
Chapter 11
Linked Open Data

In Chap. 9 we have studied semantic wiki, where semantic information is manually
added to the Web content. In Chap. 10, we have studied DBpedia project, where
semantic documents are automatically generated. As we have discussed in Chap. 7,
besides annotating the pages manually or generating the markup documents auto-
matically, there is indeed another solution: to create a machine-readable Web all
from the scratch.

The idea is simple: if we start to publish machine-readable data, such as RDF
documents on the Web, and somehow make all these documents connected to
each other, then we will be creating a Linked Data Web that can be processed by
machines.

This is the idea behind the Linked Open Data (LOD) project, the topic of this
chapter.

11.1 The Concept of Linked Data and Its Basic Rules

In recent years, the concept of Linked Data, and the so-called Web of Linked Data,
has attracted tremendous attention from both the academic world and real applica-
tion world. In this section, we will examine the concept of Linked Data and its basic
rules. What we will learn here from this section will provide a solid foundation for
the rest of this chapter.

11.1.1 The Concept of Linked Data

The concept of Linked Data was originally proposed by Tim Berners-Lee in his
2006 Web architecture note.1 Technically speaking, Linked Data refers to data pub-
lished on the Web in such a way that it is machine readable, its meaning is explicitly
defined, it is linked to other external datasets, and it can in turn be linked to from
external datasets as well. Conceptually, Linked Data refers to a set of best practices
for publishing and connecting structured data on the Web.

1http://www.w3.org/DesignIssues/LinkedData.html

409L. Yu, A Developer’s Guide to the Semantic Web,
DOI 10.1007/978-3-642-15970-1_11, C© Springer-Verlag Berlin Heidelberg 2011

410 11 Linked Open Data

The connection between Linked Data and the Semantic Web is quite obvi-
ous: publishing and consuming machine-readable data is the center for both of
these concepts. In fact, in recent years, Linked Data and the Semantic Web have
become two concepts that are interchangeable. After finishing this chapter, you will
reach your own conclusion regarding the relationship between Linked Data and the
Semantic Web.

In practice, the basic idea of Linked Data is quite straightforward and can be
summarized as follows:

• use the RDF data model to publish structured data on the Web and

• use RDF links to interlink data from different data sources.

Applying these two simple tenets repeatedly leads to the creation of a Web of Data
that machine can read and understand. This Web of Data, at this point, can be under-
stood as one realization of the Semantic Web. The Semantic Web, therefore, can be
viewed as created by the linked structured data on the Web.

Given the fact that Linked Data is also referred to as the Web of Linked Data,
it is then intuitive to believe that it must share lots of common traits exhib-
ited by the traditional Web. This is a true intuition, yet for every single one of
these traits, the Web of Linked Data is profoundly different from the Web of
document.

Let us take a look at this comparison, which will certainly give us more under-
standing about Linked Data and the Semantic Web. Note that at this point, some of
the comparisons may not make perfect sense to you, but rest assured that they will
become clear after you have finished the whole chapter.

• On the traditional Web, anyone can publish anything at his/her will, at any time.

The same is true for the Linked Data Web: anyone, at any time, can publish
anything on the Web of Linked Data, except that the published documents have
to be RDF documents. In other words, these documents are for machines to use,
not for human eyes.

• To access the traditional Web, we use Web browsers.

The same is true for the Web of Linked Data. However, since the Web of Linked
Data is created by publishing RDF documents, we use Linked Data browsers
that can understand RDF documents and can follow the RDF links to navigate
between different data sources. Traditional Web browsers, on the other hand, are
designed to handle HTML documents, and they will not be the best choices when
it comes to accessing the Web of Linked Data.

• Traditional Web is interesting since everything on the Web is linked together.

The same is true for the Web of Linked Data. An important fact, however, is
that under the hood, the HTML documents contained by the traditional Web are
connected by un-typed hyperlinks. For the Web of Linked Data, rather than sim-
ply connecting documents, it uses RDF model to make typed links that connect

11.1 The Concept of Linked Data and Its Basic Rules 411

arbitrary things in the world. The result is that we can then build much smarter
applications as we will see in the later part of this chapter.

• Traditional Web can provide structured data which can be consumed by Web-
based applications.

This is especially true with more and more APIs being published by major players
on the Web. For example, eBay, Amazon, Google all have published their APIs.
Web applications that consume these APIs are collectively named as mashups,
and they do offer quite impressive Web experiences to their users. On the other
hand, under the Web of Linked Data, mashups are called semantic mashups, and
they can be developed in a much more scalable and efficient way. More impor-
tantly, they have the ability to grow dynamically upon unbounded datasets, and
that is what makes them much more useful than traditional mashups. Again,
details will be covered in later sections.

Before we move on, understand that the technical foundation for the Web of
Linked Data is not something we have to create from the ground up. To its very
bottom, the Web of Linked Data is a big collection of RDF triples, where the subject
of any triple is a URI reference in the namespace of one dataset, and the object of
the triple is a URI reference in the namespace of another. In addition, by employing
HTTP URIs to identify resources, HTTP protocol as retrieval mechanism and RDF
data model to represent resource descriptions, Linked Data is directly built upon the
general architecture of the Web – a solid foundation that has been tested for more
than 20 years.

Furthermore, what we have learned so far, such as RDF model, RDF Schema,
OWL, and SPARQL, all these technical components will find their usages in the
world of Linked Data.

11.1.2 How Big Is the Web of Linked Data and the LOD Project

The most accurate way to calculate the size of the Web of Linked Data is to use a
crawler to count the number of RDF triples that it has collected when traveling on
the Web of Linked Data. This is quite a challenging task, and given the fact that
some of the RDF triples are generated dynamically, we therefore have to run the
crawler repeatedly in order to get the most recent count.

However, the size of the Web of Data can be estimated based on the dataset
statistics collected by the LOD community in the ESW Wiki.2 According to these
statistics, the Web of Data, on 4 May 2010, consists of 13.1 billion RDF triples,
which are interlinked by around 142 million RDF links (as of 29 September 2009).
Note the majority of these triples are generated by the so-called wrappers, which
are utility applications responsible for generating RDF statements from existing

2http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/DataSets/Statistic,
http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/DataSets/LinkStatistics

412 11 Linked Open Data

relational database tables, and only a small portion of these triples are generated
manually.

The Linking Open Data Community Project has been focusing on the idea and
implementation of the Web of Data for the last several years. It was originally
sponsored by W3C Semantic Web Education and Outreach Group, and you can
find more information about this group from this URL:

http://www.w3.org/2001/sw/sweo/

For the rest of this chapter, we will mainly examine the Linked Data project from
technical perspective; you can always find more information on the project from the
following Web sites:

• Linking Open Data project wiki home page:

http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

• Linked Data at the ESW Wiki page:

http://esw.w3.org/topic/LinkedData

• Linked Data Community Web site:

http://linkeddata.org/

11.1.3 The Basic Rules of Linked Data

The basic idea of Linked Data is to use RDF model to publish structured data on the
Web and also use RDF links to interlink data from different data sources.

In practice, to make sure the above idea is carefully and correctly followed when
constructing the Web of Linked Data, four basic rules are further proposed by Tim
Berners-Lee in his 2006 Web architecture note:

Rule 1. Use URIs as names for things.
Rule 2. Use HTTP URIs so that a client (machine or human reader) can look up

these names.
Rule 3. When someone looks up a URI, useful information should be provided.
Rule 4. Include links to other URIs, so that a client can discover more things.

The first rule is obvious, and it is also what we have been doing all the time: for
a given resource or concept, we should use a unique and universal name to iden-
tify it. This simple rule eliminates the following two ambiguities on the traditional
Web: (1) same name (word) in different documents can refer to completely differ-
ent resources or concepts and (2) a given resource or concept can be represented by
different names (words) in different documents.

The second rule simply puts one more constraint on the first rule by specifying
that not only should we use URIs to represent objects and concepts, but we should
also only use HTTP URIs.

11.2 Publishing RDF Data on the Web 413

The reason behind this rule is quite obvious. To make sure that data publishers
can come up with identifiers that are indeed globally unique without involving any
centralized management, the easiest way is to use HTTP URIs, since the domain
part of these URIs can automatically guarantee their uniqueness. In addition, HTTP
URIs naturally suggest to the clients that these URIs can be directly used as a means
of accessing information about the resources over the Web.

The third rule further strengthens the second rule: if the client is dereferencing
a given URI in a Web browser, there should always be some useful information
returned back to the client. In fact, at the early days of the Semantic Web, this was
not always true: when a given URI was used in a browser, there might or might not
be any information coming back at all. We will see more details on this rule later.

The last rule is to make sure the Linked Data world will grow into a real Web:
without the links, it will not be a Web of data. In fact, the real interesting thing
happens only when the data are linked together and the unexpected fact is discovered
by exploring the links.

Finally, note that the above are just the rules of the Web of Linked Data; breaking
these rules does not destroy anything. However, without these rules, the data will not
be able to provide anything that is interesting.

Now that we have all the background information and we have also learned all
the rules, let us take a detailed look into the world of Linked Data. In the next two
sections, we will first study how exactly to publish RDF data on the Web; we will
then explore different ways to link these data together on the Web.

11.2 Publishing RDF Data on the Web

RDF data are the building blocks of Linked Data. To publishing RDF data on the
Web means to follow these steps:

• identifying things by using URIs;
• choosing vocabularies for RDF data;
• producing RDF statements to describe the things;
• creating RDF links to other RDF datasets; and finally
• serving your RDF triples on the Web.

Let us study each one of them in detail.

11.2.1 Identifying Things with URIs

11.2.1.1 Web Document, Information Resource, and URI

To begin with, URI is not something new, and for most of us, a URI represents a
Web document. For example, the following URI:

http://www.liyangyu.com/

414 11 Linked Open Data

Fig. 11.1 URI/URL for information resource

represents the front page of my personal Web site. This page, like everything else
on the traditional Web, is a Web document. We often call the above URI a URL,
and as far as Web document is concerned, URL and URI are interchangeable: URL
is a special type of URI; it tells us the location of the given Web document. In other
words, if a user types in the above URL (URI) into a Web browser, the front page of
my Web site will be returned.

Recall that a Web document is defined as something that has a URI and can
return representations of the identified resource in response to HTTP requests. The
returned representations can take quite a few formats including HTML, JPEG, or
RDF, just to name a few.

In recent years, Web documents have a new name: information resources. More
precisely, everything we find on the traditional document Web, such as docu-
ments, images (and other media files) are information resources. In other words,
information resources are the resources that satisfy the following two conditions:

• can be identified by URIs;
• can return representations when the identified resources are requested by the

users.

Figure 11.1 shows the above concept.
Currently on the Web, to request the representations of a given Web document,

clients and servers use HTTP to communicate. For example, the following could be
the request sent to the server:

GET / HTTP/1.1

Host: www.liyangyu.com

Connection: close

11.2 Publishing RDF Data on the Web 415

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)

Accept-Encoding: gzip

Accept-Charset: ISO-8859-1,UTF-8;q=0.7,*;q=0.7
Cache-Control: no

Accept-Language: de,en;q=0.7,en-us;q=0.3

And the server will answer with a response header, which tells the client whether
the request has been successful, and if successful, the content (representation) will
follow the response header.

Let us go back to our basic question in this section: what URIs should we use to
identify things in the world? At this point, we can come up with part of the answer:
for all the information resources, we can simply use the good old URLs as their
URIs to uniquely identify them.

Now, what URIs should we use for the rest of the things (resources) in the world?

11.2.1.2 Non-information Resources and Their URIs

Except for the information resources, the rest of the resources in the world are called
non-information resources. In general, non-information resources include all the
real-world objects that exist outside the Web, such as people, places, concepts, ideas,
anything you can imagine, and anything you want to talk about.

To come up with URIs that can be used to identify these non-information
resources, there are two important rules proposed by W3C Interest Group.3 Let us
use some examples to understand them.

Let us say I want to come up with a URI to represent myself (a non-information
resource). Since I already have a personal Web site, www.liyangyu.com, could I
then use the following URI to identify myself?

http://www.liyangyu.com/

This idea is quite intuitive, given the fact that the Web document at the above
location does describe me and the URI itself is also unique. However, this clearly
confuses a person with a Web document. For any user, the first question that comes
to mind will be, does this URI represent this person’s home page, or does it represent
him as a person?

If we do use the above URI to identify myself, it is then likely that part of my
FOAF file would look like the following:

<rdf:Description rdf:about="http://www.liyangyu.com/">
<foaf:name>liyang yu</foaf:name>

<foaf:title>Dr</foaf:title>

<foaf:givenname>liyang</foaf:givenname>

<foaf:family_name>yu</foaf:family_name>

<foaf:mbox rdf:resource="liyang910@yahoo.com"/>

3Cool URIs for the Semantic Web, W3C Interest Group Note 03 December 2008 (http://www.
w3.org/TR/cooluris/).

416 11 Linked Open Data

Now, if this URI represents my home page, then how could a home page have
foaf:name, and how could it also have a foaf:mbox? On the other hand, if this
URI does represent a person named Liyang Yu, then the above FOAF document
in general seems to be describing a home page which has a Web address given by
www.liyangyu.com.

All these said, it seems to be clear that I need another unambiguous URI to
represent myself. And this gives the first rule summarized by W3C Interest Group:

Be unambiguous: There should be no confusion between identifiers for Web documents and
identifiers for other resources. URIs are meant to identify only one of them, so one URI
cannot stand for both a Web and a real-world object.

Now let us say I have already come up with a URI to represent myself, for
example,

http://www.liyangyu.com/foaf.rdf#liyang

then what happens if the above URI is dereferenced in a browser – do we get
anything back at all? If yes, what do we get back?

For information resources, we get one possible form of representation back,
could be a HTML page, for example. For non-information resources, based on the
following rule proposed by W3C Interest Group, when their URIs are used in a
browser, related information should be retrieved as follows:

Be on the Web: Given only a URI, machines and people should be able to retrieve a descrip-
tion about the resource identified by the URI from the Web. Such a look-up mechanism is
important to establish shared understanding of what a URI identifies. Machines should get
RDF data and humans should get a readable representation, such as HTML. The standard
Web transfer protocol, HTTP, should be used.

This rule makes it clear that for URIs identifying non-information resources,
some descriptions should be returned to the clients. However, it does not specify
any details for implementation purpose.

It turns out in the world of Linked Data, the implementation of this rule also
dictates how the URIs for non-information resources are constructed. Let us cover
the details next.

11.2.1.3 URIs for Non-information Resources: 303 URIs
and Content Negotiation

The first solution is to use the so-called 303 URIs to represent non-information
resources. The basic idea is to create a URI for a given non-information resource,
and when a client posts a request using this URI, the server will return the spe-
cial HTTP status code 303 See Other. This not only indicates the fact that the
requested resource is not a regular Web document, but also further redirects the
client to some other document which provides information about the thing identified
by this URI. By doing so, we will be able to satisfy the above two rules and also
avoid the ambiguity between the real-world object and the non-information resource
that represents it.

11.2 Publishing RDF Data on the Web 417

As a side note, if the server answers the request using a status code in the 200
range, such as 200 OK, it is then clear that the given URI represents a normal Web
document or information resource.

Now, in case where a 303 See Other status code is returned, which document
should the server redirect its client to? This depends on the request from the client.
If the client is an RDF-enabled browser (or some applications that understands RDF
model), it will more likely prefer a URI which points to an RDF document. If the
browser is a traditional HTML browser (or the client is a human reader), it will
then more likely prefer a URI that points to a HTML document. In other words,
when sending the request, the client will include information in the HTTP header
to indicate what type of representation it prefers. The server will inspect this header
to return a new URI that links to the appropriate response. This process is called
content negotiation.

It is now a common practice that for a given real-world resource, we can often
have three URIs for it. For example, for myself as a non-information resource, the
following three URIs will be in use:

• a URI that identifies myself as a non-information resource:

http://www.liyangyu.com/resource/liyang

• a URI that identifies a Web document which has an RDF/XML representation
describing myself. This URI will be returned when a client prefers an RDF
description:

http://www.liyangyu.com/data/liyang

• a URI identifies a Web document that has a HTML representation describing
myself. This URI will be returned when a client prefers a HTML document:

http://www.liyangyu.com/page/liyang

And the first URI,

http://www.liyangyu.com/resource/liyang

is often the one that is seen by the outside world as my URI.

The above schema for constructing URIs for non-information resources is also
viewed as the best practice by the Linked Data community. Another example is the
following three URIs about Berlin, as seen in DBpedia project:

• a URI that is used as the identifier for Berlin:

http://dbpedia.org/resource/Berlin

• a URI that identifies a representation in HTML format (for human readers):

http://dbpedia.org/page/Berlin

• a URI that identifies a representation in RDF/XML format (for machines):

http://dbpedia.org/data/Berlin

418 11 Linked Open Data

Fig. 11.2 Example of content negotiation

It is now clear that for a given resource, there could be multiple content types
for its representation, such as HTML format and RDF/XML format as seen above.
Figure 11.2 shows the process of content negotiation, using my own URI as an
example.

The following steps show the interaction between the server and a client:

• Client is requesting a HTML Web document:

GET /resource/liyang HTTP/1.1

Host: www.liyangyu.com

Accept: text/html

• Server’s response header should include the following fields:

HTTP/1.1 303 See Other

Location: http://www.liyangyu.com/page/liyang

• Client is requesting a machine-readable document for the resource:

GET /resource/liyang HTTP/1.1

Host: www.liyangyu.com

Accept: application/rdf+xml

• Server’s response header should include the following fields:

HTTP/1.1 303 See Other

Location: http://www.liyangyu.com/data/liyang

11.2 Publishing RDF Data on the Web 419

As a summary, 303 URIs require content negotiation when they are used in a
browser to retrieve their descriptions. Furthermore, content negotiation requires at
least two HTTP round-trips to the server to retrieve the desired document. However,
303 URIs eliminate the ambiguity between information and non-information
resources, therefore they provide a uniform and consistent way of representing
resource in the real world.

11.2.1.4 URIs for Non-information Resources: Hash URIs

A hash URI is a URI that contains a fragment, i.e., the part that is separated from the
rest of the URI by a hash symbol (“#”). For example, the following is a hash URI to
identify myself as a resource:

http://www.liyangyu.com/foaf.rdf#liyang

and liyang (to the right of #) is the fragment part of this URI.
Hash URI provides an alternative choice when it comes to identifying non-

information resources. The reason behind this solution is related to the HTTP
protocol itself.

More specifically, when a hash URI is used in a browser, the HTTP protocol
requires the fragment part to be stripped off before sending the URI to the server.
For example, if you dereference the above URI into a Web browser and also monitor
the request sent out to the server, you will see the following lines in the request:

GET /foaf.rdf HTTP/1.1

Host: www.liyangyu.com

Clearly, the fragment part is gone. Instead of retrieving this URI,

http://www.liyangyu.com/foaf.rdf#liyang

the client is in fact requesting this one:

http://www.liyangyu.com/foaf.rdf

In other words, a URI that includes a hash fragment cannot be retrieved directly,
therefore it does not identify a Web document at all. As a result, any URI including a
fragment part is a URI that identifies a non-information resource, thus the ambiguity
is avoided.

Now that there is no ambiguity associated with a hash URI, what should be served
if the URI is dereferenced in a browser? Since we know the fragment part will be
taken off by the browser, we can simply serve a document (either human readable
or machine readable) at the resulting URI which does not have the fragment part.
Again using the following as the example,

http://www.liyangyu.com/foaf.rdf#liyang

we can then serve an RDF document identified by the URI:

http://www.liyangyu.com/foaf.rdf

420 11 Linked Open Data

Note that there is no need for any content negotiation, which is probably the main
reason why hash URIs look attractive to us.

Hash URI does have its own downside. Consider the following three URIs:

http://www.liyangyu.com/foaf.rdf#liyang

http://www.liyangyu.com/foaf.rdf#connie

http://www.liyangyu.com/foaf.rdf#ding

which represent three different resources. However, using any one of them in a
browser will send a single request to this common URI:

http://www.liyangyu.com/foaf.rdf

and if someone is only interested in #connie, still the whole document will have
to be returned. Obviously, using hash URIs lacks the flexibility of configuring a
response for each individual resource.

It is also worth mentioning that even when hash URIs are in used, we can still
use content negotiation if we want to serve both HTML and RDF representations
for the resources identified by the URIs. For example,

• Client is requesting a HTML Web document for the following resource,

http://www.liyangyu.com/foaf.rdf#liyang

and you will see these lines in the request:

GET /roaf.rdf HTTP/1.1

Host: www.liyangyu.com

Accept: text/html

• Response header from the server should include the following fields:

HTTP/1.1 303 See Other

Location: http://www.liyangyu.com/foaf.html

Note that we assume there is a HTML file called foaf.html which includes
some HTML representations of the given resource.

• Now client is requesting machine-readable document for the resource:

GET /roaf.rdf HTTP/1.1

Host: www.liyangyu.com

Accept: application/rdf+xml

• Response header from the server should include the following fields:

HTTP/1.1 303 See Other

Location: http://www.liyangyu.com/foaf.rdf

And similarly, the following two hash URIs,

http://www.liyangyu.com/foaf.rdf#connie

http://www.liyangyu.com/foaf.rdf#ding

11.2 Publishing RDF Data on the Web 421

will have exactly the same content negotiation process, since their fragment parts
will be taken off by the browser before sending them out to the server.

11.2.1.5 URIs for Non-information Resources: 303 URIs vs. Hash URIs

Now that we have introduced both 303 URIs and hash URIs, the next question
is about when a 303 URI should be used and when a hash URI should be used.
Table 11.1 briefly summarizes the advantages and disadvantages of both URIs.

The following is a simple guideline. Once you have more experience working
with the Linked Data and the Semantic Web, you will be able to add more to it:

• For ontologies that are created by using RDF Schema and OWL, it is preferred
to use hash URIs to represent all the terms defined in the ontology, and frequent
access of this ontology will not generate lots of network redirects.

• If you need a quicker and easier way of publishing Linked Data or small and
stable datasets of RDF resource files, hash URI should be the choice.

• Other than the above, 303 URIs should be used to identify non-information
resources if possible.

11.2.1.6 URI Aliases

When it comes to identifying things with URIs, one obvious fact we have noticed
so far is the lack of centralized control of any kind. In fact, anyone can talk about
any resource and come up with a URI to represent that resource. It is therefore
quite possible that different users happen to talk about the same non-information
resource. Furthermore, since they are not aware of each other’s work, they create
different URIs to identify the same resource or concept. Since all these URIs are
created to identify the same resource or concept, they are called URI aliases.

It is commonly suggested that when you plan to publish RDF statements about
a given resource, you should try to find at least some of the URI aliases for this
resource first. If you can find one or multiple URIs for the resource, by all means
reuse one of them, create your own if only you have very strong reason to do so.
And in which case, you should use owl:sameAs to link it to at least one existing

Table 11.1 303 URI vs. Hash URI: advantages and disadvantages

303 URI Hash URI

Advantages Provides the flexibility of configuring
redirect targets for each resource

Provides the flexibility of
changing/updating these targets
easily and freely, at any given time

Does not require content
negotiation, therefore reduces
the number of HTTP round-trips

Since content negotiation is not
required, publishing Linked
Data is easier and quicker

Disadvantages Requires two round-trips for each use
of a given URI

All the resource descriptions have
to be collected in one file

422 11 Linked Open Data

URI. Certainly, you can create your own URI if you cannot find any existing ones
at all.

Now, how do you find the URI aliases for the given resource? At the time of this
writing, there are some tools available on the Web. Let us use one example to see
how these tools can help us.

Assume that we want to publish some RDF statements about Roger Federer, the
tennis player who holds the most grand slam titles at current time. Since he is such
a well-known figure, it is safe to assume that we are not the first one who would like
to say something about him. Therefore, there should be at least one URI identifying
him, if not more.

A good starting place where we can search for these URI aliases is the Sindice
Web site. You can access this Web site here:

http://sindice.com/

More specifically, Sindice can be viewed as a Semantic Web search engine, and it
was originally created at DERI (Digital Enterprise Research Institute) as a research
project. Its main idea is to index the Semantic Web documents over the Web, so for a
given URI, it can search its datasets and further tell us which dataset has mentioned
this given URI.

To us, a more useful feature of Sindice is when searching its datasets, Sindice
not only accepts URIs, but also takes keywords. When it accepts keywords, it will
find all the URIs that either describe or closely match the given keywords first, then
it will locate all the datasets that contain these URIs. This is what we need when we
want to know if there are any existing URIs identifying Roger Federer. Figure 11.3
shows the query session.

And Fig. 11.4 shows the Sindice search result.
The first result in Fig. 11.4 shows a URI identifying Roger Federer (we know

this by noticing the file type of this result, i.e., an RDF document), and this URI is
given as follows:

http://dbpedia.org/resource/Roger_Federer

To collect other URI aliases identifying Roger Federer, we can continue to use
Sindice. However, another tool, called sameAs, can also be very helpful. You can
find sameAs by accessing its Web site:

http://www.sameas.org/

It will help us to find the URI aliases for a given URI. In our case, our search is
shown in Fig. 11.5, and Fig. 11.6 shows the result:

Clearly, at the time of this writing, there are about 23 URIs identifying Roger
Federer, as shown in Fig. 11.6. It is now up to us to pick one of these URIs so we
can publish something about Roger Federer.

As you can tell, these two Web sites are very helpful on finding existing URIs.
In fact, www.sameas.org even provides a link to www.sindice.com, as shown
in Fig. 11.5. You can either directly enter a URI in the <sameAs> box to search

11.2 Publishing RDF Data on the Web 423

Fig. 11.3 A Sindice search session (search for Roger Federer)

for its URI aliases or you can use Sindice first by entering the keywords in the
Sindice box.

Recall the lookup service we have discussed in Chap. 10 about DBpedia – it is
another service we can use to locate URIs that are created by DBpedia for a given
resource. See Fig. 10.4 and Sect. 10.3.3 for details.

At this point, we have briefly discussed about URI aliases. With the development
of the Semantic Web, let us hope that there will better and better solutions out there,
which will greatly facilitate the reuse of URIs.

11.2.2 Choosing Vocabularies for RDF Data

By now, you should understand that when publishing RDF statements, you should
always try to use terms defined in one or more ontologies. For example, the predi-
cate of an RDF statement should always be a URI that comes from the ontologies
you are using. In addition, it is recommended that instead of inventing your own
ontology, you should always use the terms from well-known existing ontologies.
Reusing ontologies will make it possible for clients to understand your data and fur-
ther process your data, therefore the data you have published can easily become part
of the Web of Linked Data.

At this point, there is already a good collection of some well-known ontologies
covering multiple application domains. You can find this collection at the Linking

424 11 Linked Open Data

Fig. 11.4 Search results from Fig. 11.3

Open Data project wiki home page (see Sect. 11.1.2) and make sure to check back
often for updates. The following is a short list, just to name a few:

• Friend-of-a-Friend (FOAF): terms for describing people;
• Dublin Core (DC): terms for general metadata attributes;
• Semantically Interlinked Online Communities (SIOC): terms for describing

online communities;
• Description of a Project (DOAP): terms for describing projects;
• Music Ontology: terms for describing artists, albums, and tracks;
• Review Vocabulary: terms for representing reviews.

In case you do need to create your own ontology, it is still important to make use
of the terms that are defined in these well-known ontologies. In fact, some of the
ontologies given above, such as the Music Ontology, make use of the terms defined
in other ontologies. For example, List 11.1 is taken from the Music Ontology, and it
shows the definition of class SoloMusicArtist.

11.2 Publishing RDF Data on the Web 425

Fig. 11.5 Use sameAs to find URI aliases

List 11.1 Part of the Music Ontology

<?xml version=’1.0’ encoding=’UTF-8’?>
<!DOCTYPE rdf:RDF [
<!ENTITY dc ’http://purl.org/dc/elements/1.1/’>
<!ENTITY mo ’http://purl.org/ontology/mo/’>
<!ENTITY ns1 ’http://www.w3.org/2003/06/sw-vocab-status/ns#’>
<!ENTITY owl ’http://www.w3.org/2002/07/owl#’>
<!ENTITY rdf ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’>
<!ENTITY rdfs ’http://www.w3.org/2000/01/rdf-schema#’>
<!ENTITY xsd ’http://www.w3.org/2001/XMLSchema#’>
]>

<rdf:RDF
xmlns:dc="&dc;"
xmlns:mo="&mo;"
xmlns:ns1="&ns1;"
xmlns:owl="&owl;"
xmlns:rdf="&rdf;"
xmlns:rdfs="&rdfs;"
xmlns:xsd="&xsd;"

>

...

426 11 Linked Open Data

<rdfs:Class rdf:about="&mo;SoloMusicArtist"
mo:level="1"
rdfs:label="SoloMusicArtist"
ns1:term_status="stable">

<rdfs:subClassOf rdf:resource="&mo;MusicArtist"/>
<rdfs:subClassOf

rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
<rdf:type rdf:resource="&owl;Class"/>
<rdfs:comment>Single person whose musical creative work shows

sensitivity and imagination.
</rdfs:comment>
<rdfs:isDefinedBy rdf:resource="&mo;"/>

</rdfs:Class>
...

Note that SoloMusicArtist is defined as a sub-class of foaf:Person.
Therefore, if a given client sees the following:

<rdf:Description
rdf:about="http://zitgist.com/music/artist/79239441-bfd5-4981-
a70c-55c3f15c1287">
<rdf:type
rdf:resource="http://purl.org/ontology/mo/SoloMusicArtist"/>

</rdf:Description>

Fig. 11.6 sameAs search result

11.2 Publishing RDF Data on the Web 427

it will know the real-world resource identified by this URI,

http://zitgist.com/music/artist/79239441-bfd5-4981-a70c-

55c3f15c1287

must be an instance of foaf:Person. If this client is not interested in any instance
of foaf:Person, it can safely disregard any RDF statements that are related to
this resource. Clearly, this reasoning is possible only when the authors of the Music
Ontology have decided to make use of the terms defined in the FOAF ontology.

Creating ontology, like any other design work, requires not only knowledge, but
also experience. It is always helpful to learn how other ontologies are created, so
check out the ontologies listed above. After reading and understanding how these
ontologies are designed and coded, you will be surprised to see how much you have
learned. Also, with the knowledge you have gained, it is more likely that you will
be doing a solid job when creating your own.

11.2.3 Creating Links to Other RDF Data

Now that you have come up with the URIs, and you have the terms from the ontolo-
gies to use, you can go ahead to make your statements about the world. There is
only one thing you need to remember: you need to make links to other RDF datasets
so your statements can participate in the Linked Data cloud.

In this section, we discuss the basic language constructs and ways you can use to
add these links.

11.2.3.1 Basic Language Constructs to Create Links

Let us start with a simpler case: you are creating a FOAF document. The easiest
way to make links in this case is to use foaf:knows, as we have shown in Chap. 7.
Using foaf:knows will not only make sure you can join the “circle of trust”, but
also put your data into the Linked Data cloud.

In fact, besides foaf:knows, there are couple other FOAF terms you can use to
create links. Let us take a look at some examples:

• Use foaf:interest to show your interest:

For example,

<rdf:RDF

xmlns:dc="http://purl.org/dc/terms/"
xmlns:foaf=http://xmlns.com/foaf/0.1/"
<!-- other namespace definitions -->

>

<foaf:interest>

<rdf:Description

rdf:about="http://dbpedia.org/resource/Photography">

428 11 Linked Open Data

<dc:title>photography</dc:title>

</rdf:Description>

</foaf:interest>

This will link you to the world of photography as defined in DBpedia. And as
you know, DBpedia is a major component of the Linked Data cloud.

• Use foaf:base_near to show where you are located:

For example,

<rdf:RDF
xmlns:foaf="http://xmlns.com/foaf/0.1/"
<!-- other namespace definitions -->

>
<rdf:Description

rdf:about="http://www.liyangyu.com/foaf.rdf#liyang">
<foaf:name>liyang yu</foaf:name>
<foaf:based_near

rdf:resource="http://dbpedia.org/resource/Beijing"/>
<!-- other descriptions I may want -->

</rdf:Description>
</rdf:RDF>

This will link you to Beijing, the capital city of China, which is represented
by DBpedia as http://dbpedia.org/resource/Beijing. Again, this is good
enough for putting you into the Linked Data cloud.

With the above two examples, you understand that there are different FOAF
terms you can use to link to the Web of Linked Data. We will leave it to you to
discover other FOAF terms that can be used besides the above two examples.

For a more general case, at least two properties should be considered when
making links: rdfs:seeAlso and owl:sameAs.

rdfs:seeAlso is defined in W3C’s RDFS vocabulary, and it is used to indicate
the fact that another resource might provide additional information about the subject
resource. It therefore can be used to link the current RDF document into the Linked
Data world.

In addition, note that rdfs:domain of rdfs:seeAlso is rdfs:Resource, and
rdfs:range of rdfs:seeAlso is also rdfs:Resource. As a result, this property
is entirely domain-neutral, and works for people, companies, documents, etc.

List 11.2 shows one simple example of using rdfs:seeAlso.

List 11.2 Use rdfs:seeAlso to create link

<rdf:Description

rdf:about="http://www.liyangyu.com/foaf.rdf#liyang">
<foaf:name>liyang yu</foaf:name>

<foaf:title>Dr</foaf:title>

11.2 Publishing RDF Data on the Web 429

<foaf:givenname>liyang</foaf:givenname>

<!-- other descriptions here -->

<rdfs:seeAlso>

<rdf:Description

rdf:about="http://www.liyangyu.com/people/connie.rdf">
</rdf:Description>

</rdfs:seeAlso>

</rdf:Description>

</rdf:RDF>

rdfs:seeAlso property in List 11.2 says that you can find more information
about resource http://www.liyangyu.com/foaf.rdf#liyang from anther
RDF document (connie.rdf). A given client can follow this link to download
connie.rdf and expect to be able to parse this file and collect more information
about the current resource.

This simple example in fact raises a very interesting question: when we build
our application, is it safe to assume that the value of rdfs:seeAlso property will
always be a document that can be parsed as RDF/XML?

Unfortunately, the answer is no. As we have discussed, the formal definition of
rdfs:seeAlso is couched in very neutral terms, allowing a wide variety of docu-
ment types. You could certainly reference a JPEG or PDF or HTML document with
rdfs:seeAlso, which are not RDF documents at all. Therefore, an application
should always account for all these possibilities when following the rdfs:seeAlso
link.

Sometimes, it is a good idea to explicitly indicate that rdfs:seeAlso property
is indeed used to reference a document that is in RDF/XML format. List 11.3 shows
how this can be implemented.

List 11.3 Use rdfs:seeAlso together with dc:format to provide more
information

<rdf:Description

rdf:about="http://www.liyangyu.com/foaf.rdf#liyang">
<foaf:name>liyang yu</foaf:name>

<foaf:title>Dr</foaf:title>

<foaf:givenname>liyang</foaf:givenname>

<!-- other descriptions here -->

<rdfs:seeAlso>

<rdf:Description

rdf:about="http://www.liyangyu.com/people/connie.rdf">
<dc:format>application/rdf+xml</dc:format>

</rdf:Description>

</rdfs:seeAlso>

</rdf:Description>

</rdf:RDF>

430 11 Linked Open Data

Another useful feature about rdfs:seeAlso is that it is often used as a typed
link, which can be very helpful to clients. List 11.4 shows one example of a typed
link specified using rdfs:seeAlso.

List 11.4 rdfs:seeAlso used with typed link

<rdf:Description
rdf:about="http://www.liyangyu.com/foaf.rdf#liyang">

<foaf:name>liyang yu</foaf:name>
<foaf:title>Dr</foaf:title>
<foaf:givenname>liyang</foaf:givenname>
<!-- other descriptions here -->
<rdfs:seeAlso>

<rdf:Description
rdf:about="http://www.liyangyu.com/publication/liyang">

<rdf:type
rdf:resource="http://example.org/someAuthorClassDefinition"/>

<dc:format>application/rdf+xml</dc:format>
</rdf:Description>

</rdfs:seeAlso>
<rdfs:seeAlso>

<rdf:Description
rdf:about="http://www.liyangyu.com/publication/yu_cv.rdf">
<rdf:type

rdf:resource="http://example.org/someResumeClassDefinition"/>
<dc:format>application/rdf+xml</dc:format>

</rdf:Description>
</rdfs:seeAlso>

</rdf:Description>
</rdf:RDF>

Imagine an application that is only interested in publications (not CVs). This
typed link will help the application to eliminate the second rdfs:seeAlso, but
only concentrate on the first one.

owl:sameAs is not something new either. It is defined by OWL to state that two
URI references refer to the same individual. It is now frequently used by Linked
Data publishers to create links between datasets. For example, Tim Berners-Lee, in
his own FOAF file, has been using the following URI to identify himself:

http://www.w3.org/People/Berners-Lee/card#i

and he also uses the following four owl:sameAs properties to state that the indi-
vidual identified by the above URI is the same individual as identified by these
URIs:

<owl:sameAs rdf:resource="http://identi.ca/user/45563"/>
<owl:sameAs
rdf:resource="http://www.advogato.org/person/timbl/foaf.rdf#me"/>
<owl:sameAs rdf:resource=
"http://www4.wiwiss.fu-berlin.de/bookmashup/persons/Tim+Berners-
Lee"/>

11.2 Publishing RDF Data on the Web 431

<owl:sameAs rdf:resource=
"http://www4.wiwiss.fu-berlin.de/dblp/resource/person/100007"/>

and clearly, some of these URIs can be used to link his FOAF document into the
Linked Data cloud. In fact, at this point, the last two URIs are indeed used for this
purpose.

owl:sameAs can certainly be used in other RDF documents. Generally speak-
ing, when instances of different classes refer to the same individual, these instances
can be identified and linked together by using owl:sameAs property. This directly
supports the idea that the same individual can be seen in different context as
entirely different entities, and by linking these entities together, we can discover
the unexpected facts that are both interesting and helpful to us.

The above discussion has listed some basic language constructs we can use to
create links. In practice, when it comes to creating links in RDF documents, there
are two methods: creating the links manually or generating the links automatically.
Let us briefly discuss these two methods before we close this section.

11.2.3.2 Creating Links Manually

Manually creating links is quite intuitive, yet it does require you to be familiar
with the published and well-known linked datasets out there, therefore you can pick
your linking targets. In particular, the following steps are normally followed when
creating links manually in your RDF document:

• Understand the available linked datasets.

This can be done by studying the currently available datasets published and orga-
nized by experts in the field. For example, as of July 2009, Richard Cyganiak
has published the LOD Cloud as shown in Fig. 11.7. The updated version can be
accessed from this location:

http://linkeddata.org/images-and-posters

And if you access this Linked Data collection at the above location, you can
actually click each dataset and start to explore that particular dataset. This will
help you to get an overview of all the datasets that are available today, and you
can also select the dataset(s) that you wish to link into.

• Find the URIs as your linking targets.

Once you have selected the datasets to link into, you can then search in these
datasets to find the URIs that you want to link to. Most datasets provide a search
interface, such as a SPARQL endpoint, so you can locate the appropriate URI
references for your purpose. If there is no search interface provided, you can
always use Linked Data browsers to explore the dataset, as we will discuss in a
later section.

With the above two steps, you can successfully create your links. Let us take a
look at a simple example.

432 11 Linked Open Data

Fig. 11.7 Richard Cyganiak’s clickable version of LOD cloud as of July 2009

Assume I have created my own FOAF document, and I am ready to create some
links which point to some available linked dataset. The first step is to choose such a
dataset. Let us say I would like to express the fact that I am interested in the Semantic
Web, and I need to find a dataset which describes the concept of the Semantic Web.
Since DBpedia is machine-readable version of Wikipedia, it is safe to assume that
DBpedia might already have included the concept of the Semantic Web. Therefore,
DBpedia is currently chosen as the target dataset.

The second step is to search in DBpedia datasets for the URI that represents the
Semantic Web. In fact, I have found the following URI that describes this concept:

http://dbpedia.org/resource/Semantic_Web

and with this, I can add the following link into my own FOAF:

<http://www.liyangyu.com/foaf.rdf#liyang>
foaf:topic_interest <http://dbpedia.org/resource/Semantic_Web>.

11.2 Publishing RDF Data on the Web 433

This will successfully put my own small FOAF document into the Web of Linked
Data.

In some cases, you can use a relatively direct way to find the URI reference that
you can use to create your links. For example, without selecting any datasets, we
can directly search the phrase “the Semantic Web” in Sindice.com. We can easily
find a list of URIs that have been created to identify this concept, including the URI
coined by DBpedia.

11.2.3.3 Creating Links Automatically

Compared to manually creating links, generating links automatically is certainly
more efficient and more scalable, and it is always the preferred method if possible.
However, at the time of this writing, there is still a lack of good and easy-to-use tools
to automatically generate RDF links. In most cases, dataset-specific algorithms have
to be designed to accomplish the task. In this section, we will briefly discuss this
topic so as to give you some basic idea along this direction.

A collection of often used algorithms is the so-called pattern-based algorithms.
This group of algorithms take advantage of the fact that for a specific domain,
there may exist some generally accepted naming pattern, which could be useful
for generating links.

For example, in the publication domain, if ISBN is included as part of the URI
that is used to identify a book, such as the case in the RDF Book Mashup dataset,
then a link can be created with ease. More specifically, DBpedia can locate all the
wiki pages for books, and if a given wiki page has an ISBN number included, this
number is used to search among the URIs used by RDF Book Mashup dataset. When
a match is found, an owl:sameAs link will be created to link the URI of the book in
DBpedia to the corresponding RDF Book Mashup URI. This algorithm has helped
to generate at least 9000 links between DBpedia and RDF Book Mashup dataset.

In cases where no common identifiers can be found across datasets, more com-
plex algorithms have to be designed based on the characteristics of the given
datasets. For example, many geographic places appear in Geonames4 dataset as
well as in DBpedia dataset. To make the two sets of URIs representing these places
link together, the Geonames team has designed a property-based algorithm to auto-
matically generate links. More specifically, properties such as latitude, longitude,
country, and population are taken into account, and a link will be created if all
these properties show some similarity as defined by the team. This algorithm has
generated about 70,500 links between the datasets.

As a summary, automatic generation of links is possible for some specific
domain, or with a specifically designed algorithm. When it is used properly, it is
much more scalable than the manual method.

4http://www.geonames.org/ontology/

434 11 Linked Open Data

11.2.4 Serving Information as Linked Data

11.2.4.1 Minimum Requirements for Being Linked Open Data

Before we can put our data onto the Web, we need to make sure it satisfies some
minimal requirements in order to be qualified as “Linked Data on the Web”:

1. If you have created any new URI representing non-information resource, this
new URI has to be dereferenceable in the following sense:

– your Web server must be able to recognize the MIME-type application/

rdf+xml;
– your Web server has to implement the 303 redirect as described in

Sect. 11.2.1.3. In other words, your Web server should be able to return a
HTTP response containing a HTTP redirect to a document that satisfies the
client’s need (either an rdf+xml document or a html+text document, for
example);

– if implementing 303 redirect on your Web server is not your plan, your new
URIs have to be hash URIs as we have discussed in Sect. 11.2.1.5.

2. You should include links to other data sources, so a client can continue its nav-
igation when it visits your data file. These links can be viewed as outbound
links.

3. You should also make sure there are external RDF links pointing at URIs con-
tained in your data file, so the open Linked Data cloud can find your data. These
links can be viewed as the inbound links.

At this point, these requirements should look fairly straightforward. The follow-
ing are some technical details that you should be aware of.

First off, you need to make sure your Web server is able to recognize the
rdf+xml as a MIME type. Obviously, this is necessary since once you have pub-
lished your data into the Linked Data cloud, different clients will start to ask for
rdf+xml files from your server. In addition, this is a must if you are using hash
URIs to identify real-world resources.

A popular tool we can use for this purpose is called cURL,5 which provides a
command-line HTTP client that communicates with a given server. It is therefore
able to help us to check whether a URI supports some given requirements, such
as understanding rdf+xml as a MIME type, supporting 303 redirects and content
negotiation, just to name a few.

To get this free tool, go to this place:

http://curl.haxx.se/download.html

and on this page, you will find different packages for different platforms. For
windows users, you can find the download here:

http://curl.haxx.se/download.html#Win32

5http://curl.haxx.se/

11.2 Publishing RDF Data on the Web 435

Once you have downloaded the package, you can extract it to a location of your
choice, and you should be able to find curl.exe in that location. You can then start
to test whether a given server is able to recognize the rdf+xml MIME type.

For testing purpose, we can request my own URI as follows:

curl -I http://www.liyangyu.com/foaf.rdf#liyang

Note that the –I parameter has to be used here (refer to cURL’s documentation
for details). Once we submit the above line, the server sends back the content type
and other HTTP headers along with the response. For this example, the following is
part of the result:

HTTP/1.1 200 OK

Last-Modified: Tue, 11 Aug 2009 02:49:10 GMT

Accept-Ranges: bytes

Content-Length: 1152

Content-Type: application/rdf+xml

Connection: close

The important line is the Content-Type header. We see the file is served as
application/rdf+xml, just as it should be. If we were to see text/plain here
or if the Content-Type header was missing, the server configuration would have
to be changed.

When it comes to fixing the problem, it does depend on the server. Use Apache
as an example, the fix is simple: just add the following line to httpd.conf file,
or to a .htaccess file in the Web server’s directory where the RDF files are
located:

AddType application/rdf+xml.rdf

That is it. And since you are on it, you might as well go ahead and add the
following two lines to make sure your Web server can recognize two more RDF
syntaxes, i.e., N3 and Turtle:

AddType text/rdf+n3;charset=utf-8.n3
AddType application/x-turtle.ttl

Now, when it comes to configuring your Web server to implement 303 redirect
and furthermore content negotiation, it is unfortunately not all that easy. This pro-
cess depends heavily on your particular Web server and its local configuration; it
is some times quite common that you may not even have the access rights that
are needed to make the configuration changes. Therefore, we will not cover this in
detail, but remember, it is one step that is needed to publish Linked Data on the Web
and it is not hard at all if you have the full access to your server.

With all these said, let us take a look at one example showing how to publish
Linked Data on the Web.

436 11 Linked Open Data

11.2.4.2 Example: Publishing Linked Data on the Web

A good starting point is to publish our own FOAF files as Linked Data on the Web.
Let us start with my own FOAF file. To satisfy the minimal requirements that we
have discussed above, we can follow these steps:

Step 1. Check whether our Web server is configured to return the correct MIME
type when serving rdf/xml files.

Let us assume this step has been done correctly or you can always follow the
previous discussion to make sure your Web server is configured properly.

Step 2. Since we are not going to configure our Web server to implement 303
redirect and content negotiation, we decide to use Hash URI to identify myself:

http://www.liyangyu.com/foaf.rdf#liyang

Again, when a client attempts to dereference this URI, the hash fragment
(#liyang) will be taken off by the client before it sends the URI to the server.
The resulting URI is therefore given by the following:

http://www.liyangyu.com/foaf.rdf

Now, all we need to do is to make sure that we put the RDF file, foaf.rdf,
at the right location on the server, so a client submitting the above URI will be
able to look into the response and find the RDF file successfully.

In this example, foaf.rdf file should be located in the root directory on our
server, and it could look like something as shown in List 11.5.

List 11.5 My own FOAF document

1: <?xml version="1.0" encoding="UTF-8"?>
2: <rdf:RDF
3: xml:lang="en"
4: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
5: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
6: xmlns:foaf="http://xmlns.com/foaf/0.1/">
7:
8: <rdf:Description
8a: rdf:about="http://www.liyangyu.com/foaf.rdf#liyang">
9: <foaf:name>liyang yu</foaf:name>
10: <foaf:title>Dr</foaf:title>
11: <foaf:givenname>liyang</foaf:givenname>
12: <foaf:family_name>yu</foaf:family_name>
13: <foaf:mbox_sha1sum>1613a9c3ec8b18271a8fe1f79537a7b08803d896
13a: </foaf:mbox_sha1sum>
14: <foaf:homepage rdf:resource="http://www.liyangyu.com"/>
15: <foaf:workplaceHomepage
15a: rdf:resource="http://www.delta.com"/>
16: <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
17: </rdf:Description>
18: </rdf:RDF>

11.2 Publishing RDF Data on the Web 437

Step 3. Make sure you have outbound links.

We can add some outbound links to the existing linked datasets. As
shown in List 11.6, properties <foaf:knows> (lines 18–24) and <foaf:

topic_interest> (line 26) are used to add two outbound links. This will
ensure any client visiting my FOAF document can continue its journey into the
Linked Data cloud.

List 11.6 My FOAF document with outbound links
1: <?xml version="1.0" encoding="UTF-8"?>
2: <rdf:RDF
3: xml:lang="en"
4: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
5: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
6: xmlns:foaf="http://xmlns.com/foaf/0.1/">
7:
8: <rdf:Description
8a: rdf:about="http://www.liyangyu.com/foaf.rdf#liyang">
9: <foaf:name>liyang yu</foaf:name>
10: <foaf:title>Dr</foaf:title>
11: <foaf:givenname>liyang</foaf:givenname>
12: <foaf:family_name>yu</foaf:family_name>
13: <foaf:mbox_sha1sum>1613a9c3ec8b18271a8fe1f79537a7b08803d896
13a: </foaf:mbox_sha1sum>
14: <foaf:homepage rdf:resource="http://www.liyangyu.com"/>
15: <foaf:workplaceHomepage
15a: rdf:resource="http://www.delta.com"/>
16: <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
17:
18: <foaf:knows>
19: <!-- the following is for testing purpose -->
20: <foaf:Person>
21: <foaf:mbox
21a: rdf:resource="mailto:libby.miller@bristol.ac.uk"/>
22: <foaf:homepage
22a: rdf:resource="http://www.ilrt.bris.ac.uk/~ecemm/"/>
23: </foaf:Person>
24: </foaf:knows>
25:
26: <foaf:topic_interest
26a: rdf:resource="http://dbpedia.org/resource/Semantic_Web"/>
27:
28: </rdf:Description>
29: </rdf:RDF>

Step 4. Make sure you have inbound links.

This step is to make sure my FOAF document can be discovered by the outside
world. The details about this can be found in Chap. 7, refer back to that chapter
if you need to.

After these four steps, we are ready to upload my FOAF document onto the server
at the right location and claim success. However, for those curious minds, how do

438 11 Linked Open Data

we know it is published as Linked Data correctly based on the given standards? Is
there a way to check this?

The answer is yes, and let us now take a look at how to make sure we have done
everything correctly.

11.2.4.3 Make Sure You Have Done It Right

Just as we have validators for checking RDF documents including RDF instance
files and OWL ontologies, we also have Linked Data validator which can be used to
confirm whether some structured data are published correctly as Linked Data, based
on the current best practices as we have been discussing in this chapter.

Here is one such tool you can use. It is called Vapour and you can access this
service from this location:

http://vapour.sourceforge.net/

and Fig. 11.8 shows this page.
Let us again use my own FOAF document as shown in List 11.6 as the example,

and we will validate whether this FOAF document is published correctly as Linked

Fig. 11.8 Vapour: a Linked Data validator

11.3 The Consumption of Linked Data 439

Fig. 11.9 Check my own URI to make sure it is published correctly as Linked Data

Data. To do so, click try our public service link in Fig. 11.8 and enter the
following URI as shown in Fig. 11.9:

http://www.liyangyu.com/foaf.rdf#liyang

Once we click Check button, we get the result as shown in Fig. 11.10. Clearly,
all tests are passed, meaning that my FOAF document is indeed published correctly
as Linked Data.

You can also see more details on the same page if you try this test out, including
dereferencing resource URI with and without content negotiation. As a summary, it
is always a good idea to use a validation service when you publish Linked Data on
the Web, to make sure your data will participate in the loop successfully.

11.3 The Consumption of Linked Data

Now that we understand how the Web of Linked Data is built, the next step is to
study what to do with it. In general, this involves discovering Linked Data, accessing
Linked Data, and building applications that run on top of the Web of Linked Data,
as summarized below:

440 11 Linked Open Data

Fig. 11.10 Validating result from Fig. 11.9

• Discovery of Linked Data

For a given resource in the world, for example, a city or a tennis player, how do
we know this resource has already been a subject of Linked Data? Is there any
Linked Data search engine that crawls the Web of Linked Data by following links
between data sources, and therefore provides answers to our questions?

• Accessing Linked Data

We use Web browsers to access our current Web, the Web of documents. For the
Web of Linked Data, do we have similar Linked Data browsers that we can use to

11.3 The Consumption of Linked Data 441

access the Web of Linked Data? If we have indeed discovered some Linked Data
that we are interested in, how can we start from there? And by using Linked Data
browser, can we start browsing in one data source and then navigate along links
into related data sources?

• Applications built upon Linked Data

Given the fact that the Web of Linked Data is built for machine to read and under-
stand, we can go beyond discovery and accessing the Web of Linked Data and
create new applications built upon the Web of Linked Data. Compared to Web 2.0
mashups, Linked Data applications offer much more flexibility and completeness
in their operations, as we will see later in this chapter.

11.3.1 Discover Specific Target on the Linked Data Web

In the world of traditional hypertext Web, discovery almost exclusively means using
one of the major search engines to find the information you are interested in. Search
engines are therefore the places where the navigation process begins.

For the Web of Linked Data, the same is true: we need search engines that can
work on the Web of Linked Data and therefore can provide us with a tool to make
our discovery.

It will not be too surprising if you are seeing a different look-and-feel from the
search engines that work on the Web of Linked Data. After all, the Web of Linked
Data is quite different from our traditional Web of documents. In fact, Semantic
Web search engines are mostly geared toward the needs of applications, not that of
human eyes. Nevertheless, some researchers and developers have designed search
engines that have a similar look-and-feel as the traditional search engines, and this
breed of search engines can be very useful to at least some user groups.

In this section, we will cover both these types, with the goal of discovering
Linked Data on the Web. To make things easier, we will start from those Semantic
Web search engines that look familiar to our human eyes.

11.3.1.1 Semantic Web Search Engine for Human Eyes

First off, remember that these kinds of search engines are Semantic Web search
engines from their roots. Instead of crawling the Web of document and indexing
each document, these search engines crawl the Web of Linked Data by following
their RDF links, and prepare their indexations based on the Web of Linked Data.

Falcons is a good example of this type of search engine. Falcons represents
“Finding, Aligning and Learning ontologies, ultimately for Capturing knowledge
via ONtology-driven approacheS,” and it is developed by the Institute of Web
Science (IWS), Southeast University of China. You can access it from the following
link:

http://iws.seu.edu.cn/services/falcons/

442 11 Linked Open Data

The first thing to note about Falcons is that it provides a keyword-based search
service, i.e., the user is presented with a search box, where keywords related to the
topics in mind can be entered. Falcons then reacts by returning a list of results that
may be related to the topic. Clearly, this closely mimics the same look-and-feel
offered by current market leaders such as Google and Yahoo!.

Let us say we want to discover if there is any Linked Data about tennis player
Roger Federer. Obviously, if Roger Federer is indeed mentioned in the Web of
Linked Data, he has to be some instance of a given class. For example, he could
be an instance of some class such as Person defined in some ontology. With this in
mind, we should use the Object search in Falcons, and enter Roger Federer in the
search box. This will tell Falcons that the results we are searching for has to contain
“Roger Federer” as keywords and should be coming from some instance data, not
class or type definitions.

Once we submit this query, Falcons responses by returning a list of results. When
presenting the results, for each object (instance data), Falcons shows its title, label,
comment, image, page, type, and URI, if applicable. Clearly, for the Web of Linked
Data, type and URI are all important since type identifies the class of this instance
data, and URI uniquely identifies the instance. For our example, the first result is a
good hit: the URI is given by

http://dbpedia.org/resource/Roger_Federer

and its type is Person. Clearly, the above URI comes from DBpedia, and we know
already that DBpedia is a key component of Linked Data. Therefore, just based
on the very first result, we know we have discovered some Linked Data for ten-
nis player Roger Federer, which can be a good start point for whatever we plan to
do next.

Note that Falcons also provides a Type pane together with the search result, and
this is in fact a very useful feature. Recall that when we first started our search for
any Linked Data related to Roger Federer, we can only say that if this data exists,
it has to be some instance data of some class type. However, we don’t really know
what exactly this class type is, except that the correct type should be something like
Person or Athlete.

Now, the Type pane on the result page shows all the types that are found in the
results. Note that the initial search will focus on “Any type”, therefore it does not
put any further constraints on the type at all. Once we have the initial results back,
we can further narrow down the type by clicking a specific type in the Type pane.
For example, we can click Person in the Type pane, telling Falcons that we believe
Roger Federer should be an instance of some Person class. Once we do this, all
the sub-classes of type Person are now summarized in Type pane, and you can
continue to narrow down your search. Therefore, Object search can be guided by
recommended concepts, and we can further refine search results by selecting object
types.

Besides Object search tab as we have discussed above, Falcons provides two
more search tabs: Concept and Document. Concept search is not much related
to discovering Linked Data on the Web, it is more suited for locating classes and

11.3 The Consumption of Linked Data 443

properties defined in ontologies that are published on the Web. It is quite useful if
you want to find classes and properties that you can reuse, instead of inventing them
again.

Document search gives you a more traditional search engine experience, espe-
cially the look-and-feel of the search results. If you search for Roger Federer, any
RDF document that contains these words will be returned as part of the result
list, be these search items in the instance data or the class or property definitions.
Although not quite efficient, this search can also be used to discover Linked Data on
the Web.

11.3.1.2 Semantic Web Search Engine for Applications

We have made use of Sindice search engine in previous sections, with the goal of
discovering if there is any URI existing for some real-world object that we would
like to talk about. For example, if we want to say something about Roger Federer,
we can use Sindice to discover the URI for him, as shown in Figs. 11.3 and 11.4.

Sindice search engine therefore can also be used as a tool to discover Linked Data
on the Web. When used by human users, it has a similar look-and-feel as Falcons
does: a certain number of keywords can be provided to Sindice, and Sindice will
return RDF documents on the Web which contains these keywords.

Furthermore, if you know the URI for some real-world object, you can search it in
Sindice, and Sindice will return all the RDF documents on the Web which contains
this given URI. For example, Fig. 11.11 shows the result from Sindice when we
search for the URI of Roger Federer.

Clearly, these RDF documents are all linked to some extent since they all have
the URI of Roger Federer in their triples.

By far, Sindice feels much like Falcons. As human users, we can use both to
discover Linked Data on the Web. However, there is more to Sindice: it can be used
by applications as well.

We have not yet discussed Linked Data applications at this point. However, it is
quite intuitive to realize that the first thing each Linked Data application will have
to do is to somehow harvest some Linked Data before it can do anything interesting
with the data. As a result, each Linked Data application will have to implement
its own crawling and indexing component, just to find the interested Linked Data.
Clearly, moving this common infrastructure for crawling and indexing the Web of
Linked Data to a search engine that each individual Linked Data application can
then use will be a much better and cleaner design.

This is the rationale behind the design and implementation of Sindice’s Data Web
Services API and also the reason why we claim Sindice can be a search engine used
by applications. More specifically, each application, by using the Sindice API, can
query Sindice’s collection and receive a set of links that point to those potentially
relevant RDF documents, which can then be processed by the application to create
other interesting results.

At the time of this writing, Sindice API is still in early beta version and is expe-
riencing rapid changes and developments. Therefore, we are not going to show any

444 11 Linked Open Data

Fig. 11.11 Sindice results when searching for the URI of Roger Federer

concrete examples here, but the basic idea as we have discussed above will not
change.

Before we conclude this section, let us very briefly discuss two more Semantic
Web search engines, just to give you a flavor of other choices when it comes to
discovering Linked Data on the Web:

• SWSE

SWSE (Semantic Web Search Engine) is developed by DERI Ireland and
can provide search capabilities more suitable toward human users. It accepts
keyword-based search and further offers access to its underlying data store via
SPARQL query language. At this point, you can access SWSE from this URL:

http://swse.deri.org/

11.3 The Consumption of Linked Data 445

Also, note that similar to Sindice, SWSE is more related to search for instance
data, not types and properties.

• Swoogle

Swoogle is developed by UMBC Ebiquity Research group, which consists of
faculty and students from the Department of Computer Science and Electrical
Engineering (CSEE) of University of Maryland, Baltimore County (UMBC).
Unlike Sindice or SWSE, Swoogle is designed to search ontologies that related
to the concepts provided by its users. Swoogle also provides Web services to the
public users, which can be used by applications that are built on top of the Linked
Data Web. At this point, Swoogle can be accessed at this location:

http://swoogle.umbc.edu/

11.3.2 Accessing the Web of Linked Data

Accessing the Web of Linked Data has two different meanings. First, human users
can access it in a way that is similar to what has been done in traditional Web of doc-
uments, i.e., Linked Data browsers can be used to manually navigate from one data
source to another. Second, applications that are built to understand Linked Data can
access the Linked Data Web and further accomplish different requirements from us.
For example, the so-called Follow-Your-Nose method can be used by applications
to browse the Web of Linked Data. In this section, we will take a closer look at both
these methods.

11.3.2.1 Using a Linked Data Browser

As human users, we can access the Web of Linked Data manually. This normally
requires us to discover a specific piece of Linked Data on the Web first, which is
then used as the starting point for further navigation on the Web of Linked Data.

As traditional Web browsers allow us to access the Web by following hyper-
text links, their counterparts in the Web of Linked Data, the so-called Linked Data
browsers, allow us to navigate from the starting data source to the next data source.
This process can go on by following links that are expressed and coded as RDF
triples, and that is all there is to it when it comes to manually accessing the Web of
Linked Data.

Therefore, the key component in this process is the Linked Data browser. To
learn how to manually access the Linked Data Web is to learn how to use one of
these browsers.

In recent years, there are quite a few browsers that have been developed and
deployed for public use. To find a list of these browsers, you can visit the W3C’s
ESW Wiki page,6 which is also updated quite frequently.

6http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/SemWebClients

446 11 Linked Open Data

In this section, we will take the Sig.ma browser as an example to show you how
Linked Data browsers can be used to access the Web of Linked Data.

Sig.ma is built on top of Sindice, which provides the data needs for Sig.ma. To
some extend, Sig.ma acts much like Sindice’s front-end GUI. You can access Sig.ma
at this location:

http://sig.ma/

And its main page is shown in Fig. 11.12.
To start using it, simply enter the keywords you want to search in the input box

and hit the SEARCH button, quite like using Sindice as a search engine. Obviously,
this step is to find some entry point to access the Web of Linked Data.

Once you hit the SEARCH button, Sig.ma starts its work by doing the following
steps:

1. select 20 data sources from the Web of Linked Data based on the keywords you
have entered;

2. aggregate the information contained in these data sources; and
3. present the aggregated information and the data sources back to the user.

Note the first step is accomplished by using the underlying Sindice search engine
to carry out a keyword-based search in the Web of Linked Data to select the relevant

Fig. 11.12 Sig.ma: a Linked Data Web browser

11.3 The Consumption of Linked Data 447

data sources. If there are less than 20 data sources that are considered to be relevant
to the given keywords, then whatever that are available will be included in the result
set. If there are more than 20 data sources that are relevant, you can add the other
data sources later on, as will be discussed soon.

Aggregating over the selected data sources essentially means to collect every-
thing each data source says about the resource or concept represented by the
keywords you have provided. And since the data sources are all taken from the
Web of Linked Data, aggregating different data sources can be done easily.

Once the first two steps are done, Sig.ma presents the results back to the user by
dividing the screen into the left pane and the right pane. The left pane shows the
aggregated information, which is called the “sigma” for this search. The right pane
shows the data sources based on which the sigma is obtained.

Let us use one example to see how it works. This time, instead of searching for
Roger Federer, I will search for myself. The reason being that if we were to search
Roger Federer, there would be too many datasets to be included. To show you how
to use Sig.ma, a search that does not yield too many results is better.

Now, enter the keywords “liyang yu” in the search box (remember to include
them in a pair of double quotes). Once you hit the SEARCH button, you will be
presented with the result page as shown in Fig. 11.13 (notice if you are trying it, it
is likely that what you see is not the same as what we printed here, and the reason is
obvious).

Fig. 11.13 Using Sig.ma to search for “liyang yu”

448 11 Linked Open Data

Let us first take a look at the left pane, i.e., the sigma of this search. It is quite
different from what you would have seen if you had used a Google search. More
specifically, Google search simply gives you back a list of links that point to a col-
lection of Web pages, with each one of them containing the keyword “liyang yu.”
Google itself is not able to tell you the fact such as, on a given Web page, the word
Liyang shows up as a given name, and on some other page, the word Yu shows up
as a family name, so on and so forth.

For Sig.ma, however, this is not difficult at all. It knows not only that the word
Liyang is a given name and the word Yu is a family name, but quite a lot more.
For example, it can tell the string liyang910@yahoo.com represents my e-mail
address. Clearly, since Sig.ma is built upon a Web of Linked Data, it is therefore
able to present the result in a way that seems like the machine is able to understand
all the data sources it has encountered during its search.

Now since the sigma pane shows the result of data aggregation, it is certainly
useful to include the data sources that have been used to obtain the current sigma.
This is the right pane, as shown in the Fig. 11.13. For discussion purpose, let us call
it the source pane.

It is very easy for Sig.ma to trace the data source for each information segment
in the sigma. For example, if you hover your mouse over the given name “Liyang”,
at least four data sources in the source pane will be highlighted, telling us that this
information is included in all these four data sources, as shown in Fig. 11.14.

In fact, each data source in the source pane has a number associated with it, indi-
cating how many facts are collected from this particular data source. For example,
data source number 4

http://www.liyangyu.com/

has contributed three facts to the current sigma, as shown in Fig. 11.13. To see a
detailed list of these three facts, hover your mouse over this document; the facts
from this document will be highlighted in the sigma pane, as shown in Fig. 11.15.

Note that there is a pop-up menu showing up when you hover the mouse over
data source number 4 (see Fig. 11.15). The first selection in this pop-up menu is
called solo, which is a very useful tool: if you click solo, the current sigma will
show only the facts that are collected from this data source, as seen in Fig. 11.16.

To go back to the complete list of facts, simply click unsolo, as you can
easily tell.

Another useful feature of Sig.ma is the ability to approve and reject data sources.
Recall the fact that search in Sig.ma is based on keyword matching, i.e., when it
scans a given RDF data source, it looks for the keywords in that document. The
keywords themselves can appear in a comment, a label, or the string value of a given
subject. They can also show up in a URI that identifies a subject, a predicate, or an
object. As the developers of Sig.ma have pointed out, since very simple strategies
have been on purpose chosen at this stage to filter data source candidate, it is quite
possible that a given data source is in fact not the data source you are looking for.

In the case where a given data source should not be included in the sigma, you can
simply click the reject button from the pop-up menu in the source pane (you need
to hover the mouse over the selected source data document). Once this is done, all

11.3 The Consumption of Linked Data 449

Fig. 11.14 Hovering the mouse over Liyang will show the data sources from where this
information is obtained

the facts in the current sigma will be removed and the data source will be removed
as well. For example, go back to Fig. 11.13; we can reject document number 4 by
easily following these steps.

It is now easy to understand the approve selection. Clicking approve for a
given data resource means that this data source is highly relevant to the search and
should stay in the source pane at all times.

Besides rejecting and/or approving the data source files contained in the current
source pane, I can click Add More Info button in the sigma pane to ask Sig.ma
to search more datasets. Once more data sources have been added, I can start to
filter them again by applying the same rejecting/approving process until all the data
sources are stable in the source pane.

Figure 11.17 shows my final sigma. As you can tell, I have rejected altogether 12
data sources to reach this sigma.

In fact, my final sigma presents a set of entry points to the Web of Linked Data,
since each one of the corresponding data sources in the source pane contains links
to the Web of Linked Data. It is now time to start our navigation by following these
links.

Let us get back to Fig. 11.17. Note the label topic interest: and its value
Semantic Web. Clicking this link brings us to a brand new sigma as shown in
Fig. 11.18.

450 11 Linked Open Data

Fig. 11.15 Hover mouse over a data source document, all the facts from this document will be
highlighted

As you can tell, the sigma about Semantic Web opens another new entry to the
Linked Data Web for you to explore. For example, you can do the following:

• you can start to explore Jena Semantic Web Framework;
• you can start to read more about Resource Description Framework (RDF);
• you can start to understand OWL;
• and more.

I will leave this to you to continue, and Sig.ma is an excellent tool to search and
access the Web of Linked Data.

Finally, note that we have only covered some basic functionality provided by
Sig.ma. Sig.ma was first released on 22 July 2009, and given the fact that it is expe-
riencing constant development and improvement, at the time when you are reading
this book, you will likely see a different version of Sig.ma. However, the basics
should remain the same.

11.3.2.2 Using SPARQL Endpoints

We have discussed how to use Linked Data browsers to access the Web of Linked
Data manually in the previous section. While it is a useful way to explore the Linked

11.3 The Consumption of Linked Data 451

Fig. 11.16 Click solo will show only the facts collected from the selected data source in the
sigma pane

Data, it does not take full advantage of the fact that the Web of Linked Data contains
structured data, which means that we can actually access the Linked Data by using
a query language.

In this section, we will use SPARQL to access the Web of Linked Data. In fact,
this is not something completely new to us. In Chap. 10, we have discussed how to
use SPARQL to access DBpedia. We will expand the same idea and show you how
to use SPARQL to access the Web of Linked Data in general.

A good start point is the current Linked Data cloud presented in Fig. 11.7.
Again, the benefit of accessing it online is that you can get the version that is
clickable: when you click a dataset, it directly takes you to the home site of that
dataset.

Now, let us say that we want to understand more about Musicbrainz, which at
this point we know nothing about. Clicking this dataset takes us to the home site of
Musicbrainz. On its home site, we can find the following SPARQL endpoint (note
that not all the datasets provide SPARQL endpoints):

http://dbtune.org/musicbrainz/snorql/

and opening this endpoint will give us the query interface supported by the
dataset.

452 11 Linked Open Data

Fig. 11.17 My final sigma after rejecting 12 data sources

Now, to explore this dataset, or rather, to explore any given dataset, we can always
start from two general queries. The first query is given below:

SELECT DISTINCT ?concept

WHERE

{[] a ?concept}

This shows all classes that are used in a given dataset. Note that there might be
a large number of classes used, and some of them might look unfamiliar to you.
However, this query can give you some feeling about what the given dataset is all
about.

Let us try this query on the Musicbrainz dataset. Enter the above query in the
query box, but change the query so it looks like this:

SELECT DISTINCT ?concept

WHERE

{[] a ?concept}

LIMIT 10

Adding LIMIT 10 is to make sure the query can be executed in a reason-
able amount of time. You can change it to another integer number if you prefer,
such as 20.

11.3 The Consumption of Linked Data 453

Fig. 11.18 Clicking Semantic Web from Fig. 11.17 will take us to this new sigma

Once you submit the query, you should get some results back. For example, part
of the classes I got is shown as follows:

bio:Birth

bio:Death

db:vocab/puidjoin

db:vocab/l_label_track

db:vocab/lt_artist_label

db:vocab/lt_artist_artist

lingvoj:LinguisticSystem

mo:MusicArtist

mo:Performance

mo:Release

mo:Record

Again, by the time you are reading this book, you could get different results
back.

Now, the above class list will give us some basic idea about what is covered in
this dataset. For example, this dataset is more about some music artists, their albums,
their performance, so on and so forth.

454 11 Linked Open Data

The second useful query is similar to the first one. It asks all the properties that
are included in a given dataset:

SELECT DISTINCT ?property

WHERE

{?sub ?property ?obj}

Again, you might want to use it together with LIMIT 10 constraint, just to make
sure the performance of the endpoint is acceptable:

SELECT DISTINCT ?property

WHERE

{?sub ?property ?obj}

LIMIT 10

The following is the result:

rdfs:label

db:vocab/puidjoin_puid

db:vocab/puidjoin_usecount

db:vocab/puidjoin_id

db:vocab/puidjoin_track

rdf:type

db:vocab/l_label_track_enddate

db:vocab/l_label_track_link_type

db:vocab/l_label_track_begindate

db:vocab/l_label_track_modpending

As you can tell, the above two queries are very useful when you know nothing
about the dataset. In fact, some SPARQL endpoints have included these two queries
for you as your default starting point.

After these two general queries, it is up to you to continue your exploration. In
most cases, what you will be doing depends on the results from these two queries.
For example, for the Musicbrainz dataset, I am interested in mo:MusicArtist

class, and I want to find who is a member of this class. To do so, I will use the
following query:

SELECT ?artist

WHERE

{?artist a <http://purl.org/ontology/mo/MusicArtist> }

LIMIT 10

And I got 10 instances of mo:MusicArtist back. One of them is the
following:

db:artist/0002260a-b298-48cc-9895-52c9425796b7

11.4 Linked Data Application 455

To know more about this instance, I continue to execute the following query:

SELECT ?property ?hasValue ?isValueOf

WHERE {

{ <http://dbtune.org/musicbrainz/resource/artist/

0002260a-b298-48cc-9895-52c9425796b7> ?property ?hasValue }

UNION

{ ?isValueOf ?property

<http://dbtune.org/musicbrainz/resource/artist/

0002260a-b298-48cc-9895-52c9425796b7> }

}

This query will find everything that has been said about this artist. Once you
execute the query, you will get the name of the artist, the label, etc. Obviously, we
can continue like this by following a number of different directions, and at some
point, we will find ourselves moving on to explore other datasets.

The point is clear: besides using Semantic Web browsers or Semantic Web search
engines to access the Web of Linked Data, it is also very useful and efficient to
access it by using SPARQL queries. After all, search engines will point you to a set
of documents that might contain the answer, but SPARQL queries can directly give
you the answer you need.

11.3.2.3 Accessing the Linked Data Web Programmatically

The most significant difference between our current Web and the Web of Linked
Data is the fact that the Web of Linked Data is processable by machine. Given this,
it is certainly possible to access the Web of Linked Data programmatically, and it
has already been the backbone of many Linked Data applications (as we will see in
the next section).

Different applications may implement different ways of accessing the Web of
Linked Data. However, two basic methods of accessing the Linked Data Web should
be understood: one is referred to as Follow-Your-Nose method, the other is about
issuing SPARQL queries within your application by using supporting tools.

The best way to learn these two methods is by going through some examples.
Since these two methods are quite generic, they are discussed in Chap. 14; you can
find working example for each method there. For now, we will move on with the
discussion of Linked Data applications.

11.4 Linked Data Application

Discovering and accessing Linked Data is only the first step, our ultimate goal is
to build applications that make use of Linked Data. In this section, we present one
popular example to show you how Linked Data can be used.

456 11 Linked Open Data

11.4.1 Linked Data Application Example: Revyu

11.4.1.1 Revyu: An Overview

Revyu is a Web site that everyone can login to review and rate anything in the world.
However, it is not just another review site; it is developed by using the Semantic
Web technologies and standards, and by following Linked Data principles and best
practices. More importantly, it also consumes Linked Data from the Web to enhance
its user experience.

Revyu is implemented in PHP and runs on a regular Apache Web server. It can
be accessed at this location:

http://revyu.com/

A registered user can review and rate things by filling out a Web form, which
does not require any knowledge of the Semantic Web. Once finished, the user can
submit this review form and the review will show up at the site.

This does not sound too much different from other review sites at all. However,
lots of things will then happen inside Revyu. To understand all these, we first need
to understand one fact: every review created in Revyu is also expressed as an RDF
graph, besides its normal look-and-feel on the Web.

Let us look at one example. From Revyu home page, click Search Things link
to search for the movie Broken Flowers, for which a review has been created as an
example by Tom Heath, the creator of Revyu. Figure 11.19 shows the review page
of the movie Broken Flowers.

On this page, click the link which identifies the reviewer. In this case, the link
reads as by tom on 30 Jan 2007. Once you click this link, you will land on the
page as shown in Fig. 11.20.

On the right side of the page, you will find a link called RDF Metadata for

this Review of Broken Flowers (the right-hand side of Fig. 11.20). Clicking
this link will take us to the RDF format of this review.

With the understanding that every review in Revyu has its RDF representation,
let us now take a look at what will happen inside Revyu when a review is submitted
by a user.

• All things represented in Revyu are assigned with URIs.

At the moment a review is submitted, the reviewer (i.e., the user), the review the
user creates, and the resource being reviewed are all assigned with URIs. Also,
the tags used when reviewing the resource are assigned with URIs as well (will
discuss tags later this section).

Note that Revyu is designed to follow the four basic principles of Linked Data
discussed early in this chapter. To see this, we can open the RDF document which
represents the review of Broken Flowers and locate the URI Revyu has assigned
to Tom Heath:

http://revyu.com/people/tom

11.4 Linked Data Application 457

Fig. 11.19 Review page for the movie Broken Flowers

Since this URI represents a non-information resource, if it is derefer-
enced, our Internet browser should receive a HTTP 303 See Other response.
Furthermore, our browser should also receive a URL pointing to a document that
describes the resource, in this case, Tom Heath.

To test this, let us paste the above URI into our Web browser, and we will be
taken to another URL given as below:

http://revyu.com/people/tom/about/html

which contains a HTML description about Tom.
In fact, content negotiation is also supported by Revyu: if a user agent asks for

HTML format, it will receive a HTML document located at the above URL, and
if it asks for an RDF format, it will receive an RDF description located at this
URL:

http://revyu.com/people/tom/about/rdf

• Tags are used to create links to the datasets on the Web of Linked Data.

Obviously, the collection of reviewed items is at the center of any review site.
As we have discussed, every item in this collection has been assigned a URI by

458 11 Linked Open Data

Fig. 11.20 Reviewer page of tom

Revyu. However, an isolated URI will not be of much value unless one of the
following two (or both) can happen:

– it is associated with another resource URI contained in another dataset, by
using owl:sameAs or rdfs:seeAlso property;

– it is associated with a type information (a class defined in an ontology), so
some application can performance reasoning on this URI.

Clearly, asking the user of Revyu to accomplish either one of these conditions is
not feasible: not only has the user to understand the Semantic Web technologies and
standards, but also there has to be ontologies readily available which can provide
sufficient coverage to any arbitrary item that may receive a review.

The solution taken by the Revyu designers is to use tags. In particular, it is up to
the user to associate keyword tags to the item being reviewed. With this tag infor-
mation, Revyu is then responsible for deriving type information and linking the item
to a certain resource described by another dataset.

Currently two domains are covered by Revyu: books and films. More specifically,
when Revyu recognizes that a new item is tagged as book, it will examine every Web
link provided by the reviewer at the time the review is submitted. For example, the

11.4 Linked Data Application 459

reviewer may have provided a link from Amazon which contains some informa-
tion about the book. When examining this link, Revyu parses the Web document
downloaded from the link and attempts to extract an ISBN number embedded in the
document. If Revyu can find an ISBN number, it will conclude that the reviewed
item is indeed a book and will assert a corresponding rdf:type statement in the
generated RDF statements.

As one example, List 11.7 shows some generated RDF statements for the
reviewed book titled The Unwritten Rules of Ph.D. Research. The reviewer has pro-
vided the related link from Amazon, which contains the ISBN number (line 23).
Based on this information, line 26 has been added by Revyu to establish the type
information for this item.

List 11.7 RDF statements generated by Revyu (a book review)

1: <?xml version="1.0" encoding="UTF-8" ?>
2: <rdf:RDF
3: xml:base="http://revyu.com/"
4: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
5: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
6: xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
7: xmlns:owl="http://www.w3.org/2002/07/owl#"
8: xmlns:dc="http://purl.org/dc/elements/1.1/"
9: xmlns:dcterms="http://purl.org/dc/terms/"
10: xmlns:vcard="http://www.w3.org/2001/vcard-rdf/3.0#"
11: xmlns:foaf="http://xmlns.com/foaf/0.1/"
12: xmlns:rev="http://purl.org/stuff/rev#"
13: xmlns:tag=
13a: "http://www.holygoat.co.uk/owl/redwood/0.1/tags/"
14: xmlns:ns1="http://www.hackcraft.net/bookrdf/vocab/0_1/">
15:
16: <rdf:Description
16a: rdf:about="things/the-unwritten-rules-of-phd-research">
17: <rev:hasReview rdf:resource=
17a: "reviews/82825d6cec2a2267c541848397e1605ab0042af0"/>
18: <tag:tag rdf:resource=
18a: "taggings/82825d6cec2a2267c541848397e1605ab0042af0"/>
19: </rdf:Description>
20:
21: <owl:Thing rdf:about=
21a: "things/the-unwritten-rules-of-phd-research">
22: <rdfs:label>The Unwritten Rules of Phd Research, by Gordon
22a: Rugg and Marian Petre </rdfs:label>
23: <rdfs:seeAlso rdf:resource=
23a: "http://www.amazon.co.uk/Unwritten-Rules-Phd-
23b: Research/dp/0335213448/"/>
24: <foaf:homepage rdf:resource=
24a: "http://mcgraw-hill.co.uk/openup/unwrittenrules/"/>
25: <owl:sameAs rdf:resource=
25a: "http://www4.wiwiss.fu-berlin.de/bookmashup/
25b: books/0335213448"/>

460 11 Linked Open Data

26: <rdf:type rdf:resource=
26a: "http://www.hackcraft.net/bookrdf/vocab/0_1/Book"/>
27: </owl:Thing>
28:
29: <rdf:Description rdf:about=
29a: "taggings/82825d6cec2a2267c541848397e1605ab0042af0">
30: <rdfs:label>A bundle of Tags associated with this Thing, de
30a: fining when they were added and by whom</rdfs:label>

31: </rdf:Description>
32:
33: </rdf:RDF>

If a reviewed item is tagged as movie or film, Revyu will issue a query against
DBpedia’s SPARQL endpoint with the goal of finding any instance data whose type
is given by yago:Film and also has the same name as the reviewed item. If this
is successful, Revyu will conclude that the reviewed item is indeed a movie, and
an rdf:type statement will be generated. For example, once the review for movie
Broken Flowers is submitted, Revyu is able to confirm that this item is the movie
named Broken Flowers, and List 11.8 shows the RDF statements generated for the
item.

List 11.8 RDF statements generated by Revyu (a movie review)

1: <?xml version="1.0" encoding="UTF-8" ?>
2: <rdf:RDF
3: xml:base="http://revyu.com/"
4: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
5: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
6: xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
7: xmlns:owl="http://www.w3.org/2002/07/owl#"
8: xmlns:dc="http://purl.org/dc/elements/1.1/"
9: xmlns:dcterms="http://purl.org/dc/terms/"
10: xmlns:vcard="http://www.w3.org/2001/vcard-rdf/3.0#"
11: xmlns:foaf="http://xmlns.com/foaf/0.1/"
12: xmlns:rev="http://purl.org/stuff/rev#"
13: xmlns:tag=
13a: "http://www.holygoat.co.uk/owl/redwood/0.1/tags/"
14: xmlns:ns1=
14a: "http://www.csd.abdn.ac.uk/~ggrimnes/dev/imdb/IMDB#">
15:
16: <rdf:Description rdf:about=
16a: "things/broken-flowers-film-movie-bill-murray-jim-jarmusch-
16b: sharon">
17: <rev:hasReview rdf:resource=
17a: "reviews/8b9c45cfecb7087430daa963cd6bcd51d2fce30d"/>
18: <tag:tag rdf:resource=
18a: "taggings/8b9c45cfecb7087430daa963cd6bcd51d2fce30d"/>
19: </rdf:Description>
20:

11.4 Linked Data Application 461

21: <owl:Thing rdf:about=
21a: "things/broken-flowers-film-movie-bill-murray-
21b: jim-jarmusch-sharon">
22: <rdfs:label>Broken Flowers</rdfs:label>
23: <rdfs:seeAlso rdf:resource=
23a: "http://en.wikipedia.org/wiki/Broken_flowers"/>
24: <foaf:homepage rdf:resource=
24a: "http://www.brokenflowersmovie.com/"/>
25:
26: <owl:sameAs rdf:resource=
26a: "http://dbpedia.org/resource/Broken_Flowers"/>
27: <rdf:type rdf:resource=
27a: "http://www.csd.abdn.ac.uk/~ggrimnes/dev/imdb/IMDB#Movie"/>
28: </owl:Thing>
29:
30: <rdf:Description rdf:about=
30a: "taggings/8b9c45cfecb7087430daa963cd6bcd51d2fce30d">
31: <rdfs:label>A bundle of Tags associated with this Thing,
31a: defining when they were added and
31b: by whom</rdfs:label>
32: </rdf:Description>
33:
34: </rdf:RDF>

As you can see, line 27 is added to identify the type of the reviewed item.

11.4.1.2 Revyu: Why It Is Different

Revyu is different from other review sites. For books and movies, Revyu assigns a
URI to the item being reviewed and also generates an RDF document to represent
the review itself. Furthermore, Revyu searches against existing linked datasets and
automatically creates links to these external datasets whenever possible. For exam-
ple, line 25 of List 11.7 and line 26 of List 11.8 are the links to other datasets. As a
result, these links have turned both these two RDF documents into newly produced
Linked Data on the Linked Data Web.

In fact, changing the submitted review into structured data not only adds new
elements to the Linked Data Web, but also makes it much easier for any application
that attempts to consume the review results.

For example, to get the review for a given item, all the application has to do is
to query the Revyu dataset by issuing SPARQL query via Revyu’s SPARQL inter-
face, and the result is an RDF document that can be easily processed. Compared to
Amazon, where the review data has to be obtained by using its own APIs (Amazon
Web services), the benefit is quite obvious. We will come back to this point later in
this chapter.

Besides producing new Linked Data, Revyu also consumes existing Linked Data
on the Web to enhance its user experience.

To see this, let us go back to line 25 of List 11.7 and line 26 of List 11.8. Since
these statements are links that point to other linked datasets, one can simply apply

462 11 Linked Open Data

the Follow-Your-Nose method to retrieve additional information about the reviewed
item. In fact, this is exactly what Revyu has done. For example, by following the
link on line 26 of List 11.8, Revyu was able to obtain this movie’s entry in DBpedia,
which contains the URI of the film’s promotional poster and the name of the director,
etc. All this additional information has been displayed on the page about this film,
as shown in Fig. 11.19.

Clearly, this automatic consumption of the existing Linked Data has greatly
enhanced the value of the whole site, without requiring this information to be
manually entered by the reviewer.

Similarly, Revyu can fetch more information about the book from RDF Book
Mashup dataset (line 25 of List 11.7), such as the book cover and author information,
which is also displayed on the Revyu page about the book. Again, all this does not
ask any extra work from the reviewer, but is very valuable to anyone who is reading
these reviews.

Furthermore, the same idea can be applied to a reviewer. Recall each reviewer is
assigned an URI, and a simple RDF document is created for this reviewer. If a given
reviewer has an existing FOAF document, an rdfs:seeAlso statement will be
included in the RDF description. For example, List 11.9 shows the RDF document
created for me by Revyu.

List 11.9 RDF statements generated by Revyu for a reviewer

1: <?xml version="1.0" encoding="UTF-8" ?>
2: <rdf:RDF
3: xml:base="http://revyu.com/"
4: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
5: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
6: xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
7: xmlns:owl="http://www.w3.org/2002/07/owl#"
8: xmlns:dc="http://purl.org/dc/elements/1.1/"
9: xmlns:dcterms="http://purl.org/dc/terms/"
10: xmlns:vcard="http://www.w3.org/2001/vcard-rdf/3.0#"
11: xmlns:foaf="http://xmlns.com/foaf/0.1/"
12: xmlns:rev="http://purl.org/stuff/rev#"
13: xmlns:tag=
13a: "http://www.holygoat.co.uk/owl/redwood/0.1/tags/">
14:
15: <foaf:Person rdf:about="people/liyang">
16: <foaf:mbox_sha1sum>
16a: 1613a9c3ec8b18271a8fe1f79537a7b08803d896
16b: </foaf:mbox_sha1sum>
17: <foaf:nick>liyang</foaf:nick>
18: <foaf:made rdf:resource=
18a: "reviews/cbe1fd43cf7de69ee0530fe65593d6d77d03daed"/>
19: <foaf:made rdf:resource=
19a: "reviews/436f699d347d433315507923664cf567fe872a59"/>
20: <rdfs:seeAlso
20a: rdf:resource="http://www.liyangyu.com/foaf.rdf"/>

11.4 Linked Data Application 463

21: </foaf:Person>
22:
23: </rdf:RDF>

Revyu will dereference the URI on line 20 and query the resulting FOAF doc-
ument for information such as my photo, location, home page, and interests. This
information then automatically shows up at my profile page without me entering
them at all.

As a summary, Revyu is a simple and elegant application that makes use of exist-
ing Linked Data to enhance its user experience without asking extra work from its
users. Although it is not a large-scare Linked Data application, it does show us the
benefits offered by the Web of Linked Data.

11.4.2 Web 2.0 Mashups vs. Linked Data Mashups

In the previous section, you have seen an interesting application that consumes
Linked Data on the Web. However, up to now, consuming Linked Data on the Web
in a large scale still remains an open question, and the business value of Linked Data
Web can be better appreciated only through these large-scale applications.

However, researchers and developers in the field of the Semantic Web are still
very optimistic about its future, and one of the reasons is based on the comparison of
the so-called Web 2.0 mashup to semantic mashup. In fact, if Web 2.0 mashups can
continue to remain in high demand in the environment of traditional Web, semantic
mashups under the concept of the Semantic Web will sooner or later be the real data
mashup tool that everyone will use, simple because it is much more easier, much
more efficient, and much more scalable. The rest of this section will explain this
conclusion in detail.

Exactly what is a mashup? In a very simple sentence, a mashup is a Web appli-
cation that collects structured data produced by third parties through APIs offered
by these parties and processes the data in some way and then represents the data
back to the user in a form that differs from its original look-and-feel. Normally, a
mashup application will either enhance the visual presentation of the data or offer
added value to its users by combining the data from different sources or both. This
concept is more related to Web 2.0, where more and more Web sites expose their
data via their APIs.

A typical mashup could be something like this: a shopbot can be coded to retrieve
the price of a given product (such as a camera with a specific make and model
number) from Amazon.com by accessing its published APIs. At the same time, the
same shopbot can also retrieve the price of the same product from BestBuy.com
(assuming BestBuy has also published their APIs), and these two prices can be
compared and returned to the user so the user can decide where to buy the product.
The shopbot can even retrieve the prices from these two vendors periodically, so the
user can see the change of these prices over a certain amount of time, and therefore

464 11 Linked Open Data

can buy the product when its price is going down and reaches a relatively stable
stage. Here the added value is obvious, and we can expand this shopbot in many
ways, such as including more vendors and more products.

This all sounds correct and feasible. However, when you really set off to construct
such a shopbot, you will soon discover its limitations:

• poor scalability of the method itself

Since different vendors publish different APIs, this is a constant learning process.
You will have to learn each set of APIs, and once a new vendor is available, you
will have to learn a new set of APIs again. Therefore, the construction of such a
mashup is not scalable and its maintenance will be quite expensive as well.

• limited coverage at most

Obviously, the shopbot only understands the APIs that you have coded for it to
understand, it cannot do any simple explore on its own. The data coverage is
therefore very limited and any decision based on this shopbot will probably not
be optimal either.

• lost links to channel back to the data providers

Once the data are retrieved and consumed by the shopbot, the link between the
shopbot and the original data provider is lost; a user cannot link back to the origi-
nal data providing site. Even in the case where we have decided to put some links
channeling back to the data providers, these links are shallow links at their best,
and they will not be able to link back to the precise locations of those particu-
lar data components. In addition, a mashup site supported by this shopbot only
shows the price. What if the original site offers some free gifts if you buy it now?
If there were a link back to this particular product, the user might be able to catch
this offer. Even more importantly, the links that channel back to the original data
provider mean more incoming traffic, which means significant chances for some
potential business value.
Now, with all the above being said, let us take a look at what would be the case

if a mashup application is developed under the environment of Linked Data Web. In
fact, Revyu is such a mashup: it retrieves data from external Web sites (DBpedia,
RDF Book Mashup, etc.) to enhance its user experience, a typical way that a mashup
should work. More specifically,

• good scalability of the method itself

Under the Web of Linked Data, structured data are expressed by using RDF
graphs and standards, which is the only set of standards across all the sites, and
there is no specific APIs for each site to expose its structure data. Therefore, con-
structing the mashup and maintaining the mashup is quite scalable, there is no
need for constant learning of new APIs.

• unbounded coverage of datasets

11.5 Summary 465

Obviously, Web 2.0 mashups work against a fixed set of data sources; Linked
Data applications operate on top of an unbound, global data space. This enables
them to deliver more complete answers as new data sources appear on the Web.

• crucial links to channel back to the data providers

In Linked Data mashups, all the items (resources) are identified by URIs, each of
which may be minted and controlled by the data provider. If a user looks up one
of these URIs, the user may be channeled back to the original data provider; it
is then up to the data provider to publish appropriate content to further direct the
incoming traffic. This linking-back capability is a key difference between Web
2.0 mashups and Linked Data mashups, and this is where the potential business
value could be.

Besides the above, Linked Data mashups also offer a chance to their users to
chain up almost unlimited resources. More specifically, each item in the mashup is
identified by a URI, which can be linked to other resources in other datasets, and
the links themselves are also typed. As a result, you can choose to follow a specific
link and visit a specific resource, which further takes you to other resources in other
datasets, so on and so forth. As this point, you should be able to appreciate the value
of this unlimited linkage, without the need of much explanation at all.

11.5 Summary

In this chapter, we have learned Linked Open Data. It is another example of the
Semantic Web technologies at work, and it is quite different from other examples
we have learned. Instead of adding semantics to the current Web (either manually
or automatically), its idea is to create a machine-readable Web all from the scratch.
It is therefore also called the Web of Linked Data, or the Linked Data Web.

First off, understand the following about Linked Open Data:

• its basic concept and basic principles;
• its relationship to the classic view of the Semantic Web, i.e., it can be viewed as

an implementation of the vision of the Semantic Web.

Second, understand the two major topics about Linked Open Data: how to
publish Linked Data on the Web and how to consume Linked Data on the Web.

About how to publish Linked Data on the Web, you need to understand the
following:

• how to mint URIs for resources, what is the difference between 303 URIs and
hash URIs;

• how to create links to other datasets, and how to make sure your data is published
as Linked Data, i.e., what are the minimal requirements of being Linked Data on
the Web;

• remember to use a validator to make sure you have done everything correctly.

466 11 Linked Open Data

About how to consume the Linked Data, you need to understand the following:

• consuming Linked Data means discovering Linked Data on the Web, accessing
the Web of Linked Data, and building applications on top of the Web of Linked
Data;

• there are Semantic Web search engines you can use to discover Linked Data on
the Web;

• there are Semantic Web browsers you can use to access the Web of Linked Data
manually;

• you can also use SPARQL endpoints to access the Web of Linked Data, in addi-
tion, you can programmatically access the Web of Linked Data from within your
applications;

• the ultimate goal is to create powerful applications that make use of the Web of
Linked Data.

Finally, to show you how to build applications on top of the Web of Linked
Data, we have included Revyu as one such example. Make sure you understand
how Revyu makes use of the Linked Data on the Web, and more importantly, hope
this can serve as a hint to you, so you can come up with possible applications of
your own to show the power of the Web of Linked Data.

	11 Linked Open Data
	11.1 The Concept of Linked Data and Its Basic Rules
	11.1.1 The Concept of Linked Data
	11.1.2 How Big Is the Web of Linked Data and the LOD Project
	11.1.3 The Basic Rules of Linked Data

	11.2 Publishing RDF Data on the Web
	11.2.1 Identifying Things with URIs
	11.2.1.1 Web Document, Information Resource, and URI
	11.2.1.2 Non-information Resources and Their URIs
	11.2.1.3 URIs for Non-information Resources: 303 URIs and Content Negotiation
	11.2.1.4 URIs for Non-information Resources: Hash URIs
	11.2.1.5 URIs for Non-information Resources: 303 URIs vs. Hash URIs
	11.2.1.6 URI Aliases

	11.2.2 Choosing Vocabularies for RDF Data
	11.2.3 Creating Links to Other RDF Data
	11.2.3.1 Basic Language Constructs to Create Links
	11.2.3.2 Creating Links Manually
	11.2.3.3 Creating Links Automatically

	11.2.4 Serving Information as Linked Data
	11.2.4.1 Minimum Requirements for Being Linked Open Data
	11.2.4.2 Example: Publishing Linked Data on the Web
	11.2.4.3 Make Sure You Have Done It Right

	11.3 The Consumption of Linked Data
	11.3.1 Discover Specific Target on the Linked Data Web
	11.3.1.1 Semantic Web Search Engine for Human Eyes
	11.3.1.2 Semantic Web Search Engine for Applications

	11.3.2 Accessing the Web of Linked Data
	11.3.2.1 Using a Linked Data Browser
	11.3.2.2 Using SPARQL Endpoints
	11.3.2.3 Accessing the Linked Data Web Programmatically

	11.4 Linked Data Application
	11.4.1 Linked Data Application Example: Revyu
	11.4.1.1 Revyu: An Overview
	11.4.1.2 Revyu: Why It Is Different

	11.4.2 Web 2.0 Mashups vs. Linked Data Mashups

	11.5 Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

