the existence of a continuous utility func-
tion for a preorder � on a topological space (X, t) is equivalent to the ex-
istence of a continuous total preorder � on (X, t) which extends � and is
representable by a continuous utility function. Hence, if a topology t on a set
X is such that every weakly continuous preorder on (X, t) admits a continu-
ous utility representation, then t satisfies the weakly continuous analogue of
the Szpilrajn theorem.

In this paper, we present a review of some of the most significant re-
cent results concerning the existence of continuous utility functions for not
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necessarily total preorders. Despite of the fact that in this paper we are
only concerned with the existence of continuous utility representations, we
recall that in Bosi and Herden [8] the problem concerning the existence of
semicontinuous utility functions for nontotal preorders is also treated.

2 Notation and Preliminaries

If we denote by (X,�) a preordered set (i.e., a set X endowed with a reflexive
and transitive binary relation �), then a function u : (X,�) −→ (R,≤) is
referred to as a utility function à la Richter-Peleg (see Peleg [27] and Richter
[29]) if the following two conditions are verified:

U1: For all (x, y) ∈ X ×X , x � y ⇒ u(x) ≤ u(y).

U2: For all (x, y) ∈ X ×X , x ≺ y ⇒ u(x) < u(y).

Here ≺ is the strict part of � (namely, for all x, y ∈ X , x ≺ y if and only if
x � y and not(y � x)).

A utility function à la Richter-Peleg is more frequently called an order-
preserving function or simply a utility function.

It is clear that if � is a total preorder on X (i.e., for all x, y ∈ X either
x � y or y � x), then u is a utility function for � if and only if x � y is
equivalent to u(x) ≤ u(y) for all (x, y) ∈ X ×X .

If a function u : (X,�) −→ (R,≤) only satisfies condition U1, then it is
said to be increasing.

If � is a preorder on a set X then two elements x, y ∈ X are said to be
indifferent if we have that x � y and y � x, while they are said to be incom-
parable if neither x � y nor y � x.

Peleg [27] solved the problem raised by Aumann by providing for the first
time sufficient conditions for the existence of a continuous utility function for
a partial order on a topological space.

The reader may recall that a total preorder � on a topological space
(X, t) is said to be continuous if it satisfies one of the following equivalent
conditions:

C1: For all points x ∈ X both sets l(x) = {z ∈ X | z ≺ x} and
r(x) = {w ∈ X | x ≺ w} are open subsets of X .

C2: For all points x ∈ X both sets d(x) = {z ∈ X | z � x} and
i(x) = {w ∈ X | x � w} are closed subsets of X .

C3: For every pair (x, y) ∈≺ there exists some continuous increasing
function fxy : (X,�, t) −→ (R,≤, tnat) such that fxy(x) < fxy(y).
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Condition C1 requires that the order topology t� on X that is induced by
� is coarser than t.

We recall that the utility representation theorems of Debreu and Eilenberg-
Debreu (see Debreu [11, 12] and Eilenberg [13]) guarantee the existence of
a continuous utility function for a total preorder on a second countable and
respectively on a connected and separable topological space. Results of this
kind are nice since the combination of continuity of the total preorder � on
the topological space (X, t) and the topological conditions of second count-
ability or respectively connectedness and separability of (X, t) allow us to get
rid of suitable assumptions of order separability of �, which must be invoked
if one wants to characterize the existence of a continuous utility function u
for a total preorder � on an arbitrary topological space (X, t) (see e.g. Defini-
tion 1.4.3 and Proposition 1.6.11 in the book of Bridges and Mehta [9]). The
continuous utility representation problem in arbitrary concrete categories has
been very recently discussed by Bosi and Herden [7].

In mathematical utility theory the above condition C3 plays a very im-
portant role in order to determine sufficient conditions for the existence of a
continuous utility function for a not necessarily total preorder on a topological
space. Indeed, it is easy to show (see, for instance, Herden [17, Theorem 4.1])
that a preorder � on (X, t) can be represented by a continuous utility func-
tion u : (X,�, t) −→ (R,≤, tnat) if and only if there exists a countable family
{uk}k∈K of continuous increasing functions uk : (X,�, t) −→ (R,≤, tnat)
such that for every pair (x, y) ∈≺ there exists some k ∈ K such that
uk(x) < uk(y).

3 Weakly Continuous Preorders

Herden and Pallack [21] first introduced the concept of a weakly continuous
preorder in order to generalize in the most appropriate way the notion of
continuity to the case of nontotal preorders. According to Definition 2.3 in
Herden and Pallack [21], a preorder � on a topological space (X, t) is said
to be weakly continuous if for every pair (x, y) ∈≺ there exists a continuous
increasing function u : (X,�, t) −→ (R,≤, tnat) such that u(x) < u(y).

Weak continuity is obviously a necessary condition for the existence of a
continuous utility function for a not necessarily total preorder on a topolog-
ical space. Such a notion coincide with the classical notion of continuity if
one has to do with a total preorder.

Herden and Pallack then showed that the utility representation theorem of
Debreu is generalizable to the case of a nontotal preorder while this is not the
case of the utility representation theorem of Eilenberg-Debreu (see Example
2.14 and Theorem 2.15 in the above mentioned paper of Herden and Pallack).

We recall that a subset D of X is said to be decreasing if x ∈ D and z � x
imply that z ∈ D. Conversely, a subset I of X is said to be increasing if x ∈ I
and x � w imply that w ∈ I.
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From Burgess and Fitzpatrick [10], if (X,�, t) is a topological space and
S is a dense subset of [0, 1] such that 1 ∈ S, then a family {Gr}r∈S of open
decreasing subsets of X is said to be a decreasing scale in (X,�, t) if the
following conditions hold:

S1: G1 = X ;

S2: Gr1 ⊂ Gr2 for every r1, r2 ∈ S such that r1 < r2.

A preorder � on a topological space (X, t) is weakly continuous if and only
if for every (x, y) ∈≺ there exists a a decreasing scale {Gr}r∈S that separates
x from y (i.e., x ∈ Gr and y ∈ X \ Gr for every real number r ∈ S \ {1}).

Decreasing scales have been recently invoked by Alcantud et al. [1] in order
to prove the existence of a continuous utility function on a totally preordered
topological space without using the well known Debreu Open Gap Lemma.

We recall that a preorder � on a topological space (X, t) is said to be
closed if � is a closed subset of X × X with respect to the product topol-
ogy on X ×X . In some relevant cases a closed preorder � on (X, t) even is
weakly continuous. Indeed, if (X, t) is a compact (Hausdorff-)space or a lo-
cally compact second countable (Hausdorff-)space that is endowed with some
closed preorder �, then � is weakly continuous (see Herden and Pallack [21,
Proposition 2.12]).

It is well known that for every closed preorder � on (X, t) both sets d(x)
and i(x) are closed subsets of X . The reader may check that the converse
holds for linear (total) preorders but not in general (see also Nachbin [25]).

Let � be a preorder on X . Then a pair (x, y) ∈≺ is said to be a jump of
� if ]x, y[:= {z ∈ X | x ≺ z ≺ y} = ∅. Further, � is said to be dense if it has
no jumps.

With help of this notation we present the following proposition whose proof
is found in Bosi and Herden [8]. The reader may observe that condition (jjj)
below is just the property of spaciousness of the strict part ≺ of � according
to the terminology introduced by Peleg [27].

Proposition 3.1. Let � be a dense preorder on a topological space (X, t).
Then the following assertions hold:

(j) For all pairs (x, y) ∈≺ there exist disjoint decreasing, respectively
increasing, open subsets Ox, respectively Uy, of X such that x ∈ Ox
and X \ l(y) ⊂ Uy.

(jj) For all pairs (x, y) ∈≺ there exists an open decreasing subset Oxy
of X such that x ∈ Oxy ⊂ Oxy ⊂ l(y).

(jjj) For all pairs (x, y) ∈≺ the set l(y) is an open subset of X and
l(x) ⊂ l(y).
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(jv) For all pairs (x, y) ∈≺ the set
⋂

z∈r(x)
l(z) is a closed and the set l(y)

an open subset of X.

(ii) Any of the equivalent conditions of assertion (i) implies that � is weakly
continuous.

The following proposition concerns the general case when the preorder is not
necessarily dense.

Proposition 3.2. Let (X,�, t) be a topological preordered space and assume
that for every pair (x, y) ∈≺ the set l(y) is an open and the set d(x) is a
closed subset of X. Then � is weakly continuous provided that one of the
following conditions is verified for every jump (x, y) ∈≺:

(i) l(y) is a closed subset of X;

(ii) r(x) is an open subset and d(y) and i(x) are closed subsets of X.

We recall that a preorder � on a set X is said to be separable if there exists
a countable subset Z of X such that for any two points x, y ∈ X such that
x ≺ y there exists some point z ∈ Z such that x ≺ z ≺ y.

From Proposition 3.1 we immediately obtain the following corollary by
considering the already mentioned fact that the existence of a continuous
utility function is equivalent to the existence of a countable family of contin-
uous increasing functions separating points x, y ∈ X such that x ≺ y.

Corollary 3.3 Let (X, t) be some topological space that is endowed with a
dense preorder � which satisfies condition (jjj) of Proposition 3.1. Then in
order for � to be representable by a continuous order preserving function
u : (X,�, t) −→ (R,≤, tnat) it is necessary and sufficient that � is separable.

4 Continuous Utility Functions

We recall that a family N of subsets of a topological space (X, t) is called a
network for X if every non empty open subset of X is a union of elements
of N . It is well known that the existence of a countable network is equiva-
lent to the existence of a countable basis in case that the topology is either
metrizable or locally compact or else linearly ordered (se Engelking [14]).

Further, a topology t on a set X is a hereditarily Lindelöf topology if
for every subset A of X and every open covering C of A there exists some
countable subcovering C′ ⊂ C of A.

Herden and Pallack [21, Theorem 2.15] proved that every weakly con-
tinuous preorder on a second countable topological space has a continuous
utility representation. Recently, Bosi, Caterino and Ceppitelli [3] proved the
following theorem which appears as slightly more general.
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Theorem 4.1. Let � be a preorder on a topological space (X, t). Then the
following conditions are equivalent:

(i) There exists a continuous utility function u on (X,�, t);
(ii) There exists a topology t′ on X coarser than t such that � is weakly

continuous on (X, t′) and (X, t′) is second countable;
(iii) There exists a topology t′ on X coarser than t such that � is weakly

continuous on (X, t′) and there exists a countable network for (X, t′);
(iv) There exists a topology t′ on X coarser than t such that � is weakly con-

tinuous on (X, t′) and the product topology t′×t′ on X×X is hereditarily
Lindelöf;

(v) There exists a topology t′ on X coarser than t such that � is weakly
continuous on (X, t′) and the topology (t′ × t′)≺ induced by the product
topology t′ × t′ on ≺ is Lindelöf.

Outline of the proof. (i) ⇒ (ii). Let u be a continuous utility function on
(X, t,�). Consider the total preorder � on X defined by

x � y ⇔ u(x) ≤ u(y) (x, y ∈ X),

and let t′ = t� be the order topology associated to �. From the Debreu Open
Gap Lemma there exists a continuous utility function u′ on the totally pre-
ordered topological space (X, t′,�). Since � is (continuously) representable
we have that t′ is second countable. Further, t′ is coarser than t and � is
weakly continuous on (X, t′).
(ii) ⇒ (iii). Trivial.
(iii) ⇒ (iv). Easy to show.
(iv) ⇒ (v). Immediate.
(v) ⇒ (i). For every pair (x, y) ∈ X × X such that x ≺ y consider a con-
tinuous increasing function uxy on (X, t′,�) with values in [0, 1] such that
uxy(x) < uxy(y) and define

Auxy (x) := u−1
xy ([0,

uxy(x) + uxy(y)
2

[),

Buxy (y) := u−1
xy (]

uxy(x) + uxy(y)
2

, 1]).

Then the family C := {Auxy (x) ×Buxy (y)}(x,y)∈≺ is an open cover of ≺ and
since the topology (t′ × t′)≺ is Lindelöf, there exists a countable subfamily
C′ of C which also covers ≺, and therefore there exists a countable family
{un}n∈N of continuous increasing functions on (X, t′,�) with values in [0, 1]
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such that for every (x, y) ∈ X ×X with x ≺ y there exists some n ∈ N such
that un(x) < un(y). Hence, u :=

∑∞
n=0 2−nun is a continuous utility function

on (X, t′,�) and therefore also on (X, t,�). �

We recall that from Herden [19] a topology t on a set X is said to be useful
if every continuous total preorder � on the topological space (X, t) is rep-
resentable by a continuous utility function u : (X, t,�) −→ (R, tnat,≤) (see
also Herden and Pallack [20]).

From Theorem 4.1 we immediately obtain the following corollary which
provides some conditions under which a topology is useful.

Corollary 4.2 A topology t on a set X is useful provided that the product
topology t× t on X ×X is hereditarily Lindelöf (in particular, in case that t
has a countable net weight).

We say that a topology t on a set X is strongly useful (see Bosi, Caterino
and Ceppitelli [3]) if every weakly continuous preorder � on the topological
space (X, t) is representable by a continuous utility function u : (X, t,�) −→
(R, tnat,≤). It is clear that a strongly useful topology on a set X is also useful.
The converse is not true. Indeed, in Bosi and Herden [8] (see also Example
3.2 in Bosi and Herden [7]) it is shown that the product topology tprod on
[0, 1]α is not strongly useful when α is an uncountable ordinal number, since
in this case the product ordering ≤prod that is induced by the canonical total
preorder ≤ on [0, 1] is weakly continuous but not continuously representable.
On the other hand, we have that ([0, 1]α, tprod) is connected and separable
for every ordinal number α ≥ 1 and therefore the product topology tprod on
[0, 1]α is useful.

Bosi and Herden [8, Proposition 4.3] proved that a strongly useful topology
which is in addition completely regular and Hausdorff must be normal.

We recall that a total preorder � on a topological space (X, t) is said to
be upper semicontinuous if l(x) = {z ∈ X | z ≺ x} is an open subset of X
for every x ∈ X .

From Bosi and Herden [4], a topology t on a set X is said to be com-
pletely useful if every upper semicontinuous total preorder � on the topolog-
ical space (X, t) is representable by an upper semicontinuous utility function
u : (X, t,�) −→ (R, tnat,≤). Proposition 4.4 in Bosi and Herden [4] states
that every completely useful topology is useful. On the other hand, there ex-
ist useful topologies which are not completely useful. Indeed, let ℵ1 := Ω be
the first uncountable ordinal and let t be the topology on X := [0,ℵ1[= [0, Ω[
that is induced by the sets [0, α], where α runs through all countable ordi-
nals. Since {0} = [0, α] = X for every countable ordinal α, we have that t
is a separable and connected topology on X . The natural order ≤ on X is
an upper semicontinuous total preorder on X that, obviously, has no (upper
semicontinuous) utility representation (see Bosi and Herden [4]).

The following corollary of Theorem 4.1 provides a characterization of
strongly useful topologies in the metrizable case. The proof is based on
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the theorem in Estévez and Hervés [15], which states that a metrizable
topology is useful if and only if it is separable (or equivalently second count-
able). Further, we use Corollary 4.5 in Bosi and Herden [4], according to
which a metrizable topology is completely useful if and only if it is second
countable.

Corollary 4.3 Let t be a metrizable topology on a set X. Then the following
conditions are equivalent:

(i) t is strongly useful;

(ii) t is completely useful;

(ii) t is useful;

(iii) t is separable.

Since every completely useful topology is hereditarily Lindelöf (see Bosi and
Herden [4, Lemma 4.1 and Proposition 4.2]), it is immediate to check that
the following corollary of Theorem 4.1 holds.

Corollary 4.4 Let t be a topology on a set X. Then t is strongly useful
provided that the product topology t× t on X ×X is completely useful.
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Risk Assessment of SLAs in Grid Computing 
with Predictive Probabilistic and Possibilistic 
Models* 

Christer Carlsson and Robert Fullér 

Abstract. We developed a hybrid probabilistic and possibilistic technique for assessing the 
risk of an SLA for a computing task in a cluster/grid environment. The probability of suc-
cess with the hybrid model is estimated higher than in the probabilistic model since the 
hybrid model takes into consideration the possibility distribution for the maximal number 
of failures derived from a resource provider’s observations. The hybrid model showed that 
we can increase or decrease the granularity of the model as needed; we can reduce the 
estimate of the P(S*=1) by making a rougher, more conservative, estimate of the more 
unlikely events of (M+1, N) node failures. We noted that M is an estimate which is depend-
ent on the history of the nodes being used and can be calibrated to "a few” or to “many” 
nodes.  

Keywords: risk assessment, predictive probabilities, predictive possibilities, grid 
computing. 

1   Introduction 

There is an increasing demand for computing power in scientific and engineering 
applications which has motivated the deployment of high performance computing 
(HPC) systems that deliver tera-scale performance. Current and future HPC sys-
tems that are capable of running large-scale parallel applications may span  
hundreds of thousands of nodes. 

The current highest processor count is 131K nodes according to top500.org 
[16]. For parallel programs, the failure probability of nodes and computing tasks 
assigned to the nodes has been shown to increase significantly with the increase in 
number of nodes. Large-scale computing environments, such as the current grids 
CERN LCG, NorduGrid, TeraGrid and Grid’5000 gather (tens of) thousands of 
resources for the use of an ever-growing scientific community. Many of these 
Grids offer computing resources grouped in clusters, whose owners may share 
them only for limited periods of time and Grids often have the problems of any 
large-scale computing environment to which is added that their middleware is still 
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relatively immature, which contributes to making Grids relatively unreliable  
computing platforms. Iosup et al [9] collected and present material from 
Grid’5000 which illustrates this contention. On average, resource availability (for 
a period of 548 days) in Grid’5000 on the grid level is 69% (±11.42), with a 
maximum of 92% and a minimum of 35%. The mean time between failures 
(MTBF) of the grid is of 744±2631 seconds (around 12 minutes); at the cluster 
level, resource availability varies from 39% up to 98% across the 15 clusters, the 
average MTBF for all clusters is 18404±13848 seconds (around 5 hours); at the 
node level on average a node fails 228 times (over 548 days), but some nodes fail 
only once or even never. Long et al [12] collected a dataset on node failures over 
11 months by from1139 workstations on the Internet to determine their uptime 
intervals. Planck and Elwasif [14] collected a dataset on failure information for a 
collection of 16 DEC Alpha work-stations at Princeton University; the size of this 
network is smaller and is a typical local cluster of homogeneous processors;  
the failure data was collected for 7 months and shows similar characteristics as for 
the larger clusters. 

Schroeder and Gibson [17] analyse failure data collected over 9 years at Los 
Alamos National Laboratory (LANL) and which includes 23000 failures recorded 
on more than 20 different systems, mostly large clusters of SMP and NUMA 
nodes. Their study includes root cause of failures, the mean time between failures, 
and the mean time to repair. They found that average failure rates differ wildly 
across systems, ranging from 20–1000 failures per year, mean repair time varies 
from less than an hour to more than a day. Most applications (about 70%) running 
in the LANL are short duration computing tasks of < 1 hour, but there are also 
large-scale, long-running 3D scientific simulations. These applications perform 
long periods (often months) of CPU computation, interrupted every few hours by 
a few minutes of I/O for check-pointing. When node failures occur in the LANL, 
hardware was found to be the single largest cause (30-60%); software is the sec-
ond largest contributor (with 5-24%), but in most systems the root cause remained 
undetermined for 20–30% of the failures (cf. [17]). They also found that the yearly 
failure rate varies widely across systems, ranging from 17 to an average of 1159 
failures per year for several systems. The main reason for the differences was that 
the systems vary widely in size and that the nodes run different workloads.  

Iosup et al [9] fit statistical distributions to the Grid’5000 data using maximum 
likelihood estimation (MLE) to find a best fit for each of the model parameters. 
They found that the best fits for the inter-arrival time between failures, the dura-
tion of a failure, and the number of nodes affected by a failure, are the Weibull, 
Log-Normal, and Weibull distributions, respectively. The results for inter-arrival 
time between consecutive failures indicate an increasing hazard rate function, i.e. 
the longer a computing node stays in the system, the higher the probability for the 
node to fail, which will prevent long jobs to finish. Iosup et al [9] also wanted to 
find out if they can decide where (on which nodes or in which cluster) a new fail-
ure could/should occur. Since the sites are located and administered separately, 
and the network between them has numerous redundant paths, they found no evi-
dence for any other assumption than that there is no correlation between the  
 



Risk Assessment of SLAs in Grid Computing with Predictive Probabilistic 13
 

occurrence of failures at different sites. For the LANL dataset Schroeder and Gib-
son [17] studied the sequence of failure events and the time between failures as  
stochastic processes. This includes two different views of the failure process: (i) 
the view as seen by an individual node; (ii) the view as seen by the whole system. 
They found that the distribution between failures for individual nodes is well 
modelled by a Weibull or a Gamma distribution; both distributions create an 
equally good visual fit and the same negative log-likelihood. For the system wide 
view of the failures the basic trend is similar to the per node view during the same 
time. The Weibull and Gamma distributions provide the best fit, while the  
lognormal and exponential fits are significantly worse.  

A significant amount of the literature on grid computing addresses the problem 
of resource allocation on the grid (see, e.g., [Brandt [1], Czajkowski [7], Liu et al 
[11], Magana et al [13], and Tuecke [18]). The presence of disparate resources that 
are required to work in concert within a grid computing framework increases the 
complexity of the resource allocation problem. Jobs are assigned either through 
scavenging, where idle machines are identified and put to work, or through reser-
vation in which jobs are matched and pre-assigned with the most appropriate  
systems in the grid for efficient workflow. 

In grid computing a resource provider [RP] offers resources and services to 
other Grid users based on agreed service level agreements [SLAs]. The research 
problem we have addressed is formulated as follows: 

o the RP is running a risk to be in violation of his SLA if one or more of 
the resources [nodes in a cluster or a Grid] he is offering to prospective 
customers will fail when carrying out the tasks 

o the RP needs to work out methods for a systematic risk assessment [RA] 
in order to judge if he should offer the SLA or not if he wants to work 
with some acceptable risk profile  

In the context we are going to consider (a generic grid computing environment) 
resource providers are of various types which mean that the resources they man-
age and the risks they have to deal with are also different; we have dealt with the 
following RP scenarios (but we will report only on extracts due to space): 
 

• RP1 manages a cluster of n1 nodes (where n1 is < 10) and handles a few 
(< 5) computing tasks for a T 

• RP2 manages a cluster of n2 nodes (where n2 is < 150) and handles nu-
merous (~ 100) computing tasks for a T; RP2 typically uses risk models 
building on stochastic processes (Poisson-Gamma) and Bayes modelling 
to be able to assess the risks involved in offering SLAs 

• RP3 manages a cluster of n3 nodes (where n3 is < 10) and handles numer-
ous (~ 100) computing tasks for a T; if the computing tasks are of short 
duration and/or the requests are handled online RP3 could use possibility 
models that will offer robust approximations for the risk assessments 

• RP4 manages a cluster of n4 nodes (where n4 is < 150) and handles nu-
merous (~ 100) computing tasks for a T; typically RP4 could use risk 
models building on stochastic processes (Poisson-Gamma) and Bayes 



14 C. Carlsson and R. Fullér
 

modelling to assess the risks involved in offering SLAs; if the computing 
tasks are of short duration and/or the requests are handled online hybrid 
models which combine stochastic processes and Bayes modelling with 
possibility models could provide tools for handling this type of cases. 

During the execution of a computing task the fulfilment of the SLA has the high-
est priority, which is why an RP often is using resource allocation models to safe-
guard against expected node failures. When spare resources at the RP’s own site 
are not available outsourcing will be an adequate solution for avoiding SLA  
violations.  

The risk assessment modelling for an SLA violation builds on the development 
of predictive probabilities and possibilities for possible node failures and com-
bined with the availability of spare resources. The rest of the paper will be struc-
tured as follows: in section 2 we will work out the basic conceptual framework for 
risk assessment, in section 3 we will introduce the Bayesian predictive probabili-
ties as they apply to the SLAs for RPs in grid computing, in section 4 we will 
work out the corresponding predictive possibilities and show the results of the 
validation work we carried out for some RP scenarios; in section 5 there is a 
summary and conclusions of the study. 

2   Risk Assessment 

There is no universally accepted definition of business risk but in the RP context 
we will understand risk to be a potential problem which can be avoided or miti-
gated (cf. [5] for eferences). The potential problem for an RP is that he has ac-
cepted an SLA and may not be able to deliver the necessary computing resources 
in order to fulfil a computing task within an accepted time frame T. Risk assess-
ment is the process through which a resource provider tries to estimate the prob-
ability for the problem to occur within T and risk management the process through 
which a resource provider tries to avoid or mitigate the problem. 

In classical decision theory risk is connected with the probability of an unde-
sired event; usually the probability of the event and its expected harm is outlined 
with a scenario which covers the set of risk, regret and reward probabilities in an 
expected value for the outcome. The typical statistical model has the following 
structure, 

R (θ, δ(x)) = ∫  L(θ, δ(x)) f (x|θ) dx   (1) 

where L is a loss function of some kind, x is an observable event (which may not 
have been observed) an δ(x) is an estimator for a parameter θ which has some 
influence on the occurrence of x. The risk is the expected value of the loss func-
tion. The statistical models are used frequently because of the very useful tools 
that have been developed to work with large datasets.  

The statistical model is influenced by the modern capital markets theory where 
risk is seen as a probability measure related to the variance of returns. Markowitz 
[14] initiated the modern portfolio theory stating that investors should focus on 
selecting portfolios based on portfolios’ risk-reward characteristics instead of 
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compiling portfolios of assets that each individually has attractive risk-reward 
characteristics. The risk is classified in systematic (“market”) risk and idiosyn-
cratic (“company” or “individual”) risk. The analogy would be that an RP – han-
dling a large number of nodes and a large number of computing tasks – will reach 
a steady state in his operations so that there will be a stable systematic risk (“mar-
ket risk”) for defaulting on an SLA which he can build on as his basic assumption 
and then a (“small”) idiosyncratic risk which is situation specific and which he 
should estimate with some statistical models. 

We developed a hybrid probabilistic and possibilistic model to assess the suc-
cess of computing tasks in a Grid. The model first gives simple predictive esti-
mates of node failures in the next planning period when the underlying logic is the 
Bayes probabilistic model for observations on node failures. When we apply the 
possibilistic model to a dataset we start by selecting a sample of k observations on 
node failures. Then we find out how many of these observations are different and 
denote this number by l; we want to use the two datasets to predict what the k + 1: 
st observation on node failures is going to be. The possibility model is used to find 
out if that number is going to be 0, 1, 2, 3, 4, 5, … etc.; for this estimate the possi-
bility model uses the “most usual” numbers in the larger dataset and makes an 
estimate which is “as close as possible” to this number. The estimate we use is a 
triangular fuzzy number, i.e. an interval with a possibility distribution. The possi-
bility model turned out to be a faster and more robust estimate of the k + 1: st 
observation and to be useful for online and real-time risk assessments with rela-
tively small samples of data. 

3   Predictive Probabilities 

In the following we will use node failures in a cluster (or a Grid) as the focus, i.e. 
we will work out a model to predict the probabilities that n nodes will fail in a 
period covered by an SLA (n = 0, 1, 2, 3, …). In the interest of space we have to 
do this by sketches as we deal with standard Bayes theory and modelling (cf. [5] 
for references). 

The first step is to determine a probability distribution for the number of node 
failures for a time interval (t1, t2 ] by starting from some basic property of the 
process we need to describe. Typically we assume that the node failures represent 
a Poisson process which is non-homogenous in time and has a rate function  
λ(t),  t > 0.  

The second step is to determine a distribution for λ(t) given a number of obser-
vations on node failures from r comparable segments in the interval (t1, t2 ]. This 
count normally follows a Gamma (α, β) distribution and the posterior distribution 
p (λt1, t2), given the count of node failures, is also a Gamma distribution according 
to the Bayes theory. Then, as we have been able to determine λt1, t2 we can calcu-
late the predictive distribution for the number of node failures in the next time 
segment; Bayes theory shows that this will be a Poisson-Gamma distribution.  

The third step is to realize that a computing task can be carried out successfully 
on a cluster (or a Grid) if all the needed nodes are available for the scheduled 
duration of the task.  This has three components: (i) a predictive distribution on 
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the number of nodes needed for a computing task covered by an SLA; (ii) a  
distribution showing the number of nodes available when an assigned set of nodes 
is reduced with the predicted number of node failures and an available number of 
reserve nodes is added (the number of reserve nodes is determined by the resource 
allocation policy of the RP); (iii) a probability distribution for the duration of the 
task.  

The fourth step is to determine the probability of an SLA failure: p1 (n nodes 
will fail for the scheduled duration of a task) x (1- p2 (m reserve nodes are avail-
able for the scheduled duration of a task)) if we consider only the systematic risk. 
We need to use a multinomial distribution to work out the combinations.  

Consider a Grid of k clusters, each of which contains nc nodes, leading to the 
total number of nodes n = Sum (nc), where c = 1, ..., k,  in the Grid. Let in the 
following λ(t), t > 0,  denote generally a time non-homogeneous rate function for a 
Poisson process N(t). We will assume that we have the RP4 scenario as our con-
text, i.e. we will have to deal with hundreds of nodes and hundreds of computing 
tasks with widely varying computational requirements over the planning period 
for which we are carrying out the risk assessment.  

The predictive distribution of the number of events is a Poisson-Gamma-
distribution, obtained by integrating the likelihood with respect to the posterior. 
Under the reference prior the predictive probability of having x events in the  
future on a comparable time interval equals  

 

(2) 

When a computing job begins execution in a cluster (or Grid) its successful com-
pletion will require a certain number of nodes to be available over a given period 
of time. To assess the uncertainty about the resource availability, we need to 
model both the distribution of the number of nodes and the length of the time 
required by the jobs.  

Given observed data on the number of nodes required by computing tasks, the 
posterior distribution of the probabilities p is available in an analytical form under 
a Dirichlet prior, and its density function can be written as 

 

 

(3) 

where wm corresponds to the number of observed tasks utilising m nodes, αm  is the 
a priori relative weight of the m th component in the vector p, and w  is the vector 
(wm), where m = 1,..,u. The corresponding predictive distribution of the number of 
nodes required by a generic computing task in the future equals the Multinomial-
Dirichlet distribution, which is obtained by integrating out the uncertainty about 
the multinomial parameters with respect to the posterior distribution. The  
Multinomial-Dirichlet distribution is in our notation defined as, 
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(4) 

By combining the above distributions, we will find the probability distribution for 
the number of nodes in use for computing tasks in a future time interval (t1, t2], as 
the corresponding random variable equals the product XM.  

To simplify the inference about the length of a cluster/Grid computing task af-
fecting a number of nodes, we propose that the time used for the task follows a 
Gaussian distribution with expected value µ and variance σ2. Obviously, it is mo-
tivated to have separate parameter sets for different types of tasks. Assuming the 
standard reference prior for the parameters, we obtain the predictive distribution 
for the expected time used for a future computing task, say T, in terms of the  
probability density for the expected time as follows, 

 

 

(5) 

The probability that a task requires more time than any given time t equals P(T > t) = 
1- P(T < t ), where P(T < t) is the cumulative density function (CDF). The value of 
the CDF can be calculated numerically using existing functions. However, it should 
also be noted that for a moderate to large n, the predictive distribution is well ap-
proximated by the Gaussian distribution with the estimated mean t and the variance  
s2 = (n+1)/(n-3). Consequently, if the Gaussian approximation is used, the probability 
P(T < t) can be calculated using the CDF of the Gaussian distribution. 

We now consider the probability that a computing task will be successful. This 
happens as the sum P ("none of the nodes allocated to the task fails") + Sum (m=1, 
mmax) P ("m of the nodes allocated to the task fail & at least m idle nodes are avail-
able as reserves"). Here mmax is an upper limit for the number of failures consid-
ered. Notice that we simplify the events below by considering the m failures to 
take place simultaneously. We then get 

P (S=1) = 1 – P (S=0) 

= 1 – ∑ P (m failures occur & less than m free nodes available) (m 
= 1, …, mmax) 

= 1 – ∑ P (m failures occur) P(less than m free nodes available) (m 
= 1, …, mmax) 

> 1 – ∑ P (m failures occur) P(less than m anytime) (m = 1, …, 
mmax) 

(6) 
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The probability P(m failures occur) is directly determined by the failure rate 
model discussed above. The other term, the probability P(less than m free nodes at 
any time point), is dependent on the resource allocation policy and the need of 
reserve nodes by the other tasks running simultaneously.  

The predictive probabilities model has been extensively tested and verified with 
data from the LANL cluster (cf. Shroeder-Gibson [17]). Here we collected results 
for the RP1 scenario where the RP is using a cluster with only a few nodes; the 
test runs have been carried out also for the scenarios RP2-4 with some variations 
to the results. 

In the following we have collected a number of test results on the predictive 
probabilities (cf. (2)) using LANL data (cf. figs. 1-4) and on the probability that m 
nodes will be available (cf. (4)) when the computing task has a duration of t  
(cf. (5)) using LANL data (cf. fig. 5-8). 

 

Fig. 1 Prediction of node failures [Prob. of Failure: 0.0644987] with 436 time slots of 
LANL cluster data for computing tasks running for 2 days, 19 hours 

 

Fig. 2 Prediction of node failures [Prob. of Failure: 0.1040136] with 246 time slots of 
LANL cluster data for computing tasks running for 5 days, 4 hours 
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Fig. 3 Prediction of node failures [Prob. of Failure: 0.1509012] with 136 time slots of 
LANL cluster data for computing tasks running for 7 days, 0 hours 

 

Fig. 4 Prediction of node failures [Prob. of Failure: 0.5132377] with 36 time slots of LANL 
cluster data for computing tasks running for 9 days, 0 hours 
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Fig. 5 Probability that less than m nodes will be available for computing tasks requiring < 10 
nodes; the number of nodes randomly selected; 75 tasks simulated over 236 time slots; LANL 
data 
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Fig. 6 Expected time needed for a computing task t; simulated 75 computing tasks requiring 
various t; data from LANL 
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Fig. 7 Probability that less than m nodes will be available for computing tasks requiring < 
10 nodes; the number of nodes randomly selected; 100 tasks simulated over 236 time slots; 
LANL data 
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Fig. 8 Expected time needed for a computing task t; simulated 100 computing tasks  
requiring various t; data from LANL 
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4   Predictive Possibilities  

In this section we will introduce a hybrid method for simple predictive estimates 
of node failures in the next planning period when the underlying logic is the Bayes 
models for observations on node failures that we used for the RA models in sec-
tion 3. This is essentially a standard regression model with parameters represented 
by triangular fuzzy numbers – typically this means that the parameters are inter-
vals and represent the fact that the information we have is imprecise or uncertain. 
We can only sketch the model here, for details cf. [5]; the model builds on some 
previous results in [2], [3], [4] and [6]. 

We will take a sample of a dataset (in our case, a sample from the LANL data-
set) which covers inputs and fuzzy outputs according to the regression model; let 
this sample be xi , Yi , where i = 1, 2, …, n. The main purpose with the fuzzy non-
parametric regression model is to estimate F(x) at any x ε D. The membership 
function of the estimated Y is normally worked out to be as close as possible to the 
corresponding observations forming the fuzzy number, i.e. we should estimate 
a(x), α(x), β(x) for each x ε D so that we get a fit between the estimated Y and the 
observed Y’ which is “a closest fit”; here we will use Diamond’s distance measure 
(cf. [8]).  

Let A = (a, α1, β1) and B = (b, α2, β2) be two triangular fuzzy numbers; then the 
squared distance between A and B is defined by, 

 

 
(7) 

Let us now assume that the observed (fuzzy) output is Yi = (a, αi, βi), then with the 
Diamond distance measure and a local linear smoothing technique we need to 
solve a locally weighted least-squares problem in order to estimate F(x0), for a 
given kernel K and a smoothing parameter h, where  

 

 

(8) 

The kernel is a sequence of weights at x0 to make sure that data that is close to x0 
will contribute more when we estimate the parameters at x0 than those that are 
farther away, i.e. are relatively more distant in terms of the parameter h.  

Let  
 

(9) 

be the predicted fuzzy regression function at input xi. Compute F(i)(xi; h) for each 
xi and let  

 

 

(10) 
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We should select h0 so that it is optimal in the following expression, 

 

 
(11) 

By solving the minimisation problem we can get an estimate of F(x) at x0 by, 

 

 
(12) 

and the following estimate of F(x) at x0, 

 

 

(13) 

We can use this model – which we have decided to call a predictive possibility 
model – to estimate a prediction of how many node failures we may have in the 
next planning period given that we have used statistics of the observed number of 
node failures to build a base of Poisson-Gamma distributions (for details cf. [6]).  

We will use the Fréchet-Hoeffding bounds for copulas to show a lower limit for 
the probability of success of a computing task in a cluster (or a Grid). Let us recall 
that in (6) we have the notation P(success) as P(S=1) and P(failure) as P(S=0); 
furthermore, let us use the abbreviation less-than-m-anytime fir the event less than 
m free nodes available at any point of time. Then we can rewrite (6) as,  

 

(14)
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Let us introduce the notations G(m) = P(less-than-m-anytime) and F(t) = P 
(the duration of a task is less than t). Let t* be chosen such that 1-F (t*) > 0.995. 
Furthermore, de4note the copula of F and G by H, where H(t, m) = P(the duration 
of a task is less than t, less-than-m-anytime). Then using the Freéchet-Hoeffding 
upper bound for copulas we find that,  

 

(15)  

If we summarize these results we get, 

(16)

Now we can use the new model as an alternative for predicting the number of 
node failures and use it as part of the Bayes model for predictive probabilities. In 
this way we will have hybrid estimates of the expected number of node failures – 
both probabilistic and possibilistic estimates. An RP may use either one estimate 
for his risk assessment or use a combination of both.  

We carried out a number of validation tests in order to find out (i) how well the 
predictive possibilistic models can be fitted to the LANL dataset, (ii) what differ-
ences can be found between the probabilistic and possibilistic predictions and (iii) 
if these differences can be given reasonable explanations. The testing was  
structured as follows: 

• 5 time frames for the possibilistic predictive model with a smoothing  
parameter from the smoothing function: h =382.54 * Nr of timeslots -0.5325 

• 5 feasibility adjustments from the hybrid possibilistic adjustment model 
to the probabilistic predictive model  

In the testing we worked with short and long duration computing tasks scheduled 
on a varying number of nodes and the SLA probabilities of failure estimates  
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remained reasonable throughout the testing. The smoothing parameter h for the 
possibilistic models should be determined for the actual cluster of nodes, and in 
such a way that we get a good fit between the probabilistic and the possibilistic 
models. The approach we used for the testing was to experiment with combina-
tions of h and then to fit a distribution to the results; the distribution could then be 
used for interpolation.  

We run the tests for all the RP1-RP4 scenarios (cf. [5] for details) but here we 
are showing only results for the RP1 scenario (cf. fig. 9-11) in the interest of 
space. The tests aimed at calibrating the possibilistic predictive model to generate 
estimates of the possible failure of n nodes that would be “close” or “somewhat 
similar” to the probabilistic predictions. This served the notion that the estimates 
should not deviate too much from each others but also the aim to find out under 
what conditions we could get estimates that are “close” or “somewhat similar”. 
We run simulations with a varying number of time slots for 10 nodes and varia-
tions on the duration of computing tasks, from 8 days and down to 2 days. We 
found differences in the predictions for the longer durations of computing tasks 
but the estimates got “closer” for shorter durations; we also run simulations for 
computing tasks going down from 24 hours to 1 hour but these results are not 
shown because the differences in estimates became very small. All tests were 
based on the LANL data. 

Then we next run a series of tests with the two models to find out how the esti-
mates differ when we have 1, 2, 3 or 4 spare nodes dedicated to the computing 
task; the results are shown in figs. 12-15. 
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Fig. 9 Possibilistic and probabilistic prediction of n node failures for a computing task with 
a duration of 8 days on 10 nodes; 153 time slots simulated 
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Fig. 10 Possibilistic and probabilistic prediction of n node failures for a computing task 
with a duration of 4 days on 10 nodes; 153 time slots simulated 
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Fig. 11 Possibilistic and probabilistic prediction of n node failures for a computing task 
with a duration of 2 days on 10 nodes; 153 time slots simulated 
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Fig. 12 Comparison of probabilistic and possibilistic success for an SLA for computing tasks 
on a 6 node cluster with two spare nodes; simulated for 60-19500 minutes. 
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Fig. 13 Comparison of probabilistic and possibilistic success for an SLA for computing 
tasks on a 6 node cluster with one spare node; simulated for 60-19500 minutes. 

The probability of success (PoS, red curve) for a computing task goes down (as 
expected) when the duration of the task increases. The PoS goes up momentarily 
when a spare node is reserved for the task (cf. fig. 13) but then starts to go down 
again; the possibility of success (PboS, blue curve) closely follows the PoS for 
computing tasks taking about 10 000 min but then starts to show strong fluctua-
tions. The reason for this is that the predictive possibilities are calculated from a 
regression models taking samples from the LANL data where there are relatively 
few computing tasks with long durations (a majority of the computing tasks run 
for less than 360 min).  

 

Fig. 14 Comparison of probabilistic and possibilistic success for an SLA for computing 
tasks on a 6 node cluster with three spare nodes; simulated for 60-19500 minutes 
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The same trends can be seen in fig.12 where two spare nodes are reserved for 
the computing tasks but here the PoS stays at 1.0 when the second spare node is 
added, i.e. the computing task on 6 nodes will probably always be completed 
despite taking up to 20 000 min (i.e. 13.88 days). 

We then continued the testing by adding a third and a fourth spare node for the 
computing tasks, cf. figs. 14-15 and with the fourth spare node we reached a state 
where also the PBoS reaches 1.0. 

 

Fig. 15 Comparison of probabilistic and possibilistic success for an SLA for computing 
tasks on a 6 node cluster with four spare nodes; simulated for 60-19500 minutes 

5   Summary and Conclusions 

We developed a hybrid probabilistic and possibilistic technique for assessing the 
risk of an SLA for a computing task in a cluster/grid environment. The probability 
of success with a hybrid model is estimated higher than in the probabilistic model 
since the hybrid model takes into consideration the possibility distribution for the 
maximal number of failures derived from the RP’s observations.  

The hybrid model showed that we can increase or decrease the granularity of 
the model as needed; we can reduce the estimate of the P(S*=1) by making a 
rougher, more conservative, estimate of the more unlikely events of (M+1, N) 
node failures. We noted that M is an estimate which is dependent on the history of 
the nodes being used and can, of course, be calibrated to "a few” or to “many” 
nodes.  

We have run series of validation experiments with the two series of models to 
find out how the theoretical models work and if they will give reasonable results. 
When we had verified that the models work as they should in terms of the theory 
we run series of explorative experiments to find out if we can get the PoS  
and PboS estimates to become “close” or “somewhat similar” and under what 
circumstances that would happen.  
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The probabilistic models scale from 10 nodes to 100 nodes and then on to any 
(reasonable) number of nodes; in the same fashion also the possibilistic models 
scale to 100 nodes and then on to any (reasonable) number of nodes.  

The RP can use both the probabilistic and the possibilistic models to get two al-
ternative risk assessments and then (i) choose the probabilistic RA, (ii) the possi-
bilistic RA or (iii) use the hybrid model for a combination of both RAs – this is a 
cautious/conservative approach. 

The risk assessment of SLAs in grid/cluster computing is an emerging field and 
we foresee continued work to refine the methods we now have developed. 
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From Benchmarks to Generalised Expectations

Erio Castagnoli and Gino Favero

Abstract. A random variable can be equivalently regarded to as a function or as
a “set”, namely, that of the points lying below (when positive) and above (when
negative) its graph. The second approach, proposed by Segal in 1989, is known
as the measure (or measurement) representation approach. On a technical ground,
it allows for using Measure theory tools instead of Functional analysis ones, thus
making often possible to reach new and deeper conclusions. On an interpretative
ground, it makes clear how expectation and expected utility, either classical or à la
Choquet, are structurally analogous and, moreover, it allows for dealing with new
and more general types of expectations including, e.g., state dependence.

Starting from the measurement approach and from a decision-theoretical result
by Castagnoli and LiCalzi (2006), we present a new representation theorem in the
same perspective and, finally, we propose a definition of generalised expectations
and two different concepts of associativity that can be imposed to them.

1 Preliminaries

A very rough simplification leads to identifying two different philosophies in De-
cision Theory: a maximising approach, where some utility index is optimised, and
a satisficing approach, where the aim is to reach (at least) a given target (see, e.g.,
Simon, 1955).
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Castagnoli (1990), Castagnoli and LiCalzi (1993, 1994, 1996, 2006),
Bordley and LiCalzi (2000), and Bordley (2002) have shown how to recon-
cile the two approaches while providing, moreover, a new insight in interpreting
expected (and non expected) utility. Their basic idea is rather simple, and
summarised hereafter.

Call X a set of random variables and denote them by means of capital letters (X ,
Y , . . . ). The expected utility functional is then

Eu(X) =
∫

R

u(t)dx(t) (X ∈ X ),

with x(t) = Pr{X � t} the cumulative distribution function of X .
We shall assume, here and in the rest of the paper, that u is bounded (as it is when,

e.g., the random variables of X take their values in a bounded set as we assume later
on). This way, u (or possibly its right-continuous version) can be supposed to take
values in the interval [0,1], so that it can be interpreted as the c.d.f. of some random
variable U . Supposing such U to be independent of all X ∈ X ,

Eu(x) =
∫

R

u(t)dx(t) =
∫

R

Pr{U � t}dx(t) = Pr{U � X},

i.e., the expected utility of any X ∈ X turns out to be the probability that X “out-
performs” a given (independent) benchmark U with c.d.f. u.

In other words, Eu(x) and Pr{U � X} are simply two different ways of writ-
ing the same functional. Nevertheless, they are quite different from an interpretative
point of view. In the first way the decision maker chooses according to the expecta-
tion of the “distorted” random variables u(X). In the second way the decision maker
acts as if he is choosing a random benchmark U (independent of all the random
variables in X ), evaluating the probability to beat U for each X ∈ X and, finally,
sorting X according to such probabilities.

Which interpretation to adopt is simply a matter of individual taste.
Castagnoli and LiCalzi (1993, 1994, 1996) discuss several points, such as inter-
pretation of the benchmark, risk aversion, stochastic dominance, and so on. They
also discuss a couple of applications, showing that sometimes the second interpre-
tation appears to be more proper and convincing than the first, and traditional, one.
Cigola and Modesti (1996) and Modesti (2003) take into consideration SSB util-
ity and lottery-dependent utility, respectively, from the point of view of stochas-
tic benckmarking, and Beccacece and Cillo (2006) apply benchmarking to financial
risk measurement.

It is time to enter more deeply into the problem.
Let Ω be the set of the fundamental states of the world, let X be the family of all

of the random variables defined on Ω and taking values in a bounded interval B⊆R,
and let p be a probability on (a (σ -)algebra of events in) Ω . The c.d.f. function of
any (measurable) random variable X is thus x(t) = p{ω : X(ω) � t}.

Take now a (possibly different) state space S, where we shall imagine the random
benchmark U to be defined. Let S be endowed with a probability measure π , so that
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u(t) = π{s : U(s) � t} is the c.d.f. of U . The above equality can now be written, in
greater detail,

Ep u(X) =
∫

R

u(t)dx(t) =
∫

R

π{U � t}dp{X � t}
= P

{
(ω ,s) : U(s) � X(ω)

}
= P{U � X},

where P is the product probability p⊗π on Ω ×S, reflecting (or maybe clarifying)
the assumed stochastic independence among U and all of the Xs.

We want to point out that it is quite natural to suppose U and the Xs to be defined
on different state spaces. We reckon indeed to be extremely common that a decision
maker has his own state space, but that he needs to assess preferences on random
variables defined on another one. The introductory pages of Castagnoli and LiCalzi
(2006) contain a detailed discussion about this feature; here, we limit ourselves to
sketching a couple of ideas.

Think, for instance, of a decision maker who intends to invest his money in a
financial portfolio in order to protect himself and his family against bad events.
His state space S is likely to be formed by events related, e.g., to illnesses, family
needs, accidents, and so on. On the other hand, the financial assets he is considering
are defined on a state space Ω containing events related e.g., to economic growth,
inflation rate, and so on.

Another example might be offered by an Insurance company aiming at investing
in assets as a protection against the insured risks.

We argue that the setting described here can be of some importance in Experi-
mental Economics, when the aim is to deal with a functional form which is suffi-
ciently general so as to encompass the observed preferences of a decision maker.

Remark. Since U is the only random variable defined on the state space S, assigning
a probability measure on S is undistinguishable from assigning a capacity, because
the only events to be measured belong to the increasing chain {s : U(s) � t}t∈R.
Any positive and monotonic function defined on this chain can be extended to the
(σ -)algebra it generates on S in such a way to obtain either a capacity or a(n additive)
measure, both of them being, in general, not unique.

Consequently, what precedes can be equivalently restated by saying that there
exists a set function ν defined on Ω × S with the properties of being additive with
respect to the events in Ω (for any fixed event in S) and just monotonic with respect
to the events in S (for any fixed event in Ω ).

2 The Result of Castagnoli and LiCalzi

If we allow for stochastic dependence among U and the Xs, the two function-
als Eu(X) and P{U � X} are, of course, no longer equivalent. It is neverthe-
less possible to interpret the second one as a “state-dependent expected utility”.
Castagnoli and LiCalzi (2006) provide a full axiomatisation which guarantees a
given preference preorder to be represented by the functional P{U � X}. Such an
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axiomatisation simply requires the weak (preference) preorder “�” to be monotonic,
continuous and satisfying Savage’s Sure Thing Principle (Axiom P2 in his setting),
as we are going to summarise.

Call XAY := XIA +Y IAc the random variable that coincides with X if the event A
prevails and with Y elsewhere: the Sure Thing Principle amounts to asking that

YAZ � XAZ ⇐⇒ YAV � XAV

for every X ,Y,Z,V ∈ X and every event A. It is moreover necessary that there are
at least three essential events, i.e., such that XAY � Y for some X ,Y . Under such
assumptions, the following theorem holds.

Theorem 1 (Castagnoli – LiCalzi). Let � be a monotonic and continuous (with
respect to the sup norm) weak preorder among random variables defined on the
same set Ω of states of the world. Then, the Sure Thing Principle holds if and only
if there exist:

(i) a second state space S, and a random variable U defined on it, and
(ii) a finitely additive, normalised set function (i.e., a probability charge) P on Ω ×S

such that the functional P{· � U} represents �, i.e., such that

Y � X ⇐⇒ P{Y � U} � P{X � U}.

Moreover, if � is pointwise continuous, then P is countably additive (i.e., a proba-
bility measure).

The proof given by Castagnoli and LiCalzi (2006) is based upon a very deep result
given by Debreu (1960) for the case when the state space is finite. Indeed, in some
sense, Theorem 1 might be considered an extension of Debreu Theorem for any
(not necessarily finite) state space, although it features a different interpretation of
the representing functional.

Remarks. 1. Whenever Ω is a finite set, both the sup norm and the pointwise
continuity collapse into the classical, Euclidean one.

2. The above representation is a “cardinal” evaluation of an “ordinal” assessment
(X � U). This looks quite appealing and natural in a decision problem, where an
agent is required to perform comparisons: the preference � is founded upon ordi-
nal evaluations, which can be effectively measured by a probability. In other words:
in order to compare random variables, i.e., to express a preference preorder among
them, the usual interpretation wants the decision maker to (cardinally) measure both
events (by means of p) and outcomes (by u). Apparently, this is quite demanding:
in order to express solely a relative and ordinal assessment, the decision maker is
required to master two “absolute” and cardinal risk measures. The interpretation we
propose simply wants the decision maker to compare all of the alternatives at hand
with a chosen benchmark U and, on such a basis, to express a preference given by
the likelihood that U is outperformed. As we pointed out in the final remark of Sec-
tion 1, such a likelihood might be intended to be either cardinal (i.e., a probability)
or simply ordinal (i.e., a capacity).
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3. The set S of states of the world can never be elicited by preferences. It is in-
deed possible to observe the final choices of the decision maker, but there is no way
to understand how they have been obtained. The c.d.f. of the random benchmark
U is nevertheless observable, by taking into consideration the (degenerate) random
variables X = tIΩ , t ∈ R. Therefore, we can always take U(S)⊂ R as an observable
“surrogate” for S, and hence the benchmark can be taken to be U(s) = s (or, equiva-
lently, any injective function S →U(S)). We shall call essential values the elements
of U(S).

Example 1. A firm wants to hedge against a random loss by means of random vari-
ables defined on the set Ω = {ω1,ω2}.

By observing its preferences (supposed to be continuous, monotonic and satis-
fying the Sure Thing Principle), we can elicit the values of its random benchmark
U . Let us begin by noticing that if τ > t and tIΩ ∼ τIΩ , then U takes no value in
the interval (t,τ]; assume that we have established in such a way that U takes the
values 100, 400 and 1000 only. This way, S can be taken so as to contain just the
three states of the world where U is valued 100, 400 and 1000: we can conveniently
take precisely S = {s1,s2,s3} = {100,400,1000} and U(s) = s. We shall also re-
fer to the “cumulative” states of the world in S, defined by s′1 := s1 = {U � 100},
s′2 := s1 ∪ s2 = {U � 400}, and s′3 = S = {U � 1000}.

Let us further assume that the preference is:

1000IΩ ∼ 1000Iω1 + 400Iω2 � 1000Iω1 + 100Iω2 � 400IΩ �
� 400Iω1 + 100Iω2 � 1000Iω1 � 100Iω1 + 1000Iω2 ∼ 100Iω1 + 400Iω2 �
� 100IΩ � 400Iω1 � 1000Iω2 ∼ 400Iω2 � 100Iω2 � 100Iω1 .

Note that the preference above is inconsistent with an expected utility: indeed, e.g.,
100Iω2 � 100Iω1 would imply p(ω2) > p(ω1), whereas 400Iω1 � 1000Iω2 would
imply p(ω1) > p(ω2). Call

P1 = P(ω1,s′1) , P2 = P(ω2,s′1) ,
P3 = P(ω1,s′2) , P4 = P(ω2,s′2) ,
P5 = P(ω1,s′3) , P6 = P(ω2,s′3) :

the above preferences entail that P5 > P3 > P1, P6 = P4 > P2, P5 + P6 = 1, and

P5 + P2 > P3 + P4 ; P3 + P2 > P5 ; P5 > P1 + P4 ; P1 + P2 > P4 ; P2 > P1

which are consistent, for instance, with

(P1,P2,P3,P4,P5,P6) = (0.2,0.3,0.45,0.35,0.65,0.35),

corresponding to the joint distribution

(p1, p2, p3, p4, p5, p6) = (0.2,0.3,0.25,0.05,0.2,0).
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on Ω ×S given by:

p1 = P(ω1,s1) = P1 , p2 = P(ω2,s1) = P2 ,
p3 = P(ω1,s2) = P3 −P1 , p4 = P(ω2,s2) = P4 −P2 ,
p5 = P(ω1,s3) = P5 −P3 , p6 = P(ω2,s3) = P6 −P4 .

This choice for P yields measures 0.5, 0.3 and 0.2 respectively for {s1}, {s2} and
{s3}. Such measures can be intended as coming from a (unique) probability, as well
as from infinitely many capacities ν such that ν({s3}) = 0.2, ν

({s2,s3}
)

= 0.5
and ν(S) = 1. Note that P is not unique: a different choice for it might be, e.g.,
(p1, p2, p3, p4, p5, p6) = (0.14,0.35,0.3,0.06,0.15,0).

The functional P{· � U} is extremely general (maybe even too much), and it can
easily accommodate almost all of the classical paradoxes in Decision Theory. In-
deed, besides the usual and obvious assumptions of monotonicity and continuity,
it simply requires the weak form of “additivity” (with respect to the events) cap-
tured by the Sure Thing Principle: such a requirement is actually enough to ensure
additivity of P, which turns then out to be a probability measure.

It is easy to see that, if the Sure Thing Principle is taken away (while maintain-
ing monotonicity and continuity), Theorem 1 holds with a non additive P, i.e., the
representing functional turns out to be ν{· � U} with ν a capacity on Ω ×S.

Remark. The main feature of Theorem 1 does not lie in the fact that P is a prob-
ability, but rather in that it is a measure: it is actually clear that normalisation is
unimportant for sorting purposes. Therefore, the functional P{·� U} can be equiv-
alently written m{· � U}, with m a bidimensional measure on Ω ×S.

3 Measure of the Hypograph

In order to understand fully the implications of the two preceding sections, we need
to address some remarks about the so-called Measure (or Measurement) Represen-
tation Approach as introduced in Segal (1993). Its major feature lies in identifying
a random variable with a set, as explained hereafter.

To fix the ideas and focus effectively on the important details, let us consider a
finite set Ω = {ω1,ω2, . . . ,ωn} of states of the world. Consider a random variable X
and suppose, for the moment, that X � 0: we denote its values by xi := X(ωi) � 0.
Such a random variable identifies the histogram, frequently called the (truncated)
hypograph:

hypo(X) =
n⋃

i=1

({ωi}× [0,xi]
)

;

the correspondence is one-to-one, as a histogram uniquely identifies a random vari-
able. The expected value of X is then the measure of its hypograph according to the
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x1

x2

x3

x4

ω1 ω2 ω3 ω4

Fig. 1 Histogram of the values of a random variable

(bidimensional) measure m = p⊗ λ , the product of a probability measure p on S
and the Lebesgue measure λ on R:

m
(

hypo(X)
)

= m
( n⋃

i=1

[{ωi}× [0,xi]
])

=
n

∑
i=1

m
({ωi}× [0,xi]

)
=

=
n

∑
i=1

p
({ωi}

) ·λ(
[0,xi]

)
=

n

∑
i=1

pi · xi .

If, instead of the Lebesgue measure λ , we adopt the Lebesgue-Stiltjes measure μ
generated by the increasing function u : R+ → R+ with u(0) = 0, the measure of
the hypograph becomes

m′(hypo(X)
)

= m′
( n⋃

i=1

[{ωi}× [0,xi]
])

=
n

∑
i=1

m′({ωi}× [0,xi]
)

=

=
n

∑
i=1

p
({ωi}

) ·μ
(
[0,xi]

)
=

n

∑
i=1

pi · [u(xi)−u(0)] =
n

∑
i=1

pi ·u(xi) ,

i.e., the expected utility of X .
Note that, in any case, we are just interested in measuring intervals of the type

[0,xi], and that the measure of such intervals is of course a function, call it h, of
the right endpoint only: in the two cases above, either h(xi) = xi or h(xi) = u(xi).
Such functions can be extended to the remaining subsets of R by simply tak-
ing any measure or capacity which coincides with h(xi) on [0,xi]. The results
of Castagnoli and LiCalzi (2006) can be restated by saying that, under the stated
assumptions, the functional F amounts to measuring the hypograph of a ran-
dom variable by means of a bidimensional measure m (not necessarily a product
measure).

In the two ways seen above, the hypograph of X has been measured by being
“cut” into “vertical” slices, but an interesting approach is to make use of “horizontal”
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cuts instead. To such an extent, consider (any one of) the permutation(s) putting the
values xi in decreasing order, i.e., such that x(1) � x(2) � . . . � x(n) � 01. This way,

hypo(X) =
n⋃

i=1

[{ω(1),ω(2), . . . ,ω(i)}× (x(i+1),x(i)]
]

,

where we agree that x(n+1) = 0 and that the last interval (x(n+1),x(n)] is taken closed,
[0,x(n)]. In other words, this amounts to interpret the random variable X as follows:

(i) X always gives at least the (minimum) value x(n);
(ii) if ω(n) does not prevail, then X gives the extra amount x(n−1)− x(n);

(iii) if neither ω(n) nor ω(n−1) prevail, then X gives the extra amount x(n−2)− x(n−1)
as well,

and so on. With such a decomposition, the above measures become, respectively,

x(2) = x1

x(4) = x2

x(1) = x3

x(3) = x4

ω(1) ω(2) ω(3) ω(4)

x(2)

x(4)

x(1)

x(3)

ω(1) ω(2) ω(3) ω(4)

Fig. 2 The random variable in Figure 1 “rearranged”; both “vertical” and “horizontal” cuts
are shown

m
(

hypo(X)
)

= m
( n⋃

i=1

[{ω(1),ω(2), . . . ,ω(i)}× (x(i+1),x(i)]
])

=

=
n

∑
i=1

m
({ω(1),ω(2), . . . ,ω(i)}× (x(i+1),x(i)]

)
=

=
n

∑
i=1

p
({ω(1),ω(2), . . . ,ω(i)}

) ·λ(
(x(i+1),x(i)]

)
=

=
n

∑
i=1

p
({ω(1),ω(2), . . . ,ω(i)}

) · (x(i)− x(i+1))

1 This simply amounts to a basis change in R
n: “vertical” cuts are based on the canonical

basis Iω1 ,Iω2 , . . . ,Iωn , whereas “horizontal” cuts refer to the basis Iω(1) ,I{ω(1),ω(2)}, . . . ,IΩ .
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and, in an analogous way,

m′(hypo(X)
)

=
n

∑
i=1

p
({ω(1),ω(2), . . . ,ω(i)}

) ·μ
(
(x(i+1),x(i)]

)
=

=
n

∑
i=1

p
({ω(1),ω(2), . . . ,ω(i)}

) · [u(x(i))−u(x(i+1))
]
,

depending on whether the Lebesgue measure or a Lebesgue-Stiltjes one is used.
Note that, in the above way, m(hypoX) and m′(hypoX) yield the expectation or (re-
spectively) the expected utility of any random variable X consistent (i.e., “comono-
tonic” in the sense of Nehring, 1999, that is, taking decreasing values) with the given
permutation.

It is quite important to emphasise that the two expressions above only involve the
increasing “chain” of events {ω(1),ω(2), . . . ,ω(i)} and the corresponding probabili-
ties, with respect to the permutation (or any one of them, in the case it is not unique)
of the states of the world which sorts the values xi in decreasing order.

In the above way, the expectation or the expected utility of any random variable
consistent with the given permutation is recovered.

Now, if a capacity ν is adopted instead of a (probability) measure p, such formu-
lae maintain their meaning, because ν

({ω(1),ω(2), . . . ,ω(i)}
)

is still increasing on
every “chain”. Such a substitution amounts to “measuring” the hypograph with a set
function being the product of a capacity ν and the Lebesgue (or a Lebesgue-Stiltjes)
measure:

m
(

hypo(X)
)

=
n

∑
i=1

ν
({ω(1),ω(2), . . . ,ω(i)}

) ·λ(
(x(i+1),x(i)]

)
=

=
n

∑
i=1

ν
({ω(1),ω(2), . . . ,ω(i)}

) · (x(i) − x(i+1)) ,

m′(hypo(X)
)

=
n

∑
i=1

ν
({ω(1),ω(2), . . . ,ω(i)}

) ·μ
(
(x(i+1),x(i)]

)
=

=
n

∑
i=1

ν
({ω(1),ω(2), . . . ,ω(i)}

) · [u(x(i))−u(x(i+1))
]
,

i.e., the Choquet expectation and the Choquet expected utility of X , respectively.
The two settings (“vertical” and “horizontal” cuts) appear to be perfectly sym-

metric. Indeed, they amount to evaluating the bidimensional measure we use (be it m
or m′) on an entire (σ -)algebra of subsets in one of the two components, and simply
on increasing chains of sets (either [0,xi] or {ω(1),ω(2), . . . ,ω(i)}) in the other one.
On the side of this second component, the measure can be extended to the remaining
subsets becoming either a measure or a capacity: since other types of subsets never
enter into evaluating hypographs, the completion is immaterial.

It is straightforward to reconcile the functional m{X �U}with the measure of the
hypograph of X . Call Q : R+ → R+ the “identity random variable”, i.e., Q(s) = s
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for every s ∈ R+ (but the same can be said with Q any injective function). The
hypograph of X can be written as

hypo(X) =
n⋃

i=1

({ωi}× [0,xi]
)

=
{
(ωi,s) : X(ωi) � Q(s)

}
,

because the pair (ωi,s) belongs to hypo(X) if and only if s ∈ [0,xi], that is, if and
only if X(ωi) = xi � s = Q(s). As a consequence, the functional m

(
hypo(X)

)
can

be written as m
({(ωi,s) : X(ωi) � Q(s)}), or, briefly, m{X � Q}.

In the particular case when m = m1 ⊗m2 is a product measure, one gets

m
({(ωi,s) : X(ωi) � Q(s)}) = ∑

t∈R+

m1
({ωi : X(ωi) = t}) ·m2

({s : t � s}) .

If, moreover, m1 and m2 are probability measures, m2
({s : s � t}) is the c.d.f. q(t)

of Q, so that

m
({(ωi,s) : X(ωi) � Q(s)}) = ∑

t∈R+

m1
({ωi : X(ωi) = t}) ·q(t) = Em1 q(X) ,

and we are back to the expected utility.

Recall that we assumed that the random variables in X are taking values in
a bounded interval B ⊆ R+; we can always suppose that m(Ω ×B) < +∞2. The
marginal measures of m are naturally defined by

m1(A) = m(A×B) with A ⊆ Ω any event ,
m2(I) = m(Ω × I) with I = [0,k] ⊆ B3 .

Analogously, the conditional marginal measures are defined by

m1(A|I) =
m(A× I)

m2(I)
·m2(B) , m2(I|A) =

m(A× I)
m1(A)

·m1(Ω) . (1)

So far, we have decomposed the measure of hypo(X) into the sum of the measures
of the “rectangles” {ωi}× [0,xi] which build it up. It is noteworthy that they are in
their turn hypographs of the (elementary) random variables X · Iωi = xiIωi , and thus

m
(

hypo(X)
)

=
n

∑
i=1

m
({ωi × [0,xi]}

)
=

n

∑
i=1

m
(

hypo(X · Iωi)
)

.

Generally speaking, the terms m
(

hypo(X · Iωi)
)

that evaluate the contribution of the
different “rectangles” to the overall measure do not turn out to be the product of the

2 The same conclusions hold, for instance, when the random variables are not bounded but
m(Ω ×R+) < +∞; what matters is that the overall measure be finite.

3 We only take intervals [0,k] because, for other measurable subsets of B, the measure or
capacity can be arbitrarily completed.
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measures of their “basis” by their “height”. Nevertheless, a standard trick allows to
write them as if they were:

(1) taking any (strictly positive) probability p (in particular, p might be taken to be
the marginal measure m1), we can write

m
({ωi}× [0,xi]

)
= p{ωi} ·

m
({ωi}× [0,xi]

)

p{ωi} = p{ωi} · ũ(xi,ωi) ,

where ũ(xi,ωi) can be intended as a state-dependent utility, i.e., the evaluation
attached to xi in the case that it is realised in ωi;

(2) taking any (strictly positive) utility function u (in particular, u might be taken to
be the marginal measure m2), we can write

m
({ωi}× [0,xi]

)
= u(xi) ·

m
({ωi}× [0,xi]

)

u(xi)
= π(xi,ωi) ·u(xi) ,

where π(xi,ωi) can be indended as a value-dependent probability, that is, the
probability assessed for ωi in the case that xi is the corresponding value.

The same conclusion can be drawn when considering the random variables XIA,
with A any event in Ω . Such a setting can then accommodate the “inversion of
preferences” when a decision maker compares random variables or their multiples.
Think, e.g., of a guy with the necessity to have at least 100 in the case when the
event A occurs. If the infimum of the values taken by XIA and Y IA are 80 and 110,
respectively, he will consequently assess that Y IA �XIA, but the preference might be
naturally reversed when comparing 2XIA and 2Y IA. In such cases, we need to resort
to a state-dependent utility (or, equivalently, to a value-dependent probability).

Write fA(k) := m
(

hypo(kIA)
)
: it is immediate that such fA is increasing with

respect to k (and to A as well). We can therefore call f−1
A

(
m(hypo(XIA))

)
the cer-

tainty equivalent of X conditional on A. In particular, the (unconditional) certainty
equivalent of X is f−1

Ω
(
m(hypo(X))

)
.

When dealing with random variables taking arbitrary values and not just positive
ones, the above setting still holds, provided the following convention is adopted. If
xi < 0, the interval [0,xi] becomes the “reversed” interval [xi,0], and it is enough to
define its measure to be the opposite of measure of the interval in the natural sense.
Of course, this amounts to to setting anyway

λ
(
[0,xi]

)
:= xi (Lebesgue measure),

μ
(
[0,xi]

)
:= u(xi) (Lebesgue-Stiltjes measure),

with u : R → R an increasing function such that u(0) = 0. Note that this amounts
to measuring the (truncated) epigraph of negative random variables. Explicitly, if
X � 0, its (truncated) epigraph is:

(i) with vertical cuts, epi(X) =
n⋃

i=1

({ωi}× [0,xi]
)

;
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(ii) with horizontal cuts, being again 0 � x(1) � x(2) � . . . � x(n):

epi(X) =
n⋃

i=1

{ω(i+1),ω(i+2), . . . ,ω(n)}× [x(i),x(i+1)) =

=
n⋃

i=1

[
Ω \ {ω(1),ω(2), . . . ,ω(i)}

]× [x(i),x(i+1)).

For a generic random variable X , the set to be measured is hypo(X+)∪ epi(X−).

4 Another Interpretation of the Functional Proposed by
Castagnoli and Li Calzi

The representing functional P{X � U} can be obviously intended as the probability
that X outperforms a given random benchmark U , but a different interpretation can
be proposed.

As already mentioned in the remark at the end of Section 2, Theorem 1 can be
rephrased by saying that the representing functional takes the form m{X � U} with
m a bidimensional measure on Ω × S; moreover, it can be equivalently written as
the measure m

(
hypo(X)

)
of the hypograph of X . Whenever X is a discrete random

variable, we have that

m
(

hypo(X)
)

= m
( n⋃

i=1

({ωi}× [0,xi]
))

=
n

∑
i=1

m
(

hypo(X · Iωi)
)

,

and the single terms m
({ωi}× [0,xi]

)
= m

(
hypo(X · Iωi)

)
, i = 1,2, . . . ,n, evaluate

the different “pairs” (ωi,xi) which additively give rise to the functional.
Under the stated assumptions (notably, under the Sure Thing Principle), it is

therefore possible to elicit an evaluation for every single pair (ωi,xi), i.e., for every
amount xi in the case that it takes place in the event ωi. In general, it is impossible
to go on and to further split such an evaluation into the product of a probability and
a utility: the “finest” elicitable evaluation is the one of the pair (ωi,xi) as a whole.
Nevertheless, in the previous section we have seen that it is possible to take into con-
sideration any (strictly positive) probability p and force the formula to decompose
into

m
({ωi}× [0,xi]

)
= p{ωi} ·

m
({ωi}× [0,xi]

)

p{ωi} = p{ωi} · ũ(xi,ωi) .

This allows to see the functional as a state-dependent expected utility, in the sense
that the utility ũ attached to a value xi depends on the state of the world as well.

Note that the random variable U (and the set S) of Theorem 1 are far from being
unique. Nonetheless, the pair (U,P) is “essentially” unique in the sense that follows.
Take any injective function h : R → R, and consider the functional P{h(X) � U}.
We have
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P{h(X) � U} =
n

∑
i=1

m
({ωi}× [0,h(xi)]

)
=

n

∑
i=1

mh
({ωi}× [0,xi]

)
,

with mh the measure such that mh
({ωi}× [0,xi]

)
= m

({ωi}× [0,h(xi)]
)
. Thus if,

instead of the benchmark U , we take into consideration g(U), with g : R → R an
injective function, we get

P{X � g(U)} = P{g−1(X) � U} = Pg−1{X � U} ,

with g−1 the left inverse of g. This shows that the two pairs (U,P) and
(
g(U),Pg−1

)

are in some sense “interchangeable”. Thus, whenever only the ordering among dif-
ferent random variables matters, we can use the functional g−1

(
P{X � g(U)}),

which can be equivalently written g−1
(
m{X � g(U)}). In such a case, and as-

suming U to take values in B, the functional has the convenient property that
g−1

(
m{k � g(U)}) = k for every k ∈ R.

The most remarkable meaning of Theorem 1 is that, under the stated assumptions,
the representing functional is a “measure” of the hypograph of the random variable
X evaluated by a bidimensional measure m (not necessarily a probability) on the set
Ω ×S. Such a m turns out to be additive (i.e., a measure indeed) just because of the
additivity property embedded in the Sure Thing Principle.

It is therefore quite intuitive that:

(i) if the Sure Thing Principle is removed, m is no longer additive, but it rather
turns out to be a monotonic set function (because � is supposed to be mono-
tonic), i.e., a capacity;

(ii) if the Sure Thing Principle is imposed on a restricted family A of events only,
them m turns out to be (a capacity) additive on A ;

(iii) if even the monotonicity requirement is removed (i.e., � is just supposed to be
continuous), then m turns out to be a general set function (which is additive or
not depending on whether the Sure Thing Principle is assumed or not on some
sets).

5 The Reversed Sure Thing Principle

The Sure Thing Principle amounts to cutting “vertically” (i.e., event-wise) the hypo-
graph of a random variable. We want now to investigate shortly what happens when
dealing with “horizontal” (i.e., amount-wise) cuts.

Let X ∈ X . For every k ∈ R, we define the upper truncation and the lower trun-
cation of X at the amount k to be

Xk := X · I{X>k} =

{
X if X > k

0 if X � k
; Xk := X · I{X�k} =

{
0 if X > k

X if X � k

respectively. It is clear that Xk + Xk = X for every X and every k.
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The Reversed Sure Thing Principle requires that

Y k + Zk � Xk + Zk ⇐⇒ Y k +Vk � Xk +Vk

for every X ,Y,Z,V ∈ X and every k ∈ R. (Note that this is equivalent to requiring
that Zk +Yk � Zk + Xk ⇔ V k +Yk � V k + Xk as soon as X has suitable symmetry
properties. If, e.g., X is closed under opposites, the two properties clearly imply
each other. If, as in the previous sections, the random variables take values in a
bounded interval [a,b], think that Xk = (b + a−X)b+a−k.)

The interpretation is straightforward: if two random variables coincide below
a certain threshold k (i.e., if their truncations Xk and Yk are the same, called Zk

above), replacing the “common part” with a different one (i.e., Vk) does not affect
the preference.

If the Reversed Sure Thing Principle is assumed, a “reversed” version of Theo-
rem 1 can be obtained. We shall hereby state and prove the result in the case of a
finite set Ω of states of the world, but we conjecture the same result to hold for more
general sets. Provided that there are at least three essential values for k, we have:

Theorem 2. Let � be a monotonic and continuous preorder. The Reversed Sure
Thing Principle holds if and only if it is represented by the functional

F(X) = ν{X � U} = ν
(

hypo(X)
)
,

with ν a capacity, additive on S and monotonic on Ω .

Proof. Let Ω = {ω1,ω2, . . . ,ωn} and suppose B = [0,b]. Given a permutation
ω(1),ω(2), . . . ,ω(n) of the states of the world, write Ai := {ω(1),ω(2), . . . ,ω(i)} for
every i = 1,2, . . . ,n and consider the chain C := { /0,A1,A2, . . . ,An = Ω}. The pref-
erence among the random variables b · IAi can be trivially represented by a one-to-
one function α : C → [0,1] such that α( /0) = 0, α(Ω) = 1 and α(Ai) � α(Ai+1) for
every i.

As in Section 3, any random variable X consistent (“comonotonic”) with C , i.e.,
such that x(1) � x(2) � . . . � x(n) � 0, can be identified with the set

n⋃

i=1

(
Ai × (x(i+1),x(i)]

)
,

or, equivalently (α being one-to-one), with the function ξ : [0,b] → [0,1] such that
ξ (t) = α(Ai) if t ∈ (x(i+1),x(i)]. Theorem 1, exchanging the roles of Ω and B, guar-
antees the existence of (a probability or of) a measure mC on C ×B such that the
preference among all of the random variables consistent with C is represented by
mC

(
hypo(X)

)
or, equivalently, by mC {X � U}.

Consider now a “neighbour” permutation of the previous one in the sense
of Nehring (1999): namely, it only differs by the exchange of the two “con-
secutive” states ω( j) and ω( j+1). Thus, such a permutation identifies the chain
C ′ = { /0,A1, . . . ,A j−1,A′

j,A j+1, . . . ,An = Ω} with A′
j = {ω(1), . . . ,ω( j−1),ω( j+1)}.

It is straightforward that α can be extended to represent the preference among the
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random variables b ·IA with A ∈ C ∪C ′ = C ∪{A′
j}. As above, we obtain a measure

mC ′ on C ′ ×B representing the preference among the random variables consistent
with C ′, with the further property that mC ′ = mC on all of the sets I ×Ai with I a
subinterval of B and Ai ∈ C ∩C ′. This allows to define a capacity ν on (C ∪C ′)×B
which agrees with mC on C ×B and with mC ′ on C ′ ×B, and thus represents the
preferences among all of the random variables consistent either with C or with C ′.

Since any two permutations can be connected by a “path” of neighbour ones, we
can repeat this argument to end up with a capacity ν defined on the entire 2Ω ×B
and completely representing the given preference.

Example 2.(1) Suppose that the two random variables:

A

{

Ac

⎧
⎨

⎩

Y X
ω1 10 9
ω2 6 9
ω3 8 8
ω4 4 4
ω5 1 1

are indifferent to a decision maker. Since they are identical on Ac = {ω3, ω4,
ω5}, the Sure Thing Principle implies that the decision maker remains indiffer-
ent when the common part, i.e., the particular values taken by the two random
variables on Ac, is changed. For instance,

Y ′ X ′ Y ′′ X ′′ Y IA XIA

ω1 10 9 10 9 10 9
ω2 6 9 6 9 6 9
ω3 20 20 1 1 0 0
ω4 30 30 10 10 0 0
ω5 5 5 12 12 0 0

are pairwise indifferent. In particular, the fact that Y IA and XIA are indifferent
reveals that the functional, call it F , representing the preference, has the property

F(Y ) = F(Y IA)+ F(Y IAc)

for every event A and every Y .
(2) Suppose now that the two random variables:

Y X
ω1 12 7
ω2 8 14
ω3 6 6
ω4 2 2
ω5 1 1
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are indifferent. Since they coincide below k = 6 (that is, again on {ω3,ω4,ω5},
the Reversed Sure Thing Principle implies that the decision maker remains indif-
ferent when the common part is changed with values still below 6. For instance:

Y ′ X ′ Y ′′ X ′′

ω1 12 7 12 7
ω2 8 14 8 14
ω3 0 0 2 2
ω4 6 6 4 4
ω5 3 3 6 6

are pairwise indifferent. Let us now write Y and X from the point of view of
“horizontal” cuts:

ΔY
ω1 4

{ω1,ω2} 2
{ω1,ω2,ω3} 4

{ω1,ω2,ω3,ω4} 1
Ω 1

ΔX
ω2 7

{ω1,ω2} 1
{ω1,ω2,ω3} 4

{ω1,ω2,ω3,ω4} 1
Ω 1

The two random variables have the same lower part (4, 1, 1), and the two upper
parts (4, 2, and 7, 1) are indifferent. In particular,

Y 6 X6

ω1 6 1
ω2 2 8
ω3 0 0
ω4 0 0
ω5 0 0

i.e.,

ΔY 6

ω1 4
{ω1,ω2} 2

Ω 0

ΔX6

ω2 7
{ω1,ω2} 1

Ω 0

are indifferent. This amounts to saying that the functional, call it G, representing
the preference, has the property

G(Y ) = G(Y k)+ G(Yk)

for every k ∈ R and every Y .
Note that the “classical” Sure Thing Principle does not ensure indifference

between Y 6 and X6, but rather between Y IA and XIA that assume, respectively,
values 12 and 7 on ω1 and values 8 and 14 on ω2.

If both Sure Thing Principles are imposed, the measure m turns out to be a product
one. Indeed, formula (1) holds for every event A ⊆ Ω and for every measurable set
I ⊆ B and thus it has to be

m(A× I) = m2(I|A) · m1(A)
m1(Ω)

= m1(A|I) · m2(I)
m2

(
B
) ,
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that is,

m1(A|I) =
m1(A)
m1(Ω)

and m2(I|A) =
m2(I)
m2

(
B
) :

both the conditional measures, then, do not depend on the conditioning event.

6 Generalised Expectations

What comes above suggests to call a generalised expectation of a random variable
a suitable measure of its hypograph. The most general concept appears to be the
following one.

Definition 1. A generalised expectation, denoted with E , of a random variable X
defined on a set Ω is the real number

E (X) := ν
(

hypo(X)
)

,

where ν is a bidimensional capacity on Ω ×R such that

ν(Ω × [0,k]) = k for every k ∈ R .

The condition imposed on ν is nothing but the natural consistency requirement that
E (k) = k for every k ∈ R. This amounts to requiring that the marginal capacity
ν2 coincides with the Lebesgue measure on all of the intervals of the form [0,k].
Thus, the values ν(A×[0,k])

k = ν(hypo(kIA))
k are the “value-dependent probabilities” of

the events of A (being, of course, not additive, but simply monotonic).
We can write as well

E (X) = g−1(ν{X � g(U)}) ,

with U : R → R an injective function and g : R → R a strictly increasing one.
In order to obtain a (less general, but) more significant and useful concept of gen-

eralised expectation, we need to impose some associativity property that, roughly
speaking, requires the “average” of partial expectations to yield back the overall
one. We reckon that there are two natural ways to ask for such a property, each of
them mimicking one of the two Sure Thing Principles commented above.

(1) If we take into consideration partial expectations with respect to events, it is
natural to require that, for every event A (and every X),

E (X) = E (X · IA)+E (X · IAc) = E (X |A)p(A)+E (X |Ac)p(Ac), (2)

where p can be amount-dependent. This amounts to imposing the Sure Thing
Principle, and thus the marginal capacity ν1 turns out to be additive. Moreover,
since the only sets to be measured on R are those of the form [0,k], we can always
take ν2 to be the Lebesgue measure.
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We can call a generalised expectation of the first type any generalised expectation
satisfying (2), i.e., of the form:

E (X) = m
(

hypo(X)
)

with m a bidimensional capacity defined on Ω ×R whose marginal m1 is additive
(and, as mentioned above, m2 can always be taken to be the Lebesgue measure).

Example 3. The certainty equivalent of a random amount X is classically defined
to be u−1

(
Eu(X)

)
and, as such, cannot incorporate state dependency, although the

latter might be welcome for the problem into consideration. Note that u−1
(

Eu(X)
)

is an associative expectation.
As a simple example, consider the bet where 1000$ are won (respectively, lost) in

the case when the Dollar to Euro ratio raises (respectively, falls) in the next month;
consider as well the “opposite” bet yielding the same amounts on the complemen-
tary events. If the two events are supposed to be equiprobable, it is clear that the
first bet is better than the second one, as it gives more valuable dollars when win-
ning and forces to pay less valuable dollars when losing. Yet no utility function, and
therefore no certainty equivalent, can incorporate such a preference, whereas the
proposed functional g−1

(
ν{X � g(U)}) can.

Example 4. As a second example, imagine two firms considering the possibilities to
acquire a financial asset yielding 100 or −100 depending on whether the oil price
will increase (U) or decrease (D). The first firm is a car producer and will make
a profit of 1000 or 600 depending on whether sales of new cars increase (u) or
decrease (d), while the second one produces car spare components and will make a
profit of 500 in u or 800 in d.

Both firms evaluate the joint probability as follows:

U D
u 0.1 0.3 0.4
d 0.4 0.2 0.6

0.5 0.5

The asset is more valuable to the first firm, as it better matches the risk of the final
profit. Again, no associative mean can incorporate such an effect, while generalised
means of the first type can.

(2) If we take into consideration partial expectations with respect to values, we want
that

E (X) = E (Xk)+E (Xk) for every k ∈ R (and every X) , (3)

which amounts to reversing the Sure Thing Principle, that is, to refer to horizontal
cuts instead of vertical ones.

We can call a generalised expectation of the second type any generalised
expectation satisfying (3), i.e., of the form

E (X) = m
(

hypo(X)
)
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with m a bidimensional capacity defined on Ω ×R whose marginal m2 is the
Lebesgue measure.

Example 5. Consider the classical Ellsberg urn with 30 red balls and 60 black or
green balls in unknown proportion.

A decision maker prudentially underestimates the probabilities according to the
amount obtained in the corresponding events; such an underestimation is higher for
ambiguous events. Take into consideration the four random variables

R B G
X 1000 0 0
Y 0 1000 0
Z 1000 0 1000
V 0 1000 1000

.

Since Z = X(R∪B)1000, V = Y (R∪B)1000 (and, of course, X = X(R∪B)0 and
Y = Y (R∪B)0), the Sure Thing Principle would entail that X � Y ⇒ Z �V .

Suppose now that, consistently with the Reversed Sure Thing Principle:

p(R,1000) = 0.3 , p(B,1000) = 0.25 ,

and
p(R∪G,1000) = 0.55 , p(B∪G,1000) = 0.65 ,

which allow for X � Y and V � Z.

Example 6. The functional defined by:

F(X) = max
p∈P

Ep(X),

with P a closed and convex set of probabilities, violates the Sure Thing Principle
but satisfies the reversed one. Indeed, Y k +Zk and Xk +Zk determine two chains that
coincide in all of the terminal events (i.e., the ones related to values � k). Therefore,
F(X) and u−1

(
F(u(X))

)
are generalised expectations of the second type but not of

the first one. The same holds for minp∈P Ep(X).

Imposing both versions of associativity amounts to requiring both the Sure Thing
Principles. In such a case, m turns out to be a product measure (or, better, it can be
completed to be as such), so that writing the functional as g−1

(
m{X � g(U)}) yields

back the classical formula of Nagumo, Kolmogorov and de Finetti for associative
means.

7 Conclusions

The possibility of considering random variables as sets (hypo- or epigraphs), instead
of mere functions, was originally proposed in the seminal papers of Segal (1989,
1993). Such a choice allows to treat random variables in the language and with the
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tools of Measure theory, instead of the commonly adopted ones of Functional anal-
ysis: the former being very powerful and very well developed, this allows one to ob-
taining results that would be quite tougher, or straightaway impossible, to reach by
means of the latter. For instance, the possibility of extending a measure from a given
family of subsets to a larger one was extensively deployed in Castagnoli and LiCalzi
(2006) to axiomatise a preference preorder simply by means of continuity, mono-
tonicity and the Savage’s Sure Thing Principle.

In this paper we have shown that, when looking at a random variable as a set,
the concepts of the expectation and the expected utility (either “classical” or à la
Choquet) turn out to be slight variations of the same procedure of measuring a set
(the truncated hypo- or epigraph corresponding to the given random variable) by
means of a product measure (or capacity). We propose to push this line of reasoning
further by using a generic (“non-product”) measure or capacity to evaluate the set
under examination, thus obtaining a broader concept of an expectation that includes
dependence of the utility function on the state (or dependence of the probability on
the amount).

We deem that any expectation, in order to represent a satisfactory summary of the
random variable taken into consideration, should satisfy a reasonable requirement.
Namely, it should yield the unique value that, when replaced to the different ones
taken by the random variable, “leaves things unchanged”, i.e., does not alter the
expectation itself. This amounts to saying that the expectation of a random variable
equals its own certainty equivalent, thus pointing out the equivalence between any
random variable and a corresponding degenerate one. We have shown by means of
some simple example that an approach as such can be quite fruitful in many case of
practical interest.

Finally, we also recovered two different ways for defining the associative prop-
erty of a generalised expectation.
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Memory Property in Heterogeneously Populated
Markets

Roy Cerqueti and Giulia Rotundo

Abstract. This paper focuses on the long memory of prices and returns of an asset
traded in a financial market. We consider a microeconomic model of the market, and
we prove theoretical conditions on the parameters of the model that give rise to long
memory. In particular, the long memory property is detected in an agents’ aggrega-
tion framework under some distributional hypotheses on the market’s parameters.

1 Introduction

During last years quantitative studies of financial time series have shown several
interesting statistical properties common to many markets. Among the others, long
memory is one of the most analyzed. This concept raised by time series empirical
analysis in terms of the persistence of observed autocorrelations. The long memory
property is fulfilled by a time series when the autocorrelation decays hyperbolically
as the time lag increases. Therefore, this statistical feature is strongly related to the
long run predictability of the future phenomenon’s realizations.

Long memory models were introduced in the physical sciences since at least
1950, when some researches in applied statistics stated the presence of long memory
within hydrologic and climatologic data. The earliest studies on this field are due to
Hurst (1951, 1957), Mandelbrot and Wallis (1968), Mandelbrot (1972), and McLeod
and Hipel (1978) among others.
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In this paper a theoretical microeconomic structural model is constructed and
developed. We rely on time series of assets traded in a financial market and we
address the issue of giving mathematical proof of the exact relation between model
parameters evidencing the presence of long memory.

The literature on structural models for long-memory is not wide. Some references
are Willinger et al. (1998), Box-Steffensmaier and Smith (1996), Byers et al. (1997),
Tschernig (1995), Mandelbrot et al. (1997). The keypoint of the quoted references
is to assume distributional hypotheses on parameters of models in order to detect
the presence of long memory in time series.

We adopt the approach of the structural model of Kirman and Teyssiere (2002)
is based on the assumption that the market is populated by interacting agents. The
interaction among agents leads to an imitative behavior, that can affect the structure
of the asset price dynamics. Several authors focus their research on describing the
presence of an imitative behavior in financial markets (see, for instance, Avery and
Zemsky (1998), Chiarella et al. (2003), Bischi et al. (2006)).

The traditional viewpoint on the agent-based models in economics and finance
relies on the existence of representative rational agents. Two different behaviors of
agents follow from the property of rationality: firstly, a rational agent analyzes the
choices of the other actors and tends to maximize utility and profit or minimize the
risk. Secondly, rationality consists in having rational expectations, i.e. the forecast
on the future realizations of the variables are assumed to be identical to the mathe-
matical expectations of the previous values conditioned on the available information
set. Thus, rationality assumption implies agents’ knowledge of the market’s dynam-
ics and equilibrium, and ability to solve the related equilibrium equations.

Simon (1957) argues that it seems to be unrealistic assuming the complete knowl-
edge about the economic environment, because it is too restrictive. Moreover, if the
equilibrium model’s equations are nonlinear or involve a large number of parame-
ters, it can be hard to find a solution.

An heterogeneous agent systems is more realistic, since it allows the description
of agents’ heterogeneous behaviors evidenced in the financial markets (see Kirman
(2006) for a summary of some stylized facts supporting the agents’ heterogeneity
assumption). Moreover, heterogeneity implies that the perfect knowledge of agent
beliefs is unrealistic, and then bounded rationality takes place (see Hommes, 2001).

Brock and Hommes (1997, 1998) propose an important contribution on this field.
The authors introduce the learning strategies theory to discuss agents’ heterogeneity
in economic and financial models. More precisely, they assume that different types
of agents have different beliefs about future variables’s realizations and the forecast
rules are commonly observable by all the agents.

Brock and Hommes (1998) consider an asset in a financial market populated by
two typical investor types: fundamentalists and chartists. An agent is fundamentalist
if he/she believes that the price of the aforementioned asset is determined by its
fundamental value. In contrast, chartists perform a technical analysis of the market
and do not take into account the fundamentals.
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More recently, important contributions on this field can be found in Chiarella and
He (2002), Föllmer et al. (2005), Alfarano et al. (2008), Chiarella et al. (2006). For
an excellent survey of heterogeneous agents models, see Hommes (2006).

In this paper, heterogeneity is assumed to be involved within each single agent,
that wears simultaneously two hats: the forecast of the assets’ prices are driven by
technical analysis of the market (chartist approach) but also by the fundamentals’
value (fundamentalist point of view).

In our model each agent performs price forecasts following a short term ap-
proach, but the collective behavior can exhibit long memory property. In this con-
text, we extend some existing results (see Zaffaroni 2004, 2007a, 2007b) about the
arise of the long memory property due to the aggregation of micro units, by en-
larging the class of probability densities of agents’ parameters. The contribution of
cross-correlation parameters among the agents to the long memory of the aggregate
is shown. Furthermore, it is also evidenced that the presence of long memory in the
asset price time series implies that the log returns have long memory as well.

The rest of this paper is organized as follows: section 2 introduces the model;
section 3 provide the proof of long memory property of the prices. Section 4 pro-
vides the analysis of the returns, and section 5 is devoted to the conclusions. The
Appendix contains some well-known definitions and results, for an easier reference.

2 The Model

The basic features of the market model, that we are going to set up, are the existence
of two groups of agents, with heterogeneity inside each group.

Let us consider a market with N agents that can make an investment either in a
risk free or in a risky asset. Furthermore, the risky asset has a stochastic interest rate
ρt ∼ N(ρ ,σ2

t ) and the risk free bond has a constant interest rate r. We suppose that
ρ > r for the model to be consistent.

Let Pi,t be the estimate of the price of the risky asset done by the agent i at time
t. The change of the price at time t + 1 forecasted by the i-th agent, conditioned to
his information at time t, It , is given by ΔPi,t+1|Ii,t .

Let us assume that the market is not efficient, i.e. we can write the following
relationship:

E(Pt+1|It) = ΔPt+1|It + Pt (1)

where E is the expected value operator, as usual.
In this model, we suppose that the behavior of the investors is due to an analysis

of the market data (by a typical chartist approach) and to the exploration of the
behavior of market’s fundamentals (by a fundamentalist approach). Moreover, the
forecasts are influenced by an error term, common to all the agents:

(ΔPi,t+1|Ii,t) = (ΔPc
i,t+1|Ii,t)+ (ΔP f

i,t+1|Ii,t)+ ut, (2)
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where (ΔPc
i,t+1|Ii,t) is the contribute of the chartist approach, (ΔP f

i,t+1|Ii,t) is associ-
ated to the fundamentalist point of view and ut is a stochastic term representing an
error in forecasts.

As a first step we assume that all the agents have the same weight in the market
and that the price Pt of the asset in the market at time t is given by the mean of the
asset price of each agent at the same time. So we can write

Pt =
1
N

N

∑
i=1

Pi,t . (3)

The chartists catch information from the time series of market prices. The forecast
of the change of prices performed by the agent i is assumed to be given by the
following linear combination:

ΔPc
i,t+1|Ii,t = α(1)

i (Pi,t −Pi,t−1)+ α(2)
i (Pt −Pt−1), (4)

with α(1)
i ,α(2)

i ∈ R, ∀ i. Formula (4) captures the idea of a stochastic relationship
providing the estimate changes of prices by relying on a linear combination of the
two previous price’s forecasts, each of them adjusted to the actual market prices got
at the relative time.

The fundamentalist approach takes in account the analysis made by the investors
on the fundamental values of the market.

The fundamental variables P̄i,t can be described by the following random walk:

P̄i,t = P̄i,t−1 + εt , εt ∼ N(0,σ2
ε ). (5)

The fundamental prices observed by the agent i at time t, P̃i,t , are assumed to be
biased by a stochastic error:

P̃i,t = P̄i,t + ᾱi,t

with ᾱi,t = βiPt , where βi, i = 1, . . . ,N, are parameters drawn by sampling from the
cartesian product (1− ξ ,1 + ξ )N , ξ > 0, equipped with the relative product prob-
ability measure. The definition of ᾱi,t takes into account the fact that the error in
estimating depends on the adjustment performed by each agent of the market price.
More precisely, the observation of the fundamental prices is affected by the subjec-
tive opinion of the agents on the influence on the fundamental of the market price.
If βi > 1, then agent i guesses that market price is responsible of an overestimate of
the fundamental prices. Otherwise, the converse consideration applies.

Moreover, the forecasts of the fundamentalist agents is based on the fundamental
prices and his/her forecast on market prices at the previous data. So we can write

ΔP f
i,t+1|Ii,t = ν(P̃i,t −Pt), (6)

with ν ∈ R. Thus
ΔP f

i,t+1|Ii,t = νP̄i,t + ν(βi−1)Pt. (7)
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Let us define di,t to be the demand of the risky asset of the agent i at the date t. Thus
the wealth invested in the risky asset is given by Pt+1di,t and, taking into account
the stochastic interest rate ρt+1, we have that the wealth grows as (1+ρt+1)Pt+1di,t .
The remaining part of the wealth, (Wi,t −Ptdi,t) is invested in risk free bonds and
thus gives (Wi,t −Ptdi,t)(1 + r) (Cerqueti and Rotundo, 2003).

The wealth of the agent i at time t + 1 is given by Wi,t+1, and it can be written as

Wi,t+1 = (1 + ρt+1)Pi,t+1di,t +(Wi,t −Pi,tdi,t)(1 + r).

The expression of Wi,t+1 can be rewritten as

Wi,t+1 = (1 + ρt+1)ΔPi,t+1di,t +Wi,t(1 + r)− (r−ρt+1)Pi,tdi,t (8)

Each agent i at time t optimizes the mean-variance utility function

U(Wi,t+1) = E(Wi,t+1)− μV(Wi,t+1),

where E and V are the usual mean and variance operators and thus:

E(Wi,t+1|Ii,t) = (1 + ρ)(ΔPi,t+1|Ii,t)di,t +Wi,t(1 + r)− (r−ρ)Pi,tdi,t

and
V (Wi,t+1|Ii,t) = V [(1 + ρt+1)(Pi,t+1|Ii,t)](di,t)2.

Each agent i maximizes his expected utility with respect to his demand di,t , con-
ditioned to his information at the date t. For each agent i the first order condition
is

(1 + ρ)(ΔPi,t+1|Ii,t)− (r−ρ)Pi,t −2μV [(1 + ρt+1)(Pi,t+1|Ii,t)]di,t = 0,

By the first order conditions we obtain

di,t = bi,tPi,t + gi,t(ΔPi,t+1|Ii,t)

with

bi,t =
ρ − r

2μV((Pi,t+1|Ii,t)(1 + ρt+1))
; gi,t =

ρ + 1
2μV((Pi,t+1|Ii,t)(1 + ρt+1))

.

Let Xi,t be the supply function at time t for the agent i. Then

Xi,t = bi,tPi,t + gi,t(ΔPi,t+1|Ii,t). (9)

Let us denote

γi,t =
Xi,t

bi,t
, c =

1 + ρ
r−ρ

=
gi,t

bi,t
, λi :=

−cα(2)
i

1 + cα(1)
i

. (10)
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By (2), (4), (7) and (9) we get:

Pi,t =
1

1 + c
· 1−λi

1−λiL

(
γi,t − cνP̄i,t

)
− c

1 + c
· 1−λi

1−λiL
ut−

− c
1 + c

· 1−λi

1−λiL

[
ν(βi −1)−αi

]
Pt − λi

1−λiL
Pt−1, (11)

where L is the backward time operator.
Condition (3) and equation (11) allow to write the market price as

Pt =
1
N

N

∑
i=1

{ 1
1 + c

· 1−λi

1−λiL

(
γi,t − cνP̄i,t

)
− c

1 + c
· 1−λi

1−λiL
ut−

− c
1 + c

· 1−λi

1−λiL

[
ν(βi −1)−αi

]
Pt − λi

1−λiL
Pt−1

}
. (12)

3 Long Term Memory of Prices

This section shows the long term memory property of market price time series.
Equation (12) evidences the contribution of each agent to the market price
formation.

Each agent is fully characterized by her/his parameters, and it is not allowed
to change them. Parameters are independent with respect to the time and they are
not random variables, but they are fixed at the start up of the model in the overall
framework of independent drawings.

The heterogeneity of the agents is obtained by sampling αi, i = 1, . . . ,N from the
cartesian product RN with the relative product probability measure. No hypotheses
are assumed on such a probability up to this point.

In order to proceed and to examine the long term memory property of the aggre-
gate time series, the following assumption is needed:

Assumption (A)

αi = ν(βi −1) < −1
c
. (13)

This Assumption thus introduces a correlation in the way in which actual prices Pt

play a role in the fundamentalists’ and chartists’ forecasts, and meets the chartists’
viewpoint that market prices reflect the fundamental values. Moreover, a relation-
ship between the parameters of the model describing the preferences and the strate-
gies of the investors, αi and ν , and the interest rates of the risky asset and risk free
bond (combined in the parameter c) is evidenced.

By a pure mathematical point of view, since ρ > r (and, consequently, c < −1),
the variation range of αi is, in formula (13), respected.

We assume that Assumption (A) holds hereafter.
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By (12) and (13), market’s price can be disaggregated and written as

Pt =
1
N
· 1

1 + c

N

∑
i=1

1−λi

1−λiL
γi,t − 1

N
· c

1 + c

N

∑
i=1

1−λi

1−λiL
ut−

− 1
N
· cν

1 + c

N

∑
i=1

1−λi

1−λiL
P̄i,t − 1

N

N

∑
i=1

λi

1−λiL
Pt−1 =: A1

t + A2
t + A3

t + A4
t , (14)

and λi ∈ (0,1), for each i = 1, . . . ,N.
Equation (14) fixes the role of the parameters of the model in the composition of

the price.
The theoretical analysis of the long term memory of the time series (14) is carried

on through two steps:

• long memory is detected for each component of Pt ;
• the terms are aggregated.

3.1 The Idiosyncratic Component

A1
t is the idiosyncratic component of the market, and it gives the impact of the supply

over market’s prices, filtered through agents’ forecasts parameters.
The degree of long term memory can be fixed through a direct analysis of the rate

of decay of the correlation function. In the next result a sufficient condition for the
long term memory property of A1

t is shown.

Theorem 1. Let us assume that there exists a, b ∈ (0,+∞) such that λi ∈ [0,1] and
λi are sampled by a B(a,b) distribution.

Fixed i = 1, . . . ,N, let γi,t be a stationary stochastic process such that

E[γi,t ] = 0, ∀ i ∈ {1, . . . ,N}, t ∈ N; (15)

E[γi,uγ j,v] = δi, jδu,vσ2
γ , ∀ i, j ∈ {1, . . . ,N}, u,v ∈ N.1 (16)

Then, as N → +∞, the long term memory property for A1
t holds, with Hurst’s expo-

nent H1, in the following cases:

• b > 1 implies H1 = 1/2:
• b ∈ (0,1) and the following equation holds:

+∞

∑
h=−∞

E[A1
t A1

t−h] = 0, (17)

imply H1 = (1− b)/2. In this case it results H1 < 1/2, and the process is mean
reverting.

1 δi, j is the usual Kronecker symbol, e.g. δi, j = 1 for i = j; δi, j = 0 for i �= j.
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Proof. First of all, we need to show that

E
[
A1

t A1
t−h

]
∼ h−1−b, as N → +∞. (18)

Let us examine A1
t A1

t−h.

A1
t A1

t−h =
1

N2(1 + c)2

N

∑
i=1

1−λi

1−λiL
γi,t

N

∑
j=1

1−λ j

1−λ jL
γ j,t−h =

=
1

N2(1 + c)2

N

∑
i=1

(1−λi)
[ ∞

∑
l=0

(λiL)l
]
γi,t ·

N

∑
j=1

(1−λ j)
[ ∞

∑
m=0

(λ jL)m
]
γ j,t−h.

The terms of the series are positive, and so it is possible to exchange the order of the
sums:

A1
t A1

t−h =
1

(1 + c)2

∞

∑
m=0

∞

∑
l=0

1
N2

N

∑
i=1

N

∑
j=1

(1−λi)λ l
i (1−λ j)λ m

j γi,t−mγ j,t−h−l . (19)

In the limit as N → +∞ and setting x := λi, y := λ j, (19) becomes:

A1
t A1

t−h =
1

(1 + c)2

∞

∑
m=0

∞

∑
l=0

∫ 1

0

∫ 1

0
(1− x)xl(1− y)ymγx,t−mγy,t−h−ldF(x,y), (20)

where F is the joint distribution over x and y.
Taking the mean w.r.t. the time and by using the hypothesis (16), we get

E
[
A1

t A1
t−h

]
=

1
(1 + c)2

∞

∑
m=0

∞

∑
l=0

∫ 1

0

∫ 1

0
(1− x)xl(1− y)ymδx,yδm,l+hσ2

γ dF(x,y) =

(21)

=
1

β (a,b)
· σ2

γ

(1 + c)2

∞

∑
l=0

∫ 1

0
(1− x)1+bx2l+h+a−1dx. (22)

By using the distributional hypothesis on λi, for each i, we get

E
[
A1

t A1
t−h

]
=

1
β (a,b)

· σ2
γ

(1 + c)2

∞

∑
l=0

Γ (h + a + 2l)Γ (b + 2)
Γ (h + a + b + 2l+ 2)

∼

∼ 1
β (a,b)

· σ2
γ

(1 + c)2 h−1−b. (23)

Now, the rate of decay of the autocorrelation function related to A1 is given by (23).
By using the results in Rangarajan and Ding (2000) on such rate of decay and the
Hurst’s exponent of the time series, we obtain the thesis.
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3.2 The Common Component

A2
t describes the common component of the market. In fact, A2

t represents the portion
of the forecast driven by an external process independent by the single investor.

Theorem 2. Let us assume that ut is a stationary stochastic process, with

E[ut ] = 0;

E[usut ] = δs,tσ2
u . (24)

Moreover, let us assume that there exists a, b ∈ (0,+∞) such that the parameters λi

are drawn by a B(a,b) distribution.
Then, as N → +∞, the long term memory property for A2

t holds, with Hurst’s
exponent H2, with the following distinguishing:

• b > 1 implies H2 = 1/2:
• b ∈ (0,1) and the following equation holds:

+∞

∑
h=−∞

E[A2
t A2

t−h] = 0, (25)

imply H2 = (1− b)/2. In this case it results H2 < 1/2, and the process is mean
reverting.

Proof. The proof is similar to the one of Theorem 1.

3.3 The Component Associated to the Perception of the
Fundamentals’ Value

A3
t is a term typically linked to the perception of the fundamentals’ value by the

agents.
By the definition of P̄ given in (5), we can rewrite A3

t as

A3
t =

1
N

N

∑
i=1

−c
1 + c

1−λi

1−λiL

[ t−1

∑
j=0

εt− j + P̄i,0

]
, (26)

where ε ∼ N(0,σ2
ε ) and {P̄i,0}i=1,...,N is a set of normal random variable i.i.d. with

mean 0 and variance σP̄, for each i = 1, . . . ,N.
The stability of the gaussian distribution implies that

t−1

∑
j=0

εt− j + P̄i,0 =: Γt ∼ N(0,σ2
Γ ). (27)

In particular, Γt is a stationary stochastic process.
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By (26) and (27), we can write

A3
t =

1
N

N

∑
i=1

−c
1 + c

1−λi

1−λiL
Γt , (28)

The long memory property is formalized in the following result.

Theorem 3. Suppose that λi are parameters drawn by a B(a,b) distribution, for
each i = 1, . . . ,N, and a,b > 0.

Then, as N → +∞, the long term memory property for A3
t holds, with Hurst’s

exponent H3, with the following distinguishing:

• b > 1 implies H3 = 1/2:
• b ∈ (0,1) and the following equation holds:

+∞

∑
h=−∞

E[A3
t A3

t−h] = 0, (29)

imply H3 = (1− b)/2. In this case it results H3 < 1/2, and the process is mean
reverting.

Proof. The proof is similar to the one provided for Theorem 1.

3.4 The Component Associated to the Empirical Analysis of the
Previous Data of the Market’s Price

A4
t , finally, takes in account that the behavior of the investors at time t in strongly

influenced by the situation of the market’s price observed at time t −1. The analysis
of the previous results is subjectively calibrated, and this fact explains the presence
in this term of a coefficient dependent on i.

In order to treat this case, we need to point out that Pt is a stationary process,
since it can be viewed recursively as a sum of stationary processes. Therefore, the
following result holds:

Theorem 4. Suppose that λi are parameters drawn by a B(a,b) distribution, for
each i = 1, . . . ,N, and a,b > 0.

Then, as N → +∞, the long term memory property for A4
t holds, with Hurst’s

exponent H4, with the following distinguishing:

• b > 1 implies H4 = 1/2:
• b ∈ (0,1) and the following equation holds:

+∞

∑
h=−∞

E[A4
t A4

t−h] = 0, (30)

imply H4 = (1− b)/2. In this case it results H4 < 1/2, and the process is mean
reverting.
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Proof. The proof is similar to the one provided for Theorem 1.

3.5 Aggregation of the Components

In this part of the work we want just summarize the results obtained for the disag-
gregate components of the market’s forecasts done by the investors.

Theorem 5. Suppose that λi are sampled by a B(a,b) distribution, for each i, with
b ∈ R.

Then, for N → +∞, we have that Pt has long memory with Hurst’s exponent H
given by

H = max
{

H1,H2,H3,H4

}
, (31)

Proof. It is well-known that, if X is a fractionally integrated process or order d ∈
[−1/2,1/2], then X exhibits the long term memory property, with Hurst’s exponent
H = d + 1/2. Therefore, using Proposition 1, by Theorems 1, 2, 3 and 4, we obtain
the thesis.

Remark 1. Theorem 5 provides the long term memory measure of Pt . The range of
the Hurst’s exponent includes as particular case H = 1/2, that correspond to brow-
nian motion. Thus the model can describe periods in which the efficient market
hypothesis is fulfilled as well as periods that exhibit antipersistent behavior. More-
over, the long term memory property can not be due to the occurrence of shocks in
the market. This finding is in agreement with the impulsive nature of market shocks,
not able to drive long-run equilibria in the aggregates.

4 Analysis of Returns

This section aims at mapping the long memory exponent of price time series gen-
erated by the model into long memory of log-returns. In order to achieve this goal,
we analyze the effect of log-transformation of a long-memory process. Dittman and
Granger (2002) provide theoretical results on the long memory degree of nonlin-
ear transformation of I(d) processes only if the transformation can be written a
finite sum of Hermite polynomials. Therefore they cannot be used for examining
log-returns, which the logarithms is involved in.

The same authors provide further results through numerical analysis. Let {Xt}t

be I(d), Yt = g(Xt) with g(·) a transcendental transformation. Numerical estimates
of the degree of long memory of Yt , d′, suggest the following behaviour:

1. − 1
2 < d < 0 antipersistence is destroyed by non-odd transformations, hence d′ =

0;
2. d = 0 uncorrelated processes remain uncorrelated under any transformation: d′ =

0;
3. 0 < d < 1

2 stationary long memory processes. The size of the long memory of
stationary long memory processes (0 < d < 1

2 ) diminishes under any transfor-
mation (d′ ≤ d). The higher is the Hermite rank of the transforming function,
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the bigger is the decrease, even if none of the functions examined can be written
as a finite sum of Hermite polynomials. If the transforming function has Her-
mite rank J and it can be written as a finite sum of Hermite polynomials, then
d′ = max{0,(d−0.5)J + 0.5}. Therefore, if J = 1, then d′ = d;

4. d ≥ 1
2 nonstationary processes. The size of the long memory diminishes under

any transformation. d′ ≤ d

Extensive simulations reported in Chen et al., (2005) on the effects of nonlinear
filters on the estimate of long term memory provide further confirmation the results
reported above. In particular, they show that in case of logarithm transformation,
the degree of long memory is not changing in the interval (−0.1,0.8). Discrepancy
from (0,1/2) could rise from precision and biases of the numerical estimate. Small
changes in the degree of long memory were expected, due to the violation of the
hypothesis of the transforming function being a finite sum of Hermite polynomials,
but they aren’t got from the analysis of Chen et al., (2005).

Remark 2. From the usual results on differencing, we remark that if log(Pt) is I(d)
then the log-returns time series rt = log(Pt)− log(Pt−1) is d′ = d −1.

We can state the following

Theorem 6. If the price history is I(d), then returns are I(d’), where

1. if −1/2 < d ≤ 0, then d′ = −1
2. if 0 < d < 1/2, then d′ = d−1
3. (d > 1/2) the degree of long memory diminishes, but no analytical expressions

are available.

Corollary 1. Uncorrelated returns(d′ = 0) are obtained if d = 1.

Corollary 2. Long memory in returns (d′ > 0) is obtained if d > 1.

5 Conclusions and Further Developments

In this paper a theoretical microeconomic model for time series of assets traded in
a financial market is constructed. The market is assumed to be populated by hetero-
geneous agents. We provide mathematical results concerning the presence of long
memory in prices and log-returns.

Our work extends Zaffaroni (2004, 2007a, 2007b), discussing the long term
memory property in an agents’ aggregation framework by enlarging the class of
probability densities of agents’ parameters.

Moreover, we study the shift of the memory property from the asset price time
series to the log-returns. In particular, it is also evidenced that the presence of long
memory in the asset price time series implies that the log returns have long memory
as well.

The model allows also for the correlation between the agents and its approach
can be useful for modeling also other kind of interaction between the agents.
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A Appendix

A.1 Beta Distribution

We recall in this subsection the beta distribution.

Definition 1. If Z is an ordinary beta-distributed random variable which can take
values between 0 and 1, the probability density function of Z is

p(z) =
1

β (a,b)
za−1(1− z)b−1, 0 < z < 1, (32)

where a e b are positive parameters and

β (a,b) =
∫ 1

0
za−1(1− z)b−1dz.

We refer to this distribution as B(a,b).

A.2 Sum of Integrated Processes

We recall a result due to Granger, (1980):

Proposition 1. If {Xt}t and {Yt}t are independent integrated processes of order,
respectively, dX and dY , then the sum Zt := Xt +Yt is an integrated process of order
dZ, where

dZ = max
{

dX ,dY

}
.



From Comparative Degrees of Belief to
Conditional Measures

Giulianella Coletti and Barbara Vantaggi

Abstract. Aim of this paper is to give a contribute to the discussion about the “best”
definition of conditional model for plausibilty functions and its subclass of the pos-
sibility functions.

We propose to use the framework of the theory of measurements: by studying the
comparative structure underling different conditional models. This approach gives
an estimate of the “goodness” and “effectiveness” of the model, by pointing out the
rules necessarily accepted by the user. Moreover, the results related to the character-
ization of comparative degree of belief by means conditional uncertainty measures
can be used in decision theory. They are in fact necessary when we need a model for
a decision maker interested in choosing by taking into account, at the same moment,
different scenarios.

1 Introduction

Alternative models to expected utility theory have been proposed in decision theory
under risk and uncertainty, since expected utility theory performs poorly in some
situations ([35]). These more flexible theories are based on non-additive measures
[7, 26, 40, 46]). The attention has been focused mainly on classes of probabilities
whose lower (or upper) envelope is a measure with “nice” properties such as convex
capacity, belief function, possibility, probability sophistication and so on (see for
instance [6, 7, 23, 31, 36, 39, 44]). In fact, in these cases, the minimum (maximum)
of expected utility can be also expressed as specific integrals with respect to the
lower (upper) probability.
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The systematic study of qualitative frameworks is also faced on decision the-
ory where Multiple Priors [31] and Choquet Expect Utility (CEU) [40] models are
nowadays widely adopted. In particular, starting from [31, 44, 46], many charac-
terizations of preferences representable by the minimum (or maximum) of a class
of expected utilities over a set of probabilities have been presented. In particular, a
natural counterparts to the expected utility criterion is the pair of possibilistic opti-
mistic and pessimistic criteria, originally introduced by Yager [47] and Whalen [42].
These criteria were axiomatized in the setting of Von-Neuman and Morgenstern the-
ory, based on the comparison of possibilistic lotteries by Dubois, Prade Godo, etc
[25] and in the Savagean setting of acts under uncertainty by Dubois Prade and
Sabbadin [29].

These works propose a foundation to qualitative decision making in a static
world. But the important issue of a qualitative decision theory when new input infor-
mation can be received was left open. Actually, to perform decision models, which
can be updated, conditional measures need to be considered.

In the relevant literature, following the Kolmogorovian probabilistic model, a
conditional measure is usually defined starting from an unconditional one. But this is
a very restrictive view of conditioning, trivially corresponding to just a modification
of the “world”. It is instead essential to regard conditioning events as “variables”
or, in other words, as uncertain events which can be either true or false. This point
of view gives the opportunity to the decision maker or the field expert to take into
account at the same time all the possible scenarios (represented by the conditioning
events of interest).

Then, a conditional model needs to deal with ordinal relations � defined on an
arbitrary set of conditional events.

This topic has been faced in [14] by using as reference model conditional proba-
bility and generalized decomposable measures. Moreover, in [13, 16] relations rep-
resentable by a conditional possibility and conditional necessity have been charac-
terized. This class of models is interesting in decision theory also for the fact that
in the unconditional case conditions on acts (in the style of Savage) assuring a pos-
sibilistic representation have been given (in [29] for the unconditional case and in
[24] for the conditional case) and in a optimistic attitude of decision maker has been
carried out.

In this paper we recall the above quoted characterization of ordinal relations, that
is been used for the model proposed in [24] with the aim to bridge the gap between
qualitative conditional possibility and the axiomatization of possibilistic preference
functionals, thus paving the way toward possibilistic decision under uncertainty in
a dynamic epistemic environment.

Furthermore, since we are interested on belief function setting we provide a char-
acterization of ordinal relations defined on an arbitrary finite set of conditional
events representable by a conditional plausibility (belief). These characterizations
are valid also for partial relations, i.e. not complete and defined on a set without a
structure.
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The provided characteristic axioms recall that one introduced in [14] for com-
parative conditional probabilities and they have a natural interpretation in terms of
betting.

2 Conditional Uncertainty Measures

We recall explicitly the definitions of conditional possibility as introduced in [3] and
conditional plausibility (see for instance [9]). The relevant dual conditional func-
tions are defined by duality as follow: given a conditional possibility [plausibility]
ϕ(·|·), a conditional necessity [belief function] ψ(·|·) is, for every event E|H ∈ C:

ψ(E|H) = 1−ϕ(Ec|H)

2.1 Plausibility

Definition 1. A function Pl defined on A×H is a conditional plausibility if satisfies
the following conditions

a1) Pl(E|H) = Pl(EH|H);
a2) Pl(·|H) is a plausibility function for every H ∈ H;
a3) For every E ∈ A and H,K ∈ H

Pl(E|K) = Pl(E|H) ·Pl(H|K).

We note that the conditional belief function BelD(·|·) obtained by duality as men-
tioned before, i.e. BelD(E|H) = 1−Pl(Ec|H), is the natural generalization of that
given by Dempster in [21] deeply studied in [22].

In the literature there are many other definitions of conditional belief (and plau-
sibility) (see for instance [43, 33, 41, 2, 12].

In particular, we denote by BelP(·, ·) a conditional belief obtained through the
product rule,

BelP(E ∧H|K) = BelP(E|H ∧K)BelP(H|K)

for any E,H ∈A and H∧K,K ∈H, and in the case Ω ∈H, then for any conditioning
event B such that Bel(B) > 0 one has BelP(A|B) = Bel(A∧B)

Bel(B) .
On the other hand, a conditional belief obtained through Bayes rule is denoted

by BelB(·, ·) and is obtained when Ω ∈ H for any pair of events A,B ∈ A such that
Bel(A∧B)+ Pl(Ac∧B) > 0 as

Bel(A|B) =
Bel(A∧B)

Bel(A∧B)+ Pl(Ac∧B)
.

Finally we recall the following characterization result, directly proved in [9], which
is in fact a particular case of a general result given in [10, 11]:
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Theorem 1. Let E = A×H be a finite set of conditional events E|H such that A is
an algebra and H an additive set with H ⊂ A and /0 �∈ H. For a function Pl on E the
following statements are equivalent:

(a) Pl is a conditional plausibility on E;
(b) There exists (at least) a class {Plα} of plausibility functions such that, called

Hα
0 the greatest set of H for which Pl(α−1)(Hα

1 ) = 0, results Plα(Hα
1 ) = 1 and

Hα
1 ⊂ Hβ

1 for all β < α . Moreover, for every Ei|Fi, there exists an α such that,
Plβ (Fi) = 0 for all β < α , and Plα(Fi) > 0 and

Pl(Ei|Fi) =
Plα(Ec

i ∧Fi)
Plα(Fi)

. (1)

Moreover any conditional belief BelD on E, obtained through the product rule, is
related to a dual conditional plausibility, and so for any conditional event Ei|Fi,
there exists an α such that, Plβ (Fi) = 0 for all β < α , and Plα(Fi) > 0 and

BelD(Ei|Fi) = 1− Plα(Ec
i ∧Fi)

Plα(Fi)
. (2)

The class of (unconditional) plausibilities Plα in condition (b) of Theorem 1 nec-
essarily contains more than one element whenever in H there are events with zero
plausibility. We can say that Pl1 gives a refinement of those events judged with
zero plausibility under Pl0. This shows that conditional belief functions, as well
as conditional plausibility, are more general than belief functions (or, respectively,
plausibility).

In [17] the construction of the class {Plα} characterizing (in the sense of the
above result) a conditional belief is explicitly shown in an example.

2.2 Possibility

As it is well known possibility measures are a particular interesting subclass of
plausibility measures.

In possibility theory the notion of conditioning is a problem of long-standing
interest, in fact various definitions of conditional possibility have been introduced
(see, e.g., [18, 19, 23, 27, 28, 32, 48]) mainly by analogy with Kolmogorovian prob-
abilistic case. In all proposal in fact a T -conditional possibility Π(A|B) is “essen-
tially” defined as a solution of the equation

Π(A∧B) = T (Π(B),x), (3)
where T is any t-norm, (the most common t-norm is T = min).

Nevertheless, two problems arise from this definition:
(a) equation (3) can have no solution for some pairs {Π(A∧B),Π(B)};
(b) equation (3) can admit more than one solution for some pairs

{Π(A∧B),Π(B)}.
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An arbitrary solution needs not to be a normalized possibility: it happens, for
example, choosing Zadeh’s conditioning rule [48] where Π(A|B) = Π(A∧B) for
any A ∈ B. Therefore some additional condition must be required in order to avoid
such problem.

A proposal [26] is to take the greatest solution (known as minimum specificity
principle), i.e.

Π(A|B) =
{

Π(A∧B) if Π(A∧B) < Π(B)
1 if Π(A∧B) = Π(B). (4)

According to the above definition, if A and B are incompatible (i.e. A∧B = /0) and
Π(B) = 0, then Π(A|B) is equal to 1 (according to (4)) instead of 0 as it would
be natural (being A|B = /0|B). Therefore, it is too strong to chose a unique value of
Π(A|B) in [0,1] for any event A such that Π(A∧B) = Π(B): however the choice of
value 1 for (at least) one atom C ⊆ B is necessary (see [1]) to get a normalized pos-
sibility. The above problem comes out for any t-norm, even strictly monotone ones.
All these problems can be solved by introducing a direct definition of conditional
possibility as in [3]:

Definition 2. Let F = B×H be a set of conditional events such that B is a Boolean
algebra and H an additive set (i.e. closed with respect to finite logical sums), with
H⊆B\{ /0}. Let T be a t-norm, function Π : F→ [0,1] is a T -conditional possibility
if it satisfies the following properties:

1. Π(E|H) = Π(E ∧H|H), for every E ∈ B and H ∈ H;
2. Π(·|H) is a possibility, for any H ∈ H;
3. Π(E ∧F |H) = T{Π(E|H),Π(F |E ∧H)}, for any H,E ∧H ∈ H and E,F ∈ B.

Conditional necessity function N(·|·) is obtained by duality, as mentioned before,
i.e. N(E|H) = 1−Π(Ec|H),

Nevertheless the problem to choose the best t-norm to make conditioning re-
main open, in fact due to peculiarity of ”max” operator, any T-norm is syntactically
correct (since the distributivity is assured). In the following we try to give a contri-
bution to this discussion from a different perspective by studying the comparative
framework underling a conditional model.

2.3 Coherent Conditional Plausibilities

In the following we denote by F = {E1|F1,E2|F2, . . . ,Em|Fm} an arbitrary finite set
of conditional events, by A the algebra generated by {E1,F1, . . . ,Em,Fm} and by H
the additive set generated by the set of the conditioning events {F1, . . . ,Fm}.

Definition 3. A function f (·|·) on an arbitrary finite set F is a coherent conditional
plausibility (belief) if there exists C ⊃ F, with C = A×H such that f (·|·) can be
extended from F to C as a conditional plausibility (belief).

The following theorem (proved in [9]) characterizes coherent conditional plausibil-
ity (belief) functions in terms of a class of plausibilities {Pl1, ...,Plm}.
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Theorem 2. Let F = {E1|F1,E2|F2, . . . ,Em|Fm} be an arbitrary finite set of condi-
tional events and denote by A = {H1,H2, ...,Hn} the algebra spanned by
{E1, . . . ,Em,F1, . . . ,Fm}, H the additive set generated by {F1, . . . ,Fm} and
H0

0 = ∨m
j=1Fj. For a real function Pl (BelD) on F the following statements are

equivalent:

(a) Pl (BelD) is a coherent conditional plausibility (belief) assessment;
(b) there exists (at least) a class P = {Plα} of plausibility functions such that

Plα(Hα
0 ) = 1 and Hα

0 ⊂ Hβ
0 for all β < α , where Hα

0 is the greatest element
of H for which Pl(α−1)(Hα

0 ) = 0.
Moreover, for every Ei|Fi, there exists an index α such that Plβ (Fi) = 0 for

all α > β , Plα(Fi) > 0 and

Pl(Ei|Fi) =
Plα(Ei ∧Fi)

Plα(Fi)
, (5)

(BelD(Ei|Fi) = 1− Plα(Ec
i ∧Fi)

Plα(Fi)
), (6)

(c) all the following systems (Sα), with α = 0,1,2, ...,k ≤ n, admit a solution
Xα = (xα

k ):

(Sα) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
Hk∧Fi �= /0

xα
k ·Pl(Ei|Fi) = ∑

Hk∧Ei∧Fi �= /0
xα

k , ∀Fi ⊆ Hα
0

∑
Hk∈Hα

0

xα
k = 1

xα
k ≥ 0, ∀Hk ⊆ Hα

0

⎛

⎜⎜⎜⎜⎝
(Sα) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑
Hk∧Fi �= /0

xα
k · [1−BelD(Ei|Fi)] = ∑

Hk∧Ec
i ∧Fi �= /0

xα
k , ∀Fi ⊆ Hα

0

∑
Hk∈Hα

0

xα
k = 1

xα
k ≥ 0, ∀Hk⊆Hα

0

⎞

⎟⎟⎟⎟⎠

where Hα
0 is the greatest element of H such that ∑

Hi∧Hα
0 �= /0

x(α−1)
i = 0.

Condition (c) stresses that this measure can be written in terms of a suitable class
of basic assignments, instead of just one as in the classical case where all the condi-
tioning events have positive plausibility.

Note that every class P (condition (b) of Theorem 2) is said to be agreeing with
both the conditional belief BelD and its dual conditional plausibility Pl. Whenever
there are events in H with zero plausibility the class of unconditional plausibilities
consists on more than one element and we can say that Pl1 gives a refinement of
those events judged with zero plausibility under Pl0.
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Results in the same style of the above theorem, characterizing conditional pos-
sibility and necessity in terms of a class of unconditional possibilities, have been
given in [3, 4, 15, 16, 30].

3 Ordinal Relations

Let A be an algebra of events: denote by � a binary relation on A and, as usual, A≺
B denotes that A � B and ¬(B � A); while A ∼ B stands for A � B and B � A. If we
give the sentence “ϕ representing � ” the meaning of , “ϕ being strictly monotone
with � ”, then for any choice of a capacity function ϕ as numerical framework of
reference, it is necessary that � satisfies the following conditions:

(1)� is a weak order on the algebra A;
(2)for any A ∈ A, /0 � A and /0 ≺ Ω ;
(3)for any A,G ∈ A

A ⊂ G ⇒ A � G.

When we specialize the capacity function (probability, belief, plausibility, and so
on) representing � , then we need to add to the above axioms a specific relevant
condition, which essentially expresses a (more or less strong) sort of “comparative
additivity”. The first (and the best known) additivity axiom (de Finetti [20], Koop-
man [34]) is the following

(p) for E,F,H ∈ A , with E ∧H = F ∧H = /0 , both the following implications hold:

E � F ⇒ E ∨H � F ∨H

E ≺ F ⇒ E ∨H ≺ F ∨H

In fact the above axiom (p) is a necessary condition for the representability of �
with an additive function with values in a totally ordered set (also, for instance, the
set of nonstandard real numbers). If we refer instead to more general measures of
uncertainty, such as belief functions, plausibilities and so on, then it is easy to see
that (p) can be violated.

Nevertheless, also in this case a weaker additivity axiom is necessary; see, for
this aspect, the following conditions (b) and (pl) given in [45, 5, 14]: the first one
characterizing relations representable by a belief function and the second one by
plausibility. Further conditions (PO), (NEC) introduced in [23], characterize rela-
tions representable by a possibility and a necessity respectively:

(b) if E,F,H ∈ A , with E ⊆ F and F ∧H = /0 , then

E ≺ F ⇒ (E ∨H) ≺ (F ∨H)

(pl) if E,F,H ∈ A , with E ⊆ F and F ∧H = /0 , then

E ∼ F ⇒ (E ∨H) ∼ (F ∨H)
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(PO) for every A,G,H ∈ A

A � G ⇒ (A∨H) � (G∨H)

(NEC) for every A,B,C ∈ A

A � B =⇒ (A∧C) � (B∧C).

4 Comparative Conditional Plausibilities

The aim of this section is to characterize relations representable by a conditional
plausibility. Before to introduce comparative conditional plausibility, we need to
define an indicator function different from the standard one I,

Î(A) : AF →{0,1}

associated to the event A ∈ F, and Î(A) is 0 on any event E ∈ AF incompatible with
A (i.e. A∧E = /0) and 1 on any event E ∈ AF such that A∧E �= /0.

Definition 4. Let F be an arbitrary set of conditional events. A comparative condi-
tional plausibility is a relation on F satisfying the following condition:

(ccpl) for every Ei|Hi � Fi|Ki ∈ F there exist αi,βi ∈ [0,1] with αi ≤ βi with
αi < βi for Ei|Hi ≺ Fi|Ki, such that, for every n ∈ IN and for every Ei|Hi � Fi|Ki,
λi,λ ′

i ,≥ 0,(i = 1, ...,n), one has:

sup
Ho

{

∑
i

[
λ ′

i (ÎFi∧Ki −βiÎKi)+ λi(αiÎHi − ÎEi∧Hi)
]
}

≥ 0

where Ho =
( ∨

i:λ ′
i >0

Ki
)∨ ( ∨

i:λi>0

Hi
)
.

Condition (ccpl) is of the same kind of condition (ccp) introduced in [14] char-
acterizing relations representable by a coherent conditional probability. The main
difference consists in the fact that (ccp) is based on indicator of events, while (ccpl)
is based on Î.

We note that if for any i we have Hi = Ki = Ω , then taking λ ′
i = λi one has that

G =

{

∑
i

[
λi(ÎFi −βi + αi − ÎEi)

]
}

=

{

∑
i

[
λi(ÎFi − ÎEi − δi)

]
}

≥ 0

with δi > 0 if the relation � is strict.
So (ccpl) reduces to the following condition (cpl)

sup

{

∑
i

[
λi(ÎFi − ÎEi)

]
}

≥ ∑
i

λiδi
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which is equivalent, in a finite ambit, to the following condition (qpl), necessary
and sufficient for the existence of a coherent plausibility representing �, essentially
introduced in [37]:

(qpl) for any Ei,Fi ∈ F there exists λi ≥ 0 (i = 1, ...,n) such that Ei � Fi

sup

{

∑
i

[
λi(ÎFi − ÎEi)

]
}

≤ 0 implies Ei ∼ Fi

Nevertheless, as discussed, for probability theory, in [14], in an infinite ambit con-
dition (ccpl) is stronger than condition (qpl). In fact, by following the same line
suggested in [8], it is possible to prove that it is necessary and sufficient for the exis-
tence of a coherent plausibility representing � in an arbitrary (possibly infinite) set
of events.

We finally recall that when the set of events is a finite Boolean algebra, it is possi-
ble to characterize the comparative degree of belief � representable by a plausibility
measure, by means purely comparative axioms. In fact conditions axioms (1), (2),
(3)and (pl) are necessary and sufficient, as proved in [45] and [5].

Note that (ccpl) can be interpreted in terms of coherent bets (analogously to the
interpretation of (ccp) in [14]), moreover it does not require any logical structure for
the class of conditional events and it applies also to not complete relations.

Remark 1. We start by giving an interpretation of (qpl) in term of bets (in the un-
conditional case): for every pair Ei � Fi, one bets on Fi and versus Ei and obtains
the following gain. Let C be an atom and k the number of events (in the relevant
algebra) containing C. When an atom C occurs such that C ⊂ Ec

i ∧Fi, the gain is
equal to kλi; if C ⊂ Ei ∧Fi occurs, then the gain is equal to 0; if C ⊂ Ei ∧Fc

i , the
gain is equal to −kλi. What (qpl) requires is that, for any bet involving a finite set
of pairs Ei � Fi, the global gain is positive at least for an atom.

We give now an interpretation of condition (ccpl). For each pair of conditional
events Ei|Hi � Fi|Ki we consider a bet on Fi|Ki versus Ei|Hi. If the events Hi and Ki

do not occur the bet is called off. When Hi occurs and Ki does not occur the gain
is kλi(αi −1) if the atom C occurring is in Ei ∧Hi and kλiαi if C ⊆ Ec

i ∧Hi, where
k is the number of events (in the relevant algebra) contained on Ho and containing
C. Similarly, if Ki (and not Hi) occurs, if the atom C occurs, we obtain kλ ′

i (1−βi)
or −kλiβi,. Finally, if both Hi and Ki occur, then then the gain is the sum of the
gains corresponding in the latter two situations, when an atom C ⊆ Hi ∧Ki occurs.
The coherence condition (ccpl) requires that given n pairs of conditional events such
that Ei|Hi � Fi|Ki, there exists for each Fi|Ki a value βi (and for each Ei|Hi a value
αi), with αi ≤ βi such that the global gain is certainly not negative for every choice
of positive numbers λi.

Note that it is essential to require in axiom (ccpl) that the sup is computed on the
union of conditioning events Hi (or Ki) such that λi (or λ ′

i ), associated to Ei|Hi (or
Fi|Ki) is strictly greater than 0.
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In fact, for example, considering the statement /0|H ≺ /0|K with H and K logical
independent event, we consider 0 ≤ α < β ≤ 1 and for every non-negative λ ′,λ the
gain is

sup
H∨K

G = supλ ′(−β ÎK)+ λ (α ÎH) ≥ 0.

Since H ∧Kc is a possible event, G correspondingly assumes the value λ α , which
is greater than or equal to zero for any choice of λ ,λ ′.

Condition (ccpl) characterizes the relations representable by a conditional plau-
sibility, as shown in the following result:

Theorem 3. Let � be a binary relation on an arbitrary finite set of conditional
events Fo = {Ei|Hi,Fi|Ki}i∈I . For a binary relation �, the following statements are
equivalent:

• � is a comparative conditional plausibility;
• there exists a coherent conditional plausibility Pl(·|·) on Fo representing �.

Proof. Since Pl represents �, for any Ei|Hi � Fi|Ki then Pl(Ei|Hi) = αi ≤ βi =
Pl(Fi|Ki), moreover if Ei|Hi ≺ Fi|Ki then αi < βi, so from Theorem 1 it follows that
there exists a sequence of compatible linear systems SFo ,SF1 , ...,SFk . Actually,
these systems admit a semi-positive solution (i.e. xα

r ≥ 0 and ∑r xα
r > 0).

From a classic alternative theorem (see, e.g., Fenchel (1951)) the system

S ′
F j

=
{

(ÎFj∧Kj −α j ÎKj )×W ≥ 0 Fj|Kj ∈ F j

(−ÎEi∧Hi + αiÎHi)×W ≥ 0 Ei|Hi ∈ F j

has a semi-positive solution if and only if the following inequality

∑
j

λ ′
j(ÎFj∧Kj −β j ÎKj )]+ λi(−ÎEi∧Hi + αiÎHi) < 0

does not admit a non-negative solution, which is equivalent to (ccpl).
Vice versa, assuming (ccpl), for any λi > 0 and λ ′

j > 0, with i ∈ I and j ∈ J,

sup
H0

G = ∑
j

λ ′
j(ÎFj∧Kj −β j ÎKj )+∑

i
λi(−ÎEi∧Hi + αiÎHi) ≥ 0,

with H0 = (∨ j∈JKj)∨(∨i∈IHi), implies that supH0 G ≥ 0 for any λi ≥ 0 and λ ′
j ≥ 0.

This condition is equivalent to the fact that

∑
j

λ ′
j(ÎFj∧Kj −β jÎKj )]+∑

i

λi(−ÎEi∧Hi + αiÎHi) < 0 (7)

does not admit a solution for any λ ′
j ≥ 0,λi ≥ 0. From the aforementioned classic

alternative theorem, the system of inequalities admits no non-negative solution iff
the dual system SFo has a semi-positive solution.

Then, there is a semi-positive solution Wo for SFo , then, let

F1 = {Ei|Hi ∈ Fo : ÎHi ×Wo = 0}∪{Fj|Kj ∈ Fo : ÎKj ×Wo = 0},
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if F1 is not empty, then there is a semi-positive solution W1 for SF1 and so on till
Fk+1 is empty.

For any Hi (Kj) there is a unique Wα (Wβ ) such that ÎHi ×Wα > 0 ( ÎKj ×Wβ > 0)

and by putting Pl(Ei|Hi) =
ÎEi∧Hi×Wα

ÎHi×Wα

(
Pl(Fj|Kj) =

ÎFj∧Kj×Wβ

ÎK j×Wβ

)
, it follows that the

function Pl represents �, and from Theorem 1, Pl on Fo is a coherent conditional
plausibility.

Remark 2. We would remark that contrary to the unconditional case it it seems not
possible to obtain purely comparative condition when the set of conditional events
is a product of an algebra for an additive set contained on the algebra.

5 Comparative Conditional Beliefs

We introduce an axiom for comparative conditional beliefs (similar to (ccpl)), that
characterizes relations representable by a conditional plausibility.

We need to define an indicator function different from I and Î(A),

I∗(A) : AF →{0,1}

associated to the event A ∈ AF and I∗(A) is 1 on any event E ∈ AF included in A
(i.e. A ⊆ E) and 0 otherwise.

Definition 5. Let F be an arbitrary finite set of conditional events. A comparative
conditional belief is a relation on F satisfying the following condition:

(ccbel) for every Ei|Hi � Fi|Ki ∈ F there exist αi,βi ∈ [0,1] with αi ≤ βi with αi < βi

for Ei|Hi ≺ Fi|Ki, such that, for every Ei|Hi � Fi|Ki, λi,λ ′
i ,≥ 0,(i = 1, ...,n), one has:

sup
Ho

{

∑
i

[
λ ′

i (I
∗
Fi∧Ki

−βi)ÎKi + λi(αi − I∗Ei∧Hi
)ÎHi

]
}

≥ 0

where Ho =
( ∨

i:λ ′
i >0

Ki
)∨ ( ∨

i:λi>0

Hi
)
.

Note that (ccbel) is based on I∗ instead of I as (ccp) or Î as (ccpl). Also (ccbel)
can be interpreted in terms of coherent bets: essentially we can adopt the same
interpretation made for (ccpl), by changing only the definition of the numbers k
and h.

The next result is similar to Theorem 3 and shows that condition (ccbel) charac-
terizes the relations representable by a conditional belief:

Theorem 4. Let � be a binary relation on an arbitrary finite set of conditional
events F = {Ei|Hi,Fi|Ki}i∈I . For a binary relation �, the following statements are
equivalent:

• � is a comparative conditional belief;
• there exists a coherent conditional belief BelD(·|·) on F representing �.



80 G. Coletti and B. Vantaggi

Proof. Since BelD represents �, for any Ei|Hi � Fi|Ki then BelD(Ei|Hi) = αi ≤ βi =
BelD(Fi|Ki), moreover if Ei|Hi ≺Fi|Ki then αi < βi, so Pl(Ec

i |Hi) = 1−αi ≥ 1−βi =
Pl(Fc

i |Ki).
From Theorem 2 it follows that there exists a sequence of compatible linear sys-

tems SFo ,SF1 , ...,SFk .
Actually, these systems admit a semi-positive solution (i.e. xα

r ≥ 0 and ∑r xα
r > 0).

From a classic alternative theorem (see, e.g., Fenchel (1951)) the system

S ′
F j

=

{
(ÎEc

i
−1 + αi)ÎHi)×W ≥ 0 Ei|Hi ∈ F j

(−I∗Fc
j
+ 1−β j)ÎKj )×W ≥ 0 Fj|Kj ∈ F j

and so

S ′
F j

=

{
(αi − I∗Ei

)ÎHi)×W ≥ 0 Ei|Hi ∈ F j

(I∗Fj
−β j)ÎKj )×W ≥ 0 Fj|Kj ∈ F j

has a semi-positive solution if and only if

∑
j

λ ′
j(I

∗
Fj∧Kj

−β j)ÎKj ]+ λi(−I∗Ei∧Hi
+ αi)ÎHi < 0

does not admit a non-negative solution , which is equivalent to (ccbel).
Vice versa, assuming (ccbel), for any λi > 0 and λ ′

j > 0, with i ∈ I and j ∈ J,

sup
H0

G = ∑
j

λ ′
j(I

∗
Fj∧Kj

−β j)ÎKj +∑
i

λi(−I∗Ei∧Hi
+ αi)ÎHi ≥ 0,

with H0 = (∨ j∈JKj)∨(∨i∈IHi), implies that supH0 G ≥ 0 for any λi ≥ 0 and λ ′
j ≥ 0.

This condition is equivalent to the fact that

∑
j

λ ′
j(I

∗
Fj∧Kj

−β j)ÎKj +∑
i

λi(−I∗Ei∧Hi
+ αi)ÎHi < 0 (8)

does not admit a solution for any λ ′
j ≥ 0,λi ≥ 0. From the aforementioned classic

alternative theorem, the system of inequalities admits no non-negative solution iff
the dual system SFo has a semi-positive solution.

Considering the family Fo, one gets that there is a semi-positive solution Wo for
SFo , then, let

F1 = {Ei|Hi ∈ Fo : ÎHi ×Wo = 0}∪{Fj|Kj ∈ Fo : ÎKj ×Wo = 0},

if F1 is not empty, then there is a semi-positive solution W1 for SF1 and so on till
Fk+1 is empty.

For any Hi (Kj) there is a unique Wα (Wβ ) such that ÎHi ×Wα > 0 ( ÎKj ×Wβ > 0)
and by putting

BelD(Ei|Hi) = 1−Pl(Ec
i |Hi) = 1− Plα(Ec

i ∧Hi)
Plα(Hi)

=
I∗Ei∧Hi

×Wα

ÎHi ×Wα
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(
BelD(Fj|Kj) =

I∗Fj∧Kj
×Wβ

ÎK j ×Wβ

)
, it follows that the function BelD represents �, and

from Theorem 2, BelD on Fo is a coherent conditional belief.

6 Comparative Conditional Possibility

We consider now a particular class of plausibility: possibility measures. In [16] we
provide a characterization of ordinal relations on E = A ×H representable by a
conditional possibilities (T = min). In the sequel we recall the main results.

Definition 6. Let E = A×H. A binary relation � on E is called comparative con-
ditional possibility iff the following conditions hold:

1. � is a total preorder;
2. for any H,K ∈ H, /0|H ∼ /0|K ≺ H|H ∼ K|K;
3. for any A,B ∈ A and H,B∧H ∈ H,

A∧B|H � A|B∧H

and moreover if either A∧B|H ≺ B|H or B|H ∼ H|H, then A∧B|H ∼ A|B∧H;
4. for any H ∈ H and any A,B,C ∈ A

A|H � B|H ⇒ (A∨C)|H � (B∨C)|H.

Condition (3) requires that when new information “B” is assumed the degree of
belief of an event A (or better of A∧B) non-decreases. Moreover, if the new infor-
mation is “almost sure”, it means B ∼ Ω , then the degree of belief of an event A
remains equal to its updated degree of belief.

Condition (4) is essentially that proposed by Dubois in [23], just reread on the
hypothesis H. Moreover, condition (4) is equivalent (see [16]), under transitivity, to

A|H � B|K and C|H � D|K ⇒ (A∨C)|H � (B∨D)|K.

Theorem 5. Let E = A×H. For a binary relation � on E the following statements
are equivalent:

i. � is a comparative conditional possibility;
ii. there exists a conditional possibility Π on E representing �.

Obviously, among the comparative conditional possibilities there are also the ordi-
nal relations representable by conditional possibilities satisfying minimum specifity
principle, more precisely those satisfying a reinforcement of condition 3 of Defini-
tion 6, that is

(sc) for every A,B ∈ A and H,B∧H ∈ H,

A∧B|H � A|B∧H

and moreover if A∧B∧H �= /0 and A∧B|H ∼ B|H, then A|B∧H ∼ H|H.
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We note that the axioms characterizing comparative conditional possibilities
are purely qualitative. Nevertheless the above results are strictly dependent on the
choice of T=min. In fact it is not possible to obtain similar results when T is a strict
t-norm such as the product.

For the product in fact axiom (3), characterizing a comparative conditional pos-
sibility, is not necessary since if A∧B|H ≺ B|H, the statement A∧B|H ∼ A|B∧H
cannot hold. Actually such axiom should be modified as follows for any

A,B ∈ A and H,B∧H ∈ H,

A∧B|H � A|B∧H

and moreover if B|H ∼ H|H, then A∧B|H ∼ A|B∧H;
but it is necessary, but not sufficient for the representability of � with a T-

conditional possibility (with T= ·).

7 Conclusion

We deal with the representability problem of ordinal relations by some well-known
conditional measures such as possibility, and plausibility. This analysis gives a new
perspective to conditioning operation: in fact, it puts in evidence that in possibility
setting the conditioning obtained through the t-norm of minimum gives rise to ordi-
nal relations satisfying conditions in a purely qualitative form, while by considering
the t-norm of the product gives rise to conditions more difficult to be explained.
Obviously, such problem comes out also in belief function setting.

Furthermore, we provide characterizations in terms of necessary and sufficient
conditions for the representability of a binary relation by means of a conditional
plausibility (belief) and we give an interpretation through betting scheme.

These characterizations give us an estimate of the “goodness” and “effective-
ness” of the conditioning operations in these settings, and they allow to study this
problem from a perspective different to that studied in [17] based on “local repre-
sentability”. Actually, we recall that for possibility and plausibility it comes out that
a relation is locally representable if and only if it is representable by a strict positive
unconditional measure. The above characterizations give rise to a fundamental dif-
ference among these measures and probability: binary relations representable by a
strict positive probability are also locally representable by a conditional probability,
while the converse is not true.
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Delay and Interval Effects with Subadditive 
Discounting Functions  

Salvador Cruz Rambaud and María José Muñoz Torrecillas* 

Abstract. Delay effect appears as an anomaly of the traditional discounted utility 
model according to which a decrease of the discount rate is performed as waiting 
time increases. But, in this description, it is not clear if the benchmark (that is to 
say, the reference instant in the assessment process) or the discounted amount 
availability is fixed or variable. In this way, other authors use the term common 
difference effect (and immediacy effect, when the first outcome is available im-
mediately) and this expression at least does implies a variable discounted amount 
availability. Read introduces another different effect, the interval effect: longer  
intervals lead to smaller values of the discount rate r. Taking into account the  
parameter δ (geometric mean of the discount factor), the interval effect implies 
larger values of δ. In this paper we try to clarify the concepts of delay and interval 
effect and we deduce some relationships between these concepts and certain 
subadditive discounting functions. 

Keywords: Delay effect, interval effect, subadditivity. 

1   Introduction 

Several authors have included, in their studies of the discounted utility model, 
some failures when fitting the empirical data to this model that they have labelled 
as “anomalies”. Among them we can find the delay effect consisting of the de-
crease of the discount rate as waiting time increases, that is, the discount rates tend 
to be higher in short intervals than in longer ones. Nevertheless, in this descrip-
tion, it is not clear what “waiting time” means, that is to say, it is not clear if the 
reference instant in the assessment process or the discounted amount availability is 
fixed or variable. As a consequence, in many studies, the delay is confounded with 
the interval or it is not properly distinguished and therefore the delay effect is not 
properly defined.  
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In financial studies the distinction between delay and interval in a discounting 
function was established, for the first time, by Cruz and Ventre (1998). In this pa-
per, ),( atF  is said to be the equivalent amount, at instant t, of a monetary unit at 

instant at + . On the other hand, in psychological studies the distinction between 
delay and interval in a discounting function was introduced by Read (2001, 2003). 
In his studies, ),( tdF  gives the value of an outcome at the end of the interval, 

td + , as a fraction at the beginning of the interval, d. So, d denotes the delay to 
the earlier outcome and t denotes the interval separating the outcomes. A compari-
son between the elements of the two researches can be shown in Table 1: 

 

Table 1 Equivalence of terminologies from Cruz and Ventre’s, and Read’s papers 
 

ELEMENTS OF A DISCOUNTING FUNCTION 

Cruz and Ventre (1998) Scholten and Read (2006) 

Amount Reward/outcome 

Initial instant Earlier delay/beginning of the interval 

Final instant Last delay/end of the interval 

Interval Interval 

An alternative consideration to delay effect is subadditive discounting whereby 
the discount in a long time interval is bigger when the delay is subdivided. Subad-
ditive discounting means that the discount is higher when the interval is divided 
into subintervals. Subadditive discounting implies smaller values of the discount-
ing function for more subdivided intervals. For example, the discounting function 
for one year will be greater than the product of the corresponding discounting 
function values for each month. 

In this introductory section, we are going to analyze the literature on the delay 
effect and the interval effect, in order to define both effects and, in the case of ex-
perimental works, to check if the empirical works use the terms delay and interval 
in the same way. In this analysis we are going to answer the same following ques-
tions, in every revised paper: 

 

1. How the delay effect is defined? 
2. Is it named delay effect? 
3. Is it an experimental work? If yes, how is presented the choice? 
4. Is the interval effect also defined? If yes, how is defined the interval  

effect? 

Prelec and Loewenstein (1991) define an anomaly of DU (Discounted Utility) 
model in intertemporal choice named common difference effect. “DU implies that 
a person’s preference between two single-outcome temporal prospects should de-
pend on the absolute time interval between delivery of the objects”. However, 
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these authors claim both intuition and experimental evidence (Thaler 1981, Ben-
zion et al., 1989) indicating that the impact of a constant time difference between 
two outcomes becomes less significant as both outcomes are made more remote 
(that is more delayed). They formalize this effect in the following way: 

),( 1dx ∼ ),( 2dy  implies ),(),( 21 εε ++ dydx ≺  for xy > , 

0>ε , 

being x and y two equivalent outcomes available at instants d1 and d2, respectively. 
Thus, for example, a person will be indifferent between having 20 euros today and 
having 25 euros in one month, but will prefer 25 euros in 11 months to 20 euros in 
10 months.  

They propose the property of decreasing absolute sensitivity for time: “increas-
ing the absolute magnitude of all values of an attribute by a common additive con-
stant decreases the weight of the attribute”. In the case of time: adding a constant 
to both delays diminishes the importance of time, thus shifting preference in favor 
of the prospect with the larger money outcome. As we can observe this property is 
inconsistent with stationarity. A special case of stationarity violation occurs when 
one of the outcomes is available immediately and it is accomplished that:  

),( 1dx ∼ ),( 2dy  implies ),(),( 21 εε ++ dydx ≺ , for 01 =d  and 

,xy >  0>ε . 

This is called immediacy effect and means that decision-makers give special im-
portance to the immediate results. Prelec and Lowenstein state that the immediacy 
effect can be formally included inside the common difference effect. But they also 
point out that many researchers, however, think that these phenomena are qualita-
tively different and justify a separate treatment.  

The interval effect is not defined in Prelec and Lowenstein’s work. 
Thaler (1981) tests the following hypothesis, although he doesn’t name it as de-

lay effect: “Specifically, the hypothesis to be tested is that the discount rate im-
plicit in choices will vary inversely with the length of time to be waited.”  

The experimental work of Thaler consisted of a set of questionnaires (four dif-
ferent forms were used: three for gains and one for losses) to be answered by a 
group of students at the University of Oregon. For the case of the gains1, they 
were told that they had won some money in a lottery and they could take the 
money now or wait until late. They were asked how much they would require to 
make waiting just as attractive as getting the money now. In all cases subjects 
were instructed to assume that there was no risk of not getting the reward if they 
waited. The waiting time varied from 1 month to 10 years (specifically the time 
delays used were 1, 3 and 6 months, and 1, 3, 5 and 10 years). And the magnitudes 
of the outcomes (hypothetical) were 15, 75, 250, 1,000, 1,200 and 3,000 dollars.  

As a result, he found that the implicit discount rates dropped sharply as  
the length of time increased. He gives an intuitive explanation to this result: “the 

                                                           
1 As we are not going to analyze here the sign effect, we will only focus in the case of gains. 



88 S.C. Rambaud and M.J. Muñoz Torrecillas
 

difference between today and tomorrow seem greater than the difference between 
a year from now and a year plus one day”. Responses imply that the subjects have 
a discount function which is nonexponential. 

The interval effect is not defined in Thaler’s work. 
Benzion, Rapoport and Yagil (1989) defined the delay effect in the following 

way, although they don’t name it as delay effect: “The mean discount rates de-
crease monotonically in t, that is to say decline as the time necessary to wait in-
creases”. 

In their experimental work, the subjects of the study were 204 undergraduate 
and graduate students of economics and finance of the Universtity of Haifa and 
the Technion-Israel Institute of Technology who participate on a voluntary basis. 
These students had to make intertemporal choices between hypothetical rewards 
of 40, 200, 1,000 and 5,000 dollars. The decision could been formalized in the fol-
lowing way: (y,0) vs. (x, t), being t 0.5, 1, 2 and 4 years. 

The results showed that the mean discount rates decreased monotonically in t (t 
is defined as the length of time to be waited). For example, the discount rates for 
deferring a 200-dollar amount were 0.428; 0.255; 0.230 and 0.195 for delays of 6 
months, 1, 2, and 4 years, respectively. After their experiment, they concluded that 
the discount rates inferred from the riskless choices supported the previous find-
ings reported by Thaler (1981): the discount rates declined as the time necessary 
to wait increased. 

The interval effect is not defined in Benzion and Rapoport’s work. 
Chapman (1996) defines the delay effect stating that decision makers have very 

long discount rates over short delays but much smaller discount rates over longer 
delays. She refers to it as delay effect and she also states that delay effect implies 
that people will reverse their preferences over time. Chapman illustrates this effect 
with the following example: “suppose it is 1996 and you have a choice between 
$200 in 2004 (8 years from now) and $100 in 2002 (6 years from now) and that 
you prefer the first option. Six years later in 2002 you might prefer $100 right 
away (in 2002) to $200 2 years from now (in 2004). Note that both questions ask 
whether one wishes to delay payment for 2 years to double their money, but the 
second decision takes place 6 years after the first decision”. 

In her experimental work, the participants were 40 undergraduates at the Uni-
versity of Illinois who participated for class credit and had to answer a question-
naire that consisted of two parts: discounting questions and exchange rate ques-
tions. The discounting section contained 32 questions involving a choice between 
an outcome now and an outcome later. Participants were asked to specify the 
magnitude of the delayed outcome that would make the two options equally attrac-
tive. The outcomes were in two domains: money and health. For money questions, 
participants were told to imagine they had won a lottery and had a choice between 
two monetary prizes, for example: 500 dollars now or x dollars one year from 
now. 

The conclusions were that health and money decisions revealed larger discount 
rates for short delays. 

The interval effect is not defined in Chapman’s work. 
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In Soman et al. (2005) theoretical work delay and interval effect are defined 
(together with other effects or anomalies in intertemporal choice, such as magni-
tude or sign effect2). “The delay effect suggests that the discount rate is smaller for 
larger delays (Thaler, 1981). And the interval effect suggests that the discount rate 
depends on the time interval between the two outcomes used to impute the dis-
count rate-the greater the temporal interval, the smaller the discount rate (Read, 
2001)”. 

Scholten and Read (2006) define delay effect: “discount rates tend to be higher 
the closer the outcomes are to the present” and point out that this delay effect vio-
lates the stationary axiom of normative theory. They name it delay effect and, 
more specifically, the effect of the delay to interval onset. They also define the in-
terval effect: “discount rates tend to be higher the closer the outcomes are to one 
another”. This interval effect violates the transitivity axiom of normative theory. 
They called it also the effect of interval length.  

Nevertheless in a previous work of Read delay and interval effect are defined in 
the following way: the geometric mean of the discount factor (δ) will be larger 
(and the geometric mean of the discount rate, r, will be smaller) the longer the de-
lay (that is the delay effect). This delay effect is generally attributed to some form 
of hyperbolic discounting, although it could equally be due to the interval effect. 
Interval effect: the difference between the delays to two outcomes is the interval 
between them. Longer interval leads to smaller values of r or larger values of δ 
(Read, 2004). Following Read (2004) if the first outcome is received immediately 
(that is d1 = 0), then the delay and the interval are confounded, and the two effects 
can be confused. 

Scholten and Read made two experiments to study the delay effect, among oth-
ers (they studied also the subadditivity and superadditivity). One of the hypothesis 
tested in their experiments was that δ would be lower for early intervals than for 
later intervals of the same length (the delay effect). The participants were 53 stu-
dents from the London School of Economics who were paid 5 pounds. They had 
to choose between hypothetical amounts of money available at different times. 
The intervals used were 1, 3 and 17 weeks and the delays 1, 2, 3, 4, 15, 16, 17 and 
18 weeks. The hypothesis of delay effect was confirmed by the experiment.  

We consider that, in order to test the delay effect, it is necessary to have the two 
rewards or outcomes delayed, that is to say, that d must be a value different from 
zero. This way, we will be testing what Prelec and Loewenstein named common 
difference effect (and most authors named delay effect), different from the imme-
diacy effect, that appears when the delay to the first outcome is zero which coin-
cides with interval effect. This delay to the first outcome has also been named 
front-end-delay (FED). A critical design feature in the empirical literature on hy-
perbolic discounting is the use of a time delay to the early payment option in order 
to control for any confounding effects from fixed premia due to transactions costs 
(Harrison and Lau, 2005). That is, to introduce the front-end-delay (FED). If indi-
viduals are more impatient about immediate delays than about future delays of the 
same length, they will demand a premium in order to accept a delay of any length. 

                                                           
2 For a review of these other anomalies see Cruz and Muñoz (2004). 
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If we add a FED, both payments will be delayed and so the premium applies to 
both choices becoming irrelevant to a choice between them (Coller and Williams, 
1999; Harrison and Lau, 2005). 

In the following table we resume the revision of the most relevant literature on 
delay and interval effect that we have previously explained. We have added a col-
umn that shows if in the referred work the FED is considered, that is to say, if the 
delay is different to zero and so the two rewards or payment are delayed. When 
the choice is presented as $X dollars now or $Y dollars in a future instant of time 
there is no FED. This is the case in which delay coincides with interval and we 
cannot distinguish among delay and interval effects. Prelec and Loewenstein con-
sider this distinction and define the common difference effect, when there is a 
FED, and the immediacy effect, when the first outcome is available immediately 
(that is, when d1 = 0). In Sholten and Read experimental work is considered a FED 
and so the delay and the interval effects are properly distinguished. In the other 
experimental works, it is not possible to make this distinction because the first out-
come included in the choice is available “now”.  

 

Table 2 Delay effect in the literature 
 

Authors 
Delay effect 
is defined? 

Name it as  
delay effect? 

Is a FED  
presented in 
the experi-

ments? 

Define also 
interval  
effect? 

Benzion et 
al. (1989) 

Yes No No No 

Chapman 
(1996) 

Yes Yes No No 

Prelec and 
Loewenstein 

(1991) 
Yes 

No. Common 
difference effect 

No experimen-
tal work 

No 

Scholten 
and Read 

(2006) 
Yes Yes Yes Yes 

Soman et al. 
(2005) 

Yes Yes 
No experimen-

tal work 
Yes 

Thaler 
(1981) 

Yes No No No 
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Before going into Section 2, we are going to make a remark regarding delay 
and interval notation. In intertemporal choice a first classification of time could be 
between the time as a period and the time as a point. Thus, for instance, an amount 
can be discounted for a week, a year, etc. In this case, we are considering the time 
as a period. But we can consider the discounted amount at January 1, 2009 of a 
reward for a month. Of course, in this case, we are considering the time as a point 
(date) and as a period (month). In what follows, 

• If time is considered as a period, we will refer to it as an interval. In this 
case, it will be denoted by t. Here time has the algebraic structure of a 
convex cone, because time can be summed up and enlarged by multiply-
ing by a convenient positive real number. 

• If time is considered as a point (date), we will refer to it as a delay. In this 
case, it will be denoted by d. Here the two classes of time give rise to the 
structure of an affine space where points are the dates and where vectors 
are intervals.  

In the following sections, we will define the framework in which delay is equal to 
interval and time is considered only as an interval (Section 2) and the framework 
in which time is considered as a delay and as an interval (Section 3). In these 
frameworks, we will define some properties of the discounting function or the dis-
counting factor, according to different cases that arise when we consider different 
possible combinations of delay and interval. Finally, in Section 4 we will present 
some conclusions. 

2   Discounting by Intervals  

Consider an intertemporal framework in which time is considered only as an in-
terval. In this case, a discounting function is a decreasing real-valued function 

 

]1,0]}0{: →∪ℜ+F  

)(tFt  
 

such that 1)0( =F . )(tF  represents the subjective value at time 0 of a $1 re-

ward which would be available after t periods of time. Observe that, in this case, 
time as delay does not exist because expression )(tF  does not depend on the in-

stant at which it is applied. In effect, if ),( tdF  represents the subjective value at 

time d of a $1 reward which would be available t periods of time after instant d, 
we can write 

)(),( tFtdF = , 
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for every }0{∪ℜ∈ +t . A discounting function verifying such condition will be 

called a stationary or regular discounting function. A paradigm of stationary dis-
counting function is exponential discounting which follows the equation 
 

)exp()( kttF −= . 
 

On the other hand, a key concept for studying the intertemporal choice is the in-
stantaneous discounting rate, defined as 

t

tF
t

d

)(lnd
:)( −=δ . 

This magnitude represents the infinitesimal relative decrease of the discounting 
function with respect to time. In effect, 

)(

)()(
lim)(

0 tFh

htFtF
t

h ⋅
+−=

→
δ . 

Another important characteristic of the exponential discounting is consistency, that 
is to say, the relation of preference between two rewards does not change if their 
respective intervals are enlarged the same value. It is well-known that, in this case, 
the instantaneous discounting rate is constant. Therefore, a first case of inconsis-
tency can be described when )(tδ  is decreasing. A similar concept is declining 

impatience which means that, for a given interval, the more delayed is the interval, 
the higher is the discounting function (or the discount factor). Nevertheless, we are 
going to define below different types of declining impatience, also called increas-
ing patience. But before, remember that we have to distinguish two very often 
confused concepts used in the literature: delay and interval. Consider $1 available 
at time td + . It is well known that a discounting function ),( tdF  calculates an 

equivalent amount at time d, being time 0 the benchmark. The parameter t will be 
named the interval and td +  the delay. Observe that the interval coincides with 

the delay when 0=d . That is to say, interval and delay effects coincide in this 
case. 

Nevertheless, as we will see later, the so-defined declining impatience is a 
strong condition to describe the inconsistency of a discounting function, whereby 
we are going to define other weaker or stronger types of declining impatience. The 
first type of declining impatience we are going to consider is the following one: 

2.1   “Weak” Declining Impatience or Declining Impatience of  
Type I 

To explain the concept of the “weak” declining impatience, we are going to con-
sider that 0=d  (so we have not to distinguish between interval and delay) and 

that the interval is variable ( 21 tt < ): 
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)(),0( 11 tFtF =     $1 

 

    0        t1 

 

)(),0( 22 tFtF =        $1 

 

   0           t2 

In general, it is verified that )()( 21 tFtF > , but in this kind of declining impa-

tience it is verified that: 

[ ] [ ] 21

1

2

1

1 )()( tt tFtF < , 

that is, the geometric mean of the discounting function in the interval [ ]1,0 t  is 

lower than the geometric mean of the discounting function in the interval [ ]2,0 t . 

In particular, when t1 is the center of the interval [ ]2,0 t :  

[ ] [ ] 11 2

1

2

1

1 )()( tt tFtF < , 

which implies that3: 

)()( 21 tFtF < . 

Observe that this definition is based on variable delays and so variable length in-
tervals, where the lower point (0) is fixed. In this case, it makes sense talking 
about the average discounting function. 

Theorem 1. “Weak” declining impatience or declining impatience of type I is 
verified if and only if the tangent at every point to the logarithmic factor crosses 
the straight line 0=x  at a point with positive second component, that is to say, 
the instantaneous rate of discount is lower than the logarithmic density. 

Proof. First, let us suppose that the condition is necessary. In effect, if “weak” de-
clining impatience is verified, then: 

[ ] [ ] 21

1

2

1

1 )()( tt tFtF < . 

                                                           
3 This result has been presented in Read’s work (2001) using the discount factor and was 

enunciated in the following way: 200 TT ff →→ > . 
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Writing this discounting function by means of its instantaneous discount rate: 

2

2

0

1

1

0
d)(d)(

t

xx

t

xx
tt

ee
∫

<
∫

−−
δδ

. 

Taking napierian logarithms in both members, it would remain: 

2

 

0 

1

 

0 

21

d)(d)(

t

xx

t

xx
tt

∫∫ −
<

− δδ
. 

As )(d)(
 

0 
txx

t
ϕδ =∫  is the logarithmic factor of )(tF , we  will write: 

2

2

1

1 )()(
t

t

t

t ϕϕ −<−
, 

from where: 

2

2

1

1 )()(
t

t

t

t ϕϕ >  

or 

)()( 21 tt θθ < , 

being )(tθ  the logarithmic density of the discounting function in the interval 

[0,t]. So, the function )(xθ  is decreasing and its derivative, negative: 

0
)()(

)( 2 <−=′
x

xxx
x

ϕδθ . 

Therefore: 

0)()( <− xxx ϕδ , 

from which: 

x

x
x

)(
)(

ϕδ < , 

or what is the same: 

)()( xx θδ < . 
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      0=x  

       

)(xϕ  

     Concave 

 

 

 

 

       Convex 

 

x′         0             x   x 

 

   0−x  

    xx ′−   

Fig. 1 Logarithmic factor in “weak” declining impatience 

Observe that: 

x

x

xx

x
x

dx

d
x

)()(
)()(

ϕϕϕδ <
′−

== . 

Then the tangent line at x to the logarithmic factor crosses the straight line 0=x  
at a point with positive second component. 

Reciprocally, it can be shown that this condition is sufficient by making the 
reasoning in the opposite way.                                                                                 

Remarks: 

1. The logarithmic factor is always increasing, but it can be either con-
cave or convex, so the instantaneous rate can be increasing or de-
creasing. 

2. Hyperbolic discounting verifies “weak” declining impatience. In ef-
fect, starting from the hyperbolic discounting function defined by 
Ainslie (1992), Mazur (1987) and Rachlin (1989): 

tk
tF

⋅+
=

1
1

)( . 
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Let us consider, for example 1.0=k  and that intervals have lengths 3 and 5, re-
spectively. By calculating the geometric average or mean discounting function per 
unit of time, we would have: 

916260327.0
31.01

1 3

1

=⎟
⎠
⎞

⎜
⎝
⎛

⋅+
, 

922107911.0
51.01

1 5

1

=⎟
⎠
⎞

⎜
⎝
⎛

⋅+
. 

Then, we can see that “weak” declining impatience is verified. 

3   Discounting by Delays and Intervals 

Consider an intertemporal framework in which time is considered as a delay and 
as an interval. In this case, a discounting function is a real-valued function of two 
variables 

]1,0]}0{: →∪ℜ×ℜ +F  

),(),( tdFtd  

decreasing with respect to t and such that 1)0,( =dF . Such a discounting func-

tion will be called a dynamic discounting function. Now the instantaneous dis-
counting rate is defined as 

t

tdF
t

d

),(lnd
:)( −=δ . 

This magnitude represents again the infinitesimal relative decrease of the dis-
counting function with respect to time. In effect, 

),(

),(),(
lim),(

0 tdFh

htdFtdF
td

h ⋅
+−=

→
δ . 

It is also well-known that, in this case, a necessary and sufficient condition for 
consistency is that the instantaneous discounting rate only depends on t (not on d). 
In what follows, we will try to establish a parallelism between this case and the 
former one. Therefore, a first case of inconsistency can be described when 

),( tdδ  depends on d and thus we will assume that ),( tdδ  is decreasing with 

respect to d, that is to say, keeping constant the value of t. 
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Remark. In the discounting function )(tF  the date of reference (benchmark) is 

0, whereby )(tF  will the called a spot discounting function, while in the expres-

sion ),( tdF  the date of reference is any future date d, whereby ),( tdF  will the 

called a forward discounting function. 

3.1   “Intermediate” Declining Impatience or Declining 
Impatience of Type II 

Now we will represent a temporal line where the appraisal instant 0 is fixed, the 

delay is variable ( )21 dd <  and the interval length is constant (t). Then, we can 

observe that, now, the interval does not match with the delay and that the second 
delay is greater than the first one. In this case, we will use the factor which is de-
fined by transitivity as:  

)(
)(

),(
dF

tdF
tdf

+=  

 

   ),( 1 tdf                              $1 

 

  0      d1   td +1  

 

     ),( 2 tdf     $1 

 

  0        d2    td +2  
 

Now intermediate declining impatience or declining impatience of type II means: 

),(),( 21 tdftdf < . 

Observe that this definition is based on different delays but equal length intervals 
whereby the lower endpoints differ in the same amount as the upper endpoints 
(delays). In this case, it is indifferent talking about the mean discount factors, be-

cause raising both members, respectively, to 
11

1
dtd −+

 and to 
22

1
dtd −+

 

does not affect to the inequality, since both expressions are equivalent. 

Theorem 2. “Intermediate” declining impatience or declining impatience of type 
II is verified if and only if the instantaneous discount rate is decreasing. 
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Proof. First, let us see that the condition is necessary. In effect, assume that: 

),(),( 21 tdftdf < , 

that is to say, the discount factor is increasing with respect to d. Writing this factor 

according to the instantaneous rate: 

∫<∫
++

−−
td

d

td

d
xxxx

ee
2

2

1

1
d)(d)( δδ

, 

from which, taking napierian logarithms in both members and changing the signs: 

∫∫
++

>
td

d

td

d
xxxx

2

2

1

1

d)(d)( δδ . 

We can break each one of the previous integrals into two, according to the subin-
tervals in which we can divide each of the integration intervals of both members. 

Denoting hdd =− :12 , the former scheme remains as follows: 

 

 

     1d          hd +1       td +1           htd ++1  

 

∫∫∫∫
++

+

+

+

+

+

+
+>+

htd

td

td

hd

td

hd

hd

d
xxxxxxxx

1

1

1

1

1

1

1

1

d)(d)(d)(d)( δδδδ  

and simplifying and dividing by h, it would remain: 

h

xx

h

xx
htd

td

hd

d ∫∫
++

+

+

>

1

1

1

1

d)(d)( δδ
. 

Letting 0→h : 

)()( 11 tdd +> δδ , 

Then )(xδ  is declining. Let us see now that the condition is sufficient: 

),(),( 2

d)(d)(d)(

1

1

1

1

1

1

1 tdfeeetdf
htd

hd

td

d

td

d
xxxhxxx

=∫=∫<∫=
++

+

++
−+−− δδδ

.         
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Observe that hyperbolic discounting also verifies “intermediate” declining impa-
tience. Taking the hyperbolic discounting function defined by Mazur (1984), that 
is the discount factor associated to the discounting function defined by Ainslie: 

)(1
1

),(
tdk

kd
tdf

++
+=  

and considering the intervals [3,5] and [7,9], we have: 

68.0
51.01

31.01 =
⋅+
⋅+

, 

894736842.0
91.01

71.01 =
⋅+
⋅+

. 

Theorem 3. “Intermediate” declining impatience implies “weak” declining  
impatience. 

Proof. It is evident.                                                                                                   

Let us see now an example of discounting function verifying the “weak” declining 
impatience, but not the “intermediate”. In effect, let us suppose that the logarith-
mic density has the following expression: 

1
2

)( 2

3

+
+=

x

xx
xϕ , 

where, as it can be observed, the appraisal instant is 0. It is verified that: 

0
)1(

2
)(

22

24

>
+

++=′
x

xx
xϕ , 

which implies that )(xϕ  is decreasing. Moreover, 0)0( =ϕ . 

On the other hand, 
22

24

)1(
2

)()(
+

++=′=
x

xx
xx ϕδ  is increasing in the interval 

( )3,0  and decreasing in ( )∞,3 , as can be seen when making its derivative: 

32

3

)1(
62

)(
+
−=′

x

xx
xδ . 



100 S.C. Rambaud and M.J. Muñoz Torrecillas
 

Then: 

1

2
2

3

)( +
+−

= t

tt

etF  

verifies the declining impatience of type I, but not the type II. 

 

0
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1

1,5

2
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Fig. 2 Graphic representation of 
1

2
)( 2

3

+
+=

x

xx
xϕ  

 

Theorem 4. A discounting function )(tF  verifies the “intermediate” declining 

impatience if and only if 

[ ] [ ] 21

1

22

1

11 ),(),( tt tdftdf < , 

for all 21 dd < , and t1 and t2 such that 112 tdd +< : 

 

 

 1d           2d             11 td +     22 td +   

yx =
 

)(xϕ  
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Proof. Firstly, starting from the previous inequality, 

[ ] [ ] 21

1

22

1

11 ),(),( tt tdftdf < , it is obvious that the discounting function )(tF  

verifies the “intermediate” declining impatience, taking 21 tt = . Secondly, if it is 

verified the “intermediate” declining impatience, then, by means of theorem 2, 
)(tδ  is decreasing. Then, we have to show that: 

21

22

2

11

1

d)(d)(

t

xx

t

xx
td

d

td

d ∫∫
++

>
δδ

. 

Taking 1d , 2d  and 1t , and denoting xtt += 12 , [ )+∞−∈ ,21 ddx , let us 

study the behaviour of the auxiliary function: 

11

11

1

12

2

d)(d)(
)(

t

xx

xt

xx
xg

td

d

xtd

d ∫∫
+++

−
+

=
δδ

. 

Making its derivative: 

=
+

−+++
=′ ∫

++

2
1

112

)(

d)())((
)(

12

2

xt

xxxtxtd
xg

xtd

d
δδ

 

(by applying the theorem of the mean value for integral calculus and simplifying) 

0
)()(

1

12 <
+

−++=
xt

xtd ξδδ
, 

since ),( 122 xtdd ++∈ξ  and δ is decreasing. Therefore, )(xg  is decreasing. 

Let us see now the value of )( 21 ddg − : 

=
−+

−+−
=−

−+
=

∫∫∫∫
++++

1211

2111

1211
2 )(

d)()(d)(d)(d)(
)(

11

1

11

2

11

1

11

2

tdtd

xxdtdxxt

t

xx

dtd

xx
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td

d

td

d

td

d

td

d
δδδδ

 

=
−+

−+−−+−−+−+
=

∫ ∫∫∫
+++

1211

21121112211

)(

d)()(d)()(d)()(d)()(
2

1

11

2

11

2

11

2

tdtd

xxdtdxxdtdxxddxxdtd
d

d

td

d

td

d

td

d
δδδδ  
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(simplifying) 

=
−+

−+−−
=

∫∫
+

1211

21112

)(

d)()(d)()(
2

1

11

2

tdtd

xxdtdxxdd
d

d

td

d
δδ

 

(applying the theorem of the mean value for integral calculus) 

=
−+

−−+−−+−=
1211

1221121112

)(
)())(()())((

tdtd

dddtddtddd ηδξδ
 

(and simplifying, again) 

[ ]
0

)()()(

1

12 <−−=
t

dd ηδξδ
, 

since ξη < , ),( 21 dd∈η  and ),( 112 tdd +∈ξ  and δ is decreasing. So )(xg  

is always negative and so it is shown that the first addend is lower than the second 
one.                                                                                                                            

In what follows, we will describe a procedure to generate logarithmic densities of 
discounting functions verifying the “weak” declining impatience. As the tangent at 
every point x to the logarithmic density y has to cross the 0=x  axis: 

 

       

)(xϕ  

     z 

      y 

  0       x  
 

Fig. 3 Logarithmic density 
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yz < , 

yyx <′ , 

0<−′ yyx  

)(xyyx φ=−′ , with 0)( <xφ . 

Dividing both members of previous equation by x: 

x

x
y

x
y

)(1 φ=−′ , 

where we will denote 
x

1−  by f(x) and 
x

x)(φ
 by g(x).   

First of all, we will calculate the general solution of the homogeneous differential 
equation: 

0
1 =−′ y
x

y , 

that is a differential equation of separable variables: 

y
x

y
1=′ , 

xy

y 1=
′

, 

cxy += lnln , 

from which we can find the value of y: 

cxy = . 

On the other hand, a particular solution to the complete differential equation is 
given by: 

∫=
− dxxf

p excxy
)(

)()( , 
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where: 

=∫= ∫ dxexgxc
dxxf )(

)()(  

(replacing f(x) and g(x) by their respective values) 

∫∫∫ === − dx
x

x
dx

xx

x
dxe

x

x x
2

ln )(1)()( φφφ
. 

Making z
x

=1
 and dzdx

x
=−

2

1
, one has: 

)(
1

)( zdz
z

zc ψφ =⎟
⎠
⎞

⎜
⎝
⎛−= ∫ , 

Then ⎟
⎠
⎞

⎜
⎝
⎛=

x
xc

1
)( ψ  and the general solution of the complete differential equa-

tion will be: 

x
x

cxy ⎟
⎠
⎞

⎜
⎝
⎛+= 1ψ . 

For example, if xxex −−=)(φ , then: 

x
x

edx
x

xe
xc −

−

=−= ∫)( . 

So, 

xexy x
p

−=)( , 

which implies that: 

⎟
⎠
⎞

⎜
⎝
⎛ +=+= −

x
x

e
cxxecxy

1
. 

In effect, observe that the solution found in the previous differential equation can 
be expressed as: 

xe

x
cxy += . 
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And the graphic representation of 
xe

x
y =  is: 

 

           y 

 

     
xe

x
y =  

 

 

                  0       x 

Fig. 4  

therefore, if we add the linear function cxy = , it will be verified the differential 

inequality for some given value of c: 
 

y                         cx
e
xy x +=                      cxy =  

       0        x  

Fig. 5  

Let us see for 1=c : 

)1( xx exxexy −− +=+= . 

 



106 S.C. Rambaud and M.J. Muñoz Torrecillas
 

It is verified that the image of  0 is 0)0( =y  and y is increasing, because: 

01)1()()1( >+−=−++=′ −−− xeexey xxx . 

In effect, the graphic representation of the function 
xe

x
y

−= 1
1  is: 

 

                   1 

    1            2 

                       minimum  

Fig. 6 Function y1 

since: 

xx

xx

e

x

e

exe
yy

2

)(

)1(
21

−=−−−=′′=′ , 

so it has a minimum at 2=x , whose second component is 
22

121

ee

−=− . As 

1
1

2
<

e
, y′  is positive, so the logarithmic density is increasing and, therefore, 

the instantaneous rate is positive. But, second derivative of y reveals that the rate 
can be either increasing or decreasing. 

3.2   “Strong” Declining Impatience or Declining Impatience of 
Type III 

Let us represent two intervals with the same length, but different appraisal in-
stants. In the first case, the interval will be valued at moment 0 and the second, at 
moment d, both coinciding with the lower endpoint of each interval. 
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              ),( tdf                            $1 

 

  0        d      td +  

     ),( tdF                           $1 

 

          d      td +  

In this case, the “strong” declining impatience means that: 

),(),( tdftdF < , 

that it to say, 

)(
)(

),(
dF

tdF
tdF

+< , 

from where we can deduce: 

)(),()( tdFtdFdF +<⋅ , 

that is the concept of subadditivity. Observe that, in this case, the discount rate  

decreases if the interval [ ]tdd +,  is valued from 0. Taking mean discounting 

functions: 

tdtdtd tdFtdFdF +++ +<⋅
111

)(),()(  

td
td

t

t
td

d

d tdFtdFdF +
++

+<⎥
⎦

⎤
⎢
⎣

⎡
⋅⎥

⎦

⎤
⎢
⎣

⎡ 111

)(),()( . 

Denoting the average discounting function in the interval [ 21 , tt ] as 
21 tt →δ , de-

pending on the appraisal interval, we obtain: 

( ) ( ) td

t

tddtd

d

dtd ++→+→+→ ⋅> δδδ 00 , 

that is to say, the average discounting function in the interval ],0[ td +  is higher 

than the product of the weighted geometric mean of the discounting functions in 
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the intervals ],0[ d  and ],[ tdd + , using 
td

d

+
 and 

td

t

+
 as weights. Note 

that the sum of these weights is 1: 

1=
+

+
+ td

t

td

d
. 

In the particular case in which d is the center of the interval ],0[ td + : 

2

td
d

+= , 

it is verified that: 

2

td
t

+= . 

Then: 

( ) ( )2

1

2

1

00 tdddtd +→→+→ ⋅> δδδ , 

that is Read’s (2003) definition of subadditivity. 

3.3   “Very Strong” Declining Impatience or Declining  
Impatience of Type IV 

 

      )(tF                             $1 

 

        0          t 

 

        ),( tdF                            $1 

 

             d           d+t 

 

),()( tdFtF < . 
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This is what has been defined as a contractive discounting function. Also, in the 
farthest interval, instantaneous discount rate is lower. On the other hand, a dis-
counting function is said to be expansive if ),()( tdFtF ≥ . 

Theorem 5. An expansive discounting function verifying the declining impatience 
of type II , also verifies the declining impatience of type III. 

Proof. It is well-known that, for an interval t, it is verified that: 

)(),0( tFtf = . 

By declining impatience of type II and the expansiveness of )(tF , 

),()(),0(),( tdFtFtftdf ≥=> . 

Therefore, it is verified the declining impatience of type III.                                   

Actually, we can not strictly speak about neither a longer interval nor farther post-
poned delay, so it could be analyzed under stationarity assumption, finding the fol-
lowing conclusion: 

Corollary. In the case of a stationary discounting function, the concept of declin-
ing impatience of type II also implies declining impatience of type III. 

Proof. In effect, if the declining impatience of type II is verified, taking into ac-
count that ),()( tdFtF = , following the proof of Theorem 5, the declining im-

patience of type III would be verified.                                                                      

4   Conclusions 

Several authors have included in their papers and in their experiments the concept 
of delay effect. Nevertheless in some studies it is not clearly established the differ-
ence between delay and interval and, as a consequence, the delay effect has been 
identified with the interval effect. This occurs, specially, when the delay is equal 
to the interval, and so delay effect and interval effect coincide. Taking into account 
this difference, we have introduced two frameworks. In the first one (Section 2: 
Discounting by intervals) we have only considered time as an interval. In this 
case, a discounting function is a decreasing-real valued function. In the second 
case (Section 3: Discounting by delays and intervals) we have considered time as 
a delay and as an interval and so the discounting function is a real-valued function 
of two variables. In these frameworks, we have established four types of what we 
have called “declining impatience” (DI): weak, intermediate, strong and very 
strong (the first type corresponds to the framework in which delay and interval co-
incide, as d = 0). And we have shown different properties of the discounting func-
tion/factor, depending on different possibilities of relationship between interval 
and delay (theorems 1 to 5). We could point out, from these relationships, the  
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following results relating declining impatience to hyperbolic and subbaditive dis-
counting functions. The weak and the intermediate DI are verified by the hyper-
bolic discounting. The strong DI leads to the concept of subadditivity and the very 
strong DI leads to a contractive discounting function. 
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Pairwise Comparison Matrices: Some Issue on
Consistency and a New Consistency Index

Bice Cavallo, Livia D’Apuzzo, and Gabriella Marcarelli

Abstract. In multicriteria decision making, the pairwise comparisons are an useful
starting point for determining a ranking on a set X = {x1,x2, ...,xn} of alternatives
or criteria; the pairwise comparison between xi and x j is quantified in a number ai j

expressing how much xi is preferred to x j and the quantitative preference relation
is represented by means of the matrix A = (ai j). In literature the number ai j can
assume different meanings (for instance a ratio or a difference) and so several kind
of pairwise comparison matrices are proposed. A condition of consistency for the
matrix A = (ai j) is also considered; this condition, if satisfied, allows to determine
a weighted ranking that perfectly represents the expressed preferences. The shape
of the consistency condition depends on the meaning of the number ai j. In order
to unify the different approaches and remove some drawbacks, related for example
to the fuzzy additive consistency, in a previous paper we have considered pairwise
comparison matrices over an abelian linearly ordered group; in this context we have
provided, for a pairwise comparison matrix, a general definition of consistency and
a measure of closeness to consistency. With reference to the new general unifying
context, in this paper we provide some issue on a consistent matrix and a new mea-
sure of consistency that is easier to compute; moreover we provide an algorithm to
check the consistency of a pairwise comparison matrix and an algorithm to build
consistent matrices.
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1 Introduction

Let X = {x1,x2, ...,xn} be a set of alternatives or criteria. An useful tool to determine
a weighted ranking on X is a pairwise comparison matrix (PCM)

A =

⎛

⎜⎜⎝

a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...
an1 an2 ... ann

⎞

⎟⎟⎠ (1)

which entry ai j expresses how much the alternative xi is preferred to alternative x j.
A condition of reciprocity is assumed for the matrix A = (ai j) in such way that the
preference of xi over x j expressed by ai j can be exactly read by means of the el-
ement a ji. Under a suitable condition of consistency for A = (ai j), stronger than
the reciprocity, X is totally ordered and there exists a consistent vector w, that per-
fectly represents the preferences over X ; then w provides the proper weights for the
elements of X .

The shape of the reciprocity and consistency conditions depends on the different
meaning given to the number ai j, as the following well known cases show.

Multiplicative case [12, 13]: ai j ∈]0,+∞[ is a preference ratio and the conditions
of multiplicative reciprocity and consistency are given respectively by

a ji =
1

ai j
∀ i, j = 1, . . . ,n,

aik = ai ja jk∀ i, j,k = 1, . . . ,n.

A consistent vector is a positive vector w = (w1,w2, ...,wn) verifying the condi-
tion wi

w j
= ai j.

Additive case [1, 11]: ai j ∈]−∞,+∞[ is a preference difference and additive reci-
procity and consistency are expressed as follows

a ji = −ai j ∀ i, j = 1, . . . ,n,

aik = ai j + a jk∀ i, j,k = 1, . . . ,n.

A consistent vector is a vector w = (w1,w2, ...,wn) verifying the condition
wi −wj = ai j.

Fuzzy case [1, 10]: ai j ∈ [0,1] measures the distance from the indifference that is
expressed by 0.5; in this case the following conditions of fuzzy reciprocity and
fuzzy additive consistency are considered

a ji = 1−ai j ∀ i, j = 1, . . . ,n,

aik = ai j + a jk −0.5∀ i, j,k = 1, . . . ,n.



Pairwise Comparison Matrices 113

A consistent vector is a vector w = (w1,w2, ...,wn) verifying the condition
wi −wj = ai j −0.5.

The multiplicative PCMs play a basic role in the Analytic Hierarchy Process, a
procedure developed by T.L. Saaty at the end of the 70s [12, 13, 14, 15]; prop-
erties of multiplicative PCMs are analyzed in [2, 3, 4, 5, 8] in order to deter-
mine the actual ranking of the alternatives and find ordinal and cardinal evalua-
tion vectors. The pairwise comparisons are an useful starting point for quantifying
judgments expressed in verbal terms; the multiplicative scale suggested by Saaty
translates the verbal comparisons into preference ratios ai j belonging to the set
S∗ = {1,2,3,4,5,6,7,8,9, 1

2 , 1
3 , 1

4 , 1
5 , 1

6 , 1
7 , 1

8 , 1
9}. But the assumption of the Saaty

scale restricts the Decision Maker’s possibility to be consistent: indeed if the Deci-
sion Maker (DM) expresses the following preference ratios ai j = 5 and a jk = 3 then
he will not be consistent because ai ja jk = 15 > 9. Analogously for the fuzzy case,
the assumption that ai j ∈ [0,1], restricts the possibility to respect the fuzzy additive
consistency: indeed, if the DM claims ai j = 0.9 and a jk = 0.8, then he will not be
consistent because ai j + a jk −0.5 = 1.7−0.5 > 1.

In order to unify the several approaches to PCMs and remove the mentioned
drawbacks, in [6], we introduce PCMs over an abelian linearly ordered group (alo-
group) G = (G,�,≤). The reciprocity and consistency conditions are expressed in
terms of the group operation � and this allow us to remove the drawbacks linked
to the usual definitions of consistency; a notion of distance dG , linked to G , is also
introduced. The assumption of divisibility for G allows us to introduce the mean
m�(a1, ...,an) of n elements and associate a mean vector wm� to a PCM. Then, we
define the consistency index IG (A) as mean of the distances dG (aik,ai j �a jk), with
i < j < k.

In this paper, we add the fourfold original contribution:

1. we analyze properties of consistent PCMs;
2. we provide an algorithm to check whenever or not a matrix is consistent;
3. we provide a new consistency index for a PCM, obtained from an optimization

of the index IG (A) provided in [6];
4. we provide an algorithm to build a consistent matrix by means of n − 1

comparisons.

2 Preliminaries

Let us recall some notions and results related to an alo-group (see [6] for details).
These results will be useful in Section 3 to define a PCM over an alo-group and to
define in this context a new consistency index.

Let G be a non empty set provided with a total weak order ≤ and a binary oper-
ation � : G×G → G. G = (G,�,≤) is called alo-group, if and only if (G,�) is an
abelian group and the the following implication holds:

a < b ⇒ a� c < b� c,

where < is the strict simple order associated to ≤.
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If G = (G,�,≤) is an alo-group, then we assume that: e denotes the identity of
G , x(−1) the symmetric of x ∈ G with respect to �, ÷ the inverse operation of �
defined by “a÷b = a�b(−1)”.

For a positive integer n, the (n)-power x(n) of x ∈ G is defined as follows

x(1) = x

x(n) =
n⊙

i=1

xi, xi = x ∀i = 1, ...,n, n ≥ 2

If b(n) = a, then we say that b is the (n)-root of a and write b = a(1/n). G is divisible
if and only if for each positive integer n and each a ∈ G there exists the (n)-root
of a.

Proposition 2.1. [6] A non trivial alo-group G = (G,�,≤) has neither the greatest
element nor the least element.

The interval [0,1] and the Saaty set S*, embodied with the usual order ≤ on R, have
minimum and maximum; so, by Proposition 2.1, there is no operation structuring
[0,1] or S* as an alo-group.

Proposition 2.2. [6] Let G = (G,�,≤) be an alo-group and ||a÷ b|| = (a÷ b)∨
(b÷a). Then, the operation

dG : (a,b) ∈ G2 → ||a÷b|| ∈ G (2)

verifies the conditions:

1. dG (a,b) ≥ e;
2. dG (a,b) = e ⇔ a = b;
3. dG (a,b) = dG (b,a);
4. dG (a,b) ≤ dG (a,c)�dG (b,c).

Definition 2.1. The operation dG in (2) is a G -metric or G -distance.

Definition 2.2. Let G = (G,�,≤) be a divisible alo-group. Then, the �- mean
m�(a1,a2, ...,an) of the elements a1,a2, ...,an of G is defined by

m�(a1,a2, ...,an) =

{
a1 n = 1,

(
⊙n

i=1 ai)(1/n) n ≥ 2.

Definition 2.3. An isomorphism between two alo-groups G = (G,�,≤) and G ′ =
(G′,◦,≤) is a bijection h : G → G′ that is both a lattice isomorphism and a group
isomorphism, that is:

x < y ⇔ h(x) < h(y)
h(x� y) = h(x)◦ h(y).
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Proposition 2.3. [6] Let h : G → G′ be an isomorphism between the alo-groups
G = (G,�,≤) and G ′ = (G′,◦,≤). Then,

dG ′(a′,b′) = h(dG (h−1(a′),h−1(b′))).

Moreover, G is divisible if and only if G ′ is divisible and, under the assumption of
divisibility:

m◦(y1,y2, ...,yn) = h
(
m�(h−1(y1),h−1(y2), ...,h−1(yn))

)
.

2.1 Real Alo-Groups

An alo-group G = (G,�,≤) is a real alo-group if and only if G is a subset of the real
line R and ≤ is the total order on G inherited from the usual order on R. Let + and ·
be the usual addition and multiplication on R and ⊗ :]0,1[2→]0,1[ the operation
defined by x⊗ y = xy

xy+(1−x)(1−y) . Then examples of real divisible alo-groups are the
following:

Multiplicative alo-group
]0,+∞[ = (]0,+∞[, ·,≤); then e = 1, x(−1) = 1/x, x(n) = xn and x÷ y = x

y . So

d]0,+∞[(a,b) =
a
b
∨ b

a

and m·(a1, ...,an) is the geometric mean:
(

∏n
i=1 ai

) 1
n .

Additive alo-group
R = (R,+,≤); then e = 0, x(−1) = −x, x(n) = nx, x÷ y = x− y. So

dR(a,b) = |a−b|= (a−b)∨ (b−a)

and m+(a1, ...,an) is the arithmetic mean: ∑i ai
n .

Fuzzy alo-group
]0,1[ = (]0,1[,⊗,≤); then e = 0.5, x(−1) = 1− x, x÷ y = x(1−y)

x(1−y)+(1−x)y and

d]0,1[(a,b) =
a(1−b)

a(1−b)+ (1−a)b
∨ b(1−a)

b(1−a)+ (1−b)a
.

Remark 2.1. The group operation ⊗ considered for a fuzzy alo-group is a re-
striction to ]0,1[ of a well-known representable uninorm over the closed interval
[0,1](see [9]).

The bijection
h : x ∈]0,+∞[→ logx ∈ R

is an isomorphism between ]0,+∞[ and R and

v : t ∈]0,+∞[→ t
t + 1

∈]0,1[



116 B. Cavallo, L. D’Apuzzo, and G. Marcarelli

is an isomorphism between ]0,+∞[ and ]0,1[. So, by Proposition 2.3, the mean
m⊗(a1, ..., an) related to the fuzzy alo-group can be computed as follows:

m⊗(a1, ...,an) = v
(( n

∏
i=1

v−1(ai)
) 1

n
)
.

3 Pairwise Comparison Matrices over a Divisible Alo-Group

In this section, G = (G,�,≤) is a divisible alo-group and A = (ai j) in (1) is a PCM
over G , that is ai j ∈ G, ∀i, j ∈ {1, . . . ,n}. The symbols a1,a2, . . . ,an indicate the
rows of A and a1,a2, . . . ,an indicate the columns of A. The mean vector associated
to A is the vector

wm�(A) = (m�(a1),m�(a1), · · · ,m�(an)). (3)

We say that A is reciprocal PCM, with respect to �, if and only if [6]:

a ji = a(−1)
i j ∀ i, j = 1, . . . ,n, (reciprocity). (4)

If A = (ai j) is reciprocal, then aii = e for each i = 1,2, ...,n and ai j � a ji = e for
i, j ∈ {1,2, ...,n}.

3.1 Consistent PCMs

In [6], we provide the following definition:

Definition 3.1. A = (ai j) is a consistent matrix with respect to �, if and only if:

aik = ai j �a jk ∀i, j,k. (5)

Moreover, w = (w1, . . . ,wn), with wi ∈ G, is a consistent vector for A = (ai j) if and
only if

wi ÷wj = ai j ∀i, j = 1,2, ...,n. (6)

Proposition 3.1. A consistent PCM is also a reciprocal matrix.

Proof. Let A = (ai j) be a consistent matrix. By (5) and the properties of the group

operation �, for each choice of i, we get: aii = aii � e = aii � (aii �a(−1)
ii ) = (aii �

aii)�a(−1)
ii = aii �a(−1)

ii = e; and, for every choice of i and j: ai j �a ji = aii = e so

that a ji = a(−1)
i j .

Proposition 3.2. A reciprocal PCM A = (ai j) is consistent if and only if there exists
a consistent vector w = (w1,w2, ...,wn).

Proof. The condition of consistency together whit the condition of reciprocity
claims that
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aik ÷a jk = ai j ∀i, j,k. (7)

Then, for every choice of k ∈ {1,2, ...,n} the column ak = (a1k,a2k, . . . ,ank) verifies
(6). Viceversa if w = (w1,w2, ...,wn) verifies (6), then

aik = wi ÷wk = wi �w(−1)
k = wi �w(−1)

j �wj �w(−1)
k = ai j �a jk;

so A is a consistent matrix.

Proposition 3.3. [6] Let A = (ai j) be consistent. Then the mean vector wm� in (3)
is a consistent vector.

3.2 How to Check the Consistency of a Reciprocal Matrix

From now on, we assume that A = (ai j) is a reciprocal PCM over an alo-group. We
provide an algorithm of computational complexity order equal to O(n2) to check
whenever or not t he matrix is consistent.

Proposition 3.4. [6] A = (ai j) is a consistent matrix with respect to �, if and only
if:

aik = ai j �a jk ∀ i, j,k : i < j < k.

Proposition 3.5. [6] A = (ai j) is a consistent matrix with respect to �, if and only
if:

dG (aik,ai j �a jk) = e ∀ i, j,k : i < j < k.

By previous propositions, we obtain new characterizations of a consistent PCM. By
Proposition 3.4 and associativity of �, we have the following proposition:

Proposition 3.6. A is consistent if and only if, ∀i,k : i < k−1, the following equality
holds:

aik = ai i+1 �ai+1 i+2 � . . .�ak−1 k.

By Proposition 3.6 and associativity of �, we have the following proposition:

Proposition 3.7. A is consistent if and only if, ∀i,k : i < k−1, the following equality
holds:

aik = ai i+1 �ai+1 k.

Thus, in order to check whenever or not a matrix is consistent, we provide Algorithm
1, for which computational complexity order is equal to O(n2).

3.3 Improving the Consistency Index

Let T be the set {(ai j,a jk,aik), i < j < k} and nT the cardinality of T . By Propo-
sition 3.5 A = (ai j) is inconsistent if and only if dG (aik,ai j � a jk) > e for some
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Algorithm 1. Checking consistency
i = 1;
ConsistentMatrix=true;
while i ≤ n−2 and ConsistentMatrix do

k = i+2;
while k ≤ n and ConsistentMatrix do

if aik �= ai i+1 �ai+1 k then
ConsistentMatrix=false;

end if
k = k +1;

end while
i = i+1;

end while

triple (ai j,a jk,aik) ∈ T . Thus, in [6] we have provided the following definition of
consistency index:

Definition 3.2. The consistency index of A is given by:

IG (A) =

{
dG (a13,a12 �a23) n = 3
(⊙

T dG (aik,ai j �a jk)
)( 1

nT
) n > 3,

with nT = n(n−2)(n−1)
6 .

Remark 3.1. IG (A) ≥ e and A is consistent if and only if IG (A) = e.

As corollary of Proposition 2.3 we get the following

Proposition 3.8. Let G ′ = (G′,◦,≤) be a divisible alo-group isomorphic to G and
A′ = (h(ai j)) the transformed of A = (ai j) by means of the isomorphism h : G → G′.
Then IG (A) = h−1(IG ′(A′)).

At the light of Proposition 3.7, it is reasonable to define a new consistency index,
considering only the �−mean of the distances dG (aik,ai i+1�ai+1 k), with i < k−1.
Let T ∗ be the set {(ai i+1,ai+1 k,aik), i < k− 1} and nT∗ the cardinality of T ∗, then
we provide the following definition:

Definition 3.3. The consistency index of A is given by:

I∗G (A) =

{
dG (a13,a12 �a23) n = 3
(⊙

T ∗ dG (aik,ai i+1 �ai+1 k)
)( 1

nT∗
)

n > 3,

with nT∗ = (n−2)(n−1)
2 .

Assertions analogous to ones in Remark 3.1 and Proposition 3.8 follow.

Remark 3.2. I∗G (A) ≥ e and A is consistent if and only if I∗G (A) = e.

Proposition 3.9. Let G ′ = (G′,◦,≤) be a divisible alo-group isomorphic to G and
A′ = (h(ai j)) the transformed of A = (ai j) by means of the isomorphism h : G → G′.
Then I∗G (A) = h−1(I∗G ′(A′)).
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3.4 Building a Consistent Matrix

Given X = {x1,x2, . . . ,xn} the set of alternatives, Proposition 3.7 allow us to build
a consistent PCM starting from a fixed alternative xi and the n−1 comparisons be-
tween xi and x j, for j �= i. These comparisons are expressed by one of the following
sequences:

1. ai1, . . .ai i−1,ai i+1, . . .ain,
2. a1i, . . .ai−1 i,ai+1 i, . . .ani.

For instance, we provide Algorithm 2 to build a consistent PCM starting from the
sequence {a12,a13, . . . ,a1n}; we use the equality ai+1 k = ai+1 i �ai k, ∀i,k such that
i < k−1, obtained from Proposition 3.7.

Algorithm 2. Building a consistent matrix
for k = 2, . . . ,n do

ak1 = a(−1)
1k

end for
for i = 1, . . . ,n do

aii = e
end for
for i = 1, . . .n−2 do

for k = i+2 . . .n do
ai+1 k = ai+1 i �ai k

ak i+1 = a(−1)
i+1 k

end for
end for

By Proposition 3.7, we can also build a consistent PCM starting from one of the
following sequences:

3. a12,a23, . . .an−1 n,
4. a21,a32, . . .an n−1.

For the fuzzy case, the authors in reference [7] build a consistent matrix by means
of sequence 3.

In the following, in Example 1 and in Example 2, we show how to build a consis-
tent matrix by means of Algorithm 2; the examples are related to the multiplicative
case and the fuzzy case respectively.

Example 1. Let {x1,x2,x3,x4,x5} be a set of alternatives. We suppose that the DM
prefers x1 to each other alternative and expresses the following preference ratios:
a12 = 2, a13 = 4, a14 = 5 and a15 = 6. By means of Algorithm 2, we obtain:

a21 =
1
2
, a31 =

1
4
, a41 =

1
5
, a51 =

1
6
,
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a11 = a22 = a33 = a44 = a55 = 1,

a23 = a21a13 = 2, a32 =
1
2
,

a24 = a21a14 =
5
2
, a42 =

2
5
,

a25 = a21a15 = 3, a52 =
1
3
,

a34 = a32a24 =
5
4
, a43 =

4
5
,

a35 = a32a25 =
3
2
, a53 =

2
3
,

a45 = a43a35 =
6
5
, a54 =

5
6
,

and therefore:

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 4 5 6

1
2 1 2 5

2 3

1
4

1
2 1 5

4
3
2

1
5

2
5

4
5 1 6

5

1
6

1
3

2
3

5
6 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Example 2. Let {x1,x2,x3,x4,x5} be a set of alternatives. We suppose that the fol-
lowing values express how much the DM prefers x1 to each other alternative:
a12 = 0.6, a13 = 0.7, a14 = 0.8 and a15 = 0.9. By means of Algorithm 2, we
obtain:

a21 = 0.4, a31 = 0.3, a41 = 0.2, a51 = 0.1,

a11 = a22 = a33 = a44 = a55 = 0.5,

a23 =
a21a13

a21a13 +(1−a21)(1−a13)
= 0.609, a32 = 0.391,

a24 =
a21a14

a21a14 +(1−a21)(1−a14)
= 0.727, a42 = 0.273,

a25 =
a21a15

a21a15 +(1−a21)(1−a15)
= 0.857, a52 = 0.143,

a34 =
a32a24

a32a24 +(1−a32)(1−a24)
= 0.632, a43 = 0.368,

a35 =
a32a25

a32a25 +(1−a32)(1−a25)
= 0.794, a53 = 0.206,



Pairwise Comparison Matrices 121

a45 =
a43a35

a43a35 +(1−a43)(1−a35)
= 0.692, a54 = 0.308,

and therefore:

A =

⎛

⎜⎜⎜⎜⎝

0.5 0.6 0.7 0.8 0.9
0.4 0.5 0.609 0.727 0.857
0.3 0.391 0.5 0.632 0.794
0.2 0.273 0.368 0.5 0.692
0.1 0.143 0.206 0.308 0.5

⎞

⎟⎟⎟⎟⎠

4 Conclusion and Future Work

We have provided an algorithm to check whenever or not a reciprocal PCM over
an alo-group is consistent, together with an algorithm to build a consistent matrix
by means of n−1 comparisons. Moreover, starting from a consistency index IG (A)
defined in [6], and naturally linked to a notion of distance, we have provided a new
consistency index, easier to compute, that is an optimization of IG (A).

Our future work will be directed to find the link between the new consistent index
and the mean vector wm� = (w1,w2, · · · ,wn) associated to the matrix in order to state
the reliability of this vector as a weighting priority vector.

Moreover, following the results in [3, 4, 5, 8], for the multiplicative case, our aim
is to investigate, in the general case, the following problems related to a PCM:

• to individuate the conditions on a PCM inducing a qualitative ranking (actual
ranking) on the set X ;

• to individuate the conditions ensuring the existence of vectors representing the
actual ranking at different levels.
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On a Decision Model for a Life Insurance 
Company Rating 
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Abstract. A rating system is a decision support tool for analysts, regulators and 
stakeholders in order to evaluate firm capital requirements under risky conditions. 
The aim of this paper is to define an actuarial model to measure the Economic 
Capital of a life insurance company; the model is developed under Solvency II 
context, based on option pricing theory. 

In order to asses a life insurance company Economic Capital it is necessary to 
involve coherent risk measures already used in the assessment of banking Sol-
vency Capital Requirements, according  to Basel II standards. The complexity of 
embedded options in life insurance contracts requires to find out operational solu-
tions consistent with Fair Value principle, as defined in the International Account-
ing Standards (IAS). 

The paper is structured as follows: Section 1 describes  the development of the 
Insurance Solvency Capital Requirement standards; Section 2 introduces the theo-
retical framework of Economic Capital related to risk measures; Section 3 formal-
izes the actuarial model for the assessment of a life insurance company rating; 
Section 4 offers some results due to an application of the actuarial model to a port-
folio of surrendable participating policies with minimum return guaranteed and 
option to annuitise. 
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1   Capital Requirements for Regulatory and Solvency Purposes: 
A Survey 

With reference to insurance and reinsurance contracts, the issue of the Interna-
tional Financial Reporting Standard 4 (IFRS 4) by the International Accounting 
Standards Board (IASB) in March 2004 established the end of Phase I of the IAS 
project. 

Due to the absence of a liquid market where trading insurance contracts, a Fair 
Valuation of an insurance contract is an hard task, so the IAS project has been de-
veloped in two phases. In general, the Fair Value of financial assets/liabilities is 
equal to its market value when a sufficiently liquid market exists, otherwise it is 
necessary to estimate the market value by using a theoretical model consistent 
with market transactions. During Phase I, the fair valuation of Italian insurance 
contracts has been applied exclusively to assets backing technical provisions, thus 
postponing to phase II the achievement of a theoretical market-consistent model 
for the liability component. 

At the same time, in order to introduce new systems for measuring and moni-
toring solvency requirements for insurance firms, the European Commission has 
introduced the Solvency II project; in particular, the project is structured on 3 pil-
lars, as follows:  

 
• Pillar I (Capital Requirements): defines the criteria for setting minimum capital 

requirements for regulatory and solvency purposes in insurance risks manage-
ment;  

• Pillar II (Risk Management): increases the internal audit function by means of  
Risk Management function to implement risks controlling and monitoring; 

• Pillar III (Transparency and market discipline): increases market discipline 
through the adoption of common standards for disclosure and best practices in 
the market. 

 
The European Commission has requested to CEIOPS (Committee of  
European Insurance and Occupational Pensions Supervisors) to define methodo-
logical principles to compute minimum capital requirements for European  
insurance undertakings. For these purposes, CEIOPS has promoted several 
quantitative impact studies (QIS) designed to assess the practicability, implica-
tions and possible impacts of the different methodologies for the entity capital 
allocation. 

Solvency II and IAS projects consider Fair Valuation as the starting point for 
insurance liabilities assessment. Reserving Risk Capital (i.e. risk capital measure 
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of technical provisions) is Fair Valuated by means of a Best Estimate Liability 
(BEL) and a Risk Margin Value (RMV) 1.  

Over recent years IASB and CEIOPS  have continued side by side to  
produce respectively technical documentations -for the Fair Valuation of technical 
provisions- and quantitative studies - four at the date of this paper - to monitor the 
technicality level achieved by insurance companies in setting solvency capital re-
quirements. By means of the quantitative impact studies CEIOPS has set itself the 
goal of identifying standards for the assessment and measurement of Minimum 
Capital Requirements (MCR), for regulatory purposes, and Solvency Capital Re-
quirements (SCR) for solvency purposes, assessing the applicability and possible 
effects on balance sheet.  

In QIS I  the target security level to be taken in the evaluation of technical pro-
visions has been defined and compared with predetermined confidence levels. It 
has also been provided the definition of best estimate and early models for the 
evaluation of the Risk Margin Value and Economic Capital, in reference to a cer-
tain security level via Quantile Approach. 

In QIS II a deterministic parametric model has been proposed to evaluate the 
SCR and MCR. In particular, the computation of SCR is obtained by means of an 
additive procedure involving the amount of capital absorbed by each risk source  
and the relative correlation. 

With QIS3 an extension of QIS2 model has been exposed. The study is focused 
on further information about the practicability and suitability of the calculations 
and it looks for quantitative information about the possible impact on the balance 
sheets, and the amount of capital that might be needed, if the approach and the ca-
libration set out in the QIS3 specification were to be adopted as the Solvency II 
standard. 

QIS4 has provided all stakeholders with detailed information on the quantita-
tive impact on insurers and reinsurers’ solvency capital requirements, comparing 

                                                           
1 RMV reflects the market price of the main sources of uncertainty in insurance risk man-

agement. The international debate on a fair valuation methodology seems to converge on  
two approaches: 

• Quantile approach: technical provisions is defined at a predefined percentile level (typi-
cally 75°-90° safety-level) and risk margin is obtained as difference with BEL; 

• Cost of Capital approach: risk margin is defined as a percentage of Solvency Capital 
Requirement. 

These approaches are used in the standard formula proposed by CEIOPS in QIS frame-
work; it is worth noting that CoC approach is similar to the Swiss Solvency Test (SST) ap-
proach. In SST context, solvency capital requirement, as defined by Swiss Regulator 
(FOPI), is based on the expected shortfall of change of risk bearing capital over a 1 year 
time horizon on a 99% confidence level; therefore risk margin value is set as 6% of CoC. 
The threshold 6% is to be interpreted as the spread between the expected rate of return, re-
quested by the stakeholders, and a risk-free rate. The selection of 6% level is based on the 
probability of default, estimated from market data and associated with different credit rat-
ings classes. The expected shortfall on a 99% level of confidence, corresponds approxi-
mately to a 99.6% to 99.8% Value at Risk which implies a BBB rating company so that 6% 
over risk-free was chosen [ Swiss Federal Office of Private Insurance (2004)]. 



126 F. Baione, P. De Angelis, and R. Ottaviani
 

results under Solvency II with Solvency I. In particular, the European Commission 
has asked CEIOPS to work on the development of simplifications in computing  
technical provisions and SCR, coherent with the proportionality principle. 

The “deterministic” hypothesis at the base of the risk capital model proposed 
by CEIOPS have been reported in the guidelines attached to each QIS. Regarding 
to technical provisions such hypothesis have to be estimated using a market-
consistent model and a best estimate approach plus a RMV, respectively for di-
versifiable and non-diversifiable risks. 

The exercise of the quantitative impact studies inspired the development of in-
ternal models by undertakings in respect of minimal attributes in terms of method-
ology and information; in particular, the internal models must meet minimum in-
formation standards on the probability distribution, or statistical information 
(mean, variance, percentiles, moments of higher order, etc.) taking into account  
correlations of each uncertainty source of risk. 

2   Economic Capital and Risk Measures 

The management of an insurance company is a complex equilibrium system be-
tween the policyholders’ expectations, measured in terms of benefits, and stake-
holders return on investment. The risky nature of insurance business needs to cov-
er insurance liabilities with capital in excess of assets  assumed to back liabilities, 
measured as the mean of the probability distribution of the random variable com-
pany’s profits; unexpected deviation of benefits, compared with balance sheet es-
timates, have to find adequate coverage using free assets (share capital and  
reserves). 

From the shareholders point of view the investment risk, measured in terms of 
potential loss of invested capital, is assessed in terms of expected return on in-
vestment. Risk, capital and return are closely related because higher insurance risk 
involves higher solvency capital requirement and, therefore, higher shareholders’ 
expectation on rate of return. A change in the Solvency Capital Requirement level 
by the Regulator is reflected by a side in a larger level of security for policyhold-
ers, but the other in a decreasing of shareholders’ rate of return and therefore less 
attraction in insurance market investment.  

An actuarial model for the assessment of the rating of a life insurance company 
requires a specific definition of variables involved in its implementation. 

It is suitable to define Economic Capital for an insurance company. For this 
purpose it is possible refer to the definition introduced by the Society of Actuaries 
(SOA  - Specialty Guide on Economic Capital, March 2004) “Economic Capital 
is defined as the excess of the market value of the assets over the liabilities of re-
quired to ensure that obligations can be satisfied at a given level of risk tolerance, 
over a specified time horizon” where is highlighted the close relationship between 
the market valuation and the Economic Capital, already mentioned in the previous 
paragraph. Basic values necessary to determine Economic Capital are: 
 
  



On a Decision Model for a Life Insurance Company Rating 127
 

Best Estimate Liability (BEL)  
BEL corresponds to the amount of assets that the insurance company should 

hold to pay its commitments in a scenario with “best estimate” assumptions. The 
BEL can be calculated with a prospective approach as the present value of the in-
surance cash flows discounted using the expected asset return (at market value). 

 Scenario Needed Assets (SNA)  
It is the amount of assets required to back liabilities in a specific scenario. 
Needed Assets (NA)  
It is the SNA required to back an adverse scenario corresponding to a specific 

security level (Security Factor). 
Security Factor 
It is the probability level corresponding to the insurance company “solvability” 

on a fixed time horizon.  
Long-term Solvency (Tier 1)  
It is the amount of assets required over the long term (20-30 years) in addition 

to BEL to back policyholder benefits at a fixed Security Factor. It can be ex-
pressed as:  

Tier1 = NA-BEL.  
Intermediate Solvency (Tier 2)  
It is defined as the cost to borrow capital necessary to back the eventual insol-

vency in interim periods (observed on the projection period) to a predetermined 
Security Factor.  

Economic Capital (EC) 
It can be expressed as:  
Economic Capital = Tier1 + Tier 2 
Economic Excess Assets  
It represents free shareholders’ assets in excess of Economic Capital. 

 
Figures below show a representation of the basic values defined respectively in a 
Quantile (Figure 1) and in a Balance Sheet approach (Figure 2). 

Needed Assets

Tier Tier 2
BEL

Liabilities

EC

 

Fig. 1 Quantile Approach 
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Assets
Economic

Capital

Best

Estimate

Liability

Economic

Excess

Assets

Required

Assets

Total

Modeled

Assets

 

Fig. 2 Balance Sheet 

The variables defined above are consistent with the Economic Capital frame-
work, respectively, within the Quantile Approach and the Cost of Capital Ap-
proach; according to these approaches a mathematical formula of the EC is de-
rived by means of risk measure arguments. 

 From a theoretical point of view the Economic Capital is: 
 

( ) ( ) ( )XFVXXK −= αρ  (3.1) 

where, ( )XK  is the Economic Capital (SCR in QIS), ( )Xαρ is a risk measure2 

sets at a predefined security level (Security Factor) and ( )XFV  the Fair Value 

(BEL + RMV) of insurance liabilities. 
In financial literature several risk measures, coherent and not, have been defined; 

based on  banking experiences we can classify these measures into the following:  

Value at Risk (VaR): defined as the maximum (or minimum) potential loss in a 
given time horizon with an alpha% (or 1-alpha%) of best cases (or worst):  

[ ] [ ]{ } [ ]{ }ααα −≤>ℜ∈=≤≤ℜ∈= 1PrinfPrsup xXxxXxXVaR  (3.2) 

The VaR measure takes into account the default probability but not the magnitude; it 
is not a coherent risk measure because it doesn’t respect the subadditive condition, 

                                                           
2 A risk measure is a function that assigns an amount of capital to the extreme values of the 

probability density function of the r.v. “loss”. A risk measure is coherent in the sense of 
Artzner et al. (1998), if it respects the following conditions:  

• Monotonicity: if Υ≥Χ then )()( Υ≥Χ ρρ  

• Positive Homogeneity: if 0≥λ  then )()( Χ=Χ λρλρ  

• Translation invariance aa +Χ=+Χ )()( ρρ  

• Subadditivity )()()( Υ+Χ≤Υ+Χ ρρρ . 
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so it may increase in case of risk diversification. It is comparable to Risk of Ruin 
(Probability of Ruin) of Risk Theory. 

Standard Deviation: sets the measure as the expected value of the loss plus a pre-
determined multiple of the standard deviation: 

[ ] [ ] [ ]XStDevXEXSD ⋅+= δ  (3.3) 

Tail Conditional Expectation (TCE) or Tail VaR (TVAR): defined as the expected 
loss in a given time horizon in (1-alpha)% of worst case: 

[ ] [ ][ ]XVaRXXEXTCE αα >=  (3.4) 

The TCE is always greater than the corresponding VaR: 

[ ] [ ] [ ] [ ][ ]XVaRXXVaRXEXVaRXTCE αααα >−+=  (3.5) 

3   An Actuarial Model for a Life Insurance Company Rating 

An actuarial model to assess the rating of an insurance company needs a struc-
tured evaluation process split up several stages, as follows: firstly, to define a ma-
thematical model for a technical provisions fair valuation of contracts, according  
to IAS 39 principle; secondly, to individuate typical insurance random processes 
describing the dynamics of risk sources, in order to determine probability distribu-
tion of technical provisions value, necessary for EC assessment; thirdly, to choice 
an operational approach to set the rating level in accordance with methodologies 
used for. 

A definition of Fair Value is proposed by International Accounting Standards 
Committee (IASC): “The amount for which an asset could be exchanged or liabil-
ity settled, between knowledgeable, willing parties in an arm’s length transac-
tion”; therefore, under markets efficiency conditions, a Fair Value of an insurance 
policy is equal to its equilibrium-price. In absence of an efficient market, a Fair 
Value could be estimated through a consistent theoretical bid/ask model, joined 
with similar assets and liabilities. 

The selected valuation technique makes maximum use of market inputs and re-
lies as little as possible on entity-specific inputs. It incorporates all factors that 
market participants would consider in setting a price and it is consistent with ac-
cepted economic methodologies for pricing financial instruments. The Fair Value  
has to be based on: 
 

• observable current market transactions in similar instruments; 
• valuation techniques whose variables include primarily observable market data 

and calibrated periodically on observable current market transactions in similar 
instrument or to other observable current market data; 

• valuation techniques that are commonly used by market participants to price  
similar instruments and have demonstrated to provide realistic estimates of 
prices obtained in market transactions. 
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3.1  

Hereafter it is briefly reported an actuarial model for the Fair Value of the techni-
cal provision of a life insurance contract proposed by Baione-De Angelis-
Fortunati (2006). The operational approach, based on Option Pricing Theory, uses 
a Monte-Carlo procedures to reproduce uncertainty implied by demographic and 
financial risks. 

In order to present the actuarial model, it is supposed to operate in a traditional 
efficient market. It is assumed, in fact, that financial and insurance markets are 
perfectly competitive, frictionless and free of arbitrage opportunities. Moreover, 
all agents are supposed to be rational and non-satiated, and to share the same  
information. 

The technical provision Fair Value at time [ ]st ,0∈  for a general life insurance 
contract can be expressed as: 

( ) ( )
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where Ε̂ denotes the usual expectation under the risk-neutral probability measure, 

( )τϕ ,t  is the stochastic discount factor dependent on the spot-rate dynamic  

between t  and τ , τCFL and τCFA  respectively the annual random cash flows 

of the insurance company and policyholder, jointly dependent on the spot rate and 

the force of mortality dynamics; r
tF , μ

tF and μ,r
tF   are σ-algebras associated 

with the above defined filtrations. 
In the original work, the model is proposed for a surrendable participating en-

dowment policy with option to annuitise; the contribution of each embedded op-
tion is presented with the relative sampling distribution. 

A surrendable participating endowement policy with option to annuitise can be 
shared in four components as follows: 

Basic Contract 
The basic contract is a standard endowment policy with benefit 0C , net constant 

annual premium3 P , technical rate i , maturity n , written on a x  aged male. The 
Fair Value is: 
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where 

                                                           
3 The annual premium is computed using first order technical basis. 
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ep  is the survival stochastic probability at tx +  age, over τ  

periods. 
 
Participation option  
From a financial point of view Italian participating contracts are similar to indexed 
notes: the minimum guarantee could be expressed as an European Option. In par-
ticular, since the minimum guarantee is attached at the end of each year, the rela-
tive embedded option is a cliquet type [De Felice Moriconi (2001)]. Defined tρ  

as the participating policy-owners rate of return on benefits and premiums at time 
t , the Fair Value MRFV of a non-surrandable participating contract is: 
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1 is the stochastic value of an indexed ze-

ro coupon bond with maturity τ+t  and notional amount equal to one. 
 
Annuity option 
Some traditional Italian policies enable the policyholder to convert cash benefit at 
maturity into a guaranteed annuity payable throughout the remaining lifetime, 
with annuity conversion rate fixed at issue. The guaranteed annuity option pay-out 
at maturity is expressed as [Ballotta and Haberman (2003)]: 

( )( ) ( )( )μμ ,, 0;maxˆ;maxˆ r
nnxnn

r
nnxnn FKRVAEGCCFRVAGCCE −+= ++     (3.1.4) 

where nC is the benefit at maturity, G  is the annuity conversion rate, nGC  is the 

guaranteed annuity, nxRVA +  is the present value random variable of the life annu-

ity of 1 euro per year, paid at time n  and age nx + ;  ( )0;max KRVA nx −+  is the 

annuity option pay-out at maturity with strike price GK /1= . 
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At time [ ]nt ,0∈  the Fair Value of the Option to Annuitise (OTA) is: 

( ) ( ) ( )[ ]{ }Sr
tnxntx FKRVAGCtnttnpEOTA ,,0;max,ˆ μϕ −−−= ++                  

(3.1.5) 

Surrender Option 
If an insurance contract provides to the policyholder a contractual right to claim 
the benefit before the maturity, this right is called surrender option. A surrender 
option is an American-style option4 that enables the policyholder to surrender the 
policy and receive the so called surrender value. 

The Fair Value of a contract, including a surrender option, can be evaluated by 
means of a backward recursive procedure running from time s-1 to time 0; at any 
time t=1,2,..,s-1, the surrender option is exercised if and only if the surrender val-
ue is higher then the continuation value of the contract. 

In order to compute the surrender option we use the Least Squares Monte Carlo 
Approach following Andreatta and Corradin (2003); the Fair Value of the surren-
der option is evaluated by means of the difference between the value of a sur-
rendable contract and a non-surrendable one. 
 

3.2  

To implement the model described above it is necessary to define the stochastic 
processes of demographic and financial sources of risk.  

The spot rate { },....2,1; =trt is defined by means of a mean reverting square 

root diffusion equation as in Cox, Ingersoll and Ross (1985): 

( ) r
ttrtt dZrdtrkdr σθ +−=                                                     (3.2.1) 

where k  is the mean reversion coefficient, θ  is the long term rate, rσ  is the vola-

tility parameter and { }r
tZ is a standard Brownian motion. 

The force of mortality { },....2,1; =+ ttxμ is described by means of a Mean-

Reverting Brownian Gompertz (MRBG) model 

tx Ytg
xttx e μσμμ +

+ = 0:: , con 0,, 0: >xxg μσ μ                                            (3.2.2) 

where sxg ,  resumes on time s  the deterministic correction due to age x  and the 

effect of longevity risk; { }tY  is a stochastic process to model random variations in 

the forecast trends; xσ  represents the standard deviation of the process 

{ },....2,1;: =+ tttxμ ; in particular the stochastic process { }tY  is described by means 

of a mean reverting diffusion process: 

                                                           
4 According to the recent actuarial literature on this argument a contract with a surrender 

option is called American, a contract without a surrender option is called European [Ba-
cinello (2003), Andreatta and Corradin (2003)]. 
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0,0, 0 ≥=+−= bYdWdtbYdY Y
ttt                                           (3.2.3) 

where b  is the mean reversion coefficient and { }tW  is a standard Brownian motion. 

Fair pricing of an insurance participating policy depends also by reference port-
folio’s dynamic; in particular we assume to work in a Black-Scholes economy 
where the reference portfolio is compounded mainly by a bond index and a minor-
ity by a stock index. The two components are described by the following equation: 
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where ( ) ( ){ }i
t

ii
t ZS e, )(σ are, for each reference portfolio’s component, market 

price, volatility parameter and a Wiener process. At last, the three sources of fi-
nancial uncertainty are correlated: 

( ) ( ) dtdZdZ jk
j

t
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t ,ρ=
                    

rjk ,2,1, =                                             (3.2.5) 

hence, reference portfolio could be expressed as a combination of the random 
variables introduced above  

( ) ( ) ( )211 ttt SSS αα +−=                                                                              (3.2.6) 

The development of a stochastic model via Monte Carlo procedures allows to de-
fine the sampling distribution of the value of technical provisions and embedded 
options previously defined. Under the independence condition of insurance con-
tracts in a life insurance portfolio, it is possible to extend the analysis to the entire 
portfolio. In such a way, it can be determined the sampling distribution of the port-
folio value and the related risk measures, as defined in the previous section. 

3.3  

Once defined a fair valuation model of a life insurance portfolio, the Economic 
Capital provides a straight image of the rating level associated to the insurance 
company. In fact the Economic Capital is equivalent to the amount needed to pre-
vent the ruin of the company in a specified percentage of possible outcome. The 
Risk of Ruin (RoR) is the probability of the company’s inability to pay back the 
policyholder benefits. This probability is theoretically comparable with the risk of 
default of a corporate bond issued by the insurance company. Policyholders are 
therefore exposed to the same default risk as well as investors in a corporate bond 
with a specified rating. The default probability of these securities traded on regu-
lated financial markets is estimated on observed market data. The difference be-
tween one and the Risk of Ruin represents the security level of the firm solvency 
ability (Security Factor); it is therefore possible to establish a mathematical rela-
tionship between the Security Factor (SF) and the default probability, directly ob-
servable on the market data, as follows: 
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( )Drating
tdeafultpSF _1−=                                                                    (3.3.1) 

Where rating
tdeafultp _  is the annual default probability over t  years and D  is a 

time measure of exposure, coherent with the run-off of liabilities. 
Formula (3.3.1) could be used alternatively, to set:  

• the rating level, by management or rating agency, and define not arbitrarily 
the Security Factor to base the Economic Capital assessment;  

• the Security Factor, by management or Regulator, to derive the default 
probability, comparing with the same value observed on the market, and to 
associate the relative rating class. 

4   Some Results 

The rating model described in Section 3 is implemented with reference to a  
portfolio of participating endowment policies; for ease of computation, the portfo-
lio is characterized by a single model point, whose characteristics are described in 
Table 1. The Fair Value of the whole contract and relative embedded options it is 
obtained via Monte Carlo simulation, implementing a code by means of Matlab 
and VBA tools. The numerical results are obtained by means of 100,000 replica-
tions for each random process involved in the managed portfolio. 

Table 1 reports some contract features used for numerical analysis. 

Table 1 Model Point Features 

Sex Male 

Age 45 

Duration 15 

Technical rate 1.00% 

Mortality Table SIM 92 

Sum Assured at inception 100 €€  

Sum Assured at valuation date 100 €€  

Participation coefficient 85.0% 

Guaranteed rate for annuity 4.85% 

Annually compounded surrender discount rate 3.00% 

Reference portfolio participation coefficient: 

Stock index 

Bond Index 

 

10% 

90% 

 
Table 2 shows parameters estimated on market data and used in mortality and 

financial risk diffusion processes. 
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Table 2 Set of Estimated Parameters 

 tr   tx+μ    
tS   

0r  0.034023  b  0.5  0S  0.11 

k  0.248499  σ  0.07  Sσ  0.017

θ  0.048360  g  0.19  Sr ,ρ -0.1 

rσ  0.049026       

 
With reference to CIR model, risk-adjusted parameters have been calibrated on 

market values of euro swap interest rates observed on 30/06/2006 and estimated 
by means of Brown and Dybvig (1986) framework. Parameters for MRGB model 
have been calibrated on the force of mortality derived from ISTAT life tables and  
the projected one called “RG48”. At last, reference fund parameters have been es-
timated on daily market value of Emu-Bond Index (3-5 years) and MSCI World 
Index observed between 2003 and 2006. 

Table 3 reports, for few relevant years a comparison of technical provisions 
computed respectively following Italian local rules and the Fair Value approach. 

Table 3 Mathematical Reserve and Fair Value of the Model Point 

Year 
Mathematical 

 Reserve 

Basic  

Contract 

Participation   

Option 

Option to  

Annuities 

Surrender 

Option 

Whole  

Contract 

0 0.00 -18.76 18.47 - 0.35 0.06 

5 34.75 12.15 22.81 - 0.48 35.44 

10 79.31 50.61 29.03 - 0.72 80.36 

15 137.24 100.00 37.24 - 0.00 137.24 

 
Figure 3 exhibits the sampling distribution of the FV of the whole contract at 

time 5=t , compared with a Normal density distribution (solid line). 
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Fig. 3 Sampling distribution of FV whole contract 

 
The risk measure is estimated with reference to market default probabilities on 

different rating classes referred to several time exposures in years, published on 
30/06/2006 by Standard & Poor's CreditPro® . 

Table 4 Default Probabilities 

Rating Y1 Y5 Y10 Y15 

AAA 0.000 0.096 0.443 0.583 

AA 0.010 0.293 0.815 1.276 

A 0.041 0.586 1.831 2.847 

BBB 0.274 2.831 5.824 8.320 

BB 1.117 10.653 18.294 21.576 

B 5.383 24.161 32.377 37.181 

CCC/C 27.021 47.560 53.047 55.896 

 
From (3.3.1) it is possible to derive the EC by means of VaR and TCE meas-

ures. Security Factor, for each rating class, needed to set the hypothesis on the an-
nual default probability and the risk exposure period. A simple way is to set: 
 

• an uniform distribution of default probability over t  years; 
• a risk exposure period equal to the insurance contract maturity5. 

                                                           
5 The risk exposure period, whatever the risk source considered, could be improved if calcu-

lated as the Macauly Duration or as stochastic Duration of the insurance contracts liabilities.  
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For instance, at time 5=t , the Security Factor of AAA rating is obtained as: 

9956.0
10010

443.0
1

10

≅⎟
⎠
⎞

⎜
⎝
⎛

⋅
−=SF  and   0044.09956.011 =−=−= SFRoR  

Associated the Security Factor with each rating class, it is easy to compute the 
relative EC  by means of  VAR and TCE measures, as shown in Table 5. 

Table 5 Economic Capital 

Rating 
Security 

Factor 
VaR EC - VaR TCE EC - TCE 

AAA 99.56% 69.63 34.18 76.19 40.75

AA 99.19% 63.82 28.38 70.87 35.43

A 98.18% 57.59 22.15 65.26 29.82

BBB 94.33% 49.27 13.82 56.96 21.52

BB 83.14% 41.87 6.43 49.56 14.12

B 71.96% 38.41 2.97 45.52 10.08

CCC/C 57.98% 36.07 0.63 42.72 7.28

 
Results exposed above may be compared with the Minimum Solvency Capital 

Requirement provided by the current rules under Solvency I criteria; in particular, 
for the model point analysed the Minimum Solvency Capital Requirement ac-
counts6 1.39€€ .  

It is worth noting that the comparison between the MSCR under Solvency I and 
values exposed in Table 5 places the portfolio solvency level between B and 
CCC/C rating class, using VaR measure or lower with TCE; hence, the current 
Minimum Solvency Margin seems to be an inadequate solvency level in reference 
to Solvency II criteria. 

This situation is also well known to the Italian Regulator that constantly re-
quires life insurance companies a solvency ratio, obtained as the ratio between 
free assets and Minimum Solvency Capital Requirement, not lower than 150%-
200%. 

5   Conclusions  

The development of internal models for assessing the Economic Capital of a life in-
surance company and the relative rating requires a high quality of methodological 

                                                           
6 Under Solvency I criteria the MSCR is defined as 4% of mathematical provisions  plus 

0.3% of sum at risk. 
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and technical structure. Actually only the most important insurance groups have 
suitable expertise to address the issues in the IAS and Solvency II projects. 

So it is necessary to invest in technology and knowledge in this area to improve 
the efficiency of the private insurance system; the selection of efficient internal 
models shall enable a more efficient capital allocation which by a side could im-
prove insurance benefits and the other get better shareholders’ return on assets. 
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Qualitative Bipolar Decision Rules: Toward
More Expressive Settings

Didier Dubois and Hélène Fargier

Abstract. An approach to multicriteria decision-making previously developed by
the authors is reviewed. The idea is to choose between alternatives based on an
analysis of the pros and the cons, i.e. positive or negative arguments having various
strengths. Arguments correspond to criteria or affects of various levels of importance
and ranging on a very crude value scale containing only three elements: good, neu-
tral or bad. The basic decision rule in this setting is based on two ideas: focusing on
the most important affects, and when comparing the merits of two alternatives con-
sidering that an argument against one alternative can be counted as an argument in
favour of the other. It relies on a bipolar extension of comparative possibility order-
ing. Lexicographic refinements of this crude decision rule turn out to be cognitively
plausible, and to generalise a well-known choice heuristics. It can also be encoded
in Cumulative Prospect Theory. The paper lays bare several lines of future research,
especially an alternative to the bicapacity approach to bipolar decision-making, that
subsumes both Cumulative Prospect Theory and our qualitative bipolar choice rule.
Moreover, an extension of the latter to non-Boolean arguments is outlined.

1 Introduction

It is known from many experiments in cognitive psychology that humans often eval-
uate alternatives or objects for the purpose of decision-making by considering pos-
itive and negative aspects separately. Under this bipolar view, comparing two de-
cisions comes down to comparing pairs of sets of arguments or features, namely,
the set of pros and cons pertaining to one decision versus the set of pros and cons
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CNRS & Université de Toulouse, France
e-mail: fargier@irit.fr

S. Greco et al. (Eds.): Preferences and Decisions, STUDFUZZ 257, pp. 139–158.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

dubois@irit.fr
fargier@irit.fr


140 D. Dubois and H. Fargier

pertaining to the other. Such kind of information involving negative and positive fea-
tures is called bipolar. Psychologists have shown [35, 8, 38] that the simultaneous
presence of positive and negative arguments prevents decisions from being simple
to make, except when their strengths have different orders of magnitude.

In the family of numerical decision models, classical utility theory does not ex-
ploit bipolarity. Utility functions are defined up to an increasing affine transforma-
tion (i.e., they rely on an interval scale), and the separation between positive and
negative evaluations has no special meaning. Cumulative Prospect Theory (CPT,
for short) proposed by [39] is an attempt to explicitly account for positive and neg-
ative evaluations in the numerical setting. It computes the so-called net predispo-
sition for a decision, viewed as the difference between two numbers, the first one
measuring the importance of the group of positive features, the second one the im-
portance of the group of negative features. Such group importance evaluations are
modelled by non-additive set functions called capacities. More general numerical
models, namely bi-capacities[28] and bipolar capacities [30] encompass situations
where positive and negative criteria are not independent from each other.

However, Gigerenzer and Todd [25] have argued that human decisions are often
made on the basis of an ordinal ranking of the strength of criteria rather than on
numerical evaluations, hence the qualitative nature of the decision process. People
choose according to the most salient arguments in favour of a decision or against the
others. They seldom resort to explicit numerical computations of figures of merit.
This idea is also exploited in Artificial Intelligence in qualitative decision theory
[11]. See [14] for a recent survey of qualitative decision rules under uncertainty.
So-called conditional preference networks (CP-nets) [7] allow for an easier rep-
resentation of preference relations on multidimensional sets of alternatives, using
local conditional preference statements interpreted ceteris paribus.

Most qualitative approaches use preference relations that express statements like
“decision a is better than decision b for an agent.” However, people also need to ex-
press that some decision is good or bad for them, a notion that simple preference re-
lations cannot express. Using a simple preference relation, the best available choice
may fail to be really suitable for the decision-maker. In other circumstances, even the
worst ranked option remains somewhat acceptable. To discriminate between these
two situations, one absolute landmark or reference point expressing neutrality or in-
difference, and explicitly separating the positive and the negative judgments, must
appear in the model. Even ordinal decision methods need to inject some form of
bipolarity. Note that multicriteria decision methods based on the merging of out-
ranking relations use concordance and discordance tests between criteria, where the
notion of veto prevents the choice of alternatives that rate too low with respect to
some criteria. It can be viewed as an attempt to capture the idea of bipolar preference
[36].

In this chapter, we review a bipolar and qualitative decision-making model based
on the symmetric comparison of positive and negative arguments, first proposed in
[13]. The proposed ordinal and bipolar decision rules have been recently axioma-
tized in terms of properties they satisfy[5] and their empirical validity tested[6]. Un-
surprizingly, these choice rules are strongly related to possibility theory [32, 12, 15],
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and rely on a bipolar extension of possibility measures tailored to the comparison of
sets with elements having positive or negative polarity.

The paper is structured as follows. Section 2 recalls the basic typology of bipo-
lar information. Section 3 present the formal framework for a qualitative approach
to bipolar decision-making. Section 4 recalls the main qualitative bipolar decision
rules and their properties in the case of Boolean bipolar criteria. Section 5 discusses
the links between these decision rules and related works relying on a numerical ap-
proach. Section 6 suggests a joint extension of the CPT and the qualitative bipolar
framework that differs from the bicapacity setting of Grabisch and Labreuche. Fi-
nally an attempt to generalize the qualitative setting beyond all-or-nothing criteria
is outlined.

2 Bipolarity in Information Management

Dubois and Prade [16, 17] provide a general discussion on the bipolar representation
of information, showing that bipolarity can be at work in reasoning, learning and
decision processes. This section outlines various types of bipolarity.

2.1 Value Scales

The representation of bipolarity depends on the proper interpretation of value scales.
A bipolar scale (L,>) is a totally ordered set with a prescribed interior element e
called neutral, separating the positive evaluations λ > e from the negative ones
λ < e. Mathematically, if the scale is equipped with a binary operation � (an ag-
gregation operator), e is an idempotent element for �, possibly acting as an identity.
When the scale is bounded, the bottom (fully negative) is denoted 0L and the top
(fully positive) 1L.

Examples:

• The most obvious quantitative bipolar scale is the (completed) real line equipped
with the standard addition, where 0 is the neutral level. Isomorphic to it is the
unit interval equipped with an associative uninorm like xy

xy+(1−x)(1−y) . Then the
neutral point is 0.5, 0 plays the same role as −∞ and 1 as +∞ in the real line.
Also the interval [−1,1] is often used as a bipolar scale;

• The simplest qualitative bipolar scale contains three elements: {−,0,+}.

In bipolar scales, the negative side of the scale is the mirror image of the positive
one. An object is evaluated on such a bipolar scale as being either positive or nega-
tive or neutral. It cannot be positive and negative at the same time. This is called a
univariate bipolar framework.

Another type of bipolar framework uses two distinct totally ordered scales L+

and L− for separately evaluating the positive and the negative information. This
is the bivariate unipolar framework. Here each scale is unipolar in the sense that
the neutral level is at one end of the scale. In a positive scale the bottom element
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is neutral. In a negative scale the top element is neutral. A bipolar scale can be
viewed as the union of a positive and a negative scale L+∪L− extending the ordering
relations on each scale so ∀λ + ∈ L+,λ− ∈ L−,λ + > λ−. The symmetrisation of
finite unipolar scales is incompatible with associative operations [26] : only infinite
bipolar scales seem to support such operations!

2.2 The Three Forms of Bipolarity

Three forms of bipolarity can be found at work in the literature, we call types I, II,
III for simplicity [16, 17]. The two last types use two unipolar bivariate scales.

• Type I : Symmetric univariate bipolarity. It relies on the use of bipolar scales.
The two truth-values true and false of classical logic offer a basic view of bipo-
larity. However, the neutral value only appears in three-valued logics. Probability
theory exhibits a type I bipolarity as the probability of an event is clearly living
on a bipolar scale [0,1] whose top means totally sure and bottom impossible (not
to be confused with true and false). The neutral value is 0.5 and refers to the to-
tal uncertainty about whether an event or its contrary occurs (not to be confused
with half-true). In decision theory, Cumulative Prospect Theory [39] uses the
real line as a bipolar scale. It is numerical, additive, and bipolar. It measures the
importance of positive affects and negative affects separately, by two monotonic
set functions σ+, σ− and finally computes a net predisposition N = σ+−σ−.

• Type II : Symmetric bivariate bipolarity. It works with a unipolar scale L
where 0L = 0 is neutral. Here, an item is judged according to two independent
evaluations:

– one in favour of the item, say α+ ∈ L
– one in disfavour of the item, say α− ∈ L.

Positive and negative strengths are computed similarly on the basis of the same
data and can be conflicting. If L is equipped with an order-reversing map ν , a
constraint α+ ≤ ν(α−) may limit the allowed conflict between positive and neg-
ative information: it prevents the pair of ratings (α+,α−) from expressing the
idea of being fully in favour of an option and fully against it. An example of
such an evaluation framework with limited conflict stems an imprecise rating on
a univariate bipolar scale Λ in the form of an interval [α∗,α∗]. It is clear that
lower bounds of ratings on Λ live on a positive unipolar scale (L+ = Λ , inter-
preting 0L ∈ Λ as neutral in L+) and upper bounds of ratings on Λ live on a
negative unipolar scale (L− = Λ , interpreting 1L ∈ L as neutral in L−). Then let
α+ = α∗ and α− = ν(α∗), where ν is the order-reversing map in Λ . Well-known
examples of such a bipolarity can be found in formal frameworks for argumen-
tation where reasons for asserting a proposition and reasons for refuting it are
collected [1]. Argumentation frameworks can be used to explain decisions made
according to several criteria [2]. This also typical of uncertainty theories [18]
leaving room for incomplete information where each event A is evaluated by an
interval [C(A),Pl(A)], C(A) and Pl(A) reflecting their certainty and plausibility



Qualitative Bipolar Decision Rules: Toward More Expressive Settings 143

respectively. Then, α+ = C(A), and α− = C(Ac) = 1−Pl(A). A good exam-
ple of certainty/plausibility pairs displaying this kind of bipolarity are belief and
plausibility functions of Shafer [37].

• Type III : Asymmetric bipolarity. In this form of bipolarity, the negative part
of the information is not of the same nature as the positive part, while in type
II bipolarity only the polarities are opposite. When merging information in the
Type III setting, negative and positive pieces of information will not be aggre-
gated using the same principles. The positive side is not a mirror image of the
negative side either. Nevertheless, positive and negative information cannot be
completely unrelated. They must obey minimal consistency requirements. This
third kind of bipolarity is extensively discussed in [19] within the framework
of possibility theory. In uncertainty modeling or knowledge representation het-
erogeneous bipolarity corresponds to the pair (knowledge, data). Knowledge is
negative information in the sense that it expresses constraints on how the world
behaves, by ruling out impossible or unlikely relations: laws of physics, common
sense background knowledge (claims like “birds fly”). On the contrary, data rep-
resent positive information because it represents examples, actual observations
on the world. A not yet observed event is not judged impossible; observing it
is a positive token of support. Accumulating negative information leads to rul-
ing out more possible states of the world (the more constraints, the less possible
worlds). Accumulating positive information enlarges the set of possibilities as
being guaranteed by empirical observation. In decision-making, heterogeneous
bipolarity concerns the opposition between constraints (possibly flexible ones)
that state which solutions to a problem are unfeasible, and goals or criteria, that
state which solutions are preferred [3].

The qualitative approach described in this paper is based on type II bipolarity, and
is close to argumentation frameworks.

3 A Qualitative Framework for Choice Based on Pros and Cons

A formal elementary framework for bipolar multicriteria decision analysis requires

• a finite set D of potential decisions a,b,c, . . . ;
• a set X of criteria, viewed as mappings x with domain D ranging on a bipolar

scale V ;
• and a totally ordered scale L expressing the relative importance of criteria or

groups of criteria.

In the simplest qualitative setting, criteria are valued on a bipolar scale V =
{−,0,+}, whose elements reflect negativity, neutrality and positivity respectively:
each value x(a) expresses that x stands as an argument in favour of a ∈ D or in
disfavour of a or yet is irrelevant to a (when x(a) = 0) in the spirit of coopera-
tive bigames [4] or formal argumentation theories [1]. For each alternative a, let
A = {x,x(a) �= 0} be the set of relevant (non-indifferent) arguments in favour of
decision a. Then
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• A− = {x,x(a) = −} is the set of arguments against decision a
• A+ = {x,x(a) = +} is the set of arguments in favour of a.

It comes down to enumerating the pros and the cons of a. So, comparing decisions
a and b comes down to comparing the pairs of disjoint sets (A−, A+) and (B−, B+).

Even if in our setting, arguments or criteria are Boolean, they can be more or less
important. Levels of importance of individual criteria are expressed by a function
π : X �→ L., where the scale L is unipolar positive. It has top 1L (full importance) and
bottom 0L = e (no importance). Within a qualitative approach, L is typically finite.
π(x) = 0L means that the decision maker is indifferent to criterion x ; 1L is the
highest level of attraction or repulsion (according to whether it applies to a positive
or negative argument). Assignment π is supposed to be non trivial, i.e., at least one
x has a positive level of importance.

In a nutshell, each argument x(a) is of the all-or-nothing bipolar kind. It has

• a polarity: the presence of x(a) is either good or bad (its absence is always neu-
tral).

• a degree of importance π(x) ∈ L that does not depend on the alternative.

Since we are looking for qualitative decision rules, the approach relies on two mod-
elling assumptions:

• The use of finite qualitative importance scales: the qualitativeness of L means that
there is a big step between one level of merit and the next lower one. Arguments
are ranked in terms of the order of magnitude of their figures of importance by
means of the mapping π .

• Focus effect : the order of magnitude of the importance of a group A of argu-
ments is the one of the most important argument, in the group. This assumption
perfectly suits the intuition of a qualitative scale as it means that several weaker
arguments are always negligible compared with a single stronger one.

The second hypothesis made here implies that the importance of a group of criteria
only depends on the importance of the individual ones. It means that there is no
significant synergy between criteria, which are in some sense considered as redun-
dant with respect to one another. The focus effect thus drastically reduces the type
of interaction allowed between criteria, but it facilitates computations when evaluat-
ing decisions. Technically, it enforces a possibility measure [15] for measuring the
importance of a set A of arguments relevant to a decision:

OM(A) = max
x∈A

π(x). (1)

In fact, we only use comparative possibility relations [32, 12], interpreted in terms
of order of magnitude of importance, hence the notation OM, here. When compar-
ing an alternative a with an alternative b, it all comes down to comparing pairs of
evaluations (OM(A−), OM(A+)) and (OM(B−), OM(B+)). Note that one may have
A− ∩B+ �= /0 and A+ ∩B− �= /0. However, in many examples a qualitative criterion
comes down to a Boolean feature whose absence is considered neutral and whose
presence is either positive or negative per se. When this is the case, X is made of two
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subsets: X+ is the set of arguments positive when present (taking their value in the
set {0,+}) , X− is the set of arguments negative when present (taking their value in
the set {−,0}). Elements of X can be called affects, a positive affect relevant for an
option being an argument in favour of this option, and likewise for negative relevant
affects acting as arguments against options. Then A− ∩B+ = /0 and A+ ∩B− = /0.
This simplifying assumption can be made without loss of generality and will not
affect the validity of our results in the ordinal setting. Indeed, any criterion x whose
range is the full domain {−,0,+} can be duplicated, leading to a positive affect x+
in X+ and a negative affect x− in X−. This transformation moreover enlarges the
framework so as to allow an affect to be positive and negative simultaneously (e.g.,
“eating chocolate” can have both a positive and a negative aspect).

The proposed framework is clearly of type II in the bipolarity typology.

Example
Luc has to choose a holiday destination and considers two options for which he has
listed the pros and cons. Option a is in a very attractive region (a strong pro); but it is
very expensive, and the plane company has a terrible reputation (two strong cons).
Option b is in a non-democratic country, and Luc considers it a strong con. On the
other hand, Option b includes a tennis court, a disco, and a swimming pool. These
are three pros, but not very decisive: they do matter, but not as much as the other
arguments.

Note that Luc can only provide a rough evaluation of how strong a pro or a con is.
He can only say that the attractiveness of the region, the price, the reputation of the
company, and the fact of being in a non-democratic country are four arguments of
comparable importance; and that swimming pool, tennis and disco are three positive
arguments of comparable, but much lesser importance. Formally, let:

• X+ = {tennis+,swimming+,disco+} be the subset of pros ;
• X− = {price−−,company−−,non−demo−−} be the subset of cons.

By convention in the above lists, doubling the sign symbol appearing in superscript
indicates higher importance (L = {0L,+,++}). Available decisions are described
by :

Option a : A+ = {region++}; A− = {company−−, price−−}.
Option b : B+ = {tennis+,swimming+,disco+}; B− = {non−demo−−}.

The kind of bipolarity accounted for here differs from the one considered in [3]
where negative preferences refer to prioritized constraints while positive preferences
refer to goals or desires. Constraints expressed as logical formulas have a prominent
role and first select the most tolerated decisions; positive preferences (goals and de-
sire) then act to discriminate among this set of tolerated decisions. Hence a positive
evaluation, even if high, can never outperform a negative evaluation even if very
weak. In this approach, negative features prevail over positive ones. The latter mat-
ter only when no constraint is violated. In the approach proposed here, positive and
negative arguments play symmetric roles.
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4 Some Qualitative Bipolar Outranking Relations

The aim of decision rules is to build an outranking relation � describing preference
between between alternatives in D , based on comparing sets of relevant affects A
and B. It comes down to building a crisp preference relation over 2X . A� B meaning
that decision (with relevant affects forming set) A is at least as good as decision (with
relevant affects forming set) B. Any outranking relation � includes:

• a symmetric part : A ∼ B ⇔ A � B and B � A;
• an asymmetric part: A � B ⇔ A � B and not(B � A);
• an incomparability relation : A � B ⇔ not(A � B) and not(B � A).

Relations used here are not necessarily complete nor transitive: They are supposed
to be quasi-transitive (their strict part � is transitive).

However, as the set X = X+ ∪X− of affects is partitioned into positive and neg-
ative ones, the relation on the powerset 2X is said to be bipolar, in the sense that it
will satisfy basic properties specific to the bipolar case:

Definition 1. A relation on a power set 2X , where X = X+ ∪X−, is a monotonic
bipolar set relation iff it is reflexive, quasi-transitive and satisfies the properties

1. Non-Triviality: X+ � X−.
2. Positive monotony : ∀C,C′ ⊆ X+,∀A,B : A � B ⇒C∪A � B\C′
3. Negative monotony : ∀C,C′ ⊆ X−,∀A,B : A � B ⇒C \A � B∪C′
4. Weak Unanimity : ∀A,B,A+ � B+ and A− � B− ⇒ A � B.

Non-triviality says that an alternative that has all pros is preferred to one having all
cons. Positive monotony is usual monotony in the positive case, while monotony is
reversed for sets of negative affects. The weak unanimity says if an an alternative is
not worse than another one from the point of view of its pros and its cons then the
former should be weakly preferred to the latter. There is a strong unanimity version
of this property, enforcing strict preference if, moreover, the preference either on the
positive or the negative side is strict.

4.1 Pareto-Dominance

The first idea that comes to our mind for comparing alternatives a and b using
pairs of evaluations (OM(A−), OM(A+)) and (OM(B−), OM(B+)) is to use Pareto-
Dominance:

A �P B ⇐⇒ OM(A+) ≥ OM(B+) and OM(A−) ≤ OM(B−) (2)

�P collapses to Wald’s pessimistic ordering if X = X− (choosing based on the worst
feature [40]), and to its optimistic max-based counterpart if X = X+. On Luc’s ex-
ample, there is a strong argument for Option a, but only weak arguments for Op-
tion b : OM(A+)> OM(B+). In parallel, there are strong arguments both against A
and against B: OM(A−) = OM(B−). Luc will choose Option a.
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This decision rule is in fact not very satisfactory. The bipolar outranking re-
lation �P concludes to incomparability in some cases when a preference would
sound more natural. When A has both pros and cons, it is incomparable with the
empty set of affects even if the importance of the cons in A is negligible in front
of the importance of its pros. Another drawback of this rule can observed when
the two decisions have the same evaluation on one of the two polarities. Namely, if
OM(A−) = OM(B−)>OM(A+)> 0 = OM(B+), then A>P B, and this despite the
fact OM(A+) may be very weak. In other terms, this rule does not completely obey
the principle of focalisation on the most important arguments, especially when A−
and B− do not contain the same number of affects. In Luc ’s example, Option a is
preferred despite its two major drawbacks.

4.2 The Bipolar Possibility Relation

The problem with the bipolar Pareto-dominance is that it does not account for the
fact that the two evaluations share a common importance scale. The next decision
rule for comparing A and B focuses on arguments of maximal strength in A∪B,
i.e., those at level maxy∈A∪B π(y) = OM(A∪B). The principle at work in this rule is
simple: any argument against A (resp. against B) is an argument pro B (resp., pro A)
and conversely. The most supported decision is then preferred.

Definition 2 (Bipolar Possibility Relation).
A �BΠ B ⇐⇒ OM(A+∪B−) ≥ OM(B+ ∪A−).

This rule decides that A is at least as good as B as son as there are maximally impor-
tant arguments in favour of A or attacking B; A �BΠ B if and only if at the highest
level of importance, there is no argument against A and none for B. Obviously, �BΠ

collapses to Wald’s pessimistic ordering if X = X− and to its optimistic counterpart
when X = X+. In some sense, this definition is the most straightforward generalisa-
tion of possibility relations [32, 12] to the bipolar case.

In Luc’s example, Option a = {region++,company−−, price−−} and Option b =
{non−demo−−,tennis+,swimming+,disco+} are considered as very bad and thus
indifferent since one trusts a bad airplane company and the other takes place in a
non-democratic country.

The bipolar possibility relation satisfies the following properties

1. It is complete and quasi-transitive.
2. The restriction of �BΠ to single affects is a weak order (defining their relative

importance).
3. Ground Monotony: ∀A,B,x,x′ such that A∩{x,x′} = /0 and {x′} �BΠ {x}:

A∪{x} � B ⇒ A∪{x′} � B; A∪{x} ∼ B ⇒ A∪{x′} � B;
B � A∪{x′} ⇒ B � A∪{x}; B ∼ A∪{x′} ⇒ B � A∪{x}.

4. Positive Cancellation: ∀x,z∈X+,y∈X−, {x,y}∼ /0 and {z,y}∼ /0⇒{x}∼ {z}.
5. Negative Cancellation : ∀x,z ∈ X−,y ∈ X+, {x,y} ∼ /0 and {z,y} ∼ /0 ⇒

{x} ∼ {z}.
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6. Strict negligibility: ∀A,B,C,D : A � B and C � D ⇒ A∪C � B∪D.
7. Idempotent Negligibility1: ∀A,B,C,D : A � B and C � D ⇒ A∪C � B∪D.

Note that relation �BΠ is generally not transitive. Properties 2 and 3 are self-
explanatory. Properties 4 and 5 express a form of anonymity. It is required when
a positive argument blocks a negative argument of the same strength: this blocking
effect should not depend on the arguments themselves, but on their position in the
importance scale only. The two last properties are direct consequences of working
with importance levels that are orders of magnitude. A � B means that A is much
better than B0, so much so as there is no way of overthrowing A by sets of weaker
arguments (property 6). The last property expresses that several arguments of the
same strength are worth just one.

The above properties turn out to be characteristic of the bipolar possibility rule
[5]. They imply the existence of the importance scale, and the importance assign-
ment to elementary affects as a possibility distribution π .

4.3 Bipolar Lexicographic Outranking Relations

The last property (Idempotent Negligibility) of the bipolar possibility rule is by far
the most debatable feature of �BΠ . It causes a drowning effect, usual in standard
possibility theory. For instance, when B is strictly included in a set of positive affects
A, then A is not strictly preferred to B when affects in A \B are of equal or lesser
importance than those in B.

A tempting way of refining �BΠ , noticing that the bipolar possibility relation
basically relies on computing the maximum of π over subsets, is to use a lexi-
max relation instead [10]. Then the number of arguments of equal strength on each
side is taken into account. Among the two basic axioms of qualitative modeling, it
comes down to giving up Idempotent Negligibility, while retaining Strict Negligi-
bility. Choosing can then be based on counting arguments of the same strength, but
we still do not allow an important argument to be superseded by several less impor-
tant ones, however large their number be. The arguments in A and B are scanned top
down, until a level is reached such that the numbers of positive and negative argu-
ments pertaining to the two alternatives are different; then, the option with the least
number of negative arguments and the greatest number of positive ones is preferred.

There are two such decision rules respectively called “Bivariate Levelwise Tal-
lying” and (univariate) “Levelwise Tallying” [6], according to whether positive and
negative arguments are treated separately or not [13].

For any importance level λ ∈ L, let Aλ = {x∈A,π(x) = λ} be the λ -section of A,
the set of affects of strength λ in A. Let A+

λ = Aλ ∩X+ (resp., A−
λ = Aλ ∩X− ) be its

positive (resp., negative) λ -section. Let δ (A,B) be the maximal level of importance
where either the positive or the negative λ -sections of A and B differ, namely:

δ (A,B) = max{λ : |A+
λ | �= |B+

λ | or |A−
λ | �= |B+

−|}.

δ (A,B) is called the decisive level pertaining to (A,B).

1 It is called ”Closeness” in [5].
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Definition 3 (Bivariate Levelwise Tallying).
A �BL B ⇐⇒ |A+

δ (A,B)| ≥ |B+
δ (A,B)| and |A−

δ (A,B)| ≤ |B−
δ (A,B)|

It is easy to show that �BL is reflexive, transitive, but not complete. Indeed,�BL con-
cludes to an incomparability if and only if there is a conflict between the positive
view and the negative view at the decisive level. From a descriptive point of view,
this range of incomparability is a good point in favour of �BL. On Luc’s example for
instance, the difficulty of the dilemma is clearly pointed point by this decision rule:
at the highest level, Option a involves 3 strong arguments (price−−,company−− and
attractive−region++) while Option b only involves one (non−demo−−). δ (A,B)=
++ and Option a has more strong negative arguments than Option b, while Option b
has one strong positive argument while Option a has none. An incomparability re-
sults, revealing the difficulty of the choice.

Now, if one can assume a compensation between positive and negative arguments
at each importance level, one argument canceling another one on the other side, the
following refinement of relation �BL can be obtained:

Definition 4 (Univariate Levelwise Tallying).

A �L B ⇐⇒ ∃λ ∈ L\ 0L s. t.

{∀γ > λ , |A+
γ |− |A−

γ | = |B+
γ |− |B−

γ |
and |A+

λ |− |A−
λ | > |B+

λ |− |B−
λ |

or |A+
γ |− |A−

γ | = |B+
γ |− |B−

γ |,∀λ ∈ L\ 0L (the latter case is A ∼L B).

Interestingly, �L is closely related to the decision rule originally proposed two cen-
turies ago by Benjamin Franklin [22]. On Luc’s dilemma, the strong pro of Option a
is now cancelled by one of its strong cons - they are discarded. A strong con on each
side remains. Because of a tie at level ++, the procedure then examines the second
priority level: there are 3 weak pros for Option b (no cons) and no pro nor con w.r.t.
Option a : Option b is thus elected.

The two decision rules proposed in this section obviously generate monotonic
bipolar outranking relations. Each of them refines �BΠ . The most decisive one is
�L, which is moreover complete and transitive. This relation is the refinement of
�BΠ that is a weak order and that satisfies the principle of preferential indepen-
dence without introducing any bias on the importance order elementary affects (that
is, preserving the restriction of �BΠ to single affects). See [5] for such an axiomati-
sation. It turns out that Levelwise Tallying is the most likely decision rule to be used
by people as empirical studies suggest [6].

5 Bridging the Gap between Qualitative Choice Heuristics and
Cumulative Prospect Theory

Qualitative choice heuristics were extensively studied and advocated by Gigerenzer
and his colleagues [25]. In the “Take the best” approach [24], each criterion x is
supposed to have a positive side (it generates a positive argument x+) and a negative
side (it generates a negative argument x−): fulfilling the criterion is a pro, missing
it is a con, all the worse as the criterion is important. The criteria are then supposed
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to be totally ranked and of very different importance: there does not exist x, y such
that π(x) = π(y). So, we can scan elementary criteria top down from the stronger to
the weaker when comparing alternatives. So, doing, as soon as we find a criterion
in favour of decision a and in disfavour of decision b, a is preferred to b (hence the
name “Take the best”). The Levelwise Tallying choice rule applied to such linearly
ranked criteria coincides with “Take the best”. But the former is capable of ac-
counting for more decision situations than the latter heuristic — e.g., when several
criteria share the same (and highest) degree of importance. In this sense, Levelwise
Tallying is a natural extension of the ”Take the best” qualitative rule advocated by
psychologists.

In contrast to the “Take the best” approach, Cumulative Prospect Theory [39] ac-
counts for positive and negative arguments using quantitative evaluations of criteria
importance. CPT assumes that the strength of reasons supporting a decision and the
strength of reasons against it can be measured by means of two numerical capaci-
ties σ+ and σ− respectively mapping subsets of X+ and X− to the unipolar scale
[0,+∞). The capacity σ+ reflects the importance of the group of positive arguments,
and σ− the importance of the group of negative arguments. The higher σ+(A+), the
more convincing the set of positive arguments and conversely the higher σ−(A−),
the more deterring is the set of negative arguments.

This approach moreover admits that it is possible to combine these evaluations
by subtracting them and building a so-called “net predisposition” score expressed
on a bipolar numerical scale (the real line):

∀A ⊆ X ,NP(A) = σ+(A+)−σ−(A−)

where A+ = A∩X+, A− = A∩X−. Alternatives are then ranked according to this
net predisposition:

A �CPT B ⇐⇒ σ+(A+)−σ−(A−) ≥ σ+(B+)−σ−(B−). (3)

It turns out that the Levelwise Tallying heuristics �L can be encoded in the CPT
model. To this effect, we can the use classical encoding of the leximax (unipo-
lar) procedure by comparing sums of suitably chosen weights forming a super-
increasing sequence [33]. It is easy to show that actually both outranking relations
�L and �BL can be encoded by means of numerical capacities:

Proposition 1. There exist two capacities σ+ and σ− such that:
A �L B ⇔ σ+(A+)−σ−(A−) ≥ σ+(B+)−σ−(B−)

A �BL B ⇔ and

{
σ+(A+) ≥ σ−(B+)
σ+(B−) ≥ σ−(A−)

For instance, denoting λ1 = 0L < λ2 < · · ·< λl = 1L the l elements of L, we can use
the capacity

σ+(A) = ∑
λi∈L

|A+
λi
| · |X |i.
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We can similarly use a second sum of super-increasing numbers to represent the
importance of sets of negative arguments:

σ−(A) = ∑
λi∈L

|A−
λi
| · |X |i

This proposition clearly shows that the �L ranking of decisions is a particular case
of the CPT decision rule (using big-stepped probabilities). In summary,�L complies
with the spirit of qualitative bipolar reasoning while being efficient. In the meantime,
it has the advantages of numerical measures (transitivity and representability by a
pair of functions). In other words, our framework bridges the gap between Take The
Best and CPT, the two main antagonistic approaches to bipolar decision-making.

6 Extensions of the Qualitative Bipolar Setting

The CPT approach and its variants assume a kind of independence between X+ and
X−. But this assumption does not always hold. So it is natural to extend it to more
general ways of computing net predisposition indices.

However there are two ways of moving toward a more general approach, because
there are two equivalent ways of defining the CPT relations, that suggest different
generalisations:

A �CPT B ⇐⇒ any of

{
σ+(A+)−σ−(A−) ≥ σ+(B+)−σ−(B−),
σ+(A+)+ σ−(B−) ≥ σ+(B+)+ σ−(A−).

(4)

Moreover the assumption of Boolean criteria, made in previous sections, can also
be relaxed in the qualitative case.

6.1 Univariate and Bivariate Bicapacities

The first inequality in (4) is naturally extended by means of bicapacities. Bi-
capacities were introduced by Grabisch and Labreuche [28, 29] so as to handle non
separable bipolar preferences: a bicapacity BC is defined on Q(X) := {(A+,A−) ∈
2X ,A+∩A− = /0} and increase (resp., decrease) with the addition of elements in A+

(resp., A−).

Definition 5. A bicapacity is a function BC(·, ·) : Q(X)→R such that BC( /0, /0) = 0,
and BC(A+,A−) ≥ BC(B+,B−) whenever A+ ⊇ B+ and A− ⊆ B−.

Note that the outranking relation�BC on alternatives, induced by BC is complete and
transitive, positive and negative monotonic. It does not necessary satisfy unanimity.
To get it, one must request the property:

BC(A+, /0)≥BC(B+, /0) and BC( /0,A−)≥BC( /0,B−)=⇒BC(A+,A−)≥BC(B+,B−)



152 D. Dubois and H. Fargier

Nontriviality is ensured by the normalisation BC(X+, /0)= 1,BC( /0,X−)=−1. Like-
wise, Ground Monotony, Positive and Negative Cancellation properties are to be
requested if needed for �BC.

Originally, bi-capacities stem from bi-cooperative games [4], where players are
divided into two groups, the “pros” and the “cons”: player x is sometimes in favour,
sometimes against, but cannot be both simultaneously. In our modeling context,
we typically restrict to A+ ⊂ X+ and A− ⊂ X−. The net predisposition of CPT
is recovered letting BC(A+,A−) = σ+(A+)−σ−(A−) = NP(A). If moreover the
capacities σ+ and σ− are probability measures, then �BC satisfies unanimity, i.e. is
a monotonic bipolar set relation, that moreover satisfies Ground Monotony, Positive
and Negative Cancellation properties.

Since the comparison of net predispositions and more generally bi-capacities sys-
tematically provides a complete and transitive outranking relation, it can fail to cap-
ture a large range of decision-making attitudes: contrasting affects make decision
difficult, so why should the comparison of objects having bipolar evaluations sys-
tematically yield a complete and transitive relation ? It might imply some incompat-
ibilities. That is why bicapacities were generalized by means of bipolar capacities
[30]. The idea is to use two measures, a measure of positiveness (that increases
with the addition of positive arguments and the deletion of negative arguments) and
a measure of negativeness (that increases with the addition of negative arguments
and the deletion of positive arguments), however without combining then. In other
terms, a bipolar capacity σ is defined by a pair of bicapacites σ+ and σ−, namely
by: σ(A) = (σ+(A+,A−),σ−(A−,A+)). Then A is preferred to B iff it is the case
with respect to both measures – i.e. according to Pareto-dominance. This allows for
the representation of conflicting evaluations and leads to a partial order. The bipolar
qualitative Pareto-dominance rule of Section 4.1, as well as �BL, obviously belong
to the family of decision rules based on bipolar capacities. See [27] for a com-
parative discussion of bicapacities and bipolar capacities, in the setting of conjoint
measurement.

6.2 An Alternative Generalisation of CPT

The second inequality expressing the �CPT relation in (4) is more directly related
to the bipolar possibility relation. More precisely, �BΠ can be viewed as the natural
qualitative counterpart of �CPT ; indeed, the bipolar possibility decision rule comes
down to changing + into max in σ+(A+)+ σ−(B−) ≥ σ+(B+)+ σ−(A−). How-
ever, being only quasi-transitive, the relation �BΠ cannot be represented by means
of a bicapacity.

So, there is another track for generalizing the CPT framework, turning possibility
measures into standard capacities κ : 2X → [0,1] defining:

A �κ B ⇐⇒ κ(A+∪B−) ≥ κ(B+∪A−) (5)

adopting the view that an argument against alternative a is an argument in favour of
b in the pairwise comparison of alternatives.
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The following properties clearly hold for �κ : it is complete, and the restriction
to single arguments is a weak order. However it is not clearly transitive, not even
quasi-transitive in the general case. And while the non triviality, and both positive
and negative monotony properties hold, the weak unanimity property, that would
make �κ a bipolar monotonic set relation, requires that κ satisfy an additional prop-
erty on top of inclusion-monotonicity of capacities [9]:

Weak additivity: Let A,B,C,D ⊆ X such that A∩C = /0,B∩D = /0; if κ(A) ≥ κ(B)
and κ(C) ≥ κ(D) then κ(A∪C) ≥ κ(B∪D).

This property is, for capacities, equivalent to the following property involving only
three subsets A,B,C = D [12] :

If κ(A) ≥ κ(B) then κ(A∪C)≥ κ(B∪C), provided that (A∪B)∩C = /0.

This property implies that κ is a decomposable measure [9], that is, there exists
an operation � acting on the image of 2X by κ such that if A∩B = /0, κ(A∪B) =
κ(A) � κ(B). Due to compatibility with the underlying Boolean algebra of events,
it is natural to consider that � is a co-norm. Choosing an Archimedean continuous
co-norm, it is clear that �κ can verify additional properties:

• Transitivity: κ(A+ ∪B−) ≥ κ(B+ ∪A−) and κ(B+ ∪C−) ≥ κ(C+ ∪B−) imply
κ(A+∪C−) ≥ κ(C+∪A−). Indeed the preconditions imply

κ(A+)�κ(B−)�κ(B+)�κ(C−) ≥ κ(B+)�κ(A−)�κ(B−)�κ(C+)

which yields the results by simplification (if � is a strict t-norm or κ is properly
normalized). This simplification cannot be made if �= max.

• Ground monotony holds under the same assumptions about �.
• Positive and negative cancellation properties reduce to the trivial statement that

κ({x}) = κ({y} and κ({z}) = κ({y} imply κ({x}) = κ({z}.

In fact, relation A �κ B in (5) is a conjoint generalisation of �CPT and �Bπ that
either comes down to one of them (�CPT is obtained, if � is a nilpotent Archimedean
t-norm and κ is properly normalized, or a strict co-norm, taking the logarithm of κ)
or a combination of them (if � is an ordinal sum of the basic conorms α + β −αβ ,
min(1,α +β ), max) up to a rescaling. So, the obtained approach is not very general.

One way of getting a more general model would be to consider again two capac-
ities κ+ on X+ and κ− on X− and a standard binary aggregation operation ⊕ which
is monotonically increasing in both places. Then the CPT model can be extended as
follows:

A �κ+,κ−,⊕ B ⇐⇒ κ+(A+)⊕κ−(B−) ≥ κ(B+)⊕κ(A−) (6)

This set-relation is clearly bipolar monotonic (weak unanimity holds) and its tran-
sitivity is ensured if ⊕ is associative and strictly monotonic. The validity of ground
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monotony depends on the properties of the capacity. For instance, positive cancella-
tion reads:

(κ+({x})⊕κ−({y}) = 0,κ+({z})⊕κ−({y}) = 0) =⇒ κ+({x}) = κ+({z}),

which holds if ⊕ is continuous and strictly monotonic. More insight is needed to
figure out the potential of this approach.

6.3 Qualitative Non-boolean Criteria

Our basic qualitative setting is clearly simpler than usual MCDM frameworks where
each x∈X is a full-fledged criterion rated on a bipolar utility scale like V = [−1,+1]
containing a neutral value 0. Then comparing alternatives comes down to compar-
ing vectors a and b in V |X | in the sense of a bicapacity BC by means of suitable
adaptation of Choquet integral. In particular, the CPT model then computes the net
predisposition in terms of a difference of Choquet integrals [31].

In the qualitative framework, we stick to a set X containing positive and negative
affects, but we admit that each alternative a can be affected by x to a degree. Now
we define degrees of satisfaction of criteria x in the same positive unipolar scale L
as the one for importance. The convention is that if x ∈ X+, the value μa(x) ∈ L
evaluates how good a fares with respect to the positive affect x, and if x ∈ X−, μa(x)
evaluates how bad a fares with respect to the negative affect x. In this context, the
set A of relevant affects for a becomes an L-fuzzy set. Using the notion of possibility
of a fuzzy event [42], we can define the overall rating of an alternative a as

OM(A) = sup
x∈X

min(π(x),μa(x)) = max(OM(A+),OM(A−)),

where A+ is the restriction of μa to X+, and A− is the restriction of μa to X−.
The comparison of alternatives comes down to comparing pairs of ratings of the
form (OM(A+),OM(A−)), where each element is a qualitative optimistic possi-
bilistic utility functional [20, 14], namely OM(A+) = supx∈X+ min(π(x),μa(x)),
OM(A−) = supx∈X− min(π(x),μa(x)). The extension of the bipolar possibility deci-
sion rule to this framework simply reads

a �FBΠ b ⇐⇒ max(OM(A+),OM(B−)) ≥ max(OM(B+),OM(A−)). (7)

It is easy to see that OM is a monotonic bipolar fuzzy-set-function where monotony
is with respect to fuzzy set inclusion on both the positive and negative parts of X .
Relation �FBΠ satisfies bipolar pointwise Pareto-dominance defined by:

a ≥ b ⇐⇒ ∀x ∈ X+,μa(x) ≥ μb(x) and ∀x ∈ X−,μa(x) ≤ μb(x),

namely, a ≥ b implies a �FBΠ b. Unanimity, completeness and quasi-transitivity
still hold. Strict and idempotent negligibility properties still hold.
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Another bipolar setting for qualitative decision was proposed by Giang and
Shenoy[23] who use, as a utility scale, a totally ordered set of possibility mea-
sures on a two-element set {0,1} containing the values of the best and the worst
rewards. Each such possibility distribution represents a qualitative lottery. Let
LΠ = {(α,β ),max(α,β ) = 1L,α,β ∈ L}. Coefficient α represents the degree of
possibility of obtaining the worst reward, and coefficient β the degree of possibility
of obtaining the best. This set can be viewed as a bipolar value scale ordered by the
following complete preordering relation:

(α,β ) ≥V (γ,δ ) if and only if (α ≤ γ and β ≥ δ )

The fact this relation is complete is due to the fact that pairs (α,β ) and (γ,δ ) such
that neither (α,β ) ≥V (γ,δ ) nor (γ,δ ) ≥V (α,β ) hold cannot both lie in LΠ since
it implies that either max(α,β )< 1L or max(γ,δ )< 1L. The bottom of this bipolar
scale is (1L,0L), its top is (0L,1L) and its neutral point (1L,1L) means “indifferent”.

The canonical example of such a scale is the set of pairs (Π(Ac),Π(A)) of de-
grees of possibility for an event A and its complement Ac. An inequality such as
(Π(Ac),Π(A)) >V (Π(Bc),Π(B)) means that A is more likely (certain or plausi-
ble) than B (because it is equivalent to Π(A) > Π(B) or Π(Bc) > Π(Ac)). In fact
the induced likelihood ordering between events

A �LΠ B if and only if (Π(Ac),Π(A)) ≥V (Π(Bc),Π(B))

is self-adjoint, that is, A �LΠ B is equivalent to Bc �LΠ Ac.
Couching the Giang and Shenoy approach in our terminology, each alternative

a is supposed to have a utility value for affect x in the form of (αx,βx) in LΠ . If
x ∈ X+, we have μa(x) = (λ ,1L), and if x ∈ X−, we have μa(x) = (1L,λ ). The
proposed preference functional maps alternatives, viewed as tuples of pairs in LΠ
indexed by elements of X , to LΠ itself. The importance of affects is also described by
possibility weights π(x). The so-called binary possibilistic utility of an alternative a
is computed as the pair

WGS(a) = (max
x∈X

min(π(x),αx),max
x∈X

min(π(x),βx)),

which by construction lies in LΠ . This form results from simple and very natural
axioms on possibilistic lotteries, which are counterparts to the Von Neumann and
Morgenstern axioms [34]: a complete preorder of alternatives, increasingness in the
wide sense according to the ordering in LΠ , substitutability of indifferent lotteries,
and the assumption that the overall worth of alternatives is valued on LΠ [23]. Later
on, Weng [41] proposed a Savage-style axiomatization of such binary possibilis-
tic utility. It puts together the axiomatizations of the optimistic and the pessimistic
possibilistic criteria by Dubois et al. [20], adding, to the axioms justifying Sugeno
integral, two conditions: (i) the self-adjointness of the outranking relation on binary
acts, and (ii) an axiom laying bare an act h that plays the role of a neutral point
separating favourable from unfavourable alternatives.
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Noticing that αx = 1 if x ∈ X− and βx = 1 if x ∈ X+, it is clear that the binary
possibilistic utility is of the form:

WGS(a) = (max(OM(X−),OM(A+)),max(OM(A−),OM(X+)),

and that this approach belongs to the type I bipolar setting, since LΠ is a bipo-
lar scale. Compared to the relation �FBΠ , WGS has a major drawback: whenever
OM(X−) = OM(X+), that is, the most important positive and negative affects have
the same importance, then WGS(a) = (1L,1L),∀a ∈ D results, expressing indiffer-
ence between all alternatives. Note that the approach proposed by Giang and Shenoy
is tailored to decision under uncertainty, while we adapted it to decision with pros
and cons. In the latter setting, the outranking relation �FBΠ looks more promising.

7 Conclusion

This chapter has proposed an overview of a qualitative argument-based approach to
multi-aspect decision making, showing to what extent it bridges the gap between,
on the one hand, purely heuristic descriptions of how people make decisions with-
out measuring value or importance, and, on the other hand, refined numerical ap-
proaches that compare differences of evaluations of positive and negative rewards
such as Cumulative Prospect Theory. The original point made by this paper is that
the qualitative approach proposed here suggests another generalisation of Cumula-
tive Prospect Theory that does not rely on the use of bicapacities. An extension of
the bipolar possibility relation to fuzzy events has been used to account for argu-
ments whose appropriateness to an alternative can be a matter of degree on top of
grading their respective importance. This approach is shown to differ from the bipo-
lar decision theory proposed by Giang and Shenoy. Besides, using lexicographic
refinements of qualitative optimistic possibilistic utility functionals [21], it is clear
that adaptations of the Levelwise Tallying decision rules to this refined situation can
be envisaged. This is left for further research.
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The Dynamics of Consensus in Group Decision
Making: Investigating the Pairwise Interactions
between Fuzzy Preferences

Mario Fedrizzi, Michele Fedrizzi, R.A. Marques Pereira, and Matteo Brunelli

Abstract. In this paper we present an overview of the soft consensus model in group
decision making and we investigate the dynamical patterns generated by the funda-
mental pairwise preference interactions on which the model is based.

The dynamical mechanism of the soft consensus model is driven by the mini-
mization of a cost function combining a collective measure of dissensus with an
individual mechanism of opinion changing aversion. The dissensus measure plays
a key role in the model and induces a network of pairwise interactions between the
individual preferences.

The structure of fuzzy relations is present at both the individual and the collec-
tive levels of description of the soft consensus model: pairwise preference intensities
between alternatives at the individual level, and pairwise interaction coefficients be-
tween decision makers at the collective level.

The collective measure of dissensus is based on non linear scaling functions of
the linguistic quantifier type and expresses the degree to which most of the decision
makers disagree with respect to their preferences regarding the most relevant alter-
natives. The graded notion of consensus underlying the dissensus measure is central
to the dynamical unfolding of the model.

The original formulation of the soft consensus model in terms of standard nu-
merical preferences has been recently extended in order to allow decision makers
to express their preferences by means of triangular fuzzy numbers. An appropriate
notion of distance between triangular fuzzy numbers has been chosen for the con-
struction of the collective dissensus measure.
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In the extended formulation of the soft consensus model the extra degrees of
freedom associated with the triangular fuzzy preferences, combined with non lin-
ear nature of the pairwise preference interactions, generate various interesting and
suggestive dynamical patterns. In the present paper we investigate these dynamical
patterns which are illustrated by means of a number of computer simulations.

1 Introduction

In the study of aggregational models of group decision making the central notions of
interaction and consensus have been the subject of a great deal of investigation. Fun-
damental contributions in this general area of research have been made by: Shapley
(1953) on cooperative game theory [65]; French (1956) and Harary (1959) on so-
cial power theory [31] [44]; DeGroot (1974), Chatterjee and Seneta (1977), Berger
(1981), Kelly (1981), and French (1981) on DeGroot’s consensus formation model
[16] [13] [7] [53] [32]; Sen (1982) on models of choice and welfare [64]; Wagner
(1978, 1982) and Lehrer and Wagner (1981) on the rational choice model [73] [55]
[74]; Anderson and Graesser (1976), Anderson (1981, 1991), and Graesser (1991)
on the information integration model [4] [2] [3] [42]; Davis (1973, 1996) on the so-
cial decision scheme model [14] [15]; and Friedkin (1990, 1991, 1993, 1998, 1999,
2001), Friedkin and Johnsen (1990, 1997, 1999), and Marsden and Friedkin (1993,
1994) on social influence network theory [33] [38] [34] [35] [59] [60] [39] [36] [37]
[40] [41].

In the classical literature stream indicated above the notion of consensus has con-
ventionally been understood in terms of strict and unanimous agreement. However,
since decision makers typically have different and conflicting opinions to a lesser
or greater extent, the traditional strict meaning of consensus is often unrealistic.
The human perception of consensus is typically ‘softer’, and people are generally
willing to accept that consensus has been reached when most actors agree on the
preferences associated to the most relevant alternatives.

In this different perspective, and in parallel with the traditional approach mostly
formulated on a probabilistic basis, Ragade (1976) and Bezdek, Spillman, and Spill-
man (1977, 1978, 1979, 1980) proposed to conceptualize consensus within the fuzzy
framework [63] [8] [9] [10] [66] [67] [68]. A few years later, combining the fuzzy
notion of consensus with the expressive power of linguistic quantifiers, Kacprzyk
and Fedrizzi (1986, 1988, 1989) and Kacprzyk, Fedrizzi, and Nurmi (1992, 1993,
1997) developed the so-called soft consensus measure in the context of fuzzy pref-
erence relations [47] [48] [49] [50] [19] [51] and considered various interesting im-
plications of the model in the context of decision support, see Fedrizzi, Kacprzyk,
and Zadrozny (1988) and Carlsson et al. (1992) [18] [12].

The soft consensus paradigm proposed by Kacprzyk and Fedrizzi was subse-
quently reformulated by the Trento research group [20] [21] [22] [23] [25] [24] [26]
[27] [61] [28] [29] [30] . The linguistic quantifiers in the original soft consensus
measure were substituted by smooth scaling functions with an analogous role and
a dynamical model was obtained from the gradient descent optimization of a soft
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consensus cost function, combining a soft measure of collective dissensus with an
individual mechanism of opinion changing aversion. The resulting soft consensus
dynamics acts on the network of single preference structures by a combination of a
collective process of diffusion and an individual mechanism of inertia.

Introduced as an extension of the crisp model of consensus dynamics described in
[27], the fuzzy soft consensus model [29] substitutes the standard crisp preferences
by fuzzy triangular preferences. The fuzzy extension of the soft consensus model
is based on the use of a distance measure between triangular fuzzy numbers. In
analogy with the standard crisp model, the fuzzy dynamics of preference change
towards consensus derives from the gradient descent optimization of the new cost
function of the fuzzy soft consensus model.

In the meantime a number of different fuzzy approaches have been proposed.
The linguistic approach [79] is applicable when the information involved either at
individual level or at group level present qualitative aspects that cannot be effec-
tively represented by means of precise numerical values. Innovative approaches to
the modelling of consensus in fuzzy environments were developed under linguistic
assessments and the interested reader is referred, among others, to [45] [46] [5] [62]
[11] [77]. The typical problem addressed is that in which decision makers have dif-
ferent levels of knowledge about the alternatives and use linguistic term sets with
different cardinality to assess their preferences. This is the so-called group decision
making problem in a multigranular fuzzy linguistic context.

Another different approach to the analysis of consensus under fuzziness, based
on a distance from consensus, has been proposed in [69] using intuitionistic fuzzy
preferences. In that paper, taking into account Atanasov’s hesitation margin, the
approach to consensus in [9] [10] and [68] has been extended to individual prefer-
ences represented by interval values. This approach has been further developed in
[70] introducing a similarity measure to compare the distances between intuitionis-
tic fuzzy relations. More recently, a new and more effective similarity measure has
been introduced and applied to consensus analysis in the context of interval-valued
intuitionistic fuzzy set theory [78].

The paper is organized as follows. In section 2 we briefly review the soft consen-
sus model proposed in [27] and we show how to derive the soft consensus dynamics
on the basis of a cost function W combining a soft measure of collective dissensus
with an individual mechanism of opinion changing aversion. In section 3, assuming
fuzzy triangular preferences as in [29], we describe the new distance measure and
introduce the cost function W of the fuzzy soft consensus model. In section 4 we
derive the dynamical laws of the fuzzy soft consensus model as applied to fuzzy
triangular preferences. Section 5 contains the main contribution of the paper: we
present and discuss a number of computer simulations in order to illustrate the com-
plex and suggestive dynamical patterns generated by the dynamics of the fuzzy soft
consensus model. Finally, in section 6 we present some concluding remarks and
notes on future research.
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2 The Soft Dissensus Measure and the Consensus Dynamics

In this section we present a brief review of the original soft consensus model intro-
duced in [27]. Our point of departure is a set of individual fuzzy preference rela-
tions. If A = {a1, . . . ,am} is a set of decisional alternatives and I = {1, . . . ,n} is a
set of individuals, then the fuzzy preference relation Ri of individual i is given by its
membership function Ri : A×A → [0,1] such that

Ri(ak,al) = 1 if ak is definitely preferred over al

Ri(ak,al) ∈ (0.5,1) if ak is preferred over al

Ri(ak,al) = 0.5 if ak is considered indifferent to al

Ri(ak,al) ∈ (0,0.5) if al is preferred over ak

Ri(ak,al) = 0 if al is definitely preferred over ak,

where i = 1, . . . ,n and k, l = 1, . . . ,m. Each individual fuzzy preference relation Ri

can be represented by a matrix [ri
kl ], ri

kl = Ri(ak,al) which is commonly assumed to
be reciprocal, that is ri

kl + ri
lk = 1. Clearly, this implies ri

kk = 0.5 for all i = 1, . . . ,n
and k = 1, . . . ,m.

The general case A = {a1, . . . ,am} for the set of decisional alternatives is dis-
cussed in [27] and [29]. Here, for the sake of simplicity, we assume that the alter-
natives available are only two (m = 2), which means that each individual preference
relation Ri has only one degree of freedom, denoted by xi = ri

12.
In the framework of the soft consensus model, assuming m = 2, the degree of

dissensus between individuals i and j as to their preferences between the two alter-
natives is measured by

V (i, j) = f ((xi − x j)2) , (1)

where f is a scaling function defined as

f (x) = − 1
β

ln(1 + e−β (x−α)) . (2)

In the scaling function formula above, α ∈ (0,1) is a threshold parameter and β ∈
(0,∞) is a free parameter. The latter controls the polarization of the sigmoid function
f ′ : [0,1]→ (0,1) given by

f ′(x) = 1/(1 + eβ (x−α)) . (3)

In the soft consensus model [27] each decision maker i = 1, . . . ,n is represented by
a pair of connected nodes, a primary node (dynamic) and a secondary node (static).
The n primary nodes form a fully connected subnetwork and each of them encodes
the individual opinion of a single decision maker. The n secondary nodes, on the
other hand, encode the individual opinions originally declared by the decision mak-
ers, denoted si ∈ [0,1], and each of them is connected only with the associated pri-
mary node.
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The dynamical process of preference change corresponds to the gradient descent
optimization of a cost function W , depending on both the present and the original
network configurations. The value of W combines a measure V of the overall dis-
sensus in the present network configuration with a measure U of the overall change
from the original network configuration.

The various interactions involving node i are modulated by interaction coeffi-
cients whose role is to quantify the strength of the interaction. The consensual in-
teraction between primary nodes i and j is modulated by the interaction coefficient
vi j ∈ (0,1), whereas the inertial interaction between primary node i and the asso-
ciated secondary node is modulated by the interaction coefficient ui ∈ (0,1). In the
soft consensus model the values of these interaction coefficients are given by the
derivative f ′ of the scaling function according to

vi j = f ′((xi − x j)2), vi =
n

∑
j( �=i)=1

vi j/(n−1), ui = f ′((xi − si)2) . (4)

The average preference x̄i is given by

x̄i =
n

∑
j( �=i)=1

vi jx j/
n

∑
j( �=i)=1

vi j (5)

and represents the average preference of the remaining decision makers as seen by
decision maker i = 1, ...,n.

The construction of the cost function W that drives the dynamics of the soft con-
sensus model is as follows. The individual dissensus cost V (i) is given by

V (i) =
n

∑
j( �=i)=1

V (i, j)/(n−1), V (i, j) = f ((xi − x j)2) (6)

and the individual opinion changing cost U(i) is

U(i) = f ((xi − si)2) . (7)

Summing over the various decision makers we obtain the collective dissensus cost
V and inertial cost U ,

V =
1
4

n

∑
i=1

V (i), U =
1
2

n

∑
i=1

U(i) (8)

with conventional multiplicative factors of 1/4 and 1/2. The full cost function W is
then W = (1−λ )V + λU with 0 ≤ λ ≤ 1.

The consensual network dynamics, which can be regarded as an unsupervised
learning algorithm, acts on the individual opinion variables xi through the iterative
process

xi � x′i = xi − γ
∂W
∂xi

. (9)
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Analyzing the effect of the two dynamical componentsV and U separately we obtain

∂V
∂xi

= vi(xi − x̄i) (10)

where the coefficients vi were defined in (4) and the average preference x̄i was de-
fined in (5), and therefore

x′i = (1− γ vi)xi + γ vix̄i . (11)

On the other hand, we obtain

∂U
∂xi

= ui(xi − si) , (12)

where the coefficients ui were defined in (4), and therefore

x′i = (1− γ ui)xi + γ uisi . (13)

The full dynamics associated with the cost function W = (V +U)/2 acts iteratively
according to

x′i = (1− γ (vi + ui))xi ++γ vix̄i + γ uisi . (14)

and the decision maker i is in dynamical equilibrium, in the sense that x′i = xi, if the
following stability equation holds,

xi = (vix̄i + uisi)/(vi + ui) (15)

that is, if the present opinion xi coincides with an appropriate weighted average of
the original opinion si and the average opinion value x̄i.

3 The Fuzzy Soft Dissensus Measure

Let us now assume that the decision makers preferences are expressed by means of
fuzzy numbers, see for instance [17] [80], in particular by means of triangular fuzzy
numbers. Then, in order to measure the differences between the decision makers
preferences, we need to compute the distances between the fuzzy numbers repre-
senting those preferences. Let

x = {εL,x,εR} y = {θL,y,θR} (16)

be two triangular fuzzy numbers, where x is the central value of the fuzzy number x
and εL, εR are its left and right spread, respectively. Analogously for the triangular
fuzzy number y.

Various definitions of distance between fuzzy numbers are considered in the liter-
ature [43] [52] [71] [72]. Moreover, the question has been often indirectly addressed
in papers regarding the ranking of fuzzy numbers, see [75] [76] for a detailed review.
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In our model we refer to a distance, indicated by D∗(x,y), which belongs to a family
of distances introduced in [43]. This distance is defined as follows.

For each α ∈ [0,1], the α–level sets of the two fuzzy numbers x and y are respec-
tively

[xL(α),xR(α)] = [x− εL + εLα , x + εR − εRα] (17)

[yL(α),yR(α)] = [y−θL + θLα , y + θR−θRα] . (18)

The distance D∗(x,y) between x and y is defined by means of the differences be-
tween the left boundaries of (17), (18) and the differences between the right bound-
aries of (17), (18). More precisely, the left integral IL is defined as the integral, with
respect to α , of the squared difference between the left boundaries of (17) and (18),

IL =
∫ 1

0
(xL(α) − yL(α))2dα (19)

and the right integral IR is defined as the integral, with respect to α , of the squared
difference between the right boundaries of (17), (18),

IR =
∫ 1

0
(xR(α) − yR(α))2dα . (20)

Finally, the distance D∗(x,y) is defined as

D∗(x,y) =
(

1
2
(IL + IR)

)1/2

. (21)

The distance (21) is obtained by choosing p = 2 and q = 1/2 in the family of dis-
tances introduced in [43]. In order to avoid unnecessarily complex computations,
we skip the square root and we use, in our model, the simpler expression

D(x,y) = (D∗(x,y))2 =
1
2
(IL + IR) . (22)

Note that expression (22), except for the numerical factor 1/2, has been introduced,
independently from [43], also in [57]. It has been then pointed out in [1] that (22) is
not a distance, as it does not always satisfy the triangular inequality. Nevertheless, as
long as optimization is involved, expression (22) can be equivalently used in place
of the distance (21) [58]. In any case, for simplicity, in the following we shall use
the term distance when referring to (22). Developing (19) and (20), we obtain

D(x,y) = d2 +
1
6

δ 2
L +

1
6

δ 2
R +

d
2
(δR − δL), (23)

where d = x− y, δL = εL −θL and δR = εR −θR.
As explained in the previous section, the preferences of the n decision makers

are expressed by pairwise comparing the alternatives a1,a2, ...,am. Given a pair of
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alternatives, we assume that the preference of the first over the second alternative is
represented, for decision maker i, by a triangular fuzzy number indicated by

ri = {ε i
L,r

i,ε i
R}, (24)

where, as in (16), ri is the central value of the fuzzy number ri, whereas ε i
L and

ε i
R are its left and right spreads respectively. Analogously, let r j be the triangular

fuzzy number of type (24) representing the preference of the first alternative over
the second given by decision maker j.

Following definition (22), the distance between the fuzzy preference of decision
maker i and the one of decision maker j becomes

D(ri,r j) = d 2 +
1
6

δ 2
L +

1
6

δ 2
R +

d
2
(δR − δL), (25)

where d = ri − r j, δL = ε i
L − ε j

L and δR = ε i
R − ε j

R.
As assumed in the previous section, we consider a problem with m = 2 alterna-

tives and we define the dissensus measure between two decision makers by applying
the scaling function f to D(ri,r j),

V (i, j) = f (D(ri,r j)) . (26)

The dissensus measure of decision maker i with respect to the rest of the group is
given by the arithmetic mean of the various dissensus measures V (i, j),

V (i) =
n

∑
j( �=i)=1

V (i, j)/(n−1) . (27)

Finally, the global dissensus measure of the group is defined by

V =
1
4

n

∑
i=1

V (i) , (28)

thus obtaining

V =
1
4

n

∑
i=1

n

∑
j( �=i)=1

f (D(ri,r j))/(n−1) . (29)

Denoting by si = {θ i
L,s

i,θ i
R} the triangular fuzzy number describing the initial pref-

erence of decision maker i, the cost for changing the initial preference si into the
actual preference ri is given by

U(i) = f (D(ri,si)) . (30)

The global opinion changing aversion component U of the group is given by

U =
1
2

n

∑
i=1

U(i) . (31)
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As mentioned before, the global cost function W is defined as a convex combination
of the components V and U ,

W = (1−λ )V + λU, (32)

and the parameter λ ∈ [0,1] represents the relative importance of the inertial com-
ponent U with respect to the dissensus component V .

4 The Dynamics of the Fuzzy Soft Consensus Model

In [29] the original consensus dynamics described in section 2 was extended to
the case in which preferences are expressed by means of triangular fuzzy numbers.
In the consensus dynamics, the global cost function W = W (ri) = W (ε i

L,ri,ε i
R) is

minimized through the gradient descent method. This implies that in every iteration
the new preference r ′ is obtained from the previous preference r in the following
way (we skip the index i for simplicity)

r → r ′ = r− γ ∇W . (33)

The consensus dynamics (33) will gradually update the three preference values
(εL,r,εR) according to

r → r ′ = r− γ
∂W
∂ r

, εL → εL
′ = εL − γ

∂W
∂εL

, εR → εR
′ = εR − γ

∂W
∂εR

(34)

We can consider separately the effect of the two components V and U of W , since
∇W is a convex combination of ∇V and ∇U ,

∇W = (1−λ )∇V + λ ∇U . (35)

Let us first consider the component V . Taking again into account the index i, we
have

∂V
∂ ri = vi

((
ri − r̄ i)+

1
4

(
ε i

R − ε̄ i
R − ε i

L + ε̄ i
L

))
(36)

where

vi=
n

∑
j( �=i)=1

vi j/(n−1) ; vi j = f ′(D(ri,r j)) (37)

r̄ i =
∑n

j( �=i)=1 vi j r j

∑n
j( �=i)=1 vi j

, ε̄ i
L =

∑n
j( �=i)=1 vi j ε j

L

∑n
j( �=i)=1 vi j

, ε̄ i
R =

∑n
j( �=i)=1 vi j ε j

R

∑n
j( �=i)=1 vi j

, (38)

Analogously, we compute

∂V

∂ε i
L

= vi (
1
6
(ε i

L− ε̄ i
L)−

1
4
(ri− r̄ i)),

∂V

∂ε i
R

= vi (
1
6
(ε i

R− ε̄ i
R)+

1
4
(ri− r̄ i)) . (39)
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Let us now consider the inertial component U . We obtain

∂U
∂ ri = ui ((ri − si)+

1
4
(ε i

R −θ i
R − ε i

L + θ i
L)) (40)

where
ui = f ′(D(ri,si)) , (41)

∂U

∂ε i
L

= ui (
1
6
(ε i

L −θ i
L)−

1
4
(ri − si)) (42)

and
∂U

∂ε i
R

= ui (
1
6
(ε i

R −θ i
R)+

1
4
(ri − s i)) . (43)

At this point we can summarize the effects of the two components obtaining

∂W
∂ ri = ((1−λ )vi + λ ui)Δri − (1−λ )viΔ r̄ i −λ uiΔsi (44)

where

Δri = ri +
1
4
(ε i

R −ε i
L), Δ r̄ i = r̄ i +

1
4
(ε̄ i

R− ε̄ i
L), Δsi = si +

1
4
(θ i

R−θ i
L) . (45)

The derivative of W with respect to the left spread becomes

∂W

∂ε i
L

= ((1−λ )vi + λ ui)Δε i
L − (1−λ )viΔε̄ i

L −λ uiΔθ i
L (46)

where

Δε i
L =

1
6

ε i
L −

1
4

ri, Δε̄ i
L =

1
6

ε̄ i
L −

1
4

r̄ i, Δθ i
L =

1
6

θ i
L −

1
4

si . (47)

The derivative of W with respect to the right spread becomes

∂W

∂ε i
R

= ((1−λ )vi + λ ui)Δε i
R − (1−λ )viΔε̄ i

R −λ uiΔθ i
R (48)

where

Δε i
R =

1
6

ε i
R +

1
4

ri, Δε̄ i
R =

1
6

ε̄ i
R +

1
4

r̄ i, Δθ i
R =

1
6

θ i
R +

1
4

si . (49)

Let us now present some numerical simulations in order to illustrate the dynamical
behaviour of the fuzzy soft consensus model in some interesting cases.
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5 Computer Simulations

In this section we present a number of computer simulations of the fuzzy soft con-
sensus dynamics as applied to a single pair of preferences represented by triangular
fuzzy numbers. Our goal is that of illustrating the various interesting dynamical
patterns generated by the non linear nature of the pairwise interactions between
preferences, given that these pairwise interactions are the fundamental elements of
the soft consensus model.

The first four figures associated with each computer simulation (except the first)
depict four successive configurations of the preference pair of triangular fuzzy num-
bers, corresponding to the following moments in time: the initial configuration t = 0,
two intermediate configurations t = 25 and t = 100, and the final (quasi-asymptotic)
configuration t = 1000. The two dots appearing in each of the four figures indicate
the positions of the centers as they vary in time according to the original crisp ver-
sion of the soft consensus model. The other three figures associated with each com-
puter simulation show the time plot of the preference centers plus that of the left and
right spreads.

In general we observe in the computer simulations two distinct dynamical phases,
clearly illustrated by the graphical plots of the preference changes over time: a short
phase with fast dynamics followed by a much longer phase with slow dynamics.
Interestingly, the preference changes over time in each of these two phases are not
always monotonic. Moreover, the computer simulations show that the dynamics of
the fuzzy soft consensus model is generally faster than that of the original crisp
model. The final (quasi-asymptotic) values of the preference centers in the fuzzy
model show moderate but significant differences with respect to the corresponding
final preference values in the original crisp model.

The distance D(x,y) between two fuzzy numbers x and y defined in (22) and
involved in the construction of the cost functions V,U,W plays a key role in the fuzzy
extension of the soft consensus model. In particular, the two distinct phases (fast and
slow) observed in the consensus dynamics of the model can be understood in terms
of the different magnitudes of the coefficients associated with the various terms
in the decomposition formula (23). The fact that the coefficient associated with the
distance between centers is three times larger than the coefficient associated with the
distance between spreads (left and right together) produces initially a fast consensus
dynamics of the centers, followed by a much slower adjustment dynamics of the
spreads. Roughly speaking, the fast phase leads to an overlapping of the two fuzzy
triangular numbers, whose shape is then adjusted by the slow dynamical phase.

In all computer simulations (except partially the first) the parameter choices are
as follows: α = 0.3, β = 10, λ = 1/3, and γ = 0.01.

• These figures illustrate the dynamics of the original crisp soft consensus model
as applied to two crisp initial preferences 0.3 and 0.7, for three different choices
of the parameter λ . This parameter controls the relative strength of the mech-
anism of opinion changing aversion with respect to the consensual aggregation
mechanism. In the case λ = 0 the dynamics is purely consensual and thus, over
time, the two preferences converge exactly to a common final value.
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Fig. 1 Crisp dynamics acting on two crisp preferences, for different values of λ

• These figures illustrate the dynamics of the fuzzy soft consensus model as ap-
plied to the same two crisp initial preferences 0.3 and 0.7 as before. Notice the
two dynamical phases, initially fast and then slow, and the suggestive non mono-
tonic behaviour of the internal spreads. Initially, in the fast phase, the centers ap-
proach rapidly and the internal spreads increase significantly whereas the exter-
nal spreads remain essentially null, a sort of cooperative opening to the opposing
preference. Then, in the slow phase, the centers keep on approaching very slowly
while the internal spreads gradually decrease and the external spreads increase
slightly, converging towards a nearly common final value. In the final configura-
tion the spreads are once again very small (they were initially null) even though
they reach much larger values during the transient ”negotiation” process. This a
suggestive reality effect of the non linear dynamics of the fuzzy soft consensus
model.
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Fig. 2 Fuzzy dynamics acting on two crisp preferences
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Fig. 3 Corresponding time plots of centers and spreads

• These figures illustrate the dynamics of the fuzzy soft consensus model as ap-
plied to two fuzzy initial preferences (isosceles triangles) centered at the usual
values 0.3 and 0.7. Once again, notice the two dynamical phases, initially fast
and then slow, and the suggestive non monotonic behaviour of the internal and
external spreads. Initially, in the fast phase, the centers approach rapidly while
the internal (resp. external) spreads increase (resp. decrease) significantly, again
a sort of cooperative opening to the opposing preference. Then, in the slow phase,
the centers keep on approaching very slowly while the internal (resp. external)
spreads gradually decrease (resp. increase), converging towards a nearly common
final value.
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Fig. 4 Fuzzy dynamics acting on two isosceles triangles

• These figures illustrate the dynamics of the fuzzy soft consensus model as ap-
plied to two fuzzy initial preferences (right triangles facing each other) centered
at the usual values 0.3 and 0.7. Once again, notice the two dynamical phases,
initially fast and then slow, and the suggestive non monotonic behaviour of the
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Fig. 5 Corresponding time plots of centers and spreads

internal spreads. Initially, in the fast phase, the centers approach rapidly and the
internal spreads increase slightly whereas the external spreads remain essentially
null, again a sort of cooperative opening to the opposing preference. Then, in
the slow phase, the centers keep on approaching very slowly while the internal
(resp. external) spreads gradually decrease (resp. increase), converging towards
a nearly common final value.
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Fig. 6 Fuzzy dynamics acting on two right triangles facing each other

• These figures illustrate the dynamics of the fuzzy soft consensus model as applied
to two fuzzy initial preferences (right triangles facing opposite to each other)
centered at the usual values 0.3 and 0.7. Once again, notice the two dynamical
phases, initially fast and then slow, and the suggestive non monotonic behaviour
of the centers. Initially, in the fast phase, the centers approach rapidly (almost
crossing) and the internal (resp. external) spreads increase (resp. decrease), again
a sort of cooperative opening to the opposing preference. Then, in the slow phase,
the centers adjust by moving away very slowly while the internal (resp. external)
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Fig. 7 Corresponding time plots of centers and spreads
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Fig. 8 Fuzzy dynamics acting on two right triangles facing opposite to each other

0 200 400 600 800 1000
time0.3

0.4

0.5

0.6

0.7
value

(a) Center plot
200 400 600 800 1000

time

0.05

0.10

0.15

0.20

value

(b) Left spread plot
200 400 600 800 1000

time0.00

0.05

0.10

0.15

0.20

value

(c) Right spread plot

Fig. 9 Corresponding time plots of centers and spreads

spreads keep on gradually increasing (resp. decreasing), converging towards a
nearly common final value.

• These figures illustrate the dynamics of the fuzzy soft consensus model as applied
to two fuzzy initial preferences (different isosceles triangles) centered at the usual
values 0.3 and 0.7. Once again, notice the two dynamical phases, initially fast
and then slow, and the suggestive non monotonic behaviour of the internal and
external spreads. Initially, in the fast phase, the centers approach rapidly and the
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internal (resp. external) spreads increase (resp. decrease) slightly on the right and
significantly on the left. Then, in the slow phase, the centers keep on approaching
very slowly while the internal (resp. external) spreads gradually decrease (resp.
increase). In this case the dynamical pattern is more complex for the left spreads,
with two crossings during the slow phase.
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Fig. 10 Fuzzy dynamics acting on two different isosceles triangles
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Fig. 11 Corresponding time plots of centers and spreads

• These figures illustrate the dynamics of the fuzzy soft consensus model as ap-
plied to one crisp and one fuzzy initial preferences (isosceles triangle the latter)
centered at the usual values 0.3 and 0.7. Once again, notice the two dynamical
phases, initially fast and then slow, and the suggestive non monotonic behaviour
of the internal and external spreads. Initially, in the fast phase, the centers ap-
proach rapidly and the internal (resp. external) spreads increase (resp. stay null
or decrease) slightly on the right and significantly on the left. Then, in the slow
phase, the centers keep on approaching very slowly while the internal (resp. ex-
ternal) spreads gradually decrease (resp. increase). In this case the dynamical
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pattern is more complex for the left spreads, with one crossing between the two
phases and another one during the slow phase.
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Fig. 12 Fuzzy dynamics acting on one crisp preference and one isosceles triangle

0 200 400 600 800 1000
time0.3

0.4

0.5

0.6

0.7
value

(a) Center plot
200 400 600 800 1000

time0.00

0.02

0.04

0.06

0.08

0.10

value

(b) Left spread plot
200 400 600 800 1000

time0.00

0.02

0.04

0.06

0.08

0.10

0.12

value

(c) Right spread plot

Fig. 13 Corresponding time plots of centers and spreads

• These figures illustrate the dynamics of the fuzzy soft consensus model as ap-
plied to one crisp and one fuzzy initial preferences (right triangle facing inward
the latter) centered at the usual values 0.3 and 0.7. Once again, notice the two
dynamical phases, initially fast and then slow, and the suggestive non monotonic
behaviour of the internal and external spreads. Initially, in the fast phase, the cen-
ters approach rapidly and the internal (resp. external) spreads increase (resp. stay
null) slightly on the right and significantly on the left. Then, in the slow phase,
the centers keep on approaching very slowly while the internal (resp. external)
spreads gradually decrease (resp. increase).



176 M. Fedrizzi et al.

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0
Μ�x�

(a)
0.2 0.4 0.6 0.8 1.0

x

0.2

0.4

0.6

0.8

1.0
Μ�x�

(b)

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0
Μ�x�

(c)
0.2 0.4 0.6 0.8 1.0

x

0.2

0.4

0.6

0.8

1.0
Μ�x�

(d)

Fig. 14 Fuzzy dynamics acting on one crisp preference and one right triangle facing inward

0 200 400 600 800 1000
time0.3

0.4

0.5

0.6

0.7
value

(a) Center plot

200 400 600 800 1000
time

�0.01

0.00

0.01

0.02

0.03

0.04

0.05

value

(b) Left spread plot
200 400 600 800 1000

time0.00

0.02

0.04

0.06

0.08

0.10

0.12

value

(c) Right spread plot

Fig. 15 Corresponding time plots of centers and spreads

• These figures illustrate the dynamics of the fuzzy soft consensus model as ap-
plied to one crisp and one fuzzy initial preferences (right triangle facing outward
the latter) centered at the usual values 0.3 and 0.7. Once again, notice the two
dynamical phases, initially fast and then slow, and the suggestive non monotonic
behaviour of the internal and external spreads. Initially, in the fast phase, the cen-
ters approach rapidly and the internal (resp. external) spreads increase (resp. stay
null or decrease) significantly on both sides. Then, in the slow phase, the cen-
ters keep on approaching very slowly while the internal (resp. external) spreads
gradually decrease (resp. increase). In this case the dynamical pattern is more
complex for the left spreads, with one crossing between the two phases and an-
other one during the slow phase.
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Fig. 16 Fuzzy dynamics acting on one crisp preference and one right triangle facing outward
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Fig. 17 Corresponding time plots of centers and spreads

• These figures illustrate the dynamics of the fuzzy soft consensus model as ap-
plied to the special case of two fuzzy initial preferences (right triangles facing
opposite to each other) centered at 0.5 and 0.6. Once again, notice the two dy-
namical phases, initially fast and then slow, and the suggestive non monotonic
behaviour of the centers. Initially, in the fast phase, the centers move rapidly to-
wards each other, crossing and then moving away from each other. Then, in the
slow phase, the centers adjust by slowly re-approaching, converging towards a
nearly common final value. This is another interesting effect of the non linear
dynamics of the fuzzy soft consensus model, due to the combined effect of the
two mechanisms of consensus reaching and opinion changing aversion as they
act on centers and spreads of the fuzzy triangular preferences.
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Fig. 18 Fuzzy dynamics acting on two right triangles facing opposite to each other
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6 Concluding Remarks

We have illustrated by means of numerical simulations the dynamical behaviour
of the fuzzy soft consensus model, in which the individual preferences are repre-
sented by triangular fuzzy numbers. A selection of these simulations is presented
in section 5. The computer simulations provide clear evidence that the fuzzy soft
consensus model exhibits interesting non standard opinion changing behaviour in
relation to the original crisp version of the model. Future research should explore
the particular features of the fuzzy soft consensus model and demonstrate the po-
tential of the methodology as an effective support for the modelling of consensus
reaching in multicriteria and multiagent decision making.
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Fuzzy Preference Relations Based on Differences

János Fodor

Abstract. In this paper we introduce quaternary fuzzy relations in order to describe
difference structures. Three models are developed and studied, based on three dif-
ferent interpretations of an implication. Functional forms of the quaternary relation
are determined by solutions of functional equations of the same type.

1 Introduction

Preference modelling is a fundamental step of (multi-criteria) decision making, op-
erations research, social choice and voting procedures, and has been studied exten-
sively for several years. Typically, three binary relations (strict preference, indiffer-
ence, and incomparability) are built up as a result of pairwise comparison of the
alternatives. Then a single reflexive relation (the weak preference, or large prefer-
ence) is defined as the union of the strict preference and indifference relations. All
the three previous binary relations can be expressed in terms of the large preference
in a unique way. Therefore, it is possible (and in fact, this is typical) to start from a
reflexive binary relation , and build up strict preference, indifference and incompa-
rability from it.

Some important classes of binary preferences have also been studied with respect
to their representation by a real function (evaluation) of the alternatives [9]. As an
illustration, consider a finite set of alternatives A, a binary relation P on A. Then
there is a real-valued function f on A satisfying

aPb ⇐⇒ f (a) > f (b) (1)

if and only if P is asymmetric and negatively transitive. Such a P is called a strict
weak order. If P is strict preference then a function f satisfying (1) is called a utility
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function [9]. In this situation we have an ordinal scale: transformations ϕ : f (A) →
R where ϕ ◦ f is also satisfies (1) are the strictly increasing functions.

The representation (1) arises in the measurement of temperature if P is interpreted
as “warmer then”. According to the previous result, temperature is an ordinal scale
— although it is well known that temperature is an interval scale. There is no con-
tradiction: one can obtain this result by using judgments of comparative temperature
difference.

To make this precise, one should introduce a quaternary relation D on a set A of
objects whose temperatures are being compared. The relation abDuv is interpreted
as the difference between the temperature of a and the temperature of b is judged
to be greater than that between the temperature of u and the temperature of v. We
would like to find a real-valued function f on A such that for all a,b,u,v ∈ A we
have

abDuv ⇐⇒ f (a)− f (b) > f (u)− f (v). (2)

The main aim of the present paper is to study whether it is possible to extend, in
a rational way, this approach to the use of a quaternary fuzzy relation on A. Note
that the classical binary preference theory has successfully been extended in [4], and
developed significantly further since that time (see the overview [2]).

The paper is organized as follows. In the next section we briefly summarize some
results on difference measurement, especially on the representation (2). Some of
these observations will guide us in the study of fuzzy extensions in Section 3. We
will deal with the non-strict version W of D and investigate three models based on
different forms of fuzzy implications. The functional form of an appropriate fuzzy
difference operator will be given through solving some functional equation in each
case. In Section 4 we study the strict quaternary relation D and the indifference E ,
based on W . We close the paper with concluding remarks.

2 Difference Measurement

In classical measurement theory the following situation has been studied in full
details. The interested reader can find the notions and results in [9].

Let A be a set and D be a quaternary relation on A. In addition to the temperature
interpretation, abDuv makes sense also in preference: I like a over b more than I
like u over v. We write D(a,b,u,v) or, equivalently, abDuv. If the representation (2)
holds then it is called (algebraic) difference measurement.

A representation theorem is known for (2). To this end we need to introduce some
axioms. Before doing so, we define two quaternary relations E and W based on D
as follows:

abEuv ⇐⇒ [not abDuv and not uvDab], (3)

abWuv ⇐⇒ [abDuv or abEuv]. (4)
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Notice that in case of (2) we have

abEuv ⇐⇒ f (a)− f (b) = f (u)− f (v), (5)

abWuv ⇐⇒ f (a)− f (b) ≥ f (u)− f (v). (6)

Definition 1. Let a1,a2, . . . ,ai, . . . be a sequence of elements from A. It is called
a standard sequence if ai+1aiEa2a1 holds for all ai,ai+1 in the sequence, and
a2a1Ea1a1 does not hold.

Definition 2. A standard sequence is called strictly bounded if there exist u,v ∈ A
such that uvDaia1 and aia1Dvu for all ai in the sequence.

AXIOM D1. Suppose R is defined on A×A by

(a,b)R(u,v) ⇐⇒ abDuv.

Then (A×A,R) is a strict weak order (i.e., it is asymmetric and negatively transi-
tive).

AXIOM D2. For all a,b,u,v ∈ A, if abDuv then vuDba.

AXIOM D3. For all a,b,c,a′,b′,c′ ∈ A, if abWa′b′ and bcWb′c′ then acWa′c′.

AXIOM D4. For all a,b,u,v ∈ A, if abWuv holds and uvWxx holds, then there are
x,y ∈ A such that axEuv and ybEuv.

AXIOM D5. Every strictly bounded sequence is finite.

Definition 3. A relational system (A,D) satisfying axioms D1 through D5 is called
an algebraic difference structure.

The following result guarantees the existence of an appropriate real-valued function
f , see [8].

Theorem 1 (Krantz et al. (1971)). If (A,D) is an algebraic difference structure then
there is a real-valued function f on A so that for all a,b,u,v ∈ A, representation (2)
holds.

In the next theorem, necessary and sufficient conditions are given when A is finite.
We list the axioms first. For more details see [10].

AXIOM SD1. For all a,b,u,v ∈ A, abWuv or uvWab.
AXIOM SD2. For all a,b,u,v ∈ A, abDuv implies vuDba.
AXIOM SD3. If n > 0 and π and σ are permutations of {0,1, . . . ,n− 1}, and if

aibiWaπ(i)bσ(i) holds for all 0 < i < n, then aπ(0)bσ(0)Wa0b0 holds; this is true for
all a0,a1, . . . ,an−1,b0,b1, . . . ,bn−1 ∈ A.

Theorem 2 (Scott (1964)). Suppose A is a finite set, D is a quaternary relation on A,
and E and W are defined by Eqs. (3) and (4). Then Axioms SD1–SD3 are necessary
and sufficient for there to be a real-valued function f on A satisfying (2).
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As Köbberling writes in [7]: Preference differences play a key role in obtaining
cardinal utility. They entail that an individual is not only able to decide which of
some available commodity bundles is the most preferred, but also, the individual is
able to compare the improvement between a first and a second commodity bundle
to the improvement between a third and a fourth commodity bundle. Such compa-
rable preference differences, accompanied by suitable axioms, are suf?cient to give
cardinal utility.

Closing this section, we collect here some properties valid in the classical case.
We would like to keep as many as possible for the fuzzy extension in the next
section.

For all a,b,u,v,x,y ∈ A we have

W1. W (a,b,u,v) = W (a,u,b,v)
W2. W (a,b,u,v) = W (v,u,b,a)
W3. W (a,b,x,x) = W (a,b,y,y)
W4. W (a,b,u,v) implies W (a,b,x,y) or W (x,y,u,v).

3 Fuzzy Extensions

Our aim is to extend (6) to allow W to be a quaternary fuzzy relation. We fuzzify W
and not D because of technical reasons on one hand. On the other hand, this way
we can follow traditions in building preferences starting from a weak relation, and
defining its strict part later on (see [4]).

Therefore, let I be any fuzzy implication, and Δ be any fuzzy difference operator.
Then, define W by

W (a,b,u,v) = I(Δ( f (u), f (v)),Δ( f (a), f (b))), (7)

for any a,b,u,v ∈ A.
At this formulation stage we require only the following general properties of I

and Δ :

I1. I is a function from [0,1]2 to [0,1];
I2. I is nonincreasing in the first argument;
I3. I is nondecreasing in the second place;
I4. I(0,0) = I(0,1)= I(1,1) = 1, I(1,0) = 0 (that is, I an implication on {0,1}).

D1. Δ is a function from R
2 to [0,1];

D2. Δ is nondecreasing in the first argument;
D3. Δ is nondecreasing in the second place.

Notice that in the classical case (6) we have

I(u,v) =
{

1 if u ≤ v,
0 if u > v.

, and Δ(x,y) = x− y,

where u,v and x,y can be any real number, not necessarily restricted to be in [0,1].
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In the sequel we study three models of the implication I. In any case, we restrict
our investigations to implications defined from continuous Archimedean t-norms or
t-conorms, or representable uninorms.

3.1 Model 1: The Use of R-Implications

Suppose now that I = IT is the R-implication defined from a continuous
Archimedean t-norm T . An additive generator of T is denoted by t. Then IT has
the following functional form:

IT (x,y) = t−1(max{t(y)− t(x),0}). (8)

Therefore, the quaternary fuzzy relation W is given by

W (a,b,u,v) = t−1(max{t(Δ( f (a), f (b)))− t(Δ( f (u), f (v))),0}). (9)

It is obvious now that property W1 is formulated as follows:

Δ( f (u), f (v)) ≤ Δ( f (a), f (b)) ⇐⇒ Δ( f (b), f (v)) ≤ Δ( f (a), f (u)),

and for Δ( f (u), f (v)) > Δ( f (a), f (b)) we have

t(Δ( f (a), f (b)))− t(Δ( f (u), f (v))) = t(Δ( f (a), f (u)))− t(Δ( f (b), f (v))).

In order to avoid complicated and heavy notation, we use simply the letters a,b,u,v,
etc. to denote the function values f (a), f (b), f (u), f (v). This can be done without
any confusion.

Thus, the last equation can also be written as

t(Δ(a,b))+ t(Δ(b,v)) = t(Δ(a,u))+ t(Δ(u,v)). (10)

For obtaining the general solution of this equation for Δ , we apply the following
theorem.

Theorem 3. The general solution of

F(x,y)+ F(y,z) = F(x,u)+ F(u,z) (11)

is
F(x,y) = h(y)−h(x)+C, (12)

where h is any real function and C is any constant.

Proof. Notice first that (11) implies F(x,x) = F(z,z) for all x,z. Indeed, let y = x,
u = z in (11). Then we get F(x,x)+ F(x,z) = F(x,z)+ F(z,z), whence F(x,x) =
F(z,z) follows. Denote this common value by C.
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Introducing a new function G by

G(x,y) := F(x,y)−C,

we can see that G satisfies

G(x,y)+ G(y,z) = G(x,z). (13)

Indeed, on the one hand we have

G(x,y)+ G(y,z) = F(x,y)+ F(y,z)−2C.

On the other hand, G(x,z) = F(x,z)−C. Since C = F(z,z), we get that (13) holds.
The general solution of (13) is

G(x,y) = h(y)−h(x),

see Aczél [1], Theorem 1 in Section 5.1.2. Hence we get our statement. 
�
Since equation (10) is just that type in the theorem, we get the following result about
Δ .

Theorem 4. Assume that the implication I is represented by equation (8), where t
is any additive generator of a continuous Archimedean t-norm. Define a quater-
nary fuzzy relation W by (9). Then W satisfies condition W1 (i.e., W (a,b,u,v) =
W (a,u,b,v)) if and only if Δ is of the following form:

Δ(a,b) = t−1(h(b)−h(a)+C), (14)

where h is an appropriately chosen non-decreasing function and C is any positive
constant.

In this case the quaternary relation W can be written as follows:

W (a,b,u,v) = t−1(max{h(u)−h(v)−h(a)+ h(b),0}). (15)

Proof. Because (10) holds, we can apply Theorem 3 with F(x,y) = t(Δ(x,y)). Thus,
we must have

t(Δ(a,b)) = h(b)−h(a)+C.

We have to guarantee that this equation is solvable. That is, the value h(b)−h(a)+C
must be in the range of the additive generator t. That range is either the set of non-
negative real numbers, or an interval of [0,ω ], with a finite ω .

In any case, let α < β be real numbers, and choose C := β −α . Let h be a
function from R to the bounded interval [α,β ]. This choice squezees the value of
h(b)−h(a)+C in the interval [0,2C].

If the range of t is the set of non-negative real numbers then C can be any positive
number. If the range of t is [0,ω ], then any C ≤ ω/2 is a good choice.
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To ensure monotonicity of Δ (see conditions D2 and D3 above), the function h
must be non-decreasing.

After these choices of h and C the form of Δ follows. Substituting this into equa-
tion (9) we obtain the rest of the proof. 
�
Notice the effect of the choice of C to the membership values (preference intensi-
ties). If the range of t is [0,ω ], then C < ω/2 implies we cannot reach zero degree
of preference. This is always the case when t(1) = +∞. The lowest membership
degree can be arbitrarily close to zero, but it is always positive.

Fortunately, the quaternary relation W defined in the previous theorem satisfies
all the four properties analogous to the classical case, as we prove it now.

Theorem 5. The quaternary fuzzy relation W defined in (15) satisfies all the follow-
ing properties:

FW1. W (a,b,u,v) = W (a,u,b,v)
FW2. W (a,b,u,v) = W (v,u,b,a)
FW3. W (a,b,x,x) = W (a,b,y,y)
FW4. W (a,b,u,v) ≤ max{W (a,b,x,y),W (x,y,u,v)}.

Proof. FW1: this was our starting point to determine the functional form of W .
FW2 and FW3: Obvious from (15).
FW4: Suppose it is not true. Then there exist a,b,u,v,x,y such that W (a,b,x,y) <

W (a,b,u,v) and W (x,y,u,v) <W (a,b,u,v). Taking into account the functional form
of W , these inequalities imply that W (a,b,x,y) < 1, W (x,y,u,v) < 1, and thus

h(x)−h(y)−h(a)+ h(b)> 0 and h(u)−h(v)−h(x)+ h(y)> 0.

These two inequalities together imply that

h(u)−h(v) > h(x)−h(y) > h(a)−h(b), (16)

so we have
h(u)−h(v)−h(a)+ h(b)> 0.

Thus, W (a,b,u,v) = t−1(h(u)−h(v)−h(a)+h(b)). So W (a,b,x,y) < W (a,b,u,v)
and W (x,y,u,v) <W (a,b,u,v) hold if and only if h(u)−h(v)−h(a)+h(b)< h(x)−
h(y)−h(a)+h(b) and h(u)−h(v)−h(a)+h(b)< h(u)−h(v)−h(x)+h(y). These
strict inequalities imply that

h(u)−h(v) < h(x)−h(y) < h(a)−h(b),

which contradicts to (16). This proves the theorem. 
�
Example. We would like to show an example. Consider the Łukasiewicz t-norm
TL(x,y) = max{x + y− 1,0}, which has an additive generator t(x) = 1− x, so the
inverse is t−1(x) = 1− x (x ∈ [0,1]). The range of t is [0,1], so let α = 0, β = 1,
C = 1/2, and

h(x) =
ex

1 + ex (x ∈ R).
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Then, the quaternary fuzzy relation W has the following form:

W (a,b,u,v) = 1−max

{
eu

1 + eu −
ev

1 + ev −
ea

1 + ea +
eb

1 + eb ,0

}
.

3.2 Model 2: The Use of S-Implications

Another broad class of fuzzy implications is based on a t-conorm S and a strong
negation N:

IS,N(x,y) = S(N(x),y) (x,y ∈ [0,1]). (17)

With the help of an S-implication, we can define the quaternary relation W as
follows:

W (a,b,u,v) = S(N(Δ(u,v)),Δ(a,b)). (18)

Suppose that S is a continuous Archimedean t-conorm with additive generator s (that
is, we have S(x,y) = s−1(min{s(x)+ s(y),s(1)}), and N(x) = ϕ−1(1−ϕ(x)). Then
(18) can be rewritten as

W (a,b,u,v) = s−1(min{s(N(Δ(u,v)))+ s(Δ(a,b)),s(1)})
= s−1(min{s(ϕ−1(1−ϕ(Δ(u,v))))+ s(Δ(a,b)),s(1)})
= s−1(min{g(1−Γ (u,v))+ g(Γ (a,b)),s(1)}), (19)

where g(x) = s(ϕ−1(x)) and Γ (a,b) = ϕ(Δ(a,b)).
Now we formulate again property FW1 (see in Theorem 5) with the actual func-

tional form of W :

min{g(1−Γ (u,v))+ g(Γ (a,b)),s(1)} = min{g(1−Γ (b,v))+ g(Γ (a,u)),s(1)}.
(20)

From this equality it follows that g(1−Γ (u,v))+ g(Γ (a,b)) < s(1) if and only if
g(1−Γ (b,v))+ g(Γ (a,u)) < s(1). In this case (20) reduces to

g(1−Γ (u,v))+ g(Γ (a,b)) = g(1−Γ (b,v))+ g(Γ (a,u)). (21)

Theorem 6. Suppose s is an additive generator of a continuous Archimedean t-
norm, and W is represented as in (18). Then property FW1 implies that

Δ(a,b) = s−1(h(b)−h(a)+C), (22)

where h is an appropriately chosen non-increasing function and C is a positive
constant.

In this case

W (a,b,u,v) = s−1(min{sNs−1(h(v)−h(u)+C)+ h(b)−h(a)+C,s(1)}). (23)

Proof. Notice that property FW3 implies Γ (x,x) = Γ (y,y), and hence Δ(x,x) =
Δ(y,y). Denote this joint value by C.
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Let a = b and u = v in (21). We obtain

g(1−C)+ g(C) = g(1−Γ (a,u))+ g(Γ (a,u)).

Using this equality, substitute g(1−Γ (u,v)) and g(1−Γ (b,v)) with the correspond-
ing expressions to obtain

g(Γ (a,b))− [g(C)+ g(1−C)−g(Γ(b,v))] = g(Γ (a,u))− [g(C)+ g(1−C)
−g(Γ (u,v))],

whence we get equation (11) for F with F(a,b) = g(Γ (a,b)) now. Thus, from The-
orem 3 we know that g(Γ (a,b)) = h(b)−h(a)+C. By definition of g and Γ we get
g(Γ (a,b)) = s(Δ(a,b)), so we need to solve

s(Δ(a,b)) = h(b)−h(a)+C

for Δ .
First of all, Δ is non-decreasing in the first variable and non-increasing in the

second one if and only if h is a non-increasing function.
As in case of Theorem 4, we can guarantee the solvability of this equation by the

appropriate choice of function h and constant C.
The value h(b)−h(a)+C must be in the range of the additive generator s. That

range is either the set of non-negative real numbers, or an interval of [0,ω ], with a
finite ω .

In any case, let α < β be real numbers, and choose C := β −α . Let h be a
function from R to the bounded interval [α,β ]. This choice squezees the value of
h(b)−h(a)+C in the interval [0,2C].

If the range of s is the set of non-negative real numbers then C can be any positive
number. If the range of s is [0,ω ], then any C ≤ ω/2 is a good choice.

Thus Δ indeed has the form (22).
Transforming back everything to the original functions s and Δ , finally we obtain

the statement. 
�
As we stated, the form of W given in (23) is only necessary for having property
FW1. In fact, we can have it only in very special cases, when the t-conorm S is
nilpotent (i.e., when s(1) < ∞), and the strong negation N is generated also by s.
Suppose s(1) = 1. In this case we have

W (a,b,u,v) = s−1(min{sNs−1(h(v)−h(u)+C)+ h(b)−h(a)+C,s(1)})
= s−1(min{1− [h(v)−h(u)+C]+h(b)−h(a)+C,1})
= s−1(min{1−h(v)+ h(u)+ h(b)−h(a),1}).

Comparing this formula with the one coming from R-implications in equation (15),
one can see that they are different, even in the case when S and T are duals (i.e.,
when s(x) = t(1− x)).
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3.3 Model 3: The Implication Comes from a Representable
Uninorm

In our third model we start from a representable uninorm (see [5]), and use its resid-
ual implication [3] (which is indeed an implication satisfying properties I1–I4) in
the definition of W .

Let us recall that a uninorm is a function U : [0,1]× [0,1] → [0,1] which is
commutative, associative, nondecreasing, and has a neutral element e ∈ [0,1] (i.e.,
U(e,x) = x for all x ∈ [0,1]).

Representable uninorms can be obtained as follows. Consider e ∈]0,1[ and a
strictly increasing continuous [0,1] → R mapping g with g(0) = −∞, g(e) = 0 and
g(1) = +∞. The binary operator U defined by

U(x,y) = g−1(g(x)+ g(y)), if (x,y) ∈ [0,1]2 \ {(0,1),(1,0)},

and either U(0,1) = U(1,0) = 0, or U(0,1) = U(1,0) = 1, is a uninorm with neu-
tral element e (called representable uninorm). The function g is called an additive
generator of U .

In case of a uninorm U , the residual operator IU can be defined by

IU(x,y) = sup{z ∈ [0,1] |U(x,z) ≤ y}.

In some cases (for instance, when U is representable) IU is an implication.
It is easily seen that in case of a representable uninorm U with additive generator

function g the residual implication IU is of the following form [3]:

IU(x,y) =
{

g−1(g(y)−g(x)) if (x,y) ∈ [0,1]2 \ {(0,0),(1,1)}
1 , otherwise

. (24)

Then, the quaternary fuzzy relation W can be introduced as follows:

W (a,b,u,v)=
{

1 if (Δ(a,b),Δ(u,v))∈{(0,0),(1,1)},
g−1(g(Δ(a,b))−g(Δ(u,v))) otherwise.

.

(25)
Then, condition FW1 implies the functional equation

g(Δ(a,b))+ g(Δ(b,v)) = g(Δ(a,u))+ g(Δ(u,v)), (26)

similarly to the previous two occurrences of the same type.

Theorem 7. Assume that the implication I is represented by equation (24), where g
is any additive generator of a representable uninorm. Define a quaternary fuzzy re-
lation W by (25). Then W satisfies condition FW1 (i.e., W (a,b,u,v) = W (a,u,b,v))
if and only if Δ is of the following form:

Δ(a,b) = g−1(h(b)−h(a)+C), (27)

where h is any non-increasing function and C is any constant.
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In this case the quaternary relation W can be written as follows:

W (a,b,u,v) = g−1(h(u)−h(v)−h(a)+ h(b)). (28)

We emphasize that in the present case the equation

g(Δ(a,b)) = h(b)−h(a)+C

has solution without any restriction to h or C, because the range of g is R.

4 Strict Preference and Indifference

There exist axiomatic approaches to defining preference structures when we use bi-
nary fuzzy relations, see [4]. We try to apply those results in the present environment
of quaternary fuzzy relations.

We start with a simple observation. According to the semantical meaning of
abWuv in the crisp case, it is obvious that W can be considered as a binary rela-
tion on A×A. Thus, our task is easily completed.

First of all, recognize that W (as a binary relation on A×A) is strongly complete:
for any a,b,u,v∈A we have either abWuv, or uvWab. Therefore, any axiomatization
leads to the following unique formula for the strict preference D and indifference E
(see [4]):

D(a,b,u,v) = N(W (u,v,a,b)),
E(a,b,u,v) = min(W (a,b,u,v),W (u,v,a,b)),

where N is a strong negation.

5 Conclusion

We have developed three approaches to quaternary fuzzy relations modelling differ-
ence measurement. Three simple formulas have been obtained which may be useful
and attractive also in applications. We hope that the study can also be applied to
fuzzy weak orders, where representations analogous to (1) could be proved only in
two particular cases.
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Indices of Collusion among Judges and an  
Anti-collusion Average 

Cesarino Bertini,* Gianfranco Gambarelli, and Angelo Uristani  

Abstract. We propose two indices of collusion among Judges of objects or events 
in a context of subjective evaluation, and an average based on these indices. The 
aim is manifold: to serve as a reference point for appeals against the results of vot-
ing already undertaken, to improve the quality of scores summarized for awards 
by eliminating those that are less certain, and, indirectly, to provide an incentive 
for reliable evaluations. An algorithm for automatic computation is supplied. The 
possible uses of this technique in various fields of application are pointed out: 
from Economics to Finance, Insurance, Arts, artistic sports and so on.  

Keywords: Average, Collusion, Index, Judges, Awards, Scores, Voting. 

1   Introduction   

In this paper we propose two indices of collusion among Judges of objects or 
events in a context of subjective evaluation, and an average based on these indi-
ces. The aim is manifold: to serve as a reference point for appeals against the re-
sults of voting already undertaken, to improve the quality of scores summarized 
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for awards by eliminating those that are less reliable and, indirectly, to provide  
an incentive for reliable evaluations. An algorithm for automatic computation is 
supplied. 

This method can be applied to contexts in which those involved in judging are 
also involved in the outcome of their own evaluations: in Economics (e.g., project 
evaluation and problems of estimate), in Finance (e.g., company quotation), in the 
field of Insurance (e.g., providing customized insurance policies), in the Arts (e.g., 
judging singers and musicians whose record labels have links of some kind with 
the judges), in artistic sports (Rhythmic Gymnastics, Figure Skating, Diving) and 
so on. 

2   Current Methods 

A trait shared by a number of rules for data synthesis is that of giving little or no 
weight to data distribution tails, as the more central data are considered to be more 
reliable. Among the classic methods that drastically eliminate tail data, the 
trimmed means (and in particular the median) occupy a privileged position in 
cases where the need is felt to give those involved in subjective judgements an in-
centive to make correct evaluations so as to avoid their awards being dismissed. 
There is a downside to the aforementioned techniques when distribution is asym-
metrical, since they may well eliminate reliable awards while taking unreliable 
ones into account. To avoid such disadvantages some weighted means can be 
used. The Coherent Majority Average in particular (Gambarelli 2008) is especially 
suited to cases where the set of possible scores is such that the distance between 
two consecutive numbers is constant. The correct application of this average relies 
on fair evaluations being supplied by a majority of judges. However, in cases 
where the adjudicating body is divided into sub-commissions, it may happen that a 
given sub-commission contains a number of colluding judges greater than the ma-
jority of this sub-commission. In such cases it is impossible to identify those in-
volved within the context of a single evaluation, although conclusions may be 
drawn from the overall scores awarded during the entire process. 

3   The New Idea 

The new idea consists of constructing, once voting has taken place, a collusion index 
to be assigned to each subset of the set of judges. On the basis of this coalitional in-
dex, an individual collusion index is created for each judge (corresponding to the 
maximum coalitional index of the subsets to which each judge belongs). The set of 
judges is then subdivided into subsets with various levels of reliability (in terms of 
collusion). Finally, an average is calculated using only awards assigned by those 
judges considered to be more reliable in the context of this procedure.  

Example 
There are seven projects to be judged, proposed by six teams. The first team pro-
poses two projects; all the other teams propose one each. There are four judges in 
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all and they belong to the first four teams. Each adjudicating commission is made 
up of three judges, who must award each project a score from 1 to 10. Let us sup-
pose that the scores awarded to the seven projects by the four judges are those 
shown in Table 1. This data gives rise to the impression that two judges (the third 
and fourth) are colluding among themselves, inasmuch as they award reciprocally 
high scores while awarding low scores to the others. This prompts the question as 
to whether a method exists to identify this supposed collusion objectively, and to 
take it into account to construct a fair average. 

Table 1 The awards of the example 

Judges 
Teams Projects 

1 2 3 4 

I 7 7 4 - 
1 

II 7 7 - 4 

2 I - 7 4 4 

3 I - 8 10 9 

4 I 6 - 9 9 

5 I 7 7 4 - 

6 I 7 6 - 5 

4   The Data 

Let O be a finite ordered set whose elements (to be called "objects") are shared in 
n (≥ 2) ordered classes (called "teams"). We call T the set of these classes and t1, 
..., tn the elements of T. 

Let J be an ordered set of n elements (the "judges") in biunivocal correspon-
dence with T. We call j1, ..., jn the elements of J.  

Let J  be an ordered set of u elements (the "judges" lacking in corresponding 
objects) having empty intersection with J. We call j1, ..., ju  the elements of J. 

We define P the set of non-trivial parts of J∪J. For every p ∈ P we call p'  the 
complementary set of p with respect to P. 

Let O be a finite ordered (even empty) set whose elements (to be called “ob-
jects lacking in corresponding judges") are shared in n (≥ 0) classes. We call T the 
(even empty) set of these classes and tn+1, ..., tn+n the ordered  elements of T.    

Let Π  be a finite set of rational positive numbers (the "points"). 

Remark. The use of positive scores is justified by the need to avoid null denomi-
nators. Obviously, suitable transformations may be applied in the case of voting 
systems that include zero.  

We call a ("award") a function defined on (J∪J) ×(T∪T)×(O∪O), taking values 
on Π ∪{∅}, constructed as follows, on the basis of scores awarded by judges:  
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We assume that each object receives at least one score and each judge gives at 
least one score. 

 

Follow-up to our Example. 
• n = 4 and n = 2;  
• O is made up of five projects: o1I and o1II  both belonging to team t1; o2I belong-

ing to t2, and so on, up to o4I belonging to t4; 
• O is made up of two projects: o5I belonging to team t5 and o6I belonging to t6; 
• J  =  (j1,  j2, j3, j4); 
• J is empty; 
• P = {1, 2, 3, 4, 12, 13, 14, 23, 24, 34, 123, 124, 134, 234}; 
• Π  is the set of natural numbers from 1 to 10;  
• the scores are: a(1,1,1) = 7, a(1,1,2) = 7, a(1,2,1) = ∅, a(1,3,1) = ∅, a(1,4,1) = 

6 and so on, up to a(4,6,1) = 5.  

5   The Means 

To determine a coalitional collusion index, comparisons of the various arithmetic 
means of the scores supplied by each group of judges will be necessary: 

 

• with objects whose classes correspond to such judges, and 
• with other objects.  

We start giving the following definitions, for every twin x, y ∈ P: 
• x is the union between O and all objects belonging to all classes corresponding 

to x; 
• k(x, y) is the cardinality of the set of the numeric scores that all judges belong-

ing to x assign to all objects belonging to all classes corresponding to y; 

• 
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Convention. For simplicity, we will use the notation "abc..." to indicate the set {a, 
b, c, ...}, when it does not give rise to misunderstandings.  
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Follow-up to our Example. 
For simplicity we give in Table 2 detailed illustrations only of cases involving p = 
34 (→  p' = 12). 

Table 2 Detailed illustrations of cases involving p = 34 

m(p, p) = m(34, 34) = (10+9+9+9)/4 = 37/4 = 9.25 
m(p', p)  = m(12, 34) = (6+8)/2 = 7 = 7.00 

m(p, p')  = m(34, 1256) = (4+4+4+4+4+5)/6 = 25/6 = 4. 61  

m(p', p') = m(12, 1256) = (7+7+7+7+7+7+7+7+6)/9 = 62/9 = 6. 8  

6   The Coalitional Collusion Index 

For every set of judges p∈P we define: 
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The first index compares the average scores awarded by judges belonging to p to 
the objects belonging to their team, with the average scores that other judges have 
awarded to the same objects. The greater this index, the more the judges con-
cerned are in agreement among themselves. In the examined case the index value 
is m(34, 34) / m(12, 34) =  37/28.  

The second index compares the average scores awarded by judges belonging to 
p to the objects belonging to other teams, with the average scores that other judges 
have awarded to the same objects. The lower this index, the more the relevant 
judges are hostile to each other. In the examined case the index value is m(34, 
1256) / m(12, 1256) = 75/124. 

We call "coalitional collusion index of p" the ratio between the valuation index 
of p and the valuation index of p'.  

If all m are positive, then the coalitional collusion index of p is: 
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Elsewhere, the first and/or the second factor of the above product is 1. 
This index encompasses a tendency towards solidarity among the judges of p, 

with hostility towards the other judges. Low values of r(p) may be interpreted in 
terms of a lack in global collusion among the judges of p.  

In our example the coalitional collusion index of p is r(34) = (37/4)⋅(62/9) / 
(7⋅25/6) = 1147/525.  
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7   The Reliable Majority Assumption  

It may happen in reality that a set of judges constituting a majority in a sub-
commission have all colluded among themselves. But in our study we have to ex-
clude the case that the collusion happens for sets of judges forming a majority in the 
commission as a whole: otherwise the solution to our problem no longer lies within 
the rules of computation.  Thus what is given below is based on the following: 

Assumption. There is no global collusion between all judges of every group con-
stituting a majority in the commission as a whole. 

We define P’ as the collection of the sets of judges having a cardinality smaller 
than, or equal to, n/2.  

Then we will consider that the only possible colluded coalitions are sets of P’. 

8   The Individual Collusion Index 

For every j∈J∪J we call c(j) ("individual collusion index of j") the maximum 
value of r(p) for all p∈P’ to which judge j belongs. 

Follow-up to our Example. 
n/2=2,  
P’ = {(1), (2), (3), (4), (12), (13), (14), (23), (24), (34)}. 

All coalitional collusion indices, with relevant components, are given in Table 3.  
Regarding individual collusion indices, the maximum value of r is 1147/525 ≈ 

2.18 (corresponding to 34), while the second r, in order of size, is 161/82 ≈ 1.96 
(corresponding to 12). Therefore c(1) = c(2) = 161/82; c(3) = c(4) = 1147/525. 

Table 3 The computation of the coalitional collusion indices 

Sets of judges  

1 2 3 4 12 13 14 23 24 34 

m(p, p) 7 7 10 9 7 7 33/5 29/4 20/3 37/4 

m(p', p') 41/6 88/13 90/14 46/7 23/3 19/3 46/7 13/2 46/7 62/9 

m(p', p) 11/2 4 17/2 15/2 4 7 27/4 13/2 19/3 7 

m(p, p') 20/3 7 21/4 11/2 41/6 37/6 32/5 44/7 53/8 25/6 

r(p) 287/220 22/13 1200/833 552/385 161/82 38/37 759/756 203/176 7360/7049 1147/525 

≈ 1.30 1.69 1.44 1.43 1.96 1.03 1.003 1.15 1.04 2.18 

9   The Classes of Reliability of Judges 

A method has thus been established for assigning an unreliability index to each 
judge. This index may be used directly (for example, to weight the scores), or  
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indirectly, to establish thresholds for less reliable judges. The latter use is espe-
cially suited to cases where an incentive for judges to give correct scores is 
deemed desirable, if a drastic exclusion of their evaluations is to be avoided. From 
here on, this will form the focus of our study. We shall begin by grouping judges 
into classes of equal individual collusion index. 

We call C1  ("judges at the first level of reliability") the subset of J∪J made up 
of all j such that c(j) is the minimum. For each integer h>1 we call Ch  ("judges at 
the h-th level of reliability") the set made up of all j ∈ (J∪J) \ (C1∪...∪ Ch-1)  such 
that c(j) is the minimum. 

10   The Anti-collusion Average 

Now we need to find a criterion to determine which judges provide scores that are 
to be used (in this context in fact we exclude the scores of all other judges, to pro-
vide incentives for proper assessments). Of course we will use the scores of all 
judges of class C1 i.e. at the first level of reliability. As for the other classes, we 
believe that a good compromise between representativeness and reliability is the 
set of best reliable classes, such that their total cardinality does not exceed half of 
the judges. Only in the case in which, using this selection, an object is lacking in 
evaluations, we  consider, among the remaining classes, the one with the maxi-
mum level of reliability which is able to solve the problem. 

We define: 
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The "anti-collusion average" (or, simply, "ACA") of each object o is the arithme-
tic mean of the scores that have been assigned to o by all judges belonging to Ro. 

Follow-up to our Example. 
C1 = {1, 2} (c ≈ 1.96), C2 = {3, 4} (c ≈ 2.18) and Ch = ∅ for all h>2. Ro = {1, 2} 
for all objects and therefore only the related scores are used to calculate the ACA. 
Table 4 gives the result of this calculation, compared with the arithmetic mean and 
the median. 
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Table 4 Anti-Collusion Average and corresponding ranking 

 Average  Ranking   

Project Ro  
ACA 

Arithm.

mean 
Median

 Order 
ACA 

Arithm. 

mean 
Median 

1I C1  7 6 7  1 3 3 3, 4 

1II C1  7 6 7  2 1I, 1II, 2, 5 4 - 

2 C1  7 5 4  3 - 1I, 1II, 5, 6 1I, 1II, 5 

3 C1  8 9 9  4 - - - 

4 C1  6 8 9  5 - - - 

5 C1  7 6 7  6 6 - 6 

6 C1  6.5 6 6  7 4 2 2 

 
Notice that the ranking corresponding to the ACA puts the fourth object in last 

place, while the other two averages had instead put it among the first two places.  

11   An Algorithm 

An algorithm for calculating the ACA is shown in the Appendix. The main char-
acteristics are summarized below. 

 

Input:  
• the table of the awards;  

Output:  
• the ordered coalitional and individual collusion indices; 
• the ACA; 
• the ACA ranking with those of the arithmetic mean and median. 

 
Procedure: 

• Read and write the input data; 
• Form all the coalitions having cardinality from 1 to l, where l is the largest in-

teger smaller than or equal n/2; 
• For each coalition, calculate the coalitional collusion index r; 
• For each judge, calculate the individual collusion index c; 
• On the basis of the individual collusion index, form the sets Ck of judges with 

the same c; 
• Calculate the set Ro; 
• For each object o, calculate the ACA; 
• Write the output data. 

Computational time increases exponentially with an increase in the number of 
judges n, as the number of sub-sets to be considered is equal to 
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where l is the largest integer smaller than or equal to n/2. The calculation using a 
standard PC takes few instants for a dozen of judges.  

12   Conclusion 

In presenting our Example we said: "This data gives rise to the impression that 
two judges are colluding among themselves... This prompts the question as to 
whether a method exists to identify this supposed collusion objectively, and to 
take it into account to construct a fair average". As has been shown, the collusion 
indices here introduced and the ACA represent an answer to these questions.  
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geri for help in computations; Silvio Giove, Benedetto Matarazzo, Paolo Pianca and Marina 
Piazza for useful suggestions.  
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Appendix: Program Listing in Matlab  

Variables (As example): 
num_teams = 6; 
num_judges = 4; 
% the awards should be inserted as follows: first the projects belonging to E, then 
% those that belong to E_bar 
award = {[7 7 4 0;7 7 0 4]; [0 7 4 4]; [0 8 10 9]; [6 0 9 9]; [7 7 4 0]; [7 6 0 5]}; 
project_labels = {'1A' '1B' ' 2' ' 3' ' 4' ' 5' ' 6'}; 
E = [1 2 3 4]; 
E_bar = [5 6]; 
% G should be numbered with consecutive numbers after E_bar  
G = []; 
EG = [E G]; 
 

Function Main: 
function main(num_teams, num_judges, award, project_labels, EG, G, E_bar) 
% Display Input data 
disp('- Input Data ----------------------------'); 
str = sprintf(' %4.0f   ', num_teams); 
disp(strcat('Number of teams  : ', str)); 
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str = []; 
str = sprintf(' %4.0f    ', num_judges); 
disp(strcat('Number of judges : ', str)); 
str = []; 
disp(' '); 
yy = 00; 
for i = [1:1:size(award, 1)] 
    matt = cat(1, award{i, :}); 
    for j = [1:1:size(matt, 1)] 
        yy = yy + 1; 
        str = sprintf('%4.0f \t', matt(j, :)); 
        disp(strcat('Award project _', project_labels{yy}, ': ', str)); 
        str = []; 
    end 
end 
disp(' '); 
str = sprintf(' %4.0f    ', EG); 
disp(strcat('E  + G   : ', str)); 
str = []; 
str = sprintf(' %4.0f    ', E_bar); 
disp(strcat('E_bar : ', str)); 
str = []; 
disp('----------------------------------------'); 
disp(' '); 
 
% Evaluation of the possible juries 
P = []; 
P_label = []; 
for nrich = [1:1:floor(num_judges/2)] 
    P_temp = GenerateDistrib(nrich, num_judges); 
    A = P_temp; 
    for f = [1:1:num_judges] 
        [xf, yf]=find(P_temp == f); 
        A(xf, yf) = EG(f); 
    end 
    P = [P; GenerateDistrib(nrich, num_judges)]; 
    P_label = [P_label; A]; 
end  
 
for i = [1:1:size(P, 1)] 
    judge_p = find(P(i, :)>0); 
    judge_p_first = setdiff([1:1:num_judges], judge_p); 
    proj_p = find(P(i, [1:1:length(setdiff(EG, G))])>0); 
    proj_p_first = setdiff(setdiff(EG, G), proj_p); 
    proj_p_first_bar = union(E_bar, proj_p_first); 
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    if isempty(proj_p) 
        self = 1; 
    else 
        if (ff_mean(judge_p, proj_p, award) == 0)|| … 

( ff_mean(judge_p_first, proj_p, award)==0) 
            self = 1; 
        else 
            self = (ff_mean(judge_p, proj_p, award)/ … 

ff_mean(judge_p_first, proj_p, award)); 
        end 
    end 
    if (ff_mean(judge_p, proj_p_first_bar, award) == 0)|| … 

( ff_mean(judge_p_first, proj_p_first_bar, award)==0) 
        other = 1; 
    else 
        other = (ff_mean(judge_p, proj_p_first_bar, award)/ … 

ff_mean(judge_p_first, proj_p_first_bar, award)); 
    end 
 
    r(i) = self/other; 
end 
 
 
disp('- Coalitional Collusion Indices --------'); 
for jj = [1:1:length(r)] 
    [xs] = find(P_label(jj, :)>0); 
    ssss = P_label(jj, xs); 
    str = sprintf('%d, ', ssss); 
    stra = sprintf(': \t %s ', num2str(r(jj),'%2.3f')); 
    disp(strcat('(',str(1:1:length(str)-2),')',stra)); 
end 
disp('----------------------------------------'); 
disp(' '); 
 
for nn = [1:1:num_judges]    
    for i =[1:1:length(r)] 
        aa(i) = ismember(nn, P(i, :)); 

    end 
    c(nn) = max(r(aa)); 
end 
 
o = 0; 
tol = 0.00001; 
while true 
    o = o + 1; 
    C{o} = find((min(c)<c+tol)&(min(c)>c-tol)); 
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    C_Label{o} = EG(C{o}); 
    c(C{o}) = Inf; 
    if sum(isinf(c)) == length(c) 
        break 
    end 
end 
 
% group formation for ACA evaluation 
AC = []; 
matr = cell2mat(award); 
base_AC = C{1}; 
base_l = 1; 
for l = [2:1:length(C)] 
    if (length([base_AC C{l}]) <= (num_judges/2)) 
        base_AC = [base_AC C{l}]; 
        base_l = l; 
    else 
        break; 
    end 
end 
for s = [1:1:size(matr, 1)] 
    o = base_l; 
    AC{s} = base_AC; 
    while true 
        if any(matr(s, AC{s})>0) 
            break; 
        end 
        o = o + 1; 
        AC{s} = union(AC{s}, C{o}); 
    end 
end 
 
mat = cat(1,award{:}); 
for s = [1:1:size(matr,1)] 
    ACA(s) = sum(mat(s, AC{s})',1)./sum(mat(s, AC{s})'>0,1); 
end 
mean_for_comparison = sum(mat(:, :)')./sum(mat(:, :)'>0); 
for u = [1:1:size(mat, 1)] 
    median_for_comparison(u) = median(mat(u, mat(u, :)>0)); 
end 
 
disp('- Classes of Reliability ----------------'); 
for i = [1:1:length(C)] 
    str = sprintf('%2.0f° Class:    ', i); 
    str2 = sprintf('%2.0f   ', C_Label{i}); 
    disp(strcat(str,'   ', str2)); 
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    str = []; 
    str2 = []; 
end 
disp('----------------------------------------'); 
disp(' '); 
 
disp('- Comparison ----------------------------'); 
str = sprintf('%s   \t', project_labels{:}); 
disp(strcat('Projects : ', str)); 
str = []; 
str = sprintf('%2.2f \t', ACA); 
str = strcat('ACA      : ', str); 
disp(str); 
str = []; 
str = sprintf('%2.2f \t', mean_for_comparison); 
str = strcat('Mean     : ', str); 
disp(str); 
str = []; 
str = sprintf('%2.2f \t', median_for_comparison); 
str = strcat('Median   : ', str); 
disp(str); 
 
%ranking 
o = 0; 
dummy_ACA = ACA; 
rank_no_ACA = []; 
while true 
    o = o + 1; 
    rank_no_ACA{o} = find(max(dummy_ACA) == dummy_ACA); 
    dummy_ACA(rank_no_ACA{o}) = 0; 
    if (sum(dummy_ACA) == 0) 
        break 
    end 
end 
 
o = 0; 
dummy_mean_comparison = mean_for_comparison; 
rank_no_mean = []; 
while true 
    o = o + 1; 
    rank_no_mean{o} = … 

 find(max(dummy_mean_comparison) == dummy_mean_comparison); 
    dummy_mean_comparison(rank_no_mean{o}) = 0; 
    if (sum(dummy_mean_comparison) == 0) 
        break 
    end 
end 
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o = 0; 
dummy_median_comparison = median_for_comparison; 
rank_no_median = []; 
while true 
    o = o + 1; 
    rank_no_median{o} = … 

find(max(dummy_median_comparison)== dummy_median_comparison); 
    dummy_median_comparison(rank_no_median{o}) = 0; 
    if (sum(dummy_median_comparison) == 0) 
        break 
    end 
end 
 
disp('----------------------------------------'); 
disp(' '); 
 
disp('- Ranking (ACA) -------------------------'); 
for rr = [1:1:size(rank_no_ACA, 2)] 
    disp(sprintf('  %s ', project_labels{rank_no_ACA{rr}})); 
end 
 
disp('- Ranking (Mean) ------------------------'); 
 
for rr = [1:1:size(rank_no_mean, 2)] 
    disp(sprintf('  %s ', project_labels{rank_no_mean{rr}})); 
end 
 
disp('- Ranking (Median) ----------------------'); 
for rr = [1:1:size(rank_no_median, 2)] 
    disp(sprintf('  %s ', project_labels{rank_no_median{rr}})); 
end 
 
end 
 
Function ff_mean: 
 
function [val_mean] = ff_mean(a, b, award) 
    matr = cat(1, award{b}); 
    matri = matr(:, a); 
    val_mean = mean(matri(find(matri(:)>0))); 
end 
 
Function GenerateDistrib: 
 
function [Distr]=GenerateDistrib(nrich, n) 
if (nrich == 1) 
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    Distr = eye(n, n) .* diag([1:1:n]); 
    return 
end 
 
matrixComb = nchoosek([1:1:n], nrich); 
Distr = zeros(size(matrixComb,1), n); 
 
for cont = [1:1:n] 
    [i, j] = find(matrixComb == cont); 
    Distr(i, cont) = cont; 
end 
end  
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Abstract. In this paper we consider that voters rank order a set of alternatives and a
scoring rule is used for obtaining a set of winning alternatives. The scoring rule we
use is not previously fixed, but we analyze how to select one of them in such a way
that the collective utility is maximized. In order to generate that collective utility, we
ask voters for additional information: agents declare which alternatives are good and
their degree of optimism. With that information and a satisfaction function, for each
scoring rule we generate individual utility functions. The utility an alternative has
for a voter should depend on whether this alternative is a winner for that scoring rule
and on the position this alternative has in the individual ranking. Taking into account
all these individual utilities, we aggregate them by means of an OWA operator and
we generate a collective utility for each scoring rule. By maximizing the collective
utility, we obtain the set of scoring rules that maximizes consensus among voters.
Then, applying one of these scoring rules we obtain a collective weak order on the
set of alternatives, thus a set of winning alternatives.

1 Introduction

Some group decision problems are designed for generating an order on the set of
feasible alternatives or a set of winning alternatives from the orders that individuals
provide on that set of alternatives. Within this approach, it is well-known that there
does not exist perfect voting systems (see Arrow [1]). Thus, the problem is to devise
group decision procedures satisfying some good properties but not all we may de-
sire. In this contribution we focus on scoring rules, a class of voting systems where
voters rank order the alternatives from best to worst and they associate a score to
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each alternative in a decreasing way. The alternatives are ordered by the collective
scores obtained by adding up the individual scores1.

Scoring rules only require voters to rank order all the alternatives, irrespectively
whose of them are considered good or bad alternatives. On the other hand, approval
voting, introduced by Brams and Fishburn [4], only requires voters to show the good
alternatives. It is worth mentioning that two voters may declare the same ranking on
the set of alternatives but they may have different opinions about which alternatives
are good and bad. In this way, it is interesting the hybrid voting system preference
approval voting, devised by Brams [3] and Brams and Sanver [5], that combines
two informations provided for each voter: a ranking of all the alternatives and, addi-
tionally, the alternatives approved of2. We also consider this hybrid approach in our
proposal for constructing individual utilities.

We are interested in finding a scoring rule that maximizes a collective utility
function. So, the scoring rule is not fixed, but it depends on the individual prefer-
ences. In order to generate the collective utility function we try to maximize, we
need to introduce individual utilities and an aggregation function. We assume that
voters do not provide utility functions, but only three pieces of information for each
individual:

1. A linear order on the set of alternatives.
2. The set of good alternatives.
3. A degree of optimism or riskiness.

By means of a satisfaction function and the above information, we introduce a util-
ity function for each individual that assigns a utility value to each scoring rule. The
satisfaction function depends on a mapping ϕ –the same for all individuals– that
assigns a numerical value within the unit interval to each position in a decreasing
manner. The satisfaction function of a voter is just ϕ for the positions associated
with the good alternatives, being 0 for the other alternatives. Their values may be
interpreted as measures of satisfaction for having an alternative in the set of winners
of a scoring rule: ϕ( j) is the satisfaction we consider a voter has whenever the j-th
alternative is good for that voter and it is a winner3. If there are several winning al-
ternatives, we take into account the degree of optimism or riskiness of that voter for
aggregating the satisfactions associated with those winning alternatives. This aggre-
gation phase will be conducted by means of OWA operators [12] with an attitudinal
character for each voter according to the degree of optimism or riskiness.

Once the individual utility functions are constructed, we aggregate them through
an OWA operator that generates a collective utility value for each scoring rule re-
garding the winning alternatives generated by that scoring rule, and their positions

1 Scoring rules have been characterized by means of some interesting properties by Smith
[11] and Young [13]. See Chebotarev and Shamis [7] for a referenced survey.

2 Clearly, in preference approval voting a voter may approve of all alternatives, and at the
other extreme of no alternatives. As pointed out by Brams [3], both extreme strategies are
dominated from the game theory perspective.

3 Notice again that we do not ask individuals about their utilities, but we interpret their
utilities according to the information they provide and the general pattern given by ϕ .
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in the individual rankings. Then, we find the scoring rules that maximize that collec-
tive utility function. Consequently, the scoring rule we apply maximizes consensus
among the voters with respect to the specific opinions they declare.

The paper is organized as follows. Section 2 is devoted to introduce the notions
we use. In Section 3, we include our proposal for maximizing consensus on what
is the most appropriate scoring rule to use in the decision problem. Section 4 con-
tains an illustrative example by using different OWA operators in the corresponding
aggregation phases. Finally, Section 5 includes some concluding remarks.

2 Preliminaries

Consider a set of voters: V = {1, . . . ,m}, m ≥ 3, showing their preferences on a
set of alternatives X = {x1, . . . ,xn}, n ≥ 3, by means of linear orders (reflexive,
antisymmetric and transitive binary relations on X). The set of linear orders is de-
noted by L(X). A profile is a vector R = (R1, . . . ,Rm) of linear orders that contains
the preferences of voters. The position mapping oi : X −→ {1, . . . ,n} assigns the
position of each alternative in the linear order Ri (see the example of Table 1).

Table 1 Positions

Ri oi(x j)

x3 oi(x1) = 2
x1 oi(x2) = 4
x4 oi(x3) = 1
x2 oi(x4) = 3

We denote by xi
( j) the j-th alternative of voter i ∈V , i.e., oi

(
xi
( j)

)
= j.

2.1 Scoring Rules

A scoring rule is defined by a scoring vector s = (s1, . . . ,sn) ∈ �n satisfying
s1 ≥ ·· · ≥ sn and s1 > sn, where for each voter’s ranking, s1 points are assigned
to the top-ranked alternative, s2 points to the second-ranked alternative, and so on.

Consider the scoring rule associated with the scoring vector s = (s1, . . . ,sn) and
the profile of linear orders R = (R1, . . . ,Rm).

1. The assignment of voter i is defined by ri
s : X −→ {s1, . . . ,sn}, where

ri
s(x j) = soi(x j) or, equivalently, ri

s

(
xi
( j)

)
= s j.

2. The collective assignment is defined by rs : X −→�, where
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rs(x j) =
m

∑
i=1

ri
s(x j).

3. The collective weak order (complete and transitive binary relation) is defined by

x j �s xk ⇔ rs(x j) ≥ rs(xk).

The set of all the scoring vectors is denoted by

S = {s = (s1, . . . ,sn) ∈�n | s1 ≥ ·· · ≥ sn , s1 > sn}.

2.2 Normalized Scoring Vectors

In order to normalize scoring vectors, we can consider the binary relation ∼ on S
defined by s ∼ s′ if there exist a,b ∈� with a > 0 such that s′i = asi +b for every
i ∈ {1, . . . ,n}. It is easy to see that ∼ is an equivalence relation (reflexive, symmet-
ric and transitive binary relation) on S . Clearly, all the equivalent scoring vectors
define the same scoring rule, because they produce the same social outcomes. For
simplicity, in what follows we consider the following set of normalized scoring
vectors

S 0 = {s ∈ S | s1 = 1, sn = 0}.
It is important to note that for every s ∈ S there exists s′ ∈ S 0 such that s ∼ s′:

s′i =
si − sn

s1 − sn
=

1
s1 − sn

si +
−sn

s1 − sn
.

For n = 3 the set of normalized scoring vectors

S 0 = {(1,s,0) | s ∈ [0,1]}

can be identified with the interval [0,1]. Notice that s = 0, 1
2 ,1 correspond to plu-

rality, the Borda rule and antiplurality, respectively (see Fig. 1).

0 0.5 1

Plurality Borda Antiplurality

Fig. 1 The best-known scoring rules for n = 3

Analogously, for n = 4 the set of normalized scoring vectors

S 0 = {(1,s, t,0) | 0 ≤ t ≤ s ≤ 1}
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can be identified with the triangle {(s,t)∈ [0,1]2 | t ≤ s}. Now, (s, t) = (0,0), (1,0),
( 2

3 , 1
3 ), (1,1) correspond to plurality, 2–approval voting, the Borda rule4 and an-

tiplurality, respectively (see Fig. 2).

(0,0)

Plurality

(1,0)

2–Approval voting

(1,1)
Antiplurality

( 2
3 , 1

3 )

Borda

s

t

Fig. 2 The best-known scoring rules for n = 4

2.3 Aggregation Functions and OWA Operators

In our proposal we use aggregation functions (see Fodor and Roubens [8], Calvo et
al. [6], Beliakov et al. [2] and Grabisch et al. [10]). An aggregation function is a
continuous mapping A : [0,1]m −→ [0,1] that satisfies the following conditions:

1. Monotonicity: A(x1, . . . ,xm) ≤ A(y1, . . . ,ym) for all (x1, . . . ,xm),(y1, . . . ,ym) ∈
[0,1]m such that xi ≤ yi for every i ∈ {i, . . . ,m}.

2. Unanimity (or idempotency): A(x, . . . ,x) = x for every x ∈ [0,1].

It is easy to see that every aggregation function is compensative, i.e.,

min{x1, . . . ,xm} ≤ A(x1, . . . ,xm) ≤ max{x1, . . . ,xm},

for every (x1, . . . ,xm) ∈ [0,1]m.
A class of anonymous aggregation functions that we will consider in our model

are OWA operators (see Yager [12].
Given a weighting vector w = (w1, . . . ,wm) ∈ [0,1]m such that ∑m

i=1 wi = 1, the
OWA operator associated with w is the mapping A : [0,1]m −→ [0,1] defined by

A(a1, . . . ,am) =
m

∑
i=1

wi ·bi

where bi is the i-th greatest number of {a1, . . . ,am}.

4 Notice that ( 2
3 , 1

3 ) is the baricenter of the triangle.
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Some well-known aggregation functions are specific cases of OWA operators.
For instance:

1. The maximum, given by the weighting vector (1,0, . . . ,0).
2. The minimum, given by the weighting vector (0, . . . ,0,1).
3. The arithmetic mean, given by the weighting vector

( 1
m , . . . , 1

m

)
.

4. The mid-range, given by the weighting vector (0.5,0, . . . ,0,0.5).
5. Medians, given by the following weighting vectors

a. If m is odd

wi =

{
1, if i = m+1

2 ,

0, otherwise.

b. If m is even

wi =

⎧
⎪⎨

⎪⎩

θ , if i = m
2 ,

1−θ , if i = m
2 + 1,

0, otherwise,

for some θ ∈ [0,1].

The attitudinal character (or orness) of an OWA operator A : [0,1]m −→ [0,1] as-
sociated with a weighting vector w = (w1, . . . ,wm) is defined by (see Yager [12]):

α(A) =
1

m−1

m

∑
i=1

(m− i)wi.

In some phases of our proposal we do not use a unique OWA operator, but a finite
sequence of OWA operators, one for each dimension. In this way we will consider

A :
n⋃

k=1

[0,1]k −→ [0,1]

where the dimension will be determined by each specific context.

3 Maximizing Consensus

The first stage of the decision procedure consists of voters rank order the alternatives
by means of linear orders, i.e., we have a profile R = (R1, . . . ,Rm) ∈ L(X)m. At the
same time, we fix a set of scoring vectors S ∗ ⊆ S 0. Then, every scoring rule
associated with a scoring vector s ∈S ∗ generates a collective weak order �s on X
for the considered profile R. Since �s may be different depending on s, our purpose
is to select those scoring vectors s that maximize consensus among the voters.

Because of the notion of consensus is not unique, we need to introduce a proposal
for measuring consensus between the profile R and the weak order �s. In this
way, we assume that voters are mainly interested in having their most preferred
alternatives among the top ranked alternatives in �s. So, given an arbitrary scoring
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rule with associated scoring vector s ∈ S ∗, we will take into account the set of its
maximums or winners

Ms(R) = {x j ∈ X | x j �s xk ∀k ∈ {1, . . . ,n}}.

Our proposal is based on two ingredientes:

1. A utility function ui : S ∗ −→ [0,1] for each voter i ∈V .
2. An OWA operator A : [0,1]m −→ [0,1].

We now define the collective utility function uA : S ∗ −→ [0,1] by

uA(s) = A(u1(s), . . . ,um(s)).

In order to reach consensus on the scoring rule to use in the decision problem, we
propose to solve the problem

max
s∈S ∗ uA(s)

that is equivalent to find the set

S
∗ = {s ∈ S ∗ | uA(s) ≥ uA(s′) ∀ s′ ∈ S ∗}.

Once calculated the set S
∗
, there are two possibilities:

• If Ms(R) = Ms′(R) for all s,s′ ∈ S
∗
, then we can choose any scoring vector

s ∈ S
∗

and the winning alternatives are the elements of Ms(R).
• If Ms(R) �= Ms′(R) for some s,s′ ∈ S

∗
, then we have scoring rules associated

with scoring vectors of S
∗

that provide different outcomes. In such cases it
would be convenient to use an iterative process for breaking ties. A possibility is
to fix a sequence of OWA operators and to proceed in a lexicographic manner.
Suppose A′ : [0,1]m −→ [0,1] is the next OWA operator of that sequence. We
now consider the collective utility function uA′ : S ∗ −→ [0,1] and by solving
the problem

max
s∈S

∗ uA′(s)

we obtain the scoring rules of S1
∗
= S

∗
that maximize consensus according to

A′:
S2

∗
= {s ∈ S1

∗ | uA′(s) ≥ uA′(s′) ∀ s′ ∈ S1
∗}.

If, among the solutions of the previous problem, there are already scoring rules
that supply different sets of winning alternatives, we consider the next OWA
operator in the sequence for obtaining the corresponding set S3

∗ ⊆ S2
∗
. The

process continues until a single outcome is obtained.
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3.1 How to Define the (Indirect) Utility Functions?

It is well known that usually agents have difficulties in assigning exact numerical
utility values to alternatives. Our proposal is to assign these utility values taking into
account the following information provided by the voters:

1. The rankings included in the profile R = (R1, . . . ,Rm) ∈ L(X)m.
2. The alternatives they approve of through the mapping g : V −→ {0,1, . . . ,n},

where g(i) shows that voter i declares the alternatives in the positions j ≤ g(i)
are good and those in positions j > g(i) are bad. Thus, we have the following
cases:

a. If g(i) = 0, then voter i thinks that all the alternatives in X are bad.
b. If 0 < g(i) < n, then xi

(1), . . . ,x
i
(g(i)) are good and xi

(g(i)+1), . . . ,x
i
(n) are bad for

voter i.
c. If g(i) = n, then voter i thinks that all the alternatives in X are good.

3. An attitudinal character αi ∈ [0,1] for each voter i∈V that represents the degree
of optimism or riskiness.

Taking into account all these information, we would construct a satisfaction func-
tion ϕi : {1, . . . ,n} −→ [0,1] for each voter i ∈V . The meaning of ϕi( j) is the sat-
isfaction that the alternative xi

( j) provides to voter i, whenever xi
( j) ∈ Ms(R). Conse-

quently, we assume that every ϕi is decreasing, i.e., ϕi(1)= 1≥ϕi(2)≥ ·· · ≥ϕi(n).
Given a decreasing mapping ϕ : {1, . . . ,n} −→ [0,1], we define the satisfaction

functions ϕi associated with ϕ and g by

ϕi( j) =

{ ϕ( j), if j ≤ g(i),

0, if j > g(i).

In Section 4 we use the mapping ϕ : {1, . . . ,n} −→ [0,1] defined by

ϕ( j) =
n + 1− j

n
. (1)

We use this mapping because, without additional information, we assume that the
satisfaction of voters for having alternatives in the set of winners of a scoring rule
decreases with the position of the alternatives in the individual ranking in a regu-
lar way. According to (1), these satisfactions decrease in arithmetic progression of
difference 1

n .
We also consider an OWA operator Ai : ∪n

k=1[0,1]k −→ [0,1] with attitudinal
character αi for each voter i ∈V .

We now introduce the utility functions associated with ϕi and Ai for each voter
i ∈V as

ui(s) = Ai
(
(ϕi( j))xi

( j)∈Ms(R)
)
, i = 1, . . . ,m.
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3.2 Special Cases

In some situations we may assume that individuals have the same attitudinal charac-
ter. For example, if voters can choose within the set of winning alternatives or all of
these winning alternatives would remain in the final outcome, they should consider
the maximum satisfaction of their good alternatives in the winning set.

On the other hand, if a single alternative would be selected from the set of win-
ning alternatives and voters do not know what is the procedure for that election, a
prudent (or pessimistic) behaviour consists in considering the minimum satisfaction
of their good alternatives in the winning set.

1. When the attitudinal character is 1 for all individuals, i.e., Ai is the maximum for
every i ∈V , we can simplify the iterative process. Given two scoring rules asso-
ciated with the scoring vectors s and s′, if Ms′(R) ⊆ Ms(R), then ui(s′) ≤ ui(s)
for every i ∈V . Since the collective utility is calculated through OWA operators,
which are monotonic, we have u(s′) ≤ u(s). Therefore, in order to find scoring
rules that maximize the collective utility, it is only necessary to calculate the
collective utility for those scoring vectors s that generate maximal sets Ms(R)
with respect to the inclusion. In other words, we only take into account scoring
vectors s such that Ms(R) is not strictly included in Ms′(R) for any s′ in the
corresponding Si

∗
.

2. When the attitudinal character is 0 for all individuals, i.e., Ai is the minimum
for every i ∈ V , it is easy to check that given two scoring rules associated with
the scoring vectors s and s′, if Ms(R) ⊆ Ms′(R), then ui(s′) ≤ ui(s) for every
i∈V . Since the collective utility is calculated through an OWA operator, which is
monotonic, we have u(s′)≤ u(s). Now for obtaining scoring rules that maximize
the collective utility, it is only necessary to calculate the collective utility for
those scoring vectors s that generate minimal sets Ms(R) with respect to the
inclusion. In other words, we only take into account scoring vectors s such that
Ms′(R) is not strictly included in Ms(R) for any s′ in the corresponding Si

∗
.

4 An Illustrative Example

In this section we provide an example to show the model implementation. Sup-
pose five individuals that show their preferences on four alternatives {A, B, C, D}
through the profile R of linear orders included in Table 2.

Table 2 Voter’s linear orders

1 2 3 4 5

A B D C A
B C C D D
C A B A C
D D A B B
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Since the number of alternatives is four, we will use the following set of normal-
ized scoring vectors:

S 0 = {s = (1,s, t,0) | 0 ≤ t ≤ s ≤ 1}.

For each alternative, the collective assignment generated by an arbitrary scoring rule
s is

rs(A) =
5

∑
i=1

ri
s(A) = 2 + 2t,

rs(B) =
5

∑
i=1

ri
s(B) = 1 + s+ t,

rs(C) =
5

∑
i=1

ri
s(C) = 1 + 2s+ 2t,

rs(D) =
5

∑
i=1

ri
s(D) = 1 + 2s.

It is easy to check that

A ∈ Ms(R) ⇔ s ≤ 0.5,

B /∈ Ms(R) ∀s ∈ S 0,

C ∈ Ms(R) ⇔ s ≥ 0.5,

D ∈ Ms(R) ⇔ s ≥ 0.5, t = 0.

Therefore, the sets of winning alternatives that can be obtained with the different
scoring rules are

Ms(R) = {A} ⇔ s < 0.5,

Ms(R) = {A,C} ⇔ s = 0.5, t > 0,

Ms(R) = {A,C,D} ⇔ s = 0.5, t = 0,

Ms(R) = {C} ⇔ s > 0.5, t > 0,

Ms(R) = {C,D} ⇔ s > 0.5, t = 0.

In Fig. 3 we show graphically the subsets of {(s, t) ∈ [0,1]2 | t ≤ s} that generate
the previous sets of winning alternatives.

Suppose now that individuals declare which alternatives are good and bad accord-
ing to the function g : V −→ {0,1,2,3,4} given by g(1) = 2, g(2) = 3, g(3) = 4,
g(4) = 3 and g(5) = 1. The good alternatives for each individual are shown in
Table 3.

In order to reach consensus on the scoring rule to use in this decision problem,
we consider for all individuals the satisfaction function associated with (1); i.e.,
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(0,0) (1,0)

(1,1)

(0.5,0)

Ms(R) = {A}
(0,0) (1,0)

(1,1)

(0.5,0)

Ms(R) = {A,C}
(0,0) (1,0)

(1,1)

(0.5,0)

Ms(R) = {A,C,D}

(0,0) (1,0)

(1,1)

(0.5,0)

Ms(R) = {C}
(0,0) (1,0)

(1,1)

(0.5,0)

Ms(R) = {C,D}

Fig. 3 Subsets of {(s,t) ∈ [0,1]2 | t ≤ s} that generate the different Ms(R)

Table 3 Good alternatives for each voter

1 2 3 4 5

A B D C A
B C C D

A B A
A

ϕi( j) =

⎧
⎨

⎩

5− j
4 , if j ≤ g(i),

0, if j > g(i),

for every i ∈ {1, . . . ,5}.
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It is worth noting that, for each voter, bad alternatives give no satisfaction, and a
good alternative ranked in the j-th position ( j ∈ {1, . . . ,4}) provides a satisfaction of
5− j

4 . Table 4 summarizes the satisfaction obtained for the voters in each alternative.

Table 4 Voter’s satisfaction with each alternative

1 2 3 4 5

A 1 1
2

1
4

1
2 1

B 3
4 1 1

2 0 0

C 0 3
4

3
4 1 0

D 0 0 1 3
4 0

To generate voters’ utilities, we have considered the same degree of optimism or
riskiness for all agents, and we have aggregated the satisfaction associated with the
good alternatives belonging to the winning set through three representative OWA
operators: the maximum, the arithmetic mean and the minimum, whose attitudinal
character are 1, 0.5 and 0, respectively.

On the other hand, we have used three OWA operators for aggregating individual
utilities: the minimum, the arithmetic mean and the median –with the weighting
vector (0,0,1,0,0). The respective collective utilities are denoted by umin, uarit and
umed .

Maximum. According to the remarks of Subsection 3.2, and given that the sets
Ms(R) are included in {A, C, D} for every s ∈ S

∗
, the winners are A, C, and D.

These alternatives are obtained by using the scoring rule associated with the scoring
vector (1,0.5,0,0).

Arithmetic mean. In Table 5 we show the values of ui(s), i = 1, . . . ,5, when the
arithmetic mean is used to obtain the individual utilities, and the corresponding
values of umin, uarit and umed .

Table 5 Individual utilities for the arithmetic mean and collective utilities

Ms(R) u1(s) u2(s) u3(s) u4(s) u5(s) umin(s) uarit(s) umed(s)

s < 0.5 {A} 1 1
2

1
4

1
2 1 1

4 0.65 1
2

s = 0.5,t > 0 {A, C} 1
2

5
8

1
2

3
4

1
2

1
2 0.575 1

2

s = 0.5,t = 0 {A, C, D} 1
3

5
12

2
3

3
4

1
3

1
3 0.5 5

12

s > 0.5, t > 0 {C} 0 3
4

3
4 1 0 0 0.5 3

4

s > 0.5,t = 0 {C, D} 0 3
8

7
8

7
8 0 0 0.425 3

8
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As we can see in Table 5, we have the following winners:

1. For the minimum, the winners are A and C. These alternatives are obtained by
using any scoring vector of the set {(1,0.5,t,0) | 0 < t ≤ 0.5}.

2. For the arithmetic mean, the winner is A. This alternative is obtained by using
any scoring vector of the set {(1,s, t,0) | 0 ≤ s < 0.5, 0 ≤ t ≤ s}.

3. For the median, the winner is C. This alternative is obtained by using any scoring
vector of the set {(1,s,t,0) | 0.5 < s ≤ 1, 0 < t ≤ s}.

Minimum. According to the remarks of Subsection 3.2, and given that {A} and {C}
are the minimal sets with respect to the inclusion, it is only necessary to calculate the
collective utilities for those scoring rules that generate these sets. Table 6 provides
the values of ui(s), i = 1, . . . ,5, and the values of umin, uarit and umed .

Table 6 Individual utilities for the minimum and collective utilities

Ms(R) u1(s) u2(s) u3(s) u4(s) u5(s) umin(s) uarit(s) umed(s)

s < 0.5 {A} 1 1
2

1
4

1
2 1 1

4 0.65 1
2

s > 0.5, t > 0 {C} 0 3
4

3
4 1 0 0 0.5 3

4

As we can see in Table 6, we have the following winners:

1. For the minimum and the arithmetic mean, the winner is A. This alternative is
obtained by using any scoring vector of the set {(1,s, t,0) | 0 ≤ s < 0.5, 0 ≤ t ≤
s}.

2. For the median, the winner is C. This alternative is obtained by using any scoring
vector of the set {(1,s,t,0) | 0.5 < s ≤ 1, 0 < t ≤ s}.

5 Concluding Remarks

There exist in the literature a wide variety of consensual processes. Some of them
try to minimize the disagreement among decision makers with respect to the col-
lective decision. We follow this approach in the framework of scoring rules: once
decision makers show their preferences, we find a set of scoring rules that minimize
the disagreement with respect to a specific consensual perspective where the infor-
mation provided by decision makers is aggregated by means of appropriate OWA
operators. It is worth mentioning that our proposal is very flexible and allows us to
apply it to different scenarios.

Although our decision mechanism selects the set of scoring rules that maximizes
consensus with respect to the devised procedure, other voting systems may reach
higher consensus than the one generated by scoring rules. It is not a contradiction,
because we are only interested in which scoring rules maximize consensus among
decision makers.
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Scoring rules are initially designed for linear orders. However, they can be ex-
tended to weak orders by averaging the scores of indifferent alternatives. For sim-
plicity, we have only considered the standard case of linear orders, but our analysis
may be extended in a natural way to weak orders.
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Dominance-Based Rough Set
Approach to Interactive Evolutionary
Multiobjective Optimization

Salvatore Greco, Benedetto Matarazzo, and Roman S�lowiński

Abstract. We present application of Dominance-based Rough Set Approach
(DRSA) to interactive Evolutionary Multiobjective Optimization (EMO). In
the proposed methodology, the preference information elicited by the decision
maker in successive iterations consists in sorting some solutions of the current
population as “good” or “bad”, or in comparing some pairs of solutions. The
“if ..., then ...” decision rules are then induced from this preference infor-
mation using Dominance-based Rough Set Approach (DRSA). The rules are
used within EMO in order to focus on populations of solutions satisfying the
preferences of the decision maker. This allows to speed up convergence to the
most preferred region of the Pareto-front. The resulting interactive schemes,
corresponding to the two types of preference information, are called DRSA-
EMO and DRSA-EMO-PCT, respectively. Within the same methodology, we
propose DARWIN and DARWIN-PCT methods, which permit to take into
account robustness concerns in multiobjective optimization.

1 Introduction

Real life decision problems usually involve consideration of multiple conflict-
ing objectives. For example, product mix involves multiple objectives of the
type: profit, time machine, sales, market share, net present value, resource con-
sumption, and so on. As, in general, there does not exist a single solution which
optimizes simultaneously all objectives, one has to search for Pareto-optimal
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solutions. A solution is Pareto-optimal (also called efficient or non-dominated)
if there is no other feasible solution which would be at least as good on all ob-
jectives, while being strictly better on at least one objective. Finding the whole
set of Pareto-optimal solutions (also called Pareto-set or Pareto-front) is usu-
ally computationally hard. This is why a lot of research has been devoted to
heuristic search of an approximation of the Pareto-front. Among the heuris-
tics proposed to this end, Evolutionary Multiobjective Optimization (EMO)
procedures appeared to be particularly efficient (see, e.g., (7; 8)).

The underlying reasoning behind the EMO search of an approximation
of the Pareto-front is that, in the absence of any preference information, all
Pareto-optimal solutions have to be considered equivalent.

On the other hand, if the decision maker (DM) (alternatively called user)
is involved in the multiobjective optimization process, then the preference
information provided by the DM can be used to focus the search on the
most preferred part of the Pareto-front. This idea stands behind Interactive
Multiobjective Optimization (IMO) methods proposed long time before EMO
has emerged (see, e.g., (28; 31; 39; 41)).

Recently, it became clear that merging the IMO and EMO methodologies
should be beneficial for the multiobjective optimization process (4). Several
approaches have been presented in this context:

– (13), (10) and (40) are based on various ways of guiding the search by
an achievement scalarizing function taking into account a user-specified
reference point,

– (6) proposes the guided MOEA in which the user is allowed to specify
preferences in the form of maximally acceptable trade-offs like “one unit
improvement in objective i is worth at most aji units in objective j”,

– (11) proposes an interactive decision support system called I-MODE that
allows the DM to interactively focus on interesting region(s) of the Pareto-
front using several tools, such as weighted sum approach, utility function
based approach, Chebycheff function approach or trade-off information,

– (26) suggests a procedure which asks the user to rank a few alternatives,
and from this derives constraints for linear weighting of the objectives
consistent with the given ordering, which are used within an EMO to
check whether there is a feasible linear weighting such that solution x is
preferable to solution y,

– (34) proposes an interactive evolutionary algorithm that allows the user
to provide preference information about pairs of solutions during the run,
computes the “most compatible” weighted sum of objectives by means of
linear programming, and uses this as single substitute objective for some
generations of the evolutionary algorithm,

– (27) uses preference information from pairwise comparisons of solutions for
sampling sets of scalarizing functions by drawing a random weight vector
for each single iteration, and using this for selection and local search,
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– (5) proposes to apply robust ordinal regression (24; 12) to take into ac-
count the whole set of additive utility functions compatible with preference
comparisons of some pairs of solutions by the DM, in order to guide explo-
ration of the Pareto-front using a necessary preference relation which holds
when a solution is at least as good as another solution for all compatible
utility functions.

This paper presents another approach to merging IMO and EMO consid-
ering combination of EMO with Dominance-based Rough Set Approach
(DRSA). DRSA is a methodology of reasoning about partially inconsistent
and preference-ordered data (see (15), (17), (18), (36), (37), (38)), which has
already been applied successfully to IMO (19).

In multiple criteria decision analysis, DRSA aims at obtaining a represen-
tation of the DM’s preferences in terms of easily understandable “if ..., then
...” decision rules, on the basis of some exemplary decisions (past decisions
or simulated decisions) made by the DM. The exemplary decisions can be:

1. assignments of selected alternatives to some ordered classes, such as
“bad”, “medium”, “good”, or

2. specifications of some holistic preferences on selected pairs of alternatives.

In case 1), the induced decision rules are of the form:
“if on criterion i1 alternative x has an evaluation at least α1, and on criterion
i2 has an evaluation at least α2 ..., and on criterion ih has an evaluation at
least αh, then alternative x is at least medium”.

In case 2), decision rules are of the form:
“if on criterion i1 alternative x is at least strongly better than alternative y,
and on criterion i2 x is at least weakly better than y ..., and on criterion
ih x is at least indifferent to y, then x is comprehensively weakly preferred
to y”.

DRSA can take into account uncertainty in decision problems (21; 23)
inducing decision rules of the form:

“if on criterion i1 alternative x has an evaluation at least α1 with prob-
ability at least pi1, and on criterion i2 x has an evaluation at least α2 with
probability at least pi2 ..., and on criterion ih x has an evaluation at least αh
with probability at least pih, then alternative x is at least medium”

or
“if on criterion i1 alternative x is at least strongly better than alternative

y with probability at least pi1, and on criterion i2 x is at least weakly better
than y with probability at least pi2 ..., and on criterion ih x is at least indif-
ferent with y with probability at least pih, then x is comprehensively weakly
preferred to y”.

The methodology of interactive EMO based on DRSA (25) involves ap-
plication of decision rules in EMO, which are induced from easily elicited
preference information by DRSA, according to two general schemes, called
DRSA-EMO and DRSA-EMO-PCT. This results in focusing the search of the
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Pareto-front on the most preferred region. More specifically, DRSA is used
for structuring preference information obtained through interaction with the
user, and then a set of decision rules representing user’s preferences is induced
from this information; these rules are used to rank solutions in the current
population of EMO, which has an impact on the selection and crossover.
Within interactive EMO, DRSA for decision under uncertainty is important
because it can take into account robustness concerns in the multiobjective
optimization (for robustness in optimization see, e.g., (29; 3); for robust-
ness and multiple criteria decision analysis see (35)). In fact, two methods
of robust optimization methods combining DRSA and interactive EMO have
been proposed: DARWIN (Dominance-based rough set Approach to handling
Robust W inning solutions in IN teractive multiobjective optimization) (20)
and DARWIN-PCT (DARWIN using Pairwise Comparison Tables) (22).
DARWIN and DARWIN-PCT can be considered as two specific instances of
DRSA-EMO and DRSA-EMO-PCT, respectively.

We believe that integration of DRSA and EMO is particularly promising
for two reasons:

1. The preference information required by DRSA is very basic and easy to
be elicited by the DM. All that the DM is asked for is to assign solutions
to preference ordered classes, such as “good”, “medium” and “bad”, or
compare pairs of non-dominated solutions from a current population in
order to reveal whether one is preferred over the other. The preference
information is provided every k iterations (k depends on the problem and
the willingness of the user to interact with the system. In our studies, k
ranges from 10 to 30).

2. The decision rules are transparent and easy to interpret for the DM.
The preference model supplied by decision rules is a “glass box”, while
many other competitive multiple criteria decision methodologies involve
preference models that are “black boxes” for the user. The “glass box”
model improves the quality of the interaction and makes that the DM
accepts well the resulting recommendation.

The paper is organized as follows. The next Section describes the DRSA
methodology and, more precisely, DRSA applied to ordinal classification and
DRSA applied to approximation of a preference relation represented through
a pairwise comparison table. Then, Section 3 presents DRSA-EMO method
resulting from application of DRSA for ordinal classification to interactive
EMO. The following Section 4 presents DRSA-EMO-PCT method that ap-
plies DRSA for approximation of a preference relation to interactive EMO.
Section 5 recall DRSA for decision under uncertainty. Section 6 presents
DARWIN and DARWIN-PCT methods that apply DRSA for decision under
uncertainty to robust interactive EMO. The last Section contains conclusions.
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2 Dominance-Based Rough Set Approach (DRSA)

2.1 Dominance-Based Rough Set Approach for
Ordinal Classification

DRSA is a methodology of multiple criteria decision analysis aiming at ob-
taining a representation of the DM’s preferences in terms of easily under-
standable “if ..., then ...” decision rules, on the basis of some exemplary
decisions (past decisions or simulated decisions) given by the DM. In this
Section, we present the DRSA to sorting problems because in the dialogue
stage of some interactive EMO methods we are preare senting (DRSA-EMO
and DARWIN) this multiple criteria decision problem is considered. In this
case, exemplary decisions are sorting examples, i.e. objects (solutions, alter-
natives, actions) described by a set of criteria and assigned to preference
ordered classes. Criteria and the class assignment considered within DRSA
correspond to the condition attributes and the decision attribute, respectively,
in the classical Rough Set Approach (33). For example, in multiple criteria
sorting of cars, an example of decision is an assignment of a particular car
evaluated on such criteria as maximum speed, acceleration, price and fuel
consumption to one of three classes of overall evaluation: “bad”, “medium”,
“good”.

Let us consider a set of criteria F = {f1, . . . , fn}, the set of their indices I =
{1, . . . , n}, and a finite universe of objects (solutions, alternatives, actions)
U such that, without loss of generality, fi : U → � for each i = 1, . . . , n,
and, for all objects x, y ∈ U , fi(x) ≥ fi(y) means that “x is at least as good
as y with respect to criterion i”, which is denoted as x �i y. Therefore, we
suppose that �i is a complete preorder, i.e. a strongly complete and transitive
binary relation, defined on U on the basis of evaluations fi(·). Note that
in the context of multiobjective optimization, fi(·) corresponds to objective
functions. Furthermore, we assume that there is a decision attribute d which
makes a partition of U into a finite number of decision classes called sorting,
Cl={Cl1, . . . , Clm}, such that each x ∈ U belongs to one and only one class
Cl t, t = 1, . . . ,m. We suppose that the classes are preference ordered, i.e. for
all r, s = 1, . . . ,m, such that r > s, the objects from Clr are preferred to
the objects from Cls. More formally, if � is a comprehensive weak preference
relation on U , i.e. if for all x, y ∈ U , x�y reads “x is at least as good as y”,
then we suppose

[x∈Clr, y∈Cls, r>s] ⇒ x�y,
where x�y means x�y and not y�x. The above assumptions are typical
for consideration of a multiple criteria sorting problem (also called ordinal
classification with monotonicity constraints).

In DRSA, the explanation of the assignment of objects to preference or-
dered decision classes is made on the base of their evaluation with respect
to a subset of criteria P ⊆ I. This explanation is called approximation of
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decision classes with respect to P . Indeed, in order to take into account the
order of decision classes, in DRSA the classes are not considered one by one
but, instead, unions of classes are approximated: upward union from class Clt
to class Clm denoted by Cl≥t , and downward union from class Clt to class
Cl1, denoted by Cl≤t , i.e.:

Cl≥t =
⋃

s≥t
Cls, Cl≤t =

⋃

s≤t
Cls, t = 1, ...,m.

The statement x ∈ Cl≥t reads “x belongs to at least class Cl t”, while x ∈ Cl≤t
reads “x belongs to at most class Cl t”. Let us remark that Cl≥1 = Cl≤m = U ,
Cl≥m=Clm and Cl≤1 =Cl1. Furthermore, for t=2,...,m, we have:

Cl≤t−1 = U − Cl≥t and Cl≥t = U − Cl≤t−1 .

In the above example concerning multiple criteria sorting of cars, the upward
unions are: Cl≥medium, that is the set of all the cars classified at least “medium”
(i.e. the set of cars classified “medium” or “good”), and Cl≥good, that is the
set of all the cars classified at least “good” (i.e. the set of cars classified
“good”), while the downward unions are: Cl≤medium, that is the set of all the
cars classified at most “medium” (i.e. the set of cars classified “medium” or
“bad”), and Cl≤bad, that is the set of all the cars classified at most “bad” (i.e.
the set of cars classified “bad”). Notice that, formally, also Cl≥bad is an upward
union as well as Cl≤good is a downward union, however, as “bad” and “good”
are extreme classes, these two unions boil down to the whole universe U .

The key idea of the rough set approach is explanation (approximation)
of knowledge generated by the decision attributes, by granules of knowledge
generated by condition attributes.

In DRSA, where condition attributes are criteria and decision classes are
preference ordered, the knowledge to be explained is the assignments of ob-
jects to upward and downward unions of classes and the granules of knowl-
edge are sets of objects contained in dominance cones defined in the space of
evaluation criteria.

We say that x dominates y with respect to P ⊆ I (shortly, x P-dominates
y), denoted by xDPy, if for every criterion i ∈ P , fi(x) ≥ fi(y). The relation
of P -dominance is reflexive and transitive, that is it is a partial preorder.

Given a set of criteria P ⊆ I and x ∈ U , the granules of knowledge used
for approximation in DRSA are:

– a set of objects dominating x, called P -dominating set,
D+
P (x)={y ∈ U : yDPx},

– a set of objects dominated by x, called P -dominated set,
D−
P (x)={y ∈ U : xDP y}.

Let us recall that the dominance principle requires that an object x dominat-
ing object y with respect to considered criteria (i.e. x having evaluations at
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least as good as y on all considered criteria) should also dominate y on the
decision (i.e. x should be assigned to at least as good decision class as y).

The P -lower approximation of Cl≥t , denoted by P (Cl≥t ), and the P -upper
approximation of Cl≥t , denoted by P (Cl≥t ), are defined as follows (t=1,...,m):

P (Cl≥t ) = {x ∈ U : D+
P (x) ⊆ Cl≥t },

P (Cl≥t ) = {x ∈ U : D−
P (x) ∩Cl≥t �= ∅}.

Analogously, one can define the P -lower approximation and the P -upper ap-
proximation of Cl≤t as follows (t=1,...,m):

P (Cl≤t ) = {x ∈ U : D−
P (x) ⊆ Cl≤t },

P (Cl≤t ) = {x ∈ U : D+
P (x) ∩ Cl≤t �= ∅}.

The P -boundaries of Cl≥t and Cl≤t , denoted by BnP (Cl≥t ) and BnP (Cl≤t ),
respectively, are defined as follows (t=1,...,m):

BnP (Cl≥t ) = P (Cl≥t )–P (Cl≥t ), BnP (Cl≤t ) = P (Cl≤t )–P (Cl≤t ).

The dominance-based rough approximations of upward and downward unions
of decision classes can serve to induce a generalized description of sorting
decisions in terms of “if . . . , then . . .” decision rules. For a given upward or
downward union of classes, Cl≥t or Cl≤s , the decision rules induced under a
hypothesis that objects belonging to P (Cl≥t ) or P (Cl≤s ) are positive examples
(that is objects that have to be matched by the induced decision rules), and
all the others are negative (that is objects that have to be not matched by the
induced decision rules), suggest a certain assignment to “class Cl t or better”,
or to “class Cls or worse”, respectively. On the other hand, the decision rules
induced under a hypothesis that objects belonging to P (Cl≥t ) or P (Cl≤s )
are positive examples, and all the others are negative, suggest a possible
assignment to “class Cl t or better”, or to “class Cls or worse”, respectively.
Finally, the decision rules induced under a hypothesis that objects belonging
to the intersection P (Cl≤s )∩P (Cl≥t ) are positive examples, and all the others
are negative, suggest an assignment to some classes between Cls and Cl t
(s < t). These rules are matching inconsistent objects x ∈ U , which cannot
be assigned without doubts to classes Clr, s < r < t, because x /∈ P (Cl≥r )
and x /∈ P (Cl≤r ) for all r such that s < r < t.

Given the preference information in terms of sorting examples, it is mean-
ingful to consider the following five types of decision rules:

1) certain D≥-decision rules, providing lower profiles (i.e. sets of minimal
values for considered criteria) of objects belonging to P (Cl≥t ), P =
{i1, . . . , ip} ⊆ I:
if fi1(x) ≥ ri1 and . . . and fip(x) ≥ rip ,
then x ∈ Cl≥t ,
t = 2, . . . ,m, ri1 , . . . , rip ∈ �;
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2) possible D≥-decision rules, providing lower profiles of objects belonging to
P (Cl≥t ), P = {i1, . . . , ip} ⊆ I:
if fi1(x) ≥ ri1 and . . . and fip(x) ≥ rip ,
then x possibly belongs to Cl≥t ,
t = 2, . . . ,m, ri1 , . . . , rip ∈ �;

3) certain D≤-decision rules, providing upper profiles (i.e. sets of maximal
values for considered criteria) of objects belonging to P (Cl≤t ),
P = {i1, . . . , ip} ⊆ I:
if fi1(x) ≤ ri1 and . . . and fip(x) ≤ rip ,
then x ∈ Cl≤t ,
t = 1, . . . ,m− 1, ri1 , . . . , rip ∈ �;

4) possible D≤-decision rules, providing upper profiles of objects belonging to
P (Cl≤t ), P = {i1, . . . , ip} ⊆ I:
if fi1(x) ≤ ri1 and . . . and fip(x) ≤ rip ,
then x possibly belongs to Cl≤t ,
t = 1, . . . ,m− 1, ri1 , . . . , rip ∈ �;

5) approximate D≥≤-decision rules, providing simultaneously lower and up-
per profiles of objects belonging to Cls∪Cls+1∪. . .∪Cl t, without possibil-
ity of discerning to which class:
if fi1(x) ≥ ri1 and . . . and fik(x) ≥ rik and
fik+1(x) ≤ rik+1 and . . . and fip(x) ≤ rip ,
then x ∈ Cls ∪ Cls+1 ∪ . . . ∪ Clt,
{i1, . . . , ip} ⊆ I s, t ∈ {1, . . . ,m}, s < t,
ri1 , . . . , rip ∈ �.

2.2 DRSA Applied to Pairwise Comparison Tables
(PCT )

DRSA can also be used to approximate a preference relation (15; 16? ).
The rules induced on the basis of the corresponding rough approximations
are used in some interactive EMO we are presenting (DRSA-PCT-EMO and
DARWIN-PCT). We consider a set of reference objects A on which a DM can
express his/her own preferences by pairwise comparisons. More precisely, we
take into consideration a weak preference relation � on A and a negative weak
preference relation x �c y on A such that, for a pair of objects (x,y) ∈ A×A,
x � y means that x is at least as good as y and x �c y means that it is not
true that x is at least as good as y. The only assumptions with respect to
(wrt) these relations are that � is reflexive and �c is irreflexive, and they are
incompatible in the sense that for all x, y ∈ A it is not possible that x � y
and x �c y.

For each pair of reference objects (x,y) ∈ A×A, the DM can select one of
the three following possibilities:
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1. Object x is as good as y, i.e., x � y.
2. Object x is not as good as y, i.e., x �c y.
3. The two objects are incomparable at the present stage, in the sense that

neither x � y nor x �c y can be asserted.

Let � ∪ �c= B, with card(B) = m. We also suppose that objects from A
are described by a finite set of criteria C = {f1, . . . , fn}. Without loss of
generality, for each fi ∈ C we suppose that fi : A → �, such that, for each
x, y ∈ A, fi(x) ≥ fi(y) means that x is at least as good as y wrt criterion
fi which is denoted by x �i y. For each criterion fi ∈ C, we also suppose
that there exists a quaternary relation �∗

i defined on A, such that, for each
x, y, w, z ∈ A, (x, y) �∗

i (w, z) means that, wrt fi, x is preferred to y at
least as strongly as w is preferred to z. We assume that for each fi ∈ C, the
quaternary relation �∗

i is monotonic wrt to evaluations on criterion fi, such
that, for all x, y, w, z ∈ A,

fi(x) ≥ fi(w) and fi(y) ≤ fi(z) ⇒ (x, y) �∗
i (w, z).

We shall denote by �∗
i and ∼∗

i the asymmetric and the symmetric part of �∗
i ,

respectively, i.e., (x, y) �∗
i (w, z) if (x, y) �∗

i (w, z) and not (w, z) �∗
i (x, y),

and (x, y) ∼∗
i (w, z) if (x, y) �∗

i (w, z) and (w, z) �∗
i (x, y). The quaternary

relation �∗
i , fi ∈ C, is supposed to be a complete preorder on A × A. For

each (x, y) ∈ A × A, Ci(x, y) = {(w, z) ∈ A × A : (w, z) ∼∗
i (w, z)}, is the

equivalence class of (x, y) wrt ∼∗
i . Intuitively, for each (x, y), (w, z) ∈ A×A,

(w, z) ∈ Ci(x, y) meas that w is preferred to z with the same strength as
x is preferred to y. We suppose also that for each x, y ∈ A and fi ∈ C,
(x, x) ∼∗

i (y, y) and, consequently, (y, y) ∈ Ci(x, x). Assuming that they are
finite, we denote the equivalence classes of ∼∗

i by �αi

i ,�αi−1
i , . . . ,�−1

i ,�0
i

,�1
i , . . . ,�βi−1

i ,�βi

i , such that

– for all x, y, w, z ∈ A, x �hi y, w �ki z, and h ≥ k implies
(x, y) �∗

i (w, z),
– for all x ∈ A, x �0

i x.

We call strength of preference of x over y the equivalence class of �∗
i to

which pair (x, y) belongs. For each fi ∈ C, we denote by Hi the indices of
the equivalence classes of �∗

i , i.e.

Hi = {αi, αi − 1, . . . ,−1, 0, 1, . . . , βi − 1, βi} .

Therefore, there exists a function g : A × A × C → Hi, such that, for all
x, y ∈ A, x �g(x,y,fi)

i y, i.e., for all x, y ∈ A and fi ∈ C, function g gives the
strength of preference of x over y wrt fi. Taking into account the dependence
of �∗

i on evaluations by criterion fi ∈ C, there also exists a function g∗ :
R×R×C → Hi, such that g(x, y, fi) = g∗(fi(x), fi(y), fi) and, consequently,
x �g∗(fi(x),fi(y),fi)

i y. Due to monotonicity of �∗
i wrt to evaluations on fi, we
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have that g∗(fi(x), fi(y), fi) is non-decreasing wrt fi(x) and non-increasing
wrt fi(y). Moreover, for each x ∈ A, g∗(fi(x), fi(x), fi) = 0.

An m × (n + 1) Pairwise Comparison Table (PCT ) is then built up on
the basis of this information. The first n columns correspond to the criteria
from set C, while the m rows correspond to the pairs from B, such that, if
the DM judges that two objects are incomparable, then the corresponding
pair does not appear in PCT . The last, i.e. the (n + 1)-th, column repre-
sents the comprehensive binary preference relation � or �c. For each pair
(x, y) ∈ B, and for each criterion fi ∈ C, the respective strength of prefer-
ence g∗(fi(x), fi(y), fi)) is put in the corresponding column.

In terms of rough set theory, the pairwise comparison table is defined as
a data table PCT = 〈B, C∪{d}, HC ∪ {�,�c}, g〉, where B ⊆ A × A is a
non-empty set of exemplary pairwise comparisons of reference objects, d is a
decision corresponding to the comprehensive pairwise comparison resulting
in � or �c, HC =

⋃
fi∈C

Hi, and g:B × (C∪{d})→ HC ∪ {�,�c} is a total

function, such that g[(x,y),fi]∈ Hi for every (x, y) ∈ B and for each fi ∈ C,
and g[(x,y),d]∈ {�,�c} for every (x,y) ∈ B. Thus, binary relations � and �c
induce a partition of B. In fact, PCT can be seen as a decision table, since
the set of considered criteria C and the decision d are distinguished.

On the basis of preference relations �hi , h ∈ Hi, fi ∈ C, upward cumulated
preference relations �≥h

i , and downward cumulated preference relations �≤h
i ,

can be defined as follows: for all x, y ∈ A,

x �≥h
i y ⇔ x �ki y with k ≥ h,

x �≤h
i y ⇔ x �ki y with k ≤ h.

Given P ⊆ C (P �= ∅), (x,y),(w,z) ∈ A × A, the pair of objects (x,y) is said
to dominate (w,z) wrt criteria from P (denoted by (x,y)DP (w,z)), if x is
preferred to y at least as strongly as w is preferred to z wrt each fi ∈ P , i.e.,

xDP y ⇔ (x, y) �∗
i (w, z) for all fi ∈ P,

or, equivalently,

xDP y ⇔ g(x, y, fi) ≥ g(w, z, fi) for all fi ∈ P.

Since �∗
i is a complete preorder for each fi ∈ C, the intersection of com-

plete preorders is a partial preorder, and DP =
⋂
fi∈P

�∗
i , P ⊆ C, then the

dominance relation DP is a partial preorder on A×A.
Let R ⊆ P ⊆ C and (x,y),(w,z) ∈ A × A; then the following implication

holds:
(x, y)DP (w, z) ⇒ (x, y)DR(w, z).

Given P ⊆ C and (x,y) ∈ B, the P -dominating set, denoted byD+
P (x, y), and

the P -dominated set, denoted byD−
P (x, y), are defined as follows:
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D+
P (x, y) = {(w, z) ∈ B : (w, z)DP (x, y)},

D−
P (x, y) = {(w, z) ∈ B : (x, y)DP (w, z)}.

The P -dominating sets and the P -dominated sets are “granules of knowledge”
that can be used to express P -lower and P -upper approximations of the
comprehensive weak preference relations � and �c, respectively:

P (�) = {(x, y) ∈ B : D+
P (x, y) ⊆ � },

P (�) = {(x, y) ∈ B : D−
P (x, y)∩ ��= ∅},

P (�c) = {(x, y) ∈ B : D−
P (x, y) ⊆ �c },

P (�c) = {(x, y) ∈ B : D+
P (x, y)∩ �c �= ∅},

The P -boundaries (P -doubtful regions) of � and �c are defined as

BnP (�) = P (�) − P (�) , BnP (�c) = P (�c) − P (�c) .

In fact we have that BnP (�)=BnP (�c).
Using the rough approximations of � and �c, it is possible to induce a

generalized description of the preference information contained in PCT in
terms of suitable decision rules, having the following syntax:

1. certain D≥-decision rules , supported by pairs of objects from the P -lower
approximation of � only:

If x �≥h(i1)
i1 y, and ..., and x �≥h(ip)

ip y, then x � y,

where P={fi1,...,fip}⊆ C
and (h(i1),...,h(ip))∈ Hi1 × ...×Hip.

2. certain D≤-decision rules , supported by pairs of objects from the P -lower
approximation of �c only:

If x �≤h(i1)
i1 y, and ..., and x �≤h(ip)

ip y, then x �c y,

where P={fi1,...,fip}⊆ C
and (h(i1), ..., h(ip)) ∈ Hi1 × ...×Hip.

3. approximate D≥≤-decision rules , supported by pairs of objects from the
P -boundary of � and �c only:

If x �≥h(i1)
i1 y, and ..., and x �≥h(ie)

ie y,
and x�≤h(ie+1)

ie+1 y and ..., and x �≤h(ip)
ip y, then x � y or x �c y,

where P={fi1,. . . ,fie, fie+1, . . . , fip} ⊆ C
and (h(i1), . . . , hie, hie+1,
. . . , h(ip)) ∈ Hi1 × . . . , Hie, Hie+1, . . .×Hip.
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3 DRSA-EMO: DRSA Applied to Interactive EMO

In this section, we propose a new interactive EMO scheme involving DRSA
and called DRSA-EMO. The method consists of a sequence of steps alternat-
ing calculation and elicitation of DM’s preferences. In the calculation stage,
a population of feasible solutions is generated. The population of feasible so-
lutions is evaluated by multiple objective functions. The DM indicates the
solutions which, according to his/her preferences, are relatively good, and
this information is then processed by DRSA producing a set of “if . . . , then
. . . ” decision rules representing DM’s preferences. Then, an EMO stage starts
with generation of a new population of feasible solutions. The solutions from
the new population are evaluated again in terms of objective function values.
The “if . . . , then . . . ” decision rules induced in the previous stage are then
matched to the new population. In result of this rule matching, the solu-
tions from the new population are ranked from the best to the worst. This
is a starting point for selection and crossover of parent solutions, followed
by a possible mutation of the offspring solutions. A half of the population
of parents and all the offsprings form then a new population of solutions for
which a new iteration of EMO starts. The process is iterated until the ter-
mination condition of EMO is satisfied. Then, the DM evaluates again the
solutions from the last population and either the method stops, because the
most satisfactory solution was found, or a new EMO stage is launched with
DRSA decision rules induced from DM’s sorting of solutions from the last
population into relatively good and others.

DRSA-EMO is composed of two embedded loops: the exterior interactive
loop, and the interior evolutionary loop. These loops are described in the
next subsections.

3.1 The Exterior Interactive Loop of DRSA-EMO

Consider the following MultiObjective Optimization (MOO) problem:

max→ [f1(x), . . . , fk(x)]

subject to:

g1(x) ≥ b1
· · · · · · · · · · · ·
gm(x) ≥ bm,

where x = [x1, . . . , xn] is a vector of decision variables, called solution, fj(x),
j = 1, . . . , k, are real-valued objective functions, gi(x), i = 1, . . . ,m, are real-
valued functions of the constraints, and bi, i = 1, . . . ,m, are right-hand sides
of the constraints.

The exterior interactive loop of DRSA-EMO is composed of the following
steps.
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Step 1. Generate a set of feasible solutions X to the MOO problem,
using a Monte Carlo method.

Step 2. Evaluate each solution x ∈ X in terms of considered objective
functions [f1(x), . . . , fk(x)].

Step 3. Present to the DM the solutions from X in terms of values of
objective functions.

Step 4. If the DM finds a satisfactory solution in X , then STOP, other-
wise go to Step 5.

Step 5. Ask the DM to indicate a subset of relatively “good” solutions
in set X

Step 6. Apply DRSA to the current set X of solutions sorted into “good”
and “others”, in order to induce a set of decision rules with the following
syntax:
“if fj1(x) ≥ αj1 and ... and fjp(x) ≥ αjp , then solution x is good”. The
decision rules represent DM’s preferences on the set of solutions X .

Step 7. An EMO procedure guided by DRSA decision rules is activated
[Steps a to k of the interior loop].

3.2 The Interior Evolutionary Loop of DRSA-EMO

The interior loop of DRSA-EMO is an evolutionary search procedure guided
by DRSA decision rules obtained in Step 5 of the exterior loop.

Step a. Generate a new set of feasible solutions X to the MOO problem,
using a Monte Carlo method.

Step b. Evaluate each solution x ∈ X in terms of considered objective
functions [f1(x), . . . , fk(x)].

Step c. If termination condition is fulfilled, then show the solutions to the
DM, otherwise go to Step e.

Step d. If the DM finds in the current set X a satisfactory solution, then
STOP, otherwise, if the condition to ask DM new preferential information
is verified (e.g., a fixed number of iterations is reached), go to Step 5 of
the exterior loop, otherwise go to Step e of this loop.

Step e. Compute a primary score of each solution x ∈ X , based on the
number of DRSA rules matching x.

Step f. Compute a secondary score of each solution x ∈ X , based on the
crowding distance of x from other solutions in X .

Step g. Rank solutions x ∈ X lexicographically, using the primary and the
secondary score.

Step h. Make Monte Carlo selection of parents, taking into account the
ranking of solutions obtained in Step g.
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Step i. Recombine parents to get offsprings.

Step j. Mutate offsprings.

Step k. Update the set of solutions X by putting in it a half of best ranked
parents and all offsprings. Go back to Step b.

In Step e, the primary score of each solution x ∈ X is calculated as follows.
Let Rule be a set of DRSA rules obtained in Step 6 of the exterior loop.
Then, Rule(x) is a set of rules ruleh ∈ Rule matched by solution x from set
X :

Rule(x) = {ruleh ∈ Rule : ruleh is matched by solution x}.
For each ruleh ∈ Rule, the set of solutions matching it is defined as:

X(ruleh) = {x ∈ X : x is matching ruleh}.

Then, each ruleh ∈ Rule gets a weight related to the number of times it is
matched by a solution:

w(ruleh) = (1 − δ)card(X(ruleh))
,

where δ is a decay of rule weight, e.g., δ = 0.1. The above formula gives higher
weights to rules matching less solutions – this permits to maintain diversity
with respect to rules.

The primary score of solution x ∈ X is then defined as:

Score(x) =
∑

ruleh∈Rule(x)

w(ruleh).

Observe that we are considering D≥-decision rules. However, we can consider
also D≤-decision rules or both D≥-decision rules and D≤-decision rules. Of
course, in case we consider D≥-decision rules the primary score has to be
maximised, while in case we consider D≤-decision rules the primary score
has to be minimised. If both D≥-decision rules and D≤-decision rules are
considered together, then the score relative to D≥-decision rules, Score≥(x),
and the score relative to D≤-decision rules, Score≤(x), must be aggregated
using some function φ : �+ × �+ → � non decreasing in the first argument
and non increasing in the second argument, such that the primary score of
solution x is given by φ(Score≥(x), Score≤(x)). For example, the primary
score can be given by Score≥(x) − Score≤(x) or Score≥(x)/Score≤(x).

In Step f, the secondary score of each solution x ∈ X is calculated in
the same way as the crowding distance in the NSGA-II method (9), i.e. it is
defined as the sum of distances between the solution’s neighbors on either side
in each dimension of the objective space. Individuals with a large crowding
distance are preferred, as they are in a less crowded region of the objective
space, and favoring them aims at preserving diversity in the population.

In Step h, the probability of selecting solution x ∈ X as a parent is:
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Pr(x) =
(

card(X) − rank(x) + 1
card(X)

)γ

−
(

card(X) − rank(x)
card(X)

)γ

,

where rank(x) is a rank of solution x in the ranking, and γ ≥ 1 is a coefficient
of elitism, e.g., γ = 2. When γ is increasing, then the probability of choosing
solutions with a higher rank is increasing.

If solutions x = [xi],y = [yi] ∈ X are selected parents, then the offspring
(child) solution z is obtained in Step i from recombination of x and y, e.g.,
as:

zi = λixi + (1 − λi)yi,

where multipliers λi ∈ [0, 1] are chosen randomly.
The probability of mutation of an offspring z in Step j of iteration t is:

Pr(t) = ε(1 − ω)t−1,

where ε is the initial mutation probability, and ω is the decay rate of the
mutation probability, e.g., ε = 0.5, and ω = 0.1. One can see, that this prob-
ability is decreasing in successive iterations. The mutation picks randomly
one variable xi, i = 1, . . . , n, and replace it with another value randomly
generated within the range of variation of xi.

4 DRSA-EMO-PCT: DRSA Applied to Interactive
EMO Using Pairwise Comparison Tables

In this section, we propose a new EMO method based on DRSA approxi-
mation of a preference relation called DRSA-EMO-PCT: Dominance-based
Rough Set Approach to Evolutionary Multiobjective Optimization using
Pairwise Comparison Tables. More precisely, comparing to DRSA-EMO, we
propose to change the preference information required from the DM and,
consequently, to change its use in the procedure. Instead of asking the DM
which solutions are for him/her relatively good, we ask the DM to compare
some solutions pairwise. From this preference information some decision rules
are inferred using DRSA. They are of the form:

“if fj1(x) − fj1(y) ≥ αj1 , and ..., and fjp(x) − fjp(y) ≥ αjp ,
then solution x is preferred to solution y”,

or

“if fj1(x)/fj1(y) ≥ αj1 , and ..., and fjp(x)/fjp(y) ≥ αjp ,
then solution x is preferred to solution y”.

More in general these rules can be of the form

“if Δj1(fj1(x), fj1(y)) ≥ αj1 , and ..., and Δjp (fjp(x), fjp(y)) ≥ αjp ,
then solution x is preferred to solution y”,

where for all j ∈ I, Δj : Vj × Vj → � is a function such that
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Δj(fj(x), fj(y)) ≥ Δj(fj(w), fj(z)) ⇔ (x, y) �∗
j (w, z).

These decision rules are then used to build a preference relation to be applied
within NSGA-II (9), instead of the dominance ranking. Two examples of these
preference relations are the following:

– solution x is preferred to solution y ifNFS(x) > NFS(y), withNFS(z) =∑
w[rule(z,w) − rule(w, z)] being the Net Flow Score of solution z,

– solution x is preferred to solution y if PO(x) > PO(y), with PO(z) =
minwrule(z,w) being the Prudent “Outranking” of solution z (1),

where rule(x � y) is the number of rules for which x � y.
Preference relations based on NFS(z) or PO(z), or some other preference

index based on the applicaton of the decision rules to the current population,
are used instead of the dominance relation to define consecutive fronts in
the population as follows: individuals are ranked by iteratively determining
the solutions in the population for which there is no other solution preferred
to them, assigning those individuals the next best rank and removing them
from the population. It is worthwhile to remark that the preference relation
replacing the dominance relation in NSGA-II has to be transitive, because on
the contrary it is not possible to obtain consecutive fronts in the population
with the above procedure. This means, for example, that the two following
preference relations cannot be used even if they seems quite reasonable:

– solution x is preferred to solution y, x � y, if there is at least one decision
rule supporting this preference and there is no decision rule supporting
the preference of y over x,

– solution x is preferred to solution y if rule(x � y) > rule(y � x).

Algorithm 1. DRSA-EMO-PCT
Generate initial population of solutions randomly
Elicit user’s preferences {Present to the user some pairs of solutions from the
population and ask for a preference comparison}
Determine primary ranking taking into account preferences between solutions
obtained using decision rules {Will replace dominance ranking in NSGA-II}
Determine secondary ranking {Order solutions within a preference front, based
on the crowding distance measured by distrule(x,y)}
repeat

Mating selection and offspring generation
if Time to ask DM then

Elicit user’s preferences
end if
Determine primary ranking
Determine secondary ranking
Environmental selection

until Stopping criterion met
Return all preferred solutions according to primary ranking
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With respect to the crowding distance used in NSGA-II, it is replaced by
diversity measure which avoids the arbitrariness of the normalization of the
values of objective functions. In fact, we measure the distance between solu-
tion x and solution y as

distrule(x,y) = rule(x � y) + rule(y � x).

The overall algorithm of DRSA-EMO-PCT is outlined in Algorithm 1.

5 DRSA for Decision under Uncertainty

5.1 DRSA for Ordinal Classification under
Uncertainty

To apply rough set theory to decision under uncertainty, we consider the
following basic elements:

– a set S={s1, s2, . . . , su} of states of the world, or simply states, which are
supposed to be mutually exclusive and collectively exhaustive,

– an a priori probability distribution P over the states of the world: more
precisely,

the probabilities of states s1, s2, . . . , su are p1, p2, . . . , pu, respectively
(p1 + p2+. . . +pu=1, pi ≥0, i = 1, . . ., u),

– a set A={a1, a2, . . . , an} of acts,
– a set X={x1, x2, . . . , xr} consequences or outcomes that, for the sake of

simplicity, we consider expressed in monetary terms (X ⊆ �),
– a function g: A× S → X assigning to each pair act-state (ai,sj) ∈ A × S

an outcome xk ∈ X ,
– a set of classes Cl={Cl1, Cl2, . . . , Clm}, such that Cl1∪Cl2∪ . . .∪Clm =
A, Clr∩Clq = ∅ for each r,q ∈{1,. . . ,m} with r �= q; the classes from Cl
are preference-ordered according to the increasing order of their indices,

– a function e: A→ Cl assigning each act ai ∈ A to a class Cl j ∈Cl .

In this context, two different types of dominance can be considered:

1) (classical) dominance: given ap,aq ∈ A, ap dominates aq iff, for each pos-
sible state of the world, act ap gives an outcome at least as good as act
aq; formally, g(ap,sj) ≥ g(aq,sj), for each sj ∈ S,

2) stochastic dominance (see, e.g., (30)): given ap,aq ∈ A, ap dominates aq
according to first order stochastic dominance iff, for each outcome x ∈ X ,
act ap gives an outcome at least as good as x with a probability at least
as great as the probability that act aq gives the same outcome, i.e. for all
x ∈ X,

P [S(ap, x)] ≥ P [S(aq, x)]

where, for each (ai,x) ∈ A×X , S(ai,x) = {sj ∈ S: g(ai,sj) ≥ x}.
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Acts can be compared also considering second order stochastic domi-
nance: given ap,aq ∈ A, ap dominates aq according to second order stochas-
tic dominance iff, for each outcome x ∈ X , the expected values of the
outcomes not greater than x given by act ap is at least as good as the
expected values of the outcomes not greater than x given by act aq.

Of course, classical dominance implies stochastic dominance as well as first
order stochastic dominance implies second order stochastic dominance. In this
subsection, we consider the first order stochastic dominance. In subsection
5.3 we consider second order stochastic dominance.

On the basis of an a priori probability distribution P , we can assign to
each subset of states of the world W ⊆ S the probability P (W ) that one of
the states in W is verified, i.e. P (W ) =

∑
i:si∈W

pi, and then we can build up

the set Π of all possible values P (W ), i.e.

Π = {π ∈[0,1]: π = P (W ), W ⊆ S}.

Let us define the following functions z: A×S →Π and z′: A×S →Π assigning
to each act-state pair (ai,sj) ∈ A× S a probability π ∈Π , as follows:

z(ai, sj) =
∑

r:g(ai,sr)≥g(ai,sj)

pr

and
z′(ai, sj) =

∑

r:g(ai,sr)≤g(ai,sj)

pr.

Therefore, z(ai,sj) represents the probability of obtaining an outcome whose
value is at least g(ai,sj) by act ai. Analogously, z′(ai,sj) represents the prob-
ability of obtaining an outcome whose value is at most g(ai,sj) by act ai.

On the basis of function z(ai,sj), we can define function ρ: A×Π→ X as
follows:

ρ(ai, π) = max
j:z(ai,sj)≥π

{g (ai, sj)} .

Thus, ρ(ai,π) = x means that the outcome got by act ai is greater than or
equal to x with a probability at least π (i.e. probability π or greater).

On the basis of function z′(ai,sj) we can define function ρ′: A×Π→ X as
follows:

ρ′(ai, π) = min
j:z′(ai,sj)≥π

{g (ai, sj)} .

ρ′(ai,π) = x means that the outcome got by act ai is smaller than or equal
to x with a probability at least π.

Let us observe that information given by ρ(ai,π) and ρ′(ai,π) is related.
In fact, if the elements of Π , 0=π(0), π(1), π(2) , . . . , π(d)=1 (d=card(Π)) are
reordered in such a way that 0=π(0) ≤ π(1) ≤ π(2) ≤ . . . ≤ π(d)=1, then we
have
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ρ(ai, π(j)) = ρ′(ai, 1 − π(j−1)) (1)

for all ai ∈ A and π(j−1), π(j) ∈ Π .
This implies that the analysis of the possible decisions can be equivalently

conducted using either ρ(ai,π) or ρ′(ai,π). However, from the viewpoint of
representation of results, it is interesting to consider both values ρ(ai,π) and
ρ′(ai,π). The reason is that, contrary to intuition, ρ(ai,π) ≤ x is not equivalent
to say that by act ai the outcome is smaller than or equal to x with a proba-
bility at least π. The following example clarifies this point. Let us consider a
game a with rolling a dice, in which if the result is 1, then the gain is e1, if the
result is 2 then the gain is e2, and so on. Suppose, moreover, that the dice is
fair and thus each result is equiprobable with probability 1/6. If we calculate
the values of ρ(a,π) for all possible values of probability, we have:

ρ(a, 1/6) = e6, ρ(a, 2/6) = e5, ρ(a, 3/6) = e4,
ρ(a, 4/6) = e3, ρ(a, 5/6) = e2, ρ(a, 6/6) = e1.

To explain the above values, take, for example, ρ(a, 5/6) = e2: it is related
to result 2 or 3 or 4 or 5 or 6, i.e. the probability of gaining e2 or more is
5/6. Let us remark that ρ(a, 5/6) ≤ e3 (indeed ρ(a, 5/6) = e2, and thus
ρ(a,5/6) ≤ e3 is true), however, this is not equivalent to say that by act a
the outcome is smaller than or equal to 3 with a probability at least 5/6. In
fact, this is false because this probability is 3/6, which follows from ρ′(a, 3/6)
=e3 (related to result 1 or 2 or 3).

Analogously, if we calculate the values of ρ′(a, π) for all possible values of
probability, we have:

ρ′(a, 1/6) = e1, ρ′(a, 2/6) = e2, ρ′(a, 3/6) = e3,
ρ′(a, 4/6) = e4, ρ′(a, 5/6) = e5, ρ′(a, 6/6) = e6.

To explain the above values, take, for example, ρ′(a, 4/6) = e4: it is related
to result 1 or 2 or 3 or 4, i.e. the probability of gaining e4 or less is 4/6.
Let us remark that ρ′(a, 5/6) ≥ e3 (indeed ρ′(a, 5/6) = e5, and thus ρ′(a,
5/6) ≥ e3 is true), however, this is not equivalent to say that by act a the
outcome is greater than or equal to 3 with a probability at least 5/6. In fact,
this is false because this probability is 4/6, which follows from ρ(a, 4/6) =
e3 (related to result 3 or 4 or 5 or 6).

Therefore, in the context of stochastic acts, if we need to express an out-
come in positive terms, we refer to ρ(a, π) giving a lower bound of an outcome
(“for act a there is a probability π to gain at least ρ(a, π)”), while if we need
to express an outcome in negative terms, we refer to ρ′(a, π) giving an upper
bound of an outcome (“for act a there is a probability π to gain at most
ρ′(a, π)”).

Given ap, aq ∈ A, ap stochastically dominates aq if and only if ρ(ap, π) ≥
ρ(aq, π) for each π ∈Π . This is equivalent to say: given ap, aq ∈ A, ap stochas-
tically dominates aq if and only if ρ′(ap, π) ≥ ρ′(aq, π) for each π ∈Π .

For example, consider the game a∗ with rolling a dice, in which if the result
is 1, then the gain is e7, if the result is 2 then the gain is e6, and so on,
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until the case in which the result is 6 and the gain is e2. In this case, game
a∗ stochastically dominates the above game a, because ρ(a∗, 1/6) = e7 is
not smaller than ρ(a, 1/6) = e6, ρ(a∗, 2/6) = e6 is not smaller than ρ(a,
2/6) = e5, and so on. Equivalently, we can say that game a∗ stochastically
dominates the above game a, because ρ′(a∗, 1/6) =e2 is not smaller than
ρ′(a, 1/6) =e1, ρ′(a∗, 2/6) =e3 is not smaller than ρ′(a, 2/6) = e2, and
so on.

We can apply the DRSA in this context, considering as set of objects U
the set of acts A, as set of attributes (criteria) Q the set Π∪{cl}, where
cl is a decision attribute representing the classification of acts from A into
classes from Cl , as set V the set X∪Cl , as information function f a function
f such that f (ai, π) = ρ(ai, π) and f (ai, cl)=e(ai). With respect to the
set of attributes Q, the set C of condition attributes corresponds to the set
Π , and the set of decision attributes D corresponds to {cl}. Let us observe
that, due to equation (1), one can consider alternatively information function
f ′(ai, π) = ρ′(ai, π).

The aim of the rough set approach to decision under uncertainty is to
explain the preferences of the decision maker represented by the assignments
of the acts from A to the classes from Cl in terms of stochastic dominance,
expressed by means of function ρ. The syntax of decision rules obtained from
this rough set approach is as follows:

1) D≥-decision rules :
if ρ(a,ph1) ≥ xh1 and, . . . , and ρ(a,phz) ≥ xhz , then a ∈ Cl≥r
(i.e. “if by act a the outcome is at least xh1 with probability at least ph1,
and, . . . , and the outcome is at least xhz with probability at least phz,
then a ∈ Cl≥r ”),
where ph1, . . . , phz ∈Π , xh1, . . . , xhz ∈ X , and r ∈{2, . . . , m};

2) D≤-decision rules :
if ρ′(a,ph1) ≤ xh1 and, . . . , and ρ′(a,phz) ≤ xhz, then a ∈ Cl≤r
(i.e. “if by act a the outcome is at most xh1 with probability at least ph1,
and, . . . , and the outcome is at most xhz with probability at least phz,
then a ∈ Cl≤r ”),
where ph1, . . . , phz ∈Π , xh1, . . . , xhz ∈ X , and r ∈{1, . . . , m−1};

3) D≥≤-decision rules :
if ρ(a,ph1) ≥ xh1 and, . . . , and ρ(a,phw) ≥ xhw and ρ′(a,phw+1) ≤ xhw+1

and, . . . , and ρ′(a,phz) ≤ xhz , then a ∈Cls∪Cls+1∪. . .∪Cl t
(i.e. “if by act a the outcome is at least xh1 with probability at least ph1,
and, . . . , and the outcome is at least xhw with probability at least phw,
and the outcome is at most xhw+1 with probability at least phw+1, and,
. . . , and the outcome is at most xhz with probability at least phz, then
a ∈Cls∪Cls+1∪. . .∪Cl t),
where ph1, . . . , phw,phw+1, . . . , phz ∈Π , xh1, . . . , xhw,xhw+1, . . . , xhz ∈
X ,
and s,t ∈{1, . . . , m}, such that s < t.
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According to the meaning of ρ(ai, π) and ρ′(ai, π) discussed above, D≥-
decision rules are expressed in terms of ρ(ai, π), D≤-decision rules are ex-
pressed in terms of ρ′(ai,π), and D≥≤-decision rules are expressed in terms of
both ρ(ai, π) and ρ′(ai, π). Let us observe that, due to equation (1), all above
decision rules can be expressed equivalently in terms of values of ρ(ai,π) or
ρ′(ai,π). For example, a D≥-decision rule

r≥(ρ) ≡ if ρ(a, ph1) ≥ xh1 and, . . . , and ρ(a, phz) ≥ xhz , then a ∈ Cl≥r
can be expressed in terms of ρ′(ai,π) as

r≥(ρ′) ≡ if ρ′(a, p*h1) ≥ xh1 and, . . . , and ρ′(a, p*hz) ≥ xhz , then
a ∈ Cl≥r
where, if phr = π(jr), then p*hr=1 − π(jr−1),
with r=1, . . . , z, 0=π(0),π(1),π(2), . . . , π(d)=1 (d=card(Π)) reordered in such
a way that 0=π(0) ≤ π(1) ≤ π(2) ≤ . . . ≤ π(d)=1.

Analogously, a D≤-decision rule
r≤(ρ′) ≡ if ρ′(a, ph1) ≤ xh1 and, . . . , and ρ′(a, phz) ≤ xhz , then a ∈ Cl≤r

can be expressed in terms of ρ(ai, π) as
r≤(ρ) ≡ if ρ(a, p*h1) ≤ xh1 and, . . . , and ρ(a, p*hz) ≤ xhz, then a ∈ Cl≤r

where if phr = π(jr), then p*hr=1 − π(jr−1), with r=1, . . . , z.
Let us observe, however, that r≥(ρ) is an expression much more natural

and meaningful than r≥(ρ′), as well as r≤(ρ′) is an expression much more
natural and meaningful than r≤(ρ).

Another useful remark concerns minimality of rules, related to the specific
intrinsic structure of the stochastic dominance. Let us consider the following
two decision rules:

r1 ≡ “if by act a the outcome is at least 100 with probability at least 0.25,
then a is at least good”,
r2 ≡ “if by act a the outcome is at least 100 with probability at least 0.50,
then a is at least good”.

r1 and r2 can be induced from the analysis of the same information table,
because they involve different condition attributes (criteria). In fact,

– r1 involves attribute ρ(a, 0.25)
(it can be expressed as “if ρ(a, 0.25)≥100, then a is at least good”),

– r2 involves attribute ρ(a, 0.50)
(it can be expressed as “if ρ(a, 0.50)≥100, then a is at least good”).

Considering the structure of the stochastic dominance, we observe that the
condition part of rule r1 is the weakest. In fact, rule r1 requires a cumulated
outcome to be at least 100 with probability at least 0.25, while rule r2 requires
the same outcome but with a greater probability, 0.5 against 0.25. Taking into
account that the decision part of these two rules is the same, we can conclude
that rule r1 is minimal among these two rules. From a practical viewpoint, this
observation says that, if one induces decision rules using the same algorithms
as used for DRSA, it is necessary to further filter the obtained results in order
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to remove rules which are not minimal in the specific context of the DRSA
analysis using stochastic dominance.

Let us observe that the rough set approach we proposed takes into ac-
count only ordinal properties of the probability. Hence, this approach re-
mains valid in case of non-additive probability (i.e. probability measure P
such that one can have P(R)+P(T ) �= P(R ∪ T ) in case R ∩ T �= ∅), or even
a qualitative probability (i.e. a probability with an ordinal qualitative scale
such as {impossible, little probable, moderately probable, strongly probable,
certain}). Moreover, the proposed approach takes into account only ordinal
properties of the consequences. Thus, it can handle ordinal qualitative scales
of consequences, such as {bad, medium, good}.

Once accepted by the decision maker, these rules represent his/her prefer-
ence model as explained in Section 2. Also in this case, evaluations appearing
in the condition part of decision rules answer the concerns of robustness anal-
ysis in a proper way. More precisely, the argument given by a decision rule
remains valid for a new act b, even if the probability distribution of conse-
quences changes within the subspace defined by the condition part of the
considered decision rule. For example, the D≥-decision rule

“if by act a the outcome is at least xh1 with probability at least ph1,
and, . . . , and the outcome is at least xhz with probability at least phz, then
a ∈ Cl≥r ”

matched by b, continues to be an argument in favor of an assignment of b to
at least class r, even if the probability distribution of outcomes changes such
that the outcome remains at least xh1 with probability at least ph1, and, . . . ,
and the outcome remains at least xhz with probability at least phz.

5.2 Dominance-Based Rough Set Approach to
Preference Learning from Pairwise Comparisons
in Case of Decision under Uncertainty

To perform rough set analysis of PCT data in case of decision under uncer-
tainty, we consider the following basic elements:

– set S={s1, s2, . . . , su} of states of the world, or simply states, which are
supposed to be mutually exclusive and collectively exhaustive,

– a priori probability distribution P over the states of the world; more pre-
cisely, the probabilities of states s1, s2, . . . , su are p1, p2, . . . , pu, respec-
tively, (p1 + p2+. . . +pu=1, pi ≥0, i=1,. . . ,u),

– set A={a1, a2, . . . , ao} of acts,
– set X={x1, x2, . . . , xr} of consequences,
– function g: A×S → X assigning to each pair act-state (ai,sj) ∈ A× S an

outcome xk ∈ X ,
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– quaternary relation �∗ on X being a complete preoder on X × X with
�∗α,�α−1, . . . ,�0, . . . ,�β−1,�β being the equivalence classes of ∼∗, H =
{α, α− 1, . . . , 0, . . . , β − 1, β}, such that for all x ∈ A, x �0 x,

– function z: X × X → H, such that, for any (xi1 , xi2) ∈ X × X ,
xi1 �z(xi1 ,xi2) xi2 , i.e. z(xi1 , xi2) assigns to each pair (xi1 , xi2 ) some
strength of the preference relation of xi1 over xi2 ,

– weak preference relation � and a negative weak preference relation �c on
A, such that � ∩ �c= ∅ (i.e. � and �c are incompatible because for any
a, b ∈ A it is not possible that a � b and a �c b) and � ∪ �c= B ⊆ A×A
(i.e. � and �c are not necessarily exhaustive, because we can have pairs
of actions (a, b) ∈ A×A for which not a � b and not a �c b).

On the basis of preference relations �h, h ∈ H, upward cumulated preference
relations �≥h and downward cumulated preference relations �≤h can be
defined as follows: for all x, y ∈ X ,

x �≥h y ⇔ x �k y with k ≥ h, and x �≤h y ⇔ x �k y with k ≤ h.

On the basis of the quaternary relation �∗ on X , for each s ∈ S one can
define a quaternary relation �∗

s on A as follows: for all a, b, c, d ∈ A,

(a, b) �∗
s (c, d) ⇔ (g(a, s), g(b, s)) � (g(c, s), g(d, s)).

Analogously, for each s ∈ S and for each a, b ∈ A, the strength of preference
of g(a, s) over g(b, s) can be extended to the strength of preference of a over
b wrt state of nature s, i.e.,

a �hs b⇔ g(a, s) �h g(b, s).

In the same way, upward and downward cumulated preference relations above
defined on X can be extended to A: for any a, b ∈ A, s ∈ S and h ∈ H,

a �≥h
s b⇔ g(a, s) �≥h g(b, s),

a �≤h
s b⇔ g(a, s) �≤h g(b, s).

For each a, b ∈ A, h ∈ H and s ∈ S, it is possible to calculate the proba-
bility ρ≥(a, b, h) that a is preferred to b with a strength at least h, and the
probability ρ≤(a, b, h) that a is preferred to b with a strength at most h:

ρ≥(a, b, h) =
∑

s∈S: a�≥h
s b

ps, ρ≤(a, b, h) =
∑

s∈S: a�≤h
s b

ps.

Given a, b, c, d ∈ A, (a, b) stochastically dominates (c, d) if, for each h ∈ H,
the probability that a is preferred to b with a strength at least h is not smaller
than the probability that c is preferred to d with a strength at least h, i.e.,
for all h ∈ H, ρ≥(a, b, h) ≥ ρ≥(c, d, h).
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The stochastic dominance of (a, b) over (c, d) can be equivalently expressed
in terms downward cumulated preference ρ≤(a, b, h) and ρ≤(c, d, h) as follows:
given a, b, c, d ∈ A, (a, b) stochastically dominates (c, d) if, for each h ∈ H, the
probability that a is preferred to b with a strength at most h is not greater
than the probability that c is preferred to d with a strength at most h, i.e.,
for all h ∈ H, ρ≤(a, b, h) ≤ ρ≤(c, d, h).

It is natural to expect that for any a, b, c, d ∈ A, if (a, b) stochastically
dominates (c, d), then

– if c � d, then also a � b,
– if a �c b, then also c �c d.

Considering 2S , the power set of the set of states of nature S, one can define
the set

Prob =

{
∑

s∈T
ps, T ⊆ S

}
.

For any q ∈ Prob and a, b ∈ A, let

f+(a, b, q) = max{h ∈ H : ρ≥(a, b, h) ≥ q}

and
f−(a, b, q) = min{h ∈ H : ρ≤(a, b, h) ≥ q}.

The above definitions can be interpreted as follows: for any q ∈ Prob and
a, b ∈ A,

– there is a probability at least q that a is preferred to b with a strength not
smaller than f+(a, b, q),

– there is a probability at least q that a is preferred to b with a strength not
greater than f−(a, b, q).

Observe that for any a, b ∈ A,

f+(a, b, qπ(i)) = f−(a, b, 1− qπ(i+1)), (1)

where π is a permutation of the probabilities from Prob, such that

0 = π(1) < π(2) < . . . < π(k) = 1, k = card(Prob).

Using values f+(a, b, q) and f−(a, b, q), we can give an equivalent definition of
stochastic dominance of (a, b) over (c, d), for any a, b, c, d ∈ A: (a, b) stochas-
tically dominates (c, d), if for any q ∈ Prob, f+(a, b, q) ≥ f+(c, d, q), or,
equivalently, f−(a, b, q) ≤ f−(c, d, q).

In this context, setting m = card(B) and n = card(Prob), an m× (n+1),
Pairwise Comparison Table (PCT ) can be set up as follows. The first n
columns correspond to the probabilities q ∈ Prob, while the m rows corre-
spond to the pairs from B. The last (n+1)-th column represents the com-
prehensive binary preference relation � or �c. For each pair (a, b) ∈ B, and
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for each probability q ∈ Prob, the respective value f+(a, b, q) is put in the
corresponding column.

In terms of rough set theory, the PCT is defined as a data table

PCT = 〈B,Prob ∪ {d},H∪ {�,�c}, f+〉,

i.e. we can apply the DRSA in this context, considering as set of reference
objects the set of pairs of acts B =� ∪ �c, as set of attributes (criteria) the
set Prob ∪ {d}, where to each q ∈ Prob corresponds a condition attribute
assigning some strength of preference h ∈ H to each pair (a, b) ∈ B through
function f+(a, b, q), and d is a decision attribute representing the assignments
of pairs of acts (a, b) ∈ B to classes of weak preference (a � b) or negative
weak preference (a �c b), as set V the set H∪{�,�c}, and as information
function a function f , such that for all q ∈ Prob, f(a, b, q) = f+(a, b, q), and
f(a, b, d) =� if a � b, and f(a, b, d) =�c if a �c b.

The aim of the rough set approach to decision under uncertainty is to
explain the preferences of the DM on the pairs of acts from B in terms of
stochastic dominance on values given by functions f+(a, b, q) and f−(a, b, q).
The resulting preference model is a set of decision rules induced from rough
set approximations of weak preference relations. The syntax of decision rules
is as follows:

1. D≥-decision rules:
If f+(a, b, qγ1) ≥ h1, and,. . . , and f+(a, b, qγz ) ≥ hz, then a � b,
(i.e. “if with a probability at least qγ1 act a is preferred to act b with
a strength at least h1, and,. . . , with a probability at least qγz act a is
preferred to act b with a strength at least hz, then a � b”),
where qγ1 , . . ., qγz ∈ Prob, hγ1 , . . ., hγz ∈ H;

2. D≤-decision rules:
If f−(a, b, qγ1) ≥ h1, and,. . . , and f−(a, b, qγz) ≥ hz , then a � b,
(i.e. “if with a probability at least qγ1 act a is preferred to act b with
a strength at most h1, and,. . . , with a probability at least qγz act a is
preferred to act b with a strength at most hz, then a �c b”),
where qγ1 , . . ., qγz ∈ Prob, hγ1 , . . ., hγz ∈ H;

3. D≥≤-decision rules:
If f+(a, b, qγ1) ≥ h1, and,. . . , and f+(a, b, qγe) ≥ he, and
f−(a, b, qγe+1) ≥ he+1, and,. . . , and f−(a, b, qγz ) ≥ hz then a � b,
(i.e. “if with a probability at least qγ1 act a is preferred to act b with
a strength at least h1, and,. . . , with a probability at least qγe act a is
preferred to act b with a strength at least he, and if with a probability
at least qγe+1 act a is preferred to act b with a strength at most he+1,
and,. . . , with a probability at least qγz act a is preferred to act b with a
strength at most hz, then a � b or a �c b”),
where qγ1 , . . ., qγe , qγe+1 , . . ., qγz ∈ Prob, hγ1 , . . ., hγe , hγe+1, . . ., hγz ∈ H.
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5.3 DRSA for Decision under Uncertainty Using Tail
Means

Representation of uncertainty by consideration of quantiles within DRSA
can be based also on lower tail means, being the expected values of a random
variable within the considered quantiles in case its values are ordered from
the lower to the upper, or upper tail means, being the expected values of
the random variable within the considered quantiles in case its values are
ordered from the upper to the lower. For example if the 5% lower tail mean
of profit is 100,000 $, then, taking into account the worst 5% of cases, the
expected value of the profit is 100,000$. Analogously, if the 5% upper tail
mean of profit is 1,000,000 $, then, taking into account the best 5% of cases,
the expected value of the profit is 1,000,000$. Of course, if decision tables
are presented in terms of lower or upper tail means instead of quantiles, also
induced decision rules are expressed in terms of lower or upper tail means
instead of quantiles. Therefore, the syntax of the decision rules becomes the
following:

1) D≥-decision rules :
“if by act a the average outcome in the best ph1 × 100% of the cases is at
least xh1, and, . . . , and the average outcome in the best phw×100% of the
cases is at least xhw, and the average outcome in the worst phw+1× 100%
of the cases is at least xhw+1, and, . . . , and the average outcome in the
worst phz × 100% of the cases is at least xhz, then a ∈ Cl≥r ”,
where ph1, . . . , phw, phw+1, . . . , phz ∈Π , xh1, . . . , xhw , xhw+1, . . . , xhz ∈
X , and r ∈{2, . . . , m};

2) D≤-decision rules :
“if by act a the average outcome in the best ph1 × 100% of the cases is at
most xh1, and, . . . , and the average outcome in the best phw×100% of the
cases is at most xhw, and the average outcome in the worst phw+1×100%
of the cases is at most xhw+1, and, . . . , and the average outcome in the
worst phz × 100% of the cases is at most xhz, then a ∈ Cl≤r ”,
where ph1, . . . , phw, phw+1, . . . , phz ∈Π , xh1, . . . , xhw , xhw+1, . . . , xhz ∈
X , and r ∈{1, . . . , m− 1};

3) D≥≤-decision rules :
“if by act a the average outcome in the best ph1 × 100% of the cases is at
least xh1, and, . . . , and the average outcome in the best phu×100% of the
cases is at leatst xhu, and the average outcome in the worst phu+1×100%
of the cases is at least xhu+1, and, . . . , and the average outcome in the
worst phv × 100% of the cases is at least xhv, the average outcome in the
best phv+1×100% of the cases is at most xhv+1, and, . . . , and the average
outcome in the best phw × 100% of the cases is at most xhw, and the
average outcome in the worst phw+1×100% of the cases is at most xhw+1,
and, . . . , and the average outcome in the worst phz × 100% of the cases
is at most xhz, then a ∈Cls∪Cls+1∪. . .∪Cl t”,
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where ph1, . . . , phu, phu+1, . . . , phv, phv+1, . . . , phw, phw+1, . . . ,
phz ∈Π , xh1, . . . , xhu, xhu+1, . . . , xhv, xhv+1, . . . , xhw, xhw+1, . . . ,
xhz ∈ X , and s,t ∈{1, . . . , m}, such that s < t.

Observe that in the above decision rules both upper tail means and lower
tail means are considered. However, one can consider decision rules with only
upper tail means or lower tail means. The presence of lower or upper tail
means, or both of them, in the decision rules depends on the modalities to
represent uncertainty preferred by the DM. In general, a more risk adverse
DM should prefer that the uncertainty is represented in terms of lower tail
means, a more risk prone DM should prefer that the uncertainty is represented
in terms of upper tail means, and a DM with a more equilibrated propension
to the risk should prefer the presence of both upper and lower tail means.

Remark that left quantiles consider only the best value of objectives in the
meaningful quantiles, while lower tail means represent expected values of all
the values taken by the objective functions in the considered left quantiles. In
other words, worse scenarios gain importance considering lower tail means in-
stead of corresponding left quantiles. Therefore, considering lower tail means
is more risk averse than considering left quantiles. Observe however, that
the situation is exactly the opposite when comparing upper tail means with
corresponding right quantiles. In fact, right quantiles consider only the worst
value of objectives in the meaningful quantiles, while upper tail means repre-
sent the expected values of all the values taken by the objective functions in
the considered right quantiles. In other words, better scenarios gain impor-
tance considering upper tail means instead of corresponding right quantiles.
Therefore, considering upper tail means is more risk prone than considering
right quantiles.

Observe also that the comparisons of random variables using dominance
relation with respect to left or right quantiles is equivalent to first-order
stochastic dominance, in case all quantiles are considered. Instead, compar-
isons of random variables using dominance relation with respect to lower or
upper tail means is equivalent to second-order stochastic dominance, in case
all quantiles are considered. Notice also that lower and upper tail means can
be used only in case it is meaningful to compute expected values. Therefore,
upper and lower tail means cannot be used in case the probability or the
values taken by the objective functions are qualitative (e.g. “very probable”,
“probable”, “normally probable”, “few probable”, “very few probable” with
respect to probability or “very high”, “high”,“medium”,“low” and “very low”
with respect to values taken by the objective functions).

6 DRSA for Robust Interactive EMO: DARWIN and
DARWIN-PCT

It is rare that all data needed to formulate the MultiObjective Optimization
(MOO) problem are known as precise numbers. Rather the opposite, they



252 S. Greco, B. Matarazzo, and R. S�lowiński

are often not precisely known, and thus the coefficients of the multiobjective
optimization problem are given as intervals of possible values. In this situa-
tion, instead of seeking for the best solution with respect to the considered
objectives, one is rather interested in the best robust solution with respect
to the considered objectives and uncertainties.

In this sense, two interactive EMO methods taking into account such ro-
bustness concerns have ben proposed as specific instances of DRSA-EMO and
DRSA-EMO-PCT, respectively: DARWIN (DARWIN : Dominance-based
rough set Approach to handling Robust W inning solutions in IN teractive
multiobjective optimization) (20) and DARWIN-PCT (DARWIN-Pairwise
Comparison Table) (22).

In DARWIN and DARWIN-PCT, it is assumed that some coefficients in
the objective functions and/or constraints of the MOO problem are not pre-
cisely known and given as interval values. In the calculation stage, a popu-
lation of feasible solutions is generated together with a sample of vectors of
possible values of the imprecise coefficients - each such vector is called sce-
nario. The population of feasible solutions is evaluated by multiple objective
functions for all scenarios from the considered sample. In this way, one obtains
for each feasible solution a distribution of the values of objective functions
over possible scenarios. Some representative quantiles of these distributions
are presented to the DM in the preference elicitation stage. In DARWIN
method, the DM indicates the solutions which, according to his/her prefer-
ences, are relatively good. In DARWIN-PCT method, the DM compare some
solutions pairwise, indicating some pairwise preferences on the set of solu-
tions of the type “solution x is preferred to solution y”. This information is
then processed by DRSA, producing a set of “if . . . , then . . . ” decision rules
representing DM’s preferences. Then, an EMO stage starts with generation
of a new population of feasible solutions and of a new sample of possible sce-
narios. The solutions from the new population are evaluated again in terms
of representative quantiles of the distribution of objective function values.
The “if . . . , then . . . ” decision rules induced in the previous stage are then
matched to the new population. In result of this rule matching, the solu-
tions from the new population are ranked from the best to the worst. This
is a starting point for selection and crossover of parent solutions, followed
by a possible mutation of the offspring solutions. A half of the population
of parents and all the offsprings form then a new population of solutions
for which a new iteration of EMO starts. The process is iterated until the
termination condition of EMO is satisfied. Then, the DM evaluates again
the solutions from the last population and either the method stops because
the most satisfactory solution was found, or a new EMO stage is launched
with DRSA decision rules induced from DM’s classification of or preferences
between solutions of the last population. The way in which DARWIN and
DARWIN-PCT handle the robustness concerns is different from ajority of
current approaches to robust optimization (see e.g. (29; 3)) that are focused
on the worst case scenario (so called Wald criterion) or on the maximal regret
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(so called Savage criterion). Instead, DARWIN and DARWIN-PCT consider
a uniform probability distribution on the set of scenarios, which corresponds
to the so called Laplace criterion (for a comprehensive discussion about Wald
criterion, Savage criterion and Laplace criterion see (32)). In general, Laplace
criterion does not seem appropriate for robust optimization, because it takes
into account an average situation, but this does not ensure that there can
be very bad results in some specific scenario. However, in DARWIN and
DARWIN-PCT, a new set of scenarios is generated within the domain of
variations of considered variables in each iteration. Therefore, the final popu-
lation of solutions given by DARWIN and DARWIN-PCT is the final product
of “natural selection” of individuals able to “survive” performing well in a
wide range of different situations. In this sense, we claim that the solutions
proposed by DARWIN and DARWIN-PCT are robust. The introduction of
this idea in the algorithms of DRSA-EMO and DRSA-EMO-PCT, resulting,
respectively, in DARWIN and DARWIN-PCT methods, is explained in the
following subsections.

6.1 DARWIN

DARWIN is composed of two embedded loops: the exterior interactive loop,
and the interior evolutionary loop. These loops are described in the following.

The exterior interactive loop of DARWIN. Consider the following
MultiObjective Optimization (MOO) problem:

max→ [f1(x), . . . , fk(x)]

subject to:

g1(x) ≥ b1
· · · · · · · · · · · ·
gm(x) ≥ bm,

where x = [x1, . . . , xn] is a vector of decision variables, called solution, fj(x),
j = 1, . . . , k, are real-valued objective functions, gi(x), i = 1, . . . ,m, are real-
valued functions of the constraints, and bi, i = 1, . . . ,m, are right-hand sides
of the constraints.

We assume that some coefficients in the objective functions and in the
constraints of the MOO problem are not precisely known and given as interval
values. A vector of “imprecise” coefficients fixed on single values within the
corresponding intervals is called a possible scenario of the imprecision.

The exterior interactive loop of DARWIN is composed of the following
steps.

Step 1. Generate a set of feasible solutions X to the MOO problem, using
a Monte Carlo method.
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Step 2. Generate a set of possible scenarios S using a Monte Carlo method.

Step 3. For each scenario s ∈ S evaluate each solution x ∈ X in terms of
considered objective functions [f1(x), . . . , fk(x)].

Step 4. Present to the DM the solutions from X in terms of meaningful
quantiles of the distribution of values of objective functions over scenarios
from S, e.g., f1%

1 (x), f25%
1 (x), f75%

1 (x), . . . , f1%
k (x), f25%

k (x), f75%
k (x), for

all x ∈ X , where, in general, f
βjp

j (x) = γ means that there is a probability
βjp that fj(x) takes a value at least equal to γ.

Step 5. If the DM finds in X a satisfactory solution, then STOP, otherwise
go to Step 6.

Step 6. Ask the DM to indicate a subset of relatively “good” solutions in
set X .

Step 7. Apply DRSA to the current set X of solutions sorted into “good”
and “others”, in order to induce a set of decision rules with the following
syntax “if fβj1

j1
(x) ≥ αj1 and ... and f

βjp

jp
(x) ≥ αjp , then solution x is

good”, e.g. βj1 , . . . , βjp ∈ {1%, 25%, 75%}, {j1, . . . , jp} ⊆ {1, . . . , k}. The
decision rules represent DM’s preferences on the set of solutions X .

Step 8. An EMO procedure guided by DRSA decision rules is activated
[Steps a to m of the interior loop].

The interior evolutionary loop of DARWIN. The interior loop of DAR-
WIN is an evolutionary search procedure guided by DRSA decision rules
obtained in Step 7 of the exterior loop.

Step a. Generate a new set of feasible solutions X to the MOO problem,
using a Monte Carlo method.

Step b. Generate a new set of possible scenarios S using a Monte Carlo
method.

Step c. For each scenario s ∈ S evaluate each solution x ∈ X in terms of
considered objective functions [f1(x), . . . , fk(x)].

Step d. For each solution x ∈ X calculate all meaningful quantiles of the
distribution of values of objective functions over scenarios from S.

Step e. If termination condition is fulfilled, then show the solutions to the
DM, otherwise go to Step g.

Step f. If the DM finds in the current set X a satisfactory solution, then
STOP, otherwise, if the condition to ask DM new preferential information
is verified (e.g., a fixed number of iterations is reached), go to Step 6 of
the exterior loop, otherwise go to Step g of this loop.

Step g. Compute a primary score of each solution x ∈ X , based on the
number of DRSA rules matching x.

Step h. Compute a secondary score of each solution x ∈ X , based on the
crowding distance of x from other solutions in X .
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Step i. Rank solutions x ∈ X lexicographically, using the primary and the
secondary score.

Step j. Make Monte Carlo selection of parents, taking into account the
ranking of solutions obtained in Step i.

Step k. Recombine parents to get offsprings.

Step l. Mutate offsprings.

Step m. Update the set of solutionsX by putting in it a half of best ranked
parents and all offsprings. Go back to Step b.

Notice that the difference between DRSA-EMO and DARWIN is that in
DARWIN the criteria are in fact quantiles computed under the hypothesis
of a uniform probability distribution all over the possible scenarios. In fact,
considering a uniform probability seems quite appropriate for taking into ac-
count robustness concerns. In this case it is supposed that, in general, the
probability distribution is not known a priori and, in simple words, the final
aim is to find some solutions which are generally good in all the possible
scenarios. However, if some more precise information about probability dis-
tribution over possible scenarios is available, then DARWIN can take into
account any specific probability distribution. Observe also that in Step 7 of
the exterior loop we are considering D≥-decision rules, but we can consider
D≤-decision rules or both D≥-decision rules and D≤-decision rules as ex-
plained for DRSA-EMO procedure. Moreover, notice that decision rules can
be also expressed in terms of upper or lower tail means if the DM prefers
such a representation of the uncertainty.

6.2 DARWIN-PCT

DARWIN-PCT presents to the DM the solutions from the current popu-
lation X in terms of meaningful quantiles of the distribution of values of
objective functions over scenarios from S, e.g., f1%

1 (x), f25%
1 (x), f50%

1 (x), . . . ,
f1%
k (x), f25%

k (x), f50%
k (x), for all x ∈ X . The DM is asked to indicate some

pairwise preferences on the solutions from X of the type “solution x is
preferred to solution y”. From this preference information some decision
rules are inferred using DRSA. They are of the form:

“if fβj1
j1

(x) − f
βj1
j1

(y) ≥ αj1 and ... and f
βjp

jp
(x) − f

βjp

jp
(y) ≥ αjp ,

then solution x is preferred to solution y”,

or

“if fβj1
j1

(x)/fβj1
j1

(y) ≥ αj1 and ... and f
βjp

jp
(x)/f

βjp

jp
(y) ≥ αjp ,

then solution x is preferred to solution y”,
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where βj1 , . . . , βjp are the meaningful quantiles considered
(e.g., βj1 , . . . , βjp ∈ {1%, 25%, 50%}), {j1, . . . , jp} ⊆ {1, . . . , k}.

More in general these rules can be of the form

“if Δj1(fβj1
j1

(x), fβj1
j1

(y)) ≥ αj1 , and ..., and Δjp (f
βjp

jp
(x), f

βjp

jp
(y)) ≥ αjp ,

then solution x is preferred to solution y”,

where, for all j ∈ {1, . . . , k}, denoted by Vj the set of values taken by objective
function fj , Δj : Vj × Vj → � is a function such that

Δj(f
β
j (x), fβj (y)) ≥ Δj(f

β
j (w), fβj (z))

means that with respect to quantile β of objective function fj solution x
is preferred to solution y at least as strongly as solution w is preferred to
solution z.

As in DRSA-EMO-PCT, the above decision rules are then used to build a
preference relation to be applied within the popular EMO procedure, called
NSGA-II(9), instead of the dominance ranking.

As in DRSA-EMO-PCT, also in DARWIN-PCT, the crowding distance
used in NSGA-II is replaced by a diversity measure which avoids the arbi-
trariness of the normalization of the values of objective functions, i.e. we
measure the distance between solution x and solution y as distrule(x,y) =
rule(x � y) + rule(y � x).

Notice that the difference between DRSA-EMO-PCT and DARWIN-PCT
is that in DARWIN the criteria are in fact quantiles computed considering a

Algorithm 2. DARWIN-PCT
Generate set of feasible scenarios randomly
Generate initial population of solutions randomly
Elicit user’s preferences {Present to the user some pairs of solutions from the
population and ask for a preference comparison}
Determine primary ranking taking into account preferences between solutions
obtained using decision rules {Will replace dominance ranking in NSGA-II}
Determine secondary ranking {Order solutions within a preference front, based
on the crowding distance measured by distrule(x,y)}
repeat

Mating selection and offspring generation
if Time to ask DM then

Elicit user’s preferences
end if
Determine primary ranking
Determine secondary ranking
Environmental selection

until Stopping criterion met
Return all preferred solutions according to primary ranking
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uniform probability distribution over all the possible scenarios. As in DAR-
WIN, also in DARWIN-PCT the use of a uniform probability seems more
appropriate for taking into account robustness concerns. In any case, also in
DARWIN-PCT there is the possibility of considering any kind of probabil-
ity ditribution. Moreover, even if we are considering D≥-decision rules, also
D≤-decision rules or both D≥-decision rules and D≤-decision rules can be
used.

The overall algorithm of DARWIN-PCT is outlined in Algorithm 2.

7 Conclusions

DRSA-EMO and DRSA-EMO-PCT are interactive EMO procedures involv-
ing preferences of the DM represented by “if . . . , then . . . ” decision rules in-
duced from preference information by Dominance-based Rough Set Approach
(DRSA). As proved in (18), (36), the set of “if . . . , then . . . ” decision rules
is the most general and the most comprehensible preference (aggregation)
model. The rules obtained using DRSA have a syntax adequate to multiob-
jective decision problems: the condition part of a rule compares a solution in
the objective space to a dominance cone built on a subset of objectives; if
the solution is within this cone, then the rule assigns the solution to either
a class of “good” solutions (the case of a positive dominance cone) or to a
class of “other” solutions (the case of a negative dominance cone).

DM gives preference information by answering easy questions, and obtains
transparent feedback in a learning oriented perspective (see (2)).

Moreover, DRSA decision rules do not convert ordinal information into
numeric one, which implies that: (i) from the point of view of multiobjective
optimization, no scalarization is involved, and (ii) from the point of view
of decision under uncertainty, no specific model, such as expected utility,
Choquet integral, Max-min expected utility, cumulative prospect theory, etc.,
has been imposed, and only a very general principle of stochastic dominance
in the space of meaningful quantiles is considered.

DARWIN and DARWIN-PCT methods extend DRSA-EMO and DRSA-
EMO-PCT procedures by taking into account robustness concerns. The ro-
bustness of their solutions is ensured twofold, since: (a) DRSA decision rules
are immune to inconsistencies in preference information, and (b) DARWIN
and DARWIN-PCT take into account many possible scenarios, and involve
preferences on distribution of values of objective functions over possible
scenarios.

The first computational experiments carried out with DRSA-EMO, DRSA-
EMO-PCT, DARWIN and DARWIN-PCT on some benchmark MOO prob-
lems confirm the intuition that decision rules induced from the DM’s prefer-
ence information drive well the EMO procedure towards the most interesting
region of non-dominated solutions. Assuming a given value function of a hy-
pothetical DM at the stage of sorting a population of solutions, DRSA-EMO,
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DRSA-EMO-PCT, DARWIN and DARWIN-PCT (which ignore this value
function) converge to the most preferred solutions in a very similar way to
an evolutionay procedure maximizing just the same value function.

DRSA-EMO, DRSA-EMO-PCT, DARWIN and DARWIN-PCT provide
very general interactive EMO schemes which can be customized to a large
variety of Operational Research problems, from location and routing to
scheduling and supply chain management.
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Supporting Consensus Reaching Processes
under Fuzzy Preferences and a Fuzzy Majority
via Linguistic Summaries�

Janusz Kacprzyk and Sławomir Zadrożny

Abstract. We consider the classic approach to the evaluation of of degrees of con-
sensus due to Kacprzyk and Fedrizzi [6], [7], [8] in which a soft degree of consen-
sus has been introduced. Its idea is to find a degree to which, for instance, “most
of the important individuals agree as to almost all of the relevant options”. The
fuzzy majority, expressed as fuzzy linguistic quantifiers (most, almost all, . . . ) is
handled via Zadeh’s [46] classic calculus of linguistically quantified propositions
and Yager’s [44] OWA (ordered weighted average) operators. The soft degree of
consensus is used for supporting the running of a moderated consensus reaching
process along the lines of Fedrizzi, Kacprzyk and Zadrożny [3], Fedrizzi, Kacprzyk,
Owsiński and Zadrożny [2], Kacprzyk and Zadrożny [22], and [24].

Linguistic data summaries in the sense of Yager [43], Kacprzyk and Yager [13],
Kacprzyk, Yager and Zadrożny [14], in particular in its protoform based version
proposed by Kacprzyk and Zadrożny [23], [25] are employed. These linguistic sum-
maries indicate in a human consistent way some interesting relations between in-
dividuals and options to help the moderator identify crucial (pairs of) individuals
and/options with whom/which there are difficulties with respect to consensus. An
extension using ontologies representing both knowledge on the consensus reaching
process and domain of the decision problem is indicated.

Keywords: consensus, consensus reaching support, fuzzy preference, fuzzy major-
ity, fuzzy logic, linguistic quantifier, OWA (ordered weighted averaging) operator.

1 Introduction

The paper is concerned with the problem of consensus reaching. Basically, we as-
sume that there is a group of individuals and a set of options. The individuals express
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their testimonies concerning their preferences as to the particular pairs of options. It
is assumed that the group’s testimonies are different in the beginning, and in a step-
wise process of consensus reaching, guided by a moderator, they gradually change,
possibly in the direction of a fuller and fuller consensus.

First, we assume a novel approach to the definition of a soft degree of consensus
introduced by Kacprzyk and Fedrizzi [6], [7], [8] in which a degree of consensus as
a degree to which, for instance “most of the relevant (knowledgeable, expert, . . . )
individuals agree as to almost all of the important options”. This degree is then used
to evaluate the extent of consensus in the group.

Then, we use a general architecture for a group decision support system for sup-
porting consensus reaching proposed by Fedrizzi, Kacprzyk and Zadrożny [3], and
then further developed by Fedrizzi, Kacprzyk, Owsiński and Zadrożny [2], Kacprzyk
and Zadrożny [22], [24] and Zadrożny and Kacprzyk [49] in which the role of a mod-
erator is defined and it is shown how soft degrees of consensus mentioned above can
be used to monitor the dynamics and progress of consensus reaching.

The main part of this paper is a novel use of linguistic summaries in the sense
of Yager [43], or – maybe rather in its extended and implementable version – of
Kacprzyk and Yager [13] or Kacprzyk, Yager and Zadrożny [14] to provide some
further information as to what is “going wrong” in the consensus reaching process,
what is to be paid attention to, which pairs of individuals/options may pose some
problems, etc. In the end we will briefly mention how domain knowledge concerning
the issues in question and the consensus reaching process as such, represented by
ontologies, can be used as proposed by Kacprzyk and Zadrożny [27].

The process of group decision making, including that of the reaching of consen-
sus, is centered on human beings, with their inherent subjectivity and imprecision
in the articulation of opinions (e.g., preferences). To account for this, a predominant
research direction is based on the introduction of individual and social fuzzy prefer-
ence relations – cf., e.g., Nurmi [35]. Further, one can introduce a fuzzy majority to
group decision making and consensus reaching as proposed first by Kacprzyk [4],
[5]; for a comprehensive review, cf. Kacprzyk, Zadrożny, Fedrizzi and Nurmi [29],
[30]. A fuzzy majority is meant as a soft aggregation tool and is assumed to be
represented by Zadeh’s [46] fuzzy linguistic quantifier, and then Yager’s [44] OWA
(ordered weighted average) operator.

The concept of a fuzzy majority, which is a considerable departure from the tra-
ditional non-fuzzy majority (e.g., a half, at least 2

3 , . . . ), is very relevant for our
purposes, both for the new definitions of a degree of consensus and linguistic sum-
maries to be employed to help monitor the consensus reaching process.

Fuzzy majority is commonly used by the humans, and not only in everyday
discourse. A good example in a biological context may be found in Loewer and
Laddaga [34]:

...It can correctly be said that there is a consensus among biologists that Dar-
winian natural selection is an important cause of evolution though there is cur-
rently no consensus concerning Gould’s hypothesis of speciation. This means
that there is a widespread agreement among biologists concerning the first
matter but disagreement concerning the second . . .
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A rigid majority as, e.g., more than 75% would not evidently reflect the very essence
of the above statement. It should be noted that there are naturally situations when a
strict majority is necessary, for obvious reasons, as in, e.g., political elections. Any-
way, the ability to accommodate a fuzzy majority in consensus formation models
should help make them more human consistent hence easier implementable.

A natural manifestations of a fuzzy majority are the so-called linguistic quan-
tifiers exemplified by most, almost all, much more than a half, . . . . Though they
cannot be handled by conventional logical calculi, fuzzy logic provides here simple
and efficient tools, i.e. calculi of linguistically quantified propositions, notably due
to Zadeh [46]. Since the fuzzy linguistic quantifiers serve in our context the purpose
of an aggregation operator, Yager’s [44] OWA (ordered weighted average) operators
can also be used, and they provide a much needed generality and flexibility.

These fuzzy logic based calculi of linguistically quantified propositions have
been applied by the authors to introduce a fuzzy majority for measuring (a de-
gree of) consensus and deriving new solution concepts in group decision making
(cf. Kacprzyk [4], [5], Kacprzyk and Fedrizzi [6], [7], [8]; cf. also works on gen-
eralized choice functions under fuzzy and non-fuzzy majorities by Kacprzyk and
Zadrożny [?], [22], [25]. For a comprehensive review, see Kacprzyk, Zadrożny,
Fedrizzi and Nurmi [29], [30].

The degrees of consensus proposed in those works have proved to have much
conceptual and intuitive appeal. Moreover, they have been found useful and imple-
mentable in a decision support system for consensus reaching proposed by Fedrizzi,
Kacprzyk and Zadrożny [3], and then further developed by Fedrizzi, Kacprzyk,
Owsiński and Zadrożny [2] or Kacprzyk and Zadrożny [22], [24], and Zadrożny
and Kacprzyk [49].

Basically, this degree of consensus is meant to overcome some “rigidness” of the
conventional concept of consensus in which (full) consensus occurs only when “all
the individuals agree as to all the issues”. This may often be counterintuitive, and
not consistent with a real human perception of the very essence of consensus (see,
e.g., the citation from a biological context given in the beginning of this paper). The
new degree of consensus can be therefore equal to 1, which stands for full consensus,
when, for instance, “most of the (important) individuals agree as to almost all (of the
relevant) options”. This new degree of consensus has been proposed by Kacprzyk
and Fedrizzi [6], [7], [7] using Zadeh’s [46] calculus of linguistically quantified
propositions. Then, Fedrizzi, Kacprzyk and Nurmi [1] have proposed to use the
OWA (ordered weighted average) operators instead of Zadeh’s calculus. It works
well though some deeper works on the semantics of the OWA operators is relevant
as shown by Zadrożny and Kacprzyk [50].

For clarity, and to provide a point of departure for our further discussion, we will
first review basic elements of Zadeh’s calculus of linguistically quantified proposi-
tions. Then, a relation between this calculus and the OWA operators is shown, and
finally we proceed to the reformulation of degrees of consensus proposed by the
authors in terms of the OWA operators.
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2 Linguistic Quantifiers and the OWA (Ordered Weighted
Averaging) Operators

In this section we will briefly present Zadeh’s [46] calculus of linguistically quan-
tified proposition which is employed to deal with fuzzy linguistic quantifiers, and
Yager’s [44] OWA (ordered weighted averaging) operators which are meant here to
provide a flexible aggregation, notably a fuzzy linguistic quantifier driven.

2.1 Linguistic Quantifiers and a Fuzzy Logic Based Calculus of
Linguistically Quantified Propositions

A linguistically quantified proposition may be exemplified by “most individuals are
convinced”, and may be generally written as

Qy’s are F (1)

where Q is a linguistic quantifier (e.g., most), V = {y} is a set of objects (e.g.,
individuals), and F is a property (e.g., convinced). Importance can be added leading
to “QBY ’s are F ”, but this will not be considered here.

For our purposes, the main problem is how to find the truth of such a linguistically
quantified proposition, i.e. truth(Qy’s are F ) knowing truth(y is F ), ∀y ∈ Y , which
can be done by using mainly Zadeh’s [46] calculus.

It is assumed that property F is a fuzzy set in Y , truth(yi is F ) = μF (yi), ∀yi ∈
Y = {y1, . . . , yp}, and a linguistic quantifier Q is represented as a fuzzy set in [0, 1]
as, e.g.,

μ”most”(x) =

⎧
⎨

⎩

1 for x ≥ 0.8
2x− 0.6 for 0.3 < x < 0.8
0 for x ≤ 0.3

(2)

Then

truth(Qy’s are F ) = μQ(
1
p

p∑

i=1

μF (yi)) (3)

2.2 The OWA (Ordered Weighted Average) Operators

The OWA (ordered weighted average) operators (cf. Yager [44]) provide an alterna-
tive and attractive means for a linguistic quantifier driven aggregation.

An OWA (ordered weighted average) operator of dimension n is a mapping
H : [0, 1]n → [0, 1] if associated with H is a weighting vector W = [wi]T such
that: wi ∈ [0, 1], w1 + · · · + wn = 1, and

H(x1, . . . , xn) = w1b1 + · · · + wnbn (4)

where bi is the i-th largest element among {x1, . . . , xn}. B is called an ordered
argument vector if each bi ∈ [0, 1], and j > i implies bi ≥ bj , i = 1, . . . , n.
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Then
H(x1, . . . , xn) = WTB (5)

Example 1. Let WT = [0.2 0.3 0.1 0.4], and calculate H(0.6, 1.0, 0.3, 0.5). Thus,
BT = [1.0 0.6 0.5 0.3], and H(0.6, 1.0, 0.3, 0.5) =WTB = 0.55.

Some hints as to how to determine thewi’s are given in Yager [44]. For our purposes
relations between the OWA operators and fuzzy linguistic quantifiers are relevant.
Basically, under some mild assumptions (cf. Yager [44], Yager and Kacprzyk [45]),
a linguistic quantifier Q has the same properties as the H aggregation function, so
that it is our conjecture that the weighting vectorW is a manifestation of a quantifier
underlying the process of aggregation of pieces of evidence.

Then, as proposed by Yager [44],

wk = μQ

(
k

n

)
− μQ

(
k − 1
n

)
, k = 1, ..., n (6)

For instance:

1. if wn = 1, and wi = 0, ∀i �= n, then this corresponds to Q = all;
2. if w1 = 1, and wi = 0, ∀i �= 1, then this corresponds to Q = at least one.

The intermediate cases, which correspond to, e.g., a half, most, much more than
75%, a few, almost all, . . . may be therefore obtained by a suitable choice of the
wi’s between the above two extremes.

The OWA operators are therefore an interesting and promising class of aggrega-
tion operators that can provide a linguistic quantifier driven aggregation.

3 Degrees of Consensus under Fuzzy Preferences and a Fuzzy
Majority

Suppose that we have a set of n options, O = {o1, . . . , on}, and a set of m indi-
viduals, E = {e1, . . . , em}. Each individual ek provides his or her individual fuzzy
preference relation, Pk, given by its membership function μPk

: O × O → [0, 1]
which, if card O is small enough, may be represented by a matrix [rk

ij ] such that
rk
ij = μPk

(oi, oj); i, j = 1, . . . , n; k = 1, . . . ,m; rk
ij + rk

ij = 1.
The degree of consensus is now derived in three steps. First, for each pair of indi-

viduals we derive a degree of agreement as to their preferences between all the pair
of options, next we aggregate these degrees to obtain a degree of agreement of each
pair of individuals as to their preferences between Q1 (a fuzzy linguistic quantifier
as, e.g., most, almost all, much more than 50%, ldots) pairs of options, and, finally,
we aggregate these degrees to obtain a degree of agreement of Q2 (another fuzzy
linguistic quantifier) pairs of individuals as to their preferences betweenQ1 pairs of
options. This is meant to be the degree of consensus sought. For simplicity, we will
use below the OWA operators to indicate a linguistic quantifier driven aggregation
though they can readily be replaced by Zadeh’s calculus.
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We start with the degree of (strict) agreement between individuals ek1 and ek2 as
to their preferences between options oi and oj

vij(k1, k2) =
{

1 if rk1
ij = rk2

ij

0 otherwise
(7)

where: k1 = 1, . . . ,m − 1; k2 = k1 + 1, . . . ,m; i = 1, . . . , n − 1; and j =
i+ 1, . . . , n.

The degree of agreement between individuals k1 and k2 as to their preferences
between all the pairs of options is

v(k1, k2) =
2

n(n− 1)

n−1∑

i=1

n∑

j=i+1

vij(k1, k2) (8)

The degree of agreement between individuals k1 and k2 as to their preferences
between Q1 pairs of options is

vQ1(k1, k2) = OWAQ1({vij(k1, k2)}1≤i<j≤n) (9)

where OWAQ1(.) is the aggregation of vij(k1, k2)’s with respect toQ1 via the OWA

operator of dimension n(n−1)
2 as shown in Section 2.2.

In turn, the degree of agreement of all the pairs of individuals as to their prefer-
ences between Q1 pairs of options is

vQ1 =
2

m(m− 1)

m−1∑

k1=1

m∑

k2=k1+1

(vQ1(k1, k2)) (10)

and, finally, the degree of agreement of Q2 pairs of individuals as to their prefer-
ences between Q1 pairs of options, called the degree of Q1/Q2 - consensus is

con(Q1, Q2) = OWAQ2({vQ1(k1, k2)}1≤k1<k2≤m) (11)

where OWAQ2(.) is defined similarly as OWAQ1(.).
Since the strict agreement (7) may be viewed too rigid, we can use the degree

of sufficient agreement (at least to degree α ∈ [0, 1]) of individuals ek1 and ek2

as to their preferences between options oi and oj , as well as the the degree of
strong agreement of individuals k1 and k2 as to their preferences between options
si and sj , obtaining the degree of α/Q1/Q2 - consensus and s/Q1/Q2 - consensus,
respectively (cf. Kacprzyk and Fedrizzi [6], [7], [8]).

An important issue is the addition of the importance of individuals and the rele-
vance of options. This is nontrivial a problem which requires a deeper analysis, in
particular in the context of the OWA operators (cf. Zadrożny and Kacprzyk [50]).

We have therefore some human consistent means for the evaluation of a degree
of consensus, and now we will provide some extra tools to support the consensus
reaching process.
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4 A Consensus Reaching Process

We consider the consensus reaching process in the setting proposed along the
lines of Fedrizzi, Kacprzyk and Zadrożny [3], Fedrizzi, Kacprzyk, Owsiński and
Zadrożny [2], Kacprzyk and Zadrożny [22], [24], and Zadrożny and Furlani [48].

Basically, there is a group of individuals and a moderator whose task is to effec-
tively and efficiently run the consensus reaching session. The individuals and the
moderator exchange information and opinions, provide argumentation, operating in
a network as shown in Figure 1.

Moderator

Individual 1

Individual 2 Individual 3

Individual m

Fig. 1 Individuals and a moderator in a consensus reaching session

The consensus reaching has a dynamic character which can be depicted ans in
Figure 2 to be meant as follows. In the beginning of the consensus reaching session,
at t = 0, the individuals present their testimonies, i.e. their initial fuzzy preference
relations, which may differ from each other to a large extent. The moderator tries
to persuade them to change their preference relations using some argumentation. If
the individuals are rationally committed to reaching consensus, they are willing to
change their testimonies to get possibly closer to consensus.

To be more specific, let us repeat the basic setting. We assume that we have a
set of m individuals E = {e1, . . . , em} whose testimonies concerning a set of n
options (alternatives) O = {o1, . . . , on} are individual fuzzy preference relations.
A moderator stimulates an exchange of information, rational argument, discussion,
creative thinking, clarification of positions, etc. These should eventually lead to a
change of the individual fuzzy preference relations. If the individuals are rationally
committed to consensus, such a change usually occurs, and they get closer to con-
sensus. Some individuals, even if willing to stick to their original preferences, can
accept consensual preferences of the group provided their arguments has been heard
and discussed. Thus, their acceptance of consensus may be viewed as a change of
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Degree
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consensus

Degree

of
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Degree

of

consensus

Moderator's

persuasion

Moderator's

persuasion

Moderator Moderator Moderator

t=0 t=1 t=N-1

Individuals Individuals Individuals

Fig. 2 Dynamics of the consensus reaching process

their preferences. This is repeated until the group gets sufficiently close to consen-
sus, i.e. until the individual fuzzy preference relations become similar enough, or
until some time limit is reached.

The moderator’s job may be however difficult. First of all, in non-trivial situations
the groups may include many individuals, and the number of options can be even
higher. This all can make it difficult to grasp the very contents of all the individual
fuzzy preference relations and dynamics of their possible changes.

Therefore, the moderator should be somehow supported to make his job eas-
ier, more efficient and faster. There may be many solutions adopted in this respect,
like an effective and efficient human-computer interface, enhanced communication
capabilities, advanced presentation tools for the visualization or verbalization of re-
sults obtained, etc.

In this work we propose to use a novel, natural language based support that is
based on the verbalization of results obtained by using linguistic summaries of data
in the sense of Yager [43], but in their implementable and extended version pro-
posed by Kacprzyk and Yager [13] and Kacprzyk Yager and Zadrożny [14]. Even
more so, we use here linguistic data summaries in the sense of the recent papers by
Kacprzyk and Zadrożny [23], in which a protoform based analysis was presented,
and in Kacprzyk and Zadrożny [28], in which an extremely powerful and far reach-
ing relation to natural language generation (cf. Reiter and Dale [37]) was shown.

The rationale is that consensus reaching may be a lengthy process and its sup-
port may be greatly enhanced by various objective indicators summarizing various
aspects of the process, notably preferences of individuals during a discussion, cf.
[47]. One should however bear in mind that though consensus reaching needs, to be
effective and efficient, a comprehensive decision support system, our aim is much
more moderate. We focus on the reaching of consensus in a group with respect to
directly expressed preferences on a set of alternatives.

Some guides for consensus reaching [51] list the following stages of this process:

1. brainstorming,
2. discussion,
3. clarification of interests,
4. criteria identification,
5. options reduction,
6. another round of discussion,
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7. test for consensus (if negative, get back to Step 5), and
8. a formal adoption of a consensual solution.

In this paper we will deal with tools that can be of use for virtually all of the steps
mentioned above.

5 A Concept of a Linguistic Data Summary

A linguistic data summary is meant as a natural language like sentence that sub-
sumes the very essence (from a certain point of view) of a (numeric) set of data,
too large to be comprehensible by humans. The original Yagers approach to the
linguistic summaries (cf. Yager [43], Kacprzyk and Yager [13], Kacprzyk, Yager
and Zadrożny [14] and Kacprzyk and Zadrożny [23]) may be expressed as fol-
lows: Y = {y1, . . . , yn} is a set of objects, A = {A1, . . . , Am} is a set of at-
tributes characterizing objects from Y , andAj(yi) denotes a value of attributeAj for
object yi.

A linguistic summary of set Y consists of:

• a summarizer S, i.e. an attribute together with a linguistic value (label) defined
on the domain of attribute Aj ;

• a quantity in agreement Q, i.e. a linguistic quantifier (e.g. most);
• truth (validity) T of the summary, i.e. a number from the interval [0, 1] assessing

the truth (validity) of the summary (e.g., 0.7),

and, optionally, a qualifier R may occur, i.e. another attribute together with a lin-
guistic value (label) defined on the domain of attribute Ak determining a (fuzzy
subset) of Y .

In our context we may identify objects with individuals and their attributes with
their preferences over various pairs of options. Then, the linguistic summary may
be exemplified by

T (Most of individuals prefer option o1 to o2) = 0.7 (12)

A richer form of the summary may include a qualifier as in, e.g.,

T (Most of important individuals prefer option o1 to o2) = 0.7 (13)

Thus, the core of a linguistic summary is a linguistically quantified proposition in
the sense of Zadeh [46], briefly presented in Section 2.1. Thus, both linguistic sum-
maries (12) and (13) may be written in a more general form as:

Qy’s are S (14)

QRy’s are S (15)

or more conveniently as
Qy’s are (R,S) (16)
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Then, T , i.e. its truth (validity), directly corresponds to the truth value of (14) or
(15) which may be calculated by using mainly either Zadehs [46] calculus of lin-
guistically quantified statements or the OWA operators (cf. Yager [44]).

Using Zadeh’s [46] fuzzy logic based calculus of linguistically quantified propo-
sitions, a (proportional, nondecreasing) linguistic quantifier Q is assumed to be a
fuzzy set in [0, 1]. Then, the truth values (from [0, 1]) of (14) and (15) are calcu-
lated, respectively, as:

truth(Qy’s are S) = μQ[
1
n

n∑

i=1

μS(yi)] (17)

truth(QRy’s are S) = μQ[
∑n

i=1(μR(yi) ∧ μS(yi))∑n
i=1 μR(yi)

] (18)

where “∧” (minimum) can be replaced by, e.g., a t-norm.
The fuzzy predicates S andR are assumed here to be of a simplified, atomic form

referring to just one attribute. They can be extended to cover more sophisticated
summaries involving some confluence of various attribute values as, e.g, young and
well paid. Clearly, the most interesting are non-trivial, human-consistent summariz-
ers (concepts) as, e.g.: productive workers, difficult orders, etc. Their definition may
require a complicated combination of attributes, a hierarchy (not all attributes are
of the same importance for a concept in question), the attribute values are ANDed
and/or ORed, k out of n, most, . . . of them should be accounted for, etc.

Notice that the concept of a linguistic summary is closely related to the defini-
tions of degrees of consensus discussed though it was more convenient to consider
there the degrees of consensus in a “separate” setting, as linguistically quantified
propositions. However, the setting of linguistic data summaries will be more conve-
nient for our discussion of how some additional information (or knowledge) can be
used for helping the moderator run a consensus reaching session.

6 Helping the Moderator Run a Consensus Reaching Session
Using Linguistic Data Summaries

To reach consensus in our context means that most individuals are ready to change
their original preference matrices in accordance with a consensual one. Thus, an
important component of a consensus reaching support system is a set of indicators
assessing how far the group is from consensus, what are the obstacles in reaching
consensus, which preference matrix may be a candidate for a consensual one, etc.
These indicators may be treated as some data summaries.

The original definition of a degree of consensus employed here is the degree to
which “Most of the important individuals agree in their preferences as to almost all
of the important options” which may be more formally expressed as follows:

Qh’s are (B′, Qq’s are (I ′, sim(ph1
q , ph2

q )) (19)
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where: h ∈ E × E is a pair of individuals, B′ represents importance of a pair of
individuals (related to B, an importance of particular individuals), q ∈ O × O is
a pair of options, I ′ represents importance of a pair of options (related to I , an
importance of particular options), phi

q is a preference degree of individual i of pair h
for pair of options q, and sim(·, ·) is a measure of similarity between two preference
degrees.

This definition is an example of a nested linguistic summary defined for the space
of pairs of individuals and options. In what follows we propose the use of other lin-
guistic summaries defined over various spaces. Anyway, summarizer S and qualifier
R are composed of features of either individuals or options (depending on the per-
spective adopted; cf. subsections below) and fuzzy values (labels) expressing degree
of preferences or importance weights of individuals/options.

6.1 Individuals as Objects

The objects of a linguistic summary may be identified with individuals and their at-
tributes are preference degrees for particular pairs of options, as well as importance
degrees of the individuals. Formally, referring to Section 5, we have:

Y = E (20)

and
A = {Pij} ∪ {B} (21)

where attributes Pij correspond to preference degrees over pairs of options (oi, oj)
and B represents the importance.

Then, the following types of summaries may be useful for consensus reaching
session guidance.

Consensus indicating/building summary

It corresponds to a flexible definition of consensus previously proposed (cf. (19))
that states that most of the individuals express similar preferences, for instance
“Most individuals definitely prefer oi1 to oi2, moderately prefer oi3 to oi4, . . . ”,
etc. formally written as

Qek(pk
i1,i2 = definite)∧(pk

i3,i4 = moderate) ∧ . . . (22)

If the list of conjuncts is long enough, then the truth of (22) means that there is a
consensus among the individuals as to their preferences.

Thus, this type of summary may be used as another definition of consensus. Sim-
ilarly to (19), it may be equipped with importance weights of individuals and/or
options.

If the list of conjuncts is short, such a summary may be treated as a suggestion
for building consensus. Namely, it indicates opinions that are shared by the group
of individuals. Thus, they may be either further discussed to extend the common
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understanding in the group or assumed as agreed making the rest of the discussion
focused on the remaining issues.

Discussion targeting summaries

They may be used to direct a further discussion in the group, for instance, may
disclose some patterns of understanding, and may be exemplified by:

Most individuals definitely preferring oi1 to oi2 also definitely prefer oi3 to
oi4

to be formally expressed as

Qek(pk
i1,i2 = definite, pk

i3,i4 = moderate) (23)

The discovery of association expressed with such a summary may trigger a further
discussion enabling a better understanding of the decision problem.

Option choice oriented summaries

So far we have not assumed much about the goal of discussion in the setting within
a group. Thus, basically, the goal is to agree upon the content of the matrices of
preferences. Usually, however, the aim of the discussion is to select either an option
or a set of options preferred by the group. In such a case an agreement as to the
preferences in respect to all or even most pairs of options may be unnecessary. In
order to generate summaries taking that into account we have to assume a working
definition of the concept of an option preferred by an individual as implied by his
fuzzy preference relation. To this aim we can apply some choice functions as con-
sidered by the current authors, e.g., in Kacprzyk and Zadrożny [?], [22], [25]. They
are based on the concept of the classical choice function, C, that may be defined in
a slightly simplified general form as:

C(S, P ) = S0, S0 ⊆ S (24)

that may be exemplified by

C(S, P ) = {oi ∈ O : ∀i�=jP (oi, oj)} (25)

where P denotes a classical crisp preference relation.
In the case of a fuzzy preference relation, we assumeC to be a fuzzy set of chosen

options defined as:
μC(oi) = min

j
μP (oi, oj) (26)

which may lead to a more flexible formula by replacing the strict min operator with
a linguistic quantifier Q (e.g., “most”) yielding:

μC(oi) = T (Qoj P (oi, oj)) (27)

where, this time, P denotes a fuzzy preference relation.
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For our further discussion the actual form of the choice function is not important,
and we assume (27). In fact, it is possible that each individual adopts a different
choice function, and hence a choice function assigned to each individual is denoted
as Ck. For a related deep analysis of choice function in our setting, cf. Kacprzyk
and Zadrożny [?], [22], [25].

Now, we can define a linguistic summary selecting a set of collectively preferred
options, for instance as:

Most individuals choose options oi1, oi2, . . .

to be formally expressed as, e.g.,

Qek (μCk
(oi1) = high) ∧ (μCk

(oi2) = very high) ∧ . . . (28)

where membership degrees to a choice set are discretized and expressed using lin-
guistic labels.

The options referred to in such a summary qualify as a consensus solution if the
goal of the group is to arrive at a subset of collectively preferred options. Then, such
a summary is an alternative indicator of consensus.

On the other hand, a summary exemplified by

Most individuals reject options oi1, oi2, . . .

to be formally expressed as, e.g.,

Qek (μCk
(oi1) = low) ∧ (μCk

(oi2) = very low) ∧ . . . (29)

make it possible to exclude these options from a further consideration, i.e., supports
Step 5 of the consensus reaching procedure given in Section 4.

Therefore, by using the concept of a choice function we can get quite a practical
definition of a consensus degree. Namely, both (19) and (22) refer to the preferences
of the individuals over all pairs of options, possibly with importance weights. How-
ever, these importance weights are set independently of the current “standing” of
the options implied by preference relations. A more practical definition should put
more emphasis on preferences related to options preferred by individuals and less
on those rejected by them. Thus, the importance weights of pairs of options in (19)
may be assumed as:

μB′
kl

(oi, oj) = f(μCk
(oi), μCl

(oi), μCk
(oj), μCl

(oj)) (30)

that is, importance weights of pairs of options are specific for each pair of individu-
als. Function f may be exemplified by a simple arithmetic average.

6.2 Options as Objects

Objects of linguistic summaries may also be equated with options and, then, their
attributes are preference degrees over other options as expressed by particular indi-
viduals adding, possibly, importance degrees of the options. Formally, we have:
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Y = O (31)

and
A = {Pk

ij} ∪ {I} (32)

where attributes Pk
ij correspond to preference degrees over other options and I rep-

resents importance.
This perspective may give an additional insight into the structure of preferences

of both the entire group and particular individuals. For example, a summary:

Most options are dominated by option oi in opinion of individual k

formally expressed as, e.g.,

Qoj p
k
ij = definite (33)

directly corresponds to the choice function mentioned earlier. Namely, if such a
summary is valid, then it means that option oi belongs to the choice set of individual
k. On the other hand, a summary like:

Most options are dominated by option oi in opinion of individual k1, k2, . . .

formally expressed as, e.g.,

Qoj (pk1
ij = definite)∧ (pk2

ij = definite) ∧ . . . (34)

indicates option oi as a candidate for a consensual solution.
Interesting patterns in the group may be grasped via linguistic summaries exem-

plified by:

Most options dominating option oi in opinion of individual k1 also dominate
option oi in opinion of individual k2

to be formally expressed as, e.g.,

Qoj (pk1
ji = definite, pk2

ji = definite) (35)

Such a summary indicates a similarity of preferences of individuals k1 and k2. This
similarity is here limited to just a pair of options but may be much more convincing
in case of the following summary:

Qoj (pk1
ji1 = definite ∧ pk1

ji2 = definite∧ . . . ,
pk2

ji1
= definite ∧ pk2

ji2
= definite∧ . . .)

Another view may be obtained assuming a different set of attributes for options.
Namely, we may again employ the concept of a choice set and characterize each
option oi by a vector:

[μC1(oi), μC2(oi), . . . , μCm(oi)] (36)
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Then, a summary like

Most options are preferred by individual ek

formally expressed as, e.g.,

Qoi μCk
(oi) = high (37)

indicates individual ek as being rather indifferent in his/her preferences, while a
summary like

Most options are rejected by individual el

formally expressed as, e.g.,

Qoi μCl
(oi) = low (38)

suggests that individual el exposes a clear preference towards a limited subset of
options.

The second representation of options as objects may be seen as a kind of com-
pression of the first. Namely, for a given option oi all pk

ij’s related to individual ek

which represent oi in (32) are compressed into one number μCk
(oi) in (36), i.e.,

[pk
i1, p

k
i2, . . . , p

k
in] −→ μCk

(oi) (39)

Another compression is possible by aggregating, for a given option oi, all pk
ij’s

related to option oj which represent oi in (32) into one number, i.e.,

[p1
ij , p

2
ij , . . . , p

m
ij ] −→ aggr(pk

ij)k=1,m (40)

The aggregation operator, denoted with aggr, may take various forms, including a
linguistic quantifier guided aggregation. The representation of options as objects
obtained thus far may be used to generate summaries with interpretations similar to
(36), but with slightly different semantics. The difference is related to the direct and
indirect approaches to group decision making as discussed in Kacprzyk [4], [5], and
Zadrożny [47].

This subsumes some basic possible verbalized types of an additional information,
which is based on linguistic summaries, that can be of a great help in supporting the
moderator to effectively and efficiently run a consensus reaching session.

7 Concluding Remarks

The purpose of the paper was to present an extended, and a more unified and com-
prehensive approach to generate linguistic summaries of the “state of the matter” in
the consensus reaching process run in a group of individuals by a moderator. We
have presented first the concept of a soft degree of consensus in the setting of fuzzy
preference relations and a fuzzy majority that is expressed as a linguistically quan-
tified proposition, that is practically equivalent to some linguistic data summary.
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Then, we have shown some other linguistically quantified propositions that are lin-
guistic summaries of various relations between the individuals and their preferences
over the set of options. These linguistic summaries may give an extraordinary insight
into what is the present “state of the mind” of the group, and which paths (related to
changes of testimonies of various individuals with respect to various options) may
be promising for getting closer to consensus.

It should be noted that we have used our protoform based approach to linguistic
data summaries as shown in Kacprzyk and Zadrożny [23] which provides a powerful
general framework and also, as recently shown in Kacprzyk and Zadrożny [28] can
make the use of tools and software developed in natural language generation (NLG)
possible which may greatly simplify implementations.

Finally, one should mention that the inclusion of some additional representations
of knowledge concerning both the very essence of a particular consensus reach-
ing process and the domain in which it proceeds, as proposed in a different set-
ting by Kacprzyk and Zadrożny [26], can be interesting for future works. Quite
important for a deeper analysis of consensus reaching processes, and a more effec-
tive and efficient support for running them, may be an extension towards the use
of linguistic summaries of trends in consensus reaching as proposed by Kacprzyk,
Zadrożny and Wilbik [32], or towards more general representations of fuzzy prefer-
ences and majorities,exemplified by intuitionistic fuzzy sets as proposed by Szmidt
and Kacprzyk [38], [39], [40], [41].
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Decision Making in Social Actions 

Gabriella Marcarelli and Viviana Ventre* 

Abstract. Decision making in a social ambit involves both individual optimal 
choices and social choices. The theory of “perverse effects” by Boudon shows that 
the sum of rational individual choices can produce a very undesirable global ef-
fect. Then decision making in social action must keep into account the theory of 
cooperative games with many players, in order to obtain the optimal strategies. 
Because of the semantic uncertainty in the definition of social actions, it is prefer-
able assume that the issues are represented by fuzzy numbers. 

Keywords: Decision making, social choices, fuzzy numbers. 

1   Introduction 

As well as Natural Sciences, Social Sciences attempt to explain all phenomena 
through theories based on natural laws. We can assume that classical models for 
the Social Sciences are born as extensions of the models for the Natural Sciences. 
See e. g. the work by Auguste Comte (Comte, 1830-42, 1985). 

Comte stressed that society must be viewed as an organism, drawing several 
parallels between biological organism and the social body. He drown the conse-
quences that every social phenomenon has influences on the entire social system. 

Social Sciences exhibit analogies with biology, that is based on the study of or-
ganic wholes; both sciences are holistic, concerned with physiological and envi-
ronmental systems (Comte, 1830-42, 1985). 

It is possible to explain social phenomena by simple assumptions about human 
nature (rationality and complete information) and by some ability to create and 
manipulate mathematical models (Boudon, 1967; Maturo et al., 2008). 

But, as it results by many papers by Raymond Boudon (Boudon, 1967, 1969), 
and by some other authors (Sciarra, 2004; Maturo et al., 2008), the classical mod-
els can be used only for the study of the Social Structures, but they don’t be useful 
to formalize Values or Competition of the Social Agents and so on. 
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2   Some Characteristics of Social Organizations 

Social Organization (or system) is a term usually used to indicate a group of social 
positions, connected by social relations, performing a social role. Common 
examples include education, governments, families, economic systems, religions. 
The environment of social systems includes other social systems (the environment 
of a family includes for example other families, political, economic and medical 
systems, and so on). No society exists without relations to an environment or 
without perceptions of environment. Social organizations can take many forms, 
depending on the social context.  

(For example, for family context the corresponding social organization is the 
extended family; in the business context a social organization may be an 
enterprise, company, corporation; in the educational context, it may be a school, 
university; in the political context it may be a government, political party, etc.) 

Social structure is a term rarely clearly conceptualized and it can refer to the re-
lationship of definite entities or groups to each other, enduring patterns of behav-
iour by participants (agents) in a social system in relationship within a society and 
social norms and institutions or cognitive framework that becoming embedded 
into social systems in such a way that they shape the behaviour of actors within 
those social systems. 

The study of social structures has informed the study of institutions, culture and 
agency, and social interactions as well as history. Weber investigated institutional 
arrangements of modern society and concluded that in the history of mankind, or-
ganizations evolved towards rationalization in the form of a rational – legal  
organization, like bureaucracy.  

Social structure can be divided into microstructure and macrostructure, where 
microstructure is the pattern of relations between most basic elements of social 
life, that cannot be further divided and have no social structure of they own, and 
macrostructure is a pattern of relations between objects that have their own struc-
ture (Boudon, 1967, 1969; Sciarra, 2004; Maturo et al., 2008). 

In social systems agents take their actions with a degree of freedom (autonomy) 
and these actions are mediated by existing institutional rules and expectations but, 
at the same time, they may influence institutional structure. 

Social systems analysis is the study of social structure and its effects. Two key 
components define a social structure: actors, who represent different entities, such 
as groups, organizations, nations, as well as persons; and relationships, which 
represent flows of resources that can be related with aspects such as control, 
dependence, cooperation, information interchange, and competition. 

We define the structure of social relations as the individuals with whom one has 
an interpersonal relationship and the linkages between these individuals. The 
structure has two dimensions: the formal relations, depending on positions and 
roles of individuals in society, and the informal social relations, i.e. the social 
network.  

In a complex system many functional interactions take place simultaneously. 
Hierarchical control on the interacting agents both limit and give more freedom at 
the same time. The concepts of organization, control, self-regulation, equifinality 
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and self-organization are as valid in the social and behavioral sciences as in the 
biological science.   

Social systems can change their structures by evolution. Evolution changes the 
structural condition by differentiating mechanisms for variation, selection and 
stabilization. Intellectual evolution is the preponderant principle of social 
evolution. 

What determines the evolution can be:  - the competition;  - the decision making in condition of uncertainty with multiple 
objectives;  - the cooperation by means of coalition. 

It follows that many aspects of the evolution can be investigated in the ambit of 
multicriteria analysis or the game theory. 

In effect both first and third issues lead to establish a connection with the game 
theory; in particular, the last point leads to consider cooperative games, in which 
players form coalitions. 

3   Individual Decision Making and Social Effects 

In a social organization single individuals create effective, coordinated, division of 
work groups at several levels of aggregation. At each level, there is not only com-
petition between different groups at the same level, but also competition between 
the interests of the smaller incorporated units and the interests of the larger includ-
ing unit. 

Under the hypothesis of perfect competition individual interests are fundamen-
tal and social behaviour is an aggregation of individual behaviour; whereas when 
the assumption of perfect competition fails, (the concept of individual rationality 
becomes threatened) perceptions and rationality of others become part of one’s 
own rationality (Arrow, 1951, 1986). So individual rationality is an inadequate 
model for synthesizing individual behaviour in a social system where a lot of ac-
tors are involved and cooperation is essential.   

We can mark out two characteristics of a social organization: the division of 
work and the gradual belonging to a group. The division of the work encourages 
individuals to develop their talents (qualification and specialization) and contrib-
utes to the social bond by making each individual dependent on others. None 
could survive without the other. 

With regard to the gradual belonging to a social group, if we consider a family 
with a given “head of family”, the degree of belonging (dob) to the family is dif-
ferent for the various people. A “brother” as a dob different from a “nephew” or a 
“cousin” (Maturo et al., 2008). 

The above characteristics of a social organization allow us to represent an or-
ganization by fuzzy sets and fuzzy relations.  

Agreements on objectives and standards are based on networks of interpersonal 
ties, linking actors in different parts of the social structure, and on the flows of 
information and influence in these networks. Similarities in status, beliefs and 
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behavior facilitate the formation of consensual relationships among individuals. 
The more dissimilar two individuals (social positions) are in status, beliefs and 
behavior, the “farther away” they are from one another in the system. 

In order to formalize the social organization, we stress that it is very important 
the environment (natural, e.g. climatic conditions, or social, e.g. the civil or penal 
laws, the fiscal rules, etc…) in which the organisms (fuzzy systems) live. We can 
formalize this by assuming that the development depends on the axiomatic context 
considered. 

Because of the interaction between actors into a group and in different groups 
of a social system, individual behaviour influences and, at the same time, is influ-
enced by individual behaviours.  

In the above axiomatic context an important role is played by the conditional 
probability. But unlike the Natural Sciences, in which the “axiomatic probability 
by Kolmogorov” is suitable, in the Social Ambit, the more general subjective con-
ditional probability by de Finetti and Dubins is suitable (de Finetti, 1970; Dubins, 
1975). A further generalization useful for the wideness of the applications is pro-
vided by the “generalized probability function” and the “fuzzy conditional prob-
ability” (Maturo, 2004, 2006).  

We have to formalize the mechanisms of control, development, selection (how 
an individual enters, remains and go out of the system). 

Social processes cannot be interpreted only as a sum of individual behaviours, 
but they have a proper life. We must consider also that in the ambit of the social 
action the “Perverse Effects” can occur (Boudon, 1967, 1969; Sciarra, 2004; 
Maturo et al., 2008). 

The opposition between selfish individual behaviours makes some perverse ef-
fects since they are not provided but result by an arrangement of their rational ac-
tions. The aggregation of individual acts, each of these being rational individual 
choices, can have, as a consequence, a not desirable emergence. 

The individual roles can be formalized as criteria for an individual belongs to a 
similarity class. These roles are in a continuous dynamical evolution which is in-
fluenced by the unforeseeable fluctuation of the set of the individual choices, in 
the ambit of the individual freedom granted by the institutional rules. 

4   Fuzzy Set Modelling of Some Aspects of Social Behaviour 

In social choice theory agent preferences on a set of alternatives are usually repre-
sented through binary relations. 

However, human preferences are often vague; vagueness can be taken into ac-
count by means of fuzzy logic. The use of fuzzy relations in social choice theory 
for representing individual preferences has been justified by several authors (Basu, 
1984; Dutta, 1987; Barrett et al., 1986; Yager, 2008).  

The original concept of fuzzy set was introduced by Zadeh as an extension of 
crisp set, by enlarging the truth value set (or “grade of membership”) from the two 
value set {0, 1} to the unit interval [0, 1] of real numbers (Zadeh, 1965; Bellman 
and Zadeh, 1970). 

 



Decision Making in Social Actions 285
 

The basic arithmetic structure for fuzzy numbers was developed in (Dubois and 
Prade, 1978). The arithmetic operation was established either by the extension 
principle or observing the fuzzy numbers as a collection of α-levels. Alternative 
fuzzy operations for social applications are considered in (Maturo, 2009). 

In fuzzy set theory, several triangular norms and conorms are used for defining 
the intersection and the union of fuzzy sets, respectively. Various factorizations of 
fuzzy weak preference relations have been given in the literature. See, for in-
stance, (Ovchinnikov, 1981, 1991; Dutta, 1987; Richardson, 1998). 

In order to deal with the problem of modeling in the above context we need: 

- to assign numerical values (that are in general fuzzy values) to linguistic at-
tributes; 

- to give a way to aggregate information of perceptional or subjective nature; 
-  to formalize the interdependence between decision criteria; 
- to have inference rules such that it is possible to manage imprecise informa-

tion; 
- to have a new way to a reconciliation between the abstract concepts of “com-

petition”, “control”, and “selection”, and the human way of thinking; 
- to enlarge the possibility of formalization using probability functions and 

logical connectives; 
- to have a defuzzification procedure (e.g., a fuzzy set is defuzzified to a crisp 

set by choosing the element of the fuzzy set with the highest degree of set mem-
bership). 

Some of the above issues will be analyzed in the following section, utilizing the 
fuzzy set theory in the modeling decision making and game theory in the social 
context. 

5   Competitive and Cooperative Situations in Social Sciences 

Decision making in Social Sciences in a competitive or cooperative situation is 
modeled in Game Theory. Since the publication of “Theory of Games and Eco-
nomic Behavior” (von Neumann and Morgenstern, 1944), game theory has been 
applied in different fields of research: economics, political science, management, 
philosophy. Game theory provides a normative rule to allow a rational person to 
do what is best for himself (principle of individual rationality). It take into account 
all possible actions and consequences for all participants, determining the best ac-
tions for all players. 

Because of the different assumptions about the nature of game or about the 
character of rational human behavior, game theory has developed two great 
branches: cooperative and non-cooperative game theory. Competition within 
groups can have both benefits and costs for an individual. 

We can observe that cooperative games and cooperative organizations have a 
common beginning in the concept of a group of agents that choose a common 
course of action for the mutual benefit (interest); in many social contexts, the 
presence of reciprocity motives allows to achieve a cooperative solution to the 
game. Cooperative game theory is applicable whenever the players in a game can 
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form “coalitions”, that is when groups choose a common strategy to improve the 
payoffs to the members of the group (McCain, 2008).  

Let us recall the basic concepts of crisp n-person non-cooperative games in 
normal (strategic) form. See, e. g., (von Neumann and Morgenstern, 1944; Luce 
and Raiffa, 1957). 

A crisp n-person (non-cooperative) game in normal form is a triplet G = (P, S, 
f) where: 

• P = {P1, P2, …, Pn } is the set of players; 
• S = S1×S2×…×Sn, with Sj ≠ ∅ is the set of the pure strategies of the 

individual Pj; 
• f is the vector of the payments (f1, f2,…, fn), where fj: (s1, s2,…, sn)∈S 

→ fj(s1, s2,…, sn)∈R, is the utility of the player Pj if Pr chooses the 
strategy sr, r =1, 2, …, n. 

The n-tuple (s1
0, s2

0,…, sn
0)∈S is said to be a saddle point or an equilibrium point 

of G if, for every j∈{1, 2, …, n}, sj∈Sj, we have: 
 

fj(s1
0, s2

0,…, sj,…, sn
0) ≤ fj(s1

0, s2
0,…, sj

0,…, sn
0). 

 
A mixed strategy for the person Pj is a probability distribution on the set Sj of the 
pure strategies of Pj.  

From now on we assume the set S is finite and nj is the number of elements of 
Sj. In this case a mixed strategy for Pj is a vector σj = (x1, x2, …, xnj) of non nega-
tive real numbers such that their sum is 1.  

Let Σ = Σ1×Σ2×…×Σn, where Σj is the set of mixed strategies of Pj. A function 
Fj: (σ1, σ2,…, σn)∈Σ → Fj(σ1, σ2,…, σn)∈R is defined as the linear extension of 
the function fj, where Fj(σ1, σ2,…, σn) is the utility of the player Pj if every player 
Pr chooses the mixed strategy σr, r = 1, 2, …, n. 

It is well known that there are many games that haven’t saddle points in pure 
strategies, but every finite game has at least an equilibrium point in mixed strate-
gies (Nash, 1951).  

Often, in modeling social situations by means of finite games, the players are 
not able to evaluate exactly some data of the game due to a lack of information or 
imprecision of the available information on the environment or on the behavior of 
other players. This drastic restriction made it difficult to apply the classical game 
theory to real problems.  

In order to make the theory of games more applicable to real problems, fuzzy 
set theory has been introduced in non-cooperative game theory in (Butnariu, 
1978). 

Non-cooperative fuzzy games were studied also in (Tsurumi et al., 2001; 
Mares, 2001; Maturo et al., 2004; Kachera and Larbani, 2008), in which fuzzy 
utilities and strategies individuated by linguistic attributes are considered.   

Fuzzy games are studied also by the cooperative point of view, in which fuzzy 
coalitions and fuzzy characteristic functions are introduced. The starting point is 
the concept of fuzzy coalition introduced in (Aubin, 1975).  
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Cooperative fuzzy games represent an extension of a fuzzy game with fuzzy 
coalitions and vague expectations together. Borkotokey has observed that the most 
of the properties satisfied by a crisp game hold good in the fuzzy sense in this ex-
tension (Borkotokey, 2008).  

In Social Sciences the utilities are often given as values of a linguistic variable 
or, also in the case of a numerical variable, every utility has a degree of  
uncertainty. 

Then we propose, in the applications of the game theory to competitive situa-
tions in Social Sciences, to assume that, the utilities are fuzzy numbers.  

Moreover, by considering mixed strategies, practically we have a uncertainty of 
the probabilities assessed to the pure strategies. 

Let Φ be the set of simple fuzzy numbers. We propose to consider fuzzy mixed 
strategies, using the following definition. 

 
Definition A fuzzy mixed strategy for a player Pj is a vector x = (x1, x2, …, 
xnj)∈Φnj  with the conditions: 

• ∀j∈{1, 2, …, nj}, the support of xj is contained in [0, 1]; 
• C(x1) + C(x2) +… + C(xm) = 1, where C(xi) is the core of the fuzzy  

number xi. 
 

Let us consider a simple example coming from a situation illustrated in (Crozier, 
1963) and further dealt with in (Maturo et al., 2008). In the problem of Industrial 
Monopoly it is considered a precise system of roles of a great Enterprise. Let us 
limit our consideration to the functional roles and relations between the Director 
and the Budged Controller. We have: 

• a hierarchical dependence of the Budged Controller by the Director, 
responsible of strategic and political trends; 

• a joint responsibility for the important decisions with the obligation 
of a join signature. 

The Director and the Budged Controller choose their strategies. In (Crozier, 1963) 
the system of relations between the Director and the Budged Controller is simpli-
fied by considering two possible strategies for everyone: aggressive (a) and col-
laborative (c). Moreover Crozier claimed that the optimal join strategy for the so-
cial organization of the Enterprise is (a) for the Director and (c) for the Budged 
Controller.  

The remark that not always the Director is right and often he is “partially” right 
and not always it is convenient that the Budged Controller is remissive in defend-
ing own ideas, lead us to consider fuzzy mixed strategies, on the basis of the defi-
nition above. 
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Coherence for Fuzzy Measures and 
Applications to Decision Making 

Antonio Maturo1, Massimo Squillante2, and Aldo G.S. Ventre3 

Abstract. Coherence is a central issue in probability (de Finetti, 1970). The stud-
ies on non-additive models in decision making, e. g., non-expected utility models 
(Fishburn, 1988), lead to an extension of the coherence principle in nonadditive 
settings, such as fuzzy or ambiguous contexts. We consider coherence in a class of 
measures that are decomposable with respect to Archimedean t-conorms (Weber, 
1984), in order to interpret the lack of coherence in probability. Coherent fuzzy 
measures are utilized for the aggregations of scores in multiperson and multiobjec-
tive decision making. Furthermore, a geometrical representation of fuzzy and 
probabilistic uncertainty is considered here in the framework of join spaces (Pre-
nowitz and Jantosciak, 1979) and, more generally, algebraic hyperstructures 
(Corsini and Leoreanu, 2003); indeed coherent probability assessments and fuzzy 
sets are join spaces (Corsini and Leoreanu, 2003; Maturo et al., 2006a, 2006b). 

1   Aims and Topics 

Theoretical and applied issues in decision making involve evaluations based on 
non-additive measures (Fishburn, 1988; Schmeidler, 1989; Dubois and Prade, 
1992; Squillante and Ventre, 1988, 1992, 1998; Ventre, 1996; Diecidue and Mac-
cheroni, 2003; Maturo, et al., 2006a, 2006b). 

It is well known that the principle of coherence is a fundamental subject in 
probability (Coletti, 1994; Coletti et al. 1990, 2004; de Finetti, 1970). The coher-
ence in a class of fuzzy measures, introduced in order to interpret the lack of co-
herence in probability (Squillante and Ventre, 1998; Maturo, et al., 2006a, 2006b), 
is here further studied. 
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The coherence allows the construction of a measure that takes into account the 
evaluation systems of the decision makers. 

Fuzzy measures allow to generalize the concept of consistency of a set of 
evaluations, and, in some cases, the initial assessment is interpolated by a plausi-
bility or a belief function.  

A geometrical representation of the fuzzy and probabilistic uncertainty is con-
sidered in the framework of the theory of the algebraic hyperstructures (Corsini 
and Leoreanu, 2003; Prenowitz and Jantosciak, 1979)). Indeed, coherent probabil-
ity assessments and fuzzy sets are join spaces (Maturo, et al., 2006a, 2006 b).  

The logical concepts of atoms and conditional events are framed as properties 
of particular hypergroupoids (Doria and Maturo,1996).  

A further goal will be obtained by setting in the same framework the assess-
ments that are coherent with respect to decomposable measures of uncertainty. 

2   Key Concepts and Preliminary Results 

2.1   Belief and Plausibility Measures 

A belief function Bel (see, e. g., (Banon, 1981)) is a function defined over an alge-
bra ℑ of subsets of a set X s. t.  

Bel(Ø) = 0,  Bel(X) = 1,                                            (2.1) 

Bel(A
1
∪...∪A

n
) ≥ ∑Bel(A

i
)-∑Bel(A

i
∩A

j
)+...+(-1)

n+1
Bel(A

1
∩...∩A

n
)       (2.2) 

A plausibility measure Pl is characterized by Pl(A)=1-Bel(Ac), with Ac the com-
plement of A. 

A measure (and integration) theory with respect to suitable decomposable set 
functions, that gives rise to another actual extension of Lebesgue measure theory, 
is due to (Weber, 1984). 

2.2   Fuzzy Operations on [0, 1] 

Let us recall, from (Weber, 1984), some definitions.  
A t-conorm ⊥ on the real unit interval [0, 1] is a binary operation  

• non decreasing in each argument;  
• associative;  
• commutative;  
• having 0 as neutral element.  

A t-conorm is Archimedean if it is: 
• continuous; 
• ⊥(x, x) > x, for every x in (0, 1).   

An Archimedean t-conorm is strict if it is strictly increasing in the open square  
(0, 1)2.  
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The following representation theorem holds: 
 

Theorem 2.1 (Ling, 1965). A binary operation ⊥ on [0, 1] is an Archimedean  
t-conorm if and only if there exists a strictly increasing and continuous function  

g: [0, 1] → [0,+∞], with g(0) = 0, 

such that 

x ⊥ y = g
(-1)

(g(x)+g(y)). 

Function g
(-1) denotes the pseudo-inverse of g, i.e.: 

g
(-1)

(x) = g
-1

(min(x, g(1))). 

Moreover 

⊥ strict ⇔ g(1) =+∞. 

The function g, called an additive generator of ⊥, is unique up to a positive con-
stant factor. The following identity holds: 

g(g
(-1)

(x)) = min(x, g(1)). 

The following is known as Sugeno t-conorm (Sugeno, 1974). 

Example 2.1. For λ > -1, a, b∈[0, 1], let: 

Uλ(a, b) = min(a + b + λ ab, 1).                                     (2.3) 

The function Uλ: (a, b)∈[0, 1]2 → Uλ(a, b) is a non-strict Archimedean t-conorm 
with additive generator 

gλ(x) = (1/λ) ln(1+λx).                                        (2.4) 

In particular: 
 

• for λ = 0, we have the bounded sum: 

U
0
(a, b) = min(a + b, 1),                                        (2.5)  

with additive generator  

g
0
(x) = x. 

• as λ → -1 Sugeno t-conorm reduces to the following algebraic sum: 

U-1(a, b) = a + b – ab,                                         (2.6) 

that is a strict Archimedean t-conorm with additive generator 

g-1(x) = -ln(1-x). 
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3   Decomposable Measures 

Definition 3.1. Let (X, ℑ) be a measurable space. A set function  

m: ℑ → [0, 1], with m(Ø) = 0 and m(X) = 1, 

is said to be:  
 
(a) a ⊥-decomposable measure, if 

A∩B = Ø  ⇒  m(A∪B) = m(A)⊥m(B);                               (3.1) 

(b) a σ-⊥-decomposable measure, if  

Ai∩Aj = Ø, ∀i ≠j ⇒ m(∪
n≥1An

) = ⊥
n≥1

m(An).                           (3.2) 

The following classification theorem holds: 
 

Theorem 3.1 (Weber, 1984). If the operation ⊥ in [0, 1] is a strict Archimedean t-
conorm, then 
 

• (S) g•m: ℑ → [0, +∞] is an infinite (σ-)additive measure, whenever m is a 
(σ-)⊥-decomposable one. 

• If ⊥ is a non-strict Archimedean t-conorm, then g•m is finite and one of the fol-
lowing cases occurs: 
− (NSA)   g•m: ℑ → [0, g(1)=(g•m)(X)] is a finite (σ-)additive measure;  
− (NSP)   g•m is a finite set function which is only pseudo (σ-)additive, i. e., if 

Ai∩Aj = Ø, ∀i ≠j, then 

(g•m)(∪
n≥1An

) < g(1) ⇒ (g•m)(∪
n≥1An

) = ∑
n
(g•m)(An

);                  (3.3) 

(g•m)(∪
n≥1An

) = g(1) ⇒ (g•m)(∪
n≥1An

) ≤ ∑
n
(g•m)(An

).                 (3.4) 

The Uλ-decomposable measures are also called λ-additive measures or Sugeno 
measures.  

Banon (1981) and Berres (1988) proved that λ-additive measures are plausibil-
ity measures if -1 < λ < 0, and belief measures if λ > 0.  

For λ = 0 the λ-additive measures are probability measures. 

4   Coherence for Decomposable Measures 

Let E be a finite family of events Ai , i = 1, ... , n. The atoms or constituents of E 

are defined as the non impossible events ∩iA'i, where A'i ∈{Ai, Ai
c}. 

Let Cj, j = 1, 2, ... , s be the set of atoms. 
The set of assessments 0 ≤ m(Ai) = mi < 1, over the events Ai, is coherent w. r. 

to a ⊥-decomposable measure m, with additive generator g, if there is a solution  

w = (w
1
, ... ,w

s
)  
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of the following system:  

ai1g(w1) + ai2g(w2) + ... + aisg(ws) = g(mi), i = 1,…, n                            (4.1) 

g(w1) + g(w2) + ... + g(ws) ≥ g(1),                                                          (4.2) 

with aij = 1, if Cj⊆Ai and aij = 0, if Cj⊆Ai
c, and 0 ≤ wj ≤1, j = 1,..., s. 

For Sugeno measures, system (4.1) – (4.2) reduces to: 

ai1ln(1+λw1) + ai2ln(1+λw2) + ... + aisln(1+λws) = ln(1+λmi), i=1,…, n      (4.3) 

ln(1+λw1) + ln(1+λw2) + ... + ln(1+λws) ≥ ln(1+λ), for λ>0,             (4.4) 

ln(1+λw1) + ln(1+λw2) + ... + ln(1+λws) ≤ ln(1+λ), for λ<0,             (4.5) 

0 ≤ wj, j = 1,..., s.                                                 (4.6) 

Some examples show that an assessment of evaluations, inconsistent in the prob-
abilistic framework, can actually be coherent w.r. to a suitable Uλ-decomposable 
measure. 

 

Example 4.1. Let us consider the events A1, A2, A3 with the evaluations  

m(A1) = 0.1, m(A2) = 0.5, m(A3) = 0.3,  

and the relations 

A1∩A2∩A3 = ∅, A3 = (A1∩A2)∩(A1∩A2)
c. 

The atoms are:  

C1 = A1∩A2
c∩A3,  C2 = A1∩A2∩A3

c,  C3 = A1
c∩A2∩A3,  C4 = A1

c∩A2
c∩A3

c. 

In the ambit of the Uλ-decomposable measures, the system (4.3) –(4.6) gives co-
herence for λ ≥ 10/3, i.e. for a belief measure that is not a probability measure. 

 
Put mi = m(Ai). In the ambit of the Uλ-decomposable measures, if the system (4.3) 
–(4.6) gives coherence for some λ ≥ 0, let us to define a measure of inconsistency 
w. r. to a probability as: 

µ(m
1
, ..., m

n
) = inf{λ ≥ 0 such that there is a λ-additive measure interpolating the 

data}. 

5   An Application to Multiobjective and Multiperson Decision 
Making 

We consider the problem of choosing an alternative in a set A = {A1, A2, …, Am} 
of alternatives, given: 

 

• a set D = {d1, d2, …, dh} of decision makers; 
• a set O = {O1, O2, …, On} of objectives.  
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Each decision maker dk assigns to any pair (alternative Ai, objective Oj) a real 
number aij

k∈[0, 1] that measures to what extent Ai satisfies Oj. 
We assume every Oj is a non trivial subset of a universal set U (or, in a prob-

abilistic framework, we assume Oj is a non trivial event and U is the certain 
event). 

Let mi
k be the function defined on O∪{∅, U} with values on [0, 1] such that: 

mi
k(∅) = 0,  mi

k(U) = 1,  mi
k(Oj) = aij

k.                                      (5.1) 

Assume mi
k is a monotonic set function (“finitely monotonic” fuzzy measure).  

Our aims are: 

• to find Archimedean non strict t-conorms ⊕λ, λ∈Λ, such that, for some λ, mi
k is 

a restriction of a ⊕λ-decomposable fuzzy measure; 
• among these t-conorms, to individuate a suitable t-conorm ⊕ in order to aggre-

gate scores of alternatives with respect to the objectives. 

5.1   Decision Making with Disjoint Objectives  

Let the set of objectives O = {O1, O2, …, On} be a family of disjoint subsets (resp. 
incompatible events) of U and let ⊕ be any non strict Archimedean t-conorm with 
additive generator g.  

In this case  

• the atoms are C1 = O1, C2 = O2, …, Cn = On and (if it is not empty) Cn+1 equal to 
the complement of the union of the Oj; 

• then the system (4.1) – (4.2), with mi replaced by aij
k and s = n+1, has solutions 

(w1, w2, …, wn, wn+1), where wj = aij
k for j=1, 2, …n, and wn+1 is any value of a 

suitable close interval containing 1; 
• the function m*i

k that to every subset S of U obtained as union of atoms associ-
ates the number ⊕{wr: Cr∈S} is a ⊕-decomposable measure on the algebra ℑ 
generated by the objectives, extension of mi

k; 
• then, for every i, k, the assessment of the scores aij

k to the objectives is coherent 
w. r. to ⊕, and m*i

k is its extension to the algebra ℑ of subsets of U. 
 

Previous properties allows us to define the global score bi
k of the alternative Ai w. 

r. to the decision maker dk by the formula: 

bi
k = ai1

k ⊕ ai2
k ⊕ … ⊕ ain

k,  i = 1, 2, …, m                          (5.1) 

The global score of dk is the point Pk = (bi
k, i = 1, 2, …, m) of the Euclidean space 

Rm.  

5.2   Decision Making with Non-disjoint Objectives  

Let the set of objectives O = {O1, O2, …, On} be a family of non disjoint subsets 
(resp. non incompatible events) of U and let ⊕ be any non strict Archimedean t-
conorm with additive generator g. Let C = {C1, C2, …, Cs} the set of atoms of O. 
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We say that ⊕ is consistent with the scores of the alternative Ai, with respect to 
the decision maker dk, if the system (4.1) – (4.2), with mi replaced by aij

k, has solu-
tions (wi1, wi2, …, wis).  

We say that ⊕ is an aggregation criterion for the decision maker dk if it is con-
sistent with the scores of all the alternatives Ai, with respect to dk. 

If a decision maker dk has a own aggregation criterion ⊕ (consistent with the 
scores), then he can define the global score bi

k of the alternative Ai by the  
formula: 

bi
k = χ1 wi1 ⊕ χ2 wi2 ⊕ … ⊕ χs wis,                              (5.2) 

where i = 1, 2, …, m, and 
 

• (wi1, wi2, …, wis) is a solution of the system (4.1) – (4.2) with mi replaced by 
aij

k; 
• χj = 1 if the atom Cj is contained in at least an objective Oj and χj = 0 otherwise. 

As in the above case, the global score of dk is the point Pk = (bi
k, i = 1, 2, …, m) of 

Rm.  

5.3   Some Further Problems in the Decision Making Process 

• (choice of solution) if formula (5.2) is adopted, decision maker dk must also 
provide for suitable criteria (e.g. maximize or minimize some “objective func-
tion”) in order to choose the solution (wi1, wi2, …, wis) of the system (4.1) – 
(4.2), if it has more solutions;  

• (homogeneity) in order to compare and activate a procedure of aggregation-
consensus for a ranking of the alternatives that resumes the ranking of all the 
decision makers, it is necessary to believe in the “homogeneity” of the vectors 
bi

k, k = 1, …, h. This is important, in particular, if different decision makers use 
formula (5.2) with different t-conorms. 

• (normalization) a criterion to obtain homogenous vectors of scores by different 
decision makers is the normalization, obtained by dividing scores by a suitable 
positive real number dependent by dk. The most common normalization proce-
dure is replacing the numbers bik with the numbers: 

βi
k = bi

k/(b1
k + b2

k + … + bm
k).                                 (5.3) 

After the normalization, the global score of dk is the point  

Qk = (βi
k, i = 1, 2, …, m)                                       (5.4) 

of the Euclidean space Rm belonging to the hyperplane: 

x1 + x2 + … + xm = 1.                                       (5.5) 

5.4   Decision Making with Weighted Objectives  

We can, in general, associate a weight ωj to every objective Oj, that measures the 
importance of Oj. These weights can be obtained, e. g., by means of the Analytic 
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Hierarchy Process (AHP) (Saaty, 1980), by considering the pairwise comparisons 
of the objectives. These weights must satisfy the conditions: 

ωj ≥ 0, j = 1, 2, ..., n,   ω1 + ω2 + ... + ωn = 1.                      (5.6) 

If the objectives are disjoint, then the weights ωj are consistent with a measure on 
the algebra containing the objectives. 

In this case we replace the scores aij
k with the products ωj aij

k, and obtain the 
weighted global score bi

k of the alternative Ai with respect to the decision maker 
dk by the formula: 

bi
k =ω1 ai1

k ⊕ ω2ai2
k ⊕ … ⊕ ωn ain

k, i = 1, 2, …, m.                (5.7) 

If the objectives are not disjoint the weights ωj are consistent with respect to a ⊕-
decomposable measure, with ⊕ non strict Archimedean t-conorm with generator 
g, if and only if the system (4.1) – (4.2), with mi replaced by ωj, has solutions  
(c1, c2, …, cs).  

In this case we obtain the weighted global score bi
k by replacing the scores of 

the atoms wij with the products cj wij and by replacing the formula (5.2) with the 
following 

bi
k = χ1 c1 wi1 ⊕ χ2 c2 wi2 ⊕ … ⊕ χs cs wis, i = 1, 2, …, m.                  (5.8) 

6   Hyperstructures as a Tool for a Geometrical Representation 
of the Uncertainty 

6.1   Main Concepts on Hyperstructures 

Many new contributions to the representation of the uncertainty can be obtained as 
applications of the theory of the algebraic hyperstructures.  

The theory of hyperstructures started with the paper (Marty, 1934), but its pre-
sent development begins in 1978 with the First International Congress on Alge-
braic Hyperstructures and Applications (AHA), and the work (Prenowitz and Jan-
tosciak, 1979). For further results and references see (Corsini and Leoreanu, 
2003). 

A hypergroupoid, or hyperstructure with a hyperoperation, is a pair (H, σ), 
where H is a non empty set and σ: H×H→℘*(H) = ℘(H)-{∅}, called hyperop-
eration on H, is a function that associates to any ordered pair (a, b) of elements of 
H a non empty subset of H, denoted aσb.  

The elements of H are called points and any singleton {a}, a∈H, is identified 
with the point a. So, if aσb is a singleton for every a, b∈H, then the hyperopera-
tion σ reduces to an operation on H. 

For every A, B∈℘*(H) we assume: 

AσB = ∪{aσb: a∈A, b∈B}.                                       (6.1) 
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A hypergroupoid (H, σ) is said to be: 

• semihypergroup, if, for every a, b, c∈H,  

aσ(bσc) = (aσb)σc      (associative property); 

• weak semihypergroup, if, for every a, b, c∈H,  

aσ(bσc)∩(aσb)σc ≠ ∅    (weak associative property); 

• commutative if, for every a, b∈H,  

aσb = bσa    (commutative property); 

• weak commutative hypergroupoid if, for every a, b∈H,  

aσb ∩ bσa ≠ ∅    (weak commutative property); 

• quasihypergroup if, for every a∈H,  

aσH = H = Hσa    (reproducibility property). 

A hypergroupoid (H, σ) is said to be a hypergroup if it is both a semihypergroup 
and a quasihypergroup. 

The commutative hypergroups are meaningful from a geometrical point of 
view.  

By a geometrical point of view, the hyperproduct aσb is said to be the σ-
segment (or simply the segment if there is no ambiguity) with endpoints a and b. 

If A and B are two subsets of H, we say that A meets B, we write A ≈ B if A 
and B have at least a point in common. 

In a commutative hypergroup, the concepts of division  /  and half-line are also 
introduced.  

For every a, b∈H, the division a/b is the set:  

a/b = {x∈H: a∈xσb},                                        (6.2) 

called the σ-half-line (or simply the half-line if there is no ambiguity on the hy-
peroperation considered) with origin b and containing a. 

6.2   Join Spaces 

The commutative hypergroups that have the most meaningful geometric properties 
and that seem to be suitable for many extension of the concept of coherence are 
the join spaces. 

A commutative hypergroup (H, σ) is said to be a join space if the following in-
cidence property holds: 

∀a, b, c, d∈H,  a/b≈c/d  ⇒  aσd≈bσc.                              (6.3) 

In other words: 
 

if the half-lines a/b and c/d have in common at least a point x, then also the 
segments aσd and bσc meet in at least a point y. 
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The following are particular join spaces (Prenowitz and Jantosciak, 1979): 

• (the Euclidean join space) Every Euclidean space Rm, and every convex set S 
of Rm, with respect to the hyperoperation σ that to every pair (P, Q) of points 
associates the Euclidean segment with extremes P and Q. The incidence prop-
erty is a different formulation of the Pasch axiom (see, e. g.,  Beutelspacher and 
Rosenbaum, 1998).  

• (the Cartesian join space) The Euclidean space Rm, and every interval of Rm, 
with respect to the hyperoperation α that to every pair (P, Q) of points associ-
ates the Euclidean interval with extremes P and Q is a join space, called the 
Cartesian join space. 

• (the projective join space) Let (S, L) be a projective space, with S the set of 
points and L the set of lines; S, with respect to the hyperoperation α that to 
every pair (P, Q) of points associates the line through the points P and Q, is a 
join space. The incidence axiom reduces to Veblen–Young axiom (see, e. g., 
Beutelspacher and Rosenbaum, 1998). 

6.3   Hyperstructures Associated to a Fuzzy Set 

(6.3.a) The Join Space Associated to a Fuzzy Set 
Let α: U→[0, 1] be a fuzzy set with universe U. For every a, b in U, let:   

aσb = {x∈U: min(α(a), α(b)) ≤ α(x) ≤ max(α(a), α(b))}.             (6.4) 

The hyperoperation σ is commutative and we have {a, b} ⊆ aσb, then aσb ≠ ∅ 
and aσH =H = Hσb.  

Then (U, σ) is a commutative quasihypergroup. 
Because of the associativity of the operations min and max, the following 

equalities hold: 

(aσb)σc={u∈U:min(α(a),α(b),α(c))≤α(u)≤max(α(a),α(b),α(c))}=aσ(bσc),    (6.5) 

and so (U, σ) is a commutative hypergroup. 
As incidence property holds (Corsini and Leoreanu, 2003), then (U, σ) is a join 

space.  

(6.3.b) The Hypergroup Associated to a Fuzzy Set of Type 2 
Let (L, ∨, ∧) be a lattice. A function α: U→L is said to be a L-fuzzy set with uni-
verse U.  

For every a, b in U, let:   

aτb = {x∈U: α(a) ∧ α(b)) ≤ α(x) ≤ α(a) ∨ α(b)).                          (6.6) 

The hyperoperation τ is commutative and {a, b} ⊆ aτb; then aτb ≠ ∅ and  
aσH=H = Hσb.  

Hence (U, τ) is a commutative quasihypergroup, called the hyperstructure as-
sociated to α.  
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The following theorem holds: 
 

Theorem 6.1 (Corsini and Leoreanu, 2003, p.178). If L is a distributive lattice 
then (U, τ) is associative and so it is a commutative hypergroup. 

 

When, in particular, L equals the family of fuzzy sets with universe J ⊆ [0,1] and 
∨ and ∧ are the usual operations of union and intersection between fuzzy sets with 
universe J, respectively, then the L-fuzzy sets are said to be fuzzy sets of type 2. 
Since the union is distributive with respect to the intersection, then the hyperstruc-
ture (U, τ) associated to a fuzzy set α of type 2 is a commutative hypergroup. 

6.4   Join Spaces Associated to Coherent Probability or Prevision 
Assessments 

(6.4.a) Join Space of the Coherent Probability Assessments  
Let ℑ = {E1, E2, …, En} be a finite set of events and let U be the Euclidean space 
having the events of ℑ as axes.  

If K is an atom associated to ℑ, we call representative of K the point P(K) such 
that, for every Ei∈ℑ, its projection Pi(K) on the axis Ei is 1 if K⊆Ei and 0 if K⊆Ei

c.  
Let Δ be the set of all the atoms associated to ℑ, and P(Δ) the set of the points 

of Rn representative of the elements of Δ.  
As shown by (de Finetti, 1970), a point of Rn  

P = (p1, p2, …, pn), with pi = p(Ei) 

is a coherent probability assessment on ℑ, if and only if, for every S = (S1, S2, …, 
Sn)∈Rn ,  

Ms = maxK∈Δ Σi Si Ei
K ≥ Σi Si pi,                                 (6.7) 

where  

Ei
K = 1 if K⊆Ei and Ei

K = 0 if K⊆Ei
c. 

Let ℘ be the set of all the coherent probability assessments on ℑ. For any P, 
Q∈℘, let aσb be the closed Euclidean segment having P and Q as extreme points.  

From (6.7) it follows that, if A = (a1, a2, …, an) and B = (b1, b2, …, bn) are two 
elements of ℘, then any point  

P = hA+(1-h)B, 0 ≤ h ≤ 1,  

of aσb is also an element of ℘.   
From suitable properties of convex sets of a Euclidean space (see, e. g., 

Prenowitz and Jantosciak, 1979), (℘, σ) is a commutative hypergroup, in particu-
lar a join space, that we call the join space of the coherent probability assessments 
on ℑ. 

By (6.7) it follows that ℘ contains all the points P(K), K∈Δ and it is the mini-
mal convex subset of U containing all these points (de Finetti, 1970), 
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6.5   Logical Hypergroupoid 

(6.5.a) Semihypergroup of Atoms  
Let ℑ be an algebra of events. We define the hyperoperation σ on ℑ as, 

∀a, b∈ℑ, aσb is the set of the atoms generated by {a, b}.  

We have that (ℑ, σ) is a commutative semihypergroup, called the semihypergroup 
of atoms.  

For further details, see (Corsini and Leoreanu, 2003; Doria and Maturo, 1996). 

(6.5.b) Hypergroupoid of Conditional Events 
Let ℑ be an algebra of events. We define on ℑ the hyperoperation σ such that, for 
every a, b∈ℑ,  

aσb = {a∩b, b}.                                         (6.8) 

If b≠∅, then aσb can be interpreted as the conditional event a/b.  
We have that (ℑ, σ) is a weak associative and weak commutative hypergrou-

poid, called the hypergroupoid of conditional events.  
For further details see (Corsini and Leoreanu, 2003; Doria and Maturo, 1996). 

6.6   Hyperstructures Associated to a Family of Fuzzy Sets 

(6.6.a) Hypergroup Associated to a Lattice  
Let (L, ∨, ∧) be a lattice. For every a, b∈L, we put: 

aσb = {x∈L: a∧b ≤ x ≤ a∨b}.                                  (6.9) 

Since {a, b} ⊆ aσb, the pair (L, σ) is a quasi-hypergroup, called hypergroupoid 
associated to L. 

The following theorem holds: 
 

Theorem 6.1 (Varlet, 1975). The associativity holds if and only if L is distribu-
tive. In this case (L, σ) is a join space. 

(6.6.b) Join Space of the Fuzzy Sets with the Same Universe U 
Let Φ be the family of the fuzzy sets on the same universe U. For every a, b∈Φ, 
we put:  

aσb={u∈Φ: ∀x∈U, min{a(x), b(x)} ≤ u(x) ≤ max{a(x), b(x)}},         (6.10) 

that is, if ∨ and ∧ are the union and the intersection of fuzzy sets: 

aσb={u∈Φ: a∧b ≤ u ≤ a∨b}.                                (6.11) 

Since (Φ, ∨, ∧) is a distributive lattice, Varlet theorem implies (Φ, σ) is a join 
space. 
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(6.6.c) Hypergroup of the Generators of Non Strict Archimedean t-Conorms 
Let G be the set of the generators of non strict Archimedean t-conorms such that 
g(1) = 1, for any g∈G. 

We define on G the hyperoperation σ such that, for every a, b∈G,  

aσb={g∈T:∀x∈[0, 1], min{a(x), b(x)} ≤ g(x) ≤ max{a(x), b(x)}.        (6.12) 

Since the elements of G are fuzzy sets with universe [0,1], by the previous theo-
rem it follows that (G, σ) is a join space. 

(6.6.d) Hypergroup of the Non Strict Archimedean t-Conorms 
Let C be the set of the non strict Archimedean t-conorms. The function h: C → G 
that to every element c∈C associates its generator gc = h(c) is a one-one and onto 
function.  

Let us consider the hyperoperation α on C such that: 

∀a, b∈C, aαb = h-1(h(a)σh(b)).                               (6.13) 

Then h is an isomorphism between (G, σ) and (C, α) and therefore (C, α) is a join 
space. 

6.7   Conclusions 

Many other applications of hyperstructures can be considered in decision making 
and in probability. 

If A1 and A2 are two possible alternatives, then we can define A1 σ A2 as the set 
of all the alternatives that are related to both A1 and A2 by a particular point of 
view, for instance they are not strictly preferable or they are not dominated.  

The way to handle with the subjective conditional probability by dealing with a 
particular hyperstructure having two hyperoperations is supplied in (Maturo, 
2000). 
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Abstract. The value of a firm cannot be totally independent of the financial context
in which the firm operates. In this paper we propose a set of axioms in order to char-
acterize appropriate measures of the (random) value of a company which provides a
(sublinear) valuation functional consistent with the existence of a financial market.
It allows to give an upper and a lower bound to the value of a firm.

Finally, in a random context, we consider some classical valuation methods and
test them with respect to the axioms.

Keywords: Firms Valuation, Corporate Finance, Decision Theory.

1 Introduction

In this paper we propose a criterion to individuate appropriate measures for a com-
pany valuation in a random context. We will assume the existence of a financial
market whose prices implicitly reveal (although partially) the probabilities of the
states of the world underlying the traded assets. It will be used to give an upper and
a lower bound to the value of a firm.

Our main result derives the representation for a valuation functional on the basis
of a set of axioms, which appears to be quite natural from an economic point of
view. The functional we will obtain is the maximum (or the minimum) of the ex-
pected values of the random variable describing the value of the firm in the different
probabilistic scenarios consistent with a given market. Such a result is along the
lines of the one of Arztner et al. [1] in Risk Measures.
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In the second part of the paper we will examine some among the most common
valuation criteria for a company. In particular, methods based on the present value
of future cashflows or returns and valuation through real options will be considered1

and finally we will test such criteria with respect to our axioms.
To fix some idea let us refer to a very simplified example. Consider an oil com-

pany and assume that oil price will uniquely determine the value of the company.
The current valuation is that the future oil price per barrel will vary in some interval.
For the sake of simplicity, let us consider only two prices, say 50 and 100 dollars.
The shareholders and a group of potential buyers ask to a statistician, a market an-
alyst and a manager in the oil field to valuate the firm through the EVA method.
The researchers attribute to the first scenario (50 dollars) probability 50%, 40% and
33,3% respectively. The values V of the company in the two cases are 150 or 210
million dollars. As a consequence, valuation gives the three expected values 180,
186 and 190. It seems natural that shareholders will take as ask price:

max
p

Ep [V ] = max [180,186,190] = 190

whereas buyers will choose as bid price:

min
p

Ep [V ] = min [180,186,190] = 180.

The usual methods for firms valuation are often based on investigations in sure con-
texts. But this seems to be rather unrealistic.

The events of Autumn 2008 show that the present crisis is, without doubt, the
worst of the west world’s Economics and that almost all valuation methods and
control rules failed.

A long list of evidences supports our point (as Greeks used to say: Future is on
Jupiter’s lap!). Simply think, for instance:

(i) On July 2008 in three days the semipublic banks Fannie Mae and Freddie Mac,
born with the aim to grant US middle classes loans for houses, suffered a 90%
decrease in their stocks. At that moment their rating was triple A. Later on they
became insolvent and the U. S. Government nationalized them in order to avoid
their bankrupt.

(ii) The successive default of Lehman Brothers (September 2008) is giving rise to a
chain reaction in firms whose long term effects nobody may foresee.

(iii) For months stocks values of quoted companies went through a frightful up and
down showing that all the sure valuations turn out to be inconsistent. Only one
instance: on December 2008 Morgan Stanley raised the objective-price of the
Fastweb stock for the period 2008-2010 from 30 to 33 euros, whereas UBS low-
ered it from 24 to 17 euros. Both the motivations seem reasonable: the American
bank values that the sector of telecommunications is underestimated and could

1 See, among others, [6], [12], [13], [15] and [35].
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produce surprises. On the contrary, the Swiss analysts fear the growing pressure
of competition.

(iv) In sure processes of valuation catastrophic scenarios need to be totally ignored
and in many cases this determines an irresponsible overestimate of the firm’s
value.

It is a matter of fact that the most important fields of Economics are actually inves-
tigated in a random context.

On a financial ground, dating from Fifties, markets are represented in random
frameworks. Risk Measures Theory models risks (the same risks owned by firms)
as random variables and the coherent risk measure proposed by Artzner et al.2 in
1999, as well as some of common measure criteria (e.g. the S.P.A.N. method, the
worst conditional expectation and the tail conditional expectation criteria), move
from different states of the world. Of course every model in Decision Theory deals
with random variables or random acts3.

Hence, the possible absence of randomness in firms valuation methods appears
deeply out of date. A more rational way to a realistic valuation would consists in
considering the value of a firm as a random variable4 to be synthesized through an
appropriate functional.

Valuation and measure problems for economic or financial random variables are
central in every economic field (Finance, Operational Research, Management The-
ory, Decision Theory, etc.). Although many valuations are ultimately expressed by a
unique price, in the reality often two different prices are meaningful: an upper price
and a lower price (in some sense, an ask and a bid price). In particular, a correct
valuation of an economic phenomenon (think, for instance, of the frequent exigency
to set some limitations to negotiations) makes sense if it is an “interval valuation”.

In the last years, an innovative concept caught on. By nature, a coherent (in par-
ticular, leading to non-arbitrage in financial problems or to rational behaviours in
Decision Theory) price system values a random variable through a maximum or a
minimum of expected values with respect to a set of probabilities or, in particular,
a single expectation. The idea is simple: often a market or an individual are not in-
formed enough to express a unique probability measure for the states of the world,
but acts as if it considers a set of probabilities which appears reasonable and consis-
tent with the information available at the moment. Such family of probabilities leads
to a collection of expected values among which the more adequate price has to be
chosen. In the most conservative cases the choice will coincide with their maximum
or their minimum.

In particular, such kind of characterization of prices and/or measures have been
proposed first in Decision Theory by Gilboa and Schmeidler in 1989 [17], in Risk

2 See [1].
3 See [17].
4 A good example of value measures in random scenarios is given by valuations in insurance

contexts. See, among others, also for references, [14], [26], [30] and [31].
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Theory by Arztner et al. in 1999 [1] and, a little bit later, in Insurance and Finance5

(see, among others, [3], [8], [9], [10], [14], [18], [19], [20], [23], [24], [26], [30] and
[31]).

As said above, our proposal consists in introducing a similar approach in the
theory of firms valuation.

In Section 2 we will present a set of axioms for a value measure and the repre-
sentation theorem. In Section 3, we will consider some class of valuation methods
in a random framework and check if such criteria satisfy the axioms. In Section 4,
some final consideration will conclude the paper.

2 Value Measures and Representation Theorem

In this section we propose axioms for a value measure of a firm and give a rep-
resentation theorem. Such a measure is consistent with the existence of a financial
market and leads to an upper and a lower value for the firm to be interpreted, roughly
speaking, as the ask price and the bid price.

Let [0,T ] be one period of uncertainty. For now, we can think of T as a long
period or as the period of life of the company6. Let Ω = {ω1,ω2, . . . ,ωm} be a finite
set of m states of the world where Ω is large enough to include all the states of
interest for the firm’s valuation and for the reference market.

We assume the existence of a perfect (complete or incomplete) financial
market without arbitrage opportunities. Let M ⊆ R

m be the linear subspace of the
payoffs of the traded securities. Let the prices system for the assets be linear on M.
Under these assumptions the market is frictionless and the one price law holds7.

Furthermore, let the riskless bond paying 1 in each state of the world belong to
M. Observe that such a requirement is always satisfied by the markets. This guaran-
tees finite8 prices for the quoted securities and that Φ = Φ(T ), the discount factor
expressed by the market, is constant.

Because of no arbitrage hypothesis, the Fundamental Theorem of Asset Pricing
guarantees the existence of one (at least) probability measure p such that, denoting
by π the prices of the assets in M:

π(m) = ΦEp [m] ∀m ∈ M

5 Even if we must observe that in these last contexts investigations are almost at the begin-
ning, in spite of the first intuition that may be found in a paper of 1933 by de Finetti and
Obry [16].

6 About T see also Section 3.
7 Prices also could be supposed to be sublinear. For a treatment of the Sublinear State Pref-

erence Model, see, for instance, [8] and, especially, [20].
8 In fact, with this assumption the sufficient condition for prices finiteness:

M∩R
m
++ �= /0

(that is, M contains at least one security with a strictly positive payoff) is satisfied.
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Such probabilities are said to be risk neutral. Then, π : M → R is a linear and
increasing functional.

Let us consider the set of random variables X , where X = X(ω) ∈ R
m represents

the value of a firm at time T if state ω prevails.

Definition. A functional μ : R
m → R is a value measure (or price) for a firm if

satisfies the following axioms:

A1 Positive homogeneity:
μ(αX) = αμ(X), ∀α ∈ R+, ∀X ∈ R

m.
A2 Monotonicity:

If Y (ω) � X(ω) for any ω ∈ Ω , then μ(Y ) � μ(X), ∀X ,Y ∈ R
m.

A3 Market consistency:
μ(X + m) = μ(X)+ π(m), ∀X ∈ R

m, ∀m ∈ M.
A4 Subadditivity:

μ(X +Y) � μ(X)+ μ(Y), ∀X ,Y ∈ R
m.

Remarks. • A1 guarantees the invariance of μ in front of a change of currency;
• A2 is quite natural: if in each state of the world a firm has a higher value than

another, the same must happen for their values;
• A3 states that traded marketed assets and liabilities are valued at their market

prices;
• A4 says that the value of two (or more) companies cannot exceed the sum of their

values. If not so, to buy them separately would be more convenient than a unique
purchase. In many cases the two sides of inequality in A4 will be equal (the value
of two independent companies is the sum of the values of each of them), but in
case of a link between the two firms (they belong to the same group, they are
partners in a same business, they are different divisions of a unique company,
they cover an important share of the market, etc.), the strict inequality will hold.
However, in some cases it may appear opportune to reverse the inequality, that is
to ask for superadditivity, by introducing the axiom A4’:

A4’ Superadditivity:
μ(X +Y ) � μ(X)+ μ(Y), ∀X ,Y ∈ R

m

This can be, for instance, the case of mergers between complementary firms
where possible synergy effects9 can create a future surplus of value for the new
company.

• Finally, mathematically speaking, A1 and A4 guarantee the sublinearity of μ .

Representation Theorem. Let P be the set of risk neutral probabilities expressed
by the market.

The functional μ : R
m → R satisfies Axioms A1 - A4 and hence is a value mea-

sure (or price) for a firm if and only if there exists a set Q ⊆ P of probabilities such
that:

μ(X) = Φ sup
p∈Q

Ep [X ] ∀X ∈ R
m

9 See, for instance, [25] and, also for a review, [11].
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The set Q can be always taken compact and convex and in such a case it is unique
and the supremum becomes a maximum.

Proof. See Appendix. �	
The economic meaning of the theorem is clear: the valuation works as if different
possible scenarios are considered. The upper value of every firm is the expected
value of its future performances obtained through the scenario which is the most
favourable for the firm. Furthermore, from the sublinearity of μ one has:

μ(X) = Φ max
p∈Q

Ep [X ] � Φ min
p∈Q

Ep [X ] = −μ(−X) ∀X ∈ R
m

which suggests to interpret μ(X) as the ask price and −μ(−X) as the bid price. The
bid price is computed considering the scenario which is the most severe for the firm
and, as usual, bid price is not greater than ask price.

Remarks. • An analogous representation holds with infimum instead of supre-
mum if μ satisfies Axioms A1 - A4’.

• In the ideal case of a complete financial market, that is if each random variable
representing the future value of a firm can be replicated, there is a unique risk
neutral probability p and:

μ(X) = ΦEp [X ] = π(X) ∀X ∈ R
m

that is, μ is linear.
• Since a sublinear functional is increasing if and only if:

X � 0 =⇒ −μ(−X) � 0 ∀X ∈ R
m

whenever X � 0 it will be:

μ(X) � −μ(−X) � 0

which guarantees the positivity of both the prices.
• If, for some X it is μ(X) = −μ(−X), then:

μ(Y −X) = μ(Y )− μ(X) ∀Y ∈ R
m

• The inclusion Q ⊆ P says that some scenarios considered by the financial market
can be excluded. Furthermore, if we consider two different value measures μ1

and μ2 with the respective probability families Q1 and Q2 (Q1,Q2 ⊆ P), we can
emphasize the role assumed by different level of information in the valuation
process:

(i) if (and only if) Q1 is more informative than Q2, both bid and ask Q1-prices
are more convenient than Q2-prices:

Q1 ⊆ Q2
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if and only if

μ1(X) = Φ max
p∈Q1

Ep [X ] � Φ max
p∈Q2

Ep [X ] = μ2(X) ∀X ∈ R
m

(ii) standard separation theorems allow to show the following results:
– if Q1 ∩ Q2 = /0, there exists a random variable X ∈ R

m such that:

−μ1(−X) � μ1(X)<−μ2(−X) � μ2(X)

that is the ask price obtained via Q1 is smaller than the bid price obtained
via Q2;

– if Q1 ∩ Q2 �= /0 and Qi � Q j, i, j = 1,2, i �= j, there exist at least two
random variables X and Y in R

m such that:

μ1(X)> μ2(X) and μ1(Y )< μ2(Y )

that is some random variable is better valued by μ1 and some other by μ2.

Finally:

• positive homogeneity entails μ(0) = 0;
• as every sublinear functional defined on a linear space is continuous, μ is contin-

uous on R
m.

3 Some Common Valuation Criteria

This section aims to consider some usual valuation methods. In particular, we will
focus our attention on the large class of criteria based on future cashflows or returns
and on the real options method.

3.1 DCF Methods

In the financial community mainly three classes of methods caught on in the last
decades10: the Discounted Cashflows method (DCF) and some of its variants, like
as the Free Cashflows (FCF) and the Dividend Discount Models (DDM), the market
multiples criterion and the valuation through the Economic Value Added (EVA).
Such methods are usually presented as deterministic, even if a simplified random
framework can be recognized as starting point in several practical problems, i.e.:

(i) Every method is applied to more than one scenario. Usually at least three future
possible situations are analyzed: a plausible (and/or forecast) performance for
the company together with a better and a worse ones.

(ii) A good valuation is based on two or more criteria.
(iii) If the level of randomness is very high, a sensitivity analysis completes the

investigation.

10 See, among others, [2], [4], [6], [13], [33] and [34].
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At the end of the process, the analyst expresses a valuation which represents a sort
of compromise among the different results.

Therefore, although the context of valuation is deterministic, many scenarios are
analyzed and, sometimes, stochastic tools contribute to the final valuation (think,
for instance, of computing of expected earnings or expected dividends). Hence, also
relying on the words of Modigliani and Miller who in their famous paper11 of ’61
suggested to approach the whole valuation problem in conditions of uncertainty, a
random approach can at least partially mitigate subjectivity or factiousness.

Therefore, we will consider a random version of the FCF, DDM and EVA
criteria12.

The model we study is a unified generalized version of the mentioned criteria.
We consider the capital structure of the company as given. Without entering upon
the subject, the enterprise value measured through these methods has the form:

V = C +
T

∑
t=1

at

(1 + ρ)t +
F

(1 + ρ)T (1)

where usually C is not null only in the EVA model in which it is the capital commit-
ted to the business at the beginning of the period.

The valuation consists substantially of two addenda. The former is the sum of the
present values of future free cashflows, or dividends or EVA’s in the next T years.
Usually in FCF and EVA models the discounting rate ρ is the weighted average cost
of capital (WACC), whereas in DDM it is the opportunity cost of equity.

The latter is the “final value” of the company and represents the present value
of all FCF’s, dividends and EVA’s respectively, after the year T . The quantity F
is frequently assumed to be the present value in T of a perpetual annuity whose
installments grow exponentially at rate13 g< ρ and has the form:

F =
[
CT +

aT+1

(ρ −g)

]

where usually CT is null in FCF model and in DDM, whereas in EVA model it is the
sum of C and all the next investments up to T (included). Furthermore, we suppose
aT+1 = aT (1 + g).

11 See [29], p. 426.
In a previous paper (see [28], p. 267 and following) the Authors, moving from the

formula V = E + D where V is the value of the firm, E is the equity and D is the debt,
obtain, under opportune assumptions, V = X/ρ where X is the expected return of a stream
of earnings due to the assets of the firm and ρ may be seen as the expected rate of return
of any share of the company or as the market rate of capitalization for the expected value
of the uncertain cashflows generated by the firm.

12 Because of their wide diffusion, we limit our analysis to these three indicators, but nu-
merous other models are on the same lines (think, for instance, of the cashflows return on
investment (CFROI) model).

13 After T years the company is supposed to be mature, that is to have run out its skill to
grow at elevated rhythms. Usually g is assumed to be near to zero.
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The period [0,T ] is said Competitive Advantage Period (CAP) or explicit period
and usually its length is of 5 -10 years. It is the period in which it is easier to express
a precise forecast and/or the time in which the (growth) firm profits by a competitive
advantage due, for instance, to recent investments. Often it depends on the economic
(maybe sectorial) cycle as well.

It is well known14 that, under opportune hypotheses, the three models are equiv-
alent, that is, they attribute to a firm the same value.

Criterion (1) may be restated in random terms. Let us assume that information
on the market is described in the usual form15 through a filtration of algebras At ,
t = 0,1, . . . ,T. Therefore each at , since it is a risky amount16 with maturity t, has to
be intended as a random variable which results to be measurable with respect to At .

It is immediate to verify the result:

Proposition. Let Ω = {ω1,ω2, . . . ,ωm} be the set of the states on [0,T ] . If:

X = C(1 + ρ)T +
T

∑
t=1

at(1 + ρ)T−t + F

is the random value of a firm in T, the quantity

μ(X) =
1

(1 + ρ)T sup
p∈Q

Ep [X ] = C + sup
p∈Q

m

∑
s=1

[
T

∑
t=1

at

(1 + ρ)t +
F

(1 + ρ)T

]
ps

(where ps = p(ωs), s = 1,2, . . . ,m, is the s−th component of p ∈ Q), is a value
measure (or price) for the firm for any Q ⊆ P, where P is the set of risk neutral
probabilities expressed by the market.

The following example illustrates the criterion. For the sake of simplicity, let T = 2.
Let Ω = {ω1,ω2,ω3,ω4} and:

p(ω1) =
15−55α

60

p(ω2) =
24 + 20α

60
p(ω3) = α

p(ω4) =
21−25α

60

The condition 0< α < 3/11 guarantees the absence of arbitrage opportunities.
Let WACC = 5% and the growth rate g = 1%. Let us assume that the future free

cashflows of a company (in hundreds of thousands of euros) are:

14 See, for instance, in a very wide literature, [27], [29], [33] and [34].
15 Such data can be obtained on the basis of time series and/or of the opinions of the analysts.
16 A more general version of the criterion may be obtained taking one or more of the consid-

ered rates as random.



314 P. Modesti

a1(ω1) = a1(ω2) = 100

a1(ω3) = a1(ω4) = 200

and:

a2(ω1) = 50

a2(ω2) = 110

a2(ω3) = 150

a2(ω4) = 180

Therefore, the value of the firm in T = 2 is:

X =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

X(ω1) = 100 ·1.05 + 50+ 50·1,01
0.04 = 1,522.5

X(ω2) = 100 ·1.05 + 110+ 110·1,01
0.04 = 3,097.5

X(ω3) = 200 ·1.05 + 150+ 150·1,01
0.04 = 4,042.5

X(ω4) = 200 ·1.05 + 180+ 180·1,01
0.04 = 4,83

The consequent ask and bid prices with the above probabilities are:

μ(X) =
1

1.052 sup
p

Ep [X ] =
1

1.052 sup
0<α<3/11

[3,012.22 + 1,516.86α]

= 3,425.91

and

−μ(−X) =
1

1.052 inf
p

Ep [X ] =
1

1.052 inf
0<α<3/11

[3,012.22 + 1,516.86α]

= 3,012.22

3.2 Real Options

In their celebrated paper [5], Black and Scholes, under simple assumptions, showed
also that the future value of a company for its shareholders can be seen as the final
payoff of an option which will pay the difference between the shares value and a
possible debt with bondholders or nothing in case of default.

In the Eighties a complete theory for the valuation of a firm through options was
developed17, yielding to a random value at maturity for a firm and/or a project.

Often in the valuation of a firm or of a project, the usual methods turn out to
be exaggeratedly static, that is, they can fail to capture the flexibility embedded in
the project. Then, many different options should be considered: the option to defer

17 See, for instance, [12], [15], [21], [32] and [35].
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an investment, to alter the operating scale, to abandon the project, etc. Hence the
theory of real options proposes to valuate the project as a financial option. The final
valuation will give the price of the option or the sum of it, seen as the value of the
potential future activities, and of the value of the existing ones. Many real options
are similar to European or American calls or puts written on a stock giving or not
dividends during the life of the option.

Generally speaking, in the cases in which the price of the option is the present
value of the (maximum or minimum) expected value of its final payoff depending on
risk neutral probabilities, the resulting value for the project is a measure satisfying
the above axioms and, hence, a value measure.

Sometimes real options result to be very complex, but here we do not desire to
enter in technicalities. We confine ourselves to examine a simple case of an option
to defer we will present together with an example.

Let us consider the opportunity to invest now the amount I in a project which will
pay in T = 1 the random amount V which will assume the value V+ if a given event
A will be true and V− if A�, the complement of A, will be true. Denote with p the
probability of A in a risk neutral world and with r the riskless interest rate. Finally,
in order to consider the most meaningful case, let V+ > I(1 + r)>V−.

It is:

X =

⎧
⎨

⎩

V+ − I(1 + r) if A

V−− I(1 + r) if A�

and:

μ(X) =
1

1 + r
max

p
Ep [X ] =

1
1 + r

max
p

Ep [V ]− I

is the current value of the project18.
For instance, we could think of a company which can invest 100 millions of dol-

lars to buy a TV network, knowing that, in one year, the Government will decide if it
can broadcast on all the national territory without particular advertising constraints.
If the decision will be favourable to the company (event A), the expected value from
subsequent cashflows discounted back to an estimate of WACC is, in T = 1, 550
millions of dollars, whereas, in the opposite case, is 55. Let r = 10%. It is:

μ(X) = max
p

(450p−50)

Let us suppose that the firm could defer undertaking the project in T , when the Gov-
ernment’s decision will be known. In other words, the company owns an European
call option19 to wait on the project value with a strike price equal to I(1 + r). The
value of the project in T is now the payoff of the call, that is the random variable:

18 The quantity μ(X) is a value measure for the project because obtained with the above DCF
method.

19 For the sake of simplicity we ignore possible dividend-like effects.
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Y =

⎧
⎨

⎩

max [V+− I(1 + r),0] = V + − I(1 + r) if A

max [V−− I(1 + r),0] = 0 if A�

and the value measure for the project is:

μ(Y ) =
1

1 + r
max

p
Ep [Y ] =

1
1 + r

max
p

[
V+− I(1 + r)

]
p

It is easily to verify that also μ(Y ) is a value measure for the firm.
Finally, the results provide also the value of the option to defer:

μ(Y )− μ(X) =
1

1 + r
max

p

[
I(1 + r)−V−]

(1− p)> 0

In the example, it is:

Y =

⎧
⎨

⎩

440 if A

0 if A�

μ(Y ) = max
p

[400p]

and:
μ(Y )− μ(X) = max

p
50(1− p)

4 Conclusions

The valuation of a firm is a deeply subjective process. To a great extent the final
result depends on the beliefs of the analyst and on the inputs he considers. Surely a
measure of value based on a set of axioms does not solve the problem (which, how-
ever, from a theoretical point of view, cannot be solved: probably a really objective
value does not even exist), but may help at least to provide a rational starting point
for the valuation and to avoid some excess.

In a globalization time, the price of a firm cannot be totally independent of
the financial context in which the firm operates. Furthermore, this approach focuses
the attention on the states of the world: often the interest of the valuation is not only
in the random future flows and in the consequent value, but also in the events which
can give the different earnings or losses. We start from a financial market providing
linear prices for quoted assets and individuate a link between the market and the
value of a firm. The presence of the market determines an upper and a lower bound
for the value of the firm. Thus, there exists an interval of plausible values for the
firm,

(
Φ infp∈Q Ep [X ] ,Φ supp∈Q Ep [X ]

)
, and, according to the different exigen-

cies of the valuation (purchase, quotation on Stock Exchange, etc.), the economic
context will determine the final price. As natural choice, we suggest to fix the ask
and bid price to the maximum (from the best scenario of the firm) and the minimum
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(from the worst scenario) of the interval respectively. Mathematically, this means
to extend the price functional for the financial market defined on M to a sublinear
functional on the set of all the random variables defined on Ω .

The incompleteness of the market implies the existence of infinitely many risk
neutral probabilities: it is as though the market would consider possible different
probabilistic scenarios, the ones consistent with the prices of the quoted assets.
Hence, the probabilistic ambiguity gives more that one price.

Further research may develop along two lines: the model can be stated in the
continuous case and current criteria of valuation may be deeply investigated. In par-
ticular, real options, at the beginning seen as a too abstract tool, are now recognized
as a valid instrument for the valuation especially in the cases of new lines of pro-
duction in which an initial absence of earnings can make inadequate the traditional
methods. Then, different types of real options may deserve to be considered. Finally,
a good matter could be the analysis of the market multiples method.
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A Appendix: Representation Theorem: Proof and Comments

Definition. A functional μ : R
m → R is:

(i) positive if whenever x � 0, μ(x) � 0;
(ii) increasing if whenever y � x, μ(y) � μ(x).

Let us remind that if M is a proper linear subspace of R
m, a linear functional π on M

may be linearly extended in infinite ways on R
m. The maximum of such extensions

is sublinear and finite.
The proof of the theorem is similar to the proof of the main result of Artzner et

al. [1] for coherent risk measures. It is based on some well known characterizations
of sublinear functionals which we recall briefly. In particular, the first result is a
consequence of the Hahn-Banach theorem20.

Lemma 1. A functional μ : R
m → R is sublinear if and only if it has the form:

μ(x) = max
ϕ∈Q

ϕ(x)

where Q is a set of linear functionals ϕ : R
m → R which may be taken compact and

convex (and in such a case Q is unique).

Lemma 2. A sublinear functional μ(x) = maxϕ∈Q ϕ(x) is increasing if and only if
all the elements of Q are positive.

Proof of the Representation Theorem. The first part of the implication (if) is obvi-
ous. For the second part (only if):

• A1 and A4 state the sublinearity of μ . Hence, for Lemma 1, there exists a unique
compact and convex set Q of linear functionals ϕ : R

m → R such that:

μ(x) = max
ϕ∈Q

ϕ(x)

• A2 asks for increasing monotonicity of μ . Hence, for Lemma 2, all the elements
of Q are positive;

• A3 implies:
μ(m) = π(m) ∀m ∈ M

Then, for the Hahn - Banach Theorem, μ is the maximum finite sublinear exten-
sion of π . Furthermore, Q ⊆ P and ϕ(x) = Φ px = ΦEp [X ] .
The thesis follows. �	

20 See, for instance, [7] and [22] and, for financial aspects, [3], [8], [18], [20], [23] and [24].



Thin Rationality and Representation
of Preferences with Implications to
Spatial Voting Models

Hannu Nurmi�

1 Introduction

Much of current micro economic theory and formal political science is based
on the notion of thin rationality. This concept refers to the behavioral prin-
ciple stating that rational people act according to their preferences. More
precisely, a rational individual chooses A rather than B just in case he/she
(hereafter he) prefers A to B. Provided that the individual’s preference is a
binary, connected and transitive relation over alternative courses of action,
we can define a utility function that represents the individual’s preferences so
that when acting rationally – i.e. in accordance with his preferences – he acts
as if he were maximizing his utility.1 When considering risky alternatives,
i.e. probability mixtures of certain outcomes, similar representation theorem
states that the individual’s preferences can be represented as a utility func-
tion with an expected utility property. These utility functions assign risky
prospects utility values than coincide with weighted sums of the utility val-
ues of those outcomes that may materialize in the prospect. The weights, in
turn, are identical with the probabilities of the corresponding outcomes.

In spatial models, the individuals are identified as their ideal points in
a space. Similarly the decision alternatives are represented as points in the
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space. In strong spatial models the individual i’s evaluations of alternatives
are assumed to be related to a distance measure di defined over the space.
Moreover, each individual i is assumed to have an ideal point xi in the space
so that

x � y ⇔ di(x, xi) ≤ di(y, xi), ∀x, y ∈W

In words, each individual is assumed to prefer those alternatives closer to
his ideal point to those further away from it. This article focuses on the
plausibility of this apparently obvious assumption.

Spatial models occupy an important position in modern social choice
theory. From the early applications to party competition and electoral
equilibrium they have spread to the study of inter-institutional power in
the European Union (EU) and cabinet coalitions in multiparty systems
([10],[24],[25],[19]). They have also found new applications in expert systems
advising the voters in making choices in elections. Work on spatial models has
produced a wide variety of results ranging from the existence of stable out-
comes (equilibria) of various various kinds ([23],[31]) to power distributions
among voters ([39]) and suggestions for the design of institutions ([37]).

We approach the spatial voting games from the angle of aggregation para-
doxes. These are surprises pertaining to inferring system properties from
component properties or vice versa. In the social sciences typical instances
of aggregation paradoxes are cross-level inferential fallacies, i.e. situations
where one tries to determine individual-level properties from aggregate-level
data. Suppose, for example, that we have voting data on electoral districts
suggesting that in there is a positive correlation between the percentage of
low-income voters and the support of the left-wing parties. To infer from these
data that low-income voters are more likely to vote for left-wing parties is to
commit an ecological (cross-level) fallacy.

The particular type of aggregation paradoxes we shall be mostly dealing
with bears the name of Ostrogorski, a Russian diplomat and political theorist
whose magnum opus [27] appeared in the opening years of the 20th century
(see also [29] and [4]). It will be introduced and analyzed in the next section.
Its variant – the exam paradox ([26]) – together with a majority-rule related
paradox will be dealt with in the section that follows it. The next section
introduces another aggregation paradox, viz. Simpson’s paradox ([38]). The
remaining sections discuss the conditions under which the paradoxes can be
expected to occur.

The aggregation paradoxes have been the focus of scholarly attention for
some time. The paradox bearing the name of Simpson was in fact mentioned
nearly two decades before Simpson’s important article by Cohen and Nagel
([8, 449]). In 1940’s and 1950’s several important contributions were made by
Kenneth O. May ([20], [21]). Especially [22] is a pioneering work that shows
i.a. that cyclical preferences make perfect sense when individual preference
are formed on the basis of multiple criteria of performance. Our main point
is related to May’s: we aim to show that the basic tenet underlying many
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spatial models – i.e. that the voter preferences have a spatial representation
– is far from innocuous. Indeed, there are situations where one should expect
rational individuals to choose of two alternatives the one which is further
away from the individuals’ optimum point.

2 Ostrogorski’s Paradox

Suppose that in an election there are 5 voters, 2 parties and 3 issues. Suppose,
moreover, that each voter considers these issues to be of equal importance
and that there are no other considerations in their mind that would determine
their opinion on the parties. Consider two ways of determining the election
result. (1) Each voter votes for the party that is closer to his/her (hereinafter
his) opinion on more issues than the other party and whichever party gets
more votes than the other is the winner. (2) For each issue the winner is the
party that gets more votes than its competitor and the election winner is
the party winning on more issues than the other. In a nutshell, Ostrogorski’s
paradox occurs when the election result differs in these two cases. Consider
the following distribution of opinions on parties X and Y (Table 1).

Table 1 Ostrogorski’s paradox

issue issue 1 issue 2 issue 3 the voter votes for

voter A X X Y X
voter B X Y X X
voter C Y X X X
voter D Y Y Y Y
voter E Y Y Y Y
winner Y Y Y ?

This is a rather strong version of the paradox since not only are the re-
sults different under procedures (1) and (2), but the winner under (2) is a
unanimous one. Replacing any one Y with an X in the table would result in
a weaker version of the paradox where “just” a majority winner is different
under (1) and (2).

Replace now “voter” with “criterion” throughout in the preceding table
and consider the procedure of forming an individual preference over two can-
didates X and Y . For example, in political competition the criteria could
be relevant educational background, political experience, negotiation skills in
the issue at hand, relevant political connections, etc. The issues might be e.g.
education, economy and foreign policy. Each entry in the table then indicates
which alternative is better on the criterion represented by the row when the
issue is the one represented by the column. Suppose that the criterion-wise
preference is formed on the basis of which alternative is better on more issues
than the other. If all issues and criteria are deemed importance, the decision
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of which candidate the individual should vote is ambiguous: the row-column
aggregation with the majority principle suggests X , but the column-row ag-
gregation with the same principle yields Y .

Suppose now that the issues span a 3-dimensional Euclidean space where
X and Y are located as two distinct points. The individual whose views are
represented in the above table would then be located in this space so that on
each dimension his ideal point (i.e. the point that represents him) is closer
to Y than to X . However, it can not be inferred on this basis alone that in
a pairwise comparison between X and Y he would vote for Y . In fact, if he
resorts to the wholly reasonable principle of basing his choice on the criterion-
wise performance of candidates, he will vote for X . After all, X outperforms
Y on three criteria, while Y beats X on only two.

It is worth pointing out that the problem here cannot be resolved by as-
signing salience weights to issue dimensions, since Y is closer to the individual
on each dimension. Strategic considerations – which of course may underly
occasional votes against preferences – do not enter into the calculus dictat-
ing the choice of X rather than Y since the the agenda consists of only two
alternatives and the ideal points of other voters are not known.

3 The Anscombe and Exam Paradoxes

Apparently closely related to Ostrogorski’s is the paradox described by
Anscombe [1]. In a nutshell, it says that it is possible that a majority of
voters is in a minority (i.e. on the losing side) on a majority of issues involv-
ing dichotomous choices. Table 2 illustrates this paradox.

Table 2 Anscombe’s paradox

issue issue 1 issue 2 issue 3

voter A X X Y
voter B Y Y Y
voter C Y X X
voter D X Y X
voter E X Y X
winner X Y X

Voters A, B and C are on the losing side on a majority of issues: A on issues
2 and 3, B on issues 1 and 3 and C on issues 1 and 2. It is worth noticing
that Table 2 does not exhibit Ostrogorski’s paradox. Thus these two types
are non-equivalent. Translated into the multi-criterion setting, Anscombe’s
paradox states that it is possible that a majority of criteria fails to coincide
with the majority of criteria on a majority of issues. It is, thus, possible that
more than 50% of the criteria fails to predict the “best” choice on more than
50% of the issues. In other words, a majority of criteria disagrees with the
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majority of criteria on more issues than those where they agree with the
chosen alternative.

The exam paradox introduced and analyzed by Nermuth [26] has many
similarities with Ostrogorski’s paradox. In a way it is a generalization of the
latter in a domain where the proximity of alternatives to ideal points takes
on degrees instead of dichotomous values. The following is an adaptation
of Nermuth’s example. There are four issues and five criteria. One of two
competitors, X, is located at the following distance from the voter’s ideal
point in a multi-dimensional space (Table 3). The score of X on each criterion
is simply the arithmetic mean of its distances rounded to the nearest integer
and in the case of a tie down to the nearest integer.

Table 3 X’s distances from the voter’s ideal point

criteria issue 1 issue 2 issue 3 issue 4 average score
criterion 1 1 1 2 2 1.5 1
criterion 2 1 1 2 2 1.5 1
criterion 3 1 1 2 2 1.5 1
criterion 4 2 2 3 3 2.5 2
criterion 5 2 2 3 3 2.5 2

X’s competitor Y, in turn, is located in the space as indicated in Table 4.

Table 4 Y’s distances from the voter’s ideal point

criteria issue 1 issue 2 issue 3 issue 4 average score
criterion 1 1 1 1 1 1.0 1
criterion 2 1 1 1 1 1.0 1
criterion 3 1 1 2 3 1.75 2
criterion 4 1 1 2 3 1.75 2
criterion 5 1 2 1 2 1.75 2

4 Simpson’s Paradox and the Sure-Thing Principle

When dealing with rates of improvement, recovery, growth etc. one may en-
counter Simpson’s paradox. To quote Blyth ([6, 364])2:

... Savage’s sure-thing principle (“if you would definitely prefer g to f,
either knowing that event C obtained, or knowing that C did not obtain,
then you definitely prefer g to f.”) is not applicable to alternatives f an
d g that involve sequential operations.

To consider a two-dimensional spatial setting, assume that the dimensions
represent success rates of two policies in two separate settings. Suppose that
2 For a general method for generating these paradoxes, see [30].
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policy g is associated with a higher success rate than policy f in both settings.
The sure-thing principle would then dictate that g be preferred to f. Yet, it
may well be that the overall success rate associated f is much higher than
that of g.

The following example illustrates (Table 5):

Table 5 Relative frequency data

g f
event C 1/3 1/4

event non-C 2/3 1/2

Suppose that f and g are some incentive schemes or experimental treat-
ments and that the numbers indicate efficiency or quality (e.g. frequencies of
exceeding some performance threshold). Then it would seem that g is, indeed,
preferable to f. However, the following table (Table 6) is entirely consistent
with the above data:

Table 6 Absolute frequencies

g f
event C 40 10

event non-C 10 45
total 50 55

Looking just at the “total” row one could easily be led to the opposite con-
clusion than previously, i.e. one could now suggest that f is preferable to g.

In typical spatial models, the sure-thing principle is implicitly assumed in
virtue distance-based calculus. Simpson’s paradox shows that there are limits
in the plausibility of this assumption.

5 Core Conditions and Aggregation Paradoxes

Perhaps the best-known results on spatial models pertain to the conditions
under which a core outcome exists ([2], [23], [31]). The core, it will be recalled,
is the set of majority undominated outcomes:

x ∈ C ⇔ xMy, ∀y ∈W

Here M is the weak majority preference relation so that xMy means that
x either beats y with a majority of votes or there is a tie between the two.
These results are based on the assumption that the ideal points as well as the
distance measures and, consequently, the utility functions of the individuals
are well-defined in the policy space. The results characterize in general terms
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the structural conditions under which stable outcomes exist and those under
which they don’t. Moreover, they tell us how the majority rule performs
under circumstances when the core is empty and the preferences are smooth,
i.e. have continuous utility representations.

What the preceding example of Ostrogorski’s paradox amounts to, how-
ever, is that the core may exist in terms of a distance measure-based utility
function, but the individual may plausibly vote for x even though y would
be closer to his ideal point in all dimensions. So, the structurally stable core
– i.e. stable in terms of the smooth preferences and distance measure – may
not be stable after all.

Would this, then, imply that nonempty cores are even less common than
the structural stability theorems suggest? Not at all, since a nonempty core
may also exist in cases where none exists in terms of distance-based utility
functions. Indeed, Humphreys and Laver argue that the smoothness of pref-
erences runs counter the evidence on individual decision making experiments
where other types of preferences have been found more common than smooth
ones [14].

6 Indices of Voting Power

Spatial models are also resorted to in the study of voting power. Usually
a distinction is made between spatial or preference-based and cooperative
power indices. The latter typically refer to the Shapley-Shubik, Banzhaf and
Holler-Packel indices (Banzhaf 1965; Shapley and Shubik 1954; Holler and
Packel 1983). In fact, one of these, viz. the Shapley-Shubik one is based on a
spatial intuition as well. To wit, it equates the voting power of a player with
the relative number of times he is pivotal in all permutations of players. Since
each permutation can be viewed as an attitudinal dimension, the Shapley-
Shubik index has a spatial ring to it.

In typical spatial voting power measures, the crux is to regard a player
more powerful than another just in case the the distance between the for-
mer’s ideal point and the equilibrium outcome is smaller than the distance
between the latter’s ideal point and the equilibrium outcome (see e.g. [39]).
Prima facie, this seems to be another situation where Ostrogorski’s paradox
renders the results of modeling somewhat questionable since it can again be
argued that outcomes closer to player ideal points may be less preferred than
those further away. On closer inspection this conclusion is, however, not war-
ranted. The spatial power measures are based on hypothetical reasoning: if
the players prefer outcomes closer to their ideal points to those at greater dis-
tance from them, then their power is inversely related to the distance between
equilibrium outcomes and their ideal points. This interpretation makes these
spatial models obviously weakly spatial. As such they are on par with the
generic existence/nonexistence results on cores in spatial voting games. These
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are based on the assumption that the voters’ utilities are simple functions of
the relevant distances between alternatives and ideal points.

7 The Conditions of Paradoxes

The conditions under which Ostrogorski’s paradox occurs have been stud-
ied by several authors (e.g. [9], [15], [16], [29], [36]). Daudt and Rae point
out that there is a connection between Ostrogorski’s and cyclic majorities. If
candidates can be identified with different k-tuples of positions in the issue
space – rather than just X or Y as in the preceding – an instance of Ostro-
gorski’s paradox implies some intransitivities in majority preference relations
over candidates. Kelly [15] shows that with three issues the occurrence of
Ostrogorski’s paradox implies that there can be no Condorcet winner. His
conjecture is that this holds for all situations with an odd number of issues.

As was pointed out above, Ostrogorski’s paradox may take on degrees
according the “degree of contradiction” involved in computing election out-
comes (i) over issues separately and then determining the overall winner, or
(ii) over voters and then determining the election winner. In some occasions
decision rules larger than simple majority are used. E.g. a voter may have a
status quo favorite party that he votes for, unless its competitor is closer to
his position on more than 2/3 of the issues. There may also be a status quo
policy that is adopted unless more than, say, 3/5 of the electorate prefers its
competitor. With k issues and n voters, assume that party 1’s position is 1
on every issue and party 0’s position 0 on every issue. An example is shown
in Table 7. Clearly, if each voter votes for 0 unless 1 is closer to his position
in 4/5 of the issues, no Ostrogorski’s paradox emerges, while imposing the
somewhat lower 3/5 requirement we would have an instance of the paradox.

Table 7 Ostrogorski’s paradox: 0-1 version

issue issue 1 issue 2 issue 3

criterion A 1 1 0
criterion B 1 0 1
criterion C 0 1 1
criterion D 0 0 0
criterion E 0 0 0

Deb and Kelsey (1987) show that the following condition expresses the
necessary and sufficient condition for Ostrogorski’s paradox:

kn− 2ny − 2kx− 12xy ≥ 0. (1)

Here x = 1 when n (the number of voters or criteria) is even, and x = 1/2
when it is odd. Similarly, y = 1 when the number k of issues is even and
y = 1/2 when k is odd. Suppose now that 1 is chosen according to a criterion
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if the number of 1’s in the corresponding row is at least K. Let the number of
such rows (criteria) be G in number. Suppose, analogously, that for 0 to be
chosen on any issue, there has to be at least S 0’s in the corresponding column.
Denote the number of such columns by I. Let m = K/k. Another result of
Deb and Kelsey (1987) states that for any rational-valued k0 ∈ (1/2, 1) there
exists a set of values for k, n,K, I, S and G so that Ostrogorski’s paradox is
possible.

Now, the inequality expressed in Equation 1 is true for nearly all values of k
and n and would seem to be increasing with both of these variables. It would,
however, be incorrect to relate Equation 1 to “frequency” of Ostrogorski’s
paradox so that the larger the positive value of the left-hand side, the more
likely is the paradox. On the basis of the computer simulations performed by
Kelly [15] under a version of the impartial culture assumption, the probability
of the paradox increases with the increase of voters (or criteria), but decreases
with the increase in issues. This is partially contradicted by the Deb and
Kelsey result since the necessary and sufficient condition for the paradox is,
for any value of n, fulfilled by increasing the value of k.

In analyzing Anscombe’s paradox Wagner [40, 305-306] suggests a three-
fourth’s rule for avoiding it:

If N individuals cast yes-or-no votes on K proposals then, whatever the
decision method employed to determine the outcomes of these propos-
als, if the average fraction of voters, across all proposals, comprising the
prevailing coalitions is at least three-fourths, then the set of voters who
disagree with a majority of outcomes cannot comprise a majority.

8 Non-dichotomous Settings

The possibility and frequency of the paradox are two different things. What
the above results suggest is that it is nearly always possible to encounter
an instance of Ostrogorski’s paradox unless one is restricted to a very small
number of issues and criteria (voters). A step towards answering the question
of how often one might encounter such paradoxes has been taken by Laffond
and Lainé [17]). Their result states that for the avoidance of Ostrogorski’s
paradox it is sufficient that there exists a permutation of issues so that each
row (criterion) exhibits a unique switch from 1’s to 0’s (single-switch condi-
tion). If the preferences satisfy another condition, viz. richness, the sufficient
condition is also necessary for the avoidance of the paradox. A preference
profile is rich if for every sequence of 0’s and 1’s representing an individual’s
stand on issues, a complementary sequence – i.e. a sequence where each 0 is
replaced by 1 and every 1 by 0 – exists in the profile. In other words, in a
rich profile each policy ideal is matched by its polar opposite.

The avoidance of Ostrogorski’s paradox is, thus, possible only under very
special profiles. The sufficiency of the single-switch condition for the avoid-
ance of the paradox is due to the fact that under single switched profiles,
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there is a core winner platform, i.e. one that cannot be defeated by any other
platform with a simple majority of votes in a pairwise comparisons assuming
that the voters prefer the platform that is closest to their own ideal platform
in the sense of implying the smallest number of switches from 0 to 1 or vice
versa ([17, 57]). The core platform is one that consists of the majority win-
ners on each issue. The relationships between Ostrogorski’s and Condorcet’s
paradoxes have been explored e.g. by Bezembinder and Van Acker [4] and
Lagerspetz [18]. The general conclusion from these studies is that each in-
stance of Ostrogorski’s paradox implies an underlying Condorcet’s paradox
in terms of platforms.

Thus far we have focused on 0 − 1 matrices, but more generally one could
ask under which conditions the same outcomes are reached when the entries
are real numbers in the unit interval and the outcomes are determined in
two different ways: 1) by first aggregating over rows and then aggregating
the results (rows first method) and 2) by first aggregating the entries in
each column and thereupon the results (columns first method)[28]. In the
preceding we have considered the majority rule in determining the results
of each aggregation phase. The more general 0 − 1 matrix setting has been
studied in the context of deprivation measures by Dutta et al. [11]. Specifically
they study the properties of two functions g : [0, 1]m → [0, 1] and h : [0, 1]n →
[0, 1]. The former is interpreted as the method for aggregating individual
deprivation degrees on various attributes (income, housing, education, etc)
into an overall degree of deprivation of an individual. The latter, in turn, is
the method for aggregating the individual deprivation degrees into an overall
degree of deprivation characterizing the society. In the deprivation research
setting the question is now under which conditions one can arrive at the same
result concerning the overall degree of deprivation in a society following two
paths: (i) form first an index of deprivation of each individual by aggregating
her deprivation values in all m attributes and then compute the social degree
of deprivation from those n index values, and (ii) compute for each attribute a
deprivation index by aggregating the n individual deprivation values on that
attribute, and aggregate then these indices to a social one. Let the matrix
A = [aij] be a n × m matrix of entries aij ∈ [0, 1]. Each entry then gives
the degree of individual i’ deprivation on attribute j. Denote now by ai the
row vector representing individual i’s deprivation degrees on all m attributes
and by aj the column vector giving each individual’s deprivation degree on
attribute j. The question thus becomes under which conditions the following
holds:

h(g(a1), . . . , g(an) = g(h(a1), . . . , h(am) (2)

Focusing on functions g and h that satisfy the following two conditions Dutta
et al. (2003) [11] show that only a very restricted set of functions satisfy
equation (2). The conditions are (i) that g be continuous, strictly increasing
in all arguments and satisfies non-diminishing increments, and (ii) that h be
continuous, symmetric and strictly increasing. Moreover, it is assumed that
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if all arguments of g are zero (unity, respectively) , so is the value of g. The
same assumption is made regarding h. Let g∗ : [0, 1]m → [0, 1] so that for
any x ∈ [0, 1]m there is a set of weights w1, . . . wm each between 0 and 1 with∑
wj = 1 and g ∗ (x) = w1x1 + · · · + wmxm. Denote by G∗ the set of all

such functions g∗. Moreover, let h∗ (y) = (y1 + · · ·+yn)/n and denote by H∗
the consisting of this function. Then all functions g∗ ∈ G∗ together with the
function h∗ satisfy equation (2) and, conversely, any pair of functions (g, h)
that satisfies (2) must be such that g ∈ G∗ and h = h∗.

The converse result is more important for our purposes. What it says is
that in order to derive the same result using rows first and columns first
methods, the indices attached to rows must be weighted averages of the row
entries and the overall index value must be the arithmetic mean of the row
indices.

9 Extreme Cases and Saari’s Paradox Machine

Formally, Simpson’s paradox can be expressed as follows [6]. Let A, B and
C denote three distinct properties or predicates, such as being a victorious
candidate, being a big campaign spender, supporting certain legislation, liv-
ing in a given neighborhood etc. Furthermore, let A’, B’ and C’ denote the
absence of A, B and C, respectively. Let now

P (A|B) < P (A|B′) (3)

Simpson’s paradox occurs whenever the following inequalities (3) and (4)
hold as well.

P (A|BC) ≥ P (A|B′C) (4)

P (A|BC′) ≥ P (A|B′C′) (5)

The paradox is intuitively the more dramatic the larger the margins by which
(2), on the one hand, and (3)-(4), on the other, hold. Blyth gives the condi-
tions for extreme forms of Simpson’s paradox. To outline those conditions,
let us give the following interpretation to A, B and C.

A = the property of getting elected in a given election,
B = the property of spending less than X dollars in one’s campaign,
C = campaigning in district 1 and
C’ = campaigning in district 2.
Assuming that (2)-(4) hold, the paradox thus consists of finding that there

seems to be an association between big spending and electoral success, while
in both districts the big spenders are less likely to get elected than the small
spenders. Now, the extreme case of the paradox is the following. Let γ ≥ 1
and assume that (5) - (6) hold.

P (A|BC) ≥ γP (A|B′C) (6)
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P (A|BC′) ≥ γP (A|B′C′) (7)

It is now possible that
P (A|B) ≈ 0 (8)

and
P (A|B′) ≈ 1/γ (9)

With γ = 1, we may thus have P (A|B) = 0 and P (A|B′) = 1 suggesting an
extremely strong association between spending and electoral success. Yet, in
both districts this association is reversed. The crux in constructing instances
of Simpson’s paradox is in the decomposition of the conditional probabilities
P (A|B) and P (A|B′) in terms of C and C’:

P (A|B) = [P (C|B)]P (A|BC) + [P (C′|B)]P (A|BC′) (10)

and
P (A|B′) = [P (C|B′)]P (A|B′C) + [P (C′|B′)]P (A|B′C′) (11)

It is evident that P (A|B) is a weighted average of P (A|BC) and P (A|BC′).
Similarly P (A|B′) is a weighted average of P (A|B′C) and P (A|B′C′). If the
weights were the same or – expressed in another way – if B and C were in-
dependent, no paradox could ensue. It is precisely the association between
B and C that explains the paradox. A person willing to construct an in-
stance of Simpson’s paradox should start from expressions (5) and (6) above.
Since, P (A|BC) by assumption is larger than P (A|B′C) and P (A|BC′) is
larger than P (A|B′C′), the paradox occurs because the expressions P (C|B),
P (C′|B), P (C|B′) and P (C′|B′) are related so that P (A|B) < P (A|B′).
It should be observed, though, that it is necessary for the paradox that ei-
ther P (A|B′C) or P (A|B′C′) has to be larger than the smaller of the pair
[P (A|BC), P (A|BC′)]. To fix our ideas, let us assume that the smaller of the
pair is P (A|BC), i.e. the probability of election of a small spender in dis-
trict 1 is smaller than the probability of election of small spender in district
2. Assume, moreover, that it is P (A|B′C) rather than P (A|B′C′) which is
larger than P (A|BC). In other words, the probability of winning the election
is larger for a big spender in district 1 than a small spender in district 1 (or
a big spender in district 2). The paradox can now be constructed by making
the weight of P (A|B′C) as large as possible and that of P (A|B′C′) as small
as possible in (10). Similarly, the weight of P (A|BC′) should made as small
as possible vis-à-vis that of P (A|BC).

If the ease with which instances of Simpson’s paradox can be constructed
is an indicator of how often one may expect to encounter them in real world,
then Saari’s procedure suggests that they can be pretty common. To keep the
interpretation simple, assume that we are looking at the possible effects of two
different instructional modules, new and standard, on racial prejudice. Our
data set consists of four-tuples (u1, x, u2, y) where u1 indicates the number
of individuals subjected to the new instruction and u2 those subjected to
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the standard instruction. x, in turn, indicates the judged success rate (the
decrease in racial prejudice) of the new instruction and x that of the standard
education. Ignoring the sizes of the sub-populations, we can represent each
four-tuple of empirical observations as a point in a two-dimensional space so
that the x-value indicates its horizontal and x-value its vertical coordinate.
Each such point thus represents the success rates in a locale with a group of
subjects some of which have been given the new and the rest the standard
instruction.

Since the x, y- values represent proportions, they range from 0 to 1. In
other words, our possible observation points range from (0,0) to (1,1), the
first (second, respectively) representing a locale where the success rate is
zero (one) both for the students exposed to new and to standard material.
To generate an instance of Simpson’s paradox choose a pair of points (X,Y )
with coordinates (Xx, Xy) and (Yx, Yy), respectively, in the two-dimensional
space so that both points are located below the line connecting (0,0) and
(1,1). Form now a rectangle by drawing lines parallel to the coordinate axes
through X and Y as in Figure 1.
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�

�
�

�
�
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�
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��
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Fig. 1 Generating Simpson’s paradoxes

A portion, denoted by A, of the area of the rectangle spanned by X and
Y is located above the line connecting (0,0) and (1,1). Pick now any point z
in A and find its coordinates (zx, zy). Let now

s = (zx −Xx)/(Yx −Xx)

and
t = (zy −Xy)/(Yy −Xy).

The values s and t thus determined can now be used to construct an instance
of Simpson’s paradox. A moment’s reflection reveals that zx, the horizontal
coordinate value of the selected point, is a weighted average of the horizontal
coordinate values of X and Y . Similarly, the vertical coordinate value zy
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of the selected point is a weighted average of the corresponding coordinate
values of X and Y (the weights in those averages are not the same, though).
Since the latter two points represent the success rates of two groups in two
different locales, we can move point z closer to X (Y , respectively) along the
horizontal dimension by including in the total population more individuals
exposed to new (standard) instruction in locale 1 (locale 2). For example,
the corner point of the rectangle above X represents a population in which
all individuals exposed to the new material are drawn from locale 1 and all
exposed to the standard material are from locale 2. By fiddling with the
portions of individuals exposed to the two types of material and with the
portion of individual selected from each locale, one can generate an instance
of Simpson’s paradox by pointing to the success rates represented by the
selected point above the (0,0)-(1,1) line and to the success rates represented
by points used in drawing the rectangle. Obviously, the first named point
represents a distribution in which the success rate is higher for individuals
exposed to the standard material. The latter two points, on the other hand,
represent distributions where the individuals exposed to new material get
higher success rates than those exposed to the standard material.

These are the basic outlines of Saari’s procedure. It is based on geomet-
rical properties of cones and, in particular, on the fact that cones can be
used to represent a wide class of decision situations (for details, see [30]).
Saari’s paradox machine, thus, begins with two sub-population distributions
located on the same side of the line connecting (0,0) and (1,1). The closer the
points representing those sub-populations are to (0,0) and (1,1), respectively,
the more freedom one has in working out instances of Simpson’s paradox.
Comparing Saari’s procedure with what was said above in the context of
Blyth’s analysis of Simpson’s paradox, we notice that moving the selected
point y about is tantamount to manipulating the weights P (C|B), P (C|B′),
P (C′|B) and P (C′|B′).

10 Conclusion

The basic question addressed in this paper is under which conditions one may
expect that the assumption that individuals support the alternatives closer
to their ideal points than competing alternatives can be expected to hold.
It turns out that the validity conditions of this assumption are significant
and should be taken seriously. The early observations on the connections
between Condorcet’s and Ostrogorski’s paradoxes give us some indication
as to what kinds of situations are riddled with the latter paradox. More
pertinent, however, are the results of Laffond and Lainé suggesting that for
the avoidance of Ostrogorski’s paradox one needs to assume an underlying
dimension of issues so that the criteria exhibit the single-switch property. This
is a serious domain restriction on par with Black’s single-peakedness condition
[5]. In the dichotomous 0 − 1 setting, the reason for Ostrogorski’s paradox
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seems to be the non-commutativeness of the majority rule (Bezembinder
and Van Acker 1985): the alternative resulting from first aggregating over
rows (determining the majority alternative) and then over those majority
alternatives may well differ from the alternative obtained by determining
the majority alternatives in the opposite order. If – instead of the majority
procedure – we would simply tally the number of 0’s and 1’s in each row and
column and declare the alternative with the largest tally in the entire table
the overall winner, then no paradox could ensue: tallying first in the rows
first and columns first manner would make no difference.

In the more general setting of real-values distances, the row first and col-
umn first procedures as defined by Dutta et al. result in the same overall
scores only under very restricted circumstances. To wit, if the row-wise dis-
tances are weighted averages of the issue-specific ones on each criterion and
the overall score of an alternative is the arithmetic mean of those averages,
then the two procedures can be expected to yield the same scores for alter-
natives. So, it is only in the linear world that Ostrogorski’s paradox can be
avoided.
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Quantum Dynamics of Non
Commutative Algebras: The SU(2)
Case

C.M. Sarris and A.N. Proto

Abstract. Applying Maximum Entropy Formalism (MEP ) the dynamics of
Hamiltonians, associated to non commutative Lie algebras, can be found. For
the SU(2) case, it is easy to show that the Generalized Uncertainty Principle
(GUP ) is an invariant of motion. The temporal evolution of the system is
confined to Bloch spheres whose radius lay on the interval (0; 1). The GUP ,
defines the fizziness of these spheres inside the � domain for the SU(2) Lie
algebra.

Keywords: Quantum Dynamics, SU(2) algebras, Uncertainty Principle.

1 Introduction

The fuzzy nature of the SU(2) Lie algebra was posed in quantum field theory
some years ago, using differential calculus, and D-Branes approaches. In both
cases clearly it could be seen that the fuzziness of the internal structure of
a system could not be greater than the quantum uncertainty in the position
of a particle. In the present contribution we present a general formalism to
deal with quantum and semiquantum (time-dependent or not) Hamiltonian
dynamics associated to non-commutative algebras, and expose the particular
case of the SU(2) Lie algebra.

The knowledge of the mean values of the operators and correlation func-
tions, are of main interest in usual quantum mechanics (QM) applications.
The maximum entropy formalism (MEP ) allows us to describe quantum or
semiquantum Hamiltonian systems in terms of those, and those only, quan-
tum operators relevant to the problem at hand.

In order to make clear the fundamental features of our approach we
begin summarizing the principal concepts of the (MEP ) [3, 4]. Given the
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expectation values < Ôj > of the operators Ôj , the statistical operator ρ̂(t)
is defined by [3]

ρ̂(t) = exp

⎛

⎝−λ0Î −
q∑

j=1

λjÔj

⎞

⎠ , (1)

where q is a non negative integer and the q + 1 Lagrange multipliers λj , are
determined to fulfill the set of constraints

< Ôj >= Tr[ρ̂(t)Ôj ], (2)

(Ô0 = Î is the identity operator) and the normalization condition, Tr [ρ̂(t)] =
1, in order to maximize the entropy, defined by

S(ρ̂) = −Tr[ρ̂ ln ρ̂] (3)

in terms of q + 1 Lagrange multipliers λ (λ0 is associated with the identity
operator), so that, we can write

S = 〈ln ρ̂(t)〉 = λ0Î +
q∑

j=1

λj(t)
〈
Ôj

〉

t
(4)

If the temporal evolution of the density operator follows the Liouville equation
for all t, then we can write

i�
∂ρ̂(t)
∂t

=
[
Ĥ(t), ρ̂

]
(5)

so, the entropy S is a constant of motion, and the relevant operators to be
considered to construct the density matrix are those which fulfill the closure
condition [3]

[
Ĥ(t), Ôj

]
= i�

q∑

i=0

gij(t)Ôi j = 1, 2, . . . , q (6)

The gij(t) are the elements of a q × q matrix G(t) and it will help us to find
invariants of the motion. Depending on what kind of operators compose the
Hamiltonian Ĥ(t) of the system, the closure condition given by Eq.(6) may
give rise to a complete set of noncommuting observables which constitute
by themselves the generators of a Lie algebra as we will see in Sec. 3.2.
The matrix G(t) entails the whole dynamics of the system [3]. Besides, on
account of Eq.(6) the temporal evolution of the expectation values is given
by the generalized Ehrenfest relationships [4]

d〈Ôi〉t
dt

= −Tr
⎛

⎝ρ̂
q∑

j=0

gjiÔj

⎞

⎠ = −
q∑

j=1

gji〈Ôj〉t (7)
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The generalized Ehrenfest theorem yields to a set of first-order differential
equations for the temporal evolution of the expectation values which are
our quantal relevant variables. of our. We do not need to appeal to any
consideration about the wave function at the instant t = 0 due to it is replaced
by the set of initial conditions imposed on Eqs.(7) without violating the
uncertainty principle, making it easy to be compared with their classical
counterpart if necessary. Besides, for the λ Lagrange multipliers it holds [3]

dλi(t)
dt

=
q∑

j=0

gijλj(t), i = 1, 2, . . . , q (8)

Through Eqs.(6) and (7) we have connected the density operator (1) to the
Lie algebras raising from Eq. (6), and we have translated the quantum Hamil-
tonian dynamics into the language of dynamical systems. This fact stresses
the importance of having a method to construct invariants of motion, which
is so relevant in the study of dynamical systems, and avoids any considera-
tion about wave funtions. If commutators are replaced by Poisson brackets
(see for instance, [3]) the method is straightfowardly extended to classical
systems.

Once we are within the dynamical systems context, the search of invariants
of motion plays an important role especially if the problem is the study
of time-dependent Hamiltonians, or semiquantum systems with or without
chaotic classical limit. In previous works, we have analyzed the genesis of
invariants of motion for quantum, semiquantum or classical time-dependent
Hamiltonians, through the MEP like in ref. [5] and references therein.

This contribution is devoted to derive the invariants of motion from the
information entropy, and connect them with the Lie algebras associated to the
Hamiltonian of the system, and exemplify the procedure for the SU(2) case.
It will be shown that for this particular Lie algebra one of the invariants is the
Generalized Uncertainty Principle (GUP ) itself and, we will also show that
the system is confined to evolve on hypersurfaces defined on the generalized
phase space spanned by the mean values of the generators of the SU(2) Lie
algebra V = span{〈σ̂x〉 , 〈σ̂y〉 , 〈σ̂z〉}. These hypersurfaces are defined by the
different sets of initial conditions {〈σ̂x〉0 , 〈σ̂y〉0 , 〈σ̂z〉0} or {λx(0), λy(0), λy(0)}
imposed on the system, through Eqs.(7), (8). The Hamiltonian dynamics is
contained in these two equations, and the initial conditions (IC) should be
imposed taking into account the GUP . The temporal evolution is confined to
the Bloch spheres whose radius lay on the interval (0; 1). The GUP defines
the fuzziness of these spheres inside the � domain for the SU(2) Lie algebra.

2 Invariants of Motion for Non-commutative Operators

The closure condition (6) and the generalized Ehrenfest theorem (7) play a
fundamental rol. Eq. (6) defines the set of relevant operators which, generally,
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constitutes a complete set of non-commuting observables (CSNCO) and, as
a particular case, they are a complete set of commuting observables. As we
have said in the previuos section, the temporal evolution of the mean values
of the relevant set is given by Eq. (7).

Let be {Ô1, ..., Ôq} the set of relevant non-commuting observables defined
by the closure condition (6) and let be the operator L̂ij = 1

2 (ÔiÔj + ÔjÔi)
where Ôi and Ôj are two belonging to the set. It is easy to see that L̂ij = L̂ji,
and that L̂ii = Ô2

i . Besides, the closure condition allows us to obtain the
following commutation relationships [6]

[
Ĥ(t), Ô2

j

]
= 2i�

q∑

r=1

grj(t)L̂rj , (9)

[
Ĥ(t), L̂ij

]
= i�

q∑

r=1

[
grj(t)L̂ir + gri(t)L̂jr

]
, (10)

where grj(t) are the coefficients of the dynamical matrix G(t) and they may
depend upon time if the Hamiltonian of the system, Ĥ(t), is time-dependent.
The Ehrenfest theorem (7) and Eqs. (9) and (10) give the temporal evolution
of

〈
Ô2

j

〉
and

〈
L̂ij

〉
in the following fashion

d
〈
Ô2

j

〉

dt
= −2

q∑

r=1

grj(t)
〈
L̂rj

〉
, (11)

d
〈
L̂ij

〉

dt
= −

q∑

r=1

[
grj(t)

〈
L̂ir

〉
− gri(t)

〈
L̂jr

〉]
. (12)

Now, we are going to introduce the expression of the Generalized Uncertainty
Principle, GUP : if we take into account two relevant operators belonging to
the relevant set of the system, Ôi and Ôj we see that, generally, they do not

commute and so they fulfill:
[
Ôi, Ôj

]
= iĈ, where Ĉ is another observable

which may or may not belong to the relevant set. The uncertainty relation
between these two observables is [7]

(
ΔÔi

)2 (
ΔÔj

)2

−
[〈
L̂ij

〉
−

〈
Ôi

〉 〈
Ôj

〉]2

≥ −
〈[
Ôi, Ôj

]〉2

4
, i �= j.

(13)

where
(
ΔÔi

)2

=
〈
Ô2

i

〉
−

〈
Ôi

〉2

is the statistical fluctuation of Ôi. Eq.
(13) is the basis on which we are going to build up the generalized version
of the GUP given that it is possible to construct, in the same way, the
uncertainty relation between all operators belonging to the relevant set. Now,
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we perform the summation all over the possible pairs of relevant observables
which compose the relevant set and obtain the following expression [6]

1

2

q∑

i=1

q∑

j=1

{(
ΔÔi

)2 (
ΔÔj

)2 −
[〈

L̂ij

〉
−

〈
Ôi

〉 〈
Ôj

〉]2
}

≥ −1

4

q∑

i=1

q∑

j=1

〈[
Ôi, Ôj

]〉2
,

(14)

which also can be expressed as

q∑

i,j=1
i<j

{(
ΔÔi

)2 (
ΔÔj

)2

−
[〈
L̂ij

〉
−

〈
Ôi

〉 〈
Ôj

〉]2
}

≥ −1
4

q∑

i,j=1
i<j

〈[
Ôi, Ôj

]〉2

.

(15)
Eq. (14) or Eq. (15) are the generalized GUP, considering these expressions
take account the uncertainty relation between all the possible pairs of ob-
servables which compose the relevant set. Now, we focus on the left side of
inequality (14)

IH =
1
2

q∑

i=1

q∑

j=1

{(
ΔÔi

)2 (
ΔÔj

)2

−
[〈
L̂ij

〉
−

〈
Ôi

〉 〈
Ôj

〉]2
}
, (16)

in order to find out under what condition it results an invariant of the motion.
If we take the temporal evolution of Eq. (16) and take into account Eqs.(11)
and (12) we obtain [6]

dIH

dt
= −

q∑

i=1

q∑

j=1

(gii + gjj)
{(

ΔÔi

)2 (
ΔÔj

)2

−
[〈
L̂ij

〉
−

〈
Ôi

〉 〈
Ôj

〉]2
}
−

−
q∑

i=1

q∑

j=1

(gij + gji)
〈
L̂ij

〉 q∑

r=1

(
ΔÔr

)2

−

−
q∑

i=1

q∑

j=1

(gij + gji)
〈
Ôi

〉 〈
Ôj

〉 q∑

r=1

〈
Ô2

r

〉
− (17)

−
q∑

i=1

q∑

j=1

(gij + gji)
〈
Ôj

〉 q∑

r=1

〈
L̂ri

〉〈
Ôr

〉
−

−
q∑

i=1

q∑

j=1

(gij + gji)
〈
Ôi

〉 q∑

r=1

〈
L̂rj

〉〈
Ôr

〉
+ (18)

+
q∑

i=1

q∑

j=1

(gij + gji)
q∑

r=1

〈
L̂ri

〉 〈
L̂rj

〉
; i �= j, r �= i, r �= j. (19)
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Eq.(19) implies that if the dynamical matrix G(t) is an antisymmetric one(
GT (t) = −G(t) ⇒ gij(t) = −gji(t)

)
then the generalized GUP is a dynami-

cal invariant and, obviously, this constant, could not be minor than a certain

value given by the condition − 1
4

∑q
i,j=1
i<j

〈[
Ôi, Ôj

]〉2

. This result is of gen-

eral validity in a sense that the Hamiltonian of the system may have any
temporal dependence or may be a semiquantum Hamiltonian in which coex-
ist classical and quantaum degrees of freedom. The general validity of this
last result was derived only by means of the closure condition (6) and the
Eherenfest theorem (7). In other words: the sufficient condition for the GUP
be an invariant of the motion is that there exists a Lie algebra associated to
the system which closes a commutation algebra with the Hamiltonian of the
system which defines an antisymmetric dynamical matrix G(t).

Another dynamical invariant associated to the antisymmetry of the dy-
namical matrix G(t) is the well-known Bloch vector. In fact, if we consider
the expression [8]

B(t) =
q∑

j=1

〈
Ôj

〉2

t
, (20)

it defines the surface of a hypersphere on the space V =
span{

〈
Ô1

〉
(t); ...;

〈
Ôq

〉
(t)}. If we consider its time derivative, it has

the form

dB(t)
dt

= −2
q∑

j=1

gjj(t)
〈
Ôj

〉2

−
q∑

j=1

q∑

r=1

[grj(t) + gjr(t)]
〈
Ôr

〉〈
Ôj

〉
j �= r.

(21)
and we see, once more, that an antisymmetric matrix G(t) turns the Bloch
vector into an invariant of the motion.

3 Generalized Metric Phase Space, Dynamic Evolution
and the UP

The results obtained in the previous Section can be refined and extended
as follows. Due to the CSNCO (the set of relevant operators) obtained by
means of Eq.(6) are linearly independent, and so are their mean values, it
enables us to define the generalized phase space as the one spanned by the
mean values of the set of relevant operators

V = span
{〈
Ô1

〉
(t), ...,

〈
Ôq

〉
(t)

}
. (22)

As it can be seen from (22), this V−space is a q − dimensional one.
With the help of Ehrenfest´s theorem (7) and the closure condition (6) it is

possible to obtain the equations of motion of the mean values of the relevant
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operators whose solution (summation over repeated upper and lower indices
in the same expression is assumed)

〈
Ôj

〉
(t) = F l

j (t, t0)
〈
Ôl

〉
(t0), j = 1, . . . , q (23)

defines the q × q non-singular matrix FT (t, t0) which rules the evolution of
the mean values at all times ( F (t0, t0) = I in order to fulfill the initial
conditions). If we focus our attention on this “evolution matrix” F (t, t0) we
see: a) because of the linear independence of the mean values of the relevant
operators, F (t, t0) is a non-singular matrix so, it belongs to the general linear
group over the reals GL(q,R), b) as it was demonstrated in ref. [3], it satisfies
the equation of motion

∂F (t, t0)
∂t

= −F (t, t0) G(t), (24)

with G(t) the matrix defined through Eq.(6); c) as it was said, due to the fact
that (6) does not define univocally the CSNCO for a given Hamiltonian, once
a particular Lie algebra has been chosen to fulfill (6), the properties of F (t, t0)
are completely established and this fact, in turn, is ruled by the properties
of matrix G(t); d) the evolution matrix F (t, t0) allows us to establish the
covariant and contravariant nature of the mean values of the relevant set
{
〈
Ô1

〉
(t), ...,

〈
Ôq

〉
(t)}, and of the Lagrange multipliers,

{
λ1(t), ..., λq(t)

}
,

associated to them respectively. In fact, we notice that for a given instant t,
the set

B(t) =
{〈
Ô1

〉
(t), ...,

〈
Ôq

〉
(t)

}
(25)

constitutes a basis for the generalized phase space V, and that the evolution
vector u(t) of ref. [9] defined as

u(t) = S − λ0 = λj(t)
〈
Ôj

〉
(t), j = 1, ..., q (26)

belongs to this V−space . The Lagrange multipliers
{
λ1(t), ..., λq(t)

}
are the

coordinates of u(t) with respect to the basis (25) and follow the equations of
motion [3]

dλi

dt
=

q∑

r=1

gir (t)λr(t) i = 1, . . . , q. (27)

Taking into account Eq.(23), we can consider the temporal evolution of
the set {

〈
Ô1

〉
(t), ...,

〈
Ôq

〉
(t)} as continuous changes of basis (beginning

with the initial condition B(t0) =
{〈
Ô1

〉
(t0), ...,

〈
Ôq

〉
(t0)

}
) performed

through the transformation matrix F (t, t0) which generates the successive
time-dependent basis so, the representation of u(t) with respect to any basis
fulfills

u(t) = λj(t)
〈
Ôj

〉
(t) = λj(t0)

〈
Ôj

〉
(t0) = u(t0). (28)
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Replacing Eq.(23) into Eq.(28) we can write

[
λj(t) F l

j (t, t0) − λl(t0)
] 〈
Ôl

〉
(t0) = 0, (29)

and because of the
〈
Ôl

〉
(t0)’s are linearly independent [3, 10], we have

λl(t0) = λj(t) F l
j (t, t0) , j, l = 1, ..., q. (30)

From Eqs.(23) and (30) we see that the Lagrange multipliers (the “coor-
dinates”) change in an opposite manner to that of the mean values (the
“vectors”) [3] so, the mean values and the Lagrange multipliers transform in
covariant and contravariant way respectively, according to the transforma-
tion defined by F (t, t0) . In the following we will derive some properties of
the generalized phase space V.

3.1 Metric on the q−Dimensional Phase Space and
UP

Now, we are going to show that when it is possible to find a set of non-
commutin observables through Eq. (6), the generalized phase space (22) is a
metric space. Let’s define a real scalar-valued function • of ordered pairs of
elements belonging to the V − space such that [9]

• : V × V −→ R /

〈
Ôi

〉
(t) •

〈
Ôj

〉
(t) =

1
2
Tr

(
ρ̂

[
Ôi, Ôj

]

+

)
− Tr

(
ρ̂Ôi

)
Tr

(
ρ̂Ôi

)
, (31)

where [Ôi, Ôj ]+ indicates anti-commutation and R is the set of real numbers
(the field associated to the V − space). Eq.(31) may be rewritten as

〈
Ôi

〉
(t) •

〈
Ôj

〉
(t) =

1
2

〈
ÔiÔj + ÔjÔi

〉
−

〈
Ôi

〉 〈
Ôi

〉
= Kij(t) = Kji(t).

(32)
Certainly, Eq.(31) not only defines a positive definite metric on V− space [9]
but also the components Kij(t) = Kji(t)

Kij(t) = F l
i (t, t0)

〈
Ôl

〉
(t0) • F k

j (t, t0)
〈
Ôk

〉
(t0) =

= F l
i (t, t0) Klk(t0) F k

j (t, t0) (33)

of the second-rank covariant metric tensor K(t). Notice that Eq.(33) not only
exhibits the tensor nature [10] of K(t) but also gives its temporal evolution.
Eq.(33) can be put into matricial form as

K(t) = FT (t, t0) K(t0) F (t, t0) . (34)
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This covariant metric tensor transforms the contravariant vector’s compo-
nents λj(t) into covariant ones λi(t) at any instant t

λi(t) = Kij(t)λj(t), i = 1, ..., q. (35)

Eq.(35) leads to a geometrical interpretation of the second order centered
invariant I(2) considered in ref. [9]

I(2) =
〈

(ln ρ̂)2
〉
− 〈ln ρ̂〉2 = Kij(t)λi(t)λj(t) i, j = 1, ..., q (36)

this dynamical invariant is, indeed, the square of the norm (with respect to
the inner product defined through Eq.(31)) of the evolution vector(26)

I(2) = ‖S − λ0‖2 = ‖u(t)‖2 = λi(t)λi(t). (37)

Eq.(37) makes clear the fact that the invariance of the entropy S gives rise
to a metric V − space on which the norm ‖.‖ induced by the metric, must
be constructed with the entropy itself and λ0 = λ0

(
λ1, ..., λq

)
. It should be

noticed that the components Kij(t) of the covariant metric tensor K(t) are
the quantum correlation coefficients [7] between the operators Ôi and Ôj

belonging to the CSNCO and, in virtue of this fact, we come to the following
two conclusions
a) the metric defined by Eq.(31) is closely related to the GUP : indeed, the

positive definiteness requirement of the metric makes possible the Schwarz
inequality to hold
∣∣∣
〈
Ôi

〉
(t) •

〈
Ôj

〉
(t)

∣∣∣
2

≤
(〈
Ôi

〉
(t) •

〈
Ôi

〉
(t)

) (〈
Ôj

〉
(t) •

〈
Ôj

〉
(t)

)
, (38)

or in an equivalent fashion

(
ΔÔi

)2 (
ΔÔj

)2

≥
[

1
2

〈
ÔiÔj + ÔjÔi

〉
−

〈
Ôi

〉 〈
Ôj

〉]2

, (39)

on the other hand, as the operators belonging to the CSNCO are non-
commuting ones they obey

[
Ôj , Ôk

]
= iÔl , (40)

so, in virtue of the uncertainty relation between them we can write [7]

(
ΔÔj

)2 (
ΔÔk

)2

−
[

1
2

〈
ÔjÔk + ÔkÔj

〉
−

〈
Ôj

〉 〈
Ôk

〉]2

≥ −1
4

〈[
Ôj , Ôk

]〉2

(41)
or

KjjKkk −K2
jk ≥ −1

4

〈[
Ôj , Ôk

]〉2

= −1
4

〈
iÔl

〉2

. (42)
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From Eqs.(39) and (41) we see the connection between the metric (31) and
the GUP as said previously, so
b) the second-rank covariant metric tensor K(t) has the distinctive feature

of being a non diagonal one (unless the density matrix ρ̂ describes a minimum
uncertainty state of the system [7] : 1

2

〈
ÔjÔk + ÔkÔj

〉
−

〈
Ôj

〉〈
Ôk

〉
= 0) and

this is a direct consequence of the fact that the GUP must hold because of the
quantum nature of the system (see Eq.(41)). Finally, we want to emphasize
that the Generalized Uncertainty Principle, (15), can be recovered on the
real linear generalized phase V− space by defining on it a proper metric (see
Eq.(31)) provided that the left hand side of Eq.(15) can be obtained as the
summation over the principal minors of second order of the covariant metric
tensor [8].

Summarizing, here we have shown the connection between the Lie algebra
defined ttrough the closure condition (6), the existence of the metric space
V and the relation between this metric and the GUP .

3.2 The SU(2) Lie Algebra Case

In order to show how MEP works, let’s consider a very simple Hamiltonian
[12]

Ĥ =
�

2
ωoσ̂z (43)

which represents a 1/2 spin particle in in an external magnetic field B0 ( B0

parallel to Oz direction ), and σ̂i are spin operators. It is well known that
{σ̂x, σ̂y, σ̂z} is a basis of the SU(2) Lie algebra [11] and that they satisfy
the commutation relatinships

[σ̂j , σ̂k] = 2iεjklσ̂l , (44)

so, this algebra closes algebra with quantum Hamiltonians of the form

Ĥ(t) =
3∑

j=1

aj(t) σ̂j (45)

where aj(t) are functions that may depend on time explicitly or implicitly
by means of another function that may be the clasical conjugate variables q
and p as may be the case of semiquantum Hamiltonians.

Proposition
If a set of operators, which fulfills the commutation relation (44), closes a
commutation algebra with a Hamiltonian of the type (45), then the dynamical
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matrix G(t) of the system, defined by means of the closure condition (6), is
an antisymmetric one.

Proof
Let be σ̂k belonging to the relevant set ⇒

[
Ĥ(t), σ̂k

]
= i

∑3
j=1 aj(t)

[σ̂j , σ̂k] = i
∑3

j=1

∑3
l=1 aj(t) εjkl σ̂l. Taking into account the closure con-

dition (6):
[
Ĥ(t), σ̂j

]
= i

∑3
r=1 grj(t)σ̂r ; j = 1, . . . , 3, ⇒ ∑3

l=1 glk(t)

σ̂l = i
∑3

l=1

∑3
j=1 aj(t) εjkl σ̂l ⇒

∑3
l=1 [glk(t) − aj(t)εjkl] σ̂l = 0; as the

operators σ̂l are linearly independent ⇒ any element belonging to G(t) can
be expressed as : glk(t) =

∑3
j=1 εjkl aj(t) ⇒ gll(t) = 0 and glk(t) = −gkl(t)

∀ k, l ⇒ G(t) is antisymmetric.
Now, considering the SU (2) Lie algebra {σ̂x, σ̂y, σ̂z} (with Ŝi = �

2 σ̂i) as
the CSNCO, Eq.(6) leads to the following G antisymmetric matrix

Gspin =

⎛

⎝
0 −ω0 0
ω0 0 0
0 0 0

⎞

⎠ . (46)

The density matrix results

ρ̂ = exp {−λ0 − λxσ̂x − λyσ̂y − λzσ̂z} , (47)

or equivalently [12]

ρ̂ =
1
2

(
Î +

tanh |α|
|α| α · σ̂

)
, (48)

with: σ̂ = (σ̂x, σ̂y, σ̂z), |α| =
√
λ2

x + λ2
y + λz

2, λ0 = ln [2 cosh |α|]. This
ρ̂ matrix enables us to calculate the covariant metric tensor’s components,
Kxx,Kyy, Kzz, Kxy = Kyx, Kxy = Kyx, and Kyz = Kzy

So, the GUP is given by:

IH
spin = (Δσ̂x)2 (Δσ̂y)2 −

[
1
2
〈σ̂xσ̂y + σ̂yσ̂x〉 − 〈σ̂x〉 〈σ̂y〉

]2

+

+ (Δσ̂x)2 (Δσ̂z)2 −
[

1
2
〈σ̂xσ̂z + σ̂z σ̂x〉 − 〈σ̂x〉 〈σ̂z〉

]2

+

+ (Δσ̂y)2 (Δσ̂z)2 −
[

1
2
〈σ̂yσ̂z + σ̂zσ̂y〉 − 〈σ̂y〉 〈σ̂z〉

]2

. (49)

Taking into account that [12]: σ̂iσ̂j + σ̂j σ̂i = 0 and 〈σ̂i〉2 = 1 Eq.(50) can be
written as [6]:

IH
spin = 3 − 2

[
〈σ̂x〉2 + 〈σ̂y〉2 + 〈σ̂z〉2

]
= 3 − 2 〈σ̂〉2 . (50)
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So, the GUP (50) is delimited by :

IH
spin ≥ −1

4

q∑

i,j=1
i<j

〈[σ̂i, σ̂j ]〉2 (51)

From Eqs. (50), (51) the condition 〈σ̂〉2 ≤ 1 is easily recovered. Notice
that Eq. (51) define the different sets of IC for the 〈σ̂〉 value within the
interval 0 < 〈σ̂〉 < 1, exhibiting the non commutative quantum nature of
the 〈σ̂i〉 operators. Notice that Eqs. (50) or (51) are a central point in our
development, as they are the generalized version of the GUP , an invariant of
motion, for the SU(2) Lie algebra.

Now it is time to recover �. Since Ŝ = �

2 σ̂, 〈σ̂〉2 = 4
�2

〈
Ŝ
〉2

and as 〈σ̂〉2 ≤ 1

then 0 <
〈
Ŝ

〉2

< �
2

4 . This means that spin systems are confined to evolve

on the Bloch sphere with a constant uncertainty
〈
Ŝ

〉
< �

2 . This uncertainty
could be considered a sort of fuzziness as it was done in [1, 2]. Besides, as
our approach deals with a set of differential equations, the different IC lead
to different Bloch spheres, contained by Eq. (51), making clear the fuzzyness
expressd in that equation.

4 Conclusions

The fuzzyness of the internal structure of a quantum system is analyzed, from
the MEP perspective. We present a general formalism to deal with quantum
and semiquantum (time-dependent or not) Hamiltonian dynamics associated
to non-commutative algebras, and expose the particular case of the SU(2)
Lie algebra. MEP allows us to explore, as it was shown in Section 2, the
connection between the closure condition (6), the existence of the metric space
V and the relation between this metric and the GUP . All developed tools,
applied to the non-commutative SU(2) Lie algebra, show that the Generalized
Uncertainty Principle (GUP ) itself is an invariant of motion. The different
sets of initial conditions 〈σ̂x〉0 , 〈σ̂y〉0 , 〈σ̂z〉0} that could be imposed on the
system, through Eqs.(7), (8), should take into account the GUP, and for
the SU(2) algebra, the temporal evolution is confined on the Bloch spheres
whose radius lay on the interval (0; 1). So, the GUP,defines the fuzzyness of
these spheres inside the � domain for this algebra.
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Benefits of Full-Reinforcement Operators for 
Spacecraft Target Landing 

Rita A. Ribeiro, Tiago C. Pais, and Luis F. Simões* 

Abstract. In this paper we discuss the benefits of using full reinforcement opera-
tors for site selection in spacecraft landing on planets. Specifically we discuss a 
modified Uninorm operator for evaluating sites and a Fimica operator to aggregate 
pixels for constructing regions that will act as sites to be selected at lower space-
craft altitude. An illustrative case study of spacecraft target landing is presented to 
clarify the details and usefulness of the proposed operators.  

1   Introduction 

This paper discusses the suitability of full-reinforcement aggregation operators [1-
3] for evaluating alternatives in multicriteria dynamic decision processes. Dy-
namic multicriteria decision making has been studied, from several different 
points of view [4-6], but here we focus on discrete spatio-temporal decision proc-
esses that involve feedback information for each step.  

Moreover, this work extends a preliminary work by the authors [7], to highlight 
the benefits of using full reinforcement operators to aggregated past and current 
information in spatio-temporal decision making processes.  

The choice of aggregation operator is extremely important in any decision proc-
ess [8-9], particularly in dynamic decision processes, since they imply changes in 
input data, over time, as well as feedback from previous steps [10]. In this work, in-
stead of using operators for aggregating criteria we focus on aggregation of alterna-
tive ratings at step n with respective feedback from past iteration n-1 (i.e. discrete 
spatio-temporal decision process). Furthermore, we also discuss reinforcement op-
erators to aggregate several alternatives into a single one to create regions, which 
will be evaluated as alternatives at lower altitudes (i.e. spacecraft’s size at low alti-
tude is bigger than a single site, hence regions become alternatives). To this aim we 
present two variations for well known classes of reinforcement operators, UNI-
NORM and FIMICA [2-3].  We first present the minimal Uninorm operator and a 
                                                           
Rita A. Ribeiro . Tiago C. Pais . Luis F. Simões 
Uninova 
Campus UNL-FCT 
2829-516 Caparica, Portugal 
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Uninorm extension called Hybrid-Reinforcement (HR). Afterwards, we introduce 
two functions for Sum and Product Fimica aggregation operators.  

Most aggregation/rating methods are only either upward reinforcement meth-
ods (e.g. Hamacher and Dubois & Prade union operators) or downward methods 
(e.g. Hamacher and Dubois & Prade intersection operators). When we combine 
these two concepts we achieve what is called full reinforcement behavior [11]. In 
this work we highlight why full reinforcement operators are important for dy-
namic decision processes with feedback. 

The case study goal, used to illustrate the suitability of reinforcement operators, 
is to recommend an adequate interplanetary spacecraft target-landing site [12]. 
The site adequacy is evaluated with respect to a set of requirements: (1) the site 
should be safe in terms of maximum local slope, light level and terrain roughness; 
(2) the site should be reachable with the available fuel; (3) the site should be visi-
ble from the camera during the final descent phase.  

This chapter is organized as follows. Section 2 describes the case study and 
also presents the overall dynamic decision process. In Section 3 we briefly de-
scribe the UNINORM and FIMICA class of aggregation operators. Afterwards, in 
section 4, we present a detailed discussion and numerical examples regarding  
the proposed Uninorm and Fimica based aggregation operators. An assessment 
concerning the aforementioned operators within the case study is presented in  
Section 5. Section 6 contains the concluding remarks. 

2   Spacecraft Landing Overview 

The main objective of a descent phase, in spacecraft landing on planets, is to select 
the safest site for landing [12-14]. The goal of the case study was to provide an 
adequate target-landing site, evaluated with a set of requirements, as mentioned in 
the introduction. The case study was focused in the final descent phase (around 2 
Km from surface), when hazard maps can be obtained [12, 14]. To achieve the ob-
jectives we had access to simulated hazard maps (images taken by onboard 
camara) of dimensions 512x512 pixels that provide assessments of terrain features 
and trajectory constraints on a landing scenario. Notice that some values used in 
the case study description are just indicative due to reasons of confidentiality. 

The seven input criteria, which correspond to the hazard maps obtained during 
the descent phase, are [14]: slope, texture, fuel, reachability, distance, shadow and 
scientific interest. The alternatives are the pixels of the combined search space 
(derived from merging 7 matrices of 512x512, corresponding to the input im-
ages/hazard maps), resulting from a data preparation process requiring normaliza-
tion and data fusion (out of scope here, some details can be seen in [12]) . The re-
sulting set of alternatives is about 260.000 possible alternative sites per iteration 
(512*512= 262,144).   

The dynamic decision process includes around 40-60 iterations, and, for each 
one, there is an evaluation process (called ranking process), which includes com-
bining the k best alternatives from iteration n-1 (historic set feedback) with the 
current rated ones at the n iteration (for details about this process see [14]). We 
only consider the n-1 iteration, as historical information to aggregate with current 
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rating, because we update the historic set per iteration and then pass this informa-
tion to the next iteration (feedback of the dynamic process). When there are no 
more iterations the decision process stops and the best alternative is the one with 
the highest combined rate (after combining historic and current rating). For the 
dynamic evaluation process we used a Uninorm based operator, which we called 
Hybrid Reinforcement (HR) Operator.  

Another important aspect to take in consideration in the dynamic evaluation 
process is the relative proximity of the spacecraft to planet surface. When the 
spacecraft altitude is high the current rating refers to pixels in the images (corre-
sponding to site coordinates). However, in the final stages of landing on a planet, 
we have to consider that the spacecraft size is larger than the image pixels; hence 
instead of selecting single pixels (coordinates) we have to select regions (i.e. sets 
of single pixels) for landing.  Details about the regions aggregation process are 
given in [13]. For the regions evaluation process we defined a Product FIMICA 
operator, which proved to be appropriate for aggregating the pixels into regions. 

Figure 1 depicts the dynamic decision process of the case study. 
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Fig. 1 Dynamic decision process of Spacecreaft Landing case study 

 
In summary, the illustrative case study includes historical information from pre-

vious iterations (feedback) and uses suitable adaptations of full reinforcement op-
erators in a dynamic decision process. Moreover, when spacecraft altitude is low a 
FIMICA reinforcement operator was devised to aggregate pixels into regions, the 
latter becoming alternatives of the multi-criteria dynamic decision system. 

3   Background on Full Reinforcement Operators 

Aggregation operators have been extensively studied in the literature and their us-
age in fuzzy multi-criteria problems is widely spread (see for example [8, 15-18]). 
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In this work we focus on aggregation operators with full-reinforcement behav-
iour, because this is an important quality for dynamic decision processes. Specifi-
cally, we discuss the Uninorm and Fimica classes [1-3] as beneficial for our type 
of problem. Full-reinforcement property means that: a) for a set of high scores to 
“positively” reinforce each other,  it must obtain a higher score than any of the 
elements alone (upward reinforcement); b)  for a set of low scores to “negatively” 
reinforce each other it must obtain a lower score than any of the elements alone 
(downward reinforcement). The main difference between the Fimica and Uninorm 
operators is that the former can be continuous.  

3.1   UNINORM 

The UNINORM class of aggregation operators was introduced by [1-2] as a gener-
alization of T-norms and T-conorms. One of the main characteristics of this opera-
tor is the consideration of a neutral element, anywhere in the interval ]0, 1[. A 
uninorm R  is a mapping 

[ ] [ ]1,01,0: 2 →R                                                (1) 

having the following properties: 

),(),( abRbaR =                                              (commutativity);            (2) 

dbcadcRbaR ≥≥≥   and      if    ),(),(         (monotonocity);            (3) 

)),,(()),(,( cbaRRcbRaR =                              (associativity);              (4) 

There exist some elements ] [1,0∈e  called the neutral element such that for all 

[ ] aeaRa =∈ ),(,1,0    . 

Moreover, uninorm operators also present a compensatory behaviour, i.e., any 
Uninorm R  satisfies: 

[ [ ] ] ] ] [ [
] [ [ ] xexUxee

eeeeyxyxyxUyx

=∈∀∈∃
×∪×∈≤≤
),(:1,01,0 i.e., element, neutral a is  where

,01,1,,0),(  ,  ),max(),(),min(                    (5) 

It is known that any Uninorm operator have at least a discontinuity in ( )0,1  and 

)1,0( . Therefore, uninorm operators may present asymptotic behaviour, i.e., a 

small change in the arguments implies a significant change in output value (cfr. 
Section 4.5). For example, the minimal uninorm operator [11] has discontinuities 
in { } [ ] [ ] { }eeee ×∧× 1,1, , as shown in Figure 2. 

3.2   FIMICA 

The FIMICA class of aggregation operators [3] were derived from the MICA op-
erators [15]. They are defined as a bag mapping: 
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Fig. 2 Plot of minimal Uninorm (where e = 0.65 is the neutral element) 

IUF I →:                                                     (6) 

having the following properties: 

F(B)F(A)BA ≥≥    then     If                       (monotonocity);                (7) 

)()(: AFgAFUAIg I =⊕∈∀∈∃      (fixed identity);                 (8) 

where ] [1,0∈g  is called identity element, A  and B  are any bag, 

[ ]1,0,,...,1 =∈>=< IaaaA in  and [ ]1,0,,...,1 =∈>=< IbbbB in . 

Fimica operators present full reinforcement behaviour, similar to Uninorm op-
erator, and the F  operator is also monotonic and commutative with respect to ar-
guments in A . In addition, an important aspect of Fimica is the choice of an ap-
propriate function, F , to control the operator behaviour, e.g., deciding if a small 
change in the arguments does (or not) imply a significant change in output value 
(cfr. Section 4.5).  

4   Proposed Adjustments for Reinforcement Operators 

In this section we discuss four variations for full reinforcement operators. First, we 
present the minimal Uninorm. Second we introduce one operator, called Hybrid 
Reinforcement (HR) operator, which is based on the minimal Uninorm [11] and 
includes a compensatory nature in all four quadrants of the image space (see Fig-
ure 2 and Figure 3). The third and fourth variations belong to the additive and 
product family of Fimica class aggregation operators, respectively, where particu-
lar functions were devised to better fit the illustrative example.  All variations are 
discussed within the context of a small example and the illustrative case study. 
The authors presented a preliminary version of some of these operators in  [7]. 
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4.1   Minimal Uninorm 

The proposed minimal Uninorm operator is formally defined as follows. 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≥≥
−
−

−
−−+

≤∧<∨<∧≤

=

           elsewhere    ,                    y)Min(x,

   and  for   ),
1

,
1

().1(

)    () (for   ,      ),(.

),(min ηη
η
η

η
ηηη

ηηηη
ηη

η

yx
yx

S

yxyx
yx

T

yxU        (9) 

where:  
η  is a neutral element; 

T-norm is Hamacher intersection operator (T); 
S- norm is Hamacher union operator (S); 

The neutral element η  is the parameter influencing the quantity of upward or 

downward reinforcement operations. In our case we use quantiles for neutral ele-
ment because with a high quantile we ensure the majority of values fall before the 
bounded quantile value, hence more downward reinforcement operations. Using a 
lower quantile we ensure more upward reinforcement operations in the aggrega-
tion of alternative rating at iteration n with historic value from iteration n-1.  

For S-norm and T-norm (S, T) we use the following Hamacher operator formu-
las [9]:  

[ [ [ ]0;1y x,and  0; where

 ,      
**)1(1

**)2(
),(

∈+∞∈
−−

−−+=

α
α

α
α yx

yxyx
yxS

                            (10) 

[ [ [ ]0;1y x,and  0; where

 ,      
)*)(1(

*
),(

∈+∞∈
−+−+

=

α
ααα xyyx

yx
yxT

                         (11) 

In our case we use a low value for parameter α because we want to reward or pe-
nalize the rating values smoothly instead of using an aggressive aggregation be-
havior. The choice of Hamacher operators for the upper and lower reinforcement 
was based on its synergetic nature. 

4.2   HR Operator  

The motivation for this adapted operator was a need for an aggregation operator 
with full reinforcement characteristics, but flexible enough to include an averaging 
compensatory nature in the interval, [ ] [ ] [ ]] [ηηηη ,01,1,,0 ×∪× . Hence,  we 

proposed an adaptation of the minimal Uninorm operator [14] which includes 
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Hamacher synergetic operators [9] for intersection and union and OWA [16], in 
the interval [ ] [ ] [ ]] [ηηηη ,01,1,,0 ×∪× . This latter interval is the one outside 

the image space of t-norms and s-norms, since these are bounded by the neutral 
element η  (see Figure 3 a.). Formally, the proposed hybrid reinforcement opera-

tor, HR, is a mapping [ ] [ ] [ ]1,01,01,0 →× , such that, 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≥≥
−
−

−
−−+

≤∧<∨<∧≤

=

           elsewhere ,                  y)OWA(x,
 

  and  for   , )
1

,
1

().1(

)    () (for   ,      ),(.

),(
ηη

η
η

η
ηηη

ηηηη
ηη

η

yx
yx

S

yxyx
yx

T

yxHR          (12) 

where:  
η  is a neutral element; 

T-norm represents Hamacher  intersection operator (T) (cfr. Equation 10); 
S- norm represents Hamacher union operator (S) (cfr. Equation 11); 
OWA represents Yager´s OWA operator (cfr. Equation 13). 
 

For OWA aggregation operator [16] we use the following formulation: 

[ ]0;1yx,and1 where

),,min(),max(),(

21

21

∈=+
×+×=

ww

yxwyxwyxOWA
                (13) 

The weights for the OWA aggregation operator ( 1w  and 2w ) will have in consid-

eration that giving more weight to lower values will decrease the aggregation 
value; this is what we are looking to avoid selecting sites with lower rating values. 

A similar argument as the one presented in section 4.1 can be made regarding 
the choice of Hamacher intersection and union functions for S and T-norm, re-
spectively. Moreover, the same parameters were also used as in the minimal Uni-
norm operator. 

The proposed HR operator is suitable for our case because our goal is to com-
bine historical information, from previous iteration ( xHn ⇒−1 ), with current rat-

ing value ( yRn ⇒ ), until we reach a conclusion (stopping criterion). Combining 

current and feedback information is the feedback process in the dynamic decision 
process. 

In summary there were four main requirements for the HR operator: to ensure full 
reinforcement capability; to include full compensatory nature in all quadrants; to 
take in consideration the order of elements;  to ensure synergy between arguments 
by using Hamacher operators for T-norm and S-norm. Figure 3 (a) summarizes the 
combination of operators for each image space quadrant, determined by the neutral 
element; and plot (b) represents its behaviour for a neutral element of 0.5.   
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Fig. 3 Search space of HR operator and a behavioural example. 

 

The algorithm parameters were tuned to get a coherent behaviour for our case 
study. The neutral element η  was set to a high quantile of Rn to obtain a small 

subset with high classifications. Then, we determined the α parameter for both 
Hamacher operators (S and T equations), and weights used for the OWA aggrega-
tion operator.   

The last step of pixels evaluation (phase where spacecraft is at relative high al-
titude) is to rank the values decreasingly and, from this ordered list, we select a 
sub-set for the next iteration (historic set). At each iteration n we select the k best 
ranked sites and, depending on the altitude from the planet surface, the historical 
set size k varies. With this procedure, it can happen that the best choice of alterna-
tive is not the highest regarding its rating value, in the respective iteration. This 
situation is due to the use of historical feedback information and the behaviour of 
the hybrid reinforcement operator (HR, eq. 12) in the computation of the dynamic 
decision model. We want to select sites that proved to be good during a certain pe-
riod of time, i.e. that provide some consensus about its suitability! 

Finally, it is important to highlight that HR operator does not fulfil all proper-
ties of Uninorm operators, specifically the associativity condition. However, since 
for any iteration we just aggregate two values, historical and current rating values, 
there are no associative problems in our case. All other properties of Uninorm op-
erators are satisfied on [ ] [ ]1,01,0 × . 

4.3   Additive FIMICA Operator 

The additive family of the FIMICA class of aggregation operators is defined as 
follows [3]. 

[ ]

[ ] identity.  theis  1,0

; intervalunit  over the defined bag a is  ,,

;1,0:  :where

))(()(

1

∈
>=<

→ℜ⊆

−= ∑
∈

g

aaA

Df

gafAS

n

Ii
i

          (14) 
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Several f  functions were tested, for our illustrative case study, and we chose the 

most suitable to ensure a smooth behaviour. Formally, the chosen function is, 

π
))()arctan((

5.0),(
gygx

yxS
−+−−=><   , where [ ]1,0, ∈yx             (15) 

In Figure 4 we show its respective plot. 

 

Fig. 4 Plot of additive Fimica operator for g= 0.5. 

4.4   Product FIMICA Operator 

The product Fimica aggregation operators are defined in a similar fashion as the 
previous additive Fimica operators. The product operator is defined as follows [3]. 

[ ]

] ] identity.  theis  1,0

; intervalunit  over the defined bag a is  ,,

;1,0:  :where

)(

1

0

∈
>=<

→ℜ⊆

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Π=

+

∈

g

aaA

Df

g

a
fAV

n

i

Ii

         (16) 

As in the previous section, several f  functions were tested and the most suitable 

to ensure the necessary behaviour is defined as in Equation (17). 

g

y

g

x
yxV

×+
−=><

1

1
1),(   , where [ ]1,0, ∈yx                         (17) 

In Figure 5 we show its respective plot. 
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Fig. 5 Plot of product Fimica operator for g=0.5. 

 
Comparing Figure 2 with Figure 5 it is obvious the latter continuous nature and 

the non-existence of intervals where smooth behaviour is not guaranteed.  

4.5   Numerical Examples 

This section illustrates the results of applying the proposed adjusted operators, to 
aggregate 2 criteria (columns) for 3 alternatives (rows), as depicted in the follow-
ing matrix, 
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4.5.1   Example 1 - Umin Operator  

Consider 104.0=e  (neutral element), Hamacher’s parameters 8.0=α . Applying 
Umin, we have: 
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The results are: A1>A2>A3. Figure 6 a) depicts the plot for this operator  
behaviour. 
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a) Umin operator b) Product FIMICA 

 
c) HR operator d) Additive FIMICA 

 
Fig. 6 Plots of operators used in numerical examples with e=g=0.104 and α =0.8. 

4.5.2   Example 2 - HR Operator 

Consider 104.0=e  (neutral element), Hamacher’s parameters 8.0=α  and OWA 
w1 and w2 equal to 0.4 and 0.6, respectively. Applying HR, we have: 
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The results are: A1>A2>A3. Figure 6 c) shows the plot for this operator. 

4.5.3   Example 3 - Product Fimica 

Next we show the results obtained with the proposed product Fimica considering  
g = 0.104 for identity element: 
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The results are: A2>A1>A3. Figure 6 b) depicts the behaviour for this operator. 

4.5.4   Example 4 - Additive Fimica  

In this example is illustrated the results obtained with the proposed additive 
Fimica considering g = 0.104 for identity element: 
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The results are: A1>A3>A2. Figure 6 d) depicts the plot of this operator´  
behaviour. 

4.5.5   Discussion of Examples Results 

All reinforcement operators consider that alternative A3 is worse then A1 and this 
is a coherent result since A3 is dominated by A1.  

Comparing Example 1 and Example 2 we can observe that the results are iden-
tical in terms of order of importance of alternatives but the Umin does not have a 
compensatory behaviour when one criteria is good (above the neutral element) and 
another is bad (below the threshold) hence it reduces the overall importance to its 
weakest criteria. In our case study we do not want this behaviour because we are 
aggregating historic information with current information and both should count to 
the overall result. Hence, for our dynamic model we selected the HR operator.  

All operators consider that A1 is the best alternative except product FIMICA 
that considers A2 as the best alternative. This shows that for aggregating only two 
criteria this operator might not be the best choice but for aggregating several crite-
ria it is another story. Comparing the results of Example 1 and 3, we can observe 
that product Fimica operator has a more coherent behaviour in the sense that simi-
lar alternatives have very close ratings (A1 and A3).  In both operators, if we have 
one 0=ia , the aggregated value will also be zero. This is a critical feature for our 

operator since their purpose is to aggregate a set of pixels into a single region. 
This means that if one region contains an unacceptable pixel the entire region is 
considered undesirable for landing.  

In summary, it seems that HR is a good choice for aggregating two criteria that 
require synergy and compensatory behaviour (dynamic model), while product 
FIMICA seems good for aggregating several criteria when we want to ensure a 
smoother behaviour in the aggregation and the elimination of an alternative if 
there is one or more “bad” elements in that alternative. The choices of operators 
for the case study are further discussed in the next section. 

In Figure 6 we show the four operators plots, the same neutral element and 
identity element value was used in all the examples. The differences are obvious 
in terms of behaviors’ in the different quadrants of the search space.  
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5   Assessment of Reinforcement Operators within Case Study 

In this work we described a dynamic evaluation process for rating sites, either for 
pixels or regions depending on the spacecraft altitude.  

The dynamic decision process is done with the HR operator (12) and applies to 
either pixels or regions. To construct the regions (grouping of ratings of nearby 
pixels) we used the product Fimica (17). We used product FIMICA to ensure a 
smother aggregation behaviour and fulfilment of the associative property, when 
there are more than 2 elements to aggregate. 

The main difference between the Umin and the product FIMICA operator is that 
the former is continuous. Further, choosing an appropriate function (17) guaran-
tees a more smooth behaviour, i.e., a small change in the arguments does not  
imply a significant change in output values. This was illustrated in the small nu-
merical examples above (Section 3.3), where a difference of only 0.01 (but it 
could be as small as we wanted) implies a change in the ranking order. When 
evaluating regions we observed that some had a poor ranking position, even 
though most of its pixels have high values and only a couple of them had smaller 
values than the neutral element (but very small differences). 

Table 1 depicts results of grouping pixels into regions, for one iteration of the 
decision process. It can be observed that for the ten best regions, obtained with 
product FIMICA, the min Uninorm only ranks alternative 4 as the “best” and 
number 10 as the third ranked. It misses all other good regions that were obtained 
with product FIMICA. The results were also validated by Space experts and they 
concurred that FIMICA operator was more suitable to rate regions. 

Table 1 Best landing site regions identified in one iteration, using the product FIMICA op-
erator, and results for the same regions using the minimal Uninorm operator 

Region 2D coor-
dinates 

FIMICA Uninorm 

x y Rating Ranking Rating Ranking 

207 267 0,793156 1 0,983649 41 
206 267 0,792631 2 0,983618 42 
208 267 0,791215 3 0,983521 49 
215 250 0,78965 4 0,984586 1 
209 267 0,789257 5 0,983384 55 
216 250 0,788848 6 0,984528 4 
209 266 0,787445 7 0,983346 58 
205 267 0,787431 8 0,983331 59 
183 257 0,786907 9 0,984029 20 
214 248 0,786865 10 0,984543 3 
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Now we will discuss the operators involved in the dynamic decision process of 
aggregating past and current information. The HR and additive Fimica operators 
have a completely different behaviour when compared with the two previous dis-
cussed operators. Also, as mentioned, in our case study they have a different pur-
pose. These operators are must more adequate to be used in the dynamic aggrega-
tion phase due to their compensatory nature on the entire domain. When we 
observe the results presented in Section 4.5, again, the (additive) Fimica operator 
seems to have a more coherent behaviour. However, in this case, the function used 
in the Fimica operator is much more computational demanding and time consum-
ing than the HR function even though it presents a more smooth behaviour. When 
we are dealing with dynamical decision models, where several decisions are made 
until a “consensus” is reached, a major constraint is the computational cost in 
terms of time. Hence, the HR operator is more suitable for dynamic aggregation. 
Moreover, for our case study computational time was an essential feature for the 
feasibility of the entire algorithm, so HR was chosen.  

6   Concluding Remarks 

In this work we discussed details about full reinforcement operators. Specifically, 
we focused on a hybrid operator (HR) used in a dynamic decision process for se-
lecting alternatives and a product FIMICA operator used for aggregating (group-
ing) ratings of alternatives.  

The suitability and flexibility of using full-reinforcement operators was as-
sessed with an illustrative example and also with a case study of site selection for 
spacecraft landing on planets. Specifically the hybrid reinforcement operator was 
used to combine past and current ratings at each iteration of the dynamic decision 
process, while the proposed product Fimica was used for aggregating pixels into 
regions (when a spacecraft is close to the surface it is bigger than pixels in hazard 
maps, hence we need to select regions). Moreover, since the case study involves a 
dynamic decision process the usage of full-reinforcement operators proved quite 
successful for achieving a good decision after several iterations. 
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Neural Networks for Non-independent Lotteries

Giulia Rotundo

Abstract. The von Neuman-Morgenstern utility functions play a relevant role in
the set of utility functions. This paper shows the density of the set von Neuman-
Morgenstern utility functions on the set of utility utility function that can repre-
sent arbitrarily well a given continuous but not independent preference relation over
monetary lotteries. The main result is that without independence it is possible to
approximate utility functions over monetary lotteries by von Neuman-Morgenstern
ones with arbitrary precision. The approach used is a constructive one. Neural net-
works are used for their approximation properties in order to get the result, and their
functional form provides both the von Neumann-Morgenstern representation and
the necessary change of variables over the set of lotteries.

1 Introduction and Basic Definitions

This paper focuses on von Neumann-Morgenstern (vNM) representation of utility
functions [1, 2]. This representation is relevant also for computational issues lead-
ing to parallel calculus [3, 4]. Such a representation of utility functions holds under
some hypotheses on the preference relation. Here I consider preferences over mone-
tary lotteries, and I explore the role of vNM utility functions when the independence
hypothesis is not holding any more. This generalization is most useful for research
on consumers/customers, and for behavioral experiments when the functional form
of the utility function is not given and concerns the individual preferences in some
real world problem. In fact, in such cases the building of a functional form for the
utility function needs to pass through an approximation problem, because the utility
function must be extrapolated by the knowledge of some samples about the prefer-
ences of the individuals. Neural networks are particularly useful for their structure
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when dealing with approximation tasks and with problems that require some sep-
aration in the dependence of a given function by the variables which the function
depends on [6]. This particular form offers a way for finding a change of variables
over the set of lotteries that leads to a representation of the preference relation by a
vNM utility function. In order to improve the easy of read and the self-consistency
of the paper, a few definitions and theorems are summed up here below.

About the theory of neural networks, a more general case of the following propo-
sition is reported in [5].

Theorem 1. Any continuous function f : Rm → Rq can be approximated uniformly
on compacta by functions of the form

f̂ = ( f̂ 1, · · · , f̂ q) (1)

where

f̂ k(x) = α
h

∑
j=1

W 2
k jT (

m

∑
i=1

W 1
jix

i −θ j)−ϑk (2)

and x = (x1, · · · ,xm)∈ Rm is the input of the network, W 1 ∈ Rh×m, W 1 = (w1
i ) are the

weights between the input and the hidden layer, W 2 ∈ Rq×h are the weights between
the hidden and the output layer, θ ∈ Rh and θ ∈ Rq are the thresholds, T : R1 → R1,
T (z) = ( 1

1+exp(−z) ), ∀z ∈ R1 is the sigmoidal transfer function.

The above function (2) represents a particular feed forward neural network (known
in literature also as multi layer perception) with only one hidden layer, sigmoidal
transfer function and linear output units. The sigmoidal transfer function can be
substituted by [6] threshold functions or linear truncated functions, and other ones.
The thresholds can be merged in the sum by increasing both the input and the hidden
layer of one unit, whose value is always equal to one, whose weights are the opposite
of the corresponding thresholds and setting for these units some parameters that let
the sigmoidal function behave like the identical function. Thus instead of (2) the
following function can be used:

f̂ k(x) =
h

∑
j=1

W 2
k jT (

n

∑
i=1

W 1
jix

i) (3)

And thus, from (1), writing the weights in a matrix form:

f̂ k(x) = W 2u(W 1x) (4)

where u : Rh → Rh, u(z) = (T (z1), · · · ,T (zh)) , z ∈ Rh applies the transfer function
to each component of the vector z.

Definition 1. A sample for a neural network like (2) is a pair (x,y), x in the domain,
y in the image set of the function (2).

The set of multi layer perceptron is a universal function approximator. Neural net-
work models are often used for economic problems, but, first of all, they must be
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”trained”, i.e. weights need to be fixed such that the error of the approximation is
minimized. From the approximation theory point of view the training procedure
gets a set of samples for the network (x in the domain, y in the image set), it de-
fines a function measuring the error of the approximation, and it determines through
maximumn likekihood methods the values of the weights that minimize the error of
the approximation, that is usually defined through a measure of distance between
the values of the functions on x and the assigned value y. The target of learning of
network (2) can be described by the minimization problem:

minW1,W2 ∑
t
|| yt − f̂ (xt) || (5)

We are going to weaken hypotheses. The following theorem [2]

Theorem 2. Suppose that the rational preference relation � on a set A is continu-
ous. Then there is a continuous utility function u(x) that represents � .

shows that in order to work with continuous utility functions it is sufficient to deal
with continuous preference relations. Other definitions are necessary to work with
the function representation:

Definition 2. The preference relation � has an extended expected utility
representation if ∀s ∈ S, there is a function us : R+ → R such that for any
(x1, · · · ,xs) ∈ Rs and (x′1, · · · ,x′s) ∈ Rs, (x1, · · · ,xs) � (x′1, · · · ,x′s) if and only if

∑
s

πsus(xs) ≥ ∑
s

πsus(x′s) (6)

Remark 1. The above property (6) is verified under the hypotheses that πs ≥ 0, that
is true when πs are representing probabilities, and that us : [0,∞) → R+ are strictly
increasing ∀s.

The last property is verified, as example, by the sigmoidal function.
The following definitions introduce the target of lotteries [1]:

Definition 3. A (monetary) lottery L over alternative levels of wealth w can be de-
noted by the collection of pairs L = {(pi,wi) : i = 1, ...,n}. The probability pi is the
probability of receiving the wealth wi when the decision is made or the lottery is
played.

Definition 4. An individual’s choice over lotteries satisfies the continuity axiom
whenever a sequence pn of probabilities (i.e. 0 ≤ pn ≤ 1) converges to p, that is
pn → p, and the lottery pnL1 + (1 − pn)L2 is preferred to a lottery L3 ∀n, then
pL1 +(1− p)L2 is preferred to L3.

Definition 5. An individual’s choice over lotteries satisfies the independence axiom
whenever a lottery L1 is preferred to another lottery L2, then for each 0 < p < 1 the
compound lottery pL1 +(1− p)L3 is preferred to the compound lottery pL2 +(1−
p)L3 for all lotteries L3.
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This axiom is strongly connected with the linearity of the utility function that rep-
resents the preference relation.

If the continuity and the independence axioms hold it is possible to define a vNM
utility function:

Theorem 3. ((Extended) Expected utility theorem) If an individual’s utility function
U : L → R over the set of lotteries satisfies independence and continuity, then
there is a vNM utility function u over wealth such that U(L) = ∑n

i=1 p1u(wi) for
every lottery L = {(pi,wi) : i = 1, · · · ,n}.

The target is to weaken the independence hypothesis, and to show how to get a new
space where the utility function is approximated:

Definition 6. Given a transformation over a lottery set L , let � be the preference
relation on L and

g : L ⊆ Rn×n → L ⊆ Rh×h (7)

(p,w) → (p′,w′)

where (p,w) ∈ L , p,w ∈ Rn, (p′,w′) ∈ L ′, p′,w′ ∈ Rn.

The induced preference relation �′ over L ′ is such that if (p1,w1)� (p2,w2) ∈ L ,
then (p′1,w

′
1) � (p′2,w

′
2) ∈ L ′, and (p′i,w′

i) = g((pi,wi)), i = 1,2.
moreover in this paper are considered the transformations g that lead to the same

utility function

Definition 7. Given a transformation over a lottery set L ,

g : L ⊆ Rn×n → L ⊆ Rh×h (8)

(p,w) → (p′,w′)

and the utility function U : L →R1 that represents a preference relation over L , the
induced preference relation over L ′ , U ′ : L ′ → R∞ preserves the utility function
if for each (p′,w′) = g(p,w)) it happens that U((p,w)) = U ′((p′,w′)).

2 Approximation of Utility Function

Definitions reported in the previous section serve for a quick reference to the tools
which the following theorem is built on:

Theorem 4. For each continuous preference relation � over L ∈ R2n there exists a
change of variables l ∈L → l′ ∈L ′ ∈ Rh such that the preference relation induced
into the new lottery space is arbitrarily well approximated by a utility function that
has a vNM representation. Moreover, this change of variables preserves the utility
function.

The theorem is willing to show how to build an approximating function and a trans-
formation over the lottery space that leads to a vNM utility function.
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Proof. Let l = (p1, · · · , pn,w1, · · · ,wn)T ∈ L . Because of the continuity, � can be
represented by a continuous utility function

U : L ⊆ Rn×n → R1 (9)

l →U(l)

that can be approximated by a neural network with m = 2n, q = 1, h to be fixed, and
arbitrarily small error ε . In order to make the interpolation it is necessary to get a
set of samples

{(li,U(li))}i∈I

li = (p1
i , · · · , pn

i ,w
1
i , · · · ,wn

i )
T , pi = (p1

i , · · · , pn
i )

T , wi = (w1
i , · · · ,wn

i )
T as a first step.

Once collected these samples it is also possible to use them for the interpolation
of the function l → p(pT p)−1U(l), that is a continuous function of p and w (p =
(p1, · · · , pn)T ,w = (w1, · · · ,wn)T ).

Thus a learning procedure can be made for this network with m = 2n, q = n in
order to fix the weights W 1 and W 2 and the value of h that gives the desired error ε .
Thus for each sample li

[pi(pT
i pi)−1]U(li) = W 2u(W 1l) (10)

where W 1 ∈ Rh×m and W 2 ∈ Rq×h , and u is the sigmoidal transfer function. Obvi-
ously the set of samples must be sufficiently large in order to ensure that the above
correspondence (10) describes well the preference relation with an error lower than
ε . Thus for each lottery l = (p1, · · · , pn,w1, · · · ,wn)T ,

[p(pT p)−1]U(l) = W 2u(W 1l) (11)

and then

U(l) = pT [p(pT p)−1]U(l) = [pTW 2 || pTW 2 ||−1][|| pTW 2 || u(W 1l)] (12)

The factor || pTW 2 || is a normalization factor and || |̇ | is a vector norm. Now it is
possible to change variables in this way:

g : L ⊆ Rn×n → L ′ ⊆ Rh×h (13)

l ∈ L → l′ ∈ L

such that l = (p1, · · · , pn,w1, · · · ,wn)T , l′ = (p1′, · · · , pn′,w1 ′, · · · ,wn′)T , and

p′ = pTW 2[|| pTW 2 ||]−1 (14)

and
w′ = [|| pTW 2 ||]U(W1l) (15)
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With this change of variables (12) becomes

U(l) = p′w′ = ∑
i=1,h

p′iw′i (16)

This change of variables preserves the utility function and allows to write her in
a vNM form. Because of the preservation of the utility function, it is possible to
work into the new space for all the problems that involve the considered preference
relation over L ′ and to use the reverse change of variables just in order to have the
found solution in the original space L , and the two solutions are ε-close [4].

Remark 2. The change of variables (14) and (15) can be inverted only under the
hypotheses that (W 2(W 2)T )−1 and (W 1(W 1)T )−1 are invertible matrices.

Remark 3. The change of variables (14) and (15) must be restricted to the set of
lotteries for which the images are in Rh×h

+ in order to verify the necessary properties
of the Remark 0.1

Remark 4. Each component of || pTW 2 || u(·) is non - negative, continuously in-
creasing function because || pTW 2 || is a positive number.

Remark 5. The change of variables for the new probabilities p′ uses only the old
probabilities p, while the change of variables for the wealth w′ = W 1l = W 1(p,w)
involves not only the wealth w, but also the probabilities p. Thus the new wealth w′
can be seen as a particular weighted mean of the wealth w.

Remark 6. The normalization [|| pTW (2) ||] is necessary in order to interpreter the
vector p′ as the probabilities into the new lottery space.

Remark 7. The utility function was built in order to approximate the utility function
of a preference relation, and this is the interpretation that was evidenced, but she
actually represents a preference relation over L ′ that is ε- close to the induced one.
This can be expressed also by saying that the set of the vNM utility functions is
dense in the set of the continuous utility functions.

Remark 8. The independence hypothesis of the extended expected utility theorem is
a sufficient condition, and it is quite strong. However, it is possible to give a vNM
utility function that does not verify the independence.

In fact it is possible, starting from (12), to continue the proof by using the following
change of variables and utility function:

g : L ⊆ Rn×n → L ′ ⊆ Rh×h (17)

l ∈ L → l′ ∈ L

such that l = (p1, · · · , pn,w1, · · · ,wn)T , l = (p′1, · · · , p′n,w′1, · · · ,w′n)T , and

p′ = pTW 2[|| pTW 2 ||]−1
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and
w′ = W 1l

from which
p = [(W 1T

W 1)−1(W 1T
)w′]I

and
w = [(W 1T

W 1)−1(W 1T
)w′]II

where the operators [·]I and [·]II indicate, respectively, the components 1, · · · ,n and
n+1, · · · ,2n of the given vector. The u(·) function must be charged in the following
way:

u′(w′) j = [|| [(W 1T
W 1)−1(W 1T

)w′]I ]TW 2 ||][1 + exp(w′) j]−1], j = 1, · · · ,h (18)

With this change of variables (12) becomes

U(l) = p′u′(w′) = ∑
i=1,h

p′i(u′(w′))i (19)

than, in general, is not independent in the meaning of the Definition 4.

3 Conclusions

This paper shows a procedure that allows to get a useful representation of the utility
functions for continuous preference relations. The possibility to merge the given lot-
teries into another lottery space allows to use an approximation to the utility function
that represents the given preference relation by a vNM utility function. This result
can be particularly useful if the analytic form of the utility function is not known.
Moreover, the Theorem 4 can be generalized by introducing thresholds transferring
functions and other non-continuous functions, and thus some further generalization
to non-continuous preference relations would be possible.
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Weak Implication and Fuzzy Inclusion

Romano Scozzafava

Abstract. The content of this talk is taken from joint papers with G. Coletti
and B. Vantaggi.

We define weak implication H �−→P E (“H weakly implies E under
P”) through the relation P (E|H) = 1, where P is a (coherent) conditional
probability.

In particular (as a ... by-product) we get “inferential rules”, that corre-
spond to those of default logic. We discuss also connections between weak
implication and fuzzy inclusion.

Keywords: conditional probability, weak implication, default logic, fuzzy
inclusion.

1 Introduction

How can a seemingly loose concept like “weak implication” be embedded in
a rigorous mathematical framework?

There is a huge relevant literature on this matter, but we will not undertake
a discussion or a review on this.

Just to recall some “semantic” aspects, let us consider the trivial statement
“if it rains on the spot x, then x is wet”; this is clearly a logical implication
R ⊆ W (with obvious meaning of the symbols concerning the events R and
W ). Conversely, assuming W (x is wet), we could conclude R (it rains on the
spot x) if we are not made aware of possible water sources around x: shortly,
we may say “W weakly implies R”.

Now, given a conditional probability P , we can represent the above situ-
ation by the notation W �−→P R and by assessing P (R|W ) = 1, but for a
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rigorous formulation we need to say something more on events and condi-
tional events.

2 Preliminaries

An event can be singled-out by a (nonambiguous) statement E, that is a
(Boolean) proposition that can be either true or false (corresponding to the
two “values” 1 or 0 of the indicator IE of E).

The “logic of certainty” deals with true and false as final, and not asserted,
answers concerning a possible event, while two particular cases are the certain
event Ω (that is always true) and the impossible event ∅ (that is always
false): notice that only in these two particular cases the relevant propositions
correspond to an assertion. To make an assertion, we need to say something
extra-logical, such as “we know that E is false” (so that E = ∅).

As far as conditional events are concerned, we generalize the idea of de
Finetti of looking at a conditional event E|H , with H �= ∅, as a 3–valued
logical entity, which is true when both E and H are true, false when H is true
and E is false, “undetermined” when H is false, by letting instead the third
value suitably depend on the given ordered pair (E,H) and not being just an
undetermined common value for all pairs: it turns out that this function is
a measure of the degree of belief in the conditional event E|H , which under
suitable – and natural – conditions is a conditional probability P (E|H), in its
most general sense related to the concept of coherence, satisfying the classic
axioms as given by de Finetti [7].

Concerning coherence, we recall the following fundamental result:
Let C be any family of conditional events, and take an arbitrary family K ⊇
C. Let P be an assessment on C; then there exists a (possibly not unique)
coherent extension of P to K if and only if P is coherent on C.

3 Weak Implication

Given a conditional event E|H , notice that P (E) = 1 does not imply
P (E|H) = 1 (as in the usual framework where it is necessary to assume
P (H) > 0). We can take instead P (H) = 0 (the conditioning event H –
which must be a possible one – may in fact have zero probability, since in the
assignment of P (E|H) we are driven only by coherence [3]). Then a proba-
bility equal to 1 can be, in our framework, updated .

Moreover, P (E|H) = 1 does not imply H ⊆ E: take in fact, e.g., an event
E with P (E) > 0 and an event H ⊃ E such that P (H) = P (E) (that is
P (Ec ∧ H) = 0). In particular, if we assert Hc ∨ E = Ω, then H ⊆ E (H
logically implies E), so we certainly have P (E|H) = 1.

It could appear that the most “natural” way to weaken inclusion should
be the requirement P (Hc ∨ E) = 1. But this weaker assumption in general
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is not enough (whenever P (H) = 0) to get P (E|H) = 1, while P (E|H) = 1
always entails P (Hc ∨ E) = 1. The two latter statements easily follow from

P (Hc ∨ E) = 1 − P (H ∧ Ec) = 1 − P (H)P (Ec|H) .

In other (semantic) words, we require that, even if a part of H is not inside
E, this part can be considered, in a sense, as “ignorable” (with respect to
H itself), while the probability of Hc ∨ E can be equal to 1, due to the
circumstance that H may have probability equal to 0 even if a “large part”
of it is not inside E.

The formal definition of weak implication follows:

Definition 1. An event A weakly implies an event C under P (in symbols
A �−→P C) iff P (C|A) = 1.

We denote by ΔP the set of given weak implications.
In most situations the base of knowledge is given by an arbitrary set C

of (conditional) events, and the function P on them summarizes the state of
information. Making inference means enlarging this assessment to new events,
maintaining the rules required to the conditional probability P .

Notice that the single assessment P (C|A) = 1 is obviously coherent (not
only for events A ⊆ C), except when A and C are incompatible. We remark
that we can assign P (C|A) = 1 also in the case P (C|Ω) = 0: then the only
coherent value for P (A|Ω) will be 0.

Moreover, we recall that for any coherent assessment on C, its enlargement
to K ⊇ C is not unique (in general). Nevertheless for some events we can
have a unique coherent extension, so giving rise to the important concept of
entailment .

Definition 2. If an assessment on C contains a set of weak implications ΔP

and if for some event E|H ∈ K ⊇ C every extension necessarily assumes
value equal to 1, then we say that “ΔP entails H �−→P E”

We prove (see [6]) that entailment satisfies the following “inference” rules:

(i) ΔP entails A �−→P A for any A �= ∅,

(ii) (A = B) , (A �−→P C) ∈ ΔP entails B �−→P C,

(iii) (A ⊆ B) , (C �−→P A) ∈ ΔP entails C �−→ B,

(iv) (A ∧B �−→P C) , (A �−→P B) ∈ ΔP entails A �−→P C,

(v) (A �−→P B) , (A �−→P C) ∈ ΔP entails A ∧B �−→P C,

(vi) (A �−→P B) , (B �−→P A) , (A �−→P C) ∈ ΔP entails B �−→P C,

(vii) (A �−→P B) , (A �−→P C) ∈ ΔP entails A �−→P B ∧ C,

(viii) (A �−→P C) , (B �−→P C) ∈ ΔP entails A ∨B �−→P C.
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Remark. Properties (i)–(viii) correspond to those that, in default logic (see,
e.g., [8]), are called, respectively, Reflexivity, Left Logical Equivalence, Right
Weakening, Cut, Cautious Monotonicity, Equivalence, And, Or.

The definition of weak implication has been extended to general conditional
uncertainty measures. Different classes of such measures are singled–out on
the basis of the family of conditional events where suitable properties of two
operations ⊕ and  are required to hold (see [2]).

For example, choosing ordinary sum and product, or max and any t-norm,
we get, respectively, conditional probability or conditional possibility (for the
latter, see [1]).

4 Fuzzy Inclusion

We recall that in our context a fuzzy set is defined through a coherent con-
ditional probability in the following way (for details, see [3, 4]): if X is a
variable and ϕX is a “property” of X , the membership function μ(x) is put
equal to 1 for the elements x of X that certainly have the given property,
while it is put equal to 0 for those elements that certainly do not have it;
then it is given suitable values of the interval (0, 1) for those elements of
X for which we are doubtful (and then uncertain) on having or not the
property ϕX .

Then the interest is in fact directed toward conditional events such as
Eϕ|Ax, where Ax = {X = x}, and

Eϕ={we claim (that X has) the property ϕX}.

In other words, we identify the value (at x) of the membership function μϕ(x)
with a suitable conditional probability, according to the following

Definition 3. Given a variable X with range CX and a related property ϕ, a
fuzzy subset E∗

ϕ of CX is the pair

E∗
ϕ = {Eϕ , μϕ},

with μϕ(x) = P (Eϕ|Ax) for every x ∈ CX .

Consider any two fuzzy subsets E∗
ϕ = (Eϕ, μϕ) , E∗

ψ = (Eψ , μψ) of CX , where
μϕ(·) = P (Eϕ|·) is a coherent conditional probability (and analogously for ψ).
Thus, since the assessment P (·|·) defined on the following set of conditional
events

C = {Eϕ|Ax , Eψ|Ax : Ax ∈ CX}
is coherent, it can be extended (preserving coherence) to any set D ⊃ C.

Definition 4. Consider the family F(CX) of fuzzy subsets of CX: the degree
I(E∗

ϕ, E
∗
ψ) of fuzzy inclusion of the fuzzy subset E∗

ϕ = (Eϕ, μϕ) in the fuzzy
subset E∗

ψ = (Eψ , μψ) is a function
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I : F(CX) ×F(CX) → [0, 1]

with
I(E∗

ϕ, E
∗
ψ) = P

(
Eψ|Eϕ

)
,

obtained as any coherent extension of P (·|·) from C to the conditional event
Eψ|Eϕ.

The existence of such a function is warranted by the fundamental extension
theorem for coherent conditional probabilities.

The semantic behind this choice is the following: “the more” E∗
ϕ is included

in E∗
ψ, “the more” if we claim the property ϕ we are willing to claim also the

property ψ.
In the case of crisp sets we obtain that fuzzy inclusion holds with degree

1: in fact, if A ⊆ B, then P (B|A) = P (B|B) = 1. In the crisp case inclusion
is reflexive, i.e. any set A is such that A ⊆ A. As far as fuzzy inclusion is con-
cerned, we have that any fuzzy subset E∗

ψ is included in itself with maximum
degree I(E∗

ψ, E
∗
ψ) = 1, so also fuzzy inclusion can be seen as reflexive.

Clearly, the degree of inclusion of two fuzzy subsets has the lowest pos-
sible value 0 when they are “disjoint” (i.e., the corresponding membership
functions have disjoint supports).

To compute the degree of fuzzy inclusion I(E∗
ϕ, E

∗
ψ), notice that, given the

membership functions μϕ(·) = P (Eϕ|·) and μψ(·) = P (Eψ |·) defined on CX ,
we can find also the membership function μϕ∧ψ(·) of the fuzzy subset E∗

ψ∩E∗
ϕ

(corresponding to a t-norm) as coherent extension of the assessment P given
on {Eψ|Ax , Eϕ|Ax : Ax ∈ CX} .

We have the following result (see [9]):

If two fuzzy subsets E∗
ϕ = (Eϕ, μϕ) , E∗

ψ = (Eψ , μψ) of CX are such that
I(E∗

ϕ, E
∗
ψ) = 1 for any probability distribution on CX , then they satisfy

Zadeh’s definition [10] of fuzzy inclusion, i.e. μϕ(x) ≤ μψ(x) for any x ∈ CX .
Conversely, given two fuzzy subsets E∗

ϕ = (Eϕ, μϕ) , E∗
ψ = (Eψ, μψ)

of CX , consider their intersection E∗
ϕ ∩ E∗

ψ = {Eϕ∧ψ , μϕ∧ψ} and take
μϕ∧ψ(x) = min{μϕ(x), μψ(x)} for any x. If μϕ(x) ≤ μψ(x) for any x ∈ CX ,
then I(E∗

ϕ, E
∗
ψ) = 1 for any probability distribution on CX .

In [9] we show also some connections between fuzzy inclusion and
similarity.

In conclusion, coherent conditional probability can act as a unifying tool
in dealing with these topics.
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The TOPSIS Method and Its Application to 
Linguistic Variables 

M. Socorro García-Cascales, M. Teresa Lamata, and J. Luís Verdegay1 

Abstract. Most of the time, the input of the decision process is linguistic, but this 
is not the case for the output. For that reason, we have modified the TOPSIS 
model to make it so that the output of the process is the same as the input, that is 
to say linguistic. This proposal will be applied to the process of quality assessment 
and accreditation of the Industrial Engineering Schools within the Spanish univer-
sity system. 

1   Introduction 

In decision making processes we are not always interested in knowing the ranking 
(e.g. it would be the case of finding the best individual for a specific position) but 
there are situations in which it is more interesting to know the final valuation 
given to an alternative (e.g. set of companies with good growth perspectives). This 
type of process is what we shall refer to in this work. 

The Multiple Criteria Decision Making (MCDM) is a procedure that consists  
in finding the best alternative among a set of feasible alternatives. A MCDM  
problem with m alternatives and n criteria can be expressed in matrix format as 
follows[17,27]: 

                1 2

1 2

n

n

w w w

C C C
 

                                   

11 12 11

21 22 22

1 2

n

n

m m m mn

z z zA

z z zA
M

A z z z

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

                                   (1) 
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where 1 2, , , mA A A  are feasible alternatives, 1 2, , , nC C C  are evaluation criteria, 

ijz
 
is the performance rating of alternative iA  under criterion jC , and jw  is the 

weight of criterion jC .
 

Among the many compensatory approaches of MCDM, one of them is the 
Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) 
method. This approach is employed for four main reasons [26]: 

• TOPSIS logic is rational and understandable;  
• The computation processes are straightforward;  
• The concept permits the pursuit of best alternatives for each criterion depicted 

in a simple mathematical form; and  
• The importance weights are incorporated into the comparison procedures. 

But there are some disadvantages, such as: 

• The existence of rank reversal, which is associated with the process of normali-
zation [10]. 

• And that the linguistic labels may be, as an input, while the output is a number 
associated with the index of closeness [11]. 

With regard to this, we intend to make a modification in the TOPSIS method algo-
rithm so that if the inputs are linguistic labels then the outputs are too. Within the 
literature there are a lot of works which develop the TOPSIS Method both for nu-
merical and linguistic inputs, yet none of them is capable of facilitating a linguistic 
output. Thus, the TOPSIS approach was developed by [12], and improved by the 
same authors in 1987 and 1992. [20,26] and many others have also worked on this 
theme. Some examples using the fuzzy set theory can be seeing in [3,4,6,7,8,14]. 

In the last years, different papers have appeared in the literature in diverse  
applied fields. [5,7,8] give the extension for group decision, the first for solving 
supplier selection problems in a fuzzy environment and the second to location se-
lection problems. [9] also apply the TOPSIS method for robot selection. 

[7] proposes a fuzzy TOPSIS approach to resolve a problem in logistic infor-
mation technology, also a comparison between fuzzy TOPSIS method is given in 
this paper. The total quality management consultant selection under fuzzy envi-
ronment is viewed in [22] and the applications in aggregate planning in [25], 
whereas in [26], the application is related with Air Force Academy in Taiwan to 
evaluate the initial training aircraft. [23] develops a fuzzy TOPSIS method for 
evaluating the competitive advantages of shopping websites and mobile phone al-
ternatives are studied in [13]. 

The process to obtain a linguistic output is simple, we only introduce two steps 
into the algorithm proposed by Hwang and Yoon [12]. The first will consist in in-
troducing into the decision matrix not only the evaluation of the different alterna-
tives but we also shall add as many alternatives as linguistic terms we have, in 
such a way that the evaluation vector is a repetition of the linguistic label in ques-
tion and the second is solved by means of the definition of a distance. This will be 
seen by an example related to the accreditation of industrial engineering studies in 
the Spanish university system.  
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The paper is organized as follows: In section 2, we introduce some of the bases 
of linguistic variables and the associated fuzzy sets theory. In section 3, the frame-
work for the TOPSIS method is defined. Section 4 describes the modification of 
the algorithm and an example is proposed. Finally we outline the most important 
conclusions. 

2   Linguistic Variable and Fuzzy Sets 

2.1   Linguistic Variable  

Most of the times, the decision-maker is not able to define the importance of the 
criteria or the goodness of the alternatives with respect to each criterion in a strict 
way. In many situations, we use measures or quantities which are not exact but 
approximate.   

Since Zadeh [28] introduced the concept of fuzzy set and subsequently went on 
to extend the notion via the concept of linguistic variables, the popularity and use 
of fuzzy sets has been extraordinary. We are particularly interested in the role of 
linguistic variables as an ordinal scale and their associated terms, in this case tri-
angular fuzzy number, as used in the multi-criteria decision making. 

By a linguistic variable, [29,30,31], we mean a variable whose values are words 
or sentences in a natural or artificial language. For example Age is a linguistic 
variable if its values are linguistic rather than numerical, i.e., young, not young, 
very young, quite young, old, not very old and not very young, etc., rather than 
numbers as 20, 21,22, 23,.... . 

Definition 1. A linguistic variable is characterized by a quintuple  

( ){ }; ; ; ;X T X U G M  

in which 

1.  X  is the name of the variable, 
2.  ( )T X  is the term set of X , that is, the collection of its linguistic values 

3.  U  is a universe of discourse, 

4.  G  is a syntactic rule for generating the elements of ( )T X  and 

5. M  is a semantic rule for associating meaning with the linguistic values of X . 

In general for the decision-maker it is easier when he/she evaluates their judg-
ments by means of linguistic terms. In those cases, the concept of fuzzy number is 
more adequate than that of real number. In this paper, with the support of the 
fuzzy set theory, triangular fuzzy numbers, which are parameterized by triplet 
numbers, are used to represent the importance and alternative performance of lin-
guistic evaluation of the criteria. Therefore, the relative importance contribution in 
the adjacent upper level can be described as gradual and not abrupt, and this gives 
a more exact representation of the relationship between candidate alternatives and 
the evaluation criteria. The basic theory of the triangular fuzzy number is de-
scribed as follows. 
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2.2   Fuzzy Set Theory 

We have identified the linguistic variable with a fuzzy set [2,15,18]. The fuzzy set 
theory, introduced by Zadeh [28] to deal with vague, imprecise and uncertain 
problems has been used as a modelling tool for complex systems that can be con-
trolled by humans but are hard to define precisely. A collection of objects (uni-
verse of discourse) X  has a fuzzy set A  described by a membership function Af  

with values in the interval [ ]1,0 . 

[ ]1,0: →Xf A  

Thus A  can be represented as ( ){ }XxxfA A ∈= | . The degree that u belongs to 

A  is the membership function ( )xf A . 

The basic theory of the triangular fuzzy number is described in Klir [19]. 
With regard to the fuzzy numbers, we will show only the mathematical opera-

tions that will be used throughout the development of the paper. 

Definition 2. If 1T  and 2T  are two triangular fuzzy numbers defined by the trip-

lets ( )111 ,, cba  and ( )222 ,, cba , respectively. Then, for this case, the necessary 

arithmetic operations with positive fuzzy numbers are: 

a) Addition  

[ ]1 2 1 2 1 2 1 2, ,T T a a b b c c⊕ = + + +
                                       (1) 

b) Subtraction 

( )2121 TTTT −+=Θ  when the opposite ( )2 2 2 2, ,T c b a− = − − −  

then    [ ]1 2 1 2 1 2 1 2, ,T T a c b b c aΘ = − − −    (2) 

c) Multiplication 

1 2 1 2 1 2 1 2[ , , ]T T a a b b c c⊗ = × × ×                                           (3) 

d) Division   

[ ] [ ] [ ]1 2 1 1 1 2 2 2 2 2 2, , 1 / ,1/ ,1/ , 0 , ,T T a b c c b a a b c⎡ ⎤∅ = ⋅ ≠⎣ ⎦                           (4) 

e) Scalar Multiplication 

( )1 1 1 1, ,k T k a k b k c=
                                        (5) 

f)  Root 

1/ 2 1 2 1 2 1 2
1 1 1 1, ,T a b c⎡ ⎤= ⎣ ⎦                                               (6) 
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3   Existing Framework for TOPSIS Evaluation 

3.1   The TOPSIS Algorithm 

A necessary step to be able to provide a linguistic output, consists in introducing 
into the decision matrix not only the alternatives themselves but also as many al-
ternatives as terms that the linguistic variable may have. We shall call the latter 
fictitious alternatives. These alternatives are defined as those in which the valua-
tion of each one of the criteria is the corresponding term of the linguistic variable. 
 
Step 1: Identify the evaluation criteria and the appropriate linguistic variables for 
the importance weight of the criteria and determine the set of feasible alternatives 
with the linguistic score for alternatives in terms of each criterion. Once the deci-
sion matrix is formed, the normalized decision matrix ( ijn ; i=1,2,..,m (number of 

alternatives); j=1,2,..,n (number of criteria)) is constructed using equation (7)): 

( )21

1

,  1, , , 1, , .
n

ij ij ij
j

n z z j n i m
=

= = … = …∑
                                (7) 

where ijz  is the performance score of alternative i against criteria j. 

Step 2: The weighted normalized decision matrix ijv  is calculated using equation 

(8).  

,  1, , ,  1, , ,ij j ijv w n j n i m= ⊗ = =… …
                                (8) 

where, jw  such that 
1

1
n

j
j

w
=

=∑  is the weight of the jth attribute or criterion.  

Step 3: The positive ideal solution (PIS), A+  ( iA+ ; i = 1,2,…,m), is made of all the 

best performance scores  

{ } ( )( ){ }1 , , max , min , 'n ij ij
ii

A v v v j J v j J+ + += = ∈ ∈…  i = 1,2,…,m               (9) 

and the negative ideal solution (NIS), A−  ( iA− ; j= 1,2,…,n), is made of all the 

worst performance scores at the measures in the weighted normalized decision 
matrix. 

{ } ( )( ){ }1 , , min , max , 'n ij ij
i i

A v v v j J v j J− − −= = ∈ ∈…   i = 1,2,…,m                  (10) 

where J  is associated with benefit criteria, and 'J  is associated with cost criteria.  
The idea of the TOPSIS method is represented in figure 1, where we would have 
to evaluate the five alternatives (A,B,C,D,E), and where for questions relating to 
the graphical representation we only consider two criteria.  
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Fig. 1 PIS and NIS concept 

If we only take into account the solution related with the PIS, Zeleny [27], the 
best alternatives would be C, D and E, since the three are at the same distance. If 
we add the NIS option to the decision process, then the best alternative would be 
exclusively alternative E, since it is the one which is closest to the PIS point and 
furthest from the NIS. 

Thus, the solution is a compromise solution according to the decision-maker’s 
preferences. It is based upon the concept that the chosen alternative should have 
the shortest distance from the positive ideal solution (PIS), in our case and the  
farthest from the negative ideal solution (NIS). Therefore, we need to define a  
distance. 
Step 4: The distance of an alternative to the ideal solution id + ,  

( )
1

22

1

,  i 1, ,
n

i ij j
j

d v v m+ +

=

⎧ ⎫
= − = …⎨ ⎬
⎩ ⎭
∑

                                  (11) 

and from the negative ideal solution id − ,  

( )
1

22

1

,  i 1, ,
n

i ij j
j

d v v m− −

=

⎧ ⎫
= − = …⎨ ⎬
⎩ ⎭
∑

                                 (12) 

In this case we use the 2-multidimensional Euclidean distance. But the result has 
not to be a new fuzzy number. Therefore, once the corresponding values obtained 

to ( )1 2 3, ,d d d+ + + we find the value of positive distance as 

( )1 2 3

1

3
d d d d+ + + += + +                                            (13) 

Similarly: 

( )1 2 3

1

3
d d d d− − − −= + +                                            (14) 
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Step 5: The ranking score iR  is calculated using equation (15). The obtained rank-

ing scores represent the alternatives’ performance achievement within their status. 
A higher score corresponds to a better performance.  

,  1,....,i
i

i i

d
R i m

d d

−

− += =
+

                                   (15) 

This result is performed taking into account the operations defined in (3) and (6). 

If 1=iR  → +=iA A  

If 0=iR  → −=iA A  

where the iR  value lies between 0 and 1. The closer the 1=iR  value implies a 

higher priority of the ith alternative. 
New Step 6: Rank the Linguistic values.  
But it would be desirable to develop a decision method (not based on rules) in 
which output, in the case of linguistic inputs, was also linguistic. To obtain this 
linguistic output we calculated the distance of the alternatives to the labels, associ-
ating each alternative to that label whose distance is minimal. 

Therefore, the distance between fuzzy numbers A1=(a1,b1,c1) and Tk=(a2,b2,c2) 
is calculated as 

( ),i k i kd A T A T= −                                              (16) 

The output will be that linguistic term whose distance is minimal. 

4   Example 

One of the consequences derived from the European Space for Higher Education 
is the accreditation system for university qualifications. For this purpose the 
ANECA (the Spanish National Agency for Quality Assessment and Accreditation) 
was created in Spain. [1] 

The scope and main activities of ANECA are: 

• To enhance the improvement of university teaching, research and man-
agement activities. 

• To foster Higher Education Institutions performance monitoring follow-
ing objective and transparent processes. 

• To provide public administrations with appropriate information for deci-
sion-making within the scope of their authority. 

• To provide society with information about the achievement of the aims of 
universities. 

The different university qualifications have been evaluated according to six crite-
ria (1. Educational Programme, 2. Teaching Organization, 3. Human Resources, 4. 
Material Resources, 5. Educational Process and 6. Results) Of these, and as an ex-
ample, we have taken the fourth of the criteria “Material Resources”, which as can  
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Table 1 Material resources 

4.1 Classrooms 4.1.1. Appropriateness for numbers of students 
4.2.1. Appropriateness for numbers of students 
4.2.2. Appropriateness (Academic Staff and  
Administration and Services Staff) 

4.2 Work Spaces 

4.2.3. Infrastructures: practical 
4.3. Laboratories, workshops and 

experimental spaces 
4.3.1. Appropriateness for number of students 

4.4.1. Correctly furnished 

4. Material  
   Resources 

4.4. Library and document banks 
4.4.2. Quality, quantity, … 

be appreciated from Table 1, has four subcriteria and these in turn have different 
subcriteria. we have considered only five of all the qualifications evaluated. 

To achieve this, we have developed a method which is simple to understand 
and implement, based in the TOPSIS method and with some modifications. 

First of all we needed to construct the fuzzy numbers associated to the linguistic 
terms. These were obtained by means of a questionnaire sent to the experts of 
ANECA via e-mail. The question to obtain this was: “Define numerically from [0-
10] the values of labels A, B, C and D.”  Then for each of them the mean and the 
deviation were calculated. Using expression (17), we obtained the relation between 
symmetric fuzzy numbers and linguistic terms (Table 2).  

(17) 
 

The insufficient evidence EI, is calculated as the media of the corresponding row. 

Table 2 Linguistic labels and fuzzy numbers for t=2 

Labels Fuzzy number Legend 
A (8.1354, 9.4054, 10.0000) Excellent 
B (5.8108, 7.1081, 8.4054) Good 
C (3.5090, 4.8108, 6.1126) Average 
D (0.7355, 2.5135, 4.2916) Deficient 
EI  insufficient evidence 

Supposing that the four criteria have the same weight w(4.1)=w(4.2)= w(4.3)= 
w(4.4)=1/4; as do the subcriteria, which have the same weight in each of the crite-
ria: thus w(4.1.1)= 1/4, w(4.2.1)=w(4.2.2)=w(4.2.3)=1/12, w(4.3.1)=1/4 and   
w(4.4.1)= w(4.4.2)= 1/8. 

We can see that A={UPCT, UCM, UNA, UPM, Unizar} and T=[A,B,C,D}. 
Once the data have been compiled the algorithm will be applied. So steps 1, 2 and 
3 will be first, which give us the results in Table 4. See Appendix A. 
 
Step 4. The positive and negative distances need to be calculated using expres-
sions (11) and (12) as well as the real output associated with the fuzzy numbers 
taking into account the expressions (13) and (14) and these are shown in Table 5.  

( , , ) ( , , )σ σ= − +x xa b c X t X X t
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Table 3 Decisión Matrix 

Criteria 4.1 4.2 4.3. 4.4 
Sub-criteria 4.1.1. 4.2.1. 4.2.2. 4.2.3. 4.3.1. 4.4.1. 4.4.2. 
University        
UPCT B D B D C D B 
UCM B C B EI B C C 
UNA B A A A A A A 
UPM C C C C C C C 
Unizar C C C C C C B 
Excellent=A A A A A A A A 
B= Good B B B B B B B 
C= Average C C C C C C C 
D=Deficient D D D D D D D 

Table 5 Positive and negative ideal solution   

d+UPCT 0.0888 d-UPCT 0.0745 

d+UCM 0.0605 d-UCM 0.0906 
d+UNA 0.0262 d-UNA 0.1313 

d+UPM 0.0954 d-UPM 0.0494 

d+Unizar 0.0728 d-Unizar 0.0853 

d+A 0.0000 d-A 0.1448 

d+B 0.0447 d-B 0.1001 

d+C 0.0954 d-C 0.0494 

d+D 0.1448 d-D 0.0000 
 
Step 5. Using expression (13), we have obtained the closeness index (Table 6) 

Table 6 Closeness index 

RUPCT 0.4560

RUCM 0.5996
RUNA 0.8337

RUPM 0.3414

RUnizar 0.5397
RA 1.0000

RB 0.6914

RC 0.3414
RD 0.0000

 
With this, we could establish an order for the Universities, but as the input is lin-
guistic then a linguistic output is sought.  
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Step 6. Output of linguistic labels.  
From the data in Table 6, we calculated, using expression (16), the distance to the 
nearest label. Thus, for example: 

( ), 0.4560 1 0.5440d UPCT A = − =   

( ), 0.4560 0.6914 0.2354d UPCT B = − =  

( ), 0.4560 0.3414 0.1146d UPCT C = − =   

( ), 0.4560 0 0.4560d UPCT D = − =  

Min (0.546, 0.2354, 0.1146, 0.4560) =0.1146⇒  Ouput Label is C=Average 
Similarly, we calculated the distances for the rest of the alternatives, with the 

results shown in Table 7. 

Table 7 Outputs of linguistic terms 

RUPCT Average
RUCM Good
RUNA Good
RUPM Average
RUnizar Average

5   Conclusions 

When we deal with linguistic variables one of the points which has always been 
made is that the output was not a variable of the same type as the input. 

The TOPSIS multicriteria decision making method has been applied by may 
authors when the evaluations are linguistic but the output has on all occasions 
been an index which provides a ranking. 

In our case, by means of incorporating two steps into the algorithm proposed by 
Hwang and Yoon we have managed to obtain not only a ranking within the alter-
natives, but also a valuation for them can be established in the same terms as in 
the input. 
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Information Fusion with the Power Average 
Operator 

Ronald R. Yager1 

Abstract. The power average provides an aggregation operator that allows 
argument values to support each other in the aggregation process.  The properties 
of this operator are described.  We see this mixes some of the properties of the 
mode with mean.  Some formulations for the support function used in the power 
average are described.  We extend this facility of empowerment to a wider class of 
mean operators such as the OWA and generalized mean.  

Keywords: information fusion, aggregation operator, averaging, data mining. 

1   Introduction 

Aggregating information using techniques such as the average is a task common in 
many information fusion processes.  Here we provide a tool to aid and provide 
more versatility in this process.  In this work we introduce the concept of the 
power average [1].  With the aid of the power average we are able to allow values 
being aggregate to support each other.  The power average is provides a kind of 
empowerment as it allows groups of values close to each other to reinforce each 
other.  This operator is particularly useful in group decision making [2]. 

2   Power Average 

In the following we describe an aggregation type operator called the Power 
Average (P–A), this operator takes a collection of values and provides a single 
value [1].  We define this operator as follows: 

P-A(a1, ..., an) = 

(1 + T(ai)) ai
i = 1

n

(1 + T(ai))
i = 1

n
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where T(ai) = Sup(ai, aj)
j = 1
j ≠ i

n
 and is denoted the support for a from b.   

Typically we assume that Sup(a, b) satisfies the following three properties: 

1.  Sup(a, b) ∈ [0, 1] 
2.   Sup(a, b) = Sup(b, a) 
3.   Sup(a, b) ≥ Sup(x, y)     if |a - b|  ≤  |x - y| 

In condition three we see the more similar, closer, two values the more they 
support each other. 

We shall find it convenient to denote Vi = 1 + T(ai) and wi = Vi

Vi
i = 1

n
.  Here 

the wi are a proper set of weights, wi ≥  0 and Σi wi = 1.  Using this notation we 

have  

P-A(a1, ..., an) = Σi wi ai, 

it is a weighted average of the ai.  However, this is a non-linear weighted average 

as the wi depend upon the arguments. 

Let us look at some properties of the power average aggregation operator.  First 
we see that this operator provides a generalization of the simple average, if Sup(ai, 

aj) = k for all ai and aj then T(ai) = k (n - 1) for all i and hence P-A(a1, ..., an) = 1
n

 

Σi ai.  Thus when all the supports are the same the power average reduces to the 

simple average. 
We see that the power average is commutative, it doesn't depend on the 

indexing of the arguments.  Any permutation of the arguments has the same power 
average. 

The fact that P-A(a1, ..., an) = Σi wi ai where wi ≥  0 and  Σi wi = 1 implies that 

the operator is bounded, Min[ai] ≤ P-A(a1, a2, ..., an) ≤ Maxi[ai]. This in turn 

implies that it is idempotent, if ai = a for all i then P-A(a1, ..., an) = a. 

As a result of the fact that the wi depend upon the arguments, one property 

typically associated with averaging operator that is not generally satisfied by the 
power average is monotonicity.  We recall that monotonicity requires that if ai 

≥ bi for all i then P-A(a1, ..., an) ≥ P–A(b1, ..., bn).  As the following example 

illustrates, the increase in one of the arguments can result in a decrease in the 
power average. 

Example:  Assume the support function Sup is such that 

Sup(2, 4) = 0.5  Sup(2, 10) = 0.3  Sup(2, 11) = 0 
    Sup(4, 10) = 0.4  Sup(4, 11) = 0 

the required symmetry means S(a, b) = S(b, a) for these values. 
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Consider first P-A(2, 4, 10), in this case 

T(2) = Sup(2, 4) + Sup(2, 10) = 0.8 
T(4) = Sup(4, 2) + Sup(4, 10) = 0.9 
T(10) = Sup(10, 2) + Sup(10, 4) = 0.7 

and therefore P-A(2, 4, 10) = 
(1 + 0.8) 2 + (1 + 0.9) 4 + (1 + 0.7) 10

(1 + 0.8) + (1 + 0.9) + (1 + 0.7)
 = 

5.22. 

Consider now P-A(2, 4, 11), in this case 

T(2) = Sup(2, 4) + Sup(2, 11) = 0.5 
T(4) = Sup(4, 2) + Sup(4, 11) = 0.5 
T(11) = Sup(11, 2) + Sup(11, 2) = 0 

and therefore 

P-A(2, 4, 11) = 
(1.5)(2) + (1.5) 4 + (1)(1.1)

1.5 + 1.5 + 1
  = 5 

Thus we see that P-A(2, 4, 10) > P(2, 4, 11). 
As we shall subsequently see, this ability to display non-monotonic behavior 

provides one of the useful features of this operator that distinguishes it from the 
usual average.  For example the behavior displayed in the example is a 
manifestation of the ability of this operator to discount outliers.  For as we shall 
see in the subsequent discussion, as an argument moves away from the main body 
of arguments it will be accommodated, by having the average move in its 
direction, this will happen up to point then when it gets too far away it is 
discounted by having its effective weighting factor diminished. 

To some degree this power average can be seen to have some of the 
characteristics of the mode operator.  We recall that the mode of a collection of 
arguments is equal to the value that appears most in the argument.  We note that 
the mode is bounded by the arguments and commutative, however as the 
following example illustrates it is not monotonic. 

Example:  Mode(1, 1, 3, 3, 3) = 3.   Consider now Mode(1, 1, 4, 7, 8) = 1, here 
we increased all the threes and obtain a value less than the original. 

As we shall subsequently see, while both the power average and mode in some 
sense are trying to find the most supported value, a fundamental difference exists 
between these operators.  We note that in the case of the mode we are not 
aggregating, blending, the values we are counting how many of each, the mode 
must be one of the arguments.  In the case of power average we are allowing 
blending of values. 

It is interesting, however, to note a formal relationship between the mode and 
the power average.  To understand this we introduce an operator we call a Power 
Mode.  In the case of the power mode we define a support function Supm(a, b), 
indicating the support for a from b, such that 

1)  Supm(a, b) ∈ [0, 1] 

2)  Supm(a, b) = Supm(b, a) 
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3)  Supm(a, b) ≥ Supm(x, y)     if |a - b|  ≤  |x - y| 
4). Supm(a, a) = 1. 

We then calculate Vote(i) = 

j = 1

n
Supm(ai, aj) and define 

           Power Mode(a1, ..., an) = ai* 

where i* is such that Vote(i*) = Maxi[Vote(i)], it is the argument with the largest 

vote.  
If Supm(a, b) = 0 for b ≠ a (Supm(a, a) = 1 by definition) then we get the usual 

mode.  Here we are allowing some support for a value by neighboring values).  It 
is also interesting to note the close relationship to the mountain clustering method 
introduced by Yager and Filev [3] and particularly with the special case of 
mountain clustering called the subtractive method suggested by Chu [4].  Some 
connection also seems to exist between the power mode and the idea of fuzzy 
typical value introduced in [5].   

3   Power Average with Binary Support Functions 

In order to obtain some intuition for the power average aggregation operator we 
shall consider first a binary support function.  Here we assume 

Sup(a, b) = K if |a - b|  ≤  d 
Sup(a, b) = 0 if |a - b| > d. 

Thus two values support each if they are less than or equal d away, otherwise  
they supply no support.  Here K is the value of support.  In the following 
discussion we say a and b are neighbors if |a - b|   ≤   d.  The set of points that are 
neighbors of x will be denoted Νx.  We shall call a set of points such that all 

points are neighbors and no other points are neighbors to those points a cluster.  
We note if x and y are in the same cluster then the subset {x} ∪ Νx = {y} ∪Νy 
defines the cluster.  

Let us first assume that we have two disjointed clusters of values A = {a1, ….,  

an1
} and B = {b1, ..., bn2

}.  Here all points in A support each other but support 

none in B while the opposite holds for B.  In this case for all i and j, |ai - aj| ≤ d, |bi 

- bj| ≤ d and |ai - bj| > d.  Here for each ai in A, T(ai) = K(n1 - 1) and for each bj in 

B, T(bj) = K(n2 - 1).  From this we get 1 + T(ai) = (1 - K) + n1 K and 1 + T(bj) = 

(1 - K) + n2K.  Using this we have 

P-A(a1, ..., an1
, b1, ..., bn2

) =

((1 - K) + n1K)ai + ((1 - K) + n2K))bj
j = 1

n2

i = 1

n1

n1(1 - K + n1K) + n2(1 - K + n2K)
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Letting a = 1
n1

 ai
i = 1

n1
 and b = 1

n2
 bj
j = 1

n2
 we have 

PA(a1, ..., an1
, b1, ..., bn2

) = ((1 - K) + n1K)n1a + ((1 - K) + n2K))n2b
n1(1 - K + n1K) + n2(1 - K + n2K)

 

We get a weighted average of the cluster averages.  If we let 

wa =  (1 - K + n1K)n1
n1(1 - K + n1) + n2(1 - K + n2K)

 and wb =  (1 - K + n2K)n2
n1(1 - K + n1) + n2(1 - K + n2K)

 

then PA(a1, ..., an1
, b1, ..., bn2

) = wa a + wb b.  We note wa + wb = 1 and 

wa
wb

 = 
(1 - K + n1K) n1
(1 - K + n2K) n2

 

We see that if k = 1, then wa
wb

 = (
n1

 n2
)2, the weights proportional to the square 

of the number of elements in the clusters.  Thus in this case wa = 
n1

2

n1
2 + n2

2
 and  

wb = 
n2

2

n1
2 + n2

2
.  On the other hand if we allow no support, K = 0, then wa

wb
 = 

 n1
 n2

, 

the weights are just proportional to the number of elements in each cluster.  In this 

case wa = 
n1

n1 + n2
 and wb = 

n2
n1 + n2

.  Thus we see as we move from K = 0 to  

K = 1 we move from being proportional to number of elements in each cluster to 
being proportional to the square of the number of elements in each cluster.  We 
now begin to see the effect of this power average.  If we allow support then 
elements that are close gain power.  This becomes a reflection of the adage that 
there is power in sticking together.  We also observe that if n1K and n2K >>  

(1 - K), there are a large number of arguments, then again wa
wb

 = (
 n1
 n2

)2.  

Furthermore we note if n1 = n2 then we always have wa
wb

  = 1, here we take the 

simple average. 
Consider now the case when we have q disjoint clusters, each only supporting 

elements in its neighborhood.  Let aji for i = 1 to nj be the elements in the jth 

cluster. In this case 

P-A = 

(1 - K + njK)aji
i = 1

nj

j = 1

q

nj(1 - K + njK)
j = 1

q
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Letting 1
nj

 aji
i = 1

nj

 = aj, the individual cluster averages, we can express this 

power average as  

P-A = =
((1 - K + njK) nj aj)

j = 1

q

(1 - K + njK) nj
j = 1

q
 

Again we get a weighted average of the individual cluster averages,  

P-A = 

j = 1

q
wj aj.  In this case wi = (1 - K + niK) ni

(1 - K + njK) nj
j = 1

q
 and  

wi
wj

 = 
(1 - K + niK) ni
(1 - K + njK) nj

. 

Again we see if K= 1, then 
wi
wj

 = 
ni

2

nj
2

, the proportionality factor is the square of 

the number of elements.  Here then wi = 
ni

2

j = 1

q

nj
2

.  If we allow no support, K = 0, 

then wi
wj

 = 
nj
ni

, here we get the usual average.  We note that K is the value of 

support. 
Consider a case with small value of support, 1 - K ≈1.  Furthermore assume ni 

is a considerable number of elements while nj is a very small number.  Here  

|(1 - K) + nj K ≈ 1 while (1 - K) + ni K ≈ n1K then wi
wj

 = 
ni

2K
(1 - K)nj

 ≈ 
ni

2K
nj

. 

On the other hand if ni and nj are large, niK and njK >>> 1 then 
wi
wj

 = 
ni

2

nj
2

.  

We that if (1 – K) << njK for all j then P-A = 

nj
2 aj

j = 1

q

nj
2

j = 1

q
, the weights in 

proportion to the square of the number of elements. 
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Let us observe another interesting property of this P-A.  To most clearly 

illustrate the property we shall assign K = 1.  Assume we have two clusters then 
with K = 1 we have  

P-A = 
n1

2 a1 + n2
2 a2

n1
2 + n2

2
 

If n1 ≈ n2 = 1
2

n, they have the same number of elements then P-A = 

1
2

 a1 + 1
2

 a2.  Assume now that the second cluster is broken into two equal 

disjoint clusters.  Then P(A) = n1
2 a1 + n2

2 a2 + n3
2 a3

n1
2 + n2

2 + n3
2

 with n1 = 1
2

  n, n2= 1
4

 n 

and n3 = 1
4

 n.  From this we see that  

P(A) =
1
4

 a1 + 1
16

 a2 + 1
16

 a3

1
4

 + 1
16

 + 1
16

  = 4 a1 + a2 + a3
6

 

We see cluster one's influence (power) has greatly increased because of the 
fragmentation of cluster two.. 

We now consider a situation in which we have three sets of elements, A = {a1, 

..., an1
}, B = {b1, ..., bn2

} and C = {c1, ..., cn3
}.  We assume all the elements in 

A are a neighbors with each other as well as with those in B.  Those in B are 
neighbors with each other and also with those in both A and C.  The elements in C 
are neighbors with themselves and B.  Thus B is seen to be between A and C.  
Here we see that for all ai we have T(ai) = K(n1 + n2 - 1), for all bi T(bi) = K(n1 + 

n2 + n3 - 1) and for all ciT(ci) = K(n2 + n3 - 1).  Let a = 1
nj

Σ aj, b = 1
n2

Σ bj and 

c = 1
n3

 Σ bj.  Using this we have 

P-A = (1 - K + K( n1 + n2))n1a + (1 - K + K( n1 + n2 + n3)n2a + (1 - K + K( n2 + n3)n3a
(1 - K + K( n1 + n2))n1 + (1 - K + K( n1 + n2 + n3)n2 + (1 - K + K( n2 + n3)n3

 

Again for illustrative purposes we assume K =1 hence 

P-A = (n1 + n2)n1a + nn2b + (n2 + n3)n3c
(n1 + n2)n1 + nn2 + (n2 + n3)n3

 

P-A =  (n - n2)n1a + nn2b + (n - n1)n3c

n2 - 2n1n3

 

We see that relationship between the weights associated A and C is 
wa
wc

 = 
(n - n3)n1
(n - n1)n3

 = 
(n2 + n1)n1
(n2 + n3)n3

 

If n2 is large compared with both n1 and n3 then wa
wc

 = 
n1
n3

, their relationship is 

proportion to the number of elements in A and C.  If n2 is small compared with 
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both n1 and n3 then wa
wc

 = 
n1

2

n3
2

.  Consider the relationship between A and B, 

which is analogous to B and C, wa
wb

 = 
n1(n1 + n2)

(n)(n2)
. If n2 is large compared with 

n1 and n3 then wa
wb

 ≈ 
n1 n2

(n)(n2)
 ≈ 

n1
n

 

We consider now another situation that exemplifies the possibility for non-
monotonicity.  Let {a1, ..., an, an+1} be a collection of points in the same cluster, 

for all ai and aj , |ai - aj| ≤ d.  In this case P-A{a, ..., an+1} = 1
n + 1

 ai
j = 1

n + 1
 = a.  

Assume now that we replace an+1 by an+1 where an+1 ≥ an+1 and |an+1 - aj| > d 

for all other aj.  That is we have moved the n+1th observation all the way to the 

right.  In this case we can view the situation having two disjoint clusters one being 

{a1, ..., an} and the other {an+1}.  As we already established the power average 

of this situation is 

P-A(a1, a2, ..., an, an+1} = w1a + w2an+1 

here a = 1
n ai

i = 1

n
 and an+1 = an+1 + Δ.  We also note that 

a = 1
n+1

 an+1 + n
n+1

a hence  

a = 
(n + 1) a - an+1

n  

In the situation where K = 1 we have  
w1
w2

 = 
n1

2

n2
2
 = n

2

1
.  This gives us w1 = 

n2

n2 + 1
 and w1 = 1

n2 + 1  
and hence  

P-A(a1, ..., an+1) = n2

n2 + 1
a + 1

n2 + 1
a) = a +  

Δ - (n - 1)  (an+1 - a)

n2 + 1
 

Thus we see that if an+1 was the right most element then we get a non-

monotonicity as long as Δ is not too big. 

4   Forms for the Support Function 

The support function is a crucial part of the power average method.  The form of 
the support function is context dependent.  Here we describe some useful 
parameterized formulations for expressing the Sup function.  The determination of 
the values of the parameters may require the use of some learning techniques.  We 
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recall if R is the range of the values to be aggregated then Sup:R × R →[0, 1] such 
that Sup(a, b) = S(b, a), and Sup(a, b) ≥ Sup(x, y) if |a - b| ≤ |x - y|. 

In the preceding we assumed a binary Sup function, Sup(a, b) = K if |a - b|  ≤  d 
and Sup(a, b) = 0 if |a - b| > d.  A natural extension of this is to consider a 
partitioned type support function.  Let Ki for i = 1 to p be a collection of values 

such that Ki ∈ [0, 1] and where Ki  > Kj if i < j.  Let di be a collection of values 

such that di ≥ 0 and where di < dj if i < j.  We now can define a support function 

as  

If |a - b| ≤ d1 then Sup(a, b) = K1 

If dj - 1< |a - b| ≤ dj then Sup(a, b) = Kj       for j = 2 to p - 1 
If dp - 1< |a - b|  then Sup(a, b) = Kp  

Inherent in the above type of support function is a discontinuity as we move 
between the different ranges. 

One form of the Sup function with a continuous transition is Sup(a, b) =  

K e-α(a - b)2 where K ∈ [0,1] and α ≥ 0.  We easily see that this function is 
symmetric and lies in the unit interval.  We see K is the maximal allowable 
support and α is acting as a attenuator of the distance.  The larger the α the more 
meaningful differences in distance.  We note here that a = b gives us Sup(a, b) = K 
and as the distance between a and b gets larger,  Sup(a, b) →0. 

Using this form for support function we have  

P-A(a1, ..., an) = 
(1 + T(ai))ai

i = 1

n

(1 + T(ai))
i = 1

n
 

where T(ai) = Ke-α(ai - aj)2

j = 1
j ≠ i

n
.  Denoting Vi = 1 + T(ai) we express  

P-A(a1, ..., an) = Σi wi ai where wi = Vi

Vj
j = 1

n
.  Since e-α(ai - ai)

2
 = 1 we can 

express Vi = 1 - K + K Mi where Mi = e-α(ai - aj)2

j = 1

n
.  Noting the similarly of 

Mi to the mountain function used in mountain clustering [3] we call Mi the 

support mountain at i.  It's clear that if ap = aq then Mq = Mp and hence Vq = Vp.  

It is also noted that Mi ≥ 1 for all i. 
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We see here that  

P-A(a, ..., an) = 
(1 - K) ai + K Miai

i = 1

n

i = 1

n

n(1 - K) + K Mi
i = 1

n
 

In the special case where K = 1 then Vi = Mi and hence 

P-A(a1, ..., an) = 
Miai

i = 1

n

Mi
i = 1

n
 

A simple algorithm approach somewhat is in spirit of the mountain method is 
as follows: 

1.  For each argument value ai, i = 1 to n, initialize Mi = 0 

2.  For each data point aj j = 1 to n augment Mi, Mi = Mi + e-α(ai - aj)
2 

This builds the support mountain. 
3.  Calculate Vi = (1 - K) + K Mi - linear transformation of mountain values 

4.  Calculate wi = Vi

Vj
j = 1

n
 

5.  P-A = Σi wi ai 

As we have noted an important characteristic of this power average is its 
possibility for displaying non-monotonicity, a feature that can provide one of the 
benefits of this method.  The following example illustrates the occurrence of non-
monotonicity. 

Example: Consider the Power average of twenty elements, 10 of which are ten's 
and 10 of which are five's.  In this case the ordinary average evaluates to 7.5 and 
for any choice of K and α the power average also evaluates to 7.5.  The following 
table shows what happens as we change one of the values originally equal to 10.  
For illustrative purposes we used K = 1 and α = 0.3 

 Value AVE P-A 
 10 7.5 7.5 
 9 7.45 7.398 
 8 7.4 7.278 
 7 7.35 7.193 
 6 7.3 7.083 
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 5 7.25 6.982 
 11 7.55 7.4727 
 12 7.6 7.346 
 13 7.65 7.259 
 14 7.7 7.232 
 15 7.75 7.22856 
 16 7.8 7.22828 
 17 7.85 7.22829 
 18 7.9 7.22831 
 19 7.9 7.22832 
 20 8 7.22834 

We see that as we decrease the value and move it towards the cluster of fives 
our P-A decrease, although more dramatically than the average.  Essentially the 
variable value is beginning to join the cluster of fives and increase its power.  In 
the case of increasing the value, initially the power average instead of increasing 
as does the average begins to decrease, exhibiting non–monotonicity.  This 
decrease is a reflection of the fragmentation of the cluster at 10, it is losing its 
power because it lost a member and the cluster at five has gained in power more 
than compensating for the increase in value.  This decreasing in the P-A continues 
as we increase the element until it reaches eighteen at which time we see a 
reversal and now the P-A starts increasing   At this point the increase in value 
begins overcoming the loss of power.  But still we are favoring the cluster of fives. 

We describe another approach to obtaining the support function that combines 
the partitioning of the first method with the continuity displayed by the 
exponential function.  This approach motivated by Zadeh's idea of computing with 
words [6] makes use of fuzzy systems modeling technology [7].  We shall briefly 
describe the possibilities for this approach.  Using this approach we can express 
our support function by a description of its performance in terms of a set of rules 
using linguistic values.  For example. 

If difference is very small then support is K1 

If difference is small then support is K2 

If difference is moderate the support is K3 

If difference is large the support is K4 

If difference is very large the support is K5 

Representing the italic terms as fuzzy sets, VS, S, M, L, and VL respectively and 
denoting the  difference between a and b as Δ than we have a collection of fuzzy 
if-then rules, a fuzzy systems model: 

If Δ is VS then S(a, b) = K1 

If Δ is S then S(a, b) = K2 

If Δ is M then S(a, b) = K3 

If Δ is L then S(a, b) = K4 

If Δ is VL then S(a, b) = K4 
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here Ki < Kj if i > j. 

To obtain the Sup(a, b) we use the inference mechanism of fuzzy systems 
modeling. Letting Δ = |a - b|  then the analytic formulation of our support  
function is 

Sup(a, b) = K1VS(Δ) + K2S(Δ) + K3M(Δ) + K4L(Δ) + VL(Δ)

VS(Δ) + S(Δ) + M( Δ) + L(Δ) + VL(Δ)
 

here VS(Δ) indicates the membership of Δ in the fuzzy subset VS. 
We now look at the power average in the special situation in which the 

arguments that are being aggregated, the ai, always be in the unit interval [0, 1].  

This is a situation that occurs in many environments when the arguments are 
degrees of belief.  We note a particular important situation is in the aggregation of 
fuzzy subsets. 

In the case when the arguments lie in the unit interval a very natural definition 
for the Sup function is  

Sup(a, b) = K(1 - |a - b|α) 

for α ≥ 0.  Here we see that the term |a - b| is a measure of distance between the 
arguments.  We note since a and b are assumed to lie in the unit interval then |a - 

b| must also lie in the unit interval as well as |a - b|α.  We see |a - b| → 0 indicates 
the elements are close and |a - b| → 1 indicates the elements are far.  We see that is 
Sup is related to the negation of the distance. 

We notice that because a and b always lie in the unit interval, |a - b| = 1 if and 
only if one of the arguments equal zero and the other equals one.  Furthermore we 
note that α modifies the effects of distance.  Since (a - b) < 1 then α > 1 reduces 
the effect of distance while α < 1 increase the effects of distance. We note Sup(a, 
b) = K when a = b. 

As in the preceding  P-A(a1, ..., an) = 

Vi ai
i = 1

n

Vi
i = 1

n
.  Let us consider the case 

when α = 2, Sup(a, b) = K(1 - (a - b)2).  Here Vi = 1 + T(ai) with  

T(ai) = K (1 - (ai - aj)2)
j = 1
i ≠ j

n
. Realizing 1 – (ai - ai)

2 = 1 then Vi = (1 - K) + 

K (1 - (ai - aj)2)
j = 1

n
. Letting Qi = (ai - aj)2

j = 1

n
 we have  

Vi = 1 - K + Kn – Kqi 
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Let us carefully look at the term Qi.  We shall denote a = 1n aj
j = 1

n
, it is the 

average, and denote Var(a) = 1
n (aj - a)2

j = 1

n
.  Using these notations we can 

express 

Qi = (ai - aj)2

j = 1

n
 = (ai - a) - (aj - a) 2

j = 1

n
 

Qi = (ai - a)2

j = 1

n
 + (aj - a)2

j = 1

n
 - 2 (ai - a)(aj - a)

j = 1

n
 

Realizing that 

j = 1

n
 (ai - a) (aj - a) = (ai - a)

j = 1

n
 (aj - a) = 0 we have 

Qi = 

j = 1

n
 (ai - a)2 + 

j = 1

n
 (aj - a)2 

Letting Δi = |ai - a|. we have  Qi = n  Δi
2+ n Var(a).   

From this we have Vi = (1 - K) + Kn - nK(Δi
2 + Var(a)).  Using this we get that  

i = 1

n
Vi = n(1 - K) + Kn2 - n2 K Var(a) - n K Δi

2

i = 1

n
 

Since 1
n Δi

2

i -

 = Var(a) then 

i = 1

n
Vi  = n(1 - K) + Kn2 - 2n2KVar(a) 

Let us consider the special case where K = 1, here Vi = n (1 - Var(a) - Δi
2) and 

i = 1

n
Vi = n2 (1 - 2 Var(a)). Using this  

P-A(a1, ..., an) = 

Vi ai
i = 1

n

n2(1 - 2Var(a))
 =  a + 

a Δi
2

i = 1

n
 - Δi

2ai
i = 1

n

n(1 - 2Var(a))
 

We see that if the arguments are such that there are a few large values far away 

from the the rest of the values mean then the power average tends to pull a 
downwards. 

 

Σ

Σ

Σ Σ

Σ ΣΣ

Σ Σ

Σ

ΣΣ

ΣΣ

ΣΣ ΣΣ

ΣΣ ΣΣ

ΣΣ

ΣΣ ΣΣ ΣΣ



410 R.R. Yager
 

Another interesting case of Sup(a, b) = K(1 - |a - b|α) occurs when α = 1, here 
Sup(a b) = K(1 - |a - b|).  We note that |a - b| = Max(a, b) - Min(a, b) = (a ∨ b) -  

(a ∧ b).  Here again P-A(a1, ..., an) = i = 1

n
Vi ai

Vi
i = 1

n
 .  In this case  

Vi = 1 + (ν − 1) Κ − Κ
j = 1

n
 [(ai ∨ aj) - (aj ∧ ai)] 

Without loss of generality let us assume that the ai have been indexed in 

descending order, thus ai is the ith largest of the arguments.  In this case 

ai = Min[ai, aj] and aj = Max[ai, aj]  for j = 1 to i - 1 

aj = Min[ai, aj] and ai = Max[ai, aj]  for j = i + 1 to n 

ai = Min[ai, aj] = Max[ai, aj]  for j = 1 

If we denote Qi = 

j = 1

n
|ai - aj| then  

Qi = 

j = 1

n
 (ai ∨ aj) - (ai ∧ aj) =

j = 1

i - 1
aj + 

j = i + 1

n
ai - (

j = 1

i - 1
ai + 

j = i + 1

n
aj) 

Qi = 

j = 1

i - 1
aj - 

j = i + 1

n
aj - (

j = 1

i - 1
ai - 

j = i + 1

n
ai) =

j = 1

i - 1
aj - 

j = i + 1

n
aj + (n - 2i)ai 

Denoting SL(i) = aj
j = 1

i
 and SU(i) = 

j = i + 1

n
aj then Qi = SL(i) - SU(i) +  

(n - 2i) ai and 

Vi = 1 + (n - 1) K - K (SL(i) - SU(i) + (n - 2i) ai) 

and 

i = 1

n
Vi = n + n (n - 1) K - K

j = 1

n
 (SL(i) - SU(i) + (n - 2i) ai). 

Let us consider the special case where K = 1, hence 

Vi = n - (SL(i) - SU(i) + (n - i)ai) 

i = 1

n
Vi = n2 - 

i = 1

n
SL(i) - S(u)i + (n - 2i)ai 
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Since ai appears in n - i + 1 of the SL and in i of SU, 

i = 1

n
SL(i) - SU(i) = 

i = 1

n
 (n – 2i +1)ai then 

i = 1

n
Vi  = n2 - 

i = 1

n
 (2n - 4i + 1) ai = n2 - n(2n - 1)a + 

4

i = 1

n
i ai 

5   Empowering Alternative Mean Operators 

The average operator, 1
n

 

i = 1

n
ai, provides one example of mean type aggregation 

operators  [8].  We recall that mean type operators are characterized by 
boundedness, commutativity and monotonicity.  Other examples of mean type 
operators are the Max, Min, and Median.  In the preceding with the power average 
we extended the average operator by introducing the idea of support.  That is with 
the P-A operator we allowed arguments in the aggregation to support each.  This 
effectively result is a weights associated with the different arguments depending 
upon the support they obtained from other elements being aggregated.  In this 
section we want to generalize the idea of supported aggregation to a wider class of 
mean operators. 

We first look at the OWA operator [9] and introduce the Power-OWA 
operator.  An OWA operator can be defined in terms of function g:[0, 1] → [0, 1], 
called a BUM function, having the properties: 1.  g(0) = 0, 2.  g(1) = 1 and 3.  g(x) 
≥ g(y) if x > y.  Using this BUM function the OWA aggregation OWAg(a1, ..., an) 

can be expressed as OWAg(a1, ..., an) = 

i = 1

n
wi bi where bi is the ith largest of 

aj and the wi are a collection of weights such that wi = g( i
n

) - g(i - 1
n

).  It can be 

easily shown these weights are proper, wi ∈ [0, 1] and 

i = 1

n
wi = 1. 

By appropriately selecting g we can implement different types of aggregation 
imperative.  For example if g(x) = x then the OWA operator becomes the ordinary 

average with wj = 1
n

 for all j.  If g is such that g(x) = 1 for all x > 0 then we get the 

maximal aggregation, OWAg(a1, ..., an) = Maxi[ai].  If g is such that g(x) = 0 for 

all x < 1 the we get the minimal aggregation, OWAg(a1, ..., an) = Mini[ai].  A 

median type operator can be implemented if g(x) = 0 for x < 0.5 and g(x) = 1 for 

x ≥ 0.5.  A class of OWA operators can be obtained if g(x) = xα with α ≥ 0.  
Before preceding we shall find it convenient to use a slightly different notation 

for the OWA operator.  We shall let index be an indexing function such that 
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index(i) is the index of the ith largest of the aj.  Thus we order the argument in 

descending order and then index(i) is the index of ith element in this list.  Since bi 

is the ith largest of the aj using this index function we see that bi = aindex(i).  

Using this we can express the OWA aggregation as 

OWAg(ai, ..., an) = 

i = 1

n
wi aindex(i), 

where the wi as before are wi = g( i
n

) - g(i - 1
n

).  

As in the preceding we shall let Sup(a, b) indicate the support for a from b.  We 
note that using the index operator Sup(aindex(i), aindex(j)) still represents the 

support of the second argument for the first.  Because of the nature of the Sup 
function, Sup(a, b) ≥ Sup(x, y) when |a – b| < |x - y|, and the ordering captured by 
the index function we note that if i < j < k then Sup(aindex(i), aindex(j)) 

≥ Sup(aindex(i), aindex(k)) and Sup(aindex(j), aindex(k)) ≥ �Sup(aindex(i), 

aindex(k)).   We let T(aindex(i)) denote the support of the ith largest argument by 

all the other arguments, hence  

T(aindex(i)) = 

j = 1
j ≠ i

n
Sup(aindex(i)  aindex(j)). 

In addition we shall let Vindex(i) = 1 + T(aindex(i)) and denote TV = 

Vindex(i)
i = 1

n
.  We now can define the Power OWA operator as 

POWAg(a1, ..., an) = 

i = 1

n
ui aindex(i) 

where ui =g( Ri
TV

) - g(Ri - 1
TV

) with Ri = 

j = 1

i
Vindex(j), by definition Ri-1 = 0.  

We note that TV = Rn.  We also observe that Ri = R i-1 + Vindex(i). 

We can show in the special case where g(x) = x that this reduces to the Power 
Average.  In this case 

Another class of mean operators, called generalized means [8], are defined by 

GMα(a1, a2, ..., an) = 1
n aj

α

j = 1

n 1/α
 

where α ∈ [- ∞, ∞].  It is required when using these operators that aj ≥  0.  The 

inclusion of support in this class of mean operators can be accomplished in the 
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following manner.  Again let T(ai) =

j = 1
j ≠ i

n
Sup(ai, aj), Vi = 1 + T(ai) and TV = 

i = 1

n
Vi. the power generalized mean is defined as. 

PGMα(a1, ..., an) = ( 1
TVi = 1

n
Vi ai

α)
1
α  

We shall not further look at the properties of the Power OWA or the power 
generalized mean only to indicate that they act with respect to their mother 
operations in a manner similar to the way the power average acts with respect to 
the average. 

In the preceding we assumed that all of the objects being aggregated were of 
equal importance.  Here we shall consider the effect on the power operations of 
having differing importances associated with the objects being aggregated.  We 
assume that each being aggregated has a weight ωi ∈ [0, 1] indicating its 

importance.  The procedure for including this importance involves a simple 
modification of the value Vi which we recall is defined as  Vi = 1 + T(ai) where 

T(ai) = 

j = 1
j ≠ i

n
Sup(ai, aj).  In order to include the weights we suggest  redefining  

Vi as  

Vi = ωi (1 + 

j = 1
j ≠ i

n
ωj Sup(ai, aj)) 

and then continuing as described in preceding. 

6   Conclusion 

We introduced the power average operator to provide an aggregation operator 
which allows argument values to support each other in the aggregation process.  
The properties of this operator were described.  We discussed the idea of a power 
median.  We introduced some formulations for the support function used in the 
power average.  We extended the idea of empowerment, supported aggregation, to 
a wider class of mean operators such as the OWA and generalized mean.  
Interesting applications of this approach to aggregation can be seen in data 
mining, group decision making and information fusion. 
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