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Abstract In order to optimally exploit the large amounts of
engineering information stored in contemporary PLM sys-
tems, the concept of knowledge based engineering (KBE)
can be considered from a PLM perspective. By eventually
combining product structures and implicit semantics pro-
vided by PLM-systems on the one hand, and domain-specific
standards on the other hand we believe to have identified a
key enabler for KBE. As an initial step we describe a cou-
pling of a CAD system with a semantic representation of
engineering knowledge using formal ontologies. By applica-
tion of automatic reasoning, engineering knowledge gained
from the product structure and domain-specific standards
allows us to reduce time-consuming manual work in classi-
fying overlaps between parts in a CAD model as intentional
overlaps (e.g. with gaskets) or design failures.
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1 Introduction

Today, business competitiveness is usually broken down into
success factors such as decreased time-to-market, higher
success rates in product introduction, reduced project fail-
ure rates, minimized manufacturing costs, increased prod-
uct and process innovation, and improved communication
among departments and business partners. This obviously
impacts the requirements on classical business applications
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like ERP (Enterprise Resource Planning), PLM, or CAx soft-
ware, and consequently affects the corresponding research
activities [1].

Even the performance of the initial product development
phase is affected not only by technological challenges but
also by the socio-technical context in which it happens. A
scenario of a globally distributed development team may
serve to illustrate this. In this scenario, networked enter-
prise systems or PLM-systems, respectively, become the
main backbone for coordinating geographically dispersed
engineering activities [2].

In fact, collaborative features have become standard in
contemporary PLM systems, such as ENOVIA [3], pro-
viding a single front-end to multiple information sources,
enabling dispersed data storage, real time visualisation of the
emerging product, global change management, or design-in-
context approaches.

Nevertheless, as pointed out by Bermell-Garcia and Fan
[2] one practical question is still not solved sufficiently:
“How to retain and capitalise the large amount of engineer-
ing information stored in PLM repositories as intellectual
property assets?” [2]

This leads to the field of knowledge based engineering
and in detail to research covering KBE services within PLM
[4, 2, 5]: Keeping in mind that PLM-systems provide a key
technology that enables generic and cost-effective sharing
of product and process information across a wide range of
software systems (not only CAx) and across organizational
barriers, several researchers have raised the idea of imple-
menting standardised PLM interfaces as a possible solution
for interoperability between two different KBE-systems [4].
As one of the results the “KBE Services for PLM” RFP was
published in September 2005 by OMG [6].

However, as we discuss later, standardisation in general
is not only a possible solution for such an interoperability
issue. In combination with specific PDM/PLM information,
standards can play an important role in covering one of the
most critical KBE issues: knowledge acquisition.
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2 Background

The high impact of product-related decisions in the initial
development phase on the overall product costs and lead time
is as well-known as the coexistence of a pronounced lack of
product-related knowledge in this phase.

While some current research approaches try to decrease
lead-time by shifting the identification and solving of engi-
neering problems to the early phase of the product devel-
opment process (so called front loading) [7], others are
addressing solutions to ramp up the initial creative phases by
specific supporting tools (inventive design). The approach of
knowledge based engineering directly focuses on the reduc-
tion of lead-time and costs by supporting and in particular
automating repetitive design tasks [8].

Our own qualitative experience in the area of knowledge
management gained in research projects in collaboration
with several industry branches (aircraft, maritime, automo-
tive) indicates that such tasks represent most of the work in
the product development process. According to, e.g., a quan-
titative analysis by Skarka [8], a proportion of about 80% of
the overall design tasks is routine and consists of repetitive
tasks such as adaptation of existing parts to slight changes in
the overall geometry, or checking for clashes and omissions.

The enormous potential of a successfully implemented
KBE solution has been already validated by several research
projects [9–11]. By each of those implementations, a notable
time reduction from several days to a few hours for the
respective design tasks has been achieved, while in parallel a
constant quality due to the repeatability can be ensured.

However, this is by no means a general justification for
an unlimited deployment of a KBE system. A usage of KBE
technologies may not be effective in different situations, e.g.
if a problem is simple enough to solve it in a less technology-
centered way (i.e. without KBE technologies) or if it is not
possible to extract or to codifiy the required knowledge, e.g.
in the absence of a clearly defined design process [8].

2.1 Different Approaches to Knowledge Based
Engineering

As already pointed out by Penoyer [12], knowledge based
engineering appears, at first glance, to be a tautology – usu-
ally every person (and especially every engineer) involved in
a product development process will define her engineering
tasks as based on specific knowledge.

Hence for our purposes, knowledge based engineering
(KBE) will be defined in close conjunction with KBE sys-
tems. Within a KBE system, design knowledge is represented
in a formal manner and enables the system to automate
specific design tasks mostly unique to the company’s product
development experience.

Each KBE system provides on the one hand an interface to
capture the knowledge in terms of logical rules, algorithms,
or constraints, and on the other hand an output module to
trigger adjacent CAx systems or/and visualise results [13].

In this sense, knowledge based engineering can be seen
as the process of gathering, managing, and using engineer-
ing knowledge to automate the design process by usage of a
KBE system [14]. In this context, the meaning of automate
even covers analysis tasks in terms of validation or quality
checking, since the interpretation of the output of CAx tools,
such as CATIA’s DMU Space Analysis, requires engineering
knowledge about the mechanical parts involved.

An emerging trend in the field of knowledge based engi-
neering is to set up a background ontology, link one or more
of the available CAx engineering tools to it, and thus pro-
vide context specific engineering knowledge for different
tasks covered by separate CAx tools [11]. Other research
addresses the idea of using the ontology in order to repre-
sent a generative model and thus enabling design automation
[8].

Surprisingly, one of the most noticeable advantages of
such an approach seems to be not yet fully exhausted by the
solutions developed so far: the ability of using formal logic
and automated reasoning in order to generate further findings
and reports for control and steering purposes.

A further advantage of the usage of ontologies appears
in the context of the upcoming requirement for PLM sys-
tems to capture and manage the technical decisions made by
product developers in the initial development phase. Such a
decision-tracking is of increasing importance in the context
of product warranties on the one hand, and as a valuable input
for follow-up product developments on the other hand.

The standard approach to retaining product design related
knowledge and experience is to produce and store documents
such as lessons-learned or best-practices.

Consequently, the respective expert defines the terminol-
ogy, verbalisation, and level of detail of the represented
knowledge by herself. In the long run, this way of archival
storage implies a continuous decrease of comprehensibil-
ity, since terminology and wording may change over time.
The transfer of knowledge into an ontology expressed in a
description logic with a formally grounded semantics avoids
such a semantic dilution and thus ensures that the codi-
fied knowledge is sustainable, in particular remains readable,
maintainable, and convertible over time.

2.2 The Challenge of Knowledge Acquisition

The requirement of capturing domain specific knowledge
can be seen as one of the main challenges in the field of
Knowledge Based Engineering [15].

Even if several methodologies (e.g. MOKA [16]) have
been elaborated to guide knowledge acquisition activities and



Ontological Semantics of Standards and PLM Repositories 475

thus avoid omitting essential knowledge [8], they usually
require a time-consuming collection and analysis of (often
implicit) knowledge about the product and its design process,
respectively [17]. Thus, most approaches to designing KBE-
Tools address especially repetitive engineering tasks [18, 10],
since the potential to reduce time and cost by means of such
approaches has to be balanced against the effort needed to
gather and formalize the required knowledge in a scheme
(e.g. an ontology) [18].

Contemporary CAD systems provide several enhance-
ments to support product data management features, and
thus very often constitute the main link to a global PLM-
system within an enterprise IT infrastructure. These mod-
ules allow not only storing and managing a broad range
of product-related non-geometrical data, but give the user
a visual and intuitive access via the graphical represen-
tation of a product and its product structure, respectively
[19]. Thus, capturing PDM-data via context specific dialogs
within the respective CAD-systems has become common
practice.

Based upon these coupling concepts, the use of a CAD
user interface for a KBE system is an obvious and already
implemented idea. In fact, many of the leading CAD applica-
tions provide add-on modules for KBE related features. The
knowledge advisor, knowledge expert and product knowl-
edge template modules of the CAD application CATIA can
serve as examples. Based on a parameterized CAD model,
they provide functions like formulas (to create dependen-
cies between parameters), rules (such as If. . . then. . .) and
power copys (user defined features, allowing to partly reuse
design procedures) [20]. Nevertheless, integrated methods
for an easy knowledge acquisition remain a key hurdle for
the application of these functions [8].

2.3 PLM and Standards – An Underestimated
Source for Knowledge Acquisition

For PLM systems, product structures have become one of
the most important backbones to which the various types
of metadata are attached. Within PLM applications, the
requirements of taxonomical naming and numbering lead
to sophisticated algorithms that cope with the complexity
of providing a distinct, non-redundant namespace [21]. In
parallel to such internal representation logic, several formal
standards are used in the area of PLM in order to represent
the product and its product structure appropriately.

In the area of mechanical engineering, standardisation is
usually not only a clustered set of generic product infor-
mation, or a taxonomy of a specific domain, but it com-
prises a high amount of codified knowledge, in terms of,
e.g., calculation rules, engineering constraints, schemes for
data exchange etc. The use of standards to cover such

codified knowledge is based on a long history in the field of
mechanical engineering, ranging from the VDI 2230 guide-
line that treats the systematic calculation of high duty bolted
joints [22] up to the ISO 10303 standard for the computer-
interpretable representation and exchange of product manu-
facturing information. Several specific KBE solutions cover
the idea of using such codified knowledge for a specific
design problem – a good example is given by [23], which
implements the Italian VSR/PED rules for the verification of
pressure vessels.

By a combination of both types of knowledge – prod-
uct structures and namespaces provided by PLM systems,
and existing domain specific standards – we believe to have
identified a key stepping stone to harnessing knowledge
acquisition in a principled and sustainable way.

As an initial proof of concept for the benefits that can be
achieved using this type of combination, we describe below a
semantic analysis of clashes and overlaps in CAD files. Our
prototype of an analysis tool (called OntoDMU) is able to
check semantically if an overlapping is a design failure or an
intended feature, at least in those cases where standard parts
are involved.

Specifically, we exploit that when a standard part is used
in a product, the respective standardisation identifier remains
available, usually as a section of the item name in the CAD
model. For example in CATIA V5, when a nut is chosen from
the standard part catalogue of the application, an expression
such as ISO 4034 NUT M14 STEEL GRADE C HEXAGON
HEAD NONPREFERRED will be provided as a default part
name in the product structure. This enables us to connect the
relevant standard (in this case, ISO 4034) with a background
ontology, which in turn helps us interpret the output of the
analysis tool.

3 Practical Benefits Drafted in a Sample
Scenario

Validating the correctness (the so-called quality) of a CAD
model by analysing its compliance to corresponding engi-
neering knowledge can be seen as a typical job for a
designer. In this context, contemporary CAD files provide
her with several support modules, e.g. for validating a mock-
up against assembly requests, or checking its conformance
with the PLM namespaces. One of those tasks is an inves-
tigation of the CAD-model in order to distinguish between
intended part overlaps and overlaps to be attributed to design
failures.

Looking specifically at the case of overlaps, it is by no
means the case that every overlap is actually a design error
– e.g. overlaps are often intentional in the case of bolts,
whose threads are typically not modelled in the CAD soft-
ware, so that a bolt will overlap with its nut. Similarly,
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deformations of gaskets (e.g. O-rings) are typically ignored
(both for computational reasons and because one wishes to
have the undeformed shape of the gasket in the design, e.g.
for purposes of exploded views) so that they overlap with
adjacent parts, even if sizes are appropriate. In fact, overlaps
are actually mandatory in both examples, but do of course
represent design errors in other cases, some of them subtly
different – e.g. a bolt should not overlap with the parts it
connects unless the latter also have threads.

Picking up the above mentioned gasket example Fig. 1
shows a half section view of the 3D-CAD-model of two
flanges screwed together (e.g. used in context of pipe cou-
pling).

The small circle represents a gasket. The parts in the back-
ground represent a bolt and a nut – screwed together. By
using a half-section view of the assembled parts, a mechani-
cal designer can check the correctness of the design and the
CAD-model respectively (position, dimensions, overlapping
etc). Thus, not only the gasket’s position in the flange notch
becomes visible, but also its intersection with the flange.

Being aware that a gasket normally consists of deformable
Flouride rubber (FPM) the mechanical designer can eas-
ily identify the correctness of the overlap and the assem-
bly as a whole, since no overlap would lead to a leaky
assembly. Unfortunately, CAD-models can become confus-
ing for complex products. To check overlaps of a gas-tanker
assembly-model, for instance, leads to thousands of gasket
intersections.

Using an interference detection module such as CATIA’s
DMU Space Analysis will provide the mechanical designer
with a complete list of all overlaps, but the tool cannot distin-
guish between required overlaps and unintentional clashes.
This is caused by the fact that no inferences are possible
from a geometrical representation of a part to the part itself
(for example: In a CAD application there is absolutely no
difference between a geometrical model of a ring and a
geometrical model of a gasket).

Figure 2 is a screenshot of the DMU Space Analysis report
belonging to the CAD-model shown in Fig. 1. Even if it is a
quite simple product and only identified overlappings are dis-
played, the list gets quite long and leads to time-consuming
manual work.

By using the OntoDMU tool for the ontological analy-
sis of the output of the DMU analyser as described in the
present work, however, the designer can analyze this list of
overlaps semantically and identify those overlaps that are not
allowed.

As shown in Fig. 3, the OntoDMU prototype transforms
the output of the DMU Space Analysis module into a set of
individuals set against a background ontology, thus making
it available for semantic analys using state-of-the-art auto-
mated reasoning. Next, we proceed to describe details of this
method.

Fig. 1 Half-section view of the assembled flange

Fig. 2 Space analysis report – screenshot

Fig. 3 architecture of the initial prototype

4 Approach

To capture the semantics of standards and PLM repositories,
we propose to make use of formal ontologies expressed in a
formal ontology language at the level of so-called description
logics; specifically, we use the standard ontology language
OWL-DL (Web Ontology Language), a W3C recommenda-
tion [24]. Description logics are tuned to offer an optimal
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degree of expressive power while retaining efficient decid-
ability, and indeed come with high-performance optimized
reasoners such as Pellet [25]. For purposes of describing
engineering designs, this means that our background ontol-
ogy is able to describe simple relationships between parts and
components, such as existence, parthood, cardinality etc., but
not the geometry or topology of a model. However, it turns
out that a surprisingly large amount of knowledge can be
captured in such a simple framework, and exploited for the
automated consistency checking of CAD models. In t his
process, it is precisely the simplicity of the language that
allows us to use efficient reasoning and thus achieve a prac-
tically feasible semantic framework, which in the end even
does offer support for geometry-related issues, such as over-
lapping, on a suitable level of abstraction. We emphasize
that a representation in a formal logic carries a number of
advantages over a hard-wired representation in software, in
particular

• increased clarity of the representation
• independence of accidental features of the software envi-

ronment
• reduced likelihood of errors, due to simplicity of expres-

sion and absence of side-effects
• improved interoperability.

It turns out that in order to reduce the complexity of mod-
elling and keep an optimal level of modularity, it is useful to
maintain two types of ontologies: An ambient ontology that
covers abstract engineering knowledge, such as that rubber
is deformable (and therefore rubber parts may overlap with
adjacent parts since the deformation is usually not explicitly
modelled) and, embedded therein, an ontology of standard
(or enterprise standard) parts which represents and classifies
a part catalogue against the ambient ontology, but typically
does not otherwise encode any background knowledge. One
benefit of this approach is that both parts of the ontology
become much easier to maintain, and in particular the ontol-
ogy of standard parts can mostly be generated automatically
from part databases in the CAD system.

4.1 Using a Background Ontology

As discussed above, an ontology expressed in a formal
description logic allows one to formally represent and store
domain specific knowledge. It enables in particular a per-
spective where we regard a CAD model as a collection of
instances of generic objects that we can view against the
backdrop of the ontology. The ontology then serves as a tem-
plate for maintaining consistency during the development of
a product or the creation of variants. Moreover, the designer
can further develop the ontology in order to make domain

knowledge assumptions explicit and facilitate reuse of his
designs.

We briefly recall some of the basic concepts of OWL to
facilitate the understanding of the examples given further
below. An OWL class represents a collection of objects;
e.g. the class “bolt” stands for the collection of all indi-
vidual bolts. Similarly, a property represents a relationship
between objects, such as parthood. From the basic classes,
one forms concepts by applying Boolean operators as known
from propositional logic (conjunction, disjunction, negation)
and so-called restrictions which govern the way in which
an object is expected to be related to other objects. E.g. an
existential restriction on the property “hasFeature”, quali-
fied by the class “thread”, designates all objects that have
some feature that is a thread. Similarly, a universal restriction
on the property “hasPart”, qualified by the class “stan-
dardPart”, designates objects composed only of standard
parts.

An ontological knowledge base then consists of two parts
offering different perspectives on the domain: The structural
information of a domain is characterized through its TBox
(the terminology). The TBox consists of a set of inclusions
between concepts, and as such allows expressing general
knowledge such as “every bolt has a thread”, or “every car
has four wheels and a colour”. Contrastingly, the ABox (the
assertions) contains knowledge about individuals, say a par-
ticular car or a given occurrence of a standard part in a CAD
model. It can state either that a given named individual (say,
“myCar”) belongs to a given concept (e.g. that myCar is,
in fact, a car) or that two individuals are related by a given
property (e.g. that myCar is owned by me).

By default, an ontology has no restriction for naming. For
this reason, the same element can have different labels in two
or more ontologies (precisely because OWL does not imple-
ment the so-called unique-name assumption), but would not
be detected as the same in case of merging the ontologies.
Therefore, it is desirable that the label of each element is kept
unique. If an element has a unique name in the real world, a
designer can achieve such a unique labelling by using the
same name within the ontology, following an appropriate
transformation of name spaces. Additionally, an encapsula-
tion into name spaces can be used to ensure unique labelling
of items.

As already indicated, using an ontology as part of a KBE
solution can improve the engineering processes, but at the
same time, the modelling of an ontology can become very
complex, especially if a generic approach is envisaged.

In the scenario described above, we focus on the standard
part catalogue of CATIA V5 R16. This version comprises
about 8838 standard parts, and each part has its specific prop-
erties and restrictions, which have to be implemented in the
ontology (Fig. 4). For this reason, one of the main challenges
is to reduce the effort and the complexity of modelling. In
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Fig. 4 Detail of the background ontology – screenshot

order to avoid such time consuming manual work, we have
foreseen a special function in OntoDMU to import standard
parts into concepts of the ontology (refer to Sect. 4.4).

The overall approach to determining the consistency of
a CAD model with respect to the ontology is, then, as fol-
lows. The background ontology together with the ontology
of standard parts exported from CATIA V5 formally consti-
tutes a TBox. A second function of our OntoDMU tool is
able to convert the output of CAD tools such as the DMU
analyser into an OWL ABox over this TBox; then, the con-
sistency check amounts to checking the consistency of the
combined knowledge base. As discussed below, the techni-
cal framework that integrates all these tasks is the Bremen
heterogeneous tool set Hets.

4.2 Ontology Languages

We digress briefly to discuss our choice of ontology lan-
guage, limiting ourselves to the three main sublanguages of
OWL: OWL Lite, OWL DL and OWL Full [24].

OWL Full features the highest expressivity; however, it
does not currently have efficient reasoning support, and the
logical complexity of the language makes it unlikely that
such support will be developed in the foreseeable future.
Since our approach to consistency checking of CAD models
relies crucially on fully automated reasoning, OWL Full is,
thus, not a suitable option. As mentioned above, efficient rea-
soners do exist for the sublanguages OWL Lite and OWL DL
[26]. The complexity of OWL Lite is markedly below that of
OWL, so that more efficient reasoning is possible for ontolo-
gies limiting themselves to the expressive means of OWL
Lite (and efficiency remains an issue in our framework, as
both the output of the DMU analyser and the imported ontol-
ogy of standard parts tend to become large rather quickly).
However, the expressive power of OWL Lite turns out to
be too limited for our purposes; in particular, OWL Lite
excludes conjunction and universal restriction, which we
need to say things like “bolts have threads and intersect only
with nuts” or “all members of the concept ISO 4034 NUT
M14 STEEL have an identical diameter of 14 mm”.

Technically, OWL-DL ontologies can be written and
stored in several ASCII-based formats. These formats can
be translated into each other. Some reasoners, such Pellet,
have corresponding translation functions. For using OWL-
DL within Hets, it is necessary to generate the ontol-
ogy in OWL Manchester Syntax [27]. Such a file can be
opened with all common OWL readers, such as Protégé in
version 4.

4.3 The Bremen Heterogeneous Tool Set

We embed our background ontology as well as our inter-
face tool into the Bremen heterogeneous tool set (Hets) [28]
which allows for the integrated use of a wide variety of log-
ics and associated analysis and reasoning tools in a common
framework, accessed via a graphical interface and connected
by a network of logic translations. Relevant for purposes of
the present work are the support offered in Hets for ontol-
ogy languages including in particular OWL-DL Manchester
Syntax and, as a more expressive correspondence language,
first order logic, as well as the facilities provided in the Hets
implementation framework for the easy integration of further
logics.

The latter has allowed us to cast the output format of
the DMU Analyzer as a very simple-minded logic, thus
enabling integration of the OWL translation tool into the Hets
framework and thereby, e.g., direct reasoning support for the
combination of the tool output and the OWL background
ontology in Pellet [25]. Figure 5 shows a screenshot of the
Hets graphical interface and an interface window for a call to
the Pellet reasoner.
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Fig. 5 Hets graphical interface (screenshot)

4.4 Semi-automatic Generation of Ontologies

The tool OntoDMU generates the ABox automatically and
the background ontology semi-automatically. In the follow-
ing, we describe these generation processes in more detail.

The background ontology should define all concepts a
user needs for his own modelling purposes. In our concept,
this includes standard parts (taken from the standard part cat-
alogue of CATIA V5) as well as non-standard parts. Since
non-standard parts are user or enterprise specific, the idea of
importing non-standard parts is a priori a non-trivial proposi-
tion. We intend to implement an interface in order to transfer
the product-structures and namespaces from PDM/PLM into
the background ontology.

The standard parts, on the other hand, are stored in
a separate catalogue-folder managed by CATIA. Hence
OntoDMU can access the respective information without
starting CATIA, and every change in the catalogue folder can
be easily updated in the ontology. OntoDMU extracts all rel-
evant information from the files automatically and transfers
it into the ontology. A part from the standard catalogue is
transformed into a concept, and its properties are inserted as
a combination of data and object properties.

For example, the class of nuts ISO 4034 NUT M14 STEEL
GRADE C HEXAGON HEAD NONPREFERRED is such a
catalogue part. Its name directly contains information about
its properties. In this example, the material and the diameter
of the nut can be read off from the name, and inserted as
explicit properties of the item. Further information gained
from the part name is the relevant standard (in this case, ISO
4034), which induces further properties by relations with the
background ontology. In our case the respective information
is: every ISO 4034 part is a nut and as such has an inner
thread. In detail, this information arises as follows: we record
in the ontology of standard parts that every ISO 4043 part is

a nut, and we have captured, in the background ontology, the
piece of general engineering knowledge stating that every nut
has an inner thread.

As examples of “non-standard” parts (i.e. not from the
CATIA V5 catalogue), to be though of as enterprise standard,
the ontology of our scenario includes classes Flange, Gasket
and FlangeCover, which are currently maintained manually.

General knowledge about parts as such is then integrated
with knowledge relating to the topic covered by our tar-
get geometric analysis tool, overlaps or, in the terminology
used in the tool output, interferences, between parts. As
discussed later, interferences may either be intentional or
indicate design failures. The knowledge used in classify-
ing interferences accordingly is modelled using properties
of a dedicated class “interference”; details are given further
below.

4.5 Structural Information in the Background
Ontology

The standard parts share a common interface of object prop-
erties. At present, OntoDMU can identify type, material,
diameter and length as object properties, and extract these
properties from standard part names.

The above-mentioned class interference represents an
overlap relation between parts, possibly annotated with fur-
ther data generated by the geometric analysis tool. The
analysis tool generates instances of this class in an XML
representation format, which the OntoDMU tool automat-
ically converts into an ABox describing a collection of
individuals inhabiting the class Interference, with additional
data describing the participating parts and their classification
according to the part ontology.

The classification of interferences as intended or faulty is
now cast as a consistency check of the ABox thus generated
with the background ontology, which must hence contain a
formalization of rules stating what types of overlaps between
parts are allowed, forbidden, or, in fact, mandatory. To see
why these cases even arise, consider the following examples:

• Two bolts should never overlap; such and overlap, if
detected, will always be classified as a design failure.

• A gasket, being deformable, may overlap with other parts.
These, however, should be of a suitable type – e.g. a gasket
should not overlap with a bolt, but may overlap with a
flange

• Bolts in fact must always overlap with some other part
(unless threads are explicitly modelled), namely with a
part (typically a nut) having an inner thread, whose type
and diameter match that of the bolt. These, however, are
the only overlaps allowed for bolts.
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It is an important design decision to which classes these
pieces of knowledge should be attached in the background
ontology. To balance the conflicting design goals of modular-
ity, human readability, and efficiency of reasoning, we adopt
the following approach. We attach general pieces of knowl-
edge such as “bolts should always (and only) overlap with
parts that have inner threads” to the class Interference as a
list of alternative exceptions.

Contrastingly, more specific information, such as that the
part that a bolt overlaps with should have matching thread
type and diameter, is attached to the relevant class of bolts,
or more precisely to the relevant type of thread. E.g. the class
representing the thread type M12 states that any part hav-
ing an outer thread of this type may overlap only with parts
having an inner thread of type M12.

Unfortunately, even for small part ontologies this leads to
long and hard-to-parse lists of restrictions (Fig. 6); we thus
to some degree sacrifice human readability in favour of ease
of machine processing: an alternative approach is to attach
restrictions entirely to part classes instead of to the class
interference. This leads to better modularity and is easier to
read for humans. However, this requires an increased use of
so-called inverse properties which traverse object properties
backwards (in this case, from a part participating in a par-
ticular interference to the interference itself), which leads to
increased processing time. In our experiments using Pellet,
this meant an increase from about 1 min 40 s in the analysis
of a particular CAD model to more than 15 min.

Currently, restrictions relating standard and non-standard
parts in the ontology are created manually. Our envisaged
approach foresees to extract those relations from a PLM
repository. A precondition for this extraction is to have
annotated product structure items in the PLM/PDM system.

Fig. 6 Additional restrictions on the concept interference

Those annotations include a unique reference between a part
and its concept.

5 A Remark on Using Default Logic

As discussed above, the interference concept captures most
of the explicit allowed interferences. The effort for such an
explicit interference modelling increases quadratically with
the number of implemented concepts. An interesting point
to be made is that for purposes of the specification of the
background ontology, it would be useful to have a language
with defaults available; see Chap. 6 of [29] for a brief expla-
nation of defaults and an overview of existing approaches
to adding them to ontology languages. Defaults are not cur-
rently included as a feature in OWL, which we continue
to use nonetheless for sake of its well-developed reasoning
support. We outline briefly how defaults could be employed
to increase in particular the degree of modularity of the
background ontology.

Roughly speaking, default implications state that given
certain conditions, certain conclusions are expected to hold
normally, but may be overridden when more specific infor-
mation about the given situation becomes available. The
standard example is that birds normally fly, thus leading us to
conclude provisionally (defeasibly) that a particular bird flies
unless more specific information about it becomes available,
such as that the given bird is a penguin. In the concrete set-
ting of specifying legal and illegal overlaps of parts in a CAD
object, having such a mechanism available would simplify
the overall structure of the ontology rather strongly: To begin,
one would be able to just say that generally, parts should
not overlap. This general proviso would then be overridden
by exceptions, such as that gaskets typically overlap with
other specific parts having dedicated channels for the gas-
ket; the latter could, again, be overridden in particular cases
where the channel might be absent. This approach is modular
because one can extend the range of available parts without
having to adapt the general principles (e.g. we never have to
adapt our initial default stating that parts do not overlap, even
though exceptions to this keep accumulating).

Consequently, an OWL modelling of the situation has to
circumvent this lack of expressivity rather visibly. E.g. all
exceptions to the general rule that parts do not overlap are
currently explicitly attached to the concept of an interference
as shown above.

6 Conclusion

The fact that most current KBE solutions address only
individual design problems and do not offer enterprise-
level solutions largely goes back to problems of knowledge
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acquisition. Even though this level is typically covered by
PLM systems and hence established information repositories
do exist, there is to date no automated way for transform-
ing this information into codified knowledge as it is typically
used in knowledge based engineering rules.

To contribute to realising the vision of a sustainable cap-
italisation of the engineering information stored in PLM
repositories as intellectual property assets, we have pre-
sented an approach to combining product structures and
namespaces provided by PLM-systems on the one hand and
significant domain specific standards on the other hand in
order to establish a background ontology and thus create
a powerful semantic representation of codified engineering
knowledge.

Even though the current implementation of our OntoDMU
tool, which translates the output of a standard geometric anal-
ysis tool into a knowledge representation format that allows
for a connection to a background ontology of codified engi-
neering knowledge, is still at the prototype stage, benefits
to be gained by its usage already become clearly visible.
The productive interplay between a practical design prob-
lem, which reappears in different design contexts, and the
background ontology created as part of the framework, leads
to a clear reduction of manual intervention in the validation
of CAD objects.

The approach of having an ambient ontology of gen-
eral engineering knowledge in parallel with an ontology
of standard parts which is automatically generated from
CAD part catalogues and PLM systems is promising and
will be further elaborated. As a next step, an annotated
product structure will be used in conjunction with the back-
ground ontology, thus allowing for semi-automatic gener-
ation and maintenance of ontologies also of non-standard
parts.

At the same time, the work presented here constitutes an
important prerequisite for ontological support in the actual
core PLM processes: the semantically correct integration of
data fed back to the manufacturer from the product dur-
ing its life cycle requires a semanticized representation of
design objects as facilitated by our ontological approach
to CAD. Future steps in our research program include the
implementation of a semantical underpinning of sensor data
and other Middle-of-Life data to obtain intelligent decision
support for the full product life cycle, thus enabling opti-
mal feedback of PLM data into the design and development
process. As demonstrated in the CAD case study presented
here, we expect substantial added value from the use of fully
automated ontological reasoning in modern DL engines (as
opposed to a classical programming approach as pursued,
e.g. in the ICAD system [30]) with respect to decision qual-
ity as well as extensibility and adaptability; here, the use of a
standard ontology language such as OWL carries the promise
of a high degree of both interoperability and sustainability.

The approach via a core set of ontologies managed inde-
pendently of the involved software tools both reduces the
overall maintenance effort and enables an increased degree
of knowledge reuse, with knowledge being made available
to the entire range of CAx systems involved in the product
life cycle.
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