

A Developer’s Guide to the Semantic Web

Liyang Yu

A Developer’s Guide
to the Semantic Web

123

Liyang Yu
Delta Air Lines, Inc.
Delta Blvd. 1030
Atlanta, GA 30354
USA
liyang910@yahoo.com

ISBN 978-3-642-15969-5 e-ISBN 978-3-642-15970-1
DOI 10.1007/978-3-642-15970-1
Springer Heidelberg Dordrecht London New York

ACM Computing Classification (1998): H.3.5, D.2, I.2

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Cover design: KuenkelLopka GmbH, Heidelberg

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To my parents, Zaiyun Du my mother and Hanting Yu
my father

The truth is, they cannot read this dedication without
someone translating it. However, this is never a problem for
them, since there is something in this world that goes
beyond the boundary of all languages and all cultures, and
still remains the same to all human hearts. It lets my parents
understand every word I have said here without the need of
any translation at all.

It is the love they have been giving me. I will never be able
to pay them back enough, and I can only wish that I will be
their son in my next life, so I can continue to love them, and
be loved.

Preface

Objectives of the Book

This book is all about the Semantic Web.
From its basics, the Semantic Web can be viewed as a collection of standards and

technologies that allow machines to understand the meaning (semantics) of informa-
tion on the Web. It represents a new vision about how the Web should be constructed
so that its information can be processed automatically by machines on a large scale.

This exciting vision opens the possibility of numerous new applications on the
Web. Since 2001, there have been many encouraging results in both academic world
and real application world. A whole suite of standards, technologies, and related
tools have been specified and developed around the concept of the Semantic Web.

However, such an extensive and rapid progress of the Semantic Web has pre-
sented a steep learning curve for those who are new to the Semantic Web.
Understanding its related concepts, learning the core standards and key technical
components, and finally reaching the point where one can put all these into real
development work require a considerable amount of effort.

To facilitate this learning process, a comprehensive and easy-to-follow text is
a must. This book, A Developer’s Guide to the Semantic Web, serves this exact
purpose. It provides an in-depth coverage on both the What-Is and How-To aspects
of the Semantic Web. From this book, you will not only obtain a solid understanding
about the Semantic Web but also learn how to combine all the pieces together to
build new applications on the Semantic Web. More specifically,

• it offers a complete coverage of all the core standards and technical compo-
nents of the Semantic Web. This coverage includes RDF, RDFS, OWL (both
OWL 1 and OWL 2), and SPARQL (including features offered by SPARQL 1.1).
Other related technologies are also covered, such as Turtle, microformats, RDFa,
GRDDL, and SKOS;

• it provides an in-depth description of multiple well-known applications and
projects in the area of the Semantic Web, such as FOAF, semantic Wiki,
SearchMonkey by Yahoo!, Rich Snippets by Google, Open Linked Data Project,
and DBpedia Project;

vii

viii Preface

• it explains the key concepts, core standards, and technical components in the
context of examples. In addition, the readers will be taken in a step-by-step fash-
ion through the development of each example. Hopefully for the first time ever,
such teaching method will ease the learning curve for those who have found the
Semantic Web a daunting topic;

• it includes several complete programming projects, which bridge the gap between
What-Is and How-To. These example applications are real coding projects and are
developed from the scratch. In addition, the code generated by these projects can
be easily reused in the readers’ future development work.

Intended Readers

The book is written with the following readers in mind:

• software engineers and developers who are interested in learning the Semantic
Web technology in general;

• Web application developers who have the desire and/or needs to study the
Semantic Web and build Semantic Web applications;

• researchers working in research institutes who are interested in the Semantic Web
research and development;

• undergraduate and graduate students from computer science departments, whose
focus of work is in the area of the Semantic Web;

• practitioners in related engineering fields. For example, data mining engineers
whose work involves organizing and processing a large amount of data by
machines.

The prerequisites needed to understand this book include the following:

• working knowledge of Java programming language and
• basic understanding of the Web, including its main technical components such as

URL, HTML, and XML.

Structure of the Book

This book is organized as follows:

• Chapters 1–6 cover the basic concept, the core standards, and technical compo-
nents of the Semantic Web. The goal of these chapters is to show you the What-Is
aspect about the Semantic Web.

Chapter 1 introduces the concept of the Semantic Web by using a simple exam-
ple. With this example, the difference between the traditional Web and the Semantic

Preface ix

Web is clearly revealed. Further discussion in this chapter helps you to establish a
solid understanding about the concept of the Semantic Web.

Chapter 2 covers RDF in great detail to give you a sound technical foundation to
further understand the Semantic Web. If you are not familiar with RDF, you should
not skip this chapter, since everything else is built upon RDF. In addition, Turtle
format is presented in this chapter, which will be used to understand the material
presented in Chap. 6.

Chapter 3 goes on with other RDF-related technologies, including Microformats,
RDFa, and GRDDL. If you prefer to get a full picture about the Semantic Web as
quickly as possible, you can skip this chapter. However, the material presented in
this chapter will be necessary in order to understand Chap. 8.

Chapter 4 presents RDF schema and also introduces the concept of ontology. You
should not skip this chapter since Chap. 5 is built upon this chapter. SKOS is also
presented in this chapter; you can skip it if you are not working with any existing
vocabularies in knowledge management field.

Chapter 5 discusses OWL in great detail and covers both OWL 1 and OWL 2.
This is one of the key chapters in this book and should not be skipped. Unless RDF
schema can satisfy the needs of your application, you should spend enough time to
understand OWL, which will give you the most updated information about latest
ontology development language.

Chapter 6 covers SPARQL. This is another chapter that you should carefully
read. Working on the Semantic Web without using SPARQL is like working with
database systems without knowing SQL. Note that SPARQL 1.1 is covered in this
chapter as well. At the time of this writing, SPARQL 1.1 has not become a standard
yet, so when you are reading this book, note the possible updates.

• Chapters 7–11 provide an in-depth discussion of some well-known Semantic
Web applications/projects in the real application world. These chapters serve as
a transition from knowing What-Is to understanding How-To in the world of the
Semantic Web.

Chapter 7 presents FOAF (Friend of A Friend) project. The FOAF ontology is
arguably the most widely used ontology at this point. The goal of this chapter is
to introduce you to a real-world example in the social networking area. Since the
modeling of this domain does not require any specific domain knowledge, it is easy
to follow and you can therefore focus on appreciating the power of the Semantic
Web. This chapter should not be skipped, not only because of the popularity of the
FOAF ontology but also because this ontology has been used frequently in the later
chapters as well.

Chapter 8 presents Google’s Rich Snippets and Yahoo!’s SearchMonkey; both
are using RDFa and microformats as the main tools when adding semantic markups.
These are important examples, not only because they are currently the major
Semantic Web applications developed by leading players in the field but also
because they show us the benefits of having the added semantics on the Web.

x Preface

Chapter 9 discusses the topic of Semantic Wiki, together with a real-world exam-
ple. This chapter represents the type of Semantic Web applications built by using
manual semantic markup. After reading this chapter, you should not only see the
power of the added semantics but also start to understand those situations where
manual semantic markup can be a successful solution.

Chapter 10 presents DBpedia in great detail. DBpedia is a well-known project
in the Semantic Web community, and a large number of real-world Semantic Web
applications take advantage of the DBpedia datasets directly or indirectly. Also,
DBpedia gives an example of automatic semantic markup. Together with Chap. 9,
where manual semantic markup is used, you have a chance to see both methods at
work.

Chapter 11 discusses the Linked Open Data project (LOD) as a real-world imple-
mentation example of the Web of Data concept. For the past several years, LOD has
attracted tremendous attention from both the academic world and the real applica-
tion world. In fact, DBpedia, as a huge dataset, stays in the center of the LOD cloud.
Therefore, LOD together with DBpedia becomes a must for anyone who wants to do
development work on the Semantic Web. More specifically, this chapter covers both
the production and the consumption aspects of Linked Data; it also provides appli-
cation examples that are built upon LOD cloud. In addition, this chapter explains
how to access LOD programmatically, which should be very useful to your daily
development work.

• Chapters 12–15 are the section of How-To. After building a solid foundation for
development work on the Semantic Web, this section presents three different run-
ning applications that are created from scratch. The methods, algorithms, and
concrete classes presented in these chapters will be of immediate use to your
future development work.

Chapter 12 helps to build a foundation for your future development work on the
Semantic Web. More specifically, it covers four major tool categories you should
know, namely development frameworks, reasoners, ontology engineering tools, and
other tools such as search engines for the Semantic Web. This chapter also dis-
cusses some related development methodology for the Semantic Web, such as the
ontology-driven software development methodology. Furthermore, since ontology
development is the key of this methodology, this chapter also presents an ontology
development guide that you can use.

Chapter 13 covers a popular development framework named Jena to prepare you
for your future development work on the Semantic Web. More specifically, this
chapter starts from how to set up Jena development environment and then presents
a Hello World example to get you started. In what follows, this chapter cov-
ers the basic operation every Semantic Web application needs, such as creating
RDF models, handling persistence, querying RDF dataset, and inferencing with
ontology models. After reading this chapter, you will be well prepared for real
development work.

Preface xi

Developing applications for the Semantic Web requires a set of complex skills,
and this skill set lands itself on some basic techniques. In Chap. 13, you have learned
some basics. Chapter 14 continues along the same path by building an agent that
implements the Follow-Your-Nose algorithm on the Semantic Web. After all, most
Semantic Web applications will have to be based on the Web, so moving or crawling
from one dataset to another on the Web with some specific goals in mind is a routine
task. Follow-Your-Nose method is one such basic technique. Besides implementing
this algorithm, Chap. 14 also introduces some useful operations, such as how to
remotely access SPARQL endpoints.

Chapter 15 presents two additional Semantic Web applications from scratch.
The first application helps you to create an e-mail list that you can use to enhance
the security of your e-mail system. The second one is a ShopBot that runs on the
Semantic Web, and you can use it to find products that satisfy your own specific
needs. These two projects are discussed in great detail, showing how applications
on the Semantic Web are built. This includes RDF documents handling, ontology
handling, inferencing based on ontologies, and SPARQL query handling, just to
name a few.

Where to Get the Code

The source code for all the examples, application projects in this book can be
downloaded from the author’s personal Web site, www.liyangyu.com

Acknowledgment

My deepest gratitude goes to Dr. Weirong Ding, a remarkable person in my life, for
supporting me in all the ways that one can ever wish to be supported. It is not nearly
as possible to list all the supports she gave me, but her unreserved confidence in
my knowledge and talents has always been a great encouragement for me to finish
this book. Being the first reader of this book, she has always been extremely patient
with many of my ideas and thoughts, and interestingly enough, her patience has
made her a medical doctor who is also an expert of the Semantic Web. And to make
the readers of this book become experts of the Semantic Web, I would like to share
something she always says to me: “never give yourself excuses and always give
200% of yourself to reach what you love.”

I would like to thank Dr. Jian Jiang, a good friend of mine, for introducing me
to the field of the Semantic Web and for many interesting and insightful discussions
along the road of this book.

My gratitude is also due to Mr. Ralf Gerstner, senior editor at Springer. As a
successful IT veteran himself, he has given me many valuable suggestions about
the content and final organization of this book. The communication with him is
always quite enjoyable: it is not only prompt and efficient, but also very insightful

xii Preface

and helpful. It is simply my very good luck to have a chance to work with an
editor like Ralf.

Finally, I would like to express my love and gratitude to my beloved parents for
their understanding and endless love. They always give me the freedom I need, and
they accept my decisions even when they cannot fully understand them. In addition,
I wanted to thank them for being able to successfully teach me how to think and
speak clearly and logically when I was at a very young age, so I can have one more
dream fulfilled today.

Atlanta, GA, USA Liyang Yu
September 2010

Contents

1 A Web of Data: Toward the Idea of the Semantic Web 1
1.1 A Motivating Example: Data Integration on the Web 1

1.1.1 A Smart Data Integration Agent 2
1.1.2 Is Smart Data Integration Agent Possible? 7
1.1.3 The Idea of the Semantic Web 9

1.2 A More General Goal: A Web Understandable to Machines . . . 9
1.2.1 How Do We Use the Web? 9
1.2.2 What Stops Us from Doing More? 12
1.2.3 Again, the Idea of the Semantic Web 14

1.3 The Semantic Web: A First Look 14
1.3.1 The Concept of the Semantic Web 14
1.3.2 The Semantic Web, Linked Data, and the Web

of Data . 15
1.3.3 Some Basic Things About the Semantic Web 17

Reference . 18

2 The Building Block for the Semantic Web: RDF 19
2.1 RDF Overview . 19

2.1.1 RDF in Official Language 19
2.1.2 RDF in Plain English 21

2.2 The Abstract Model of RDF 25
2.2.1 The Big Picture . 25
2.2.2 Statement . 25
2.2.3 Resource and Its URI Name 27
2.2.4 Predicate and Its URI Name 31
2.2.5 RDF Triples: Knowledge That Machine Can Use . . . 33
2.2.6 RDF Literals and Blank Node 35
2.2.7 A Summary So Far 41

2.3 RDF Serialization: RDF/XML Syntax 42
2.3.1 The Big Picture: RDF Vocabulary 42
2.3.2 Basic Syntax and Examples 43
2.3.3 Other RDF Capabilities and Examples 59

xiii

xiv Contents

2.4 Other RDF Sterilization Formats 65
2.4.1 Notation-3, Turtle, and N-Triples 65
2.4.2 Turtle Language . 66

2.5 Fundamental Rules of RDF 72
2.5.1 Information Understandable by Machine 73
2.5.2 Distributed Information Aggregation 75
2.5.3 A Hypothetical Real-World Example 76

2.6 More About RDF . 79
2.6.1 Dublin Core: Example of Pre-defined RDF Vocabulary 79
2.6.2 XML vs. RDF? . 81
2.6.3 Use an RDF Validator 84

2.7 Summary . 85

3 Other RDF-Related Technologies: Microformats, RDFa,
and GRDDL . 87
3.1 Introduction: Why Do We Need These? 87
3.2 Microformats . 88

3.2.1 Microformats: The Big Picture 88
3.2.2 Microformats: Syntax and Examples 89
3.2.3 Microformats and RDF 94

3.3 RDFa . 95
3.3.1 RDFa: The Big Picture 95
3.3.2 RDFa Attributes and RDFa Elements 96
3.3.3 RDFa: Rules and Examples 97
3.3.4 RDFa and RDF . 104

3.4 GRDDL . 105
3.4.1 GRDDL: The Big Picture 105
3.4.2 Using GRDDL with Microformats 105
3.4.3 Using GRDDL with RDFa 107

3.5 Summary . 107

4 RDFS and Ontology . 109
4.1 RDFS Overview . 109

4.1.1 RDFS in Plain English 109
4.1.2 RDFS in Official Language 110

4.2 RDFS + RDF: One More Step Toward Machine Readable . . . 111
4.2.1 A Common Language to Share 111
4.2.2 Machine Inferencing Based on RDFS 113

4.3 RDFS Core Elements . 114
4.3.1 The Big Picture: RDFS Vocabulary 114
4.3.2 Basic Syntax and Examples 114
4.3.3 Summary So Far . 132

4.4 The Concept of Ontology . 136
4.4.1 What Is Ontology? 137
4.4.2 The Benefits of Ontology 137

4.5 Building the Bridge to Ontology: SKOS 138
4.5.1 Knowledge Organization Systems (KOS) 138

Contents xv

4.5.2 Thesauri vs. Ontologies 140
4.5.3 Filling the Gap: SKOS 141

4.6 Another Look at Inferencing Based on RDF Schema 149
4.6.1 RDFS Ontology-Based Reasoning: Simple,

Yet Powerful . 149
4.6.2 Good, Better, and Best: More Is Needed 151

4.7 Summary . 152

5 OWL: Web Ontology Language . 155
5.1 OWL Overview . 155

5.1.1 OWL in Plain English 155
5.1.2 OWL in Official Language: OWL 1 and OWL 2 156
5.1.3 From OWL 1 to OWL 2 158

5.2 OWL 1 and OWL 2: The Big Picture 158
5.2.1 Basic Notions: Axiom, Entity, Expression,

and IRI Names . 159
5.2.2 Basic Syntax Forms: Functional Style,

RDF/XML Syntax, Manchester Syntax,
and XML Syntax . 160

5.3 OWL 1 Web Ontology Language 161
5.3.1 Defining Classes: The Basics 161
5.3.2 Defining Classes: Localizing Global Properties 163
5.3.3 Defining Classes: Using Set Operators 172
5.3.4 Defining Classes: Using Enumeration,

Equivalent, and Disjoint 175
5.3.5 Our Camera Ontology So Far 177
5.3.6 Define Properties: The Basics 179
5.3.7 Defining Properties: Property Characteristics 184
5.3.8 Camera Ontology Written Using OWL 1 192

5.4 OWL 2 Web Ontology Language 196
5.4.1 What Is New in OWL 2? 196
5.4.2 New Constructs for Common Patterns 197
5.4.3 Improved Expressiveness for Properties 200
5.4.4 Extended Support for Datatypes 210
5.4.5 Punning and Annotations 214
5.4.6 Other OWL 2 Features 218
5.4.7 OWL Constructs in Instance Documents 222
5.4.8 OWL 2 Profiles . 226
5.4.9 Our Camera Ontology in OWL 2 233

5.5 Summary . 238

6 SPARQL: Querying the Semantic Web 241
6.1 SPARQL Overview . 241

6.1.1 SPARQL in Official Language 241
6.1.2 SPARQL in Plain English 242

xvi Contents

6.1.3 Other Related Concepts: RDF Data Store, RDF
Database, and Triple Store 243

6.2 Set up Joseki SPARQL Endpoint 244
6.3 SPARQL Query Language . 247

6.3.1 The Big Picture . 249
6.3.2 SELECT Query . 252
6.3.3 CONSTRUCT Query 272
6.3.4 DESCRIBE Query 274
6.3.5 ASK Query . 275

6.4 What Is Missing from SPARQL? 277
6.5 SPARQL 1.1 . 277

6.5.1 Introduction: What Is New? 277
6.5.2 SPARQL 1.1 Query 278
6.5.3 SPARQL 1.1 Update 285

6.6 Summary . 290

7 FOAF: Friend of a Friend . 291
7.1 What Is FOAF and What It Does 291

7.1.1 FOAF in Plain English 291
7.1.2 FOAF in Official Language 292

7.2 Core FOAF Vocabulary and Examples 293
7.2.1 The Big Picture: FOAF Vocabulary 293
7.2.2 Core Terms and Examples 294

7.3 Create Your FOAF Document and Get
into the Friend Circle . 301
7.3.1 How Does the Circle Work? 301
7.3.2 Create Your FOAF Document 303
7.3.3 Get into the Circle: Publish Your FOAF Document . . 305
7.3.4 From Web Pages for Human Eyes to Web Pages

for Machines . 307
7.4 Semantic Markup: a Connection Between the Two Worlds . . . 308

7.4.1 What Is Semantic Markup 308
7.4.2 Semantic Markup: Procedure and Example 308
7.4.3 Semantic Markup: Feasibility

and Different Approaches 312
7.5 Summary . 314

8 Semantic Markup at Work: Rich Snippets and SearchMonkey . . 315
8.1 Introduction . 315

8.1.1 Prerequisite: How Does a Search Engine Work? 315
8.1.2 Rich Snippets and SearchMonkey 318

8.2 Rich Snippets by Google . 319
8.2.1 What Is Rich Snippets: An Example 319
8.2.2 How Does It Work: Semantic Markup Using

Microformats/RDFa 319
8.2.3 Test It Out Yourself 322

Contents xvii

8.3 SearchMonkey from Yahoo! 322
8.3.1 What Is SearchMonkey: An Example 323
8.3.2 How Does It Work: Semantic Markup Using

Microformats/RDFa 324
8.3.3 Test It Out Yourself 329

8.4 Summary . 330
Reference . 330

9 Semantic Wiki . 331
9.1 Introduction: From Wiki to Semantic Wiki 331

9.1.1 What Is a Wiki? . 331
9.1.2 From Wiki to Semantic Wiki 333

9.2 Adding Semantics to Wiki Site 335
9.2.1 Namespace and Category System 336
9.2.2 Semantic Annotation in Semantic MediaWiki 339

9.3 Using the Added Semantics 347
9.3.1 Browsing . 347
9.3.2 Wiki Site Semantic Search 350
9.3.3 Inferencing . 356

9.4 Where Is the Semantics? . 359
9.4.1 SWiVT: an Upper Ontology for Semantic Wiki 360
9.4.2 Understanding OWL/RDF Exports 362
9.4.3 Importing Ontology: a Bridge to Outside World 372

9.5 The Power of the Semantic Web 375
9.6 Use Semantic MediaWiki to Build Your Own Semantic Wiki . . 376
9.7 Summary . 376

10 DBpedia . 379
10.1 Introduction to DBpedia . 379

10.1.1 From Manual Markup to Automatic
Generation of Annotation 379

10.1.2 From Wikipedia to DBpedia 380
10.1.3 The Look and Feel of DBpedia: Page Redirect 382

10.2 Semantics in DBpedia . 385
10.2.1 Infobox Template 385
10.2.2 Creating DBpedia Ontology 388
10.2.3 Infobox Extraction Methods 394

10.3 Accessing DBpedia Dataset 396
10.3.1 Using SPARQL to Query DBpedia 397
10.3.2 Direct Download of DBpedia Datasets 401
10.3.3 Access DBpedia as Linked Data 406

10.4 Summary . 408
Reference . 408

11 Linked Open Data . 409
11.1 The Concept of Linked Data and Its Basic Rules 409

11.1.1 The Concept of Linked Data 409

xviii Contents

11.1.2 How Big Is the Web of Linked Data
and the LOD Project 411

11.1.3 The Basic Rules of Linked Data 412
11.2 Publishing RDF Data on the Web 413

11.2.1 Identifying Things with URIs 413
11.2.2 Choosing Vocabularies for RDF Data 423
11.2.3 Creating Links to Other RDF Data 427
11.2.4 Serving Information as Linked Data 434

11.3 The Consumption of Linked Data 439
11.3.1 Discover Specific Target on the Linked Data Web . . . 441
11.3.2 Accessing the Web of Linked Data 445

11.4 Linked Data Application . 455
11.4.1 Linked Data Application Example: Revyu 456
11.4.2 Web 2.0 Mashups vs. Linked Data Mashups 463

11.5 Summary . 465

12 Building the Foundation for Development on the Semantic Web . . 467
12.1 Development Tools for the Semantic Web 467

12.1.1 Frameworks for the Semantic Web Applications 467
12.1.2 Reasoners for the Semantic Web Applications 471
12.1.3 Ontology Engineering Environments 474
12.1.4 Other Tools: Search Engines for the Semantic Web . . 478
12.1.5 Where to Find More? 478

12.2 Semantic Web Application Development Methodology 478
12.2.1 From Domain Models to Ontology-Driven

Architecture . 478
12.2.2 An Ontology Development Methodology

Proposed by Noy and McGuinness 484
12.3 Summary . 489
Reference . 490

13 Jena: A Framework for Development on the Semantic Web 491
13.1 Jena: A Semantic Web Framework for Java 491

13.1.1 What Is Jena and What It Can Do for Us? 491
13.1.2 Getting Jena Package 492
13.1.3 Using Jena in Your Projects 495

13.2 Basic RDF Model Operations 501
13.2.1 Creating an RDF Model 502
13.2.2 Reading an RDF Model 507
13.2.3 Understanding an RDF Model 509

13.3 Handling Persistent RDF Models 515
13.3.1 From In-memory Model to Persistent Model 515
13.3.2 Setting Up MySQL 516
13.3.3 Database-Backed RDF Models 517

13.4 Inferencing Using Jena . 524

Contents xix

13.4.1 Jena Inferencing Model 524
13.4.2 Jena Inferencing Examples 525

13.5 Summary . 531

14 Follow Your Nose: A Basic Semantic Web Agent 533
14.1 The Principle of Follow-Your-Nose Method 533

14.1.1 What Is Follow-Your-Nose Method? 533
14.1.2 URI Declarations, Open Linked Data,

and Follow-Your-Nose Method 535
14.2 A Follow-Your-Nose Agent in Java 536

14.2.1 Building the Agent 536
14.2.2 Running the Agent 543
14.2.3 More Clues for Follow Your Nose 545
14.2.4 Can You Follow Your Nose on Traditional Web? 546

14.3 A Better Implementation of Follow-Your-Nose Agent:
Using SPARQL Queries . 548
14.3.1 In-memory SPARQL Operation 549
14.3.2 Using SPARQL Endpoints Remotely 553

14.4 Summary . 556

15 More Application Examples on the Semantic Web 559
15.1 Building Your Circle of Trust: A FOAF Agent You Can Use . . 559

15.1.1 Who Is on Your E-mail List? 559
15.1.2 The Basic Idea . 560
15.1.3 Building the EmailAddressCollector Agent . . 563
15.1.4 Can You Do the Same for Traditional Web? 572

15.2 A ShopBot on the Semantic Web 573
15.2.1 A ShopBot We Can Have 573
15.2.2 A ShopBot We Really Want 574
15.2.3 Building Our ShopBot 583
15.2.4 Discussion: From Prototype to Reality 599

15.3 Summary . 600

Index . 601

Chapter 1
A Web of Data: Toward the Idea
of the Semantic Web

If you are reading this book, chance is you are a software engineer who makes a
living by developing applications on the Web – or, more precisely, on the Web that
we currently have.

And yes, there is another kind of Web. It is built on top of the current Web
and called the Semantic Web. As a Web application developer, your career on the
Semantic Web will be more exciting and fulfilling.

This book will prepare you well for your development work on the Semantic
Web. This chapter will tell you exactly what the Semantic Web is, and why it is
important for you to learn everything about it.

We will get started by presenting a simple example to illustrate the difference
between the current Web and the Semantic Web. You can consider this example as a
development assignment for you. Once you start to ponder the issues such as what
exactly do we need to change on the current Web to finish this assignment, you are
well on the way to see the basic picture about the Semantic Web.

With a basic understanding about the Semantic Web, we will continue to discuss
how much more it can revolutionize the way we use the Web, and can further change
the patterns we conduct our development work on the Web. We will then formally
introduce the concept of the Semantic Web; hopefully this concept will seem to be
much more intuitive to you.

This chapter will build a solid foundation for you to understand the rest of this
book. When you have finished the whole book, come back and read this chap-
ter again. You should be able to acquire a deeper appreciation of the idea of the
Semantic Web. By then, I hope you have also formed your own opinion about the
vision of the Semantic Web, and with what you have learned from this book, you
are ready to start your own exciting journey of exploring more and creating more on
the Semantic Web.

1.1 A Motivating Example: Data Integration on the Web

Data integration on the Web refers to the process of combining and aggregating
information resources on the Web so they could be collectively useful to us. In

1L. Yu, A Developer’s Guide to the Semantic Web,
DOI 10.1007/978-3-642-15970-1_1, C© Springer-Verlag Berlin Heidelberg 2011

2 1 A Web of Data: Toward the Idea of the Semantic Web

this section, we will use a concrete example to see how data integration can be
implemented on the Web, and why it is so interesting to us.

1.1.1 A Smart Data Integration Agent

Here is our goal: for a given resource (could be a person, an idea, an event, or a
product, such as a digital camera), we would like to know everything that has been
said about it. More specifically, we would like to accomplish this goal by collecting
as much information as possible about this resource; we will then understand it by
making queries against the collected information.

To make this more tangible, let us use myself as the resource. In addition, assume
we have already built a “smart” agent, which will walk around the Web and try to
find everything about me on our behalf.

To get our smart agent started, we feed it with the URL of my personal home
page as the starting point of its journey on the Web:

http://www.liyangyu.com

Now, our agent downloads this page and tries to collect information from this
page. This is also the point where everything gets more interesting:

• If my Web page were a traditional Web document, our agent would not be able
to collect anything that is much useful at all.

More specifically, the only thing our agent is able to understand on this page
would be those HTML language constructs, such as <p>,
, <href>, <table>
and . Besides telling a Web browser about how to present my Web page,
these HTML constructs do not convey any useful information about the underly-
ing resource. Therefore, other than these HTLM tokens, to our agent, my whole
Web page would simply represent a string of characters that look no different from
any other Web document.

• However, let us assume my Web page is not a traditional Web document: besides
the HTML constructs, it actually contains some “statements” that can be collected
by our agent.

More specifically, all these statements follow the same simple structure, and each
one of them represents one aspect of the given resource. For example, List 1.1 shows
some example statements that have been collected:

List 1.1 Some of the statements collected by our smart agent from my personal
Web page

ns0:LiyangYu ns0:name "Liyang Yu".

ns0:LiyangYu ns0:nickname "LaoYu".

ns0:LiyangYu ns0:author <ns0:_x>.

ns0:_x ns0:ISBN "978-1584889335".

ns0:_x ns0:publisher <http://www.crcpress.com>.

1.1 A Motivating Example: Data Integration on the Web 3

At this point, let us not worry about the issues such as how these statements are
added to my Web page, and how our agent collects them. Let us simply assume
when our agent visits my Web page, it can easily discover these statements.

Note that ns0 represents a namespace, so that we know everything, with ns0

as its prefix, is collected from the same Web page. ns0:LiyangYu represents a
resource that is described by my Web page; in this case, this resource is me.

With this said, the first statement in List 1.1 can be read like this:

resource ns0:LiyangYu has a ns0:name whose value is Liyang Yu.

Or, like this:

resource ns0:LiyangYu has a ns0:name property, whose value is Liyang Yu.

The second way to read a given statement is perhaps more intuitive. With this
in mind, each statement actually adds one property–value pair to the resource that
is being described. For example, the second statement claims the ns0:nickname

property of resource ns0:LiyangYu has a value given by LaoYu.
The third statement in List 1.1 is a little bit unusual. When specifying the value

of ns0:author property for resource ns0:LiyangYu, instead of using a simple
character string as its value (as the first two statements in List 1.1), it uses another
resource, and this resource is identified by ns0:_x. To make this fact more obvious,
ns0:_x is included by <>.

Statement 4 in List 1.1 specifies the value of ns0:ISBN property of resource
ns0:_x, and the last statement in List 1.1 specifies the value of ns0:publisher
property of the same resource. Note again that the value of this property is not a
character sting, but another resource identified by http://www.crcpress.com.

The statements in List 1.1 probably still make sense to our human eyes, no mat-
ter how ugly they look. The real interesting question is, how much does our agent
understand these statements?

Not much at all. However, without too much understanding about these state-
ments, our agent can indeed organize them into a graph format, as shown in Fig. 1.1
(note that more statements have been added to the graph).

After the graph shown in Fig. 1.1 is created, our agent declares its success on
my personal Web site and moves on to the next one. It will repeat the same process
again when it hits the next Web document.

Let us say the next Web site our agent hits is www.amazon.com. Similarly, if
Amazon were still the Amazon today, our agent could not do much either. In fact,
it can retrieve information about this ISBN number, 978-1584889335, by using
Amazon Web Services.1 For now, let us say our agent does not know how to do
that.

However, again assume Amazon is a new Amazon already. Our agent can there-
fore collect lots of statements, which follow the same format as shown in List 1.1.
Furthermore, among the statements that have been collected, some of them are
shown in List 1.2.

1http://aws.amazon.com/

4 1 A Web of Data: Toward the Idea of the Semantic Web

Fig. 1.1 A graph generated by our agent after visiting my person Web page

List 1.2 Statements collected by our agent from Amazon.com

ns1:book-1584889330 ns1:ISBN "978-1584889335".

ns1:book-1584889330 ns1:price USD62.36.

ns1:book-1584889330 ns1:customerReview "4.5 star".

Note that, similar to namespace prefix ns0, ns1 represents another names-
pace prefix. And now, our agent can again organize these statements into a graph
form as shown in Fig. 1.2 (note that more statements have been added to the
graph).

For human eyes, one important fact is already quite obvious: ns0:_x, as a
resource in Fig. 1.1 (the empty circle), represents exactly the same item denoted

Fig. 1.2 The graph generated by our agent after visiting Amazon.com

1.1 A Motivating Example: Data Integration on the Web 5

by the resource named ns1:book-1584889330 in Fig. 1.2. And once we made
this connection, we start to see other facts easily. For example, a person who has a
home page with its URL given by http://www.liyangyu.com has a book pub-
lished and the current price of that book is US $62.36 on Amazon. Obviously, this
fact is not explicitly stated on either one of the Web sites, but our human minds have
integrated the information from both www.liyangyu.com and www.amazon.com

to reach this conclusion.
For our agent, similar data integration is not difficult either. In fact, our agent

sees the ISBN number, 978-1584889335, showing up in both Figs. 1.1 and 1.2, it
will therefore make a connect between these two appearances, as shown in Fig. 1.3.
It will then automatically add the following new statement to its original statement
collection:

ns0:_x sameAs ns1:book-1584889330.

Fig. 1.3 Our agent can combine Figs. 1.1 and 1.2 automatically

6 1 A Web of Data: Toward the Idea of the Semantic Web

And once this is done, for our agent, Figs. 1.1 and 1.2 are already “glued”
together by overlapping the ns0:_x node with the ns1:book-1584889330 node.
This gluing process is exactly the data integration process on the Web.

Now, without going into the details, it is not difficult to convince ourselves that
our agent can answer lots of questions that we might have. For example, what is
the price of the book written by a person whose home page is given by this URL,
http://www.liyangyu.com?

This is indeed very encouraging. And this is not all.
Let us say now our agent hits www.linkedIn.com. Similarly, if LinkedIn were

still the LinkedIn today, our agent could not do much. However, again assume
LinkedIn is a new LinkedIn and our agent is able to collect quite a few statements
from this Web site. Some of them are shown in List 1.3.

List 1.3 Statements collected by our agent from LinkedIn

ns2:LiyangYu ns2:email "liyang910@yahoo.com".

ns2:LiyangYu ns2:workPlaceHomepage "http://www.delta.com".

ns2:LiyangYu ns2:connectedTo <ns2:Connie>.

The graph created by the agent is shown in Fig. 1.4 (note that more statements
have been added to the graph).

For human readers, we know ns0:LiyangYu and ns2:LiyangYu represent
exactly the same resource, because both these two resources have the same e-mail
address. For our agent, just by comparing the two identities (ns0:LiyangYu vs.
ns2:LiyangYu) does not ensure the fact that these two resources are the same.

Fig. 1.4 A graph generated by our agent after visiting linkedIn.com

1.1 A Motivating Example: Data Integration on the Web 7

However, if we can “teach” our agent the following fact:

If the e-mail property of resource A has the same value as the e-mail property of
resource B, then resources A and B are the same resource.

Then our agent will be able to automatically add the following new statement to
its current statement collection:

ns0:LiyangYu sameAs ns2:LiyangYu.

With the creation of this new statement, our agent has in fact integrated
Figs. 1.1 and 1.4 by overlapping node ns0:LiyangYu with node ns2:LiyangYu.
Clearly, this integration process is exactly the same as the one where Figs. 1.1
and 1.2 are connected together by overlapping node ns0:_x with node
ns1:book-1584889330. And now, Figs. 1.1, 1.2, and 1.4 are all connected.

At this point, our agent will be able to answer even more questions. The following
are just some of them:

• What is Laoyu’s workplace home page?
• How much does it cost to buy Laoyu’s book?
• Which city does Liyang live in?

And clearly, to answer these questions, the agent has to depend on the integrated
graph, not any single one. For example, to answer the first question, the agent has to
go through the following link that runs across different graphs:

ns0:LiyangYu ns0:nickname "LaoYu".

ns0:LiyangYu sameAs ns2:LiyangYu.

ns2:LiyangYu ns2:workPlaceHomepage "http://www.delta.com".

Once the agent reaches the last statement, it can present an answer to us. You
should be able to understand how the other questions are answered by mapping out
the similar path as shown above.

Obviously, the set of questions that our agent is able to answer grows when it hits
more Web documents. We can continue to move on to another Web site so as to add
more statements to our agent’s collection. However, the idea is clear: automatic data
integration on the Web can be quite powerful and can help us a lot when it comes to
information discovery and retrieval.

1.1.2 Is Smart Data Integration Agent Possible?

The question is also clear: is it even possible to build a smart data integration agent
as the one we have just discussed? Human do this kind of information integration
on the Web on a daily basis, and now, we are in fact hoping to program a machine
to do this for us.

To answer this question, we have to understand what exactly has to be there to
make our agent possible.

8 1 A Web of Data: Toward the Idea of the Semantic Web

Let us go back to the basics. Our agent, after all, is a piece of software that works
on the Web. So to make it possible, we have to work on two parties: the Web and
the agent.

Let us start with the Web. Recall that we have assumed our agent is able to collect
some statements from various Web sites (see Lists 1.1, 1.2, and 1.3). Therefore, each
Web site has to be different from its traditional form, so changes have to be made.
Without going into the details, here are some changes we need to have on each
Web site:

• Each statement collected by our agent represents a piece of knowledge.
Therefore, there has to be a way (a model) to represent knowledge on the Web.
Furthermore, this model of representing knowledge has to be easily and readily
processed (understood) by machines.

• This model has to be accepted as a standard by all the Web sites. Otherwise,
statements contained in different Web sites will not share a common pattern.

• There has to be a way to create these statements on each Web site. For example,
they can be either manually added or automatically generated.

• The statements contained in different Web sites cannot be completely arbitrary.
For example, they should be created by using some common terms and relation-
ships, at least for a given domain. For instance, to describe a person, we have
some common terms such as name, birthday, and home page.

• There has to be a way to define these common terms and relationships, which
specifies some kind of agreement on these common terms and relationships.
Different Web sites, when creating their statements, will use these terms and
relationships.

• Perhaps there are more to be included.

With these changes on the Web, a new breed of Web will be available for our
agent. And in order to take advantage of this new Web, our agent has to be changed
as well. For example,

• Our agent has to be able to understand each statement that it collects. One way to
accomplish this is by understanding the common terms and relationships that are
used to create these statements.

• Our agent has to be able to conduct reasoning based on its understanding of the
common terms and relationships. For example, knowing the fact that resources A
and B have the same e-mail address and considering the knowledge expressed by
the common terms and relationships, it should be able to conclude that A and B

are in fact the same resource.
• Our agent should be able to process some common queries that are submit-

ted against the statements it has collected. After all, without providing a query
interface, the collected statements will not be of too much use to us.

• Perhaps there are more to be included as well.

1.2 A More General Goal: A Web Understandable to Machines 9

Therefore, here is our conclusion: yes, our agent is possible, provided that we
can implement all the above (and possibly more).

1.1.3 The Idea of the Semantic Web

At this point, the Semantic Web can be understood as follows: the Semantic Web
provides the technologies and standards that we need to make our agent pos-
sible, including all the things we have listed in the previous section. It can be
understood as a brand new layer built on top of the current Web, and it adds machine-
understandable meanings (or “semantics”) to the current Web. Thus the name the
Semantic Web.

The Semantic Web is certainly more than automatic data integration on a large
scale. In the next section, we will position it in a more general setting. We will
then summarize the concept of the Semantic Web, which will hopefully look more
natural to you.

1.2 A More General Goal: A Web Understandable to Machines

1.2.1 How Do We Use the Web?

In its early days, the Web could be viewed as a set of Web sites which offered a
collection of Web documents, and the goal was to get the content pushed out to its
audiences. It acted like a one-way traffic: people read whatever was out there, with
the goal of getting information they could use in a variety of ways.

Today, the Web has become much more interactive. First off, more and more of
what is now known as user-generated content has emerged on the Web, and a host
of new Internet companies were created around this trend as well. More specifi-
cally, instead of only reading the content, people are now using the Web to create
content and also interact with each other by using social networking sites over Web
platforms. And certainly, even if we don’t create any new content or participate in
any social networking sites, we can still enjoy the Web a lot: we can chat with our
friends, we can shop online, we can pay our bills online, and we can also watch a
tennis game online, just to name a few.

Second, the life of a Web developer has changed a lot too. Instead of offering
merely static Web contents, today’s Web developer is capably of building Web sites
that can execute complex business transactions, from paying bills online to booking
a hotel room and airline tickets.

Third, more and more Web sites have started to publish structured content so that
different business entities can share their content to attract and accomplish more
transactions online. For example, Amazon and eBay both are publishing structured
data via Web service standards from their databases, so other applications can be
built on top of these contents.

10 1 A Web of Data: Toward the Idea of the Semantic Web

With all these being said, let us summarize what we do on today’s Web at a higher
level, and this will eventually reveal some critical issues we are having on the Web.
Note that our summary will be mainly related to how we consume the available
information on the Web, and we are not going to include activities such as chatting
with friends or watching a tennis game online – these are nice things you can do on
the Web, but not much related to our purpose here.

Now, to put it simple, searching, information integration, and Web data mining
are the three main activities we conduct using the Web.

1.2.1.1 Searching

This is probably the most common usage of the Web. The goal is to locate some
specific information or resources on the Web. For instance, finding different recipes
for making margarita and locating a local agent who might be able to help buying a
house are all good examples of searching.

Quite often though, searching on the Web can be very frustrating. At the time
of this writing, for instance, using a common search engine (Google, for example),
let us search the word SOAP with the idea that SOAP is a W3C standard for Web
services in our mind. Unfortunately, we will get about 63,200,000 listings back and
will soon find this result hardly helpful: there are listings for dish detergents, facial
soaps, and even soap operas! Only after sifting through multiple listings and reading
through the linked pages are we able to find information about the W3C’s SOAP
specifications.

The reason for this situation is that search engines implement their search based
on the core concept of “which documents contain the given keyword” – as long as
a given document contains the keyword, it will be included in the candidate set and
will be later presented back to the user as the search result. It is then up to the user
to read and interpret the result to extrapolate any useful information.

1.2.1.2 Information Integration

We have seen an example of information integration in Sect. 1.1.1, and we have also
created an imaginary agent to help us accomplish our goal. In this section, we will
take a closer look at this common task on the Web.

Let us say you decide to try some Indian food for your weekend dining out.
You first search the Web to find a list of restaurants specialized in Indian cuisine,
you then pick one restaurant, and you write down the address. Now you open up a
new browser and go to your favorite map utility to get the driving direction from
your house to the restaurant. This process is a simple integration process: you first
get some information (the address of the restaurant) and you use it to get more
information (the direction), and they collectively help you to enjoy a nice dining out.

Another similar but more complex example is to create a holiday plan that pretty
much every one of us has done. Today, it is safe to say that we all have to do this
manually: search for a place that fits not only our interest, but also our budget, and
then hotel, then flights, and finally cars. The information from these different steps
will then be combined together to create a perfect plan for our vacation, hopefully.

1.2 A More General Goal: A Web Understandable to Machines 11

Clearly, to conduct this kind of information integration manually is a somewhat
tedious process. It will be more convenient if we can finish the process with more
help from the machine. For example, we can specify what we need to some appli-
cation, which will then help us out by conducting the necessary steps for us. For
the vacation example, the application can even help us more: after creating our
itinerary (including the flights, hotels, and cars), it can search the Web to add related
information such as daily weather, local maps, driving directions, city guides.

Another good example of information integration is the application that makes
use of Web services. As a developer who mainly works on Web applications, Web
service should not be a new concept. For example, company A can provide a set of
Web services via its Web site, company B can write java code (or whatever language
of their choice) to consume these services so as to search company A’s product
database on the fly. For instance, when provided with several keywords that should
appear in a book title, the service returns a list of books whose titles contain the
given keywords.

Clearly, company A is providing structured data for another application to con-
sume. It does not matter which language company A has used to build its Web
services and what platform these services are running on; it does not matter either
which language company B is using and what platform company B is on; as long as
company B follows the related standards, this integration can happen smoothly and
nicely.

In fact, our perfect vacation example can also be accomplished by using a set
of Web services. More specifically, finding a vacation place, booking a hotel room,
buying air tickets, and finally making a reservation at a car rental company can all
be accomplished by consuming the right Web services.

On today’s Web, this type of integration often involves different Web services.
Just like the case where you want to have dinner in an Indian restaurant, you have
to manually locate and integrate these services together (and normally, this integra-
tion is implemented at the development phase). It would be much quicker, cleaned,
powerful, and more maintainable if we could have some application that helps us to
find the appropriate services on the fly and also invoke these services dynamically
to accomplish our goal.

1.2.1.3 Web Data Mining

Intuitively speaking, data mining is the non-trivial extraction of useful information
from a large (and normally distributed) datasets or databases. Given the fact that the
Web can be viewed as a huge distributed database, the concept of Web data mining
refers to the activity of getting useful information from the Web.

Web data mining might not be as interesting as searching sounds to a casual user,
but it could be very important and even be the daily work of those who work as
analysts or developers for different companies and research institutes.

One example of Web data mining is as follows. Let us say that we are currently
working as consultants for the air traffic control group at Hartsfield-Jackson Atlanta
International Airport, reportedly the busiest airport in the nation. Management group

12 1 A Web of Data: Toward the Idea of the Semantic Web

in the control tower wanted to understand how the weather condition may effect the
take-off rate on the runways, with the take-off rate defined as the number of aircrafts
that have taken off at a given hour. Intuitively, a severe weather condition will force
the control tower to shut down the airport so the take-off rate will go down to zero,
and a moderate weather condition will just make the take-off rate low.

For a task like this, we suggest that we gather as much historical data as possible
and analyze them to find the pattern of the weather effect. And we are told that his-
torical data (the take-off rates at different major airports for the past, say, 5 years) do
exist, but they are published in different Web sites. In addition, the data we need on
these Web sites are normally mingled together with other data that we do not need.

To handle this situation, we will develop a specific application that acts like a
crawler: it will visit these Web sites one by one, and once it reaches a Web site, it
will identify the data we need and only collect the needed information (historical
take-off rates) for us. After it collects these rates, it will store them into the data
format that we want. Once it finishes with one Web site, it will move on to the next
one until it has visited all the Web sties that we are interested in.

Clearly, this application is a highly specialized piece of software that is normally
developed on a case-by-case basis. Inspired by this example, you might want to
code up your own agent, which will visit all the related Web sites to collect some
specific stock information and report back to you, say, every 10 min. By doing so,
you don’t have to open up a browser every 10 min to check the stock prices, risking
the possibility that your boss will catch you visiting these Web sites, yet you can
still follow the latest changes happening in the stock market.

And this stock watcher application you have developed is yet another example
of Web data mining. Again, it is a very specialized piece of software and you might
have to re-code it if something important has changed on the Web sites that it rou-
tinely visits. And yes, it would be much nicer if the application could understand
the meaning of the Web pages on the fly so you do not have to change your code so
often.

By now, we have talked about the three major activities that you can do and
normally do with the Web. You might be a casual visitor to the Web, or you might
be a highly trained professional developer, but whatever you do with the Web will
more or less fall into one of these three categories.

The next question then is, what are the common difficulties that we have expe-
rienced in these activities? Does any solution exist to these difficulties at all? What
would we do if we had the magic power to change the way the Web is constructed
so that we did not have to experience these difficulties at all?

Let us talk about this in the next section.

1.2.2 What Stops Us from Doing More?

Let us go back to the first main activity: search. Among the three major activities,
search is probably the most popular one, and it is also interesting that this activity
in fact shows the difficulty of the current Web in a most obvious way: whenever we

1.2 A More General Goal: A Web Understandable to Machines 13

do a search, we want to get only relevant results; we want to minimize the human
work that is required when trying to find the appropriate documents.

However, the conflict also starts from here: the current Web is entirely aimed at
human readers and it is purely display oriented. In other words, the Web has been
constructed in such a way that it is oblivious to the actual information content on any
given Web site. Web browsers, Web servers, and even search engines do not actually
distinguish weather forecasts from scientific papers and cannot even tell a personal
home page from a major corporate Web site. Search engines are therefore forced to
do keyword-matching only: as long as a given document contains the keyword(s), it
will be included in the candidate set that is later presented to the user as the search
result.

If we had the magic power, we would re-construct the whole Web such that
computers not only can present the information that is contained in the Web doc-
uments, but can also understand the very information they are presenting so they
can make intelligent decisions on our behalf. For example, search engines can filter
the pages before they present them back to us, if not able to directly give us the
answer back.

For the second activity, integration, the main difficulty is that there is too much
manual work involved in the integration process. If the Web were constructed in
such a way that the meaning of each Web document can be retrieved from a collec-
tion of statements, our agent would be able to understand each page, and information
integration would have become amazingly fun and easy, as we have shown in
Sect. 1.1.1.

Information integration implemented by using Web services may seem quite dif-
ferent at first glance. However, to automatically composite and invoke the necessary
Web services, the first step is to discover them in a more efficient and automated
manner. Currently, this type of integration is difficult to implement mainly because
the discovery process of its components is far from efficient.

The reason, again, as you can guess, is that although all the services needed to
be integrated do exist on the Web, the Web is, however, not programmed to under-
stand and remember the meaning of any of these services. As far as the Web is
concerned, all these components are created equal, and there is no way for us to
teach our computers to understand the meaning of each component, at least on the
current Web.

What about the last activity, namely, Web data mining? The truth is Web data
mining applications are not scalable, and they have to be implemented at a very
high price, if they are possible to be implemented at all.

More specifically, each Web data mining application is highly specialized and
has to be specially developed for that application context. For a given project in a
specific domain, only the development team knows the meaning of each data ele-
ment in the data source and how these data elements should interact together to
present some useful information. The developers have to program these meanings
into the mining software before setting it off to work; there is no way to let the
mining application learn and understand these meanings on the fly. In addition, the
underlying decision tree has to be pre-programmed into the application as well.

14 1 A Web of Data: Toward the Idea of the Semantic Web

Also, even for a given specific task, if the meaning of the data element changes
(this can easily happen given the dynamic nature of the Web documents), the mining
application has to be changed accordingly since it cannot learn the meaning of the
data element dynamically. All these practical concerns have made Web data mining
a very expensive task to do.

Now, if the Web were built to remember all the meanings of data elements, and
in addition, if all these meanings could be understood by a computer, we would then
program the mining software by following a completely different pattern. We can
even build a generic framework for some specific domain so that once we have a
mining task in that domain, we can reuse it all the time – Web data mining will not
be as expensive as today.

Now we finally reached some interesting point. Summarizing the above discus-
sion, we have come to an understanding of an important fact: our Web is constructed
in a way that its documents only contain enough information for a machine to
present them, not to understand them.

Now the question is the following: is it still possible to re-construct the Web by
adding some information into the documents stored on the Web, so that machines
can use this extra information to understand what a given document is really about?

The answer is yes, and by doing so, we in fact change the current (traditional)
Web into something we call the Semantic Web – the main topic of this chapter and
this whole book.

1.2.3 Again, the Idea of the Semantic Web

At this point, the Semantic Web can be understood as follows: the Semantic
Web provides the technologies and standards that we need to make the following
possible:

• adds machine-understandable meanings to the current Web, so that
• computers can understand the Web documents and therefore can automatically

accomplish tasks that have been otherwise conducted manually, on a large scale.

With all the intuitive understanding of the Semantic Web, we are now ready for
some formal definition of the Semantic Web, which will be the main topic of the
next section.

1.3 The Semantic Web: A First Look

1.3.1 The Concept of the Semantic Web

First off, the word “semantics” is related to the word syntax. In most languages, syn-
tax is how you say something, where semantics is the meaning behind what you have
said. Therefore, the Semantic Web can be understood as “the Web of meanings,”
which echoes what we have learned so far.

1.3 The Semantic Web: A First Look 15

At the time of this writing, there is no formal definition of the Semantic Web yet.
And it often means different things to different groups of individuals. Nevertheless,
the term “Semantic Web” was originally coined by World Wide Web Consortium2

(W3C) director Sir Tim Berners-Lee and formally introduced to the world by the
May 2001 Scientific American article “The Semantic Web” (Berners-Lee et al.
2001):

The Semantic Web is an extension of the current Web in which information is
given well-defined meaning, better enabling computers and people to work in
cooperation.

There has been a dedicated team of people at W3C working to improve, extend,
and standardize the idea of the Semantic Web. This is now called W3C Semantic
Web Activity.3 According to this group, the Semantic Web can be understood as
follows:

The Semantic Web provides a common framework that allows data to be
shared and reused across application, enterprise, and community boundaries.

For us, and for the purpose of this book, we can understand the Semantic Web as
the following:

The Semantic Web is a collection of technologies and standards that allow
machines to understand the meaning (semantics) of information on the Web.

To see this, recall that Sect. 1.1.2 has described some requirements for both the
current Web and agents, in order to bring the concept of the Semantic Web into
reality. If we understand the Semantic Web as a collection of technologies and stan-
dards, Table 1.1 summarizes how those requirements summarized in Sect. 1.1.2 can
be mapped to the Semantic Web’s major technologies and standards.

Table 1.1 may not make sense at this point, but all the related technologies and
standards will be covered in detail in the upcoming chapters of this book. When you
finish this book and come back to review Table 1.1, you should be able to understand
it with much more ease.

1.3.2 The Semantic Web, Linked Data, and the Web of Data

Linked Data and the Web of Data are concepts that are closely related to the concept
of the Semantic Web. We will take a brief look at these terms in this section. You
will see more details about Linked Data and Web of Data in the later chapters.

The idea of Linked Data was originally proposed by Tim Berners-Lee, and his
2006 Linked Data principles4 is considered to be the official and formal introduction

2http://www.w3.org/
3http://www.w3.org/2001/sw/
4http://www.w3.org/DesignIssues/LinkedData.html

16 1 A Web of Data: Toward the Idea of the Semantic Web

Table 1.1 Requirements summarized in Sect. 1.1.2 can be mapped to the Semantic Web’s
technologies and standards

Requirements

The Semantic Web’s
technologies and
standards

Each statement collected by our agent represents a piece of
knowledge. Therefore, there has to be a way (a model) to
represent knowledge on the Web site. And furthermore, this
model of representing knowledge has to be easily and readily
processed (understood) by machines

Resource description
framework (RDF)

This model has to be accepted as a standard by all the Web sites;
therefore statements contained in different Web sites all looked
“similar” to each other

Resource description
framework (RDF)

There has to be a way to create these statements on each Web
site, for example, they can be either manually added or
automatically generated

Semantic markup, RDFa,
Microformats

The statements contained in different Web sites cannot be too
arbitrary. For example, they should be created by using some
common terms and relationships, perhaps on the basis of a
given domain. For instance, to describe a person, we have
some common terms such as name, birthday, and home page

Domain-specific
ontologies/vocabularies

There has to be a way to define these common terms and
relationship, and there has to be some kind of agreement on
these common terms and relationships. Different Web sites,
when creating their statements, will use these terms and
relationships

RDF Schema (RDFS), Web
Ontology Language
(OWL)

Our agent has to be able to understand each statement that it
collects. One way to accomplish this is by understanding the
common terms and relationships that are used to create these
statements

Supporting tools for
ontology processing

Our agent has to be able to conduct reasoning based on its
understanding of the common terms and relationships. For
example, knowing the fact that resources A and B have the
same e-mail address and considering the knowledge expressed
by the common terms and relationships, it should be able to
decide that A and B are in fact the same resource

Reasoning based on
ontologies

Our agent should be able to process some common queries that
are submitted against the statements it has collected. After all,
without providing a query interface, the collected statements
will not be of too much use to us

SPARQL query language

of the concept itself. At its current stage, Linked Data is a W3C-backed movement
that focuses on connecting datasets across the Web, and it can be viewed as a subset
of the Semantic Web concept, which is all about adding meanings to the Web.

To understand the concept of Linked Data, think about the motivating example
presented in Sect. 1.1.1. More specifically, our agent has visited several pages and
has collected a list of statements from each Web site. These statements, as we know
now, represent the added meaning to that particular Web site. This has given us the

1.3 The Semantic Web: A First Look 17

impression that the added structure information for machines has to be associated
with some hosting Web site and has to be either manually created or automatically
generated.

In fact, there is no absolute need that machines and human beings have to share
the same Web site. Therefore, it is also possible to directly publish some structured
information online (a collection of machine-understandable statements, for exam-
ple) without having them related to any Web site at all. Once this is done, these
statements as a dataset are ready to be harvested and processed by applications.

Imaginably, such a dataset will not be of much use if it does not have any link to
other datasets. Therefore, one important design principle is to make sure that each
such dataset has outgoing links to other datasets.

Therefore, publishing structured data online and adding links among these
datasets are the key aspects of the Linked Data concept. The Linked Data princi-
ples have specified the steps of accomplishing these key aspects. Without going into
the details of Linked Data principles, understand that the term of Linked Data refers
to a set of best practices for publishing and connecting structured data on the Web.

What is the relationship between Linked Data and the Semantic Web? Once you
finish this book (Linked Data is covered in Chap. 11), you should be able to get
a much better understanding. For now, let us simply summarize their relationship
without much discussion:

• Linked Data is published by using Semantic Web technologies and standards.
• Similarly, Linked Data is linked together by using Semantic Web technologies

and standards.
• Finally, the Semantic Web is the goal, and Linked Data provides the means to

reach the goal.

Another important concept is the Web of Data. At this point, we can understand
Web of Data as an interchangeable term for the Semantic Web. In fact the Semantic
Web can be defined as a collection of standard technologies to realize a Web of Data.
In other words, if Linked Data is realized by using the Semantic Web standards and
technologies, the result would be a Web of Data.

1.3.3 Some Basic Things About the Semantic Web

Before we set off and get into the world of the Semantic Web, there are some useful
information resources you should know about. Let us list them here in this section:

• http://www.w3.org/2001/sw/

This is the W3C Semantic Web activity’s official Web site. It has quite a lot
information including a short introduction, latest publications (articles and inter-
views), presentations, links to specifications, and links to different working
groups.

18 1 A Web of Data: Toward the Idea of the Semantic Web

• http://www.w3.org/2001/sw/SW-FAQ

This is the W3C Semantic Web frequently asked questions page. This is certainly
very helpful to you if you have just started to learn the Semantic Web. Again,
when you finish this whole book, come back to this FAQ, take yet another look,
and you will find yourself having a much better understanding at that point.

• http://www.w3.org/2001/sw/interest/

This is the W3C Semantic Web interest group, which provides a public forum to
discuss the use and development of the Semantic Web, with the goal to support
developers. Therefore, this could a useful resource for you when you start your
own development work.

• http://www.w3.org/2001/sw/anews/

This is the W3C Semantic Web activity news Web site. From here, you can follow
the news related to the Semantic Web Activity, especially news and progress
about specifications and specification proposals.

• http://www.w3.org/2001/sw/wiki/Main_Page

This is the W3C Semantic Web community Wiki page. It has quite a lot of infor-
mation for anyone interested in the Semantic Web. It has links to a set of useful
sites, such as events in the Semantic Web community, Semantic Web tools, peo-
ple in the Semantic Web community, and popular ontologies, just to name a few.
Make sure to check this page if you are looking for related resources during the
course of your study of this book.

• http://iswc.semanticweb.org/

There are a number of different conferences in the world of the Semantic Web.
Among these conferences, the International Semantic Web Conference (ISWC)
is a major international forum at which research on all aspects of the Semantic
Web is presented, and the above is their official Web site. The ISWC started in
2001 and has been the major conference ever since. Check out this conference
more to follow the latest research activities.

With all these being said, we are now ready to start the book. Again, you can find
a roadmap of the whole book in the Preface section, and you can download all the
code examples for this book from www.liyangyu.com.

Reference

Berners-Lee T, Hendler J, Lassila O (2001) The Semantic Web. Sci Am 284(5):34–43

Chapter 2
The Building Block
for the Semantic Web: RDF

This chapter is probably the most important chapter in this whole book: it covers
RDF in detail, which is the building block for the Semantic Web. A solid under-
standing of RDF provides the key to the whole technical world that defines the
foundation of the Semantic Web: once you have gained the understanding of RDF,
all the rest of the technical components will become much easier to comprehend,
and in fact, much more intuitive as well.

This chapter will cover all the main aspects of RDF, including its concept, its
abstract model, its semantics, its language constructs, and its features, together with
ample real-world examples. This chapter also introduces available tools you can use
when creating or understanding RDF models. Make sure you understand this chapter
well before you move on. In addition, use some patience when reading this chapter:
some concepts and ideas may look unnecessarily complex at the first glance, but
eventually, you will start to see the reasons behind them.

Let us get started.

2.1 RDF Overview

2.1.1 RDF in Official Language

RDF stands for Resource Description Framework, and it was originally cre-
ated in early 1999 by W3C as a standard for encoding metadata. The name,
Resource Description Framework, was formally introduced in the corresponding
W3C specification document that outlines the standard.1

As we have discussed earlier, the current Web is built for human consumption,
and it is not machine understandable at all. It is therefore very difficult to automate
anything on the Web, at least on a large scale. Furthermore, given the huge amount
of information the Web contains, it is impossible to manage it manually either. A
solution proposed by W3C is to use metadata to describe the data contained on

1Resource Description Framework (RDF) model and syntax specification, a W3C
Recommendation, 22 February 1999. http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

19L. Yu, A Developer’s Guide to the Semantic Web,
DOI 10.1007/978-3-642-15970-1_2, C© Springer-Verlag Berlin Heidelberg 2011

20 2 The Building Block for the Semantic Web: RDF

the Web, and the fact that this metadata itself is machine understandable enables
automated processing of the related Web resources.

With the above consideration in mind, RDF was proposed in 1999 as a basic
model and foundation for creating and processing metadata. Its goal is to define a
mechanism for describing resources that makes no assumptions about a particular
application domain (domain independent), and therefore can be used to describe
information about any domain. The final result is that RDF concept and model
can directly help to promote interoperability between applications that exchange
machine-understandable information on the Web.

As we have discussed in Chap. 1, the concept of the Semantic Web was for-
mally introduced to the world in 2001, and the goal of the Semantic Web is to
make the Web machine understandable. The obvious logical connection between
the Semantic Web and RDF has greatly changed RDF: the scope of RDF has since
then involved into something that is much greater. As we will see later throughout
the book, RDF is not only used for encoding metadata about Web resources, but also
used for describing any resources and their relations existing in the real world.

This much larger scope of RDF has been summarized in the updated RDF
specifications published in 2004 by the RDF Core Working Group2 as part of
the W3C Semantic Web activity.3 These updated RDF specifications contain alto-
gether six documents as shown in Table 2.1. These six documents have since then
jointly replaced the original Resource Description Framework specification (1999
Recommendation), and they together became the new RDF W3C Recommendation
on 10 February 2004.

Table 2.1 RDF W3C recommendation, 10 February 2004

Specification Recommendation

RDF Primer 10 February 2004
RDF Test Cases 10 February 2004
RDF Concept 10 February 2004
RDF Semantics 10 February 2004
RDF Schema 10 February 2004
RDF Syntax 10 February 2004

Based on these official documents, RDF can be defined as follows:

• RDF is a language for representing information about resources in the World
Wide Web (RDF Primer).

• RDF is a framework for representing information on the Web (RDF Concept).
• RDF is a general-purpose language for representing information in the Web (RDF

Syntax, RDF Schema).

2RDFCore Working Group, W3C Recommendations, http://www.w3.org/2001/sw/RDFCore/
3W3C Semantic Web activity, http://www.w3.org/2001/sw/

2.1 RDF Overview 21

• RDF is an assertional language intended to be used to express propositions using
precise formal vocabularies, particularly those specified using RDFS, for access
and use over the World Wide Web, and is intended to provide a basic foun-
dation for more advanced assertional languages with a similar purpose (RDF
Semantics).

At this point, it is probably not easy to truly understand what RDF is, based on
these official definitions. Let us keep these definitions in mind, and once you have
finished this chapter, review these definitions and you should find yourself having a
better understanding of them.

For now, let us move on to some more explanation in plain English about what
exactly RDF is and why we need it. This explanation will be much easier to under-
stand and will give you enough background and motivation to continue reading the
rest of this chapter.

2.1.2 RDF in Plain English

Let us forget about RDF for a moment and consider those Web sites where we can
find reviews of different products (such as Amazon.com, for example). Similarly,
there are also Web sites that sponsor discussion forums where a group of people get
together to discuss the pros and cons of a given product. The reviews published at
these sites can be quite useful when you are trying to decide whether you should
buy a specific product or not.

For example, I am a big fan of photography, and I have recently decided to
upgrade my equipment – to buy a Nikon SLR (single lens reflex) camera so I will
have more control over how a picture is taken and therefore have more chance to
show my creative side. Note the digital version of SLR camera is called DSLR
(digital single lens reflex).

However, pretty much all Nikon SLR models are quite expensive, so to spend
money wisely, I have read quite a lot of reviews, with the goal of choosing the one
particular model that fits my needs the best.

You must have had the same experience, probably with some other product. Also,
you will likely agree with me that reading these reviews does take a lot of time. In
addition, even after reading quite a lot of reviews, you are still not sure: could it be
true that I have missed some reviews that could be very useful?

Now, imagine you are a quality engineer who works for Nikon. Your assignment
is to read all these reviews and summarize what people have said about Nikon SLR
cameras and report back to Nikon headquarter so the design department can make
better designs based on these reviews.

Obviously, you can do your job by reading as many reviews as you can and
manually create a summary report and submit it to your boss. However, it is not
only tedious, but also quite demanding: you spend the whole morning reading, you
have only covered a couple dozen reviews, with a couple hundreds more to go!

22 2 The Building Block for the Semantic Web: RDF

Fig. 2.1 Amazon’s review page for Nikon D300 SLR camera

One idea to solve this problem is to write an application that will read all these
reviews for you and generate a report automatically, and all this will be done in a
matter of couple of minutes. Better yet, you can run this application as often as you
want, just to gather the latest reviews. This is a great idea with only one flaw: such
an application is not easy to develop, since the reviews published online are intended
for human eyes to consume, not for machines to read.

Now, in order to solve this problem once and for all so as to make sure you have
a smooth and successful career path, you start to consider the following key issue:

Assuming all the review publishers are willing to accept and follow some standard
when they publish their reviews, what standard would make it easier to develop such an
application?

Note the words we used were standard and easier. Indeed, although writing such
an application is difficult, there is in fact nothing stopping us from actually doing it,
even on the given Web and without any standard. For example, screen scraping can
be used to read reviews from Amazon.com’s review page, as shown in Fig. 2.1.

On this page, a screen-scraping agent can pick up the fact that 40 customers have
assigned five stars to Nikon D300 (a DSLR camera by Nikon), and four attributes are
currently used for reviewing this camera, and they are called Ease of use, Features,
Picture quality, and Portability.

Once we have finished coding the agent that understands the reviews from
Amazon.com, we can move on to the next review site. It is likely that we have to

2.1 RDF Overview 23

add another new set of rules to our agent so it can understand the published reviews
on that specific site. The same is true for the next site, so on and so forth.

There is indeed quite a lot of work, and obviously, it is not a scalable way to
develop an application either. In addition, when it comes to the maintenance of
this application, it could be more difficult than the initial development work. For
instance, a small change on any given review site can easily break the logic that
is used to understand that site, and you will find yourself constantly being busy
changing and fixing the code.

And this is exactly why a standard is important: once we have a standard that all
the review sites follow, it will be much easier to write an application to collect the
distributed reviews and come up with a summary report.

Now, what exactly is this standard? Perhaps it is quite challenging to come up
with a complete standard right away, but it might not be too difficult to specify some
of the things we would want such a standard to have:

• It should be flexible enough to express any information anyone can think of.

Obviously, each reviewer has different things to say about a given Nikon camera,
and whatever he/she wants to say, the standard has to provide a way to allow it.
Perhaps the graph shown in Fig. 2.2 is a possible choice – any new information
can be added to this graph freely: just grow it as you wish.

And to represent this graph as structured information is not as difficult as you
think: the tabular notation shown in Table 2.2 is exactly equivalent to the graph
shown in Fig. 2.2.

Fig. 2.2 A graph is flexible and can grow easily

24 2 The Building Block for the Semantic Web: RDF

Table 2.2 A tabular notation of the graph in Fig. 2.2

Start node Edge label End node

Nikon_D300 is_a DSLR
Nikon_D300 manufactured_by Nikon
Nikon_D300 performance PictureQuality
Nikon_D300 model “D300”
Nikon_D300 weight “0.6 kg”
PictureQuality evaluate “5 stars”

More specifically, each row in the table represents one arrow in the graph,
including the start node, the edge with the arrow, and the end node. The first
column, therefore, has the name of the start node, the second column has the
label of the edge, and the third column has the name of the end node. Clearly, no
matter how the graph grows and no matter how complex it grows into, Table 2.2
will always be able to represent it correctly.

• It should provide a mechanism to connect the distributed information (knowl-
edge) over the Web.

Now that every reviewer can publish his/her review freely and a given review
can be represented by a graph as we have discussed above, the standard has to
provide a way so that our application, when visiting each review graph, is able
to decide precisely which product this review is talking about. After all, reviews
created by reviewers are distributed all over the Web, and different reviewers can
use different names for exactly the same product. For example, one reviewer can
call it “Nikon D300,” the other reviewer can use “Nikon D-300,” and the next
one simply names it “D300.” Our standard has to provide a way to eliminate this
ambiguity so our application can process the reviews with certainty.

• You can think of more requirements?

Yes, there are probably more requirements you would like to add to this standard,
but you have got the point. And, as you have guessed, W3C has long realized the
need for such a standard, and the standard has been published and called RDF.

So, in plain English, we can define RDF as follows:

RDF is a standard published by W3C, and it can be used to represent dis-
tributed information/knowledge in a way that computer applications can use
and process in a scalable manner.

At this point, the above definition about RDF is good enough for us to continue.
With more and more understanding about RDF, the following will become more and
more obvious to you:

• RDF is the basic building block for supporting the vision of the Semantic Web.
• RDF is for the Semantic Web what HTML has been for the Web.

2.2 The Abstract Model of RDF 25

And the reason of RDF being the building block for the Semantic Web lies
in the fact that knowledge represented using RDF standard is structured, i.e., it
is machine understandable. This further means that RDF allows interoperability
among applications exchanging machine-understandable information on the Web,
and this, as you can tell, is the fundamental idea of the Semantic Web.

2.2 The Abstract Model of RDF

In the previous section, we have mentioned the six documents composing the RDF
specification (see Table 2.1). These documents all together describe different aspects
of RDF. One fundamental concept of RDF is its abstract model that is used to rep-
resent knowledge about the world. In this section, we will learn this abstract model
in detail.

2.2.1 The Big Picture

Before we get into the details, let us first take a look at the big picture of this abstract
model, so it will be easier for you to understand the rest of its content.

The basic idea is straightforward: RDF uses this abstract model to decompose
information/knowledge into small pieces, with some simple rules about the seman-
tics (meaning) of each one of these pieces. The goal is to provide a general method
that is simple and flexible enough to express any fact, yet structured enough that
computer applications can operate with the expressed knowledge.

This abstract model has the following key components:

• statement
• subject and object resources
• predicate

And we will now discuss each one of these components, and we will then put
them together to gain understanding of the abstract model as a whole.

2.2.2 Statement

As we have discussed, the key idea of RDF’s abstract model is to break information
into small pieces, and each small piece has clearly defined semantics so that machine
can understand it and do useful things with it.

Now, using RDF’s terminology, a given small piece of knowledge is called a
statement, and the implementation of the above key idea can be expressed as the
following rule:

Rule #1:
Knowledge (or information) is expressed as a list of statements, each statement takes
the form of Subject-Predicate-Object, and this order should never be
changed.

26 2 The Building Block for the Semantic Web: RDF

Fig. 2.3 Graph structure of RDF statement

Therefore, an RDF statement must have the following format:

subject predicate object

where the subject and object are names for two things in the world, with the
predicate being the name of a relation that connects these two things. Figure 2.3
shows the graph structure of a statement.

Note that Fig. 2.3 shows a directed graph: the subject is contained in the oval on
the left, the object is the oval on the right, and the predicate is the label on the arrow,
which points from the subject to the object.

With this said, the information contained in Table 2.2 can be expressed as the
following statements shown in List 2.1.

List 2.1 Expressing Table 2.2 as a collection of RDF statements

subject predicate object

Nikon_D300 is_a DSLR

Nikon_D300 manufactured_by Nikon

Nikon_D300 performance PictureQuality

Nikon_D300 model "D300"

Nikon_D300 weight "0.6 kg"

PictureQuality evaluate "5 stars"

Note that since a statement always consists of three fixed components, it is
also called a triple. Therefore, in the world of RDF, each statement or triple rep-
resents a single fact; a collection of statements or triples represents some given
piece of information or knowledge; and a collection of statements is called an
RDF graph.

Now, is this abstract model flexible enough to represent any knowledge? The
answer is yes, as long as that given knowledge can be expressed as a labeled and
directed graph as shown in Fig. 2.2. And clearly, any new fact can be easily added
to an existing graph to make it more expressive. Furthermore, without any loss
to its original meaning, any such graph can be represented by a tabular format as
shown in Table 2.2, which can then be expressed as a collection of RDF statements
as shown in List 2.1, representing a concrete implementation of the RDF abstract
model.

For any given RDF statement, both its subject and object are simple names
for things in the world, and they are said to refer to or denote these things. Note that
these things can be anything, concrete or abstract. For example, the first statement
in List 2.1 has both its subject and object referring to concrete things, whilst
the third statement in List 2.1 has its object referring to PictureQuality, an
abstract thing (concept).

2.2 The Abstract Model of RDF 27

In the world of RDF, the thing that a given subject or object denotes, be
it concrete or abstract, is called resource. Therefore, a resource is anything that is
being described by RDF statements.

With this said, both subject and object in a statement are all names for
resources. The question now is how do we come up with these names? This turns
out to be a very important aspect of the RDF abstract model. Let us discuss this in
detail in the next section.

2.2.3 Resource and Its URI Name

Let us go back to List 2.1, which contains a list of statements about Nikon D300
camera as a resource in the real world. Imagine it is a review file created by one of
the reviewers, and this review is intended to be published on the Web.

Now, once this review is put on the Web, the resource names in this review, such
as Nikon_D300, will present a problem.

More specifically, it is quite possible that different reviewers may use different
names to represent the same resource, namely, Nikon D300 camera in this case. For
example, one might use Nikon-D300 instead of Nikon_D300. Even such a small
difference will become a big problem for an application that tries to aggregate the
reviews from different reviewers: it does not know these two reviews are in fact
evaluating the same resource.

On the flip side of the coin, it is also possible that two different documents may
have used the same name to represent different resources. In other words, a single
name has different meanings. Without even seeing any examples, we all understand
this semantic ambiguity is exactly what we want to avoid in order for any application
to work correctly on the Web.

The solution proposed by RDF’s abstract model is summarized in Rule #2 as
follows:

Rule #2:
The name of a resource must be global and should be identified by
Uniform Resource Identifier (URI).

We are all familiar with URL (Uniform Resource Locator), and we have been
using it all the time to locate a Web page we want to access. The reason why we can
use URL to locate a Web resource is because it represents the network location of
this given Web resource.

However, there is some subtle fact about URL that most of us are not familiar
with: URL is often used to identify a Web resource that can be directly retrieved
on the Web. For example, my personal home page has a URL as given by the
following:

http://www.liyangyu.com

This URL is used not only to identify my home page, but also to retrieve it from
the Web.

28 2 The Building Block for the Semantic Web: RDF

On the other hand, there are also lots of resources in the world that can be iden-
tified on the Web, but cannot be directly retrieved from the Web. For example, I
myself as a person, can be identified on the Web, but cannot be directly retrieved
from the Web. Similarly, a Nikon D300 camera can be identified on the Web, yet we
cannot retrieve it from the Web. Therefore, for these resources, we cannot simply
use URLs to represent them.

Fortunately, the Web provides a more general form of identifier for this purpose,
and it is called the Uniform Resource Identifier (URI). In general, URLs can be
understood as a particular kind of URI. Therefore, a URI can be created to identify
anything that can be retrieved directly from the Web and also to represent anything
that is not network accessible, such as a human being, a building, or even an abstract
concept that does not physically exist, such as the picture quality of a given camera.

The reason why RDF’s abstract model decides to use URIs to identify resources
in the world should become obvious to you at this point. RDF model has to be
extremely flexible since anyone can talk about anything at any time; it does not
matter whether you can retrieve that resource on the Web or not. Furthermore,
since any collection of RDF statements is intended to be published on the Web,
using URIs to identify the subjects and objects in these statements is simply a
natural fit.

Another benefit of using URIs to represent subject and object resources is related
to their global uniqueness. Imagine we can collect all the URIs in the whole world,
and let us call this collection the space of all names. Clearly, we can partition
this whole name space into different sections simply by looking at their own-
ers. For example, the organization W3C is the owner for all URIs that start with
http://www.w3c.org/. And by convention, only W3C will create any new URI
that starts with http://www.w3c.org/. This guarantees the global uniqueness of
URIs and certainly prevents name clashes. If you create a URI using this convention,
you can rest assured no one will use the same URI to denote something else.

All these said, how does a URI look like? In the world of RDF, by convention,
there are two different types of URI we can use to identify a given resource, namely
hash URI and slash URI. A slash URI is simply a normal URI that we are all familiar
with; and a hash URI consists of the following components:

normal URI + # + fragment identifier

For example, to identify Nikon D300 as a resource on the Web, List 2.2 uses both
the hash URI and the slash URI.

List 2.2 Use URI to identify Nikon D300 on the Web as a resource

http://www.liyangyu.com/camera/Nikon_D300

http://www.liyangyu.com/camera#Nikon_D300

The first URI in List 2.2 is a slash URI, and the second one is a hash URI. For
this hash URI, its normal URI is given by http://www.liyangyu.com/camera,
and its fragment identify is given by Nikon_D300.

2.2 The Abstract Model of RDF 29

Note that at times a hash URI is also called a URI reference or URIref. At the
time of this writing, hash URI seems to be the name that is more and more widely
used.

Now, an obvious question is, what is the difference between a hash URI and a
slash URI? Or, when naming a given resource, should we use a hash URI or a slash
URI?

In order to answer this question, we in fact have to answer another question first:
if we type the URIs contained in List 2.2 (both the hash one and the slash one) into
a Web browser, do we actually get anything back? Or, should we be expecting to get
anything back at all?

Before the beginning of 2007, there was no expectation that actual content should
be served at that location, the reason being URIs do not require the entities being
identified to be actually retrievable from the Web. Therefore, the fact that URIs look
like a Web address is totally incidental, they are merely verbose names for resources.

However, since early 2007, especially with the development of Linked Data
project, dereferencing URIs in RDF models should return some content back, so
that both human readers and applications can make use of the returned information.

You will see more about Linked Data project and understand more about URIs
in Chap. 11. For now, it is important to remember that URIs in RDF models should
be dereferencable URIs. Therefore, if you mint a URI, you are actually required to
put something at that address so that RDF clients can access that page and get some
information back.

With this new requirement, the difference between a hash URI and a slash URI
starts to become more significant. Since you are going to see all the details in
Chap. 11, let us simply state the conclusion here without too much explanation:
it is easier to make sure a hash URI is also a dereferencable URI, since you can eas-
ily accomplish this without any content negotiation mechanism. However, to make
a slash URI dereferencable, content negotiation is normally needed.

With all these said, for the rest of this chapter, we are going to use hash URI.
Furthermore, if we do create a new URI, we will not worry about serving content at
that location – you will learn how to do that in Chap. 11.

Now, with the understanding that all the resources should be named by using
URIs, we can revisit List 2.1 and rename all the resources there. List 2.3 shows the
resources and their URI names.

List 2.3 Using URIs to name resources

Original name URI name

Nikon_D300 http://www.liyangyu.com/camera#Nikon_D300

DSLR http://www.liyangyu.com/camera#DSLR

Nikon http://www.dbpedia.org/resource/Nikon

PictureQuality http://www.liyangyu.com/camera#PictureQuality

Note that all the new URIs we have created contain the following domain:

http://www.liyangyu.com/

30 2 The Building Block for the Semantic Web: RDF

except the URI for Nikon, the manufacturer of the camera. And this URI looks
like this:

http://www.dbpedia.org/resource/Nikon

In fact, we did not coin this URI, and it is an existing one. So why should we use
an existing URI to represent Nikon? The reason is very simple: if a given resource
has a URI that identifies it already, we should reuse this existing URI whenever we
can. In our case, we happen to know the fact that the above URI created by DBpedia
project4 (DBpedia is a well-known application in the world of the Semantic Web;
you will see more details about it in Chap. 10) does represent Nikon, and it is indeed
the same Nikon we are talking about. Therefore, we have decided to use it instead
of inventing our own.

This does open up another whole set of questions. For example, is it good to
always reuse URIs, or should we sometimes invent our own? If reuse is desirable,
then for a given resource, how do we know if there exists some URI already? How
do we find it? What if there are multiple URIs existing for this single resource?

At this point, we are not going into the details of the answers to these ques-
tions, since they are all covered in later chapters. For now, one thing important
to remember is to always reuse URIs and only invent your own if you absolutely
have to.

And as you can tell, for the rest of the resources in List 2.3, we have simply cho-
sen to invent our own URIs, because the main goal here is to show you the concept
of RDF abstract model. If we were to build a real project about reviewing cam-
eras, we would have searched for existing URIs first (details presented in Chap. 11).
For your information, the following is an existing URI that represents Nikon D300
camera. Again, this URI is minted by DBpedia project:

http://dbpedia.org/resource/Nikon_D300

Also note that both URIs created by DBpedia, i.e., the one representing Nikon
and the one identifying Nikon D300 camera, are all slash URIs. The URIs that we
have created in List 2.3 are all hash URIs.

Now, before we can re-write the statements listed in List 2.1, we do have one
more issue to cover: if we use URIs to represent resources as required by RDF
abstract model, all the resources will inevitably have fairly long names. This is not
quite convenient and not quite readable either.

The solution to this issue is quite straightforward: a full URI is usually abbre-
viated by replacing it with its XML qualified name (QName). Recall in the XML
world, a QName contains a prefix that maps to a namespace URI, followed by a
colon, and then a local name. Using our case as an example, we can declare the two
namespace prefixes as shown in List 2.4.

4http://dbpedia.org/About

2.2 The Abstract Model of RDF 31

List 2.4 Namespace prefixes for our example review

Prefix Namespace

myCamera http://www.liyangyu.com/camera#

dbpedia http://www.dbpedia.org/resource/

And now, the following full URI
http://www.liyangyu.com/camera#Nikon_D300

can be written as
myCamera:Nikon_D300

and similarly, the full URI

http://www.dbpedia.org/resource/Nikon

can be written as
dbpedia:Nikon

As you will see later in this chapter, there are different serialization formats for
RDF models, and the precise rules for abbreviation depend on the RDF serializa-
tion syntax being used. For now, this QName notation will be fine. And remember,
namespaces process no significant meanings in RDF, they are merely a tool to
abbreviate long URI names.

Now we can re-write the statements in List 2.1. After replacing the simple names
we have used in List 2.1, the new statements are summarized in List 2.5.

List 2.5 RDF statements using URIs as resource names

subject predicate object

myCamera:Nikon_D300 is_a myCamera:DSLR

myCamera:Nikon_D300 manufactured_by dbpedia:Nikon

myCamera:Nikon_D300 performance myCamera:PictureQuality

myCamera:Nikon_D300 model "D300"

myCamera:Nikon_D300 weight "0.6 kg"

myCamera:PictureQuality evaluate "5 stars"

Looking at List 2.5, you might start to think about the predicate column: do we
have to use URI to name predicate as well? The answer is yes, and it is indeed very
important to do so. Let us discuss this more in the next section.

2.2.4 Predicate and Its URI Name

In a given RDF statement, predicate denotes the relation between the subject and
object. RDF abstract model requires the usage of URIs to identify predicates, rather
than using strings (or words) such as “has” or “is_a” to identify predicates.

With this said, we can change rule #2 to make it more complete:

Rule #2:
The name of a resource must be global and should be identified by Uniform Resource
Identifier (URI). The name of predicate must also be global and should be identified
by URI as well.

32 2 The Building Block for the Semantic Web: RDF

Using URIs to identify predicates is important for a number of reasons. The first
reason is similar to the reason why we should use URIs to name subjects and objects.
For example, one group of reviewers who reviews cameras may use string model

to indicate the fact that Nikon D300 has D300 as its model number, and another
group of reviewers who mainly review television sets could also have used model

to mean the specific model number of a given TV set. A given application that sees
these model strings will have difficulty in distinguishing their meanings. On the
other hand, if the predicates for the camera reviewers and TV reviewers are named,
respectively, as follows:

http://www.liyangyu.com/camera#model

http://www.liyangyu.com/TV#model

it will then be clear to the application that these are distinct predicates.
Another benefit of using URIs to name predicates comes from the fact that this

will enable the predicates to be treated as resources as well. This in fact has a
far-reaching effect down the road. More specifically, if a given predicate is seen
as a resource, we can then add RDF statements with this predicate’s URI as subject,
just as we do for any other resource. This means that additional information about
the given predicate can be added. As we will see in later chapters, by adding this
additional information, we can specify some useful fact about this predicate. For
example, we can add the fact that this given predicate is the same as another pred-
icate, or it is a sub-predicate of another predicate, or it is an inverse predicate of
another predicate, and so on. This additional information turns out to be one of the
main factors responsible for the reasoning power provided by RDF models, as you
will see in later chapters.

The third benefit that will also become more obvious later is the fact that using
URIs to name subjects, predicates, and objects in RDF statements promotes the
development and use of shared vocabularies on the Web. Recall that we have been
using the following URI to denote Nikon as a company that has manufactured Nikon
D300:

http://www.dbpedia.org/resource/Nikon

Similarly, if we could find an existing URI that denotes model as a predicate,
we could have used it instead of inventing our own. In other words, by discovering
and using vocabularies already used by others to describe resources implies a shared
understanding of those concepts, and that will eventually make the Web much more
machine friendly. Again, we will discuss this more in the chapters yet to come.

Now, with all these said, let us name our predicates as shown in List 2.6.

List 2.6 Using URIs to name predicates

Original name URI name

is_a http://www.liyangyu.com/camera#is_a

manufactured_by http://www.liyangyu.com/camera#manufactured_by

performance http://www.liyangyu.com/camera#performance

model http://www.liyangyu.com/camera#model

2.2 The Abstract Model of RDF 33

weight http://www.liyangyu.com/camera#weight

evaluate http://www.liyangyu.com/camera#evaluate

With these new predicate names, List 2.5 can be re-written. For example, the first
statement can be written as the following:

subject: myCamera:Nikon_D300

predicate: myCamera:is_a

object: myCamera:DSLR

You can finish the rest of the statements in List 2.5 accordingly.
So far at this point, we have covered two basic rules about the abstract RDF

model. Before we move on to other aspects of the abstract model, we would like to
present a small example to show you the fact that these two rules have already taken
you farther than you might have realized.

2.2.5 RDF Triples: Knowledge That Machine Can Use

Let us take a detour here, just to see how RDF statements (triples) can be used by
machines. With the statements listed in List 2.5, let us ask the machine the following
questions:

• What predicates did the reviewer use to describe Nikon D300?
• What performance measurements have been used for Nikon D300?

The first question can be expressed in the following RDF format:

question = new RDFStatement();

question.subject = myCamera:Nikon_D300;

question.predicate = myCamera:*;

Note that myCamera:∗ is used as a wild card. The pseudo-code in List 2.7 can
help the computer to get the question answered.

List 2.7 Pseudo-code to answer questions

// format my question
question = new RDFStatement();
question.subject = myCamera:Nikon_D300;
question.predicate = myCamera:*;

// read all the review statements and store them in statement
array
RDFStatement[] reviewStatements = new RDFStatement[6];
reviewStatements[0].subject = myCamera:Nikon_D300;
reviewStatements[0].predicate = myCamera:is_a;
reviewStatements[0].object = myCamera:DSLR;

34 2 The Building Block for the Semantic Web: RDF

reviewStatements[1].subject = myCamera:Nikon_D300;
reviewStatements[1].predicate = myCamera:manufactured_by;
reviewStatements[1].object = dbpedia:Nikon;
reviewStatements[2].subject = myCamera:Nikon_D300;
reviewStatements[2].predicate = myCamera:performance;
reviewStatements[2].object = myCamera:PictureQuality;
reviewStatements[3].subject = myCamera:Nikon_D300;
reviewStatements[3].predicate = myCamera:model;
reviewStatements[3].object = "D300";
reviewStatements[4].subject = myCamera:Nikon_D300;
reviewStatements[4].predicate = myCamera:weight;
reviewStatements[4].object = "0.6 kg";
reviewStatements[5].subject = myCamera:PictureQuality;
reviewStatements[5].predicate = myCamera:evaluate;
reviewStatements[5].object = "5 stars";

// answer the question!
foreach s in reviewStatements[] {

if ((s.subject==question.subject || question.subject==’∗’) &&
(s.predicate==question.predicate || question.predicate ==
’∗’)) {

System.out.println(s.predicate.toString());
}

};

Running this code will give us the following answer:

myCamera:is_a

myCamera:manufactured_by

myCamera:performance

myCamera:model

myCamera:weight

meaning that the reviewer has defined all the above predicates for Nikon D300.
Now to answer the second question, all you have to change is the question itself:

question = new RDFStatement();

question.subject = myCamera:Nikon_D300;

question.predicate = myCamera:performance;

and also change the output line in List 2.7 to the following:

System.out.println(s.subject.toString());

And the answer will be returned to you:

myCamera:PictureQuality

meaning that the reviewer has used myCamera:PictureQuality as the perfor-
mance measurement to evaluate Nikon D300.

In fact, try out some other questions, such as who is the manufacturer of Nikon
D300 and what model number does it have. You will see the code does not have

2.2 The Abstract Model of RDF 35

to change much at all. And clearly, based on the knowledge presented in the RDF
statements (Table 2.2), the machine can indeed conduct some useful work for us.
It is also not hard for us to imagine some more interesting examples if we can add
more RDF statements with more complex predicates and objects.

2.2.6 RDF Literals and Blank Node

We are not totally done with the abstract RDF model yet. In this section, we will
describe two important components of abstract model: RDF literals and blank node.
And first, let us summarize all the terminologies we have learned so far.

2.2.6.1 Basic Terminologies So Far

One difficulty about learning RDF comes from the fact that it has lots of ter-
minologies and synonyms. To make our learning easier, let us summarize these
terminologies and their synonyms in this section.

So far, we have learned the following:

subject: used to denote resource in the world, must be identified by
URI, and also called node or start node in an RDF graph;

object: used to denote resource in the world, must be identified by
URI, and also called node or end node in an RDF graph;

predicate: used to denote the relation between subject and object, must be
identified by URI, also called edge in an RDF graph.

This summary needs to grow for sure. For example, you might have already noted
a long time ago that the following statement does not completely follow the above
summary:

subject predicate object

myCamera:Nikon_D300 myCamera:model "D300"

since its object obviously takes a string as its value, instead of another resource.
Also, the string value has nothing to do with URIs. In addition, there are two more
similar statements in our list:

subject predicate object

myCamera:Nikon_D300 myCamera:weight "0.6 kg"

myCamera:PictureQuality myCamera:evaluate "5 stars"

Before we explain all these issues, let us see something new first:

predicate: also called property, i.e., predicate and property are synonyms.

36 2 The Building Block for the Semantic Web: RDF

This is quite an intuitive change. To see this, consider the following statement:

subject predicate object

myCamera:Nikon_D300 myCamera:is_a myCamera:DSLR

which can be read as follows:

resource myCamera:Nikon_D300 and resource myCamera:DSLR are related by a
predicate called myCamera:is_a.

Now, besides understanding predicate as a relation between the subject and object
resource, we can also perceive it as putting some constraint on one of the attributes
(properties) of the subject resource. In our case, the myCamera:is_a attribute
(property) of the subject will take resource myCamera:DSLR as its value. With this
said, the above statement can be read in a different way:

myCamera:is_a is a property of resource myCamera:Nikon_D300 and resource
myCamera:DSLR is the value of this property.

Now we can change the names of the components in an RDF statement to make
it more consistent with the above reading:

resource property value

myCamera:Nikon_D300 myCamera:is_a myCamera:DSLR

and with this said, Fig. 2.3 is completely equivalent to Fig. 2.4.

Fig. 2.4 Graph structure of RDF statement (equivalent to Fig. 2.3)

And now,

object: also called property value, and both literal strings and resources can
be used as property value. If a resource is used as its value, this resource may
or may not be identified by a URI. If it is not represented by a URI, it is called
a blank node.

Note that the object in one statement can become the subject in another state-
ment (such as myCamera:PictureQuality, for example). Therefore, a blank
node object in one statement can become a blank node subject in another statement.

To summarize what we have learned:

subject: can be URI named resource, or a blank node;
object: also called property value, can be URI named resource, literal or blank

node;
predicate: also called property, must be URI named resource.

2.2 The Abstract Model of RDF 37

And now we understand why we can have statements that use string values as
their objects. Let us move on to learn more about literals and blank nodes; they are
all important concepts in abstract RDF model.

2.2.6.2 Literal Values

RDF literals are simple raw text data, and they can be used as property values. As we
have seen in List 2.7, “D300,” “0.6 kg,” and “5 stars” are all examples of literal
values. Other common examples include people’s names and book ISBN numbers.

A literal value can be optionally localized by attaching a language tag, indicat-
ing in which language the raw text is written, for example, "Dr."@en, the literal
value Dr. with an English language tag, or "Dott."@it, the same with an Italian
language tag.

A literal value can also be optionally typed by using a URI that indicates a
datatype, and this datatype information can be used by RDF document parser to
understand how to interpret the raw text. The datatype URI can be any URI, but
quite often you will see that those datatypes defined in XML Schema are being used.

To add a datatype to a literal value, put the literal value in quotes and then use
two carets, followed by the datatype URI. List 2.8 shows some examples of using
both the language tag and datatype URIs.

List 2.8 Examples of using language tags and datatypes on RDF literal values

"D300"

"D300"@en

"D300"@it

"D300"ˆˆ<http://www.w3.org/2001/XMLSchema#string>

In List 2.8, the first line uses simple raw text without any language tag and any
datatype, it is therefore an un-typed literal value without any language tag. Lines 2
and 3 are also un-typed literal values, but they do have language tags. Line 4 is a
typed literal value, and its full datatype URI is also written out.

Note that an un-typed literal, regardless of whether it has a language tag or not,
is completely different from a typed literal. Therefore, the literal value on line 1
and the literal value on line 4 are considered two different things and have nothing
related to each other at all. In fact, all the four literal values in List 2.8 are not related;
therefore the four statements in List 2.9 are completely different, and no one can be
inferred from the others.

List 2.9 Completely different statements (all the property values are different)

resource: myCamera:Nikon_D300

property: myCamera:model

value: "D300"

resource: myCamera:Nikon_D300

property: myCamera:model

value: "D300"@en

38 2 The Building Block for the Semantic Web: RDF

resource: myCamera:Nikon_D300

property: myCamera:model

value: "D300"@it

resource: myCamera:Nikon_D300

property: myCamera:model

value: "D300"ˆˆ<http://www.w3.org/2001/XMLSchema#string>

For a typed literal, the purpose of its datatype URI is to tell the parser or an
application how to map the raw text string to values. It is therefore possible that two
typed literals that appear different can be mapped to the same value. For example,
the two statements in List 2.10 are equivalent.

List 2.10 The two statements are identical

resource: myCamera:Nikon_D300

property: myCamera:weight

value: "0.6"ˆˆ<http://www.w3.org/2001/XMLSchema#float>

resource: myCamera:Nikon_D300

property: myCamera:weight

value: "0.60"ˆˆ<http://www.w3.org/2001/XMLSchema#float>

We will discuss more about datatypes and typed literals in later sections. But
before we move on, here is one more thing to remember: literals are only used as
object values; they can never be used as subjects.

2.2.6.3 Blank Nodes

A blank node is a node (denotes either a subject or an object) that does not have a
URI as its identifier, i.e., a nameless node. It in fact happens quite often in RDF mod-
els and is also called an anonymous node or a bnode. List 2.11 shows one example
of a blank node.

List 2.11 A blank node example
resource property value
myCamera:Nikon_D300 myCamera:reviewed_by _:anon0
_:anon0 foaf:givenname "liyang"
_:anon0 foaf:family_name "yu"

First off, foaf:givenname and foaf:family_name are just QNames, and
they have used a new namespace, namely, foaf, that you have not seen yet. At this
point, understand that both foaf:givenname and foaf:family_name are simply
abbreviated URIs that represent properties. And obviously, these two properties are
used to denote a person’s first and last names.

2.2 The Abstract Model of RDF 39

Now, the three statements in List 2.11 have expressed the following fact:

this Nikon D300 camera (myCamera:Nikon_D300) is reviewed by (myCamera:
reviewed_by) some specific resource in the world. This resource has a property
called foaf:givenname whose value is liyang; it also has a property called
foaf:family_name whose value is yu.

And obviously, the blank node here represents this specific resource. Note that
when we say a node is a blank node, we refer to the fact that it does not have a
URI as its name. However, in real RDF documents, it will most likely be assigned a
local identifier so that it could be referred within the same document scope. In our
example, this local identifier is given by _:anon0.

By now, we all know that a list of RDF statements can be represented by an
RDF graph (and vice versa). For example, Fig. 2.5 shows the graph generated by
representing the statement in List 2.5.

Now, if we add the statements in List 2.11 to the graph shown in Fig. 2.5, we get
Fig. 2.6.

As you can tell, the local name of the blank node is not included in the graph,
and it is now a real blank node – probably that is why the name was created in the
first place.

The main benefit of using blank nodes is the fact that blank node provides a way
to model the so-called n-ary (n-way) relationship in RDF models.

To see this, first understand that RDF only models binary relationships. For
example, the following statement

resource property value

myCamera:Nikon_D300 myCamera:reviwed_by "liyang yu"

Fig. 2.5 Graph representation of the statements in List 2.5

40 2 The Building Block for the Semantic Web: RDF

Fig. 2.6 Graph representation of the statements in List 2.5 together with List 2.11

represents a binary relationship, i.e., the relationship between a camera and the lit-
eral string that represents its reviewer. Now, there could be another reviewer who
has the same name. In order to eliminate this ambiguity, we decide that we will add
more details to the reviewer. This time, not only will we spell out the first name
and the last name (as in List 2.11), but we will also add an e-mail address of the
reviewer, so we can be quite certain whom we are referring to.

However, by doing so, the camera is no longer related to a single literal string;
instead, it is related to a collection of components (a last name, a first name, and an
e-mail address). In other words, the original binary relationship has now become an
n-ary relationship (n = 3, to be more precise). So how does RDF model this n-way
relationship?

The solution is to create another resource to represent this collection of compo-
nents, and the original subject keeps its binary relationship to this newly created
resource. Meanwhile, each one of the components in this collection can become a
separate property of the new resource, as shown in List 2.12.

List 2.12 Modeling a three-way relationship between camera and reviewer

resource property value
myCamera:Nikon_D300 myCamera:reviewed_by new_resource_URI
new_resource_URI foaf:givenname "liyang"
new_resource_URI foaf:family_name "yu"
new_resource_URI foaf:mbox <mailto:liyang910@yahoo.com>

Again, foaf:mbox is just another QName that represents e-mail address prop-
erty (more about foaf namespace in later chapters). Also, new_resource_URI is

2.2 The Abstract Model of RDF 41

the new URI we have created and it represents the collection of the three compo-
nents. The important fact is that we have now successfully modeled a three-way
relationship between a given camera and its reviewer.

As you can easily imagine, there will be lots of similar scenarios like this in
the real world, where we will have to model n-ary relationships. Clearly, for each
such n-ary relationship, there will be a new URI invented, which means we have to
invent numerous URIs such as new_resource_URI. However, most of these new
URIs will never be referred from outside the graph; it is therefore not necessary for
them to have URIs at all. This is exactly the concept of blank node, and this is how
blank node can help us to model a given n-ary relationship.

Again, as we have mentioned, most RDF processors will automatically assign a
local node identifier to a blank node, which is needed when the RDF statements are
written out. In addition, other statements within the same document can make refer-
ence to this blank node if necessary. Of course, a blank node is not accessible from
outside the graph, and it will not be considered when data aggregation is performed.

Before we move on, here is one more thing to remember: blank nodes can only
be used as subjects or objects; they cannot be used as properties.

2.2.7 A Summary So Far

Up to this point, we have covered the basic components of abstract RDF model.
Before we move on, the following is a summary of what we have learned so far:

• RDF offers an abstract model and framework that tells us how to decompose
information/knowledge into small pieces.

• One such small piece of information/knowledge is represented as a statement
which has the form (subject, predicate, object). A statement is also called a triple.

• A given RDF model can be expressed either as a graph or as a collection of
statements or triples.

• Each statement maps to one edge in the graph. Therefore, the subject and object
of a given statement are also called nodes, and its predicate is also called edge.

• Subjects and objects denote resources in the real world. Predicates denote the
relationship between subjects and objects.

• Predicates are also called properties, and objects are also called property values.
Therefore, a statement also has the form (resource, property, propertyValue).

• URIs are used to name resources and properties. For a given resource or property,
if there is an existing URI to name it, you should reuse it instead of inventing
your own.

• An RDF statement can only model a binary relationship. To model an n-ary rela-
tionship, intermediate resources are introduced and blank nodes are quite often
used.

• An object can take either a simple literal or another resource as its value. If a
literal is used as its value, the literal can be typed or un-typed, and it can also
have an optional language tag.

42 2 The Building Block for the Semantic Web: RDF

If you are comfortable with the above, move on. Otherwise, review the material
here in this section, and make sure you understand it completely.

2.3 RDF Serialization: RDF/XML Syntax

The RDF data model we have covered so far provides an abstract and conceptual
framework for describing resources in a way that machine can process. The next
step is to define some serialization syntax for creating and reading concrete RDF
models, so applications can start to write and share RDF documents.

The W3C specifications define an XML syntax for this purpose. It is called
RDF/XML and is used to represent an RDF graph as an XML document. Note that
this is not the only serialization syntax that is being used. For example, Notation
3 (or N3) as a non-XML serialization format is also introduced by W3C and is
widely used among the Semantic Web developers. This section will concentrate on
RDF/XML syntax only, and other formats will be discussed in later sections.

2.3.1 The Big Picture: RDF Vocabulary

As we have discussed, RDF uses URIs instead of words to name resources and
properties. In addition, RDF refers to a set of URIs (often created for a specific
purpose) as a vocabulary. Furthermore, all the URIs in such a vocabulary normally
share a common leading string, which is used as the common prefix in these URIs’
QNames. This prefix will often become the namespace prefix for this vocabulary,
and the URIs in this vocabulary will be formed by appending individual local names
to the end of this common leading string.

In order to define RDF/XML serialization syntax, a set of URIs are created and
are given specific meanings by RDF. This group of URIs becomes RDF’s own
vocabulary of terms, and it is called the RDF vocabulary. More specifically, the
URIs in this RDF vocabulary all share the following lead strings:

http://www.w3.org/1999/02/22-rdf-syntax-ns#

By convention, this URI prefix string is associated with namespace prefix rdf:

and is typically used in XML with the prefix rdf. For this reason, this vocabulary
is also referred to as the rdf: vocabulary.

The terms in rdf: vocabulary are listed in List 2.13. Understanding the syntax
of RDF/XML means to understand the meaning of these terms and how to use them
when creating a concrete RDF model in XML format.

List 2.13 Terms in RDF vocabulary

Syntax names:
rdf:RDF, rdf:Description, rdf:ID, rdf:about, rdf:parseType,

rdf:resource, rdf:li, rdf:nodeID, rdf:datatype

2.3 RDF Serialization: RDF/XML Syntax 43

Class names:
rdf:Seq, rdf:Bag, rdf:Alt, rdf:Statement, rdf:Property,

rdf:XMLLiteral, rdf:List

Property names:
rdf:subject, rdf:predicate, rdf:object, rdf:type,

rdf:value, rdf:first, rdf:rest _n (where n is a decimal integer greater than
zero with no leading zeros).

Resource names:
rdf:nil

From now on, rdf:name will be used to indicate a term from the RDF vocab-
ulary, and its URI can be formed by concatenating the RDF namespace URI and
name itself. For example, the URI of rdf:type is given as below:

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

2.3.2 Basic Syntax and Examples

As we have discussed, RDF/XML is the normative syntax for writing RDF mod-
els. In this section, we will describe RDF/XML syntax, and most of the example
statements we are going to use come from List 2.5.

2.3.2.1 rdf:RDF, rdf:Description, rdf:about, and rdf:resource

Now, let us start with the first statement in List 2.5:

subject predicate object

myCamera:Nikon_D300 myCamera:is_a myCamera:DSLR

List 2.14 shows the RDF/XML presentation of an RDF model which contains
only this single statement:

List 2.14 RDF/XML presentation of the first statement in List 2.5

1: <?xml version="1.0"?>
2: <rdf:RDF
2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:myCamera="http://www.liyangyu.com/camera#">
4: <rdf:Description
4a: rdf:about="http://www.liyangyu.com/camera#Nikon_D300">
5: <myCamera:is_a
5a: rdf:resource="http://www.liyangyu.com/camera#DSLR"/>
6: </rdf:Description>
7: </rdf:RDF>

Since this is our very first RDF model expressed in XML format, let us explain
it carefully.

44 2 The Building Block for the Semantic Web: RDF

Line 1 should look familiar. It says this document is in XML format; it also
indicates which version of XML this document is in. Line 2 creates an rdf:RDF

element, indicating this XML document is intended to represent an RDF model,
which ends at the end tag, </rdf:RDF>. In general, whenever you want to create
an XML document representing an RDF model, rdf:RDF should always be the root
element of your XML document.

Line 2 also includes an XML namespace declaration by using an xmlns attribute,
which specifies that prefix rdf: is used to represent the RDF namespace URI
reference, i.e., http://www.w3.org/1999/02/22-rdf-syntax-ns#. Based on
the discussion in Sect. 2.3.1, we know that any tag with the form of rdf:name
will be a term from the RDF vocabulary given in List 2.13. For instance, term
rdf:Description (on line 4) is taken from the RDF vocabulary, and its URI name
should be constructed by concatenating RDF namespace URI reference and local
name. Therefore, its URI name is given by the following:

http://www.w3.org/1999/02/22-rdf-syntax-ns#Description

Line 3 adds a new xmlns attribute which declares another XML namespace.
It specifies that prefix myCamera: should be used to represent namespace URI
given by http://www.liyangyu.com/camera#. Any term that has the name
myCamera:name is therefore a term taken from this namespace.

At this point, the opening <rdf:RDF> tag is closed, indicated by the “>” sign at
the end of line 3. In general, this is a typical routine for all RDF/XML documents,
with the only difference being more or less namespace declarations in different RDF
documents.

Now, any statement in a given RDF model is a description of a resource in
the real world, with the resource being the subject of the statement. The term,
rdf:Description, translates this fact into RDF/XML syntax. It indicates the start
of a description of a resource, and it uses the rdf:about attribute to specify the
resource that is being described, as shown in line 4.

In general, this kind of XML node in a given RDF/XML document is called a
resource XML node. In this example, it represents a subject of a statement. You can
understand line 4 as the following:

<rdf:Description rdf:about = "URI of the statement’s subject">

Now, given the fact that tag rdf:Description indicates the start of a statement,
</rdf:Description> must signify the end of a statement. Indeed, line 6 shows
the end of our statement.

With this being said, line 5 has to specify the property and property value of
the statement. It does so by using a myCamera:is_a tag to represent the property.
Since the property value in this case is another resource, rdf:resource is used to
identify it by referring its URI.

Note that line 5 is nested within the rdf:Description element; therefore, the
property and property value specified by line 5 apply to the resource specified by
the rdf:about attribute of the rdf:Description element.

2.3 RDF Serialization: RDF/XML Syntax 45

In general, the node created by line 5 is called a property XML node. Clearly,
each property XML node represents a single statement. Note that a given property
node is always contained within a resource XML node, which represents the subject
of the statement.

Now, after all the above discussion, lines 4–6 can be viewed as the following:

4: <rdf:Description rdf:about="URI of the statement’s subject">
5: <predicateURI rdf:resource="URI of the statement’s object"/>
6: </rdf:Description>

and can be read like this:

This is a description about a resource named myCamera:Nikon_D300,
which is an instance of another resource, namely, myCamera:DSLR.

At this point, we have finished our first RDF/XML document which has only one
statement. We will keep adding statements into this document until we have covered
all the RDF vocabulary features.

2.3.2.2 rdf:type and Typed Nodes

Now, take a look at the statement in List 2.14. In order to express the knowledge that
Nikon D300 is a digital SLR, we had to invent a property called myCamera:is_a.
It is not hard to imagine that this kind of requirement is quite common in other
applications as well. For example, we will want to express the fact that a certain
resource is a person, another resource is a book, so on and so forth. It then seems
reasonable for RDF vocabulary to provide some term just for this purpose, so a
given application does not have to invent its own.

In RDF vocabulary, rdf:type exists to identify the type of a given resource.
List 2.15 shows the term rdf:type in use.

List 2.15 Using rdf:type to specify the type of a given resource

1: <?xml version="1.0"?>
2: <rdf:RDF
2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:myCamera="http://www.liyangyu.com/camera#">
4: <rdf:Description
4a: rdf:about="http://www.liyangyu.com/camera#Nikon_D300">
5: <rdf:type
5a: rdf:resource="http://www.liyangyu.com/camera#DSLR"/>
6: </rdf:Description>
7: </rdf:RDF>

This is obviously a better choice: instead of inventing our own home-made
property (myCamera:is_a), we are now using a common term from the RDF
vocabulary. Figure 2.7 shows the graph representation of the statement in List 2.15.

The subject node in Fig. 2.7 is often called a typed node in a graph, or typed
node element in RDF documents. Assigning a type to a resource has far-reaching
implication than you might have realized now. As we will see in our later sections

46 2 The Building Block for the Semantic Web: RDF

Fig. 2.7 Graph representation of the statement in List 2.15

and chapters, it is one of the reasons why we claim RDF model represents structured
information that machine can understand.

In fact, once we have the term rdf:type at our disposal, we can often write
the statement in List 2.15 in a simpler format without using rdf:Description.
List 2.16 shows the detail.

List 2.16 A simpler form of List 2.15

1: <?xml version="1.0"?>
2: <rdf:RDF

2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:myCamera="http://www.liyangyu.com/camera#">
4: <myCamera:DSLR

4a: rdf:about="http://www.liyangyu.com/camera#Nikon_D300">
5: </myCamera:DSLR>

6: </rdf:RDF>

List 2.16 is equivalent to List 2.15. In fact, most RDF parsers will change
List 2.16 back to List 2.15 when they operate on the document. In addition, some
developers do believe the format in List 2.15 is clearer.

Now, let us take the rest of the statements from List 2.5 and add them to our
RDF/XML document. List 2.17 shows the document after we have added the next
statement.

List 2.17 Adding one more statement from List 2.5 to List 2.15

1: <?xml version="1.0"?>
2: <rdf:RDF

2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:myCamera="http://www.liyangyu.com/camera#">
4:

5: <rdf:Description

5a: rdf:about="http://www.liyangyu.com/camera#Nikon_D300">
6: <rdf:type

6a: rdf:resource="http://www.liyangyu.com/camera#DSLR"/>
7: </rdf:Description>

8:

9: <rdf:Description

9a: rdf:about="http://www.liyangyu.com/camera#Nikon_D300">
10: <myCamera:manufactured_by

10a: rdf:resource="http://www.dbpedia.org/resource/Nikon"/>

2.3 RDF Serialization: RDF/XML Syntax 47

11: </rdf:Description>

12:

13: </rdf:RDF>

The new statement added is expressed in lines 9–11. With the understanding
of the first statement (lines 5–7), this new statement does not require too much
explanation. However, we can make this a little bit more concise: since the two
statements have the same subject, they can be combined together, as shown in
List 2.18.

List 2.18 A simpler form of List 2.17

1: <?xml version="1.0"?>
2: <rdf:RDF

2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:myCamera="http://www.liyangyu.com/camera#">
4:

5: <rdf:Description

5a: rdf:about="http://www.liyangyu.com/camera#Nikon_D300">
6: <rdf:type

6a: rdf:resource="http://www.liyangyu.com/camera#DSLR"/>
7: <myCamera:manufactured_by

7a: rdf:resource="http://www.dbpedia.org/resource/Nikon"/>
8: </rdf:Description>

9:

10: </rdf:RDF>

Now, moving on to the rest of the statements from List 2.5 does require some
new knowledge, which will be explained in the next section.

2.3.2.3 Using Resource as Property Value

The next statement uses a resource called myCamera:PictureQuality as the
value of its myCamera:performance property, which is not something totally
new at this point. The two statements in the current RDF document (lines 6 and
7, List 2.18) are all using resources as their objects. However, there is a little bit
more about this myCamera:PictureQuality resource: it itself has a property that
needs to be described, as shown by the last statement in List 2.5.

List 2.19 shows one way to implement this.

List 2.19 Example of using resource as property value

1: <?xml version="1.0"?>
2: <rdf:RDF
2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:myCamera="http://www.liyangyu.com/camera#">
4:
5: <rdf:Description

48 2 The Building Block for the Semantic Web: RDF

5a: rdf:about="http://www.liyangyu.com/camera#Nikon_D300">
6: <rdf:type
6a: rdf:resource="http://www.liyangyu.com/camera#DSLR"/>
7: <myCamera:manufactured_by
7a: rdf:resource="http://www.dbpedia.org/resource/Nikon"/>
8: <myCamera:performance rdf:resource=
8a: "http://www.liyangyu.com/camera#PictureQuality"/>
9: </rdf:Description>
10:
11: <rdf:Description
11a: rdf:about="http://www.liyangyu.com/camera#PictureQuality">
12: <myCamera:evaluate>5 stars</myCamera:evaluate>

13: </rdf:Description>

14:

15: </rdf:RDF>

This approach first uses an rdf:resource attribute on myCamera:

performance property, and this attribute points to the URI of the resource that is
used at the object of this property (line 8). This object resource is further described
separately by using a new rdf:Description node at the top level of the document
(lines 11–13).

Another way to represent resource as property value is to simply put the descrip-
tion of the object resource into the property XML node that uses this resource as the
object value, as shown in List 2.20.

List 2.20 Another format when using resource as property value

1: <?xml version="1.0"?>
2: <rdf:RDF

2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:myCamera="http://www.liyangyu.com/camera#">
4:

5: <rdf:Description

5a: rdf:about="http://www.liyangyu.com/camera#Nikon_D300">
6: <rdf:type

6a: rdf:resource="http://www.liyangyu.com/camera#DSLR"/>
7: <myCamera:manufactured_by

7a: rdf:resource="http://www.dbpedia.org/resource/Nikon"/>
8: <myCamera:performance>

9: <rdf:Description rdf:about=
9a: "http://www.liyangyu.com/camera#PictureQuality">

10: <myCamera:evaluate>5 stars</myCamera:evaluate>

11: </rdf:Description>

12: </myCamera:performance>

13: </rdf:Description>

14:

15: </rdf:RDF>

2.3 RDF Serialization: RDF/XML Syntax 49

Clearly, lines 9–11 map to lines 11–13 in List 2.19. In fact, this pattern can be
used recursively until all the resources have been described. More specifically, if
myCamera:PictureQuality as a resource uses another resource as its property
value (instead of literal value “5 stars” as shown in line 10), that resource can
again be described inside the corresponding property XML node, so on and so forth.

2.3.2.4 Using Un-typed Literals as Property Values, rdf:value
and rdf:parseType

We move on to the next statement in List 2.5, where a literal string is used as the
value of myCamera:model property. Again, this is not new. We have learned how
to use a literal value as the object of a property XML node (line 10, List 2.20).
Specially, the value is simply put inside the XML element.

At this point, List 2.21 shows the document that includes all the statements from
List 2.5 so far.

List 2.21 RDF/XML document that includes all the statements from List 2.5

1: <?xml version="1.0"?>
2: <rdf:RDF

2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:myCamera="http://www.liyangyu.com/camera#">
4:

5: <rdf:Description

5a: rdf:about="http://www.liyangyu.com/camera#Nikon_D300">
6: <rdf:type

6a: rdf:resource="http://www.liyangyu.com/camera#DSLR"/>
7: <myCamera:manufactured_by

7a: rdf:resource="http://www.dbpedia.org/resource/Nikon"/>
8: <myCamera:performance>

9: <rdf:Description rdf:about=
9a: "http://www.liyangyu.com/camera#PictureQuality">

10: <myCamera:evaluate>5 stars</myCamera:evaluate>

11: </rdf:Description>

12: </myCamera:performance>

13: <myCamera:model>D300</myCamera:model>

14: <myCamera:weight>0.6 kg</myCamera:weight>

15: </rdf:Description>

16:

17:</rdf:RDF>

Lines 13 and 14 show how literal values are used. For example, line 14 tells us
property myCamera:weight has a literal value of 0.6 kg.

However, given the fact that the Web is such a global resource itself, it might
not be a good idea to use a literal value such as 0.6 kg. When we do this, we
in fact assume that anyone who accesses this property will be able to understand

50 2 The Building Block for the Semantic Web: RDF

the unit that is being used, which may not be a safe assumption to make. A better
or safer solution is to explicitly express the value and the unit in separate prop-
erty values. In other words, the value of myCamera:weight property would need
to have two components: the literal for the decimal value and an indication of the
unit of measurement (kg). Note in this situation that the decimal value itself can be
viewed as the main value of myCamera:weight property, whilst the unit compo-
nent exists just to provide additional contextual information that qualifies the main
value.

To implement this solution, we need to model such a qualified property as new
structured value. More specifically, a totally separate resource should be used to
represent this structured value as a whole. This new resource should have properties
representing the individual components of the structured value. In our example, it
should have two properties: one for the decimal value, the other for the unit. This
new resource will then be used as the object value of the original statement.

RDF vocabulary provides a pre-defined rdf:value property just for this use
case. List 2.22 shows how to use it.

List 2.22 Using rdf:value to represent literal value

1: <?xml version="1.0"?>
2: <rdf:RDF

2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:uom="http://www.example.org/units#"
4: xmlns:myCamera="http://www.liyangyu.com/camera#">
5:

6: <rdf:Description

6a: rdf:about="http://www.liyangyu.com/camera#Nikon_D300">
7: <rdf:type

7a: rdf:resource="http://www.liyangyu.com/camera#DSLR"/>
8: <myCamera:manufactured_by

8a: rdf:resource="http://www.dbpedia.org/resource/Nikon"/>
9: <myCamera:performance>

10: <rdf:Description rdf:about=
10a: "http://www.liyangyu.com/camera#PictureQuality">

11: <myCamera:evaluate>5 stars</myCamera:evaluate>

12: </rdf:Description>

13: </myCamera:performance>

14: <myCamera:model>D300</myCamera:model>

15: <myCamera:weight>

16: <rdf:Description>

17: <rdf:value>0.6</rdf:value>

18: <uom:units

18a: rdf:resource="http://www.example.org/units#kg"/>
19: </rdf:Description>

20: </myCamera:weight>

2.3 RDF Serialization: RDF/XML Syntax 51

21: </rdf:Description>

22:

23: </rdf:RDF>

Now, property myCamera:weight is using a resource (lines 16–19) as its value.
This resource, as we discussed earlier, has two properties. The first property is the
pre-defined rdf:value property; its value is 0.6 (line 17). The other one is the
uom:units property defined in the uom namespace (line 3). The value of this prop-
erty is another resource, and http://www.example.org/units#kg is the URI
of this resource.

Another interesting part of List 2.22 is the name of the resource given by lines
16–19. Note that in line 16, <rdf:Description> tag does not have anything like
rdf:about attribute. Therefore, this resource is an anonymous resource (we have
discussed the concept of anonymous resource in Sect. 2.2.6.3).

Why is the resource used by myCamera:weight property made to be anony-
mous? Since its purpose is to provide a context for the other two properties to exist,
and other RDF documents will have no need to use or add any new details to this
resource, there is simply no need to give this resource an identifier.

In RDF models, there is an easier way to implicitly create a blank node. It is
considered to be a shorthand method provided by RDF. This involves the usage of
rdf:parseType keyword from the RDF vocabulary, as shown in List 2.23.

List 2.23 Using rdf:parseType to represent literal value

1: <?xml version="1.0"?>
2: <rdf:RDF

2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:uom="http://www.example.org/units#"
4: xmlns:myCamera="http://www.liyangyu.com/camera#">
5:

6: <rdf:Description

6a: rdf:about="http://www.liyangyu.com/camera#Nikon_D300">
7: <rdf:type

7a: rdf:resource="http://www.liyangyu.com/camera#DSLR"/>
8: <myCamera:manufactured_by

8a: rdf:resource="http://www.dbpedia.org/resource/Nikon"/>
9: <myCamera:performance>

10: <rdf:Description rdf:about=
10a: "http://www.liyangyu.com/camera#PictureQuality">

11: <myCamera:evaluate>5 stars</myCamera:evaluate>

12: </rdf:Description>

13: </myCamera:performance>

14: <myCamera:model>D300</myCamera:model>

15: <myCamera:weight rdf:parseType="Resource">
16: <rdf:value>0.6</rdf:value>

17: <uom:units

52 2 The Building Block for the Semantic Web: RDF

17a: rdf:resource="http://www.example.org/units#kg"/>
18: </myCamera:weight>

19: </rdf:Description>

20:

21: </rdf:RDF>

List 2.23 is identical to List 2.22. rdf:parseType="Resource" in line 15 is
used as the attribute of the myCamera:weight element. It indicates to the RDF
parser that the contents of the myCamera:weight element (lines 16 and 17) should
be interpreted as the description of a new resource (a blank node) and should
be treated as the value of property myCamera:weight. Without seeing a nested
rdf:Description tag, the RDF parser creates a blank node as the value of the
myCamera:weight property and then uses the enclosed two elements as the prop-
erties of that blank node. Obviously, this is exactly what we wish the parser to
accomplish.

2.3.2.5 Using Typed Literal Values and rdf:datatype

We have mentioned typed literal values, but have not had a chance to use them yet
in our RDF document. Let us take a look at typed literals in this section.

Line 16 of List 2.23 uses 0.6 as the value of the rdf:value property. Here,
0.6 is a plain un-typed literal, and only we know that the intention is to treat it as
a decimal number; there is no information in List 2.23 that can explicitly indicate
that. However, sometimes, it is important for the RDF parser or the application to
know how to explain the plain value.

The solution is to use the rdf:datatype keyword from RDF vocabulary.
Note that RDF/XML syntax does not provide any datatype system of its own,
such as datatypes for integers, real numbers, strings, and dates. It instead bor-
rows an external datatype system, and currently, it is the XML Schema datatypes.
The reason is also very simple: since XML enjoys such a great success, its
schema datatypes would most likely be interoperable among different software
agents.

Now let us use rdf:datatype to clearly indicate that the value 0.6 should be
treated as a decimal value, as shown in List 2.24.

List 2.24 Example of using rdf:datatype

1: <?xml version="1.0"?>
2: <rdf:RDF

2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:uom="http://www.example.org/units#"
4: xmlns:myCamera="http://www.liyangyu.com/camera#">
5:

6: <rdf:Description

6a: rdf:about="http://www.liyangyu.com/camera#Nikon_D300">
7: <rdf:type

2.3 RDF Serialization: RDF/XML Syntax 53

7a: rdf:resource="http://www.liyangyu.com/camera#DSLR"/>
8: <myCamera:manufactured_by

8a: rdf:resource="http://www.dbpedia.org/resource/Nikon"/>
9: <myCamera:performance>

10: <rdf:Description rdf:about=
10a: "http://www.liyangyu.com/camera#PictureQuality">

11: <myCamera:evaluate>5 stars</myCamera:evaluate>

12: </rdf:Description>

13: </myCamera:performance>

14: <myCamera:model

14a: rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
15: D300</myCamera:model>

16: <myCamera:weight rdf:parseType="Resource">
17: <rdf:value rdf:datatype=
17a: "http://www.w3.org/2001/XMLSchema#decimal">

18: 0.6</rdf:value>

19: <uom:units

19a: rdf:resource="http://www.example.org/units#kg"/>
20: </myCamera:weight>

21: </rdf:Description>

22:

23: </rdf:RDF>

As shown at line 17 in List 2.24, property rdf:value now has an attribute
named rdf:datatype whose value is the URI of the datatype. In our example,
this URI is http://www.w3.org/2001/XMLSchema#decimal. The result is the
value of the rdf:value property, namely, 0.6, will be treated as a decimal value as
defined in the XML Schema datatypes.

Note that there is no absolute need to use rdf:value in the above exam-
ple. A user-defined property name can be used instead of rdf:value and the
rdf:datatype attribute can still be used together with that user-defined prop-
erty. Line 14 shows one example: it specifies literal D300 should be interpreted
as a string. In fact, RDF does not associate any special meaning with rdf:value;
it is simply provided as a convenience for use in the cases as described by our
example.

Also note that since http://www.w3.org/2001/XMLSchema#decimal is
used as an attribute value, it has to be written out, rather than using any shorthand
abbreviation. However, this makes the line quite long and might hurt readability
in some cases. To improve the readability, some RDF documents would use XML
entities.

More specifically, an XML entity can associate a name with a string of characters
and this name can be referenced anywhere in the XML document. When XML
processors reach such a name, they will replace the name with the character string
which normally represents the real content. Since we can make the name really
short, this provides us with the ability to abbreviate the long URI.

54 2 The Building Block for the Semantic Web: RDF

To declare the entity, we can do the following:

<!DOCTYPE

rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>

A reference name xsd is defined here to be associated with the namespace URI
which contains the XML Schema datatypes. Anywhere in the RDF document we can
use &xsd; (note the “;” which is necessary) to represent the above URI. Using this
abbreviation, we have the following more readable version as shown in List 2.25.

List 2.25 A more readable version of List 2.24

1: <?xml version="1.0"?>
2: <!DOCTYPE

2a: rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>

3:

4: <rdf:RDF

4a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
5: xmlns:uom="http://www.example.org/units#"
6: xmlns:myCamera="http://www.liyangyu.com/camera#">
7:

8: <rdf:Description

8a: rdf:about="http://www.liyangyu.com/camera#Nikon_D300">
9: <rdf:type

9a: rdf:resource="http://www.liyangyu.com/camera#DSLR"/>
10: <myCamera:manufactured_by

10a: rdf:resource="http://www.dbpedia.org/resource/Nikon"/>
11: <myCamera:performance>

12: <rdf:Description rdf:about=
12a: "http://www.liyangyu.com/camera#PictureQuality">

13: <myCamera:evaluate>5 stars</myCamera:evaluate>

14: </rdf:Description>

15: </myCamera:performance>

16: <myCamera:model

16a: rdf:datatype="&xsd;string">D300</myCamera:model>
17: <myCamera:weight rdf:parseType="Resource">
18: <rdf:value rdf:datatype="&xsd;decimal">0.6</rdf:value>
19: <uom:units

19a: rdf:resource="http://www.example.org/units#kg"/>
20: </myCamera:weight>

21: </rdf:Description>

22:

23: </rdf:RDF>

2.3 RDF Serialization: RDF/XML Syntax 55

2.3.2.6 rdf:nodeID and More About Anonymous Resources

In Sect. 2.3.2.3 we have talked about blank node. For example, in List 2.22, lines
16–19 represent a blank node. As you can see, that blank node is embedded inside
the XML property node, myCamera:weight, and is used as the property value of
this node.

This kind of embedded blank node works well most of the time, but it does have
one disadvantage: it cannot be referenced from any other part of the same document.
In some cases, we do have the need to make reference to a blank node within the
same document.

To solve this problem, RDF/XML syntax provides another way to represent
a blank node: use the so-called blank node identifier. The idea is to assign a
blank node identifier to a given blank node, so it can be referenced within this
particular RDF document and still remains unknown outside the scope of the
document.

This blank node identifier method uses the RDF keyword rdf:nodeID. More
specifically, a statement using a blank node as its subject value should use an
rdf:Description element together with an rdf:nodeID attribute instead of an
rdf:about or rdf:ID (discussed in later section) attribute. By the same token, a
statement using a blank node as its object should also use a property element with
an rdf:nodeID attribute instead of an rdf:Resource attribute. List 2.26 shows
the details.

List 2.26 Use rdf:nodeID to name a blank node

1: <?xml version="1.0"?>
2: <rdf:RDF

2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:uom="http://www.example.org/units#"
4: xmlns:myCamera="http://www.liyangyu.com/camera#">
5:

6: <rdf:Description

6a: rdf:about="http://www.liyangyu.com/camera#Nikon_D300">
7: <rdf:type

7a: rdf:resource="http://www.liyangyu.com/camera#DSLR"/>
8: <myCamera:manufactured_by

8a: rdf:resource="http://www.dbpedia.org/resource/Nikon"/>
9: <myCamera:performance>

10: <rdf:Description rdf:about=
10a: "http://www.liyangyu.com/camera#PictureQuality">

11: <myCamera:evaluate>5 stars</myCamera:evaluate>

12: </rdf:Description>

13: </myCamera:performance>

14: <myCamera:model>D300</myCamera:model>

56 2 The Building Block for the Semantic Web: RDF

15: <myCamera:weight rdf:nodeID = "youNameThisNode"/>

16: </rdf:Description>

17:

18: <rdf:Description rdf:nodeID = "youNameThisNode">

19: <rdf:value>0.6</rdf:value>

20: <uom:units

20a: rdf:resource="http://www.example.org/units#kg"/>
21: </rdf:Description>

22:

23: </rdf:RDF>

Note that the blank node in List 2.22 (lines 16–19) has been given a local
identifier called youNameThisNode, and the resource named youNameThisNode

is then described in lines 18–21. We, on purpose, name this identifier to be
youNameThisNode, just to show you the fact that you can name this node what-
ever you want to. The real benefit is that this resource now has a local identifier, so
it can be referenced from other places within the same document. Although in this
particular case, it’s not referenced by any other resource except for being the object
of property myCamera:weight, you should be able to imagine the cases where a
blank node could be referenced multiple times.

Blank node is very useful in RDF, and we will see more examples of using
blank node in later sections. In addition, note that rdf:nodeID is case sensitive.
For example, an RDF parser will flag an error if you have mistakenly written it
as rdf:nodeId. In fact, every single term in RDF vocabulary is case sensitive, so
make sure they are right.

2.3.2.7 rdf:ID, xml:base, and RDF/XML Abbreviation

By far, you probably have already realized one thing about RDF/XML syntax: it is
quite verbose and quite long. In this section, we will discuss the things you can do
to make it shorter.

We have seen RDF/XML abbreviation already in previous section. For exam-
ple, compare List 2.17 with List 2.18. In List 2.18, multiple properties are nested
within the rdf:Description element that identifies the subject, and in List 2.17,
each property requires a separate statement, and these statements all share the same
subject.

Another abbreviation we have seen is to use ENTITY declaration (together with
DOCTYPE declaration at the beginning of a given RDF/XML document). List 2.25
has presented one such example.

The last abbreviation we have seen involves the so-called long form of RDF/XML
syntax. More specifically, List 2.15 uses the rdf:Description together with
rdf:about combination to describe a resource, and this form is called the long
form. On the other hand, List 2.16 is an abbreviation of this long form, and they are
equivalent to each other. Most RDF parsers will translate the abbreviated form into
the long form first before any processing is done.

2.3 RDF Serialization: RDF/XML Syntax 57

A new abbreviation of the long form that we have not seen yet is to use the
rdf:ID term from the RDF vocabulary, as shown in List 2.27 (note that since
we only want to show the use of rdf:ID, we did not include other properties as
described in List 2.26).

List 2.27 Example of using rdf:ID

1: <?xml version="1.0"?>
2: <rdf:RDF

2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:myCamera="http://www.liyangyu.com/camera#">
4:

5: <rdf:Description rdf:ID="Nikon_D300">
6: <rdf:type

6a: rdf:resource="http://www.liyangyu.com/camera#DSLR"/>
7: <myCamera:manufactured_by

7a: rdf:resource="http://www.dbpedia.org/resource/Nikon"/>
8: </rdf:Description>

9:

10: </rdf:RDF>

Compare List 2.27 with List 2.18, you can see the difference. Instead of using
rdf:about, RDF keyword rdf:ID is used to identify the resource that is being
described by this RDF document (line 5).

This does make the statement shorter; at least there is no long URI needed for the
resource. However, to use rdf:ID, we have to be very careful. More specifically,
rdf:ID only specifies a fragment identifier; the complete URI of the subject is
obtained by concatenating the following three pieces together:

in-scope base URI + “#” + rdf:ID value

Since the in-scope base URI is not explicitly stated in the RDF document (more
on this later), it is then provided by the RDF parser based on the location of the
file. In this example, since http://www.liyangyu.com/rdf/review.rdf is the
location, http://www.liyangyu.com/rdf/review.rdf#Nikon-D300 is then
used as the URI of the subject.

Clearly, using rdf:ID results in a relative URI for the subject, and the URI
changes if the location of the RDF document changes. This seems to be contradict-
ing to the very meaning of URI: it is the unique and global identifier of a resource,
and how can it change based on the location of some file then?

The solution is to explicitly state the in-scope base URI. Specifically, we can
add the xml:base attribute in the RDF document to control which base is used to
resolve the rdf:ID value. Once an RDF parser sees the xml:base attribute, it will
generate the URI by using the following mechanism:

xml:base + "#" + rdf:ID value

List 2.28 shows the details (line 4).

58 2 The Building Block for the Semantic Web: RDF

List 2.28 Example of using xml:base

1: <?xml version="1.0"?>
2: <rdf:RDF

2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:myCamera="http://www.liyangyu.com/camera#"
4: xml:base="http://www.liyangyu.com/camera#">
5:

6: <rdf:Description rdf:ID="Nikon_D300">
7: <rdf:type

7a: rdf:resource="http://www.liyangyu.com/camera#DSLR"/>
8: <myCamera:manufactured_by

8a: rdf:resource="http://www.dbpedia.org/resource/Nikon"/>
9: <rdf:Description>

10:

11: </rdf:RDF>

rdf:ID (together with xml:base) can also be used in the short form (see
List 2.16), as shown in List 2.29.

List 2.29 Example of using xml:base with the short form

1: <?xml version="1.0"?>
2: <rdf:RDF

2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:myCamera="http://www.liyangyu.com/camera#"
4: xml:base="http://www.liyangyu.com/camera#">
5:

6: <myCamera:DSLR rdf:ID="Nikon_D300">
7: <myCamera:manufactured_by

7a: rdf:resource="http://www.dbpedia.org/resource/Nikon"/>
8: </myCamera:DSLR>

9:

10: </rdf:RDF>

In both Lists 2.28 and 2.29, the subject will have the following URI:

http://www.liyangyu.com/camera#Nikon_D300

which is what we wanted, and it will not change when the location of the RDF
document changes.

As a summary, Lists 2.15, 2.16, 2.28, and 2.29 are all equivalent forms. However,
it might be a good idea to use rdf:about instead of rdf:ID, since it provides an
absolute URI for the resource. Also, that URI is taken verbatim as the subject, which
certainly avoids all the potential confusions.

At this point, we have covered the most frequently used RDF/XML syntax, which
you certainly need in order to understand the rest of the book. We will discuss
some other capabilities provided by RDF/XML syntax in the next few sections to
complete the description of the whole RDF picture.

2.3 RDF Serialization: RDF/XML Syntax 59

2.3.3 Other RDF Capabilities and Examples

RDF/XML syntax also provides some additional capabilities, such as representing a
group of resources and making statements about statements. In this section, we will
take a brief look at these capabilities.

2.3.3.1 RDF Containers: rdf:Bag, rdf:Seq, rdf:Alt, and rdf:li

Let us say that a Nikon D300 camera can be reviewed based on the following criteria
(it is certainly over-simplified to apply only three measurements when it comes to
review a camera, but it is good enough to make our point clear):

• effective pixels;
• image sensor format; and
• picture quality.

How do we express this fact in RDF?
RDF/XML syntax models this situation by the concept of container. A container

is a resource that contains things, and each one of these things is called a member in
the container. A member can be represented by either a resource or a literal.

The following three types of containers are provided by RDF/XML syntax using
a pre-defined container vocabulary:

• rdf:Bag

• rdf:Seq

• rdf:Alt

A resource can have type rdf:Bag. In this case, the resource represents a group
of resources or literals, the order of these members is not significant, and there could
be duplicated members as well. For example, the review criteria presented above can
be modeled by using rdf:Bag.

An rdf:Seq type resource is the same as an rdf:Bag resource, except the order
of its member is significant. For instance, if we want to show which criterion is more
important than the others, we will have to represent them using rdf:Seq.

rdf:Alt is also a container. However, items in this container are alternatives.
For example, it can be used to describe a list of alternative stores where you can find
a Nikon D300 camera.

Let us take a look at the example shown in List 2.30.

List 2.30 Example of using rdf:Bag

1: <?xml version="1.0"?>
2: <!DOCTYPE rdf:RDF

2a: [<!ENTITY myCamera "http://www.liyangyu.com/camera#">]>

3:

60 2 The Building Block for the Semantic Web: RDF

4: <rdf:RDF

4a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
5: xmlns:myCamera="http://www.liyangyu.com/camera#">
6:

7: <rdf:Description

7a: rdf:about="http://www.liyangyu.com/camera#Nikon_D300">
8: <myCamera:hasReviewCriteria>

9: <rdf:Description>

10: <rdf:type rdf:resource=
10a: "http://www.w3.org/1999/02/22-rdf-syntax-ns#Bag"/>

11: <rdf:li rdf:resource="&myCamera;EffectivePixel"/>
12: <rdf:li rdf:resource="&myCamera;ImageSensorFormat"/>
13: <rdf:li rdf:resource="&myCamera;PictureQuality"/>
14: </rdf:Description>

15: </myCamera:hasReviewCriteria>

16: </rdf:Description>

17:

18: </rdf:RDF>

To express the fact that a Nikon D300 camera can be reviewed based on a
given set of criteria, a property called myCamera:hasReviewCriteria has been
assigned to Nikon D300 (line 8), and this property’s value is a resource whose type
is rdf:Bag (line 10). Furthermore, rdf:li is used to identify the members of this
container resource, as shown in lines 11–13. Note that lines 7–16 represent one
single statement, with the container resource represented by a blank node.

Figure 2.8 shows the corresponding graph representation of List 2.30.
Note that rdf:li is a property provided by RDF/XML syntax for us to use, so

we do not have to explicitly number each membership property. Under the hood, a
given RDF parser will normally generate properties such as rdf:_1, rdf:_2, and
rdf:_3 (as shown in Fig. 2.8) to replace rdf:li. In this case, since the members
are contained in an rdf:Bag, these numbers should be ignored by the applications
creating or processing this graph. Note that RDF models do not regulate the pro-
cessing of List 2.30; it is up to the applications to handle it in the way that it is
intended to.

The example of rdf:Seq, including the RDF/XML syntax and the graph rep-
resentation, is exactly the same as List 2.30, except that the container type will be
changed to rdf:Seq. Again, note that properties such as rdf:_1, rdf:_2, and
rdf:_3 will be generated by RDF parser to replace rdf:li, and it is up to the
applications to correctly interpret the sequence.

The syntax and graph representation of rdf:Alt are also exactly the same except
that you need to use rdf:Alt as the type of the container resource. And again, it
is up to the application to understand that only one member should be taken, and it
should be identified by rdf:_1.

As a summary, these three types of containers are pre-defined by RDF/XML
syntax for you to use. You should, however, use them according to their “intended

2.3 RDF Serialization: RDF/XML Syntax 61

Fig. 2.8 Graph representation of the statements in List 2.30

usage”; RDF/XML itself does not provide any check at all. In fact, this container
vocabulary is created with the goal to help make data representation and processing
more interoperable; applications are not required to use them. They can choose their
own way to describe groups of resources if they prefer.

2.3.3.2 RDF Collections: rdf:first, rdf:rest, rdf:nil,
and rdf:List

In the last section, we discussed the container class. The problem with an RDF
container is that it is not closed: a container includes the identified resources as
its members, it never excludes other resources to be members. Therefore, it could
be true that some other RDF documents may add additional members to the same
container.

To solve this problem, RDF uses a pre-defined collection vocabulary to describe a
group that contains only the specified resources as members. Its vocabulary includes
the following keywords:

• rdf:first

• rdf:rest

• rdf:List

• rdf:nil

To express the fact that “only effective pixels, image sensor format, and picture
quality can be used as criteria to review a given Nikon D300 camera,” the above
keywords can be used as shown in Fig. 2.9.

62 2 The Building Block for the Semantic Web: RDF

Fig. 2.9 RDF collection vocabulary

Clearly, the members of a given container are all linked together by repeatedly
using rdf:first, rdf:rest, until the end (indicated by rdf:nil, a resource
that is of type rdf:List). Note how the blank nodes are used in this structure
(Fig. 2.9). Obviously, there is no way to add any new members into this container,
since other RDF documents will not be able to access the blank nodes here. This is
how RDF/XML syntax can guarantee the underlying container is closed.

Since ideally every closed container should follow the same pattern as shown
in Fig. 2.9, RDF/XML decides to provide a special notation to make it easier to
describe a close container. More specifically, there is no need to explicitly use
rdf:first, rdf:rest, and rdf:nil keywords; all we need to do is to use
the attribute rdf:parseType with its value set to be Collection, as shown in
List 2.31.

List 2.31 Example of using RDF collection

1: <?xml version="1.0"?>
2: <!DOCTYPE rdf:RDF

2a: [<!ENTITY myCamera "http://www.liyangyu.com/camera#">]>

3:

4: <rdf:RDF

4a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
5: xmlns:myCamera="http://www.liyangyu.com/camera#">
6:

2.3 RDF Serialization: RDF/XML Syntax 63

7: <rdf:Description

7a: rdf:about="http://www.liyangyu.com/camera#Nikon_D300">
8: <myCamera:hasReviewCriteria rdf:parseType="Collection">
9: <rdf:Description rdf:about="&myCamera;EffectivePixel"/>
10: <rdf:Description

10a: rdf:about="&myCamera;ImageSensorFormat"/>
11: <rdf:Description rdf:about="&myCamera;PictureQuality"/>
12: </myCamera:hasReviewCriteria>

13: </rdf:Description>

14:

15: </rdf:RDF>

An RDF parser which sees List 2.31 will then automatically generate the
structure shown in Fig. 2.9.

Note that it is possible, however, to manually use rdf:first, rdf:rest, and
rdf:nil keywords to construct a close container, without using the notation shown
in List 2.31. If you decide to do so, it is your responsibility to make sure you have
created the pattern as shown in Fig. 2.9, and you have to use blank nodes so no
other RDF document can access the list and modify it. Therefore, the best solution
is indeed to use this special notation offered by RDF/XML syntax.

2.3.3.3 RDF Reification: rdf:statement, rdf:subject,
rdf:predicate, and rdf:object

At this point, we have covered most of the terms in RDF vocabulary. In this sec-
tion, we will discuss the remaining terms, more specifically, rdf:statement,
rdf:subject, rdf:predicate, and rdf:object.

In fact, these four terms make up the built-in vocabulary used for describing
RDF statements. Therefore, if we need to describe RDF statements using RDF, this
vocabulary provides the terms we would like to use.

For example, for a given RDF statement, we might want to record information
such as when this statement is created and who has created it. A description of a
statement using this vocabulary is often called a reification of the statement, and
accordingly, this vocabulary is also called RDF reification vocabulary.

Let us take a look at one example. The following statement from List 2.5

myCamera:Nikon_D300 myCamera:manufactured_by dbpedia:Nikon

states the fact that the Nikon D300 camera is manufactured by Nikon Corporation.
A reification of this statement is shown in List 2.32.

List 2.32 Reification example

myCamera:statement_01 rdf:type rdf:Statement

myCamera:statement_01 rdf:subject myCamera:Nikon_D300

myCamera:statement_01 rdf:predicate myCamera:manufactured_by

myCamera:statement_01 rdf:object dbpedia:Nikon

64 2 The Building Block for the Semantic Web: RDF

In List 2.32, myCamera:statement_01 is an URI that is assigned to the
statement that is being described, i.e.,

myCamera:Nikon_D300 myCamera:manufactured_by dbpedia:Nikon

And the first statement in List 2.32 says the resource identified by
myCamera:statement_01 is an RDF statement. The second statement
says that the subject of this RDF statement is identified by resource
myCamera:Nikon_D300. The third statement says the predicate of this RDF
statement is given by myCamera:manufactured_by, and the last statement
says the object of the statement refers to the resource identified by dbpedia:

Nikon.
Obviously, this reification example has used four statements to describe the orig-

inal statement. This usage pattern is often referred to as the conventional use of the
RDF reification vocabulary. Since it always involves four statements, it is also called
a reification quad.

Now, to record provenance information about the original statement, we can
simply add additional statement to this quad, as shown in List 2.33.

List 2.33 Adding provenance information using reification

myCamera:statement_01 rdf:type rdf:Statement

myCamera:statement_01 rdf:subject myCamera:Nikon_D300

myCamera:statement_01 rdf:predicate myCamera:manufactured_by

myCamera:statement_01 rdf:object dbpedia:Nikon

myCamera:statement_01 dc:creator http://www.liyangyu.com#liyang

As you can see, the last statement in List 2.33 is added to show the creator
of the original statement, and http://www.liyangyu.com#liyang is the URI
identifying this creator.

Note that dc:creator is another existing URI (just like dbpedia:Nikon is
an existing URI representing Nikon Corporation) taken from a vocabulary called
Dublin Core. We will discuss Dublin Core in more detail in the next section. For
now, understand that dc:creator represents the creator of a given document is
good enough.

You can certainly add more statement into List 2.33 to record more prove-
nance information about the original statement, such as the date when the original
statement was created.

The usage of reification vocabulary is fairly straightforward. However, it does
require some caution when using it. Recall that we have assigned an URI to the orig-
inal statement (myCamera:statement_01), so it can be represented as a resource,
and new RDF statements can be created to describe it. However, this kind of logic
connection only exists in our mind. The URI is completely arbitrary, and there is
no built-in mechanism in RDF to understand that this URI is created to represent a
particular statement in a given RDF graph.

As a result, it is up to the RDF application to handle this, and it has to be
done with care. For example, given the statements in List 2.34, an RDF application

2.4 Other RDF Sterilization Formats 65

may try to match rdf:subject, rdf:predicate, and rdf:object taken from
List 2.33 to a statement so as to decide whether the reification in List 2.33 is
used on this particular statement. However, there could be multiple statements
in different RDF models, and all these statements will be matched successfully,
and it is therefore hard to decide exactly which one is the candidate. For exam-
ple, different camera reviewers can make the same statement in their reviews
(in RDF format), and our RDF application built on all these reviews will find
multiple matches. Therefore, for a given statement, we cannot simply depend
on matching its rdf:subject, rdf:predicate, and rdf:object components.
Most likely, more application-specific assumptions may have to be made to make
this work.

In addition, note that other applications receiving these RDF documents may not
share the same application-specific understanding, and therefore may not be able to
interpret these statements correctly.

With all these being said, RDF reification is still useful and remains an important
topic, mainly because it provides one way to add provenance information, which
is important to handle the issue of trust on the Web. For now, understand it, and in
your own development work, use it with care.

2.4 Other RDF Sterilization Formats

2.4.1 Notation-3, Turtle, and N-Triples

By now, there is probably one important aspect of RDF that we have not emphasized
enough: RDF is an abstract data model, and RDF standard itself does not specify its
representation. The recommended and perhaps the most popular representation of
an RDF model is the XML serialization format (noted as RDF/XML), as we have
seen so far.

However, RDF/XML is not designed for human eyes. For instance, it is hard to
read and can be quite long as well. There are indeed other RDF serialization formats,
such as Notation-3 (or N3), Turtle, and N-Triples.

Notation-3 is a non-XML serialization of RDF model and is designed with
human readability in mind. It is therefore much more compact and readable than
XML/RDF format.

Since Notation-3 does have several features that are not necessary for serializa-
tion of RDF models (such as its support for RDF-based rules), Turtle is created as a
simplified and RDF-only subset of Notation-3. In addition, N-Triples is another sim-
pler format than both Notation-3 and Turtle, and therefore offers another alternative
to developers.

In this section, we will focus mainly on Turtle format because of its popularity
among developers. In addition, as you will see in Chap. 6, SPARQL has borrowed
almost everything from Turtle to form its own query language. Therefore, under-
standing Turtle will make us comfortable with the syntax used in SPARQL query
language as well.

66 2 The Building Block for the Semantic Web: RDF

2.4.2 Turtle Language

Formally speaking, Turtle represents Terse RDF Triple Language. It is a text-based
syntax for serialization of RDF model. You can find a complete discussion about
Turtle in

http://www.w3.org/TeamSubmission/turtle/

And you should know the following about Turtle in general:

• The URI that identifies the Turtle language is given by

http://www.w3.org/2008/turtle#turtle

• The XML (Namespace name, local name) pair that identifies Turtle language is
as follows:

http://www.w3.org/2008/turtle#, turtle

• The suggested namespace prefix is ttl, and a Turtle document should use ttl

as the file extension.

2.4.2.1 Basic Language Feature

Now, let us take a brief look at Turtle language. First off, a Turtle document is a
collection of RDF statements, and each statement has a format that is called a triple:

<subject> <predicate> <object>.

Note that

• each statement has to end with a period;
• subject must be represented by a URI;
• predicate must be represented by a URI;
• object can be either a URI or a literal;
• a URI must be surrounded in <> brackets, which are used to delineate a

given URI.

A given literal may have a language or a datatype URI as its suffix, but it is not
allowed to have both. If it is given a language suffix, the suffix is created by a @

together with the language tag. For example,

"this is in English"@en

If it is given a datatype suffix, ˆˆ is used:

"10"ˆˆ<http://www.w3.org/2001/XMLSchema#decimal>

"foo"ˆˆ<http://example.org/mydatatype/sometype>

Note that a literal does not have to be appended by a datatype URI or language
tag. For example, these two literals are perfectly legal:

"10"

"foo"

2.4 Other RDF Sterilization Formats 67

With all these said, List 2.34 shows some triple examples in Turtle format (note
the period at the end of each statement).

List 2.34 Triple examples in Turtle format

<http://www.liyangyu.com/foaf.rdf#liyang>

<http://xmlns.com/foaf/0.1/name> "liyang yu".

<http://www.liyangyu.com/foaf.rdf#liyang>

<http://xmlns.com/foaf/0.1/interest>

<http://dbpedia.org/resource/Semantic_Web>.

And this is the main idea for Turtle. However, there are lots of abbreviations and
shortcuts that can make the RDF Turtle documents much more compact and still
readable. Let us discuss these features next.

2.4.2.2 Abbreviations and Shortcuts: Namespace Prefix,
Default Prefix, and @base

Obviously, full URIs are long and somewhat unreadable. To make them shorter and
also more readable, we can define a namespace prefix so we don’t have to write
the long common part of the URI over and over. The general format for defining
namespace prefix is given as below:

@prefix pref: <uri>.

where pref is the shortcut for uri. For example,

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

@prefix liyang: <http://www.liyangyu.com/foaf.rdf#>.

and now the two statements in List 2.34 can be re-written as in List 2.35.

List 2.35 Statements in List 2.34 are re-written using namespace prefix

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

@prefix liyang: <http://www.liyangyu.com/foaf.rdf#>.

liyang:liyang foaf:name "liyang yu".

liyang:liyang foaf:interest

<http://dbpedia.org/resource/Semantic_Web>.

These are obviously much more readable and compact as well.
Another way to abbreviate namespace is to create a default namespace prefix,

acting as the “main” namespace for a Turtle document. For example, if we are cre-
ating or working on a FOAF document (more about FOAF in Chap. 7), making

68 2 The Building Block for the Semantic Web: RDF

FOAF namespace as the default (main) namespace is a good choice. To create a
default namespace, we can use the same general form, but without a pref string:

@prefix : <uri>.

for instance,

@prefix : <http://xmlns.com/foaf/0.1/>.

will set <http://xmlns.com/foaf/0.1/> as the default namespace, and
List 2.35 will be changed to List 2.36.

List 2.36 Statements in List 2.35 are re-written using default namespace prefix

@prefix : <http://xmlns.com/foaf/0.1/>.

@prefix liyang: <http://www.liyangyu.com/foaf.rdf#>.

liyang:liyang :name "liyang yu".

liyang:liyang :interest

<http://dbpedia.org/resource/Semantic_Web>.

In other words, any URI identifier starting with : will be in the default namespace.
Note in some document, @base directive is also used to allow abbreviation of

URIs. It could be confusing if you are not familiar with this since it somewhat feels
like default namespace prefix, but in fact it is not. Let us talk about this a little bit
more.

The key point to remember about @base is this: whenever it appears in a doc-
ument, it defines the base URI against which all relative URIs are going to be
resolved. Let us take a look at List 2.37.

List 2.37 Example of using @base

1: <subj0> <pred0> <obj0>.

2: @base <http://liyangyu.com/ns0/>.

3: <subj1> <http://liyangyu.com/ns0/pred1> <obj1>.

4: @base <foo/>.

5: <subj2> <pred2> <obj2>.

6: @predix : <bar#>.

7: :subj3 :pred3 :obj3.

8: @predix : <http://liyangyu.com/ns1/>.

9: :subj4 :pred4 :obj4.

How should this be resolved? Clearly, line 1 is a triple that all of its components
are using relative URIs; therefore, all these URIs should be resolved against the
current @base value. Since there is no explicit definition of @base yet, the location
of this document will be treated as the current base. Assuming this document locates
at http://liyangyu.com/data/, line 1 will resolve as the following:

<http://liyangyu.com/data/subj0>

<http://liyangyu.com/data/pred0>

<http://liyangyu.com/data/obj0>.

2.4 Other RDF Sterilization Formats 69

Since line 2 has specified a new base value, line 3 will be resolved as the
following:

<http://liyangyu.com/ns0/subj1>

<http://liyangyu.com/ns0/pred1>

<http://liyangyu.com/ns0/obj1>.

Note pred1 does not need to resolve, since it has an absolute URI.
Now, line 4 again uses @base to define a relative URI, which will be resolved

against the current base; in other words, line 4 is equivalent to the following:

@base <http://liyangyu.com/ns0/foo/>.

therefore, line 5 will then be resolved using this new base URI:

<http://liyangyu.com/ns0/foo/subj2>

<http://liyangyu.com/ns0/foo/pred2>

<http://liyangyu.com/ns0/foo/obj2>.

Line 6 defines a default namespace prefix:

@predix : <bar#>.

and since it is again a relative URI, it has to be resolved against the current base
first. Therefore, this default namespace will have the following resolved URI:

@predix : <http://liyangyu.com/ns0/foo/bar#>.

Therefore, the triple on line 7 will be resolved to this:

<http://liyangyu.com/ns0/foo/bar#subj3>

<http://liyangyu.com/ns0/foo/bar#pred3>

<http://liyangyu.com/ns0/foo/bar#obj3>.

Finally, line 8 defines another default namespace, and since it is an absolute URI
already, it does not have to be resolved against the current base, and line 9 is resolved
to this:

<http://liyangyu.com/ns1/subj4>

<http://liyangyu.com/ns1/pred4>

<http://liyangyu.com/ns1/obj4>.

This should have cleared up the confusion around @base directive and default
namespace prefix, and this has also completed the discussion about URI abbrevia-
tion. Let us talk about some other frequently used abbreviations.

2.4.2.3 Abbreviations and Shortcuts: Token a, Comma, and Semicolons

Token a in Turtle is always equivalent to the following URI:

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

70 2 The Building Block for the Semantic Web: RDF

therefore,

liyang:liyang rdf:type foaf:Person.

can be written as follows:

liyang:liyang a foaf:Person.

Both commas and semicolons can be used to make a given document shorter.
More specifically, if two or more statements with the same subject and predicate are
made, we can combine the statements and separate different objects by one or more
commas. For example, consider List 2.38.

List 2.38 A Turtle document that has two statements with the same subject and
predicate

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

@prefix liyang: <http://www.liyangyu.com/foaf.rdf#>.

liyang:liyang foaf:name "liyang yu".

liyang:liyang foaf:interest

<http://dbpedia.org/resource/Semantic_Web>.

liyang:liyang foaf:interest <http://semantic-mediawiki.org/>.

It can be changed to List 2.39 which is equivalent yet has a shorter form.

List 2.39 Combine the two statements in List 2.38

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

@prefix liyang: <http://www.liyangyu.com/foaf.rdf#>.

liyang:liyang foaf:name "liyang yu".

liyang:liyang foaf:interest

<http://dbpedia.org/resource/Semantic_Web>,

<http://semantic-mediawiki.org>.

If we have the same subject but different predicates in more than one statements,
we can use semicolons to make them shorter. For example, List 2.39 can be further
re-written as shown in List 2.40.

List 2.40 Using; to re-write List 2.39

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

@prefix liyang: <http://www.liyangyu.com/foaf.rdf#>.

liyang:liyang foaf:name "liyang yu" ;

foaf:interest <http://www.foaf-project.org/>,

<http://semantic-mediawiki.org>.

2.4 Other RDF Sterilization Formats 71

2.4.2.4 Turtle Blank Nodes

Last but not the least, let us discuss blank nodes. Some literature does not recom-
mend using blank nodes, but in some cases, they could be very handy to use. In
Turtle, a blank node is denoted by [] and you can use it as either the subject or the
object. For example, List 2.41 says “there exists a person named liyang yu”:

List 2.41 Using blank node as the subject

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

[] a foaf:Person;

foaf:name "liyang yu" .

In List 2.41, blank node is used as the subject. If you decide to serialize this
model using RDF/XML format, you will get the document shown in List 2.42.

List 2.42 Express the statement in List 2.41 using RDF/XML format

<?xml version="1.0"?>
<rdf:RDF xmlns:foaf="http://xmlns.com/foaf/0.1/"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<foaf:Person>

<foaf:name>liyang yu</foaf:name>

</foaf:Person>

</rdf:RDF>

It will have the following underlying triples:

_:bnode0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://xmlns.com/foaf/0.1/Person>.

_:bnode0 <http://xmlns.com/foaf/0.1/name> "liyang yu".

We can also use blank node to represent an object. For example, the Turtle state-
ment in List 2.43 says “Liyang is a person and he knows another person named
Connie”:

List 2.43 Use blank node as the object

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

@prefix liyang: <http://www.liyangyu.com/foaf.rdf#>.

liyang:liyang a foaf:Person;

foaf:knows [

a foaf:Person;

foaf:name "connie".

].

Again, in RDF/XML format, the statements in List 2.43 will look like the ones
shown in List 2.44.

72 2 The Building Block for the Semantic Web: RDF

List 2.44 Express the statement in List 2.43 using RDF/XML format

<?xml version="1.0"?>
<rdf:RDF xmlns:foaf="http://xmlns.com/foaf/0.1/"

xmlns:liyang="http://www.liyangyu.com/foaf.rdf#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<foaf:Person rdf:about="http://www.liyangyu.com/foaf.rdf#liyang">
<foaf:knows>

<foaf:Person>

<foaf:name>connie</foaf:name>

</foaf:Person>

</foaf:knows>

</foaf:Person>

</rdf:RDF>

Underlying triples are also listed here:

<http://www.liyangyu.com/foaf.rdf#liyang>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://xmlns.com/foaf/0.1/Person>.

_:bnode0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://xmlns.com/foaf/0.1/Person>.

_:bnode0 <http://xmlns.com/foaf/0.1/name> "connie".

<http://www.liyangyu.com/foaf.rdf#liyang>

<http://xmlns.com/foaf/0.1/knows> _:bnode0.

You can tell how compact the Turtle format is!

2.5 Fundamental Rules of RDF

Since we have covered most of the contents about RDF, it is time for us to sum-
marize the basic rules of RDF. There are altogether three basic rules, and they are
critically related to some of the most important aspects of the Semantic Web. At this
point, these closely related aspects are as follows:

1. RDF represents and models information and knowledge in a way that machine
can understand.

2. Distributed RDF graphs can be aggregated to facilitate new information
discovery.

In this section, we will examine the three basic RDF rules. The goal is to establish
a sound understanding of why these basic RDF rules provide the foundation to the
above aspects of the Semantic Web.

2.5 Fundamental Rules of RDF 73

2.5.1 Information Understandable by Machine

Let us start from Rule 1. We have seen this rule already, where it was presented
to describe the abstract RDF model. Here we will look at it again from a differ-
ent perspective: it plays an important role when making machines understand the
knowledge expressed in RDF statements. Here is this rule again:

Rule #1:
Knowledge (or information) is expressed as a list of statements, each
statement takes the form of Subject-Predicate-Object, and this
order should never be changed.

Before we get into the details on this part, let us take a look at this triple pattern
once more time.

Since the value of a property can be a literal or a resource, a given RDF state-
ment can take the form of alternating sequence of resource–property, as shown in
List 2.45.

List 2.45 The pattern of RDF statement

1: <rdf:Description rdf:resources="#resource-0">
2: <someNameSpace:property-0>

3: <rdf:Descrption rdf:resource="#resource-1">
4: <someNameSpace:property-1>

5: <rdf:Description rdf:resource="#resource-2">
6: <someNameSpace:property-2>

7: ...

8: </someNameSpace:property-2>

9: </rdf:Description>

10: </someNameSpace:property-1>

11: </rdf:Description>

12: </someNameSpace:property-0>

13: </rdf:Description>

In List 2.45, #resource-0 has a property named property-0; its value
is another resource described using lines 3–11 (#resource-1). Furthermore,
#resource-1 has a property named property-1 whose value is yet another
resource described using lines 5–9. This pattern can go on and on; however, the
Resource-Property-Value structure is never changed.

Why is this order so important? Because if we follow this order when we create
RDF statements, an RDF-related application will be able to understand the meaning
of these statements. To see this, let us study the example shown in List 2.46.

List 2.46 One simple statement about Nikon D300

1: <?xml version="1.0"?>
2:

74 2 The Building Block for the Semantic Web: RDF

3: <rdf:RDF

3a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
4: xmlns:myCamera="http://www.liyangyu.com/camera#">
5:

6: <rdf:Description

6a: rdf:about="http://www.liyangyu.com/camera#Nikon_D300">
7: <myCamera:effectivePixel>12.1M</myCamera:effectivePixel>

8: </rdf:Description>

9:

10: </rdf:RDF>

List 2.46 is equivalent to the following RDF statement:

myCamera:Nikon-D300 myCamera:effectivePixel 12.1M

We, as human reader, understand its meaning. For a given application, the above
triple looks more like this:

$#!6ˆ:af#@dy $#!6ˆ:3pyu9a 12.1M

However, the application does understand the structure of an RDF statement, so
the following is true as far as the application is concerned:

$#!6ˆ:af#@dy is the subject
$#!6ˆ:3pyu9a is the property
12.1 M is the value

And now, here is the interesting part: the application also has a vocabulary it can
access, and the following fact is stated in this vocabulary:

property $#!6ˆ:3pyu9a is used exclusively on resource whose type is
$#!6ˆ:Af5%

We will see what exactly is this vocabulary (in fact, it is called RDF Schema),
and we will also find out how to express the above fact by using this vocabulary
in Chap. 4. For now, let us just assume the above fact is well expressed in the
vocabulary.

Now all these said, the application, without really associating any special
meaning to the above statement, can draw the following conclusion:

resource $#!6ˆ:af#@dy is an instance of resource $#!6ˆ:Af5%

When the application shows the above conclusion to the screen, for human eyes,
that conclusion looks like the following:

Nikon-D300 is an instance of DSLR

which makes perfect sense!
The key point here is a given application cannot actually associate any special

meanings to the RDF statements. However, with the fix structure of statement and
some extra work (the vocabulary, for instance), the logical pieces of meaning can be

2.5 Fundamental Rules of RDF 75

mechanically maneuvered by the given application. It therefore can act as if it does
understand these statements. In fact, in Chaps. 4 and 5, once we understand more
about RDF Schema and OWL, we will see more examples of this exciting inference
power.

2.5.2 Distributed Information Aggregation

The second and third rules are important for distributed information aggregation.
Here is again Rule #2:

Rule #2:
The name of a resource must be global and should be identified by
Uniform Resource Identifier (URI). The name of predicate must also be
global and should be identified by URI as well.

And Rule #3 is given below:

Rule #3:
I can talk about any resource at my will, and if I chose to use an existing
URI to identify the resource I am talking about, then the following is true:

• The resource I am talking about and the resource already identified by
this existing URI are exactly the same thing or concept.

• Everything I have said about this resource is considered to be
additional knowledge about that resource.

These two rules together provide the foundation for distributed information
aggregation. At this point, they seem to be trivial and almost like a given already.
However, they are the key idea behind the Linked Open Data project (see Chap. 11),
and they are the starting point for new knowledge discovery. We will see lots of
these exciting facts in the later chapters. For now, a simple comparison of the tradi-
tional Web and the “Web of RDF documents” may give you a better understanding
of their importance.

Recall the situation in the current Web. One of the things about the Internet that
is quite attractive to all of us is the fact that you can talk about anything you want,
and you can publish anything you want. When you do this, you can also link your
document to any other pages you would like to.

For example, assume on my own Web site (www.liyangyu.com), I have offered
a review about Nikon D300, and I also linked my page to some digital camera review
site. Someone else perhaps did the same and has a link to the same digital camera
review site as well. What will this do to this review site? Not much at all, except
that some search engines will realize the fact that quite a few pages have link to it,
and the rank of this site should be adjusted to be a little bit more important. But
this is pretty much all of it; the final result is still the same: the Web is a huge
distributed information storage place, from which getting information is normally
pretty hard.

76 2 The Building Block for the Semantic Web: RDF

On the other hand, on the “Web of RDF documents,” things can be quite different.
For example, based on the above rule, all the RDF documents containing a resource
identified by the same known URI can be connected together. This connection is
implemented based on this URI which has a well-defined meaning. Even though
these RDF documents are most likely distributed everywhere on the Web, however,
each one of them presents some knowledge about that resource, and adding them
together can produce some very powerful result.

More specifically, when I publish my review of D300, all I need to do is to use a
URI to represent this resource. Anyone else wants to review the same camera has to
use the same URI. These reviews can then be automatically aggregated to produce
the summary one might want to have. An example along this path will be discussed
in the next section.

One last point before we move on. It is clear to us now that only named resource
can be aggregated. Therefore, anonymous resource cannot be aggregated. The rea-
son is simple: if a resource in a document is anonymous, an aggregation tool will not
be able to tell if this resource is talking about some resource already been defined
and described. This is probably one disadvantage of using anonymous resources.

2.5.3 A Hypothetical Real-World Example

It is now a good time to go back to our original question: as a quality engineer who is
working for Nikon, my assignment is to read all these reviews and summarize what
people have said about Nikon SLR cameras. I will have to report back to Nikon’s
design department, so they can make better designs based on these reviews.

And as we have discussed, we need a standard so that we can develop an
application that will read all these reviews and generate a report automatically.

Now, with the RDF standard being in place, how should I proceed with this task?
The following steps present one possible solution I can use:

Step 1. Create a group of URIs to represent Nikon’s digital camera products.

At this point, you should understand why this step is necessary. The following are
some possible choices for these URIs:

http://www.liyangyu.com/camera#Nikon_D300

http://www.liyangyu.com/camera#Nikon_D90

http://www.liyangyu.com/camera#Nikon_D60

Obviously, we should be re-using URIs as much as we can. For example, the
following URIs taken from DBpedia are good choices:

http://dbpedia.org/resource/Nikon_D300

http://dbpedia.org/resource/Nikon_D90

http://dbpedia.org/resource/Nikon_D60

However, for this hypothetical example, we are fine with making up new URIs.

2.5 Fundamental Rules of RDF 77

Step 2. Provide a basic collection of terms that one can use to review a camera.

This step is also a critical step, and we will see a lot more about this step in later
chapters. For now, we can understand this step like this: with only the URIs to
represent different cameras, reviewers themselves are not able to share much of
their knowledge and common language about cameras.

To make a common language among the reviewers, we can provide some basic
terms for them to use when reviewing cameras. The following are just two example
terms at this point:

http://www.liyangyu.com/camera#model

http://www.liyangyu.com/camera#weight

and we can add more terms and collect these terms together to create a vocabulary
for the reviewers to use.

Recall that RDF model should be flexible enough that anyone can say anything
about a resource. What if some reviewer wants to say something about a camera,
and the term he/she wants to use is not included in our vocabulary? The solution is
simple: he/she can simply download the vocabulary, add that term, and then upload
the vocabulary for all the reviewers to use, as simple as this.

Now, a key question arises. Assume I have already developed an automatic
tool that can help me to read all these reviews and generate a summary report. If
the vocabulary is undergoing constant update, do I have to change my application
constantly as well?

The answer is no. Probably it is not easy to see the reason at this point, but this is
exactly where the flexibility is. More specifically, with a set of common URIs and
a shared vocabulary, distributed RDF graphs can be created by different sources on
the Web, and applications operating on these RDF models are extremely robust to
the change of the shared vocabulary.

You will see this more clearly in later chapters. For now, understand this is a
concrete implementation of one of the design goals of RDF standard: it has to be
flexible enough that anyone can say anything about a given resource.

Step 3. Make sure the reviewers will use the given set of URIs and the common
vocabulary when they publish their reviews on the Web.

This is probably the most difficult step: each reviewer has to learn RDF and has
to use the given URIs to represent cameras. In addition, they have to use the given
vocabulary as well, although they do have the flexibility of growing the vocabulary
as discussed above.

The issue of how to make sure they will accept this solution is beyond the
scope of this book – it is not related to the technology itself. Rather, it is about
the acceptance of the technology.

With this said, we will simply assume the reviewers will happily accept our solu-
tion. To convince yourself about this assumption, think about the very reason of
being a reviewer. For any reviewer, the goal is to make sure his/her voice is heard
by both the consumers and the producers of a given product. And if this reviewer is

78 2 The Building Block for the Semantic Web: RDF

not publishing his/her review in RDF document by using the given URIs and vocab-
ulary, his/her review will never be collected, therefore he/she will not have a chance
to make a difference about that product at all.
Step 4. Build the application itself and use it to collect reviews and generate reports.

This is in fact the easy part. This application will first act like a crawler that will visit
some popular review sites to collect all the RDF documents. Once the documents are
collected, all the statements in these RDF documents will be grouped based on their
subjects, i.e., those statements that have the same subject will be grouped together
regardless of which RDF document they are originally from, and this is exactly what
data aggregation is.

Clearly, one such group represents all the reviews for a given camera, if the URI
that represents that camera is used as the subject. Once this is done, a report about
this camera can be generated by querying the statements in this group.

Let us take a look at a small example. Imagine the application has collected the
statements shown in List 2.5 already. In addition, it has also collected the statements
shown in List 2.47 from another reviewer.

List 2.47 Statements about Nikon D300 from another reviewer

subject predicate object

myCamera:Nikon_D300 myCamera:effectivePixel "12.1M"

myCamera:Nikon_D300 myCamera:shutterrange "30s - 1/8000s"

myCamera:Nikon_D300 myCamera:wb "auto"

Clearly, the statements from List 2.5 and the statements from List 2.47 are all about
the same Nikon D300 camera, so these statements can be aggregated together into a
single group.

Now repeat the same procedure as described above. Obviously, more and more
statements about Nikon D300 will be collected from different reviewers and will be
added to the same statement group. It is not hard to imagine this group will contain
quite a large number of statements once our application has visited enough review
sites.

Once the application stops its crawling on the Web, we can implement differ-
ent queries against the collected statements in this group. To see how this can be
done, take a look at the example code (List 2.7) presented in Sect. 2.2.5. The only
difference now is the fact that we have many more statements than the simple test
case discussed in Sect. 2.2.5. Therefore, more interesting results can be expected.
Clearly, you can implement different queries, but the basic idea remains the same.

As a side note, recall we claimed that any new terms added by reviewers would
not disturb the application itself. To see this, consider the query what properties
did the reviewers use to describe Nikon D300? This query is important to Nikon’s
design department, since it shows the things that consumers would care about for a
given camera. As you can tell, to implement this query, a simple pattern match is
done as shown in List 2.7, and only the subject has to be matched; the property part
is what we want to collect for this query. Obviously, the reviewers can add new terms
(properties) and these added new terms will not require any change to the code.

2.6 More About RDF 79

Finally, it is interesting to think about this question: exactly what do all the
reviewers have to agree upon to make this possible?

Surprisingly, the only two things all the reviewers have to agree upon are as
follows:

• Reviewers have to agree to use RDF.
• Reviewers have to agree to use the given URIs instead of inventing their own.

What about the basic vocabulary that reviewers use to review cameras? We don’t
have to reach an agreement on that at all – one can add new properties without
disturbing the application, as we have just discussed. Furthermore, adding a new
term does not require any agreement from other reviewers either. We do provide an
initial version of the vocabulary; however, it is merely a starting point for reviewers
to use, not something that everyone has to agree upon.

In addition, the pseudo-code in List 2.7 does not need to know anything about the
nature of the data in the statements in order to make use of it. Imagine even when we
change to another application domain, the pseudo-code in List 2.7 will not change
much at all.

To summarize our point: with the help from RDF standard, we can indeed create
an application that can help us to finish our job with much more ease.

2.6 More About RDF

At this point, you have gained fairly solid understanding about RDF. Before we
move on to the next chapter, we have several more issues to cover here, and some
of them are probably on your mind already for quite a while.

2.6.1 Dublin Core: Example of Pre-defined RDF Vocabulary

In this chapter, we have used terms from Dublin Core vocabulary without formally
introducing it. Chance is you will see terms from Dublin Core vocabulary in dif-
ferent RDF documents quite often. So in this section, let us focus on Dublin Core
vocabulary.

To put it simply, Dublin Core is a set of pre-defined URIs representing different
properties of a given document. Since they are widely used in RDF documents, they
can also be understood as another set of pre-defined RDF vocabulary.

Dublin Core was developed in the March 1995 Metadata Workshop sponsored
by the Online Computer Library Center (OCLC) and the National Center for
Supercomputing Applications (NCSA). The workshop itself was held in Dublin,
Ohio, hence the name Dublin Core. Currently, it is maintained by the Dublin Core
metadata Initiative5 project.

5http://dublincore.org/

80 2 The Building Block for the Semantic Web: RDF

Table 2.3 Element examples in Dublin Core Metadata Scheme

Element name Element description

Creator This element represents the person or organization responsible for
creating the content of the resource, e.g., authors in the case of written
documents

Publisher This element represents the entity responsible for making the resource
available in its present form. It can be a publishing house, a university
department, etc

Contributor This element represents the person or organization not specified in a
Creator element who has made significant intellectual contributions
to the resource but whose contribution is secondary to any person or
organization specified in a Creator element, e.g., editor, transcriber,
illustrator

Title This element represents the name given to the resource, usually by the
Creator

Subject This element represents the topic of the resource. Normally this will be
expressed as keywords or phrases that describe the subject or content of
the resource

Date This element represents the date associated with the creation or
availability of the resource

Identifier This element is a string or number that uniquely identifies the resource.
Examples include URLs, Purls, and ISBN, or other formal names

Description This element is a free text description of the content of the resource. It can
be in flexible format, including abstracts or other content descriptions

Language This element represents the language used by the document
Format This element identifies the data format of the document. This information

can be used to identify the software that might be needed to display or
operate the resource, e.g., postscript, HTML, text, jpeg, XML

Dublin Core has 15 elements called the Dublin Core metadata element set
(DCMES). It is proposed as the minimum number of metadata elements required to
facilitate the discovery of document-like objects in a networked environment such
as the Internet. Table 2.3 shows some of these terms.

Generally speaking, if we are using RDF to describe a document, or maybe
part of our RDF document is to describe a document, we should use Dublin Core
predicates as much as we can. For example, Title predicate and Creator predicate
are all good choices.

Note that the URIs in Dublin Core vocabulary all have the following lead strings:

http://www.purl.org/metadata/dublin-core#

By convention, this URI prefix string is associated with namespace prefix dc:

and is typically used in XML with the prefix dc.
For example, List 2.48 is a simple RDF description about my personal Web page.

The two statements use Dublin Core terms to indicate the creator of this Web site
and the date this site was created (lines 8 and 9).

2.6 More About RDF 81

List 2.48 Example of using Dublin Core terms

1: <?xml version="1.0"?>
2: <!DOCTYPE rdf:RDF
2a: [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>
3:
4: <rdf:RDF
4a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
5: xmlns:dc="http://www.purl.org/metadata/dublin-core#">
6:
7: <rdf:Description rdf:about="http://www.liyangyu.com">
8: <dc:creator>Liyang Yu</dc:creator>
9: <dc:date rdf:datatype="&xsd;date">2006-09-10</dc:date>
10: </rdf:Description>
11:
12: </rdf:RDF>

We can certainly add more if we want to describe more information. But you see
how easy it is to use it: you just need to specify the Dublin Core namespace and use
it anywhere you want in your document.

2.6.2 XML vs. RDF?

The relationship between XML and RDF can be described quite simply: RDF and
XML are not much related at all.

RDF, as you have seen, is a standard for describing things in the real world.
More importantly, these descriptions can be processed by machines on a large scale.
To serialize an RDF abstract model, different serialization formats are available.
Among these formats, RDF/XML is recommended by W3C and used in most docu-
ments. Therefore, the only connection between RDF and XML is the fact that RDF
uses the XML syntax and its namespace concept.

Given this relationship between XML and RDF, perhaps a better question to ask
is why XML cannot accomplish what RDF has accomplished?

There are several reasons behind this. First of all, XML provides very limited
semantics, and even for this limited semantics, it is quite ambiguous. This fact is
nicely summarized as follows:

XML is only the first step to ensuring that computers can communicate freely. XML is an
alphabet for computers and as everyone traveling in Europe knows, knowing the alphabet
doesn’t mean you can speak Italian or French. – Business Week, March 18th 2002

The key point here is XML is by far the best format to share data on the Web
and exchange information between different platforms and applications. However,
it does not have enough restrictions to successfully express semantics.

Let us look at one example. How do we use XML to express the following knowl-
edge: “the author of A Developer’s Guide to the Semantic Web is Liyang Yu”? Using
XML, you have several ways to do this. See List 2.49.

82 2 The Building Block for the Semantic Web: RDF

List 2.49 Ambiguity of XML document

<!-- form 1 -->

<author>

<fistName>Liyang</fistName>

<lastName>Yu</lastName>

<book>

<title>A Developer’s Guide to the Semantic Web</title>

</book>

</author>

<!-- form 2 -->

<author>

<name>Liyang Yu</name>

<book>

<title>A Developer’s Guide to the Semantic Web</title>

</book>

</author>

<!-- form 3 -->

<author>

<name>Liyang Yu</name>

<book>A Developer’s Guide to the Semantic Web</book>

</author>

Clearly, there is no agreement on the structure one can use. This makes an auto-
matic agent which intends to work on a large scale become virtually impossible, if
not prohibitively expensive.

On the other hand, using RDF to express the same idea is very straightforward,
and it leaves no space for any ambiguity, as shown in List 2.50.

List 2.50 Use RDF document to express the fact described in List 2.49

1: <rdf:RDF
1a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
2: xmlns:dc="http://www.purl.org/metadata/dublin-core#">
3:
4: <rdf:Description
4a: rdf:about="http://www.liyangyu.com/book#SemanticWeb">
5: <dc:title>A Developer’s Guide to the Semantic Web</dc:title>
6: <dc:creator>Liyang Yu</dc:creator>
7: </rdf:Description>
8:
9: </rdf:RDF>

The only thing you can change in List 2.50 is the URI that represents the book
(line 4). For example, you have to mint one if it does not already exist. Any RDF

2.6 More About RDF 83

application can easily characterize this structure and understand which part of the
structure is the subject, the property, and the value of that property.

Second, parsing XML statements heavily depends on the tree structure, which
is not quite scalable on a global basis. To be more specific, you can easily make
up some XML document so that the representation of this document in machine’s
memory depends on the data structures such as tree and character strings. In general,
these data structures can be quite hard to handle, especially when the amount is
large.

RDF statement presents a very simple data structure – a directly labeled graph
which has long been a very well understood data structure in the field of computer
science. It is also quite scalable for large dataset. The nodes of the graph are the
resources or literals, the edges are the properties, and the labels are URIs of nodes
and edges. You can certainly change the graph into a collection of triples (subject–
predicate–object), which fits into the framework of relational database very well.
All these are quite attractive compared to XML documents.

The third reason, which is even more important, is that using RDF format pro-
motes the development and usage of standardized vocabularies (or, ontologies, as
you will see in the later chapters). The more you understand about the Semantic
Web, the more you will appreciate the importance of these vocabularies. The
following are some of the benefits of using standard vocabularies:

• Without a shared vocabulary, it is always possible that the same word can mean
different concepts and different words can refer to the same concept.

• Without a shared vocabulary, distributed information will likely remain isolated.
An application that is capable of processing this distributed information on a
global scale will be very hard to build.

• Without a shared vocabulary, machine inferencing will be difficult to implement.
Therefore new knowledge discovered will be difficult to do.

• There are much more, as we will see in the later chapters.

At this point, the above might not seem quite clear and convincing. However, as
your understanding about the Semantic Web grows, they will become more obvious
to you.

As a conclusion, XML is unequalled as an information exchange format over the
Internet. But by itself, it simply does not provide what we need for the construction
of the Semantic Web.

If you are still not convinced, do this small experiment. Take the hypothetical
example we have discussed earlier, pretend there is no RDF standard at all. In other
words, replace all the RDF documents with XML documents, see how many more
constraints you need to artificially impose to make it work, and how many more
case-specific code you need to write. You will see the benefit of RDF abstract model
quite easily.

84 2 The Building Block for the Semantic Web: RDF

2.6.3 Use an RDF Validator

One last thing before we move on to the next chapter: use an RDF validator.
As you have seen by now, RDF/XML syntax can be quite convoluted and error-

prone, especially when you are creating RDF documents by hand. One good idea is
to use a validator whenever you can.

There are a number of available validators; you can choose anyone you like. For
example, I have been using the RDF validator provided by W3C for quite a while.
This validator can be accessed from the location

http://www.w3.org/RDF/Validator/

Figure 2.10 shows its current look-and-feel.

Fig. 2.10 RDF validator provided by W3C

2.7 Summary 85

To use this validator, simply paste the RDF document into the document window,
and click Parse RDF button. You can also ask for an RDF graph by making the
corresponding selection using the Triples and/or Graph drop-down list. You
can further specify the graph format in the Graph format drop-down list, as shown
in Fig. 2.10.

If there is indeed any error in your document, the validator will flag it by telling
you the line and column from where the error occurs. You can always make changes
to your RDF document and submit it again, until you have a valid RDF document.

2.7 Summary

In this chapter, we have learned RDF, the building block for the Semantic Web.
The first thing we should understand from this chapter is the RDF abstract model.

More specifically, this abstract model includes the following main points:

• It provides a framework for us to represent knowledge in a way that can be
processed by machines.

• It involves important concepts such as resource, statement (triple), subject, object,
predicate, and RDF graph.

• It has fundamental rules that one should follow when using RDF model to repre-
sent structured information on the Web. These rules include that the structure of
a statement has to be in the form of subject–predicate–object, and URIs should
be used to identify subject, predicate, and object.

In order for us to create and operate with concrete RDF documents, this chapter
also covers the two major RDF serialization formats, including RDF/XML syntax
and Turtle language. We should have learned the following:

• the concept of RDF vocabulary, and why this vocabulary is important when it
comes to RDF serialization;

• understand the main features of RDF/XML syntax, including all the language
constructs (terms from the RDF vocabulary) that can be used to represent an
RDF model;

• understand the main features of Turtle language, and how to use it to represent
an RDF model.

This chapter also discusses the reason why RDF is the choice for expressing
knowledge that machines can understand. Examples are used to show the power
of RDF, and a detailed discussion about distributed information aggregation using
RDF is also included. We should have learned the following main points:

• what exactly it means when we claim RDF graphs can be understood by machine;
• why the fundamental rules about RDF are important in order for machine to

understand and operate with RDF graphs;
• why URI reuse is important for distributed information aggregation.

86 2 The Building Block for the Semantic Web: RDF

Finally, this chapter discusses some related issues about RDF. This includes the
following:

• Dublin Core, as an example of another pre-defined RDF vocabulary;
• the relationship between XML and RDF; and
• tools and support you can use when working with concrete RDF models.

At this point, make sure you have established a clear understanding about all
these main points included in this summary. If not, review the material in this chapter
before you move on.

Chapter 3
Other RDF-Related Technologies:
Microformats, RDFa, and GRDDL

3.1 Introduction: Why Do We Need These?

So far at this point, we have learned the concept of the Semantic Web, and we have
learned RDF. Let us think about these two for a moment.

Recall that the vision of the Semantic Web is to add meaning into the current Web
so machines can understand its contents. Based on what we have learned about RDF,
we understand that RDF can be used to express the meaning of a Web document in
a machine-processable way. More specifically, for a given Web document, we can
create a set of RDF triples to describe its meaning and somehow indicate to the
machine that these RDF statements are created for the machine to understand this
document.

Although we are not quite there yet, it is not hard for us to understand the fea-
sibility of this idea. In fact, it is called semantic markup as we will see in later
chapters.

However, there is one obvious flaw with this approach: it is simply too complex
for most of us. More specifically, to finish this markup process, we have to first
create a collection of RDF statements to describe the meaning of a Web document,
then put them into a separate file, and finally, we have to somehow link the original
Web document to this RDF file. Is there a simpler way of doing all these?

The answer is yes, and that is to use microformats or RDFa. They are simpler
since microformats or RDFa constructs can be directly embedded into XHTML to
convey the meaning of the document itself, instead of collecting them into separated
documents.

This in fact plays an important role in the grand plan for the Semantic Web,
since a single given Web page is now readable not only by human eyes, but also
by machines. A given application which understands microformats or RDFa can
perform tasks that are much more complex than those performed by the applications
that are built solely based on screen scraping. In fact, in Chap. 8, we will see two
Semantic Web applications created by Yahoo! and Google, respectively, and they
are the direct results of microformats and RDFa.

To understand how GRDDL (pronounced “griddle”) fits into the picture, think
about the semantic information an XHTML page contains when it is embedded

87L. Yu, A Developer’s Guide to the Semantic Web,
DOI 10.1007/978-3-642-15970-1_3, C© Springer-Verlag Berlin Heidelberg 2011

88 3 Other RDF-Related Technologies

with microformats or RDFa constructs. It will be quite useful if we can obtain
RDF statements from this XHTML page automatically. GRDDL is a tool that can
help us to accomplish this. Once we can do this, the RDF statements harvested
from these XHTML pages can be aggregated together to create even more powerful
applications.

And these are the reasons why we need microformats, RDFa and GRDDL. If
you skip this chapter for now, you can still continue learning the core technology
components of the Semantic Web. However, you need to understand this chapter in
order to fully understand Chap. 8.

3.2 Microformats

3.2.1 Microformats: The Big Picture

To put it simple, microformats are a way to embed specific semantic data into
the HTML content that we have today, so when a given application accesses this
content, it will be able to tell what this content is about.

We are all familiar with HTML pages that represent people, so let us start from
here. Let us say we would like to use microformats to add some semantic data about
people. To do so, we need the so-called hCard microformat, which offers a group
of constructs you can use to mark up the content:

• a root class called vcard;
• a collection of properties, such as fn (formatted name) and n (name), and quite a

few others.

We will see more details about hCard microformat in the next section. For now,
understand that hCard microformat can be used to mark up the page content where
a person is described. In fact, hCard microformat not only is used for people, but
can also be used to mark up the content about companies, organizations and places,
as we will see in the next section.

Now, what if we would like to mark up some other content? For example, some
event described in a Web document? In this case, we will need to use the hCalendar
microformat, which also provides a group of constructs we can use to mark up the
related content:

• a root class called vcalendar;
• a collection of properties, such as dtstart, summary, location, and quite a

few others.

By the same token, if we would like to mark up a page content that contains a per-
son’s resume, we then need to use the hResume microformat. What about hRecipe
microformat? Obviously, it is used for adding markups to a page content where a
cooking recipe is described.

3.2 Microformats 89

By now, the big picture about microformats is clear, and we can define microfor-
mats as follows:

Microformats are a collection of individual microformats, with each one of
them representing a specific domain (such as person, event, location) that can
be described by a Web content page. Each one of these microformats provides
a way of adding semantic markups to these Web pages, so that the added
information can be extracted and processed by software applications.

With this definition in mind, it is understandable that the microformats collection
is always growing: there are existing microformats that cover a number of domains,
and for the domains that have not been covered yet, new microformats are created
to cover them.

For example, hCard microformat and hCalendar microformat are stable micro-
formats; hResume microformat and hRecipe microformat are still in draft states.
In fact, there is a microformats community that is actively working on new micro-
formats. You can always find the latest news from their official Web site,1 including
a list of stable microformats and a list of draft ones that are under discussion.

Finally, note that microformats are not a W3C standard or recommendation. They
are offered by an open community and are open standards originally licensed under
Creative Commons Attribution. They have been placed into the public domain since
29 December 2007.

3.2.2 Microformats: Syntax and Examples

In this section, we will take a closer look at how to use microformats to mark up a
given Web document. As we have discussed earlier, microformats are a collection of
individual microformats, and to present each one of them in this chapter is not only
impossible but also unnecessary. In fact, understanding one of such microformats
will be enough; the rest of them are quite similar when it comes to actually using
them to mark up a page.

With this said, we will focus on hCard microformat in this section. The rea-
son being that at the time of this writing, hCard microformat is considered to be
one of the most popular and well-established microformats. We will begin with an
overview of hCard microformat, followed by some necessary HTML knowledge,
and as usual, we will learn hCard by examples.

3.2.2.1 From vCard to hCard Microformat

hCard microformat has its root in vCard and can be viewed as a vCard represen-
tation in HTML, hence the letter h in hCard (HTML vCard). It is therefore helpful
to have a basic understanding about vCard.

1http://microformats.org

90 3 Other RDF-Related Technologies

Table 3.1 Example properties contained in vCard standard

Property name Property description Semantic

N Name The name of the person, place, or thing associated with
the vCard object

FN Formatted name The formatted name string associated with the vCard
object

TEL Telephone Phone number string for the associated vCard object
EMAIL E-mail E-mail address associated with the vCard object
URL URL A URL that can be used to get online information

about the vCard object

vCard is a file format standard that specifies how basic information about a
person or an organization should be presented, including name, address, phone num-
bers, e-mail addresses and URLs. This standard was originally proposed in 1995 by
the Versit Consortium, which had Apple, AT&T Technologies, IBM and Siemens
as its members. In late 1996, this standard was passed on to the Internet Mail
Consortium, and since then it has been used widely in address book applications
to facilitate the exchange and backup of contact information.

To this date, this standard has been given quite a few extensions, but its basic
idea remains the same: vCard has defined a collection of properties to represent a
person or an organization. Table 3.1 shows some of these properties.

Since this standard was formed before the advent of XML, the syntax is just
simple text that contains property–value pairs. For example, my own vCard object
can be expressed as shown in List 3.1.

List 3.1 My vCard object

BEGIN:VCARD

FN:Liyang Yu

N:Yu;Liyang;;;

URL:http://www.liyangyu.com

END:VCARD

First off, note this vCard object has a BEGIN:VCARD and END:VCARD element,
which marks the scope of the object. Inside the object, the FN property has a value
of Liyang Yu, which is used as the display name. The N property represents the
structured name, in the order of first, last, middle names, prefixes and suffixes, sep-
arated by semicolons. This can be parsed by a given application so as to understand
each component in the person’s name. Finally, URL is the URL of the Web site that
provides more information about the vCard object.

With the understanding about vCard standard, it is much easier to understand
hCard microformat, since it is built directly on the vCard standard. More specif-
ically, the properties supported by the vCard standard are mapped directly to
the properties and sub-properties contained in hCard microformat, as shown in
Table 3.2.

3.2 Microformats 91

Table 3.2 Examples of mapping vCard properties to hCard properties

vCard property hCard properties and sub-properties

FN fn
N n with sub-properties: family-name,

given-name, additional-name,
honorific-prefix,
honorific-suffix

EMAIL email with sub-properties: type, value
URL url

Note Table 3.2 does not include all the property mappings, and you can find
the complete mappings from microformats’ official Web site (see Sect. 3.2.1). As a
high-level summary, hCard properties can be grouped into six categories:

• Personal information properties: these include properties such as fn, n,
nickname.

• Address properties: these include properties such as adr, with sub-properties
such as street-address, region and postal-code.

• Telecommunication properties: these include properties such as email, tel, and
url.

• Geographical properties: these include properties such as geo, with sup-
properties such as latitude and longitude.

• Organization properties: these include properties such as logo, org, with sub-
properties such as organization-name and organization-unit.

• Annotation properties: these include properties such as title, note, and role.

With the above mapping in place, the next issue is to represent a vCard object
(contained within BEGIN:VCARD and END:VCARD) in hCard microformat. To do
so, hCard microformat uses a root class called vcard, and in HTML content, an
element with a class name of vcard is itself called an hCard.

Now, we are ready to take a look at some examples to understand how exactly
we can use hCard microformat to mark up some page content.

3.2.2.2 Using hCard Microformat to Mark Up Page Content

Let us start with a very simple example. Suppose that in one Web page, we have
some HTML code as shown in List 3.2.

List 3.2 Example HTML code without hCard microformat markup

... <!-- other HTML code -->

<div>

Liyang Yu

</div>

... <!-- other HTML code -->

92 3 Other RDF-Related Technologies

Obviously, for our human eyes, we understand that the above link is pointing to
a Web site which describes a person named Liyang Yu. However, any application
that sees this code does not really understand that, except for showing a link on the
screen as follows:

Liyang Yu

Now let us use hCard microformat to add some semantic information to this
link. The basic rules when doing markup can be summarized as follows:

• use vcard as the class name for the element that needs to be marked up, and this
element now becomes a hCard object, and

• the properties of an hCard object are represented by elements inside the hCard
object. An element with class name taken from a property name represents the
value of that property. If a given property has sub-properties, the values of these
sub-properties are represented by elements inside the element for that given
property.

Based on these rules, List 3.3 shows one possible markup implemented by using
hCard microformat.

List 3.3 hCard microformat markup added to List 3.2

... <!-- other HTML code -->

<div class="vcard">
<div class="fn">Liyang Yu</div>

<div class="n">
<div class="given-name">Liyang</div>
<div class="family-name">Yu</div>

</div>

<div class="url">http://www.liyangyu.com</div>
</div>

... <!-- other HTML code -->

This markup is not hard to follow. For example, the root class has a name given
by vcard, and the property names are used as class names inside it. And cer-
tainly, this simple markup is able to make a lot of difference to an application:
any application that understands hCard microformat will be able to understand the
fact that this is a description of a person, with the last name, first name and URL
given.

If you open up List 3.3 using a browser, you will see it is a little bit different from
the original look-and-feel. Instead of a clickable name, it actually shows the full
name, first name, last name and the URL separately. So let us make some changes
to our initial markup, without losing the semantics, of course.

First off, a frequently used trick when implementing markup for HTML code
comes from the fact that class (also including rel and rev attributes) attribute in
HTML can actually take a space-separated list of values. Therefore, we can combine
fn and n to reach something as shown in List 3.4.

3.2 Microformats 93

List 3.4 An improved version of List 3.3

... <!-- other HTML code -->

<div class="vcard">
<div class="n fn">

<div class="given-name">Liyang</div>
<div class="family-name">Yu</div>

</div>

<div class="url">http://www.liyangyu.com</div>
</div>

... <!-- other HTML code -->

This is certainly some improvement: at least we don’t have to encode the name
twice. However, if you open up List 3.4 in a browser, it still does not show the
original look. To go back to its original look, at least we need to make use of element
<a> together with its href attribute.

In fact, microformats do not force the content publishers to use specific elements;
we can choose any element and use it together with the class attribute. Therefore,
List 3.5 will be our best choice.

List 3.5 Final hCard microformat markup for List 3.2

... <!-- other HTML code -->

<div class="vcard">

Liyang
Yu

</div>

... <!-- other HTML code -->

And this is it: if you open up List 3.5 from a Web browser, you get exactly
the original look-and-feel. And certainly, any application that understands hCard
microformat will be able to understand what a human eye can see: this is a link
to a Web page that describes a person, whose last name is Yu and first name is
Liyang.

List 3.6 is another example of using hCard microformat. It is more complex and
certainly more interesting. We present it here so you can get more understanding
about using hCard microformat to mark up content files.

List 3.6 A more complex hCard microformat markup example

<div id="hcard-liyang-yu" class="vcard">

Liyang
Yu

<div class="org">Delta Air Lines</div>

94 3 Other RDF-Related Technologies

<div class="tel">
work
404.773.8994

</div>

<div class="adr">
<div class="street-address">1030 Delta Blvd.</div>

Atlanta,
GA
30354
<div class="country-name">USA</div>

</div>

liyang.yu@delta.com

</div>

And List 3.7 shows the result rendered by a Web browser.

List 3.7 Rendering result of List 3.6

Liyang Yu

Delta Air Lines

work 404.773.8994

1030 Delta Blvd.

Atlanta, GA 30354

USA

liyang.yu@delta.com

3.2.3 Microformats and RDF

At this point, we have learned hCard microformat. With what you have learned
here, it is not hard for you to explore other microformats on your own.

In this section, we will first summarize the benefits offered by microformats, and
more importantly, we will also take a look at the relationship between microformats
and RDF.

3.2.3.1 What Is So Good About Microformats?

First off, microformats do not require any new standards; instead, they lever-
age existing standards. For example, microformats reuse HTML tags as much as
possible, since almost all the HTML tags allow class attributes to be used.

Second, the learning curve is minimum for content publishers. They continue
to mark up their Web documents as they normally would. The only difference is
that they are now invited to make their documents more semantically rich by using
class attributes with standardized properties values, such as those from hCard

microformat as we have discussed.

3.3 RDFa 95

Third, the added semantic markup has no impact on the document’s presentation,
if it is done right.

Lastly, and perhaps the most important one, is the fact that this small change in
the markup process does bring a significant change to the whole Web world. The
added semantic richness can be utilized by different applications, since applications
can start to understand at least part of the document on the Web now. We will see
some exciting applications in Chap. 8, and it is also possible that at the time you are
reading this book, more applications built upon microformats have become available
to us.

With this said, how is microformats related to RDF? Do we still need RDF at all?
Let us answer these questions in the next section.

3.2.3.2 Microformats and RDF

Obviously, the primary advantage microformats offer over RDF is the fact that we
can embed metadata directly in the XHTML documents. This not only reduces the
amount of markup we need to write, but also provides one single content page for
both human readers and machines. The other advantage of microformats is that
microformats have a simple and intuitive syntax, and therefore do not need much of
a learning curve compared to RDF.

However, microformats were not designed to cover the same scope as RDF was,
and they simply do not work on the same exact level. To be more specific, the fol-
lowing are something offered by RDF, but not by microformats (note that at this
point, you may not be able to fully appreciate all the items in the list, but after you
read more of this book, you will be able to):

• RDF does not depend on pre-defined “formats,” and it has the ability to utilize,
share, and even create any number of vocabularies.

• With the help from these vocabularies, RDF statements can participate in
reasoning process and new facts can be discovered by machines.

• Resources in RDF statements are represented as URIs, allowing a Linked Data
Web to be created.

• RDF itself is infinitely extensible and open-ended.

You can continue to grow this list once you learn more about microformats and
RDF from this book and your real development work. However, understanding
microformats is also a must, and this will at least enable you to pick up the right
tool for the right situation.

3.3 RDFa

3.3.1 RDFa: The Big Picture

With what we have learned so far, the big picture of RDFa is quite simple to under-
stand: it is just another way to directly add semantic data into XHTML pages. Unlike
microformats which reuse the existing class attribute on most HTML tags, RDFa

96 3 Other RDF-Related Technologies

provides a set of new attributes that can be used to carry the added markup data.
Therefore, in order to use RDFa to embed the markup data within the Web docu-
ments, some attribute-level extensions to XHTML have to be made. In fact, this is
also the reason for the name: RDFa means RDF in HTML attributes.

Note that unlike microformats, RDFa is a W3C standard. More specifically, it
became a W3C standard on 14 October 2008, and you can find the main standard
document on W3C official Web site.2 Based on this document, RDFa is officially
defined as follows:

RDFa is a specification for attributes to express structured data in any markup language.

Another W3C RDFa document, RDFa for HTML Authors,3 has provided the
following definition of RDFa:

RDFa is a thin layer of markup you can add to your web pages that make them under-
standable for machines as well as people. By adding it, browsers, search engines, and other
software can understand more about the pages, and in so doing offer more services or better
results for the user.

And once you have finished Sect. 3.3, you should be able to understand both
these definitions better.

3.3.2 RDFa Attributes and RDFa Elements

First off, attributes introduced by RDFa have names. For example, property is
one such attribute. Obviously, when we make reference to this attribute, we say
attribute property. In order to avoid repeating the word attribute too often, attribute
property is often written as @property. You will see this a lot if you read about
RDFa. And in what follows, we will write @attributeName to represent one
attribute whose name is given by attributeName.

The following attributes are used by RDFa at the time of this writing:

about

content

datatype

href

property

rel

resource

rev

role

src

typeof

2http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014/
3http://www.w3.org/MarkUp/2009/rdfa-for-html-authors

3.3 RDFa 97

Some of them are more often used than the others, as we will discuss in later sec-
tions. Before we get into the detail, let us first understand to what XHTML elements
these attributes can be used.

The rule is very simple: you can use these attributes to just about any element.
For example, you can use them on div element, on p element, or even on h2 (or
h3, etc.) element. In real practice, there are some elements that are more frequently
used with these attributes.

The first such element is the span element. It is a popular choice for RDFa
simply because you can insert it anywhere in the body of an XHTML document.
link and meta elements are also popular choices, since you can use them to add
RDFa markups to the head element of a HTML document. This is in fact one of
the reasons why RDFa is gaining popularity: these elements have been used to add
metadata to the head element for years; therefore, any RDFa-aware software can
extract useful metadata from them with only minor modifications needed.

The last frequently used element when it comes to add RDFa markup into the
content is the a linking element. With what you have learned about RDF from
Chap. 2, it is not hard for you to see the reason here: a linking element actu-
ally expresses a relationship between one resource (the one where it is stored) and
another (the resource it links to). In fact, as you will see in the examples, we can
always use @rel on a link element to add more information about the relationship,
and this information serves as the predicate of a triple stored in that a element.

3.3.3 RDFa: Rules and Examples

In this section we will explain how to use RDFa to mark up a given content page,
and we will also summarize the related rules when using the RDFa attributes. We
will not cover all the RDFa attributes as listed in Sect. 3.3.2, but what you will learn
here should be able to get you far into the world of RDFa if you so desire.

3.3.3.1 RDFa Rules

Before we set off to study the usage of each RDFa attribute, let us understand its
basic rules first. Note that at this point, these rules may seem unclear to you, but you
will start to understand them better when we start to see more examples.

As we have learned in Chap. 2, any given RDF statement has three components:
subject, predicate and object. It turns out that RDFa attributes are closely related to
these components:

• Attributes rel, rev and property are used to represent predicates.
• For attribute rel, its subject is the value of about attribute, and its object is the

value of href attribute.
• For attribute rev, its subject and object are reversed compared to rel: its subject

is the value of href attribute, and its object is the value of about attribute.
• For attribute property, its subject is the value of about attribute, and its object

is the value of content attribute.

98 3 Other RDF-Related Technologies

Table 3.3 RDFa attributes as different components of an RDF statement

Object values Subject attribute Predicate attribute Object

Literal strings about property Value of content
attribute

Resource (identified by
URI)

about rel Value of href attribute

Now recall the fact that we always have to be careful about the object of a given
RDF statement: its object can either take a literal string as its value or use another
resource (identified by a URI) as its value. How is this taking effect when it comes
to RDFa? Table 3.3 summarizes the rules.

Based on Table 3.3, if the object of an RDF statement takes a literal string as
its value, this literal string will be the value of content attribute. Furthermore,
the subject of that statement is identified by the value of about attribute, and the
predicate of that statement is given by the value of property attribute. If the object
of an RDF statement takes a resource (identified by a URI) as its value, the URI
will be the value of href attribute. Furthermore, the subject of that statement is
identified by the value of about attribute, and the predicate of that statement is
given by the value of rel attribute.

Let us see some examples along this line. Assume I have posted an article about
the Semantic Web on my Web site. In that post, I have some simple HTML code as
shown in List 3.8.

List 3.8 Some simple HTML code in my article about the Semantic Web

<div>

<h2>This article is about the Semantic Web and written

by Liyang.</h2>

</div>

This can be easily understood by a human reader of the article. First, it says this
article is about the Semantic Web; second, it says the author of this article is Liyang.
Now I would like to use RDFa to add some semantic markup, so that machine can
see these two facts. One way to do this is shown in List 3.9.

List 3.9 Use RDFa to mark up the content HTML code in List 3.8

<div xmlns:dc="http://purl.org/dc/elements/1.1/">
<p>This article is about <span about="http://www.liyangyu.

com/article/theSemanticWeb.html" rel="dc:subject" href="http:
//dbpe-dia.org/resource/Semantic_Web"/>the Semantic Web and

written by <span about="http://www.liyangyu.com/article/the
SemanticWeb.html" property="dc:creator" content="Liyang"/>
Liyang.</p>

</div>

3.3 RDFa 99

Recall that dc represents Dublin Core vocabulary namespace (review Chap. 2
for more understanding about Dublin Core). We can pick up the RDFa markup
segments from List 3.9 and show them in List 3.10.

List 3.10 RDFa markup text taken from List 3.9

<span about="http://www.liyangyu.com/article/theSemanticWeb.html"
rel="dc:subject"
href="http://dbpedia.org/resource/Semantic_Web"/>

<span about="http://www.liyangyu.com/article/theSemanticWeb.html"
property="dc:creator" content="Liyang"/>

Clearly, in the first span segment, the object is a resource identified by a URI.
Therefore, @rel and @href have to be used as shown in List 3.10. Note that
http://dbpedia.org/resource/Semantic_Web is used as the URI identify-
ing the object resource. This is an URI created by DBpedia project (will be discussed
in Chap. 10) to represent the concept of the Semantic Web. Here we are reusing this
URI instead of inventing our own. To see more details about reusing URIs, review
Chap. 2.

On the other hand, in the second span segment, the object is represented by a
literal string. Therefore, @property and @content have to be used.

The last rule we need to discuss here is about attribute about. At this point, we
understand attribute about is used to represent the subject of the RDF statement.
But for a given XHTML content marked up by RDFa, how does an RDFa-aware
application exactly identify the subject of the markup? This can be summarized as
follows:

• If attribute about is used explicitly, then the value represented by about is the
subject.

• If an RDFa-aware application does not find about attribute, it will assume that
the about attribute on the nearest ancestor element represents the subject.

• If an RDFa-aware application searches through all the ancestors of the element
with RDFa markup information and does not find an about attribute, then the
subject is an empty string and will effectively indicate the current document.

These rules about subject are in fact quite intuitive, especially the last one, given
the fact that lots of a document’s markup information will be typically about the
document itself.

With all the understanding about RDFa rules, we can now move on to the
example of RDFa markup.

3.3.3.2 RDFa Examples

In this section, we will use examples to show how semantic markup information can
be added by using RDFa attributes. Note that we will be able to cover only a subset

100 3 Other RDF-Related Technologies

of ways to add RDFa metadata in an XHTML document; it is, however, enough to
get your far if you decide to explore more on yourself.

A common usage of RDFa attributes is to add inline semantic information. This is
in fact the original motivation that led to the creation of RDFa: how to take human-
readable Web page content and make it machine readable. List 3.9 is a good example
of this inline markup. You can compare List 3.8 with List 3.9; List 3.8 is the original
page content that is written for human eyes, and List 3.9 is what we have after inline
RDFa markup. Note that the presentation rendered by any Web browser does not
alter at all.

Another example is to mark up the HTML code shown in List 3.2. It is a good
exercise for us since we have already marked up List 3.2 using hCard microformats,
and using RDFa to mark up the same HTML content shows the difference between
the two.

List 3.11 shows the RDFa markup of List 3.2. It accomplishes the same goal
as shown in List 3.5. It tells an RDFa-aware application the following fact: this
is a link to the home page of a person, whose first name is Liyang and last name
is Yu.

List 3.11 RDFa markup for the HTML code shown in List 3.2

... <!-- other HTML code -->

<div xmlns:foaf="http://xmlns.com/foaf/0.1/">
<a about="http://www.liyangyu.com#liyang"

rel="foaf:homepage"
href="http://www.liyangyu.com/">Liyang Yu

</div>

... <!-- other HTML code -->

Again, if you open up the above with a Web browser, you see the same output as
given by List 3.2. With what we have learned so far, understanding List 3.11 should
not be difficult at all.

Note that FOAF vocabulary is used for RDFa to mark up the content; we have
covered FOAF briefly in Chap. 2 and you will see a detailed discussion about FOAF
in Chap. 7. For now, just remember FOAF is a vocabulary, with a collection of words
that one can use to describe people and their basic information.

This is in fact an important difference between microformats and RDFa. More
specifically, when using microformats to mark up a given document, the possible
values for the properties are pre-defined. For example, if hCard microformat is
used, only hCard properties and sub-properties can be used in the markup (see List
3.5 for example). However, this is not true for RDFa markup: you can in fact use
anything as the values for the attributes. For example, List 3.11 could have been
written as the one shown in List 3.12.

3.3 RDFa 101

List 3.12 Another version of List 3.11

... <!-- other HTML code -->

<div xmlns:yu="http://www.liyangyu.com/yu">
<a about="http://www.liyangyu.com#liyang"

rel="yu:myHomepage"
href="http://www.liyangyu.com/">Liyang Yu

</div>

... <!-- other HTML code -->

However, this is not a desirable solution at all. In order for any RDFa-aware appli-
cation to understand the markup in List 3.12, that application has to understand your
vocabulary first. And clearly, if all the Web publishers went ahead to invent their
own keywords, the world of available keywords would have become quite messy.
Therefore, it is always the best choice to use words from a well-recognized vocabu-
lary when it comes to mark up your page. Again, FOAF vocabulary is one such well-
accepted vocabulary, and if you use it in your markup (as shown in List 3.11), chance
is any application that understands RDFa will be able to understand FOAF as well.

In fact, this flexibility of the possible values of RDFa attributes is quite useful
for many markup requirements. For example, assume in my Web site, I have the
following HTML snippet as shown in List 3.13.

List 3.13 HTML code about my friend, Dr. Ding

... <!-- other HTML code -->

<div>

<p>My friend, Dr.Ding, also likes to play tennis.</p>

</div>

... <!-- other HTML code -->

And I would like to mark up the code in List 3.13 so that the machine will under-
stand these facts: first, I have a friend whose name is Dr. Ding; second, Dr. Ding
likes to play tennis.

You can certainly try to use microformats to reach the goal; however, RDFa
seems to be quite easy to use, as shown in List 3.14.

List 3.14 RDFa markup of List 3.13

... <!-- other HTML code -->

<div xmlns:foaf="http://xmlns.com/foaf/0.1/">
<p>My friend, <span about="http://www.liyangyu.com#liyang"
rel="foaf:knows" href="http://www.example.org#ding">Dr.Ding
, also likes to play <span about="http://www.example.
org#ding" rel="foaf:interest" href="http://dbpedia.org/
resource/Tennis">tennis. </p>

102 3 Other RDF-Related Technologies

<span about="http://www.example.org#ding" property="foaf:
title"content="Dr."/> <span about="http://www.ex-ample.org#
ding" proerty="foaf:lastName" content="Ding"/>
</div>

... <!-- other HTML code -->

Again, note that http://dbpedia.org/resource/Tennis is used as the URI
identifying tennis as a sport. This is also a URI created by DBpedia project, as you
will see in later chapters. We are reusing this URI since it is always good to reuse
existing ones. On the other hand, http://www.example.org#ding is a URI that
we invented to represent Dr. Ding, since there is no URI for this person yet.

An application which understands RDFa will generate the RDF statements as
shown in List 3.15 from List 3.14 (expressed in Turtle format).

List 3.15 RDF statements generated from the RDFa markup in List 3.14

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

<http://www.liyangyu.com#liyang>

foaf:knows <http://www.example.org#ding>.

<http://www.example.org#ding>

foaf:interest <http://dbpedia.org/resource/Tennis>.

<http://www.example.org#ding> foaf:title "Dr.".

<http://www.example.org#ding> foaf:lastName "Ding".

So far, all the examples we have seen are about inline markup. Sometimes, RDFa
semantic markup can also be added about the containing document without explic-
itly using attribute about. Since this is a quite common use case of RDFa, let us
take a look at one such example.

List 3.16 shows the markup that can be added to the document header.

List 3.16 RDFa markup about the containing document

<html xmlns:dc="http://purl.org/dc/elements/1.1/">
<head>

<meta property="dc:title" content="Liyang Yu’s Homepage"/>
<meta property="dc:creator" content="Liyang Yu"/>

</head>
<body>

<!-- body of the page -->

Clearly, there is no about attribute used. Based on the RDFa rules we have
discussed earlier, when no subject is specified, an RDFa-aware application assumes
an empty string as the subject, which represents the document itself.

At this point, we have covered the following RDFa attributes: about, content,
href, property and rel. These are all frequently used attributes, and understand-
ing these can get you quite far already.

3.3 RDFa 103

The last attribute we would like to discuss here is attribute typeof. It is quite
important and useful since it presents a case where a blank node is created. Let us
take a look at one example.

Assume on my home page, I have the following HTML code to identify myself
as shown in List 3.17.

List 3.17 HTML code that identifies myself
<div>

<p>Liyang Yu</p>
<p>E-mail: liyang910@yahoo.com
</div>

We would now like to use RDFa to mark up this part so the machine will under-
stand that this whole div element is about a person, whose name is Liyang Yu and
whose e-mail address is liyang910@yahoo.com.

List 3.18 shows this markup.

List 3.18 RDFa markup of the HTML code shown in List 3.17

<div typeof="foaf:Person"
xmlns:foaf="http://xmlns.com/foaf/0.1/">

<p property="foaf:name">Liyang Yu</p>
<p>E-mail: <a rel="foaf:mbox"

href="mailto:liyang910@yahoo.com">liyang910@yahoo.com
</div>

Note the usage of attribute typeof. More specifically, this RDFa attribute is
designed to be used when we need to declare a new data item with a certain type.
In this example, this type is the foaf:Person type. For now, just understand
foaf:Person is another keyword from the FOAF vocabulary, and it represents
human being as a class called Person. Again, you will see more about FOAF
vocabulary in a later chapter.

Now, when typeof is used as one attribute on the div element, the whole
div element represents a data item whose type is foaf:Person. Therefore, once
reading this line, any RDFa-aware application will be able to understand this div
element is about a person. In addition, foaf:name and foaf:mbox are used with
@property and @rel, respectively, to accomplish our goal to make the machine
understand this information, as you should be familiar by now.

Note we did not specify attribute about like we have done in the earlier exam-
ples. So what would be the subject for these properties then? In fact, attribute
typeof on the enclosing div does the trick: it implicitly sets the subject of the
properties marked up within that div. In other words, the name and e-mail address
are associated with a new node of type foaf:Person. Obviously, this new node
does not have a given URI to represent itself; it is therefore a blank node. Again,
this is a trick you will see quite often if you are working with RDFa markup, so
make sure you are comfortable with it.

104 3 Other RDF-Related Technologies

The last question before we move on is, if this new node is a blank node, how do
we use it when it comes to data aggregation? For example, the markup information
here could be quite important; it could be some supplement information about a
resource we are interested in. However, without a URI identifying it, how do we
relate this information to the correct resource at all?

In this case, the answer is yes. In fact, we can indeed relate this markup informa-
tion to another resource that exists outside the scope of this document. The secret
lies in the foaf:mbox property: as you will see in Chap. 5, this property is an
inverse functional property, and that is how we know which resource should be the
subject of this markup information, even though the subject itself is represented by
a blank node.

3.3.4 RDFa and RDF

3.3.4.1 What Is So Good About RDFa?

In Sect. 3.2.3.1, we have discussed the benefit offered by microformats. In fact, all
are still true for RDFa, and we can add one more here: RDFa is useful because
microformats only exist as a collection of centralized vocabularies. More specifi-
cally, what if we want to mark up a Web page about a resource, for which there is
no microformat available to use? In that case, RDFa is always a better choice, since
you can in fact use any vocabulary for your RDFa markup.

In this chapter, we only see Dublin Core vocabulary and FOAF vocabulary.
However, as you will see after you finish more chapters, there are quite a lot of
vocabularies out there, covering different domains, and all are available to you when
using RDFa to mark up a given page. In fact, you can even invent your own if it is
necessary (again, more on this later).

3.3.4.2 RDFa and RDF

At this point in the book, RDFa and RDF can be understood as the same thing. To
put it simple, RDFa is just a way of expressing RDF triples inside given XHTML
pages.

However, RDFa does makes it much easier for people to express semantic infor-
mation in conjunction with a normal Web page. For instance, while there are many
ways to express RDF (such as in serialized XML files that live next to standard Web
pages), RDFa helps machines and humans read exactly the same content. This is
one of the major motivations for the creation of RDFa.

It might be a good idea to come back to this topic after you have finished the
whole book. By then, you will have a better understanding of the whole picture. For
example, having a HTML representation and a separate RDF/XML representation
(or N3 and Turtle, etc.) is still a good solution for many cases, where HTTP content
negotiation is often used to decide which format should be returned to the client
(details in Chap. 11).

3.4 GRDDL 105

3.4 GRDDL

3.4.1 GRDDL: The Big Picture

As we have discussed in Sect. 3.1, GRDDL (Gleaning Resource Descriptions from
Dialects of Languages) is a way (a markup format, to be more precise) that enables
users to obtain RDF triples out of XML documents (called XML dialects), in partic-
ular XHTML documents. The following GRDDL terminologies are important for
us to understand GRDDL:

• GRDDL-aware agent: a software agent that is able to recognize the GRDDL
transformations and run these transformations to extract RDF.

• GRDDL Transformation: an algorithm for getting RDF from a source document.

GRDDL became a W3C Recommendation on 11 September 2007.4 In this
standard document, GRDDL is defined as the following:

GRDDL is a mechanism for Gleaning Resource Descriptions from Dialects of Languages.
The GRDDL specification introduces markup based on existing standards for declaring
that an XML document includes data compatible with RDF and for linking to algorithms
(typically represented in XSLT), for extracting this data from the document.

You can also find more information about GRDDL from the official Web site of
W3C GRDDL Working Group.5

In this section, we will take a quick look at GRDDL and introduce the markup
formats needed for extracting markup information created by using microformats
and RDFa. What you will learn from here will give you enough background if you
decide to go further into GRDDL.

The last words before we move on: do not bury your semantic markup data in
(X)HTML pages. Instead, when you publish a document that contains markup data,
do reference GRDDL profiles and/or transformations for their extraction. You will
see how to do this in the next two sections.

3.4.2 Using GRDDL with Microformats

There are a number of ways to reference GRDDL in a document where micro-
formats markup data are added. Referencing GRDDL transformations directly in
the head of the HTML document is probably the easiest implementation: only two
markup lines are needed.

More specifically, the first thing is to add a profile attribute to the head ele-
ment to indicate the fact that this document contains GRDDL metadata. List 3.19
shows how to do this.

4http://www.w3.org/TR/2007/REC-grddl-20070911/
5http://www.w3.org/2001/sw/grddl-wg/

106 3 Other RDF-Related Technologies

List 3.19 Adding profile attribute for GRDDL transformation

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head profile="http://www.w3.org/2003/g/data-view">

<title>Liyang Yu’s Homepage</title>

</head>

<body>

<!-- body of the page -->

In HTML, profile attribute in head element is used to link a given document to
a description of the metadata schema that the document uses. The URI for GRDDL
is given by the following,

http://www.w3.org/2003/g/data-view

And by including this URI as shown in List 3.19, we declare that the metadata in
the markup can be interpreted using GRDDL.

The second step is to add a link element containing the reference to the
appropriate transformation. More specifically, recall the fact that microformats
is a collection of individual microformats such as hCard microformat and
hCalendar microformat. Therefore, when working with markup data added
by using microformats, it is always necessary to name the specific GRDDL
transformation.

Let us assume the document in List 3.19 contains hCard microformat markups.
Therefore, the link element has to contain the reference to the specific transforma-
tion for converting HTML containing hCard patterns into RDF. This is shown in
List 3.20.

List 3.20 Adding link element for GRDDL transformation (hCard
microformat)

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head profile="http://www.w3.org/2003/g/data-view">

<title>Liyang Yu’s Homepage</title>

<link rel="transformation"
href="http://www.w3.org/2006/vcard/hcard2rdf.xsl"/>

</head>

<body>

<!-- body of the page -->

These two steps are all there is to it: the profile URI tells a GRDDL-aware
application to look for a link element whose rel attribute contains the token
transformation. Once the agent finds this element, the agent should use the value
of href attribute on that element to decide how to extract the hCard microformat
markup data as RDF triples from the enclosing document.

3.5 Summary 107

What if hCalendar microformat markup has been used in the document? If
that is the case, we should use the following transformation as the value of href
attribute:

http://www.w3.org/2002/12/cal/glean-hcal.xsl

3.4.3 Using GRDDL with RDFa

With what we have learned from Sect. 3.4.2, it is now quite easy to use GRDDL with
RDFa. The first step is still the same, i.e., we need to add a profile attribute to the
head element, as shown in List 3.19. For the second step, as you have guessed, we
will have to switch the transformation itself, as shown in List 3.21.

List 3.21 Adding link element for GRDDL transformation (RDFa)

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head profile="http://www.w3.org/2003/g/data-view">

<title>Liyang Yu’s Homepage</title>
<link rel="transformation"
href="http://www.w3.org/2001/sw/grddl-wg/td/RDFa2RDFXML.xsl"/>

</head>
<body>
<!-- body of the page -->

3.5 Summary

This chapter covers the technical details of both microformats and RDFa. GRDDL
as a popular markup format which automatically converts microformats and RDFa
markup information into RDF triples is also included.

From this chapter, you should have learned the following main points:

• the concepts of microformats and RDFa, and how they fit into the whole idea of
the Semantic Web;

• the language constructs of both microformats and RDFa, and how to mark up a
given (X)HTML page by using these constructs;

• the advantages and limitations of both microformats and RDFa, their relation-
ships to RDF;

• the concept of GRDDL, how it fits into the idea of the Semantic Web, and how
to use GRDDL to automatically extract markup data from (X)HTML pages.

With all these said, the final goal is for you to understand these technical
components and also be able to pick up the right one for a given development
assignment.

Chapter 4
RDFS and Ontology

Even after you have read the previous two chapters carefully, you probably still have
lots of questions that remain unanswered on your mind. This chapter is a natural
continuation of those two chapters, especially Chap. 2. After reading this chapter,
you will be able to find answers to most of your questions.

This chapter will cover all the main aspects of RDFS, including its concept, its
semantics, its language constructs and features, and certainly, real-world examples.
It will also formally introduce the concept of ontology, together with a description
about SKOS. Again, make sure you understand the content in this chapter, since
what you will learn here is important for you to continue on with Chap. 5.

4.1 RDFS Overview

4.1.1 RDFS in Plain English

Unlike the previous chapter, we will start this chapter by discussing RDFS in plain
English. In this section, our goal is to answer the following two questions:

• Why do we need RDFS?
• What is RDFS?

Let us go back to Chap. 2 by taking another look at List 2.25, the RDF/XML
representation of List 2.5. At least the following questions may come to your mind:

• Line 9 of List 2.25 says myCamera:Nikon_D300 is an instance (by using pred-
icate rdf:type) of the resource identified by URI myCamera:DSLR, but where
is this myCamera:DSLR resource defined? What does it look like?

• If we use object-oriented concepts, myCamera:DSLR can be understood as a
class. Now, if myCamera:DSLR represents a class, are there any other classes
that are defined as its super classes or sub-classes?

• The rest of List 2.25 uses several properties (such as myCamera:model and
myCamera:weight) to describe myCamera:Nikon_D300. Are there any other
properties that we can use to describe myCamera:Nikon_D300? How do we
know these properties exist for us to use at the first place?

109L. Yu, A Developer’s Guide to the Semantic Web,
DOI 10.1007/978-3-642-15970-1_4, C© Springer-Verlag Berlin Heidelberg 2011

110 4 RDFS and Ontology

You can ask more questions like these. The last question, in particular,
raises an important issue: when we describe a real-world resource such as
myCamera:Nikon_D300, what are the things (predicates) we can use to describe
it? If we all say something about it, and furthermore, if we all go on to invent our
own things to say about it, there will be no common language shared among us.
And in that case, any given application cannot go too much further beyond simply
aggregating the distributed RDF models.

A common language or shared vocabulary seems to be the key there. More
specifically, if properties such as myCamera:model and myCamera:weight are
used to describe a camera, that is because somewhere, in some document, someone
has defined that these are indeed the predicates we can use to describe it. There are
possibly more terms defined for us to use, and it is our choice which predicates to
use when publishing our own descriptions. Therefore, this common language can
make sure one important thing for us: everything we say about a given resource, we
have a reason to say it.

Clearly at this stage, what seems to be missing for our RDF documents is such a
common language, or, a vocabulary, where classes, sub-classes, properties, and also
relations between these classes and properties are defined.

As you might have guessed, RDFS is such a language we can use to define a
vocabulary, which can then be used to structure the RDF documents we create.

Vocabulary is not something totally new to us at this point; we have used the
word vocabulary in previous chapters for a number of times. For example, all the
RDF terms we have covered in Chap. 2 are elements from RDF vocabulary, and
Dublin Core is another vocabulary. We have used both to create RDF documents
in the previous two chapters. Now, for a given specific application domain (such
as photography), we may need some application-specific vocabularies, and this is
where we find the use of RDFS.

Therefore, in plain English, we can define RDFS as follows:

RDFS is a language one can use to create a vocabulary (often the created vocabulary is
domain-specific), so when distributed RDF documents are created in this domain, terms
from this vocabulary can be used. Therefore, everything we say, we have a reason to say it.

At this point, we understand how RDFS fits into the world of RDF. We will
also see how it works together with RDF to create more structured and machine-
understandable documents on the Web in the coming sections of this chapter. For
now, let us move on to see the official definition of RDFS.

4.1.2 RDFS in Official Language

RDFS stands for RDF Schema. Various abbreviations such as RDF(S), RDF-S, or
RDF/S can be used, and these are all referring to the same RDF Schema.

As a W3C standard, its initial version1 was originally published by W3C in April
1998. With the change of RDF standards (see Chap. 2), W3C released the final

1http://www.w3.org/TR/1998/WD-rdf-schema-19980409/

4.2 RDFS + RDF: One More Step Toward Machine Readable 111

RDFS Recommendation2 in February 2004, and it is included in the six documents
published as the updated RDF specifications as shown in Table 2.1.

Based on this official document, RDFS can be defined as follows:

RDFS is a recommendation from W3C and it is an extensible knowledge representation
language that one can use to create a vocabulary for describing classes, sub-classes and
properties of RDF resources.

With this definition, RDFS can be understood as RDF’s vocabulary description
language. As a standard, RDFS provides language constructs that can be used to
describe classes, properties within a specific application domain. For example, what
is a DSLR class, and what is property model, and how could it be used to describe
a resource. Note that the language constructs in RDFS are themselves classes and
properties; in other words, RDFS provides standard classes and properties that can
be used to describe classes and properties in a specific domain.

To further help you understand what is RDFS, let us move on to some more
explanations and examples in the next section. Before we can discuss its language
features and constructs, a solid understanding about it is always needed.

4.2 RDFS + RDF: One More Step Toward Machine Readable

In this section, we will discuss more about the reason why RDFS is needed. This
will not only enhance your understanding about RDFS, but also help you to put the
pieces together to understand the world of the Semantic Web.

4.2.1 A Common Language to Share

The first important fact about RDFS is that RDFS can be used to define a vocabulary,
a common language everyone can use. The goal? Everything we say, we have a
reason to say it.

Let us take a look at one example. Figure 4.1 shows a small vocabulary in the
world of photography.

Note in this tiny vocabulary, an oval box is used to represent a specific resource
type, and the arrow from one oval box to another oval box means that the first oval
box is a sub-type of the second oval box. The properties that one can use to describe
a given resource type are included in [] and is placed besides that specific oval box.

With all these said, this simple vocabulary tells us the following fact:

We have a resource called Camera, and Digital and Film are its two
sub-resources. Also, resource Digital has two sub-resources, DSLR and
PointAndShoot. Resource Camera can be described by properties called model
and manufactured_by, and resource Digital can be described by a property
called effectivePixel.

2http://www.w3.org/TR/rdf-schema/

112 4 RDFS and Ontology

Fig. 4.1 A small vocabulary for the domain of photography

Again, DSLR is short for digital single lens reflex; it is a type of camera that is
more often used by professional photographers and tends to be expensive as well.
On the other hand, a point-and-shoot camera, also called a compact camera, is often
used by non-professionals, and it normally offers functionalities such as auto-focus
and auto-exposure setting.

Now, if we want to describe Nikon D300 as a DSLR, we know what we can say
about it. List 4.1 shows one such example.

List 4.1 A simple description about Nikon D300

1: <?xml version="1.0"?>
2: <rdf:RDF

2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:myCamera="http://www.liyangyu.com/camera#">
4:

5: <rdf:Description

5a: rdf:about="http://www.liyangyu.com/camera#Nikon_D300">
6: <rdf:type

6a: rdf:resource="http://www.liyangyu.com/camera#DSLR"/>
7: <myCamera:model>Nikon D300</myCamera:model>

8: <myCamera:manufactured_by

rdf:resource="http://www.dbpedia.org/resource/Nikon"/>
9: <myCamera:effectivePixel>12.3</myCamera:effectivePixel>

10: </rdf:Description>

11:

12: </rdf:RDF>

4.2 RDFS + RDF: One More Step Toward Machine Readable 113

As we see from Fig. 4.1, resource Camera can be described by properties named
manufactured_by and model. Why can we use them to describe Nikon D300,
an instance of DSLR, not Camera (lines 7 and 8)? The reason is really simple: any
property that can be used to describe the base type can also be used to describe any
sub-type of this base type. Again, anything we say here, we have a reason to say.

On the other hand, we will not be able to use a term if that term is not defined
in the vocabulary. If we have to do so, we will then need to grow the vocabulary
accordingly.

Now, imagine someone else from the same application domain has come up with
another RDF document describing the same camera (or another camera). Whatever
the resource being described might be, all these documents now share the same
terms. Note that when we say the same terms are shared, it is not that all the docu-
ments will use exactly the same terms to describe resource – one document might
use different properties compared to the other document, but all the properties avail-
able to use are included in the given vocabulary. The result is that any application
that “knows” this vocabulary will be able to process these documents with ease.
This is an obvious benefit of having a common vocabulary.

Another important benefit of having a vocabulary defined is to facilitate machine
understanding, as discussed in the next section.

4.2.2 Machine Inferencing Based on RDFS

A vocabulary created by using RDFS can facilitate inferencing on the RDF docu-
ments which make use of this vocabulary. To see this, let us go back to List 4.1 to
understand what inferences machine can make.

The inferencing for this case is based on line 6, which says the resource identi-
fied by http://www.liyangyu.com/camera#Nikon_D300 is a DSLR. Given the
vocabulary in Fig. 4.1, the following inferences can be made:

• resource http://www.liyangyu.com/camera#Nikon_D300 is a Digital

camera, and
• resource http://www.liyangyu.com/camera#Nikon_D300 is a Camera.

This is all done by the machine, and these inferred conclusions can be critical
information for many applications. In fact, a lot more inferencing can be done when
a vocabulary is defined, and we will see more examples during the course of this
chapter.

At this point, you have seen all the important aspects of RDFS, especially why
we need it. The rest is to understand its syntax, which we will cover in coming
sections. And the good news is RDFS itself can be written in RDF/XML format,
and any vocabulary created using RDFS can also be written in RDF/XML format,
so it is not totally new.

114 4 RDFS and Ontology

4.3 RDFS Core Elements

In this section, we will cover the syntax of RDFS, together with examples. Our goal
is to build a camera vocabulary by using RDFS terms, with the one shown in Fig. 4.1
as our starting point.

4.3.1 The Big Picture: RDFS Vocabulary

First off, as we have discussed, RDFS is a collection of terms we can use to define
classes and properties for a specific application domain. Just like RDF terms and
Dublin Core terms, all these RDFS terms are identified by pre-defined URIs and all
these URIs share the following leading string:

http://www.w3.org/2000/01/rdf-schema#

and by convention, this URI prefix string is associated with namespace prefix rdfs:
and is typically used in RDF/XML format with the prefix rdfs.

Second, all these RDFS terms can be divided into the following groups based on
their purposes:

• classes
This group includes RDFS terms that can be used to define classes. More specif-
ically, the following terms are included here: rdfs:Resource, rdfs:Class,
rdfs:Literal, rdfs:Datatype.

• properties
This group includes RDFS terms that can be used to define properties, and the fol-
lowing terms are included: rdfs:range, rdfs:domain, rdfs:subClassOf,
rdfs:subPropertyOf, rdfs:label and rdfs:comment.

• utilities
As its name suggests, this group of RDFS terms are used for miscellaneous pur-
poses as we will see later in this chapter. For now, understand that this group
contains the following terms: rdfs:seeAlso and rdfs:isDefinedBy.

4.3.2 Basic Syntax and Examples

4.3.2.1 Defining Classes

First off, rdfs:Resource represents the root class; every other class defined using
RDFS terms will be sub-class of this class. In practice, this term is rarely used, it
mainly acts as a logic root to hold everything together: all things described by RDF
are instances of class rdfs:Resource.

To define a class in a vocabulary, rdfs:Class is used. For our camera
vocabulary, List 4.2 shows the definition of the Camera class.

4.3 RDFS Core Elements 115

List 4.2 Definition of the Camera class

1: <?xml version="1.0"?>
2: <rdf:RDF

2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
4: xmlns:myCamera="http://www.liyangyu.com/camera#">
5:

6: <rdf:Description

6a: rdf:about="http://www.liyangyu.com/camera#Camera">
7: <rdf:type

7a: rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
8: </rdf:Description>

9:

10: </rdf:RDF>

Let us understand List 4.2 line by line. First of all, everything is defined between
<rdf:RDF> and </rdf:RDF>, indicating this document is either an RDF document
(as we have seen in Chap. 2) or an RDF schema document (as seen here). Lines 2–
4 have defined several namespaces, and the new one here is the rdfs namespace
(line 3), which includes all the pre-defined terms in RDF Schema. Line 4 defines
the namespace for our camera vocabulary.

Now, the key lines are lines 6–8. Line 6 defines a new resource by using the term
rdf:Description from RDF vocabulary, and this new resource has the following
URI:

http://www.liyangyu.com/camera#Camera

Line 7 specifies the type property of this resource by using RDF term rdf:type,
and its value is another resource (indicated by using RDF term rdf:resource),
which has the following URI:

http://www.w3.org/2000/01/rdf-schema#Class

Obviously, this URI is a pre-defined term in RDFS vocabulary and its QName
is given by rdfs:Class. Now, we have defined a new class and we can read it as
follows:

Here we declare: this resource,

http://www.liyangyu.com/camera#Camera, is a class.

Note that Camera class is by default a sub-class of rdfs:Resource, the root
class of all classes. In addition, pay attention not to mix together these two terms:
rdfs:Resource and rdf:resource. rdfs:Resource is a class defined in RDFS
as we have discussed above, and rdf:resource is simply an XML attribute that
goes together with a specific property element (in List 4.2, it is used together
with rdf:type property element) to indicate the fact that the property’s value is
another resource. Also, rdf:resource is case sensitive, i.e., cannot be written as
rdf:Resource. If you do so, your validator will raise a red flag at it for sure.

116 4 RDFS and Ontology

Sometimes, you will see rdf:ID is used instead of rdf:about. For example,
List 4.3 is equivalent to List 4.2, and List 4.3 does use rdf:ID.

List 4.3 Use rdf:ID to define Camera class

1: <?xml version="1.0"?>
2: <rdf:RDF

2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
4: xmlns:myCamera="http://www.liyangyu.com/camera#"
5: xml:base="http://www.liyangyu.com/camera#">
6:

7: <rdf:Description rdf:ID="Camera">
8: <rdf:type

8a: rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
9: </rdf:Description>

10:

11: </rdf:RDF>

Note the usage of line 5. It is always a good practice (almost necessary) to use
xml:base together with rdf:ID, as we have discussed in Chap. 2. Since using
rdf:ID does make the line shorter, from now on, we will be using rdf:ID more.

In fact, there is a short form you can use, which is equivalent to both Lists 4.2
and 4.3. This short form is shown in List 4.4.

List 4.4 A short form that is equivalent to Lists 4.2 and 4.3

1: <?xml version="1.0"?>
2: <rdf:RDF

2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
4: xmlns:myCamera="http://www.liyangyu.com/camera#"
5: xml:base="http://www.liyangyu.com/camera#">
6:

7: <rdfs:Class rdf:ID="Camera">
8: </rdfs:Class>

9:

10: </rdf:RDF>

This short form not only looks cleaner, but is also more intuitive: rdfs:Class
is used to define a class and rdf:ID is used to provide a name for the class being
defined (lines 7 and 8). And of course, if you prefer to use rdf:about instead of
rdf:ID, List 4.4 will become List 4.5, which again is equivalent to both Lists 4.2
and 4.3.

4.3 RDFS Core Elements 117

List 4.5 A short form using rdf:about

1: <?xml version="1.0"?>
2: <rdf:RDF

2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
4: xmlns:myCamera="http://www.liyangyu.com/camera#">
5:

6: <rdfs:Class rdf:about="http://www.liyangyu.com/camera#Camera">
7: </rdfs:Class>

8:

9: </rdf:RDF>

Note in List 4.5, xml:base is not needed anymore.
To define more classes, we can simply add more class definitions by using

rdfs:Class as shown in List 4.6.

List 4.6 Adding more class definitions into the vocabulary

1: <?xml version="1.0"?>
2: <rdf:RDF

2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
4: xmlns:myCamera="http://www.liyangyu.com/camera#"
5: xml:base="http://www.liyangyu.com/camera#">
6:

7: <rdfs:Class rdf:about="http://www.liyangyu.com/camera#Camera">
8: </rdfs:Class>

9:

10: <rdfs:Class rdf:about="http://www.liyangyu.com/camera#Lens">
11: </rdfs:Class>

12:

13: <rdfs:Class rdf:about="http://www.liyangyu.com/camera#Body">
14: </rdfs:Class>

15:

16: <rdfs:Class

16a: rdf:about="http://www.liyangyu.com/camera#ValueRange">
17: </rdfs:Class>

18:

19: </rdf:RDF>

Note that in List 4.6, we have defined class Lens, Body, and ValueRange; the
reason for having these classes will become clear in later sections of this chapter.

So much for the top-level classes at this point. Let us move on to sub-classes.
To define sub-classes, we need to use rdfs:subClassOf property defined in RDF
Schema. List 4.7 shows the details.

118 4 RDFS and Ontology

List 4.7 Sub-class definitions are added

1: <?xml version="1.0"?>
2: <rdf:RDF

2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
4: xmlns:myCamera="http://www.liyangyu.com/camera#"
5: xml:base="http://www.liyangyu.com/camera#">
6:

7: <rdfs:Class rdf:about="http://www.liyangyu.com/camera#Camera">
8: </rdfs:Class>

9:

10: <rdfs:Class rdf:about="http://www.liyangyu.com/camera#Lens">
11: </rdfs:Class>

12:

13: <rdfs:Class rdf:about="http://www.liyangyu.com/camera#Body">
14: </rdfs:Class>

15:

16: <rdfs:Class

16a: rdf:about="http://www.liyangyu.com/camera#ValueRange">
17: </rdfs:Class>

18:

19: <rdfs:Class

19a: rdf:about="http://www.liyangyu.com/camera#Digital">
20: <rdfs:subClassOf rdf:resource="#Camera"/>
21: </rdfs:Class>

22:

23: <rdfs:Class rdf:about="http://www.liyangyu.com/camera#Film">
24: <rdfs:subClassOf rdf:resource="#Camera"/>
25: </rdfs:Class>

26:

27: <rdfs:Class rdf:about="http://www.liyangyu.com/camera#DSLR">
28: <rdfs:subClassOf rdf:resource="#Digital"/>
29: </rdfs:Class>

30:

31: <rdfs:Class

31a: rdf:about="http://www.liyangyu.com/camera#PointAndShoot">
32: <rdfs:subClassOf rdf:resource="#Digital"/>
33: </rdfs:Class>

34:

35: <rdfs:Class

35a: rdf:about="http://www.liyangyu.com/camera#Photographer">
36: <rdfs:subClassOf

36a: rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
37: </rdfs:Class>

4.3 RDFS Core Elements 119

38:

39: </rdf:RDF>

Lines 19–37 define some sub-classes that are used in our vocabulary. First
off, note how the base class is identified in the rdfs:subClassOf property. For
instance, line 19 defines a class, Digital, and line 20 uses the rdfs:subClassOf
property to specify the base class of Digital is Camera. The way Camera is
identified is as follows:

<rdfs:subClassOf rdf:resource="#Camera"/>
This is perfectly fine in this case since when an RDF parser sees #Camera, it

assumes that class Camera must have been defined in the same document (which
is true here). To get the URI of class Camera, it concatenates xml:base and this
name together to get the following:

http://www.liyangyu.com/camera#Camera

This is clearly the right URI for this class, and this is also the reason why we
need to add line 5 to specify the base URI to use when concatenation is done. Of
course, you can always do the following to specify the full URI of the base class:

<rdfs:Class rdf:about="http://www.liyangyu.com/camera#Digital">
<rdfs:subClassOf

rdf:resource="http://www.liyangyu.com/camera#Camera"/>
</rdfs:Class>

And this is often used when the base class is defined in some other document. In
fact, lines 35–37 provide a perfect example, where class Photographer is being
defined as a sub-class of Person. Since the base class Person is not defined in this
vocabulary, we use its full URI to identify this class, as shown by line 36. We will
see class Person later in this book; it is a key class created by the popular FOAF
project, which will also be presented in Chap. 7.

The rest of the sub-class definitions can be understood similarly. For now, we
have defined the following sub-classes: Digital, Film, DSLR, PointAndShoot

and Photographer.
Another important fact about rdfs:subClassOf property is that you can use it

multiple times when defining a class. If you do so, all the base classes introduced
by rdfs:subClassOf will be ANDed together to create the new class. For instance,
let us say you have already defined a class called Journalist; you can now define
a new class called Photojournalist as follows:

<rdfs:Class

rdf:about="http://www.liyangyu.com/camera#Photojournalist">
<rdfs:subClassOf rdf:resource="#Photographer"/>
<rdfs:subClassOf rdf:resource="#Journalist"/>

</rdfs:Class>

120 4 RDFS and Ontology

This means class Photojournalist is a sub-class of both Photographer

class and Journalist class. Therefore, any instance of Photojournalist is an
instance of Photographer and Journalist at the same time.

4.3.2.2 Defining Properties

At this point, we have defined all the classes we need for our camera vocabulary.
Figure 4.2 summarizes all these classes and their relationships.

Fig. 4.2 Classes defined for our camera ontology

Note that all the classes in Fig. 4.2 are “floating” around: except for the base-
class and sub-class relationship, there seems to be no other bounds among them.
In fact, the bounds, or the relationships among these classes, will be expressed by
properties. Let us now move on to define these properties.

To define a property, rdf:Property type is used, and rdf:about in this case
specifies the URI of the property. Furthermore, rdfs:domain and rdfs:range

together indicate how the property should be used. Let us take a look at List 4.8.

List 4.8 Define property owned_by

1: <?xml version="1.0"?>
2: <rdf:RDF

2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
4: xmlns:myCamera="http://www.liyangyu.com/camera#"
5: xml:base="http://www.liyangyu.com/camera#">
6:

7:

... // classes, sub-classes definitions as shown in List 4.6

4.3 RDFS Core Elements 121

38:

39: <rdf:Property

41a: rdf:about="http://www.liyangyu.com/camera#owned_by">
40: <rdfs:domain rdf:resource="#DSLR"/>
41: <rdfs:range rdf:resource="#Photographer"/>
42: </rdf:Property>

43:

44: </rdf:RDF>

As shown in List 4.8, lines 39–42 define the property called owned_by. We can
read this as follows:

We define a property called owned_by. It can only be used to describe the characteristics
of class DSLR, and its possible values can only be instances of class Photographer

or equivalently,

subject: DSLR
predicate: owned_by
object: Photographer

The new RDFS terms here are rdfs:domain and rdfs:range. More specif-
ically, property rdfs:domain is used to specify which class the property being
defined can be used with. It is optional, so you can declare property owned_by like
this:

<rdf:Property

rdf:about="http://www.liyangyu.com/camera#owned_by">
<rdfs:range rdf:resource="#Photographer"/>

</rdf:Property>

This means property owned_by can be used to describe any class. For instance,
you can say something like “a Person is owned_by a Photographer.” In most
cases, this is not what we want, and the definition with rdfs:domain as shown in
List 4.8 is much better. It says that owned_by can only be used on the instances of
class DSLR.

Note that when defining a property, multiple rdfs:domain properties can be
specified. In that case, we are indicating that the property can be used with a resource
that is an instance of every class defined by rdfs:domain property. For example,

<rdf:Property

rdf:about="http://www.liyangyu.com/camera#owned_by">
<rdfs:domain rdf:resource="#DSLR"/>
<rdfs:domain rdf:resource="#PointAndShoot"/>
<rdfs:range rdf:resource="#Photographer"/>

</rdf:Property>

This says property owned_by can only be used with something that is a DSLR

camera and a PointAndShoot camera at the same time. In fact, a DSLR camera
can be used as a point-and-shoot camera, so the above definition does hold.

122 4 RDFS and Ontology

As for rdfs:range, all the above discussion is true. First of all, it is optional,
like the following:

<rdf:Property

rdf:about="http://www.liyangyu.com/camera#owned_by">
<rdfs:domain rdf:resource="#DSLR"/>

</rdf:Property>

This says property owned_by can be used with DSLR class, but its value can
be anything. Therefore, in our RDF document, we can add a statement that says a
DSLR camera is owned by another DSLR camera, which certainly does not make
much sense. Therefore, most likely, we will need to use at least one rdfs:range

property when defining a property.
We can also use multiple rdfs:range properties such as the following (assume

we have already defined a class call Journalist):

<rdf:Property

rdf:about="http://www.liyangyu.com/camera#owned_by">
<rdfs:domain rdf:resource="#DSLR"/>
<rdfs:range rdf:resource="#Photographer"/>
<rdfs:range rdf:resource="#Journalist"/>

</rdf:Property>

This says property owned_by can be used to depict DSLRs, and its value has to
be someone who is a Photographer and Journalist at the same time. In other
words, this someone has to be a photojournalist.

With all these said, we can continue to define other properties used in our camera
vocabulary, and this is shown in List 4.9.

List 4.9 Camera vocabulary with properties defined

1: <?xml version="1.0"?>
2: <rdf:RDF

2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
4: xmlns:myCamera="http://www.liyangyu.com/camera#"
5: xml:base="http://www.liyangyu.com/camera#">
6:

7:

... // classes/sub-classes definitions as shown in List 4.6

38:

39: <rdf:Property

39a: rdf:about="http://www.liyangyu.com/camera#owned_by">
40: <rdfs:domain rdf:resource="#DSLR"/>
41: <rdfs:range rdf:resource="#Photographer"/>
42: </rdf:Property>

43:

4.3 RDFS Core Elements 123

44: <rdf:Property

44a: rdf:about="http://www.liyangyu.com/camera#manufactured_by">
45: <rdfs:domain rdf:resource="#Camera"/>
46: </rdf:Property>

47:

48: <rdf:Property

48a: rdf:about="http://www.liyangyu.com/camera#body">
49: <rdfs:domain rdf:resource="#Camera"/>
50: <rdfs:range rdf:resource="#Body"/>
51: </rdf:Property>

52:

53: <rdf:Property

53a: rdf:about="http://www.liyangyu.com/camera#lens">
54: <rdfs:domain rdf:resource="#Camera"/>
55: <rdfs:range rdf:resource="#Lens"/>
56: </rdf:Property>

57:

58: <rdf:Property

58a: rdf:about="http://www.liyangyu.com/camera#model">
59: <rdfs:domain rdf:resource="#Camera"/>
60: <rdfs:range

60a: rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
61: </rdf:Property>

62:

63: <rdf:Property

63a: rdf:about="http://www.liyangyu.com/camera#effectivePixel">
64: <rdfs:domain rdf:resource="#Digital"/>
65: <rdfs:range

65a: rdf:resource="http://www.w3.org/2001/XMLSchema#decimal"/>
66: </rdf:Property>

67:

68: <rdf:Property

68a: rdf:about="http://www.liyangyu.com/camera#shutterSpeed">
69: <rdfs:domain rdf:resource="#Body"/>
70: <rdfs:range rdf:resource="#ValueRange"/>
71: </rdf:Property>

72:

73: <rdf:Property

73a: rdf:about="http://www.liyangyu.com/camera#focalLength">
74: <rdfs:domain rdf:resource="#Lens"/>
75: <rdfs:range

75a: rdf:resource="http://www.w3.org/2001/XMLSchema#
string"/>

76: </rdf:Property>

124 4 RDFS and Ontology

77:

78: <rdf:Property

78a: rdf:about="http://www.liyangyu.com/camera#aperture">
79: <rdfs:domain rdf:resource="#Lens"/>
80: <rdfs:range rdf:resource="#ValueRange"/>
81: </rdf:Property>

82:

83: <rdf:Property

83a: rdf:about="http://www.liyangyu.com/camera#minValue">
84: <rdfs:domain rdf:resource="#ValueRange"/>
85: <rdfs:range

85a: rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>
86: </rdf:Property>

87:

88: <rdf:Property

88a: rdf:about="http://www.liyangyu.com/camera#maxValue">
89: <rdfs:domain rdf:resource="#ValueRange"/>
90: <rdfs:range

90a: rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>
91: </rdf:Property>

92:

93: </rdf:RDF>

As shown in List 4.9, we have defined four properties related to Camera class.
Property body can be used on a Camera instance, and it takes a Body instance as its
value (lines 48–51). lens property is defined similarly (lines 53–56): it can be used
on a Camera instance, and it takes a Lens instance as its value. Together these two
properties specify the fact that any given camera will always have a body and lens,
which is quite intuitive indeed.

Another property that is shared by all cameras is the model property, as shown
in lines 58–61. Finally, note the definition of property manufactured_by, which
does not have property rdfs:range defined (lines 44–46). As we have discussed,
it is almost always better to have rdfs:range, but for simplicity, we are not going
to have it here.

Property effectivePixel is only applicable to digital cameras, therefore its
rdfs:domain property points to Digital class as seen in lines 63–66.

We know that for any given camera body and its lens, there are three parameters
that are often used to specify its performance: shutter speed (a parameter that can
be adjusted on the camera’s body), focal length of the lens, and aperture of the lens.
Therefore, we need to define all these properties for our camera vocabulary to be
useful.

Property focalLength is defined in lines 73–76. It is used on instances of Lens
class, and it takes a string as its value, such as 50 mm. Note that for zoom lens, i.e.,

4.3 RDFS Core Elements 125

lens with changeable focal length, this definition will not be enough, since there has
to be a way to specify the range of the changeable focal lengths. For now, let us
assume we only consider non-zoom lens, and our definition will be fine.

Another parameter for lens is aperture, which indeed has a range. For instance,
2.8–22 can be the typical range of aperture values for a given lens. Taking this into
account, we have defined property aperture as shown in lines 78–81. It is used
on instances of Lens class and its value should take an instance of ValueRange
class. Note that the same method is used for shutter speed parameter: property
shutterSpeed is used on Body class, and its value also takes an instance of
ValueRange class (lines 68–71).

Finally, we need to include range information in ValueRange class. To imple-
ment this, lines 83–91 define two more properties minValue and maxValue. These
two properties will be used on instances of ValueRange class, and by using these
two properties, we will be able to model the fact that some parameters take a range
of values instead of a single value.

Up to this point, we have added the related properties into our camera vocabulary.
Together with the class definitions shown in Fig. 4.2, this now becomes a complete
vocabulary, and we can also update Fig. 4.2 and change it to Fig. 4.3.

Fig. 4.3 Our camera ontology so far

126 4 RDFS and Ontology

Again, in Fig. 4.3, the properties that can be used to describe a given resource
type are included in [] and is placed besides that specific oval box. The value
range of that property is also included. For example, property myCamera:body

can be used on myCamera:Camera class, and its value can be an instance of type
myCamera:Body. Note that if there are no constraints on the values a given prop-
erty can assume, there will be no value specified for that property. Note that property
myCamera:manufactured_by is one such example.

In fact, properties not only describe the relationship among classes, but are also
the more interesting part in a vocabulary: they are the key factors when it comes to
reasoning based on vocabularies. Let us discuss this more in the next few sections.

4.3.2.3 More About Properties

First off, properties are inheritable from base classes to sub-classes. More specif-
ically, remember class Digital has a property called effectivePixel; also
it has two sub-classes, namely, DSLR and PointAndShoot. Then do these sub-
classes also have the property effectivePixel? In other words, can we use
effectivePixel to describe a DSLR instance? The answer is yes, since a sub-class
always inherits properties from its base class.

Therefore, classes DSLR and PointAndShoot both have a property called
effectivePixel.

In fact, take one step further, a class always inherits properties from all its
base classes. For instance, we can use model property on class Camera, and since
Camera is also a base class of DSLR (although not a direct base class), we can then
model property on class DSLR as well.

The second important issue about property is the sub-property. We can define
a property to be a sub-property of another property, and this is done by using
rdfs:subPropertyOf. For example, the model property describes the “name”
of a camera. However, the manufacturer could sell the same model using different
model names. For instance, the same camera sold in North America could have a
different model name than the one sold in Asia. Therefore, we can define another
property, say, officialModel, to be a sub-property of model:

<rdf:Property

rdf:about="http://www.liyangyu.com/camera#officialModel">
<rdfs:subPropertyOf rdf:resource="#model"/>

</rdf:Property>

This declares the property officialModel as a specialization of property
model. Property officialModel inherits rdfs:domain and rdfs:range val-
ues from its base property model. However, you can narrow the domain and/or the
range as you wish.

We can also use multiple rdfs:subPropertyOf when defining a property. If
we do so, we are declaring that the property being defined has to be a sub-property
of each of the base properties.

4.3 RDFS Core Elements 127

The third issue about property is that we have been using the abbreviated form
to define properties. It is important to know this since you might see the long
form in other documents. List 4.10 shows the long form one can use to define a
property.

List 4.10 Use long form to define property owned_by

<rdf:Description

rdf:about="http://www.liyangyu.com/camera#owned_by">
<rdf:type rdf:resource=

"http://www.w3.or/1999/02/22-rdf-syntx-ns#Property"/>

<rdfs:domain rdf:resource="#DSLR"/>
<rdfs:range rdf:resource="#Photographer"/>

</rdf:Description>

The fourth issue we would like to mention might also be something you have
realized already: the separation of class definitions and property definitions in our
vocabulary. Those who are used to the object-oriented world might find this fact
uncomfortably strange.

For instance, if we are using any object-oriented language (such as Java or C++),
we may define a class called DigitalCamera, and we will then encapsulate several
properties to describe a digital camera. These properties will be defined at the same
time when we define the class, and they are defined in the class scope as its member
variables. Normally, these properties are not directly visible to the outside world.

For RDF Schema, it is quite a different story. We define a class, and very often we
also indicate its relationships to other classes. However, this is it: we never declare
its member variables, i.e., the properties it may have. A class is just an entity which
may have relationships to other entities. What are inside this entity, i.e., its member
variables/properties, are simply unknown.

The truth is we declare properties separately and associate the properties with
classes if we wish to do so. Properties are never owned by any class; they are never
local to any class either. If we do not associate a given property to any class, this
property is simply independent and it can be used to describe any class.

What is the reason behind this? What is the advantage of separating the class
definition and property definition? Before you read on, think about it, you should be
able to figure out the answer by now.

The answer is Rule #3 that we discussed in Chap. 2. Let me put it here again:

Rule #3:
I can talk about any resource at my will, and if I chose to use an existing URI to identify
the resource I am talking about, then the following is true:

• the resource I am talking about and the resource already identified by
this existing URI are exactly the same thing or concept;

• everything I have said about this resource is considered to be additional
knowledge about that resource.

128 4 RDFS and Ontology

And more specifically, the separation of the class definition and property defi-
nition is just an implementation of this rule. The final result is that the application
we build will have more power to automatically process the distributed information,
together with a stronger inferencing engine.

To see this, think about the case where someone else would like to add some new
properties into our camera vocabulary and then publish RDF documents which use
these newly added properties. The camera reviewers example in Chap. 2 fits into
this example perfectly. For example, those reviewers will have an initial vocabulary
they can use to publish their reviews, and they also enjoy the freedom to come up
with new terms to describe a given camera.

Adding new properties to an existing vocabulary can be understood as an imple-
mentation of Rule #3 as well: anyone, anywhere, and at any time can talk about a
resource by adding more properties to it.

And here is an important fact: adding new properties will not disturb any exist-
ing application, and no change is needed to any existing application each time a
new property is added. The reason behind this fact is the separation of class defini-
tions and property definitions. If the definition of class were not separate from the
definition of property, this would not have been accomplished.

The final point about property is related to an important programming trick that
you should know. Let us modify owned_by property as follows:

<rdf:Property rdf:ID="owned_by">
<rdfs:domain rdf:resource="#Digital"/>
<rdfs:domain rdf:resource="#Film"/>
<rdfs:range rdf:resource="#Photographer"/>

</rdf:Property>

If we define owned_by property like this, we are saying owned_by is to be used
with instances that are both digital cameras and film cameras at the same time.
Clearly, such a camera has not been invented yet. Actually, what we wanted to
express here is the fact that a photographer can own a digital camera or a film camera
or both. How do we accomplish this?

Given the fact that a sub-class will inherit all the properties associated with its
base class, we can associate owned_by property with the base class:

<rdf:Property rdf:ID="owned_by">
<rdfs:domain rdf:resource="#Camera"/>
<rdfs:range rdf:resource="#Photographer"/>

</rdf:Property>

Since both Digital and Film are sub-classes of Camera, they all inherit prop-
erty owned_by. Now we can use owned_by property with Digital class or Film
class, and this has solved our problem.

Before we move on to the next section, here is one last thing we need to be
cautious about: Class is in the rdfs namespace and Property is in the rdf

namespace, and it is not a typo in the above lists.

4.3 RDFS Core Elements 129

4.3.2.4 RDFS Datatypes

As we discussed earlier, property rdfs:range is used to specify the possible values
of a property being declared. In some cases, the property being defined can simply
have plain or untyped string as its value, represented by rdfs:Literal class con-
tained in RDFS vocabulary. For example, property model could have been defined
as follows, and it could then use any string as its value:

<rdf:Property

rdf:about="http://www.liyangyu.com/camera#model">
<rdfs:domain rdf:resource="#Camera"/>
<rdfs:range

rdf:resource="http://www.w3.org/2001/01/rdf-schema#Literal"/>
</rdf:Property>

However, using rdfs:Literal is not a recommended solution for most cases.
A better idea is to always provide typed values if you can. For example, we have
specified the valid value for the model property has to be strings specified by the
XML Schema, as shown in List 4.9, lines 58–61. More specifically, the full URI of
this datatype is given by the following:

http://www.w3.org/2001/XMLSchema#string

and we can use this URI directly in our schema without explicitly indicating that it
represents a datatype (as we have done in List 4.9). However, it is always useful to
clearly declare that a given URI represents a datatype, as shown here:

<rdf:Property

rdf:about="http://www.liyangyu.com/camera#model">
<rdfs:domain rdf:resource="#Camera"/>
<rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
</rdf:Property>

<rdfs:Datatype

rdf:about="http://www.w3.org/2001/XMLSchema#string"/>
The next example will show that using rdfs:Datatype is not only a good prac-

tice, but also necessary in some cases. For instance, the following could be another
definition of effectivePixel property:

<rdf:Property

rdf:about="http://www.liyangyu.com/camera#effectivePixel">
<rdfs:domain rdf:resource="#Digital"/>
<rdfs:range

rdf:resource="http://www.liyangyu.com/camera#MegaPixel"/>
</rdf:Property>

<rdfs:Datatype

rdf:about="http://www.liyangyu.com/camera#MegaPixel">
<rdfs:subClassOf

130 4 RDFS and Ontology

rdf:resource="http://www.w3.org/2001/XMLSchema#decimal"/>
</rdfs:Datatype>

When an RDF Schema parser reaches the above code, it first concludes the prop-
erty effectivePixel’s value should come from a resource with the following
URI:

http://www.liyangyu.com/camera#MegaPixel

And once it reaches the next couple of lines, it realizes this URI is in fact iden-
tifying an rdfs:Datatype instance, which has a base class given by this URI,
http://www.w3.org/2001/XMLSchema#decimal. The parser then concludes
that effectivePixel should always use a typed literal as its value.

Note that when rdfs:Datatype is used in our RDF Schema document to
indicate a datatype, the corresponding RDF instance statements should then use
rdf:datatype property as follows:

<model rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Nikon_D300

</model>

<effectivePixel

rdf:datatype="http://www.liyangyu.com/camera#MegaPixel">
12.3

</effectivePixel>

A related topic here is the usage of rdfs:XMLLiteral. Remember, in most
cases, its usage should be avoided. To make our discussion complete, let us briefly
talk about the reason here.

First understand that rdfs:XMLLiteral denotes a well-formed XML string,
and it is always used together with rdf:parseType="Literal". For instance, if
you used rdfs:XMLLiteral in an RDF Schema document to define some property,
the RDF statements which describe an instance of this property will have to use
rdf:parseType="Literal". Let us see an example.

Suppose we have defined a new property called features as follows:

<rdf:Property rdf:ID="features">
<rdfs:domain rdf:resource="#Digital"/>
<rdfs:range rdf:resource=

"http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral"/>

</rdf:Property>

An example RDF statement could be as this:

<features rdf:parseType="Literal">
Nikon D300 is good!, also, ...

</features>

Note the usage of rdf:parseType="Literal", which indicates the value here
is a well-formed XML content.

Now, note that although the content is a well-formed XML content, it does
not have the resource/property/value structure in general. And as you have

4.3 RDFS Core Elements 131

already learned, this structure is one of the main reasons why a given application
can understand the content. Therefore, if we use XML paragraph as the value of
some property, we have to accept the fact that no tools will be able to understand its
meaning well. So, avoid using XMLLiteral if you can.

4.3.2.5 RDFS Utility Vocabulary

Up to this point, we have covered the most important classes and properties in RDF
Schema. In this section, we will take a look at some utility classes and properties
defined in RDFS vocabulary, and as you will see in the later chapters, some of these
terms are quite useful. As a summary, the following terms will be covered in this
section:

rdfs:seeAlso

rdfs:isDefinedBy

rdfs:label

rdfs:comment

rdfs:seeAlso is a property that can be used on any resource, and it indicates
another resource may provide additional information about the given resource. For
example, List 4.11 shows one RDF document that uses this property.

List 4.11 Example of using rdfs:seeAlso

1: <?xml version="1.0"?>
2: <rdf:RDF

2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
4: xmlns:myCamera="http://www.liyangyu.com/camera#">
5:

6: <rdf:Description

6a: rdf:about="http://www.liyangyu.com/camera#Nikon_D300">
7: <rdf:type

7a: rdf:resource="http://www.liyangyu.com/camera#DSLR"/>
8: <rdfs:seeAlso

8a: rdf:resource="http://dbpedia.org/resource/Nikon_D300"/>
9: </rdf:Description>

10:

11: </rdf:RDF>

Line 8 says this: to understand more about the resource identified by this URI

http://www.liyangyu.com/camera#Nikon_D300

you can take a look at the resource identified at this URI:

http://dbpedia.org/resource/Nikon_D300

Note that rdfs:seeAlso has no formal semantics defined. In real application,
it only implies the fact that these two URIs are somehow related to each other; it is
then up to the application to decide how to handle this situation.

132 4 RDFS and Ontology

For our case, recall the above URI is created by DBpedia to represent exactly
the same resource, namely, Nikon D300 camera. Therefore, these two URIs are
considered to be URI aliases, and an application can act accordingly. For example,
the application can retrieve an RDF document from the second URI and collect more
information from this new document – a typical example of information aggregation
based on URI aliases. As you will see in later chapters, this is also one of the key
concepts in the world of Linked Data.

rdfs:isDefinedBy is quite similar to rdfs:seeAlso, and it is actually an
rdfs:subPropertyOf of rdfs:seeAlso. It is intended to specify the primary
source of information about a given resource. For example, the following statement:

subject rdfs:isDefinedBy object

says that the subject resource is defined by the object resource, and more specif-
ically, this object resource is supposed to be an original or authoritative description
of the resource.

The last two properties you may encounter in documents are rdfs:label and
rdfs:comment. rdfs:label is used to provide a class/property name for human
eyes, and similarly, rdfs:comment provides a human-readable description of the
property/class being defined. One example is shown in List 4.12.

List 4.12 Example of using rdfs:label and rdfs:comment

1: <rdf:Property rdf:ID="officialModel">
2: <rdfs:subPropertyOf rdf:resource="#model"/>
3: <rdfs:label xml:lang="EN">officialModelName</rdfs:label>
4: <rdfs:comment xml:lang="EN">
4a: this is the official name of the camera.

4b: the manufacturer may use different names when

4c: the camera is sold in different regions/countries.

5: </rdfs:comment>

6: </rdf:Property>

And their usage is quite straightforward and does not require much of an
explanation.

4.3.3 Summary So Far

4.3.3.1 Our Camera Vocabulary

At this point, we have finished our discussion about RDFS core terms, and our
final product is a simple camera vocabulary defined by using RDFS terms. List
4.13 shows the complete vocabulary. Compared to Lists 4.9, 4.13 includes all the
datatype information. Note that Fig. 4.3 does not change and is still the graphical
representation of our camera ontology.

4.3 RDFS Core Elements 133

List 4.13 Our camera vocabulary

1: <?xml version="1.0"?>
2: <rdf:RDF

2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
4: xmlns:myCamera="http://www.liyangyu.com/camera#"
5: xml:base="http://www.liyangyu.com/camera#">
6:

7: <rdfs:Class rdf:about="http://www.liyangyu.com/camera#Camera">
8: </rdfs:Class>

9:

10: <rdfs:Class rdf:about="http://www.liyangyu.com/camera#Lens">
11: </rdfs:Class>

12:

13: <rdfs:Class rdf:about="http://www.liyangyu.com/camera#Body">
14: </rdfs:Class>

15:

16: <rdfs:Class

16a: rdf:about="http://www.liyangyu.com/camera#ValueRange">
17: </rdfs:Class>

18:

19: <rdfs:Class

19a: rdf:about="http://www.liyangyu.com/camera#Digital">
20: <rdfs:subClassOf rdf:resource="#Camera"/>
21: </rdfs:Class>

22:

23: <rdfs:Class rdf:about="http://www.liyangyu.com/camera#Film">
24: <rdfs:subClassOf rdf:resource="#Camera"/>
25: </rdfs:Class>

26:

27: <rdfs:Class rdf:about="http://www.liyangyu.com/camera#DSLR">
28: <rdfs:subClassOf rdf:resource="#Digital"/>
29: </rdfs:Class>

30:

31: <rdfs:Class

31a: rdf:about="http://www.liyangyu.com/camera#PointAndShoot">
32: <rdfs:subClassOf rdf:resource="#Digital"/>
33: </rdfs:Class>

34:

35: <rdfs:Class

35a: rdf:about="http://www.liyangyu.com/camera#Photographer">
36: <rdfs:subClassOf

36a: rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
37: </rdfs:Class>

134 4 RDFS and Ontology

38:

39: <rdf:Property

39a: rdf:about="http://www.liyangyu.com/camera#owned_by">
40: <rdfs:domain rdf:resource="#DSLR"/>
41: <rdfs:range rdf:resource="#Photographer"/>
42: </rdf:Property>

43:

44: <rdf:Property

44a: rdf:about="http://www.liyangyu.com/camera#manufactured_by">
45: <rdfs:domain rdf:resource="#Camera"/>
46: </rdf:Property>

47:

48: <rdf:Property

48a: rdf:about="http://www.liyangyu.com/camera#body">
49: <rdfs:domain rdf:resource="#Camera"/>
50: <rdfs:range rdf:resource="#Body"/>
51: </rdf:Property>

52:

53: <rdf:Property

53a: rdf:about="http://www.liyangyu.com/camera#lens">
54: <rdfs:domain rdf:resource="#Camera"/>
55: <rdfs:range rdf:resource="#Lens"/>
56: </rdf:Property>

57:

58: <rdf:Property

58a: rdf:about="http://www.liyangyu.com/camera#model">
59: <rdfs:domain rdf:resource="#Camera"/>
60: <rdfs:range

60a: rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
61: </rdf:Property>

62: <rdfs:Datatype

62a: rdf:about="http://www.w3.org/2001/XMLSchema#string"/>
63:

64: <rdf:Property

64a: rdf:about="http://www.liyangyu.com/camera#effectivePixel">
65: <rdfs:domain rdf:resource="#Digital"/>
66: <rdfs:range

66a: rdf:resource="http://www.liyangyu.com/camera#MegaPixel"/>
67: </rdf:Property>

68: <rdfs:Datatype

68a: rdf:about="http://www.liyangyu.com/camera#MegaPixel">
69: <rdfs:subClassOf

69a: rdf:resource="http://www.w3.org/2001/XMLSchema#decimal"/>
70: </rdfs:Datatype>

71:

4.3 RDFS Core Elements 135

72: <rdf:Property

72a: rdf:about="http://www.liyangyu.com/camera#shutterSpeed">
73: <rdfs:domain rdf:resource="#Body"/>
74: <rdfs:range rdf:resource="#ValueRange"/>
75: </rdf:Property>

76:

77: <rdf:Property

77a: rdf:about="http://www.liyangyu.com/camera#focalLength">
78: <rdfs:domain rdf:resource="#Lens"/>
79: <rdfs:range

79a: rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
80: </rdf:Property>

81: <rdfs:Datatype

81a: rdf:about="http://www.w3.org/2001/XMLSchema#string"/>
82:

83: <rdf:Property

83a: rdf:about="http://www.liyangyu.com/camera#aperture">
84: <rdfs:domain rdf:resource="#Lens"/>
85: <rdfs:range rdf:resource="#ValueRange"/>
86: </rdf:Property>

87:

88: <rdf:Property

88a: rdf:about="http://www.liyangyu.com/camera#minValue">
89: <rdfs:domain rdf:resource="#ValueRange"/>
90: <rdfs:range

90a: rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>
91: </rdf:Property>

92: <rdfs:Datatype

92a: rdf:about="http://www.w3.org/2001/XMLSchema#float"/>
93:

94: <rdf:Property

94a: rdf:about="http://www.liyangyu.com/camera#maxValue">
95: <rdfs:domain rdf:resource="#ValueRange"/>
96: <rdfs:range

96a: rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>
97: </rdf:Property>

98: <rdfs:Datatype

98a: rdf:about="http://www.w3.org/2001/XMLSchema#float"/>
99:

100: </rdf:RDF>

At the beginning of the chapter, we have said that vocabulary like this can help
machines to make inferences, based on the knowledge expressed in the vocabulary.
We will discuss this inferencing power in a later section. For now, let us understand
this first: how is the knowledge expressed in the vocabulary?

136 4 RDFS and Ontology

4.3.3.2 Where Is the Knowledge?

So far into this chapter, we have created a simply camera vocabulary by using some
pre-defined classes and properties from RDF Schema. So how is the knowledge
encoded in this vocabulary?

And here is the answer: in a given vocabulary, the meaning of a term is expressed
and understood by defining the following:

• all the properties that can be used on it and
• the types of those objects that can be used as the values of these properties.

For example, let us take a look at the term Camera. As far as any application is
concerned, a Camera is something like this:

• It is a class.
• We can use property manufactured_by on it; any resource can be the value of

this property.
• We can use property body on it, with a Body instance as this property’s value.
• We can use property lens on it, with a Lens instance as this property’s value.
• We can use property model on it, with an XML string as this property’s value.

And similarly, for any application, a Digital camera is something like this:

• It is a class.
• We can use property manufactured_by on it; any resource can be the value of

this property.
• We can use property body on it, with a Body instance as this property’s value.
• We can use property lens on it, with a Lens instance as this property’s value.
• We can use property model on it, with an XML string as this property’s value.
• We can use property effectivePixel on it, with an XML decimal as this

property’s value.

You can come up with the meaning of the word DSLR just as above.
How can the knowledge be used and understood by applications? Before we

move on to this topic, let us take a look at a new concept: ontology.

4.4 The Concept of Ontology

Ontology plays a critical role for the Semantic Web, and it is necessary to understand
ontology in order to fully appreciate the idea of the Semantic Web. Its concept,
however, seems quite abstract and hard to grasp from the beginning. It does take a
while to get used to, but the more you know it, the more you see the value of it.

4.4 The Concept of Ontology 137

4.4.1 What Is Ontology?

First off, understand we have already built an ontology: List 4.13 is in fact a tiny
ontology in the domain of photography.

There are many definitions of ontology; perhaps each single one of these defi-
nitions starts from a different angle of view. And some of these definitions can be
confusing as well. For example, the most popular definition of ontology is “ontology
is a formalization of a conceptualization!”

For us, in the world of the Semantic Web, the definition presented in W3C’s
OWL Use Cases and Requirements Documents3 is good enough (you will know all
about OWL in the next chapter):

An ontology formally defines a common set of terms that are used to describe and repre-
sent a domain . . . An ontology defines the terms used to describe and represent an area of
knowledge.

There are several things needed to be made clear from this definition. First of
all, ontology is domain specific, and it is used to describe and represent an area of
knowledge. A domain is simply a specific subject area or area of knowledge, such
as the area of photography, medicine, real estate, and education.

Second, ontology contains terms and the relationships among these terms. Terms
are often called classes, or concepts, and these words are interchangeable. The rela-
tionships between these classes can be expressed by using a hierarchical structure:
super classes represent higher level concepts and sub-classes represent finer con-
cepts. The finer concepts have all the attributes and features that the higher concepts
have.

Third, besides the above relationships among the classes, there is another level of
relationship expressed by using a special group of terms: properties. These property
terms describe various features and attributes of the concepts, and they can also
be used to associate different classes together. Therefore, the relationships among
classes are not only super class or sub-class relationships, but also relationships
expressed in terms of properties.

By having the terms and the relationships among these terms clearly defined,
ontology encodes the knowledge of the domain in such a way that the knowledge
can be understood by a computer. This is the basic idea of ontology.

4.4.2 The Benefits of Ontology

We can summarize the benefits of ontology as follows (and you should be able to
come up with most of the items in this list):

• It provides a common and shared understanding/definition about certain key
concepts in the domain.

• It offers the terms one can use when creating RDF documents in the domain.

3“OWL Web Ontology Language Use Cases and Requirements,” http://www.w3.org/TR/webont-
req/

138 4 RDFS and Ontology

• It provides a way to reuse domain knowledge.
• It makes the domain assumptions explicit.
• Together with ontology description languages (such as RDFS and OWL, which

we will learn in the next chapter), it provides a way to encode knowledge and
semantics such that the machine can understand.

• It makes automatic large-scale machine processing become possible.

When you have made more progress with this book, you will get more under-
standing about these benefits, and you will be able to add more as well.

It is now a good time to discuss some related concepts and introduce an important
vocabulary, SKOS, which can be very useful when it comes to development work
on the Semantic Web.

4.5 Building the Bridge to Ontology: SKOS

We have discussed the concept of ontology in the previous section. In this sec-
tion, we will take a small detour to understand SKOS, a model and vocabulary
that is used to bridge the world of knowledge organization systems (KOS) and the
Semantic Web.

If you are doing development work on the Semantic Web, it is likely that you will
have a chance to see or use SKOS. In addition, understanding SKOS will enhance
your understanding about ontology, and it will also give you a chance to appreciate
more the benefit of having ontologies on the Semantic Web.

4.5.1 Knowledge Organization Systems (KOS)

If you have experience working with those so-called KOSs, you may be familiar
with some well-understood knowledge organizing schemes such as taxonomies, the-
sauri, subject headers, and other types of controlled vocabulary. These schemes are
not all the same, but they all allow the organization of concepts into concept schemes
where it is also possible to indicate relationships between the terms contained in the
scheme.

You have probably already started to consider the relationships between these
schemes and ontologies. What is the difference between these schemes and ontolo-
gies? Is there a way to build a bridge between these two so we can express
knowledge organization systems in a machine-understandable way, within the
framework of the Semantic Web?

To understand these interesting questions, let us first get more understanding
about some basic schemes that are widely used in a variety of knowledge organiza-
tion systems. We will concentrate on two of these schemes, namely taxonomy and
thesaurus. When we have some good understanding about these schemes, we can
move on to study the relationships between these schemes and ontologies.

First off, understand that KOS is a general term that refers to, among other things,
a set of elements, often structured and controlled, that can be used for describing

4.5 Building the Bridge to Ontology: SKOS 139

objects, indexing objects, browsing collections, etc. KOSs are commonly found in
cultural heritage institutions such as libraries and museums. They can also be used
in other scientific areas, examples include biology and chemistry, where naming and
classifying are important.

More specifically, taxonomies, thesauri are all typical examples of KOSs.

• Taxonomy

Based on its Greek roots, taxonomy is the science of classification. Originally,
it referred only to the classifying of organisms. Now, it is often used in a more
general setting, referring to the classification of things or concepts, as well the
schemes underlying such a classification. In addition, taxonomy normally has some
hierarchical relationships embedded in its classifications.

Table 4.1 shows a small example of taxonomy of American cities, categorized
according to a hierarchy of regions and states in the United States. Note that just a
few cities are included to show the example.

Table 4.1 A small example of taxonomy of American cities

Region State City

Southwest California San Francisco
Los Angeles

Arizona Tucson
Phoenix

Midwest Indiana Ft. Wayne
West Lafayette

Illinois Chicago
Milwaukee

• Thesaurus

Thesaurus can be understood as an extension to taxonomy: it takes taxonomy as
described above, allowing subjects to be arranged in a hierarchy and in addition,
it adds the ability to allow other statements be made about the subjects. Table 4.2
shows some of the examples.

The following is a small example, which can help us to put the above together:
Tennis

RT Courts

BT Sports

Sports

BT Activity

NT Tennis

NT Football

NT Basketball

140 4 RDFS and Ontology

Table 4.2 A thesaurus allows statements to be made about the subjects

Thesaurus term Meaning

BT Short for “broader term,” refers to the term above the current one in the
hierarchy and must have a wider or less specific meaning

NT Short for “narrower term,” an inverse property of BT. In fact, a taxonomy is a
thesaurus that only uses the BT/NT properties to build a hierarchy.
Therefore, every thesaurus contains a taxonomy

SN Short for “scope note,” and it is a string attached to the term explaining its
meaning within the thesaurus

USE Refers to another term that is to be preferred instead of this term, implying
that the terms are synonymous. For example, if we have a term named
“Resource Description Framework,” we can put a USE property referring
to another term named RDF. This means that we have the term “Resource
Description Framework,” but “RDF” means the same thing, and we
encourage the use of term “RDF” instead of this one

UF An inverse property of USE
TT Short for “top term,” refers to the topmost ancestor of this current term
RT Short for “related term,” refers to a term that is related to this term, without

being a synonym of it or a broader/narrower term

Now that we understand both taxonomy and thesaurus as examples of KOSs, the
question is why we need these schemes? How do they help us in real life?

KOSs can be useful in many ways. The following is just to name a few:

• They can make search more robust (instead of simple keywords matching, related
words, for example, can also be considered).

• They can help to build more intelligent browsing interfaces (following the
hierarchical structure, and explore broader/narrower terms, etc.).

• They can help us to formally organize our knowledge for a given domain,
therefore promote reuse of the knowledge, and also facilitate data interoperability.

With all these said, let us continue on to understand how KOSs are related to
ontologies, and why we are interested in KOSs in the world of Semantic Web.

4.5.2 Thesauri vs. Ontologies

To understand how KOSs are related to ontologies, we use the example of thesauri
vs. ontologies. There are quite a few KOSs in the application world; concentrat-
ing on one of them will make our discussion a lot easier. In addition, taxonomies
are just special thesauri, therefore, comparing thesauri with ontologies does include
taxonomies as well.

• KOSs are used for knowledge organization, whilst ontologies are used for
knowledge representation.

Compared to ontologies, KOSs’ descriptive capability is simply far too weak,
which is also the reason why KOSs cannot be used to represent knowledge. More

4.5 Building the Bridge to Ontology: SKOS 141

specifically, the broader/narrower relationship used to build the hierarchy is essen-
tially the only one relationship offered by a taxonomy. A thesaurus extends this with
the BT/RT and UF/USE relationships, and the SN property, which allows them to
better describe the terms. However, the descriptive power offered by these language
constructs are still very limited.

• KOSs are semantically much less rigorous than ontologies, and no formal
reasoning can be conducted by just having KOSs.

As we will learn later, ontologies are based upon description logic, therefore logical
inferencing can be conducted. However, in KOSs, relationships between concepts
are semantically weak. For example, ontologies can specify a is-a relationship,
while in thesauri, the hierarchical relation can represent anything from is-a to
part-of, depending on the interpretations rooted from the domain and application.

With all these said, KOSs cannot match up with ontologies when it comes to
fully represent the knowledge in the ways that the Semantic Web requires. However,
there are indeed needs to port KOSs to the Semantic Web. Some of the reasons can
be summarized as follows:

• porting KOSs into the Semantic Web so these schemes are machine readable and
can be exploited in a much more effective and intelligent way;

• porting KOSs into the shared space offered by the Semantic Web will promote
reuse of these schemes, and further promote interoperability;

• porting KOSs into the Semantic Web allows KOSs to leverage all the new ideas
and technologies originated from the Semantic Web. For example, part of the
implementation of porting KOSs to the Semantic Web means to have each sin-
gle concept represented by a URI, and therefore uniquely identified on the Web.
Furthermore, “similar” concepts contained in different KOS schemes can be
linked together, which will then form a distributed, heterogeneous global con-
cept scheme. Obviously, this global scheme can be used as the foundation for
new applications that allow meaningful navigation between KOSs.

You will come up with other benefits when you have more experience with the
Semantic Web and KOSs. For now, the key question is, how to port these existing
KOSs to the Semantic Web so that machine can understand them? This gives raise
to SKOS, a vocabulary built specifically for this purpose, as we will discuss in the
next few sections.

4.5.3 Filling the Gap: SKOS

4.5.3.1 What Is SKOS?

SKOS, short for simple knowledge organization systems, is an RDF vocabulary
for representing KOSs, such as taxonomies, thesauri, classification schemes, and

142 4 RDFS and Ontology

subject heading lists. It is used to port existing KOSs into the shared space of the
Semantic Web; therefore they can be published on the Web and they can be machine
readable and exchanged between software applications.

SKOS is developed by W3C Semantic Web Development Working Group
(SWDWG) and has an official Web site4 which contains all the information related
to SKOS. It has become a W3C standard on 18 August 2009. This standard includes
the following specifications:

• SKOS Reference W3C Recommendation;
• SKOS Primer W3C Working Group Note;
• SKOS Use Cases and Requirements W3C Working Group Note; and
• SKOS RDF files.5

Recall the Dublin Core vocabulary we have discussed in Chap. 2: whenever we
would like to use RDF statements to describe a document, we should use the terms
from Dublin Core vocabulary. SKOS is the vocabulary we should use when we try
to publish a given KOS into the shared space of the Semantic Web.

Note that the URIs in SKOS vocabulary all have the following lead strings:

http://www.w3.org/2004/02/skos/core#

By convention, this URI prefix string is associated with namespace prefix skos:
and is typically used in different sterilization formats with the prefix skos.

4.5.3.2 SKOS Core Constructs

In this section, we will discuss the core constructs of SKOS, which will include the
following:

• Conceptual resources should be identified by URIs and can be explicated as
concepts.

• Concepts can be labeled with lexical strings in one or more natural languages.
• Concepts can be documented with different types of notes.
• Concepts can be semantically related to each other in informal hierarchies.
• Concepts can be aggregated into concept schemes.

These SKOS features are not all that are offered by the SKOS model, but will
be enough for representing most KOSs on the Semantic Web. For the rest of this
section, we will use Turtle for our examples, and the following namespaces will be
needed. We now list these namespaces here so they will not be included in every
single example:

4http://www.w3.org/2004/02/skos/
5http://www.w3.org/2004/02/skos/vocabs

4.5 Building the Bridge to Ontology: SKOS 143

@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix dc: <http://purl.org/dc/elements/1.1/>.

@prefix ex: <http://www.example.com/> .

@prefix ex1: <http://www.example.com/1/> .

@prefix ex2: <http://www.example.com/2/> .

Concept is a fundamental element in any given KOS. SKOS introduces the class
skos:Concept, so that we can use it to state the fact that a given resource is a
concept. To do so, we first create (or reuse) a URI to uniquely identify the concept;
we then use one RDF statement to assert that the resource, identified by this URI, is
of type skos:Concept.

For example, the following RDF statement says tennis is a skos:Concept:

<http://dbpedia.org/resource/Tennis> rdf:type skos:Concept.

Instead of creating a URI to represent tennis as a concept, we reuse the URI for
tennis created by DBpedia (we will see more about DBpedia project in Chap. 10).
Clearly, using SKOS to publish concept schemes makes it easy to reference the
concepts in resource descriptions on the Semantic Web. In this particular example,
for the resource http://dbpedia.org/resource/Tennis, besides everything
that has been said about it, we know it is also a skos:Concept.

The first thing to know about skos:Concept is that SKOS allows us to use
labels on a given concept. Three label properties are provided: skos:prefLabel,
skos:altLabel and skos:hiddenLabel. They are all sub-properties of the
rdfs:label property, and they are all used to link a skos:Concept to an RDF
plain literal, which is formally defined as a character string combined with an
optional language tag. More specifically,

• skos:prefLabel property is used to assign a preferred lexical label to a
concept.

This preferred lexical label should contain terms used as descriptors in indexing
systems and is normally used in a KOS to unambiguously represent the underly-
ing concept. Therefore it is recommended that no two concepts in the same KOS
be given the same preferred lexical label for any given language tag.

• skos:altLabel property is used when synonyms, near-synonyms, or abbrevia-
tions need to be represented.

• skos:hiddenLabel property is used mainly for indexing and/or searching
capabilities.

For example, the character string as the value of this property will be accessible
to applications performing text-based indexing and searching operations, but will

144 4 RDFS and Ontology

not be visible otherwise. A good example is to include misspelled variants of the
preferred label.

List 4.14 shows how these properties are used for the concept tennis.

List 4.14 Different label properties used for tennis concept

<http://dbpedia.org/resource/Tennis> rdf:type skos:Concept;

skos:prefLabel "tennis"@en;

skos:altLabel "Lawn_Tennis"@en;

skos:hiddenLabel "Tenis"@en.

The second characterizations of concepts are the human-readable documentation
properties defined for a given concept. skos:scopeNote, skos:definition ,
skos:example and skos:historyNote are examples of these properties. And
all these properties are sub-properties of skos:note property. These properties are
all quite straightforward and do not require much of an explanation.

For example, skos:definition property is used to provide a complete expla-
nation of the intended meaning of a concept. Note that the organization of these
properties, with skos:note as their root, offers a straightforward way to retrieve
all the documentation associated with one single concept. For instance, to find all
the documentation for a concept, all we need to find is all the sub-property values
of the skos:note property.

At this point, List 4.15 is the latest definition of our tennis concept.

List 4.15 Use skos:definition in our tennis concept

<http://dbpedia.org/resource/Tennis> rdf:type skos:Concept;

skos:prefLabel "tennis"@en;

skos:altLabel "Lawn_Tennis"@en;

skos:hiddenLabel "Tenis"@en;

skos:definition "Tennis is a sport usually played

between two players or between two teams of two players each.

Each player uses a racket that is strung to strike a hollow

rubber ball covered with felt past a net into the

opponent′s court."@en.

Now, let us take a look at some semantic relationships that can be specified when
defining a concept using SKOS. For a given KOS, the meaning of a concept is
defined not just by the natural-language words in its labels, but also by its relation-
ships to other concepts in the same KOS. To map these relationships to a machine-
readable level, three standard properties, skos:broader, skos:narrower and
skos:related, are offered by SKOS vocabulary. More specifically,

• skos:broader and skos:narrower together are used for representing the hier-
archical structure of the KOS, which can be either a is-a relationship (similar to a

4.5 Building the Bridge to Ontology: SKOS 145

class and sub-class relationship) or a part-of relationship (one concept represents
a resource that is a part of the resource represented by another concept).

For example, List 4.16 shows the usage of skos:broader.

List 4.16 Use skos:broader in our tennis concept

<http://dbpedia.org/resource/Tennis> rdf:type skos:Concept;

skos:prefLabel "tennis"@en;

skos:altLabel "Lawn_Tennis"@en;

skos:hiddenLabel "Tenis"@en;

skos:broader <http://dbpedia.org/resource/Racquet_sport>.

Based on List 4.16, http://dbpedia.org/resource/Racquet_sport is
another concept that is broader in meaning. Again, the URI of this new concept
is taken from DBpedia, another example of URI reuse.

Note that skos:broader property does not explicitly indicate its direction,
and it should be read as “has broader concept.” In other words, the subject of a
skos:broader statement is the more specific concept, and the object is the more
general one.

Also note that skos:broader and skos:narrower are each other’s inverse
property. You will see more about inverse property in later chapters, but for now,
understand that if an inferencing engine reads List 4.16, it will be able to add the
following inferred statement automatically:

<http://dbpedia.org/resource/Racquet_sport> skos:narrower

<http://dbpedia.org/resource/Tennis>.

meaning that the subject has a narrower concept identified by the object.
Note that the SKOS vocabulary does not specify skos:broader and

skos:narrower as transitive properties.
For example, http://dbpedia.org/resource/Tennis, as a concept,

has http://dbpedia.org/resource/Racquet_sport as its broader con-
cept. And this later concept itself has http://dbpedia.org/resource/

Sport as a broader concept.
Therefore, http://dbpedia.org/resource/Tennis> should have another

broader concept called http://dbpedia.org/resource/Sport. This chain of
transitivity does make sense, but we can also find example where such transitiv-
ity does not make sense. Therefore, skos:broader and skos:narrower are not
formally considered as transitive properties.

• skos:related is used for non-hierarchical links, but for associative relationship
between two concepts.

List 4.17 shows one example of using skos:related.

146 4 RDFS and Ontology

List 4.17 Use skos:related in our tennis concept

<http://dbpedia.org/resource/Tennis> rdf:type skos:Concept;

skos:prefLabel "tennis"@en;

skos:altLabel "Lawn_Tennis"@en;

skos:hiddenLabel "Tenis"@en;

skos:broader <http://dbpedia.org/resource/Racquet_sport>;

skos:related

<http://dbpedia.org/reource/International_Tennis_Federation>.

List 4.17 claims that http://dbpedia.org/resource/Tennis is related to
another concept given by the following URI:

http://dbpedia.org/resource/International_Tennis_Federation

Understand that skos:related is a symmetric property (you will see symmet-
ric property in later chapters). Therefore, an inferencing engine will be able to add
the following statement based on List 4.17:

<http://dbpedia.org/reource/International_Tennis_Federation>

skos:related

<http://dbpedia.org/resource/Tennis>.

Again, note that the SKOS vocabulary does not specify skos:related to be
transitive property, as is the case for skos:broader and skos:narrower.

At this point, we have covered those related terms in SKOS vocabulary so we
understand how to define a concept, label a concept, add documentation notes
about a concept, and also, how to specify semantic relationships about a concept.
Obviously, for a given KOS, there will be multiple concepts and these concepts
are logically contained together by the same KOS to form a vocabulary. SKOS
offers skos:ConceptScheme class and other related terms to model this aspect
of a vocabulary. Let us take a look at these constructs.

First off, the following shows how to define a concept scheme that represents a
vocabulary:

ex:myTennisVocabulary rdf:type skos:ConceptScheme;

dc:creater ex:liyangYu.

This declares a vocabulary (concept scheme) named myTennisVocabulary.
And by using skos:inScheme property, we can add our tennis concept into this
vocabulary, as shown in List 4.18.

List 4.18 Use skos:ConceptScheme and skos:inScheme to build
vocabulary

ex:myTennisVocabulary rdf:type skos:ConceptScheme;

dc:creater ex:liyangYu.

<http://dbpedia.org/resource/Tennis> rdf:type skos:Concept;

skos:inScheme ex:myTennisVocabulary;

skos:prefLabel "tennis"@en;

4.5 Building the Bridge to Ontology: SKOS 147

skos:altLabel "Lawn_Tennis"@en;

skos:hiddenLabel "Tenis"@en;

skos:broader <http://dbpedia.org/resource/Racquet_sport>;

skos:related

<http://dbpedia.org/reource/International_Tennis_Federation>.

We can now add more concepts (and labels for concepts, relationships between
concepts, etc.) as we wish, just like what we have done in List 4.18, until we have
covered all the concepts and relationships in a given KOS. This way, we can create
a vocabulary that represents a given KOS. The final result is that the given KOS
has now been converted to a machine-readable RDF document and can be shared
and reused on the Semantic Web. This process is called mapping a KOS onto the
Semantic Web.

skos:hasTopConcept is another very useful property provided by the SKOS
vocabulary. This can be used to provide an “entry point” that we can use to access
the machine-readable KOS. List 4.19 shows how.

List 4.19 Use skos:hasToConcept to provide an entry point of the
vocabulary

ex:myTennisVocabulary rdf:type skos:ConceptScheme;

skos:hasTopConcept <http://dbpedia.org/resource/Tennis>;

dc:creater ex:liyangYu.

<http://dbpedia.org/resource/Tennis> rdf:type skos:Concept;

skos:inScheme ex:myTennisVocabulary;

skos:prefLabel "tennis"@en;

skos:altLabel "Lawn_Tennis"@en;

skos:hiddenLabel "Tenis"@en;

skos:broader <http://dbpedia.org/resource/Racquet_sport>;

skos:related

<http://dbpedia.org/reource/International_Tennis_Federation>.

Now, an application can query the value of skos:hasTopConcept property and
use the returned concept and its skos:broader and skos:narrower properties to
explore the whole vocabulary. Note that multiple skos:hasTopConcept properties
can be defined for a given concept scheme.

4.5.3.3 Interlinking Concepts by Using SKOS

At this point, we understand that we can use SKOS to map a traditional KOS onto the
Semantic Web. The key difference between a traditional KOS and its corresponding
Semantic Web version is that the latter is machine readable. When we claim a given
KOS is machine readable, we mean the following facts:

• every SKOS concept is identified by a URI, and
• everything is expressed using RDF statements, which can be processed by

machines.

148 4 RDFS and Ontology

The fact that every concept is uniquely identified by a URI makes it possible to
state that two concepts from different schemes have some semantic relations. With
the help of these interlinking concepts, applications such as information retrieval
packages can start to make use of several KOSs at the same time. In fact, linking
concepts contained in different KOSs is considered to be a key benefit of publishing
KOSs on the Semantic Web.

SKOS vocabulary provides the following terms one can use to build the interlinks
between concepts:

• skos:exactMatch and skos:closeMatch

• skos:broadMatch, skos:narrowMatch and skos:relatedMatch

Using property skos:closeMatch means that the two concepts are close
enough in meanings and they can be used interchangeably in applications that are
built upon the two schemes containing these two concepts. For example, List 4.20
shows how this property is used.

List 4.20 Use skos:closeMatch to link concept in another vocabulary

ex:myTennisVocabulary rdf:type skos:ConceptScheme;

skos:hasTopConcept <http://dbpedia.org/resource/Tennis>;

dc:creater ex:liyangYu.

<http://dbpedia.org/resource/Tennis> rdf:type skos:Concept;

skos:inScheme ex:myTennisVocabulary;

skos:prefLabel "tennis"@en;

skos:altLabel "Lawn_Tennis"@en;

skos:hiddenLabel "Tenis"@en;

skos:closeMatch ex2:Tennis;

skos:broader <http://dbpedia.org/resource/Racquet_sport>;

skos:related

<http://dbpedia.org/reource/International_Tennis_Federation>.

This says, among other things, that http://dbpedia.org/resource/Tennis concept is
a close match to another concept named ex2:Tennis.

Note that skos:closeMatch is not transitive, which is also the main difference
between skos:closeMatch and property skos:exactMatch. More specifically,
skos:exactMatch is a sub-property of skos:closeMatch, and it indicates the
two concepts have equivalent meanings. Therefore, any application that makes use
of this property can expect an even stronger link between schemes. In addition,
skos:exactMatch is indeed declared as transitive property, as you might have
guessed.

For skos:broadMatch, skos:narrowMatch and skos:relatedMatch, their
usage is quite straightforward and does not need much of an explanation. Also,

4.6 Another Look at Inferencing Based on RDF Schema 149

• skos:broachMatch is a sub-property of skos:broader;
• skos:narrowMatch is a sub-property of skos:narrower; and
• skos:relatedMatch is a sub-property of skos:related.

With these said, for example, a statement which asserts a skos:broadMatch

between two concepts will be treated as a statement that declares a skos:

broader between these two concepts.
At this point, we have finished the discussion of the SKOS vocabulary. We have

not covered everything about it, but what we have learned here will be enough to
get you started. As a summary, you can use the SKOS vocabulary to map a given
KOS to the Semantic Web and change it to machine readable, therefore bridge the
world of taxonomies and thesauri and other controlled vocabularies to the world of
the Semantic Web.

4.6 Another Look at Inferencing Based on RDF Schema

We have discussed the benefits offered by ontologies on the Semantic Web. In order
to convince ourselves, let us take another look at our camera ontology to see how it
can make machine more intelligent. In addition, we will not only see more reasoning
power provided by our camera ontology, but also find things that can be improved –
this will point to another new building block called OWL, which be presented in the
next chapter in details.

4.6.1 RDFS Ontology-Based Reasoning: Simple, Yet Powerful

Early this chapter (Sect. 4.2.2), we have used an example to show you how reasoning
is done by using the camera ontology (we called it camera vocabulary back then).
In this section, we present this reasoning ability in a more formal way, together with
the extra reasoning examples that we did not cover in the previous sections.

More specifically, with the help of the camera ontology, a given application can
accomplish reasoning in the following ways:

• Understand a resource’s class type by reading the property’s rdfs:domain tag.

When we define a property P, we normally use rdfs:domain to specify exactly
which class this property P can be used to describe; let us use C to denote this
class. Now for a given resource identified by a specific URI, if our application
detects property P is indeed used to describe this resource, our application can
then conclude the resource represented by this particular URI must be an instance
of class C. We have example for this type of reasoning presented in Sect. 4.2.2,
as you have seen.

• Understand a resource’s class type by reading the property’s rdfs:range tag.

150 4 RDFS and Ontology

When we define a property P, we normally use rdfs:range to specify exactly
what are the possible values this property can assume. More specifically, this
value can be a typed or un-typed literal and can also be an instance of a given
class C. Now when parsing a resource, if our application detects that property P

is used to describe this resource, and the value of P of this resource is represented
by a specific URI pointing to another resource, our application can then conclude
the resource represented by this particular URI must be an instance of class C.

To see how this works, take a look at the simple RDF document presented in
List 4.21.

List 4.21 A simple RDF document using camera ontology

1: <?xml version="1.0"?>
2: <rdf:RDF

2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:myCamera="http://www.liyangyu.com/camera#">
4:

5: <rdf:Description

5a: rdf:about="http://www.liyangyu.com/camera#Nikon_D300">
6: <myCamera:lens rdf:resource=
6a: "http://dbpedia.org/resource/Nikon_17-35mm_f/2.8D_ED-

6b: IF_AF-S_Zoom-Nikkor"/>

7: </rdf:Description>

8:

9: </rdf:RDF>

This is a very simple RDF document: it only uses one property, namely,
myCamera:lens to describe the given resource (line 6). However, based on the
definition of this property (lines 53–56, List 4.13), an application is able to make
the following reasoning:

http://dbpedia.org/resource/Nikon_17-35mm_f/2.8D_ED-

IF_AF-S_Zoom-Nikkor is an instance of class myCamera:Lens.

Again, note that we have used an existing URI from DBpedia to represent a
Nikon zoom lens, the reason being the same: we should reuse URI as much as
we can.

In fact, our application, based on the definition of property myCamera:lens,

can also make the following reasoning:

http://www.liyangyu.com/camera#Nikon_D300 is an instance of class
myCamera:Camera.

• Understand a resource’s super class type by following the class hierarchy
described in the ontology.

4.6 Another Look at Inferencing Based on RDF Schema 151

This can be viewed as extension to the above two reasoning scenarios. In both of
the above cases, the final result is that the class type of some resource has been
successfully identified. Now our application can scan the class hierarchy defined
in the ontology; if the identified class has one or more super classes defined in
the ontology, our application can then conclude that this particular resource is
not only an instance of the identified class, but also an instance of all the super
classes.

• Understand more about the resource by using the rdfs:subPropertyOf tag.

Let us use an example to illustrate this reasoning. Suppose we have defined the
following property:

<rdf:Property rdf:ID="parent">
<rdfs:domain rdf:resource="#Person"/>
<rdfs:range rdf:resource="#Person"/>
</rdf:Property>

<rdf:Property rdf:ID="mother">
<rdfs:subClassOf rdf:resouce="#parent"/>
</rdf:Property>

This defines two properties, namely, parent and mother, with mother being
a sub-property of parent. Assume we have a resource in the RDF statement
document:

<Person rdf:ID="Liyang">
<mother>

<Person rdf:resource="#Zaiyun"/>
</mother>

</Person>

When parsing this statement, an application realizes the fact that Liyang’s mother
is Zaiyun. One step further, since mother is a sub-property of parent, it then
concludes that Liyang’s parent is also Zaiyun. This can be very useful in some
cases.

The above are the four main ways a given application can make inferences based
on the given ontology, together with the instance document. These are indeed simple
yet very powerful already.

4.6.2 Good, Better, and Best: More Is Needed

RDF Schema is quite impressive indeed: you can use its terms to define ontologies,
and having these ontologies defined, our application can conduct reasoning on the
run. However, there are still something missing when you use RDFS vocabulary to
define ontologies.

152 4 RDFS and Ontology

For example, what if we have two classes representing the same concept? For
example, we have a DSLR class in our camera ontology, and we know DSLR
represents digital single lens reflex, and it will be quite useful if we can define
another class named DigitalSingleLensReflex and also indicate in our ontol-
ogy that these two classes represent exactly the same concept in life. However, using
RDF Schema, it is not possible to accomplish this.

Another example is there is no cardinality constraint available using RDF
Schema. For example, effectivePixel is a property that is used to describe the
image size of a digital camera. For one particular camera, there should be only
one effectivePixel value. However, in our RDF document, we can use multiple
effectivePixel properties on a single digital camera instance!

Therefore, there is indeed a need to extend RDF Schema to allow for the
expression of more complex relationships among classes and of more precise con-
straints on specific classes and properties. In other words, we need a more advanced
language which will be able to do the following:

• to express relationships among classes defined in different documents across the
Web;

• to construct new classes by unions, intersections, and complements of other
existing classes;

• to add constraints on the number and type for properties of classes;
• to determine if all members of a class will have a particular property, or if only

some of them might;
• and more.

This new language is called OWL and it is the main topic of the next chapter,
read on.

4.7 Summary

In this chapter, we have learned RDFS, another important building block for the
Semantic Web.

The first thing we should understand from this chapter is how RDFS fits into the
whole concept of the Semantic Web. More specifically, this includes the following
main points:

• It provides a collection of terms (RDFS vocabulary) that one can use to build
ontologies.

• With the ontologies, RDF documents can be created by using sharing knowledge
and common terms, i.e., whatever we say, we have a reason to say it.

In order for us to create ontologies by using RDFS, this chapter also covers the
main language features of RDFS. We should have learned the following:

4.7 Summary 153

• the concept of RDFS vocabulary, and how it is related to other vocabularies, such
as RDF vocabulary, Dublin Core vocabulary;

• understand the key terms contained in RDFS vocabulary, and how to use them to
develop domain-specific ontologies.

This chapter also discusses the concept of ontologies, and further introduces
another vocabulary called SKOS. We should havelearned the following main points:

• the concept of ontology, and the reason of having ontologies for the Semantic
Web;

• the concept of SKOS, and how to use SKOS vocabulary to map an existing KOS
onto the Semantic Web, and certainly, the benefit of doing so.

Finally, this chapter shows the reasoning power provided by ontologies. This
includes the following:

• The meaning of a given term is expressed by the properties that can be used on
this term and the values these properties can assume.

• Machine can understand such meanings, and four different ways of reasoning can
be implemented by machines based on this understanding.

• RDF Schema can be improved in a number of different ways.

In the next chapter, we will present OWL, essentially a much more advanced ver-
sion of RDFS, and you will have more chances to see how machine can understand
the meanings by conducting useful reasoning on the fly.

Chapter 5
OWL: Web Ontology Language

This chapter is a natural extension of the previous chapter. As a key technical com-
ponent in the world of the Semantic Web, OWL is the most popular language to use
when creating ontologies. In this chapter, we will cover OWL in great detail and
after finishing this chapter, you will be quite comfortable when it comes to defining
ontologies using OWL.

5.1 OWL Overview

5.1.1 OWL in Plain English

OWL stands for Web Ontology Language, and it is currently the most popu-
lar language to use when creating ontologies. Since we have already established
a solid understanding about RDF Schema, understanding OWL becomes much
easier.

The purpose of OWL is exactly the same as RDF Schema: to define ontolo-
gies that include classes, properties, and their relationships for a specific application
domain. When anyone wants to describe any resource, these terms can be used in the
published RDF documents, therefore, everything we say, we have a reason to say it.
And furthermore, a given application can implement reasoning process to discover
implicit or unknown facts with the help of the ontologies.

However, compared to RDF Schema, OWL provides us with the capability to
express much more complex and richer relationships. Therefore, we can construct
applications with a much stronger reasoning ability. For this reason, we often want
to use OWL for the purpose of ontology development. RDF Schema is still a valid
choice, but its obvious limitation compared to OWL will always make it a second
choice.

In plain English, we can define OWL as follows:

OWL = RDF Schema + new constructs for better expressiveness

And remember, since OWL is built upon RDF Schema, all the terms contained
in RDFS vocabulary can still be used when creating OWL documents.

155L. Yu, A Developer’s Guide to the Semantic Web,
DOI 10.1007/978-3-642-15970-1_5, C© Springer-Verlag Berlin Heidelberg 2011

156 5 OWL: Web Ontology Language

Before we move on to the official definition of OWL, let us spend a few lines on
its interesting acronym. Clearly, the natural acronym for Web Ontology Language
would be WOL instead of OWL. The story dates back to December 2001, the days
when the OWL group was working on OWL. Prof. Tim Finin, in an e-mail dated on
27 December 2001,1 suggested the name OWL based on these considerations: OWL
has just one obvious pronunciation that is also easy on the ear; it yields good logos,
it suggests wisdom, and it can be used to honor the One World Language project, an
artificial intelligence project at MIT in the mid-1970s. The name, OWL, since then
has been accepted as it formal name.

5.1.2 OWL in Official Language: OWL 1 and OWL 2

Behind the development of OWL, there is actually quite a long history that dates
back to the 1990s. Back then, a number of research efforts were set up to explore
how the idea of knowledge representation (KR) from the area of artificial intelli-
gence (AI) could be used on the Web to make machine understand its content. These
efforts resulted in a variety of languages. Among them, noticeably two languages
called SHOE (Simple HTML Ontology Extensions) and OIL (Ontology Inference
Layer) have later on become part of the foundation of OWL.

Meanwhile, another project named DAML (DARPA Agent Markup Language,
where DARPA represents US Defense Advanced Research Projects Agency) was
started in late 1990 with the goal of creating a machine-readable representation for
the Web. The main outcome of the DAML project was DAML, an agent markup
language based on RDF.

Based on DAML, SHOE and OIL, a new Web ontology language named
DAML+OIL was developed by a group called “US/UK ad hoc Joint Working Group
on Agent Markup Languages.” This group was jointly funded by DARPA under the
DAML program and the European Union’s Information Society Technologies (IST)
funding project. DAML+OIL since then has become the whole foundation of OWL.

OWL started as a research-based revision of the DAML+OIL Web ontology lan-
guage. W3C created the Web Ontology Working Group2 in November 2001, and the
first working drafts of the abstract syntax, reference and synopsis were published in
July 2002. The OWL documents became a formal W3C Recommendation on 10
February 2004. The recommendation includes the following documents3:

• OWL Web Ontology Language Overview
• OWL Web Ontology Language Guide
• OWL Web Ontology Language Reference
• OWL Web Ontology Language Semantics and Abstract Syntax

1http://lists.w3.org/Archives/Public/www-webont-wg/2001Dec/0169.html
2http://www.w3.org/2007/OWL/wiki/OWL_Working_Group
3http://www.w3.org/2004/OWL/#specs

5.1 OWL Overview 157

• OWL Web Ontology Language Test Cases
• OWL Web Ontology Language Use Cases and Requirements

The standardization of OWL has since then sparked the development of OWL
ontologies in a number of fields including medicine, biology, geography, astron-
omy, defense and aerospace industries. For example, in the life sciences community,
OWL is extensively used and has become a de facto standard for ontology
development and data exchange.

On the other hand, the numerous contexts in which OWL has been applied have
also revealed its deficiencies from a user’s point of view. For instance, ontology
engineers have identified some major limitations of its expressiveness, which is
obviously needed for real development work. Also, OWL tool designers have come
up with their list of some practical limitations of the OWL as well.

In response to these comments and requests from the real users, it was decided
that an incremental revision of OWL is needed and was provisionally called
OWL 1.1. Accordingly, the initial version of OWL is referred to as OWL 1.

The 2005 OWL Experiences and Directions Workshop4 has created a list of new
features to be provided by OWL 1.1. The actual development of these new features
was then undertaken by an informal group of language users and developers. The
deliverables of their work was submitted to W3C as a member submission, and at the
same time, a new W3C OWL Working Group5 was officially formed in September
2007.

Under the work of the Working Group, the original member submission has
evolved significantly. In April 2008, the Working Group decided to call the new
language OWL 2, and the initial 2004 OWL standard will continue to be called
OWL 1.

On 27 October 2009, OWL 2 has become a W3C standard,6 which has the
following core specifications:

• OWL 2 Web Ontology Language Structural Specification and Functional-Style
Syntax

• OWL 2 Web Ontology Language Mapping to RDF Graphs
• OWL 2 Web Ontology Language Direct Semantics
• OWL 2 Web Ontology Language RDF-Based Semantics
• OWL 2 Web Ontology Language Conformance
• OWL 2 Web Ontology Language Profiles

These core specifications are part of the W3C OWL 2 Recommendations, and they
are mainly useful for ontology tool designers. For example, in order to implement a
OWL 2 validator or a reasoner that understands OWL 2, one has to be familiar with

4http://www.mindswap.org/2005/OWLWorkshop/
5http://www.w3.org/2007/OWL/wiki/OWL_Working_Group
6http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

158 5 OWL: Web Ontology Language

these specifications. For developers like us, this chapter will help you to learn how
to use OWL 2 to develop your own ontology documents.

With the understanding of the history behind OWL, let us take a look at its official
definition. W3C’s OWL 2 Primer7 has given a good definition about OWL:

The W3C OWL 2 Web Ontology Language (OWL) is a Semantic Web language designed to
represent rich and complex knowledge about things, groups of things, and relations between
things. OWL is a computational logic-based language such that knowledge expressed in
OWL can be reasoned with by computer programs either to verify the consistency of that
knowledge or to make implicit knowledge explicit.

If you don’t fully understand this definition at this point, rest assured that it will
gradually shape up during the course of this chapter. In this chapter, we will cover
the details of OWL, and you will be able to define ontologies on your own and
understand existing ontologies that are written by using OWL.

5.1.3 From OWL 1 to OWL 2

With the discussion of OWL history in place, we understand OWL 2 is the latest
standard from W3C. In fact, OWL 1 can be considered as a subset of OWL 2, and all
the ontologies that are created by using OWL 1 will be recognized and understood
by any application that can understand OWL 2.

However, OWL 1 still plays a special role, largely due to some historical reasons.
More specifically, up to this point, most practical-scale and well-known ontologies
are written in OWL 1; most ontology engineering tools, including development envi-
ronments for the Semantic Web, are equipped with the ability to understand OWL 1
ontologies only. Therefore, in this chapter, we will make a clear distinction between
OWL 1 and OWL 2: the language constructs of OWL 1 will be covered first, fol-
lowed by the language constructs of OWL 2. Once you have finished the part about
OWL 1, you should be able to understand most of the ontologies in the real Semantic
Web world. With a separate section covering OWL 2, you can get a clear picture
about what have been improved since OWL 1.

Also note that for the rest of this chapter, we will use OWL and OWL 2
interchangeably. We will always explicitly use OWL 1 if necessary.

5.2 OWL 1 and OWL 2: The Big Picture

Form here to the rest of this chapter, we will cover the syntax of OWL, together with
examples. Our goal is to re-write our camera vocabulary developed in last chapter,
and by doing so, we will cover most of the OWL features.

Similar to RDFS, OWL can be viewed as a collection of terms we can use to
define classes and properties for a specific application domain. These pre-defined

7http://www.w3.org/TR/2009/REC-owl2-primer-20091027/

5.2 OWL 1 and OWL 2: The Big Picture 159

OWL terms all have the following URI as their leading string (applicable to both
OWL 1 and OWL 2):

http://www.w3.org/2002/07/owl#

and by convention, this URI prefix string is associated with namespace prefix owl:

and is typically used in RDF/XML documents with the prefix owl.
For the rest of this section, we will discuss several important concepts related to

OWL, so we will be ready for the rest of this chapter.

5.2.1 Basic Notions: Axiom, Entity, Expression, and IRI Names

An axiom is a basic statement that an OWL ontology has. It represents a basic
piece of knowledge. For example, a statement like “the Digital camera class is
a sub-class of the Camera class” is an axiom. Clearly, any given OWL ontology can
be viewed as a collection of axioms. Furthermore, this ontology asserts that all its
axioms are true.

Clearly, each axiom, as a statement, will have to involve some class, some prop-
erty, and sometimes, some individual. For example, one axiom can claim that a
Nikon D300 camera is an individual of class Digital camera, and another axiom
can state that a Photographer individual can own a given camera. These classes,
properties, and individuals can be viewed as the atomic constituents of axioms, and
these atomic constituents are also called entities. Sometimes, in OWL, individual
entity is also called object, class entity is called category, and property entity is
called relation.

As we will see in this chapter, a key feature of OWL is to combine different class
entities and/or property entities to create new class entities and property entities. The
combinations of entities to form complex descriptions about new entities are called
expressions. In fact, expressions are a main reason why we claim OWL has a much
more enhanced expressiveness compared to ontology language such as RDFS.

The last concept we would like to mention here is the IRI names; you will
encounter this concept when reading OWL 2 related literatures.

As we know at this point, URIs are the standard mechanism for identifying
resources on the Web. For the vision of the Semantic Web, we have been using URIs
to represent classes, properties, and individuals, as shown in Chaps. 2 and 4. This
URI system fits well into the Semantic Web for the following two main reasons:

1. It provides a mechanism to uniquely identify a given resource.
2. It specifies a uniform way to retrieve machine-readable descriptions about the

resource being identified by the URI.

The first point here should be fairly clear (refer to Chap. 2 for details), and the
second point will be covered in detail in Chap. 11.

IRIs stands for Internationalized Resource Identifiers, and they are just like URIs
except that they can make use of the whole range of Unicode characters. As a
comparison, URIs are limited to the ASCII subset of the characters, which only

160 5 OWL: Web Ontology Language

has 127 characters. In addition, the ASCII subset itself is based on the needs of
English-speaking users, which presents some difficulty for non-English users. And
these considerations have been the motivation of IRIs.

There are standard ways to convert IRIs to URIs and vice versa. Therefore, an
IRI can be coded into a URI, which is quite helpful when we need to use the IRI in
a protocol that accepts only URIs (such as the HTTP).

For our immediate purpose here in this chapter, IRIs are interchangeable with
URIs; there is not much need to make a distinction between these two. However,
understanding IRIs will be helpful, especially if you are doing development using a
language other than English.

5.2.2 Basic Syntax Forms: Functional Style, RDF/XML Syntax,
Manchester Syntax, and XML Syntax

OWL specifications provide various syntaxes for persisting, sharing and editing
ontologies. These syntaxes could be confusing for someone new to the language. In
this section, we will have a brief description of each syntax form so you understand
which one will work the best for your needs.

• Functional-Style syntax

It is important to realize the fact that OWL is not defined by using a particular
concrete syntax, but rather it is defined in a high-level structural specification which
is then mapped into different concrete syntaxes. By doing so, it is possible to clearly
describe the essential language features without getting into the technical details of
exchange formats.

Once the structural specification is complete, it is necessary to move toward some
concrete syntaxes. The first step of doing so is the Functional-Style syntax. This syn-
tax is designed for translating the structural specification to various other syntaxes,
and it is often used by OWL tool designers. In general, it is not intended to be used
as an exchange syntax, and as OWL users, we will not be seeing or using this syntax
often.

• RDF/XML syntax

This is the syntax we are familiar with, and it is also the sterilization format we
have been using throughout the book. Most well-known ontologies written in OWL
1 use this syntax as well. In addition, this is the only syntax that is mandatory to be
supported by all OWL tools. Therefore, as a developer, you should be familiar with
this syntax. We will be using this syntax for the rest of this chapter as well.

• Manchester syntax

The Manchester syntax provides a textual based representation of OWL ontologies
that is easy to read and write. The motivation behind Manchester syntax was to
design a syntax that could be used for editing class expressions in tools such as

5.3 OWL 1 Web Ontology Language 161

Protégé and alike. Since it is quite successful in these tools, it has been extended to
represent a complete ontology.

Manchester syntax is fairly easy to learn, and it has a compact format that is easy
to read and write as well. We will not be using this format in this book. With what
you will learn from using the RDF/XML format, understanding Manchester syntax
will not present too much challenge at all.

• OWL/XML

Although RDF/XML syntax is the normative format specified by W3C OWL stan-
dard, it is, however, not easy to work with. More specifically, it is difficult to use
existing XML tools for tasks other than parsing and rendering it. Even standard
XML tools such as Xpath and XSLT will not work well with RDF/XML repre-
sentations of ontologies. In order to take advantage of existing XML tools, a more
regular and simple XML format is needed. OWL/XML is such a format for repre-
senting OWL ontologies. Its main advantage is the fact that it conforms to an XML
Schema, and therefore it is possible to use existing XML tools such as Xpath and
XSLT for processing and querying tasks. In addition, parsing is easier compared to
RDF/XML syntax.

In this book, we will not use this format. Again, once you are familiar with the
RDF/XML format, understanding OWL/XML syntax will not be too hard.

5.3 OWL 1 Web Ontology Language

In this section, we will concentrate on the language constructs offered by OWL 1.
Again, all these constructs are now part of OWL 2, and any ontology created by
using OWL 1 will continue to be recognized and understood by any application that
understands OWL 2.

5.3.1 Defining Classes: The Basics

Recall that in RDF Schema, the root class of everything is rdfs:Resource. In
the world of OWL 1, owl:Thing is the root of all classes; it is also the base class
of rdfs:Resource. Furthermore, owl:Class is defined by OWL 1 so that we
can use it to define classes in OWL 1 ontologies, and owl:Class is a sub-class
of rdfs:Class. The relationship between all these top classes can therefore be
summarized in Fig. 5.1.

Now, to declare one of our camera ontology’s top classes using OWL 1, such as
Camera, we can do the following:

<rdf:Description
rdf:about="http://www.liyangyu.com/camera#Camera">

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>
</rdf:Description>

162 5 OWL: Web Ontology Language

Fig. 5.1 Relationship between top classes

And the following is an equivalent format:

<owl:Class rdf:about="http://www.liyangyu.com/camera#Camera">
</owl:Class>

To define all the classes in our camera ontology, List 5.1 will be good enough.

List 5.1 Class definitions for our camera ontology using OWL 1

1: <?xml version="1.0"?>
2: <rdf:RDF
2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
4: xmlns:owl="http://www.w3.org/2002/07/owl#"
5: xmlns:myCamera="http://www.liyangyu.com/camera#"
6: xml:base="http://www.liyangyu.com/camera#">
7:
8: <owl:Class rdf:about="http://www.liyangyu.com/camera#Camera">
9: </owl:Class>
10:
11: <owl:Class rdf:about="http://www.liyangyu.com/camera#Lens">
12: </owl:Class>
13:
14: <owl:Class rdf:about="http://www.liyangyu.com/camera#Body">
15: </owl:Class>
16:
17: <owl:Class
17a: rdf:about="http://www.liyangyu.com/camera#ValueRange">
18: </owl:Class>
19:

5.3 OWL 1 Web Ontology Language 163

20: <owl:Class
20a: rdf:about="http://www.liyangyu.com/camera#Digital">
21: <rdfs:subClassOf rdf:resource="#Camera"/>
22: </owl:Class>
23:
24: <owl:Class rdf:about="http://www.liyangyu.com/camera#Film">
25: <rdfs:subClassOf rdf:resource="#Camera"/>
26: </owl:Class>
27:
28: <owl:Class rdf:about="http://www.liyangyu.com/camera#DSLR">
29: <rdfs:subClassOf rdf:resource="#Digital"/>
30: </owl:Class>
31:
32: <owl:Class
32a: rdf:about="http://www.liyangyu.com/camera#PointAndShoot">
33: <rdfs:subClassOf rdf:resource="#Digital"/>
34: </owl:Class>
35:
36: <owl:Class
36a: rdf:about="http://www.liyangyu.com/camera#Photographer">
37: <rdfs:subClassOf
37a: rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
38: </owl:Class>
39:
40:</rdf:RDF>

Looks like we are done: we have just finished using OWL 1 terms to define all
the classes used in our camera ontology.

Note that List 5.1 only contains a very simple class hierarchy. OWL 1 offers much
greater expressiveness than we have just utilized. Let us explore these features one
by one, and in order to show how these new features are used, we will also change
our camera ontology from time to time.

5.3.2 Defining Classes: Localizing Global Properties

In Chap. 4, we have defined properties by using RDFS terms. For example, recall
the definition of owned_by property:

<rdf:Property

rdf:about="http://www.liyangyu.com/camera#owned_by">
<rdfs:domain rdf:resource="#DSLR"/>
<rdfs:range rdf:resource="#Photographer"/>

</rdf:Property>

Note that rdfs:range imposes a global restriction on owned_by property,
i.e., the rdfs:range value applies to Photographer class and all sub-classes of
Photographer class.

164 5 OWL: Web Ontology Language

However, there will be cases where we actually would like to localize this global
restriction on a given property. Clearly, RDFS terms will not be able to help us
to implement this. OWL 1, on the other hand, provides ways to localize a global
property by defining new classes, as we will show in this section.

5.3.2.1 Value Constraints: owl:allValuesFrom

Let us go back to our definition of owned_by property. More specifically, we have
associated this property with two classes, DSLR and Photographer, in order to
express the knowledge “DSLR is owned_by Photographer”.

Let us say we now want to express the following fact: DSLR, especially an expen-
sive one, is normally used by professional photographers. For example, only the
body of some high-end digital SLR can cost as much as $5000.00.

To accomplish this, we decide to define a new class called ExpensiveDSLR, as a
sub-class of DSLR. We also would like to define two more classes, Professional
and Amateur, as sub-classes of Photographer. These two classes represent pro-
fessional and amateur photographers, respectively. List 5.2 shows the definitions of
these two new classes.

List 5.2 New class definitions are added: Professional and Amateur

1: <?xml version="1.0"?>
2: <rdf:RDF
2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
4: xmlns:owl="http://www.w3.org/2002/07/owl#"
5: xmlns:myCamera="http://www.liyangyu.com/camera#"
6: xml:base="http://www.liyangyu.com/camera#">
7:
8:

... same as List 4.1

38:
39:
40: <owl:Class
40a: rdf:about="http://www.liyangyu.com/camera#Professional">
41: <rdfs:subClassOf rdf:resource="#Photographer"/>
42: </owl:Class>
43:
44: <owl:Class
44a: rdf:about="http://www.liyangyu.com/camera#Amateur">
45: <rdfs:subClassOf rdf:resource="#Photographer"/>
46: </owl:Class>
47:
48:</rdf:RDF>

Does this ontology successfully express our idea? Not really. Since owned_by

has DSLR as its rdfs:domain and Photographer as its rdfs:value, and given
the fact that ExpensiveDSLR is a sub-class of DSLR, Professional and Amateur

5.3 OWL 1 Web Ontology Language 165

are both sub-classes of Photographer, these new sub-classes all inherit the
owned_by property. Therefore, we can indeed say something like this:

ExpensiveDSLR owned_by Professional

which is what we wanted. However, we cannot exclude the following statement
either:

ExpensiveDSLR owned_by Amateur

How do we modify the definition of ExpensiveDSLR to make sure it can be
owned only by Professional? OWL 1 uses owl:allValuesFrom to solve this
problem, as shown in List 5.3.

List 5.3 Use owl:allValuesFrom to define ExpensiveDSLR class

1: <owl:Class
1a: rdf:about="http://www.liyangyu.com/camera#ExpensiveDSLR">
2: <rdfs:subClassOf rdf:resource="#DSLR"/>
3: <rdfs:subClassOf>
4: <owl:Restriction>
5: <owl:onProperty rdf:resource="#owned_by"/>
6: <owl:allValuesFrom rdf:resource="#Professional"/>
7: </owl:Restriction>
8: </rdfs:subClassOf>
9: </owl:Class>

To understand how List 5.3 defines ExpensiveDSLR class, we need to under-
stand owl:Restriction first.

owl:Restriction is an OWL 1 term used to describe an anonymous class,
which is defined by adding some restriction on some property. Furthermore, all the
instances of this anonymous class have to satisfy this restriction, hence the term
owl:Restriction.

The restriction itself has two parts. The first part is about which property this
restriction is applied to, and this is specified by using owl:onProperty property.
The second part is about the property constraint itself or, exactly, what is the con-
straint. Two kinds of property restrictions are allowed in OWL: value constraints
and cardinality constraints. A value constraint puts constraints on the range of the
property, whilst a cardinality constraint puts constraints on the number of values
a property can take. We will see value constraint in this section and cardinality
constraint in the coming sections.

One way to specify a value constraint is to use the built-in OWL 1 property
called owl:allValuesFrom. When this property is used, the value of the restricted
property has to all come from the specified class or data range.

With all these said, List 5.3 should be easier to understand. Lines 4–7 use
owl:Restriction to define an anonymous class, the constraint is applied on
owned_by property (this is specified by using owl:onProperty property in line
5), and the values for owned_by property has to all come from instances of class

166 5 OWL: Web Ontology Language

Professional (this is specified by using owl:allValuesFrom property in line
6). Therefore, lines 4–7 can be read as follows:

lines 4–7 have defined an anonymous class which has a property owned_by and all values
for owned_by property must be instances of Professional.

With this, List 5.3 can be read as follows:

Here is a definition of class ExpensiveDSLR , it is a sub-class of DSLR , and a sub-class
of an anonymous class which has a property owned_by and all values for this property
must be instances of Professional.

It does take a while to get used to this way of defining new classes. Once you are
used to it, you can simply read List 5.3 like this.

Here is a definition of class ExpensiveDSLR , it is a sub-class of DSLR and it has a
property named owned_by , and only instance of class Professional can be the value
for this property.

Therefore, by adding constraint on a given property, we have defined a new class
that satisfies our needs. In fact, this new way of defining classes is frequently used
in OWL ontologies, so make sure you understand it and feel comfortable about it
as well.

5.3.2.2 Enhanced Reasoning Power 1

In this chapter, we are going to talk about OWL’s reasoning power in more detail, so
you will see more sections like this one coming up frequently. The following should
be clear before we move on.

First off, when we say an application can understand a given ontology, we mean
that the application can parse the ontology and create a list of axioms based on the
ontology, and all the facts are expressed as RDF statements. You will see how this
is accomplished in later chapters, but for now, just assume this can be easily done.

Second, when we say an application can make inferences, we refer to the fact
that the application can add new RDF statements into the existing collection of
statements. The newly added statements are not mentioned anywhere in the original
ontology or original instance document.

Finally, when we say instance document, we refer to an RDF document that is
created by using the terms presented in the given ontology. Also, when we present
this instance document, we will only show the part that is relevant to that specific
reasoning capability being discussed. The rest of the instance file that is not related
to this specific reasoning capability will not be included.

With all this being said, we can now move on to take a look at the reasoning
power provided by owl:allValuesFrom construct. Let us say our application sees
the following instance document:

<myCamera:ExpensiveDSLR
rdf:about="http://dbpedia.org/resource/Canon_EOS-1D">

<myCamera:owned_by
rdf:resource="http://www.liyangyu.com/people#Liyang"/>

5.3 OWL 1 Web Ontology Language 167

<myCamera:owned_by
rdf:resource="http://www.liyangyu.com/people#Connie"/>

</myCamera:ExpensiveDSLR>

The application will be able to add the following facts (in Turtle format):

<http://www.liyangyu.com/people#Liyang> rdf:type

myCamera:Professional.

<http://www.liyangyu.com/people#Connie> rdf:type

myCamera:Professional.

Note that it is certainly true that our application will also be able to add quite a
few other facts, such as http://www.liyangyu.com/people#Liyangmust also
be myCamera:Photographer, and also http://dbpedia.org/resour-ce/

Canon_EOS-1D must be a myCamera:DSLR, just to name a few. Here, we are not
going to list all these added facts; instead, we will only concentrate on the new facts
that are related to the OWL 1 language feature that is being discussed.

5.3.2.3 Value Constraints: owl:someValuesFrom

In the last section, we have used owl:allValuesFrom to make sure that
ExpensiveDSLRs are those cameras that can only be owned by Professionals.
Now, let us loosen up this restriction by allowing some Amateurs to buy and own
ExpensiveDSLRs as well. However, we still require that at least one of the owners
has to be a Professional. OWL 1 uses owl:someValuesFrom to express this
idea, as shown in List 5.4.

List 5.4 Use owl:someValuesFrom to define ExpensiveDSLR class

1: <owl:Class
1a: rdf:about="http://www.liyangyu.com/camera#ExpensiveDSLR">
2: <rdfs:subClassOf rdf:resource="#DSLR"/>
3: <rdfs:subClassOf>
4: <owl:Restriction>
5: <owl:onProperty rdf:resource="#owned_by"/>
6: <owl:someValuesFrom rdf:resource="#Professional"/>
7: </owl:Restriction>
8: </rdfs:subClassOf>
9: </owl:Class>

This can be read like this:

A class called ExpensiveDSLR is defined. It is a sub-class of DSLR, and it has a property
called owned_by. Furthermore, at least one value of owned_by property is an instance
of Professional.

With what we have learned from the previous section, this does not require much
explanation.

168 5 OWL: Web Ontology Language

5.3.2.4 Enhanced Reasoning Power 2

Our application sees the following instance document:

<myCamera:ExpensiveDSLR
rdf:about="http://dbpedia.org/resource/Canon_EOS-1D">

<myCamera:owned_by
rdf:resource="http://www.liyangyu.com/people#Liyang"/>

</myCamera:ExpensiveDSLR>

The application will be able to add the following facts:

<http://www.liyangyu.com/people#Liyang> rdf:type

myCamera:Professional.

If our application sees the following instance document:

<myCamera:ExpensiveDSLR
rdf:about="http://dbpedia.org/resource/Canon_EOS-1D">

<myCamera:owned_by
rdf:resource="http://www.liyangyu.com/people#Liyang"/>

<myCamera:owned_by
rdf:resource="http://www.liyangyu.com/people#Connie"/>

</myCamera:ExpensiveDSLR>

then at least one of the following two statements will be true (could be that both are
true):

<http://www.liyangyu.com/people#Liyang> rdf:type

myCamera:Professional.

<http://www.liyangyu.com/people#Connie> rdf:type

myCamera:Professional.

It is important to understand the difference between owl:allValuesFrom and
owl:someValuesFrom. Think about it on your own, and we will summarize the
difference in a later section.

5.3.2.5 Value Constraints: owl:hasValue

Another way OWL 1 uses to localize a global property in the context of a given
class is to use owl:hasValue. So far, we have defined ExpensiveDSLR as being
a DSLR that is owned by a professional photographer (List 5.3), or owned by at least
one professional photographer (List 5.4). These definitions are fine, but they are not
straightforward. In fact, we can use a more direct approach to define what it means
to be an expensive DSLR.

Let us first define a property called cost like this:

<owl:DatatypeProperty
rdf:about="http://www.liyangyu.com/camera#cost">

<rdfs:domain rdf:resource="#Digital"/>
<rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
</owl:DatatypeProperty>

5.3 OWL 1 Web Ontology Language 169

Since we have not yet reached the section about defining properties, let us not
to worry about the syntax here. For now, understand this defines a property called
cost, which is used to describe Digital and its value will be a string of your
choice. For instance, you can take expensive or inexpensive as its value.

Clearly, DSLR and PointAndShoot are all sub-classes of Digital, therefore
they can all use property cost in the way they want. In other words, cost as
a property is global. Now in order to directly express the knowledge that “an
ExpensiveDSLR is expensive”, we can specify the fact that the value of cost,
when used with ExpensiveDSLRs, should always be expensive. We can use
owl:hasValue to implement this idea, as shown in List 5.5.

List 5.5 Use owl:hasValue to define ExpensiveDSLR class

1: <owl:Class
1a: rdf:about="http://www.liyangyu.com/camera#ExpensiveDSLR">
2: <rdfs:subClassOf rdf:resource="#DSLR"/>
3: <rdfs:subClassOf>
4: <owl:Restriction>
5: <owl:onProperty rdf:resource="#cost"/>
6: <owl:hasValue
6a: rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
7: expensive
8: </owl:hasValue>
9: </owl:Restriction>
10: </rdfs:subClassOf>
11: </owl:Class>

This defines class ExpensiveDSLR as follows:

A class called ExpensiveDSLR is defined. It is a sub-class of DSLR, and every instance
of ExpensiveDSLR has a cost property whose value is expensive.

Meanwhile, instances of DSLR or PointAndShoot can take whatever cost

value they want (i.e., expensive or inexpensive), indicating the fact that they
can be expensive or inexpensive. This is exactly what we want.

It is now a good time to take a look at the difference among these three prop-
erties. More specifically, whenever we decide to use owl:allValuesFrom, it is
equivalent to declare that “all the values of this property must be of this type, but it
is all right if there are no values at all.” Therefore, the property instance does not
even have to appear. On the other hand, using owl:someValuesFrom is equivalent
to say “there must be some values for this property, and at least one of these values
has to be of this type. It is okay if there are other values of other types.” Clearly,
using a owl:someValuesFrom restriction on a property implies this property has to
appear at least once, whereas an owl:allValuesFrom restriction does not require
the property to show up at all.

Finally, owl:hasValue says “regardless of how many values a class has for a
particular property, at least one of them must be equal to the value that you specify.”
It is therefore very much the same as owl:someValuesFrom except it is more
specific because it requires a particular instance instead of a class.

170 5 OWL: Web Ontology Language

5.3.2.6 Enhanced Reasoning Power 3

Our application sees the following instance document (note that the definition of
ExpensiveDSLR is given in List 5.5):

<myCamera:DSLR
rdf:about="http://dbpedia.org/resource/Canon_EOS-1D">

<myCamera:cost
rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
expensive</myCamera:cost>

</myCamera:DSLR>

The application will be able to add the following facts:

< http://dbpedia.org/resource/Canon_EOS-1D > rdf:type

myCamera:ExpensiveDSLR.

Note that the original instance document only shows the class type as DSLR, and
the application can assert the more accurate type would be ExpensiveDSLR.

5.3.2.7 Cardinality Constraints: owl:cardinality, owl:min(max)
Cardinality

Another way to define class by adding restrictions on properties is to constrain the
cardinality of a property based on the class on which it is intended to use. In this sec-
tion, we will add cardinality constraints to some of our existing class definitions in
our camera ontology. By doing so, not only will we learn how to use the cardinality
constraints, but our camera ontology will also become more accurate.

In our camera ontology, class Digital represents a digital camera, and prop-
erty effectivePixel represents the picture resolution of a given digital camera,
and this property can be used on instances of Digital class. Obviously, when
defining Digital class, it would be useful to indicate that there can be only one
effectivePixel value for any given digital camera. We cannot accomplish this
by using RDFS vocabulary; however, OWL 1 does allow us to do so, as shown in
List 5.6.

List 5.6 Definition of class Digital using owl:cardinality constraint

1: <owl:Class rdf:about="http://www.liyangyu.com/camera#Digital">
2: <rdfs:subClassOf rdf:resource="#Camera"/>
3: <rdfs:subClassOf>
4: <owl:Restriction>
5: <owl:onProperty rdf:resource="#effectivePixel"/>
6: <owl:cardinality rdf:datatype=
6a: "http://www.w3.org/2001/XMLSchema#nonNegativeInteger">
7: 1
8: </owl:cardinality>
9: </owl:Restriction>
10: </rdfs:subClassOf>
11: </owl:Class>

5.3 OWL 1 Web Ontology Language 171

This defines class Digital as follows:

A class called Digital is defined. It is a sub-class of Camera , it has a property called
effectivePixel , there can be only one effectivePixel value for an instance of
Digital class.

Note that we need to specify that the literal “1” is to be interpreted as a non-
negative integer using rdf:datatype property. Also, be aware that this does not
place any restrictions on the number of occurrences of effectivePixel property
in any instance document. In other words, a given instance of Digital class (or
its sub-class) can indeed have multiple effectivePixel values; however, when it
does, these values must all be equal.

What about model property? Clearly, each camera should have at least one
model value, but it can have multiple model values: as we have discussed, the
exact same camera, when sold in Asia or North America, can indeed have different
model values. To take this constraint into account, we can modify the definition of
Camera class as shown in List 5.7.

List 5.7 Definition of class Camera using owl:minCardinality constraint

1: <owl:Class rdf:about="http://www.liyangyu.com/camera#Camera">
2: <rdfs:subClassOf>
3: <owl:Restriction>
4: <owl:onProperty rdf:resource="#model"/>
5: <owl:minCardinality rdf:datatype=
5a: "http://www.w3.org/2001/XMLSchema#nonNegativeInteger">
6: 1
7: </owl:minCardinality>
8: </owl:Restriction>
9: </rdfs:subClassOf>
10: </owl:Class>

And you can use owl:minCardinality together with owl:max

Cardinality to specify a range, as shown in List 5.8, which says that a
camera should have at least one model value, but cannot have more than 3.

List 5.8 Definition of class Camera using owl:minCardinality and
owl:maxCardinality constraints

1: <owl:Class rdf:about="http://www.liyangyu.com/camera#Camera">
2: <rdfs:subClassOf>
3: <owl:Restriction>
4: <owl:onProperty rdf:resource="#model"/>
5: <owl:minCardinality rdf:datatype=
5a: "http://www.w3.org/2001/XMLSchema#nonNegativeInteger">
6: 1
7: </owl:minCardinality>
8: <owl:maxCardinality rdf:datatype=
8a: "http://www.w3.org/2001/XMLSchema#nonNegativeInteger">
9: 3

172 5 OWL: Web Ontology Language

10: </owl:maxCardinality>
11: </owl:Restriction>
12: </rdfs:subClassOf>
13: </owl:Class>

5.3.2.8 Enhanced Reasoning Power 4

Our application sees the following statement from one instance document (note that
the definition of Digital is given in List 5.6):

<myCamera:Digital
rdf:about="http://www.liyangyu.com/camera#Nikon_D300">

<myCamera:effectivePixel rdf:resource=
"http://www.example.org/digitalCamera#pixelValue12.3"/>

</myCamera:Digital>

And it has also collected this statement from another instance document:

<myCamera:Digital
rdf:about="http://www.liyangyu.com/camera#Nikon_D300">

<myCamera:effectivePixel rdf:resource="
"http://dbpedia.org/resource/Nikon_D300_Resolution"/>

</myCamera:Digital>

The application will be able to add the following fact:

<http://www.example.org/digitalCamera#pixelValue12.3>
owl:sameAs <http://dbpedia.org/resource/Nikon_D300_Resolution>.

Note owl:sameAs means the two given resources are exactly the same. In other
words, the following two URIs are URI aliases to each other:

http://www.example.org/digitalCamera#pixelValue12.3

http://dbpedia.org/resource/Nikon_D300_Resolution

Lists 5.7 and 5.8 will yield similar reasoning power. As you can easily see them
by yourself, we are not going to discuss them in much detail here.

5.3.3 Defining Classes: Using Set Operators

In the previous sections, we have defined classes by placing constraints on proper-
ties, including property value constraints and cardinality constraints. OWL 1 also
gives us the ability to construct classes by using set operators. In this section, we
will briefly introduce these operators so you have more choices when it comes to
defining classes.

5.3.3.1 Set Operators

The first operator is owl:intersectionOf. Recall the definition of
ExpensiveDSLR presented in List 5.5; we can re-write this definition as
shown in List 5.9.

5.3 OWL 1 Web Ontology Language 173

List 5.9 Definition of class ExpensiveDSLR using owl:intersectionOf

1: <owl:Class
1a: rdf:about="http://www.liyangyu.com/camera#ExpensiveDSLR">
2: <owl:intersectionOf rdf:parseType="Collection">
3: <owl:Class rdf:about="#DSLR"/>
4: <owl:Restriction>
5: <owl:onProperty rdf:resource="#cost"/>
6: <owl:hasValue rdf:datatype=
6a: "http://www.w3.org/2001/XMLSchema#string">
7: expensive
8: </owl:hasValue>
9: </owl:Restriction>
10: </owl:intersectionOf>
11: </owl:Class>

Based on what we have learned so far, List 5.9 is quite straightforward: lines
4–9 define an anonymous class using owl:Restriction pattern, this class repre-
sents all the individuals that have cost property, and the value for this property is
expensive. Line 3 includes class DSLR into the picture, which represents all the
DSLR cameras. Line 2 then claims the new class, ExpensiveDSLR, represents all
the individuals that are in the intersection of these two sets of individuals. Therefore,
we can read List 5.9 as follows:

A class called ExpensiveDSLR is defined. It is the intersection of DSLR class and
an anonymous class which has a property called cost, and this property has the value
expensive.

Or, we can simply read List 5.9 as this:

A class called ExpensiveDSLR is defined. It is a DSLR that cost is expensive.

So what is the difference between Lists 5.5 and 5.9? Note that List 5.5 uses
multiple owl:subClassOf terms, and in OWL 1, this means qualified individuals
should all come from a subset of the final intersection of all the classes specified by
the multiple owl:subClassOf terms. On the other hand, List 5.9 means that qual-
ified individuals should all come from the final intersection of the classes included
in the class collection (line 2 of List 5.9). So there is indeed some subtle difference
between these two definitions. However, as far as reasoning is concerned, these two
definitions will produce the same inferred facts.

The second operator is owl:unionOf operator. For example, although most pho-
tographers today will mainly use digital cameras, still they may keep their film
cameras around in case they do need them. Therefore if we define a class called
CameraCollection to represent a photographer’s camera collection, it could be
defined as shown in List 5.10.

List 5.10 Definition of class CameraCollection using owl:unionOf

1: <owl:Class
1a: rdf:about="http://www.liyangyu.com/camera#CameraCollection">
2: <owl:unionOf rdf:parseType="Collection">

174 5 OWL: Web Ontology Language

3: <owl:Class rdf:about="#Digital"/>
4: <owl:Class rdf:about="#Film"/>
5: </owl:unionOf>
6: </owl:Class>

List 5.10 says CameraCollection should include both the extension of
Digital and the extension of Film, and clearly, this is exactly what we want.

The last set operator is owl:complementOf operator. A good example is the set
of professional photographers and the set of amateur photographers; they are exactly
complement of each other. Therefore, we can re-write the definition of Amateur
photographer as shown in List 5.11.

List 5.11 Definition of class Amateur using owl:complementOf

1: <owl:Class rdf:about="http://www.liyangyu.com/camera#Amateur">
2: <owl:intersectionOf rdf:parseType="Collection">
3: <owl:Class rdf:about="http://xmlns.com/foaf/0.1/Person"/>
4: <owl:Class>
5: <owl:complementOf rdf:resource="#Professional"/>
6: </owl:Class>
7: </owl:intersectionOf>
8: </owl:Class>

This says that an Amateur is a Person who is not a Professional, and note
we have used owl:intersectionOf as well to make the definition correct.

5.3.3.2 Enhanced Reasoning Power 5

Like other OWL 1 language features, using set operators to define class also pro-
vides enhanced reasoning power. Since there is indeed quite a few related to using
set operators, we will discuss the related ones without using concrete examples.

More specifically, the following are some of these enhanced reasoning
conditions:

• If a class C0 is the owl:intersectionOf a list of classes C1, C2, and C3, then
C0 is sub-class of each one of C1, C2, and C3.

• If a class A is the owl:intersectionOf a list of classes and class B is the
owl:intersectionOf another list of classes, class A is a sub-class of class B if
every constituent class of A is a sub-class of some constituent class of B.

• If a class C0 is the owl:unionOf a list of classes C1, C2, and C3, then each one
of C1, C2, and C3 is a sub-class of C0.

• If a class A is the owl:unionOf a list of classes and class B is the owl:unionOf
another list of classes, class A is a sub-class of class B if every constituent class
of B is a super class of some constituent class of A.

• If a class A is owl:complementOf a class B, then all the sub-classes of A will be
owl:disjointWith class B.

Note that this is not a complete list, but the above will give you some idea about
reasoning based on set operators.

5.3 OWL 1 Web Ontology Language 175

5.3.4 Defining Classes: Using Enumeration, Equivalent,
and Disjoint

Besides all the methods we have learned so far about defining classes, OWL 1 still
has more ways we can use:

• construct a class by enumerating its instances;
• specify a class is equivalent to another class; and
• specify a class is disjoint from another class.

And we will discuss the details in this section.

5.3.4.1 Enumeration, Equivalent, and Disjoint

Defining classes by enumeration could be quite useful for many cases. To see why,
let us recall the methods we have used when defining the ExpensiveDSLR class. So
far we have defined the class ExpensiveDSLR by saying that it has to be owned by
a professional photographer or its cost property has to take the value expensive,
etc. All these methods are a descriptive way to define a class: as long as an instance
satisfies all the conditions, it is a member of the defined class.

The drawback of this descriptive method is the fact that there could be a large
number of instances qualified, and sometimes, it takes computing time to make the
decision of qualification. In some cases, it will be more efficient and useful if we can
explicitly enumerate which are the qualified members, which will simply present a
more accurate semantics for many applications. owl:oneOf property provided by
OWL 1 can be used to accomplish this. List 5.12 shows how.

List 5.12 Definition of class ExpensiveDSLR using owl:oneOf

1: <owl:Class
1a: rdf:about="http://www.liyangyu.com/camera#

ExpensiveDSLR">
2: <rdfs:subClassOf rdf:resource="#DSLR"/>
3: <owl:oneOf rdf:parseType="Collection">
4: <myCamera:DSLR
4a: rdf:about="http://dbpedia.org/resource/Nikon_D3"/>
5: <myCamera:DSLR
5a: rdf:about="http://dbpedia.org/resource/Canon_EOS-1D"/>
6: </owl:oneOf>
7:</owl:Class>

It is important to understand that no other individuals can be included in the
extension of class ExpensiveDSLR, except for the instances listed in lines 4 and 5.
Therefore, if you do decide to use enumeration to define this class, you might want
to add more instances there. Also, note that Nikon_D3 (line 4) is not a typo; it is
indeed a quite expensive DSLR, and this URI is taken from DBpedia project, similar
as the URI in line 5.

176 5 OWL: Web Ontology Language

Since each individual is referenced by its URI, it is fine not to use a specific
type for it, and just use owl:Thing instead. Therefore, List 5.13 is equivalent to
List 5.12.

List 5.13 Definition of class ExpensiveDSLR using owl:oneOf

1: <owl:Class
1a: rdf:about="http://www.liyangyu.com/camera#ExpensiveDSLR">
2: <rdfs:subClassOf rdf:resource="#DSLR"/>
3: <owl:oneOf rdf:parseType="Collection">
4: <owl:Thing
4a: rdf:about="http://dbpedia.org/resource/Nikon_D3"/>
5: <owl:Thing
5a: rdf:about="http://dbpedia.org/resource/Canon_EOS-1D"/>
6: </owl:oneOf>
7:</owl:Class>

Last thing to remember is the syntax: we need to use owl:oneOf together with
rdf:parseType to tell the parser that we are in fact enumerating all the members
of the class being defined.

We can also define a class by using owl:equivalentClass property, which
indicates that two classes have precisely the same instances. For example, List 5.14
declares another class called DigitalSLR, and it is exactly the same as DSLR class.

List 5.14 Use owl:equivalentClass to define class DigitalSLR

1: <owl:Class
1a: rdf:about="http://www.liyangyu.com/camera#DigitalSLR">
2: <owl:equivalentClass rdf:resource="#DSLR"/>
3: </owl:Class>

More often, property owl:equivalentClass is used to explicitly declare
that two classes in two different ontology documents are in fact equivalent
classes. For example, if another ontology document defines a class called
DigitalSingleLensReflex, and we would like to claim our class DSLR is
equivalent to this class, we can accomplish this as shown in List 5.15.

List 5.15 Use owl:equivalentClass to specify two classes are equivalent

1: <owl:Class rdf:about="http://www.liyangyu.com/camera#DSLR">
2: <rdfs:subClassOf rdf:resource="#Digital"/>
3: <owl:equivalentClass rdf:resource=
3a: "http://www.example.org#DigitalSingleLensReflex"/>
4: </owl:Class>

Now, in any RDF document, if we have described an instance that is of type
DSLR, it is also an instance of type DigitalSingleLensReflex.

Finally, OWL 1 also provides a way to define the fact that the two classes are
not related in any way. For instance, in our camera ontology, we have defined

5.3 OWL 1 Web Ontology Language 177

DSLR and PointAndShoot as sub-classes of Digital. To make things simpler
and without worrying the fact that a DSLR camera in many cases can be simply
used as a PointAndShoot camera, we can define DSLR to be disjoint from the
PointAndShoot class, as shown in List 5.16.

List 5.16 Use owl:disjointWith to specify two classes are disjoint

1: <owl:Class rdf:about="http://www.liyangyu.com/camera#DSLR">
2: <rdfs:subClassOf rdf:resource="#Digital"/>
3: <owl:equivalentClass rdf:resource=
3a: "http://www.example.org#DigitalSingleLensReflex"/>
4: <owl:disjointWith rdf:resource="#PointAndShoot"/>
5: </owl:Class>

Once a given application sees this definition, it will understand that any instance
of DSLR can never be an instance of the PointAndShoot camera. Also note that
owl:disjointWith by default is symmetric property (more on this later): if DSLR
is disjoint with PointAndShoot, then PointAndShoot is disjoint with DSLR.

5.3.4.2 Enhanced Reasoning Power 6

Similar to set operators, we will list some related reasoning powers here without
using concrete examples:

• If a class C0 is owl:oneOf a list of classes C1, C2, and C3, then each of C1, C2,
and C3 has rdf:type given by C0.

• If a class A is owl:equivalentClass to class B, then an owl:sameAs

relationship will be asserted between these two classes.
• If a class A is owl:disjointWith class B, then any sub-class of A will be

owl:disjointWith with class B.

Again, this is certainly not a complete list, and you will see others in your future
work for sure.

5.3.5 Our Camera Ontology So Far

Let us summarize our latest camera ontology (with only the class definitions) as
shown in List 5.17. Note in previous sections, in order to show the related language
features of OWL 1, we have discussed different ways to define classes. To avoid
unnecessary complexities, we have not included all of them into our current camera
ontology.

List 5.17 Our current camera ontology, with class definitions only

1: <?xml version="1.0"?>
2: <!DOCTYPE rdf:RDF [
3: <!ENTITY owl "http://www.w3.org/2002/07/owl#" >
4: <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

178 5 OWL: Web Ontology Language

5: <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
6: <!ENTITY myCamera "http://www.liyangyu.com/camera#" >
7:]>
8:
9: <rdf:RDF
9a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
10: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
11: xmlns:owl="http://www.w3.org/2002/07/owl#"
12: xmlns:myCamera="http://www.liyangyu.com/camera#"
13: xml:base="http://www.liyangyu.com/camera#">
14:
15: <owl:Class rdf:about="&myCamera;Camera">
16: <rdfs:subClassOf>
17: <owl:Restriction>
18: <owl:onProperty rdf:resource="&myCamera;model"/>
19: <owl:minCardinality
19a: rdf:datatype="&xsd;nonNegativeInteger">
20: 1
21: </owl:minCardinality>
22: </owl:Restriction>
23: </rdfs:subClassOf>
24: </owl:Class>
25:
26: <owl:Class rdf:about="&myCamera;Lens">
27: </owl:Class>
28:
29: <owl:Class rdf:about="&myCamera;Body">
30: </owl:Class>
31:
32: <owl:Class rdf:about="&myCamera;ValueRange">
33: </owl:Class>
34:
35: <owl:Class rdf:about="&myCamera;Digital">
36: <rdfs:subClassOf rdf:resource="&myCamera;Camera"/>
37: <rdfs:subClassOf>
38: <owl:Restriction>
39: <owl:onProperty
39a: rdf:resource="&myCamera;effectivePixel"/>
40: <owl:cardinality
40a: rdf:datatype="&xsd;nonNegativeInteger">
41: 1
42: </owl:cardinality>
43: </owl:Restriction>
44: </rdfs:subClassOf>
45: </owl:Class>
46:
47: <owl:Class rdf:about="&myCamera;Film">
48: <rdfs:subClassOf rdf:resource="&myCamera;Camera"/>
49: </owl:Class>
50:
51: <owl:Class rdf:about="&myCamera;DSLR">
52: <rdfs:subClassOf rdf:resource="&myCamera;Digital"/>

5.3 OWL 1 Web Ontology Language 179

53: </owl:Class>
54:
55: <owl:Class rdf:about="&myCamera;PointAndShoot">
56: <rdfs:subClassOf rdf:resource="&myCamera;Digital"/>
57: </owl:Class>
58:
59: <owl:Class rdf:about="&myCamera;Photographer">
60: <rdfs:subClassOf
60a: rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
61: </owl:Class>
62:
63: <owl:Class rdf:about="&myCamera;Professional">
64: <rdfs:subClassOf rdf:resource="&myCamera;Photographer"/>
65: </owl:Class>
66:
67: <owl:Class rdf:about="&myCamera;Amateur">
68: <owl:intersectionOf rdf:parseType="Collection">
69: <owl:Class rdf:about="http://xmlns.com/foaf/0.1/Person"/>
70: <owl:Class>
71: <owl:complementOf
71a: rdf:resource="&myCamera;Professional"/>
72: </owl:Class>
73: </owl:intersectionOf>
74: </owl:Class>
75:
76: <owl:Class rdf:about="&myCamera;ExpensiveDSLR">
77: <rdfs:subClassOf rdf:resource="&myCamera;DSLR"/>
78: <rdfs:subClassOf>
79: <owl:Restriction>
80: <owl:onProperty rdf:resource="&myCamera;owned_by"/>
81: <owl:someValuesFrom
81a: rdf:resource="&myCamera;Professional"/>
82: </owl:Restriction>
83: </rdfs:subClassOf>
84: </owl:Class>
85:
86: </rdf:RDF>

5.3.6 Define Properties: The Basics

Up to this point, for our project of re-writing the camera ontology using OWL 1, we
have finished defining the necessary classes. It is now time to define all the necessary
properties.

Recall when creating ontologies using RDF Schema, we have the following terms
to use when it comes to describing a property:

rdfs:domain

rdfs:range

rdfs:subPropertyOf

180 5 OWL: Web Ontology Language

With only three terms, a given application already shows impressive reasoning
power. And more importantly, as we have seen in Chap. 4, most of the reasoning
power comes from the understanding of the properties by the application.

This shows an important fact: richer semantics embedded into the properties will
directly result in greater reasoning capabilities. This is the reason why OWL 1,
besides continuing to use these three methods, has greatly enhanced the ways to
characterize a property, as we will see in this section.

The first thing to note is the fact that defining properties using OWL 1 is quite dif-
ferent from defining properties using RDF Schema. More specifically, when using
RDFS terms, the general procedure is to define the property first and then use it
to connect two things together: a given property can either connect one resource
to another resource or connect one resource to a typed or un-typed value. Both
connections are done by using the term rdf:Property.

In the world of OWL 1, two different classes are used to implement these two
different connections:

• owl:ObjectProperty is used to connect a resource to another resource;
• owl:DatatypePropery is used to connect a resource to an rdfs:

Literal (un-typed) or an XML Schema built-in datatype (typed) value.

In addition, owl:ObjectProperty and owl:DatatypeProperty are both
sub-classes of rdf:Property. For example, List 5.18 shows the definitions of
owned_by property and model property (taken from List 4.13).

List 5.18 Definitions of owned_by and model property, as shown in List 4.13

<rdf:Property
rdf:about="http://www.liyangyu.com/camera#owned_by">

<rdfs:domain rdf:resource="#DSLR"/>
<rdfs:range rdf:resource="#Photographer"/>

</rdf:Property>

<rdf:Property rdf:about="http://www.liyangyu.com/camera#model">
<rdfs:domain rdf:resource="#Camera"/>
<rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
</rdf:Property>
<rdfs:Datatype

rdf:about="http://www.w3.org/2001/XMLSchema#string"/>
In OWL 1, these definitions will look like the ones shown in List 5.19.

List 5.19 Use OWL 1 terms to define owned_by and model property

<owl:ObjectProperty
rdf:about="http://www.liyangyu.com/

camera#owned_by">
<rdfs:domain rdf:resource="#DSLR"/>
<rdfs:range rdf:resource="#Photographer"/>

</owl:ObjectProperty>

5.3 OWL 1 Web Ontology Language 181

<owl:DatatypeProperty
rdf:about="http://www.liyangyu.com/

camera#model">
<rdfs:domain rdf:resource="#Camera"/>
<rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
</owl:DatatypeProperty>
<rdfs:Datatype

rdf:about="http://www.w3.org/2001/XMLSchema#string"/>

Note that except using owl:ObjectProperty and owl:DatatypeProperty,
the basic syntax of defining properties in both RDF Schema and OWL 1 is quite
similar. In fact, at this moment, we can go ahead and define all the properties
that appear in List 4.13. After defining these properties, we have a whole camera
ontology written in OWL 1 on our hand. Our finished camera ontology is given in
List 5.20.

List 5.20 Our camera ontology defined in OWL 1

1: <?xml version="1.0"?>
2: <!DOCTYPE rdf:RDF [
3: <!ENTITY owl "http://www.w3.org/2002/07/owl#" >
4: <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
5: <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
6: <!ENTITY myCamera "http://www.liyangyu.com/camera#" >
7:]>
8:
9: <rdf:RDF
9a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
10: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
11: xmlns:owl="http://www.w3.org/2002/07/owl#"
12: xmlns:myCamera="http://www.liyangyu.com/camera#"
13: xml:base="http://www.liyangyu.com/camera#">
14:
15: <owl:Class rdf:about="&myCamera;Camera">
16: <rdfs:subClassOf>
17: <owl:Restriction>
18: <owl:onProperty rdf:resource="&myCamera;model"/>
19: <owl:minCardinality
19a: rdf:datatype="&xsd;nonNegativeInteger">
20: 1
21: </owl:minCardinality>
22: </owl:Restriction>
23: </rdfs:subClassOf>
24: </owl:Class>
25:
26: <owl:Class rdf:about="&myCamera;Lens">
27: </owl:Class>
28:
29: <owl:Class rdf:about="&myCamera;Body">
30: </owl:Class>

182 5 OWL: Web Ontology Language

31:
32: <owl:Class rdf:about="&myCamera;ValueRange">
33: </owl:Class>
34:
35: <owl:Class rdf:about="&myCamera;Digital">
36: <rdfs:subClassOf rdf:resource="&myCamera;Camera"/>
37: <rdfs:subClassOf>
38: <owl:Restriction>
39: <owl:onProperty
39a: rdf:resource="&myCamera;effectivePixel"/>
40: <owl:cardinality
40a: rdf:datatype="&xsd;nonNegativeInteger">
41: 1
42: </owl:cardinality>
43: </owl:Restriction>
44: </rdfs:subClassOf>
45: </owl:Class>
46:
47: <owl:Class rdf:about="&myCamera;Film">
48: <rdfs:subClassOf rdf:resource="&myCamera;Camera"/>
49: </owl:Class>
50:
51: <owl:Class rdf:about="&myCamera;DSLR">
52: <rdfs:subClassOf rdf:resource="&myCamera;Digital"/>
53: </owl:Class>
54:
55: <owl:Class rdf:about="&myCamera;PointAndShoot">
56: <rdfs:subClassOf rdf:resource="&myCamera;Digital"/>
57: </owl:Class>
58:
59: <owl:Class rdf:about="&myCamera;Photographer">
60: <rdfs:subClassOf
60a: rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
61: </owl:Class>
62:
63: <owl:Class rdf:about="&myCamera;Professional">
64: <rdfs:subClassOf rdf:resource="&myCamera;Photographer"/>
65: </owl:Class>
66:
67: <owl:Class rdf:about="&myCamera;Amateur">
68: <owl:intersectionOf rdf:parseType="Collection">
69: <owl:Class
69a: rdf:about="http://xmlns.com/foaf/0.1/Person"/>
70: <owl:Class>
71: <owl:complementOf
71a: rdf:resource="&myCamera;Professional"/>
72: </owl:Class>
73: </owl:intersectionOf>
74: </owl:Class>
75:
76: <owl:Class rdf:about="&myCamera;ExpensiveDSLR">

5.3 OWL 1 Web Ontology Language 183

77: <rdfs:subClassOf rdf:resource="&myCamera;DSLR"/>
78: <rdfs:subClassOf>
79: <owl:Restriction>
80: <owl:onProperty rdf:resource="&myCamera;owned_by"/>
81: <owl:someValuesFrom
81a: rdf:resource="&myCamera;Professional"/>
82: </owl:Restriction>
83: </rdfs:subClassOf>
84: </owl:Class>
85:
86: <owl:ObjectProperty rdf:about="&myCamera;owned_by">
87: <rdfs:domain rdf:resource="&myCamera;DSLR"/>
88: <rdfs:range rdf:resource="&myCamera;Photographer"/>
89: </owl:ObjectProperty>
90:
91: <owl:ObjectProperty rdf:about="&myCamera;manufactured_by">
92: <rdfs:domain rdf:resource="&myCamera;Camera"/>
93: </owl:ObjectProperty>
94:
95: <owl:ObjectProperty rdf:about="&myCamera;body">
96: <rdfs:domain rdf:resource="&myCamera;Camera"/>
97: <rdfs:range rdf:resource="&myCamera;Body"/>
98: </owl:ObjectProperty>
99:
100: <owl:ObjectProperty rdf:about="&myCamera;lens">
101: <rdfs:domain rdf:resource="&myCamera;Camera"/>
102: <rdfs:range rdf:resource="&myCamera;Lens"/>
103: </owl:ObjectProperty>
104:
105: <owl:DatatypeProperty rdf:about="&myCamera;model">
106: <rdfs:domain rdf:resource="&myCamera;Camera"/>
107: <rdfs:range rdf:resource="&xsd;string"/>
108: </owl:DatatypeProperty>
109: <rdfs:Datatype rdf:about="&xsd;string"/>
110:
111: <owl:ObjectProperty rdf:about="&myCamera;effectivePixel">
112: <rdfs:domain rdf:resource="&myCamera;Digital"/>
113: <rdfs:range rdf:resource="&myCamera;MegaPixel"/>
114: </owl:ObjectProperty>
115: <rdfs:Datatype rdf:about="&myCamera;MegaPixel">
116: <rdfs:subClassOf rdf:resource="&xsd;decimal"/>
117: </rdfs:Datatype>
118:
119: <owl:ObjectProperty rdf:about="&myCamera;shutterSpeed">
120: <rdfs:domain rdf:resource="&myCamera;Body"/>
121: <rdfs:range rdf:resource="&myCamera;ValueRange"/>
122: </owl:ObjectProperty>
123:
124: <owl:DatatypeProperty rdf:about="&myCamera;focalLength">
125: <rdfs:domain rdf:resource="&myCamera;Lens"/>
126: <rdfs:range rdf:resource="&xsd;string"/>

184 5 OWL: Web Ontology Language

127: </owl:DatatypeProperty>
128: <rdfs:Datatype rdf:about="&xsd;string"/>
129:
130: <owl:ObjectProperty rdf:about="&myCamera;aperture">
131: <rdfs:domain rdf:resource="&myCamera;Lens"/>
132: <rdfs:range rdf:resource="&myCamera;ValueRange"/>
133: </owl:ObjectProperty>
134:
135: <owl:DatatypeProperty rdf:about="&myCamera;minValue">
136: <rdfs:domain rdf:resource="&myCamera;ValueRange"/>
137: <rdfs:range rdf:resource="&xsd;float"/>
138: </owl:DatatypeProperty>
139: <rdfs:Datatype rdf:about="&xsd;float"/>
140:
141: <owl:DatatypeProperty rdf:about="&myCamera;maxValue">
142: <rdfs:domain rdf:resource="&myCamera;ValueRange"/>
143: <rdfs:range rdf:resource="&xsd;float"/>
144: </owl:DatatypeProperty>
145: <rdfs:Datatype rdf:about="&xsd;float"/>
146:
147: </rdf:RDF>

At this point, we have just finished re-writing our camera ontology using OWL 1
by adding the property definitions. Compared to the ontology defined using RDFS
(List 4.13), List 5.20 includes a couple of new classes. I will leave it to you to update
Fig. 4.3 to show these changes.

Now, this is only part of the whole picture. OWL 1 provides much richer features
when it comes to property definitions. We will discuss these features in detail in the
next several sections, but here is a quick look at these features:

• Property can be symmetric.
• Property can be transitive.
• Property can be functional.
• Property can be inverse functional.
• Property can be the inverse of another property.

5.3.7 Defining Properties: Property Characteristics

5.3.7.1 Symmetric Properties

A symmetric property describes the situation where if a resource R1 is connected
to resource R2 by property P, then resource R2 is also connected to resource
R1 by the same property. For instance, we can define a property friend_with

for Photographer class, and if photographer A is friend_with photographer
B, photographer B is certainly friend_with photographer A. This is shown in
List 5.21.

5.3 OWL 1 Web Ontology Language 185

List 5.21 Example of symmetric property

1: <owl:ObjectProperty
1a: rdf:about="http://www.liyangyu.com/camera#friend_with">
2: <rdf:type rdf:resource=
2a: "http://www.w3.org/2002/07/owl#SymmetricProperty"/>
3: <rdfs:domain rdf:resource="#Photographer"/>
4: <rdfs:range rdf:resource="#Photographer"/>
5:</owl:ObjectProperty>

The key to indicate this property is a symmetric property lies in line 2. The def-
inition in List 5.21 is as follows: friend_with is an object property which should
be used to describe instances of class Photographer, its values are also instances
of class Photographer, and it is a symmetric property.

Note that List 5.21 does have a simpler form, as shown in List 5.22.

List 5.22 Example of symmetric property using a simpler form

1: <owl:SymmetricProperty
1a: rdf:about="http://www.liyangyu.com/camera#friend_with">
2: <rdfs:domain rdf:resource="#Photographer"/>
3: <rdfs:range rdf:resource="#Photographer"/>
4: </owl:SymmetricProperty>

It is important to know and understand the long form shown in List 5.21. One
case this long form is useful is the case where you need to define a property to
be of several types, for example, a property that is symmetric and also functional
(functional property will be explained soon). In that case, the long form is the choice,
and we just have to use multiple rdf:type elements.

Note that owl:SymmetricProperty is a sub-class of owl:ObjectProperty.
Therefore, rdfs:range of a symmetric property can only be a resource and cannot
be a literal or datatype.

5.3.7.2 Enhanced Reasoning Power 7

Our application sees the following instance document:

<myCamera:Photographer
rdf:about="http://www.liyangyu.com/people#Liyang">

<myCamera:friend_with
rdf:resource="http://www.liyangyu.com/people#Connie"/>

</myCamera:Photographer>

The application will be able to add the following two statements:

<http://www.liyangyu.com/people#Connie> rdf:type

myCamera:Photographer.

<http://www.liyangyu.com/people#Connie> myCamera:friend_with

<http://www.liyangyu.com/people#Liyang>.

186 5 OWL: Web Ontology Language

5.3.7.3 Transitive Properties

A transitive property describes the situation where if a resource R1 is connected to
resource R2 by property P, and resource R2 is connected to resource R3 by the same
property, then resource R1 is also connected to resource R3 by property P.

This can be a very useful feature in some cases. For example, photography is a
fairly expensive hobby for most of us, and which camera to buy depends on which
one can offer a better ratio of quality over price. Therefore, even if a given camera
is very expensive, since it can provide excellent quality and performance, the ratio
could be still high. On the other hand, a point-and-shoot camera has a very appeal-
ing price but it may not offer you that much room to discover your creative side,
therefore may not have a high ratio at all.

Let us define a new property called betterQPRatio to capture this part of the
knowledge in our camera ontology. Obviously, this property should be able to pro-
vide us a way to compare two different cameras. Furthermore, we will also declare
it to be a transitive property, therefore if camera A is betterQPRatio than camera
B, and camera B is betterQPRatio than camera C, it should be true that Camera A
is betterQPRatio than camera C.

List 5.23 shows the syntax we use in OWL 1 to define such a property.

List 5.23 Example of transitive property

1: <owl:ObjectProperty
1a: rdf:about="http://www.liyangyu.com/camera#betterQPRatio">
2: <rdf:type rdf:resource=
2a: "http://www.w3.org/2002/07/owl#TransitiveProperty"/>
3: <rdfs:domain rdf:resource="#Camera"/>
4: <rdfs:range rdf:resource="#Camera"/>
5: </owl:ObjectProperty>

Not much explanation is needed. Again, owl:TransitiveProperty is a sub-
class of owl:ObjectProperty. Therefore, rdfs:range of a transitive property
can only be a resource and cannot be a literal or datatype.

5.3.7.4 Enhanced Reasoning Power 8

Our application collects the following statement from one instance document:

<myCamera:DSLR
rdf:about="http://www.liyangyu.com/camera#Nikon_D300">

<myCamera:betterQPRatio
rdf:resource="http://www.liyangyu.com/camera#Nikon_D70"/>

</myCamera:DSLR>

and in another RDF document, our application finds this statement:

<DSLR rdf:about="http://www.liyangyu.com/camera#Nikon_D70"
xmlns="http://www.liyangyu.com/camera#">

<betterQPRatio>

<DSLR rdf:about=

5.3 OWL 1 Web Ontology Language 187

"http://www.liyangyu.com/camera#Nikon_D40"/>

</betterQPRatio>

</DSLR>

our application will add the following statement:

<http://www.liyangyu.com/camera#Nikon_D300>

myCamera:betterQPRatio

<http://www.liyangyu.com/camera#Nikon_D40>.

Note the usage of the namespace in the second instance file. Since the namespace
attribute (xmlns) is added, there is no need to use QNames, which is used in the first
instance file.

Furthermore, although these two statements are from two different instance files,
still our application is able to draw the conclusion based on our camera ontology.
Clearly, distributed information over the Web is integrated and processed by the
machine because of two facts: first, we have expressed the related knowledge in our
ontology; second, even the information is distributed all over the Web, but the idea
of using URIs to identify resources is the clue that connects them all.

5.3.7.5 Functional Properties

A functional property describes the situation where for any given instance there is at
most one value for that property. In other words, it defines a many-to-one relation:
there is at most one unique rdfs:range value for each rdfs:domain instance.

A good example would be our manufactured_by property. A camera includes a
lens and a camera body, both of which include a number of different parts, and these
parts can indeed be made in different countries around the world. If we ignore this
complexity at this point, we can simply say that one given camera can only have one
manufacturer, such as Nikon D300 is manufactured by Nikon Corporation. Clearly,
different cameras can be manufactured by the same manufacturer.

List 5.24 shows a revised definition of manufactured_by property.

List 5.24 Example of functional property

1: <owl:ObjectProperty
1a: rdf:about="http://www.liyangyu.com/camera#manufactured_by">
2: <rdf:type rdf:resource=
2a: "http://www.w3.org/2002/07/owl#FunctionalProperty"/>
3: <rdfs:domain rdf:resource="#Camera"/>
4: </owl:ObjectProperty>

To see another example of functional property, let us revisit the definition of
property effectivePixel. Clearly, for a given digital camera, it has only one
effectivePixel value, and we have indicated this fact by defining Digital and
effectivePixel as shown in List 5.25.

188 5 OWL: Web Ontology Language

List 5.25 Definitions of Digital class and effectivePixel property

<owl:Class rdf:about="http://www.liyangyu.com/camera#Digital">
<rdfs:subClassOf rdf:resource="#Camera"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#effectivePixel"/>
<owl:cardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#nonNegativeInteger">
1

</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

<owl:ObjectProperty
rdf:about="http://www.liyangyu.com/camera#effectivePixel">

<rdfs:domain rdf:resource="#Digital"/>
<rdfs:range

rdf:resource="http://www.liyangyu.com/camera#MegaPixel"/>
</owl:ObjectProperty>
<rdfs:Datatype

rdf:about="http://www.liyangyu.com/camera#MegaPixel">
<rdfs:subClassOf

rdf:resource="http://www.w3.org/2001/XMLSchema#decimal"/>
</rdfs:Datatype>

As you can see, owl:cardinality is used to accomplish the goal. In fact, this
is equivalent to the following definitions shown in List 5.26.

List 5.26 Definition of Digital class and effectivePixel property
(equivalent to List 5.25)

<owl:Class rdf:about="http://www.liyangyu.com/camera#Digital">
<rdfs:subClassOf rdf:resource="#Camera"/>

</owl:Class>

<owl:FunctionalProperty
rdf:about="http://www.liyangyu.com/camera#effectivePixel">

<rdfs:domain rdf:resource="#Digital"/>
<rdfs:range

rdf:resource="http://www.liyangyu.com/camera#MegaPixel"/>
</owl:FunctionalProperty>
<rdfs:Datatype

rdf:about="http://www.liyangyu.com/camera#MegaPixel">
<rdfs:subClassOf

rdf:resource="http://www.w3.org/2001/XMLSchema#decimal"/>
</rdfs:Datatype>

Therefore, a class with a property that has an owl:cardinality equal to 1 is
the same as the class which has the same property defined as a functional property.
OWL not only provides us with a much richer vocabulary to express more complex
knowledge, but also gives us different routes to accomplish the same goal.

5.3 OWL 1 Web Ontology Language 189

Note that owl:FunctionalProperty is a sub-class of rdf:Property.
Therefore, rdfs:range of a functional property can be a resource, a literal, or a
datatype.

5.3.7.6 Enhanced Reasoning Power 9

Our application collects the following statement from one instance document:

<myCamera:DSLR
rdf:about="http://www.liyangyu.com/camera#Nikon_D300">

<myCamera:manufactured_by
rdf:resource="http://dbpedia.org/resource/Nikon"/>

</myCamera:DSLR>

and in another RDF document, our application finds this statement:

<DSLR rdf:about="http://www.liyangyu.com/camera#Nikon_D300"
xmlns="http://www.liyangyu.com/camera#">

<manufactured_by rdf:resource=
"http://www.freebase.com/view/en/nikon"/>

</DSLR>

our application will add the following statement:

<http://dbpedia.org/resource/Nikon> owl:sameAs

<http://www.freebase.com/view/en/nikon>.

Since property manufactured_by is defined as functional property, and
since the two instance files are both describing the same resource identified by
myCamera:Nikon_D300, it is therefore straightforward to see the reason why the
above statement can be inferred.

Note that the URI http://dbpedia.org/resource/Nikon, coined by
DBpedia, represents Nikon Corporation. Similarly, the following URI is created by
freebase8 to represent the same company,

http://www.freebase.com/view/en/nikon

and freebase is another experimental Web site in the area of the Semantic Web.
Understanding the fact these two URIs represent the same company in real life is
not a big deal for human minds and eyes. However, for machine to understand the
same fact is a great progress, and we can easily imagine how much this will help us
in a variety of applications.

5.3.7.7 Inverse Property

An inverse property describes the situation where if a resource R1 is connected to
resource R2 by property P, then the inverse property of P will connect resource R2
to resource R1.

8http://www.freebase.com/

190 5 OWL: Web Ontology Language

A good example in our camera ontology is the property owned_by. Clearly,
if a camera is owned_by a Photographer, then we can define an inverse property
of owned_by, say, own, to indicate that the Photographer own the camera. This
example is given in List 5.27.

List 5.27 Example of inverse property

1: <owl:ObjectProperty

1a: rdf:about="http://www.liyangyu.com/camera#owned_by">
2: <rdfs:domain rdf:resource="#DSLR"/>
3: <rdfs:range rdf:resource="#Photographer"/>
4: </owl:ObjectProperty>

5: <owl:ObjectProperty

5a: rdf:about="http://www.liyangyu.com/camera#own">
6: <owl:inverseOf rdf:resource="#owned_by"/>
7: <rdfs:domain rdf:resource="#Photographer"/>
8: <rdfs:range rdf:resource="#DSLR"/>
9: </owl:ObjectProperty>

Note that compared to the definition of property owned_by, property own’s
values for rdfs:domain and rdfs:range are flipped from that in owned_by.

Note the fact that owl:inverseOf is a property, not a class (recall that
owl:FunctionalProperty is a sub-class of rdf:Property). Therefore, it can-
not be used to connect any rdfs:domain to any rdfs:range; it is only used as a
constraint when some other property is being defined, as shown in List 5.27.

5.3.7.8 Enhanced Reasoning Power 10

Our application collects the following statement from a given instance document:

<myCamera:Photographer
rdf:about="http://www.liyangyu.com/people#Liyang">

<myCamera:own
rdf:resource="http://www.liyangyu.com/camera#Nikon_D300"/>

</myCamera:Photographer>

and once it realizes the fact that own is an inverse property of owned_by, it will add
the following statement, without us doing anything:

<http://www.liyangyu.com/camera#Nikon_D300> myCamera:owned_by

<http://www.liyangyu.com/people#Liyang>.

5.3.7.9 Inverse Functional Property

Recall the functional property discussed earlier: for a given rdfs:domain value,
there is a unique rdfs:range value. An inverse functional property, as its name
suggests, is just the opposite of functional property: for a given rdfs:range value,
the value of the rdfs:domain property must be unique.

5.3 OWL 1 Web Ontology Language 191

Let us go back to the camera review example, and also assume the reviewers
themselves are often photographers. We would like to assign a unique reviewer ID
to each photographer, so when they submit a review for a given camera, they can
add their reviewer IDs into the submitted RDF documents.

The reviewerID property, in this case, should be modeled as an inverse func-
tional property. Therefore, if two photographers have the same reviewerID, these
two photographers should be the same person. List 5.28 shows the definition of
reviewerID property.

List 5.28 Example of inverse functional property

1: <owl:DatatypeProperty
1a: rdf:about="http://www.liyangyu.com/camera#reviewerID">
2: <rdf:type rdf:resource=
2a: http://www.w3.org/2002/07/owl#InverseFunctionalProperty"/>
3: <rdfs:domain rdf:resource="#Photographer"/>
4: <rdfs:range
4a: rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
5: </owl:DatatypeProperty>
6: <rdfs:Datatype
6a: rdf:about="http://www.w3.org/2001/XMLSchema#string"/>

In fact, we can make an even stronger statement about photographers and their
reviewer IDs: not only is one reviewer ID used to identify just one photographer, but
each photographer has only one reviewer ID. Therefore, we can define reviewerID
property as both functional and inverse functional property as shown in List 5.29.

List 5.29 A property can be both a functional and inverse functional property

1: <owl:DatatypeProperty
1a: rdf:about="http://www.liyangyu.com/camera#reviewerID">
2: <rdf:type rdf:resource=
2a: "http://www.w3.org/2002/07/owl#FunctionalProperty"/>
3: <rdf:type rdf:resource=
3a: "http://www.w3.org/2002/07/owl#InverseFunctionalProperty"/>
4: <rdfs:domain rdf:resource="#Photographer"/>
5: <rdfs:range
5a: rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
6: </owl:DatatypeProperty>
7: <rdfs:Datatype
7a: rdf:about="http://www.w3.org/2001/XMLSchema#string"/>

It is important to understand the difference between functional and inverse func-
tional property. A good example you can use to make the difference clear is the birth
date property: any given person can have only one birth date, therefore, birth date
is a functional property. Is birth date property also an inverse functional property?
Certainly not, because many people can have the same birth date; if it were indeed
an inverse functional property, then for a given date, only one person could be born
on that date.

192 5 OWL: Web Ontology Language

Similarly, e-mail as a property should be an inverse functional property, because
an e-mail address belongs to only one person. However, e-mail cannot be a func-
tional property since one given person can have several e-mail accounts, like most
of us do.

Most ID-like properties are functional properties and inverse functional prop-
erties at the same time. For example, social security number, student ID, driver’s
license, and passport number, just to make a few.

Finally, note that owl:InverseFunctionalProperty is a sub-class of
rdf:Property. Therefore, rdfs:range of an inverse functional property can be
a resource, a literal, or a datatype.

5.3.7.10 Enhanced Reasoning Power 11

Our application collects the following statement from one instance document:

<myCamera:Photographer

rdf:about="http://www.liyangyu.com/camera#Liyang">
<myCamera:reviewerID>reviewer-0910</myCamera:reviewerID>

</myCamera:Photographer>

and in another RDF document, our application finds this statement:

<myCamera:Photographer

rdf:about="http://liyangyu.com/foaf.rdf#Liyang">
<myCamera:reviewerID>reviewer-0910</myCamera:reviewerID>

</myCamera:Photographer>

our application will add the following statement:

<http://www.liyangyu.com/camera#Liyang> owl:sameAs

<http://liyangyu.com/foaf.rdf#Liyang>.

Since property reviewerID is defined as inverse functional property, the reason
behind the above statement is obvious.

5.3.8 Camera Ontology Written Using OWL 1

At this point, we have covered most of the OWL 1 language features, and our current
version of the camera ontology is given in List 5.30. Note that the class definitions
are not changed (compared to List 5.17), but we have added some new properties
and also modified some existing properties.

List 5.30 Camera ontology written in OWL 1

1: <?xml version="1.0"?>
2: <!DOCTYPE rdf:RDF [
3: <!ENTITY owl "http://www.w3.org/2002/07/owl#" >
4: <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
5: <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

5.3 OWL 1 Web Ontology Language 193

6: <!ENTITY myCamera "http://www.liyangyu.com/camera#" >
7:]>
8:
9: <rdf:RDF
9a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
10: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
11: xmlns:owl="http://www.w3.org/2002/07/owl#"
12: xmlns:myCamera="http://www.liyangyu.com/camera#"
13: xml:base="http://www.liyangyu.com/camera#">
14:
15: <owl:Class rdf:about="&myCamera;Camera">
16: <rdfs:subClassOf>
17: <owl:Restriction>
18: <owl:onProperty rdf:resource="&myCamera;model"/>
19: <owl:minCardinality
20: rdf:datatype="&xsd;nonNegativeInteger">
21: 1
22: </owl:minCardinality>
23: </owl:Restriction>
24: </rdfs:subClassOf>
25: </owl:Class>
26:
27: <owl:Class rdf:about="&myCamera;Lens">
28: </owl:Class>
29:
30: <owl:Class rdf:about="&myCamera;Body">
31: </owl:Class>
32:
33: <owl:Class rdf:about="&myCamera;ValueRange">
34: </owl:Class>
35:
36: <owl:Class rdf:about="&myCamera;Digital">
37: <rdfs:subClassOf rdf:resource="&myCamera;Camera"/>
38: <rdfs:subClassOf>
39: <owl:Restriction>
40: <owl:onProperty
40a: rdf:resource="&myCamera;effectivePixel"/>
41: <owl:cardinality
42: rdf:datatype="&xsd;nonNegativeInteger">
43: 1
44: </owl:cardinality>
45: </owl:Restriction>
46: </rdfs:subClassOf>
47: </owl:Class>
48:
49: <owl:Class rdf:about="&myCamera;Film">
50: <rdfs:subClassOf rdf:resource="&myCamera;Camera"/>
51: </owl:Class>
52:
53: <owl:Class rdf:about="&myCamera;DSLR">
54: <rdfs:subClassOf rdf:resource="&myCamera;Digital"/>

194 5 OWL: Web Ontology Language

55: </owl:Class>
56:
57: <owl:Class rdf:about="&myCamera;PointAndShoot">
58: <rdfs:subClassOf rdf:resource="&myCamera;Digital"/>
59: </owl:Class>
60:
61: <owl:Class rdf:about="&myCamera;Photographer">
62: <rdfs:subClassOf
62a: rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
63: </owl:Class>
64:
65: <owl:Class rdf:about="&myCamera;Professional">
66: <rdfs:subClassOf rdf:resource="&myCamera;Photographer"/>
67: </owl:Class>
68:
69: <owl:Class rdf:about="&myCamera;Amateur">
70: <owl:intersectionOf rdf:parseType="Collection">
71: <owl:Class
71a: rdf:about="http://xmlns.com/foaf/0.1/Person"/>
72: <owl:Class>
73: <owl:complementOf
73a: rdf:resource="&myCamera;Professional"/>
74: </owl:Class>
75: </owl:intersectionOf>
76: </owl:Class>
77:
78: <owl:Class rdf:about="&myCamera;ExpensiveDSLR">
79: <rdfs:subClassOf rdf:resource="&myCamera;DSLR"/>
80: <rdfs:subClassOf>
81: <owl:Restriction>
82: <owl:onProperty rdf:resource="&myCamera;owned_by"/>
83: <owl:someValuesFrom
83a: rdf:resource="&myCamera;Professional"/>
84: </owl:Restriction>
85: </rdfs:subClassOf>
86: </owl:Class>
87:
88: <owl:ObjectProperty rdf:about="&myCamera;owned_by">
89: <rdfs:domain rdf:resource="&myCamera;DSLR"/>
90: <rdfs:range rdf:resource="&myCamera;Photographer"/>
91: </owl:ObjectProperty>
92:
93: <owl:ObjectProperty rdf:about="&myCamera;manufactured_by">
94: <rdf:type rdf:resource="&owl;FunctionalProperty"/>
95: <rdfs:domain rdf:resource="&myCamera;Camera"/>
96: </owl:ObjectProperty>
97:
98: <owl:ObjectProperty rdf:about="&myCamera;body">
99: <rdfs:domain rdf:resource="&myCamera;Camera"/>
100: <rdfs:range rdf:resource="&myCamera;Body"/>
101: </owl:ObjectProperty>

5.3 OWL 1 Web Ontology Language 195

102:
103: <owl:ObjectProperty rdf:about="&myCamera;lens">
104: <rdfs:domain rdf:resource="&myCamera;Camera"/>
105: <rdfs:range rdf:resource="&myCamera;Lens"/>
106: </owl:ObjectProperty>
107:
108: <owl:DatatypeProperty rdf:about="&myCamera;model">
109: <rdfs:domain rdf:resource="&myCamera;Camera"/>
110: <rdfs:range rdf:resource="&xsd;string"/>
111: </owl:DatatypeProperty>
112: <rdfs:Datatype rdf:about="&xsd;string"/>
113:
114: <owl:ObjectProperty rdf:about="&myCamera;effectivePixel">
115: <rdfs:domain rdf:resource="&myCamera;Digital"/>
116: <rdfs:range rdf:resource="&myCamera;MegaPixel"/>
117: </owl:ObjectProperty>
118: <rdfs:Datatype rdf:about="&myCamera;MegaPixel">
119: <rdfs:subClassOf rdf:resource="&xsd;decimal"/>
120: </rdfs:Datatype>
121:
122: <owl:ObjectProperty rdf:about="&myCamera;shutterSpeed">
123: <rdfs:domain rdf:resource="&myCamera;Body"/>
124: <rdfs:range rdf:resource="&myCamera;ValueRange"/>
125: </owl:ObjectProperty>
126:
127: <owl:DatatypeProperty rdf:about="&myCamera;focalLength">
128: <rdfs:domain rdf:resource="&myCamera;Lens"/>
129: <rdfs:range rdf:resource="&xsd;string"/>
130: </owl:DatatypeProperty>
131: <rdfs:Datatype rdf:about="&xsd;string"/>
132:
133: <owl:ObjectProperty rdf:about="&myCamera;aperture">
134: <rdfs:domain rdf:resource="&myCamera;Lens"/>
135: <rdfs:range rdf:resource="&myCamera;ValueRange"/>
136: </owl:ObjectProperty>
137:
138: <owl:DatatypeProperty rdf:about="&myCamera;minValue">
139: <rdfs:domain rdf:resource="&myCamera;ValueRange"/>
140: <rdfs:range rdf:resource="&xsd;float"/>
141: </owl:DatatypeProperty>
142: <rdfs:Datatype rdf:about="&xsd;float"/>
143:
144: <owl:DatatypeProperty rdf:about="&myCamera;maxValue">
145: <rdfs:domain rdf:resource="&myCamera;ValueRange"/>
146: <rdfs:range rdf:resource="&xsd;float"/>
147: </owl:DatatypeProperty>
148: <rdfs:Datatype rdf:about="&xsd;float"/>
149:
150: <owl:ObjectProperty rdf:about="&myCamera;own">
151: <owl:inverseOf rdf:resource="&myCamera;owned_by"/>
152: <rdfs:domain rdf:resource="&myCamera;Photographer"/>

196 5 OWL: Web Ontology Language

153: <rdfs:range rdf:resource="&myCamera;DSLR"/>
154: </owl:ObjectProperty>
155:
156: <owl:DatatypeProperty rdf:about="&myCamera;reviewerID">
157: <rdf:type rdf:resource="&owl;FunctionalProperty"/>
158: <rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>
159: <rdfs:domain rdf:resource="&myCamera;Photographer"/>
160: <rdfs:range rdf:resource="&xsd;string"/>
161: </owl:DatatypeProperty>
162: <rdfs:Datatype rdf:about="&xsd;string"/>
163:
164: </rdf:RDF>

5.4 OWL 2 Web Ontology Language

In this section, we will discuss the latest W3C standard, OWL 2 language. We will
first discuss the new features in general, and then move on to each individual lan-
guage feature. Similarly, we will use examples to illustrate the usage of these new
features.

5.4.1 What Is New in OWL 2?

OWL 2 offers quite an impressive list of new features, which can be roughly
categorized into the following five major categories:

1. Syntactic sugar to make some common statements easier to construct
The reason why these features are called syntactic sugar is because these new
constructs do not alter the reasoning process built upon the ontology that uses
these constructs, they are there to make the language easier to use. You will see
more details in the next few sections.

2. New constructs that improve expressiveness
These features will indeed increase the expressiveness. Examples include a col-
lection of new properties, such as reflexive property, irreflexive property, and
asymmetric property, just to name a few. Also, the new qualified cardinality con-
straints will greatly enhance the expressiveness of the language, so will the new
features such as property chains and keys.

3. Extended support for datatypes
This includes more built-in datatypes being offered by OWL 2. In addition, OWL
2 allows user to define their own datatypes when creating ontologies. As you will
see in later sections, these features can be very powerful to use.

4. Simple metamodeling capabilities and extended annotation capabilities
The metamodeling capability includes a new feature called punning. Annotation
is also quite powerful in OWL 2. More specifically, you can add annotation
to axioms, add domain and range information to annotation properties, add
annotation information to annotations themselves.

5.4 OWL 2 Web Ontology Language 197

5. New sub-languages: the profiles
Another feature offered by OWL 2 is its sub-languages, namely, OWL 2 EL,
OWL 2 QL and OWL 2 PL. These language profiles offer different level of
tradeoff between expressiveness and efficiency, and therefore offer more choices
to the users.

5.4.2 New Constructs for Common Patterns

This part of the new features are commonly referred to as the syntactic sugar, mean-
ing that these features are simply short-hands; they do not change the expressiveness
or the semantics. You can accomplish the same goals using OWL 1, but these con-
structs can make your ontology document more concise, as you will see in this
section.

5.4.2.1 Common Pattern: Disjointness

In OWL 1, we can use owl:disjointWith to specify the fact that two classes are
disjoint (see List 5.16). However, this can be used only on two classes. Therefore,
to specify several classes are mutually disjoint, owl:disjointWith has to be used
on all the possible class pairs. For instance, if we have four classes, we need to use
owl:disjointWith altogether six times.

OWL 2 provides a new construct called owl:AllDisjointClasses so we can
do this with much ease. For example, List 5.16 specifies the fact that DSLR and
PointAndShoot are disjoint to each other. For illustration purpose, let us say now
we want to specify the fact that Film camera, DSLR camera, and PointAndShoot

camera are all disjoint (here we make the things a lot simpler by ignoring the fact
that a DSLR camera can be used as a PointAndShoot camera, also a Film camera
can be a PointAndShoot camera). List 5.31 shows how this has to be done using
OWL 1’s owl:disjointWith construct.

List 5.31 Using OWL 1’s owl:disjontWith to specify three classes are pair-
wise disjoint

<owl:Class rdf:about="&myCamera;DSLR">
<owl:disjointWith rdf:resource="&myCamera;PointAndShoot"/>

</owl:Class>

<owl:Class rdf:about="&myCamera;DSLR">
<owl:disjointWith rdf:resource="&myCamera;Film"/>

</owl:Class>

<owl:Class rdf:about="&myCamera;PointAndShoot">
<owl:disjointWith rdf:resource="&myCamera;Film"/>

</owl:Class>

Using OWL 2’s construct, this can be as simple as shown in List 5.32.

198 5 OWL: Web Ontology Language

List 5.32 Example of using owl:AllDisjointClasses

<owl:AllDisjointClasses>

<owl:members rdf:parseType="Collection">
<owl:Class rdf:about="&myCamera;DSLR"/>
<owl:Class rdf:about="&myCamera;PointAndShoot"/>
<owl:Class rdf:about="&myCamera;Film"/>

</owl:members>

</owl:AllDisjointClasses>

If we have four classes which are pair-wise disjoint, instead of following the
pattern shown in List 5.31 and using six separate statements, we can simply add one
more line in List 5.32.

Another similar feature is OWL 2’s owl:disjointUnionOf construct. Recall
List 5.10, where we have defined one class called CameraCollection. This class
obviously includes both the extension of Digital and the extension of Film.
However, List 5.10 does not specify the fact that any given camera cannot be a
digital camera and at the same time, a film camera as well.

Now, again for simplicity, let us assume that Film camera, DSLR camera,
and PointAndShoot camera are all disjoint. What should we do if we want to
define our CameraCollection class as a union of class Film, class DSLR, and
class PointAndShoot, and also indicate the fact that all these class are pair-wise
disjoint?

If we do this by using only OWL 1 terms, we can first use owl:unionOf to
include all the three classes, and then we can use three pair-wise disjoint state-
ments to make the distinction clear. However, this solution is not as concise
as the one shown in List 5.33, which uses OWL 2’s owl:disjointUnionOf

operator.

List 5.33 Example of using owl:disjointUnionOf operator

<owl:Class rdf:about="&myCamera;CameraCollection">
<owl:disjointUnionOf>

<owl:members rdf:parseType="Collection">
<owl:Class rdf:about="&myCamera;DSLR"/>
<owl:Class rdf:about="&myCamera;PointAndShoot"/>
<owl:Class rdf:about="&myCamera;Film"/>

</owl:members>

</owl:disjointUnionOf>

</owl:Class>

As we have discussed at the beginning of this section, these constructs are simply
shortcuts which do not change semantics or expressiveness. Therefore, there is no
change on the reasoning power. Any reasoning capability we have mentioned when
discussing OWL 1 is still applicable here.

5.4 OWL 2 Web Ontology Language 199

5.4.2.2 Common Pattern: Negative Assertions

Another important syntax enhancement from OWL 2 is the so-called negative fact
assertions. To understand this, recall the fact that OWL 1 provides means to specify
the value of a given property for a given individual; it, however, does not offer a
construct directly stating the fact that an individual does not hold certain values for
certain properties. It is true that you can still use only OWL 1’s constructs to do this;
however, that is normally not the most convenient and straightforward way.

To appreciate the importance of negative fact assertions, consider this statement:
Liyang as a photographer does not own a Canon EOS-7D camera. This kind of
native property assertions are very useful since they can explicitly claim that some
fact is not true. In a world with open-end assumption where anything is possible,
this is certainly important.

Since owl:ObjectProperty and owl:DatatypeProperty are the two pos-
sible types of a given property, OWL 2 therefore provide two constructs as
follows:

owl:NegativeObjectPropertyAssertion

owl:NegativeDataPropertyAssertion

List 5.34 shows how to use owl:NegativePropertyAssertion to spec-
ify the fact that Liyang as a photographer does not own a Canon EOS-7D
camera (note that namespace definitions are omitted, which can be found in
List 5.30).

List 5.34 Example of using owl:NegativePropertyAssertion

1: <myCamera:Photographer rdf:about="http://liyangyu.com#liyang">
2: </myCamera:Photographer>
3:
4: <myCamera:DSLR
4a: rdf:about="http://dbpedia.org/resource/Canon_EOS_7D">
5: </myCamera:DSLR>
6:
7: <owl:NegativeObjectPropertyAssertion>
8: <owl:sourceIndividual rdf:resource=
8a: "http://liyangyu.com#liyang"/>
9: <owl:assertionProperty rdf:resource="&myCamera;own"/>
10: <owl:targetIndividual rdf:resource=
10a: "http://dbpedia.org/resource/Canon_EOS_7D"/>
11: </owl:NegativeObjectPropertyAssertion>

Note that lines 1 and 2 define the Photographer resource, lines 4 and 5 define
the DSLR resource. Again, http://dbpedia.org/resource/Canon_EOS_7D is
coined by DBpedia project and we are reusing it here to represent Canon EOS-7D
camera. Lines 7–11 state the fact that the Photographer resource does not own
the DSLR resource.

200 5 OWL: Web Ontology Language

Obviously, the following OWL 2 constructs have to be used together to specify
that two individuals are not connected by a property:

owl:NegativeObjectPropertyAssertion

owl:sourceIndividual

owl:assertionProperty

owl:targetIndividual

Similarly, owl:NegativeDataPropertyAssertion is used to say one
resource does not have a specific value for a given property. For example, we
can say Nikon D300 does not have an effectivePixel of 10, as shown in
List 5.35.

List 5.35 Example of using owl:NegativeDataPropertyAssertion

1: <owl:NegativeDataPropertyAssertion>
2: <owl:sourceIndividual
2a: rdf:resource="http://dbpedia.org/resource/Nikon_D300"/>
3: <owl:assertionProperty rdf:resource="effectivePixel"/>
4: <owl:targetValue
4a: rdf:datatype="http://www.liyangyu.com/camera#MegaPixel">
5: 10
6: </owl:targetValue>
7: </owl:NegativeDataPropertyAssertion>

Again, as a summary, the following OWL 2 constructs have to be used together
to finish the task:

owl:NegativeDataPropertyAssertion

owl:sourceIndividual

owl:assertionProperty

owl:targetValue

5.4.3 Improved Expressiveness for Properties

Recall the fact that compared to RDF Schema, one of the main features offered by
OWL 1 is the enhanced expressiveness around property definition and restrictions.
These features have greatly improved the reasoning power as well.

Similarly, OWL 2 offers even more constructs for expressing additional restric-
tions on properties and new characteristics of properties. These features have again
become the center piece of OWL 2 language, and we will cover these features in
great detail in this section.

5.4.3.1 Property Self-Restriction

OWL 1 does not allow the fact that a class is related to itself by some property.
However, this feature can be useful in many applications. A new property called
owl:hasSelf is offered by OWL 2 for this reason.

5.4 OWL 2 Web Ontology Language 201

More specifically, owl:hasSelf has the type of rdf:Property, and its
rdfs:range can be any resource. Furthermore, a class expression defined by
using owl:hasSelf restriction specifies the class of all objects that are related to
themselves via the given property.

Our camera ontology does not have the need to use owl:hasSelf property, but
let us take a look at one example where this property can be useful.

For instance, in computer science, a thread is defined as a running task within a
given program. Since a thread can create another thread, multiple tasks can be run-
ning at the same time. If we were to define an ontology for computer programming,
we could use List 5.36 to define a class called Thread.

List 5.36 Example of owl:hasSelf

<owl:Class rdf:about="&myExample;Thread">
<owl:equivalentClass>
<owl:Restriction>
<owl:onProperty rdf:resource="&myExample;create"/>
<owl:hasSelf rdf:datatype="&xsd;boolean">true</owl:hasSelf>

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>

It expresses the idea that all threads can create threads.

5.4.3.2 Property Self-Restriction: Enhanced Reasoning Power 12

Our application sees the following statement from an instance document (note that
the definition of Thread is given in List 5.36):

<myExample:Thread

rdf:about="http://www.liyangyu.com/myExample#webCrawler">
</myExample:Thread>

The application will be able to add the following fact automatically:

<http://www.liyangyu.com/myExample#webCrawler>
myExample:create <http://www.liyangyu.com/myExample#webCrawler>.

5.4.3.3 Property Cardinality Restrictions

Let us go back to List 5.30 and take a look at the definition of Professional class.
Now, instead of simply saying it is a sub-class of Photographer, we would like to
say that any object of Professional photographer should own at least one DSLR
camera. This can be done by using terms from OWL 1 vocabulary, as shown in
List 5.37.

List 5.37 A new definition of Professional class in our camera ontology

<owl:Class rdf:about="&myCamera;Professional">
<rdfs:subClassOf rdf:resource="&myCamera;Photographer"/>

202 5 OWL: Web Ontology Language

<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&myCamera;own"/>
<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">

1
</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

This is obviously a more expressive definition. Also, given the rdfs:range

value of property own is specified as DSLR (see List 5.30), we know that any camera
owned by a Professional photographer has to be a DSLR camera.

Now, what if we want to express the idea that a Professional photographer
is someone who owns at least one ExpensiveDSLR camera? It turns out this is not
doable by solely using the terms from OWL 1 vocabulary, since it does not provide a
way to further specify the class type of the instances to be counted, which is required
for this case.

Similar requirements are quite common for other applications. For example, we
may have the need to specify the fact that a marriage has exactly two persons, one
is a female and one is a male. These category of cardinality restrictions are called
qualified cardinality restrictions, where not only is the count of some property spec-
ified, but also the class type (or data range) of the instances to be counted has to be
restrained.

OWL 2 provides the following constructs to implement qualified cardinality
restrictions:

owl:minQualifiedCardinality

owl:maxQualifiedCardinality

owl:qualifiedCardinality

List 5.38 shows how owl:minQualifiedCardinality is used to define the
class Professional photographer.

List 5.38 Example of using owl:minQualifiedCardinality constraint

<owl:Class rdf:about="&myCamera;Professional">
<rdfs:subClassOf rdf:resource="&myCamera;Photographer"/>
<rdfs:subClassOf>

<owl:Restriction>

<owl:minQualifiedCardinality

rdf:datatype="&xsd;nonNegativeInteger">
1

</owl:minQualifiedCardinality>

<owl:onProperty rdf:resource="&myCamera;own"/>
<owl:onClass rdf:resource="&myCamera;ExpensiveDSLR"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

5.4 OWL 2 Web Ontology Language 203

Compare List 5.38 with List 5.37; you can see that owl:onClass is the key
construct, which is used to specify the type of the instance to be counted.

Note that owl:minQualifiedCardinality is also called the at-least
restriction, for obvious reason. Similarly, owl:maxQualifiedCardinality

is the at-most restriction and owl:qualifiedCardinality is the exact
cardinality restriction. We can replace the at-least restriction in List 5.38
with the other two restrictions, respectively, to create different definitions of
Professional class. For example, when owl:maxQualifiedCardinality is
used, a Professional can own at most one ExpensiveDSLR, and when owl:

qualifiedCardinality is used, exactly one ExpensiveDSLR should be owned.

5.4.3.4 Property Cardinality Restrictions: Enhanced Reasoning Power 13

Qualified cardinality restrictions can greatly improve the expressiveness of a
given ontology, and therefore, the reasoning power based on the ontology is also
enhanced.

In medical field, for example, using qualified cardinality restrictions, we can
specify in an ontology the fact that a human being has precisely two limbs which
are of type Leg and two limbs which are of type Arm. It is not hard to imagine this
kind of precise information can be very useful for any application that is built to
understand this ontology.

Let us understand more about this reasoning power by again using our
camera ontology example. Our application sees the following statement from
an instance document (note that the definition of Professional is given in
List 5.38):

<myCamera:Professional

rdf:about="http://www.liyangyu.com/people#Liyang ">

</myCamera:Professional>

The application will be able to add the following two statements:

<http://www.liyangyu.com/people#Liyang> myCamera:own _x.

_x rdf:type myCamera:ExpensiveDSLR.

If we submit a query to ask who owns an expensive DSLR camera, this resource,
http://www.liyangyu.com/people#Liyang, will be returned as one solution;
even the instance document does not explicitly claim this fact.

5.4.3.5 More About Property Characteristics: Reflexive, Irreflexive,
and Asymmetric Properties

Being reflexive in real life is quite common. For example, any set is a subset of
its own. Also, in a given ontology, every class is its own sub-class. If you use a

204 5 OWL: Web Ontology Language

reasoner on our camera ontology given in List 5.30 (we will see how to do this in
later chapters), you can see statement like the following:

<http://www.liyangyu.com/camera#Camera> rdfs:subClassOf

<http://www.liyangyu.com/camera#Camera> .

These are all examples of reflexive relations. Furthermore, properties can be
reflexive, which means a reflexive property relates everything to itself. For this pur-
pose, OWL 2 provides owl:ReflexiveProperty construct so that we can use it
to define reflexive properties.

For the purpose of our camera ontology, none of the properties we have so far is a
reflexive property. Nevertheless, the following shows one example of how to define
http://example.org/example1#hasRelative as a reflexive property:

<owl:ReflexiveProperty

rdf:about="http://example.org/example1#hasRelative"/>
Clearly, every person has himself as a relative, including any individual from the

animal world. Also, understand that owl:ReflexiveProperty is a sub-class of
owl:ObjectProperty. Therefore, rdfs:range of a reflexive property can only
be a resource and cannot be a literal or datatype.

With the understanding of reflexive property, it is easier to understand an irreflex-
ive property. More precisely, no resource can be related to itself by an irreflexive
property. For example, nobody can be his own parent:

<owl:IrreflexiveProperty

rdf:about="http://example.org/example1#hasParent"/>
Again, owl:IrreflexiveProperty is a sub-class of owl:ObjectProperty.

Therefore, rdfs:range of an irreflexive property can only be a resource and cannot
be a literal or datatype.

Finally, let us discuss asymmetric properties. Recall by using OWL 1 terms, we
can define symmetric properties. For example, if resource A is related to resource B
by this property, resource B will be related to A by the same property as well.

Besides symmetric relationships, there are asymmetric ones in the real world. A
property is an asymmetric property if it connects A with B, but never connects B

with A.
A good example is the owned_by property. Based on its definition in List 5.30,

a DSLR camera is owned by a Photographer. Furthermore, we understand that
owned_by relationship should not go the other way around, i.e., a Photographer
instance is owned_by a DSLR camera. To ensure this, owned_by can also be defined
as an asymmetric property, as shown in List 5.39.

List 5.39 Example of using owl:AsymmetricProperty

<owl:AsymmetricProperty rdf:about="&myCamera;owned_by">
<rdfs:domain rdf:resource="&myCamera;DSLR"/>
<rdfs:range rdf:resource="&myCamera;Photographer"/>

</owl:AsymmetricProperty>

5.4 OWL 2 Web Ontology Language 205

Again, owl:AsymmetricProperty is a sub-class of owl:ObjectProperty.
Therefore, rdfs:range of a asymmetric property can only be a resource, rather
than a literal or datatype.

5.4.3.6 More About Property Characteristics: Enhanced Reasoning Power 14

The benefits of these property characteristics are quite obvious. For example, a
major benefit is related to the open world assumption that OWL makes. In essence,
the open world assumption means that from the absence of a statement alone, a
deductive reasoner cannot infer that the statement is false.

This assumption implies a significant amount of computing work for any given
reasoner, simply because of the fact that there are so many unknowns. Therefore, if
we can eliminate some unknowns, we will have a better computing efficiency.

owl:IrreflexiveProperty and owl:AsymmetricProperty can help us in
this regard. There will be more statements tagged with a clear true/false flag,
and more queries can be answered with certainty. Note, for example, asymmetric is
stronger than simply not symmetric.

owl:ReflexiveProperty can also help us when it comes to reasoning. First
note that it is not necessarily true that every two individuals which are related by a
reflexive property are identical. For example, the following statement

<http://www.liyangyu.com/people#Liyang> example1:hasRelative

<http://www.liyangyu.com/people#Connie>.

is perfectly fine, and the subject and object of this statement each represents different
resource in the real world.

Furthermore, at least the following statements can be added by a given applica-
tion that understands a reflexive property:

<http://www.liyangyu.com/people#Liyang> example1:hasRelative

<http://www.liyangyu.com/people#Liyang>.

<http://www.liyangyu.com/people#Connie> example1:hasRelative

<http://www.liyangyu.com/people#Connie>.

Therefore, for a given query about example1:hasRelative, you will see more
statements (facts) returned as solutions.

5.4.3.7 Disjoint Properties

In Sect. 5.4.2.1, we have presented some OWL 2 language constructs that one can
use to specify the fact that a set of classes are mutually disjoint. Experiences from
real applications suggest that it is also quite useful to have the ability to express the
same disjointness of properties. For example, two properties are disjoint if there are
no two individual resources that can be connected by both properties.

More specifically, OWL 2 offers the following constructs for this purpose:

owl:propertyDisjointWith

owl:AllDisjointProperties

206 5 OWL: Web Ontology Language

owl:propertyDisjointWith is used to specify that two properties are
mutually disjoint, and it is defined as a property itself. Also, rdf:Property
is specified as the type for both its rdfs:domain and rdfs:range values.
Given the fact that both owl:ObjectProperty and owl:DatatypeProperty

are sub-classes of rdf:Property, owl:propertyDisjointWith can there-
fore be used to specify the disjointness of both datatype properties and object
properties.

A good example from our camera ontology is the owned_by and own property.
Given this statement,

<http://dbpedia.org/resource/Nikon_D300> myCamera:owned_by

<http://www.liyangyu.com/people#Liyang>.

we know the following statement should not exist:

<http://dbpedia.org/resource/Nikon_D300> myCamera:own

<http://www.liyangyu.com/people#Liyang>.

Therefore, property owned_by and property own should be defined as disjoint
properties. List 5.40 shows the improved definition of property owned_by.

List 5.40 Example of using owl:propertyDisjointWith

<owl:AsymmetricProperty rdf:about="&myCamera;owned_by">
<owl:propertyDisjointWith rdf:resource="&myCamera;own"/>
<rdfs:domain rdf:resource="&myCamera;DSLR"/>
<rdfs:range rdf:resource="&myCamera;Photographer"/>

</owl:AsymmetricProperty>

The syntax of using owl:propertyDisjointWith on datatype properties is
quite similar to the one shown in List 5.40, and we will not present any example here.

owl:AllDisjointProperties has a similar syntax as its counterpart, i.e.,
owl:AllDisjointClasses. For example, the following shows how to specify the
fact that a given group of object properties are pair-wise disjoint:

<owl:AllDisjointProperties>

<owl:members rdf:parseType="Collection">
<owl:ObjectProperty rdf:about="&example;property1"/>
<owl:ObjectProperty rdf:about="&example;property2"/>
<owl:ObjectProperty rdf:about="&example;property3"/>

</owl:members>

</owl:AllDisjointProperties>

Finally, note that owl:AllDisjointProperties can be used on datatype
properties with the same syntax as shown above.

5.4.3.8 Disjoint Properties: Enhanced Reasoning Power 15

The benefits of disjoint properties are again related to the open world assump-
tion, and these properties can help us to eliminate unknowns. For example, given

5.4 OWL 2 Web Ontology Language 207

the definition of owned_by property as shown in List 5.40 and the following
statement,

<http://dbpedia.org/resource/Nikon_D300> myCamera:owned_by

<http://www.liyangyu.com/people#Liyang>.

an application will be able to flag the following statement to be false:

<http://dbpedia.org/resource/Nikon_D300> myCamera:own

<http://www.liyangyu.com/people#Liyang>.

5.4.3.9 Property Chains

Property chain is a very useful feature introduced by OWL 2. It provides a way
for us to define a property in terms of a chain of object properties that connect
resources.

One common example used to show the power of property chain is the hasUncle
relationship. More specifically, assume we have defined the following object
properties:

example:hasParent rdf:type owl:ObjectProperty.

example:hasBrother rdf:type owl:ObjectProperty.

where example is a namespace prefix. Now, given the following statements,

example:Joe rdf:type foaf:Person;

example:hasParent example:John.

example:John rdf:type foaf:Person;

example:hasBrother example:Tim.

and as human readers, we should be able to understand the fact that Joe has an uncle
named Tim.

How can we make our application understand this fact? What we could have
done is to define a new property, example:hasUncle, as follows:

example:hasUncle rdf:type owl:ObjectProperty.

And then we could have added one statement to explicitly specify the follow-
ing fact:

example:Joe example:hasUncle example:Tim.

This is, however, not the preferred solution. First off, an application should be
smart enough to infer this fact, and manually adding it seems to be redundant.
Second, we can add the facts that are obvious to us, but what about the facts that are
not quite obvious? One of the main benefits of having ontology is to help us to find
all the implicit facts, especially those that are not too apparent to us.

OWL 2 offers us the property chain feature for this kind of situation. Instead
of defining example:hasUncle property as above, we can define it by using a
property chain as shown in List 5.41 (note that List 5.41 also includes the definitions
of example:hasParent and example:hasBrother properties).

208 5 OWL: Web Ontology Language

List 5.41 Example of using owl:propertyChainAxiom

<owl:ObjectProperty rdf:about="&example;hasParent">
</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&example;hasBrother">
</owl:ObjectProperty>

<rdf:Description rdf:about="&example;hasUncle">
<owl:propertyChainAxiom rdf:parseType="Collection">
<owl:ObjectProperty rdf:about="&example;hasParent"/>
<owl:ObjectProperty rdf:about="&example;hasBrother"/>

</owl:propertyChainAxiom>

</rdf:Description>

List 5.41 defines example:hasUncle as a property chain consisting
of example:hasParent and example:hasBrother; any time example:

hasParent and example:hasBrother exist, example:hasUncle exists.
Therefore, if resource A example:hasParent resource B and resource B

example:hasBrother resource C, then A example:hasUncle resource C, a fact
that we no longer need to add manually.

With this basic understanding about property chain, let us explore how we can
use it in our camera ontology.

If you are into the art of photography, you probably use SLR cameras. An SLR
camera, as we know, has a camera body and a removable lens. Therefore, a photog-
rapher normally owns a couple of camera bodies and a collection of camera lenses.
One of these lenses will be mounted to one particular camera body to make up a
complete camera.

Using our current camera ontology, we can have the following statements:

<http://www.liyangyu.com/people#Liyang> myCamera:own

<http://www.liyangyu.com/camera#Nikon_D300>.

<http://www.liyangyu.com/camera#Nikon_D300> myCamera:lens

<http://www.liyangyu.com/camera#Nikon_Lens_10-24_mm>.

which specify the fact that http://www.liyangyu.com/people#Liyang owns
a Nikon D300 camera, which uses a Nikon 10–24 mm zoom lens.

As human readers, by reading these two statements, we also understand that
http://www.liyangyu.com/people#Liyang not only owns the Nikon D300
camera, but also owns the Nikon 10–24 mm zoom lens.

To let our application understand this fact, instead of adding a simple
myCamera:hasLens property and then manually adding a statement to explicitly
specify the lens and photographer ownership, the best solution is to use the property
chain to define myCamera:hasLens property as shown in List 5.42.

5.4 OWL 2 Web Ontology Language 209

List 5.42 Use property chain to define myCamera:hasLens property

<rdf:Description rdf:about="&myCamera;hasLens">
<owl:propertyChainAxiom rdf:parseType="Collection">
<owl:ObjectProperty rdf:about="&myCamera;own"/>
<owl:ObjectProperty rdf:about="&myCamera;lens"/>

</owl:propertyChainAxiom>

</rdf:Description>

With this definition in place, machine can reach the same understanding as we
have, without the need to manually add the statement.

With the knowledge about property chains, we need to think carefully when
defining properties. It is always good to consider the choices between defining it
as a simple property or using property chain for the property. Using property chain
will make our ontology more expressive and powerful when inferences are made.

Finally, note that property chain is only used on object properties, not on datatype
properties.

5.4.3.10 Property Chains: Enhanced Reasoning Power 16

The reasoning power provided by property chain is quite obvious. Given the defi-
nition of myCamera:hasLens (see List 5.42), if our application sees the following
statements:

<http://www.liyangyu.com/people#Liyang> myCamera:own

<http://www.liyangyu.com/camera#Nikon_D300>.

<http://www.liyangyu.com/camera#Nikon_D300> myCamera:lens

<http://www.liyangyu.com/camera#Nikon_Lens_10-24_mm>.

it will add the following statement automatically:

<http://www.liyangyu.com/people#Liyang> myCamera:hasLens

<http://www.liyangyu.com/camera#Nikon_Lens_10-24_mm>.

5.4.3.11 Keys

OWL 2 allows keys to be defined for a given class. owl:hasKey construct, more
specifically, can be used to state that each named instance of a given class is uniquely
identified by a property or a set of properties, which can be both data properties or
object properties, depending on the specific application.

For example, in our camera ontology, we can use myCamera:reviewerID

property as the key for Photographer class, as shown in List 5.43.

List 5.43 Example of using owl:hasKey

<owl:Class rdf:about="&myCamera;Photographer">
<owl:intersectionOf rdf:parseType="Collection">

210 5 OWL: Web Ontology Language

<owl:Class rdf:about="http://xmlns.com/foaf/0.1/Person"/>
<owl:Class>
<owl:hasKey rdf:parseType="Collection">

<owl:DatatypeProperty rdf:about="&myCamera;reviewerID"/>
</owl:hasKey>

</owl:Class>
</owl:intersectionOf>

</owl:Class>

With this definition in place, we can use myCamera:reviewerID property to
uniquely identify any named myCamera:Photographer instance. Note that in this
example, we don’t have the need to use multiple properties as a key, but you can if
your application requires so (note the rdf:parseType attribute for owl:hasKey
construct).

It is also important to understand the difference between owl:hasKey and the
owl:InverseFunctionalProperty axiom. The main difference is that the prop-
erty or properties used as the key can only be used with those named individuals of
the class on which owl:hasKey is defined. On the other hand, it is often true that
an owl:InverseFunctionalProperty is used on a blank node, as we will see in
Chap. 7.

5.4.3.12 Keys: Enhanced Reasoning Power 17

The benefit of having owl:hasKey is quite obvious: if two named instances of the
class have the same values for each key properties (or a single key property), these
two individuals are the same. This can be easily understood without any example.

Note that this is quite useful if two instances of the class are actually harvested
from different instance documents over the Web. The identical key values of these
two individuals tell us the fact that these two instances, although each has different
URI, are actually representing the same resource in the real world. This is one of the
reasons why a Linked Data Web is possible, as we will see in later chapters.

5.4.4 Extended Support for Datatypes

As we know, OWL 1 depends on XML Schema (represented by xsd: prefix)
for its built-in datatypes, and it has been working well in general. However, with
more experience gained from ontology development in practice, some further
requirements about datatypes have been identified. These new requirements can be
summarized as follows:

• a wider range of supported datatypes is needed;
• the capability of adding constraints on datatypes should be supported; and
• the capability of creating new user-defined datatypes is also required.

OWL 2 has provided answers to these requirements. The related new features
will be covered in this section in detail.

5.4 OWL 2 Web Ontology Language 211

5.4.4.1 Wider Range of Supported Datatypes and Extra Built-In Datatypes

OWL 2 provides a wider range of supported datatypes, which are again borrowed
from XML Schema Datatypes. Table 5.1 summarizes all the datatypes currently sup-
ported by OWL 2, and for details, you can refer to the related OWL 2 specification.9

Two new built-in types, namely, owl:real and owl:rational, are added by
OWL 2. The definitions of these two types are shown in Table 5.2.

5.4.4.2 Restrictions on Datatypes and User-Defined Datatypes

OWL 2 allows users to define new datatypes by adding constraints on existing ones.
The constraints are added via the so-called facets, another concept borrowed from
XML Schema.

Restrictions on XML elements are called facets. The four bounds facets, for
example, restrict a value to a specified range:

xsd:minInclusive, xsd:minExclusive

xsd:maxInclusive, xsd:maxExclusive

Table 5.1 Datatypes supported by OWL 2

Category Supported datatypes

Decimal numbers and
integers

xsd:decimal, xsd:integer,
xsd:nonNegativeInteger,
xsd:nonPositiveInteger, xsd:positiveInteger,
xsd:negativeInteger, xsd:long, xsd:int,
xsd:short,
xsd:byte, xsd:unsignedLong,
xsd:unsignedInt, xsd:unsignedShort,
xsd:unsignedByte

Float-point numbers xsd:double, xsd:float
Strings xsd:string, xsd:normalizedString, xsd:token,

xsd:language, xsd:Name, xsd:NCName, xsd:NMTOKEN
Boolean values xsd:boolean
Binary data xsd:hexBinary,

xsd:base64Binary
IRIs xsd:anyURI
Time instants xsd:dateTime,

xsd:dateTimeStamp
XML literals rdf:XMLLiteral

Table 5.2 Two new built-in datatypes of OWL 2

Datatype Definition

owl:real The set of all real numbers
owl:rational The set of all rational numbers, it is a subset of owl:real, and it contains

the value of xsd:decimal

9http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/

212 5 OWL: Web Ontology Language

Note that xsd:minInclusive and xsd:maxInclusive specify boundary val-
ues that are included in the valid range, and values that are outside the valid range
are specified by xsd:minExclusive and xsd:maxExclusive facets.

Obviously, the above four bounds facets can be applied only to numeric types,
other datatypes may have their own specific facets. For instance, xsd:length,
xsd:minLength, and xsd:maxLength are the three length facets that can be
applied to any of the string-based types.

We will not get into much more details about facets, and you can always learn
more about them from the related XML Schema specifications. For our purpose,
we are more interested in the fact that OWL 2 allows us to specify restrictions on
datatypes by means of constraining facets.

More specifically, owl:onDatatype and owl:withRestrictions are the two
main OWL 2 language constructs for this purpose. By using these constructs, we can
in fact define new datatypes.

Let us take a look at one such example. We will define a new datatype called
AdultAge, where the age has a lower bound of 18 years. List 5.44 shows how this
is done.

List 5.44 Example of using owl:onDatatype and owl:withRestrict-
ions to define new datatype

<rdfs:Datatype rdf:about="&example;AdultAge">
<owl:onDatatype rdf:resource="&xsd;integer"/>
<owl:withRestrictions rdf:parseType="Collection">
<rdf:Description>

<xsd:minInclusive

rdf:datatype="&xsd;integer">18</xsd:minInclusive>
</rdf:Description>

</owl:withRestrictions>

</rdfs:Datatype>

With this definition, AdultAge, as a user-defined datatype, can be used as the
rdfs:range value for some property, like any other built-in datatype. To make this
more interesting, we can use another facet to add an upper bound, therefore creating
another new datatype called PersonAge, as shown in List 5.45.

List 5.45 Another example of using owl:onDatatype and owl:with-
Restrictions to define new datatype

<rdfs:Datatype rdf:about="&example;PersonAge">
<owl:onDatatype rdf:resource="&xsd;integer"/>
<owl:withRestrictions rdf:parseType="Collection">
<rdf:Description>

<xsd:minInclusive

rdf:datatype="&xsd;integer">0</xsd:minInclusive>
</rdf:Description>

<rdf:Description>

5.4 OWL 2 Web Ontology Language 213

<xsd:maxInclusive

rdf:datatype="&xsd;integer">150</xsd:maxInclusive>
</rdf:Description>

</owl:withRestrictions>

</rdfs:Datatype>

In our camera ontology, we can change the definition of myCamera:

MegaPixel datatype to make it much more expressive. For example, we can say
that any digital camera’s effective pixel value should be somewhere between 1.0
and 24.0 mega pixel, as shown in List 5.46.

List 5.46 Define myCamera:MegaPixel as a new datatype

<rdfs:Datatype rdf:about="&myCamera;MegaPixel">
<owl:onDatatype rdf:resource="&xsd;integer"/>
<owl:withRestrictions rdf:parseType="Collection">
<rdf:Description>

<xsd:minInclusive

rdf:datatype="&xsd;decimal">1.0</xsd:minInclusive>
</rdf:Description>

<rdf:Description>

<xsd:maxInclusive

rdf:datatype="&xsd;decimal">24.0</xsd:maxInclusive>
</rdf:Description>

</owl:withRestrictions>

</rdfs:Datatype>

Similarly, we can define another new datatype called myCamera:CameraModel,
which, for example, should be an xsd:string with xsd:maxLength no longer
than 32 characters. We will leave this as an exercise for you – at this point, it should
not be difficult at all.

5.4.4.3 Data Range Combinations

Just as new classes can be constructed by combining existing ones, new datatypes
can be created by combining existing datatypes. OWL 2 provides the following
constructs for this purpose:

owl:datatypeComplementOf

owl:intersectionOf

owl:unionOf

These are quite straightforward to understand. owl:unionOf, for example, will
create a new datatype by using a union on existing data ranges.

List 5.47 shows the definition of a new datatype called MinorAge, which is
created by combining two existing datatypes.

214 5 OWL: Web Ontology Language

List 5.47 Example of using owl:intersectionOf and owl:
datatypeComplementOf to define new datatype

<rdfs:Datatype rdf:about="&example;MinorAge">
<owl:equivalentClass>

<owl:intersectionOf rdf:parseType="Collection">
<rdfs:Datatype rdf:about="&example;PersonAge"/>
<rdfs:Datatype>

<owl:datatypeComplementOf

rdf:resource="&example;AdultAge"/>
</rdfs:Datatype>

</owl:intersectionOf>

</owl:equivalentClass>

</rdfs:Datatype>

Therefore, a person who has a MinorAge will be younger than 18 years.

5.4.5 Punning and Annotations

5.4.5.1 Understanding Punning

OWL 1 (more specifically, OWL 1 DL) has strict rules about separation of names-
paces. For example, a URI cannot be typed as both a class and an individual in the
same ontology.

OWL 2 relaxes this requirement: you can use the same IRI for entities of different
kinds, thus treating for example a resource as both a class and an individual of a
class. This feature is referred to as punning.

Let us take a look at one example. Recall we have borrowed this URI from
DBpedia project, http://dbpedia.org/resource/Nikon_D300, to represent
a Nikon D300 camera. And obviously, it is an instance of class myCamera:DSLR:

<myCamera:DSLR

rdf:about="http://dbpedia.org/resource/Nikon_D300"/>
However, there is not just one Nikon D300 camera in the world, Nikon must have

produced thousands of them. For example, I have one Nikon D300 myself. I can use
the following URI to represent this particular Nikon D300:

http://www.liyangyu.com/camera#Nikon_D300

Therefore, it is natural for me to have the following statement:

<rdf:Description

rdf:about="http://www.liyangyu.com/camera#Nikon_D300">
<rdf:type

rdf:resource="http://dbpedia.org/resource/Nikon_D300"/>
</rdf:Description>

5.4 OWL 2 Web Ontology Language 215

Clearly, http://dbpedia.org/resource/Nikon_D300 represents a class in
this statement. Therefore, this same URI can represent both a class and an individual
resource.

Note, however, that the reasoning engine will interpret them as two different and
independent entities, entities that are not logically connected but just happen to have
the same looking name. Statements we make about the individual nature of Nikon
D300 do not affect the class nature of Nikon D300, and vice versa.

There are also some restrictions in OWL 2 about punning:

• one IRI cannot denote both a datatype property and an object project, also
• one IRI cannot be used for both a class and a datatype.

So why is punning useful to us? To put it simple, punning can be used for stating
facts about classes and properties themselves.

For example, when we treat http://dbpedia.org/resource/Nikon_D300
as an instance of class myCamera:DSLR, we are using myCamera:DSLR as a meta-
class. In fact, punning is also referred to as metamodeling.

Metamodeling is related to annotations (more about annotation in the next sec-
tion). They both provide ways to associate additional information with classes and
properties, and the following rules-of-the-thumb are often applied to determine
when to use which construct:

• Metamodeling should be used when the information attached to entities should
be considered as part of the domain.

• Annotations should be used when the information attached to entities should
not be considered as part of the domain and should not contribute to the logical
consequences of the underlying ontology.

As a quick example, the facts that my Nikon D300 is a specific instance of the
class of Nikon D300 and Nikon D300 in general is a digital SLR camera are state-
ments about the domain. These facts are therefore better represented in our camera
ontology by using metamodeling. In contrast, a statement about who created the IRI
that represents a Nikon D300 camera does not describe the actual domain itself, and
it should be represented via annotation.

5.4.5.2 OWL Annotations, Axioms About Annotation Properties

Annotation is not something new, but it is enhanced by OWL 2. In this section, we
will first discuss annotations by OWL 1 (you can still find them in ontologies created
by using OWL 1), we will then cover annotation constructs provided by OWL 2.

OWL 1 allows classes, properties, individuals and ontology headers to be anno-
tated with useful information such as labels, comments, authors and creation date.
This information could be important if the ontology is to be reused by someone else.

Note that OWL 1 annotation simply associates property–value pairs to ontology
entities, or to the entire ontology itself. This information is merely for human eyes
and is not part of the semantics of the ontology, and will therefore be ignored by

216 5 OWL: Web Ontology Language

Table 5.3 OWL 1’s annotation properties

Annotation property Usage

owl:versionInfo Provides basic information for version control purpose
rdfs:label Supports a natural language label for the resource/property
rdfs:comment Supports a natural language comment about a resource/property
rdfs:seeAlso Provides a way to identify more information about the resource
rdfs:isDefinedBy Provides a link pointing to the source of information about the

resource

most reasoning engines. The commonly used annotation constructs offered by OWL
1 is summarized in Table 5.3.

These constructs are quite straightforward and easy to use. For example, the fol-
lowing shows annotation property rdfs:comment is used to add information to
myCamera:Lens class, providing a natural language description of its meaning:

<owl:Class rdf:about="&myCamera;Lens">
<rdfs:comment>represents the set of all camera lenses.

</rdfs:comment>

</owl:Class>

You will see more examples of using these properties in the later chapters.
OWL 1 also offers the ability of creating user-defined annotation properties.

More specifically, an user-defined annotation property should be defined by using
owl:AnnotationProperty construct, before we can use it. List 5.48 shows an
example of using a user-defined annotation property.

List 5.48 Example of using owl:AnnotationProperty to declare a user-
defined annotation property

1: <?xml version="1.0"?>
2: <rdf:RDF
2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
4: xmlns:owl="http://www.w3.org/2002/07/owl#"
5: xmlns:dc="http://www.purl.org/metadata/dublin-core#"
6: xmlns:myCamera="http://www.liyangyu.com/camera#"
7: xml:base="http://www.liyangyu.com/camera#">
8:
9: <owl:AnnotationProperty rdf:about=
9a: "http://www.purl.org/metadata/dublin-core#date">
10: </owl:AnnotationProperty>
11:
12: <owl:Class rdf:about="http://www.liyangyu.com/camera#Lens">
13: <dc:date rdf:datatype=
13a: "http://www.w3.org/2001/XMLSchema#date">
13b: 2009-09-10</dc:date>
14: </owl:Class>

5.4 OWL 2 Web Ontology Language 217

The goal is to annotate the date on which class Lens has been created. To do so,
we reuse the terms in Dublin Core and explicitly declare dc:date as a user-defined
annotation property (lines 9 and 10) and then use it on class Lens (line 13) to signal
the date when this class is defined.

With the understanding about annotations in OWL 1, let us take a look at what
has been offered by OWL 2. An obvious improvement is that OWL 1 did not
allow annotations of axioms, but OWL 2 does. As a summary, OWL 2 allows for
annotations on ontologies, entities (classes, properties and individuals), anonymous
individuals, axioms and also on annotations themselves.

Without covering all these new features in detail, we will concentrate on how
to add annotation information on axioms and how to make statements about
annotations themselves.

To add annotation information about a given axiom, we will need the following
OWL 2 language constructs:

owl:Axiom

owl:annotatedSource

owl:annotatedProperty

owl:annotatedTarget

List 5.49 shows some possible annotation on the following axiom:

<owl:Class rdf:about="&myCamera;DSLR">
<rdfs:subClassOf rdf:resource="&myCamera;Digital"/>

</owl:Class>

List 5.49 Annotations on a given axiom

<owl:Axiom>

<owl:annotatedSource rdf:resource="&myCamera;DSLR"/>
<owl:annotatedProperty rdf:resource="&rdfs;subClassOf"/>
<owl:annotatedTarget rdf:resource="&myCamera;Digital"/>
<rdfs:comment>

States that every DSLR is a Digital camera.

</rdfs:comment>

</owl:Axiom>

This probably reminds you of the RDF reification vocabulary that we have
discussed in Chap. 2. They indeed share some similarities. For example, such anno-
tations are often used in tools to provide natural language text to be displayed in
help windows.

OWL 2 also allows us to add axioms about annotation properties. For example,
we can specify the domain and range of a given annotation property. In addition,
annotation properties can participate in an annotation property hierarchy. All these
can be accomplished by using the constructs that you are already familiar with:
rdfs:subPropertyOf, rdfs:domain and rdfs:range.

If an annotation property’s rdfs:domain value has been specified, that anno-
tation property can only be used to add annotations to the entities whose type is

218 5 OWL: Web Ontology Language

the specified type. Similarly, if the rdfs:range property of an annotation prop-
erty has been specified, the added annotation information can only assume values
that have the type specified by its rdfs:range property. Since these are all quite
straightforward, we will skip the examples.

Finally, understand that the annotations we have discussed here carry no seman-
tics in the OWL 2 Direct Semantics (more on this in later sections), with the
exception of axioms about annotation properties. These special axioms have no
semantic meanings in the OWL 2 Direct Semantics, but they do have the standard
RDF semantics in the RDF-based Semantics, via the mapping RDF vocabulary.

5.4.6 Other OWL 2 Features

5.4.6.1 Entity Declarations

As developers, we know most programming languages require us to declare a vari-
able first before we can actually use it. However, this is not the case when developing
ontologies using OWL 1: we can use any entity, such as a class, an object property,
or an individual anywhere in the ontology without any prior announcement.

This can be understood as a convenience for the developers. However, the lack
of error check could also be a problem. In practice, for example, if any entity were
mistyped in a statement, there would be no way of catching that error at all.

For this reason, OWL 2 has introduced the notion of entity declaration. The
idea is that every entity contained in an ontology should be declared first before
it can be used in that ontology. Also, a specific type (class, datatype property, object
property, datatype, annotation property, or individual) should be associated with the
declared entity. With this information, OWL 2 supporting tools can check for errors
and consistency before the ontology is actually being used.

For example, in our camera ontology, the class myCamera:Camera should be
declared as follows before its complete class definition:

<owl:Class rdf:about="&myCamera;Camera"/>

Similarly, the following statements declare a new datatype, an object property,
and an user-defined annotation property:

<rdfs:Datatype rdf:about="&myCamera;MegaPixel"/>
<owl:ObjectProperty rdf:about="&myCamera;own"/>
<owl:AnnotationProperty

rdf:about="http://www.purl.org/metadata/dublin-core#date"/>

To declare an individual, a new OWL construct owl:NamedIndividual can be
used. The following statement declares a Nikon D300 camera will be specified in
the ontology as an individual:

<owl:NamedIndividual

rdf:about="http://dbpedia.org/resource/Nikon_D300"/>

5.4 OWL 2 Web Ontology Language 219

Finally, understand that these declarations are optional, and they do not effect
the meanings of OWL 2 ontologies and therefore have no effect on reasoning either.
However, using declaration is always recommended to ensure the quality of the
ontology.

5.4.6.2 Top and Bottom Properties

OWL 1 has built-in top and bottom entities for classes, namely, owl:Thing

and owl:Nothing. owl:Thing represents an universal class and owl:Nothing

represents an empty class.
In addition to the above class entities, OWL 2 provides top and bottom object

and data properties. These constructs and their usage are summarized in Table 5.4.

Table 5.4 Top and bottom object/data properties

Type Usage

owl:topObjectProperty (universal
object property)

All pairs of individuals are connected by
owl:topObjectProperty

owl:bottomObjectProperty (empty
object property)

No individuals are connected by
owl:bottomObjectProperty

owl:topDataProperty (universal data
property)

All individuals are connected with all literals
by owl:topDataProperty

owl:bottomDataProperty (empty data
property)

No individual is connected with a literal by
owl:bottomDataProperty

5.4.6.3 Imports and Versioning

Imports and versioning are important aspects of the ontology management task.
In this section, we will first discuss how imports and versioning are handled in
OWL 1, since quite a lot of ontologies are created when only OWL 1 is avail-
able. We will then examine the new features about imports and versioning provided
by OWL 2.

To understand imports and versioning handling in OWL 1, we will have to first
understand several related concepts. One of these concepts is the ontology name,
which is typically contained in a section called ontology header.

The ontology header of a given ontology is part of the ontology document, and it
describes the ontology itself. For example, List 5.50 can be the ontology header of
our camera ontology.

List 5.50 Ontology header of our camera ontology

1: <owl:Ontology rdf:about="">
2: <owl:versionInfo>v.10</owl:versionInfo>

3: <rdfs:comment>our camera ontology</rdfs:comment>

4: </owl:Ontology>

220 5 OWL: Web Ontology Language

Line 1 of List 5.50 declares an RDF resource of type owl:Ontology, and the
name of this resource is given by its rdf:about attribute. Indeed, as anything else
in the world, an ontology can be simply treated as a resource. Therefore, we can
assign a URI to it and describe it by using the terms from OWL vocabulary.

Note that in List 5.50, the URI specified by rdf:about attribute points to an
empty string. In this case, the base URI specified by xml:base attribute (line 13,
List 5.30) will be taken as the name of this ontology. This is also part of the reason
why we have line 13 in List 5.30.

With these said, the following statement will be created by any parser that
understands OWL ontology:

<http://www.liyangyu.com/camera> rdf:type owl:Ontology.

and a given class in this ontology, such as Camera class, will have the following
URI:

http://www.liyangyu.com/camera#Camera

and similarly, a given property in this ontology, such as model property, will have
the following URI:

http://www.liyangyu.com/camera#mdoel

and this is exactly what we want to achieve.
Now, with this understanding about the name of a given ontology, let us study

how owl:imports works in OWL 1. List 5.51 shows a new ontology header which
uses owl:imports construct.

List 5.51 Our camera ontology header which uses owl:imports

1: <owl:Ontology rdf:about="">
2: <owl:versionInfo>v.10</owl:versionInfo>
3: <rdfs:comment>our camera ontology</rdfs:comment>
4: <owl:imports
4a: rdf:resource="http://www.example.org/exampleOntology"/>
5: </owl:Ontology>

Clearly, line 4 of List 5.51 tries to import another ontology into our camera ontol-
ogy. Note that this is used only as an example to show the usage of owl:imports
construct; there is currently no real need for our camera ontology to import another
ontology yet.

First off, understand owl:imports is a property with class owl:Ontology as
both its rdfs:domain and rdfs:range value. It is used to make reference to
another OWL ontology that contains definitions, and those definitions will be con-
sidered as part of the definitions of the importing ontology. The rdf:resource

attribute of owl:imports specifies the URI (name) of the ontology being imported.
In OWL 1, importing another ontology is done by “name and location.” In other

words, the importing ontology is required to contain a URI that points to the loca-
tion of the imported ontology, and this location should match with the name of the
imported ontology as well.

5.4 OWL 2 Web Ontology Language 221

One way to understand this “name and location” rule is to think about the pos-
sible cases where our camera ontology (List 5.30) is imported by other ontologies.
For example, every such importing ontology has to have a statement like this:

<owl:imports rdf:resource="http://www.liyangyu.com/camera"/>
The importing ontology then expects our camera ontology to have a name spec-

ified by http://www.liyangyu.com/camera, and our camera ontology has to
be located at http://www.liyangyu.com/camera as well. This is why we use
an empty rdf:about attribute (see List 5.50) and at the same time, we specify the
xml:base attribute on line 13 of List 5.30. By doing so, we can guarantee the loca-
tion and the name of our camera ontology matches each other (since the value of
xml:base is taken as the name of the ontology), and every importing ontology can
find our camera ontology successfully.

This coupling of names and locations in OWL 1 works well when ontologies
are published at a fixed location on the Web. However, applications quite often
use ontologies off-line (the ontology has been downloaded to some local ontol-
ogy repositories before hand). Also, ontologies can be moved to other locations.
Therefore, in real application world, ontology names and their locations may not
match at all.

This has forced the users to manually adjust the names of ontologies and the
owl:imports statements in the importing ontologies. This is obviously a cumber-
some solution to the situation. In addition, these problems get more acute when
considering the multiple versions of a given ontology. The specification of OWL 1
provides no guidelines on how to handle such cases at all.

OWL 2’s solution is quite simple: it specifies that importing another ontology
should be implemented by the location, rather than the name, of the imported
ontology.

To understand this, we need to start from ontology version management in
OWL. More specifically, in OWL 1, a simple construct called owl:versionInfo

is used for version management, as shown in line 2 of List 5.51. In OWL 2,
on the other hand, a new language construct, owl:versionIRI, is introduced
to replace owl:versionInfo. For example, our camera ontology can have an
ontology header as shown in List 5.52.

List 5.52 Ontology header of our camera ontology using owl:versionIRI

<owl:Ontology rdf:about="">
<owl:versionIRI>

http://www.liyangyu.com/camera/v1

</owl:versionIRI>

<rdfs:comment>our camera ontology</rdfs:comment>

</owl:Ontology>

With the usage of owl:versionIRI, each OWL 2 ontology has two identifiers:
the usual ontology IRI that identifies the name of the ontology and the value of
owl:versionIRI, which identifies a particular version of the ontology.

222 5 OWL: Web Ontology Language

In our case (List 5.52), since rdf:about attribute points to an empty string, the
IRI specified by xml:base attribute (line 13, List 5.30) will be taken as the name
of this ontology, which will remain stable. The second identifier for this ontology,
i.e., http://www.liyangyu.com/camera/v1, is used to represent the current
version.

OWL 2 has specified the following rules when publishing an ontology:

• An ontology should be stored at the location specified by its owl:versionIRI
value.

• The latest version of the ontology should be located at the location specified by
the ontology IRI.

• If there is no version IRI ever used, the ontology should be located at the location
specified by the ontology IRI.

With this said, the importing schema is quite simple:

• If it does not matter which version is desired, the ontology IRI should be used as
the owl:imports value.

• If a particular version is needed, the particular version IRI should be used as the
owl:imports value.

In OWL 2, this is called the “importing by location” rule. With this schema,
publishing a new current version of an ontology involves placing the new ontology at
the appropriate location as identified by the version IRI, and replacing the ontology
located at the ontology URI with this new ontology.

Before we move on to the next topic, there are two more things we need to know
about owl:imports. First off, note that owl:imports property is transitive, that
is, if ontology A imports ontology B, and B imports C, then ontology A imports
both B and C.

Second, it is true that owl:imports property includes other ontologies whose
content is assumed to be part of the current ontology, and the imported ontologies
provide definitions that can be used directly. However, owl:imports does not pro-
vide any shorthand notation when it comes to actually using the terms from the
imported ontology. Therefore, it is common to have a corresponding namespace
declaration for any ontology that is imported.

5.4.7 OWL Constructs in Instance Documents

There are several terms from OWL vocabulary that can be used in instance doc-
uments. These terms can be quite useful, and we will cover them here in this
section.

The first term is owl:sameAs, which is often used to link one individual to
another, indicating the two URI references actually refer to the same resource in
the world. Obviously, it is unrealistic to assume everyone will use the same URI
to represent the same resource, thus URI aliases cannot be avoided in practice, and
owl:sameAs is a good way to connect these aliases together.

5.4 OWL 2 Web Ontology Language 223

List 5.53 describes Nikon D300 camera as a resource; it also indicates that the
URI coined by DBpedia in fact represents exactly the same resource.

List 5.53 Example of using owl:sameAs

1: <?xml version="1.0"?>
2: <rdf:RDF
2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
4: xmlns:owl="http://www.w3.org/2002/07/owl#"
5: xmlns:myCamera="http://www.liyangyu.com/camera#">
6:
7: <rdf:Description
7a: rdf:about="http://www.liyangyu.com/camera#Nikon_D300">
8: <rdf:type
8a: rdf:resource="http://www.liyangyu.com/camera#DSLR"/>
9: <owl:sameAs
9a: rdf:resource="http://dbpedia.org/resource/Nikon_D300"/>
10: </rdf:Description>
11:
12: </rdf:RDF>

Based on List 5.53, the following two URIs actually represent the same camera,
namely, Nikon D300:

http://www.liyangyu.com/camera#Nikon_D300

http://dbpedia.org/resource/Nikon_D300

If you happen to read some earlier documents about OWL, you might have come
across another OWL term called owl:sameIndividualAs. In fact, owl:sameAs
and owl:sameIndividualAs have the same semantics, and in the published
W3C’s standards, owl:sameAs has replaced owl:sameIndividualAs; therefore,
avoid using owl:sameIndividualAs and use owl:sameAs instead.

owl:sameAs can also be used to indicate that two classes denote the same
concept in the real world. For example, List 5.54 defines a new class called
DigitalSingleLensReflex, and it has the same intentional meaning as the class
DSLR:

List 5.54 Use owl:sameAs to define a new class DigitalSingleLens-
Reflex

1: <?xml version="1.0"?>
2: <rdf:RDF
2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
4: xmlns:owl="http://www.w3.org/2002/07/owl#"
5: xmlns:myCamera="http://www.liyangyu.com/camera#">
6:
7: <owl:Class rdf:about=
7a: "http://www.liyangyu.com/camera#DigitalSingleLensReflex">
8: <owl:sameAs

224 5 OWL: Web Ontology Language

8a: rdf:resource="http://www.liyangyu.com/camera#DSLR"/>
9: </owl:Class>
10:
11: </rdf:RDF>

Note that the definition in List 5.55 is quite different from the one in List 5.54.

List 5.55 Use owl:equivalentClass to define class Digital-
SingleLensReflex

1: <?xml version="1.0"?>
2: <rdf:RDF
2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
4: xmlns:owl="http://www.w3.org/2002/07/owl#"
5: xmlns:myCamera="http://www.liyangyu.com/camera#">
6:
7: <owl:Class rdf:about=
7a: "http://www.liyangyu.com/camera#DigitalSingleLensReflex">
8: <owl:equivalentClass
8a: rdf:resource="http://www.liyangyu.com/camera#DSLR"/>
9: </owl:Class>
10:
11: </rdf:RDF>

List 5.55 defines a new class by using owl:equivalentClass. With
the term owl:equivalentClass, the two classes, namely, DigitalSingle

LensReflex and DSLR, will now have the same class extension (the set of all the
instances of a given class is called its extension); however, they do not necessarily
denote the same concept at all.

Also note that owl:sameAs is not only used in instance documents, but can be
used in ontology documents as well, as shown in List 5.54.

owl:differentFrom property is another OWL term that is often used in
instance documents. It is the opposite of owl:sameAs and it is used to indicate
two URIs referring to different individuals. List 5.56 shows one example.

List 5.56 Example of using owl:differentFrom

1: <?xml version="1.0"?>
2: <rdf:RDF
2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
4: xmlns:owl="http://www.w3.org/2002/07/owl#"
5: xmlns:myCamera="http://www.liyangyu.com/camera#">
6:
7: <rdf:Description
7a: rdf:about="http://www.liyangyu.com/camera#Nikon_D3X">
8: <rdf:type
8a: rdf:resource="http://www.liyangyu.com/camera#DSLR"/>
9: <owl:differentFrom
9a: rdf:resource="http://www.liyangyu.com/camera#Nikon_D3S"/>

5.4 OWL 2 Web Ontology Language 225

10: </rdf:Description>
11:
12: </rdf:RDF>

The code snippet in List 5.56 clearly states the following two URIs represent
different resources in the real world, so there is no confusion even though these two
URIs do look like each other a lot (note that D3X and D3S are both real DSLRs by
Nikon):

http://www.liyangyu.com/camera#Nikon_D3X

http://www.liyangyu.com/camera#Nikon_D3S

The last OWL term to discuss here is owl:AllDifferent, a special built-in
OWL class. To understand it, we need to again mention the so-called Unique-Names
assumption, which typically holds in the world of database applications, for exam-
ple. More specifically, this assumption says that individuals with different names
are indeed different individuals.

However, this is not the assumption made by OWL, which actually follows the
non-unique-names assumption: even if two individuals (or classes or properties)
have different names, they can still be the same individual. This can be derived by
inference, or explicitly asserted by using owl:sameAs, as shown in List 5.53. The
reason why adapting non-unique-names assumption in the world of the Semantic
Web is simple because it is the most plausible one to make in the given environment.

However, there are some cases where the unique-names assumption does hold.
To model this situation, one solution is to repeatedly use owl:differentFrom

on all the individuals. However, this solution will likely create a large number of
statements, since all individuals have to be declared pair-wise disjoint.

A special class called owl:AllDifferent is provided for this kind of situa-
tion. This class has one built-in property called owl:distinctMembers, and an
instance of owl:AllDifferent will be linked to a list of individuals by property
owl:distinctMembers. The intended meaning of such a statement is that all indi-
viduals included in the list are all different from each other. An example is given in
List 5.57.

List 5.57 Example of using owl:AllDifferent and owl:
distinctMembers

1: <?xml version="1.0"?>
2: <rdf:RDF
2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
4: xmlns:owl="http://www.w3.org/2002/07/owl#"
5: xmlns:myCamera="http://www.liyangyu.com/camera#">
6:
7: <owl:AllDifferent>
8: <owl:distinctMembers rdf:parseType="Collection">
9: <myCamera:DSLR
9a: rdf:about="http://www.liyangyu.com/camera#Nikon_D3"/>
10: <myCamera:DSLR

226 5 OWL: Web Ontology Language

10a: rdf:about="http://www.liyangyu.com/camera#Nikon_D3X"/>
11: <myCamera:DSLR
11a: rdf:about="http://www.liyangyu.com/camera#Nikon_D3S"/>
12: <myCamera:DSLR
12a: rdf:about="http://www.liyangyu.com/camera#Nikon_D300S"/>
13: <myCamera:DSLR
13a: rdf:about="http://www.liyangyu.com/camera#Nikon_D300"/>
14: <myCamera:DSLR
14a: rdf:about="http://www.liyangyu.com/camera#Nikon_D700"/>
15: </owl:distinctMembers>
16: </owl:AllDifferent>

Clearly, List 5.57 has accomplished the goal with much more ease. Remember,
owl:distinctMembers is a special syntactical construct added for convenience
and should always be used together with an owl:AllDifferent instance as its
subject.

5.4.8 OWL 2 Profiles

5.4.8.1 Why We Need All These?

An important issue when designing an ontology language is the tradeoff between
its expressiveness and the efficiency of the reasoning process. It is generally true
that the richer the language is, the more complex and time-consuming the reasoning
becomes. Sometimes, the reasoning can become complex enough that it is computa-
tionally impossible to finish the reasoning process. The goal therefore is to design a
language that has sufficient expressiveness and also simple enough to be supported
by reasonably efficient reasoning engines.

This is also inevitably the case with OWL: some of its constructs are very expres-
sive; however, they can lead to uncontrollable computational complexities. The
tradeoff between the reasoning efficiency and the expressiveness has led to the def-
initions of different subsets of OWL, and each one of these subsets is aimed at a
different level of this tradeoff.

This has also been the case from OWL 1. Again, since quite a lot of ontologies
are created when only OWL 1 is available, we will first briefly discuss the OWL 1
language subsets, and we will then move on to the profiles provided by OWL 2.

5.4.8.2 Assigning Semantics to OWL Ontology: Description
Logic vs. RDF-Based Semantics

Once we have an ontology written in OWL (be it OWL 1 or OWL 2), we have
two alternative ways to assign meanings to this ontology. The first one is called the
Direct Model-Theoretic Semantics; the other one is called RDF-based Semantics.

The reason behind this dual assignment was largely due to the fact that OWL was
originally designed to use a notational variant of Description Logic (DL), which has

5.4 OWL 2 Web Ontology Language 227

been extensively investigated in the literature, and its expressiveness and compu-
tational properties are well understood. Meanwhile, it was also very important for
OWL to be semantically compatible with existing Semantic Web languages such as
RDF and RDFS. The semantic differences between DL and RDF made it difficult
to satisfy both requirements, and the solution chosen by W3C was to provide two
coexisting semantics for OWL, therefore two ways of assigning semantics to a given
OWL ontology.

For OWL 1, this dual assignment directly results in two different dialects of OWL
1, namely OWL 1 DL and OWL 1 Full. More specifically, OWL 1 DL refers to the
OWL 1 ontologies interpreted by using the Direct Semantics and OWL 1 Full refers
to those interpreted by using the RDF-based semantics.

This dual assignment continues to be true in OWL 2. Similarly, OWL 2 DL refers
to the OWL 2 ontologies that have their semantics assigned by using the Direct
Semantics, and OWL 2 Full refers to those ontologies that have their semantics
assigned by using the RDF-based Semantics.

5.4.8.3 Three Faces of OWL 1

At this point, we understand OWL 1 has two different language variants: OWL 1
DL and OWL 1 Full.

OWL 1 DL is designed for users who need maximum expressiveness together
with guaranteed computational completeness and decidability, meaning that all con-
clusions are guaranteed to be computable and all computation will be finished in
finite time. To make sure this happens, OWL 1 DL supports all OWL 1 language
constructs, but they can be used under certain constraints. For example, one such
constraint specifies that a class may be a sub-class of many classes, but it cannot be
an instance of any class (more details coming up).

On the other hand, OWL 1 Full provides maximum expressiveness; there are
no syntactic restrictions on the usage of the built-in OWL 1 vocabulary and the
vocabulary elements defined in the ontology. However, since it uses the RDF-
compatible semantics, its reasoning can be undecidable. In addition, it does not
have the constraints that OWL 1 DL has, therefore adding an extra source of unde-
cidability. At the time of this writing, no complete implementation of OWL 1
Full exists, and it is not clear whether OWL 1 Full can be implemented at all in
practice.

With the above being said, OWL 1 DL seems to be a good choice if a decidable
reasoning process is desired. However, reasoning in OWL 1 DL has a high worst-
case computational complexity. To ease this concern, a fragment of OWL 1 DL was
proposed by the OWL Working Group, and this subset of OWL 1 DL is called OWL
1 Lite.

Therefore, the three faces of OWL 1 are given by OWL 1 Lite, OWL 1 DL, and
OWL 1 Full. The following summarizes the relations between these three faces:

• every legal OWL 1 Lite feature is a legal OWL 1 DL feature; therefore, every
legal OWL 1 Lite ontology is a legal OWL 1 DL ontology;

228 5 OWL: Web Ontology Language

• OWL 1 DL and OWL 1 Full have the same language features; therefore every
legal OWL 1 DL ontology is a legal OWL 1 Full ontology;

• every valid OWL 1 Lite conclusion is a valid OWL 1 DL conclusion; and finally
• every valid OWL 1 DL conclusion is a valid OWL 1 Full conclusion.

Let us now discuss OWL 1’s three faces in more detail. This will not only help
you to understand ontologies that are developed by using only OWL 1 constructs,
but also help you to better understand OWL 2 language profiles as well.

• OWL 1 Full

The entire OWL 1 language we have discussed in this chapter is called OWL
1 Full, with every construct we have covered in this chapter being available to
the ontology developer. It also allows combining these constructs in arbitrary
ways with RDF and RDF Schema, including mixing the RDF Schema definitions
with OWL definitions. Any legal RDF document is therefore a legal OWL 1 Full
document.

• OWL 1 DL

As we have mentioned, OWL 1 DL has the same language feature as OWL 1
Full, but it has restrictions about the ways in which the constructs from OWL 1
and RDF can be used. More specifically, the following rules must be observed
when building ontologies:

– No arbitrary combination is allowed: a resource can be only a class, a datatype,
a datatype property, an object property, an instance, a data value, and not more
than one of these. In other words, a class cannot be at the same time a member
of another class (no punning is allowed).

– Restrictions on functional property and inverse functional property: recall
these two properties are sub-classes of rdf:Property; therefore they can
connect resource to resource or resource to value. However, in OWL 1 DL,
they can only be used with object property, not datatype property.

– Restriction on transitive property: owl:cardinality cannot be used with
transitive property or their sub-properties because these sub-properties are
transitive properties by implication.

– Restriction on owl:imports: if owl:imports is used by an OWL 1 DL
ontology to import an OWL 1 Full ontology, the importing ontology will not
be qualified as an OWL 1 DL.

In addition, OWL 1 Full does not put any constraints on annotation properties;
however, OWL 1 DL does have the following constraints:

– Object properties, datatype properties, annotation properties, and ontology
properties must be mutually disjoint. For example, a property cannot be at
the same time a datatype property and an annotation property.

5.4 OWL 2 Web Ontology Language 229

– Annotation properties must not be used in property axioms. In other words,
no sub-properties or domain/range constraints for annotation properties can
be defined.

– Annotation properties must be explicitly declared, as shown in List 5.48.
– The object of an annotation property must be either a data literal, a URI

reference, or an individual; nothing else is permitted.

• OWL 1 Lite

OWL 1 Lite is a further restricted subset of OWL 1 DL, and the following are
some of the main restrictions:

– The following constructs are not allowed in OWL Lite: owl:hasValue,
owl:disjointWith, owl:unionOf, owl:complementOf,
owl:oneOf.

– Cardinality constraints are more restricted: owl:minCardinality and
owl:maxCardinality cannot be used; owl:cardinality can be used, but
with value to be either 0 or 1.

– owl:equivalentClass statement can no longer be used to relate anony-
mous classes, but only to connect class identifiers.

Remember, you can always find a full list of the features supported by the three
faces of OWL 1 from OWL 1’s official specifications, and it is up to you to under-
stand each version in detail and thus make the right decision in your design and
development work.

Recall that List 5.30 is an ontology written only by using OWL 1 features. Let
us decide what face this ontology has. Clearly, it is not OWL 1 Lite since we did
use owl:hasValue, and it is also not OWL 1 DL since we also used functional
property on owl:DatatypeProperty. Therefore, our camera ontology shown in
List 5.30 is an OWL 1 Full version ontology.

There are indeed tools that can help you to decide the particular species of a given
OWL 1 ontology. For example, you can find one such tool at this location:

http://www.mygrid.org.uk/OWL/Validator

You can try to validate our camera ontology and see its species decided by this
tool. This will for sure enhance your understanding about OWL 1 species.

5.4.8.4 Understanding OWL 2 Profiles

Recall we have mentioned that for any ontology created by using OWL 1, we
had two alternative ways to assign semantics to this ontology. The same situa-
tion still holds for OWL 2. In addition, the first method is still called the Direct
Model-Theoretic Semantics, and it is specified by the W3C Recommendation OWL
2 Web Ontology Language Direct Semantics.10 The second one is again called

10http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/

230 5 OWL: Web Ontology Language

RDF-based Semantics, and it is specified by the W3C Recommendation OWL 2
Web Ontology Language RDF-Based Semantics.11 Also, OWL 2 DL refers to those
OWL 2 ontologies interpreted by using the Direct Semantics and OWL 2 Full refers
to those ontologies interpreted by using the RDF-based Semantics. Another way to
understand this is to consider the fact that the Direct Model-Theoretic Semantics
assigns meaning to OWL 2 ontologies by using Description Logic, therefore the
name OWL 2 DL.

The differences between these two semantics are generally quite slight. For
example, given an OWL 2 DL ontology, inferences drawn using the Direct
Semantics remain valid inferences under the RDF-based Semantics. As developers,
we need to understand the following about OWL 2 DL vs. OWL 2 Full:

• OWL 2 DL can be viewed as a syntactically restricted version of OWL 2 Full.
The restrictions are added and designed to make the implementation of OWL 2
reasoners easier.

More specifically, the reasoners built upon OWL 2 DL can return all “yes or no”
answers to any inference request, whilst OWL 2 Full can be undecidable. At the time
of this writing, there are production quality reasoners that cover the entire OWL 2
DL language, but there are no such reasoners for OWL 2 Full yet.

• Under OWL 2 DL, annotations have no formal meaning. However, under OWL
Full, some extra inferences can be drawn.

In addition to OWL 2 DL, OWL 2 further specifies language profiles. An OWL 2
profile is a trimmed down version of the OWL 2 language that trades some expres-
sive power for efficiency of reasoning. In computational logic, profiles are usually
called fragments or sub-languages.

The OWL 2 specification offers three different profiles, and they are called OWL
2 EL, OWL 2 QL, and OWL 2 RL. To guarantee a scalable reasoning capability, each
one of these profiles has its own limitations regarding its expressiveness. In the next
section, we will take a closer look at all these three profiles, and we will also briefly
summarize the best scenarios for using each specific profile. For the details of each
profile, you can always consult OWL 2’s official specification, i.e., OWL 2 Web
Ontology Language Profiles.12

5.4.8.5 OWL 2 EL, QL, and RL

• OWL 2 EL

OWL 2 EL is designed with very large ontologies in mind. For example, life
sciences commonly require applications that depend on large ontologies. These

11http://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/
12http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/

5.4 OWL 2 Web Ontology Language 231

ontologies normally have huge number of classes, complex structural descriptions.
Classification is the main goal of the related applications. With the restrictions added
by OWL 2 EL, the complexity of reasoning algorithms (including query answering
algorithms) is known to be worst-case polynomial, therefore these algorithms are
often called PTime-complete algorithms.

More specifically, the following key points summarize the main features of
OWL 2 EL:

– allow owl:someValuesFrom to be used with class expression or data range;
– allow owl:hasValue to be used with individual or literal;
– allow the usage of self-restriction owl:hasSelf;
– property domains, class/property hierarchies, class intersections, disjoint

classes, property chains, and keys are fully supported.

And these features are not supported by OWL 2 EL:

– owl:allValuesFrom is not supported on both class expression and data
range;

– none of the cardinality restrictions is supported;
– owl:unionOf and owl:complementOf are not supported;
– disjoint properties are not supported;
– irreflexive object properties, inverse object properties, functional and inverse

functional object properties, symmetric object properties, and asymmetric
object properties are not supported;

– the following datatypes are not supported: xsd:double, xsd:float,
xsd:nonPositiveInteger, xsd:positiveInteger, xsd:short,
xsd:long, xsd:int, xsd:byte, xsd:unsignedLong, xsd:boolean,
xsd:unsignedInt, xsd:negativeInteger, xsd:unsignedShort,
xsd:unsignedByte, and xsd:language.

• OWL 2 QL

OWL 2 QL is designed for those applications that involve classical databases and
also need to work with OWL ontologies. For these applications, the interoperability
of OWL with database technologies becomes their main concern because the
ontologies used in these applications are often used to query large sets of individ-
uals. Therefore, querying answering against large volumes of instance data is the
most important reasoning task for these applications.

OWL 2 QL can guarantee polynomial time performance as well, and this perfor-
mance is again based on the limited expressive power. Nevertheless, the language
constructs supported by OWL 2 QL can represent key features of entity relation-
ship and UML diagrams; therefore, it can be used directly as a high-level database
schema language as well.

More specifically, the following key points summarize the main features of OWL
2 QL:

232 5 OWL: Web Ontology Language

– allow owl:someValuesFrom to be used, but with restrictions (see below);
– property domains and ranges, property hierarchies, disjoint classes or equiv-

alence of classes (only for sub-class-type expressions), symmetric properties,
reflexive properties, irreflexive properties, asymmetric properties, and inverse
properties are supported.

And these features are not supported by OWL 2 QL:

– owl:someValuesFrom is not supported when used on a class expression or a
data range in the sub-class position;

– owl:allValuesFrom is not supported on both class expression and data
range;

– owl:hasValue is not supported when used on an individual or a literal;
– owl:hasKey is not supported;
– owl:hasSelf is not supported;
– owl:unionOf and owl:oneOf are not supported;
– none of the cardinality restrictions is supported;
– property inclusions involving property chains;
– transitive, functional, and inverse functional properties are not supported;
– the following datatypes are not supported: xsd:double, xsd:float,
xsd:nonPositiveInteger, xsd:positiveInteger, xsd:short,
xsd:long, xsd:int, xsd:byte, xsd:unsignedLong, xsd:boolean,
xsd:unsignedInt, xsd:negativeInteger, xsd:unsignedShort,
xsd:unsignedByte, and xsd:language.

• Owl 2 RL

Owl 2 RL is designed for those applications that require scalable reasoning with-
out sacrificing too much expressive power. Therefore, OWL 2 applications that
are willing to trade the full expressiveness of the language for efficiency and
RDF(S) applications that need some added expressiveness from OWL 2 are all
good candidates for this profile. OWL 2 RL can also guarantee polynomial time
performance.

The design goal of OWL 2 RL is achieved by restricting the use of constructs to
certain syntactic positions. Table 5.5, taken directly from OWL 2’s official profile
specification document, uses owl:subClassOf as an example to show the usage
patterns that must be followed by the sub-class and super-class expressions used
with owl:subClassOf axiom.

All axioms in OWL 2 RL are constrained in the similar pattern. And
furthermore

– property domains and ranges only for sub-class-type expressions; property
hierarchies, disjointness, inverse properties, symmetry and asymmetric proper-
ties, transitivity properties, property chains, functional and inverse functional
properties, irreflexive properties fully supported;

– disjoint unions of classes and reflexive object properties are not supported;
– finally, owl:real and owl:rational as datatypes are not supported.

5.4 OWL 2 Web Ontology Language 233

Table 5.5 Syntactic restrictions on class expressions in OWL 2 RL

Sub-class expressions Super-class expressions

A class other than owl:Thing
An enumeration of individuals

(owl:oneOf)
Intersection of class expressions

(owl:intersectionOf)
Union of class expressions

(owl:unionOf)
Existential quantification to a class

expression (owl:someValuesFrom)
Existential quantification to a data range

(owl:someValuesFrom)
Existential quantification to an individual

(owl:hasValue)
Existential quantification to a literal

(owl:hasValue)

A class other than owl:Thing
Intersection of classes (owl:intersectionOf)
Negation (owl:complementOf)
universal quantification to a class expression

(owl:allValuesFrom)
Existential quantification to an individual

(owl:hasValue)
At-most 0/1 cardinality restriction to a class

expression
Universal quantification to a data range

(owl:allValuesFrom)
Existential quantification to a literal

(owl:hasValue)
At-most 0/1 cardinality restriction to a data range

5.4.9 Our Camera Ontology in OWL 2

At this point, we have covered the major features offered by OWL 2. Our camera
ontology (List 5.30) has also been re-written using OWL 2 features, as shown in
List 5.58. At this point, there are not many tools that support OWL 2 ontologies yet,
so we simply list the new camera ontology here and leave it to you to validate it and
decide its species, once the related tools are available.

List 5.58 Our camera ontology written by using OWL 2 features

1: <?xml version="1.0"?>
2: <!DOCTYPE rdf:RDF [
3: <!ENTITY owl "http://www.w3.org/2002/07/owl#">
4: <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">
5: <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">
6: <!ENTITY myCamera "http://www.liyangyu.com/camera#">
7:]>
8:
9: <rdf:RDF
9a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
10: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
11: xmlns:owl="http://www.w3.org/2002/07/owl#"
12: xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
13: xmlns:myCamera="http://www.liyangyu.com/camera#"
14: xml:base="http://www.liyangyu.com/camera#">
15:
16: <owl:Ontology rdf:about="">
17: <owl:versionIRI>
18: http://www.liyangyu.com/camera/v1
19: </owl:versionIRI>
20: <rdfs:comment>our camera ontology</rdfs:comment>
21: </owl:Ontology>

234 5 OWL: Web Ontology Language

22:
23: <owl:Class rdf:about="&myCamera;Camera"/>
24: <owl:Class rdf:about="&myCamera;Lens"/>
25: <owl:Class rdf:about="&myCamera;Body"/>
26: <owl:Class rdf:about="&myCamera;ValueRange"/>
27: <owl:Class rdf:about="&myCamera;Digital"/>
28: <owl:Class rdf:about="&myCamera;Film"/>
29: <owl:Class rdf:about="&myCamera;DSLR"/>
30: <owl:Class rdf:about="&myCamera;PointAndShoot"/>
31: <owl:Class rdf:about="&myCamera;Photographer"/>
32: <owl:Class rdf:about="&myCamera;Professional"/>
33: <owl:Class rdf:about="&myCamera;Amateur"/>
34: <owl:Class rdf:about="&myCamera;ExpensiveDSLR"/>
35:
36: <owl:AsymmetricProperty rdf:about="&myCamera;owned_by"/>
37: <owl:ObjectProperty rdf:about="&myCamera;manufactured_by"/>
38: <owl:ObjectProperty rdf:about="&myCamera;body"/>
39: <owl:ObjectProperty rdf:about="&myCamera;lens"/>
40: <owl:DatatypeProperty rdf:about="&myCamera;model"/>
41: <owl:ObjectProperty rdf:about="&myCamera;effectivePixel"/>
42: <owl:ObjectProperty rdf:about="&myCamera;shutterSpeed"/>
43: <owl:DatatypeProperty rdf:about="&myCamera;focalLength"/>
44: <owl:ObjectProperty rdf:about="&myCamera;aperture"/>
45: <owl:DatatypeProperty rdf:about="&myCamera;minValue"/>
46: <owl:DatatypeProperty rdf:about="&myCamera;maxValue"/>
47: <owl:ObjectProperty rdf:about="&myCamera;own"/>
48: <owl:DatatypeProperty rdf:about="&myCamera;reviewerID"/>
49:
50: <rdfs:Datatype rdf:about="&xsd;string"/>
51: <rdfs:Datatype rdf:about="&myCamera;MegaPixel"/>
52: <rdfs:Datatype rdf:about="&xsd;float"/>
53:
54: <owl:Class rdf:about="&myCamera;Camera">
55: <rdfs:subClassOf>
56: <owl:Restriction>
57: <owl:onProperty rdf:resource="&myCamera;model"/>
58: <owl:minCardinality
59: rdf:datatype="&xsd;nonNegativeInteger">
60: 1
61: </owl:minCardinality>
62: </owl:Restriction>
63: </rdfs:subClassOf>
64: </owl:Class>
65:
66: <owl:Class rdf:about="&myCamera;Lens">
67: </owl:Class>
68:
69: <owl:Class rdf:about="&myCamera;Body">
70: </owl:Class>
71:
72: <owl:Class rdf:about="&myCamera;ValueRange">

5.4 OWL 2 Web Ontology Language 235

73: </owl:Class>
74:
75: <owl:Class rdf:about="&myCamera;Digital">
76: <rdfs:subClassOf rdf:resource="&myCamera;Camera"/>
77: <rdfs:subClassOf>
78: <owl:Restriction>
79: <owl:onProperty
79a: rdf:resource="&myCamera;effectivePixel"/>
80: <owl:cardinality
81: rdf:datatype="&xsd;nonNegativeInteger">
82: 1
83: </owl:cardinality>
84: </owl:Restriction>
85: </rdfs:subClassOf>
86: </owl:Class>
87:
88: <owl:Class rdf:about="&myCamera;Film">
89: <rdfs:subClassOf rdf:resource="&myCamera;Camera"/>
90: </owl:Class>
91:
92: <owl:Class rdf:about="&myCamera;DSLR">
93: <rdfs:subClassOf rdf:resource="&myCamera;Digital"/>
94: </owl:Class>
95:
96: <owl:Class rdf:about="&myCamera;PointAndShoot">
97: <rdfs:subClassOf rdf:resource="&myCamera;Digital"/>
98: </owl:Class>
99:
100: <owl:Class rdf:about="&myCamera;Photographer">
101: <owl:intersectionOf rdf:parseType="Collection">
102: <owl:Class
102a: rdf:about="http://xmlns.com/foaf/0.1/Person"/>
103: <owl:Class>
104: <owl:hasKey rdf:parseType="Collection">
105: <owl:DatatypeProperty
105a: rdf:about="&myCamera;reviewerID"/>
106: </owl:hasKey>
107: </owl:Class>
108: </owl:intersectionOf>
109: </owl:Class>
110:
111:
112: <owl:Class rdf:about="&myCamera;Professional">
113: <rdfs:subClassOf rdf:resource="&myCamera;Photographer"/>
114: <rdfs:subClassOf>
115: <owl:Restriction>
116: <owl:minQualifiedCardinality
116a: rdf:datatype="&xsd;nonNegativeInteger">
117: 1
118: </owl:minQualifiedCardinality>
119: <owl:onProperty rdf:resource="&myCamera;own"/>

236 5 OWL: Web Ontology Language

120: <owl:onClass rdf:resource="&myCamera;ExpensiveDSLR"/>
121: </owl:Restriction>
122: </rdfs:subClassOf>
123: </owl:Class>
124:
125:
126: <owl:Class rdf:about="&myCamera;Amateur">
127: <owl:intersectionOf rdf:parseType="Collection">
128: <owl:Class
128a: rdf:about="http://xmlns.com/foaf/0.1/Person"/>
129: <owl:Class>
130: <owl:complementOf
130a: rdf:resource="&myCamera;Professional"/>
131: </owl:Class>
132: </owl:intersectionOf>
133: </owl:Class>
134:
135: <owl:Class rdf:about="&myCamera;ExpensiveDSLR">
136: <rdfs:subClassOf rdf:resource="&myCamera;DSLR"/>
137: <rdfs:subClassOf>
138: <owl:Restriction>
139: <owl:onProperty rdf:resource="&myCamera;owned_by"/>
140: <owl:someValuesFrom
140a: rdf:resource="&myCamera;Professional"/>
141: </owl:Restriction>
142: </rdfs:subClassOf>
143: </owl:Class>
144:
145: <owl:AsymmetricProperty rdf:about="&myCamera;owned_by">
146: <owl:propertyDisjointWith rdf:resource="&myCamera;own"/>
147: <rdfs:domain rdf:resource="&myCamera;DSLR"/>
148: <rdfs:range rdf:resource="&myCamera;Photographer"/>
149: </owl:AsymmetricProperty>
150:
151: <owl:ObjectProperty rdf:about="&myCamera;manufactured_by">
152: <rdf:type rdf:resource="&owl;FunctionalProperty"/>
153: <rdfs:domain rdf:resource="&myCamera;Camera"/>
154: </owl:ObjectProperty>
155:
156: <owl:ObjectProperty rdf:about="&myCamera;body">
157: <rdfs:domain rdf:resource="&myCamera;Camera"/>
158: <rdfs:range rdf:resource="&myCamera;Body"/>
159: </owl:ObjectProperty>
160:
161: <owl:ObjectProperty rdf:about="&myCamera;lens">
162: <rdfs:domain rdf:resource="&myCamera;Camera"/>
163: <rdfs:range rdf:resource="&myCamera;Lens"/>
164: </owl:ObjectProperty>
165:
166: <owl:DatatypeProperty rdf:about="&myCamera;model">
167: <rdfs:domain rdf:resource="&myCamera;Camera"/>

5.4 OWL 2 Web Ontology Language 237

168: <rdfs:range rdf:resource="&xsd;string"/>
169: </owl:DatatypeProperty>
170: <rdfs:Datatype rdf:about="&xsd;string"/>
171:
172: <owl:ObjectProperty rdf:about="&myCamera;effectivePixel">
173: <rdfs:domain rdf:resource="&myCamera;Digital"/>
174: <rdfs:range rdf:resource="&myCamera;MegaPixel"/>
175: </owl:ObjectProperty>
176:
177: <rdfs:Datatype rdf:about="&myCamera;MegaPixel">
178: <owl:onDatatype rdf:resource="&xsd;integer"/>
179: <owl:withRestrictions rdf:parseType="Collection">
180: <rdf:Description>
181: <xsd:minInclusive rdf:datatype="&xsd;decimal">
182: 1.0
183: </xsd:minInclusive>
184: </rdf:Description>
185: <rdf:Description>
186: <xsd:maxInclusive rdf:datatype="&xsd;decimal">
187: 24.0
188: </xsd:maxInclusive>
189: </rdf:Description>
190: </owl:withRestrictions>
191: </rdfs:Datatype>
192:
193: <owl:ObjectProperty rdf:about="&myCamera;shutterSpeed">
194: <rdfs:domain rdf:resource="&myCamera;Body"/>
195: <rdfs:range rdf:resource="&myCamera;ValueRange"/>
196: </owl:ObjectProperty>
197:
198: <owl:DatatypeProperty rdf:about="&myCamera;focalLength">
199: <rdfs:domain rdf:resource="&myCamera;Lens"/>
200: <rdfs:range rdf:resource="&xsd;string"/>
201: </owl:DatatypeProperty>
202: <rdfs:Datatype rdf:about="&xsd;string"/>
203:
204: <owl:ObjectProperty rdf:about="&myCamera;aperture">
205: <rdfs:domain rdf:resource="&myCamera;Lens"/>
206: <rdfs:range rdf:resource="&myCamera;ValueRange"/>
207: </owl:ObjectProperty>
208:
209: <owl:DatatypeProperty rdf:about="&myCamera;minValue">
210: <rdfs:domain rdf:resource="&myCamera;ValueRange"/>
211: <rdfs:range rdf:resource="&xsd;float"/>
212: </owl:DatatypeProperty>
213: <rdfs:Datatype rdf:about="&xsd;float"/>
214:
215: <owl:DatatypeProperty rdf:about="&myCamera;maxValue">
216: <rdfs:domain rdf:resource="&myCamera;ValueRange"/>
217: <rdfs:range rdf:resource="&xsd;float"/>
218: </owl:DatatypeProperty>

238 5 OWL: Web Ontology Language

219: <rdfs:Datatype rdf:about="&xsd;float"/>
220:
221: <owl:ObjectProperty rdf:about="&myCamera;own">
222: <owl:inverseOf rdf:resource="&myCamera;owned_by"/>
223: <rdfs:domain rdf:resource="&myCamera;Photographer"/>
224: <rdfs:range rdf:resource="&myCamera;DSLR"/>
225: </owl:ObjectProperty>
226:
227: <owl:DatatypeProperty rdf:about="&myCamera;reviewerID">
228: <rdf:type rdf:resource="&owl;FunctionalProperty"/>
229: <rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>
230: <rdfs:domain rdf:resource="&myCamera;Photographer"/>
231: <rdfs:range rdf:resource="&xsd;string"/>
232: </owl:DatatypeProperty>
233: <rdfs:Datatype rdf:about="&xsd;string"/>
234:
235: <rdf:Description rdf:about="&myCamera;hasLens">
236: <owl:propertyChainAxiom rdf:parseType="Collection">
237: <owl:ObjectProperty rdf:about="&myCamera;own"/>
238: <owl:ObjectProperty rdf:about="&myCamera;lens"/>
239: </owl:propertyChainAxiom>
240: </rdf:Description>
241:
242: </rdf:RDF>

Compare this ontology with the one shown in List 5.30; the difference you see
will be part of the new features offered by OWL 2.

5.5 Summary

We have covered OWL in this chapter, including both OWL 1 and OWL 2. As an
ontology development language, OWL fits into the world of the Semantic Web just
as the way RDFS does. However, compared to RDFS, OWL provides a much greater
expressiveness, together with much powerful reasoning capabilities.

The first part of this chapter presents OWL 1, since most of the available ontolo-
gies are written by using OWL 1 and quite a few development tools at this point still
only support OWL 1. More specifically, understand the following main points about
OWL 1:

• understand the key terms and related language constructs provided by OWL 1,
understand how to use these terms and language constructs to define classes and
properties;

• understand the enhanced expressiveness and reasoning power offered by OWL 1
ontologies, compared to the ontologies defined by using RDFS.

5.5 Summary 239

The second part of this chapter focuses on OWL 2. Make sure you understand
the following about OWL 2:

• new features provided by OWL 2, such as a collection of new properties, extended
support for datatypes, and simple metamodeling capabilities;

• understand how to use the added new features to define ontologies with more
expressiveness and enhanced reasoning power.

This chapter also discusses the topic of OWL profiles. Make sure you understand
the following main points about OWL profiles:

• the concept of OWL profile, why these profiles are needed;
• language features and limitations of each profile, and which specific profile

should be selected for a given task.

With the material presented in this chapter and Chap. 4, you should be techni-
cally sound when it comes to ontology development. In Chap. 12, we will present
a methodology that will help you further with ontology design and development.
Together, this will prepare you well for your work on the Semantic Web.

Chapter 6
SPARQL: Querying the Semantic Web

This chapter covers SPARQL, the last core component of the Semantic Web. With
SPARQL, you will be able to locate specific information on the machine-readable
Web, and the Web can therefore be viewed as a gigantic database, as many of us
have been dreaming about.

This chapter will cover all the main aspects of SPARQL, including its concepts,
its main language constructs and features, and certainly, real-world examples and
related tools you can use when querying the Semantic Web. Once you are done with
this chapter, you will have a complete tool collection that you can use to continue
exploring the world of the Semantic Web.

6.1 SPARQL Overview

6.1.1 SPARQL in Official Language

SPARQL (pronounced “sparkle”) is an RDF query language and data access proto-
col for the Semantic Web. Its name is a recursive acronym that stands for SPARQL
Protocol and RDF Query Language. It was standardized by W3C’s SPARQL
Working Group (formerly known as the RDF Data Access Working Group) on 15
January 2008. You can follow its activities from the official Web site:

http://www.w3.org/2009/sparql/wiki/Main_Page

which also lists the specifications contained in the official W3C Recommendation.
The W3C Recommendation of SPARQL consists of three separate specifica-

tions. The first one SPARQL Query Language specification1 makes up the core.
Together with this language specification is the SPARQL Query XML Results Format
specification2 which describes an XML format for serializing the results of a
SPARQL query (including both SELECT and ASK query). The third specification is

1http://www.w3.org/TR/rdf-sparql-query/
2http://www.w3.org/TR/rdf-sparql-XMLres/

241L. Yu, A Developer’s Guide to the Semantic Web,
DOI 10.1007/978-3-642-15970-1_6, C© Springer-Verlag Berlin Heidelberg 2011

242 6 SPARQL: Querying the Semantic Web

the SPARQL Protocol for RDF specification3 that uses WSDL 2.0 to define simple
HTTP and SOAP protocols for remotely querying RDF databases.

In total, therefore, SPARQL Recommendation consists of a query language, a
XML format in which query results will be returned, and a protocol of submitting a
query to a query processor service remotely.

The main focus of this chapter is on SPARQL query language itself; all of the
key language constructs will be covered with ample examples. It will also cover the
new features proposed by SPARQL 1.1, which have not been standardized at the
time of this writing. Nevertheless, these new features will likely to remain stable
and should be very useful for you to become even more productive with SPARQL.

6.1.2 SPARQL in Plain English

At this point, we have learned RDF, a model and data format that we can use to
create structured content for machine to read. We have also learned RDF schema
and OWL language, and we can use these languages to create ontologies.

With ontologies, anything we say in our RDF documents, we have a reason to
say them. And more importantly, since the RDF documents we create all share these
common ontologies, it becomes much easier for machines to make inferences based
on these RDF contents, therefore generating even more RDF statements, as we have
seen in the last chapter.

As a result, there will be more and more content being expressed in RDF format.
And indeed, for last several years, a large amount of RDF documents have been
published on the Internet and a machine-readable Web has started to take shape.
Following all these is the need to locate specific information on this data Web.

A possible solution is to build a new kind of search engine that will work on this
emerging Semantic Web. Since the underlying Web is machine readable, this new
search engine will have a much better performance than that delivered by the search
engines working under traditional Web environment.

However, this solution will not be able to take full advantage of the Semantic
Web. More specifically, a search engine does not directly give us answers; instead,
it returns to us a collection of pages that might contain the answer. Since we are
working a machine-readable Web, why not directly ask for the answer?

Therefore, to push the solution one step further, we need a query language that
we can use on this data Web. By simply submitting a query, we should be able to
directly get the answer.

SPARQL query language is what we are looking for. In plain English,

SPARQL is a query language that we can use to query the RDF data content and SPARQL
also provides a protocol that we need to follow if we want to query a remote RDF data set.

The benefit of having a query language such as SPARQL is also obvious. To
name a few,

3http://www.w3.org/TR/rdf-sparql-protocol/

6.1 SPARQL Overview 243

• to query RDF graphs to get specific information;
• similarly, to query a remote RDF server and to get streaming results back;
• to run automated regular queries again RDF dataset to generate reports;
• to enable application development at a higher level, i.e., application can work

with SPARQL query results, not directly with RDF statements.

6.1.3 Other Related Concepts: RDF Data Store, RDF Database,
and Triple Store

RDF data store, RDF database, and triple store are three concepts you will hear
a lot when you start to work with SPARQL. In fact, all these three phrases mean
exactly the same thing and are interchangeable. To understand them, we only need
to understand any one of them. Let us look at RDF data store in more detail.

To put it simple, an RDF data store is a special database system built for the
storage and retrieval of RDF statements.

As we know, a relational database management system (DBMS) is built for gen-
eral purpose. Since no one can predict what data model (tables, schemas, etc.) will
be needed for a specific project, all the functionalities, such as adding, deleting,
updating, and locating a record, have to be built as general as possible. To gain this
generality, performance cannot be the top priority at all time.

If we devote a database system to store RDF statements only, we know what
kind of data model will be stored already. More specifically, every record is a short
statement in the form of subject–predicate–object. As a result, we can modify a
DBMS so that it is optimized for the storage and retrieval of RDF statements only.

Therefore, an RDF data store is like a relational database in that we can store
RDF statements there and retrieve them later by using a query language. However,
an RDF data store is specially made and optimized for storing and retrieving RDF
statement only.

An RDF data store can be built as a specialized database engine from scratch, or
it can be built on top of existing commercial relational database engines. Table 6.1
shows some RDF data stores created by different parties using different languages.

Any given RDF data store, be it built from scratch or on top of an existing
commercial data base system, should have the following features:

Table 6.1 Examples of RDF data store implementations

RDF data store name implementation language home page

4store C http://www.4store.org
ARC C http://arc.semsol.org
Joseki Java http://www.joseki.org
Redland C http://librdf.org
Sesame Java http://www.openrdf.org
Virtuoso C http://virtuoso.openlinksw.com

244 6 SPARQL: Querying the Semantic Web

• a common storage medium for any application that manipulates RDF content;
• a set of APIs that allow applications to add triples to the store, query the store,

and delete triples from the store.

There can be different add-on features provided by different implementations.
For example, some RDF data stores will support loading an RDF document from
a given URL, and some will support RDF schema, therefore offering some basic
forms of inferencing capability. It is up to you to understand the features of the RDF
data store that you have on hand.

In this chapter, we will be using an RDF data store called Joseki, and we will
help you to set it up in the next section.

6.2 Set up Joseki SPARQL Endpoint

A SPARQL endpoint can be understood as an interface that users (human or appli-
cation) can access to query an RDF data store by using SPARQL query language.
Its function is to accept queries and return result accordingly. For human users,
this endpoint could be a stand-alone or a Web-based application. For applications,
this endpoint takes the form of a set of APIs that can be used by the calling
agent.

A SPARQL endpoint can be configured to return results in a number of different
formats. For instance, when used by human users in an interactive way, it presents
the result in the form of a HTML table, which is often constructed by applying
XSL transforms to the XML result that is returned by the endpoint. When accessed
by applications, the results are serialized into machine-processable formats, such as
RDF/XML or Turtle format, just to name a few.

SPARQL endpoints can be categorized as generic endpoints and specific end-
points. A generic endpoint works against any RDF dataset, which could be stored
locally or accessible from the Web. A specific endpoint is tied to one particular
dataset, and this dataset cannot be switched to another endpoint.

In this chapter, our main goal is to learn SPARQL’s language feature; we are
going to use a SPARQL endpoint that works in a command line fashion so that we
can test our queries right away. In later chapters, we will see how to query RDF
statements by using programmable SPARQL endpoint in a soft agent.

There are quite a few SPARQL endpoints available and we have selected Joseki
as our test bed throughout this chapter. Joseki comes with the Jena Semantic Web
framework developed by HP, which is arguably the most popular tool suite for
developing Semantic Web applications (more details about Jena in later chapters).

More specifically, Joseki is a Web-based SPARQL endpoint. It contains its own
Web server, which hosts a Java servlet engine to support its SPARQL endpoint. It
renders a Web query form so that we can enter our query manually, and by submit-
ting the query form, we will be presented with the query result right away. Joseki
endpoint also provides a set of SPARQL APIs that we can use to submit queries
programmatically, as we will see in later chapters.

6.2 Set up Joseki SPARQL Endpoint 245

Fig. 6.1 Joseki SPARQL endpoint

There are two ways to access Joseki. The easiest way is to access Joseki endpoint
directly online:

http://sparql.org/sparql.html

and this endpoint is shown in Fig. 6.1.
You can use the simple text form shown in Fig. 6.1 to enter your query and click

Get Results button to see the query result – we will see more details in the coming
sections.

Another choice is to download Joseki package and install it on your machine so
that you can test SPARQL query anytime you want, even when you are offline. You
will be seeing exactly the same interface as shown in Fig. 6.1, except that it is hosted
at this location:

http://localhost:2020/

We will now discuss how to setup Joseki on your local machine. If you decide to
go with online endpoint, you can simply skip the following discussion.

To start, download Joseki from this location

http://www.joseki.org/download.html

246 6 SPARQL: Querying the Semantic Web

and remember to get the latest version. Once you have downloaded it, you can install
it on your machine, at any location you want. To start using it, you need to finish the
following two simple setup steps.

The first step is to set the JOSEKIROOT environment variable so that it points to
the location of your installation. For example, I have installed Joseki at this location:

C:\liyang\DevApp\Joseki-3.2
Therefore, I have added the following environment variable:

JOSEKIROOT=C:\liyang\DevApp\Joseki-3.2
The second step is to update your CLASSPATH environment variable and note

that every jar file under lib directory (C:\liyang\DevApp\Joseki-3.2\lib) has
to be added into the CLASSPATH variable. Again, use my installation as an example;
part of my CLASSPATH variable should look like the following:

CLASSPATH=.;C:\liyang\DevApp\Joseki-3.2\lib\antlr-2.7.5.jar;
C:\liyang\DevApp\Joseki-3.2\lib\arq.jar;

where represents the other jar files.
Now, you are ready to start Joseki SPARQL endpoint. Go to the following

location (using my installation as example):

C:\liyang\DevApp\Joseki-3.2
type in the following command to start it:

bin\rdfserver
This should start Joseki server successfully. If everything works fine, you should

see a window output that is similar to the one shown in Fig. 6.2.

Fig. 6.2 Check if you have installed Joseki correctly

6.3 SPARQL Query Language 247

Now open a browser and put the following into the address bar:

http://localhost:2020/sparql.html

You will see a SPARQL query form that looks exactly like the one shown in
Fig. 6.1. For the rest of this chapter, this is what we are going to use for all our
SPARQL queries.

6.3 SPARQL Query Language

Now, we are ready to study the query language itself. We need to select an RDF data
file first and use it as our example throughout this chapter. This example data file
has to be clear enough for us to understand, yet it cannot be too trivial to reflect the
power of SPARQL query language.

Let us take Dan Brickley’s FOAF document as our example. FOAF represents a
project called Friend Of A Friend, and Dan Brickley is one of the two founders of
this project. We have a whole chapter coming up to discuss FOAF in detail; for now,
understanding the following about FOAF is good enough for you to continue:

• The goal of FOAF project is to build a social network using the Semantic Web
technology so that we can do experiments with it and build applications that are
not easily built under traditional Web.

• The core element of FOAF project is the FOAF ontology, a collection of terms
that can be used to describe a person: name, home page, e-mail address, interest,
and people he/she knows, etc.

• Anyone can create an RDF document to describe himself/herself by using this
FOAF ontology, and he/she can join the friends network as well.

Dan Brickley’s FOAF document is therefore a collection of RDF statements that
he created to describe himself, and the terms he used to do so come from FOAF
ontology. You can find his file at this URL:

http://danbri.org/foaf.rdf

And since the file is quite long, List 6.1 shows only part of it, so that you can
get a feeling about how a FOAF document looks like. Note that Dan Brickley can
change his FOAF document at any time, therefore at the time you are reading this
book, the exact content of this RDF document could be different. However, the main
idea is the same, and all the queries against this file will still be valid.

List 6.1 Part of Dan Brickley’s FOAF document

1: <?xml version="1.0"?>
2:

3: <rdf:RDF

4: xml:lang="en"
5: xmlns:wot="http://xmlns.com/wot/0.1/"

248 6 SPARQL: Querying the Semantic Web

6: xmlns:rdf=
6a: "http://www.w3.org/1999/02/22-rdf-syntax-ns#"

7: xmlns:dct="http://purl.org/dc/terms/"
8: xmlns:lang=
8a: "http://purl.org/net/inkel/rdf/schemas/lang/1.1#"

9: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
10: xmlns:rss="http://purl.org/rss/1.0/"
11: xmlns="http://xmlns.com/foaf/0.1/"
12: xmlns:foaf="http://xmlns.com/foaf/0.1/"
13: xmlns:wn="http://xmlns.com/wordnet/1.6/"
14: xmlns:air=
14a "http://www.megginson.com/exp/ns/airports#"

15: xmlns:contact=
15a: "http://www.w3.org/2000/10/swap/pim/contact#"

16: xmlns:dc="http://purl.org/dc/elements/1.1/">
17:

18: <Person rdf:ID="danbri">
19:

20: <foaf:name>Dan Brickley</foaf:name>

21: <foaf:nick>danbri</foaf:nick>

22:

23: <mbox rdf:resource="mailto:danbri@danbri.org"/>
24: <mbox rdf:resource="mailto:danbri@porklips.org"/>
25:

26: <plan>Save the world and home in time for tea.</plan>

27:

28: <knows>

29: <Person>

30: <mbox rdf:resource=
30a "mailto:libby.miller@bristol.ac.uk"/>

31: <mbox rdf:resource="mailto:libby@asemantics.com"/>
32: </Person>

33: </knows>

34:

35: <knows>

36: <Person rdf:about=
36a: "http://www.w3.org/People/Berners-Lee/card#i">

37: <name>Tim Berners-Lee</name>

38: <isPrimaryTopicOf rdf:resource=
38a: "http://en.wikipedia.org/wiki/Tim_Berners-Lee"/>

39: <homepage rdf:resource=
39a: "http://www.w3.org/People/Berners-Lee/"/>

40: <mbox rdf:resource="mailto:timbl@w3.org"/>
41: <rdfs:seeAlso rdf:resource=
41a: "http://www.w3.org/People/Berners-Lee/card"/>

6.3 SPARQL Query Language 249

42: </Person>

43: </knows>

44:

45: </Person>

46:

47:</rdf:RDF>

As you can see, he has included his name and nick name (line 20, 21), his e-mail
addresses (line 23, 24), and his plan (line 26). He has also used foaf:knows to
include some of his friends, as shown in line 28–33, line 35–43. Note that a default
namespace is declared in line 11, and that default namespace is the FOAF ontology
namespace (see next chapter for details). As a result, he can use terms from FOAF
ontology without adding any prefix, such as Person, knows, mbox, plan.

6.3.1 The Big Picture

SPARQL provides four different forms of query:

• SELECT query
• ASK query
• DESCRIBE query
• CONSTRUCT query

Among these forms, SELECT query is the most frequently used query form. In
addition, all these query forms are based on two basic SPARQL concepts: triple
pattern and graph pattern. Let us understand these two concepts first before we start
to look at SPARQL queries.

6.3.1.1 Triple Pattern

As we have learned, RDF model is built on the concept of triple, a three-tuple struc-
ture consisting of subject, predicate, and object. Likewise, SPARQL is built upon
the concept of triple pattern, which is also written as subject, predicate, and object,
and has to be terminated with a full stop. The difference between RDF triple and
SPARQL triple pattern is that a SPARQL triple pattern can include variables: any or
all of the subject, predicate, and object values in a triple pattern can be a variable.
Clearly, an RDF triple is also a SPARQL triple pattern.

The second line in the following example is a SPARQL triple pattern (note that
the Turtle syntax is used here):

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

<http://danbri.org/foaf.rdf#danbri> foaf:name ?name.

As you can tell, the subject of this triple pattern is Dan Brickley’s URI, the pred-
icate is foaf:name, and the object component of this triple pattern is a variable,
identified by the ? character in front of a string name.

250 6 SPARQL: Querying the Semantic Web

Note that a SPARQL variable can be prefixed with either a ? character or a $ char-
acter, and these two are interchangeable. In this book, we will use the ? character.
In other words, a SPARQL variable is represented by the following format:

?variableName

where the ? character is necessary, and variableName is given by the user.
The best way to understand a variable in a triple pattern is to view it as a place-

holder that can match any value. More specifically, here is what happens when the
above triple pattern is used against an RDF graph:

0. Create an empty RDF document, call it resultSet.
1. Get the next triple from the given RDF graph; if there is no more triple, return

the resultSet.
2. Match the current triple with the triple pattern: if both the subject and the pred-

icate of the current triple match the given subject and predicate in the triple
pattern, the actual value of the object from the current triple will bind to the vari-
able called name, therefore creates a new concrete triple that will be collected
into the resultSet.

3. Go back to step 1.

Obviously, the above triple pattern can be read as follows:

find the value of foaf:name property defined for RDF resource identified by http://
danbri.org/foaf.rdf#danbri.

And based on the above steps, it is clear that all possible bindings are included.
Therefore, if we have multiple instances of foaf:name property defined for
http://danbri.org/foaf.rdf#danbri, all these multiple bindings will be
returned.

It is certainly fine to have more than one variable in a triple pattern. For example,
the following triple pattern has two variables:

<http://danbri.org/foaf.rdf#danbri> ?property ?name.

And it means to find all the properties and their values that have been defined to
the resource identified by http://danbri.org/foaf.rdf#danbri.

It is also fine to have all components as variables:

?subject ?property ?name.

This triple pattern will then match all triples in a given RDF graph.

6.3.1.2 Graph Pattern

Another important concept in SPARQL is called graph pattern. Similar to triple
pattern, graph pattern is also used to select triples from a given RDF graph, but
it can specify a much more complex “selection rule” compared to simple triple
pattern.

6.3 SPARQL Query Language 251

First off, a collection of triple patterns is called a graph pattern. In SPARQL, {
and } are used to specify a collection of triple patterns. For example, the following
three triple patterns present one graph pattern:

{

?who foaf:name ?name.

?who foaf:interest ?interest.

?who foaf:knows ?others.

}

To understand how graph pattern is used to select resources from a given RDF
graph, we need to remember one key point about the graph pattern: if a given vari-
able shows up in multiple triple patterns within the graph pattern, its value in all
these patterns has to be the same. In other words, each resource returned must be
able to substitute into all occurrences of the variable. More specifically,

0. Create an empty set called resultSet.
1. Get the next resource from the given RDF graph. If there is no more resource

left, return resultSet and stop.
2. Process the first triple pattern:

– If the current resource does not have a property instance called foaf:name,
go to 6.

– Otherwise, bind the current resource to variable ?who and bind the value of
property foaf:name to variable ?name.

3. Process the second triple pattern:

– If the current resource (represented by variable ?who) does not have a property
instance called foaf:interest, go to 6.

– Otherwise, bind the value of property foaf:interest to variable
?interest.

4. Process the third triple pattern:

– If the current resource (represented by variable ?who) does not have a property
instance called foaf:knows, go to 6.

– Otherwise, bind the value of property foaf:knows to variable ?others.

5. Collect the current resource into resultSet.
6. Go to 1.

Based on these steps, it is clear that this graph pattern in fact tries to find any
resource that has all three of the desired properties defined. The above process will
stop its inspection at any point and move on to a new resource if the current resource
does not have any of the required property defined.

You should be able to understand other graph patterns in a similar way just by
remembering this basic rule: within a graph pattern, a variable must always be bound
to the same value no matter where it shows up.

And now, we are ready to dive into the world of SPARQL query language.

252 6 SPARQL: Querying the Semantic Web

6.3.2 SELECT Query

The SELECT query form is used to construct standard queries, and it is probably the
most popular form among the four. In addition, most of its features are shared by
other query forms.

6.3.2.1 Structure of a SELECT Query

List 6.2 shows the structure of a SPARQL SELECT query:

List 6.2 The structure of a SPARQL SELECT query

base directive

BASE <URI>

list of prefixes

PREFIX pref: <URI>

...

result description

SELECT...

graph to search

FROM . . .

query pattern

WHERE {

...

}

query modifiers

ORDER BY...

As shown in List 6.2, a SELECT query starts with a BASE directive and a list of
PREFIX definitions which may contain an arbitrary number of PREFIX statements.
These two parts are optional and they are used for URI abbreviations. For example,
if you assign a label pref to a given URI, then the label can be used anywhere in
a query in place of the URI itself. Also note that pref is simply a label, we can
name it anyway we want. This is all quite similar to Turtle language abbreviation
we have discussed in Chap. 2, and we will see more details about these two parts in
the upcoming query examples.

The SELECT clause comes next. It specifies which variable bindings, or data
items, should be returned from the query. As a result, it “picks up” what information
to return from the query result.

The FROM clause tells the SPARQL endpoint against which graph the search
should be conducted. As you will see later, this is also an optional item – in some
cases, there is no need to specify the dataset that is being queried against.

The WHERE clause contains the graph patterns that specify the desired results;
it tells the SPARQL endpoint what to query for in the underlying data graph. Note

6.3 SPARQL Query Language 253

that the WHERE clause is not optional, although the WHERE keyword itself is optional.
However, for clarity and readability, it is a good idea not to omit WHERE.

The last part is generally called query modifiers. The main purpose is to tell
the SPARQL endpoint how to organize the query results. For instance, ORDER
BY clause and LIMIT clause are examples of query modifiers. Obviously, query
modifiers are also optional.

6.3.2.2 Writing Basic SELECT Query

As we have discussed, our queries will be issued against Dan Brickley’s FOAF
document. And our first query will accomplish the following: since FOAF ontology
has defined a group of properties that one can use to describe a person, it would be
interesting to see which of these properties are actually used by Brickley. List 6.3
shows the query:

List 6.3 What FOAF properties did Dan Brickley use to describe himself?
1: base <http://danbri.org/foaf.rdf>

2: prefix foaf: <http://xmlns.com/foaf/0.1/>

3: select *
4: from <http://danbri.org/foaf.rdf>

5: where

6: {

7: <#danbri> ?property ?value.

8: }

Since this is our first query, let us study it in greater detail. First off, note that
SPARQL is not case sensitive, so all the keywords can be either in small letters or
in capital letters.

Now, lines 1 and 2 are there for abbreviation purpose. Line 1 uses BASE keyword
to define a base URI against which all relative URIs in the query will be resolved,
including the URIs defined with PREFIX keyword. In this query, PREFIX keyword
specifies that foaf will be the shortcut for an absolute URI (line 2), so the URI
foaf stands for does not have to be resolved against the BASE URI.

Line 3 specifies which data items should be returned by the query. Note that only
variables in the graph pattern (line 6–8) can be chosen as returned data items. In this
example, we would like to return both the property names and their values, so we
should have written the SELECT clause like this:

select ?property ?value

Since ?property and ?value are the only two variables in the graph pattern,
we do not have to specify them one by one as shown above, we can simply use a ∗
as a wildcard for all the variables, as shown in line 3.

Line 4 specifies the data graph against which we are doing our search. Note
that Joseki can be used as either a generic or a specific SPARQL endpoint, and
in this chapter, we will always explicitly specify the location of Brickley’s FOAF
document.

254 6 SPARQL: Querying the Semantic Web

Line 5 is the where keyword, indicating that the search criteria will be the next,
and lines 6–8 give the criteria represented by a graph pattern. Since we have dis-
cussed the concepts of triple pattern and graph pattern already, we understand how
they are used to select the qualified triples. For this particular query, the graph pat-
tern should be quite easy to follow. More specifically, this graph pattern has only
one triple pattern, and it tries to match all the property instances and their values
that are ever defined for the resource representing Brickley in real life.

Note that the resource representing Brickley has a relative URI as shown in
line 7, and it is resolved by concatenating the BASE URI with this relative URI.
The resolved URI is given as

http://danbri.org/foaf.rdf#danbri

which is the one that Brickley has used in his FOAF file.
Now you can put List 6.3 into the query box as shown in Fig. 6.1 and click Get

Result button; you should be able to get the results back. Figure 6.3 shows part of
the result.

Fig. 6.3 Part of the query result when running the query shown in List 6.3

6.3 SPARQL Query Language 255

From the result, we can see which properties have been used. For instance,
foaf:knows and foaf:mbox are the most commonly used ones. Other properties
such as foaf:name, foaf:nick, foaf:homepage, foaf:holdsAccount

are also used.
Note that Brickley’s FOAF file could be under constant updation, so at the time

you are trying this query, you might not see the same result as shown in Fig. 6.3.
Also, we will not continue to show the query results from now on unless it is
necessary to do so, so this chapter will not be too long.

Let us try another simple query: find all the people known by Brickley. List 6.4
shows the query:

List 6.4 Find all the people known by Dan Brickley

base <http://danbri.org/foaf.rdf>

prefix foaf: <http://xmlns.com/foaf/0.1/>

select *
from <http://danbri.org/foaf.rdf>

where

{

<#danbri> foaf:knows ?friend.

}

Try to run the query, and right away you will see the problem: the query itself is
right, but the result does not really tell us anything: there are way too many blank
nodes.

In fact, it is quite often that when we include a friend we know in our FOAF
documents, instead of using his/her URI, we simply use a blank node to represent
this friend. For example, in List 6.1, one friend, Libby Miller, is represented by a
blank node. As we will see in Chap. 7, even a blank node is used to represent a
friend; as long as foaf:mbox property value is also included for this resource, any
application will be able to recognize the resource.

Let us change List 6.4 to accomplish the following: find all the people known by
Brickley and show their name, e-mail address, and home page information. List 6.5
is the query that can replace the one in List 6.4:

List 6.5 Find all the people known by Brickley, show their names, e-mail
addresses, and home page information

base <http://danbri.org/foaf.rdf>

prefix foaf: <http://xmlns.com/foaf/0.1/>

select *
from <http://danbri.org/foaf.rdf>

where

{

<#danbri> foaf:knows ?friend.

?friend foaf:name ?name.

256 6 SPARQL: Querying the Semantic Web

?friend foaf:mbox ?email.

?friend foaf:homepage ?homepage.

}

Fig. 6.4 Results from running the query shown in List 6.5

The graph pattern in List 6.5 contains four triple patterns. Also, variable
?friend is used as the object in the first triple pattern, but used as subject of the
other three triple patterns. This is the so-called object-to-subject transfer in SPARQL
queries. By doing this transfer, we can traverse multiple links in the RDF graph.

If we run this query against Brickley’s FOAF graph, we do see the names, e-
mails, and home pages of Brickley’s friends, which make the result much more
readable, as shown in Fig. 6.4.

However, the number of friends showing up in this result is much less than the
number indicated by the result from running the query in List 6.4 – looks like some
friends are missing. What is wrong? We will leave the answer to the next section,
and before that, let us try some more SPARQL queries.

Some of Brickley’s friends do have their pictures posted on the Web, and let
us say for some reason we are interested in the formats of these pictures. The
query shown in List 6.6 tries to find all the picture formats that have been used
by Brickley’s friends:

List 6.6 Find all the picture formats used by Brickley’s friends

base <http://danbri.org/foaf.rdf>

prefix foaf: <http://xmlns.com/foaf/0.1/>

prefix dc: <http://purl.org/dc/elements/1.1/>

select *
from <http://danbri.org/foaf.rdf>

6.3 SPARQL Query Language 257

where

{

<#danbri> foaf:knows ?friend.

?friend foaf:depiction ?picture.

?picture dc:format ?imageFormat.

}

We have seen and discussed the object-to-subject transfer in List 6.5. In List 6.6,
this transfer happens at a deeper level. The graph pattern in List 6.6 tries to match
Brickley’s friend, who has a foaf:depiction property instance defined, and this
instance further has a dc:format property instance created, and we will like to
return the value of this property instance. This chain of reference is the key to write
queries using SPARQL, and is also frequently used.

In order to construct the necessary chain of references when writing SPARQL
queries, we need to understand the structure of the ontologies that the given RDF
graph file has used. Sometimes, in order to confirm our understanding, we need to
read the graph which we are querying against. This should not surprise you at all;
if you have to write SQL queries against some database tables, the first thing is to
understand the structures of these tables, including the relations between them. The
table structures and the relations between these tables can in fact be viewed as the
underlying ontologies for these tables.

6.3.2.3 Using OPTIONAL Keyword for Matches

Optional keyword is another frequently used SPARQL feature, and the reason
why optional keyword is needed is largely due to the fact that RDF data graph
is only a semi-structured data model. For example, two instances of the same class
type in a given RDF graph may have different set of property instances created for
each one of them.

Let us take a look at Brickley’s FOAF document, which has defined a number of
foaf:Person instances. For example, one instance is created to represent Brickley
himself, and quite a few others are defined to represent people he knows. Some
of these foaf:Person instances do not have foaf:name property defined, and
similarly, not every instance has foaf:homepage property instance created either.

This is perfectly legal, since there is no owl:minCardinality constraint
defined on class foaf:Person regarding any of the above properties. For instance,
not everyone has a home page; it is therefore not reasonable to require each
foaf:Person instance to have a foaf:homepage property value. Also, recall
that foaf:mbox is a inverse functional property, which is in fact used to uniquely
identify a given person. As a result, having a foaf:name value or not for a given
foaf:Person instance is not vital either.

This has answered the question we had in the previous section from List 6.5:
not every Brickley’s friend has a name, e-mail, and home page defined. And since
the query in List 6.5 works like a logical AND, it only matches a friend whom
Brickley knows and has all these three properties defined. Obviously, this will

258 6 SPARQL: Querying the Semantic Web

return less number of people compared to the result returned by the query in
List 6.4.

Now, we can change this query in List 6.5 a little bit: find all the people known
by Brickley and show their name, e-mail, and home page if any of that information
is available.

To accomplish this, we need optional keyword, as shown in List 6.7:

List 6.7 Change List 6.5 to use optional keyword

base <http://danbri.org/foaf.rdf>

prefix foaf: <http://xmlns.com/foaf/0.1/>

select *
from <http://danbri.org/foaf.rdf>

where

{

<#danbri> foaf:knows ?friend.

optional { ?friend foaf:name ?name. }

optional { ?friend foaf:mbox ?email. }

optional { ?friend foaf:homepage ?homepage. }

}

This query says, find all the people known by Brickley and show their name,
e-mail, and home page information if any of this information is available. Run this
query, you will see the difference between this query and the one shown in List 6.5.
And here is the rule about optional keyword: the search will try to match all the
graph patterns but does not fail the whole query if the graph pattern modified by
optional keyword fails.

Note that in List 6.7, there are three different graph patterns modified by
optional keyword, and any number of these graph patterns can fail, yet with-
out causing the solution to be dropped. Clearly, if a query has multiple optional

blocks, these optional blocks act independently of one another, any one of them
can be omitted from or present in a solution.

Also note that the graph pattern modified by an optional keyword can have
any number of triple patterns inside it. In List 6.7, each graph pattern modified by
optional keyword happens to contain only one triple pattern. If a graph pattern
modified by optional keyword contains multiple triple patterns, every single triple
pattern in this graph pattern has to be matched in order to include a solution in the
result set. For example, consider the query in List 6.8:

List 6.8 Use optional keyword on the whole graph pattern (compared with
List 6.7)

base <http://danbri.org/foaf.rdf>

prefix foaf: <http://xmlns.com/foaf/0.1/>

select *
from <http://danbri.org/foaf.rdf>

6.3 SPARQL Query Language 259

where

{

<#danbri> foaf:knows ?friend.

optional {

?friend foaf:name ?name.

?friend foaf:mbox ?email.

?friend foaf:homepage ?homepage.

}

}

and compare the result from the one returned by List 6.7, you will see the difference.
List 6.8 says, find all the people known by Brickley, show their name, e-mail, and
home page information if all these information are available.

Let us look at one more example before we move on, which will be used in our
later chapters: find all the people known by Brickley, for anyone of them, if she/he
has e-mail address, show it, and if she/he has rdfs:seeAlso value, also get this
value. This query is shown in List 6.9, and I will leave it for you to understand:

List 6.9 Find Dan Brickley’s friends, who could also have e-mail addresses and
rdfs:seeAlso defined

base <http://danbri.org/foaf.rdf>

prefix foaf: <http://xmlns.com/foaf/0.1/>

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

select *
from <http://danbri.org/foaf.rdf>

where

{

<#danbri> foaf:knows ?friend.

optional { ?friend foaf:mbox ?email. }

optional { ?friend rdfs:seeAlso ?ref. }

}

6.3.2.4 Using Solution Modifier

At this point, we know SPARQL query is about matching patterns. More specif-
ically, SPARQL engine tries to match the triples contained in the graph patterns
against the RDF graph, which is a collection of triples. Once a match is successful,
it will bind the graph pattern’s variables to the graph’s nodes, and one such variable
binding is called a query solution. Since the select clause has specified a list of
variables (or all the variables, as shown in our examples so far), the values of these
listed variables will be selected from the current query solution to form a row that
will be included in the final query result, and this row is called a solution. Obviously,
another successful match will add another new solution, so on and so forth, there-
fore creating a table as the final result, with each solution presented as a row in this
table.

260 6 SPARQL: Querying the Semantic Web

Sometimes, it is better or even necessary for the solutions in the result table to be
reorganized according to our need. For this reason, SPARQL has provided several
solution modifiers, which will be the topic of this section.

The first one to look at is the distinct modifier, which eliminates duplicate
solutions from the result table. Recall the query presented in List 6.3, which tries
to find all the properties and their values that Brickley has used to describe himself.
Now, let us change the query so that only the property names are returned, as shown
in List 6.10:

List 6.10 Change List 6.3 to return only one variable back

base <http://danbri.org/foaf.rdf>

prefix foaf: <http://xmlns.com/foaf/0.1/>

select ?property

from <http://danbri.org/foaf.rdf>

where

{

<#danbri> ?property ?value.

}

run the query, and you can see a lot of repeated properties. Modify List 6.10 once
more time to make it look as the query in List 6.11:

List 6.11 Use distinct keyword to eliminate repeated solutions from
List 6.10

base <http://danbri.org/foaf.rdf>

prefix foaf: <http://xmlns.com/foaf/0.1/>

select distinct ?property

from <http://danbri.org/foaf.rdf>

where

{

<#danbri> ?property ?value.

}

and you will see the difference: all the duplicated solutions are now gone.
Another frequently used solution modifier is order by, which is also quite often

used together with asc() or desc(). It orders the result set based on one of the
variables listed in the where clause. For example, the query in List 6.12 tries to find
all the people that have ever been mentioned in Brickley’s FOAF file, and they are
listed in a more readable way:

List 6.12 Use order by and asc() to modify results

base <http://danbri.org/foaf.rdf>

prefix foaf: <http://xmlns.com/foaf/0.1/>

6.3 SPARQL Query Language 261

select ?name ?email

from <http://danbri.org/foaf.rdf>

where

{

?x a foaf:Person.

?x foaf:name ?name.

?x foaf:mbox ?email.

}

order by asc(?name)

Note that a pair of solution modifiers, namely offset/limit, is often used
together with order by to take a defined slice from the solution set. More specif-
ically, limit sets the maximum number of solutions to be returned, and offset

sets the number of solutions to be skipped. These modifiers can certainly be used
separately, for example, using limit alone will help us to ensure that not too many
solutions are collected. Let us modify the query in List 6.12 to make it look like the
one shown in List 6.13:

List 6.13 Use limit/offset to modify results
base <http://danbri.org/foaf.rdf>

prefix foaf: <http://xmlns.com/foaf/0.1/>

select ?name ?email

from <http://danbri.org/foaf.rdf>

where

{

?x a foaf:Person.

?x foaf:name ?name.

?x foaf:mbox ?email.

}

order by asc(?name)

limit 10 offset 1

Run this query and compare with the result from List 6.12, you will see the result
from offset/limit clearly.

6.3.2.5 Using FILTER Keyword to Add Value Constraints

If you have used SQL to query a database, you know it is quite straightforward to
add value constraints in SQL. For example, if you are querying against a student
database system, you may want to find all the students whose GPA is within a given
range. In SPARQL, you can also add value constraints to filter the solutions in the
result set, and the keyword to use is called filter.

More specifically, value constraints specified by filter keyword are logical
expressions that evaluate to boolean values when applied on values of bound vari-
ables. Since these constraints are logical expressions, we can therefore combine
them together by using logical && and || operators. Only those solutions that are

262 6 SPARQL: Querying the Semantic Web

evaluated to be true by the given value constraints will be included in the final
result set. Let us take a look at some examples.

List 6.14 will help us to accomplish the following: if Tim Berners-Lee is men-
tioned in Brickley’s FOAF file, then we want to know what has been said about
him:

List 6.14 What has been said about Berners-Lee?

base <http://danbri.org/foaf.rdf>

prefix foaf: <http://xmlns.com/foaf/0.1/>

select distinct ?property ?propertyValue

from <http://danbri.org/foaf.rdf>

where

{

?person foaf:name "Tim Berners-Lee"@en.

?person ?property ?propertyValue.

}

When you run this query against Brickley’s FOAF document, you will indeed
see some information about Tim Berners-Lee, such as his home page and his e-mail
address. However, note that this query does not use any filter keyword at all;
instead, it directly adds the constraints to the triple pattern.

This is certainly fine, but with the major drawback that you have to specify the
information with exact accuracy. For example, in List 6.14, if you replace the line

?person foaf:name "Tim Berners-Lee"@en.

with this line

?person foaf:name "tim Berners-Lee"@en.

the whole query will not work at all.
A better way to put constraints on the solution is to use filter keyword.

List 6.15 shows how to do this:

List 6.15 Use filter keyword to add constraints to the solution

1: base <http://danbri.org/foaf.rdf>

2: prefix foaf: <http://xmlns.com/foaf/0.1/>

3: select distinct ?property ?propertyValue

4: from <http://danbri.org/foaf.rdf>

5: where

6: {

7: ?timB foaf:name ?y.

8: ?timB ?property ?propertyValue.

9: filter regex(str(?y), "tim berners-Lee", "i").

10: }

6.3 SPARQL Query Language 263

Table 6.2 Functions and operators provided by SPARQL

Category Functions and operators

Logical !, &&, ||
Math +, -,∗, /
Comparison =, !=, >, <
SPARQL testers isURL(), isBlank(), isLiteral(), bound()
SPARQL accessors str(), lang(), datatype()
Other sameTerm(), langMatches(), regex()

Line 9 uses filter keyword to put constraints on the solution set. It uses a
regular expression function called regex() to do the trick: for a given triple, its
object component is taken and converted into a string by using the str() function,
and if this string matches the given string, “tim berners-Lee,” this filter will
be evaluated to be true, in which case, the subject of the current triple will be
bound to a variable called ?timB. Note that “i” means ignore the case, so the string
is matched even if it starts with a small t.

The rest of List 6.15 is easy: line 7 together with line 9 will bind variable ?timB
to the right resource, and line 8 will pick up all the properties and their related values
that are ever used on this resource, which accomplishes our goal.

Run this query, and you will see it gives exactly the same result as given by
List 6.14. However, it does not require us to know exactly how the desired resource
is named in a given RDF file.

Note that str() is a function provided by SPARQL for us to use together with
filter keyword. Table 6.2 summarizes the frequently used functions and opera-
tors; we will not go into the detailed description of each one of them, you can easily
check them out.

Let us take a look at another example of using filter keyword: we want to find
those who are known by Brickley and are also related to W3C (note that if someone
has an e-mail address such as someone@w3.org, we will then assume he/she is
related to W3C). List 6.16 is the query we can use:

List 6.16 Find Dan Brickley’s friends who are related to W3C

base <http://danbri.org/foaf.rdf>

prefix foaf: <http://xmlns.com/foaf/0.1/>

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

select ?name ?email

from <http://danbri.org/foaf.rdf>

where

{

<#danbri> foaf:knows ?friend.

?friend foaf:mbox ?email.

filter regex(str(?email), "w3.org", "i").

optional { ?friend foaf:name ?name. }

}

264 6 SPARQL: Querying the Semantic Web

Note that this query does not put e-mail address as an optional item; in other
words, if someone known by Brickley is indeed related to W3C, however without
his/her foaf:mbox information presented in the FOAF document, this person will
not be selected.

List 6.17 gives the last example of using filter. It tries to find all those defined
in Brickley’s FOAF file and whose birthday is after the start of 1970 and before
the start of 1980. It shows another flavor of filter keyword and also how to do
necessary data conversations for the correct comparison we need.

List 6.17 Find all the person whose birthday is within a given time frame

base <http://danbri.org/foaf.rdf>

prefix foaf: <http://xmlns.com/foaf/0.1/>

prefix xsd: <http://www.w3.org/2001/XMLSchema#>

select ?name ?dob

from <http://danbri.org/foaf.rdf>

where

{

?person a foaf:Person.

?person foaf:name ?name.

?person foaf:dateOfBirth ?dob.

filter (xsd:date(str(?dob)) >= "1970-01-01"ˆˆxsd:date &&

xsd:date(str(?dob)) < "1980-01-01"ˆˆxsd:date)

}

6.3.2.6 Using Union Keyword for Alternative Match

Sometimes, a query needs to be expressed by multiple graph patterns that are mutu-
ally exclusive, and any solution will have to match exactly one of these patterns. This
situation is defined as an alternative match situation, and SPARQL has provided
union keyword for us to accomplish this.

A good example is from FOAF ontology, which provides two properties for e-
mail address: foaf:mbox and foaf:mbox_sha1sum. The first one takes a readable
plain text as its value, and the second one uses hash codes of an e-mail address as
its value to further protect the owner’s privacy. If we want to collect all the e-mail
addresses that are included in Brickley’s FOAF file, we have to accept either one of
these two alternative forms, as shown in List 6.18:

List 6.18 Using union keyword to collect e-mail information

base <http://danbri.org/foaf.rdf>

prefix foaf: <http://xmlns.com/foaf/0.1/>

select ?name ?mbox

from <http://danbri.org/foaf.rdf>

where

{

6.3 SPARQL Query Language 265

?person a foaf:Person.

?person foaf:name ?name.

{

{ ?person foaf:mbox ?mbox. }

union

{ ?person foaf:mbox_sha1sum ?mbox. }

}

}

Now, any solution has to match one and exactly one of the two graph patterns
that are connected by the union keyword. If someone has both a plain text e-mail
address and a hash-coded address, then both of these addresses will be included in
the solution set. This is also the difference between union keyword and optional

keyword; as seen in List 6.19, since optional keyword is used, a given solution
can be included in the result set without matching any of the two graph patterns at
all:

List 6.19 Using optional keyword is different from using union, as shown
in List 6.18
base <http://danbri.org/foaf.rdf>

prefix foaf: <http://xmlns.com/foaf/0.1/>

select ?name ?mbox

from <http://danbri.org/foaf.rdf>

where

{

?person a foaf:Person.

?person foaf:name ?name.

optional { ?person foaf:mbox ?mbox. }

optional { ?person foaf:mbox_sha1sum ?mbox. }

}

After you run the query in List 6.19, you can find those solutions in the result
set which do not have any e-mail address, and these solutions will for sure not be
returned when the query in List 6.18 is used.

Another interesting change of List 6.18 is shown in List 6.20:

List 6.20 Another example using union keyword, different from List 6.18
base <http://danbri.org/foaf.rdf>

prefix foaf: <http://xmlns.com/foaf/0.1/>

select ?name ?mbox ?mbox1

from <http://danbri.org/foaf.rdf>

where

{

?person a foaf:Person.

?person foaf:name ?name.

266 6 SPARQL: Querying the Semantic Web

{

{ ?person foaf:mbox ?mbox. }

union

{ ?person foaf:mbox_sha1sum ?mbox1. }

}

}

I will leave it to you to run the query in List 6.20 and to understand the query
result.

Before we move on to the next section, let us take a look at one more example of
union keyword, and this example will be useful in a later chapter.

As we know, almost any given Web page has links to other pages, and these
links are arguably what makes the Web interesting. A FOAF file is also a Web page,
with the only difference of being a page that machine can understand. Therefore,
it should have links pointing to the outside world as well. The question is, what
are these links in a given FOAF page (we will see how to use these links in a later
chapter)?

At this point, at least the following three links can be identified:

• rdfs:seeAlso

• owl:sameAs

• foaf:isPrimaryTopicOf

Since all these properties can take us to either another document or another
resource on the Web, they can be understood as links to the outside world.

The query shown in List 6.21 can help us to collect all these links from Brickley’s
FOAF document. If you can think of more properties that can be used as links, you
can easily add them into List 6.21:

List 6.21 Using union keyword to collection links to the outside world

base <http://danbri.org/foaf.rdf>

prefix foaf: <http://xmlns.com/foaf/0.1/>

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

prefix owl: <http://www.w3.org/2002/07/owl#>

select ?name ?seeAlso ?sameAs ?topicOf

from <http://danbri.org/foaf.rdf>

where

{

?person a foaf:Person.

?person foaf:name ?name.

{

{ ?person rdfs:seeAlso ?seeAlso. }

union

{ ?person owl:sameAs ?sameAs. }

union

6.3 SPARQL Query Language 267

{ ?person foaf:isPrimaryTopicOf ?topicOf. }

}

}

6.3.2.7 Working with Multiple Graphs

So far, all the queries we have seen have involved only one RDF graph, and we have
specified it by using the from clause. This graph, in the world of SPARQL, is called
a background graph. In fact, in addition to this background graph, SPARQL allows
us to query any number of named graphs, and this is the topic of this section.

The first thing to know is how to make a named graph available to a query. As
with the background graph, named graphs can be specified by using the following
format:

from named <uri>

where <uri> specifies the location of the graph. Within the query itself, named
graphs are used with the graph keyword, together with either a variable name that
will bind to a named graph or the same <uri> for a named graph, as we will see
in the examples. In addition, each named graph will have its own graph patterns to
match against.

To show the examples, we need to have another RDF graph besides the FOAF file
created by Brickley. For our testing purpose, we will use my own FOAF document
as the second graph. You can see my FOAF file here:

http://www.liyangyu.com/foaf.rdf

Now, let us say that we would like to find those people who are mentioned by both
Brickley and myself in our respective FOAF files. List 6.22 is our initial solution,
which works with multiple graphs and uses graph keyword in conjunction with a
variable called graph_uri:

List 6.22 Find those who are mentioned by both Brickley’s and my own FOAF
documents
1: prefix foaf: <http://xmlns.com/foaf/0.1/>

2: select distinct ?graph_uri ?name ?email

3: from named <http://www.liyangyu.com/foaf.rdf>

4: from named <http://danbri.org/foaf.rdf>

5: where

6: {

7: graph ?graph_uri

8: {

9: ?person a foaf:Person.

10: ?person foaf:mbox ?email.

11: optional { ?person foaf:name ?name. }

12: }

13: }

268 6 SPARQL: Querying the Semantic Web

Table 6.3 Partial result from query List 6.22

Graph_uri Name E-mail

.

<http://danbri.org/foaf.rdf> "Libby Miller"@en <mailto:libby.miller@bristol.ac.uk>
<http://danbri.org/foaf.rdf> "Tim

Berners-Lee"@en
<mailto:timbl@w3.org>

.

<http://www.liyangyu.com/
foaf.rdf>

<mailto:libby.miller@bristol.ac.uk>

First of all, note that lines 3 and 4 specify the two named graphs by using from

named keyword, and each graph is given by its own <uri>. As you can tell, one of
the graphs is the FOAF file created by Brickley and the other one is my own FOAF
document. Furthermore, lines 8–12 define a graph pattern, which will be applied to
each of the named graphs available to this query.

When this query is executed by SPARQL engine, variable graph_uri will be
bound to the URI of one of the named graphs, and the graph pattern shown from
lines 8–12 will be matched against this named graph. Once this is done, variable
graph_uri will be bound to the URI of the next name graph, and the graph pat-
tern is again matched against this current named graph, so on and so forth, until
all the named graphs are finished. If a match is found during this process, the
matched person’s foaf:mbox property value will be bound to email variable, and
the foaf:name property value (if exists) will be bound to name variable. Finally,
line 2 shows the result: it not only shows all the names and e-mails of the selected
people but also shows from which file the information is collected.

To make our discussion easier to follow, Table 6.3 shows part of the result. At
the time you are running this query, it is possible that you will see different results,
but the discussion here will still apply.

Table 6.3 shows that both FOAF files have mentioned a person whose e-mail
address is given by the following:

<mailto:libby.miller@bristol.ac.uk>

As we will see in Chap. 7, a person can be uniquely identified by her/his
foaf:mbox property value, no matter whether we have assigned a foaf:name

property value to this person or not. And to show this point, in my FOAF file,
the name of the person identified by the above e-mail address is intentionally not
provided.

Note that in order to find those people who are mentioned by both FOAF doc-
uments, we have to manually read the query result shown in Table 6.3, i.e., to find
common e-mail addresses from both files. This is certainly not the best solution for
us, and we need to change our query to directly find those who are mentioned in
both graphs.

And this new query is shown in List 6.23:

6.3 SPARQL Query Language 269

List 6.23 Change List 6.22 to direct get the required result

1: prefix foaf: <http://xmlns.com/foaf/0.1/>

2: select distinct ?name ?email

3: from named <http://www.liyangyu.com/foaf.rdf>

4: from named <http://danbri.org/foaf.rdf>

5: where

6: {

7: graph <http://www.liyangyu.com/foaf.rdf>

8: {

9: ?person a foaf:Person.

10: ?person foaf:mbox ?email.

11: optional { ?person foaf:name ?name. }

12: }.

13: graph <http://danbri.org/foaf.rdf>

14: {

15: ?person1 a foaf:Person.

16: ?person1 foaf:mbox ?email.

17: optional { ?person1 foaf:name ?name. }

18: }.

19: }

In this query, the graph keyword is used with the URI of a named graph (line
7, 13). The graph pattern defined in lines 8–12 will be applied on my FOAF file,
and if matches are found in this graph, they become part of a query solution; the
value of foaf:mbox property is bound to a variable named email, and the value
of foaf:name property (if exists) is bound to a variable called name. The second
graph pattern (lines 14–18) will be matched against Brickley’s FOAF graph, and
the bound variables from the previous query solution will be tested here; the same
variable emailwill have to be matched here, and if possible, the same name variable
should match as well. Recall the key of graph patterns: any given variable, once
bound to a value, has to bind to that value during the whole matching process.

Note that the variable representing a person is different in two graph patterns: in
the first graph pattern, it is called person (line 9) and in the second graph pattern,
it is called person1 (line 15). The reason should be clear now; it does not matter
whether this variable holds the same value or not in both patterns, since email value
is used to uniquely identify a person resource. Also, it is possible that a given person
resource is represented by blank nodes in both graphs, and blank nodes only have a
scope that is within the graph that contains them. Therefore, even if they represent
the same resource in the real world, it is simply impossible to match them at all.

Now run the query in List 6.23, we will be able to find all those people who are
mentioned simultaneously in both graphs. Table 6.4 shows the query result.

As we have discussed earlier, part of the power of RDF graphs comes from data
aggregation. Since both RDF files have provided some information about Libby

270 6 SPARQL: Querying the Semantic Web

Table 6.4 result from query List 6.23

Name E-mail

"Libby Miller"@en <mailto:libby.miller@bristol.ac.uk>
<mailto:libby.miller@bristol.ac.uk>

Miller, it will be interesting to aggregate these two pieces of information together
and see what have been said about Miller as a foaf:Person instance. List 6.24
accomplishes this:

List 6.24 Data aggregation for Libby Miller

1: prefix foaf: <http://xmlns.com/foaf/0.1/>

2: select distinct ?graph_uri ?property ?hasValue

3: from named <http://www.liyangyu.com/foaf.rdf>

4: from named <http://danbri.org/foaf.rdf>

5: where

6: {

7: graph <http://www.liyangyu.com/foaf.rdf>

8: {

9: ?person1 a foaf:Person.

10: ?person1 foaf:mbox ?email.

11: optional { ?person1 foaf:name ?name. }

12: }.

13: graph <http://danbri.org/foaf.rdf>

14: {

15: ?person a foaf:Person.

16: ?person foaf:mbox ?email.

17: optional { ?person foaf:name ?name. }

18: }.

19: graph ?graph_uri

20: {

21: ?x a foaf:Person.

22: ?x foaf:mbox ?email.

23: ?x ?property ?hasValue.

24: }

25: }

So far, we have seen examples where graph keyword is used together with a
variable that will bind to a named graph (List 6.22), or it is used with an <uri> that
represents a named graph (List 6.23). In fact, these two usage patterns can be mixed

6.3 SPARQL Query Language 271

Table 6.5 Result from query List 6.24

Graph_uri Property hasValue

<danbri:foaf.rdf> <rdfs:seeAlso> <http://www.libbymiller.com/
webwho.xrdf>

<danbri:foaf.rdf> <foaf:
workplaceHomepage>

<http://ilrt.org/>

<danbri:foaf.rdf> <foaf:mbox> <mailto:libby.miller@bristol.ac.uk>
<danbri:foaf.rdf> <foaf:name> "Libby Miller"@en
<danbri:foaf.rdf> <rdf:type> <http://xmlns.com/foaf/0.1/Person>
<danbri:foaf.rdf> <foaf:depiction> <http://rdfweb.org/people/danbri/

rdfweb/libby.gif>
<danbri:foaf.rdf> <foaf:img> <http://swordfish.rdfweb.org/∼libby/

libby.jpg>
<danbri:foaf.rdf> <foaf:mbox> <mailto:libby@asemantics.com>
<liyang:foaf.rdf> <faof:homepage> <http://www.ilrt.bris.ac.uk/∼ecemm/>
<liyang:foaf.rdf> <foaf:mbox> <mailto:libby@asemantics.com>
<liyang:foaf.rdf> <rdf:type> <http://xmlns.com/foaf/0.1/Person>

liyang: http://www.liyangyu.com/
danbri: http://danbri.org/

together, as shown in List 6.24. After the discussion of Lists 6.22 and 6.23, List 6.24
is quite straightforward; clearly, lines 7–18 find those who have been included in
both graphs, and lines 19–24 provide a graph pattern that will collect everything
that has been said about those instances from all the named graphs.

Table 6.5 shows the query result generated by List 6.24. Again, at the time you are
running the query, the result could be different. Nevertheless, as shown in Table 6.5,
statements about Miller from both FOAF files have been aggregated together. This
simple example in fact shows the basic flow of how an aggregation agent may work
by using the search capabilities provided by SPARQL endpoints.

The last example of this section is given by List 6.25, where a background graph
and a named graph are used together. Read this query and try to find what it does
before you read on:

List 6.25 What this query does? Think about it before reading on

1: prefix foaf: <http://xmlns.com/foaf/0.1/>

2: select distinct ?property ?hasValue

3: from <http://danbri.org/foaf.rdf>

4: from named <http://www.liyangyu.com/foaf.rdf>

5: from named <http://danbri.org/foaf.rdf>

6: where

7: {

8: graph <http://www.liyangyu.com/foaf.rdf>

9: {

10: ?person1 a foaf:Person.

272 6 SPARQL: Querying the Semantic Web

11: ?person1 foaf:mbox ?email.

12: optional { ?person1 foaf:name ?name. }

13: }.

14: graph <http://danbri.org/foaf.rdf>

15: {

16: ?person a foaf:Person.

17: ?person foaf:mbox ?email.

18: optional { ?person foaf:name ?name. }

19: }.

20: ?x a foaf:Person.

21: ?x foaf:mbox ?email.

22: ?x ?property ?hasValue.

23: }

The interesting part of this query is at lines 3–5, where a background graph is
specified in line 3, and two named graphs are introduced in lines 4 and 5. Note that
lines 3 and 5 are in fact the same graph.

Now, lines 8–19 are the same as the query in List 6.24 (trying to find those who
are mentioned in both graphs), and lines 20–22 is a graph pattern that does not spec-
ify any graph, so this pattern is matched against the background graph. Therefore,
this query, after finding those who are the mentioned in both Brickley’s file and my
file, tries to collect everything that has been said about them from Brickley’s file
only. This is not a data aggregation case as shown by List 6.24, but it shows the
combination usage of a background graph and a named graph.

At this point, we have covered quite some features about SAPRQL’s select

query, and the examples presented here should have given you enough to explore
their other features on your own. Let us move on to SPARQL’s other query styles,
and we will briefly discuss them in the next several sections.

6.3.3 CONSTRUCT Query

construct query is another query form provided by SPARQL which, instead of
returning a collection of query solutions, returns a new RDF graph. Let us take a
look at some examples.

List 6.26 creates a new FOAF graph, which has a collection of all the names and
e-mails of those who are mentioned in Brickley’s FOAF document. List 6.27 shows
part of this new graph:

List 6.26 Example of a construct query

prefix foaf: <http://xmlns.com/foaf/0.1/>

construct {

?person a foaf:Person.

6.3 SPARQL Query Language 273

?person foaf:name ?name.

?person foaf:mbox ?email.

}

from <http://danbri.org/foaf.rdf>

where

{

?person a foaf:Person.

?person foaf:name ?name.

?person foaf:mbox ?email.

}

List 6.27 Part of the generated RDF graph

<?xml version="1.0"?>
<rdf:RDF

xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<foaf:Person>
<foaf:mbox rdf:resource="mailto:craig@coolstuffhere.co.uk"/>
<foaf:name xml:lang="en">Craig Dibble</foaf:name>

</foaf:Person>
<foaf:Person>
<foaf:name xml:lang="en">Joe Brickley</foaf:name>
<foaf:mbox rdf:resource=

"mailto:joe.brickley@btopenworld.com"/>
</foaf:Person>
<foaf:Person>
<foaf:mbox rdf:resource="mailto:libby.miller@bristol.ac.uk"/>
<foaf:name xml:lang="en">Libby Miller</foaf:name>

</foaf:Person>
. . . more . . .

This generated new graph is indeed clean and nice, but it is not that much inter-
esting. In fact, a common use of construct query form is to transform a given
graph to a new graph that uses a different ontology.

For example, List 6.28 will transfer FOAF data to vCard data, and List 6.29
shows part of the resulting graph:

List 6.28 Another construct query which changes FOAF document into
vCard document

prefix foaf: <http://xmlns.com/foaf/0.1/>

prefix vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>

construct {

?person vCard:FN ?name.

?person vCard:URL ?homepage.

}

274 6 SPARQL: Querying the Semantic Web

from <http://danbri.org/foaf.rdf>

where

{

optional {

?person foaf:name ?name.

filter isLiteral(?name).

}

optional {

?person foaf:homepage ?homepage.

filter isURI(?homepage).

}

}

List 6.29 Part of the new graph expressed as vCard data

<?xml version="1.0"?>
<rdf:RDF

xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#">

<rdf:Description>

<vCard:FN xml:lang="en">Dan Connolly</vCard:FN>

</rdf:Description>

<rdf:Description>

<vCard:FN xml:lang="en">Dan Brickley</vCard:FN>

</rdf:Description>

<rdf:Description>

<vCard:FN xml:lang="en">Jim Ley</vCard:FN>

</rdf:Description>

<rdf:Description>

<vCard:FN xml:lang="en">Eric Miller</vCard:FN>

<vCard:URL rdf:resource="http://purl.org/net/eric/"/>
</rdf:Description>

. . . more . . .

6.3.4 DESCRIBE Query

At this point, every query we have constructed requires us to know something
about the data graph. For example, when we are querying against a FOAF docu-
ment, at least we know some frequently used FOAF terms, such as foaf:mbox

and foaf:name, so we can provide a search criteria to SPARQL query processor.
This is similar to writing SQL queries against a database system; we will have to be
familiar with the structures of the tables in order to come up with queries.

6.3 SPARQL Query Language 275

However, sometimes, we just don’t know much about the data graph, and we
don’t even know what to ask. If this is the case, we can ask a SPARQL query pro-
cessor to describe the resource we want to know, and it is up to the processor to
provide some useful information about the resource we have asked.

And this is the reason behind the describe query. After receiving the query, a
SPARQL processor will create and return an RDF graph; the content of the graph is
decided by the query processor, not the query itself.

For example, List 6.30 is one such query:

List 6.30 Example of describe query

prefix foaf: <http://xmlns.com/foaf/0.1/>

describe ?x

from <http://danbri.org/foaf.rdf>

where

{

?x foaf:mbox <mailto:timbl@w3.org>.

}

In this case, the only thing we know is the e-mail address, so we provide this
information and ask SPARQL processor to tell us more about the resource whose
e-mail address is given by <mailto:timbl@w3.org>. The query result is another
RDF graph whose statements are determined by the query processor.

At the time of this writing, SPARQL Working Group has adopted describe key-
word without reaching consensus. A description will be determined by the particular
SPARQL implementation, and the statements included in the description are left to
the nature of the information in the data source. For example, if you are looking for
a description about a book resource, the author information could be included in the
result RDF graph.

For this reason, we are not going to cover any more details. However, under-
standing the reason why this keyword is proposed will certainly help you in a later
time when hopefully some agreement can be reached regarding the semantics of this
keyword.

6.3.5 ASK Query

SPARQL’s ask query is identified by ask keyword, and the query processor simply
returns a true or false value, depending on whether the given graph pattern has
any matches in the dataset or not.

List 6.31 is a simple example of ask query:

List 6.31 Example of using ask query

prefix foaf: <http://xmlns.com/foaf/0.1/>

ask

from <http://danbri.org/foaf.rdf>

276 6 SPARQL: Querying the Semantic Web

where

{

?x foaf:mbox <mailto:danbri@danbri.org>.

}

This query has a graph pattern that is equivalent to the following
question: is there a resource whose foaf:mbox property uses <mailto:

danbri@danbri.org> as its value? To answer this query, the processor tries to
match the graph pattern against the FOAF data graph, and apparently, a successful
match is found, therefore, true is returned as the answer.

It is fun to work with ask query. For example, List 6.32 tries to decide whether it
is true that Brickley was either born before 1 January 1970 or after 1 January 1980:

List 6.32 Ask the birthday of Dan Brickley

base <http://danbri.org/foaf.rdf>

prefix foaf: <http://xmlns.com/foaf/0.1/>

prefix xsd: <http://www.w3.org/2001/XMLSchema#>

ask

from <http://danbri.org/foaf.rdf>

where

{

<#danbri> foaf:dateOfBirth ?dob.

filter (xsd:date(str(?dob)) <= "1970-01-01"ˆˆxsd:date ||

xsd:date(str(?dob)) >= "1980-01-01"ˆˆxsd:date)

}

And certainly, this will give false as the answer. Note that we should understand
this answer in the following way: the processor cannot find any binding to compute
a solution to the graph pattern specified in this query.

Obviously, a true or false answer depends on the given graph pattern. In fact,
you can use any graph pattern together with ask query. As the last example, you
can ask whether both Brickley’s FOAF file and my own FOAF file have described
anyone in common, and this query should look very familiar, as shown in List 6.33:

List 6.33 Ask if the two FOAF documents have described anyone in common

prefix foaf: <http://xmlns.com/foaf/0.1/>

ask

from named <http://www.liyangyu.com/foaf.rdf>

from named <http://danbri.org/foaf.rdf>

where

{

graph <http://www.liyangyu.com/foaf.rdf>

{

?person a foaf:Person.

6.5 SPARQL 1.1 277

?person foaf:mbox ?email.

optional { ?person foaf:name ?name. }

}.

graph <http://danbri.org/foaf.rdf>

{

?person1 a foaf:Person.

?person1 foaf:mbox ?email.

optional { ?person1 foaf:name ?name. }

}.

}

And if you run the query, you can get true as the answer, as you have expected.

6.4 What Is Missing from SPARQL?

At this point, we have covered the core components of the current SPARQL stan-
dard. If you are experienced with SQL queries, you have probably realized the fact
that there is something missing in the current SPARQL language constructs. Let us
briefly discuss these issues in this section, and in the next section, we will take a
closer look at SPARQL 1.1, SPARQL Working Group’s latest progress.

The most obvious fact about SPARQL is that it is read-only. In its current stage,
SPARQL is only a retrieval query language; there are no equivalents of the SQL
insert, update and delete statements.

The second noticeable missing piece is that SPARQL does not support any group-
ing capabilities or aggregate functions, such as min, max, avg, sum, just to name a
few. There are some implementations of SPARQL that provide these functions; yet,
standardization is needed, so a uniform interface can be reached.

Another important missing component is the service description. More specifi-
cally, there is no standard way for a SPARQL endpoint to advertise its capabilities
and its dataset.

There are other functionalities that are missing, and we are not going to list them
all there. The good news is, some of these missing features have long been on the
task list of W3C SPARQL Working Group, and a potentially updated standard called
SPARQL 1.1 will be ready soon.

6.5 SPARQL 1.1

6.5.1 Introduction: What Is New?

SPARQL 1.1 is the collective name of the work produced by the current SPARQL
Working Group. The actual components being worked on include the following
major pieces:

278 6 SPARQL: Querying the Semantic Web

• SPARQL 1.1 Query
• SPARQL 1.1 Update
• SPARQL 1.1 Protocol
• SPARQL 1.1 Service Description
• SPARQL 1.1 Uniform HTTP Protocol for Managing RDF Graphs
• SPARQL 1.1 Entailment Regimes
• SPARQL 1.1 Property Paths

and you can also find more details here:

http://www.w3.org/2009/sparql/wiki/Main_Page

At the time of this writing, these standards are still under active discussion and
revision. To give you some basic idea of these new standards, we will concentrate on
SPARQL 1.1 Query and Update. Not only because these two pieces are relatively
stable but also because they are the ones that are most relevant to our day-to-day
development work on the Semantic Web.

6.5.2 SPARQL 1.1 Query

In this section, the following new features added by SPARQL 1.1 Query will be
briefly discussed:

• aggregate functions
• subqueries
• negation
• expressions with SELECT

• property paths

Again understand that at the time of this writing, SPARQL 1.1 Query is not
finalized yet. The material presented here is based on the latest working drafts from
SPARQL Working Group; it is therefore possible that the final standard will be more
or less different. However, the basic ideas that will be discussed here should remain
the same.

6.5.2.1 Aggregate Functions

If you are experienced with SQL queries, chance is that you are familiar with aggre-
gate functions. These functions operate over the columns of a result table and can
conduct operations such as counting, numerical averaging, or selecting the max-
imal/minimal data element from the given column. The current SPARQL query
standard does not provide these operations, and if an application needs these func-
tions, the application has to take a SPARQL query result set and calculate the
aggregate values by itself.

Obviously, enabling a SPARQL engine to calculate aggregates for the users will
make the application more light weighted, since the work will be done on the

6.5 SPARQL 1.1 279

SPARQL engine side. In addition, this will normally result in significantly smaller
result set being returned to the application. If the SPARQL endpoint is accessed over
HTTP, this will also help to lessen the traffic on the network.

With these considerations, SPARQL 1.1 will support aggregate functions. As
usual, a query pattern yields a solution set, and from this solution set, a collection
of columns will be returned to the user as the query result. An aggregation function
will then operate on this set to create a new solution set which normally contains a
single value representing the result from the aggregate function.

The following aggregate functions will be supported by SPARQL 1.1:

• COUNT

• SUM

• MIN/MAX

• AVG

• GROUP_CONCAT

• SAMPLE

Let us study some examples to understand more.
The first example queries about how many people have their e-mail addresses

provided in a given FOAF document. List 6.34 shows the query itself:

List 6.34 Example of using count() aggregate function

prefix foaf: <http://xmlns.com/foaf/0.1/>

SELECT count(*)

from <http://danbri.org/foaf.rdf>

WHERE {

?x a foaf:Person;

foaf:mbox ?mbox.

}

This does not require much of an explanation at all. Note that at the time of this
writing, this query is supported by the online Joseki endpoint which can be accessed
at this URL:

http://sparql.org/sparql.html

If you are using other SPARQL endpoints, this query might not work well.
In addition, even the SPARQL endpoint you are using does support aggregate
functions, its implementation might require slightly different syntax.

The following example scans a given FOAF document and tries to sum up all the
ages of the people included in this document, as shown in List 6.35:

List 6.35 Example of using sum() aggregate function

prefix foaf: <http://xmlns.com/foaf/0.1/>

SELECT (sum(?age) AS ?ages)

from <http://danbri.org/foaf.rdf>

280 6 SPARQL: Querying the Semantic Web

WHERE {

?x a foaf:Person;

foaf:age ?age.

}

the final result will be stored in the ages variable.
Again, this query has been tested by using online Joseki endpoint, and it works

well. For the rest of this chapter, without explicitly mentioning, all the new SPARQL
1.1 features will be tested using the same Joseki endpoint. At the time when you are
reading this book, you can either use Joseki endpoint or use your favorite one, which
should be working as well.

The last example we would like to discuss here is the SAMPLE function. To put
it simple, the newly added SAMPLE aggregate tries to solve the issue where it is not
possible to project a particular variable or apply functions over that variable out of
a GROUP since we are not grouping on that particular variable. Now, with SAMPLE

aggregate function, this is very easy, as shown in List 6.36:

List 6.36 Example of using SAMPLE() aggregation function

SELECT ?subj SAMPLE(?obj)

from <http://danbri.org/foaf.rdf>

WHERE {

?subj ?property ?obj.

} GROUP BY ?subj

6.5.2.2 Subqueries

Subquery is not something new either. More specifically, it is sometimes necessary
to use the result from one query to continue the next query.

For example, let us consider a simple request. Assume we would like to find
all the friends I have, and for each one of them, I would like to know their e-mail
addresses. As you know, a single query can be constructed by using the current
SPARQL constructs to finish the task, there is no need to write two queries at all.

However, let us slightly change the request: find all the friends I have, and for
each one of them, I would like to know their e-mail address and I only want one
e-mail address for each friend I have.

Now to construct this query using the current SPARQL constructs, you will have
to write two queries. The pseudo-code in List 6.37 shows the solution you will have
to use:

List 6.37 Pseudo-code that finds friends and only one e-mail address of each
friend

queryString = "

SELECT ?person WHERE {

<http://www.liyangyu.com/foaf.rdf#liyang> foaf:knows ?friend.

}";

6.5 SPARQL 1.1 281

resultSet = do_query(queryString);

foreach (result in resultSet) {

person = result.get("friend");

queryString = "SELECT ?mbox WHERE {

?person foaf:mbox ?mbox.

} LIMIT 1";

// do the query and get the e-mail address

}

Now, using the subquery feature provided by SPARQL 1.1, only one query is
needed to finish the above task, as shown in List 6.38:

List 6.38 Using subquery feature to accomplish the same as by List 6.37

prefix foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?friend ?mbox

from <http://www.liyangyu.com/foaf.rdf>

WHERE {

<http://www.liyangyu.com/foaf.rdf#liyang> foaf:knows ?friend.

{

SELECT ?mbox WHERE {

?friend foaf:mbox ?mbox

} LIMIT 1

}

}

6.5.2.3 Negation

Negation is something that can be implemented by simply using the current version
of SPARQL. Let us consider the request of finding all the people in a given FOAF
document who do not have any e-mail address specified. The query in List 6.39 will
accomplish this (and note that it only uses the language features from the current
standard of SPARQL):

List 6.39 Find all the people from a given FOAF document who do not have any
e-mail address specified

prefix foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name

from <http://danbri.org/foaf.rdf>

WHERE {

?x foaf:givenName ?name.

OPTIONAL { ?x foaf:mbox ?mbox }.

FILTER (!BOUND(?mbox))

}

282 6 SPARQL: Querying the Semantic Web

Let us understand BOUND() operator first. BOUND() operator is used as follows:

xsd:boolean BOUND(variable var)

It returns true if var is bounded to a value, it returns false otherwise.
BOUND() operator is quite often used to test that a graph patter is not expressed
by specifying an OPTIONAL graph pattern which uses a variable and then to test to
see that the variable is not bound. This testing method is called negation as failure
in logic programming.

With this said, the query in List 6.39 is easy to understand; it matches the people
with a name but no expressed e-mail address. Therefore, it accomplishes what we
have requested.

However, this negation as failure method is not quite intuitive and has a somewhat
convoluted syntax. To fix this, SPARQL 1.1 has adopted at least one new operator
called NOT EXISTS, and this will make the same query much intuitive and easier,
as shown in List 6.40:

List 6.40 Example of negation using NOT EXISTS operator

prefix foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name

from <http://danbri.org/foaf.rdf>

WHERE {

?x foaf:givenName ?name.

NOT EXISTS { ?x foaf:mbox ?mbox }.

}

The SPARQL Working Group has also considered another different design for
negation, namely the MINUS operator. List 6.41 shows a possible query which
uses MINUS operator. Again, this accomplishes the same goal with a cleaner
syntax:

List 6.41 Example of negation using MINUS operator

prefix foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name

from <http://danbri.org/foaf.rdf>

WHERE {

?x foaf:givenName ?name.

MINUS {

?x foaf:mbox ?mbox.

}

}

6.5 SPARQL 1.1 283

6.5.2.4 Expressions with SELECT

The expressions with SELECT feature added by SPARQL 1.1 is closely related
to another feature called projected expressions. We will present these two closely
related features together in this section.

In the current standard SPARQL Query language, a SELECT query (also called a
projection query) may only project out variables bound in the query. More specifi-
cally, since variables can be bound only via triple pattern matching, it is impossible
to project out values that are not matched in the underlying RDF dataset.

Expressions with SELECT query or projected expressions introduced by SPARQL
1.1 offers the ability for SELECT queries to project any SPARQL expression, rather
than just bounded variables. A projected expression can be a variable, a constant
URI/literal, or an arbitrary expression which may include functions on variables and
constants. Functions could include both SPARQL built-in functions and extension
functions supported by an implementation. Also, the variable used in the expression
can be one of the following cases:

• a new variable introduced by SELECT clause (using the keyword AS);
• a variable binding already in the query solution; or
• a variable defined earlier in the SELECT clause.

List 6.42 shows one simple example:

List 6.42 Example of using expressions with SELECT query

prefix foaf:<http://xmlns.com/foaf/0.1/>

prefix fn:<http://www.w3.org/2005/xpath-functions>

SELECT fn:concat(?first, " ", ?last) AS ?name

from <http://danbri.org/foaf.rdf>

WHERE {

?person foaf:firstName ?first;

foaf:lastName ?last.

}

This query tries to find the first and last names of all the people included in a
given FOAF document. Instead of simply showing the binding variables (?first
and ?last), the SELECT clause uses projected expression to first concatenate
the first name and last name by using the binding variables ?first and ?last;
the result is saved in a new variable called ?name by using keyword AS. The
query result includes only the ?name variable and could be something like “Dan
Brickley.”

The next example (List 6.43) is taken from W3C’s SPARQL Query Language 1.1
Working Draft,4 since it is very helpful to show the usage of expressions in SELECT
clause:

4http://www.w3.org/TR/2010/WD-sparql11-query-20100126/

284 6 SPARQL: Querying the Semantic Web

List 4.43 Another example of using expressions in SELECT query

Data:

@prefix dc: <http://purl.org/dc/elements/1.1/>.

@prefix : <http://example.org/book/>.

@prefix ns: <http://example.org/ns#>.

:book1 dc:title "SPARQL Tutorial".

:book1 ns:price 42.

:book1 ns:discount 0.1.

:book2 dc:title "The Semantic Web".

:book2 ns:price 23.

:book2 ns:discount 0.

Query:

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX ns: <http://example.org/ns#>

SELECT ?title (?p*(1-?discount) AS ?price)

{ ?x ns:price ?p.

?x dc:title ?title.

?x ns:discount ?discount

}

In this case, the expression makes use of binding variables such as ?title and
?discount, and the final price (after the discount) is stored in the new variable
?price. Table 6.6 shows the result of this query.

Table 6.6 Result of query in List 6.43

Title Price

“The Semantic Web” 23
“SPARQL Tutorial” 37.8

6.5.2.5 Property Paths

We have covered several SPARQL 1.1 Query features so far at this point, including
aggregate functions, subqueries, negation, and projected expressions. These features
are currently marked by W3C’s SPARQL Query Language 1.1 Working Group
as required. In addition to these required features, there are several other features
being considered by the working group as time permitting. For example, property
paths, basic federated query, and some commonly used SPARQL functions are all
considered as time-permitting features.

For obvious reason, we will not cover these time-permitting features in details.
Before we move on to SPARQL 1.1 Update, however, we will take a brief look at
property paths, just to give you an idea of these time-permitting features.

6.5 SPARQL 1.1 285

If you have been writing quite a lot queries by using the current SPARQL stan-
dard, you have probably seen the cases where you need to follow paths to finish
your query. More specifically, in order to find what you want, you need to construct
a query that covers fixed-length paths to traverse along the hierarchical structure
expressed in the given data store. List 6.44 shows one example. This query tries to
find the name of my friend’s friend:

List 6.44 Find the name of my friend’s friend

prefix foaf:<http://xmlns.com/foaf/0.1/>

SELECT ?name

from <http://www.liyangyu.com/foaf.rdf>

where {

?myself foaf:mbox <mailto:liyang910@yahoo.com>.

?myself foaf:knows ?friend.

?friend foaf:knows ?friendOfFriend.

?friendOfFriend foaf:name ?name.

}

As shown in List 6.44, the paths we have traversed include the following:
myself, friend, friendOfFriend, name of friendOfFriend. This is quite
long and cumbersome. The property paths featured by SPARQL Query 1.1 will
make this a lot simpler for us. List 6.45 shows the tentative syntax of this feature:

List 6.45 Example of property path

prefix foaf:<http://xmlns.com/foaf/0.1/>

SELECT ?name

from <http://www.liyangyu.com/foaf.rdf>

where {

?myself foaf:mbox <mailto:liyang910@yahoo.com>.

?myself foaf:knows/foaf:knows/foaf:name ?name.

}

This accomplishes exactly the same goal as the query in List 6.44, but with a
much cleaned syntax.

6.5.3 SPARQL 1.1 Update

If you are experienced with SQL queries, you know how easy it is to change the
data in the database. There are SQL statements provided for you to do that, you
don’t have to know the mechanisms behind these statements.

We all know that SPARQL to RDF data stores is as SQL to databases. However,
changing an RDF graph is not as easy as updating a table in a database. To add,

286 6 SPARQL: Querying the Semantic Web

update, or remove statements from a given RDF graph, there is no SPARQL lan-
guage constructs we can use; instead, we have to use a programming language and
a set of third-party APIs to accomplish this.

To allow an RDF graph or an RDF store to be manipulated the same way as SQL
to database, a language extension to the current standard of SPARQL is proposed.
Currently, this language extension is called SPARQL Update 1.1, and it includes the
following features:

• Insert new triples into an RDF graph.
• Delete triples from an RDF graph.
• Perform a group of update operations as a single action.
• Create a new RDF graph in a graph store.
• Delete an RDF graph from a graph store.

The first three operations are called graph update, since they are responsible for
addition and removal of triples from one specific graph. The next two operations
are called graph management, since they are responsible for creating and deleting
graphs within a given graph store.

In this section, we will discuss these operations briefly. Again, understand this
standard is not finalized yet, and by the time you are reading this book, it could be
changed or updated. However, the basic idea should remain the same.

6.5.3.1 Graph Update: Adding RDF Statements

One way to add one or more RDF statements into a given graph is to use the INSERT
DATA operation. This operation creates the graph if it does not exist. List 6.46 shows
one example:

List 6.46 Example of using INSERT DATA to update a given graph
prefix foaf:<http://xmlns.com/foaf/0.1/>

prefix liyang: <http://www.liyangyu.com/foaf.rdf#>

INSERT DATA

{

GRAPH <http://www.liyangyu.com/foaf.rdf>

{

liyang:liyang foaf:workplaceHomepage <http://www.delta.com> ;

foaf:schoolHomepage <http://www.osu.edu>.

}

}

This will insert two new statements into my personal FOAF document, namely
http://www.liyangyu.com/foaf.rdf. And these two statements show the
home page of the company I work for and the home page of the school I graduated
from.

Note that you can insert any number of RDF statements within one INSERT

DATA request. In addition, the GRAPH clause is optional; an INSERT DATA request
without the GRAPH clause will simply operate on the default graph in the RDF store.

6.5 SPARQL 1.1 287

Another way to add one or more RDF statements into a given graph is to use
the INSERT operation. List 6.47 shows one example to use the INSERT opera-
tion. This example copies RDF statement(s) from my old FOAF document into my
current FOAF document. More specifically, all the information about my interests
are moved into the new FOAF document so I don’t have to add each one of them
manually.

List 6.47 Example of using INSERT operation to update a given graph

prefix foaf:<http://xmlns.com/foaf/0.1/>

prefix liyang: <http://www.liyangyu.com/foaf.rdf#>

INSERT

{

GRAPH <http://www.liyangyu.com/foaf.rdf>

{ liyang:liyang foaf:topic_interest ?interest. }

}

WHERE

{

GRAPH <http://www.liyangyu.com/foafOld.rdf>

{ liyang:liyang foaf:topic_interest ?interest. }

}

This is a very useful operation, and with this operation, we can move statements
from one graph to another based on any graph pattern we have specified by using
the WHERE clause.

6.5.3.2 Graph Update: Deleting RDF Statements

Similar to adding statements, deleting statements from a given RDF graph can be
done in two ways. One way is to use the DELETE DATA operation, which removes
triples from a graph. List 6.48 shows one example:

List 6.48 Example of using DELETE DATA operation to update a given graph

prefix foaf:<http://xmlns.com/foaf/0.1/>

prefix liyang: <http://www.liyangyu.com/foaf.rdf#>

DELETE DATA

{

GRAPH <http://www.liyangyu.com/foaf.rdf>

{

liyang:liyang foaf:workplaceHomepage

<http://www.delta.com> ;

foaf:schoolHomepage <http://www.osu.edu>.

}

}

288 6 SPARQL: Querying the Semantic Web

This will delete the two statements we have just added into my FOAF document.
Similarly, you can delete any number of statements in one DELETE DATA request,
and the GRAPH clause is optional; an DELETE DATA statement without the GRAPH

clause will simply operate on the default graph in the RDF store.
Another way to delete one or more RDF statements from a given graph is to use

the DELETE operation. List 6.49 shows one example. And as you can tell, we will
be able to specify a graph pattern using WHERE clause so as to delete statements
more effectively. In this particular example, we would like to delete all the e-mail
information that have been included in my FOAF document:

List 6.49 Example of using DELETE operation to update a given graph

prefix foaf:<http://xmlns.com/foaf/0.1/>

DELETE

{

GRAPH <http://www.liyangyu.com/foaf.rdf>

{ ?person foaf:mbox ?mbox. }

}

Similar to INSERT operation, DELETE operation can have a WHERE clause to
specify more interesting graph pattern one can match, as shown in List 6.50:

List 6.50 Example of using DELETE operation together with WHERE clause

prefix foaf:<http://xmlns.com/foaf/0.1/>

prefix dc: <http://purl.org/dc/elements/1.1/>

prefix liyang: <http://www.liyangyu.com/foaf.rdf#>

DELETE

{

GRAPH <http://www.liyangyu.com/foaf.rdf>

{ ?logItem ?pred ?obj. }

}

WHERE

{

GRAPH <http://www.liyangyu.com/foaf.rdf>

{

liyang:liyang foaf:weblog ?logItem;

?logItem dc:date ?date.

FILTER (?date < "2005-01-01T00:00:00-2:00"ˆˆxsd:

dateTime)

?logItem ?pred ?obj

}

}

As you can tell, this will delete all the blog items I have written before January
1st of 2005.

6.5 SPARQL 1.1 289

6.5.3.3 Graph Update: LOAD and CLEAR

Two more operations that can be useful are the LOAD and CLEAR operations. With
what we have learned so far, these two operations are not necessarily needed since
their functionalities can be implemented by simply using INSERT and DELETE oper-
ations. However, they do provide a more convenient and effective choice when
needed.

The LOAD operation copies all the triples of a remote graph into the specified tar-
get graph. If no target graph is specified, the defect graph will be used. For example,
List 6.51 will load all the statements from my old FOAF document to my current
FOAF document:

List 6.51 Example of using LOAD operation to update a given graph

LOAD <http://www.liyangyu.com/foafOld.rdf>

INTO <http://www.liyangyu.com/foaf.rdf>

The CLEAR operation deletes all the statements from the specified graph. If no
graph is specified, it will operate on the default graph. Note that this operation does
not remove the graph from the RDF graph store. For example, List 6.52 will delete
all the statements from my old FOAF document:

List 6.52 Example of using CLEAR operator to update a given graph

CLEAR GRAPH <http://www.liyangyu.com/foafOld.rdf>

6.5.3.4 Graph Management: Graph Creation

As we have mentioned earlier, graph management operations create and destroy
named graphs in the graph store. Note that, however, these operations are optional
since based on the current standard, graph stores are not required to support named
graphs.

The following is used to create a new named graph:

CREATE [SILENT] GRAPH <uri>

This creates a new empty graph whose name is specified by uri. After the graph
is created, we can manipulate its content by adding new statements into it, as we
have discussed in previous sections.

Note that the optional SILENT keyword is for error handling. If the graph named
uri already exists in the store, unless this keyword is present, the SPARQL 1.1
Update service will flag an error message back to the user.

6.5.3.5 Graph Management: Graph Removal

The following operation will remove the specified named graph from the graph
store:

DROP [SILENT] GRAPH <uri>

290 6 SPARQL: Querying the Semantic Web

Once this operation is successfully completed, the named graph cannot be
accessed with further operations. Similarly, SPARQL 1.1 Update service will report
an error message if the named graph does not exist. If the optional SILNET keyword
is present, no error message will be generated.

6.6 Summary

We have covered SPRAQL in this chapter, the last core technical component of the
Semantic Web.

First off, understand how SPARQL fits into the technical structure of the
Semantic Web and how to set up and use a SPARQL endpoint to submit queries
against RDF models.

Second, understand the following main points about SPARQL query language:

• basic SPARQL query language concepts such as triple pattern and graph pattern;
• basic SPARQL query forms such as SELECT query, ASK query, DESCRIBE query

and CONSTRUCT query;
• key SPARQL language features and constructs, and use them effectively to build

queries, including working with multiple graphs.

Finally, this chapter has also covered SPARQL 1.1, a collection of new features
added to the current SPARQL standard. Make sure you understand the following
about SPARQL 1.1:

• the SPARQL 1.1 technical components;
• the language features and constructs of SPARQL 1.1 Query, including aggregate

functions, subqueries, negation, expressions with SELECT query, and property
paths;

• the language features and constructs of SPARQL 1.1 Update, including inserting
and deleting operations on a single graph, creating and deleting graphs from a
graph store.

At this point in the book, we have covered all the core technical components of
the Semantic Web. The next five chapters will give you some concrete examples of
the Semantic Web at work, which will further enhance your understanding about the
materials presented so far in the book.

Chapter 7
FOAF: Friend of a Friend

At this point, we have learned the major technical components of the Semantic Web,
and it is time for us to take a look at some real-world examples. Starting from FOAF
is a good choice since it is simple and easy to understand, yet it does tell us a lot
about how the Semantic Web looks like, especially in the area of social networking.

Studying FOAF will also give us a chance to practice what we have learned about
RDF, RDFS and OWL. Another good reason is that FOAF namespace shows up in
many ontology documents and in many literatures; understanding FOAF seems to
be necessary.

As usual, we will first examine what exactly is FOAF and what it accomplishes
for us. Then we will dive inside FOAF to see how it works. Finally we will take a
look at some real examples and also come up with our own FOAF document.

Another interesting topic we will cover in this chapter is semantic markup. As
you will see, semantic markup is the actual implementation of the idea of adding
semantics to the current Web so as to make it machine readable. However, once you
understand semantic markup, you will see the issues associated with it. The possible
solutions to these issues will be covered in later chapters, and they will give you even
more chances to further understand the idea of the Semantic Web.

7.1 What Is FOAF and What It Does

7.1.1 FOAF in Plain English

In the early days of the Semantic Web, developers and researchers were eager to
build some running examples of the Semantic Web for the purpose of experimenting
with the idea and hopefully showing the benefits of the Semantic Web. Yet, as we
have seen in the previous chapters, to build applications on the Semantic Web, we
need to have some ontologies, and we will have to mark up Web documents by
using these ontologies so that we can turn them into the documents that are machine
readable.

Obviously, in order to promptly create such an application example, it would be
easier to focus on some specific domain, so the creation of the ontologies would be
constrained in scope and would not be too formidably hard. In addition, to rapidly

291L. Yu, A Developer’s Guide to the Semantic Web,
DOI 10.1007/978-3-642-15970-1_7, C© Springer-Verlag Berlin Heidelberg 2011

292 7 FOAF: Friend of a Friend

yield a large number of Web documents that would be created by using this specific
ontology, it would have to involve a lot of people who were willing to participate
in the effort. Therefore, a fairly straightforward project to start with would be some
people-centric Semantic Web application.

There are tons of millions of personal Web pages on the Web. On each such
Web site, the author often provides some personal information, such as e-mails,
pictures, interests. The author may also include some links to his/her friends’ Web
sites, therefore creating a social network. And with this network, we can answer
questions such as “who has the same interest as I do?”, and maybe that means we
can sell our old camera to him. And also, we can find someone who lives close to
us and also works at roughly the same location, so we can start to contact him and
discuss the possibility of carpooling.

All these sound great. However, since all the personal Web sites are built for
human eyes, we will have to do all the above manually, and it is very hard to create
any application to do all that for us.

To make these documents understandable to an application, two major steps have
to be accomplished: (1) a machine-readable ontology about person has to be created
and (2) each personal home page has to be marked up, i.e., it has to be connected to
some RDF statement document written by using this ontology.

This was the motivation behind FOAF project. Founded by Dan Brickley and
Libby Miller in the mid 2000, FOAF is an open community-lead initiative with the
goal of creating a machine-readable Web of data in the area of personal home pages
and social networking.

It is important to understand the concept of “machine-readable Web of data.” Just
like the HTML version of your home page, FOAF documents can be linked together
to form a Web of data. The difference is that this web of data is formed with well-
defined semantics, expressed in the person ontology. We will definitely come back
to this point later in this chapter and in the coming chapters as well.

In plain English, FOAF is simply a vocabulary (or, ontology) which includes the
basic terms to describe personal information, such as who you are, what you do,
and who your friends are. It serves as a standard for everyone who wants to mark
up their home pages and turn them into the documents that can be processed by
machines.

7.1.2 FOAF in Official Language

First off, FOAF stands for Friend of a Friend, and its official Web site can be found at

http://www.foaf-project.org/

which has an official definition of FOAF:

The Friend of a Friend (FOAF) project is creating a Web of machine-readable pages
describing people, the links between them and the things they create and do.

This definition should be clear enough based on our discussion so far. Again, you
can simply understand FOAF as a machine-readable ontology describing persons,

7.2 Core FOAF Vocabulary and Examples 293

their activities, and their relations to other people. Therefore, FOAF and FOAF
ontology are interchangeable concepts.

Note that FOAF ontology is not a standard from W3C; it is managed by following
the style of an Open Source1 or Free Software2 project standards and maintained by
a community of developers. However, FOAF does depend on W3C standards, such
as RDF and OWL. More specifically,

• FOAF ontology is written in OWL.
• FOAF documents must be well-formed RDF documents.

FOAF ontology’s official specification can be found at the location

http://xmlns.com/foaf/spec/

New updates and related new releases can be found at this page as well.
In addition, the FOAF ontology itself can be found (and downloaded) from the
following URL:

http://xmlns.com/foaf/spec/index.rdf

As usual, FOAF ontology is a collection of terms and all these terms are identified
by pre-defined URIs, which all share the following leading string:

http://xmlns.com/foaf/0.1/

and by convention, this URI prefix string is associated with namespace prefix foaf:
and is typically used in RDF/XML format with the prefix foaf.

Finally, there is also a wiki site for FOAF project, and here is the URL for
this site:

http://wiki.foaf-project.org/w/Main_Page

and you can use this wiki to learn more about FOAF project as well.

7.2 Core FOAF Vocabulary and Examples

With what we have learned so far, and given the fact that FOAF ontology is written
in OWL, understanding FOAF ontology should not be difficult. In this section, we
will cover the core terms in this ontology and also present examples to show how
the FOAF ontology is used.

7.2.1 The Big Picture: FOAF Vocabulary

FOAF terms are grouped in categories. Table 7.1 summarizes these categories and
the terms in each category. Note that FOAF is also under constant change and

1http://www.opensource.org/
2http://www.gnu.org/philosophy/free-sw.html

294 7 FOAF: Friend of a Friend

Table 7.1 FOAF vocabulary

Category Terms

Basic FOAF classes and
properties

foaf:Agent, foaf:Person, foaf:name,
foaf:nick, foaf:title, foaf:homepage,
foaf:mbox, foaf:mbox_sha1sum,
foaf:img, foaf:depiction, foaf:depict,
foaf:surname, foaf:familyName,
foaf:givenName, foaf:firstName,
foaf:lastName.

Properties about
personal information

foaf:weblog, foaf:knows,
foaf:interest, foaf:currentProject,
foaf:pastProject, foaf:plan,
foaf:based_near, foaf:age,
foaf:workplaceHomepage, foaf:workInfoHomepage,
foaf:schoolHomepage,
foaf:topic_interest,
foaf:publications, foaf:geekcode,
foaf:myersBriggs, foaf:dnaChecksum

Classes and properties
about online accounts
and instance
messaging

foaf:OnlineAccount,
foaf:OnlineChatAccount,
foaf:OnlineEcommerceAccount,
foaf:OnlineGamingAccount,
foaf:account,
foaf:accountServiceHomepage,
foaf:accountName, foaf:icqChatID,
foaf:msnChatID, foaf:jabberID,
foaf:yahooChatID, foaf:skypeID

Classes and properties
about projects and
groups

foaf:Project, foaf:Organization,
foaf:Group, foaf:member,
foaf:membershipClass

Classes and properties
about documents and
images

foaf:Document, foaf:Image,
foaf:PersonalProfileDocument, foaf:topic,
foaf:page,
foaf:primaryTopic,
foaf:primaryTopicOf, foaf:tipjar,
foaf:sha1, foaf:made, foaf:maker,
foaf:thumbnail, foaf:logo

update; it will not be surprising at the time you read this book that you may find
more terms in some categories.

As you can see, FOAF ontology is not a big ontology at all, and most of the
terms are quite intuitive. Note that a term starting with capital letter identifies a
class; otherwise, it identifies a property.

7.2.2 Core Terms and Examples

It is not possible to cover all the FOAF terms in detail. In this section, some most
frequently used terms will be discussed, with the rest of them left for you to study.

7.2 Core FOAF Vocabulary and Examples 295

foaf:Person class is one of the core classes defined in FOAF vocabulary, and it
represents people in the real world. List 7.1 is the definition of Person class, taken
directly from the FOAF ontology.

List 7.1 Definition of Person class

<rdfs:Class rdf:about="http://xmlns.com/foaf/0.1/Person"
rdfs:label="Person"
rdfs:comment="A person."
vs:term_status="stable">

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>
<rdfs:subClassOf>

<owl:Class rdf:about="http://xmlns.com/wordnet/1.6/Person"/>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Class rdf:about="http://xmlns.com/foaf/0.1/Agent"/>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Class rdf:about="http://xmlns.com/wordnet/1.6/Agent"/>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Class rdf:about=
"http://www.w3.org/2000/10/swap/pim/contact#Person"/>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Class rdf:about=
"http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing"/>

</rdfs:subClassOf>
<rdfs:isDefinedBy rdf:resource="http://xmlns.com/foaf/0.1/"/>
<owl:disjointWith

rdf:resource="http://xmlns.com/foaf/0.1/Document"/>
<owl:disjointWith

rdf:resource="http://xmlns.com/foaf/0.1/Organization"/>
<owl:disjointWith

rdf:resource="http://xmlns.com/foaf/0.1/Project"/>
</rdfs:Class>

As you can see, foaf:Person is defined as a sub-class of Person class defined
in WordNet. WordNet is a semantic lexicon for the English language. It groups
English words into sets of synonyms called synsets and provides short and gen-
eral definitions, including various semantic relations between these synonym sets.
Developed by Cognitive Science Laboratory of Princeton University, WordNet
has two goals: first, to produce a combination of dictionary and thesaurus that is
more intuitively usable and second, to support automatic text analysis and artificial
intelligence applications.

During the past several years, WordNet finds more and more usage in the area
of the Semantic Web, and FOAF class foaf:Person is a good example. By
being a sub-class of wordNet:Person, FOAF vocabulary can fit into a much
broader picture. For example, an application which only knows WordNet can also
understand foaf:Person even if it has never seen FOAF vocabulary before.

296 7 FOAF: Friend of a Friend

By the same token, foaf:Person is also defined to be a sub-class of several
outside classes defined by other ontologies, such as the following two classes:

http://www.w3.org/2000/10/swap/pim/contact#Person

http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing

Note that foaf:Person is a sub-class of foaf:Agent, which can represent a
person, a group, a software, or some physical artifacts, and similar agent concept is
also defined in WordNet. Furthermore, foaf:Person cannot be anything such as a
foaf:Document, a foaf:Organization, or a foaf:Project.

Besides foaf:Person class, FOAF ontology has defined quite a few other
classes; the goal is to include the main concepts that can be used to describe a per-
son as a resource. You can read these definitions just as the way we have understood
foaf:Person’s definition. For example, foaf:Document represents the things
which are considered to be documents used by a person, such as foaf:Image, a
sub-class of foaf:Document, since all images are indeed documents.

Properties defined by FOAF can be used to describe a person on a quite
detailed level. For example, foaf:firstName is a property that describes
the first name of a person. This property has foaf:Person as its domain,
and http://www.w3.org/2000/01/rdf-schema#Literal as its value range.
Similarly, foaf:givenname is the property describing the given name of a person,
and it has the same domain and value range. Note that a simpler version of these
two properties is the foaf:name property.

foaf:homepage property relates a given resource to its home page. Its domain
is http://www.w3.org/2002/07/owl#Thing, and range is foaf:Document. It
is important to realize that this property is an inverse functional property. Therefore,
a given Thing can have multiple home pages; however, if two Things have the
same home page, then these two Things are in fact the same Thing.

A similar property is the foaf:mbox property, which describes a relationship
between the owner of a mailbox and a mailbox. This is also an inverse functional
property; if two foaf:Person resources have the same foaf:mbox value, these
two foaf:Person instances have to be exactly the same person. On the other hand,
a foaf:Person can indeed own multiple foaf:mbox instances. We will come back
to this important property soon.

Let us take a look at some examples, and we will also cover some other important
properties in these examples.

First off, List 7.2 shows a typical description of a person.

List 7.2 Example of using foaf:Person

1: <rdf:RDF

1a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
2: xmlns:foaf="http://xmlns.com/foaf/0.1/">
3:

4: <foaf:Person>

5: <foaf:name>Liyang Yu</foaf:name>

6: <foaf:mbox rdf:resource="mailto:liyang910@yahoo.com"/>

7.2 Core FOAF Vocabulary and Examples 297

7: </foaf:Person>

8:

9:</rdf:RDF>

List 7.2 simply says that there is a person, this person’s name is Liyang Yu, and
e-mail address is liyang910@yahoo.com.

The first thing to note is the fact that there is no URI to identify this person at all.
More specifically, you don’t see the following pattern where rdf:about attribute
is used on foaf:Person resource:

<foaf:Person rdf:about="some_URI"/>
This seems to have broken one of the most important rules we have for the world

of the Semantic Web. This rule says, whenever you decide to publish some RDF
document to talk about some resource on the Web (in this case, Liyang Yu as a
foaf:Person instance), you need to use a URI to represent this resource, and you
should always use the existing URI for this resource if it already has one.

In fact, List 7.2 is correct and this is done on purpose. This is also one of the
important features a FOAF document has. Let us understand the reason here.

It is certainly not difficult to come up with a URI to uniquely identify a person.
For example, I can use the following URI to identify myself:

<foaf:Person

rdf:about="http://www.liyangyu.com/people#LiyangYu"/>
The difficult part is how to make sure other people know this URI and when they

want to add additional information about me, they can reuse this exact URI.
One solution comes from foaf:mbox property. Clearly, an e-mail address is

closely related to a given person, and it is also safe to assume that this person’s
friends should all know this e-mail address. Therefore, it is possible to use an e-mail
address to uniquely identify a given person, and all we need to do is to make sure if
two people have the same e-mail address and these two people are in fact the same
person.

As we have discussed earlier, FOAF ontology has defined foaf:mbox property
as an inverse functional property, as shown in List 7.3.

List 7.3 Definition of foaf:mbox property
<rdf:Property rdf:about="http://xmlns.com/foaf/0.1/mbox"

vs:term_status="stable"
rdfs:label="personal mailbox"
rdfs:comment="...">

<rdf:type rdf:resource=
"http://www.w3.org/2002/07/owl#InverseFunctionalProperty"/>

<rdf:type rdf:resource=
"http://www.w3.org/2002/07/owl#ObjectProperty"/>

<rdfs:domain rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
<rdfs:range

rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
<rdfs:isDefinedBy rdf:resource="http://xmlns.com/foaf/0.1/"/>

</rdf:Property>

298 7 FOAF: Friend of a Friend

Now if one of my friends has the following descriptions in her FOAF document:

<foaf:Person>

<foaf:nick>Lao Yu</foaf:nick>

<foaf:title>Dr</foaf:title>

<foaf:mbox rdf:resource="mailto:liyang910@yahoo.com"/>
</foaf:Person>

An application that understands FOAF ontology will be able to recognize
foaf:mbox property and conclude that this is exactly the same person as described
in List 7.2. And apparently, among other extra information, at least we now know
this person has a nick name called Lao Yu.

Clearly, property foaf:mbox has solved the problem of identifying a person as
a resource: when describing a person, you don’t have to find the URI that identifies
this person and you certainly don’t have to invent your own URI either, all you
need to do is to make sure you include his/her e-mail address in your description, as
shown here.

foaf:mbox_sha1sum is another property defined by FOAF vocabulary which
functions just like foaf:mbox property. You will see this property quite often in
related documents and literatures, so let us talk about it here as well.

As you can tell, the value of foaf:mbox property is a simple textual repre-
sentation of your e-mail address. In other words, after you have published your
FOAF document, your e-mail address is open to the public. This may not be what
you wanted. For one thing, spam can influx your mailbox within a few hours.
For this reason, FOAF provides another property foaf:mbox_sha1sum, which
offers a different representation of your e-mail address. You can get this repre-
sentation by taking your e-mail address and applying the SHA1 algorithm to it.
The resulting representation is indeed long and ugly, but your privacy is well
protected.

There are several different ways to generate the sha1 sum of your e-mail address,
we will not cover the details here. Remember to use foaf:mbox_sha1sum as much
as you can, and it is also defined as an inverse functional property, so it can be used
to uniquely identify a given person.

Now let us move on to another important FOAF property foaf:knows. We use it
to describe our relationships with other people, and it is very useful when it comes
to building the social network using FOAF documents. Let us take a look at one
example. Suppose part of my friend’s FOAF document looks like the following:

<foaf:Person>

<foaf:name>Connie</foaf:name>

<foaf:mbox rdf:resource="mailto:connie@liyangyu.com"/>
</foaf:Person>

If I want to indicate in my FOAF document that I know her, I can include the
code in List 7.4 into my FOAF document.

7.2 Core FOAF Vocabulary and Examples 299

List 7.4 Example of using foaf:knows property
1: <foaf:Person>
2: <foaf:name>Liyang Yu</foaf:name>
3: <foaf:mbox rdf:resource="mailto:liyang910@yahoo.com"/>
4: <foaf:knows>
5: <foaf:Person>
6: <foaf:mbox rdf:resource="mailto:connie@liyangyu.com"/>
7: </foaf:Person>
8: </foaf:knows>
9: </foaf:Person>

This shows that I know a person who has an e-mail address given by
connie@liyangyu.com. Again, since property foaf:mbox is used, a given appli-
cation will be able to understand that the person I know has a name called Connie;
note that no URI has been used to identify her at all.

Also note that you cannot assume foaf:knows property is a symmetric prop-
erty; in other words, I know Connie does not imply that Connie knows me. If
you check the FOAF vocabulary definition, you can see foaf:knows is indeed not
defined as symmetric.

Perhaps the most important use of foaf:knows property is to connect FOAF
files together. Often by mentioning other people (foaf:knows), and by providing
a rdfs:seeAlso property at the same time, we can link different RDF documents
together. Let us discuss this a little further at this point, and in the later chapters, we
will see application built upon this relationships.

We have seen property rdfs:seeAlso already in previous chapters. It is defined
in RDF schema namespace, and it indicates the fact that there is some additional
information about the resource this property is describing. For instance, I can add
one more line into List 7.1, as shown in List 7.5.

List 7.5 Example of using rdfs:seeAlso property

1: <rdf:RDF

1a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
2: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
3: xmlns:foaf="http://xmlns.com/foaf/0.1/">
4:

5: <foaf:Person>

6: <foaf:name>Liyang Yu</foaf:name>

7: <foaf:mbox rdf:resource="mailto:liyang910@yahoo.com"/>
8: <rdfs:seeAlso

8a: rdf:resource="http://www.yuchen.net/liyang.rdf"/>
9: </foaf:Person>

10:

11: </rdf:RDF>

Line 8 says, if you want to know more about this Person instance, you can find
it in the resource pointed by http://www.yuchen.net/liyang.rdf.

300 7 FOAF: Friend of a Friend

Here, the resource pointed to by http://www.yuchen.net/liyang.rdf is an
old FOAF document that describes myself, but I can in fact point to a friend’s FOAF
document using rdfs:seeAlso, together with property foaf:knows, as shown in
List 7.6.

List 7.6 Use foaf:knows and rdfs:seeAlso to link RDF documents
together

1: <rdf:RDF
1a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
2: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
3: xmlns:foaf="http://xmlns.com/foaf/0.1/">
4:
5: <foaf:Person>
6: <foaf:name>Liyang Yu</foaf:name>
7: <foaf:mbox rdf:resource="mailto:liyang910@yahoo.com"/>
8: <rdfs:seeAlso
8a: rdf:resource="http://www.yuchen.net/liyang.rdf"/>
9: <foaf:knows>
10: <foaf:Person>
11: <foaf:mbox rdf:resource="mailto:connie@liyangyu.com"/>
12: <rdfs:seeAlso
12a: rdf:resource="http://www.liyangyu.com/connie.rdf"/>
13: </foaf:Person>
14: </foaf:knows>
15: </foaf:Person>
16:
17:</rdf:RDF>

Now, an application sees the document shown in List 7.6 will move on to access
the document identified by the following URI (line 12):

http://www.liyangyu.com/connie.rdf

and by doing so, FOAF aggregators can be built without the need for a centrally
managed directory of FOAF files.

As a matter of fact, property rdfs:seeAlso is treated by the FOAF com-
munity as the hyperlink of the FOAF documents. More specifically, one FOAF
document is considered to contain a hyperlink to another document if it has included
rdfs:seeAlso property, and the value of this property is where this hyperlink is
pointing to. Here, this FOAF document can be considered as a root HTML page,
and rdfs:seeAlso property is just like a <href> tag contained in the page. It is
through the rdfs:seeAlso property that a whole web of machine-readable meta-
data can be built. We will see more about this property and its important role in the
chapters yet to come.

The last two FOAF terms we would like to discuss here are foaf:depiction

and foaf:depicts. It is quite common that people will put their pictures on their
Web sites. To help us add statements about the pictures into the related FOAF
document, FOAF vocabulary provides two properties to accomplish this. The first
property is the foaf:depiction property and second one is foaf:depicts

property, make sure you know the difference between these two.

7.3 Create Your FOAF Document and Get into the Friend Circle 301

foaf:depiction property is a relationship between a thing and an image that
depicts the thing. In other words, it makes the statement such as “this person (Thing)
is shown in this image.” On the other hand, foaf:depicts is the inverse property;
it is a relationship between an image and something that image depicts. Therefore,
to indicate the fact that I have a picture, I should use line 9 as shown in List 7.7.

List 7.7 Example of using foaf:depiction property

1: <rdf:RDF
1a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
2: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
3: xmlns:foaf="http://xmlns.com/foaf/0.1/">
4:
5: <foaf:Person>
6: <foaf:name>Liyang Yu</foaf:name>
7: <foaf:mbox rdf:resource="mailto:liyang910@yahoo.com"/>
8: <rdfs:seeAlso
8a: rdf:resource="http://www.yuchen.net/liyang.rdf"/>
9: <foaf:depiction rdf:resource=
9a: "http://www.liyangyu.com/pictures/yu.jpg"/>
10: </foaf:Person>
11:
12: </rdf:RDF>

I will leave it to you to understand the usage of foaf:depicts property.
Up to this point, we have talked about several classes and properties defined in the

FOAF vocabulary. Again, you should have no problem reading and understanding
the whole FOAF ontology. Let us move on to the topic of how to create your own
FOAF document and also make sure that you know how to get into the “friend
circle.”

7.3 Create Your FOAF Document and Get
into the Friend Circle

In this section, we will talk about several issues related to creating your own FOAF
document and joining the circle of friends. Before we can do all these, we need to
know how FOAF project has designed the flow, as we will see in the next section.

7.3.1 How Does the Circle Work?

The circle of FOAF documents is created and maintained by the following steps.

Step 1. A user creates the FOAF document.
As a user, you create a FOAF document by using the FOAF vocabulary as
we discussed in the previous section. The only thing you need to remember
is that you should use foaf:knows property together with rdfs:seeAlso

property to connect your document with the documents of other friends.

302 7 FOAF: Friend of a Friend

Step 2. Link your home page to your FOAF document.
Once you have created your FOAF document, you should link it from your
home page. And once you have finished this step, you are done, it is now up
to the FOAF project to find you.

Step 3. FOAF uses its crawler to visit the Web and collect all the FOAF
documents.
In the context of FOAF project, a crawler is called a scutter. Its basic task
is not much different from a crawler: it visits the Web and tries to find RDF
files. In this case, it has to find a special kind of RDF file: a FOAF document.
Once it finds one, the least it will do is to parse the document and store the
triples into its data system for later use.

An important feature about scutter is that it has to know how to han-
dle rdfs:seeAlso property. Whenever the scutter sees this, it will follow
the link to reach the document pointed by rdfs:seeAlso property. This is
the way FOAF uses to construct a network of FOAF documents.

Another important fact about scutter is that it has to take care of
the data merging issue. To do so, the scutter has to know which FOAF
properties can uniquely identify resources. More specifically, foaf:mbox,
foaf:mbox_sha1sum and foaf:homepage are all defined as inverse func-
tional properties; therefore, they can all uniquely identify individuals that
have one of these properties. In the real operation, one solution the scut-
ter can use is to keep a list of RDF statements which involve any of these
properties, and when it is necessary, it can consult this list to merge together
different triples that are in fact describing the same individuals.

Step 4. FOAF maintains a central repository and is also responsible for keeping
the information up to date.
FOAF also has to maintain a centralized database to store all the triples it has
collected and other relevant information. To keep this database up to date, it
has to run the scutter periodically to visit the Web.

Step 5. FOFA provides a user interface so that we can find our friends and
conduct other interesting activities.
FOAF offers some tools one can use to view the friends in the circle, which
further defines the look and feel of the FOAF project. Among these tools,
FOAF explorer is quite popular, and you can find this tool as the following
location:

http://xml.mfd-consult.dk/foaf/explorer/

Figure 7.1 is an example of viewing FOAF document using FOAF
explorer. The FOAF document being viewed is created by Dan Brickley, one
of the founders of the FOAF project.

Up to this point, we have gained understanding about how FOAF project works
to build a network of FOAF documents. It is time to create our own FOAF document
and join the circle.

7.3 Create Your FOAF Document and Get into the Friend Circle 303

Fig. 7.1 FOAF explorer shows Dan Brickley’s FOAF document

7.3.2 Create Your FOAF Document

The most straightforward way to create a FOAF document is to use a simple text
editor. This requires you to directly use the FOAF vocabulary. Given the self-
explanatory nature of the FOAF ontology, this is not difficult to do. Also you need
to validate the final document, just to make sure its syntax is legal.

The other choice is to use tools to create FOAF document. The most popular one
is called “FOAF-a-matic”; you can find the link to this tool from the FOAF official
Web site, and at the current time, its URL is

http://www.ldodds.com/foaf/foaf-a-matic.html

Figure 7.2 shows the main interface of this authoring tool.
To use this form, you don’t have to know any FOAF terms, you just need to

follow the instructions to create your FOAF document. More specifically, this form
allows you to specify your name, e-mail address, home page, your picture and phone

304 7 FOAF: Friend of a Friend

Fig. 7.2 Use FOAF-a-matic to create your own FOAF document

number, and other personal information. It also allows you to enter information
about your work, such as work home page and a small page describing what you do
at your work. More importantly, you will have a chance to specify your friends and
provide their FOAF documents as well. Based on what we have learned so far, this
will bring both you and your friends into the FOAF network.

Note that you can leave a lot of fields on the form empty. The only required
fields are “First Name,” “Last Name,” and “Your Email Address.” By now,
you should understand the reason why you have to provide an e-mail address –
FOAF does not assign an URI to you at all, and later on in life, it will use this e-mail
address to uniquely identify you.

Once you have finished filling the form, by clicking the “FOAF me!” button, you
will get an RDF document which uses FOAF vocabulary to present a description
about yourself. At this point, you need to exercise your normal “copy-and-paste”
trick in the output window, copy the generated statements into your favorite editor,

7.3 Create Your FOAF Document and Get into the Friend Circle 305

and save it to a file so that you can later on join the circle of friends, as will be
discussed next.

7.3.3 Get into the Circle: Publish Your FOAF Document

Once you have created your FOAF document, the next step is to publish it in a way
that it can be easily harvested by the scutter (FOAF’s crawler) or other applications
that can understand FOAF documents. This is what we mean when we say “get into
the circle.” There are three different ways to get into the circle, and we will discuss
these different methods in this section.

• Add a link from you home page to your FOAF document

The easiest solution is to link your home page to your FOAF document. This can
be done using the <link> element as shown in List 7.8.

List 7.8 Add a link from your home page to your FOAF document

<!-- this is your homepage -->

<html>

<head>

... ...

<link rel="meta" type="application/rdf+xml" title="FOAF"
href="http://www.liyangyu.com/foaf.rdf"/>

... ...

</head>

<body>

... ...

</body>

</html>

Remember to substitute href to point to your own FOAF document. Also
note that your FOAF file can be any name you like, but foaf.rdf is a common
choice.

This is quite easy to implement; however, the downside is the fact that you
have to wait for the crawler to visit your home page to discover your FOAF
document. Without this discovery, you will never be able to get into the circle.
Given the fact that there are millions of personal Web sites out there on the Web,
the FOAF scutter will have to traverse the Web for long time to find you, if it can
find you at all.

To solve this problem, you can use the second solution, which will make the
discovery process much more efficient.

306 7 FOAF: Friend of a Friend

• Ask your friend to add a rdfs:seeAlso link that points to your document

This is a recommended way to get your FOAF document indexed. Once your
friend has added a link to your document by using rdfs:seeAlso in his/her
document, you can rest assured that your data will appear in the network.

To implement this, your friend needs to remember that he/she has to use
foaf:knows and rdfs:seeAlso together by inserting the following lines into
his/her FOAF document:

<foaf:knows>

<foaf:Person>

<foaf:mbox rdf:resource="mailto:you@yourEmail.com"/>
<rdfs:seeAlso rdf:resource="http://
path_to_your_foaf.rdf"/>

</foaf:Person>

</foaf:knows>

Now, the fact that your friend is already in the circle means that FOAF scutter
has visited his/her document already. Since the scutter will periodically revisit
the same files to pick up any updates, it will see the rdfs:seeAlso link and
will then pick up yours; this is the reason why your FOAF document will be
guaranteed to be indexed.

Obviously, this solution is feasible only when you have a friend who is already
in the circle. What if you do not have anyone in the circle at all? We will then
need the third solution discussed next.

• Use the “FOAF Bulletin Board”

Obviously, instead of waiting for FOAF network to find you, you can report to it
voluntarily. FOAF project does provide a service for you to do this, and it is the
so-called FOAF Bulletin Board. To access this service, visit the FOAF Wiki site,
and find the FOAF Bulletin Board page. You can also use the following URL to
directly access the page:

http://wiki.foaf-project.org/w/FOAFBulletinBoard

Once you are on the page, you will see a registry of people whose FOAF
document has been collected by FOAF. To add your own FOAF document, you
need to log in first. Once you log in, you will see an Edit tab. Click this tab, you
will then be able to edit a document in the editing window. Add your name, and
a link to your FOAF document, click “save page” when you are done, and you
are in the FOAF network already.

There are other ways you can use to join the circle, and we are not going to dis-
cuss them here. A more interesting question at this point is, what does the FOAF
world look like, especially after more and more people have joined the circle? In
other words, how does FOAF project change the world of personal Web pages
for human eyes into a world of personal Web pages that are suitable for machine
processing? Let us take a look at this interesting topic in the next section.

7.3 Create Your FOAF Document and Get into the Friend Circle 307

7.3.4 From Web Pages for Human Eyes to Web Pages
for Machines

Let us take a look at the world of personal Web pages first. Assuming in my Web
page, www.liyangyu.com, I have included links pointing to my friends’ Web sites.
One of my friends, on his Web site, has also included links that point to his friends,
so on and so forth. This has created a linked documents on the Web, just as what we
have today.

Now using FOAF vocabulary, I have created a FOAF document that describes
myself. Quite similar to my personal Web site, in this FOAF document, I talk about
myself, such as my e-mail, my name, my interest. Yet there is a fundamental dif-
ference: when I talk about myself in this FOAF document, I have used a language
that machine can understand. For the machine, this FOAF document has become my
new personal home page; it might look ugly to human eyes, but it looks perfectly
understandable to machines.

Now, assuming that all my friends have created their machine-readable home
pages, and just like what I have done in my human-readable home page, I can now
put links that point to my friends’ FOAF documents in my machine-readable home
page. This is done by using foaf:knows together with rdfs:seeAlso property.
Furthermore, this is also true for all my friends: in their machine-readable home
pages, they can add links to their friends’ machine-readable home pages, so on and
so forth.

This will then create a brand new social network on the Web, co-existing with the
traditional linked documents on the current Web. This whole new network is now
part of the Semantic Web in the domain of human network.

The above two different Web networks are shown in Fig. 7.3. By now, probably
two things have become much more clear. First, the reason why FOAF is called

Fig. 7.3 Home pages for human eyes vs. home pages for machines

308 7 FOAF: Friend of a Friend

“Friend of a Friend” has become clearer; and second, the reason why foaf:knows

together with rdfs:seeAlso is considered by the FOAF community the hyperlink
of the FOAF documents has become clear as well.

7.4 Semantic Markup: a Connection Between the Two Worlds

Before we move on to continue exploring the Semantic Web world, we need to talk
about one important issue: semantic markup.

7.4.1 What Is Semantic Markup

So far in this book, we have used the phrase semantic markup quite a few times
already. So, what exactly is semantic markup? How does it fit into the whole picture
of the Semantic Web?

First of all, after all these chapters, we have gained a much better understanding
about the Semantic Web. In fact, at this moment if we had to use one simple sentence
to describe what exactly the Semantic Web is, it would be really simple: it is all
about extending the current Web to make it more machine understandable.

To accomplish this goal, we first need some language(s) to express meanings
that machine can understand. This is one of the things we have learned the most at
this point: we have covered RDF, RDFS and OWL. These languages can be used
to develop a formal ontology and create RDF documents that machine can process.
And as we have learned in this chapter, we used FOAF ontology to create RDF
documents that describe myself. Obviously, we can use other ontologies in other
domains to create more and more RDF documents that describe resources in the
world.

However, when we look at our goal and what we have accomplished so far, we
realize the fact that there is something missing: the current Web is one world, the
machine-readable semantics expressed by ontologies is another world, and where
is the connection between these two? If these two worlds always stand independent
of each other, there will be no way we can extend the current Web to make it more
machine readable.

Therefore, we need to build a connection between the current Web and the
semantic world. This is what we call “adding semantics to the current Web.”

As you might have guessed, adding semantics to the current Web is called
semantic markup; sometimes, it is also called semantic annotation.

7.4.2 Semantic Markup: Procedure and Example

In general, a semantic markup file is an RDF document containing RDF statements
which describe the content of a Web page by using the terms defined in one or
several ontologies. For instance, suppose a Web page describes some entities in the
real world, the markup document for this Web page may specify that these entities

7.4 Semantic Markup: a Connection Between the Two Worlds 309

are instances of some classes defined in some ontology, and these instances have
some properties and some relationships among them.

When an application reaches a Web page and somehow finds this page has a
markup document (more details on this later), it will read this markup file and will
also load the related ontologies into its memory. At this point, the application can
act as if it understands the content of the current Web page, and it can also discover
some implicit facts about this page. The final result is that the same Web page not
only continues to look great to human eyes but also makes perfect sense to machines.

More specifically, there are several steps you need to follow when semantically
marking up a Web page:

Step 1. Decide which ontology or ontologies to use for semantic markup.

The first thing is to decide which ontology to use. Sometimes, you might
need more than one ontologies. This involves reading and understanding the
ontology to decide whether the given ontology fits your need, or, whether you
agree with the semantics expressed by the ontology. It is possible that you
have to come up with your own ontology; in that case, you need to remember
the rule of always trying to reuse existing ontologies, or simply constructing
your new ontology by extending some given ontology.

Step 2. Mark up the Web page.

Once you have decided the ontology you are going to use, you can start to
mark up the page. At this point, you need to decide exactly what content on
your page you want to mark up. Clearly, it is neither possible nor necessary
to mark up everything on your page. Having some sort of application in your
mind would help you to make the decision. The question you want to ask
yourself is, for instance, if there were an application visiting this page, what
information on this page I want the agent to understand? Remember your
decision is also constrained by the ontology you have selected; the markup
statements have to be constructed based upon the ontology, therefore, you
can only mark up the contents that are supported by the selected ontology.

You can elect to create your markup document by using a simple editor
or by using some tools. Currently there are tools available to help you to
mark up your pages, as we will see in our markup examples later in this
chapter. If you decide to use a simple editor to manually mark up a Web
page, remember to use a validator to make sure your markup document at
least does not contain any syntax errors. The reason is simple: the application
that reads this markup document may not be as forgiving as you are hoping;
if you make some syntax mistakes, a lot of your markup statements can be
totally skipped and ignored.

After you have finished creating the markup document, you need to put it
somewhere on your Web server. You also need to remember to grant enough
rights to it so that the outside world can access it. This is also related to the
last step discussed below.

310 7 FOAF: Friend of a Friend

Step 3. Let the world know your page has a markup document.

The last thing you need to do is to inform the world that your page has a
markup document. At the time of this writing, there is no standard way of
accomplishing this. A popular method is to add a link in the HTML header
of the Web page, as we have seen in this chapter when we discuss the methods
we can use to publish FOAF documents (see List 7.8).

With all these said, let us take a look at one example of semantic mark up. My
goal is to mark up my own personal home page, www.liyangyu.com, and to do so,
we will follow the steps discussed earlier.

The first step is to choose an ontology for markup. Clearly, my home page is all
about a person, so quite obviously we are going to use FOAF ontology. We might
need other vocabularies down the road, but for now, we will settle down with FOAF
ontology only.

The second step is to create the markup document. With all the examples we
have seen in this chapter, creating this document should not be difficult at all; it is
simply an RDF document that describes me as a resource by using the terms defined
in FOAF ontology.

Again, it is up to us to decide what content in the page should be semantically
marked up. As a starter, List 7.9 shows a possible markup document:

List 7.9 A markup document for my home page

1: <?xml version="1.0" encoding="UTF-8"?>
2: <rdf:RDF
2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
4: xmlns:dc="http://www.purl.org/metadata/dublin-core#"
5: xmlns:foaf="http://xmlns.com/foaf/0.1/">
6:
7: <rdf:Description rdf:about="http://www.liyangyu.com">
8: <rdf:type
8a: rdf:resource="http://xmlns.com/foaf/0.1/Document"/>
9: <dc:title>liyang yu′s home page</dc:title>
10: <dc:creator
10a: rdf:resource="http://www.liyangyu.com/foaf.rdf#liyang"/>
11: </rdf:Description>
12:
13: <rdf:Description
13a: rdf:about="http://www.liyangyu.com/foaf.rdf#liyang">
14:
15: <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
16: <foaf:name>liyang yu</foaf:name>
17: <foaf:title>Dr</foaf:title>
18: <foaf:givenname>liyang</foaf:givenname>
19: <foaf:family_name>yu</foaf:family_name>
20: <foaf:mbox_sha1sum>
20a: 1613a9c3ec8b18271a8fe1f79537a7b08803d896

7.4 Semantic Markup: a Connection Between the Two Worlds 311

20b: </foaf:mbox_sha1sum>
21: <foaf:homepage rdf:resource="http://www.liyangyu.com"/>
22:
23: <foaf:workplaceHomepage
23a: rdf:resource="http://www.delta.com"/>
24: <foaf:topic_interest
24a: rdf:resource="http://dbpedia.org/resource/Semantic_Web"/>
25: <foaf:knows>
26: <foaf:Person>
27: <foaf:mbox rdf:resource="mailto:connie@liyangyu.com"/>
28: <rdfs:seeAlso rdf:resource=
28a: "http://www.liyangyu.com/connie.rdf#connie"/>
29: </foaf:Person>
30: </foaf:knows>
31:
32: </rdf:Description>
33:
34: </rdf:RDF>

As you can tell, this document contains some basic information about myself,
and it also includes a link to a friend I know. With what we have learned in this
chapter, this document should be fairly easy to follow, and not much explanation is
needed.

Now imagine an application that comes across my home page. By reading List
7.9, it will be possible to understand the following facts (not a complete list):

• Resource identified by http://www.liyangyu.com is a foaf:

Document instance, and it has a dc:title whose value is liyang yu′s
home page, and a resourced named http://www.liyangyu.com/foaf.

rdf#liyang has created this document.
• http://www.liyangyu.com/foaf.rdf#liyang is a foaf:Person-type

resource; its foaf:homepage is identified by http://www.liyangyu.com
• http://www.liyangyu.com/foaf.rdf#liyang has these properties

defined: foaf:name, foaf:title, foaf:mbox_sha1sum, etc.
• http://www.liyangyu.com/foaf.rdf#liyang also foaf:knows another

foaf:Person instance, whose foaf:mbox property is given by the value of
connie@liyangyu.com, etc.

Note that Dublin Core vocabulary is used to identify the page title and page
author (lines 9–10), and the URI that represents the concept of the Semantic Web is
also reused (line 24). Again, this URI is coined by the DBpedia project, which will
be discussed in Chap. 10.

Now we are ready for the last step: explicitly indicate the fact that my personal
Web page has been marked up by an RDF file. To do so, we can use the first solution
presented in Sect. 7.3.3. In fact, by now, you should realize the fact that a FOAF
document can be considered as a special markup to a person’s home page, and all I
have done here was simply creating a FOAF document for myself.

312 7 FOAF: Friend of a Friend

There are also tools available to help us mark up a given Web page. For example,
SMORE is one of the projects developed by the researchers and developers in the
University of Maryland at College Park, and you can take a look at their work from
their official Web page:

http://www.mindswap.org/

SMORE allows the user to mark up Web documents without requiring a deep
knowledge about OWL terms and syntax. You can create different instances easily
by using the provided GUI; it is quite intuitive and straightforward. Also, SMORE
lets you visualize your ontology, therefore it can be used as an OWL ontology
validator as well.

We are not going to cover the details about how to use it; you can download it
from the following Web site and experiment with it on your own:

http://www.mindswap.org/2005/SMORE/

If you use it for markup, your final result would be a generated RDF docu-
ment that you can directly use as your markup document. You might want to make
modification if necessary; but generally speaking, it is always a good idea to use a
tool to create your markup file whenever it is possible.

7.4.3 Semantic Markup: Feasibility and Different Approaches

As we have mentioned earlier, the process of marking up a document is the pro-
cess of building the critical link between the current Web and the machine-readable
Web. It is the actual implementation of the so-called adding semantics to the current
Web. However, as you might have realized already, there are lots of unsolved issues
associated with Web page markup.

The first thing you might have noted is that no matter whether we have decided to
mark up a page manually or by using some tools, it seems to be quite a lot of work
just to mark up a simple Web page such as my personal home page. The question
then is, how do we finish all the Web pages on the Web? Given the huge number of
pages on the Web, it is just not practical. Also, it is not trivial at all to implement
the markup process; a page owner has to learn at least something about ontology,
OWL, and RDF among other things. Even all single-page owners agree to mark up
their pages, how do we make sure everyone is sharing ontologies to the maximum
extent without un-necessarily inventing new ones?

These thoughts have triggered the search for the so-called killer application in the
world of the Semantic Web. The idea is that if we could build a killer Semantic Web
application to demonstrate some significant benefit to the world, there will then be
enough motivation for the page owners to mark up their pages. However, without the
link between the current Web and the machine-readable semantics built, the killer
application (whatever it is) simply cannot be created.

At the time of this writing, there is still no final call about this killer applica-
tion yet. However, the good news is, there are at least some solutions to the above

7.4 Semantic Markup: a Connection Between the Two Worlds 313

dilemma, and in the upcoming chapters, we will be able to see examples of these
solutions. For now, let us briefly introduce some of these solutions:

• Manually mark up in a much more limited domain and scope

Semantic markup by the general public on the whole Web seems to be too
challenging to implement, but for a much smaller domain and scope, manual
markup is feasible. For example, for a specific community or organization, their
knowledge domain is much smaller; publishing and sharing a collection of core
ontologies within the community or the organization is quite possible. If a rela-
tively easier way of manually semantic markup is provided, it is then possible to
build Semantic Web application for this specific community or organization.

One successful example along this line is semantic wiki. We will present one
such example in Chap. 9, where we will have a chance to see that manual markup,
within a limited domain and scope, can indeed produce quite impressive results.

• Machine-generated semantic markup

There has been some research in this area, and some automatic markup solutions
have been proposed. However, most of these techniques are applied to technical
texts. For the Web that contains highly heterogeneous text types which are mainly
made up by natural languages, there seems to be no efficient solution yet.

However, some Web content does already provide structured information as
part of the content. Therefore, instead of parsing natural languages to produce
markup files, machine can take advantage of this existing structured information
and generate markup documents based on these structured data.

We will also see one example along this line as well, and it is the popular
DBpedia project. We will learn more details later on, but for now, DBpedia is
completely generated by machine, and the source for these machine-readable
documents all come from the structured information contained in Wikipedia.

• Create a machine-readable Web all on its own

There seems to be one key assumption behind the previous two solutions: there
has to be two formats for one piece of Web content, one for human viewing and
one for machines.

In fact, do we really have to do this at all? If we start to publish machine-
readable data, such as RDF documents, and somehow make all these documents
connect to each other, just like what we have done when creating Web pages,
then we will be creating a Linked Data Web! And since everything on this Linked
Data Web is machine readable, we should be able to develop a lot of interesting
applications as well, without any need to do semantic markup.

This is the idea behind the Linked Data Project, and we will study it as well in
another future chapter.

314 7 FOAF: Friend of a Friend

At this point, we are ready to move on and to study the above three solutions in
detail. The goal is twofold: one, to build more understanding about the Semantic
Web and second, these solutions will be used as hints to you, and hopefully you will
be able to come up and design even better solutions for the idea of the Semantic Web.

7.5 Summary

In this chapter, we have learned FOAF, an example of the Semantic Web in the
domain of social networking.

The first thing we should understand from this chapter is the FOAF ontology
itself. This includes its core terms and how to use these terms to describe people,
their basic information, the things they do, and their relationships to other people.

It is useful to have your own FOAF document created. You should understand
how to create it and how to publish it on the Web and further get into the “circle of
trust.”

Semantic markup is an important concept. Not only you should be able to man-
ually mark up a Web document but also you should understand the following
about it:

• It provides a connection between the current Web and the collection of knowledge
that is machine understandable.

• It is the concrete implementation of so-called “adding semantics to the current
Web”.

• It has several issues regarding whether it is feasible in the real world. However,
different solutions do exist, and these solutions have already given rise to different
applications on the Semantic Web.

Chapter 8
Semantic Markup at Work:
Rich Snippets and SearchMonkey

In last chapter we have studied FOAF project and the concept of semantic markup.
Personal Web sites have made up a large portion of the current Web, and as we have
discussed, FOAF ontology together with semantic markup has changed this large
portion from linked Web documents into the Semantic Web.

The obvious and important difference between these two is the added semantic
markup. However, exactly how the added semantic markup is going to be used by
machine? This key question has not been answered in the last chapter.

In this chapter, we will answer this question by examples. These examples are
real-world applications developed by major players such as Google and Yahoo!.
More specifically, we will cover Rich Snippets by Google and SearchMonkey by
Yahoo!. Once you are done with this chapter, you will gain more understanding
about how semantic markup is done, and how semantic markup can be used by
machines to change our experience on the Web.

8.1 Introduction

8.1.1 Prerequisite: How Does a Search Engine Work?

To understand the rest of this chapter, some knowledge about how search engine
works is necessary. In this section, we will discuss the basic flow of a search engine.
If you are familiar with this already, you can skip this section and move on to
the next.

8.1.1.1 Basic Search Engine Tasks

It is safe to say that the majority of us have the experience of using a search engine,
and probably most of us were also amazed by how fast a search engine can react.
For instance, right after a user enters the keywords and hits the search button, the
results will be returned, and it even tells the user how long it takes to finish the
search (some very tiny fraction of a second). Clearly, it is impossible to search the
Web each time a query is submitted and return the results within such a short period
of time. So what has happened behind the scene?

315L. Yu, A Developer’s Guide to the Semantic Web,
DOI 10.1007/978-3-642-15970-1_8, C© Springer-Verlag Berlin Heidelberg 2011

316 8 Semantic Markup at Work: Rich Snippets and SearchMonkey

The truth is, instead of searching the Web on the fly, every time when a user
query is submitted, a search engine queries a highly optimized database of Web
pages. In addition, this database is created ahead of the time, by something called
crawler (or spider), i.e., a piece of software that is capable of traversing the Web by
downloading Web pages and following links from page to page. The final result is a
database that holds the Web is created.

There are many search engines available on the market, and you are probably
familiar with at least one of these engines: Google, Yahoo!, Bing, MSN Search, etc.
There are differences in the ways these search engines work, but the following three
basic tasks are all the same:

• They search the Web or selected pieces of the Web based on important words.
• They maintain an index of the words they find and where they find them.
• They allow users to look for words or combinations of words found in the index

databases.

The most important measure for a search engine is its search performance and
the quality of the search results. The ability to crawl and index the Web efficiently
and effectively is also important for a search engine. The main goal is to provide
quality results, given the rapid grow of the current Web.

8.1.1.2 Basic Search Engine Workflow

A search engine’s workflow can be summarized by three words: crawling, indexing,
and searching. To understand how a search engine works, we need to understand the
action behind these three words.

• Crawling

A search engine’s life starts from crawling. Clearly, before a search engine can
tell us anything at all, it must know where everything is in advance. A crawler is
used for this purpose. More specifically, a URL server sends a list of URLs to the
crawler for it to visit. This list of URLs is viewed as the seed URLs – the URLs
that we want the crawler to start with. For each URL, the crawler downloads the
Web document on this URL and finds all the hypertext links on that page that
point to other Web pages. It then picks one of these new links and follows that
link to download a new page, and finds more links on the new page, so on and so
forth, until it decides to stop or there is no more links to follow. As a summary,
the following are the main tasks of a given crawler:

1. download the Web page;
2. parse through the downloaded page and retrieve all its links;
3. for each new link retrieved, repeat steps 1 and 2.

Note that in real life, a search engine normally has a number of crawlers that
work simultaneously to make a more efficient visit on the Web. And certainly,
the URL server is responsible for providing URL lists to all these crawlers.

8.1 Introduction 317

• Indexing

What about the Web documents downloaded by the crawlers? The crawlers only
extract the URL links on the pages and further download the documents; they do
not conduct any processing work on these documents. Instead, the downloaded
Web pages are sent to the Store server, which compresses and stores the pages
into a repository. To use the information in the repository, the second part of
a search engine’s life starts: indexing process uses everything there is in the
repository and prepares the quick responses a user sees when using the search
engine.

More specifically, indexer, together with sorter, creates the database files we
have mentioned earlier. The indexer performs several tasks. It fetches a document
from the repository, decompresses it, and breaks it into a set of words. For each
word, it creates a record that describes it. This record has quite a lot information,
including the word itself, the document in which the word is found, the position
of the word in the document, etc. The indexer then distributes these records into
a set of barrels, creating a partially sorted forward index system.

The indexer has yet another important task: for each Web page, it again extracts
all the links in this page and stores important information about these links. For
example, for each link, this includes where this link points to, and the related text
of the link. This information is aggregated into a file called anchors.

One of the main purposes of the anchors file is to provide information to com-
pute the rank of each page. Clearly, if the word or words being queried has or have
occurred in multiple pages, then in which order should these pages be returned to
the user? Obviously, this has a vital influence on the quality of the search result.
Intuitively, the page on the top of the returned list should be the most relevant
page to the user.

It is certainly true that each search engine applies its own ranking algo-
rithm to solve this problem (for example, the famous PageRanking method from
Google), and the details of these algorithms are not known to the general pub-
lic. Again, using Google as the example, a URL Resolver reads the anchors file
and generates a links file, which is used solely to compute page ranks for all the
documents.

• Searching

At this point, a search engine is ready for user’s query. This is the most exciting
part of a search engine’s life and it is also the part that we, as users, can directly
interact with. The basic workflow is quite intuitive: a searcher accepts the user’s
query, analyzes the query, and uses the barrels and page ranking algorithms to
return the search results to the user.

This basic workflow of a search engine can be summarized as shown in Fig. 8.1.
Note that this workflow description is based on Google’s search engine model, and
to make it more understandable, only the major components are mentioned. If you
want to know more details, the best source will be the classic paper by Brin and
Page (1998).

318 8 Semantic Markup at Work: Rich Snippets and SearchMonkey

Fig. 8.1 A simplified search engine system architecture (based on Brin and Page 1998)

8.1.2 Rich Snippets and SearchMonkey

A search engine user’s direct experience with any search engine comes from the
search result page. This not only includes how relevant the results are to the original
query but also includes the search result presentation. As far as the search result
presentation is concerned, the goal is to summarize and describe each individual
result page in such a way that it can give the user a clear indication of how relevant
this current page is to the original search.

Based on our understanding about how a search engine works, improving the
quality of search result presentation is not an easy task. In general, automatically
generated abstract for a given page often provides a poor overview of the page.
More specifically, when search engine indexes the words contained in a page, it nor-
mally picks up the text contained in the immediate area where the query keywords
are found and returns this text as the page summary. This obviously is not a reliable
way to describe an individual page. On top of this, any tables or imagines have to be
removed from the page summary, since there are no reliable algorithms to automat-
ically recognize and select the appropriate images and tables. The final result is that
the page summaries on the search result page are not much a help to the end users.

8.2 Rich Snippets by Google 319

Rich Snippets developed by Google and SearchMonkey developed by Yahoo! are
improvements along this line. They both use the added semantic markup informa-
tion contained in each individual page to improve search result display, with benefits
to both search users and publishers of Web documents. As you will see when you
finish this chapter, these are quite simple and elegant ideas. They do not require
much from the publishers of the Web contents, yet they do produce quite impressive
results.

To better understand this chapter, you do need some basic understanding about
microformats and RDFa. You can find related materials in Chap. 3.

8.2 Rich Snippets by Google

8.2.1 What Is Rich Snippets: An Example

For a submitted user query, Google returns the search result in the form of a col-
lection of pages. In order to help the user to locate the result quickly and easily, for
each page in this collection, Google shows a small sample of the page content. This
small sample is called a page snippet.

Google introduced the so-called Rich Snippets to the world on 12 May 2009.
This is a new presentation of the snippets that applies the related Semantic Web
technology as we will see in the next section. For now, let us take a look at one such
example: if you search for “Drooling Dog Bar” using Google, you will get the result
as shown in Fig. 8.2.

As you can tell, Rich Snippets in Fig. 8.2 gives a user more convenient summary
information about the search results at a glance. More specifically in this case, the
review rating and the price range are clearly shown, which are the most important
information a user needs when deciding which restaurant to go. You can try the same
search using MSN, for example. At the time of this writing, the same restaurant does
show up, but without the rating and price range information.

At this point, Google uses Rich Snippets to support the search for reviews and
people. More specifically, when a user searches for a product or a service, review
and rating information will be shown in the Rich Snippets. Similarly, when a user
searches for people, Rich Snippets will be used to help the user to distinguish
between people with the same name.

How are Rich Snippets related to the Semantic Web? And how does Google
gather the information to create Rich Snippets? Let us answer these questions in the
next section.

8.2.2 How Does It Work: Semantic Markup Using
Microformats/RDFa

8.2.2.1 Rich Snippets Powered by Semantic Markup

The idea behind Rich Snippets is quite straightforward: it is created by using the
structured data embedded in Web pages, and the structured data are added by Web
page authors like you and me.

320 8 Semantic Markup at Work: Rich Snippets and SearchMonkey

Fig. 8.2 Rich Snippets example when searching for “Drooling Dog Bar”

More specifically, the crawler still works as usual, i.e., traveling from page to
page and downloading the page content along its way. However, the indexer’s work
has changed quite a bit: when indexing a given page, it also looks for the markup
formats Google supports. Once some embedded markups are found, they will be
collected and will be used to generate the Rich Snippets.

To generate the Rich Snippets, Google also has to decide a presentation format
that will be helpful to its users. For example, what information should be shown in
the snippets? and in what order should this information be shown?

What Google has is the collected markups. Google does not tell the outside world
the final format it uses to store these markups. For example, these collected markups
can be expressed in RDF statements or some other format that Google has invented
and used internally. However, no matter what the format is, these structured data can
always be expressed in the form of name–value pairs.

Obviously, these name–value pairs are ultimately created by millions of Web
page authors all over the world. Therefore, there could be very little consistency
exhibited by these pairs. For example, some of these pairs are reviews of products,
some are about people, some are about a trip to Shanghai, and some are about a

8.2 Rich Snippets by Google 321

tennis match, just to name a few. Therefore, if all these pairs were to be considered,
it would be very difficult to find a uniform way to present the information, i.e.,
generate the Rich Snippets.

In general, two solutions can be considered to solve this problem:

1. The first solution is to limit the types of markups a user can add, therefore the
variety of the name–value pairs are limited. The final result is a uniform and
consistent snippet can be created automatically by the search engine.

2. The second solution is to allow a user to markup anything he/she would like
to. However, he/she also has to tell the search engine how to use the embedded
structure data to generate a presentation.

These two are obviously quite different solutions. Google has used the first
solution, and Yahoo!, as we will see, has adopted the second solution.

To use the first solution, Google has added the following limitations to the
semantic markup one can add on a given content page:

• Google accepts and uses only markup data for review Web sites and people/social
networking Web sites.

• When providing review or people information, certain data are required in order
to automatically generate a Rich Snippet. For example, a review markup without
a reviewer or a rating count will not be enough to generate a presentation. Finally,

• At this point, Google supports two markup formats: microformats and RDFa.

In fact, even for microformats and RDFa, there are still limitations: as we will
see in the next two sections, only a certain microformats are supported and when
using RDFa, the supported ontologies are also limited.

The benefit of this limitation, as we have discussed, is that a user only has to add
the markup information and does not have to do anything regarding the presentation
at all.

8.2.2.2 Microformats Supported by Rich Snippets

Google currently supports markup information on review and people/social net-
working sites. To mark up a review site, a user can choose individual review markup
or aggregate review markup. An individual review markup is a single review about
a product or a local business, and an aggregate review is an average rating or the
total number of user reviews submitted.

To facilitate the use of microformats for review sites, Google accepts a collection
of properties derived from the hReview microformat for individual reviews and the
hReview-aggregate microformat for aggregate review properties.

For markup on people/social networking sites, Google recognizes a group of
properties derived from the hCard microformat and some properties taken from the
XFN microformat.

322 8 Semantic Markup at Work: Rich Snippets and SearchMonkey

To see all these supported properties for both review and people sites, you can
always check Google’s documentation for Rich Snippets.1 Note that by the time you
are reading this book, it is likely that more and more microformats will be supported
by Google already.

8.2.2.3 Ontologies Supported by Rich Snippets

Besides the choice of using microformats for marking up the pages, a user can
choose to use RDFa to do the same markup. The same properties derived from the
hReview microformat, hReview-aggregate microformat, hCard microformat,
and the XFN microformat can be used in RDFa mark up.

In addition, Google supports the use of FOAF ontology and vCard2 ontology
when it comes to RDFa markup. For more details and updates, always check back
to the Rich Snippets documentation Google provides.

8.2.3 Test It Out Yourself

When it comes to actually using microformats or RDFa to mark up the page and
hoping Google will show the enhanced presentation, it is the page author’s respon-
sibility to make sure Google can understand the added markup. To help this process,
Google provides a Rich Snippets Testing Tool3 for us to use. Fig. 8.3 shows the
screen of this testing tool.

To use this tool, you need to first mark up your page, then enter the URL of
the page. Clicking the Preview button will show a section called “Extracted Rich
Snippet data from the page.” In this section, you can see if Google’s parser can
extract the markup information you have entered. Once you have confirmed the
marked up content can be extracted successfully by Google, you can sign up by
filling the Interested in Rich Snippets form. Rich Snippets from new sites will be
enabled by Google automatically from this list over time.

Note that it is possible even after all the above steps that the Rich Snippet for your
site may still not show up in a search result page. We will not discuss the details
here, since our goal is not to provide a tutorial on using Google’s Rich Snippets
but to understand it as an example of the Semantic Web. If you are interested in
using Rich Snippets, you can always find more details from Google’s Rich Snippets
documentation page.

8.3 SearchMonkey from Yahoo!

SearchMonkey is Yahoo!’s version of Rich Snippets. In other words, similar to Rich
Snippets, SearchMonkey also uses the semantic markups added by the page authors
to enhance the search engine results page.

1http://www.google.com/support/webmasters/bin/topic.py?hl=en&topic=21997
2http://www.w3.org/2006/vcard/ns#
3http://www.google.com/webmasters/tools/richsnippets

8.3 SearchMonkey from Yahoo! 323

Fig. 8.3 Rich Snippets testing tool provided by Google

The difference between SearchMonkey and Rich Snippets is how to generate
the enhanced presentation based on the embedded markup. As discussed in Sect.
8.2.2.1, there are two solutions. Google uses the first solution and SearchMonkey
has adopted the second solution.

Therefore, SearchMonkey provides the flexibility of allowing any microformats
and any ontologies in the markups; however it has the complexity of creating the
presentation by the users themselves. SearchMonkey can actually be viewed as a
framework that leverages the added semantic markup (in the form of microformats,
RDFa, and eRDF) to enhance the search engine results page.

8.3.1 What Is SearchMonkey: An Example

Yahoo! announced SearchMonkey in May 2008 (about a year before Google intro-
duced its Rich Snippets). Let us take a look at one example of SearchMonkey at
work.

Open up Yahoo! search page, and type “Thai Tom University District Seattle,
WA” as the query string, and you will see the enhanced search result as shown in
Fig. 8.4.

As you can tell, for this particular search for a Thai restaurant, the enhanced
search result is not much different from what we have seen in Google’s Rich

324 8 Semantic Markup at Work: Rich Snippets and SearchMonkey

Fig. 8.4 Example of Yahoo!’s SearchMonkey application

Snippets (Fig. 8.2). However, what has happened inside Yahoo! search engine is
more complex. Let us study this in the next sections.

8.3.2 How Does It Work: Semantic Markup Using
Microformats/RDFa

First off, understand that SearchMonkey works in three ways to change its search
engine results page:

• Site owners/publishers use structured data to mark up their content pages.
• Site owners/developers or third-party developers build SearchMonkey applica-

tions.
• Yahoo! search engine users add SearchMonkey applications to their search pro-

files on an opt-in basis, and once they start to use SearchMonkey, they can
customize their search experience with Enhanced Results or Infobars.

All these will become clear when you finish this section. In addition, you can
also check out Yahoo! SearchMonkey’s official Web site4 along with your reading
to get more details that are not covered here.

4http://developer.yahoo.com/searchmonkey/

8.3 SearchMonkey from Yahoo! 325

8.3.2.1 SearchMonkey Architecture

This section presents the high-level architecture of SearchMonkey, and understand-
ing this architecture will help us understand its basic flow, and eventually, how it
works. Fig. 8.5 gives the overall structure of a SearchMonkey application.

Fig. 8.5 Structure of a SearchMonkey application

Everything starts from the moment when a site owner decides to add some
semantic markup to the content pages contained in his/her site. For Yahoo!’s
SearchMonkey, these semantic data can be expressed by microformats and RDFa,
and most of the markup data will be added manually by the site owners.

Once this is done, it is up to Yahoo! Search Crawler to pick up the added
structured data. Yahoo! Search Crawler, also known as Yahoo! Slurp, is capable of
recognizing the embedded semantic data. At the time of this writing, Yahoo! Slurp
can process embedded RDFa and microformats data.

For example, when it hits a page and sees the RDFa markup, it will automatically
extract any valid RDFa data it finds. It will then transform this extracted RDFa
statements into a chunk of data expressed in DataRSS format. Note that DataRSS
is a special XML language used by Yahoo! to normalize between all the different
types of structured data Yahoo! Slurp might have found from a page. At this point,
the structured data can come from RDFa, eRDF, and a verity of microformats. Later
on, this layer could be expanded to include more possibilities.

Note that any chunk of DataRSS is related to a given URL, identifying the page
where the original semantic data is found. Also, Yahoo! caches this information on
the server side, so retrieving this information is relatively fast. As with the con-
ventional Yahoo! index, extracted semantic data refreshes whenever the page gets

326 8 Semantic Markup at Work: Rich Snippets and SearchMonkey

crawled; therefore it is always possible to see a gap between what you have added
on the page and what Yahoo! has gathered.

What we have just discussed corresponds to the box marked as “1” in Fig. 8.5.
In some cases, however, instead of adding markups and waiting for Yahoo! Slurp to
pick up the added semantic data, a site owner can directly submit a feed of native
DataRSS to Yahoo!. Similar to the data gathered by Yahoo! Slurp, this submitted
chunk of DataRSS is also indexed and cached by Yahoo! on the server side to
improve performance.

Obviously, direct data feeds offer another excellent choice to provide rich infor-
mation about a site, particularly if the site owner cannot currently afford to redesign
the whole site to include embedded microformats or RDFa. This component maps
to the box marked as “2” in Fig. 8.5.

It is important to understand that in SearchMonkey, any semantic data extracted
from an (X)HTML page are finally presented within SearchMonkey as DataRSS
data chunks. Besides the above two methods to get the structured data into DataRSS,
it is also possible to build the so-called XSLT Custom Data Service to accomplish the
same (marked as “3” in Fig. 8.5). More specifically, there are two types of custom
data services: Page custom data service and Web Service custom data service. Page
custom data service refers to getting structured data from the pages within a given
Web site, and Web Service custom data service refers to extracting data from Web
services which you may or may not provide.

One of the reasons why Page custom data service is useful can be the fact that the
semantic markup used on the particular page is not currently supported by Yahoo!
SearchMonkey; therefore it will not be understood and collected by SearchMonkey
either.

For example, SearchMonkey understands microformats, RDFa, and eRDF at this
point. If a new format is used or if a site owner simply invents his/her own standard,
the site owner has to write a Page custom data service to extract the structured data
and change it into DataRSS format.

Another less obvious case where Page custom data service can be useful happens
when someone is not the owner of a given site. If this is the case, to make sure the
structured data contained in that site participate in SearchMonkey, Page custom data
service has to be used to extract data from that site. Certainly, if the site already
exposes semantic markup that can be understood by SearchMonkey or if it provides
a native DataRSS feed already, there will be no need for Page custom data service.

Compared to Page custom data service, the reason why Web Service custom
data service is needed is quite obvious: it is useful when the structured data are not
contained in a page but returned by a Web service call. In this case, a custom data
service is created to call the Web service and the returned data are transformed into
DataRSS data format and submitted to SearchMonkey.

Note that custom data services (including both Page and Web services) are
defined and created within SearchMonkey framework itself. This is in fact a cen-
tral piece of the SearchMonkey experience: a developer or a site owner can use an

8.3 SearchMonkey from Yahoo! 327

online tool5 provided by SearchMonkey to define and create the data services they
need. Since the goal of this chapter is not to provide a tutorial about how to define
and create custom data service, we will leave this for you to explore.

At this point, we have described how distributed semantic markup information
gets into SearchMonkey’s DataRSS. The next thing is to make use of the available
data to make the search result page look more appealing to the users. To accomplish
this, developer’s work is needed.

Recall in Google’s Rich Snippets solution, developers do not have to do any-
thing at this step. Since it only supports limited content markup (both the content
and the markup languages), Google is able to automatically generate the final
presentation.

In SearchMonkey, this step is called Creating Presentation Applications. A pre-
sentation application is a small PHP application that defines how Yahoo! search
engine should display the search results. More specifically, any presentation appli-
cation is based on a given presentation template, and there are two basic presentation
templates: Enhanced Result and Infobar. The example shown in Fig. 8.4 is the look
and feel of an Enhanced Result template, and obviously, it is similar to Google’s
Rich Snippets. An Infobar, by contrast, is quite different from Enhanced Result. It
is an expandable pane beneath a search result that provides additional information
about the result.

The difference between Enhanced Result and Infobar is shown by how search
users react to them. An Enhanced Result will give a user more information about
the search result page, and he/she can use the additional information to determine
the relevance of the page. Note that no user action is needed here when this decision
is made. When a user views an Infobar, the user has already decided the relevance
of the page, and he/she is using the Infobar to look for more information. And obvi-
ously, action is needed here: a user has to expand the Infobar to access the additional
information.

Therefore, Enhance Result presentation format is limited to a specific set of pre-
sentation elements, and these elements are also arranged in a particular format. More
specifically,

• Title (a string specifying the search page’s title);
• Summary (a string specifying the search page’s summary);
• Image (a thumbnail image that represents the search result);
• Link (an HTML link that either provides more information about the search result

or indicates some action that a user can take);
• Dict (a key–value pair that displays structured information about the item in

the search result, such as review ratings, technical specifications, and hours of
operations).

5http://developer.search.yahoo.com/wizard/data/basic

328 8 Semantic Markup at Work: Rich Snippets and SearchMonkey

In real development work, which template to use is the choice of the developer
together with the site owner. Again, Enhanced Result is more uniform, but it is
more limited as well. Infobar is quite flexible but does require more action from the
users.

Once a developer has decided which template to use for building the presentation,
he/she can start to code the application itself, which will be later on used by Yahoo!
search engine to display the structured information contained in DataRSS.

To make this easier, SearchMonkey provides another online tool6 to guide a
developer to finish this step by step. Yahoo!’s SearchMonkey online document7

has detailed tutorial about how to accomplish this; we will not cover them here.
However, to make the picture complete, here are some key points about creating a
presentation application:

• The developer will specify which template to use, i.e. Enhanced Result or Infobar.
• The developer will have to use PHP code to build the application.
• The developer will connect the presentation layer to the correct data feed. For

example, if he/she has created custom data services in previous steps, this will be
the point where the connection is made.

• The developer will specify a trigger URL, i.e., a URL pattern to match against
Yahoo! Search results and once a match is found, this application will be
triggered.

At this point, the basics of building the presentation application are covered. In
Fig. 8.5, this process is marked as “4.”

Once the presentation application is finished, the last step is to publish the appli-
cation so that the search users can benefit from it. This is a relatively simple step
as shown in Fig. 8.5 (marked as “5”). More specifically, the presentation applica-
tion confirmation screen contained in SearchMonkey’s online development tool will
offer the developer a choice to make the application sharable. To make the applica-
tion sharable, the developer will require a button (also called a “badge”) that he/she
can use to promote the application; this badge can also be used to help spread the
application virally.

Another choice available to the developer is to submit the application to Search
Gallery, where a collection of applications are featured and search users can visit at
any time to select from them.

The last component in SearchMonkey’s architecture is the end user. For a search
user to enjoy the enhanced search result, he/she has two choices. First, by clicking
a badge that represents an application already built, a search user will be taken to
his/her search preference screen, where he/she may choose to add that application.
The second choice is that the search user can also visit the Search Gallery to select
application from the collection. Either way, the user’s search profile will be updated,

6http://developer.search.yahoo.com/wizard/pres/basic
7http://developer.yahoo.com/searchmonkey/smguide/index.html

8.3 SearchMonkey from Yahoo! 329

as shown in Fig. 8.5 (marked as “6”). Next time, when the user searches the Web, if
one of the returned URL matches the triggering pattern, SearchMonkey will fire up
the presentation application, and the user will see a much better result screen.

As a summary, Yahoo! search engine users add SearchMonkey applications to
their search profiles on an opt-in basis, and once they start to use SearchMonkey,
they can customize their search experience with Enhanced Results or Infobars.

At this point, we have finished description of SearchMonkey’s overall architec-
ture, and meanwhile, we have obtained a good understanding about how it works.
The final takeaway can be summarized as this: SearchMonkey is a framework for
creating applications that enhance Yahoo! search results, and it is made possible by
the added semantic markup.

8.3.2.2 Microformats Supported by SearchMonkey

Based on our understanding about SearchMonkey, it is obvious that theoretically,
SearchMonkey can support any microformat. However, for the purpose of creating
the presentation, only the following microformats are supported:

• hCard

• hCalendar

• hReview

• hFeed

• XFN

If you decide to use other microformats, you will likely have to create custom
data service(s) as we have discussed earlier. In addition, you will have to create
your own presentation as well, instead of using the default ones provided by Yahoo!
Search.

8.3.2.3 Ontologies Supported by SearchMonkey

Any ontology created by using RDFS and OWL can be used in SearchMonkey. But
when you choose to use your own custom-made ontology, note that you will likely
have to write custom data service(s) so that the markup information can be collected.
Also, you will have to create presentation application instead of using default ones.

Finally, note that even when you use RDFa with ontologies, no validation will be
performed and no reasoning is conducted either.

8.3.3 Test It Out Yourself

Obviously, SearchMonkey is more complex than Google’s Rich Snippets.
Fortunately however, there is a way for you to quickly try it out with minimal
explanation and learning curve to cover. Yahoo! SearchMonkey has provided a

330 8 Semantic Markup at Work: Rich Snippets and SearchMonkey

Developer Quick Start tutorial for you to construct a Hello World SearchMonkey
application, and you can access the whole tutorial from the following URL:

http://developer.yahoo.com/searchmonkey/smguide/quickstart.html

Follow the instructions in this tutorial, you should be able to build a quick
understanding about SearchMonkey.

8.4 Summary

We have discussed Google’s Rich Snippets and Yahoo!’s SearchMonkey in this
chapter as two Semantic Web application examples. These are important applica-
tions not only because they give you a chance to see how to put what you have
learned together to make real Semantic Web applications but also because of the
fact that they could be a turning point for the Semantic Web: for the first time,
there are example applications from major players such as Google and Yahoo!, and
more importantly, they could create some economic motivations for more semantic
markup to come.

Finally, here are the main points you should have learned from this chapter:

• Microformats and RDFa can be used to add semantic markups to Web documents,
and the semantic markups are added manually, by site owners or developers.

• Yahoo!’s SearchMonkey and Google’s Rich Snippets are applications which take
advantage of the added markup information.

• It is therefore indeed possible to create large-scale applications based on manu-
ally created markup information.

Reference

Brin S, Page L (1998) The anatomy of a large-scale hypertextual Web Search Engine. Computer
Networks and ISDN Systems, 30(1–7):107–117

Chapter 9
Semantic Wiki

In Chap. 7, we have discussed the topic about semantic markup. As we have con-
cluded, semantic markup by the general public on the whole Web seems to be too
challenging to implement. However, for a much smaller domain and scope, seman-
tic markup is feasible, largely due to the fact that publishing and sharing a collection
of core ontologies within this smaller domain is much more easier.

This chapter will provide one such example so that you can get a detailed
understanding about when and where manually semantic markup can be a useful
solution.

More specially, we will concentrate on semantic wiki, one successful application
based on manual semantic markup. In this chapter, we will first study the limitations
of wiki sites, we will then see how the Semantic Web technology can be used to
change the way we use wiki sites.

To accomplish this, we will present semantic wiki engines in detail, includ-
ing an enhanced markup language called wikitext, which includes constructs to
implement semantic markup that ordinary user can understand and use. We will
also discuss a new query language for using the semantic wiki. Not only you will
see the power of manually semantic markup but also you will find the material
in this chapter valuable if you want to set up and use a semantic wiki site from
scratch.

9.1 Introduction: From Wiki to Semantic Wiki

9.1.1 What Is a Wiki?

In fact, since there are so many writings about wiki out there already, let us not
try to describe wiki again. If you are interested in the first wiki developed by Ward
Cunningham, or you are interested in the history of wiki, you can easily find your
answers on the Web – perhaps at one of those wiki sites – such as Wikipedia, for
example.

And once you have used Wikipedia, you know what a wiki is already. In general,
the following is what you need to know about wiki:

331L. Yu, A Developer’s Guide to the Semantic Web,
DOI 10.1007/978-3-642-15970-1_9, C© Springer-Verlag Berlin Heidelberg 2011

332 9 Semantic Wiki

• A wiki is a Web application that manages a collection of Web pages, where any-
one can create new pages and edit existing pages by using a simplified markup
language.

• A wiki engine is a software system that powers the wiki site and makes it work.

In recent years, wikis have become popular environments for collaboration on the
Web. For some organizations, wiki sites are acting as the primary tools for content
management and knowledge sharing. For example, in some areas, business exec-
utives, project managers, and frontline employees have already started to look at
how internal wikis can help them to be more efficient, and at same time promote
collaboration, making it easy for users to find and use information about business
processes, company policies, and more.

What makes wiki sites so attractive? The following is a list about why wiki is so
good to use:

• Creating a new page is simple

To create new page, you can use the browser address bar to enter an URL to a new
page (better yet, you can edit the page name part of an URL for an existing page).
This newly created URL will take you to the default no article message page,
where you will find the usual Edit this page link, which can then be used to
create new page.

It is also possible to start a new page by following a link to the new page, and
you can then start your editing right away. Links to non-existing pages are quite
common in wiki sites, and they are typically created as a placeholder for new
content. In fact, this is also one effective way to invite everyone to participate in
the wiki as well.

• Editing a page is easy

To edit a wiki page, we don’t need to know or remember HTML at all, we only
need to a learn a few simple markup rules, i.e., wikitext. Wiki engine will produce
HTML code for us. This is one and the vital piece that makes wiki a success, since
it allows non-technical people to publish their ideas with much ease.

• Changing a page is easy

Each wiki page has an Edit link. Anyone can click the link and change the
content by editing it. The change will show up once the user submits it by one
button click. This very idea of involving every mind in the community is also
critical to wiki’s success.

• Linking to others is easy

The fact that wiki pages are all inter-linked has provided tremendous benefit to
its users. And creating the link is also quite simple. In fact, a wiki engine stores
all the pages in an internal hypertext database; it therefore knows about every
page you have and every link you make. You don’t have to worry about the real
location of files, simply name the page, and wiki engine will automatically create
a link for you.

9.1 Introduction: From Wiki to Semantic Wiki 333

Besides the above, there are many other attractive features offered by wiki. For
example, wiki keeps a document history, so we can always recover from a mistake,
or roll back to any previous version of a given page. Also, wiki allows us to identify
the exact changes that have been made to a page over time. In general, wiki’s success
comes from the fact that it is an open format where anyone can post new articles and
change existing articles.

However, as everything else on earth, pros and cons always go hand-in-hand.
Despite their success stories, wikis do have some limitations, and it is the limitations
that lead to the idea of semantic wiki, which we will introduce in the next section.

9.1.2 From Wiki to Semantic Wiki

Here is a list of wiki’s limitations.

• Knowledge discovery

This is perhaps the most visible problem for wiki sites. Today, using a given wiki
site primarily means reading articles in the site. For example, in Wikipedia, there
is no way to request a list of cities with each city having at least 100 years of his-
tory, a female mayor, and also being the place for Olympic games, even though
the information is indeed contained in a number of pages in the wiki. This infor-
mation has to be obtained through human reading. For a wiki that has thousands
of pages, reading through pages is time consuming at least. Yet ironically, this
problem could potentially defeat the main goal of building a wiki site: to share
knowledge and to make knowledge discovery easier.

Wiki engine does provide a full text search for its users. However, full text
search inevitably suffers from the ambiguity of natural language. As a result, it
normally produces a list where most of the pages in the list are irrelevant; users
still have to sift through the returned pages to look for the information they need,
if they are patient enough to do so.

Based on what we have learned so far, we understand the root of this prob-
lem. The required information is there in the wiki pages, yet its meaning remains
unclear to the wiki engine. The reason is because it is not presented and stored in
a machine-readable way, but only accessible to human eyes.

To solve this problem once and for all, we need to follow the idea that is
promoted by the Semantic Web technology: add semantics into the wiki pages
so that the information on these pages will be structured enough for machine to
process. Once this is done, knowledge discovery will be easier for the wiki users.

• Knowledge reuse

This is closely related to the above problem. Even though many wiki sites are
designed and created with the idea of knowledge reuse in mind, it is almost
always true that the reuse goal is not accomplished. Again, given the fact that wiki
page can be read only by human beings, automatic knowledge reuse is simply not
possible.

334 9 Semantic Wiki

• Knowledge consistency

One of wiki’s main attractive features is its openness: everyone can publish any
content and change any content in a given wiki site, in a distributed fashion.
However, this also means the fact that the same concept can appear in multiple
pages and can be expressed by using different terms. This not only gives con-
fusion to the wiki users but also poses another difficulty to the full text search
functionality. If a user searches the wiki by using a keyword term, a highly rele-
vant page will not show up in the retrieved list simply because it uses the “wrong”
term.

With all these said, and with what we have learned so far from this book, the
solution should be clear: adding formal semantics into wiki pages so that machine
can understand these pages. This not only solves the knowledge discovery and reuse
issues but also promotes information consistency among the pages.

Adding semantics to the wiki pages turns out to be only the tip of an iceberg; the
wiki engine itself has to be enhanced so that it knows how to take advantage of the
structured information contained in the page. This further leads to an inside-and-out
change of a wiki engine, therefore giving rise to a new breed of wiki site: semantic
wiki.

Formally speaking, semantic wiki can be defined as a wiki site powered by a
semantic wiki engine; it enables users to add semantic markup to wiki pages, and
the added structured information can then be used for better searching, browsing,
and exchanging of information.

In this chapter, we will cover the following topics in detail:

• How to add semantic information to a wiki page?
• How the added semantic information helps us when it comes to using the wiki?
• What has happened behind the scene? Why the added semantics is so

powerful?

To make our discussion easier, we need to have a running example of semantic
wiki engine. As you might have guessed, instead of creating a semantic wiki engine
from the scratch, most of today’s semantic wiki engines are built by making some
extensions to some traditional wiki engines.

Semantic MediaWiki is a semantic wiki engine built on top of MediaWiki engine.
It was originally developed by AIFB,1 a research institute at the University of
Karlsruhe, Germany. Over the years, it has been under constant improvement by
developers around the world. Since it is a free extension of MediaWiki, it is widely
available, and by using it, you can easily build your own semantic wiki sites.

The reason why MediaWiki is taken as the source for Semantic MediaWiki is
largely due to its popularity. In particular, it is the wiki engine that powers many
of the most popular wikis in the world, including Wikipedia, the largest wiki site
online.

1AIFB, in English, is Applied Informatics and Formal Description Methods.

9.2 Adding Semantics to Wiki Site 335

Above being said, throughout this chapter, we are going to use Semantic
MediaWiki as the example semantic wiki engine. The semantic features we are
going to discuss are therefore all provided by Semantic MediaWiki. It is certainly
true that other implementation of semantic wiki engine may offer different features.
However, most of these features do share great similarity, therefore the discussion
in this chapter should be general enough for you to understand other semantic wiki
engines.

To know more about Semantic MediaWiki, you can visit pages:

http://semanticweb.org/wiki/Semantic_MediaWiki

and

http://semantic-mediawiki.org/wiki/Semantic_MediaWiki

Both these pages will provide abundant information for you to understand more
about Semantic MediaWiki itself. Bear in mind, the underlying wiki engine is the
software that makes use of the added semantic markup data, and it has been built
already for us to use. The real interesting pieces, for example, how the pages are
marked up and how the added semantic data can help us to use the wiki better, are
the main topics of this chapter.

Note that you do have to have some understanding about non-semantic wiki. If
you know nothing about wiki at this point, take some time to understand it; that will
help you to understand the material presented in this chapter.

9.2 Adding Semantics to Wiki Site

This section will discuss the first key issue: semantic annotations on a given
wiki page.

First off, understand that in the context of wiki, any given wiki document has
two elements, namely hyperlink and text. Therefore, semantic annotation in wiki
means to annotate any link or text on the page so as to describe the meaning of the
hyperlink or the text. The result is that the added annotation turns links and text into
explicit property–value pairs with the page being the subject.

Second, besides the properties on links and text, category system can be viewed
as an existing semantic component. The reason being that it does add structural
information to the wiki documents, and it is also used in semantic wiki’s RDF/OWL
exported files. Therefore, to have a complete picture about semantic components in
a semantic wiki engine, we will start with category system.

Third, keep the following questions in mind when you read this section:

• What is the syntax of semantic annotation in wiki? Is it quite different from the
original wikitext?

• What are the terms (property names) we can use when marking up a page? Who
is responsible for creating these terms?

• Are there any ontologies we can use when adding semantics to the pages?

336 9 Semantic Wiki

These will help you to understand the idea of adding semantics much quicker
and easier.

9.2.1 Namespace and Category System

Category system is an existing semantic component in MediaWiki and will be the
main topic of this section. To understand the category system, we need to understand
the concept of namespace first.

In MediaWiki, a page title always looks like

namespace:title

For example,

Help:Starting_a_new_page

is the title of a help page which provides information on how to start a new
page. This title string tells us that this page is in Help namespace, and its title is
Starting_a_new_page.

Note that the namespace portion of a page title is optional, and if the title string
of a given page does not have the namespace prefix, it will be simply a title without
the colon. For example, the Goings-on page, which reports recent goings-on of the
wiki community, has a page title that looks like this:

Goings-on

In this case, this page is by default in main namespace.
By default, a wiki powered by MediaWiki will have 18 namespaces, and they are

as follows:

• main namespace, which is also the default namespace if a given page title does
not have any prefix;

• 15 additional namespaces, each having a specific prefix; and
• 2 pseudo-namespaces.

The main reason of having the namespace system is to better structure the content
for a given wiki project. The following is to name a few benefits:

• Namespace system can be used to separate the main content from the rest.

This separation will make the wiki management become easier. For example,
main namespace (and a few others) will form a core set that is open for pub-
lic, allowing users to view and edit them frequently. Meanwhile, this core set
is actively policed by the wiki community; any inappropriate content will be
quickly removed. The policing rules for other namespaces are generally more
relaxed.

9.2 Adding Semantics to Wiki Site 337

Another example would be the search function. For instance, for most wiki
engines, searching can be limited to any subset of namespaces, which will be
helpful to users.

• Namespace system can be used to group the content about the same subject and
to form a set of relatively unrelated content items.

For example, namespaces are stored as folders on the host file system, which
gathers the content files of the same subject inside one single directory. This
makes the administrator’s work much easier for obvious reason. Also, if names-
pace is given by the prefix <ns:> before each page name, for a given page, its
raw text file will then be stored in the folder <ns>. When linking to other docu-
ment within the same namespace, one can simply refer to the document without
having to prefix the document with <ns:>. The prefix is necessary only when
linking pages outside the namespace <ns:>.

Note that for a specific wiki project, the namespace structure will most likely
be customized to fit the need for that project. For example, not only each project
will have its own naming method for these namespaces, but also the number of
namespaces can be different.

Throughout this chapter, we are going to use wikicompany as our example. A
semantic wiki powered by MediaWiki, wikicompany is a worldwide business direc-
tory. Everyone can add a new company profile into this directory, and we can search
for a company from this directory and learn interesting things about the company. It
is selected as our example mainly because it is quite intuitive to follow, in addition,
there is no special domain knowledge needed. You can find this semantic wiki at the
location

http://wikicompany.org/wiki/Main_Page

The following is a list of the namespaces used in wikicompany at the time of my
writing:

Main, Talk, User, Wikicompany, Image, MediaWiki, Template, Help,
Category, Property, Type, Concept, Job, Product, Event, Presence,
Planet, Reference, pid, 911, Library, Blog, Filter.

Note that Category, as one of the namespaces, logically holds a categorization
system that is used in MediaWiki. The goal of this categorization system is to clas-
sify articles based on certain criteria, i.e., adding a tag to each page, which will then
be useful when searching the entire wiki. For example, click any company name
in wikicompany, you can see that company’s page, and this page will have a cate-
gory named Companies, identified by Category:Companies at the bottom of the
page.

Understand that a given category, Category:Companies, for example, is repre-
sented by a page in the Category namespace. This page normally contains at least
the following information:

338 9 Semantic Wiki

Fig. 9.1 Category Companies is represented as a page in the Category namespace

• editable text that offers a description about this category, which should explain
which article should go into this category;

• a list of sub-categories, if applicable; and
• a list of pages that have been tagged with this given category.

For example, Fig. 9.1 shows the page about Category:Companies, and each
page in the list shown in Fig. 9.1 is a page that has been tagged as Companies.

As a wiki user, you can create new user category and add it into Category

namespace. Nevertheless, you should always try to reuse categories that already
exist and should make good effort not to invent categories that represent same or
similar concept. As one example, the following is a list of all the categories that are
currently used in wikicompany site (and it is clear that some categories in this list
are not the best way to use category system):

Attribute

Companies

Companies based in Seattle, Washington

9.2 Adding Semantics to Wiki Site 339

Companies bases in the United States

Internet companies

Market research

marketing

Networking

Planet

Planets

Services

Templates

Web application companies

Wikicompany

Windows software

As a summary, it is clear that category system does provide some structure to
the entire wiki system. However, its most obvious drawback is the lack of precise
semantic definition. For instance, if a page describes IBM as a company, we can tag
this page as Category:Companies. Now, for a page that discusses how to run a
company, should we also tag it as Category:Companies? Given the openness of
wiki engine, lack of formal semantics will finally become the source of ambiguity.

As we will see in the next section, Semantic MediaWiki provides a set of for-
mal semantic definitions that are independent of the existing categorization system.
Therefore, users can still use Semantic MediaWiki engine to create traditional wiki
sites without worrying about the added semantic layer at all.

9.2.2 Semantic Annotation in Semantic MediaWiki

As we have mentioned earlier, semantic annotation introduced by Semantic
MediaWiki concentrates only on the links and text contained in a wiki page. The
annotation process does not alter anything about the category. In this section, we
will focus on this annotation process.

9.2.2.1 Semantic Annotation: Links

The basic fact about a link on any given wiki page is that a link identifies some
binary relationship between the linking page and the linked page. If we use a tra-
ditional MediaWiki engine to construct a page and its links, all these links will be
created equally. In other words, there will be no way for a machine to capture the
meaning of each specific binary relationship.

Let us go back to wikicompany and use Apple Computer as an example. Here is
how the page for Apple Computer looks like at the time of this writing, as shown in
Fig. 9.2.

This page has many links to other articles. One of these links is pointing to the
page for Microsoft. As every other link, it does have a special meaning: it was there
since Microsoft is a competitor of Apple Computer.

340 9 Semantic Wiki

Fig. 9.2 Wiki page for Apple Computer

Note that Fig. 9.2 does not include this competitor content. To see this content,
you can visit the following URL which will bring up the page shown in Fig. 9.2

http://wikicompany.org/wiki/Apple

and move to the bottom of the page to see the competitor content.
Now, if this page were created in MediaWiki without the semantic markup,

the link to Microsoft would have looked like the following (this requires some
understanding of wikitext):

[[Microsoft]]

and the competitor relationship is not expressed at all.
To make this knowledge available to a machine, Semantic MediaWiki allows

us to do the following. First, express this binary relationship by defining a prop-
erty called competitor. Second, in the article text for Apple Computer, instead of

9.2 Adding Semantics to Wiki Site 341

simply using [[Microsoft]], we will annotate this link by putting this property
name and :: in front of the link:

[[competitor::Microsoft]]

To human eyes, the article text is still displayed as a simple hyperlink to
Microsoft, but the semantic markup, competitor::, is now available to be used by
the machine as we will discuss later. For now, here is the general format for marking
up a link:

[[propertyname::value]]

This statement, in a wiki page, defines a value for the property whose name
is identified by propertyname. The page containing this markup will just show
the text for value as a link that one can click, but the propertyname will not be
shown.

Before we discuss further about property, let us clean up some formality issues
regarding this simple markup. First off, besides the above, the following will show
alternate text as the link text, instead of link on the wiki page:

[[propertyname::link|alternate text]]

And if we use a space to replace alternate text like this

[[propertyname::link|]]

then no link will appear in the text at all. Furthermore, if you want to create an
ordinary link which contains “::” but does not assign any property, you can put “:”
in the very front, for example:

[[:propertyname::link]]

This will show propertyname::link as the link text.
You can also mark up a link with more than one properties, in which case, you

use “::” to separate these properties:

[[propertyname1::propertyname2::value]]

This will again only show value as the link text, but the wiki engine knows the
fact that there are in fact two properties that have been assigned to this link.

Now, after solving the formality issues, let us continue to study the annotation of
the links. First question comes to mind is the naming of the property. For example, in
wikicompany, the example property is named competitor. Where does this name
come from? Can we use other name at all?

342 9 Semantic Wiki

In fact, the name of the property is arbitrary, and it is up to the user who adds
the annotation to the link to name the property. Again, each user should try to reuse
properties that are already defined and used elsewhere in the wiki site.

The second question then is, how to promote this reuse, i.e., how to find a list of
all the properties that are already defined in this wiki site?

Semantic MediaWiki comes up with a simple yet effective solution: just
like any given category, each property has its own article in the wiki, and all
the articles that are describing properties are collected in a namespace called
Property. For example, in wikicompany, property competitor has its own page
named Property:competitor, with prefix Property: indicating its namespace.
Figure 9.3 shows this page.

As you can see, this property page contains a very brief textual description of
the property, with the goal of helping the users to use it consistently throughout the
wiki. Also, the page contains a list of the articles in the entire wiki site which have
used this property as their markup information.

Now, since each property has a page in Property namespace, coming up with
a list of all the existing properties is quite easy (collecting all the pages from

Fig. 9.3 Competitor property page

9.2 Adding Semantics to Wiki Site 343

Fig. 9.4 A list of currently available properties

Property namespace will do). When conducting semantic markup, one should
always consult this list to decide which property to use, and if necessary, one can
invent his/her own. Figure 9.4 shows a list of existing properties at the time of this
writing.

At this point, we have a good understanding about marking up the links on the
page. The next section discusses the annotation of the second major element on a
wiki page: the text.

9.2.2.2 Semantic Annotation: Text

Besides the links, lots of information are buried in the text on a given page. To mark
up the text, Semantic MediaWiki decides to continue using properties. Therefore,
properties are used to annotate both links and text. However, for text markup, we
define properties that don’t take other pages as their values. Let us take a look at one
example from wikicompany.

344 9 Semantic Wiki

Let us go back to the page of Apple Computer. One piece of information on
this page is that Apple Computer has about 13,500 employees. To mark up this
information, we can first create an Employees property by adding a Property:

Employees page in Property namespace and then somehow indicate that Apple
Computer has an Employees property, whose value is 13,500. Semantic MediaWiki
decides to use the same general form as the one used when annotating the links.
Therefore, the annotation will look like this:

[[Employees::13500]]

This seems to be fine. However, at this point, for the wiki engine, every property
value is understood as a link to another article. In other words, it understands the
above markup as this: Apple Computer has a Employees property, whose value is
a link to a page that has 13,500 as its title. The wiki engine will therefore display
13,500 as a clickable link, just as it does for marking up links in the previous section.

This is certainly not what we wanted. The solution adopted by Semantic
MediaWiki development team requires a user to do the following:

1. To mark up this information, a wiki users has to declare a property named
Employees in Property namespace.

2. On this page, the user has to specify a datatype for this Employees property,
and for this case, this type has to be Number.

On the Semantic MediaWiki engine side, the following two steps have been done
to help the user:

Step 1. Semantic MediaWiki has declared several built-in datatypes that one can
choose for properties.

At the time of this writing, these built-in datatypes include the following:

Annotation URI

Boolean

Code

Date

Email

Geographic coordinate

Number

Page

String

Temperature

Text

URL

And each one of these built-in types has a page to describe it. To collect all these
datatype pages, Semantic MediaWiki has created a special namespace called Type.
Therefore, the page for the datatype Number will be called Type:Number.

9.2 Adding Semantics to Wiki Site 345

When it comes to choosing from these built-in types, one normally has to visit
the pages of the candidate types, unless one is already familiar with all these types.
Since you can always go to Semantic MediaWiki’s document, we will not discuss
each one of these types in detail, but just a quick look at some of the frequently used
ones.

First off, Page type is the default type for any property. If you create a new
property without specifying its type, Page will be its type. Semantic MediaWiki
engine understands Page type as a link to another page, as we have seen in the
previous section (property Competitor has Page as its type).

Other frequently used types include the following:

• String type is used on character sequences;
• Date for calendar dates;
• Number represents integer and decimal numbers with optional exponent, and
• Geographic coordinate describes geographic locations.

Now, with all these datatypes available for a user to choose from, how does a
user indicate the final take for a given property? This lead to the second step that
Semantic MediaWiki has done for us.

Step 2. Semantic MediaWiki has created special properties one can use when
declaring the datatype.

For example, one of these special properties is called Property:Has type,
which assigns a type to a property that user declares. Each special property may
or may not have its own page in the wiki; however, it does have a special built-in
meaning and is not evaluated like other properties.

Here is a list of the special properties created by the wiki engine at the time of this
writing. Again, you can go to the official documents for detailed discussion about
these properties:

Property:Allows value

Property:Corresponds to

Property:Display units

Property:Equivalent URI

Property:Has type

Property:Imported from

Property:Modification date

Property:Provides service

Property:Subproperty of

Now, let us go back to Employees property in wikicompany. When the page for
this property is created, one has to add the annotation [[Has type::Number]] to
indicate that this property expects numerical values. Note that special property Has

type assumes its value is from Type namespace, so we can omit the prefix Type

for Number.
At this point, using Employees property to mark up the text 13,500 is feasible,

since Employees property has its own page, where its datatype has been specified

346 9 Semantic Wiki

by using Has type property. The wiki engine will be able to interpret it correctly
this time, and we don’t have to worry that Employees property creates a link to a
page called 13,500. In general, each type provides its own methods to process user
input, and it tells the wiki engine how to display its value as well.

Note that unlike marking up links, where we normally finish all of them on a
given page, marking up text is highly flexible: you can choose to mark up any text
you think necessary, and there is no standard about which text you should mark
up at all. In this section, we marked up only one single piece of text, and you can
follow the same pattern to mark up other text if you want to. For example, a user
might decide to mark up the phone number and home page information of Apple
Computer as well.

As a side note, if you need to create a new property whose type is Page, you
don’t have to add a new page in Property namespace for this property, since Page
is the default type. In other words, you can directly use any property whose type
is Page without declaring it. However, this is not a good practice: if another user
needs a similar property, since you have never added it into Property namespace,
that user will not be able to reuse your property, and this is certainly what we want
to avoid.

Before we move on to the next section, let us use wikicompany again as an exam-
ple to take a look at the properties and their types as defined by its users, as shown
in Table 9.1.

Table 9.1 Properties defined in wikicompany

Property name Datatype

Address String
Brand Page
Company Page
Competitor Page
Coordinates Geographic coordinate
Customer Page
E-mail Page
Employees Number
Exchange String
Fax String
Founding Page
Fullname String
Home page URL
Parent Page
Partner Page
Phone String
Product Page
Region String
Sector String
Sub Page
Ticker String
Url URL

9.3 Using the Added Semantics 347

At this point, we have presented the basic process of adding semantic markups to
wiki articles. This chapter is not intended as a complete tutorial, so for a complete
description about annotating the pages, you need to go to the official documents
on Semantic MediaWiki’s Web site. For us, the more interesting questions center
around how the added semantics information is used and what exactly is the benefit
added when we change a traditional wiki site into a semantic wiki site. Let us answer
these questions in the reminder of this chapter.

9.3 Using the Added Semantics

In the previous section, we have discussed the process of semantic annotation.
Although we have not covered all the details, this process is fairly straightforward
and simple.

On the other hand, however simple the process may be, the majority of users
will still choose to neglect it if it does not bear some immediate benefits. In this
section, we will discuss the powerful features provided by this simple markup, and
hopefully, there would then be enough motivation for the users to go through the
markup process.

9.3.1 Browsing

9.3.1.1 FactBox

For a user who has gone through the process of marking up the page, even
before seeing the benefit of the markup, the first question would be where is the
semantic data that has been added? Does the wiki engine actually understand this
information?

To address this, the page rendered by the wiki engine has included a so-called
Factbox that is placed at the bottom of the page to avoid disturbing normal reading.
This Factbox summarizes all the semantic information that have been entered on
this page.

Let us take Apple Computer as an example. Once you land on Apple Computer
page in wikicompany, move to the bottom of the page, and you should see the
Factbox as shown in Fig. 9.5. Again note that at the time you are reading this book,
what you see could be different.

As you have seen in Fig. 9.5, Factbox shows information in two columns: the
left column lists the properties that have been used to annotate the page and the
right column shows their corresponding values. Note that each property on the left
column is clickable: you will be landing on that property’s article in Property

namespace if you click the property name. Similarly, the values in the right column
can also be links to other pages in the wiki. For instance, as shown in Fig. 9.5
property Competitor has Microsoft as its value, and Microsoft is rendered as
a link which leads you to Microsoft page in the wiki.

348 9 Semantic Wiki

Fig. 9.5 Factbox on Apple Computer page

An interesting feature is the + icon next to Microsoft link (note that it could be
other icons in different implementations). This in fact takes you to a simple search
result which lists all pages with the same annotation, i.e., a list of all pages that have
property Competitor with value Microsoft. In fact, Semantic MediaWiki engine
provides a special search page, called Special:SearchByProperty, which offers
exactly the same search: you can search for all pages that have a given property and
value.

9.3.1.2 Semantic Browsing Interface

Perhaps the real semantic flavor comes into play from two links on the Factbox.
The first one is RDF feed link, and we will be discussing this link in detail in later
sections, so let us skip it for now and move on to the second link.

The second link is the page title, Apple Computer, shown as the heading of the
Factbox. Clicking this link will lead to a so-called semantic browsing interface as
shown in Fig. 9.6.

9.3 Using the Added Semantics 349

Fig. 9.6 Semantic browsing interface for Apple Computer

As you can see, this page not only shows all the annotations on the page for
Apple Computer, but also includes all annotations from other pages which use the
page of Apple Computer as their value. For example, as shown in Fig. 9.6, company
Akamai is a Customer of Apple Computer, and company Showtime Networks is a
Partner of Apple Computer.

This has in fact answered the question of how other companies are related to
Apple Computer. Clearly, in a wiki that collects information about companies, this
question is perhaps one of the most important questions you want to have an answer
to. Yet, a traditional wiki engine will not be able to answer this, and it is up to
you to actually read perhaps all the articles in the wiki and then come up with the
answer. Obviously, some simple annotation process has indeed provided some very
impressive feature already.

Note that the title link in the Factbox on a company’s page is not the only entrance
to this feature; you can bring up this semantic browsing interface by visiting the
following special page:

http://wikicompany.org/wiki/Special:Browse

350 9 Semantic Wiki

Enter the company page name in textbox and hit Go button, the same browsing
page will show up.

9.3.2 Wiki Site Semantic Search

To further exploit the semantics added by the annotations on the pages, Semantic
MediaWiki has included a query language that allows access to the wiki’s knowl-
edge. In this section, we will take a look at this query language and understand it by
examples. The good news is that the syntax of this query language is quite similar
to the syntax of annotations we have discussed; it is therefore not a completely new
language you have to learn.

9.3.2.1 Direct Wiki Query: Basics

One way to conduct a search is to use the query language on the special page called
Special:Ask. In our wikicompany example, you can access this page at

http://wikicompany.org/wiki/Special:Ask

And once you open up this page, you will see the Query box on the left side, and
the Additional printouts box on the right. As their names have suggested, the
query is entered in the Query box and formatting issues are addressed by using the
Additional printouts box.

Before we start to learn this query language, let us understand its basic idea.
Recall that in semantic wiki, there are two constructs we have used to add struc-
tured data to the wiki content: category and property. More specifically, category
represents a classification system that has been there for all the wiki sites, and prop-
erty represents more detailed semantic information that can be added to the links
and text within a given page.

Now, here is the basic idea: a query can be constructed by having constraints
on either one or both of these constructs. With this in mind, let us start with the
following simple query:

[[Category:Companies]]

This is a query that puts a single constraint on category, and it tries to find every
page that has Companies as its category value. If you enter the above query into the
Query box and click Find results, you will get a long list of all the pages which
have Companies as its category value, and you will see Apple Computer is among
the returned list.

To make this query more interesting, let us add one constraint on the property.
For example,

9.3 Using the Added Semantics 351

[[Category:Companies]][[Competitor::microsoft]]

This query has put one constraint on the category and one constraint on the
property, and these two constraints have a logical AND relationship (note that the
constraint on Category uses :, while the constraint on property value uses ::).
Therefore, this query tries to find pages about Companies, and the annotation prop-
erty Competitor on these pages has to take Microsoft as its value. Therefore,
this query aims to find all the companies that treat Microsoft as their competitor. If
you enter this query into the Query box and click Find results, you will get the
following companies (pages) back:

Apple Computer

Opera Software

TIBCO

Again, this is the result returned at the time of this writing, and if you execute this
query at the moment of reading this book, it is possible that you will get different
results back. This is also true for all the coming up examples, so we will not make
special notes anymore.

Go back to our query. In fact, we can put more property constraints in a single
query. The following query

[[Category:Companies]][[Competitor::microsoft]][[Sector::music]]

will try to find those companies who treat Microsoft as their competitor, and each
one of these companies is also active in the music business. After executing the
query, we only see Apple Computer in the result set since both Opera Software and
TIBCO are not particularly active in the music sector.

Recall the fact that property has datatypes. This can give us lots of flexibility
when asking for pages that have some specific property values. The following is a
quick rundown of the examples, just to show you some of the main features:

• Wildcards

Wildcards are written as “+” and can be used to allow any value for a given
property. For example,

[[Category:Companies]][[Phone::+]][[Homepage::+]]

will find all the companies that have provided their phones and their online Web
sites.

• Comparators

For properties that have numeric values, we can select pages with the property
values within a certain range. For example,

352 9 Semantic Wiki

[[Category:Companies]][[Employees::>1000]][[Employees::<2000]]

will find all the companies that have employee number between 1000 and 2000.
Note that > means “greater than or equal,” and < means “less than or equal”; the
equality symbol (=) is not needed.

There are indeed several points we have to pay attention to for comparator
operations. First off, we can use these range of comparators on those properties
whose values can be naturally ordered. For example, Employees property here
is defined to have a Type:Number, and it indeed can be ordered in a natural way.
However, it will not make any sense to do the following:

[[Homepage::>http://www.apple.com]]

And obviously, it is up to the wiki users to make the judgment and not to
submit a query including the above query component. However, what if the above
query is actually submitted? In fact, if you submit it to Special:Ask page in
wikicompany, you in fact can get some result back!

By default, if a given property’s datatype has no natural ordering, Semantic
MediaWiki engine will simply apply the alphabetical order to the values of the
given property. Therefore, in the above query example, the first returned company
page has a Home page property given by http://www.aroyh.com, which is
indeed alphabetically larger than www.apple.com.

Another important point about comparators is related to the search for a prop-
erty value that happens to start with <. For instance, one of the query components
could be [[propertyName::
]], with
 being the value to search for.
In this case, we can insert a space after :: to prevent the engine from interpreting
the symbol as a comparator:

[[propertyName::
]]

• String comparison

Semantic MediaWiki also provides a like comparator “∼”, which only works for
properties of Type:String. More specifically, in a like condition, you can use ∗
wildcard to match any sequence of characters and ? to match any single character.
For example,

[[Category:Companies]][[Competitor::microsoft]]

[[Address::~∗California∗]]

will try to find those companies that treat Microsoft as their competitor, and each
one of these companies is located in California. Note that this string comparison
feature is disabled by default, so if your query does not work, you might want to
contact your admin person to check the settings.

9.3 Using the Added Semantics 353

9.3.2.2 Direct Wiki Query: Advanced Search

We have covered the basics of the query language used by Semantic MediaWiki; in
this section, we will discuss some advanced features of this language.

• Union of query results

Recall in the previous section, among the queries we have created, if a given
query involves more than one constraint on properties or categories, these
constraints are understood by the wiki engine as having a logical AND relation-
ship. Therefore, we are selecting pages that satisfy these conditions at the same
time. In some cases, we will need to look for a logical OR relationship among
these constraints.

In Semantic MediaWiki, one way to implement a logical OR relationship is to
use the OR operator. For example,

[[Competitor::microsoft]] OR [[Competitor::google]]

The OR operator is used to take the union of two queries: the query on the
left side of OR and the query on the right side of OR. Therefore, this query tries
to find all the companies that treat either Microsoft or Google (or both) as their
competitors. To understand this query, you can try the query on the left first, then
the query on the right, and finally try the whole query. You will be able to see the
results clearly.

Another operator provided by Semantic MediaWiki is the || operator, which
is used to express a logical OR relationship among values, pages, and category
names. For instance, the above query can be rewritten by using the || operator as
follows:

[[Competitor::Microsoft||google]]

You can easily confirm that this query gives exactly the same result as the
previous query which uses OR operator.

Clearly, using || operator provides a more concise form of the same query.
However, there are cases where using OR operator is a must, especially for those
queries that involve different properties. For example, the following query tries to
find those companies that have provided either a phone number or a home page,
or both:

[[Phone::+]] OR [[Homepage::+]]

Finally, note that operator || can be used not only with property values but also
with categories, such as the following query:

[[Category:Companies||Planet]]

354 9 Semantic Wiki

• Getting pages from a given namespace

Sometimes, we need to get all the pages from a given namespace, and this is done
by specifying the namespace and a wildcard operator. For example, the following
query will return every page from Help namespace:

[[Help:+]]

Since main namespace does not really have a prefix, to select all the pages
from main namespace, you have to use the following query:

[[:+]]

What if we want to see all the categories currently created in Category

namespace? You might want to use the following query:

[[Category:+]]

which actually returns every single page in the wiki which has been assigned a
category value! Obviously, it is not what we want. In fact, the following query
will do the trick:

[[:Category:+]]

Note that a : is needed in front of the namespace to avoid confusion.

• Subqueries

Assume we want to find those companies that partner with any company that
treats Microsoft as its competitor. This could be a useful query for the market-
ing department of Microsoft: the companies found by this query could become
potential customers or partners of Microsoft.

To start, we can execute the following query first:

[[Category:Companies]][[Competitor::microsoft]]

which will find all the companies that treat Microsoft as their competitor. And at
the time of this writing, these companies are in the returned set: Apple Computer,
Opera Software, and TIBCO.

Next, we can execute the following query:

[[Partner::Apple Computer||Opera Software||TIBCO]]

which obviously accomplishes our goal. At the time of executing this query, only
Showtime Networks is returned.

However, this query has taken two separate steps to finish. In fact, we can use
the first query as a subquery within the second query to directly obtain the result

9.3 Using the Added Semantics 355

set. More specifically, we need to use <q> and </q> to enclose the subquery as
follows:

[[Partner::<q>[[Category:Companies]]

[[Competitor::microsoft]]</q>]]

This will give us exactly the same result.

Up to this point, we have discussed some of the query features provided by
Semantic MediaWiki, just to show the benefit offered by the added semantics. There
are other query techniques you can use, such as templates and inline queries, which
we will leave for you to explore. With what you have seen in this section, these
techniques should be straightforward to understand.

9.3.2.3 Displaying Information

As you have seen from the previous section, query result in Semantic MediaWiki is
defined as a set of pages, and each page in the result set must satisfy the query con-
ditions. Semantic MediaWiki engine simply displays the titles of the result pages,
and the user has to click a page to see more information on the page, such as the
page’s property values or category values.

This is where the Additional printouts window on the Special:Ask page
can be useful. We can enter the so-called printout statements into this window to
show the property and category values that we are interested in.

There are two basic things to know about printout statements:

• All the printout statements must start with a question mark ?

• For a page contained in the query result set, if some printout statement has no
value for this page, an empty field will simply be printed.

Let us see some examples. The following query

[[Sector::software]][[Region::California]]

[[Employees::>1000]]

with the printout statement

?Employees

will print out the values of Employees property of all the companies that are in soft-
ware sector located in California region and also have no less than 1,000 employees.
Note that the result is shown in a table column that is labeled by the name of the
property. To save space, the result page is not included here, but you can definitely
try it out to see the result.

356 9 Semantic Wiki

You can in fact enter more than one printout statements in Additional

printouts window to make the query result contain more information. For
example,

?Employees

?Competitor

will add one more column called Competitor in the result table. As we have men-
tioned earlier, if a given page in the result set does not contain, for example, a value
for Competitor property, an empty field will simply be used in the table. Also, note
that the above two printout statements have to be on different lines in Additional

printouts window; otherwise, they will not be recognized by the wiki
engine.

Be aware that you can change the label in the output table. For example,

?Employees = Number of Employees

This will change the label from the default Employees to the new one Number
of Employees, which is a very useful feature for the users.

Last but not the least, note that wildcards are often used together with printout
statements to ensure that all the property value printouts have a non-empty value.
For example, the following query

[[Category:Companies]][[Sector::software]]

[[Region::California]][[Employees::+]]

together with a printout statement

?Employees

has expressed this request: tell me the number of employees of each one of those
companies that are in software business and also located in California. Because
of this particular combination of query and the printout statement, the Employee

column in the output table will never be empty, and that is exactly what we
wanted.

9.3.3 Inferencing

Before we discuss the inferencing capability provided by semantic wiki engine, let
us first understand the difference between semantic search and semantic inferencing.

In semantic wiki, semantic search is to find the requested pages based on the
semantic annotations added by the users. It requires that semantic information be
entered onto the page document ahead of the time when the search is conducted.
On the other hand, semantic inferencing refers to the fact that users can retrieve

9.3 Using the Added Semantics 357

information that was not added explicitly by the users but derived by the semantic
wiki engine.

Let us look at one example. Suppose in wikicompany, one user has created a page
about a company called companyA, and he has also added some semantic markups
into the page about companyA. However, the page is not marked with any category
information: it does not have the tag Category:Companies associated with it.
Why this could happen? Let us say our user simply forgot to do it.

The same user has also created a page for a different company called companyB.
He has marked this page with Category:Companies information, and he has also
added some semantic information to this page. Among others, one of the added
semantic information is as follows:

[[competitor::companyA]]

meaning that companyB sees companyA as its competitor.
Now assume that the wiki engine settings in wikicompany site have disabled

the semantic inferencing capability of the engine. For all the semantic search that
involves Category:Companies, companyAwill never be included in the result set,
even its on-page semantic markups do satisfy the rest of the search requirements.
This happens simply because the user has not marked companyA has a category
value of Category:Companies, therefore the wiki engine is not able to realize
that companyA is a company.

At this point, let us change the settings of the wiki engine, so the semantic infer-
encing capability is now set to ON. At the moment the engine scans the page of
companyB, it finds the markup information which specifies that companyA is a
competitor of companyB. This information will trigger the following inferencing
process:

• Property competitor can only take instance of Category:Companies as its
value (assume the wiki engine knows this by reading some ontology).

• Now property competitor has taken companyA as it value.
• Therefore companyA must be an instance of Category:Companies.

Now, the query result will be quite different: companyA will show up in at least
some of the result sets.

Note that the user has not explicitly stated the fact that companyA is a
Category:Companies instance; the wiki engine has been able to derive this
fact and use it in related searches. Obviously, without semantic inferencing, only
semantic search will not be able to accomplish the same result.

It is also worth mentioning that for a wiki user, query result is simply results – he
does not know or cannot tell whether the result has come from some explicitly added
semantic information or from some intelligent reasoning based on the ontology and
instance data.

With all these being said, let us go back to the topic of inferencing capabil-
ity in semantic wikis. The truth is that semantic wiki engine normally offers very

358 9 Semantic Wiki

limited support for complex semantic knowledge representation and inferencing.
Using Semantic MediaWiki engine as an example, we will briefly discuss infer-
encing capability offered by semantic wiki for the rest of this section. Note that in
many of the wiki sites (including wikicompany), the inferencing capability is often
disabled, therefore, we will not be able to see any examples.

The inferencing capability is based on two main hierarchies: the category
hierarchy and the property hierarchy.

Semantic inferencing based on category hierarchy is quite straightforward: any
search that involves a specific category will return all pages that belong to any
subcategory of the given category.

For instance, in wikicompany site, Networking is currently created as a cate-
gory, representing any company that is specialized in networking, and it has nothing
to do with Companies category. However, networking company is a company
indeed, therefore a better design is to make Networking category a subcategory of
Companies. To do so, we can add the following markup to the page that represents
Networking category, i.e., the page named Category:Networking:

[[Category:Companies]]

Once this is done, any company page that is marked as Category:

Networking will be included in the following search:

[[Category:Companies]]

even if it is not marked as [[Category:Companies]]. In fact, we can simply
understand the above search as follows:

[[Category:Companies]] OR [[Category:Networking]] OR

[[Category:otherSubCategory]]

Also, note that for any page, we should always mark it with the most specific
category and depend on the category hierarchy-based inferencing to include the
page into searching results. Otherwise, if we list all the related categories from the
root until the most specific one, we will potentially have a long list of categories
to maintain. This could become a nightmare especially when we have a fairly large
category system.

The inferencing capability based on property hierarchy is quite similar. More
specifically, a query that specifies a property name will return a page which contains
that property’s sub-property (direct or indirect) as part of its markup information
even if the specified root property does not show up in that page. I will leave this
to yourself to come up with examples. However, one thing to remember: printout
statements do not perform any inferencing at all. For example, you could have a
printout statement like this:

?propertyA

9.4 Where Is the Semantics? 359

and for a specific page in the result set, if it contains only a sub-property of
propertyA, this value field for this page will show up to be empty. The wiki
engine will return only the values of the properties that are explicitly added onto the
page.

At the time of this writing, inferencing based on category and property hierar-
chies are the only two inferencing mechanisms supported by the wiki engine. This
decision is in fact a direct result from wiki engine’s scalability concern: supporting
transitivity properties, inverse properties, domain and range restrictions, etc. simply
means a quickly growing computing complexity. Let me hope that at the time you
are reading this chapter, we have a better inferencing engine in place.

At this point, we have covered most of the main features about semantic search-
ing and inferencing. It is quite impressive to realize the fact that with the added
semantic information, a semantic wiki engine can handle queries that will otherwise
be completely impossible in traditional wiki sites. Indeed, take any query request
from the previous section, and in order to find the results in a traditional wiki site,
you probably have to spend days to read through thousands of pages!

So what is happening behind the scene? How is the added semantic information
being used to deliver the performance like we have seen? The rest of this chapter
will answer these questions.

9.4 Where Is the Semantics?

At this point, we have built enough background about semantic wiki, and it is time
to ask the following questions:

• What ontology is in use when we add semantics to the wiki pages?

Semantic annotation in general requires the existence of at least one ontology.
We use the terms (classes and properties) defined in the ontology to mark up the
content. In semantic wiki, we mark up the pages in an ad hoc way: we either
reuse some existing property or we invent a new one, then we assign a value
to this property, and that is all we have done. The user who marks up the page
may not even know the concept of ontology. So for the curious minds among us:
where is the ontology? How is the semantics formally defined?

• Is ontology reuse possible between different semantic wikis? and similarly, is
knowledge aggregation possible between different semantic wikis?

The Semantic Web is powerful and interesting, largely due to the fact that the
data on the Web is linked. By the same token, if two different Wikis have some
overlap in their domains, is it possible to aggregate the knowledge from both
wikis?

Questions like these can be listed more. To gain more insight into semantic wiki,
we will explore the answers in this section. The answers to these questions will point
us to a brand new direction, as discussed in the last section of this chapter.

360 9 Semantic Wiki

9.4.1 SWiVT: an Upper Ontology for Semantic Wiki

It turns out that there is indeed an ontology developed by the Semantic MediaWiki
project team, and its name is semantic wiki vocabulary and terminology (SWiVT).
This ontology is developed by using OWL DL, and it includes the most basic terms
involved in the markup metadata model used by Semantic MediaWiki. Since the
terms from SWiVT can be used in any wiki site powered by Semantic MediaWiki,
SWiVT can be viewed as an upper ontology for semantic Wiki sites.

In this section, we will take a look at this ontology by covering only its main
terms. With the discussion here, it should be a fairly easy task if you decide to
explore SWiVT more on your own. Also, note that at the time of this writing,
SWiVT is the only built-in ontology that Semantic MediaWiki uses.

Before we get into the details, the following are the namespace abbreviations that
you should know, as summarized in Table 9.2.

• swivt:Subject

This class represents all things that could be described by wiki pages. In other
words, all things that anyone may ever want to talk about. The following shows
its definition:

<owl:Class rdf:ID="Subject">
<rdfs:label xml:lang="en">Subject</rdfs:label>
<rdfs:comment xml:lang="en">

An individual entity that is described on a wiki page.

Can be basically anything.

</rdfs:comment>

</owl:Class>

Using the namespace abbreviations in Table 9.2, the complete URI for this
class is given as

http://semantic-mediawiki.org/swivt/1.0#Subject

Table 9.2 Namespaces and their abbreviations

Namespace Abbreviations

http://www.w3.org/1999/02/22-rdf-syntax-ns# rdf
http://www.w3.org/2000/01/rdf-schema# rdfs
http://www.w3.org/2002/07/owl# owl
http://semantic-mediawiki.org/swivt/1.0# swivt
http://wikicompany.org/wiki/Special:URIResolver/ wiki
http://wikicompany.org/wiki/Special:URIResolver/
Property-3A

property

http://wikicompany.org/wiki/ wikiurl

9.4 Where Is the Semantics? 361

• swivt:Wikipage

Obviously, an instance of swivt:Subject represents an individual topic, which
requires a concrete wiki page to describe it. Class swivt:Wikipage is defined
to represent the page itself:

<owl:Class rdf:ID="Wikipage">
<rdfs:label xml:lang="en">Wikipage</rdfs:label>
<rdfs:comment xml:lang="en">A page in a wiki</rdfs:comment>

</owl:Class>

• swivt:page

To establish the link between an instance of swivt:Subject and a concrete
swivt:Wikipage which describes the subject, a property called swivt:page

is created:

<owl:AnnotationProperty rdf:ID="page">
<rdfs:label xml:lang="en">Page</rdfs:label>
<rdfs:comment xml:lang="en">

Connects a swivt:Subject (URI) with the according

swivt:Wikipage (URL).

</rdfs:comment>

</owl:AnnotationProperty>

Note that SWiVT ontology is written in OWL DL. Therefore, swivt:page as an
annotation property does not have any domain/range constraints specified. The
same is true for all other annotation properties defined in SWiVT ontology.

• swivt:Type

We have seen the importance of datatype in Semantic MediaWiki engine, and
datatype is heavily used when marking up the information on a given page. To
formally describe datatype system, SWiVT first defines the swivt:Type class:

<owl:Class rdf:ID="Type"/>

This class is used as the base class for different datatypes in the wiki. Using
the datatype information of a given property, the wiki engine is able to understand
pragmatically how to represent the property value on the page while storing the
semantic information available for other application.

• swivt:BuiltinType

Class swivt:BuiltinType is used to represent a set of built-in datatypes
offered by Semantic MediaWiki:

<owl:Class rdf:ID="BuiltinType">
<rdfs:label xml:lang="en">Builtin type</rdfs:label>

362 9 Semantic Wiki

<rdfs:subClassOf rdf:resource="#Type"/>
</owl:Class>

As an example, here is the definition of Page type, which is created as one
instance of swivt:BuiltinType class:

<swivt:BuiltinType rdf:ID="PageType">
<rdfs:label xml:lang="en">Page</rdfs:label>

</swivt:BuiltinType>

Other built-in types are all defined similarly. For example, swivt:

StringType, swivt:NumberType, and swivt:TextType. Note that
compared to swivt:StringType, swivt:TextType can be of any
length.

• swivt:CustomType

Semantic MediaWiki allows the users to create their own customer datatypes, and
swivt:CustomType is defined to represent these customized datatypes:

<owl:Class rdf:ID="CustomType">
<rdfs:subClassOf rdf:resource="#Type"/>

</owl:Class

9.4.2 Understanding OWL/RDF Exports

Given the fact that we have an ontology (SWiVT) defining the semantics for the
metadata model used in Semantic MediaWiki, a question comes to mind is, why we
have not used it when marking up the pages?

The answer is quite simple: for ordinary wiki users, they don’t have to see and
understand this ontology when adding markups to the pages. However, it is very
useful when the semantic content on a given page is exported.

Let us go back to our example about Apple Computer in wikicompany. When the
wiki engine scans the page for Apple Computer, the user-added semantic markups
are collected and parsed, and an RDF file is generated to represent the semantic
content on this page. This RDF document can be exported for machine to understand
and use.

To get this document, open the page for Apple Computer in wikicompany, then
move down to the very bottom of the page. At the top of the Factbox, you will see a
link called RDF feed, click this link, the exported RDF file will appear.

Note that at the time when you read this book, the exported file you will see
probably will be different from what I obtained when this writing is done (as shown
in List 9.1). So refer to List 9.1 when reading this section. However, the content in
this section will still help you to understand the exported data no matter how the
exported data may change.

9.4 Where Is the Semantics? 363

List 9.1 RDF output of Apple Computer page

1: <?xml version="1.0" encoding="UTF-8"?>
2: <!DOCTYPE rdf:RDF[

3: <!ENTITY rdf ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’>

4: <!ENTITY rdfs ’http://www.w3.org/2000/01/rdf-schema#’>

5: <!ENTITY owl ’http://www.w3.org/2002/07/owl#’>

6: <!ENTITY swivt ’http://semantic-mediawiki.org/swivt/1.0#’>

7: <!ENTITY

7a: wiki ’http://wikicompany.org/wiki/Special:URIResolver/’>

8: <!ENTITY property

8a: ’http://wikicompany.org/wiki/Special:URIResolver/

8b: Property-3A’>

9: <!ENTITY wikiurl ’http://wikicompany.org/wiki/’>

10:]>

11:

12: <rdf:RDF

13: xmlns:rdf="&rdf;"
14: xmlns:rdfs="&rdfs;"
15: xmlns:owl ="&owl;"
16: xmlns:swivt="&swivt;"
17: xmlns:wiki="&wiki;"
18: xmlns:property="&property;">
19: <!-- Ontology header -->

20:

21: <owl:Ontology rdf:about="">
22: <swivt:creationDate rdf:datatype=
22a: "http://www.w3.org/2001/XMLSchema#dateTime">

22b: 2009-01-09T19:07:24-06:00

22c: </swivt:creationDate>

23: <owl:imports rdf:resource=
23a: "http://semantic-mediawiki.org/swivt/1.0" />

24: </owl:Ontology>

25: <!-- exported page data -->

26: <swivt:Subject rdf:about="&wiki;Apple_Computer">
27: <rdfs:label>Apple Computer</rdfs:label>

28: <swivt:page rdf:resource="&wikiurl;Apple_Computer"/>
29:

30: <rdfs:isDefinedBy rdf:resource=
30a: "&wikiurl;Special:ExportRDF/Apple_Computer"/>

31: <rdf:type rdf:resource="&wiki;Category-3ACompanies"/>
32: <property:Address rdf:datatype=
32a: "http://www.w3.org/2001/XMLSchema#string">

32b: 1 Infinite Loop, Cupertino

32c: California 95014, United States

364 9 Semantic Wiki

32d: </property:Address>

33: <property:Competitor rdf:resource="&wiki;Microsoft"/>
34: <property:Coordinates rdf:datatype=
34a: "http://www.w3.org/2001/XMLSchema#string">

34b: 37◦19’49.98"N, 122◦1’46.92"W
34c: </property:Coordinates>

35: <property:Employees rdf:datatype=
35a: "http://www.w3.org/2001/XMLSchema#double">

35b: 13500

35c: </property:Employees>

36: <property:Exchange rdf:datatype=
36a: "http://www.w3.org/2001/XMLSchema#string">

36b: NASDAQ

36c: </property:Exchange>

37:

38: <property:Fax rdf:datatype=
38a: "http://www.w3.org/2001/XMLSchema#string">

38b: </property:Fax>

39: <property:Founding rdf:resource="&wiki;1976"/>
40: <property:Fullname rdf:datatype=
40a: "http://www.w3.org/2001/XMLSchema#string">

40b: Apple Computer, Inc.

40c: </property:Fullname>

41: <property:Homepage rdf:resource="http://www.apple.com"/>
42: <property:Phone rdf:datatype=
42a: "http://www.w3.org/2001/XMLSchema#string">

42b: +1-800-676-2775

42c: </property:Phone>

43: <property:Region rdf:datatype=
43a: "http://www.w3.org/2001/XMLSchema#string">

43b: Cupertino

43c: </property:Region>

44: <property:Region rdf:datatype=
44a: "http://www.w3.org/2001/XMLSchema#string">

44b: California

44c: </property:Region>

45:

46: <property:Region rdf:datatype=
46a: "http://www.w3.org/2001/XMLSchema#string">

46b: United States

46c: </property:Region>

47: <property:Region rdf:datatype=
47a: "http://www.w3.org/2001/XMLSchema#string">

47b: World

47c: </property:Region>

9.4 Where Is the Semantics? 365

48: <property:Sector rdf:datatype=
48a: "http://www.w3.org/2001/XMLSchema#string">

48b: Desktop

48c: </property:Sector>

49: <property:Sector rdf:datatype=
49a: "http://www.w3.org/2001/XMLSchema#string">

49b: software

49c: </property:Sector>

50: <property:Sector rdf:datatype=
50a: "http://www.w3.org/2001/XMLSchema#string">

50b: Computer

50c: </property:Sector>

51: <property:Sector rdf:datatype=
51a: "http://www.w3.org/2001/XMLSchema#string">

51b: hardware

51c: </property:Sector>

52:

53: <property:Sector rdf:datatype=
53a: "http://www.w3.org/2001/XMLSchema#string">

53b: media

53c: </property:Sector>

54: <property:Sector rdf:datatype=
54a: "http://www.w3.org/2001/XMLSchema#string">

54b: music

54c: </property:Sector>

55: <property:Sector rdf:datatype=
55a: "http://www.w3.org/2001/XMLSchema#string">

55b: online

55c: </property:Sector>

56: <property:Sector rdf:datatype=
56a: "http://www.w3.org/2001/XMLSchema#string">

56b: store

56c: </property:Sector>

57: <property:Ticker rdf:datatype=
57a: "http://www.w3.org/2001/XMLSchema#string">

57b: NASDAQ.AAPL

57c: </property:Ticker>

58: </swivt:Subject>

59:

60: <!-- auxilliary definitions -->

61: <owl:DatatypeProperty rdf:about="&property;Ticker">
62: <rdfs:label>Ticker</rdfs:label>

63: <swivt:page rdf:resource="&wikiurl;Property:Ticker"/>
64: <rdfs:isDefinedBy rdf:resource=
64a: "&wikiurl;Special:ExportRDF/Property:Ticker"/>

366 9 Semantic Wiki

65: </owl:DatatypeProperty>

66: <owl:DatatypeProperty rdf:about="&property;Sector">
67: <rdfs:label>Sector</rdfs:label>

68:

69: <swivt:page rdf:resource="&wikiurl;Property:Sector"/>
70: <rdfs:isDefinedBy rdf:resource=
70a: "&wikiurl;Special:ExportRDF/Property:Sector"/>

71: </owl:DatatypeProperty>

72: <owl:DatatypeProperty rdf:about="&property;Region">
73: <rdfs:label>Region</rdfs:label>

74: <swivt:page rdf:resource="&wikiurl;Property:Region"/>
75: <rdfs:isDefinedBy rdf:resource=
75a: "&wikiurl;Special:ExportRDF/Property:Region"/>

76: </owl:DatatypeProperty>

77:

78: <owl:DatatypeProperty rdf:about="&property;Phone">
79: <rdfs:label>Phone</rdfs:label>

80: <swivt:page rdf:resource="&wikiurl;Property:Phone"/>
81: <rdfs:isDefinedBy rdf:resource=
81a: "&wikiurl;Special:ExportRDF/Property:Phone"/>

82: </owl:DatatypeProperty>

83: <owl:ObjectProperty rdf:about="&property;Homepage">
84: <rdfs:label>Homepage</rdfs:label>

85: <swivt:page rdf:resource="&wikiurl;Property:Homepage"/>
86:

87: <rdfs:isDefinedBy rdf:resource=
87a: "&wikiurl;Special:ExportRDF/Property:Homepage"/>

88: </owl:ObjectProperty>

89: <owl:DatatypeProperty rdf:about="&property;Fullname">
90: <rdfs:label>Fullname</rdfs:label>

91: <swivt:page rdf:resource="&wikiurl;Property:Fullname"/>
92: <rdfs:isDefinedBy rdf:resource=
92a: "&wikiurl;Special:ExportRDF/Property:Fullname"/>

93: </owl:DatatypeProperty>

94: <swivt:Subject rdf:about="&wiki;1976">
95:

96: <rdfs:label>1976</rdfs:label>

97: <swivt:page rdf:resource="&wikiurl;1976"/>
98: <rdfs:isDefinedBy rdf:resource=
98a: "&wikiurl;Special:ExportRDF/1976"/>

99: </swivt:Subject>

100: <owl:ObjectProperty rdf:about="&property;Founding">
101: <rdfs:label>Founding</rdfs:label>

102: <swivt:page rdf:resource="&wikiurl;Property:Founding"/>
103: <rdfs:isDefinedBy rdf:resource=

9.4 Where Is the Semantics? 367

103a: "&wikiurl;Special:ExportRDF/Property:Founding"/>

104:

105: </owl:ObjectProperty>

106: <owl:DatatypeProperty rdf:about="&property;Fax">
107: <rdfs:label>Fax</rdfs:label>

108: <swivt:page rdf:resource="&wikiurl;Property:Fax"/>
109: <rdfs:isDefinedBy rdf:resource=
109a: "&wikiurl;Special:ExportRDF/Property:Fax"/>

110: </owl:DatatypeProperty>

111: <owl:DatatypeProperty rdf:about="&property;Exchange">
112: <rdfs:label>Exchange</rdfs:label>

113:

114: <swivt:page rdf:resource="&wikiurl;Property:Exchange"/>
115: <rdfs:isDefinedBy rdf:resource=
115a: "&wikiurl;Special:ExportRDF/Property:Exchange"/>

116: </owl:DatatypeProperty>

117: <owl:DatatypeProperty rdf:about="&property;Employees">
118: <rdfs:label>Employees</rdfs:label>

119: <swivt:page rdf:resource="&wikiurl;Property:Employees"/>
120: <rdfs:isDefinedBy rdf:resource=
120a: "&wikiurl;Special:ExportRDF/Property:Employees"/>

121: </owl:DatatypeProperty>

122:

123: <owl:DatatypeProperty rdf:about="&property;Coordinates">
124: <rdfs:label>Coordinates</rdfs:label>

125: <swivt:page

125a: rdf:resource="&wikiurl;Property:Coordinates"/>
126: <rdfs:isDefinedBy rdf:resource=
126a: "&wikiurl;Special:ExportRDF/Property:Coordinates"/>

127: </owl:DatatypeProperty>

128: <swivt:Subject rdf:about="&wiki;Microsoft">
129: <rdfs:label>Microsoft</rdfs:label>

130: <swivt:page rdf:resource="&wikiurl;Microsoft"/>
131:

132: <rdfs:isDefinedBy rdf:resource=
132a: "&wikiurl;Special:ExportRDF/Microsoft"/>

133: </swivt:Subject>

134: <owl:ObjectProperty rdf:about="&property;Competitor">
135: <rdfs:label>Competitor</rdfs:label>

136: <swivt:page

136a: rdf:resource="&wikiurl;Property:Competitor"/>
137: <rdfs:isDefinedBy rdf:resource=
137a: "&wikiurl;Special:ExportRDF/Property:Competitor"/>

138: </owl:ObjectProperty>

139: <owl:DatatypeProperty rdf:about="&property;Address">

368 9 Semantic Wiki

140:

141: <rdfs:label>Address</rdfs:label>

142: <swivt:page rdf:resource="&wikiurl;Property:Address"/>
143: <rdfs:isDefinedBy rdf:resource=
143a: "&wikiurl;Special:ExportRDF/Property:Address"/>

144: </owl:DatatypeProperty>

145: <owl:Class rdf:about="&wiki;Category-3ACompanies">
146: <rdfs:label>Companies</rdfs:label>

147: <swivt:page rdf:resource="&wikiurl;Category:Companies"/>
148: <rdfs:isDefinedBy rdf:resource=
148a: "&wikiurl;Special:ExportRDF/Category:Companies"/>

149:

150: </owl:Class>

151: <!-- References to the SWiVT Ontology,

151a: see http://semantic-mediawiki.org/swivt/ -->

152: <owl:AnnotationProperty rdf:about="&swivt;page">
153: <rdfs:isDefinedBy rdf:resource=
153a: "http://semantic-mediawiki.org/swivt/1.0"/>

154: </owl:AnnotationProperty>

155: <owl:AnnotationProperty rdf:about="&swivt;creationDate">
156: <rdfs:isDefinedBy rdf:resource=
156a: "http://semantic-mediawiki.org/swivt/1.0"/>

157: </owl:AnnotationProperty>

158: <owl:Class rdf:about="&swivt;ubject">
159:

160: <rdfs:isDefinedBy rdf:resource=
160a: "http://semantic-mediawiki.org/swivt/1.0"/>

161: </owl:Class>

162: <!-- Created by Semantic MediaWiki,

162a: http://semantic-mediawiki.org -->

163: </rdf:RDF>

Now, let us take a look at the exported RDF file. First of all, with the discussion
of the upper ontology in the previous section, it is easy to understand the content
presented by lines 152–158, which is just a reiteration of some of the main classes
defined in SWiVT ontology.

Since SWiVT is only an upper ontology, it is therefore up to the wiki site to add
its own application-specific class definitions. One such class definition is seen in
lines 145–150, and it has the following URI:

wiki:Category-3ACompanies

The full URI can be obtained by replacing the wiki prefix (see Table 9.2):

http://wikicompany.org/wiki/Special:URIResolver/Category-

3ACompanies

9.4 Where Is the Semantics? 369

Note that two properties are used on wiki:Category-3ACompanies class;
they are rdfs:label and swivt:page. rdfs:label has Companies as its value,
and swivt:page has the following individual document as its value:

http://wikicompany.org/wiki/Category:Companies

If you follow this URL, you actually land on Category:Companies page; the
page category Companies is in Category namespace. Remember Companies also
represents the category of the page for Apple Computer.

In general, each category in the Category namespace will be mapped to an
application-specific class defined by the wiki site. When generating RDF document
for a given page, the entire page will be represented as an instance of the class that
corresponds to the category of the page.

With an application-specific class type representing a given wiki page, a set of
properties will also be needed in order to describe the formal semantics of the page.
For example, lines 117–121 define a property that we are familiar with: Employees
property, which is identified by the following URI:

property:Employees

Its full URI can be obtained by replacing the property prefix (see Table 9.2):

http://wikicompany.org/wiki/Special:URIResolver/Property-

3AEmployees

This property has the following details:

property:Employees rdf:type owl:DatatypeProperty.
property:Employees rdfs:label "Employees".
property:Employees swivt:page

<http://wikicompany.org/wiki/Property:Employees>.

Similarly, if you follow the URL given as the value of swivt:page property, you
will land on Property:Employees page, which describes Employees property,
and this page itself is collected in the Property namespace.

Another property is the Competitor property, defined by lines 134–138. It has
the following URI:

property:Competitor

with the following details:

property:Competitor rdf:type owl:ObjectProperty.

property:Competitor rdfs:label "Competitor".

property:Competitor swivt:page

<http://wikicompany.org/wiki/Property:Competitor>.

Again, the value of swivt:page property points to Property:Competitor

page, which describes Competitor property in the Property namespace.

370 9 Semantic Wiki

Table 9.3 Property URIs and their line numbers

Property URI Line numbers

property:Ticker 61–65
property:Sector 66–71
property:Region 72–76
property:Phone 78–82
property:Homepage 83–88
property:Fullname 89–93
property:Founding 100–105
property:Fax 106–110
property:Exchange 111–116
property:Coordinates 123–127
property:Address 139–144

Besides the above two examples, the exported RDF document has defined quite
a few other properties. Table 9.3 summarizes these properties and the line numbers
where they are defined.

In general, each property in the Property namespace will be mapped to an
application-specific property defined by the wiki site. When generating RDF docu-
ment for a given page, the properties used by the user when annotating the page will
be instantiated and included in the exported RDF file, therefore become part of the
semantic information.

We are now able to easily understand the rest of List 9.1. First off, line 26 creates
an instance of class swivt:Subject to represent Apple Computer, which has the
following URI:

wiki:Apple_Computer

Its full URI can be obtained by replacing the wiki prefix (see Table 9.2):

http://wikicompany.org/wiki/Special:URIResolver/Apple_Computer

It is also declared as an instance of wiki:Category-3Acompanies class (line
31). This is where the existing category system is used in the semantic wiki.

Lines 32–57 include all the properties that have been used to describe Apple
Computer, together with their values and datatypes. For example, line 35 creates
an instance of Employees property, its value is 13500, with a datatype defined as
http://www.w3.org/2001/XMLSchema#double. Clearly, this piece of data in
the exported RDF file corresponds to the markup for the employee information on
Apple Computer’s page.

It is interesting to note that the definition of Employees property does not make
use of rdfs:range property to put constraints on its possible values. So how does
the wiki engine get its value when it generates the RDF file? The following summary
not only helps us to answer this question but also gives us a better understanding
about semantic wiki as a whole.

9.4 Where Is the Semantics? 371

1. Wiki engine loads a page.
2. Wiki engine parses the annotated information on this page. For each property, the

engine creates a definition using OWL DL, and these definitions will be included
in the exported RDF file.

3. For each property, the engine tries to load a page from Property namespace,
which provides a description about this property if it exists in the namespace.

4. If the engine loads the page successfully, it will search a special property called
Property:Has type within the page. The value of this property will be used
to create the property instance in the exported RDF file.

5. If the engine cannot find the page or cannot find Property:Has type property,
the underlying property is then assumed to have a Page type, and the rest will be
the same as described in step 4.

Another example is in line 33, which creates an instance of Competitor prop-
erty. This property use another object, i.e. wiki:Microsoft, as its value. Note
that lines 128–133 give the definition of wiki:Microsoft, which is defined as an
instance of swivt:Subject, and it has the following URI:

http://wikicompany.org/wiki/Special:URIResolver/Microsoft

Obviously, there is a page in this wiki that describes Microsoft as well. In
addition, just like Apple Computer page, when its RDF document is gener-
ated, Microsoft page will be mapped to an instance of both wiki:Category-

3Acompanies class and swivt:Subject class, and it should have the same
URI as above to make sure that it represents exactly the same Microsoft as used
here.

To confirm this, go to wikicompany, open up the page for Microsoft, and click
RDF feed to request the exported RDF file. As you can tell, an instance is created
in the output file to represent Microsoft page, and the URI of that instance is exactly
the same as the one given in line 128 of List 9.1.

By the same token, you should also realize the fact that property definition
has to be consistent as well. For example, Employees property appears on Apple
Computer page, and it also appears on Microsoft page. When exporting the RDF
file for Apple Computer page, wiki engine has defined Employees property to have
the following URI (line 117):

http://wikicompany.org/wiki/Special:URIResolver/Property-

3AEmployees

When exporting the RDF file for Microsoft page, wiki engine will have to define
Employees property again. Furthermore, it will guarantee that the URI for this
property will be exactly the same as the above URI so as to make sure that this
Employees property is the same as that Employees property. Again, you can easily
confirm this by asking the RDF feed on Microsoft page.

The above may seem obvious, but it is necessary to make sure a complete and
consistent semantics has been defined, which is further responsible for many of the
powerful searching features we have seen on the semantic wiki sites.

372 9 Semantic Wiki

At this point, we have finished our discussion about ontologies and RDF exports
in a semantic wiki site. The powerful search features provided by semantic wiki can
be viewed as an application that is directly built upon the ontology and generated
RDF documents. With what we have learned here, it is your turn now to come up
with other application examples that work on the exported RDF files.

9.4.3 Importing Ontology: a Bridge to Outside World

With our understanding so far, we can summarize the following about semantic
wiki:

• A given wiki site always uses its own ontology, which is created by mapping the
category information and the property names to their appropriate OWL terms, as
we have discussed in Sect. 9.4.2.

• Classes and properties defined in this ontology are therefore local to the wiki and
are invisible to the outside world.

For instance, within Semantic MediaWiki, the following rule is used to come up
with the URI for a class:

http://wiki_site_name/wiki/Special:URIResolver/Category-
3ACategoryName

and similarly, the URI of a property has the following format:

http://wiki_site_name/wiki/Special:URIResolver/Property-
3APropertyName

Recall that in wikicompany, class Companies has the following URI:

http://wikicompany.org/wiki/Special:URIResolver/Category-

3ACompanies

and property Competitor has an URI that looks like

http://wikicompany.org/wiki/Special:URIResolver/Property-

3ACompetitor

This is all neat and clean, and it also explains why when exporting the RDF files
for different pages, wiki engine is able to make sure that the same property and class
have the same URI.

However, this “locality” implies the fact that there are no links to the outside
world, and it is therefore difficult for outside tools or applications to work with the
exported RDF data. And as we know, data will be most useful when they are linked
together.

One solution is to reuse existing ontologies whenever it is possible, which will
improve compatibility with other tools. Fortunately, Semantic MediaWiki engine
does provide a mechanism to accomplish this. In this section, we will use FOAF
ontology as an example to take a brief look at how this is done.

9.4 Where Is the Semantics? 373

To reuse FOAF ontology in a given wiki site, the first step is to make sure that
this ontology is visible to the site. To accomplish this, a user with administrator
status will have to create a specific page that has a unique name just for the purpose
of reusing ontologies. More specifically, this page will have to be in MediaWiki

namespace with a prefix smw_import_. For our case, since we want to reuse FOAF
ontology, this page can have the following name:

MediaWiki:smw_import_foaf

At the time of this writing, wikicompany site has not yet imported any outside
ontology. Therefore, to see a real example of this page, we will have to go to another
wiki site called semanticWeb wiki:

http://semanticweb.org/wiki/Main_Page

which is also a semantic wiki powered by Semantic MediaWiki.
Now, we can open up the query page from the following URL:

http://semanticweb.org/wiki/Special:Ask

and type in the following query:

[[MediaWiki:+]]

which asks for all the pages in MediaWiki namespace. Once the result is back, we
should see a page that has a name called MediaWiki:smw_import_foaf.

Open up this page, we see the following lines on this page (note that the line
numbers are added for explanation purpose):

1: http://xmlns.com/foaf/0.1/|[http://www.foaf-project.org/

1a: Friend Of A Friend]

2: name|Type:String

3: homepage|Type:URL

4: mbox|Type:Email

4: mbox_sha1sum|Type:String

5: depiction|Type:URL

6: phone|Type:String

7: Person|Category

8: Organization|Category

9: knows|Type:Page

10:member|Type:Page

Line 1 maps the last part of the page name to a real namespace (the string from
the beginning of line 1 until the | sign). In our case, foaf is the last part of the page
name, and it therefore maps to the following namespace:

http://xmlns.com/foaf/0.1/

which is exactly the namespace used by FOAF ontology. The string after the | sign
provides a human-readable name for the ontology and a link that user can click to
get more information about the imported ontology.

374 9 Semantic Wiki

Note that not every single term (class or property) defined in the ontology is
automatically imported. In fact, we have to explicitly specify which term will get
imported and once it is imported, how will it be used in the wiki. For example, line 7
says foaf:Person will be imported, and the text after | sign specifies that Person
will be used as a class (a Category maps to a class, as discussed in Sect. 9.4.2).
Similarly, line 2 says foaf:name will be imported, and it will be used as a prop-
erty with String as its type. You can read the rest of the page in the same way,
and for this ontology, only nine terms (two classes and seven properties) have been
imported.

The second step is to modify the pages of the corresponding categories and prop-
erties in the wiki to state the facts that these categories and properties are the same
as the corresponding imported terms.

For example, in semanticWeb wiki, we need to specify Category:Person

is the same as foaf:Person, and foaf:Person should be used whenever
Category:Person shows up in any RDF exported file. To do so, we need to
modify the page of Category:Person in Category namespace by adding the
following line into the page:

[[imported from:=foaf:Person]]
which will do the trick: the wiki engine, when exporting RDF files, will use
foaf:Person as the class whenever it sees Category:Person. Again, note that
you can find Category:Person page at the following URL:

http://semanticweb.org/wiki/Category:Person

Similarly, to map a property to an imported property term, we need to make
change to the property page. For example, we can change Property:Name page to
add the fact that Property:Name is represented by FOAF term foaf:name. To do
so, we can open the page of Property:Name from the following URL:

http://semanticweb.org/wiki/Property:Name

then we add the following line into the page:

[[imported from:=foaf:name]]
Remember to remove Type:Has type statement if it exists on the page, since

page MediaWiki:smw_import_foaf has already specified the type for every
imported item, as you have seen earlier.

Also note that when annotating the page, we don’t have to use foaf:name.
Instead, we should continue to use the property name as it is defined earlier. The
wiki engine will find and replace all the mapped terms when it exports the RDF
files.

The above is the basic flow for reusing existing ontologies, and it is included here
for you to get some basic understanding about this topic. Given the rapid develop-
ment in semantic wiki area and since ontology reuse promotes the Linked Data idea,
more improvement on this issue is expected.

9.5 The Power of the Semantic Web 375

9.5 The Power of the Semantic Web

Now it is the time to answer the question we have in mind for quite a while. The
semantic markup data users have added on each page (in main namespace) has
made some big difference when searching for the information from the wiki. So
what is happening behind the scene? How is the added markup information used by
the wiki engine?

It turns out that semantic annotation is just a small part of the whole story, and the
major operation happens inside the wiki engine and can be summarized as follows:

1. For a given user page in main namespace, wiki engine collects and parses
the added semantic information to produce an RDF document that represents
a machine-readable version of the page.

2. Wiki engine saves the RDF document into a database called semantic store.
3. Wiki engine moves on to the next user page, and repeat steps 1 and 2. If there is

no other user page found, stop.

We have seen an example of RDF document in Sect. 9.4.2 already: the RDF file
generated for Apple Computer. This RDF document can be expressed by a graph
shown in Fig. 9.7 (note that it is not a complete graph, but it shows the main idea).

Fig. 9.7 RDF model for Apple Computer is expressed as a graph

376 9 Semantic Wiki

Now, for each user page, a graph like Fig. 9.7 is created and saved in a database.
With links among these graphs, they all together form a collection of linked data
inside the wiki, and any query submitted by the user is in fact run against this dataset.
This is why your query can provide accurate and relevant results all the time –
something a traditional wiki can hardly match.

Figure 9.7 also lets you visualize the link between graphs. More specifically,
wiki:Apple_Computer is the root node and instance wiki:Microsoft shows
up in this graph as a value of Competitor property. Meanwhile, in the graph that
represents Microsoft page, the same instance will be the root node.

Also note the difference between semantic search discussed in this chapter and
full text search used in traditional wiki sites. Semantic search is conducted against
a Web of linked data; the result of semantic search is answers, not pages. However,
full text search is based on the keyword indexing system, and the result is a set of
pages, which a user has to sift through for answers.

9.6 Use Semantic MediaWiki to Build Your Own Semantic Wiki

This section provides some brief guidelines if you are planning to build your own
semantic wiki site.

First you need to understand that semantic wiki engine itself is not a semantic
wiki site; it is a software that provides a framework for building a semantic wiki
site. There are quite a few semantic wiki engines available to use, so you need to
decide first which engine to use.

If you decide to use Semantic MediaWiki as the engine, and since Semantic
MediaWiki is an extension to MediaWiki engine, you need to install a MediaWiki
first. In addition, you need to make sure that it works well before you install
Semantic MediaWiki.

After MediaWiki is working, you can install Semantic MediaWiki on top of it. As
an extension to MediaWiki, Semantic MediaWiki requires very little configuration
work to make the system work, and you will always have chance to configure and
modify the engine in the course of using it.

Finally, understand that once you have a semantic wiki, it is the added markups
that make it work. And remember to get help from this page on Semantic
MediaWiki’s official site; it always contains the most up-to-date information for
you to work on your own site:

http://semantic-mediawiki.org/wiki/Help:Administrator_manual

9.7 Summary

In this chapter, we have learned semantic wiki, another example of the Semantic
Web technologies at work.

9.7 Summary 377

First off, understand that semantic markup information in a semantic wiki is
added manually by the users:

• A user can mark up both links and text on a given page.
• Category information and properties are used to mark up the page. It is not

necessary for a user to understand ontology or RDF in order to add markup
information.

• User can add new categories and create new properties, but reusing existing
categories and properties is always recommended.

The added markup information is used by semantic wiki engine to facilitate
semantic search in the wiki. To conduct search, a special search language is used.

And behind the scene, the following has happened to make semantic search
possible:

• The semantic markup on each page is collected and parsed by the wiki engine;
an RDF document is generated to represent the page.

• This is repeated for all the pages, and all the generated RDF documents therefore
form a linked dataset, which is used for the semantic search.

Also understand the following about this dataset:

• SWiVT, an upper ontology for all the wiki site, is created so that we can have a
high level vocabulary.

• For each specific wiki site, new classes and properties are defined. More specif-
ically, categories are mapped to classes, and page properties are mapped to
properties.

• When generating RDF document for each page, both SWiVT and the new classes
and properties are used.

Finally, understand that the impressive searching capability provided by semantic
wiki engine can hardly be matched by any traditional wiki site, and all is the result
of some simple markup that a user is willing to add.

Chapter 10
DBpedia

At the end of Chap. 7, we have discussed the topic about semantic markup. More
specifically, it is possible to automatically generate markup documents for some
Web content, especially when there is pre-existing structured information contained
in these content.

This chapter will provide one such example, and this is the popular DBpedia
project. In fact, it is important to understand DBpedia, not only as an example of
automatically generating structured data from Web content, but also because of its
key position in the Web of Linked Data, as we will see in Chap. 11.

10.1 Introduction to DBpedia

10.1.1 From Manual Markup to Automatic
Generation of Annotation

As we have learned by now, the classic view about the Semantic Web is to add
semantic annotations to each page by using RDF data model and ontologies so that
the added information can be processed by a machine.

We have discussed semantic wiki in the previous chapter. We understand that
in order to make a semantic wiki site work, the user of the wiki has to manu-
ally enter the semantic markups at the first place. As an example that we have
studied, Semantic MediaWiki has modified its original markup language, therefore
when editing the wiki page, the user can easily annotate the page at the same time.
Furthermore, the benefit of the added semantics is shown by the wiki’s ability to
answer complex questions, as we have seen in the previous chapter.

However, in general, manually adding semantic annotations for a large-scale
application is quite difficult. For instance, it requires the availability of widely
accepted ontologies, and it requires manually marking up millions of pages, which
is simply not practical or at least formidably expensive. In addition, what about the
new pages that are generated each day? How do we require an ordinary user to
conquer the learning curve and go through the extra steps to mark up the page?

379L. Yu, A Developer’s Guide to the Semantic Web,
DOI 10.1007/978-3-642-15970-1_10, C© Springer-Verlag Berlin Heidelberg 2011

380 10 DBpedia

The reason why the manual approach is successful when applied to semantic wiki
sites is mainly due to the uniqueness of the wiki sites themselves. More specifically,
these sites normally have limited scopes and quite often are only used internally by
some organizations. It is therefore not necessary to have some standard ontologies
built before hand, and a home-grown ontology is often good enough for the goal.
Also, the markup language provided by a semantic wiki engine is quite simple and
not much more complex than or different from the original wikitext.

Obviously, not every application can offer a favorable environment to man-
ual approach. To overcome its difficulty, another approach has become popular in
recent years, where the semantic annotation information is automatically generated.
Instead of independently adding semantic markups to the current Web document,
this approach tries to derive semantic information automatically from the existing
structured information contained in the Web document.

The main attraction of this automatic approach is the fact that it does not require
much manual work, therefore quite scalable. However, it does have to deal with the
imperfectness of information on each page, and how well it works heavily depends
upon how much structured information contained in a given page.

In this chapter, we are going to study one example system that is built solely
by using this automatic approach: the DBpedia project. Once you finish this chap-
ter, you will have examples of both approaches, which should be valuable for your
future development work.

Note that these two approaches can also benefit from each other. For example,
the more manual annotations there are, the more precise the automatic approach
will be, since it can directly take advantage of the existing structured information.
Similarly, automatically generating the semantic information can minimize the need
for manual approach, and combining these two approaches can sometimes be the
best solution at your hand.

10.1.2 From Wikipedia to DBpedia

The most successful and popular wiki by far is probably Wikipedia, the largest
online encyclopedia created and maintained by a globally distributed author com-
munity. At the time of this writing, Wikipedia appears in more than 251 different
languages, with the English version containing more than 3.1 million articles. You
can access Wikipedia from the following URL:

http://en.wikipedia.org/wiki/Main_Page

And you will be amazed by how much information it can provide.
However, as we have discussed in previous chapter, similar to any other tradi-

tional wiki site, using Wikipedia means reading it. It is up to you to digest all the
information and to search through pages to find what you are looking for.

The solution is also similar to semantic wiki sites: use the Semantic Web tech-
nologies to make better use of the vast amount of knowledge in Wikipedia. This

10.1 Introduction to DBpedia 381

time, however, instead of adding semantic markup to each wiki page, an agent
has been developed to extract existing structured information from each page. And
furthermore:

• The extracted information will take the form of an RDF data graph, and this
graph will be the corresponding machine-readable page of the original wiki
page.

• Repeating this extraction process for each page in Wikipedia will build a huge
collection of RDF data graphs, which forms a large RDF dataset.

• This RDF dataset can be viewed as Wikipedia’s machine-readable version, with
the original Wikipedia remains as the human-readable one.

• Since all the RDF graphs in this RDF dataset share the same set of ontologies,
they therefore share precisely defined semantics, meaning that we can query
against this dataset and find what we want much easier.

The above is the outline of an idea about how to transform Wikipedia to make
it more useful. It was originally proposed by researchers and developers from
University of Leipzig, Freie Universität Berlin and OpenLink Software. The initial
release of this RDF dataset was in January 2007, and the dataset is called DBpedia.
The exact same idea has since then grown into a project called DBpedia project, as
described in the following URL:

http://dbpedia.org/About

And here is the official definition of DBpedia, taken directly from the above
official Web site:

DBpedia is a community effort to extract structured information from Wikipedia and to make
this information available on the Web. DBpedia allows you to ask sophisticated queries
against Wikipedia, and to link other data sets on the Web to Wikipedia data.

The rest of this chapter will present DBpedia project in detail. Here is some quick
summary of DBpedia dataset at the time of this writing:

• Its latest release is DBpedia 3.5.1 (28 April 2010).
• It describes more than 3.4 million things, including at least 312,000 persons,

413,000 places, 94,000 music albums, 49,000 films, 140,000 organizations, just
to name a few.

• It has 5,543,000 links to external Web pages, 4,887,000 external links to other
RDF datasets, and 565,000 Wikipedia categories.

I am sure at the time you are reading this chapter, the above numbers will change.
It will be interesting to make a comparison to see how fast the dataset grows. Yet,
the basic techniques behind it should remain the same, and that would be the topic
for the rest of this chapter.

382 10 DBpedia

10.1.3 The Look and Feel of DBpedia: Page Redirect

Before we start to understand the automatic extraction of the semantic information,
it will be helpful to get a basic feeling of DBpedia: how does it look like and how
are we going to access it?

As far as an user is concerned, DBpedia is essentially a huge RDF dataset. And
there are two ways to access it:

1. Use a Web browser to view different RDF graphs contained in DBpedia dataset
or,

2. Use a SPARQL endpoint to query against DBpedia dataset with the goal of
discovering information with much greater ease.

The second way of accessing DBpedia is perhaps the one that DBpedia project
has intended for us to do. However, using a Web browser to access a specific
RDF graph contained in the dataset feels like using DBpedia as if it were another
version of the original Wikipedia, and it would be interesting to those curious
minds. And by comparing the two pages – the original one from Wikipedia and
the generated RDF graph from DBpedia – we can also learn a lot about DBpedia
itself.

This section will concentrate on the first way of accessing DBpedia, and the
second way will be covered in detail in later sections.

Let us use Swiss tennis player Roger Federer as an example. First, let us see how
he is described in Wikipedia. Open Wikipedia from the following URL:

http://www.wikipedia.org/

And type Roger Federer in the search box, also make sure English is the
selected language by using the language selection drop-down list. Once you click
the continue button, you will be taken to the page as shown in Fig. 10.1.

And note that this page has the following URL:

http://en.wikipedia.org/wiki/Roger_Federer

Now to get to its DBpedia equivalent page, replace the following prefix in the
above URL:

http://en.wikipedia.org/wiki/

with this one:

http://dbpedia.org/resource/

and you get the following URL:

http://dbpedia.org/resource/Roger_Federer

which is the corresponding machine-readable DBpedia page for Roger Federer.

10.1 Introduction to DBpedia 383

Fig. 10.1 Roger Federer’s wiki page in Wikipedia

Now enter this URL into your Web browser. Instead of seeing this exciting
new DBpedia equivalent page, your browser will redirect you to the following
URL:

http://dbpedia.org/page/Roger_Federer

And there, you will see the corresponding RDF graph for Roger Federer
displayed as an HTML page, as shown in Fig. 10.2. So what has happened?

We will cover the reason in the next chapter, but here is a quick answer to this
question. The page

http://dbpedia.org/resource/Roger_Federer

in fact represents a generated RDF data file that is intended for machine to read,
not for human eyes to enjoy. Therefore, it will not display as well as a traditional

384 10 DBpedia

Fig. 10.2 Generated RDF graph for Roger Federer, displayed as an HTML page

Web page in an ordinary HTML browser. Yet in order to give back what has been
requested by its user, DBpedia has implemented a HTTP mechanism called content
negotiation (details in Chap. 11), so your browser will be re-directed to the following
page:

http://dbpedia.org/page/Roger_Federer

which then presents the page as shown in Fig. 10.2.
As you can see, this page is mainly a long summary of property–value pairs,

which are presented in a table format. You may also find this page not as readable
as its original Wikipedia version. However, it is also quite amazing that everything
on this page is automatically extracted from the original text. We will come back to

10.2 Semantics in DBpedia 385

this page again, but for now, what has been described here is the simplest way to
access DBpedia.

And as a summary, any page in Wikipedia has the following URL:

http://en.wikipedia.org/wiki/Page_Name

And you can always replace the prefix and use the following URL to access its
corresponding DBpedia equivalent page:

http://dbpedia.org/resource/Page_Name

10.2 Semantics in DBpedia

Before we get into the exciting world of using SPARQL to query against DBpedia,
we need to understand how the meaningful information is extracted from the
corresponding Wikipedia pages, and this is the goal of this section.

10.2.1 Infobox Template

The key idea of DBpedia is to automatically extract structured information from
existing wiki pages without the need to make any change to them. As we all know,
a wiki page is simply a page of text. So where is the structured information?

The answer lies in a special type of templates called infoboxes. Let us take a look
at these templates first. Note that the goal of this section is to show you the fact that
the information contained in infobox templates is the main source for structured
information extraction, and not to discuss how to create and populate an infobox. If
you are completely new to infobox, it might be helpful to check out its basic concept
from Wikipedia’s help page.

Templates in Wikipedia are originally introduced mainly for layout purposes, and
infobox template is one particular type of these templates. When used on a page, it
provides summary information about the subject that is being discussed on the given
page, and the direct benefit to the user is to save time; if you don’t have time to read
the long wiki page, you can simply read this infobox to get its main point.

For the wiki site itself, infobox offers several benefits. First, since it is created
from a template, similar subjects on different pages will all have a uniform look
and a common format. Second, to change the display style and common texts in
infoboxes, one does not have to go through each one of these infoboxes. Instead,
one can simply modify the style and common texts from a well-controlled central
place (the template page), and all the displayed infoboxes will be changed.

To see the code behind a given infobox, for example, the infobox on Roger
Federer’s page, you can simply click the view source tab on the top of the page
(see Fig. 10.1).

386 10 DBpedia

List 10.1 shows part of the code for the infobox on Roger Federer’s wiki page.
Note that the actual image of the infobox is not included here, since we are mainly
interested in code behind the infobox. Again, remember at the time of reading this
chapter, this infobox may as well be changed, but the basic idea is still the same.
Also, in order for us to read it easily, List 10.1 has been edited slightly.

List 10.1 Infobox on Roger Federer’s wiki page

{{Infobox Tennis player

|playername = Roger Federer

|image = [[File:Roger Federer (26 June 2009, Wimbledon) 2

new.jpg|200px|]]

|caption = Wimbledon 2009

|country = [[Switzerland]]

|nickname= ’ ’Swiss Maestro’ ’<ref>...</ref>

’ ’Federer Express’ ’</br>

’ ’Fed Express’ ’</br>

’ ’FedEx’ ’<ref>...</ref>

|residence = [[Wollerau]], [[Switzerland]]

|datebirth = {{birth date and age|df=yes|1981|08|08}}
|placebirth = [[Basel]], [[Switzerland]]

|height = {{height|m=1.86}}
|weight = {{convert|85.0|kg|lb st|abbr=on}}<ref>...</ref>
|turnedpro = 1998<ref>...</ref>

|plays = Right-handed; one-handed backhand

|careerprizemoney = [[US]] 53,362,068
* [[ATP Tour

records#Earnings|All-time leader in earnings]]

|singlesrecord = 678-161 (80.8%)<ref>...</ref>

|singlestitles = 61

|highestsinglesranking = No. ’ ’ ’1’ ’ ’ (February 2, 2004)

|currentsinglesranking = No. ’ ’ ’1’ ’ ’ (July 6, 2009)

|AustralianOpenresult = ’ ’ ’W’ ’ ’ (

[[2004 Australian Open - Men’s Singles|2004]],

[[2006 Australian Open - Men’s Singles|2006]],

[[2007 Australian Open - Men’s Singles|2007]])

|FrenchOpenresult = ’ ’ ’W’ ’ ’ (

[[2009 French Open - Men’s Singles|2009]])

|Wimbledonresult = ’ ’ ’W’ ’ ’ (

[[2003 Wimbledon Championships - Men’s Singles|2003]],

[[2004 Wimbledon Championships - Men’s Singles|2004]],

[[2005 Wimbledon Championships - Men’s Singles|2005]],

[[2006 Wimbledon Championships - Men’s Singles|2006]],

[[2007 Wimbledon Championships - Men’s Singles|2007]],

[[2009 Wimbledon Championships - Men’s Singles|2009]])

|USOpenresult = ’ ’ ’W’ ’ ’ (

10.2 Semantics in DBpedia 387

[[2004 U.S. Open - Men’s Singles|2004]],

[[2005 U.S. Open - Men’s Singles|2005]],

[[2006 U.S. Open - Men’s Singles|2006]],

[[2007 U.S. Open - Men’s Singles|2007]],

[[2008 U.S. Open - Men’s Singles|2008]])

|Othertournaments = Yes

|MastersCupresult = ’ ’ ’W’ ’ ’ (

[[2003 Tennis Masters Cup#Singles|2003]],

[[2004 Tennis Masters Cup#Singles|2004]],

[[2006 Tennis Masters Cup#Singles|2006]],

[[2007 Tennis Masters Cup#Singles|2007]])

|Olympicsresult = ’ ’SF’ ’ (

{{OlympicEvent|Tennis|2000 Summer|title=2000|
subcategory=Men’s Singles}})

|doublesrecord = 112-72 (60.8%)

|doublestitles = 8

|OthertournamentsDoubles = yes

|grandslamsdoublesresults= yes

|AustralianOpenDoublesresult = 3R (2003)

|FrenchOpenDoublesresult = 1R (2000)

|WimbledonDoublesresult = QF (2000)

|USOpenDoublesresult = 3R (2002)

|OlympicsDoublesresult = [[Image:Gold medal.svg|20px]]

’ ’ ’Gold Medal’ ’ ’ ({{OlympicEvent|Tennis|2008 Summer|

title=2008|subcategory=Men’s Doubles}})

|highestdoublesranking = No. 24 (9 June 2003)

|updated = 24 November 2009}}

Now, besides admiring Roger Federer’s amazing career achievements, we should
not miss the most important thing we see from this infobox: an infobox is simply a
collection of property–value pairs.

The infobox in List 10.1 is created by the page authors who have used an
infobox template designed for athletes, which belongs to People category. There
are infobox templates for a large number of other categories as well. For example,
Place, Music, Movie, Education, Organization, just to name a few. All these
infoboxes, although from different category templates, will share the same style;
each one of them is a collection of property–value pairs.

This property–value pair style should suggest the creation of RDF statements,
with each statement mapped to one such pair in the infobox. More specifically, for a
given pair, the property name maps to the predicate of a statement, and the property
value maps to the object of that statement.

What about the subject of these RDF statements? Note that the whole collection
of property–value pairs in a given infobox is used to describe the subject of that
given page. Therefore, all the RDF statements should share the exact same subject,

388 10 DBpedia

and the subject of the current wiki page naturally becomes the resource described
by the generated RDF statements.

And this is the basic idea behind DBpedia’s automatic information extraction.

10.2.2 Creating DBpedia Ontology

10.2.2.1 The Need for Ontology

As we have learned, RDF statements use classes and properties to describe
resources, and these classes and properties are defined in some given ontologies.
It should be clear to us that when using the same set of ontologies, distributed RDF
graphs are able to share the same precisely defined semantics, and when linked
together, they can provide new non-trivial facts that are valuable to us. Therefore,
whenever we discuss a collection of RDF documents, the first question we should
ask is, what are the ontologies used by these RDF documents?

Note that, however, it is perfectly legal to create RDF statements without using
any ontology at all. The result is that the resources described by these statements
will not have any precisely defined meanings. In addition, they will not be able to
participate in any reasoning process or take advantage of any benefit from aggrega-
tion with other resources. These RDF statements will simply remain isolated with
fairly limited value.

In fact, generating RDF statements without using ontology was a major drawback
in the early versions of DBpedia’s extractor. To have a better idea about this, let us
take a look at one such example.

Again, go back to the page for Roger Federer. List 10.2 shows part of the infobox
on his page in Wikipedia.

List 10.2 Name, birthday, and birthplace information from Roger Federer’s
infobox

|playername = Roger Federer

|datebirth = {{birth date and age|df=yes|1981|08|08}}
|placebirth = [[Basel]], [[Switzerland]]

One earlier version of DBpedia’s extractor, when parsing this infobox, would
simply turn the attribute names contained in the infobox into the predicates of the
generated RDF statements. For example, for Federer’s name attribute, the predicate
would have the following name:

dbprop:playername

where dbprop is the abbreviation of http://dbpedia.org/property/. and for
his birth date and birth place attributes, the corresponding RDF predicates would
look like.

dbprop:datebirth

dbprop:placebirth

10.2 Semantics in DBpedia 389

Other property–value pairs would be processed similarly.
Now, take a look at the infobox of another person, Tim Berners-Lee. Part of his

infobox is shown in List 10.3.

List 10.3 Name, birthday and birthplace information from Berners-Lee’s
infobox

| name = Tim Berners-Lee

| birth_date = {{birth date and age|1955|6|8|df=y}}
| birth_place = [[London]], [[UK]]

Similarly, the extractor would use the following property names as the predicates
of the generated RDF statements:

dbprop:name

dbprop:birth_date

dbprop:birth_place

Since there is no formal ontology shared by these statements, there will be no
way for the machine to know the following fact:

• Both Roger Federer and Tim Berners-Lee are resources whose class type is
Person.

• dbprop:name is the same as dbprop:playername.
• dbprop:birth_date is the same as dbprop:datebirth.
• dbprop:birth_place is the same as dbprop:placebirth.

And without knowing the above, as far as any application is concerned, the
generated statements are just a collection of alphabetic strings.

The conclusion is that whenever RDF statements are generated, ontologies
should be used. And more specifically to the case of DBpedia, we need formal defi-
nitions of classes and properties. The attributes in infobox templates will be mapped
to these classes and properties when RDF statements about the page subject are
generated.

Fortunately, the above idea has been implemented by the new extractor starting
from DBpedia Release 3.2. More specifically,

• it first creates an instance of some class type defined in the ontology to represent
the subject of the current page;

• it then maps each attribute extracted from the infobox to a property that is
defined in the ontology and can also be used to describe the given subject
instance, and

• the extracted property value will become the object of the created RDF statement.

We are going to study a real example of the generated RDF graph, but at this
point, let us take a look at the ontology that is being used.

390 10 DBpedia

The ontology used by the new extractor is simply called DBpedia ontology; it is
based on OWL and it forms the structural backbone of DBpedia. Its features can be
summarized as follows (Jentzsch 2009):

• It is a shallow, cross-domain ontology.
• It is manually created, based on the most commonly used infobox templates

within Wikipedia. More specifically,
• from 685 most frequently used templates, 205 ontology classes are defined, and
• from 2,800 template properties, 1,200 ontology properties are created.

To access this ontology, you can visit DBpedia’s official Web site and find the
link to this ontology. At the time of this writing, this link is given as follows:

http://wiki.dbpedia.org/Ontology

The rest of this section will focus on how this ontology is developed.

10.2.2.2 Mapping Infobox Templates to Classes

First off, each Wikipedia’s infobox template is carefully and manually mapped to a
class defined in DBpedia ontology.

For example, one such infobox template is the Tennis player template, which
has been manually mapped to the following class:

http://dbpedia.org/ontology/TennisPlayer

Currently, Wikipedia has about 685 infobox templates, and these templates are
mapped to about 205 classes defined in DBpedia ontology. Table 10.1 shows more
example mappings.

The following revere-engineering steps are used to come up with the information
contained in Table 10.1, and they are listed here so that you can explore the mapping
on your own if you need to. Note that we have used the city of Berlin as our example
to describe these steps.

Table 10.1 Mapping Wikipedia’s infobox templates to classes defined in DBpedia ontology

Wikipedia infobox template DBpedia class mapping Example page

Tennis player dbclass:TennisPlayer Roger Federer
Officeholder dbclass:officeHolder Bill Clinton
Person dbclass:Person Tim Berners-Lee
German Bundesland dbclass:City Berlin
Film dbclass:Film Forrest Gump
Company dbclass:Company Ford Motor Company
University dbclass:University Tsinghua University

prefix dbclass: <http://dbpedia.org/ontology/>

10.2 Semantics in DBpedia 391

Step 1. Go to the page about city of Berlin in Wikipedia.
This page is located in the following URL:

http://en.wikipedia.org/wiki/Berlin

Step 2. After you land on the page about Berlin, click edit this page link to
see the infobox code. In our example, you can see the infobox has a template
called German Bundesland.

Step 3. Open up Berlin’s corresponding page in DBpedia.
The following link will be able to take you to the DBpedia Berlin page:

http://dbpedia.org/resource/Berlin

Step 4. When you reach the DBpedia Berlin page, click the RDF icon on the
upper right hand, and this will take you to the RDF file generated by the
extractor (more on this later).
In our example, this takes you to the following page:

http://dbpedia.org/data/Berlin.rdf

Step 5. Confirm the above file does exist at the above URL. In other words, you
should be able to open the above URL without any trouble. Now open up a
SPARQL endpoint, and conduct the query as shown in List 10.4.

List 10.4 SPARQL query to check the class type for city Berlin

select distinct ?value

from <http://dbpedia.org/data/Berlin.rdf>

where

{

<http://dbpedia.org/resource/Berlin> rdf:type ?value .

}

order by asc(?value)

This will show you all the class types that Berlin as a resource belongs to. And
you can see the most specific class type is the following:

http://dbpedia.org/ontology/City

and this is how we know the fact that infobox template German Bundesland

has been mapped to class http://dbpedia.org/ontology/City as shown in
Table 10.1. You can repeat the above steps for other mappings shown in Table 10.1.
For a given infobox template that is not included in Table 10.1, you can find its
corresponding class type by following the above steps as well.

392 10 DBpedia

To get more understanding of this ontology, let us go back to Roger Federer’s
wiki page again. His wiki page has an infobox template called Tennis player,
and as discussed earlier, this has been manually mapped to TennisPlayer class
defined in DBpedia ontology. List 10.5 shows the definition.

List 10.5 Definition of TennisPlayer class in DBpedia ontology

<owl:Class rdf:about="http://dbpedia.org/ontology/TennisPlayer">
<rdfs:label xml:lang="en">Tennis Player</rdfs:label>
<rdfs:subClassOf

rdf:resource="http://dbpedia.org/ontology/Athlete"/>
</owl:Class>

As shown in List 10.5, class TennisPlayer is a sub-class of Athlete, whose
definition is shown in List 10.6.

List 10.6 Definition of Athlete class in DBpedia ontology

<owl:Class rdf:about="http://dbpedia.org/ontology/Athlete">
<rdfs:label xml:lang="en">Athlete</rdfs:label>
<rdfs:subClassOf

rdf:resource="http://dbpedia.org/ontology/Person"/>
</owl:Class>

And similarly, class Person is defined in List 10.7.

List 10.7 Definition of Person class in DBpedia ontology

<owl:Class rdf:about="http://dbpedia.org/ontology/Person">
<rdfs:label xml:lang="en">Person</rdfs:label>
<rdfs:subClassOf

rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
</owl:Class>

Therefore, Person is the top-level class. By following the same route, you can
get a good understanding about every class defined in DBpedia ontology.

10.2.2.3 Mapping Infobox Template Attributes to Properties

DBpedia ontology also includes a set of properties, which are created by another
important mapping that is also manually implemented. More specifically, for a given
Wikipedia infobox template, the attributes used in the template are carefully mapped
to a set of properties defined in DBpedia ontology, and these properties all have
the template’s corresponding ontology class as their rdfs:domain. For now, about
2,800 template properties have been mapped to about 1,200 ontology properties.

For example, to see the properties that can be used on TennisPlayer class, we
can start from its base class, namely Person. Since TennisPlayer is a sub-class

10.2 Semantics in DBpedia 393

of Person, all the properties that can be used on a Person instance can also be
used to describe any instance of TennisPlayer.

The SPARQL query in List 10.8 can be used to find all these properties.

List 10.8 SPARQL query to find all the properties defined for Person class

prefix dbpediaOnt: <http://dbpedia.org/ontology/>

select distinct ?propertyName

from <http://downloads.dbpedia.org/3.4/dbpedia_3.4.owl>

where

{

?propertyName rdfs:domain dbpediaOnt:Person .

}

Note the following link in List 10.8:

http://downloads.dbpedia.org/3.4/dbpedia_3.4.owl

which is the URL location for DBpedia ontology. And List 10.9 shows part of the
results.

List 10.9 Some of the properties defined for Person class

<http://dbpedia.org/ontology/Person/otherName>

<http://dbpedia.org/ontology/Person/birthName>

<http://dbpedia.org/ontology/Person/birthDate>

<http://dbpedia.org/ontology/Person/birthPlace>

<http://dbpedia.org/ontology/title>

<http://dbpedia.org/ontology/party>

<http://dbpedia.org/ontology/child>

<http://dbpedia.org/ontology/spouse>

<http://dbpedia.org/ontology/partner>

<http://dbpedia.org/ontology/father>

<http://dbpedia.org/ontology/mother>

Similarly, repeat the query shown in List 10.8, but change the class name to
Athlete, so the query will tell us all the properties defined for class Athlete.
List 10.10 shows some of the properties that can be used to describe an Athlete

instance.

List 10.10 Some of the properties defined for Athlete class

<http://dbpedia.org/ontology/currentNumber>

<http://dbpedia.org/ontology/currentPosition>

<http://dbpedia.org/ontology/currentTeam>

<http://dbpedia.org/ontology/formerTeam>

394 10 DBpedia

And List 10.11 shows the ones for TennisPlayer. Again, you can obtain these
two lists by modifying the query given in List 10.8.

List 10.11 Some of the properties defined for TennisPlayer class

<http://dbpedia.org/ontology/careerprizemoney>

<http://dbpedia.org/ontology/plays>

Take a quick look at the properties contained in Lists 10.9, 10.10, and 10.11. We
will see some of them in use when the extractor tries to describe Roger Federer as a
resource of type TennisPlayer in the next section.

Now going back to Tim Berners-Lee’s example. Without even studying the
infobox template on his wiki page, we are sure he will be another instance of class
Person or its sub-class. Therefore, he will share lots of properties with the instance
that identifies Roger Federer. The situation where same properties have different
names, as we have described earlier, will not happen again.

Finally, you can always follow what we have done here to understand DBpedia
ontology, which will be very helpful when you need to conduct SPARQL queries,
as we will show in the sections to come.

10.2.3 Infobox Extraction Methods

Now we have reached the point where we are ready to see how the extractor works.
In general, the extractor visits a wiki page, parses the infobox template on the page,
and generates an RDF document that describes the content of the given page.

In real practice, it is much more complex than this. More specifically, Wikipedia’s
infobox template system has evolved over time without a centralized coordination,
and the following two situations happen quite often:

• Different communities use different templates to describe the same type of things.
For example, to describe Roger Federer, a Tennis player template is used. Yet
to describe Pete Sampras (another famous tennis player), a Tennis biography

template is used. We will see more about this in later sections.
• Different templates use different names for the same attribute.

For example, to describe Roger Federer, datebirth and placebirth are
used, and when it comes to describe Tim Berners-Lee, birth_date and
birth_place are used.

Other things similar to the above can also happen. In general, one of the main
reasons for the above is that it is difficult to guarantee that all the Wikipedia edi-
tors will strictly follow the recommendations given on the page that describes a
template.

As a result, DBpedia project team has decided to use two different extraction
approaches in parallel: a generic approach and a mapping-based approach, which
will be discussed in the next two sections.

10.2 Semantics in DBpedia 395

10.2.3.1 Generic Infobox Extraction Method

The generic infobox extraction method is quite straightforward and can be described
as follows:

• For a given Wikipedia page, a corresponding DBpedia URI is created, which has
the following form:

http://dbpedia.org/resource/Page_Name

• The above DBpedia URI will be used as the URI identifier for the subject.
• The predicate URI is created by concatenating the following namespace fragment

and the name of the infobox attribute:

http://dbpedia.org/property/

• Object is created from the attribute value and will be post-processed in order to
generate a suitable URI identifier or a simple literal value.

• Repeat this for each attribute–value pair until all are processed.

The above process will be repeated for each page in Wikipedia. The advantage is
that this approach can completely cover all infoboxes and their attributes. The dis-
advantage is the fact that synonymous attribute names are not resolved. Therefore,
some ambiguity always exists, and SPARQL query will be difficult to construct.
In addition, there is no formal ontology involved, meaning that no application can
make any inferencing based on the generated RDF statements.

10.2.3.2 Mapping-Based Infobox Extraction Method

The main difference between the mapping-based extraction approach and the
generic extraction approach that we have discussed above is that the mapping-based
approach makes full use of the DBpedia ontology. More specifically, two types of
mapping are included:

• Template-to-class mapping: infobox template types are mapped to classes. As we
have discussed, at this point, 685 templates are mapped to 205 ontology classes.

• Attribute-to-property mapping: properties from within the templates are mapped
to ontology properties. At this point, 2,800 template properties are mapped to
1,200 ontology properties.

And to implement these mappings, fine-tuned rules are created to help parsing
infobox attribute names and values. The following is a rundown of the steps the
extractor uses to generate the RDF graph for a given page:

• For a given Wikipedia page, its on-page infobox template type is retrieved by the
extractor.

• Based on the template-to-class mapping rule, the extractor is able to find its
corresponding class type defined in DBpedia ontology.

396 10 DBpedia

• The extractor then creates an RDF resource as an instance of this class, and this
resource will also be the subject of all the future RDF statements for this page. In
addition, it has the following URI as its identifier:

http://dbpedia.org/resource/Page_Name

• The extractor now parses the attribute–value pairs found in the infobox on the cur-
rent page. More specifically, the attribute-to-property mapping rules have to be
applied to map each attribute to the appropriate property defined in the ontology.
Each one of such mapping will create a predicate URI.

• For each attribute value, a corresponding object will be created to represent
the value and will be post-processed in order to generate either a suitable URI
identifier or a simple literal value.

• Repeat this for each attribute–value pair until all are processed.

The above are the basic steps used to generate an RDF document for a given page.
Today, this extraction approach is the one that is in use, and it has been repeated
for a large portion of Wikipedia. The generated machine-readable dataset is called
DBpedia, as you have known.

Note that to save space, we are not going to include examples here and list the
generated RDF statements. If you would like to, you can go to the page and get
the generated RDF file easily. For example, the generated DBpedia page for Roger
Federer can be accessed from the following URL:

http://dbpedia.org/page/Roger_Federer

and at the bottom of the page, you will find different sterilization formats of the
generated RDF document.

The advantage of this mapping-based approach is obvious; the RDF documents
are based on ontologies, therefore, SPARQL queries are much easier to construct,
any given application can now conduct inference on the datasets.

The main disadvantage is that this method cannot provide a complete coverage
on the Wikipedia pages. For example, it can only cover the infobox templates that
have been mapped to the ontology. However, with more and more mapping being
built, more coverage can be easily implemented.

Finally, note that the quality of DBpedia heavily depends on this extractor, which
further depends on the mapping rules and the DBpedia ontology itself. At the time
of your reading, this algorithm will almost certain be improved, but the idea as
described above will likely remain the same.

10.3 Accessing DBpedia Dataset

DBpedia is a huge collection of RDF graphs, with precisely defined semantics.
And of course, there are different paths one can use when it comes to interaction
with DBpedia. However, it is difficult for first-time users to use portions of this

10.3 Accessing DBpedia Dataset 397

infrastructure without any guidance. Actually, given the fact that data gathering and
exposure via RDF standards is making constant progress, the related user interfaces,
documentation, data presentation, and general tutorial for users are still surprisingly
limited.

In this section, we will discuss three different methods you can use to interact
with DBpedia, and they will serve as a starting point for you. With this starting
point, you will find your journey with DBpedia much easier and enjoyable.

10.3.1 Using SPARQL to Query DBpedia

10.3.1.1 SPARQL Endpoints for DBpedia

As you might has guessed, you can use SPARQL to query DBpedia. In fact,
DBpedia provides a public SPARQL endpoint you can use:

http://dbpedia.org/sparql

In practice, this endpoint is generally used directly by remote agents. We
therefore will access the endpoint via a SPARQL viewer, and you can find it at

http://dbpedia.org/snorql/

Figure 10.3 shows the opening page of this SPARQL explorer.
As you can see, to make your query construction easier, a set of namespace

shortcuts have been provided to you, as shown in List 10.12.

List 10.12 Pre-defined namespaces used in SPARQL explorer for DBpedia

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX : <http://dbpedia.org/resource/>

PREFIX dbpedia2: <http://dbpedia.org/property/>

PREFIX dbpedia: <http://dbpedia.org/>

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

In fact, we would like to replace the shortcut for dbpediawith the following one:

PREFIX dbpedia: <http://dbpedia.org/ontology/>

which is in fact more useful than the one given in List 10.12. For the rest of this
section, all our examples have the same prefix definitions as above, and we therefore
will not include them in our queries.

398 10 DBpedia

Fig. 10.3 DBpedia’s SPARQL endpoint

10.3.1.2 Examples of Using SPARQL to Access DBpedia

Obviously, to start using SPARQL to query DBpedia dataset, you have to know the
resource name of the subject you are interested in, its class type, and some properties
that can be used to describe the resource.

To get to know the subject’s corresponding resource name, follow this simple
rule: if the subject has the following page in Wikipedia:

http://en.wikipedia.org/wiki/Name

its resource name will then be given by the following URI:

http://dbpedia.org/resource/Name

To know which class type this resource belongs to, the easiest way is to use
the query as shown in List 10.13, again using Roger Federer as our favorite
example:

10.3 Accessing DBpedia Dataset 399

List 10.13 SPARQL query to understand the class type of the resource
identifying Federer

SELECT * WHERE {

:Roger_Federer a ?class_type.

}

In order not to make this chapter take too much space, the query result is normally
not included unless it is necessary to do so. Also, including the result may not be
that useful because of the dynamic nature of DBpedia dataset.

Now, the query shown in List 10.13 does tell us the class type of the resource that
represents Roger Federer. For our immediate purpose, we will remember the most
specific one: dbpedia:TennisPlayer.

List 10.14 is another simple query we can use to find what properties the extractor
has used to describe Roger Federer.

List 10.14 SPARQL query to find out all the properties used to describe Federer

SELECT * WHERE {

:Roger_Federer ?propertyName ?propertyValue.

}

With these two queries (in fact, you can use the query in List 10.14 alone), you
can gain some basic knowledge about your subject of interest, and you can start
more interesting queries from here.

For example, List 10.15 shows all the tennis players who are from the same
country as Federer is.

List 10.15 Find all the tennis players who are from the same country as Federer

SELECT ?someone ?birthPlace

WHERE {

:Roger_Federer dbpedia:birthPlace ?birthPlace.

?someone a dbpedia:TennisPlayer.

?someone dbpedia:birthPlace ?birthPlace.

}

At the time of my writing, I got nine players back, including Federer himself.
Compare this to what you get when you are reading this chapter, and it is interesting
to see the growth of the DBpedia.

The query in List 10.16 tries to find those tennis players who have also won all
the grand slams that Federer has won.

List 10.16 Find all those players who also won all the grand slams that Federer
has won

SELECT * WHERE {

:Roger_Federer dbpedia2:australianopenresult ?aussie_result.

400 10 DBpedia

:Roger_Federer dbpedia2:usopenresult ?us_result.

:Roger_Federer dbpedia2:wimbledonresult ?wimbeldon_result.

:Roger_Federer dbpedia2:frenchopenresult ?frenchopen_result.

?player a dbpedia:TennisPlayer.

?player dbpedia2:australianopenresult ?aussie_result.

?player dbpedia2:usopenresult ?us_result.

?player dbpedia2:wimbledonresult ?wimbeldon_result.

?player dbpedia2:frenchopenresult ?frenchopen_result.

}

As we know, so far, Federer has won all four grand slams in his career, and List
10.16 is looking for other players who have also won all the four titles. Table 10.2
shows the query result.

Clearly, this query does not return Pete Sampras as one of the players who
have won all the grand slams titles that Federer has won. If you have fol-
lowed tennis world even vaguely, you might know the reason: Sampras has never
won French Open in his career, that is why he is not included in the query
result.

Now, we can change the query by eliminating the French Open result, as shown
in List 10.17.

List 10.17 Change the query in List 10.16 to exclude French Open result

SELECT * WHERE {

:Roger_Federer dbpedia2:australianopenresult ?aussie_result.

:Roger_Federer dbpedia2:usopenresult ?us_result.

:Roger_Federer dbpedia2:wimbledonresult ?wimbeldon_result.

?player a dbpedia:TennisPlayer.

?player dbpedia2:australianopenresult ?aussie_result.

?player dbpedia2:usopenresult ?us_result.

?player dbpedia2:wimbledonresult ?wimbeldon_result.

}

Table 10.2 Players who have also won all the grand slams that Federer has won

aussie_result us_result wimbeldon_result frenchopen_result player name

"W"@en "W"@en "W"@en "W"@en :Chris__Evert
"W"@en "W"@en "W"@en "W"@en :Steffi_Graf
"W"@en "W"@en "W"@en "W"@en :Rod_Laver
"W"@en "W"@en "W"@en "W"@en :Andre_Agassi
"W"@en "W"@en "W"@en "W"@en :Roger_Federer
"W"@en "W"@en "W"@en "W"@en :Billie_Jean_King
"W"@en "W"@en "W"@en "W"@en :Roy_Emerson
"W"@en "W"@en "W"@en "W"@en :Martina_Navratilova

10.3 Accessing DBpedia Dataset 401

And we do get more players back this time, but we still cannot find Pete Sampras
in the result set. However, we know he did win all the other three titles. So what is
wrong?

The reason is the resource that represents Pete Sampras

http://dbpedia.org/resource/Pete_Sampras

has not been created as an instance of class dbpedia:TennisPlayer, since the
infobox template used on his wiki page is not the tennis player template. Clearly,
this is another example showing the importance of ontology.

You can further explore the DBpedia dataset by using SPARQL queries, and you
can try some other areas that you like. For example, movies or music. In addition, try
to think about how you can accomplish the same thing in Wikipedia. For example,
try to accomplish what List 10.16 has accomplished in Wikipedia. Obviously, you
have to sift through lots of pages for tennis players. It is very likely you will stop
and decide to find something better to do.

10.3.2 Direct Download of DBpedia Datasets

Another way to access DBpedia is to directly download its RDF dumps. One reason
of doing this is that you can then build your application on the datasets that you have
downloaded. Since the datasets are on your local machine, your application will run
faster, therefore easier to test.

To access this download page, visit the following URL:

http://wiki.dbpedia.org/Downloads351

Since currently the most recent release of DBpedia is 3.5.1, the download site
has a 351 suffix. At the time of your reading, this will be changed for sure, so the
link to the download page will also be changed. However, you can always find the
latest download link on DBpedia’s home page.

10.3.2.1 The Wikipedia Datasets

The first dataset you can download contains the original Wikipedia files, i.e., a copy
of all Wikipedia wikis in the form of wikitext source and a copy of all pages from all
Wikipedia wikis in HTML format. Obviously, these are the input materials for the
DBpedia extractor, and they are offered here as a foundation for your own research,
or for building your own applications.

10.3.2.2 DBpedia Core Datasets

The second part of the downloadable files are the so-called core datasets. They are
machine-readable datasets generated by DBpedia project itself. To generate these
datasets, a complete DBpedia dataset is first created by the DBpedia extractor; it is
then sliced into several parts based on triple predicate. The resulting parts are the
datasets you see, and each dataset is offered in the form of N-triples. We will not be

402 10 DBpedia

able to cover all the datasets here, but the discussion should be detailed enough for
you to continue your own explore of these datasets.

The first dataset is the DBpedia ontology dataset. It is offered here so that you
can download and make use of this ontology in your own applications. The main
advantage of this ontology is that it is created from a central knowledge resource,
and it is not domain specific. It is written in OWL and should be easily understood.
List 10.18 shows part of this ontology.

List 10.18 A portion of the DBpedia ontology

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF

xmlns = "http://dbpedia.org/ontology/"

xml:base="http://dbpedia.org/ontology/"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<owl:Ontology rdf:about="">
<owl:versionInfo xml:lang="de">

Version 3.4 2009-10-05

</owl:versionInfo>

</owl:Ontology>

<owl:Class

rdf:about="http://dbpedia.org/ontology/PopulatedPlace">
<rdfs:label xml:lang="en">Populated Place</rdfs:label>

<rdfs:subClassOf

rdf:resource="http://dbpedia.org/ontology/Place"/>
</owl:Class>

<owl:Class rdf:about="http://dbpedia.org/ontology/Place">
<rdfs:label xml:lang="en">Place</rdfs:label>
<rdfs:subClassOf

rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
</owl:Class>

<owl:Class rdf:about="http://dbpedia.org/ontology/Country">
<rdfs:label xml:lang="en">Country</rdfs:label>
<rdfs:subClassOf

rdf:resource="http://dbpedia.org/ontology/PopulatedPlace"/>
</owl:Class>

<owl:Class rdf:about="http://dbpedia.org/ontology/Area">
<rdfs:label xml:lang="en">Area</rdfs:label>

10.3 Accessing DBpedia Dataset 403

<rdfs:subClassOf

rdf:resource="http://dbpedia.org/ontology/PopulatedPlace"/>
</owl:Class>

The second core dataset is the Ontology Type dataset. This dataset includes all
the resources covered by DBpedia and their related types. For example, List 10.19
shows two triples you will find in this file.

List 10.19 Example triples included in Ontology Types dataset

<http://dbpedia.org/resource/Roger_Federer>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://dbpedia.org/ontology/TennisPlayer>.

<http://dbpedia.org/resource/Tim_Berners-Lee>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://dbpedia.org/ontology/Person>.

With this dataset and the DBpedia ontology, different levels of reasoning can start
to take place. For example, based on the following statements:

<http://dbpedia.org/resource/Roger_Federer>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://dbpedia.org/ontology/TennisPlayer>.

<http://dbpedia.org/ontology/TennisPlayer>

<http://www.w3.org/2000/01/rdf-schema#subClassOf>

<http://dbpedia.org/ontology/Athlete>.

<http://dbpedia.org/ontology/Athlete>

<http://www.w3.org/2000/01/rdf-schema#subClassOf>

<http://dbpedia.org/ontology/Person>.

An application now understands that Roger Federer is not only a TennisPlayer
but also an Athlete and a Person. Note that the above first statement comes from
the Ontology Types dataset, and the other two statements are from the DBpedia
Ontology dataset.

The next dataset is the Ontology Infobox Properties dataset, where all the prop-
erties and property values of all resources are collected. List 10.20 shows some
example content you will find in this dataset.

List 10.20 Example content in Ontology Infoboxes dataset

<http://dbpedia.org/resource/Roger_Federer>

<http://xmlns.com/foaf/0.1/homepage>

<http://www.rogerfederer.com/>.

404 10 DBpedia

<http://dbpedia.org/resource/Roger_Federer>

<http://dbpedia.org/ontology/country>

<http://dbpedia.org/resource/Switzerland>.

<http://dbpedia.org/resource/Roger_Federer>

<http://dbpedia.org/ontology/birthDate>

"1981-08-08"ˆˆxsd:date.

<http://dbpedia.org/resource/Roger_Federer>

<http://dbpedia.org/ontology/plays>

"Right-handed; one-handed backhand".

If you are developing your own application, this dataset will become a main
source from where you will expect to get most of the machine-readable data. In
fact, this dataset is further sliced into a collection of more detailed datasets based
on triple predicate, and the following is a brief rundown of these generated datasets.
Again, we only discuss a few, and you can understand the rest accordingly.

Titles dataset is about rdfs:label property, therefore contains triples as
follows:

<http://dbpedia.org/resource/Roger_Federer>

<http://www.w3.org/2000/01/rdf-schema#label>

"Roger Federer"@en.

<http://dbpedia.org/resource/Tim_Berners-Lee>

<http://www.w3.org/2000/01/rdf-schema#label>

"Tim Berners-Lee"@en.

Home pages dataset is about foaf:homepage property, therefore contains
triples as follows:

<http://dbpedia.org/resource/Roger_Federer>

<http://xmlns.com/foaf/0.1/homepage>

<http://www.rogerfederer.com/>.

<http://dbpedia.org/resource/Tim_Berners-Lee>

<http://xmlns.com/foaf/0.1/homepage>

<http://www.w3.org/People/Berners-Lee/>.

Finally, Persondata dataset is all about personal information, therefore con-
tains predicates such as foaf:name, foaf:givenname and foaf:surname. The
following are some triple examples from this dataset:

<http://dbpedia.org/resource/Roger_Federer>

<http://xmlns.com/foaf/0.1/name>

"Roger Federer".

10.3 Accessing DBpedia Dataset 405

<http://dbpedia.org/resource/Roger_Federer>

<http://xmlns.com/foaf/0.1/givenname>

"Roger"@de.

<http://dbpedia.org/resource/Roger_Federer>

<http://xmlns.com/foaf/0.1/surname>

"Federer"@de.

10.3.2.3 Extended Datasets

Besides the core datasets we have discussed above, DBpedia has also created a col-
lection of extended datasets, which provide links to those datasets that are outside
of DBpedia. We will have more understanding about the reasons behind these
extended datasets when we finish the next chapter. For now, let us briefly examine
these extended datasets to get some basic understanding. Again, we will not cover
all of them, and what you will learn here will be enough for you to continue on
your own.

The first one we would like to cover is the Links to Wikicompany dataset. Clearly,
there will be quite a lot of statements in DBpedia datasets created about companies.
And as we have learned from the last chapter, Wikicompany is a semantic wiki
site about companies. Therefore, links between these two seems to be helpful. For
example, List 10.21 shows some statements taken from this dataset.

List 10.21 Example statements taken from Links to Wikicompany dataset

<http://www4.wiwiss.fu-

berlin.de/wikicompany/resource/ABC_News_Now>

<http://www.w3.org/2002/07/owl#sameAs>

<http://dbpedia.org/resource/ABC_News_Now>.

<http://www4.wiwiss.fu-berlin.de/wikicompany/resource/ACCBank>

<http://www.w3.org/2002/07/owl#sameAs>

<http://dbpedia.org/resource/ACCBank>.

As shown in List 10.21, ABC News Now, the popular 24-h news network, is
identified in DBpedia by the following URI:

http://dbpedia.org/resource/ABC_News_Now

and in Wikicompany, the same resource has the following URI:

http://www4.wiwiss.fu-

berlin.de/wikicompany/resource/ABC_News_Now

406 10 DBpedia

And knowing this fact is very useful. For example, one thing we can do, among
many others, is to aggregate the information from both sites so as to learn more
about this news broadcasting network.

This example has captured the main idea behind these extended datasets provided
by DBpedia project. Let us take a look at one more example.

Another extended dataset is called Links to RDF Bookmashup. It maps DBpedia
books to the books identified by the RDF Bookmashup project developed by Freie
Universität Berlin.1 RDF Bookmashup assigns URIs to books, authors, reviews and
online bookstores, and purchase offers. Whenever a book title is submitted, the
mashup queries Amazon API for information about the book and Google Base API
for purchase offers from different bookstores that sell the book. The aggregated
information is returned in RDF format which can be understood by applications.

List 10.22 shows some example statements from this extended dataset.

List 10.22 Example statements from Links to RDF Bookmashup dataset

<http://dbpedia.org/resource/Honour_Among_Thieves>

<http://www.w3.org/2002/07/owl#sameAs>

<http://www4.wiwiss.fu-berlin.de/bookmashup/books/9780330419031>.

<http://dbpedia.org/resource/Honour_Among_Thieves>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://dbpedia.org/class/Book>.

<http://dbpedia.org/resource/Acquainted_With_the_Night>

<http://www.w3.org/2002/07/owl#sameAs>

<http://www4.wiwiss.fu-berlin.de/bookmashup/books/0002006391>.

<http://dbpedia.org/resource/Acquainted_With_the_Night>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://dbpedia.org/class/Book>.

10.3.3 Access DBpedia as Linked Data

Finally, we can access DBpedia datasets as part of Linked Data. Linked Data will be
covered in the next chapter, and you will see more on this topic until then. For now,
understanding two important aspects of DBpedia project will prepare you well.

The first thing to understand is that DBpedia’s resource identifiers are set up in
such a way that DBpedia dataset server will deliver different documents based on
different requests. More specifically, the following URI that identifies Roger Federer

http://dbpedia.org/resource/Roger_Federer

1http://www4.wiwiss.fu-berlin.de/bizer/bookmashup/

10.3 Accessing DBpedia Dataset 407

will return RDF descriptions when accessed by Semantic Web applications and
will return HTML content for the same information if accessed by traditional Web
or human users. This is the so-called content negotiation mechanism that we will
discuss in detail in the next chapter.

Second, to facilitate URI reuse, DBpedia should be consulted whenever you are
ready to describe a resource in the world. Since DBpedia is the machine-readable
version of Wikipedia, it is therefore possible that DBpedia has already created a
URI for the resource you intend to describe. For example, Nikon D300 camera that
we have been working with in the earlier chapters of this book has the following
DBpedia URI:

http://dbpedia.org/resource/Nikon_D300

As we will see in the next chapter, using URIs created by DBpedia project not
only promotes URI reuse but also helps to create more Linked Data. In fact, Linked
Data publishers often try to find DBpedia resource URIs to build more links.

Fig. 10.4 Use DBpedia’s URI lookup service to find URIs of Roger Federer

408 10 DBpedia

In order to make it easy to discover these related URIs, DBpedia provides a
lookup service that returns DBpedia URIs for a given set of keywords. This service
can be accessed from the following URL:

http://lookup.dbpedia.org/api/search.asmx

and not only human users can directly access it, it can also be used as a Web service.
The submitted keywords will be used to compare against the rdfs:label property
of a given resource, and the most likely matches will be returned. Fig. 10.4 shows
the results when using “Roger Federer” as keywords.

As shown in Fig. 10.4, http://dbpedia.org/resource/Roger_Federer
is returned as the first choice. Therefore, if you were to search a URI that identifies
Federer, you would be easily finding it.

10.4 Summary

In this chapter, we have learned DBpedia. It is not only another example of the
Semantic Web technologies at work, but also a key component on the Web of Linked
Data, as we will see in the next chapter.

First off, understand the following about DBpedia:

• It is a machine-readable version of Wikipedia.
• It is automatically generated by processing the pre-existing structured informa-

tion on each page in Wikipedia.
• Also, understand that in order to make DBpedia machine readable, the following

has been implemented by the DBpedia project team:
• A DBpedia ontology is defined by manually mapping infobox templates to

classes and template attributes to properties.
• A DBpedia extractor is developed to process the infobox on a given Wikipedia

page, an RDF document that represents the page is generated, and terms from
the DBpedia ontology are used when generating this RDF document.

• The DBpedia extractor has visited a good portion of Wikipedia; the result is
the DBpedia dataset, which is machine readable.

Finally, understand different ways of accessing DBpedia:

• DBpedia can be accessed by using a Web browser.
• DBpedia can be accessed by using a SPARQL endpoint.
• DBpedia can be accessed as part of the Linked Data.

Reference

Jentzsch A (2009) DBpedia – extracting structured data from Wikipedia. Presentation at Semantic
Web in Bibliotheken (SWIB2009), Cologne, Germany

Chapter 11
Linked Open Data

In Chap. 9 we have studied semantic wiki, where semantic information is manually
added to the Web content. In Chap. 10, we have studied DBpedia project, where
semantic documents are automatically generated. As we have discussed in Chap. 7,
besides annotating the pages manually or generating the markup documents auto-
matically, there is indeed another solution: to create a machine-readable Web all
from the scratch.

The idea is simple: if we start to publish machine-readable data, such as RDF
documents on the Web, and somehow make all these documents connected to
each other, then we will be creating a Linked Data Web that can be processed by
machines.

This is the idea behind the Linked Open Data (LOD) project, the topic of this
chapter.

11.1 The Concept of Linked Data and Its Basic Rules

In recent years, the concept of Linked Data, and the so-called Web of Linked Data,
has attracted tremendous attention from both the academic world and real applica-
tion world. In this section, we will examine the concept of Linked Data and its basic
rules. What we will learn here from this section will provide a solid foundation for
the rest of this chapter.

11.1.1 The Concept of Linked Data

The concept of Linked Data was originally proposed by Tim Berners-Lee in his
2006 Web architecture note.1 Technically speaking, Linked Data refers to data pub-
lished on the Web in such a way that it is machine readable, its meaning is explicitly
defined, it is linked to other external datasets, and it can in turn be linked to from
external datasets as well. Conceptually, Linked Data refers to a set of best practices
for publishing and connecting structured data on the Web.

1http://www.w3.org/DesignIssues/LinkedData.html

409L. Yu, A Developer’s Guide to the Semantic Web,
DOI 10.1007/978-3-642-15970-1_11, C© Springer-Verlag Berlin Heidelberg 2011

410 11 Linked Open Data

The connection between Linked Data and the Semantic Web is quite obvi-
ous: publishing and consuming machine-readable data is the center for both of
these concepts. In fact, in recent years, Linked Data and the Semantic Web have
become two concepts that are interchangeable. After finishing this chapter, you will
reach your own conclusion regarding the relationship between Linked Data and the
Semantic Web.

In practice, the basic idea of Linked Data is quite straightforward and can be
summarized as follows:

• use the RDF data model to publish structured data on the Web and

• use RDF links to interlink data from different data sources.

Applying these two simple tenets repeatedly leads to the creation of a Web of Data
that machine can read and understand. This Web of Data, at this point, can be under-
stood as one realization of the Semantic Web. The Semantic Web, therefore, can be
viewed as created by the linked structured data on the Web.

Given the fact that Linked Data is also referred to as the Web of Linked Data,
it is then intuitive to believe that it must share lots of common traits exhib-
ited by the traditional Web. This is a true intuition, yet for every single one of
these traits, the Web of Linked Data is profoundly different from the Web of
document.

Let us take a look at this comparison, which will certainly give us more under-
standing about Linked Data and the Semantic Web. Note that at this point, some of
the comparisons may not make perfect sense to you, but rest assured that they will
become clear after you have finished the whole chapter.

• On the traditional Web, anyone can publish anything at his/her will, at any time.

The same is true for the Linked Data Web: anyone, at any time, can publish
anything on the Web of Linked Data, except that the published documents have
to be RDF documents. In other words, these documents are for machines to use,
not for human eyes.

• To access the traditional Web, we use Web browsers.

The same is true for the Web of Linked Data. However, since the Web of Linked
Data is created by publishing RDF documents, we use Linked Data browsers
that can understand RDF documents and can follow the RDF links to navigate
between different data sources. Traditional Web browsers, on the other hand, are
designed to handle HTML documents, and they will not be the best choices when
it comes to accessing the Web of Linked Data.

• Traditional Web is interesting since everything on the Web is linked together.

The same is true for the Web of Linked Data. An important fact, however, is
that under the hood, the HTML documents contained by the traditional Web are
connected by un-typed hyperlinks. For the Web of Linked Data, rather than sim-
ply connecting documents, it uses RDF model to make typed links that connect

11.1 The Concept of Linked Data and Its Basic Rules 411

arbitrary things in the world. The result is that we can then build much smarter
applications as we will see in the later part of this chapter.

• Traditional Web can provide structured data which can be consumed by Web-
based applications.

This is especially true with more and more APIs being published by major players
on the Web. For example, eBay, Amazon, Google all have published their APIs.
Web applications that consume these APIs are collectively named as mashups,
and they do offer quite impressive Web experiences to their users. On the other
hand, under the Web of Linked Data, mashups are called semantic mashups, and
they can be developed in a much more scalable and efficient way. More impor-
tantly, they have the ability to grow dynamically upon unbounded datasets, and
that is what makes them much more useful than traditional mashups. Again,
details will be covered in later sections.

Before we move on, understand that the technical foundation for the Web of
Linked Data is not something we have to create from the ground up. To its very
bottom, the Web of Linked Data is a big collection of RDF triples, where the subject
of any triple is a URI reference in the namespace of one dataset, and the object of
the triple is a URI reference in the namespace of another. In addition, by employing
HTTP URIs to identify resources, HTTP protocol as retrieval mechanism and RDF
data model to represent resource descriptions, Linked Data is directly built upon the
general architecture of the Web – a solid foundation that has been tested for more
than 20 years.

Furthermore, what we have learned so far, such as RDF model, RDF Schema,
OWL, and SPARQL, all these technical components will find their usages in the
world of Linked Data.

11.1.2 How Big Is the Web of Linked Data and the LOD Project

The most accurate way to calculate the size of the Web of Linked Data is to use a
crawler to count the number of RDF triples that it has collected when traveling on
the Web of Linked Data. This is quite a challenging task, and given the fact that
some of the RDF triples are generated dynamically, we therefore have to run the
crawler repeatedly in order to get the most recent count.

However, the size of the Web of Data can be estimated based on the dataset
statistics collected by the LOD community in the ESW Wiki.2 According to these
statistics, the Web of Data, on 4 May 2010, consists of 13.1 billion RDF triples,
which are interlinked by around 142 million RDF links (as of 29 September 2009).
Note the majority of these triples are generated by the so-called wrappers, which
are utility applications responsible for generating RDF statements from existing

2http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/DataSets/Statistic,
http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/DataSets/LinkStatistics

412 11 Linked Open Data

relational database tables, and only a small portion of these triples are generated
manually.

The Linking Open Data Community Project has been focusing on the idea and
implementation of the Web of Data for the last several years. It was originally
sponsored by W3C Semantic Web Education and Outreach Group, and you can
find more information about this group from this URL:

http://www.w3.org/2001/sw/sweo/

For the rest of this chapter, we will mainly examine the Linked Data project from
technical perspective; you can always find more information on the project from the
following Web sites:

• Linking Open Data project wiki home page:

http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

• Linked Data at the ESW Wiki page:

http://esw.w3.org/topic/LinkedData

• Linked Data Community Web site:

http://linkeddata.org/

11.1.3 The Basic Rules of Linked Data

The basic idea of Linked Data is to use RDF model to publish structured data on the
Web and also use RDF links to interlink data from different data sources.

In practice, to make sure the above idea is carefully and correctly followed when
constructing the Web of Linked Data, four basic rules are further proposed by Tim
Berners-Lee in his 2006 Web architecture note:

Rule 1. Use URIs as names for things.
Rule 2. Use HTTP URIs so that a client (machine or human reader) can look up

these names.
Rule 3. When someone looks up a URI, useful information should be provided.
Rule 4. Include links to other URIs, so that a client can discover more things.

The first rule is obvious, and it is also what we have been doing all the time: for
a given resource or concept, we should use a unique and universal name to iden-
tify it. This simple rule eliminates the following two ambiguities on the traditional
Web: (1) same name (word) in different documents can refer to completely differ-
ent resources or concepts and (2) a given resource or concept can be represented by
different names (words) in different documents.

The second rule simply puts one more constraint on the first rule by specifying
that not only should we use URIs to represent objects and concepts, but we should
also only use HTTP URIs.

11.2 Publishing RDF Data on the Web 413

The reason behind this rule is quite obvious. To make sure that data publishers
can come up with identifiers that are indeed globally unique without involving any
centralized management, the easiest way is to use HTTP URIs, since the domain
part of these URIs can automatically guarantee their uniqueness. In addition, HTTP
URIs naturally suggest to the clients that these URIs can be directly used as a means
of accessing information about the resources over the Web.

The third rule further strengthens the second rule: if the client is dereferencing
a given URI in a Web browser, there should always be some useful information
returned back to the client. In fact, at the early days of the Semantic Web, this was
not always true: when a given URI was used in a browser, there might or might not
be any information coming back at all. We will see more details on this rule later.

The last rule is to make sure the Linked Data world will grow into a real Web:
without the links, it will not be a Web of data. In fact, the real interesting thing
happens only when the data are linked together and the unexpected fact is discovered
by exploring the links.

Finally, note that the above are just the rules of the Web of Linked Data; breaking
these rules does not destroy anything. However, without these rules, the data will not
be able to provide anything that is interesting.

Now that we have all the background information and we have also learned all
the rules, let us take a detailed look into the world of Linked Data. In the next two
sections, we will first study how exactly to publish RDF data on the Web; we will
then explore different ways to link these data together on the Web.

11.2 Publishing RDF Data on the Web

RDF data are the building blocks of Linked Data. To publishing RDF data on the
Web means to follow these steps:

• identifying things by using URIs;
• choosing vocabularies for RDF data;
• producing RDF statements to describe the things;
• creating RDF links to other RDF datasets; and finally
• serving your RDF triples on the Web.

Let us study each one of them in detail.

11.2.1 Identifying Things with URIs

11.2.1.1 Web Document, Information Resource, and URI

To begin with, URI is not something new, and for most of us, a URI represents a
Web document. For example, the following URI:

http://www.liyangyu.com/

414 11 Linked Open Data

Fig. 11.1 URI/URL for information resource

represents the front page of my personal Web site. This page, like everything else
on the traditional Web, is a Web document. We often call the above URI a URL,
and as far as Web document is concerned, URL and URI are interchangeable: URL
is a special type of URI; it tells us the location of the given Web document. In other
words, if a user types in the above URL (URI) into a Web browser, the front page of
my Web site will be returned.

Recall that a Web document is defined as something that has a URI and can
return representations of the identified resource in response to HTTP requests. The
returned representations can take quite a few formats including HTML, JPEG, or
RDF, just to name a few.

In recent years, Web documents have a new name: information resources. More
precisely, everything we find on the traditional document Web, such as docu-
ments, images (and other media files) are information resources. In other words,
information resources are the resources that satisfy the following two conditions:

• can be identified by URIs;
• can return representations when the identified resources are requested by the

users.

Figure 11.1 shows the above concept.
Currently on the Web, to request the representations of a given Web document,

clients and servers use HTTP to communicate. For example, the following could be
the request sent to the server:

GET / HTTP/1.1

Host: www.liyangyu.com

Connection: close

11.2 Publishing RDF Data on the Web 415

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)

Accept-Encoding: gzip

Accept-Charset: ISO-8859-1,UTF-8;q=0.7,*;q=0.7
Cache-Control: no

Accept-Language: de,en;q=0.7,en-us;q=0.3

And the server will answer with a response header, which tells the client whether
the request has been successful, and if successful, the content (representation) will
follow the response header.

Let us go back to our basic question in this section: what URIs should we use to
identify things in the world? At this point, we can come up with part of the answer:
for all the information resources, we can simply use the good old URLs as their
URIs to uniquely identify them.

Now, what URIs should we use for the rest of the things (resources) in the world?

11.2.1.2 Non-information Resources and Their URIs

Except for the information resources, the rest of the resources in the world are called
non-information resources. In general, non-information resources include all the
real-world objects that exist outside the Web, such as people, places, concepts, ideas,
anything you can imagine, and anything you want to talk about.

To come up with URIs that can be used to identify these non-information
resources, there are two important rules proposed by W3C Interest Group.3 Let us
use some examples to understand them.

Let us say I want to come up with a URI to represent myself (a non-information
resource). Since I already have a personal Web site, www.liyangyu.com, could I
then use the following URI to identify myself?

http://www.liyangyu.com/

This idea is quite intuitive, given the fact that the Web document at the above
location does describe me and the URI itself is also unique. However, this clearly
confuses a person with a Web document. For any user, the first question that comes
to mind will be, does this URI represent this person’s home page, or does it represent
him as a person?

If we do use the above URI to identify myself, it is then likely that part of my
FOAF file would look like the following:

<rdf:Description rdf:about="http://www.liyangyu.com/">
<foaf:name>liyang yu</foaf:name>

<foaf:title>Dr</foaf:title>

<foaf:givenname>liyang</foaf:givenname>

<foaf:family_name>yu</foaf:family_name>

<foaf:mbox rdf:resource="liyang910@yahoo.com"/>

3Cool URIs for the Semantic Web, W3C Interest Group Note 03 December 2008 (http://www.
w3.org/TR/cooluris/).

416 11 Linked Open Data

Now, if this URI represents my home page, then how could a home page have
foaf:name, and how could it also have a foaf:mbox? On the other hand, if this
URI does represent a person named Liyang Yu, then the above FOAF document
in general seems to be describing a home page which has a Web address given by
www.liyangyu.com.

All these said, it seems to be clear that I need another unambiguous URI to
represent myself. And this gives the first rule summarized by W3C Interest Group:

Be unambiguous: There should be no confusion between identifiers for Web documents and
identifiers for other resources. URIs are meant to identify only one of them, so one URI
cannot stand for both a Web and a real-world object.

Now let us say I have already come up with a URI to represent myself, for
example,

http://www.liyangyu.com/foaf.rdf#liyang

then what happens if the above URI is dereferenced in a browser – do we get
anything back at all? If yes, what do we get back?

For information resources, we get one possible form of representation back,
could be a HTML page, for example. For non-information resources, based on the
following rule proposed by W3C Interest Group, when their URIs are used in a
browser, related information should be retrieved as follows:

Be on the Web: Given only a URI, machines and people should be able to retrieve a descrip-
tion about the resource identified by the URI from the Web. Such a look-up mechanism is
important to establish shared understanding of what a URI identifies. Machines should get
RDF data and humans should get a readable representation, such as HTML. The standard
Web transfer protocol, HTTP, should be used.

This rule makes it clear that for URIs identifying non-information resources,
some descriptions should be returned to the clients. However, it does not specify
any details for implementation purpose.

It turns out in the world of Linked Data, the implementation of this rule also
dictates how the URIs for non-information resources are constructed. Let us cover
the details next.

11.2.1.3 URIs for Non-information Resources: 303 URIs
and Content Negotiation

The first solution is to use the so-called 303 URIs to represent non-information
resources. The basic idea is to create a URI for a given non-information resource,
and when a client posts a request using this URI, the server will return the spe-
cial HTTP status code 303 See Other. This not only indicates the fact that the
requested resource is not a regular Web document, but also further redirects the
client to some other document which provides information about the thing identified
by this URI. By doing so, we will be able to satisfy the above two rules and also
avoid the ambiguity between the real-world object and the non-information resource
that represents it.

11.2 Publishing RDF Data on the Web 417

As a side note, if the server answers the request using a status code in the 200
range, such as 200 OK, it is then clear that the given URI represents a normal Web
document or information resource.

Now, in case where a 303 See Other status code is returned, which document
should the server redirect its client to? This depends on the request from the client.
If the client is an RDF-enabled browser (or some applications that understands RDF
model), it will more likely prefer a URI which points to an RDF document. If the
browser is a traditional HTML browser (or the client is a human reader), it will
then more likely prefer a URI that points to a HTML document. In other words,
when sending the request, the client will include information in the HTTP header
to indicate what type of representation it prefers. The server will inspect this header
to return a new URI that links to the appropriate response. This process is called
content negotiation.

It is now a common practice that for a given real-world resource, we can often
have three URIs for it. For example, for myself as a non-information resource, the
following three URIs will be in use:

• a URI that identifies myself as a non-information resource:

http://www.liyangyu.com/resource/liyang

• a URI that identifies a Web document which has an RDF/XML representation
describing myself. This URI will be returned when a client prefers an RDF
description:

http://www.liyangyu.com/data/liyang

• a URI identifies a Web document that has a HTML representation describing
myself. This URI will be returned when a client prefers a HTML document:

http://www.liyangyu.com/page/liyang

And the first URI,

http://www.liyangyu.com/resource/liyang

is often the one that is seen by the outside world as my URI.

The above schema for constructing URIs for non-information resources is also
viewed as the best practice by the Linked Data community. Another example is the
following three URIs about Berlin, as seen in DBpedia project:

• a URI that is used as the identifier for Berlin:

http://dbpedia.org/resource/Berlin

• a URI that identifies a representation in HTML format (for human readers):

http://dbpedia.org/page/Berlin

• a URI that identifies a representation in RDF/XML format (for machines):

http://dbpedia.org/data/Berlin

418 11 Linked Open Data

Fig. 11.2 Example of content negotiation

It is now clear that for a given resource, there could be multiple content types
for its representation, such as HTML format and RDF/XML format as seen above.
Figure 11.2 shows the process of content negotiation, using my own URI as an
example.

The following steps show the interaction between the server and a client:

• Client is requesting a HTML Web document:

GET /resource/liyang HTTP/1.1

Host: www.liyangyu.com

Accept: text/html

• Server’s response header should include the following fields:

HTTP/1.1 303 See Other

Location: http://www.liyangyu.com/page/liyang

• Client is requesting a machine-readable document for the resource:

GET /resource/liyang HTTP/1.1

Host: www.liyangyu.com

Accept: application/rdf+xml

• Server’s response header should include the following fields:

HTTP/1.1 303 See Other

Location: http://www.liyangyu.com/data/liyang

11.2 Publishing RDF Data on the Web 419

As a summary, 303 URIs require content negotiation when they are used in a
browser to retrieve their descriptions. Furthermore, content negotiation requires at
least two HTTP round-trips to the server to retrieve the desired document. However,
303 URIs eliminate the ambiguity between information and non-information
resources, therefore they provide a uniform and consistent way of representing
resource in the real world.

11.2.1.4 URIs for Non-information Resources: Hash URIs

A hash URI is a URI that contains a fragment, i.e., the part that is separated from the
rest of the URI by a hash symbol (“#”). For example, the following is a hash URI to
identify myself as a resource:

http://www.liyangyu.com/foaf.rdf#liyang

and liyang (to the right of #) is the fragment part of this URI.
Hash URI provides an alternative choice when it comes to identifying non-

information resources. The reason behind this solution is related to the HTTP
protocol itself.

More specifically, when a hash URI is used in a browser, the HTTP protocol
requires the fragment part to be stripped off before sending the URI to the server.
For example, if you dereference the above URI into a Web browser and also monitor
the request sent out to the server, you will see the following lines in the request:

GET /foaf.rdf HTTP/1.1

Host: www.liyangyu.com

Clearly, the fragment part is gone. Instead of retrieving this URI,

http://www.liyangyu.com/foaf.rdf#liyang

the client is in fact requesting this one:

http://www.liyangyu.com/foaf.rdf

In other words, a URI that includes a hash fragment cannot be retrieved directly,
therefore it does not identify a Web document at all. As a result, any URI including a
fragment part is a URI that identifies a non-information resource, thus the ambiguity
is avoided.

Now that there is no ambiguity associated with a hash URI, what should be served
if the URI is dereferenced in a browser? Since we know the fragment part will be
taken off by the browser, we can simply serve a document (either human readable
or machine readable) at the resulting URI which does not have the fragment part.
Again using the following as the example,

http://www.liyangyu.com/foaf.rdf#liyang

we can then serve an RDF document identified by the URI:

http://www.liyangyu.com/foaf.rdf

420 11 Linked Open Data

Note that there is no need for any content negotiation, which is probably the main
reason why hash URIs look attractive to us.

Hash URI does have its own downside. Consider the following three URIs:

http://www.liyangyu.com/foaf.rdf#liyang

http://www.liyangyu.com/foaf.rdf#connie

http://www.liyangyu.com/foaf.rdf#ding

which represent three different resources. However, using any one of them in a
browser will send a single request to this common URI:

http://www.liyangyu.com/foaf.rdf

and if someone is only interested in #connie, still the whole document will have
to be returned. Obviously, using hash URIs lacks the flexibility of configuring a
response for each individual resource.

It is also worth mentioning that even when hash URIs are in used, we can still
use content negotiation if we want to serve both HTML and RDF representations
for the resources identified by the URIs. For example,

• Client is requesting a HTML Web document for the following resource,

http://www.liyangyu.com/foaf.rdf#liyang

and you will see these lines in the request:

GET /roaf.rdf HTTP/1.1

Host: www.liyangyu.com

Accept: text/html

• Response header from the server should include the following fields:

HTTP/1.1 303 See Other

Location: http://www.liyangyu.com/foaf.html

Note that we assume there is a HTML file called foaf.html which includes
some HTML representations of the given resource.

• Now client is requesting machine-readable document for the resource:

GET /roaf.rdf HTTP/1.1

Host: www.liyangyu.com

Accept: application/rdf+xml

• Response header from the server should include the following fields:

HTTP/1.1 303 See Other

Location: http://www.liyangyu.com/foaf.rdf

And similarly, the following two hash URIs,

http://www.liyangyu.com/foaf.rdf#connie

http://www.liyangyu.com/foaf.rdf#ding

11.2 Publishing RDF Data on the Web 421

will have exactly the same content negotiation process, since their fragment parts
will be taken off by the browser before sending them out to the server.

11.2.1.5 URIs for Non-information Resources: 303 URIs vs. Hash URIs

Now that we have introduced both 303 URIs and hash URIs, the next question
is about when a 303 URI should be used and when a hash URI should be used.
Table 11.1 briefly summarizes the advantages and disadvantages of both URIs.

The following is a simple guideline. Once you have more experience working
with the Linked Data and the Semantic Web, you will be able to add more to it:

• For ontologies that are created by using RDF Schema and OWL, it is preferred
to use hash URIs to represent all the terms defined in the ontology, and frequent
access of this ontology will not generate lots of network redirects.

• If you need a quicker and easier way of publishing Linked Data or small and
stable datasets of RDF resource files, hash URI should be the choice.

• Other than the above, 303 URIs should be used to identify non-information
resources if possible.

11.2.1.6 URI Aliases

When it comes to identifying things with URIs, one obvious fact we have noticed
so far is the lack of centralized control of any kind. In fact, anyone can talk about
any resource and come up with a URI to represent that resource. It is therefore
quite possible that different users happen to talk about the same non-information
resource. Furthermore, since they are not aware of each other’s work, they create
different URIs to identify the same resource or concept. Since all these URIs are
created to identify the same resource or concept, they are called URI aliases.

It is commonly suggested that when you plan to publish RDF statements about
a given resource, you should try to find at least some of the URI aliases for this
resource first. If you can find one or multiple URIs for the resource, by all means
reuse one of them, create your own if only you have very strong reason to do so.
And in which case, you should use owl:sameAs to link it to at least one existing

Table 11.1 303 URI vs. Hash URI: advantages and disadvantages

303 URI Hash URI

Advantages Provides the flexibility of configuring
redirect targets for each resource

Provides the flexibility of
changing/updating these targets
easily and freely, at any given time

Does not require content
negotiation, therefore reduces
the number of HTTP round-trips

Since content negotiation is not
required, publishing Linked
Data is easier and quicker

Disadvantages Requires two round-trips for each use
of a given URI

All the resource descriptions have
to be collected in one file

422 11 Linked Open Data

URI. Certainly, you can create your own URI if you cannot find any existing ones
at all.

Now, how do you find the URI aliases for the given resource? At the time of this
writing, there are some tools available on the Web. Let us use one example to see
how these tools can help us.

Assume that we want to publish some RDF statements about Roger Federer, the
tennis player who holds the most grand slam titles at current time. Since he is such
a well-known figure, it is safe to assume that we are not the first one who would like
to say something about him. Therefore, there should be at least one URI identifying
him, if not more.

A good starting place where we can search for these URI aliases is the Sindice
Web site. You can access this Web site here:

http://sindice.com/

More specifically, Sindice can be viewed as a Semantic Web search engine, and it
was originally created at DERI (Digital Enterprise Research Institute) as a research
project. Its main idea is to index the Semantic Web documents over the Web, so for a
given URI, it can search its datasets and further tell us which dataset has mentioned
this given URI.

To us, a more useful feature of Sindice is when searching its datasets, Sindice
not only accepts URIs, but also takes keywords. When it accepts keywords, it will
find all the URIs that either describe or closely match the given keywords first, then
it will locate all the datasets that contain these URIs. This is what we need when we
want to know if there are any existing URIs identifying Roger Federer. Figure 11.3
shows the query session.

And Fig. 11.4 shows the Sindice search result.
The first result in Fig. 11.4 shows a URI identifying Roger Federer (we know

this by noticing the file type of this result, i.e., an RDF document), and this URI is
given as follows:

http://dbpedia.org/resource/Roger_Federer

To collect other URI aliases identifying Roger Federer, we can continue to use
Sindice. However, another tool, called sameAs, can also be very helpful. You can
find sameAs by accessing its Web site:

http://www.sameas.org/

It will help us to find the URI aliases for a given URI. In our case, our search is
shown in Fig. 11.5, and Fig. 11.6 shows the result:

Clearly, at the time of this writing, there are about 23 URIs identifying Roger
Federer, as shown in Fig. 11.6. It is now up to us to pick one of these URIs so we
can publish something about Roger Federer.

As you can tell, these two Web sites are very helpful on finding existing URIs.
In fact, www.sameas.org even provides a link to www.sindice.com, as shown
in Fig. 11.5. You can either directly enter a URI in the <sameAs> box to search

11.2 Publishing RDF Data on the Web 423

Fig. 11.3 A Sindice search session (search for Roger Federer)

for its URI aliases or you can use Sindice first by entering the keywords in the
Sindice box.

Recall the lookup service we have discussed in Chap. 10 about DBpedia – it is
another service we can use to locate URIs that are created by DBpedia for a given
resource. See Fig. 10.4 and Sect. 10.3.3 for details.

At this point, we have briefly discussed about URI aliases. With the development
of the Semantic Web, let us hope that there will better and better solutions out there,
which will greatly facilitate the reuse of URIs.

11.2.2 Choosing Vocabularies for RDF Data

By now, you should understand that when publishing RDF statements, you should
always try to use terms defined in one or more ontologies. For example, the predi-
cate of an RDF statement should always be a URI that comes from the ontologies
you are using. In addition, it is recommended that instead of inventing your own
ontology, you should always use the terms from well-known existing ontologies.
Reusing ontologies will make it possible for clients to understand your data and fur-
ther process your data, therefore the data you have published can easily become part
of the Web of Linked Data.

At this point, there is already a good collection of some well-known ontologies
covering multiple application domains. You can find this collection at the Linking

424 11 Linked Open Data

Fig. 11.4 Search results from Fig. 11.3

Open Data project wiki home page (see Sect. 11.1.2) and make sure to check back
often for updates. The following is a short list, just to name a few:

• Friend-of-a-Friend (FOAF): terms for describing people;
• Dublin Core (DC): terms for general metadata attributes;
• Semantically Interlinked Online Communities (SIOC): terms for describing

online communities;
• Description of a Project (DOAP): terms for describing projects;
• Music Ontology: terms for describing artists, albums, and tracks;
• Review Vocabulary: terms for representing reviews.

In case you do need to create your own ontology, it is still important to make use
of the terms that are defined in these well-known ontologies. In fact, some of the
ontologies given above, such as the Music Ontology, make use of the terms defined
in other ontologies. For example, List 11.1 is taken from the Music Ontology, and it
shows the definition of class SoloMusicArtist.

11.2 Publishing RDF Data on the Web 425

Fig. 11.5 Use sameAs to find URI aliases

List 11.1 Part of the Music Ontology

<?xml version=’1.0’ encoding=’UTF-8’?>
<!DOCTYPE rdf:RDF [
<!ENTITY dc ’http://purl.org/dc/elements/1.1/’>
<!ENTITY mo ’http://purl.org/ontology/mo/’>
<!ENTITY ns1 ’http://www.w3.org/2003/06/sw-vocab-status/ns#’>
<!ENTITY owl ’http://www.w3.org/2002/07/owl#’>
<!ENTITY rdf ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’>
<!ENTITY rdfs ’http://www.w3.org/2000/01/rdf-schema#’>
<!ENTITY xsd ’http://www.w3.org/2001/XMLSchema#’>
]>

<rdf:RDF
xmlns:dc="&dc;"
xmlns:mo="&mo;"
xmlns:ns1="&ns1;"
xmlns:owl="&owl;"
xmlns:rdf="&rdf;"
xmlns:rdfs="&rdfs;"
xmlns:xsd="&xsd;"

>

...

426 11 Linked Open Data

<rdfs:Class rdf:about="&mo;SoloMusicArtist"
mo:level="1"
rdfs:label="SoloMusicArtist"
ns1:term_status="stable">

<rdfs:subClassOf rdf:resource="&mo;MusicArtist"/>
<rdfs:subClassOf

rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
<rdf:type rdf:resource="&owl;Class"/>
<rdfs:comment>Single person whose musical creative work shows

sensitivity and imagination.
</rdfs:comment>
<rdfs:isDefinedBy rdf:resource="&mo;"/>

</rdfs:Class>
...

Note that SoloMusicArtist is defined as a sub-class of foaf:Person.
Therefore, if a given client sees the following:

<rdf:Description
rdf:about="http://zitgist.com/music/artist/79239441-bfd5-4981-
a70c-55c3f15c1287">
<rdf:type
rdf:resource="http://purl.org/ontology/mo/SoloMusicArtist"/>

</rdf:Description>

Fig. 11.6 sameAs search result

11.2 Publishing RDF Data on the Web 427

it will know the real-world resource identified by this URI,

http://zitgist.com/music/artist/79239441-bfd5-4981-a70c-

55c3f15c1287

must be an instance of foaf:Person. If this client is not interested in any instance
of foaf:Person, it can safely disregard any RDF statements that are related to
this resource. Clearly, this reasoning is possible only when the authors of the Music
Ontology have decided to make use of the terms defined in the FOAF ontology.

Creating ontology, like any other design work, requires not only knowledge, but
also experience. It is always helpful to learn how other ontologies are created, so
check out the ontologies listed above. After reading and understanding how these
ontologies are designed and coded, you will be surprised to see how much you have
learned. Also, with the knowledge you have gained, it is more likely that you will
be doing a solid job when creating your own.

11.2.3 Creating Links to Other RDF Data

Now that you have come up with the URIs, and you have the terms from the ontolo-
gies to use, you can go ahead to make your statements about the world. There is
only one thing you need to remember: you need to make links to other RDF datasets
so your statements can participate in the Linked Data cloud.

In this section, we discuss the basic language constructs and ways you can use to
add these links.

11.2.3.1 Basic Language Constructs to Create Links

Let us start with a simpler case: you are creating a FOAF document. The easiest
way to make links in this case is to use foaf:knows, as we have shown in Chap. 7.
Using foaf:knows will not only make sure you can join the “circle of trust”, but
also put your data into the Linked Data cloud.

In fact, besides foaf:knows, there are couple other FOAF terms you can use to
create links. Let us take a look at some examples:

• Use foaf:interest to show your interest:

For example,

<rdf:RDF

xmlns:dc="http://purl.org/dc/terms/"
xmlns:foaf=http://xmlns.com/foaf/0.1/"
<!-- other namespace definitions -->

>

<foaf:interest>

<rdf:Description

rdf:about="http://dbpedia.org/resource/Photography">

428 11 Linked Open Data

<dc:title>photography</dc:title>

</rdf:Description>

</foaf:interest>

This will link you to the world of photography as defined in DBpedia. And as
you know, DBpedia is a major component of the Linked Data cloud.

• Use foaf:base_near to show where you are located:

For example,

<rdf:RDF
xmlns:foaf="http://xmlns.com/foaf/0.1/"
<!-- other namespace definitions -->

>
<rdf:Description

rdf:about="http://www.liyangyu.com/foaf.rdf#liyang">
<foaf:name>liyang yu</foaf:name>
<foaf:based_near

rdf:resource="http://dbpedia.org/resource/Beijing"/>
<!-- other descriptions I may want -->

</rdf:Description>
</rdf:RDF>

This will link you to Beijing, the capital city of China, which is represented
by DBpedia as http://dbpedia.org/resource/Beijing. Again, this is good
enough for putting you into the Linked Data cloud.

With the above two examples, you understand that there are different FOAF
terms you can use to link to the Web of Linked Data. We will leave it to you to
discover other FOAF terms that can be used besides the above two examples.

For a more general case, at least two properties should be considered when
making links: rdfs:seeAlso and owl:sameAs.

rdfs:seeAlso is defined in W3C’s RDFS vocabulary, and it is used to indicate
the fact that another resource might provide additional information about the subject
resource. It therefore can be used to link the current RDF document into the Linked
Data world.

In addition, note that rdfs:domain of rdfs:seeAlso is rdfs:Resource, and
rdfs:range of rdfs:seeAlso is also rdfs:Resource. As a result, this property
is entirely domain-neutral, and works for people, companies, documents, etc.

List 11.2 shows one simple example of using rdfs:seeAlso.

List 11.2 Use rdfs:seeAlso to create link

<rdf:Description

rdf:about="http://www.liyangyu.com/foaf.rdf#liyang">
<foaf:name>liyang yu</foaf:name>

<foaf:title>Dr</foaf:title>

11.2 Publishing RDF Data on the Web 429

<foaf:givenname>liyang</foaf:givenname>

<!-- other descriptions here -->

<rdfs:seeAlso>

<rdf:Description

rdf:about="http://www.liyangyu.com/people/connie.rdf">
</rdf:Description>

</rdfs:seeAlso>

</rdf:Description>

</rdf:RDF>

rdfs:seeAlso property in List 11.2 says that you can find more information
about resource http://www.liyangyu.com/foaf.rdf#liyang from anther
RDF document (connie.rdf). A given client can follow this link to download
connie.rdf and expect to be able to parse this file and collect more information
about the current resource.

This simple example in fact raises a very interesting question: when we build
our application, is it safe to assume that the value of rdfs:seeAlso property will
always be a document that can be parsed as RDF/XML?

Unfortunately, the answer is no. As we have discussed, the formal definition of
rdfs:seeAlso is couched in very neutral terms, allowing a wide variety of docu-
ment types. You could certainly reference a JPEG or PDF or HTML document with
rdfs:seeAlso, which are not RDF documents at all. Therefore, an application
should always account for all these possibilities when following the rdfs:seeAlso
link.

Sometimes, it is a good idea to explicitly indicate that rdfs:seeAlso property
is indeed used to reference a document that is in RDF/XML format. List 11.3 shows
how this can be implemented.

List 11.3 Use rdfs:seeAlso together with dc:format to provide more
information

<rdf:Description

rdf:about="http://www.liyangyu.com/foaf.rdf#liyang">
<foaf:name>liyang yu</foaf:name>

<foaf:title>Dr</foaf:title>

<foaf:givenname>liyang</foaf:givenname>

<!-- other descriptions here -->

<rdfs:seeAlso>

<rdf:Description

rdf:about="http://www.liyangyu.com/people/connie.rdf">
<dc:format>application/rdf+xml</dc:format>

</rdf:Description>

</rdfs:seeAlso>

</rdf:Description>

</rdf:RDF>

430 11 Linked Open Data

Another useful feature about rdfs:seeAlso is that it is often used as a typed
link, which can be very helpful to clients. List 11.4 shows one example of a typed
link specified using rdfs:seeAlso.

List 11.4 rdfs:seeAlso used with typed link

<rdf:Description
rdf:about="http://www.liyangyu.com/foaf.rdf#liyang">

<foaf:name>liyang yu</foaf:name>
<foaf:title>Dr</foaf:title>
<foaf:givenname>liyang</foaf:givenname>
<!-- other descriptions here -->
<rdfs:seeAlso>

<rdf:Description
rdf:about="http://www.liyangyu.com/publication/liyang">

<rdf:type
rdf:resource="http://example.org/someAuthorClassDefinition"/>

<dc:format>application/rdf+xml</dc:format>
</rdf:Description>

</rdfs:seeAlso>
<rdfs:seeAlso>

<rdf:Description
rdf:about="http://www.liyangyu.com/publication/yu_cv.rdf">
<rdf:type

rdf:resource="http://example.org/someResumeClassDefinition"/>
<dc:format>application/rdf+xml</dc:format>

</rdf:Description>
</rdfs:seeAlso>

</rdf:Description>
</rdf:RDF>

Imagine an application that is only interested in publications (not CVs). This
typed link will help the application to eliminate the second rdfs:seeAlso, but
only concentrate on the first one.

owl:sameAs is not something new either. It is defined by OWL to state that two
URI references refer to the same individual. It is now frequently used by Linked
Data publishers to create links between datasets. For example, Tim Berners-Lee, in
his own FOAF file, has been using the following URI to identify himself:

http://www.w3.org/People/Berners-Lee/card#i

and he also uses the following four owl:sameAs properties to state that the indi-
vidual identified by the above URI is the same individual as identified by these
URIs:

<owl:sameAs rdf:resource="http://identi.ca/user/45563"/>
<owl:sameAs
rdf:resource="http://www.advogato.org/person/timbl/foaf.rdf#me"/>
<owl:sameAs rdf:resource=
"http://www4.wiwiss.fu-berlin.de/bookmashup/persons/Tim+Berners-
Lee"/>

11.2 Publishing RDF Data on the Web 431

<owl:sameAs rdf:resource=
"http://www4.wiwiss.fu-berlin.de/dblp/resource/person/100007"/>

and clearly, some of these URIs can be used to link his FOAF document into the
Linked Data cloud. In fact, at this point, the last two URIs are indeed used for this
purpose.

owl:sameAs can certainly be used in other RDF documents. Generally speak-
ing, when instances of different classes refer to the same individual, these instances
can be identified and linked together by using owl:sameAs property. This directly
supports the idea that the same individual can be seen in different context as
entirely different entities, and by linking these entities together, we can discover
the unexpected facts that are both interesting and helpful to us.

The above discussion has listed some basic language constructs we can use to
create links. In practice, when it comes to creating links in RDF documents, there
are two methods: creating the links manually or generating the links automatically.
Let us briefly discuss these two methods before we close this section.

11.2.3.2 Creating Links Manually

Manually creating links is quite intuitive, yet it does require you to be familiar
with the published and well-known linked datasets out there, therefore you can pick
your linking targets. In particular, the following steps are normally followed when
creating links manually in your RDF document:

• Understand the available linked datasets.

This can be done by studying the currently available datasets published and orga-
nized by experts in the field. For example, as of July 2009, Richard Cyganiak
has published the LOD Cloud as shown in Fig. 11.7. The updated version can be
accessed from this location:

http://linkeddata.org/images-and-posters

And if you access this Linked Data collection at the above location, you can
actually click each dataset and start to explore that particular dataset. This will
help you to get an overview of all the datasets that are available today, and you
can also select the dataset(s) that you wish to link into.

• Find the URIs as your linking targets.

Once you have selected the datasets to link into, you can then search in these
datasets to find the URIs that you want to link to. Most datasets provide a search
interface, such as a SPARQL endpoint, so you can locate the appropriate URI
references for your purpose. If there is no search interface provided, you can
always use Linked Data browsers to explore the dataset, as we will discuss in a
later section.

With the above two steps, you can successfully create your links. Let us take a
look at a simple example.

432 11 Linked Open Data

Fig. 11.7 Richard Cyganiak’s clickable version of LOD cloud as of July 2009

Assume I have created my own FOAF document, and I am ready to create some
links which point to some available linked dataset. The first step is to choose such a
dataset. Let us say I would like to express the fact that I am interested in the Semantic
Web, and I need to find a dataset which describes the concept of the Semantic Web.
Since DBpedia is machine-readable version of Wikipedia, it is safe to assume that
DBpedia might already have included the concept of the Semantic Web. Therefore,
DBpedia is currently chosen as the target dataset.

The second step is to search in DBpedia datasets for the URI that represents the
Semantic Web. In fact, I have found the following URI that describes this concept:

http://dbpedia.org/resource/Semantic_Web

and with this, I can add the following link into my own FOAF:

<http://www.liyangyu.com/foaf.rdf#liyang>
foaf:topic_interest <http://dbpedia.org/resource/Semantic_Web>.

11.2 Publishing RDF Data on the Web 433

This will successfully put my own small FOAF document into the Web of Linked
Data.

In some cases, you can use a relatively direct way to find the URI reference that
you can use to create your links. For example, without selecting any datasets, we
can directly search the phrase “the Semantic Web” in Sindice.com. We can easily
find a list of URIs that have been created to identify this concept, including the URI
coined by DBpedia.

11.2.3.3 Creating Links Automatically

Compared to manually creating links, generating links automatically is certainly
more efficient and more scalable, and it is always the preferred method if possible.
However, at the time of this writing, there is still a lack of good and easy-to-use tools
to automatically generate RDF links. In most cases, dataset-specific algorithms have
to be designed to accomplish the task. In this section, we will briefly discuss this
topic so as to give you some basic idea along this direction.

A collection of often used algorithms is the so-called pattern-based algorithms.
This group of algorithms take advantage of the fact that for a specific domain,
there may exist some generally accepted naming pattern, which could be useful
for generating links.

For example, in the publication domain, if ISBN is included as part of the URI
that is used to identify a book, such as the case in the RDF Book Mashup dataset,
then a link can be created with ease. More specifically, DBpedia can locate all the
wiki pages for books, and if a given wiki page has an ISBN number included, this
number is used to search among the URIs used by RDF Book Mashup dataset. When
a match is found, an owl:sameAs link will be created to link the URI of the book in
DBpedia to the corresponding RDF Book Mashup URI. This algorithm has helped
to generate at least 9000 links between DBpedia and RDF Book Mashup dataset.

In cases where no common identifiers can be found across datasets, more com-
plex algorithms have to be designed based on the characteristics of the given
datasets. For example, many geographic places appear in Geonames4 dataset as
well as in DBpedia dataset. To make the two sets of URIs representing these places
link together, the Geonames team has designed a property-based algorithm to auto-
matically generate links. More specifically, properties such as latitude, longitude,
country, and population are taken into account, and a link will be created if all
these properties show some similarity as defined by the team. This algorithm has
generated about 70,500 links between the datasets.

As a summary, automatic generation of links is possible for some specific
domain, or with a specifically designed algorithm. When it is used properly, it is
much more scalable than the manual method.

4http://www.geonames.org/ontology/

434 11 Linked Open Data

11.2.4 Serving Information as Linked Data

11.2.4.1 Minimum Requirements for Being Linked Open Data

Before we can put our data onto the Web, we need to make sure it satisfies some
minimal requirements in order to be qualified as “Linked Data on the Web”:

1. If you have created any new URI representing non-information resource, this
new URI has to be dereferenceable in the following sense:

– your Web server must be able to recognize the MIME-type application/

rdf+xml;
– your Web server has to implement the 303 redirect as described in

Sect. 11.2.1.3. In other words, your Web server should be able to return a
HTTP response containing a HTTP redirect to a document that satisfies the
client’s need (either an rdf+xml document or a html+text document, for
example);

– if implementing 303 redirect on your Web server is not your plan, your new
URIs have to be hash URIs as we have discussed in Sect. 11.2.1.5.

2. You should include links to other data sources, so a client can continue its nav-
igation when it visits your data file. These links can be viewed as outbound
links.

3. You should also make sure there are external RDF links pointing at URIs con-
tained in your data file, so the open Linked Data cloud can find your data. These
links can be viewed as the inbound links.

At this point, these requirements should look fairly straightforward. The follow-
ing are some technical details that you should be aware of.

First off, you need to make sure your Web server is able to recognize the
rdf+xml as a MIME type. Obviously, this is necessary since once you have pub-
lished your data into the Linked Data cloud, different clients will start to ask for
rdf+xml files from your server. In addition, this is a must if you are using hash
URIs to identify real-world resources.

A popular tool we can use for this purpose is called cURL,5 which provides a
command-line HTTP client that communicates with a given server. It is therefore
able to help us to check whether a URI supports some given requirements, such
as understanding rdf+xml as a MIME type, supporting 303 redirects and content
negotiation, just to name a few.

To get this free tool, go to this place:

http://curl.haxx.se/download.html

and on this page, you will find different packages for different platforms. For
windows users, you can find the download here:

http://curl.haxx.se/download.html#Win32

5http://curl.haxx.se/

11.2 Publishing RDF Data on the Web 435

Once you have downloaded the package, you can extract it to a location of your
choice, and you should be able to find curl.exe in that location. You can then start
to test whether a given server is able to recognize the rdf+xml MIME type.

For testing purpose, we can request my own URI as follows:

curl -I http://www.liyangyu.com/foaf.rdf#liyang

Note that the –I parameter has to be used here (refer to cURL’s documentation
for details). Once we submit the above line, the server sends back the content type
and other HTTP headers along with the response. For this example, the following is
part of the result:

HTTP/1.1 200 OK

Last-Modified: Tue, 11 Aug 2009 02:49:10 GMT

Accept-Ranges: bytes

Content-Length: 1152

Content-Type: application/rdf+xml

Connection: close

The important line is the Content-Type header. We see the file is served as
application/rdf+xml, just as it should be. If we were to see text/plain here
or if the Content-Type header was missing, the server configuration would have
to be changed.

When it comes to fixing the problem, it does depend on the server. Use Apache
as an example, the fix is simple: just add the following line to httpd.conf file,
or to a .htaccess file in the Web server’s directory where the RDF files are
located:

AddType application/rdf+xml.rdf

That is it. And since you are on it, you might as well go ahead and add the
following two lines to make sure your Web server can recognize two more RDF
syntaxes, i.e., N3 and Turtle:

AddType text/rdf+n3;charset=utf-8.n3
AddType application/x-turtle.ttl

Now, when it comes to configuring your Web server to implement 303 redirect
and furthermore content negotiation, it is unfortunately not all that easy. This pro-
cess depends heavily on your particular Web server and its local configuration; it
is some times quite common that you may not even have the access rights that
are needed to make the configuration changes. Therefore, we will not cover this in
detail, but remember, it is one step that is needed to publish Linked Data on the Web
and it is not hard at all if you have the full access to your server.

With all these said, let us take a look at one example showing how to publish
Linked Data on the Web.

436 11 Linked Open Data

11.2.4.2 Example: Publishing Linked Data on the Web

A good starting point is to publish our own FOAF files as Linked Data on the Web.
Let us start with my own FOAF file. To satisfy the minimal requirements that we
have discussed above, we can follow these steps:

Step 1. Check whether our Web server is configured to return the correct MIME
type when serving rdf/xml files.

Let us assume this step has been done correctly or you can always follow the
previous discussion to make sure your Web server is configured properly.

Step 2. Since we are not going to configure our Web server to implement 303
redirect and content negotiation, we decide to use Hash URI to identify myself:

http://www.liyangyu.com/foaf.rdf#liyang

Again, when a client attempts to dereference this URI, the hash fragment
(#liyang) will be taken off by the client before it sends the URI to the server.
The resulting URI is therefore given by the following:

http://www.liyangyu.com/foaf.rdf

Now, all we need to do is to make sure that we put the RDF file, foaf.rdf,
at the right location on the server, so a client submitting the above URI will be
able to look into the response and find the RDF file successfully.

In this example, foaf.rdf file should be located in the root directory on our
server, and it could look like something as shown in List 11.5.

List 11.5 My own FOAF document

1: <?xml version="1.0" encoding="UTF-8"?>
2: <rdf:RDF
3: xml:lang="en"
4: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
5: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
6: xmlns:foaf="http://xmlns.com/foaf/0.1/">
7:
8: <rdf:Description
8a: rdf:about="http://www.liyangyu.com/foaf.rdf#liyang">
9: <foaf:name>liyang yu</foaf:name>
10: <foaf:title>Dr</foaf:title>
11: <foaf:givenname>liyang</foaf:givenname>
12: <foaf:family_name>yu</foaf:family_name>
13: <foaf:mbox_sha1sum>1613a9c3ec8b18271a8fe1f79537a7b08803d896
13a: </foaf:mbox_sha1sum>
14: <foaf:homepage rdf:resource="http://www.liyangyu.com"/>
15: <foaf:workplaceHomepage
15a: rdf:resource="http://www.delta.com"/>
16: <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
17: </rdf:Description>
18: </rdf:RDF>

11.2 Publishing RDF Data on the Web 437

Step 3. Make sure you have outbound links.

We can add some outbound links to the existing linked datasets. As
shown in List 11.6, properties <foaf:knows> (lines 18–24) and <foaf:

topic_interest> (line 26) are used to add two outbound links. This will
ensure any client visiting my FOAF document can continue its journey into the
Linked Data cloud.

List 11.6 My FOAF document with outbound links
1: <?xml version="1.0" encoding="UTF-8"?>
2: <rdf:RDF
3: xml:lang="en"
4: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
5: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
6: xmlns:foaf="http://xmlns.com/foaf/0.1/">
7:
8: <rdf:Description
8a: rdf:about="http://www.liyangyu.com/foaf.rdf#liyang">
9: <foaf:name>liyang yu</foaf:name>
10: <foaf:title>Dr</foaf:title>
11: <foaf:givenname>liyang</foaf:givenname>
12: <foaf:family_name>yu</foaf:family_name>
13: <foaf:mbox_sha1sum>1613a9c3ec8b18271a8fe1f79537a7b08803d896
13a: </foaf:mbox_sha1sum>
14: <foaf:homepage rdf:resource="http://www.liyangyu.com"/>
15: <foaf:workplaceHomepage
15a: rdf:resource="http://www.delta.com"/>
16: <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
17:
18: <foaf:knows>
19: <!-- the following is for testing purpose -->
20: <foaf:Person>
21: <foaf:mbox
21a: rdf:resource="mailto:libby.miller@bristol.ac.uk"/>
22: <foaf:homepage
22a: rdf:resource="http://www.ilrt.bris.ac.uk/~ecemm/"/>
23: </foaf:Person>
24: </foaf:knows>
25:
26: <foaf:topic_interest
26a: rdf:resource="http://dbpedia.org/resource/Semantic_Web"/>
27:
28: </rdf:Description>
29: </rdf:RDF>

Step 4. Make sure you have inbound links.

This step is to make sure my FOAF document can be discovered by the outside
world. The details about this can be found in Chap. 7, refer back to that chapter
if you need to.

After these four steps, we are ready to upload my FOAF document onto the server
at the right location and claim success. However, for those curious minds, how do

438 11 Linked Open Data

we know it is published as Linked Data correctly based on the given standards? Is
there a way to check this?

The answer is yes, and let us now take a look at how to make sure we have done
everything correctly.

11.2.4.3 Make Sure You Have Done It Right

Just as we have validators for checking RDF documents including RDF instance
files and OWL ontologies, we also have Linked Data validator which can be used to
confirm whether some structured data are published correctly as Linked Data, based
on the current best practices as we have been discussing in this chapter.

Here is one such tool you can use. It is called Vapour and you can access this
service from this location:

http://vapour.sourceforge.net/

and Fig. 11.8 shows this page.
Let us again use my own FOAF document as shown in List 11.6 as the example,

and we will validate whether this FOAF document is published correctly as Linked

Fig. 11.8 Vapour: a Linked Data validator

11.3 The Consumption of Linked Data 439

Fig. 11.9 Check my own URI to make sure it is published correctly as Linked Data

Data. To do so, click try our public service link in Fig. 11.8 and enter the
following URI as shown in Fig. 11.9:

http://www.liyangyu.com/foaf.rdf#liyang

Once we click Check button, we get the result as shown in Fig. 11.10. Clearly,
all tests are passed, meaning that my FOAF document is indeed published correctly
as Linked Data.

You can also see more details on the same page if you try this test out, including
dereferencing resource URI with and without content negotiation. As a summary, it
is always a good idea to use a validation service when you publish Linked Data on
the Web, to make sure your data will participate in the loop successfully.

11.3 The Consumption of Linked Data

Now that we understand how the Web of Linked Data is built, the next step is to
study what to do with it. In general, this involves discovering Linked Data, accessing
Linked Data, and building applications that run on top of the Web of Linked Data,
as summarized below:

440 11 Linked Open Data

Fig. 11.10 Validating result from Fig. 11.9

• Discovery of Linked Data

For a given resource in the world, for example, a city or a tennis player, how do
we know this resource has already been a subject of Linked Data? Is there any
Linked Data search engine that crawls the Web of Linked Data by following links
between data sources, and therefore provides answers to our questions?

• Accessing Linked Data

We use Web browsers to access our current Web, the Web of documents. For the
Web of Linked Data, do we have similar Linked Data browsers that we can use to

11.3 The Consumption of Linked Data 441

access the Web of Linked Data? If we have indeed discovered some Linked Data
that we are interested in, how can we start from there? And by using Linked Data
browser, can we start browsing in one data source and then navigate along links
into related data sources?

• Applications built upon Linked Data

Given the fact that the Web of Linked Data is built for machine to read and under-
stand, we can go beyond discovery and accessing the Web of Linked Data and
create new applications built upon the Web of Linked Data. Compared to Web 2.0
mashups, Linked Data applications offer much more flexibility and completeness
in their operations, as we will see later in this chapter.

11.3.1 Discover Specific Target on the Linked Data Web

In the world of traditional hypertext Web, discovery almost exclusively means using
one of the major search engines to find the information you are interested in. Search
engines are therefore the places where the navigation process begins.

For the Web of Linked Data, the same is true: we need search engines that can
work on the Web of Linked Data and therefore can provide us with a tool to make
our discovery.

It will not be too surprising if you are seeing a different look-and-feel from the
search engines that work on the Web of Linked Data. After all, the Web of Linked
Data is quite different from our traditional Web of documents. In fact, Semantic
Web search engines are mostly geared toward the needs of applications, not that of
human eyes. Nevertheless, some researchers and developers have designed search
engines that have a similar look-and-feel as the traditional search engines, and this
breed of search engines can be very useful to at least some user groups.

In this section, we will cover both these types, with the goal of discovering
Linked Data on the Web. To make things easier, we will start from those Semantic
Web search engines that look familiar to our human eyes.

11.3.1.1 Semantic Web Search Engine for Human Eyes

First off, remember that these kinds of search engines are Semantic Web search
engines from their roots. Instead of crawling the Web of document and indexing
each document, these search engines crawl the Web of Linked Data by following
their RDF links, and prepare their indexations based on the Web of Linked Data.

Falcons is a good example of this type of search engine. Falcons represents
“Finding, Aligning and Learning ontologies, ultimately for Capturing knowledge
via ONtology-driven approacheS,” and it is developed by the Institute of Web
Science (IWS), Southeast University of China. You can access it from the following
link:

http://iws.seu.edu.cn/services/falcons/

442 11 Linked Open Data

The first thing to note about Falcons is that it provides a keyword-based search
service, i.e., the user is presented with a search box, where keywords related to the
topics in mind can be entered. Falcons then reacts by returning a list of results that
may be related to the topic. Clearly, this closely mimics the same look-and-feel
offered by current market leaders such as Google and Yahoo!.

Let us say we want to discover if there is any Linked Data about tennis player
Roger Federer. Obviously, if Roger Federer is indeed mentioned in the Web of
Linked Data, he has to be some instance of a given class. For example, he could
be an instance of some class such as Person defined in some ontology. With this in
mind, we should use the Object search in Falcons, and enter Roger Federer in the
search box. This will tell Falcons that the results we are searching for has to contain
“Roger Federer” as keywords and should be coming from some instance data, not
class or type definitions.

Once we submit this query, Falcons responses by returning a list of results. When
presenting the results, for each object (instance data), Falcons shows its title, label,
comment, image, page, type, and URI, if applicable. Clearly, for the Web of Linked
Data, type and URI are all important since type identifies the class of this instance
data, and URI uniquely identifies the instance. For our example, the first result is a
good hit: the URI is given by

http://dbpedia.org/resource/Roger_Federer

and its type is Person. Clearly, the above URI comes from DBpedia, and we know
already that DBpedia is a key component of Linked Data. Therefore, just based
on the very first result, we know we have discovered some Linked Data for ten-
nis player Roger Federer, which can be a good start point for whatever we plan to
do next.

Note that Falcons also provides a Type pane together with the search result, and
this is in fact a very useful feature. Recall that when we first started our search for
any Linked Data related to Roger Federer, we can only say that if this data exists,
it has to be some instance data of some class type. However, we don’t really know
what exactly this class type is, except that the correct type should be something like
Person or Athlete.

Now, the Type pane on the result page shows all the types that are found in the
results. Note that the initial search will focus on “Any type”, therefore it does not
put any further constraints on the type at all. Once we have the initial results back,
we can further narrow down the type by clicking a specific type in the Type pane.
For example, we can click Person in the Type pane, telling Falcons that we believe
Roger Federer should be an instance of some Person class. Once we do this, all
the sub-classes of type Person are now summarized in Type pane, and you can
continue to narrow down your search. Therefore, Object search can be guided by
recommended concepts, and we can further refine search results by selecting object
types.

Besides Object search tab as we have discussed above, Falcons provides two
more search tabs: Concept and Document. Concept search is not much related
to discovering Linked Data on the Web, it is more suited for locating classes and

11.3 The Consumption of Linked Data 443

properties defined in ontologies that are published on the Web. It is quite useful if
you want to find classes and properties that you can reuse, instead of inventing them
again.

Document search gives you a more traditional search engine experience, espe-
cially the look-and-feel of the search results. If you search for Roger Federer, any
RDF document that contains these words will be returned as part of the result
list, be these search items in the instance data or the class or property definitions.
Although not quite efficient, this search can also be used to discover Linked Data on
the Web.

11.3.1.2 Semantic Web Search Engine for Applications

We have made use of Sindice search engine in previous sections, with the goal of
discovering if there is any URI existing for some real-world object that we would
like to talk about. For example, if we want to say something about Roger Federer,
we can use Sindice to discover the URI for him, as shown in Figs. 11.3 and 11.4.

Sindice search engine therefore can also be used as a tool to discover Linked Data
on the Web. When used by human users, it has a similar look-and-feel as Falcons
does: a certain number of keywords can be provided to Sindice, and Sindice will
return RDF documents on the Web which contains these keywords.

Furthermore, if you know the URI for some real-world object, you can search it in
Sindice, and Sindice will return all the RDF documents on the Web which contains
this given URI. For example, Fig. 11.11 shows the result from Sindice when we
search for the URI of Roger Federer.

Clearly, these RDF documents are all linked to some extent since they all have
the URI of Roger Federer in their triples.

By far, Sindice feels much like Falcons. As human users, we can use both to
discover Linked Data on the Web. However, there is more to Sindice: it can be used
by applications as well.

We have not yet discussed Linked Data applications at this point. However, it is
quite intuitive to realize that the first thing each Linked Data application will have
to do is to somehow harvest some Linked Data before it can do anything interesting
with the data. As a result, each Linked Data application will have to implement
its own crawling and indexing component, just to find the interested Linked Data.
Clearly, moving this common infrastructure for crawling and indexing the Web of
Linked Data to a search engine that each individual Linked Data application can
then use will be a much better and cleaner design.

This is the rationale behind the design and implementation of Sindice’s Data Web
Services API and also the reason why we claim Sindice can be a search engine used
by applications. More specifically, each application, by using the Sindice API, can
query Sindice’s collection and receive a set of links that point to those potentially
relevant RDF documents, which can then be processed by the application to create
other interesting results.

At the time of this writing, Sindice API is still in early beta version and is expe-
riencing rapid changes and developments. Therefore, we are not going to show any

444 11 Linked Open Data

Fig. 11.11 Sindice results when searching for the URI of Roger Federer

concrete examples here, but the basic idea as we have discussed above will not
change.

Before we conclude this section, let us very briefly discuss two more Semantic
Web search engines, just to give you a flavor of other choices when it comes to
discovering Linked Data on the Web:

• SWSE

SWSE (Semantic Web Search Engine) is developed by DERI Ireland and
can provide search capabilities more suitable toward human users. It accepts
keyword-based search and further offers access to its underlying data store via
SPARQL query language. At this point, you can access SWSE from this URL:

http://swse.deri.org/

11.3 The Consumption of Linked Data 445

Also, note that similar to Sindice, SWSE is more related to search for instance
data, not types and properties.

• Swoogle

Swoogle is developed by UMBC Ebiquity Research group, which consists of
faculty and students from the Department of Computer Science and Electrical
Engineering (CSEE) of University of Maryland, Baltimore County (UMBC).
Unlike Sindice or SWSE, Swoogle is designed to search ontologies that related
to the concepts provided by its users. Swoogle also provides Web services to the
public users, which can be used by applications that are built on top of the Linked
Data Web. At this point, Swoogle can be accessed at this location:

http://swoogle.umbc.edu/

11.3.2 Accessing the Web of Linked Data

Accessing the Web of Linked Data has two different meanings. First, human users
can access it in a way that is similar to what has been done in traditional Web of doc-
uments, i.e., Linked Data browsers can be used to manually navigate from one data
source to another. Second, applications that are built to understand Linked Data can
access the Linked Data Web and further accomplish different requirements from us.
For example, the so-called Follow-Your-Nose method can be used by applications
to browse the Web of Linked Data. In this section, we will take a closer look at both
these methods.

11.3.2.1 Using a Linked Data Browser

As human users, we can access the Web of Linked Data manually. This normally
requires us to discover a specific piece of Linked Data on the Web first, which is
then used as the starting point for further navigation on the Web of Linked Data.

As traditional Web browsers allow us to access the Web by following hyper-
text links, their counterparts in the Web of Linked Data, the so-called Linked Data
browsers, allow us to navigate from the starting data source to the next data source.
This process can go on by following links that are expressed and coded as RDF
triples, and that is all there is to it when it comes to manually accessing the Web of
Linked Data.

Therefore, the key component in this process is the Linked Data browser. To
learn how to manually access the Linked Data Web is to learn how to use one of
these browsers.

In recent years, there are quite a few browsers that have been developed and
deployed for public use. To find a list of these browsers, you can visit the W3C’s
ESW Wiki page,6 which is also updated quite frequently.

6http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/SemWebClients

446 11 Linked Open Data

In this section, we will take the Sig.ma browser as an example to show you how
Linked Data browsers can be used to access the Web of Linked Data.

Sig.ma is built on top of Sindice, which provides the data needs for Sig.ma. To
some extend, Sig.ma acts much like Sindice’s front-end GUI. You can access Sig.ma
at this location:

http://sig.ma/

And its main page is shown in Fig. 11.12.
To start using it, simply enter the keywords you want to search in the input box

and hit the SEARCH button, quite like using Sindice as a search engine. Obviously,
this step is to find some entry point to access the Web of Linked Data.

Once you hit the SEARCH button, Sig.ma starts its work by doing the following
steps:

1. select 20 data sources from the Web of Linked Data based on the keywords you
have entered;

2. aggregate the information contained in these data sources; and
3. present the aggregated information and the data sources back to the user.

Note the first step is accomplished by using the underlying Sindice search engine
to carry out a keyword-based search in the Web of Linked Data to select the relevant

Fig. 11.12 Sig.ma: a Linked Data Web browser

11.3 The Consumption of Linked Data 447

data sources. If there are less than 20 data sources that are considered to be relevant
to the given keywords, then whatever that are available will be included in the result
set. If there are more than 20 data sources that are relevant, you can add the other
data sources later on, as will be discussed soon.

Aggregating over the selected data sources essentially means to collect every-
thing each data source says about the resource or concept represented by the
keywords you have provided. And since the data sources are all taken from the
Web of Linked Data, aggregating different data sources can be done easily.

Once the first two steps are done, Sig.ma presents the results back to the user by
dividing the screen into the left pane and the right pane. The left pane shows the
aggregated information, which is called the “sigma” for this search. The right pane
shows the data sources based on which the sigma is obtained.

Let us use one example to see how it works. This time, instead of searching for
Roger Federer, I will search for myself. The reason being that if we were to search
Roger Federer, there would be too many datasets to be included. To show you how
to use Sig.ma, a search that does not yield too many results is better.

Now, enter the keywords “liyang yu” in the search box (remember to include
them in a pair of double quotes). Once you hit the SEARCH button, you will be
presented with the result page as shown in Fig. 11.13 (notice if you are trying it, it
is likely that what you see is not the same as what we printed here, and the reason is
obvious).

Fig. 11.13 Using Sig.ma to search for “liyang yu”

448 11 Linked Open Data

Let us first take a look at the left pane, i.e., the sigma of this search. It is quite
different from what you would have seen if you had used a Google search. More
specifically, Google search simply gives you back a list of links that point to a col-
lection of Web pages, with each one of them containing the keyword “liyang yu.”
Google itself is not able to tell you the fact such as, on a given Web page, the word
Liyang shows up as a given name, and on some other page, the word Yu shows up
as a family name, so on and so forth.

For Sig.ma, however, this is not difficult at all. It knows not only that the word
Liyang is a given name and the word Yu is a family name, but quite a lot more.
For example, it can tell the string liyang910@yahoo.com represents my e-mail
address. Clearly, since Sig.ma is built upon a Web of Linked Data, it is therefore
able to present the result in a way that seems like the machine is able to understand
all the data sources it has encountered during its search.

Now since the sigma pane shows the result of data aggregation, it is certainly
useful to include the data sources that have been used to obtain the current sigma.
This is the right pane, as shown in the Fig. 11.13. For discussion purpose, let us call
it the source pane.

It is very easy for Sig.ma to trace the data source for each information segment
in the sigma. For example, if you hover your mouse over the given name “Liyang”,
at least four data sources in the source pane will be highlighted, telling us that this
information is included in all these four data sources, as shown in Fig. 11.14.

In fact, each data source in the source pane has a number associated with it, indi-
cating how many facts are collected from this particular data source. For example,
data source number 4

http://www.liyangyu.com/

has contributed three facts to the current sigma, as shown in Fig. 11.13. To see a
detailed list of these three facts, hover your mouse over this document; the facts
from this document will be highlighted in the sigma pane, as shown in Fig. 11.15.

Note that there is a pop-up menu showing up when you hover the mouse over
data source number 4 (see Fig. 11.15). The first selection in this pop-up menu is
called solo, which is a very useful tool: if you click solo, the current sigma will
show only the facts that are collected from this data source, as seen in Fig. 11.16.

To go back to the complete list of facts, simply click unsolo, as you can
easily tell.

Another useful feature of Sig.ma is the ability to approve and reject data sources.
Recall the fact that search in Sig.ma is based on keyword matching, i.e., when it
scans a given RDF data source, it looks for the keywords in that document. The
keywords themselves can appear in a comment, a label, or the string value of a given
subject. They can also show up in a URI that identifies a subject, a predicate, or an
object. As the developers of Sig.ma have pointed out, since very simple strategies
have been on purpose chosen at this stage to filter data source candidate, it is quite
possible that a given data source is in fact not the data source you are looking for.

In the case where a given data source should not be included in the sigma, you can
simply click the reject button from the pop-up menu in the source pane (you need
to hover the mouse over the selected source data document). Once this is done, all

11.3 The Consumption of Linked Data 449

Fig. 11.14 Hovering the mouse over Liyang will show the data sources from where this
information is obtained

the facts in the current sigma will be removed and the data source will be removed
as well. For example, go back to Fig. 11.13; we can reject document number 4 by
easily following these steps.

It is now easy to understand the approve selection. Clicking approve for a
given data resource means that this data source is highly relevant to the search and
should stay in the source pane at all times.

Besides rejecting and/or approving the data source files contained in the current
source pane, I can click Add More Info button in the sigma pane to ask Sig.ma
to search more datasets. Once more data sources have been added, I can start to
filter them again by applying the same rejecting/approving process until all the data
sources are stable in the source pane.

Figure 11.17 shows my final sigma. As you can tell, I have rejected altogether 12
data sources to reach this sigma.

In fact, my final sigma presents a set of entry points to the Web of Linked Data,
since each one of the corresponding data sources in the source pane contains links
to the Web of Linked Data. It is now time to start our navigation by following these
links.

Let us get back to Fig. 11.17. Note the label topic interest: and its value
Semantic Web. Clicking this link brings us to a brand new sigma as shown in
Fig. 11.18.

450 11 Linked Open Data

Fig. 11.15 Hover mouse over a data source document, all the facts from this document will be
highlighted

As you can tell, the sigma about Semantic Web opens another new entry to the
Linked Data Web for you to explore. For example, you can do the following:

• you can start to explore Jena Semantic Web Framework;
• you can start to read more about Resource Description Framework (RDF);
• you can start to understand OWL;
• and more.

I will leave this to you to continue, and Sig.ma is an excellent tool to search and
access the Web of Linked Data.

Finally, note that we have only covered some basic functionality provided by
Sig.ma. Sig.ma was first released on 22 July 2009, and given the fact that it is expe-
riencing constant development and improvement, at the time when you are reading
this book, you will likely see a different version of Sig.ma. However, the basics
should remain the same.

11.3.2.2 Using SPARQL Endpoints

We have discussed how to use Linked Data browsers to access the Web of Linked
Data manually in the previous section. While it is a useful way to explore the Linked

11.3 The Consumption of Linked Data 451

Fig. 11.16 Click solo will show only the facts collected from the selected data source in the
sigma pane

Data, it does not take full advantage of the fact that the Web of Linked Data contains
structured data, which means that we can actually access the Linked Data by using
a query language.

In this section, we will use SPARQL to access the Web of Linked Data. In fact,
this is not something completely new to us. In Chap. 10, we have discussed how to
use SPARQL to access DBpedia. We will expand the same idea and show you how
to use SPARQL to access the Web of Linked Data in general.

A good start point is the current Linked Data cloud presented in Fig. 11.7.
Again, the benefit of accessing it online is that you can get the version that is
clickable: when you click a dataset, it directly takes you to the home site of that
dataset.

Now, let us say that we want to understand more about Musicbrainz, which at
this point we know nothing about. Clicking this dataset takes us to the home site of
Musicbrainz. On its home site, we can find the following SPARQL endpoint (note
that not all the datasets provide SPARQL endpoints):

http://dbtune.org/musicbrainz/snorql/

and opening this endpoint will give us the query interface supported by the
dataset.

452 11 Linked Open Data

Fig. 11.17 My final sigma after rejecting 12 data sources

Now, to explore this dataset, or rather, to explore any given dataset, we can always
start from two general queries. The first query is given below:

SELECT DISTINCT ?concept

WHERE

{[] a ?concept}

This shows all classes that are used in a given dataset. Note that there might be
a large number of classes used, and some of them might look unfamiliar to you.
However, this query can give you some feeling about what the given dataset is all
about.

Let us try this query on the Musicbrainz dataset. Enter the above query in the
query box, but change the query so it looks like this:

SELECT DISTINCT ?concept

WHERE

{[] a ?concept}

LIMIT 10

Adding LIMIT 10 is to make sure the query can be executed in a reason-
able amount of time. You can change it to another integer number if you prefer,
such as 20.

11.3 The Consumption of Linked Data 453

Fig. 11.18 Clicking Semantic Web from Fig. 11.17 will take us to this new sigma

Once you submit the query, you should get some results back. For example, part
of the classes I got is shown as follows:

bio:Birth

bio:Death

db:vocab/puidjoin

db:vocab/l_label_track

db:vocab/lt_artist_label

db:vocab/lt_artist_artist

lingvoj:LinguisticSystem

mo:MusicArtist

mo:Performance

mo:Release

mo:Record

Again, by the time you are reading this book, you could get different results
back.

Now, the above class list will give us some basic idea about what is covered in
this dataset. For example, this dataset is more about some music artists, their albums,
their performance, so on and so forth.

454 11 Linked Open Data

The second useful query is similar to the first one. It asks all the properties that
are included in a given dataset:

SELECT DISTINCT ?property

WHERE

{?sub ?property ?obj}

Again, you might want to use it together with LIMIT 10 constraint, just to make
sure the performance of the endpoint is acceptable:

SELECT DISTINCT ?property

WHERE

{?sub ?property ?obj}

LIMIT 10

The following is the result:

rdfs:label

db:vocab/puidjoin_puid

db:vocab/puidjoin_usecount

db:vocab/puidjoin_id

db:vocab/puidjoin_track

rdf:type

db:vocab/l_label_track_enddate

db:vocab/l_label_track_link_type

db:vocab/l_label_track_begindate

db:vocab/l_label_track_modpending

As you can tell, the above two queries are very useful when you know nothing
about the dataset. In fact, some SPARQL endpoints have included these two queries
for you as your default starting point.

After these two general queries, it is up to you to continue your exploration. In
most cases, what you will be doing depends on the results from these two queries.
For example, for the Musicbrainz dataset, I am interested in mo:MusicArtist

class, and I want to find who is a member of this class. To do so, I will use the
following query:

SELECT ?artist

WHERE

{?artist a <http://purl.org/ontology/mo/MusicArtist> }

LIMIT 10

And I got 10 instances of mo:MusicArtist back. One of them is the
following:

db:artist/0002260a-b298-48cc-9895-52c9425796b7

11.4 Linked Data Application 455

To know more about this instance, I continue to execute the following query:

SELECT ?property ?hasValue ?isValueOf

WHERE {

{ <http://dbtune.org/musicbrainz/resource/artist/

0002260a-b298-48cc-9895-52c9425796b7> ?property ?hasValue }

UNION

{ ?isValueOf ?property

<http://dbtune.org/musicbrainz/resource/artist/

0002260a-b298-48cc-9895-52c9425796b7> }

}

This query will find everything that has been said about this artist. Once you
execute the query, you will get the name of the artist, the label, etc. Obviously, we
can continue like this by following a number of different directions, and at some
point, we will find ourselves moving on to explore other datasets.

The point is clear: besides using Semantic Web browsers or Semantic Web search
engines to access the Web of Linked Data, it is also very useful and efficient to
access it by using SPARQL queries. After all, search engines will point you to a set
of documents that might contain the answer, but SPARQL queries can directly give
you the answer you need.

11.3.2.3 Accessing the Linked Data Web Programmatically

The most significant difference between our current Web and the Web of Linked
Data is the fact that the Web of Linked Data is processable by machine. Given this,
it is certainly possible to access the Web of Linked Data programmatically, and it
has already been the backbone of many Linked Data applications (as we will see in
the next section).

Different applications may implement different ways of accessing the Web of
Linked Data. However, two basic methods of accessing the Linked Data Web should
be understood: one is referred to as Follow-Your-Nose method, the other is about
issuing SPARQL queries within your application by using supporting tools.

The best way to learn these two methods is by going through some examples.
Since these two methods are quite generic, they are discussed in Chap. 14; you can
find working example for each method there. For now, we will move on with the
discussion of Linked Data applications.

11.4 Linked Data Application

Discovering and accessing Linked Data is only the first step, our ultimate goal is
to build applications that make use of Linked Data. In this section, we present one
popular example to show you how Linked Data can be used.

456 11 Linked Open Data

11.4.1 Linked Data Application Example: Revyu

11.4.1.1 Revyu: An Overview

Revyu is a Web site that everyone can login to review and rate anything in the world.
However, it is not just another review site; it is developed by using the Semantic
Web technologies and standards, and by following Linked Data principles and best
practices. More importantly, it also consumes Linked Data from the Web to enhance
its user experience.

Revyu is implemented in PHP and runs on a regular Apache Web server. It can
be accessed at this location:

http://revyu.com/

A registered user can review and rate things by filling out a Web form, which
does not require any knowledge of the Semantic Web. Once finished, the user can
submit this review form and the review will show up at the site.

This does not sound too much different from other review sites at all. However,
lots of things will then happen inside Revyu. To understand all these, we first need
to understand one fact: every review created in Revyu is also expressed as an RDF
graph, besides its normal look-and-feel on the Web.

Let us look at one example. From Revyu home page, click Search Things link
to search for the movie Broken Flowers, for which a review has been created as an
example by Tom Heath, the creator of Revyu. Figure 11.19 shows the review page
of the movie Broken Flowers.

On this page, click the link which identifies the reviewer. In this case, the link
reads as by tom on 30 Jan 2007. Once you click this link, you will land on the
page as shown in Fig. 11.20.

On the right side of the page, you will find a link called RDF Metadata for

this Review of Broken Flowers (the right-hand side of Fig. 11.20). Clicking
this link will take us to the RDF format of this review.

With the understanding that every review in Revyu has its RDF representation,
let us now take a look at what will happen inside Revyu when a review is submitted
by a user.

• All things represented in Revyu are assigned with URIs.

At the moment a review is submitted, the reviewer (i.e., the user), the review the
user creates, and the resource being reviewed are all assigned with URIs. Also,
the tags used when reviewing the resource are assigned with URIs as well (will
discuss tags later this section).

Note that Revyu is designed to follow the four basic principles of Linked Data
discussed early in this chapter. To see this, we can open the RDF document which
represents the review of Broken Flowers and locate the URI Revyu has assigned
to Tom Heath:

http://revyu.com/people/tom

11.4 Linked Data Application 457

Fig. 11.19 Review page for the movie Broken Flowers

Since this URI represents a non-information resource, if it is derefer-
enced, our Internet browser should receive a HTTP 303 See Other response.
Furthermore, our browser should also receive a URL pointing to a document that
describes the resource, in this case, Tom Heath.

To test this, let us paste the above URI into our Web browser, and we will be
taken to another URL given as below:

http://revyu.com/people/tom/about/html

which contains a HTML description about Tom.
In fact, content negotiation is also supported by Revyu: if a user agent asks for

HTML format, it will receive a HTML document located at the above URL, and
if it asks for an RDF format, it will receive an RDF description located at this
URL:

http://revyu.com/people/tom/about/rdf

• Tags are used to create links to the datasets on the Web of Linked Data.

Obviously, the collection of reviewed items is at the center of any review site.
As we have discussed, every item in this collection has been assigned a URI by

458 11 Linked Open Data

Fig. 11.20 Reviewer page of tom

Revyu. However, an isolated URI will not be of much value unless one of the
following two (or both) can happen:

– it is associated with another resource URI contained in another dataset, by
using owl:sameAs or rdfs:seeAlso property;

– it is associated with a type information (a class defined in an ontology), so
some application can performance reasoning on this URI.

Clearly, asking the user of Revyu to accomplish either one of these conditions is
not feasible: not only has the user to understand the Semantic Web technologies and
standards, but also there has to be ontologies readily available which can provide
sufficient coverage to any arbitrary item that may receive a review.

The solution taken by the Revyu designers is to use tags. In particular, it is up to
the user to associate keyword tags to the item being reviewed. With this tag infor-
mation, Revyu is then responsible for deriving type information and linking the item
to a certain resource described by another dataset.

Currently two domains are covered by Revyu: books and films. More specifically,
when Revyu recognizes that a new item is tagged as book, it will examine every Web
link provided by the reviewer at the time the review is submitted. For example, the

11.4 Linked Data Application 459

reviewer may have provided a link from Amazon which contains some informa-
tion about the book. When examining this link, Revyu parses the Web document
downloaded from the link and attempts to extract an ISBN number embedded in the
document. If Revyu can find an ISBN number, it will conclude that the reviewed
item is indeed a book and will assert a corresponding rdf:type statement in the
generated RDF statements.

As one example, List 11.7 shows some generated RDF statements for the
reviewed book titled The Unwritten Rules of Ph.D. Research. The reviewer has pro-
vided the related link from Amazon, which contains the ISBN number (line 23).
Based on this information, line 26 has been added by Revyu to establish the type
information for this item.

List 11.7 RDF statements generated by Revyu (a book review)

1: <?xml version="1.0" encoding="UTF-8" ?>
2: <rdf:RDF
3: xml:base="http://revyu.com/"
4: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
5: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
6: xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
7: xmlns:owl="http://www.w3.org/2002/07/owl#"
8: xmlns:dc="http://purl.org/dc/elements/1.1/"
9: xmlns:dcterms="http://purl.org/dc/terms/"
10: xmlns:vcard="http://www.w3.org/2001/vcard-rdf/3.0#"
11: xmlns:foaf="http://xmlns.com/foaf/0.1/"
12: xmlns:rev="http://purl.org/stuff/rev#"
13: xmlns:tag=
13a: "http://www.holygoat.co.uk/owl/redwood/0.1/tags/"
14: xmlns:ns1="http://www.hackcraft.net/bookrdf/vocab/0_1/">
15:
16: <rdf:Description
16a: rdf:about="things/the-unwritten-rules-of-phd-research">
17: <rev:hasReview rdf:resource=
17a: "reviews/82825d6cec2a2267c541848397e1605ab0042af0"/>
18: <tag:tag rdf:resource=
18a: "taggings/82825d6cec2a2267c541848397e1605ab0042af0"/>
19: </rdf:Description>
20:
21: <owl:Thing rdf:about=
21a: "things/the-unwritten-rules-of-phd-research">
22: <rdfs:label>The Unwritten Rules of Phd Research, by Gordon
22a: Rugg and Marian Petre </rdfs:label>
23: <rdfs:seeAlso rdf:resource=
23a: "http://www.amazon.co.uk/Unwritten-Rules-Phd-
23b: Research/dp/0335213448/"/>
24: <foaf:homepage rdf:resource=
24a: "http://mcgraw-hill.co.uk/openup/unwrittenrules/"/>
25: <owl:sameAs rdf:resource=
25a: "http://www4.wiwiss.fu-berlin.de/bookmashup/
25b: books/0335213448"/>

460 11 Linked Open Data

26: <rdf:type rdf:resource=
26a: "http://www.hackcraft.net/bookrdf/vocab/0_1/Book"/>
27: </owl:Thing>
28:
29: <rdf:Description rdf:about=
29a: "taggings/82825d6cec2a2267c541848397e1605ab0042af0">
30: <rdfs:label>A bundle of Tags associated with this Thing, de
30a: fining when they were added and by whom</rdfs:label>

31: </rdf:Description>
32:
33: </rdf:RDF>

If a reviewed item is tagged as movie or film, Revyu will issue a query against
DBpedia’s SPARQL endpoint with the goal of finding any instance data whose type
is given by yago:Film and also has the same name as the reviewed item. If this
is successful, Revyu will conclude that the reviewed item is indeed a movie, and
an rdf:type statement will be generated. For example, once the review for movie
Broken Flowers is submitted, Revyu is able to confirm that this item is the movie
named Broken Flowers, and List 11.8 shows the RDF statements generated for the
item.

List 11.8 RDF statements generated by Revyu (a movie review)

1: <?xml version="1.0" encoding="UTF-8" ?>
2: <rdf:RDF
3: xml:base="http://revyu.com/"
4: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
5: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
6: xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
7: xmlns:owl="http://www.w3.org/2002/07/owl#"
8: xmlns:dc="http://purl.org/dc/elements/1.1/"
9: xmlns:dcterms="http://purl.org/dc/terms/"
10: xmlns:vcard="http://www.w3.org/2001/vcard-rdf/3.0#"
11: xmlns:foaf="http://xmlns.com/foaf/0.1/"
12: xmlns:rev="http://purl.org/stuff/rev#"
13: xmlns:tag=
13a: "http://www.holygoat.co.uk/owl/redwood/0.1/tags/"
14: xmlns:ns1=
14a: "http://www.csd.abdn.ac.uk/~ggrimnes/dev/imdb/IMDB#">
15:
16: <rdf:Description rdf:about=
16a: "things/broken-flowers-film-movie-bill-murray-jim-jarmusch-
16b: sharon">
17: <rev:hasReview rdf:resource=
17a: "reviews/8b9c45cfecb7087430daa963cd6bcd51d2fce30d"/>
18: <tag:tag rdf:resource=
18a: "taggings/8b9c45cfecb7087430daa963cd6bcd51d2fce30d"/>
19: </rdf:Description>
20:

11.4 Linked Data Application 461

21: <owl:Thing rdf:about=
21a: "things/broken-flowers-film-movie-bill-murray-
21b: jim-jarmusch-sharon">
22: <rdfs:label>Broken Flowers</rdfs:label>
23: <rdfs:seeAlso rdf:resource=
23a: "http://en.wikipedia.org/wiki/Broken_flowers"/>
24: <foaf:homepage rdf:resource=
24a: "http://www.brokenflowersmovie.com/"/>
25:
26: <owl:sameAs rdf:resource=
26a: "http://dbpedia.org/resource/Broken_Flowers"/>
27: <rdf:type rdf:resource=
27a: "http://www.csd.abdn.ac.uk/~ggrimnes/dev/imdb/IMDB#Movie"/>
28: </owl:Thing>
29:
30: <rdf:Description rdf:about=
30a: "taggings/8b9c45cfecb7087430daa963cd6bcd51d2fce30d">
31: <rdfs:label>A bundle of Tags associated with this Thing,
31a: defining when they were added and
31b: by whom</rdfs:label>
32: </rdf:Description>
33:
34: </rdf:RDF>

As you can see, line 27 is added to identify the type of the reviewed item.

11.4.1.2 Revyu: Why It Is Different

Revyu is different from other review sites. For books and movies, Revyu assigns a
URI to the item being reviewed and also generates an RDF document to represent
the review itself. Furthermore, Revyu searches against existing linked datasets and
automatically creates links to these external datasets whenever possible. For exam-
ple, line 25 of List 11.7 and line 26 of List 11.8 are the links to other datasets. As a
result, these links have turned both these two RDF documents into newly produced
Linked Data on the Linked Data Web.

In fact, changing the submitted review into structured data not only adds new
elements to the Linked Data Web, but also makes it much easier for any application
that attempts to consume the review results.

For example, to get the review for a given item, all the application has to do is
to query the Revyu dataset by issuing SPARQL query via Revyu’s SPARQL inter-
face, and the result is an RDF document that can be easily processed. Compared to
Amazon, where the review data has to be obtained by using its own APIs (Amazon
Web services), the benefit is quite obvious. We will come back to this point later in
this chapter.

Besides producing new Linked Data, Revyu also consumes existing Linked Data
on the Web to enhance its user experience.

To see this, let us go back to line 25 of List 11.7 and line 26 of List 11.8. Since
these statements are links that point to other linked datasets, one can simply apply

462 11 Linked Open Data

the Follow-Your-Nose method to retrieve additional information about the reviewed
item. In fact, this is exactly what Revyu has done. For example, by following the
link on line 26 of List 11.8, Revyu was able to obtain this movie’s entry in DBpedia,
which contains the URI of the film’s promotional poster and the name of the director,
etc. All this additional information has been displayed on the page about this film,
as shown in Fig. 11.19.

Clearly, this automatic consumption of the existing Linked Data has greatly
enhanced the value of the whole site, without requiring this information to be
manually entered by the reviewer.

Similarly, Revyu can fetch more information about the book from RDF Book
Mashup dataset (line 25 of List 11.7), such as the book cover and author information,
which is also displayed on the Revyu page about the book. Again, all this does not
ask any extra work from the reviewer, but is very valuable to anyone who is reading
these reviews.

Furthermore, the same idea can be applied to a reviewer. Recall each reviewer is
assigned an URI, and a simple RDF document is created for this reviewer. If a given
reviewer has an existing FOAF document, an rdfs:seeAlso statement will be
included in the RDF description. For example, List 11.9 shows the RDF document
created for me by Revyu.

List 11.9 RDF statements generated by Revyu for a reviewer

1: <?xml version="1.0" encoding="UTF-8" ?>
2: <rdf:RDF
3: xml:base="http://revyu.com/"
4: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
5: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
6: xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
7: xmlns:owl="http://www.w3.org/2002/07/owl#"
8: xmlns:dc="http://purl.org/dc/elements/1.1/"
9: xmlns:dcterms="http://purl.org/dc/terms/"
10: xmlns:vcard="http://www.w3.org/2001/vcard-rdf/3.0#"
11: xmlns:foaf="http://xmlns.com/foaf/0.1/"
12: xmlns:rev="http://purl.org/stuff/rev#"
13: xmlns:tag=
13a: "http://www.holygoat.co.uk/owl/redwood/0.1/tags/">
14:
15: <foaf:Person rdf:about="people/liyang">
16: <foaf:mbox_sha1sum>
16a: 1613a9c3ec8b18271a8fe1f79537a7b08803d896
16b: </foaf:mbox_sha1sum>
17: <foaf:nick>liyang</foaf:nick>
18: <foaf:made rdf:resource=
18a: "reviews/cbe1fd43cf7de69ee0530fe65593d6d77d03daed"/>
19: <foaf:made rdf:resource=
19a: "reviews/436f699d347d433315507923664cf567fe872a59"/>
20: <rdfs:seeAlso
20a: rdf:resource="http://www.liyangyu.com/foaf.rdf"/>

11.4 Linked Data Application 463

21: </foaf:Person>
22:
23: </rdf:RDF>

Revyu will dereference the URI on line 20 and query the resulting FOAF doc-
ument for information such as my photo, location, home page, and interests. This
information then automatically shows up at my profile page without me entering
them at all.

As a summary, Revyu is a simple and elegant application that makes use of exist-
ing Linked Data to enhance its user experience without asking extra work from its
users. Although it is not a large-scare Linked Data application, it does show us the
benefits offered by the Web of Linked Data.

11.4.2 Web 2.0 Mashups vs. Linked Data Mashups

In the previous section, you have seen an interesting application that consumes
Linked Data on the Web. However, up to now, consuming Linked Data on the Web
in a large scale still remains an open question, and the business value of Linked Data
Web can be better appreciated only through these large-scale applications.

However, researchers and developers in the field of the Semantic Web are still
very optimistic about its future, and one of the reasons is based on the comparison of
the so-called Web 2.0 mashup to semantic mashup. In fact, if Web 2.0 mashups can
continue to remain in high demand in the environment of traditional Web, semantic
mashups under the concept of the Semantic Web will sooner or later be the real data
mashup tool that everyone will use, simple because it is much more easier, much
more efficient, and much more scalable. The rest of this section will explain this
conclusion in detail.

Exactly what is a mashup? In a very simple sentence, a mashup is a Web appli-
cation that collects structured data produced by third parties through APIs offered
by these parties and processes the data in some way and then represents the data
back to the user in a form that differs from its original look-and-feel. Normally, a
mashup application will either enhance the visual presentation of the data or offer
added value to its users by combining the data from different sources or both. This
concept is more related to Web 2.0, where more and more Web sites expose their
data via their APIs.

A typical mashup could be something like this: a shopbot can be coded to retrieve
the price of a given product (such as a camera with a specific make and model
number) from Amazon.com by accessing its published APIs. At the same time, the
same shopbot can also retrieve the price of the same product from BestBuy.com
(assuming BestBuy has also published their APIs), and these two prices can be
compared and returned to the user so the user can decide where to buy the product.
The shopbot can even retrieve the prices from these two vendors periodically, so the
user can see the change of these prices over a certain amount of time, and therefore

464 11 Linked Open Data

can buy the product when its price is going down and reaches a relatively stable
stage. Here the added value is obvious, and we can expand this shopbot in many
ways, such as including more vendors and more products.

This all sounds correct and feasible. However, when you really set off to construct
such a shopbot, you will soon discover its limitations:

• poor scalability of the method itself

Since different vendors publish different APIs, this is a constant learning process.
You will have to learn each set of APIs, and once a new vendor is available, you
will have to learn a new set of APIs again. Therefore, the construction of such a
mashup is not scalable and its maintenance will be quite expensive as well.

• limited coverage at most

Obviously, the shopbot only understands the APIs that you have coded for it to
understand, it cannot do any simple explore on its own. The data coverage is
therefore very limited and any decision based on this shopbot will probably not
be optimal either.

• lost links to channel back to the data providers

Once the data are retrieved and consumed by the shopbot, the link between the
shopbot and the original data provider is lost; a user cannot link back to the origi-
nal data providing site. Even in the case where we have decided to put some links
channeling back to the data providers, these links are shallow links at their best,
and they will not be able to link back to the precise locations of those particu-
lar data components. In addition, a mashup site supported by this shopbot only
shows the price. What if the original site offers some free gifts if you buy it now?
If there were a link back to this particular product, the user might be able to catch
this offer. Even more importantly, the links that channel back to the original data
provider mean more incoming traffic, which means significant chances for some
potential business value.
Now, with all the above being said, let us take a look at what would be the case

if a mashup application is developed under the environment of Linked Data Web. In
fact, Revyu is such a mashup: it retrieves data from external Web sites (DBpedia,
RDF Book Mashup, etc.) to enhance its user experience, a typical way that a mashup
should work. More specifically,

• good scalability of the method itself

Under the Web of Linked Data, structured data are expressed by using RDF
graphs and standards, which is the only set of standards across all the sites, and
there is no specific APIs for each site to expose its structure data. Therefore, con-
structing the mashup and maintaining the mashup is quite scalable, there is no
need for constant learning of new APIs.

• unbounded coverage of datasets

11.5 Summary 465

Obviously, Web 2.0 mashups work against a fixed set of data sources; Linked
Data applications operate on top of an unbound, global data space. This enables
them to deliver more complete answers as new data sources appear on the Web.

• crucial links to channel back to the data providers

In Linked Data mashups, all the items (resources) are identified by URIs, each of
which may be minted and controlled by the data provider. If a user looks up one
of these URIs, the user may be channeled back to the original data provider; it
is then up to the data provider to publish appropriate content to further direct the
incoming traffic. This linking-back capability is a key difference between Web
2.0 mashups and Linked Data mashups, and this is where the potential business
value could be.

Besides the above, Linked Data mashups also offer a chance to their users to
chain up almost unlimited resources. More specifically, each item in the mashup is
identified by a URI, which can be linked to other resources in other datasets, and
the links themselves are also typed. As a result, you can choose to follow a specific
link and visit a specific resource, which further takes you to other resources in other
datasets, so on and so forth. As this point, you should be able to appreciate the value
of this unlimited linkage, without the need of much explanation at all.

11.5 Summary

In this chapter, we have learned Linked Open Data. It is another example of the
Semantic Web technologies at work, and it is quite different from other examples
we have learned. Instead of adding semantics to the current Web (either manually
or automatically), its idea is to create a machine-readable Web all from the scratch.
It is therefore also called the Web of Linked Data, or the Linked Data Web.

First off, understand the following about Linked Open Data:

• its basic concept and basic principles;
• its relationship to the classic view of the Semantic Web, i.e., it can be viewed as

an implementation of the vision of the Semantic Web.

Second, understand the two major topics about Linked Open Data: how to
publish Linked Data on the Web and how to consume Linked Data on the Web.

About how to publish Linked Data on the Web, you need to understand the
following:

• how to mint URIs for resources, what is the difference between 303 URIs and
hash URIs;

• how to create links to other datasets, and how to make sure your data is published
as Linked Data, i.e., what are the minimal requirements of being Linked Data on
the Web;

• remember to use a validator to make sure you have done everything correctly.

466 11 Linked Open Data

About how to consume the Linked Data, you need to understand the following:

• consuming Linked Data means discovering Linked Data on the Web, accessing
the Web of Linked Data, and building applications on top of the Web of Linked
Data;

• there are Semantic Web search engines you can use to discover Linked Data on
the Web;

• there are Semantic Web browsers you can use to access the Web of Linked Data
manually;

• you can also use SPARQL endpoints to access the Web of Linked Data, in addi-
tion, you can programmatically access the Web of Linked Data from within your
applications;

• the ultimate goal is to create powerful applications that make use of the Web of
Linked Data.

Finally, to show you how to build applications on top of the Web of Linked
Data, we have included Revyu as one such example. Make sure you understand
how Revyu makes use of the Linked Data on the Web, and more importantly, hope
this can serve as a hint to you, so you can come up with possible applications of
your own to show the power of the Web of Linked Data.

Chapter 12
Building the Foundation for Development
on the Semantic Web

Finally, with what you have learned from this book, you are now ready to start your
own development on the Semantic Web.

To better prepare you for this work, we will present an overview in this chapter
that covers two major topics. With the knowledge presented in this chapter, your
future development work will start with a solid foundation.

The first topic is about available development tools for the Semantic Web, includ-
ing frameworks, reasoners, ontology engineering environments, and other related
tools. As a developer who works on the Semantic Web, understanding the available
tools is simply a must.

The second topic covers some guidelines about the development methodologies.
In general, building applications on the Semantic Web is different from building
applications that run on the traditional Web and requires its own development strate-
gies. With a clear understanding of the methodologies, your design and development
work will be more productive and your applications will be more scalable and more
maintainable.

12.1 Development Tools for the Semantic Web

12.1.1 Frameworks for the Semantic Web Applications

12.1.1.1 What Is a Framework and Why We Need It?

A framework in general can be understood as a software environment designed to
support future development work. It is often created for a specific development
domain and normally contains a set of common and reusable building blocks so
that developers can use, extend, or customize for their specific business logic. With
the help from such a framework, developers do not have to start from scratch each
time an application is developed.

More specifically, for development work on the Semantic Web, the main features
of a framework may include the following:

• core support for RDF, RDFS, and OWL;
• inference capabilities for both RDFS ontologies and OWL ontologies;

467L. Yu, A Developer’s Guide to the Semantic Web,
DOI 10.1007/978-3-642-15970-1_12, C© Springer-Verlag Berlin Heidelberg 2011

468 12 Building the Foundation for Development on the Semantic Web

• support for SPARQL query;
• the handling of persistent RDF models, with the ability to scale efficiently to large

datasets.

This list is growing with more and more development frameworks becoming avail-
able. For developers, a Semantic Web development framework can at least provide
the following benefits:

• It provides developers with the implementation of common tasks in the form of
reusable code, therefore less repeated work and less bugs.

For example, there is a set of common operations that have to be implemented
for probably every single application on the Semantic Web. These common tasks
include reading/parsing a given RDF model, understanding an RDF model, and
inferencing based on ontology model handling, just to name a few. Since a frame-
work provides the support for these common tasks, developers can focus on the
specific business logic, and it is more likely that they can deliver more reliable
code.

• It makes it easier to work with complex technologies such as the Semantic Web
technologies.

By now, you have seen all the major technical components for the Semantic Web.
Clearly, there are a lot to learn even before you can get started with your own
development. With the help from a development framework, not only it is easier
to put what you have learned into practice but also you will gain deeper under-
standing about the technology itself. You will get more feelings on this when
you finish the last several chapters of this book – for those chapters, you will
have a chance to use a concrete framework to develop several Semantic Web
applications.

• It forces consistency within the team, even across platforms.

This directly follows from the fact that quite a lot of the common tasks are built
by reusable code and are accessed through a set of common “wrappers.” This
not only forces the consistency but also makes testing and debugging tasks much
easier, even if you are not the one who wrote the code at the first place.

• It promotes design patterns, standards, and policies.

This may not seem quite obvious at this point; you will see more on this in Sect.
12.2.1.3.

With this being said, let us take a look at some popular frameworks. Note that we
are not going to cover the usage details of these frameworks, since each one of them
will require a separate chapter to cover. We will however give you an overview of
each framework so that you will have a set of choices when it comes to your own
development work.

12.1 Development Tools for the Semantic Web 469

12.1.1.2 Jena

Jena (http://jena.sourceforge.net/) is a free, open-source Java platform for applica-
tions on the Semantic Web. It was originally developed by Brian McBride from
Hewlett-Packard Laboratories (HPL). Jena 1 was originally released in 2001, and
Jean 2 was first released in August 2003. Its latest version, Jena 2.6.2, was released
on 16 October 2009.

Jena is now believed to be the most used Java toolkit for building applications on
the Semantic Web. It is also the leading Java toolkit referenced in academic papers
and conferences.

Jena’s comprehensive support for Semantic Web application development is
quite obvious, given its following components:

• an RDF API;
• an OWL API, which can also be used as RDFS API;
• reading and writing RDF in RDF/XML, N3, and N-triples formats;
• in-memory and persistent storage of RDF models;
• SPARQL query engine, and a
• rule-based inference engine.

Throughout this book, Jena will be used as our example development framework.
A detailed description about Jena can be found in Chap. 13 as well.

12.1.1.3 Sesame

Sesame (http://www.openrdf.org/) is an open-source Java framework for storage and
querying of RDF datasets. Sesame was originally developed as a research prototype
for an EU research project called On-To-Knowledge, and it is currently developed as
a community project with developers participating from around the globe. Its latest
version, Sesame 2.3.1, was released on 1 February 2010.

Sesame has the following components:

• the RDF Model, which defines interfaces and implementation for all basic RDF
entities;

• the Repository API (built upon the RDF Model), a higher level API that offers
a large number of developer-oriented methods for handling RDF data, including
RDFS reasoning support; and

• a HTTP server (built on top of Repository API), which consists of a number of
Java Servlets that implement a protocol for accessing Sesame repositories over
HTTP.

In general, Sesame’s focus is on the RDF data storage and query, but without
much support for OWL and related inferencing tools.

12.1.1.4 Virtuoso

Virtuoso (http://virtuoso.openlinksw.com/) is also called Virtuoso Universal Server.
Essentially, it is a database engine that combines the functionality of traditional

470 12 Building the Foundation for Development on the Semantic Web

RDBMS, ORDBMS, RDF, XML, free-text, Web application server, and file server
into a single server product package. Its latest version, V6.1.1, was released on 31
March 2010, and it can be downloaded freely for Linux and various Unix platforms.
A Windows binary distribution is also available. Note that there are also commercial
editions of Virtuoso, with Virtual Database Engine and Data Clustering as their extra
contents.

As far as the Semantic Web is concerned, Virtuoso has the following support:

• It can be used as a RDF Triple Store. One can load N3, Turtle, and RDF/XML
files into a Virtuoso hosted named graph using Virtuoso SQL functions.

• It includes a number of metadata extractors for a range of known data for-
mats, such as microformats. These metadata extractors enable automatic triple
generation and storage in its own RDF Triple Store.

• It supports SPARQL statements, and these SPARQL statements can be written
inside SQL statements. In other words, any ODBC, JDBC, .net, or OLE/DB
application can simply make SPARQL queries just as if they were all SQL
queries.

• It supports reasoning based on RDFS and OWL. Note that there are differences
between the open-source versions and closed-source ones; you need to check the
documents for more details.

• Its API support includes Jena, Sesame, and Redland; all are available via the
Client Connectivity Kit in the form of Virtuoso libraries.

• It supports Java, .NET bound languages, C/C++, PHP, Python and Perl.

As you can tell, Virtuoso is a product with a very board scope, not only in the
Semantic Wed world but also in data management in general. Although this book
focuses on Jena, Virtuoso can be another good choice for development work on the
Semantic Web.

12.1.1.5 Redland

Redland (http://librdf.org/) is a set of free C libraries that provide support for RDF.
Its latest release was on 15 February 2010. Redland offers the following support:

• Redland RDF library provides a C API that works with client application.
• Raptor as the RDF parser library deals with reading RDF/XML and N-triples into

RDF triples. It is an independent piece from Redland, but required by Redland.
• Rasqal (pronounced rascal) as the RDF Syntax and Query Library for Redland

is responsible for executing RDF queries with SPARQL.
• Redland Language Bindings for APIs support C#, Java, Objective-C, Perl, PHP,

Python, Ruby and Tcl.

Although Redland does not provide a strong support for reasoning and infer-
encing, it does work with C language. When speed is a major concern, Redland
framework can be the choice.

12.1 Development Tools for the Semantic Web 471

Fig. 12.1 Basic structure of a reasoner on the Semantic Web

12.1.2 Reasoners for the Semantic Web Applications

12.1.2.1 What Is a Reasoner and Why We Need It?

To put it simple, a Semantic Web reasoner is a software that can perform reason-
ing tasks for applications on the Semantic Web, typically based on RDFS or OWL
ontologies.

Note that reasoning refers to the process of deriving facts that are not explicitly
expressed by the given ontology documents and the instance documents. In Chaps. 4
and 5, we have seen quite a few examples of the reasoning power provided by RDFS
and OWL ontologies. The inferencing process implemented in those examples is the
work done by a reasoner.

Without touching the theoretical details of reasoning process, Fig. 12.1 shows
the basic structure of the inferencing process.

As Fig. 12.1 shows, a reasoner is used to derive additional RDF state-
ments which are entailed from the given base RDF graph together with any
optional ontology information. The reasoner works by employing its own rules,
axioms, and appropriate chaining methods (forward/backward chaining, for
example).

When a given application on the Semantic Web needs a reasoner, it is usually not
the best choice to write one by yourself. You should take advantage of an existing
reasoner to accomplish your task. In fact, some popular development frameworks
have already included reasoners for us to use, and there are also stand-alone rea-
soners that can be easily plugged into our applications. Let us take a look at these
choices in the next few sections.

472 12 Building the Foundation for Development on the Semantic Web

12.1.2.2 Pellet

Pellet (http://clarkparsia.com/pellet) is an OWL 2 reasoner for Java. It is freely
downloadable, and its latest release, Pellet 2.1, was announced on 1 April 2010.
It supports the following main reasoning functionalities:

• qualified cardinality restrictions;
• complex sub-property axioms (between a property chain and a property);
• local reflexivity restrictions;
• reflexive, irreflexive, symmetric, and anti-symmetric properties;
• disjoint properties;
• negative property assertions;
• vocabulary sharing (punning) between individuals, classes, and properties;
• user-defined data ranges.

Besides the above, Pellet provides all the standard inference services that you can
find from a traditional OWL DL reasoner, such as ontology consistency checking,
classification, and realization (finding the most specific classes that an individual
belongs to).

Pellet itself is not embedded in any development framework. The following are
some of the common ways to access Pellet’s reasoning capabilities:

• a Web-based demonstration page called OWLSight1;
• a command line program (included in the distribution package);
• a set of programmatic API that can be used in a stand-alone application;
• the reasoner interfaces with the Manchester OWL API and Jena. Therefore, you

can use Pellet in your applications developed by Jena;
• direct integration with the Protégé ontology editor.

12.1.2.3 RacerPro

RacerPro (http://www.racer-systems.com/) is an OWL reasoner and inference server
for the Semantic Web. RACER stands for Renamed ABox and Concept Expression
Reasoner. RacerPro is the commercial name of the software. At this point, RacerPro
2.0 is the latest release.

RacerPro can process OWL Lite as well as OWL DL documents. Some major
reasoning capabilities supported by RacerPro includes the following:

• Check the consistency of an OWL ontology and a set of data descriptions.
• Find implicit sub-class relationships induced by the declaration in the

ontology.
• Find synonyms for resources (including both classes and instance names).

1You can find this page at http://pellet.owldl.com/owlsight/

12.1 Development Tools for the Semantic Web 473

As a query server, RacerPro supports incremental query answering for informa-
tion retrieval tasks (retrieve the next n results of a query). In addition, it supports
the adaptive use of computational resource: answers that require few computational
resources are delivered first, and user applications can decide whether computing all
answers is worth the effort.

RacerPro is not embedded in any development framework. It offers the following
deployment options a given application can choose from:

• back-end network server application;
• file processor launched from command line interface;
• when loaded as object code, it can be part of a user application as well (Java API

provided).

12.1.2.4 Jena

We have discussed Jena as a development framework in Sect. 12.1.1.2. In fact, Jena
framework also has several reasoners embedded:

• Jena’s RDFS reasoner. This reasoner supports most of the RDFS entailments
described by the RDFS standard (see Chap. 4).

• Jena’s OWL reasoner. This is the second major set of reasoners supplied with
Jena. This set includes a default OWL reasoner and two small/faster configura-
tions. Each of the configurations is intended to be a sound implementation of a
subset of OWL Full, but none of them is complete.

To use the complete OWL reasoning, an external reasoner such as Pellet can be
used, as we have described earlier.

12.1.2.5 Virtuoso

Finally, we would like to mention Virtuoso again, which also offers an OWL
reasoner. Based on its official document,

• it supports owl:sameAs, rdfs:subClassOf, and rdfs:subPropertyOf,
which are sufficient for many purposes;

• owl:sameAs, owl:equivalentClass and owl:equivalentProperty are
considered when determining sub-class or sub-property relations;

• for version 6.1.0, owl:TransitiveProperty, owl:SymmetricalProperty,
and owl:inverseOf have also been added.

Finally, Virtuoso defaults to using backward chaining, but if desired, forward
chaining may be forced.

474 12 Building the Foundation for Development on the Semantic Web

12.1.3 Ontology Engineering Environments

12.1.3.1 What Is an Ontology Engineering Environment
and Why We Need It?

The vision of the Semantic Web and its applications is characterized by a large
number of ontologies. Without ontology, the Semantic Web will not exist.

However, ontology creation and development is never an easy task, mostly due
to the following facts:

• A given ontology often aims to cover a whole domain by using a set of classes,
properties and by summarizing their relationships. Since the domain knowledge
is often complex, the resulting ontology is also complex and large in scale.

• Ontology designers/developers have different skill levels, different cultural and
social backgrounds, and different understanding of the needs from potential
applications.

• Ontology development requires the knowledge of ontology presentation lan-
guages (such as RDFS and OWL) which can be difficult to grasp for many
domain experts, who are the main drivers behind a give ontology.

• The real world changes quickly, and ontologies that represent knowledge in the
real world also have to be dynamically updated to keep up with the changes
and new requirements. This makes ontology development/maintenance harder
as well.

To make ontology development easier, a special group of support tools are cre-
ated, and they can be used to build a new ontology from scratch. In addition to their
common editing and browsing functions, they also provide support to ontology doc-
umentation, ontology export (to different formats and different ontology languages),
and ontology import (from different formats and different languages). Some tools
even have some inferencing capabilities. These group of tools are often referred to
as ontology engineering environment.

The benefits offered by a ontology engineering environment are quite obvious.
For example, as a basic component of any given ontology engineering environment,
a graphical ontology editor can make the common tasks easy to accomplish. For
any given ontology, either new or existing, these common tasks include adding new
concepts, properties, relations, and constraints. With the help from ontology edi-
tor’s graphical user interface, domain experts will not have to be efficient on a given
ontology representation language. In addition, graphical ontology editor can help
the developer to visualize and organize the overall conceptual structure of the ontol-
ogy. With this help, designers and developers can discover logical inconsistencies
or potential problems with the given ontology, such as not being able to fully cover
the needs of foreseeable applications in the specific domain. In fact, some graphical
ontology editors do have the ability to help developers and designers to reconcile
logical or semantic inconsistencies among the concepts and properties defined in
the ontology.

12.1 Development Tools for the Semantic Web 475

Other functions offered by an ontology engineering environment can also be very
useful. For example, inferencing capability is offered to help the ontology evaluation
and refinement phase. Another example is annotation using the ontology. For this
function, usually a graphical user interface is provided to facilitate the annotation
process. This not only is used to mark up a given document but also can be used
to examine the completeness of a given ontology. Note that these functionalities are
provided by employing the so-called plug-in architecture to make the tool easily
extensible and customizable by the users, as we will see in the coming discussions.

Ontology engineering and development is a complex topic and there are in fact
many books available just to cover this area. With the basic knowledge we have,
together with OWL/RDFS as ontology language choices, you can explore more on
your own. For now, let us look at some example environments we can use in our
own development work.

12.1.3.2 Protégé

Protégé (http://protege.stanford.edu/) is currently the leading environment for ontol-
ogy development. It is a free, open-source ontology editor and knowledge-base
framework written in Java.

Protégé was originally developed at Stanford University; it is now supported by a
community of developers and academic, government, and corporate users. Its latest
release was Protégé 4.1 on 4 March 2010.

Protégé supports two main ways of modeling ontologies: the Protégé–OWL edi-
tor and the Protégé–Frames editor. The Protégé–Frames editor enables users to build
ontologies in accordance with the Open Knowledge Base Connectivity (OKBC) pro-
tocol, whilst the Protégé–OWL editor enables the users to build ontologies for the
Semantic Web, in particular by using the W3C standards such as RDFS and OWL.
Therefore, we will focus more on its Protégé–OWL editor in this section.

It is important to note that Protégé–OWL editors in Protégé 4.x versions only
support OWL 2.0. If OWL 1.0 and RDFS are needed, Protégé–OWL editors from
Protégé 3.x versions should be selected. The following main features are therefore
a combination of all these previous versions:

• create ontologies by using RDFS and OWL 1.0 (version 3.x only);
• create ontologies by using OWL 2.0 (version 4.x only);
• load and save OWL and RDFS ontologies. With version 3.x, OWL and RDFS

files are accessible via Protégé–OWL API. However, with version 4.x, only
OWL files are accessible by using OWL API, developed by the University of
Manchester, and this API is different from the Protégé–OWL API;

• edit and visualize classes, properties, and relations;
• define logical class characteristics as OWL expressions;
• edit OWL individuals for semantic markup;
• execute reasoners via direct access. For example, with version 3.x, direct connec-

tion to Pellet reasoner can be established. With version 4.x, direct connection to
other DL reasoners besides Pellet can also be used.

476 12 Building the Foundation for Development on the Semantic Web

Besides the above main features, Protégé can be extended by way of a plug-
in architecture. More specifically, plug-ins can be used to change and extend the
behavior of Protégé, and in fact, Protégé itself is written as a collection of plug-ins.
The advantage is that these plug-ins can be replaced individually or as a whole to
completely alter the interface and behavior of Protégé.

For developers, the Protégé Programming Development Kit (PDK) is a set of
documentation and examples that describes and explains how to develop and install
plug-in extensions for Protégé. If you need to use plug-ins to change Protégé, the
PDK document is where you should start. Also, note that from version 4.x, Protégé’s
plug-in framework has been switched to the more industry standard technology,
OSGi,2 which allows for any type of plug-in extension. Currently, a large set of
plug-ins are available, which are mainly developed either in-house or by the Protégé
community.

Finally, Protégé supports a Java-based API for building applications on the
Semantic Web. This Protégé API is often referred to as Protégé–OWL API; it is an
open-source Java library for OWL and RDFS. More specifically, this API provides
classes and methods to load and save OWL files, to query and manipulate OWL data
models, and to conduct reasonings. It can either be used to develop components that
are executed inside Protégé–OWL editor’s user interface as plug-ins, or be used to
develop external stand-alone applications.

12.1.3.3 NeOn

NeOn is a project involving 14 European partners and co-funded by the European
Commission’s Sixty Framework Program. It started in March 2006 and had a dura-
tion of 4 years.3 The goal of this project is to advance the state of the art in using
ontologies for large-scale semantic applications, and the NeOn Toolkit,4 an ontology
engineering environment, is one of the core outcomes of the NeOn project.

At this point, NeOn Toolkit is available for download from its community Web
site, and its latest major version, v2.3, was released on 17 February 2010. Its main
features include the following:

• supports OWL 2 specification;
• provides NeOn OWL editor, which can be used for creating and maintaining

ontologies written in OWL.

The NeOn OWL editor has three components: Ontology Navigator, Individual
panel, and Entity Properties panel. Using these components, a user can accomplish
common ontology development tasks such as defining, creating, and modifying
classes, properties, and their relationships in a given ontology. In addition, users
can use these components as ontology management tool; tasks such as navigating
between ontologies, visualizing a given ontology, inspecting related instances of a
given class can also be accomplished.

2http://www.osgi.org/Main/HomePage
3http://www.neon-project.org
4http://www.neon-toolkit.org/

12.1 Development Tools for the Semantic Web 477

Note that NeOn toolkit is implemented as a set of Eclipse plug-ins. Similar to
Protégé, it has a large user base. With its foundation on the Eclipse plug-in archi-
tecture, developers can build additional services and components and add them into
the current NeOn toolkit.

12.1.3.4 TopBraid Composer

TopBraid Composer (http://www.topquadrant.com/index.html) is a visual model-
ing environment for creating and managing ontologies using the Semantic Web
standards such as RDFS and OWL.

TopBraid Composer has three versions available: Free Edition, Standard Edition
and Maestro Edition. Each of them offers different packages of support, and you
can get onto the official Web site to check out the details to see which one fits your
needs.

TopBraid Composer is implemented as an Eclipse plug-in, and it is built by using
Jena API. It has four major functions: ontology editing, ontology refactoring, ontol-
ogy reasoning, and ontology visualization. Its main features can be summarized as
follows:

• Overall features. TopBraid Composer supports both RDFS and OWL (config-
urable as RDFS only and/or OWL only) and supports SPARQL queries as well.
It can import from or export to a variety of data formats including RDBs, XML,
and Excel; it also offers published APIs for custom extensions and building of
Eclipse-based applications on the Semantic Web.

• Ontology editing. Users can create classes and define the relationships between
classes. Similarly, users can define properties and relationships between prop-
erties. Furthermore, users can create instances based on the specified ontology.
These common tasks can be accomplished by using either a form-based editor or
an editor with graphical user interface.

• Ontology refactoring. User can move classes, properties, and instances between
models, clone classes, properties, and instances. TopBraid Composer can syn-
chronize name changes across multiple imported models; it also has a complete
log of all changes and can roll back changes if necessary. It supports the
conversion between RDFS and OWL.

• Ontology reasoning. TopBraid Composer interfaces with a collection of infer-
ence engines, including Pellet and Jena Rule Engine. It provides the ability to
convert the inferred statements into assertions and also supports for debugging of
inferences with explanations.

• Ontology visualization. TopBraid Composer offers UML-like graphical nota-
tions, as well as graph visualization and editing. It also provides tree-like views
describing relationships between classes and properties.

As you can tell, as an ontology engineering environment, TopBraid Composer
offers relatively complete and impressive support. Note that at the time of this
writing, TopBraid Composer is not supporting OWL 2 yet.

478 12 Building the Foundation for Development on the Semantic Web

12.1.4 Other Tools: Search Engines for the Semantic Web

Before we move on to the next section, let us talk about search engines on the
Semantic Web. They are important for your development for a variety of reasons.
For example, you might want to check if there are existing ontologies that may
satisfy your needs. And again, it is always good to reuse any existing URIs for
the resources your development work might involve, and a search engine for the
Semantic Web will help to find these URIs.

When it comes to discovering resources on the Semantic Web, Sindice, Falcon,
and Sig.ma are all quite useful. We have presented detailed descriptions for all these
three search engines in this book, and you can find more about each one of them
in Chap. 11. More specifically, Sect. 11.3.2.1 covers Sig.ma, Sect. 11.2.1.6 covers
Sindice, and finally, Sect. 11.3.1.1 covers Falcon.

12.1.5 Where to Find More?

With the quick development around the Semantic Web, it is not easy to keep up with
the latest releases and new arrivals. To find more, the W3C Semantic Web wiki is a
good starting place:

http://www.w3.org/2001/sw/wiki/Tools

which also has links to other useful resources online. You should be checking back
to this page for updates and more information frequently.

12.2 Semantic Web Application Development Methodology

In this section, we will discuss another important topic: methodological guidelines
for building Semantic Web applications.

Applications on the Semantic Web, after all, are Web applications. Therefore,
existing software engineering methodologies and well-known design patterns for
Web application development are still applicable. However, considering the unique-
ness of Semantic Web applications, such as they are built upon ontologies and the
concept of Linked Data, what changes should be made to the existing methodolo-
gies? What are the new or improved design patterns that developers should be aware
of? In this section, we will answer these questions; so when it comes to your own
development work, you have the necessary methodological support available.

12.2.1 From Domain Models to Ontology-Driven Architecture

12.2.1.1 Domain Models and MVC Architecture

In our daily life as software developers, whether we are working on stand-alone
systems or Web-based applications, we all have more or less heard and used the
word model, and quite often, we use it in the context of domain models.

12.2 Semantic Web Application Development Methodology 479

For a software system, a domain model represents the related concepts and data
structures from an application domain. It also encodes the knowledge that is driving
the application’s behavior. To successfully complete a given application develop-
ment project, developers quite often have to spend long hours, working with domain
experts, to learn and understand the underlying domain model. They will express
the domain model by using a set of classes and a description about the interac-
tions among these classes, for example, by means of a collection of UML design
diagrams.

After a few iterations with the domain experts, developers will settle down with
their view of the domain model, which will become the centerpiece of the appli-
cation system. At this point, developers may have also started with the design of
the user interface components, which not only validate the fulfillment of the user
requirements but also reinforce the correct understanding about the domain model.

It is certainly possible that the domain model can change. In which case, the data
structure may have to be updated, which may or may not trigger a change of the
implementation of those user interface components.

Finally at some point, the domain model will become relatively stable and does
not change much. It is then desirable that we can somehow reuse it in our later
development work. For example, we might want to grow the system so that it can
offer more functionalities to the user or somehow make part of the domain model
available to other systems so that some of the data elements can be accessed by the
outside world.

To address all these issues, a well-known architecture is proposed. It is the so-
called model–view–controller (MVC) architecture. More specifically,

• Model. The model represents domain-specific data and the business rules that
specify how the data should be accessed and updated.

• View. The view renders the contents of the model to the end user, in the form of
user interface elements. It is possible that for a single model component, there
are multiple views (for different level of users, for example).

• Controller. The controller acts like a broker between the model and the view. For
example, it accepts the user inputs from the view and translates the user requests
into appropriate calls to the business objects in the model.

The controller is the key component that separates the domain model from the
view. More specifically, in a stand-alone application, user interactions can be button
clicks or menu selections, and in a Web-based application, the user requests will
be mapped to GET and POST HTTP requests. Once the user request is submitted
by the controller, the actions performed by the model include activating business
processes which will result in state change of the model. Finally, based on the user
requests and the outcome of the model actions, the controller responds by selecting
an appropriate view to the user.

It is important to note that both the view and the controller depend on the model;
however, the model depends on none of them. This is the key benefit of the MVC
architecture and it allows us to accomplish the following:

480 12 Building the Foundation for Development on the Semantic Web

• The model can be built and tested independent of the visual presentation.
• If there is a change in the domain model, such as a change in the business logic,

the change can be easily implemented and can be transparent to the end users if
necessary.

• Any change on the user interface does not generally affect the model implemen-
tation.

• The model can be reused and shared for other applications and target platforms.

For these reasons, MVC architecture is quite successful and widely accepted.
Today, most Web-based applications are built by employing this architecture.

And how is this related to building applications on the Semantic Web? As
we have pointed out earlier, applications on the Semantic Web are after all
still Web-based applications. Therefore, MVC architecture remains to be a good
choice. However, given the uniqueness of Semantic Web applications, a mere
MVC solution might not be enough. Let us talk about this more in the next two
sections.

12.2.1.2 The Uniqueness of Semantic Web Application Development

The most obvious uniqueness about applications on the Semantic Web is the fact
that they are using ontologies and RDF models. With the help from ontologies and
RDF models, the level of efficiency and scalability that can be reached by Semantic
Web applications cannot be matched by traditional Web applications.

Let us go back to our task of collecting reviews about digital SLR cameras on the
Web (see Chap. 2). We hope to have a soft agent to do this for us, so we don’t have to
read them one by one. Furthermore, we would like to have the report automatically
generated based on the collected reviews so that we can run this application and
produce an updated report as often as we want.

Although we have not discussed this task more since after Chap. 2, however
from what you have learned, the solution should be clear. Let us take a look at some
details here.

During the course of this book, we have developed a small camera ontology,
which is mainly for illustration purpose and is far from being of any practical value.
Let us assume that a real camera ontology has been defined by some standardization
group of the camera industry, and it is widely accepted and also published at a fixed
URL as OWL file.

A camera ontology like this will allow the reviewers over the world to publish
metadata about their reviews, and this metadata is exactly what a soft agent will col-
lect. The collected metadata information will later on be used to make conclusions
about a given camera.

More specifically, a reviewer can take one of the following two alternatives:

• A reviewer can publish metadata using RDFa.

In this case, a reviewer continues to write his/her review via a HTML page, but
he/she will also mark up the content by using RDFa, with the terms defined in

12.2 Semantic Web Application Development Methodology 481

the camera ontology. This is a simpler choice since the reviewer does not have to
generate another separate page for the review.

• A reviewer can publish the metadata using RDF document.

In this case, a reviewer publishes the review via HTML page; meanwhile, he/she
will also release an RDF document that expresses the same review. Again, this
RDF document will be created by using the terms contained in the camera
ontology.

Now, our agent can go out and collect all the available reviews. It is able to under-
stand both RDFa markups and separate RDF documents. The final result is a set of
collected RDF statements stored in an RDF data store that we have chosen to use.

Once the collection process is finished, we can start to issue SPARQL queries
against the RDF data store to get the report we want. For example, our report can
have the answers to the following questions:

• What is the most often used performance measurement?
• What is the average rating for a given camera model?
• What is the most popular camera model being reviewed?

This step is quite flexible and sometimes even requires some imagination. For
instance, if a reviewer has included personal information in the published meta-
data (such as his/her location, contact information, profession), we can even start to
understand the customer group for each camera model.

Clearly, all the components we have mentioned above, the agent and the
SPARQL query interface, can be packaged together into a Web-based application.
With this application, one simple button click will activate the agent so that it can
start the collecting process, and other GUI components can be used to generate the
report.

A user of this Web application does not have to know the technologies that
make it possible. However, as developers, we understand how important the camera
ontology is in this whole process.

In fact, for any application on the Semantic Web, the ontology is the domain
model. In addition, understand that for a traditional Web application based on MVC
architecture, the domain model maps to a set of classes that are used to code the
domain knowledge, and quite often it is expressed in UML format. For an appli-
cation built on the Semantic Web, the domain model maps to an ontology that is
domain specific, and there is no direct map to a set of classes established yet (more
on this in the next section).

Another important fact is that if the domain model is expressed as an ontology,
it can be more easily shared and reused. For example, the camera ontology we have
discussed above can be easily reused in a totally different application.

To see this, imagine we are building a ShopBot that can help a user to buy
cameras. If camera retailers can mark up their catalogs by using the same cam-
era ontology and publish the markup on their own Web sites, our ShopBot will be
able to collect them. Once the collection is done, our ShopBot could easily find a
retailer that offers a camera that satisfies the user’s requirement. Furthermore, with

482 12 Building the Foundation for Development on the Semantic Web

the help from the reasoning power offered by the camera ontology, our ShopBot can
automatically suggest potential choices that are not obvious at the first look. You
will see such a ShopBot example in the last chapter of this book.

Obviously, collecting the reviews and shopping for a camera are quite different
applications; however, they are sharing and reusing the same camera ontology. In
fact, they can start to share data with each other, and by aggregating the shared data
elements, we can start to understand how the reviews can affect the sales of cameras.

To some extent, application development on the Semantic Web is getting easier:
developers first discover sharable ontologies as the domain model and then wire the
ontologies together with remaining object-oriented components for user interface
and control components.

In fact, this design concept has been taking shape for the last several years, and it
is now being recognized as the ontology-driven architecture. We will take a closer
look at this architecture in the next section.

12.2.1.3 Ontology-Driven Software Development

As we have discussed earlier, a traditional application based on MVC architecture
normally has its domain model mapped to classes that are defined by mainstream
programming languages such as Java or C#. The related domain knowledge is
coded into these classes, which are also responsible for common tasks such as
communicating with databases and other resources.

For an application that runs on the Semantic Web, its domain model is expressed
by ontologies. Could we again simply map all the RDFS or OWL classes into
object-oriented classes and continue to build the system as we would have done
traditionally? The answer is no.

The key to understand ontology-driven design is to understand the following facts
about a given ontology:

• Properties in ontology are independent of specific classes.
• Instances can have multiple types, and they can change their types as a result of

classification.
• Classes can be dynamically defined at run time as well.

These key differences tell us, that in order to fully exploit the weak typing and
flexibility offered by the RDFS/OWL ontology, we will have to map RDFS/OWL
classes onto runtime objects so that classes defined in the ontology will become
instances of some object-oriented classes. This is the key idea of the ontology-driven
software development method.

For example, Fig. 12.2 shows one such mapping.
As shown in Fig. 12.2, the object-oriented model that represents ontologies

in our code is designed to contain classes which represent RDFS/OWL classes,
RDFS/OWL properties, and RDF individuals separately, where RDF individuals are
instances of the RDFS/OWL classes or RDFS/OWL properties. And obviously, all
these three classes, namely, OWLClass, OWLProperty, and RDFIndividual are
sub-classes of class Resource.

12.2 Semantic Web Application Development Methodology 483

Fig. 12.2 A simple mapping of RDFS/OWL classes to runtime objects

With this design, our application can load the ontology into this object model and
start to build logic on top of it. For example,

• since RDFS/OWL classes are now instances of the class OWLClass, it is possible
to add and modify RDFS/OWL classes at the run time;

• since RDFS/OWL properties are now instances of the class OWLProperty, it is
possible to assign property values to any resource dynamically and also possible
to query any property value for any resource dynamically;

• since individuals are now instances of the class RDFIndividual, it is possible
to change their types dynamically.

Obviously, the key is to represent the object types as objects, which provides
the flexibility we need. For those of you who are familiar with design patterns, you
probably have recognized this pattern already: it is known as the dynamic object
model pattern.

Now, when it comes to real development work, how do we implement the
dynamic object model pattern? In fact, as developers, you don’t have to worry about
this. Most application development frameworks for the Semantic Web have imple-
mented this pattern for you already, and clearly, this is one of the benefits offered by
using a development framework (see Sect. 12.1.1.1).

For example, Jena provides a dynamic object model in which OWL classes, prop-
erties, and individuals are stored using generic Java classes such as OntClass and
Individual. If you are using other development frameworks, you will be able to
see similar patterns implemented for you by the framework.

Note that there are also some disadvantages associated with dynamic object
model pattern. For instance, references to ontology objects are established only
through names (i.e., Strings), making code hard to maintain and test. In addition,
as the ontology may change at design time, existing code may become inconsistent
with the changing ontology.

484 12 Building the Foundation for Development on the Semantic Web

One solution is to reflect the ontology concepts with custom classes so that the
ontological structure is exploited at compile time. This also allows developers to
attach access methods to these classes, leading to cleaner object-oriented design
patterns. We will not go into details at this point, but in your development work, if
you see reflect used, you should be able to understand the reason behind it.

12.2.1.4 Further Discussions

So far in this book, it is probably obvious to you that lots of effort have been devoted
to defining standards (earlier standards such as RDF, RDFS, and OWL 1, latest
standards such as OWL 2 and SPARQL 1.1, for example) and creating appropriate
tool support. Work on development methodologies for Semantic Web applications
is still in its infancy, probably due to the fact that this field is rather new and few
people have experience in the development of real-world applications.

This is of course going to change. With more and more real-world applications
emerging on the Web, there will be more experience gathered, and developers will
be offered with more guidelines. What we have presented here in this section is only
a start and only serve as a basic guideline to your development work. It is up to you
also to discover more and share more with your fellow developers.

12.2.2 An Ontology Development Methodology
Proposed by Noy and McGuinness

It is obvious from the previous discussion how important ontologies are for
any given application on the Semantic Web. In fact, when developing applica-
tions on the Semantic Web, a significant portion of the effort has to be spent
on developing ontologies. These ontologies must be consistent, generally useful,
and formally correct. In addition, they must be extensible and may become very
large.

In this section, we will present a summary of an ontology development method
proposed by Noy and McGuinness (2001). Over the years, these steps are followed
by many applications and research projects, and are widely referenced in a variety
of research papers as well.

Understand that there is no single correct ontology design methodology that
everyone can use, and it is also impossible to cover all the issues that an ontol-
ogy developer may need to consider. In most cases, it is up to you to come up with
the best solution for your specific application domain.

12.2.2.1 Basic Tasks and Fundamental Rules

According to Noy and McGuinness, the basic task of developing an ontology
include the following:

• define classes;
• arrange the classes into a class hierarchy;

12.2 Semantic Web Application Development Methodology 485

• define properties and allowed values for the properties;
• create instances and specify values for the properties for the instances.

In essence, Noy and McGuinness propose an iterative approach to ontology
development. More specifically, an initial ontology is created in a rough first pass;
it is then revised and refined, with details provided and filled. They summarize the
fundamental rules of ontology development as follows:

• There is no such thing as the “correct way to model a domain.” The solution
almost always depends on the application that we have in mind and extensions
we can anticipate.

• Ontology development should be an iterative process.
• Concepts in the ontology should be close to objects and relationships, where

objects can be either physical or logical. Also, these are likely to be nouns
(objects) or verbs (relationships) in sentences that describe the domain.

Noy and McGuinness emphasize the fact that ontology development is iterative.
The initial version of the ontology should be tested and evaluated in applications,
and should be discussed with domain experts. Similarly, the revised version should
be put back to the cycle for more fine-tuning.

With this in mind, let us now take a look at the basic development steps proposed
by Noy and McGuinness.

12.2.2.2 Basic Steps of Ontology Development

Noy and McGuinness suggest that ontology development follows these steps:

Step 1. Determine the domain and scope of the ontology

To effectively accomplish this step, developers should answer these basic
questions:

• What is the domain the ontology will cover?
• For what purpose the ontology is going to be used?
• For what types of questions the ontology should be able to provide

answers?
• Who will use and maintain the ontology?

Take our camera ontology as one example. If the ontology is going to
be used by camera retailers, pricing information should be included. On the
other hand, if the ontology is used only for performance review, pricing infor-
mation could be optional. Therefore, understanding the application we have
in mind and anticipating what kinds of questions should be answered by
using the ontology are quite important questions to answer.

Step 2. Consider reusing existing ontologies

As we have discussed throughout the book, reusing existing ontology is
always a good choice when it is appropriate to do so. And as pointed out

486 12 Building the Foundation for Development on the Semantic Web

by Noy and McGuinness, if one of the requirements is to make sure our sys-
tem can communicate with other applications that have already committed to
particular ontologies, reusing these ontologies is a must.

Step 3. Enumerate important terms in the ontology

This is the step before defining classes and class hierarchy. Noy and
McGuinness suggest that one create a comprehensive list of the terms in the
given domain, without worrying about overlap between concepts they repre-
sent, relations among the terms, or any properties that the concepts may have.
The goal is to make sure all the important terms are included, since once we
get into the details of defining classes and class hierarchy, it is easier to focus
on the details and overlook the overall completeness of the ontology.

Step 4. Define classes and the class hierarchy

In general, three approaches can be used when defining classes and class
hierarchy.

The first one is called top-down approach, where the definition process
starts with the definition of the most general classes and continues to the
subsequent specialization of the classes.

The second one is bottom-up approach, which is the exact opposite of top-
down approach. When using this approach, developers start with the most
specific classes and move on to more general ones.

The last approach is the combination approach. As its name suggests, it
combines the above two approaches and developers can switch between the
two approaches when defining classes and class hierarchy.

Whichever approach is chosen, it is important to understand that none of
these three methods is inherently better than any of the others. It depends
strongly on the personal view of the domain. In reality, the combination
approach is often the easiest for many ontology developers.

Step 5. Define the properties of classes

To define properties, Noy and McGuinness suggest that the developer
considers the following types of properties:

• “Intrinsic” properties, which represent those inherent characteristics of a
given class. For example, in camera ontology, shutter speed would be
an intrinsic property of a given camera.

• “Extrinsic” properties, which represent those characteristics that are not
inherent. For instance, the model of a given camera.

• Parts. For example, a camera has a body and a lens.
• Relationships to other individuals. For example, the manufacturer of a

given camera and the owner of a given camera.

Step 6. Add constraints to the properties

First off, note that when Noy and McGuinness published their paper (Noy
and McGuinness 2001), properties were called slots and property constraints

12.2 Semantic Web Application Development Methodology 487

were called facets. You may still see these terminologies today in some
literatures.

Once we finish adding properties to the ontology, we need to consider
property constraints such as cardinality constraints and value type con-
straints, just to name a few. The constraints you can use and add also depend
on the ontology language you use. For example, OWL 2 offers much more
constraint constructs than does RDFS, as you have learned in this book.

Note that for a given property, its domain and range information is also
defined in this step.

Step 7. Create instances

This step is the last step, also an optional step. In other words, an ontology
document does not have to include instance definition. For instance, FOAF
ontology does not have any instance defined.
In case you would like to include instances into the ontology document, the
procedure of creating instances normally has the following steps:

• choose a class;
• create an individual instance of that class; and
• define values for its properties.

At this point, we have summarized the basic steps when it comes to ontology
development. Obviously, steps 4 and 5 are the most important steps as well as the
most flexible ones. In the next two sections, we will discuss more about these two
steps.

12.2.2.3 Other Considerations

Noy and McGuinness have also discussed things to look out for and errors that
are easy to make when defining classes and a class hierarchy. In this section, we
summarize their findings which are quite useful in real work.

• A class hierarchy represents an is-a relation.

To decide whether your class hierarchy is correct, an easy way is to see if a
given sub-class and its root class has an is-a relation. For example, a Digital

camera is a Camera, therefore, Digital class is a sub-class of Camera class.
Also, once you have this is-a relation in your mind, you will be able to avoid
some common mistakes, such as specifying a single camera as a sub-class of all
cameras. Obviously, a Camera is not a Cameras.

• A sub-class relationship is transitive.

Another way to validate your class hierarchy is to remember the fact that a sub-
class relationship is transitive. In other words, if A is a sub-class of B and B is
sub-class of C, A will be a sub-class of C. You can always apply this rule to check
if your class hierarchy is correct.

488 12 Building the Foundation for Development on the Semantic Web

• How many sub-classes a class should have?

First off, note that a class does not have to have sub-class at all. In case it does,
there are no hard rules specifying how many direct sub-classes it should have.
However, many well-structured ontologies have between two and a dozen direct
sub-classes. And the two guidelines are: (1) if a class has only one direct sub-
class, there may be a modeling problem or the ontology is not complete and
(2) if there are more than a dozen sub-classes for a given class, then additional
intermediate categories may be necessary.

• When should we introduce a new class?

During ontology modeling, to represent some knowledge, we sometimes have
to decide whether to introduce a new class or to add a new property to an
existing class. The rules of thumb summarized by Noy and McGuinness can be
stated as follows: a new sub-class should have additional properties that its super
class does not have, or have new property value defined for a given property, or
participate in different relationships than its super class.

Note that in practice, the decision of whether to model a specific distinction as
a property value or as a new class will also depend on the scope of the domain
and the task at hand.

For example, in our camera ontology, we can introduce a new class called
Digital to represent digital camera and also a new class called Film to repre-
sent film camera. Furthermore, these two classes are sub-classes of Camera class.
Another solution is to add a new property called cameraMedia, which can have
values such as digital and film. Which one is a good solution for us?

The answer usually depends on the scope of the ontology and the potential
applications that we have in mind. More specifically, if Digital and Film

classes are very important in our domain and they play significant roles in our
future applications, it will be a good idea to make these separate classes instead
of a single property value on their super class. This is especially true when it is
likely that we will need to specify new properties for each one of these classes.

On the other hand, if a camera has only marginal importance in our domain
and whether or not the camera is a digital camera or a traditional film camera
does not have any significant implications; it will then be a good choice to add a
new property to the Camera class.

• For a given concept, when should we model it as a class, and when should we
model it as a instance?

This is a very common question in real development work. For example, Nikon
D200 is a digital camera made by Nikon. If we have a class named Digital

representing digital cameras, we can now model Nikon D200 either as a sub-class
of Digital or as an individual instance of Digital.

To make this decision, we need to decide the lowest level of granularity in our
design. This decision is in turn determined by the potential applications of the
ontology. For example, if we model Nikon D200 as a sub-class of Digital class
(name it Nikon_D200), we can then model one particular Nikon D200 camera

12.3 Summary 489

offered by a specific retailer as an instance of the Nikon_D200 class. If we model
Nikon D200 as an instance of Digital class, this instance will represent all the
Nikon D200 cameras in the world, and any particular Nikon D200 camera will
not be identified (if we want to, we need to add some property, such as retailer,
for example). As you can tell, different design decisions have a direct impact on
our future applications.

The bottom line is that individual instances are the most specific concepts
represented in a given ontology.

• If possible, we should always specify disjoint classes.

It is possible that in a given domain, several given classes are disjoint. For exam-
ple, Digital class represents the collection of all digital cameras, and Film

class represents all the traditional film cameras. These two classes are disjoint. In
other words, a given camera cannot be both digital camera and film camera.

Ontology language such as OWL allows us to specify that several classes are
disjoint. In real practice, we should always do so for the disjointed classes. This
will enable the system to validate the ontology better. For example, if we create
a new class that is a sub-class of both Digital and Film, a modeling error can
be flagged by the system.

At this point, we have covered the main ontology design guidelines proposed
by Noy and McGuinness. For any more details, you can find their original paper
to continue your study. The main point to remember is that ontology design is a
creative process and there is no single correct ontology for any domain. Also, the
potential applications have a direct impact on ontology design and only by using
the ontology in the related applications, we can further assess the quality of the
ontology.

12.3 Summary

In this chapter, we have presented an overview of development on the Semantic
Web. This overview has covered two major topics: the development tools and
development methodologies you can use.

Understand the following about the development tools:

• There is a collection of development tools you can use for your development
work on the Semantic Web.

• This collection includes development frameworks, ontology reasoners, ontology
engineering environments, and other related tools.

• Understand different tools, for example, their functionalities and their limita-
tions so that you will be able to pick the most suitable tools for your specific
application.

490 12 Building the Foundation for Development on the Semantic Web

Understand the following about development methodologies:

• The uniqueness of development work on the Semantic Web.
• The so-called ontology-driven development methodology, why it is suitable for

the development work on the Semantic Web.
• The ontology development method proposed by Noy and McGuinness, including

the basic rules, basic steps, and related considerations.

Reference

Noy NF, McGuinness DL (2001) Ontology development 101: a guide to creating your first ontol-
ogy. Stanford Knowledge Systems Laboratory Technical Report KSL-01-05 and Stanford
Medical Informatics Technical Report SMI-2001-0880

Chapter 13
Jena: A Framework for Development
on the Semantic Web

Part of the previous chapter has presented an overview of available development
frameworks you can use. This chapter will focus on Jena as a concrete example as
well as our main development environment.

In this chapter, we will write quite a few examples, starting from Hello World to
a set of basic tasks that you will likely encounter for any of your application on the
Semantic Web, including RDF model operations, persistent RDF graph handling,
and inferencing capabilities. The goal is not only to show you how to use Jena as a
development framework but also to add some working Java classes into your own
tool collection so that you can reuse them in your future development work.

Note that Jena is a programmer’s API for Java Semantic Web applications. This
chapter therefore assumes you are familiar with Java programming language.

13.1 Jena: A Semantic Web Framework for Java

13.1.1 What Is Jena and What It Can Do for Us?

At this point, we have not developed any application on the Semantic Web yet.
However, based on what we have learned about the Semantic Web, it is not difficult
for us to realize that any Semantic Web application will probably have to be able to
handle the following common tasks:

• read/parse RDF documents
• write/create RDF documents
• navigate/search through an RDF graph
• query an RDF dataset by using SPARQL
• inference using OWL ontologies

This is certainly not a complete list, but they are probably needed to make even
a simple application work. Fortunately, these standard items can be developed and
assembled into a library that we can use, so our attention can be focused on the
business logic when developing specific Semantic Web applications.

As we have discussed in Chap. 12, there are quite a few such development tools
available for us to use. In this book, we are going to use Jena as our development

491L. Yu, A Developer’s Guide to the Semantic Web,
DOI 10.1007/978-3-642-15970-1_13, C© Springer-Verlag Berlin Heidelberg 2011

492 13 Jena: A Framework for Development on the Semantic Web

tool. If you are using other frameworks, what you will learn here will also be
helpful.

There are two steps we have to cover in order to use Jena API in our development.
The first step is to download Jena package, and the second step is to set up a Java
development environment that will be able to make use of Jena package. These two
steps will be covered in detail in this section.

In this book, we are going to use Eclipse as our Java development environment.
Other environments are available and can also be selected based on your needs.
Also, note that the version numbers of Jena and Eclipse in this book will probably
be different from the ones you have, but again this will not matter, since the basic
steps of setting up the development environment should remain the same.

13.1.2 Getting Jena Package

To access Jena, go to the following page:

http://jena.sourceforge.net/

which links to the homesite of Jena, as shown in Fig. 13.1.

Fig. 13.1 Jena’s homesite

13.1 Jena: A Semantic Web Framework for Java 493

To download Jena package, click download link on the left pane of this home
page, and you will land on sourceforge.net’s download page. Note that in this book,
we use Jena 2.6.0 as our example package, and as far as our applications will need,
other version number should be the same. You can therefore choose to download
Jena 2.6.0 or any version that is higher.

Once the download is done, you will find a zip file named Jena-2.6.0 on your
local hard drive. Unzip this file to create a Jena package directory on your hard
drive. For example, I have saved it as follows:

C:\liyang\DevApp\Jena-2.6.0
Note that Jena is a library for writing applications based on RDF and OWL doc-

uments. It is only used in your application code as a collection of APIs, and there
is no GUI of any kind for Jena. The core components of Jena are stored in its \lib
directory as shown in List 13.1.

List 13.1 Jena kernel library (Jena 2.6.0)

Directory of C:\liyang\DevApp\Jena-2.6.0\lib

05/12/2009 03:04 PM <DIR> .

05/12/2009 03:04 PM <DIR> ..

05/12/2009 03:04 PM 236,733 arq-extra.jar

05/12/2009 03:04 PM 1,341,800 arq.jar

05/12/2009 03:04 PM 3,147,374 icu4j_3_4.jar

05/12/2009 03:04 PM 131,393 iri.jar

05/12/2009 03:04 PM 1,992,688 jena.jar

05/12/2009 03:04 PM 1,354,547 jenatest.jar

05/12/2009 03:04 PM 34,638 json.jar

05/12/2009 03:04 PM 198,940 junit-4.5.jar

05/12/2009 03:04 PM 358,085 log4j-1.2.12.jar

05/12/2009 03:04 PM 665,064 lucene-core-2.3.1.jar

05/12/2009 03:04 PM 22,338 slf4j-api-1.5.6.jar

05/12/2009 03:04 PM 9,678 slf4j-log4j12-1.5.6.jar

05/12/2009 03:04 PM 26,518 stax-api-1.0.jar

05/12/2009 03:04 PM 473,187 wstx-asl-3.0.0.jar

05/12/2009 03:04 PM 1,203,860 xercesImpl.jar

15 File(s) 11,196,843 bytes

2 Dir(s) 5,545,816,064 bytes free

To make use of the Jena library, it is important to add all the above .jar files to
your classpath variable.

Using Windows XP as example, classpath variable is contained in two
categories: System Variables category and User Variables category. It is nor-
mally enough that you make change to the one contained in User Variables

category.
To do so, find My Computer icon on your desktop, right click it, and then click

Properties, which will bring up System Properties window. On this window,

494 13 Jena: A Framework for Development on the Semantic Web

click Advanced tab and then click Environment Variables button, which will
bring you to the window where you can edit classpath variable contained in User
Variables category.

Now, set classpath variable to include all the following, as shown in List 13.2.

List 13.2 Jar files to be added to your classpath variable

JENA_INSTALL_DIR\arq-extra.jar
JENA_INSTALL_DIR\arq.jar
JENA_INSTALL_DIR\icu4j_3_4.jar
JENA_INSTALL_DIR\iri.jar
JENA_INSTALL_DIR\jena.jar
JENA_INSTALL_DIR\jenatest.jar
JENA_INSTALL_DIR\json.jar
JENA_INSTALL_DIR\junit-4.5.jar
JENA_INSTALL_DIR\log4j-1.2.12.jar
JENA_INSTALL_DIR\lucene-core-2.3.1.jar
JENA_INSTALL_DIR\slf4j-api-1.5.6.jar
JENA_INSTALL_DIR\slf4j-log4j12-1.5.6.jar
JENA_INSTALL_DIR\stax-api-1.0.jar
JENA_INSTALL_DIR\wstx-asl-3.0.0.jar
JENA_INSTALL_DIR\xercesImpl.jar
where JENA_INSTALL_DIR is where you have installed (unzipped) your Jena
system. In my case, the above becomes the ones in List 13.3.

List 13.3 Jar files to be added, with specific path name

C:\liyang\DevApp\Jena-2.6.0\lib\arq-extra.jar
C:\liyang\DevApp\Jena-2.6.0\lib\arq.jar
C:\liyang\DevApp\Jena-2.6.0\lib\icu4j_3_4.jar
C:\liyang\DevApp\Jena-2.6.0\lib\iri.jar
C:\liyang\DevApp\Jena-2.6.0\lib\jena.jar
C:\liyang\DevApp\Jena-2.6.0\lib\jenatest.jar
C:\liyang\DevApp\Jena-2.6.0\lib\json.jar
C:\liyang\DevApp\Jena-2.6.0\lib\junit-4.5.jar
C:\liyang\DevApp\Jena-2.6.0\lib\log4j-1.2.12.jar
C:\liyang\DevApp\Jena-2.6.0\lib\lucene-core-2.3.1.jar
C:\liyang\DevApp\Jena-2.6.0\lib\slf4j-api-1.5.6.jar
C:\liyang\DevApp\Jena-2.6.0\lib\slf4j-log4j12-1.5.6.jar
C:\liyang\DevApp\Jena-2.6.0\lib\stax-api-1.0.jar
C:\liyang\DevApp\Jena-2.6.0\lib\wstx-asl-3.0.0.jar
C:\liyang\DevApp\Jena-2.6.0\lib\xercesImpl.jar

And you should substitute JENA_INSTALL_DIR variable with the location where
you have installed your own copy of Jena.

13.1 Jena: A Semantic Web Framework for Java 495

Now to test whether you have done everything correctly, fire up a command line
window, navigate to the location where you have installed your Jena package, and
type test.bat. Waiting for about 80 seconds, you should see a screen as shown in
Fig. 13.2.

If you can successfully finish this, your setup work is done and you are ready to
use Jena in your development work.

Fig. 13.2 Testing your Jena settings

13.1.3 Using Jena in Your Projects

Only setting up the Jena environment is not really enough, your project has to
make use of the Jena package. This section assumes you are using Eclipse as your
Java development tool and shows you how to use Jena framework in your Eclipse
projects.

13.1.3.1 Using Jena in Eclipse

As far as Eclipse is concerned, the difference between a plain Java project and a
Java project that uses Jena library is that Eclipse has to know where to find the Jena
library files that the project refers to. Once it can locate the library files, it will be
able to load the related class definitions from the library as the necessary supporting
code to our project.

One way to accomplish this is to create a lib directory in our project workspace,
copy Jena related library files to this lib directory, and then add this lib directory

496 13 Jena: A Framework for Development on the Semantic Web

into our project’s build path. This will work; however, a user library is a better
solution to use.

In Eclipse, a user library is a user-defined library (a collection of jar files) that
one can reference from any project. In other words, once we have configured a user
library, we can use it in multiple different projects. Furthermore, if Jena releases
a new updated version, updating the user library once will guarantee that all the
projects using this library will all see the newly updated version. If we had created
a library under each specific project workspace, we would have to copy the new
version to every workspace that makes use of Jena.

To configure a user library, open up Eclipse and select Window from the menu
bar. From the drop-down menu list, select preferences, which will bring up
the Preferences dialogue window. In this window, open Java on the left nav-
igation tree and then open Build Path. Once Build Path is open, select User
Libraries as shown in Fig. 13.3.

Fig. 13.3 Setup Jena framework as a user library in Eclipse

13.1 Jena: A Semantic Web Framework for Java 497

Now click New to create a new user library. To do so, in the pop-up win-
dow, enter jena as the library name, click OK to close this window. At this
point, click Add JARs. . . will bring up a JAR Selection window. You can
then navigate to the location where you have installed Jena (for me, this is
C:\liyang\DevApp\Jena-2.6.0\lib), and select all of the .jar files in the lib
directory, which will be enough for our project. Once you click Open, you should
see the user library is correctly created, as shown in Fig. 13.4:

Fig. 13.4 Setup Jena framework as a user library in Eclipse (continued)

This is quite similar to the concept of symbolic link that we are familiar with
when using Unix platform. The user library we just created simply contains a col-
lection of links that point to those ∗.jar files in lib/ directory under my Jena
install directory; nothing is copied to my Eclipse workspace at all.

Now that we have configured a user library, we can start to use it in our project
by adding this library to the build path of our project. To show how to do this, we
do need to create a new project, and since it will be our very first real programming
project in this book, we will call it Hello World project, and we will cover the
details in the next section.

13.1.3.2 Hello World! from Semantic Web Application

We all know the importance of Hello World example, and we add it here so
that you can see how to build a project that makes use of the Jena Semantic Web
framework.

498 13 Jena: A Framework for Development on the Semantic Web

Our Hello World example will work like this: we will create a simple RDF doc-
ument which contains only one RDF statement, and this statement has the following
subject, property and object:

subject: http://example.org/test/message
property: http://example.org/test/says
object: Hello World!

Let us fire up Eclipse, create a new project called HelloWorld, and also define
an empty class called HelloWorld.java.

Now, enter the class definition as shown in List 13.4, and it is fine if you currently
don’t understand the code at all.

List 13.4 HelloWorld.java

1: public class HelloWorld {
2:
3: static private String nameSpace = "http://example.org/test/";
4:
5: public static void main(String[] args) {
6: Model model = ModelFactory.createDefaultModel();
7:
8: Resource subject =
8a: model.createResource(nameSpace + "message");
9: Property property =
9a: model.createProperty(nameSpace + "says");
10: subject.addProperty(property,
10a: "Hello World!",XSDDatatype.XSDstring);
11:
12: model.write(System.out);
13: }
14:
15:}

Once you have entered the definition shown in List 13.4, Eclipse shows all
the error signals. For example, it does not recognize Model, ModelFactory,
Resource and Property. Clearly, these definitions are provided by the Jena pack-
age that we would like to use, and they are currently not visible to Eclipse. We now
need to tell Eclipse that the user library we have just created contains the defini-
tions that it needs, and we do this by adding the user library to the build path of our
project.

To do so, right click the HelloWorld project node in Project Explorer win-
dow to bring up the project’s pop-up menu. From this menu, select Properties,
which will bring up Properties for HelloWorld window. On this window,
navigate to Java Build Path and select Libraries tab, as shown in Fig. 13.5.

In this window, clicking Add Library will bring up the dialog window as
shown in Fig. 13.6.

13.1 Jena: A Semantic Web Framework for Java 499

Fig. 13.5 Using Jena framework as a user library

Highlight User Library, and click Next, select jena as the user library to be
added, and click Finish to add the user library into the build path, as shown in
Fig. 13.7.

Click OK in Properties for HelloWorld window to finish this task. You
will also note that jena user library shows up in Project Explorer window
correctly.

However, the error signals still do not disappear. In fact, Eclipse is now
waiting for us to use the appropriate import statements so that it will be
able to find the definitions for class Model, ModelFactory, Resource and
Property.

In fact, this could be fairly difficult for us: as beginners, we don’t know where
these definitions can be found in the library either. Yet the good news is, since we
have used the correct user library, all you need to do is to click the error symbol (the
red x on the left margin), and Eclipse will show you the right import statement to
use. Try this out, and if you have done everything correctly, all the errors should
be gone, and you should find the following import statements are being used, as
shown in List 13.5.

List 13.5 Import statements in our HelloWorld project

import com.hp.hpl.jena.datatypes.xsd.XSDDatatype;

import com.hp.hpl.jena.rdf.model.Model;

500 13 Jena: A Framework for Development on the Semantic Web

import com.hp.hpl.jena.rdf.model.ModelFactory;

import com.hp.hpl.jena.rdf.model.Property;

import com.hp.hpl.jena.rdf.model.Resource;

Now, run the project, you should be able to see the result as shown in List 13.6.

List 13.6 HelloWorld output

<rdf:RDF
xmlns:j.0="http://example.org/test/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

<rdf:Description rdf:about="http://example.org/test/message">
<j.0:says rdf:datatype=

"http://www.w3.org/2001/XMLSchema#string">
Hello World!

</j.0:says>
</rdf:Description>

</rdf:RDF>

And congratulations – this is your first Semantic Web application developed
using Jena.

Last thing before we move on: the above RDF model has only one statement, and
we can make it look much better: change line 12 on List 13.4 to make it look like

12: model.write(System.out,"Turtle");

and run the project again, you will get a better output as shown in List 13.7.

Fig. 13.6 Using Jena framework as a user library (continued)

13.2 Basic RDF Model Operations 501

Fig. 13.7 Using Jena framework as a user library (final step)

List 13.7 A better output from HelloWorld project

<http://example.org/test/message>
<http://example.org/test/says>

"Hello World!"ˆˆ<http://www.w3.org/2001/XMLSchema#string>.

13.2 Basic RDF Model Operations

In this section, we will use Jena to accomplish some basic functionalities. The goal
is to get you familiar with Jena. To make things simpler, we will be using in-memory
RDF models in this section, meaning that we will either create the RDF model in
memory or read it into memory from a given URL or a file system. Persistent RDF
models will be covered in the next section.

502 13 Jena: A Framework for Development on the Semantic Web

13.2.1 Creating an RDF Model

In this section, we will create an empty RDF model from scratch and then add RDF
statements to it. For the purpose of testing, we are going to create a model that
represents my own FOAF document as shown in List 13.8 (note that it has been
changed a little bit to make it easier to work with).

List 13.8 My FOAF document

1: <?xml version="1.0" encoding="UTF-8"?>
2: <rdf:RDF
3: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
4: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
5: xmlns:foaf="http://xmlns.com/foaf/0.1/">
6:
7: <rdf:Description
7a: rdf:about="http://www.liyangyu.com/foaf.rdf#liyang">
8: <foaf:name>liyang yu</foaf:name>
9: <foaf:title>Dr</foaf:title>
10: <foaf:givenname>liyang</foaf:givenname>
11: <foaf:family_name>yu</foaf:family_name>
12: <foaf:mbox rdf:resource="mailto:liyang910@yahoo.com"/>
13: <foaf:homepage rdf:resource="http://www.liyangyu.com"/>
14: <foaf:workplaceHomepage
14a: rdf:resource="http://www.delta.com"/>
15: <rdf:type
15a: rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
16:
17: <foaf:knows>
18: <!-- the following is for testing purpose -->
19: <foaf:Person>
20: <foaf:mbox
20a: rdf:resource="mailto:libby.miller@bristol.ac.uk"/>
21: <foaf:homepage
21a: rdf:resource="http://www.ilrt.bris.ac.uk/~ecemm/"/>
22: </foaf:Person>
23: </foaf:knows>
24:
25: <foaf:topic_interest
25a: rdf:resource="http://dbpedia.org/resource/Semantic_Web"/>
26:
27: </rdf:Description>
28: </rdf:RDF>

And the source code to accomplish this is shown in List 13.9.

List 13.9 Create a new RDF model and add statements to it

1: import java.io.PrintWriter;
2: import com.hp.hpl.jena.rdf.model.Model;
3: import com.hp.hpl.jena.rdf.model.ModelFactory;

13.2 Basic RDF Model Operations 503

4: import com.hp.hpl.jena.rdf.model.Resource;
5: import com.hp.hpl.jena.sparql.vocabulary.FOAF;
6: import com.hp.hpl.jena.vocabulary.RDF;
7: import com.hp.hpl.jena.vocabulary.RDFS;
8:
9: public class MyFOAFModel {
10:
11: public static void main(String[] args) {
12:
13: Model model = ModelFactory.createDefaultModel();
14: model.setNsPrefix("rdfs",RDFS.getURI());
15: model.setNsPrefix("foaf",FOAF.getURI());
16:
17: Resource subject = model.createResource
17a: ("http://www.liyangyu.com/foaf.rdf#liyang");
18:
19: subject.addProperty(FOAF.name,"liyang yu");
20: subject.addProperty(FOAF.title,"Dr");
21: subject.addProperty(FOAF.givenname,"liyang");
22: subject.addProperty(FOAF.family_name,"yu");
23: subject.addProperty(FOAF.mbox,
23a: model.createResource("mailto:liyang910@yahoo.com"));
24: subject.addProperty(FOAF.homepage,
24a: model.createResource("http://www.liyangyu.com"));
25: subject.addProperty(FOAF.workplaceHomepage,
25a: model.createResource("http://www.delta.com"));
26: subject.addProperty(FOAF.topic_interest,
26a: model.createResource
26b: ("http://dbpedia.org/resource/Semantic_Web"));
27: subject.addProperty(RDF.type,FOAF.Person);
28:
29: Resource blankSubject = model.createResource();
30: blankSubject.addProperty(RDF.type,FOAF.Person);
31: blankSubject.addProperty(FOAF.mbox,
31a: model.createResource
31b: ("mailto:libby.miller@bristol.ac.uk"));
32: blankSubject.addProperty(FOAF.homepage,
32a: model.createResource
32b: ("http://www.ilrt.bris.ac.uk/~ecemm/"));
33: subject.addProperty(FOAF.knows,blankSubject);
34:
35: model.write(System.out);
36: }
37:
38: }

First thing to remember is that in Jena’s world, ModelFactory class is the
preferred way when it comes to creating different types of RDF models. For
our purpose in this example, we want an empty, in-memory model, therefore
ModelFactory.createDefaultModel() is the method to call, as shown in line

504 13 Jena: A Framework for Development on the Semantic Web

13 of List 13.9. This method returns an instance of class Model, which represents the
empty RDF model we have just created. At this point, we can start to add statements
into this model.

To add a statement into an RDF model, the first thing to do is to create a state-
ment. In Jena, the subject of a statement is always represented by an instance of
Resource class, the predicate is represented by an instance of Property class,
and the object is either a Resource instance or a literal value, which is represented
by an instance of Literal class. All of these classes, namely Resource class,
Property class, and Literal class, share a common interface called RDFNode.
At this point, you should be able to tell how Jena’s class hierarchy maps to the
related concepts in RDF world.

Now, to create a statement, we create the subject first. One way to do this is to
call createResource() method provided by Model class, as shown in line 17,
and we pass in the URI of the subject so that it can be created with the given URI as
its identifier.

Once we have the subject, we can create a statement by calling method
Resource.addProperty(). This method directly creates a statement in the model
with the Resource as its subject. The method takes two parameters, a Property

instance representing the predicate of the statement and the statement’s object. Note
that addProperty() method is overloaded in multiple forms, and one overload
takes an RDFNode as its object, so a Resource or a Literal can be used. There
are also other overloads that take a literal represented by a Java primitive or a string,
as we will see next.

With this said, line 19 should be easy to understand: it directly inserts a state-
ment into the model with subject as its subject, foaf:name as its property,
and string literal “liyang yu” as its object. Note that Jena provides support for
some popular vocabularies, and FOAF ontology is one of these ontologies. In
this case, FOAF.name returns a Property instance that represents foaf:name

property.
As a side note, if Jena did not support FOAF ontology, line 19 could have been

written as two separate lines as given below:

Property nameProperty =
model.createProperty("http://xmlns.com/foaf/0.1/name");

subject.addProperty(nameProperty,"liyang yu");

or a more concise form would look like

subject.addProperty

(model.createProperty("http://xmlns.com/foaf/0.1/name"),

"liyang yu");

Similarly, lines 20–22 are all easy to understand. Line 20 inserts a state-
ment saying our subject has a foaf:title property whose value is “Dr,”
line 21 adds a statement saying our subject has a foaf:givenname prop-
erty whose value is “liyang,” and line 22 maps to a statement saying our

13.2 Basic RDF Model Operations 505

subject has a foaf:family_name property whose value is “yu.” And obvi-
ously, the statements created by lines 19–22 are corresponding to lines 8–11 in
List 13.8.

Note that lines 19–22 are all adding statements whose objects are having string
literals as their values. Lines 23–26, on the other hand, are using resources as
the values of their objects. For example, line 23 inserts a statement which has
another resource as its object, and again, createResource() is called to create
this resource. Also, statements created by lines 23–26 map to lines 12–14 and 25 in
List 13.8.

Line 27 is also quite straightforward: it creates a statement that maps to line 15 in
List 13.8. Again, since Jena supports FOAF and RDF vocabulary, RDF.type returns
rdf:type property and FOAF.Person returns foaf:Person resource.

Lines 29–32 can be understood together with lines 19–22 in List 13.8, which
defines a blank node that represents an instance of foaf:Person class. To cre-
ate this blank node, createResource() method is called without any parameters
being passed in, as shown in line 29.

Once this blank resource is created, we can add statements that use this resource
as their subject. Line 30 inserts a statement saying this blank resource is an
instance of foaf:Person and line 31 says this bland node has a foaf:mbox

property who is using another resource as its value. Finally, line 32 adds a state-
ment about its foaf:homepage property. Again, lines 29–32 map to lines 19–22 in
List 13.8.

Line 33 in List 13.9 inserts into our model the last statement which expresses the
fact that the subject foaf:the knows the above blank node, and at this point, it
should be quite easy to understand as well.

Now, we have finished creating a simple in-memory RDF model that represents
the document shown in List 13.8. To see this model, line 35 is used, which simply
prints out the model on the screen so that we can take a look.

If you run the java class shown in List 13.9, you should get the output as shown
in List 13.10.

List 13.10 Output generated by List 13.9

1: <rdf:RDF
2: xmlns:foaf="http://xmlns.com/foaf/0.1/"
3: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
4: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" >
5: <rdf:Description
5a: rdf:about="http://www.liyangyu.com/foaf.rdf#liyang">
6: <foaf:name>liyang yu</foaf:name>
7: <foaf:mbox rdf:resource="mailto:liyang910@yahoo.com"/>
8: <rdf:type
8a: rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
9: <foaf:family_name>yu</foaf:family_name>
10: <foaf:knows rdf:nodeID="A0"/>
11: <foaf:givenname>liyang</foaf:givenname>
12: <foaf:title>Dr</foaf:title>

506 13 Jena: A Framework for Development on the Semantic Web

13: <foaf:topic_interest rdf:resource=
13a: "http://dbpedia.org/resource/Semantic_Web"/>
14: <foaf:homepage rdf:resource="http://www.liyangyu.com"/>
15: <foaf:workplaceHomepage
15a: rdf:resource="http://www.delta.com"/>
16: </rdf:Description>
17: <rdf:Description rdf:nodeID="A0">
18: <foaf:homepage
18a: rdf:resource="http://www.ilrt.bris.ac.uk/~ecemm/"/>
19: <foaf:mbox
19a: rdf:resource="mailto:libby.miller@bristol.ac.uk"/>
20: <rdf:type
20a: rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
21: </rdf:Description>
22: </rdf:RDF>

Note that List 13.10 is not the best output that we can have. For one thing, the
blank node has been assigned a node ID (line 17), so it is not blank anymore. In fact,
a better output can be obtained by replacing line 35 with the following line which
makes use of RDF/XML-ABBR parameter:

model.write(new PrintWriter(System.out), "RDF/XML-ABBREV");

And now, run the code again, and you will see the output as shown in List 13.11.

List 13.11 A better output generated from List 13.9

1: <rdf:RDF
2: xmlns:foaf="http://xmlns.com/foaf/0.1/"
3: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
4: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
5: <foaf:Person
5a: rdf:about="http://www.liyangyu.com/foaf.rdf#liyang">
6: <foaf:name>liyang yu</foaf:name>
7: <foaf:mbox rdf:resource="mailto:liyang910@yahoo.com"/>
8: <foaf:knows>
9: <foaf:Person>
10: <foaf:homepage
10a: rdf:resource="http://www.ilrt.bris.ac.uk/~ecemm/"/>
11: <foaf:mbox
11a: rdf:resource="mailto:libby.miller@bristol.ac.uk"/>
12: </foaf:Person>
13: </foaf:knows>
14: <foaf:family_name>yu</foaf:family_name>
15: <foaf:givenname>liyang</foaf:givenname>
16: <foaf:title>Dr</foaf:title>
17: <foaf:topic_interest
17a: rdf:resource="http://dbpedia.org/resource/Semantic_Web"/>
18: <foaf:homepage rdf:resource="http://www.liyangyu.com"/>

13.2 Basic RDF Model Operations 507

19: <foaf:workplaceHomepage
19a: rdf:resource="http://www.delta.com"/>
20: </foaf:Person>
21: </rdf:RDF>

Before we move on, note that we have been using addProperty()method to
create statements. In fact, statements can also be created directly on the model by
calling Model.createStatement() with the subject, predicate, and object of the
triple. For example,

Statement statement =
model.createStatement(mySubject,myProperty,myObject);

However, a main difference between these two methods of creating statements is
that creating a statement in this way doesn’t add it into the model. If you want to
add it into the model, call Model.add() with the created statement:

// but remember to add the created statement to the model

model.add(statement);

At this point, we are done using Jena to create a simple RDF model. We have
seen the use of important classes such as ModelFactory, Model, Resource and
Property; we have also seen how to create resources and properties and how to
insert statements into an existing RDF model.

Obviously, creating RDF models like what we have done here is not quite
scalable. A large RDF model will simply require too much coding work and
maintenance work; there has to be other ways to build RDF models.

In real practice, most of the RDF documents are generated automatically, from a
given database table, for instance. The generated RDF documents can then be read
into memory for more processing work. Therefore, learning how to read in an RDF
model is also important, and let us cover this in the next section.

13.2.2 Reading an RDF Model

Compared to creating an RDF model as we have discussed in the previous section,
reading a given RDF document into memory is probably a more frequently used
operation. As we will see in the coming sections and chapters of this book, for
many applications, we often need to read a certain RDF document located at a given
URL into memory before we can do anything about it. This can be understood as
downloading a machine-readable document from the Web.

In the case where there is no state persistence necessary, implementing this
download action is quite straightforward. List 13.12 shows how to read my FOAF
document from the following URL:

http://liyangyu.com/foaf.rdf

and to show we have correctly read the document, we also write it out in Turtle
format.

508 13 Jena: A Framework for Development on the Semantic Web

List 13.12 Reading an RDF document from a given URL

1: package test;

2:

3: import com.hp.hpl.jena.rdf.model.Model;

4: import com.hp.hpl.jena.rdf.model.ModelFactory;

5: import com.hp.hpl.jena.util.FileManager;

6:

7: public class ReadRDFModel {

8:

9: public static final String MY_FOAF_FILE =
9a: "http://liyangyu.com/foaf.rdf";

10:

11: public static void main(String[] args) {

12:

13: Model model = ModelFactory.createDefaultModel();

14: model.read(MY_FOAF_FILE);

15: model.write(System.out,"N3");

16: }

17: }

List 13.12 makes use of a basic Model form that is created by calling
createDefaultModel() method. This model uses an in-memory storage model
and has no inference or any other reasoning power. In the case where we do need to
have inference capabilities, we will have to create the model in some other ways, as
we will see in a later section. Also note that line 15 uses N3 as the format param-
eter since Turtle is a subset of Notation 3 (N3). List 13.13 shows the output from
List 13.12.

List 13.13 Output generated from List 13.12

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://www.liyangyu.com/foaf.rdf#liyang>
a foaf:Person ;
foaf:family_name "yu"@en ;
foaf:givenname "liyang"@en ;
foaf:homepage <http://www.liyangyu.com> ;
foaf:knows

[a foaf:Person ;
foaf:homepage <http://www.ilrt.bris.ac.uk/~ecemm/> ;
foaf:mbox <mailto:libby.miller@bristol.ac.uk>

] ;
foaf:mbox_sha1sum

"1613a9c3ec8b18271a8fe1f79537a7b08803d896"@en ;
foaf:name "liyang yu"@en ;
foaf:title "Dr"@en ;

13.2 Basic RDF Model Operations 509

foaf:topic_interest
<http://dbpedia.org/resource/Semantic_Web> ;

foaf:workplaceHomepage
<http://www.delta.com> .

It is also possible to load an RDF document into memory from a local file system.
As shown by line 15 of List 13.14, FileManager class is used to finish the task.

List 13.14 Read an RDF document from local file system

1: package test;

2:

3: import com.hp.hpl.jena.rdf.model.Model;

4: import com.hp.hpl.jena.rdf.model.ModelFactory;

5: import com.hp.hpl.jena.util.FileManager;

6:

7: public class ReadRDFModel {

8:

9: public static final String MY_FOAF_FILE =
9a: "c:/liyang/myWebsite/currentPage/foaf.rdf";

10: // public static final String MY_FOAF_FILE =
10a: // "http://liyangyu.com/foaf.rdf";

11:

12: public static void main(String[] args) {

13:

14: Model model = ModelFactory.createDefaultModel();

15: FileManager.get().readModel(model,MY_FOAF_FILE);

16: // model.read(MY_FOAF_FILE);

17: model.write(System.out,"N3");

18: }

19: }

13.2.3 Understanding an RDF Model

Now that we have an RDF model in memory, we can continue to use Jena’s library
to know more about it. For example, knowing the answers to the following questions
can be helpful:

• What types (classes) are used in this model?
• For each type used, what instances are created/included in this model?
• What are the namespaces used in this model?

You probably can list more questions here. For now, List 13.15 shows the code
we can use to understand a given RDF document.

510 13 Jena: A Framework for Development on the Semantic Web

List 13.15 Understanding an RDF document

1: package test;
2:
3: import java.util.Iterator;
4: import java.util.Map;
5:
6: import com.hp.hpl.jena.rdf.model.Model;
7: import com.hp.hpl.jena.rdf.model.ModelFactory;
8: import com.hp.hpl.jena.rdf.model.NodeIterator;
9: import com.hp.hpl.jena.rdf.model.ResIterator;
10: import com.hp.hpl.jena.rdf.model.Resource;
11: import com.hp.hpl.jena.vocabulary.RDF;
12:
13: public class ReadRDFModel {
14:
15: public static final String RDF_FILE =
15a: "http://liyangyu.com/foaf.rdf";
16:
17: public static void main(String[] args) {
18:
19: Model model = ModelFactory.createDefaultModel();
20: model.read(RDF_FILE);
21: // model.write(System.out,"N3");
22:
23: // show all the namespaces in the model
24: Iterator prefixNsPairs =
24a: model.getNsPrefixMap().entrySet().iterator();
25: while (prefixNsPairs.hasNext()) {
26: Map.Entry entry = (Map.Entry)(prefixNsPairs.next());
27: System.out.print("prefix:" + entry.getKey());
28: System.out.println(", namespace:" + entry.getValue());
29: }
30:
31: // show all the classes and their instances
32: System.out.println("the following types/classes have
32a: been used in this RDF document(with their instances):");
33: NodeIterator classes =
33a: model.listObjectsOfProperty(RDF.type);
34: while (classes.hasNext()) {
35: Resource typeRes = (Resource)(classes.next());
36: System.out.println("(class/type)" + typeRes.getURI());
37: ResIterator resources =
37a: model.listResourcesWithProperty(RDF.type,typeRes);
38: while (resources.hasNext()) {
39: Resource instanceRes = resources.nextResource();
40: if (instanceRes.isAnon()) {
41: System.out.println(" [anonymous instance] " +
41a: instanceRes.getId());
42: } else {

13.2 Basic RDF Model Operations 511

43: System.out.println(" [instance] " +
43a: instanceRes.getURI());
44: }
45: }
46: }
47:
48: }
49: }

Line 15 specifies the RDF document we want to read, and lines 19 and 20 actually
read the RDF document into our in-memory model. Lines 23–29 show a summary
of the namespaces (and their prefixes) that have been used in this document. Method
getNsPrefixMap() (line 24) is the key when it comes to namespaces. This method
returns a collection of key–value pairs for each one of these pairs, the key being the
prefix and the value being the namespace. As you see, line 27 retrieves the prefix
and line 28 retrieves the namespace itself.

To find all the types/classes that are referenced in this model, method
listObjectsOfProperty() is used (line 33). This method takes a property as
its input parameter (in this case, this property is given by RDF.type) and it visits
all the statements in the model and tries to match this pattern:

subject rdf:type object

Obviously, any statement following this pattern is there to assert the type of a
given resource (represented by subject), so the object component must represent
a class definition.

Once executed, method listObjectsOfProperty() returns a group of types
(this group will have only one member if only one class is ever used in the whole
model). For each class in this group, we try to find all the resources that are instances
of this class. This is done by calling listResourcesWithProperty() method in
line 37. This method takes a property instance and object type as its input param-
eters, and in our case, RDF.type is the property instance and typeRes represents
the object type. It then tries to match all the statements that have the following
pattern:

subject rdf:type typeRes

Once a match is found, the subject is collected and becomes one of the returned
resources when the call is finished. Our code then lists out all these resources,
together with their type information (lines 38–44).

Note that it could be true that a given resource is represented by a blank node,
yet it is still an instance of a given type. To take this into account, we use isAnon()
method to test if a given resource is a blank node (line 40). If a resource is repre-
sented by a blank node, method getId() is called to get its identifier; otherwise,
method getURI() is used (line 43).

Now, let us run this code against my FOAF document, and List 13.16 shows the
result.

512 13 Jena: A Framework for Development on the Semantic Web

List 13.16 Output generated from List 13.15 with my FOAF document

1: prefix:rdfs, namespace:http://www.w3.org/2000/01/rdf-schema#
2: prefix:rdf,
2a: namespace:http://www.w3.org/1999/02/22-rdf-syntax-ns#
3: prefix:foaf, namespace:http://xmlns.com/foaf/0.1/
4: the following types/classes have been used in this RDF
4a: document (with their in-stances):
5: (class/type) http://xmlns.com/foaf/0.1/Person
6: [anonymous instance] -6aa9a0b:12454881133:-8000
7: [instance] http://www.liyangyu.com/foaf.rdf#liyang

As you can see, lines 1–3 show the namespaces and their prefixes that are ref-
erenced by my FOAF document, line 5 shows the only class (foaf:Person) used
in this document, and lines 6 and 7 list the two instances that actually have the
type foaf:Person. Therefore, we have now learned that this document describes
some instances whose type is foaf:Person, and it has also included two such
instances.

Let us try some other file that has more content than my simply FOAF document.
The following RDF document seems to be a good choice:

http://dbpedia.org/data/Roger_Federer.rdf

You do need to change line 15 of List 13.15 to make it look like

public static final String RDF_FILE =
"http://dbpedia.org/data/Roger_Federer.rdf";

And List 13.17 shows part of the result.

List 13.17 Understanding Federer’s RDF document generated by DBpedia

prefix:dbpprop, namespace:http://dbpedia.org/property/
prefix:dbpedia-owl, namespace:http://dbpedia.org/ontology/
prefix:dc, namespace:http://purl.org/dc/elements/1.1/
prefix:rdfs, namespace:http://www.w3.org/2000/01/rdf-schema#
prefix:rdf, namespace:http://www.w3.org/1999/02/22-rdf-syntax-ns#
prefix:foaf, namespace:http://xmlns.com/foaf/0.1/
prefix:owl, namespace:http://www.w3.org/2002/07/owl#
prefix:skos, namespace:http://www.w3.org/2004/02/skos/core#
the following types/classes have been used in this RDF document
(with their instances):
(class/type) http://dbpedia.org/ontology/Person
[instance] http://dbpedia.org/resource/Roger_Federer

(class/type) http://dbpedia.org/class/yago/USOpenChampions
[instance] http://dbpedia.org/resource/Roger_Federer

(class/type)
http://dbpedia.org/class/yago/AustralianOpenChampions
[instance] http://dbpedia.org/resource/Roger_Federer

(class/type) http://dbpedia.org/ontology/Athlete
[instance] http://dbpedia.org/resource/Roger_Federer

(class/type) http://dbpedia.org/ontology/TennisPlayer
[instance] http://dbpedia.org/resource/Roger_Federer

13.2 Basic RDF Model Operations 513

(class/type) http://dbpedia.org/class/yago/LivingPeople
[instance] http://dbpedia.org/resource/Roger_Federer

(class/type) http://xmlns.com/foaf/0.1/Person
[instance] http://dbpedia.org/resource/Roger_Federer

Based on this output, without reading the RDF document itself, we have obtained
quite some information about it already.

Besides understanding the type information for the resources, we can also inspect
the properties defined for them. Among all the properties, the following three are of
particular interest to us:

owl:sameAs

rdfs:seeAlso

rdfs:isDefinedBy

since we can follow these properties to find more about their subjects. In fact, this is
the idea behind the Follow-Your-Nose algorithm, which we will see more in the next
chapter. Note that other properties can also be used in Follow-Your-Nose search, so
the above list can grow, but for now, these three are the most obvious ones.

Based on the above discussion, our last query is to find all the resources that have
the above properties. List 13.18 uses owl:sameAs as an example to show how the
search is done.

List 13.18 Use owl:sameAs to find links

1: package test;
2:
3: import java.util.Iterator;
4: import java.util.Map;
5:
6: import com.hp.hpl.jena.rdf.model.Model;
7: import com.hp.hpl.jena.rdf.model.ModelFactory;
8: import com.hp.hpl.jena.rdf.model.NodeIterator;
9: import com.hp.hpl.jena.rdf.model.RDFNode;
10: import com.hp.hpl.jena.rdf.model.ResIterator;
11: import com.hp.hpl.jena.rdf.model.Resource;
12: import com.hp.hpl.jena.rdf.model.Statement;
13: import com.hp.hpl.jena.rdf.model.StmtIterator;
14: import com.hp.hpl.jena.vocabulary.OWL;
15: import com.hp.hpl.jena.vocabulary.RDF;
16:
17: public class ReadRDFModel {
18:
19: public static final String RDF_FILE =
19a: "http://dbpedia.org/data/Roger_Federer.rdf";
20:
21: public static void main(String[] args) {
22:
23: Model model = ModelFactory.createDefaultModel();
24: model.read(RDF_FILE);
25: // model.write(System.out,"N3");
26:

514 13 Jena: A Framework for Development on the Semantic Web

27: // show all the namespaces in the model
...
34:
35: // show all the classes and their instances
...
51:
52: // show all instances that have a owl:sameAs property
53: System.out.println("\nfollowing instances have
53a: owl:sameAs property:");
54: StmtIterator statements = model.listStatements
54a: ((Resource)null,OWL.sameAs,(RDFNode)null);
55: while (statements.hasNext()) {
56: Statement statement = statements.nextStatement();
57: Resource subject = statement.getSubject();
58: if (subject.isAnon()) {
59: System.out.print(" (" + subject.getId() + ")");
60: } else {
61: System.out.print(" (" + subject.getURI() + ")");
62: }
63: System.out.print(" OWL.sameAs ");
64: Resource object = (Resource)(statement.getObject());
65: if (object.isAnon()) {
66: System.out.print("(" + object + ")");
67: } else if (object.isLiteral()) {
68: System.out.print("(" + object.toString() + ")");
69: } else if (object.isResource()) {
70: System.out.print("(" + object.getURI() + ")");
71: }
72: System.out.println();
73: }
74:
75: }
76: }

And the related code is from lines 52–72 (the rest are the same as in List 13.15).
The key method to call is listStatements() as in line 54. Since we pass in null
value for both the subject and the object, the method tries to find all the statements
that use owl:sameAs as the property, and the subjects and objects of these state-
ments can be anything. This way, we will be able to find all the subjects and objects
that are linked together by owl:sameAs. Lines 57–72 print the result in a more
readable way.

Now run the code against Roger Federer’s RDF document, we should see the
result as shown in List 13.19.

List 13.19 Part of the output from List 13.18

the following instance(s) has/have owl:sameAs property:
(http://dbpedia.org/resource/Roger_Federer) OWL.sameAs

(http://rdf.freebase.com/ns/guid.9202a8c04000641f800000000019f52)
(http://mpii.de/yago/resource/Roger_Federer) OWL.sameAs

(http://dbpedia.org/resource/Roger_Federer)

13.3 Handling Persistent RDF Models 515

We can get more understanding about a given RDF model by inspecting other
properties that we are interested in, and with what you have learned here, it should
be a fairly straightforward process.

Meanwhile, understand that accessing and querying a given RDF Model as what
we have done here is considered to be a fairly low-level view of the RDF graph.
Other query techniques, such as SPARQL query language, can provide more com-
pact and powerful results, as we will show you in the next chapter. However, what
you have learned here will help you to understand Jena more and will also give you
some light-weighted querying methods without using SPARQL.

13.3 Handling Persistent RDF Models

13.3.1 From In-memory Model to Persistent Model

So far to this point, we have been working with in-memory models. These models
are either created from scratch or populated from existing files. The files can be
located in a local file system or can be downloaded from given URLs.

Although in-memory models are quite useful, they do have some disadvantages.
To name a few,

• The RDF model has to be repopulated from scratch each time the application
launches, thus requiring a longer start-up time.

• Any change made to the in-memory model will be lost when the application is
shut down.

• Applications based upon in-memory models will not scale as we start to work
with larger models.

A better solution is to store ontology and instance models in a database-backed
RDF store, and then operate on the models just as we have discussed so far. This
solution is called the persistent model solution, where the models are continually
and transparently persisted with the backing store.

Jena is shipped with support for a collection of standard database systems,
including MySQL, PostgresQL, SQL Server, Oracle and Derby. In addition, Jena’s
database adapters use standard JDBC drivers to manage these database engines as
triple stores, and Jena will create and manage its own table layout in the database
systems; the details are hidden from the applications.

For developers like us, this means we can select one of the above database sys-
tems as the data store, and Jena hides the variations of SQL syntax in different
databases by offering the related APIs that we can use. For example, when we call
listStatements() on a database-backed model, Jena will construct the appro-
priate SQL query, execute it through the underlying database engine, and translate
the query results into a ResultSet object that our application can manipulate to
retrieve each Statement object.

516 13 Jena: A Framework for Development on the Semantic Web

With this solution, our RDF models will stay in the database regardless of
whether the application is on or not; the application accesses these models via Jena
APIs without loading the models into the memory. In addition, whatever the appli-
cation has changed will stay in the models, and the next time that application starts,
we will see the changes we have made from last time.

We will see the details of this solution in the next section. We also need to choose
a database management system. In our case, we will go with MySQL, mainly due
to the fact that it is freely available for different platforms.

13.3.2 Setting Up MySQL

In this section, we will setup MySQL on your machine. If you have MySQL already,
you can skip this section and move on to the next section.

To setup MySQL, the first step is to download MySQL software and the JDBC
driver. At this point, you should be able to find the downloadable files from the
following URL:

http://www.mysql.com/downloads/

If this URL does not exist at the time you are reading the book, go to MySQL’s
homesite

http://www.mysql.com/

and try to find the download link from this official home page.
At this point, the freely downloadable version is called MySQL Community

Server, and that is the one you should download. After the download is com-
pleted, you can double click the downloaded package to start installation on your
machine.

Once the installation is finished, you will be asked to configure MySQL Server.
For example, here you have a chance to configure the port number, which is
defaulted to be 3306. You can either keep the default number or use another number,
but make sure the number you are using is not in use by other server software on
your machine.

Another configuration task is to specify the user ID and user password. For me, I
used the given root user as my user name, and I entered passwd as my password.
You can choose your combination, but you need to remember them, since they will
be needed in your Java code.

Once you are done with the configuration step, you need to continue downloading
the JDBC driver that goes together with MySQL. To do so, click Connectors link
on the same download page; you will be presented with a page that includes a list
of connectors. Within these connectors, you should download Connector/J, the
driver for Java platform. This connector is simply a jar file that you need to use in
your Java code, and you can simply add it to your user library as we have discussed
early in this chapter.

13.3 Handling Persistent RDF Models 517

Now, MySQL has been set up on your machine. To make sure MySQL database
engine is working fine, you can fire up MySQL Command Line Client, and after
entering the password, try to issue some SQL commands, as shown in Fig. 13.8. If
you can do all these successfully, MySQL is correctly set up and running, and we
are ready to move on.

Fig. 13.8 Make sure MySQL is correctly set up

13.3.3 Database-Backed RDF Models

13.3.3.1 Single Persistent RDF Model

By far, we know Model interface is a key abstraction in Jena. It represents an RDF
model, which has a collection of statements. There are several implementations of
Model interface; each one of them is for a different type of model, such as an in-
memory model, a file based model, an inferencing model, and a database-backed
model.

For our purpose, we need the implementation for the database-backed model.
This is the class called ModelRDB, and createModelRDBMaker() method call on
ModelFactory class can answer a ModelMaker object that understands how to
handle ModelRDB object.

List 13.20 Shows the code we can use to make my own FOAF document into a
persistent RDF model in MySQL.

List 13.20 Load my FOAF document and make it a persistent RDF model in
MySQL

1: import com.hp.hpl.jena.db.DBConnection;
2: import com.hp.hpl.jena.db.IDBConnection;
3: import com.hp.hpl.jena.rdf.model.Model;

518 13 Jena: A Framework for Development on the Semantic Web

4: import com.hp.hpl.jena.rdf.model.ModelFactory;
5: import com.hp.hpl.jena.rdf.model.ModelMaker;
6: import com.hp.hpl.jena.rdf.model.Property;
7: import com.hp.hpl.jena.rdf.model.Resource;
8: import com.hp.hpl.jena.rdf.model.Statement;
9: import com.hp.hpl.jena.rdf.model.StmtIterator;
10: import com.hp.hpl.jena.util.FileManager;
11: import com.hp.hpl.jena.util.PrintUtil;
12:
13: public class DBModelTester {
14:
15: public static final String RDF_FILE =
15a: "http://www.liyangyu.com/foaf.rdf";
16: public static final String ONTOLOGY_FILE =
16a: "http://xmlns.com/foaf/0.1/";
17:
18: private static String className = "com.mysql.jdbc.Driver";
19: private static String DB_URL =
19a: "jdbc:mysql://localhost:3306/myFoafModel";
20: private static String DB_USER = "root";
21: private static String DB_PASSWD = "passwd";
22: private static String DB_TYPE = "MySQL";
23: private static String DOCUMENT_NAME = "myFoafRDF";
24: private static String ONTOLOGY_NAME = "foaf.owl";
25:
26: public static void main(String[] args) {
27:
28: IDBConnection conn = null;
29: ModelMaker maker = null;
30:
31: try {
32: Class.forName(className);
33: conn =
33a: new DBConnection(DB_URL,DB_USER,DB_PASSWD,DB_TYPE);
34: } catch (Exception e) { e.printStackTrace(); }
35:
36: maker = ModelFactory.createModelRDBMaker(conn);
37: Model m = null;
38:
39: if (!maker.hasModel(DOCUMENT_NAME) == true) {
40: System.out.println("Loading instance
40a: document - one time only");
41: m = maker.createModel(DOCUMENT_NAME);
42: FileManager.get().readModel(m,RDF_FILE);
43: } else {
44: m = maker.getModel(DOCUMENT_NAME);
45: }
46: printStatements(m, null, null, null);
47:
48: // close the connection
49: try {
50: conn.close();

13.3 Handling Persistent RDF Models 519

51: } catch(Exception e) { e.printStackTrace(); }
52:
53: }
54:
55: private static void printStatements(Model m, Resource s,
55a: Property p, Resource o) {
56: for (StmtIterator I = m.listStatements(s,p,o);
56a: i.hasNext();) {
57: Statement stmt = i.nextStatement();
58: System.out.println(" - " + PrintUtil.print(stmt));
59: }
60: }
61: }

The interesting lines in List 13.20 start from line 18, where the driver for MySQL
is specified. If you have the experience of connecting to a backend database using
Java platform, this line and the next couple of lines will look familiar to you. Line
19 specifies the database URL, which uses 3306 as the default port number. If you
have specified other port number during the configuration process, you should use
that port number instead of 3306. Also, myFoafModel is the name of the database
we are going to create, and my FOAF document will stay in this database. You can
certainly choose a name you like for your database.

Lines 20–22 specify the user name, the password, and the database type in order
to create a connection to MySQL database engine. The user name, password we
have selected at the setup time will be used here. Note that you have to use MySQL
for DB_TYPE, since we have MySQL database as our backend database systems.

Lines 23 and 24 define the names of two RDF models we are going to load
into our database: myFoafRDF is the name of the model that represents my own
FOAF document, and foaf.owl is the name of the model that represents the FOAF
ontology. List 13.20 will load only my own FOAF document into database, and the
FOAF ontology will be handled later in the next section.

Lines 31–34 create the connection to MySQL backend database, and it is a fairly
standard code you should use.

Line 36 is the key line. createModelRDBMaker() method call on
ModelFactory class answers a ModelMaker object that understands how to han-
dle RDF models and further change them into persistent graphs in the database.
Note that we need to pass the database connection we have created in lines 31–34
to createModelRDBMaker() method so that the created ModelMaker object can
operate in the database we have specified.

Once a ModelMaker object that connects to the backend database has been cre-
ated, we can use it to load my FOAF document and make it a persistent RDF graph.
To do so, line 39 checks if my FOAF document is already loaded into the database;
if not, createModel() method on ModelMaker object is called to create a model
that has the name specified by DOCUMENT_NAME string (line 41). This model is then
populated by reading my FOAF file (line 42); in this case, this file can be obtained
from the path given by line 15.

520 13 Jena: A Framework for Development on the Semantic Web

Note that this model creation and population process is executed only once (line
40). The second time you run the same code, my FOAF document is already in the
database, and it will be mapped to a model directly (line 44). Clearly, this is the
reason why we say my FOAF document now becomes a persistent model.

Once we reach line 46, we have an RDF model on hand, and we can do anything
with it, as if it were an in-memory RDF model that we are familiar with from the
previous sections. In our case, we simply print out all the statements contained in
this model.

Lines 49–51 are some routine housekeeping work, and it is necessary to ensure a
clean database shutdown which also helps to release system resources.

Now, what exactly is inside the backend database? To understand more about how
this works, before you run the code in List 13.20, fire up the MySQL Command Line
Client as shown in Fig. 13.8, and list all the databases that are currently in MySQL.
For me, here is what I have:

mysql> show databases;

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

+--------------------+

and now, run the code in List 13.20. And if you are running it for the first time, you
should see some output such as the following:

Loading instance document - one time only

- (http://www.liyangyu.com/foaf.rdf#liyang

http://xmlns.com/foaf/0.1/name ’liyang yu’)

- (http://www.liyangyu.com/foaf.rdf#liyang

http://xmlns.com/foaf/0.1/title ’Dr’)

- (http://www.liyangyu.com/foaf.rdf#liyang

http://xmlns.com/foaf/0.1/givenname ’liyang’)

. . .

Once the run is successfully finished, we can go back to MySQL Command Line
Client window and list all the databases again:

mysql> show databases;

+--------------------+

| Database |

+--------------------+

| information_schema |

| myfoafmodel |

| mysql |

+--------------------+

13.3 Handling Persistent RDF Models 521

As you can see, myfoafmodel is now included in the database list. To see more
about it, let us check out all the tables in this database:

mysql> show tables from myfoafmodel;

+-----------------------+

| Tables_in_myfoafmodel |

+-----------------------+

| jena_g1t0_reif |

| jena_g1t1_stmt |

| jena_graph |

| jena_long_lit |

| jena_long_uri |

| jena_prefix |

| jena_sys_stmt |

+-----------------------+

Clearly, this is all created by Jena framework, and there is no need for us to do
anything with them. However, out of curiosity, we can always check out each one
of them. If we do so, the following will be some of our discoveries:

• Table jena_g1t1_stmt holds all the statements contained in my FOAF docu-
ment.

• Table jena_graph holds all the models in the database.

For example, to inspect what is inside jena_graph table, we can do the
following:

mysql> select * from myfoafmodel.jena_graph;

+----+-----------+

| ID | Name |

+----+-----------+

| 1 | myFoafRDF |

+----+-----------+

As you see, my FOAF document is currently the only model in the database, and
we will see how to add another model into the database in the next section.

Before we move on, let us do some exercise to get more understanding about
persistent model. First, add the following lines into the code shown in List 13.20
and make sure you add these lines after line 46 in List 13.20:

// update the model

m.getResource("http://www.liyangyu.com/foaf.rdf#liyang").

addProperty(FOAF.nick,"laoyu");

run the code again with the above lines added, and then shut down your application.
Now, the above update you have done to the model is saved in the database. To see
this, use MySQL Command Line Client to inspect jena_g1t1_stmt table; you
will see that the update you made to model does stay in the database.

522 13 Jena: A Framework for Development on the Semantic Web

13.3.3.2 Multiple Persistent RDF Models

In the previous section, we have learned how to load a single RDF document into
a backend database so as to make it a persistent RDF model. However, a real
application often involves a number of RDF documents, including both instance
and ontology files. To handle this situation, a Jena database can store multiple
models, and typically, each model is represented by its own set of tables in the
database.

Let us again use my FOAF document as our example. We have loaded it into
the database in the previous section, and in this section, we will load the FOAF
ontology into the same database. Therefore, a single database will hold two models.
List 13.21 shows how this is done.

List 13.21 Load my FOAF document and FOAF ontology to make them
persistent models

1: import com.hp.hpl.jena.db.DBConnection;
2: import com.hp.hpl.jena.db.IDBConnection;
3: import com.hp.hpl.jena.rdf.model.Model;
4: import com.hp.hpl.jena.rdf.model.ModelFactory;
5: import com.hp.hpl.jena.rdf.model.ModelMaker;
6: import com.hp.hpl.jena.rdf.model.Property;
7: import com.hp.hpl.jena.rdf.model.Resource;
8: import com.hp.hpl.jena.rdf.model.Statement;
9: import com.hp.hpl.jena.rdf.model.StmtIterator;
10: import com.hp.hpl.jena.util.FileManager;
11: import com.hp.hpl.jena.util.PrintUtil;
12:
13: public class DBModelTester {
14:
15: public static final String RDF_FILE =
15a: "http://www.liyangyu.com/foaf.rdf";
16: public static final String ONTOLOGY_FILE =
16a: "http://xmlns.com/foaf/0.1/";
17:
18: private static String className = "com.mysql.jdbc.Driver";
19: private static String DB_URL =
19a: "jdbc:mysql://localhost:3306/myFoafModel";
20: private static String DB_USER = "root";
21: private static String DB_PASSWD = "passwd";
22: private static String DB_TYPE = "MySQL";
23: private static String DOCUMENT_NAME = "myFoafRDF";
24: private static String ONTOLOGY_NAME = "foaf.owl";
25:
26: public static void main(String[] args) {
27:
28: IDBConnection conn = null;
29: ModelMaker maker = null;
30:
31: try {

13.3 Handling Persistent RDF Models 523

32: Class.forName(className);
33: conn = new
33a: DBConnection(DB_URL,DB_USER,DB_PASSWD,DB_TYPE);
34: } catch (Exception e) { e.printStackTrace(); }
35:
36: maker = ModelFactory.createModelRDBMaker(conn);
37: Model m = null;
38:
39: if (!maker.hasModel(DOCUMENT_NAME) == true) {
40: System.out.println("Loading instance document -
40a: one time only");
41: m = maker.createModel(DOCUMENT_NAME);
42: FileManager.get().readModel(m,RDF_FILE);
43: } else {
44: m = maker.getModel(DOCUMENT_NAME);
45: }
46: printStatements(m, null, null, null);
47:
48: if (!maker.hasModel(ONTOLOGY_NAME)) {
49: System.out.println("Loading ontology document -
49a: one time only");
50: m = maker.createModel(ONTOLOGY_NAME);
51: FileManager.get().readModel(m,ONTOLOGY_FILE);
52: } else {
53: m = maker.getModel(ONTOLOGY_NAME);
54: }
55: printStatements(m, null, null, null);
56:
57: try {
58: conn.close();
59: } catch(Exception e) { e.printStackTrace(); }
60:
61: }
62:
63: private static void printStatements(Model m, Resource s,
63a: Property p, Resource o) {
64: for (StmtIterator i = m.listStatements(s,p,o);
64a: i.hasNext();) {
65: Statement stmt = i.nextStatement();
66: System.out.println(" - " + PrintUtil.print(stmt));
67: }
68: }
69: }

Based on what we have learned from List 13.20, List 13.21 does not require too
much explanation. Lines 48–55 are the new lines added: they first check whether
the FOAF ontology already exists in the database; if yes, load it into the model,
otherwise, create a persistent model representing this ontology in the database.

After you have run the code in List 13.21, we can again use MySQL Command
Line Client to check the result.

524 13 Jena: A Framework for Development on the Semantic Web

First, you will see there are more tables now in the database:

mysql> show tables from myfoafmodel;

+-----------------------+

| Tables_in_myfoafmodel |

+-----------------------+

| jena_g1t0_reif |

| jena_g1t1_stmt |

| jena_g2t0_reif |

| jena_g2t1_stmt |

| jena_graph |

| jena_long_lit |

| jena_long_uri |

| jena_prefix |

| jena_sys_stmt |

+-----------------------+

And since table jena_graph holds all the models in the database, we can take a
look at its content:

mysql> select * from myfoafmodel.jena_graph;

+----+-----------+

| ID | Name |

+----+-----------+

| 1 | myFoafRDF |

| 2 | foaf.owl |

+----+-----------+

Clearly, a new model, foaf.owl, is now added into the database.
You can continue to check other tables one by one to confirm that we have suc-

cessfully created two persistent models in our database system, which we will not
cover in detail. In general, if your application operates on large RDF documents,
persistent model should always be considered, and quite often, they should be the
best solution to your application as well.

13.4 Inferencing Using Jena

13.4.1 Jena Inferencing Model

In Jena’s world, inferencing or reasoning refers to the process of deriving additional
facts that are not explicitly expressed by both the instance documents and the ontol-
ogy documents. The term reasoner is used to refer to a specific code object that can
actually perform the derivation. Sometimes, a reasoner is also called a inference
engine.

13.4 Inferencing Using Jena 525

Jena provides a number of reasoners for us to use. The following is a list of
frequently used reasoners:

• RDFS rule reasoner: an inference engine that supports almost all of the RDFS
entailments.

• OWL 1 reasoner: the default reasoner that supports most of the frequently used
OWL 1 constructs. In practice, this reasoner is considered to be a “full” one, and
details can be found at Jena’s official Web site.

• OWL 1 Mini reasoner: a slightly cut down version of the “full” OWL 1 reasoner.
• OWL 1 Micro reasoner: a smaller but faster one.

To find the supported RDFS and OWL 1 constructs for each reasoner, refer to
Jena’s official Web site, which will provide the most up-to-date information. The
goal of this section is to show you the basics of using a reasoner.

The steps needed to use a reasoner for inference are quite standard, as summa-
rized here:

1. Choose a reasoner: we use this step to notify Jena system what reasoner we wish
to use. One way to do this is to use ReasonerRgistry class.

2. Load the ontology document and bind it with the reasoner we have chosen so
that the reasoner knows all the facts expressed in the ontology document. One
way to do this is to use bindSchema() method provided by the reasoner object.

3. Load the instance RDF document, and together with the reasoner, we can use
ModelFactory class to create an inference model, which contains not only the
loaded instance data but also the inferred statements.

Note that the inference model created at step 3 not only contains all the origi-
nal facts from the instance document and ontology document but also has all the
derived statements which represent the additional facts found by the reasoner. In
order words, except for the steps listed above, we never have to explicitly invoke
any reasoner, and once we have the inference model built, we have it all.

13.4.2 Jena Inferencing Examples

For the code examples in this section, we will continue using my FOAF docu-
ment, together with the FOAF ontology. However, in order to make things a little
more interesting, some change has been made to my FOAF document, as shown in
List 13.22.

List 13.22 My FOAF document with some change for testing inference in Jena

1: <?xml version="1.0" encoding="UTF-8"?>
2: <rdf:RDF
3: xml:lang="en"
4: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

526 13 Jena: A Framework for Development on the Semantic Web

5: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
6: xmlns:foaf="http://xmlns.com/foaf/0.1/">
7:
8: <rdf:Description
8a: rdf:about="http://www.liyangyu.com/foaf.rdf#liyang">
9: <foaf:name>liyang yu</foaf:name>
10: <foaf:title>Dr</foaf:title>
11: <foaf:givenname>liyang</foaf:givenname>
12: <foaf:family_name>yu</foaf:family_name>
13: <foaf:mbox_sha1sum>
13a: 1613a9c3ec8b18271a8fe1f79537a7b08803d896
13b: </foaf:mbox_sha1sum>
14: <foaf:homepage rdf:resource="http://www.liyangyu.com"/>
15: <foaf:workplaceHomepage
15a: rdf:resource="http://www.delta.com"/>
16: <rdf:type
16a: rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
17:
18: <foaf:knows>
19: <!-- the following is for testing purpose -->
20: <foaf:Person>
21: <foaf:mbox
21a: rdf:resource="mailto:libby.miller@bristol.ac.uk"/>
22: <foaf:homepage
22a: rdf:resource="http://www.ilrt.bris.ac.uk/~ecemm/"/>
23: </foaf:Person>
24: </foaf:knows>
25:
26: <foaf:topic_interest
26a: rdf:resource="http://dbpedia.org/resource/Semantic_Web"/>
27:
28: </rdf:Description>
29:
30:
31: <rdf:Description
31a: rdf:about="http://www.liyangyu.com/foaf.rdf#yiding">
32: <foaf:mbox_sha1sum>
32a: 1613a9c3ec8b18271a8fe1f79537a7b08803d896
32b: </foaf:mbox_sha1sum>
33: </rdf:Description>
34:
35: </rdf:RDF>

Note that only change is in lines 31–33: a new resource is added, with resource
URI given by the following:

http://www.liyangyu.com/foaf.rdf#yiding

and note that we have not made any statement about its type and its properties except
that we have specified its foaf:mbox_sha1sum property (line 32), which assumes
the same value as in line 13.

13.4 Inferencing Using Jena 527

In fact, line 32 is the key about this new resource. Based on FOAF ontol-
ogy, foaf:mbox_sha1sum is an inverse functional property; in other words, if
two resources hold the same value on this property, these two resources, although
identified by two different URIs, are actually the same thing.

As a result, we expect to see the following facts be added into the inference model
created by Jena:

• These two URIs, http://www.liyangyu.com/foaf.rdf#yiding and
http://www.liyangyu.com/foaf.rdf#liyang, represent the same
resource in the world.

• Therefore, http://www.liyangyu.com/foaf.rdf#yiding is also
a foaf:Person, and all the properties (and their values) owned by
http://www.liyangyu.com/foaf.rdf#liyang should also be true for
http://www.liyangyu.com/foaf.rdf#yiding. For example, it also has
the foaf:title property with the same value, the foaf:name property with
the same value.

List 13.23 shows how the inference model is created.

List 13.23 Example to show Jena inferencing capability

1: package test;
2:
3: import java.util.Iterator;
4: import com.hp.hpl.jena.rdf.model.InfModel;
5: import com.hp.hpl.jena.rdf.model.Model;
6: import com.hp.hpl.jena.rdf.model.ModelFactory;
7: import com.hp.hpl.jena.rdf.model.Property;
8: import com.hp.hpl.jena.rdf.model.Resource;
9: import com.hp.hpl.jena.rdf.model.Statement;
10: import com.hp.hpl.jena.rdf.model.StmtIterator;
11: import com.hp.hpl.jena.reasoner.Reasoner;
12: import com.hp.hpl.jena.reasoner.ReasonerRegistry;
13: import com.hp.hpl.jena.reasoner.ValidityReport;
14: import com.hp.hpl.jena.util.FileManager;
15: import com.hp.hpl.jena.util.PrintUtil;
16:
17: public class InfModelTester {
18:
19: public static final String RDF_FILE =
19a: "c:/liyang/myWebsite/currentPage/foaf.rdf";
20: public static final String OWL_FILE =
20a: "http://xmlns.com/foaf/0.1/";
21:
22: public static void main(String[] args) {
23:
24: // load instance data
25: Model data = ModelFactory.createDefaultModel();
26: FileManager.get().readModel(data,RDF_FILE);
27: // use data.read() if reading from Web URL

528 13 Jena: A Framework for Development on the Semantic Web

28:
29: // load the ontology document
30: Model ontology = ModelFactory.createDefaultModel();
31: ontology.read(OWL_FILE);
32:
33: // get the reasoner
34: Reasoner owlReasoner = ReasonerRegistry.getOWLReasoner();
35: owlReasoner = owlReasoner.bindSchema(ontology);
36:
37: // use the reasoner and instance data to create
37a: // an inference model
38: InfModel infModel =
38a: ModelFactory.createInfModel(owlReasoner,data);
39:
40: // some validation to make us happy
41: ValidityReport vr = infModel.validate();
42: if (vr.isValid() == false) {
43: System.out.print("ontology model validation failed.");
44: for (Iterator i = vr.getReports(); i.hasNext();) {
45: System.out.println(" - " + i.next());
46: }
47: return;
48: }
49:
50: Resource yu = infModel.getResource
50a: ("http://www.liyangyu.com/foaf.rdf#yiding");
51: System.out.println("yu *:");
52: printStatements(infModel, yu, null, null);
53:
54: }
55:
56: private static void printStatements(Model m,Resource
56a: s,Property p,Resource o) {
57: for (StmtIterator i = m.listStatements(s,p,o);
57a: i.hasNext();) {
58: Statement stmt = i.nextStatement();
59: System.out.println(" - " + PrintUtil.print(stmt));
60: }
61: }
62: }

List 13.23 should be fairly easy to follow if we map it to the steps that are needed
for creating inference model using Jena (see Sect. 13.4.1). More specifically, line
34 maps to step 1, lines 30–31 and line 35 implement step 2, and lines 25–26 and
line 38 are the last step. Again, once line 38 is executed, inference model infModel
holds both the original facts and newly derived facts.

To see the derived facts, we can ask all the facts about the resource identified by
http://www.liyangyu.com/foaf.rdf#yiding, we expect to see lots of new
facts added about this resource. This is done in lines 50–52, with the help from a

13.4 Inferencing Using Jena 529

simple private helper method call printStatements() (lines 56–61), which does
not require too much explanation.

Now, run the code in List 13.23 and List 13.24 shows some of the newly derived
facts (line numbers are added for explanation purpose).

List 13.24 Derived facts about resource yiding

1: - (http://www.liyangyu.com/foaf.rdf#yiding owl:sameAs

http://www.liyangyu.com/foaf.rdf#liyang)

2: - (http://www.liyangyu.com/foaf.rdf#yiding rdf:type

http://xmlns.com/foaf/0.1/Person)

3: - (http://www.liyangyu.com/foaf.rdf#yiding rdfs:label

’liyang yu’)

4: - (http://www.liyangyu.com/foaf.rdf#yiding foaf:name

’liyang yu’)

5: - (http://www.liyangyu.com/foaf.rdf#yiding

foaf:knows 3550803e:1245b5759eb:-8000)

6: - (http://www.liyangyu.com/foaf.rdf#yiding

foaf:family_name ’yu’)

7: - (http://www.liyangyu.com/foaf.rdf#yiding

foaf:givenname ’liyang’)

8: - (http://www.liyangyu.com/foaf.rdf#yiding foaf:title ’Dr’)

9: - (http://www.liyangyu.com/foaf.rdf#yiding

foaf:topic_interest

http://dbpedia.org/resource/Semantic_Web)

10: - (http://www.liyangyu.com/foaf.rdf#yiding

foaf:homepage http://www.liyangyu.com)

11: - (http://www.liyangyu.com/foaf.rdf#yiding

foaf:workplaceHomepage http://www.delta.com)

Clearly, the inference engine has successfully recognized the fact that these two
resources are the same object in the real world (line 1), and it has also assigned
all the properties owned by http://www.liyangyu.com/foaf.rdf#liyang to
the resource identified by http://www.liyangyu.com/foaf.rdf#yiding, as
shown by line 2–11.

Understand that besides these basic steps of using the inference engine, we can
in fact make a choice among different reasoner configurations. For example, line 34
of List 13.23 asks an OWL 1 reasoner from Jena, and since no parameter is passed
in to the call, the default OWL 1 reasoner (“full” version) is returned back.

To require an OWL 1 reasoner rather than the default one, you need the help
from another important class called OntModelSpec, which hides the complexi-
ties of configuring the inference model. More specifically, a number of common
objects that represent different configurations have been pre-declared as constants
in OntModelSpec, and Table 13.1 shows some of these configurations (for the
complete list, refer to official Jena document).

530 13 Jena: A Framework for Development on the Semantic Web

Table 13.1 Reasoner configuration using OntModelSpec

OntModelSpec Language profile Storage model Reasoner

OWL_MEM OWL 1 full In-memory None
OWL_MEM_RULE_INF OWL 1 full In-memory Rule-based reasoner

with OWL rules
OWL_DL_MEM_RULE_INF OWL 1 DL In-memory Rule-based reasoner

with OWL rules
RDFS_MEM_RDFS_INF RDFS In-memory Rule reasoner with

RDFS-level rules

To create an inference model with a desired specification, class ModelFactory
should be used, with the pre-declared configuration and the instance document, as
shown in List 13.25. Again, List 13.25 accomplishes exactly the same thing as
List 13.23 does, but with the flexibility of making your own choice of reasoner
configuration.

List 13.25 Using ontModelSpec to create ontology model

1: package test;
2:
3: import java.util.Iterator;
4: import com.hp.hpl.jena.ontology.OntModel;
5: import com.hp.hpl.jena.ontology.OntModelSpec;
6: import com.hp.hpl.jena.rdf.model.Model;
7: import com.hp.hpl.jena.rdf.model.ModelFactory;
8: import com.hp.hpl.jena.rdf.model.Property;
9: import com.hp.hpl.jena.rdf.model.Resource;
10: import com.hp.hpl.jena.rdf.model.Statement;
11: import com.hp.hpl.jena.rdf.model.StmtIterator;
12: import com.hp.hpl.jena.reasoner.ValidityReport;
13: import com.hp.hpl.jena.util.FileManager;
14: import com.hp.hpl.jena.util.PrintUtil;
15:
16: public class InfModelTester {
17:
18: public static final String RDF_FILE =
18a: "c:/liyang/myWebsite/currentPage/foaf.rdf";
19: public static final String OWL_FILE =
19a: "http://xmlns.com/foaf/0.1/";
20:
21: public static void main(String[] args) {
22:
23: // load instance data
24: Model data = ModelFactory.createDefaultModel();
25: FileManager.get().readModel(data,RDF_FILE);
26: // use data.read() if reading from Web URL
27:
28: // create my ontology model

13.5 Summary 531

29: OntModel ontModel = ModelFactory.createOntologyModel
29a: (OntModelSpec.OWL_MEM_RULE_INF,data);
30: ontModel.read(OWL_FILE);
31:
32: // some validation to make us happy
33: ValidityReport vr = ontModel.validate();
34: if (vr.isValid() == false) {
...
40: }
41:
42: Resource yu = ontModel.getResource
42a: ("http://www.liyangyu.com/foaf.rdf#yiding");
43: System.out.println("yu *:");
44: printStatements(ontModel, yu, null, null);
45:
46: }
47:
48: private static void printStatements(Model m,Resource s,
48a: Property p,Resource o) {
...
53: }
54: }

As you can tell, this is a slightly different approach compared to the
one shown in List 13.23. Instead of using ModelFactory.createDefault-

Model(), line 29 creates an ontology model, which uses the OntModelSpec.

OWL_MEM_RULE_INF configuration together with the instance document. After
line 30 is executed, a complete ontology model that consists of the desired
reasoner, the ontology file itself, and the instance data for the reasoner to
work on is created. Compared to the basic model created by ModelFactory.

createDefaultModel() method, this ontology model has all the derived state-
ments.

As a little experiment, we can try the RDFS_MEM_RDFS_INF configuration;
change line 29 in List 13.25 to the following:

OntModel ontModel = ModelFactory.createOntologyModel

(OntModelSpec.RDFS_MEM_RDFS_INF,data);

and run the code, you will see the difference. Since RDFS is not able to handle
inverse functional property, most of the inferred facts are gone. In fact, none of the
statements in List 13.24 will show up.

13.5 Summary

In this chapter, we have presented Jena as an example framework for application
development on the Semantic Web. After finishing this chapter, you should be able
to work effectively with Jena library. More specifically,

532 13 Jena: A Framework for Development on the Semantic Web

• understand how to setup Jena as your development framework;
• understand how to use Jena library to conduct basic RDF model operations, such

as reading an RDF model, creating an RDF model, and interrogating an RDF
model;

• understand why persistent RDF models are important, how to use Jena library
to create persistent models, and how to inspect these persistent models in the
selected database system;

• understand the concept of inference model and its different configurations, how
to use Jena library to create inference model with a specific configuration, also
understand how to retrieve the derived statements from the inference model.

You will see more features offered by Jena library in the next two chapters, and
with what you have learned here, you should be able to explore Jena library on your
own as well.

Chapter 14
Follow Your Nose: A Basic
Semantic Web Agent

Developing applications on the Semantic Web requires a set of complex skills, yet
this skill set does land itself on some basic techniques. In the previous chapter, we
have learned some basics, and in this chapter, we will continue to learned some
more.

Follow-Your-Nose method is one such basic technique you want to master. It
could be quite useful in many cases. This chapter will focus on this method and its
related issues.

14.1 The Principle of Follow-Your-Nose Method

14.1.1 What Is Follow-Your-Nose Method?

Follow Your Nose is not something new to us at all; when you are surfing on the
Web, quite often, your strategy is to follow your nose. For example, the current page
you are reading will normally contain links to other pages that might be interesting
to you, and clicking one of the links will take you to the next page. Similarly, the
next page will again contain links to other pages, which you can click to go further,
so on and so forth.

Follow-Your-Nose policy is not only used by human readers but also used by soft
agents. Perhaps the most obvious example is the crawler used by search engines. We
have discussed the work flow of search engines in Sect. 8.1.1.2. Based on what we
have learned there, we understand Follow-Your-Nose method is the main strategy
used by a crawler.

Let us go back to the Web of Linked Data, a practical version of the Semantic
Web. Obviously, the most distinguished feature of the Web of Linked Data is
the fact that there exist a fairly large amount of links among different datasets.
This feature does provide us with a chance to apply the Follow-Your-Nose
method. In other words, one can make data discovery by following these links
and navigating from one dataset to another, so on and so forth, until the stop
criteria are met. This is the concept of Follow Your Nose in the world of the
Semantic Web.

533L. Yu, A Developer’s Guide to the Semantic Web,
DOI 10.1007/978-3-642-15970-1_14, C© Springer-Verlag Berlin Heidelberg 2011

534 14 Follow Your Nose: A Basic Semantic Web Agent

For example, let us say we want to know more about the tennis player Roger
Federer. We can dereference the URI

http://dbpedia.org/resource/Roger_Federer

and part of the returned RDF document is shown in List 14.1.

List 14.1 owl:sameAs links defined in Federer’s RDF document

1: <rdf:Description

1a: rdf:about="http://dbpedia.org/resource/Roger_Federer">
2: <owl:sameAs rdf:resource= "http://rdf.freebase.com/ns/

2a: guid.9202a8c04000641f800000000019f525"/>

3: </rdf:Description>

4: <rdf:Description

4a: rdf:about="http://mpii.de/yago/resource/Roger_Federer">
5: <owl:sameAs

5a: rdf:resource="http://dbpedia.org/resource/Roger_Federer"/>
6: </rdf:Description>

Now, we can dereference the links in line 2, which will take us to another RDF
document that contains more facts about Roger Federer. Furthermore, once you have
landed on this new document, you can repeat this Follow-Your-Nose procedure and
discover new data about him, so on and so forth.

Note that we don’t have to concentrate only on owl:sameAs links; we can follow
any link that might be interesting to us. For example, we can follow the link to know
more about Switzerland, the country where he was born.

What about the second link shown in line 4 of List 14.1? We can certainly follow
that as well. In general, if we have more than one links to follow, we will face a
situation that actually asks for a decision from us: the so-called depth-first search
vs. the breadth-first search.

More specifically, by using the depth-first search, we will first ignore the second
link in line 4 and only follow the link in line 2 to reach a new document. In addition,
we will follow any new links found on this new document to reach another new
document, so on and so forth. We will continue to reach deeper until there is nothing
to follow or the stopping criteria have been met. At that point, we go back one level
to follow one link on that level. Only when there is no more link to follow at all, we
will go all the way back to follow the link shown in line 4. As you can tell, we go
deeper first before we explore any link on the same level, and that is the reason why
we call this the depth-first Follow-Your-Nose method.

The breadth-first search works in the opposite way. After following the first link
in line 2, even we have found new links on the new document, we will go back to
follow the link in line 4. In other words, we always try to cover the same level links
before we go any deeper.

14.1 The Principle of Follow-Your-Nose Method 535

In practice, whether to use depth-first search or breadth-first search is a decision
that depends on the specific application and its domain. We will come back to this
decision later. For now, understanding the idea of Follow Your Nose is the goal.

14.1.2 URI Declarations, Open Linked Data,
and Follow-Your-Nose Method

Before we move on to build a Follow-Your-Nose agent, there is one important issue
to understand; on the Web of Linked Data, what makes this Follow-Your-Nose pol-
icy possible? Is it safe to believe dereferencing any given link will lead us to a new
data file?

The answer is yes; Follow-Your-Nose method on the Web of Linked Data should
be able to accomplish its goal. The reason is due to the following two facts:

• The links are typed links, i.e., they have clearly defined semantics which enables
us to know which links to follow.

• The basic principles of Linked Data.

The first reason is obvious. For example, the following two properties

rdfs:seeAlso

owl:sameAs

have clearly defined semantics, and they are considered as links between different
datasets. Any application understands that by following these links; it can gather
more facts about the subject resource.

Depending on different application scenarios, there may be more properties
that can be considered as links, but the above two are the most obvious ones.
Furthermore, with the help from ontology documents, a soft agent can decide on
the fly which links should be followed and which links should be ignored based on
the main goal of the application. This is possible since the links can be typed links
and their types (classes) are clearly defined in the ontology file.

A good example is shown in List 11.4 (Sect. 11.2.3.1). The two rdfs:seeAlso

links in List 11.4 are all typed links. If our agent is trying to use Follow-Your-Nose
method to gather information about my publications (not CVs), it can easily decide
which one of those two links should be followed.

In fact, this is also one of the reasons why Follow-Your-Nose method can work
well on the Semantic Web. On our traditional Web, all the links (identified by <a

href> tag) are untyped links; there is simply no scalable and reliable way for a soft
agent to tell which one to follow and which one to avoid.

The second reason is less obvious but it is equally important. More specifically,
the action of Follow Your Nose by a soft agent is to dereference a given URI. If

536 14 Follow Your Nose: A Basic Semantic Web Agent

the given URI cannot be dereferenced, there will be no way to carry out the policy
successfully.

Fortunately, based on the Linked Data principle that we have discussed in
Chap. 11, the following are true:

• If the URI contains a fragment identifier (Hash URI), the part of the URI before
the "#" sign should lead to a URI declaration page that is served with an RDF
document.

• If the URI does not contain a fragment identifier, an attempt to dereference the
URI should be answered with a 303-redirect which leads to a URI declaration
page served with an RDF document as well.

In other words, the use of URIs as names, and in particular URIs can be deref-
erenced using the HTTP protocol, is a critical enabling factor for the Follow-Your-
Nose approach.

Finally, understand that Follow-Your-Nose method is not an optional extra; on
the contrary, it is fundamentally necessary in order to support the highly devolved,
loosely coupled nature of Linked Data Web.

In the next section, let us take a look at a real example showing you how it can
be implemented with the help from the Jena package.

14.2 A Follow-Your-Nose Agent in Java

14.2.1 Building the Agent

In this section we will code a simple agent that implements the idea of Follow Your
Nose, and we are going to use it to collect everything that has been said about tennis
player Roger Federer on the Web of Linked Data.

To do so, we will start from DBpedia. And again, here is the URI that represents
Roger Federer in DBpedia:

http://dbpedia.org/resource/Roger_Federer

Starting from this seed URI, we will carry out the following three steps:

1. Dereference the seed URI to get an RDF document that describes Roger Federer.
2. To collect the facts about Roger Federer, harvest all the statements that satisfy

the following pattern:

<http://dbpedia.org/resource/Roger_Federer>

<someProperty> <someValue> .

14.2 A Follow-Your-Nose Agent in Java 537

3. To gather the links to follow, find all the statements that satisfy the following two
patterns, and the collection of subjectResource and objectResource is the
links to follow:

<http://dbpedia.org/resource/Roger_Federer>

owl:sameAs <objectResource> .

<subjectResource>
owl:sameAs <http://dbpedia.org/resource/Roger_Federer>.

The first step does not need much explanation. Based on what we have learned
from Chap. 13, we also know how to dereference a given URI by using Jena library.

The second step is data discovery. In this example, the agent collects all the
facts about the resource identified by the given URI. Obviously, the given statement
pattern in step 2 will accomplish the goal.

The third step is the step where the idea of Follow Your Nose is implemented.
Specifically, property owl:sameAs is used to find the links. As a result, these links
are all URI alias which all represent Roger Federer. Whichever link we follow, we
are only collecting facts about Roger Federer. Note that Roger Federer’s URI can be
either the subject or the object; if it appears as the object, the subject URI is the link
to follow, and if it assumes the role of subject, the object URI is the link to follow.
This is why we have two statement patterns to consider in step 3.

Once these steps are done on a given dataset, the agent not only has collected
some facts about Federer but also has discovered a set of links to follow. The next
action is to repeat these steps by selecting a link from the collected link set and
dereferencing it to collect more data and more links.

This process is repeatedly executed until there are no more links to follow, and
at which point, we declare success. On the Web of Linked Data, anyone from any-
where can say something about Roger Federer, and whatever you have said, we have
them all.

Lists 14.2–14.4 show the classes which implement this agent.

List 14.2 FollowYourNose.java class definition

1: package test;
2:
3: import com.hp.hpl.jena.rdf.model.Model;
4: import com.hp.hpl.jena.rdf.model.ModelFactory;
5: import com.hp.hpl.jena.rdf.model.NodeIterator;
6: import com.hp.hpl.jena.rdf.model.Property;
7: import com.hp.hpl.jena.rdf.model.RDFNode;
8: import com.hp.hpl.jena.rdf.model.ResIterator;
9: import com.hp.hpl.jena.rdf.model.Resource;
10: import com.hp.hpl.jena.rdf.model.Statement;
11: import com.hp.hpl.jena.rdf.model.StmtIterator;
12: import com.hp.hpl.jena.vocabulary.OWL;

538 14 Follow Your Nose: A Basic Semantic Web Agent

13:
14: public class FollowYourNose {
15:
16: private URICollection sameAsURIs = null;
17:
18: public FollowYourNose(String uri) {
19: sameAsURIs = new URICollection();
20: sameAsURIs.addNewURI(uri);
21: }
22:
23: public void work() {
24:
25: // get the next link to follow
26: String currentURI = sameAsURIs.getNextURI();
27: if (currentURI == null) {
28: return;
29: }
30:
31: try {
32:
33: // de-reference this link
34: Model instanceDocument =
34a: ModelFactory.createDefaultModel();
35: instanceDocument.read(currentURI);
36:
37: // do the data collection
38: collectData(instanceDocument,currentURI);
39:
40: // find the next links to follow
41: updateURICollection(sameAsURIs,currentURI,
41a: instanceDocument,OWL.sameAs);
42:
43: } catch (Exception e) {
44: System.out.println("*** errors when handling (" +
44a: currentURI + ") ***");
45: }
46:
47: System.out.println("\n---- these links are yet
47a: to follow ---- ");
48: sameAsURIs.showAll();
49: System.out.println("-------------------------------- ");
50:
51: // following our nose
52: work();
53:
54: }
55:
56: private void collectData(Model model, String uri) {

14.2 A Follow-Your-Nose Agent in Java 539

57: if (uri == null) {
58: return;
59: }
60: int factCounter = 0;
61: System.out.println("Facts about <" + uri + ">:");
62: for (StmtIterator si = model.listStatements();
62a: si.hasNext();) {
63: Statement statement = si.nextStatement();
64: if (uri.equalsIgnoreCase(
64a: statement.getSubject().getURI()) == true) {
65: factCounter ++;
66: System.out.print(" - <" +
66a: statement.getPredicate().toString()+">:<");
67: System.out.println(statement.getObject().toString()
67a: + ">");
68: if (factCounter >= 10) {
69: return;
70: }
71: }
72: }
73: }
74:
75: private void updateURICollection(
75a: URICollection uriCollection,String uri,
76: Model model,Property property) {
77: if (uri == null) {
78: return;
79: }
80: // check object
81: Resource resource = model.getResource(uri);
82: NodeIterator objects =
82a: model.listObjectsOfProperty(resource,property);
83: while (objects.hasNext()) {
84: RDFNode object = objects.next();
85: if (object.isResource()) {
86: Resource tmpResource = (Resource)object;
87: uriCollection.addNewURI(tmpResource.getURI());
88: }
89: }
90: // check the subject
91: ResIterator subjects =
91a: model.listSubjectsWithProperty(property,resource);
92: while (subjects.hasNext()) {
93: Resource subject = subjects.nextResource();
94: uriCollection.addNewURI(subject.getURI());
95: }
96: }
97:
98: }

540 14 Follow Your Nose: A Basic Semantic Web Agent

List 14.3 URICollection.java definition

1: package test;

2:

3: import java.net.URI;

4: import java.util.HashSet;

5: import java.util.Iterator;

6: import java.util.Stack;

7:

8: public class URICollection {

9:

10: private Stack URIs = null;

11: private HashSet domainCollection = null;

12:

13: public URICollection() {

14: URIs = new Stack();

15: domainCollection = new HashSet();

16: }

17:

18: public void addNewURI(String uri) {

19: if (uri == null) {

20: return;

21: }

22: try {

23: URI thisURI = new URI(uri);

24: if (domainCollection.contains(thisURI.getHost())

24a: == false) {

25: domainCollection.add(thisURI.getHost());

26: URIs.push(uri);

27: }

28: } catch(Exception e) {};

29: }

30:

31: public String getNextURI() {

32: if (URIs.empty() == true) {

33: return null;

34: }

35: return (String)(URIs.pop());

36: }

37:

38: public void showAll() {

39: for (int i = 0; i < URIs.size(); i ++) {

40: System.out.println(URIs.elementAt(i).toString());

14.2 A Follow-Your-Nose Agent in Java 541

41: }

42: }

43:

44: }

List 14.4 FollowYourNoseTester.java definition

1: package test;

2:

3: public class FollowYourNoseTester {

4:

5: public static final String startURI =
5a: "http://dbpedia.org/resource/Roger_Federer";

6:

7: public static void main(String[] args) {

8:

9: FollowYourNose fyn = new FollowYourNose(startURI);

10: fyn.work();

11:

12: }

13:

14: }

The key class is FollowYourNose.java, defined in List 14.2. Given our earlier
explanation, understanding this class is straightforward. It has one private member
variable, called sameAsURIs, which holds all the links yet to follow (we will get
to the management of these links shortly). Lines 18–21 show its constructor and a
starting URI is passed in and added into sameAsURIs; therefore initially, there is
only one link to explore.

The key member function is work(), defined in lines 23–54. It first checks
sameAsURIs link set to get the next link to follow. If there is none left, the whole
process is done (lines 26–29). If there is indeed one link to follow, it then imple-
ments the three steps we have discussed earlier: lines 34–35 implement step 1, line
38 implements step 2, and line 41 implements step 3.

Note that to finish steps 2 and 3, some helper functions are created. Lines 56–
73 is a private member function called collectData(), which defines the details
of step 2. Similarly, lines 75–96 create another private member function called
updateURICollection(), which defines the details of step 3. With our earlier
description about these steps, understanding these two functions should be fairly
easy. We will discuss them more after we finish discussing work() method.

Once all these steps are finished, work() shows the links yet to follow (lines
47–49) and then calls itself recursively (line 52) to follow these links. By doing so,
the process of discovering data, collecting links, and following links will continue

542 14 Follow Your Nose: A Basic Semantic Web Agent

and will finally come to stop when there is no more links to follow. Note that this
recursive style is quite often seen in crawler-like agent like this; using this recursive
calling will make your coding easier and cleaner.

Let us now go back to its two private methods. As far as this example agent
is concerned, collecting data simply means to print them out, and this is the main
work flow implemented by collectData() method. More specifically, a for loop
is used to iterate on each statement in the current RDF model (line 62); for the
current statement, if the subject happens to be the URI that represents Federer (line
64), we will print out its property name and the value of the property (lines 66–67).

Note that model.listStatements() is the key Jena API call used by
collectData() method, which lists all the statements contained in the model.
Since we are examining RDF documents in DBpedia or other datasets contained in
the Web of Linked Data, if we print out everything we have collected, in most cases
it will be a long list of facts. Therefore, we print only the first 10 facts (lines 60, 65,
68–70) from each RDF document.

Method updateURICollection() also makes use of several useful Jena API
calls. First, model.getResource() method (line 81) takes Federer’s URI as
its input parameter and returns the corresponding resource object that represents
Federer. This resource object is then used in two other API calls, namely, model.
listObjectsOfProperty() and model.listSubjectsWithProperty()

(lines 82 and 91), which examine the two statement patterns as discussed in step
3. Once the patterns are matched, the corresponding URIs are added to our link
collection (lines 87 and 94). Note that method updateURICollection() is
called with owl:sameAs as one of the input parameters (line 41); therefore, only
owl:sameAs links are considered by the agent.

At this point, we have a good understand about this key class. You can modify
its two private methods, collectData() and updateURICollection(), accord-
ingly to make the agent fit your own need. For example, instead of printing out all the
facts, collectData() can create a persistent RDF model using a backend database
so that later on, we can query the facts using SPARQL.

Finally, before we move on, let us discuss the other two helper classes briefly.
Class URICollection.java (List 14.3) is created to hold the links yet to

follow. When the agent first starts, this collection only holds the initial URI that
represents Federer. More links are added to it during the work course of the agent,
and finally, there should be none left and therefore the agent stops.

Two things to note about this collection class. First, its underlying data struc-
ture is a stack (line 10, 14), so it implements a depth-first Follow-Your-Nose policy,
rather than breadth-first. Second, on the Web of Linked Data, it is often true that
the links are two-way ones, i.e., dataset A has a link to dataset B, and B has a link
back to A. As a result, if we collect every URI on the link, we may get into a infi-
nite loop. To take this into account, we want to avoid adding the same URI back
to the collection. Lines 24–26 of List 14.3 implement this idea; for each incom-
ing new URI, we check its domain; if this domain has been added before, this
incoming URI is considered as previously processed and is not added to the link
collection.

14.2 A Follow-Your-Nose Agent in Java 543

Class FollowYourNoseTester.java (List 14.4) does not require any expla-
nation; it is a simple driver class to start your agent. Note that the initial URI is
specified at line 5; if you want to try some other URIs, this is the line you can
change.

14.2.2 Running the Agent

List 14.5 shows part of the result when using Roger Federer’s URI as the seed URI.

List 14.5 Result when using Federer’s URI (line numbers are added for
explanation purpose)

1: Facts about <http://dbpedia.org/resource/Roger_Federer>:

2: - <http://dbpedia.org/property/redirect> :

<http://dbpedia.org/resource/Roger_Federer>

3: - <http://dbpedia.org/property/doublestitles> :

<8ˆˆhttp://www.w3.org/2001/XMLSchema#integer>

4: - <http://dbpedia.org/property/careerprizemoney> :

<US$45,790,270@en>

5: - <http://dbpedia.org/property/olympicsdoublesresult> :

<http://dbpedia.org/resource/Roger_Federer/

olympicsdoublesresult/OlympicEvent>

6: - <http://dbpedia.org/property/relatedInstance> :

<http://dbpedia.org/resource/Roger_Federer/succession_box1>

7: - <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> :

<http://dbpedia.org/ontology/TennisPlayer>

8: - <http://dbpedia.org/ontology/residence> :

<http://dbpedia.org/resource/Switzerland>

9: - <http://dbpedia.org/property/abstract> :

<Roger Federer ... >

10: - <http://www.w3.org/2000/01/rdf-schema#comment> :

<Roger Federer ... >

11: - <http://dbpedia.org/property/country> :

<http://dbpedia.org/resource/Switzerland>

12:

13: ---- these links are yet to follow ----

14: http://rdf.freebase.com/ns/guid.

14a: 9202a8c04000641f800000000019f525

15: http://mpii.de/yago/resource/Roger_Federer

16: --------------------------------------

17: Facts about <http://mpii.de/yago/resource/Roger_Federer>:

18:

19: ---- these links are yet to follow ----

20: http://rdf.freebase.com/ns/guid.

20a: 9202a8c04000641f800000000019f525

21: --------------------------------------

544 14 Follow Your Nose: A Basic Semantic Web Agent

22: Facts about <http://rdf.freebase.com/ns/guid.

22a: 9202a8c04000641f800000000019f525>:

23: - <http://rdf.freebase.com/ns/tennis.tennis_player.

23a: highest_singles_ranking> :

<http://rdf.freebase.com/ns/guid.

23b: 9202a8c04000641f8000000004fba118>

24: - <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> :

<http://rdf.freebase.com/ns/base.popstra.celebrity>

25: - <http://rdf.freebase.com/ns/type.object.key> :

25a: <234daeea:1246364ddc3:-7ff0>

26: - <http://rdf.freebase.com/ns/common.topic.article> :

<http://rdf.freebase.com/ns/guid.

26a: 9202a8c04000641f800000000019f52f>

27: - <http://rdf.freebase.com/ns/type.object.key> :

<234daeea:1246364ddc3:-8000>

28: - <http://rdf.freebase.com/ns/type.object.key> :

<234daeea:1246364ddc3:-7ff8>

29: - <http://rdf.freebase.com/ns/type.object.key> :

<234daeea:1246364ddc3:-7fed>

30: - <http://rdf.freebase.com/ns/type.object.name> :

<??????? ??????@uk>

31: - <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> :

<http://rdf.freebase.com/ns/base.rogerfederer.topic>

32: - <http://rdf.freebase.com/ns/base.popstra.

32a: celebrity.friendship> :

<http://rdf.freebase.com/ns/guid.

32b: 9202a8c04000641f800000000c5ab937>

Some explanation about this result will help you understand more about Follow-
Your-Nose policy.

First off, lines 2–11 in List 14.5 shows the first 10 facts the agent has collected
from dereferencing the seed URI. At the time of this writing, the RDF document
retrieved from the seed URI contains the following two statements:

<rdf:Description

rdf:about="http://mpii.de/yago/resource/Roger_Federer">
<owl:sameAs

rdf:resource="http://dbpedia.org/resource/Roger_Federer"/>
</rdf:Description>

<rdf:Description

rdf:about="http://dbpedia.org/resource/Roger_Federer">
<owl:sameAs rdf:resource="http://rdf.freebase.com/ns/guid.

9202a8c04000641f800000000019f525"/>

</rdf:Description>

14.2 A Follow-Your-Nose Agent in Java 545

Our agent has detected this, and following owl:sameAs link means dereferenc-
ing the following two URIs:

http://mpii.de/yago/resource/Roger_Federer

http://rdf.freebase.com/ns/guid.9202a8c04000641f800000000019

f525

And these are the URI alias you see in lines 14–15 in List 14.5.
URI http://mpii.de/yago/resour-ce/Roger_Federer is dereferenced

next by the agent. However, no facts have been collected there (lines 17, 18).
The agent then moves on to dereference the next URI (line 20). It is able to

collect some more facts about Roger Federer from the retrieved RDF document,
as shown by lines 22–32 of List 14.5. Similarly, the agent then looks for property
owl:sameAs in this RDF document to continue its journey in the Linked Data Web,
so on and so forth.

To get more familiar with this example, you can use some of your favorite URIs
as the seeds to see how Follow-Your-Nose policy works in real world. It is a simple
idea; however it does tell us a lot about the Linked Data Web.

The following list contains some suggested URIs you can try:

http://dbpedia.org/resource/Tim_Berners-Lee

http://dbpedia.org/resource/Semantic_Web

http://dbpedia.org/resource/Beijing

http://dbpedia.org/resource/Nikon_D300

14.2.3 More Clues for Follow Your Nose

So far at this point, we have been using owl:sameAs as the only link when
implementing our Follow-Your-Nose agent. In fact, there are more clues we
can use.

Another obvious one is rdfs:seeAlso property. However, we need to be careful
when following rdfs:seeAlso link. More specifically, based on the Open Linked
Data principle, we will be able to retrieve representations of object from the Web;
however, no constraints are placed on the format of those representations. This is
especially true with rdfs:seeAlso property; the response could be a JPEG file
instead of an RDF document.

In general, when coding Fellow-Your-Nose agent, we may have to use content
negotiation process and may also have to implement more protections around this
to make the agent more robust.

Another similar property is rdfs:isDefinedBy, which is a sub-property of
rdfs:seeAlso. Our discussion about rdfs:seeAlso is applicable to this property
as well, and it is another link that a Follow-Your-Nose agent should consider.

Coding a Follow-Your-Nose agent is sometimes more of an art than a technique;
it does require creative heuristics to make the collected facts more complete. For

546 14 Follow Your Nose: A Basic Semantic Web Agent

a given resource, different Follow-Your-Nose agents can very possibly deliver dif-
ferent fact sets. A key factor, again, is about how to find clues to discover more
facts.

Besides using more properties as links as we have discussed above, sometimes,
taking into the consideration of your specific resource and related properties from
popular ontologies may be a good idea.

For example, given the fact that Roger Federer is an instance of foaf:Person,
another FOAF property, foaf:knows, could be something we want to consider.
More specifically, if Roger Federer foaf:knows another resource R, it is then likely
resource R also foaf:knows Roger Federer, and it is also possible that resource R
has said something about Federer too. Therefore, dereferencing the URI of resource
R and scanning the retrieved RDF document to find facts about Federer is another
action the agent can take.

Another FOAF property is foaf:primaryTopicOf. A statement such as

<http://dbpedia.org/resource/Roger_Federer>

foaf:isPrimaryTopicOf object .

means the resource identified by the object URI is mainly about Roger Federer.
Therefore, dereferencing the URI of the object and trying to find more facts there
about Federer is a good direction to pursue.

By now, you should have got the point. The key is to discover and examine
every potential link when implementing a Follow-Your-Nose agent. What you have
learned here should be a good starting point, and now it is up to you to make it
smarter.

14.2.4 Can You Follow Your Nose on Traditional Web?

Now that we have finished a Follow-Your-Nose agent on the Semantic Web, we
can continue on with an interesting comparison: can we do the same on the tradi-
tional document Web, i.e., to find everything that people have said about Federer on
the Web?

To get started, we first have to design a heuristic that is similar to the algorithm
used by our Follow-Your-Nose agent.

A possible solution is to start from his own home page. Once we download the
page, we can collect everything about him from that page, including address, phone
numbers, and e-mail addresses.

It is safe to assume that his home page has links (tags) that point
to other Web sites. These Web sites may describe different tennis events, including
the four grand slams, and in addition, they may include Web sites that are related
to different tennis organizations. We can also make the assumption that if Roger
Federer is talking about these resources on his home page, these resources are also
likely to talk about him. Therefore, we can follow these links to check out each Web
site individually, with the goal of finding information about him from these pages.

14.2 A Follow-Your-Nose Agent in Java 547

At the first glance, this sounds like a plan. However, once you begin to put it into
action, you will see the problems right away.

The first major hurdle comes from the fact that we probably have to do screen
scraping in order to obtain the information we want. Given the fact that information
on each page is not structured data, but simple text for human eyes, you can easily
imagine how difficult this screen-scraping process can be, if not totally impossible.

In fact, even screen scraping each page is possible; the maintenance of our agent
could be very costly. Each Web site is always under active change; a successful pars-
ing today does not mean another successful one a certain amount of time later. For
example, the “indicators/flags” that have been used to locate particular information
block might not exist anymore. Our agent has to be constantly modified in order to
process the updated Web documents.

The second major hurdle is related to the fact that there is no unique identi-
fier our agent can use to identify Roger Federer on each Web page. For example,
one page might refer him by his full name, another page might call him the Swiss
Maestro, and a Web page created by his fans may address him as Fed Express.
As a result, our agent, once finishes downloading a given page, will find it dif-
ficult to determine if the page has any description about him at all. In the worst
case, even a matching on the name does not necessarily mean the page is about
him.

Now let us assume that all the above steps are feasible and doable, and we can
indeed gather something about Roger Federer. The question then is what to do with
the gathered information?

Obviously, the facts are collected from different source pages, which do not offer
any structured data and also do not share any common vocabularies or any common
data model (such as RDF). As a result, the collected information will be most likely
unusable when it comes to supporting the following capabilities:

• Reasoning on the collected information to discover new facts
This is one of the major motivations for Follow-Your-Nose data aggregation.
With the help from ontologies, based on the aggregated information, we can dis-
cover facts that are not presented in any of the source document. And clearly, the
page content we have harvested from the traditional Web cannot be used for this
purpose at all.

• Structured query language to answer questions
Another important operation on the collected dataset is to execute SPARQL
queries so as to get direct answers to many questions. We can certainly make
queries against one single RDF source file; however, only after Follow-Your-
Nose data aggregation is implemented, will we be confident that the answer is
complete and correct. Furthermore, since we can run our Follow-Your-Nose agent
at any time, the query result will therefore be able to include the newly discov-
ered facts. Clearly, data collected from traditional Web will not be able to be used
for any query easily, and including new results normally means new development
and costly maintenance.

548 14 Follow Your Nose: A Basic Semantic Web Agent

The conclusion is that a simple task like this can be prohibitively difficult under
the current Web environment, and even if it is feasible, the result will be quite
difficult to use.

At the mean time, this task can be easily accomplished under the Semantic
Web, as we have seen already. In addition, the collected facts can be used for
further reasoning and can be queried by language such as SPARQL.

Besides the above, our Follow-Your-Nose agent also enjoys the following
benefits provided directly by the structured data on the Semantic Web:

• Easy to maintain

In fact, there is no need to maintain anything. Any source RDF document can be
modified to add new facts at any time; the same agent can again harvest all these
related descriptions with the same ease, no code change is ever needed.

• Dynamic and up to date

This is a natural extension of the maintainability of the agent; you can run it at
any time to update the collected dataset. The owners of data sources do not have
to tell you anything or notify you the fact that one of them has published some
new facts. Again, dynamic and distributed data aggregation is one of the many
benefits provided by the vision of the Semantic Web.

14.3 A Better Implementation of Follow-Your-Nose Agent:
Using SPARQL Queries

So far in this chapter, we have done quite a few queries against RDF models. Some
of the key methods we have been using include the following:

model.listStatements();

model.listSubjectsWithProperty();

model.listObjectsOfProperty();

And we were able to locate the specific information we needed from the model.
However, as we have discussed, this type of model interrogation is often con-

sidered as a method that provides a low-level view of the model. Query language
such as SPARQL, on the other hand, can offer a more compact and powerful query
notation for the same result. Therefore, when it comes to building agents such as
our Follow-Your-Nose agent, it is sometimes more compact and more efficient to
use SPARQL queries.

To help using SPARQL in applications, Jena provides a query engine called ARQ
which supports SPARQL query language, including a set of powerful APIs that we
can use in our applications.

In this section, we will re-write our Follow-Your-Nose agent so that SPARQL
queries will be used instead of simple model interrogation. By doing so, not only
we can have a better agent but also we can show you how to submit and execute
SPARQL queries by using Jena APIs.

14.3 A Better Implementation of Follow-Your-Nose Agent 549

14.3.1 In-memory SPARQL Operation

Before we start, understand that the Follow-Your-Nose agent developed in the pre-
vious section had all the data models in memory, and all the model interrogation
was also executed against these in-memory models.

In this section, this will continue to be the case. The SPARQL queries we are
going to use are therefore executed locally in memory. It is certainly possible to
execute a SPARQL query remotely, with the query result returned back to the client.
We will cover this in the next section.

Let us start with our rewrite. A review of our Follow-Your-Nose agent indi-
cates that the only Java class we need to change is the FollowYourNose.java in
List 14.2. More specifically, we need to replace the query part in these two methods:

collectData()

updateURICollection()

The query used in collectData() method is fairly simple; all it does is try to
find everything that has been said about Roger Federer. The SPARQL query shown
in List 14.6 will accomplish exactly the same thing.

List 14.6 SPARQL query to find everything that has been said about Roger
Federer

SELECT ?propertyValue ?propertyName

WHERE {

<http://dbpedia.org/resource/Roger_Federer>

?propertyName ?propertyValue.

}

The query used in updateURICollection() is not difficult either. Again, it
tries to find all the statements that have the following pattern:

<http://dbpedia.org/resource/Roger_Federer>

owl:sameAs <objectResource>

<subjustResource> owl:sameAs

<http://dbpedia.org/resource/Roger_Federer>

And the SPARQL query in List 14.7 exactly accomplishes the same goal.

List 14.7 SPARQL query to find those resources that owl:sameAs Roger
Federer

SELECT ?aliasURI WHERE {

{ <http://dbpedia.org/resource/Roger_Federer>

<http://www.w3.org/2002/07/owl#sameAs> ?aliasURI.

}

550 14 Follow Your Nose: A Basic Semantic Web Agent

union

{ ?aliasURI <http://www.w3.org/2002/07/owl#sameAs>

<http://dbpedia.org/resource/Roger_Federer>.

}

}

With all the correct SPARQL queries established, let us now take a look at the
steps that are needed to execute SPARQL queries in our application. Note that the
steps we are going to discuss are applicable for SELECT queries. For CONSTRUT
queries, DESCRIBE queries, and ASK queries, the steps are slightly different. If
you are not familiar with these queries, reviewing Chap. 6 will get you back to
speed.

1. Prepare the query string, which represents the SPARQL query that you want to
use to get information from RDF model or RDF dataset. Lists 14.6 and 14.7 are
examples of query strings.

2. Create a Query object by using QueryFactory.create() method, with the
query string as the input parameter.

3. Create a QueryExecution object by calling method Query

ExecutionFatory.create(); the Query object just created and the
RDF model are passed in as parameters.

4. Call execSelect() method on the QueryExecution object to execute the
query, which returns the query results.

5. Handle the query results in a loop to get the needed information.
6. Call close() method on QueryExecution object to release system resource.

List 14.8 shows the new version of collectData() method, which implements
the above steps.

List 14.8 collectData() method is now implemented by using SPARQL
query

1: private void collectData(Model model, String uri) {

2:

3: if (uri == null) {

4: return;

5: }

6:

7: int factCounter = 0;

8:

9: String queryString =
10: "SELECT ?propertyName ?propertyValue " +

11: "WHERE {" +

12: " <" + uri + "> ?propertyName ?propertyValue."+

13: "}";

14.3 A Better Implementation of Follow-Your-Nose Agent 551

14:

15: Query query = QueryFactory.create(queryString);

16: QueryExecution qe =
16a: QueryExecutionFactory.create(query,model);

17:

18: try {

19: ResultSet results = qe.execSelect();

20: while (results.hasNext()) {

21: QuerySolution soln = results.nextSolution() ;

22: factCounter ++;

23: Resource res = (Resource)(soln.get("propertyName"));

24: System.out.print(" - <" + res.getURI() + "> : ");

25: RDFNode node = soln.get("propertyValue");

26: if (node.isLiteral()) {

27: System.out.println(((Literal)node).getLexicalForm());

28: } else if (node.isResource()) {

29: res = (Resource)node;

30: if (res.isAnon() == true) {

31: System.out.println("<" + res.getLocalName() + ">");

32: } else {

33: System.out.println("<" + res.getURI() + ">");

34: }

35: }

36: if (factCounter >= 10) {

37: break;

38: }

39: }

40: }

41: catch(Exception e) {

42: // doing nothing for now

43: }

44: finally {

45: qe.close();

46: }

47:

48: }

With the discussion of the general steps, List 14.8 is fairly straightforward. Line
9 prepares the query string as shown in List 11.6, which also implements step 1 as
discussed above. Line 15 maps to step 2 and line 16 maps to step 3. Line 19 is the
execution of the query, and results are also returned (step 4).

The code segment that needs some explanation is in lines 20–39, the loop that
handles the query result (step 5). Recall what we have learned in Chap. 6: a given
query returns a set of statements as result, and each one of these statements is called
a solution. In Jena SPARQL API, one such solution is represented by an instance of

552 14 Follow Your Nose: A Basic Semantic Web Agent

QuerySolution class (line 21), and to get what we are looking for from each
solution, we need to use the same variable name as we have used in the query
string.

For example, line 23 tries to get the property name. Therefore, propertyName
as the variable name has to be used, since that variable name is also used in the
query string of line 9. Similarly, line 25 tries to get the property value by using the
propertyValue variable.

Once we get the property value back, a little more work is needed. In general,
since a property value is always on the object position, it can be either a literal or
a resource. If the property value is a simple literal value, we just print it out (lines
26–27). If it is a resource, it can further be a blank node or a named resource, and
we have to handle them differently (lines 28–35).

Finally, line 45 implements step 6, where the query is closed so that all system-
related resources are released.

This is the general process of executing a SPARQL query by using Jena SPARQL
APIs. You will find yourself using these APIs quite often, and your code should also
follow the same pattern as shown here.

List 14.9 shows the new version of updateURICollection() method. With
what we have learned so far, you should be able to understand it easily.

List 14.9 udpateURICollection() method is now implemented by using
SPARQL query

1: private void updateURICollection(URICollection uriCollection,

1:a String uri,

2: Model model,Property property) {

3: if (uri == null) {

4: return;

5: }

6:

7: String queryString =
8: "SELECT ?aliasURI " +

9: "WHERE {" +

10: " { <" + uri + "> <" + OWL.sameAs + "> ?aliasURI. } " +

11: " union " +

12: " { ?aliasURI <" + OWL.sameAs + "> <" + uri + ">. } " +

13: "}";

14:

15: Query query = QueryFactory.create(queryString);

16: QueryExecution qe =
16a: QueryExecutionFactory.create(query,model);

17:

18: try {

19: ResultSet results = qe.execSelect();

20: while (results.hasNext()) {

21: QuerySolution soln = results.nextSolution() ;

14.3 A Better Implementation of Follow-Your-Nose Agent 553

22: RDFNode node = soln.get("aliasURI");

23: if (node.isResource()) {

24: Resource res = (Resource)node;

25: if (res.isAnon() == false) {

26: uriCollection.addNewURI(res.getURI());

27: }

28: }

29: }

30: }

31: catch(Exception e) {

32: // doing nothing for now

33: }

34: finally {

35: qe.close();

36: }

37: }

Now we have a Follow-Your-Nose agent that is completely written by using
SPARQL queries. Run it, you should see exactly the same result.

14.3.2 Using SPARQL Endpoints Remotely

Note that so far in this chapter, we have been downloading the RDF models or
datasets into our local memory and then processing them in our memory. The prob-
lem associated with this approach is quite obvious. downloading a large data file
is always time consuming, and sometimes, the file could be large enough for our
limited memory to handle, as we have also discussed in the previous chapter.

A more practical way, especially when you are developing large-scale real appli-
cations, is to submit the query across the Internet and post it to the SPARQL
endpoint offered by the underlying dataset, the query is then executed on that remote
site, and the final result is returned back to the application for processing. By doing
so, there is no downloading needed; the network bandwidth is free for other use, and
only the request and the response are being interchanged.

This kind of remote SPARQL query can also be implemented programmatically.
For example, Jena’s SPARQL API provides remote query request/response process-
ing, as we will see shortly. Also, note that remote dataset access over SPARQL
protocol does require that the underlying dataset provides a SPARQL endpoint that
supports remote data access.

At the time of this writing, some datasets on the Linked Data Web support
SPARQL endpoints, some don’t. For this reason, re-writing our Follow-Your-Nose
agent to make it use remote data access is not quite possible, simply because we
don’t know which dataset offers remote SPARQL endpoint.

In this section, we will therefore simply use one example dataset to show how
remote dataset access is implemented. Hope by the time you are reading this book,
most datasets on the Linked Data Web will be supporting SPARQL endpoints.

554 14 Follow Your Nose: A Basic Semantic Web Agent

The example dataset we are going to use is the DBpedia dataset, and here is the
SPARQL endpoint it supports:

http://dbpedia.org/sparql

and List 14.10 shows the code that remotely accesses this dataset. Again, the
submitted query is the query shown in List 14.6.

List 14.10 Example of accessing DBpedia remotely

1: package test;
2:
3: import com.hp.hpl.jena.query.Query;
4: import com.hp.hpl.jena.query.QueryExecution;
5: import com.hp.hpl.jena.query.QueryExecutionFactory;
6: import com.hp.hpl.jena.query.QueryFactory;
7: import com.hp.hpl.jena.query.QuerySolution;
8: import com.hp.hpl.jena.query.ResultSet;
9: import com.hp.hpl.jena.rdf.model.Literal;
10: import com.hp.hpl.jena.rdf.model.RDFNode;
11: import com.hp.hpl.jena.rdf.model.Resource;
12:
13: public class RemoteSPARQLAccess {
14:
15: final static String resourceURI =
15a: "http://dbpedia.org/resource/Roger_Federer";
16: final static String DBpediaSPARQLEndpoint =
16a: "http://dbpedia.org/sparql";
17:
18: public static void main(String[] args) {
19:
20: String queryString =
21: "SELECT ?propertyName ?propertyValue " +
22: "WHERE {" +
23: " <" + resourceURI + "> ?propertyName ?propertyValue." +
24: "}";
25:
26: Query query = QueryFactory.create(queryString);
27: QueryExecution qe = QueryExecutionFactory.sparqlService
27a: (DBpediaSPARQLEndpoint,query);

28:
29: try {
30: ResultSet results = qe.execSelect();
31: while (re-sults.hasNext()) {
32: QuerySolution soln = results.nextSolution() ;
33: Resource res = (Resource)(soln.get("propertyName"));
34: System.out.print(" - <" + res.getURI() + "> : ");
35: RDFNode node = soln.get("propertyValue");
36: if (node.isLiteral()) {

14.3 A Better Implementation of Follow-Your-Nose Agent 555

37: System.out.println(((Literal)node).
37a: getLexicalForm());
38: } else if (node.isResource()) {
39: res = (Resource)node;
40: if (res.isAnon() == true) {
41: System.out.println("<" +
41a: res.getLocalName() + ">");
42: } else {
43: System.out.println("<" + res.getURI() + ">");
44: }
45: }
46: }
47: }
48: catch(Exception e) {
49: // doing nothing for now
50: }
51: finally {
52: qe.close();
53: }
54: }
55:
56: }

Compared to List 14.8, the only difference is in line 27; the Query

Execution instance is created by calling QueryExecutionFactory.

sparqlService() method, not QueryExecutionFactory.create() method
anymore. Also, instead of passing in the model to the method (line 16 of List 14.8),
the SPARQL endpoint provided by DBpedia is passed.

The above is all that we need to do when accessing a remote SPARQL endpoint;
the rest is taken care of for us by Jena. As you can tell, we then receive and process
the results as if we were querying an in-memory dataset.

Finally, List 14.11 shows part of the query result.

List 14.11 Part of the result generated by List 14.10

- <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> :

<http://dbpedia.org/ontology/Athlete>

- <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> :

<http://dbpedia.org/ontology/Person>

- <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> :

<http://dbpedia.org/ontology/Resource>

- <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> :

<http://dbpedia.org/ontology/TennisPlayer>

- <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> :

<http://dbpedia.org/class/yago/AustralianOpenChampions>

- <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> :

<http://dbpedia.org/class/yago/USOpenChampions>

- <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> :

556 14 Follow Your Nose: A Basic Semantic Web Agent

<http://dbpedia.org/class/yago/

TennisPlayersAtThe2000SummerOlympics>

- <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> :

<http://dbpedia.org/class/yago/

OlympicTennisPlayersOfSwitzerland>

- <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> :

<http://xmlns.com/foaf/0.1/Person>

- <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> :

<http://dbpedia.org/class/yago/

TennisPlayersAtThe2004SummerOlympics>

- <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> :

<http://dbpedia.org/class/yago/LivingPeople>

- <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> :

<http://dbpedia.org/class/yago/WimbledonChampions>

- <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> :

<http://dbpedia.org/class/yago/TennisPlayer110701180>

- <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> :

<http://dbpedia.org/class/yago/PeopleFromBasel(city)>

- <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> :

<http://dbpedia.org/class/yago/Person100007846>

- <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> :

<http://dbpedia.org/class/yago/SwissTennisPlayers>

- <http://dbpedia.org/property/doublesrecord> : 112-72

- <http://dbpedia.org/property/doublestitles> : 8

- <http://dbpedia.org/ontology/plays> :

Right-handed; one-handed back-hand

14.4 Summary

In this chapter, we have created a Follow-Your-Nose agent in Java. It is our first
project in this book; not only it further shows the benefits of the Semantic Web
but also it provides us with some frequently used programming techniques for our
future development work.

Make sure you understand the following about the Follow-Your-Nose method
and its Java implementation:

• its basic concept and steps;
• some technical details about Follow-Your-Nose agent, such as finding the prop-

erties that can be used as links, depth-first search vs. breadth-first search, error
protection when it comes to dereferencing a given URI;

• possible changes you can make to its current implementation to make it smarter
and more efficient.

14.4 Summary 557

Besides the technical aspects of a Follow-Your-Nose agent, you should be able
to appreciate more about the vision of the Semantic Web. For example,

• using URI names for resources, and following the open Linked Data principles,
these two together make it possible for Follow-Your-Nose method to work on the
Web of Linked Data;

• it will be extremely difficult to implement a Follow-Your-Nose agent with good
scalability on the traditional document Web, and you should understand the
reason;

• not only it is easy to build a scalable Follow-Your-Nose agent on the Semantic
Web but also it is almost effortless to maintain such an agent;

• the facts collected by a Follow-Your-Nose agent can also be easily queried by
using a query language such as SPARQL.

Finally, this chapter also shows some useful details about issuing SPARQL
queries programmatically. More specifically,

• understand the basic steps of issuing SPARQL queries and retrieving the query
result in your Java project;

• understand the benefit of remotely querying datasets using SPARQL endpoint,
and finally;

• understand the language constructs to make the remote access.

Chapter 15
More Application Examples
on the Semantic Web

The goal of this chapter is to continue showing you the How-To part on the Semantic
Web. We will build two application examples, which are more complex than the
ones we have created in the last two chapters. To some extent, none of these two
applications here is final yet; it is up to you to make them more intelligent and
powerful.

As the final chapter of this book, we hope to convince you that on the Semantic
Web, the possibility of developing different applications is only limited by our
imagination. The two application examples presented here will serve as a hint, so
you can discover and plan your own, which I hope will show more values of the
Semantic Web.

15.1 Building Your Circle of Trust: A FOAF Agent You Can Use

This is the first part of this chapter, and we will build a FOAF agent so that you will
be receiving only secured incoming e-mails. The rest of this section will present the
details of this agent.

15.1.1 Who Is on Your E-mail List?

It is safe to say that most of us use at least one e-mail system of some kind. As much
as we love it as a communication tool, we have also realized that there are several
things that can threaten the usefulness of a given e-mail system. For example, e-mail
bombardment, spamming, phishing (to acquire sensitive information fraudulently,
such as your user name, password, credit card number) and certainly e-mail worms,
just to name a few.

To lessen these threats, different e-mail systems have implemented different secu-
rity measurements. One solution is to simply block any e-mail address that is never
used in the system before. For example, if a given incoming e-mail is sent from an
e-mail address that you have never exchanged e-mail with, the system will directly
route this e-mail into the Spam box.

559L. Yu, A Developer’s Guide to the Semantic Web,
DOI 10.1007/978-3-642-15970-1_15, C© Springer-Verlag Berlin Heidelberg 2011

560 15 More Application Examples on the Semantic Web

Obviously, this strategy will result in the lost of some e-mail messages that are
actually important. On the other hand, if a given e-mail address is stored in the
address book before hand, the system will assume this e-mail address is trustable
and will not trash any e-mail message from this address even if there has never been
any communication with this address yet.

Therefore, to take advantage of this security measurement and also make sure
that you are getting all the e-mails, a good solution is to add all the trustworthy
e-mail addresses into your contact book ahead of time, a process we call “building
your circle of trust.”

The difficult part of this solution is the fact that you will not be able to foresee
who would send you e-mail, especially those whom you don’t know yet. In addition,
manually editing this circle of trust is quite tedious. An automatic way of building
the e-mail address directory and also dynamically updating it would be a much
better approach.

With the help from the Semantic Web technology, it is possible to create
some automatic tools like this. One solution is based on the linked FOAF doc-
uments on the Web, and we will discuss it in this section. The reason of using
linked FOAF data is obvious; it is Linked Data which machine can process, and
it is about human networking with e-mail address as one of its common data
elements.

15.1.2 The Basic Idea

Let us think about a given FOAF document. Obviously, if its author has indicated
that she/he has a friend by using foaf:knows property, it is then safe to collect that
person’s e-mail address into the circle of trust of the author.

Based on this approach, when we scan the author’s FOAF file, we should
at least collect all the e-mail addresses of the friends that have been mentioned
in this document. This step can be easily done by following the foaf:knows

property.
To extend the author’s e-mail list, the next step is to explore his/her social net-

work. To do so, the following assumption is made; if any of the author’s friends
is trustable, this friend’s friend should also be trustable, and this friend’s friend’s
friend is also trustable, so on and so forth, and all their e-mail addresses can all be
included in the circle of trust. This is a reasonable and plausible assumption – after
all, FOAF project itself is about “Friend of a Friend”!

Therefore, to extend the e-mail list for the author, we will take one of the author’s
friends, and check her/his FOAF document to collect the e-mail addresses of all
her/his friends. We will then repeat this collection process until all the documents
from all the friends of friends have been explored.

To put this idea into action, let us start with Dan Brickley, the creator of FOAF
project. We will use his FOAF file as the starting point and build a trusted e-mail list
for him. To see how we are going to proceed, take a look at the List 15.1, which is
taken from his current FOAF document.

15.1 Building Your Circle of Trust: A FOAF Agent You Can Use 561

List 15.1 Part of the statements from Dan Brickley’s FOAF document

1: <knows>
2: <Person>
3: <mbox rdf:resource="mailto:libby.miller@bristol.ac.uk"/>
4: <mbox rdf:resource="mailto:libby@asemantics.com"/>
5: </Person>
6: </knows>
7:
8: <knows>
9: <Person
9a: rdf:about="http://www.w3.org/People/Berners-Lee/card#i">
10: <name>Tim Berners-Lee</name>
11: <isPrimaryTopicOf rdf:resource=
11a: "http://en.wikipedia.org/wiki/Tim_Berners-Lee"/>
12: <homepage rdf:resource=
12a: "http://www.w3.org/People/Berners-Lee/"/>
13: <mbox rdf:resource="mailto:timbl@w3.org"/>
14: <rdfs:seeAlso rdf:resource=
14a: "http://www.w3.org/People/Berners-Lee/card"/>
15: </Person>
16: </knows>
17:
18: <knows>
19: <Person>
20: <name>Dean Jackson</name>
21: <rdfs:seeAlso rdf:resource=
21a: "http://www.grorg.org/dean/foaf.rdf"/>
22: <mbox rdf:resource="mailto:dean@w3.org"/>
23: <mbox rdf:resource="mailto:dino@grorg.org"/>
24: <mbox_sha1sum>
24a: 6de4ff27ef927b9ba21ccc88257e41a2d7e7d293</mbox_sha1sum>
25: <homepage rdf:resource="http://www.grorg.org/dean/"/>
26: </Person>
27: </knows>

Note that List 15.1 shows three different ways of adding a friend into a FOAF
document:

• Lines 1–6 is the simplest way to add one friend: only e-mail address is given,
no URI is included, and no rdfs:seeAlso is used when describing the
friend.

• Lines 18–27 is the second way of describing a friend: e-mail address is provided,
rdfs:seeAlso is used to provide more information about the friend (line 21);
however, no URI of the friend is given.

• Lines 8–16 is the third way of adding a friend: the URI of the friend is provided
(line 9), e-mail address is given, and rdfs:seeAlso is also used (line 14).

These three different ways of describing a friend in a FOAF document have no
effect on how we collect the e-mail addresses from these friends, but they do mean

562 15 More Application Examples on the Semantic Web

different methods of exploring the social network. More specially, the third one
gives us the most information we can use when it comes to exploring the network:

• We can dereference the given URI of the friend to get more e-mail addresses.

On the Web of Linked Data, we can assume data publishers do follow the
principles of Linked Data. As a result, if we deference the URI of a friend, we
should be getting an RDF document that describes this friend, and we can expect
to find e-mails addresses of her/his friends.

For example, in List 15.1, one URI is given by the following (line 9) URL:

http://www.w3.org/People/Berners-Lee/card#i

and we can get e-mail addresses of Tim Berners-Lee’s friends when we derefer-
ence this URI.

• We can follow the rdfs:seeAlso link to extend the network even more.

rdfs:seeAlso does not have formal semantics defined, i.e., its rdfs:

domain property and rdfs:range property are all general rdfs:

Resource class. However, it does specify another resource that might
provide additional information about the subject resource. As a result, we can
follow this link, i.e., dereference the object resource, which should provide
information about this friend, and it is also possible to locate some more e-mail
addresses of this friend’s friends.

For example, in List 15.1, line 14 provides a URI that can be dereferenced as
discussed above.

With this understanding of the third method, the second method (lines 18–27 in
List 15.1) is simpler: all we can do is to follow the rdfs:seeAlso link since there
is no friend URI we can dereference. Therefore, the second way of adding friends
gives us less chance for expanding the e-mail list.

By the same token, the first method (lines 1–6, List 15.1) does not allow us to
do any further exploring directly; all we can do is to collect the e-mail address there
and stop. Note that theoretically we can still find the FOAF file of this friend (Libby
Miller); however we are not going to do that here in this example, we simply stop
exploring the sub-network headed by this particular friend.

As a side note, how do we find a person’s FOAF file if we have only his e-
mail address from foaf:mbox property? Since foaf:mbox is an inverse functional
property, the simplest solution is to visit the Web and check each and every single
FOAF document you can encounter until you have located one document whose
main subject also assumes the same value on foaf:mbox property. That main sub-
ject, a foaf:Person instance, should be the resource you are looking for. As you
can tell, the reason why we are not implementing this solution is mainly due to the
consideration of the efficiency of our agent. If you ever want to change this example
into a real-world application, you might consider implementing this part.

15.1 Building Your Circle of Trust: A FOAF Agent You Can Use 563

15.1.3 Building the EmailAddressCollector Agent

15.1.3.1 EmailAddressCollector

Based on our previous discussion, the algorithm of the e-mail list builder agent is
fairly straightforward:

0. Make Dan Brickley’s URI our currentURI.
1. Dereference currentURI, which will give us an RDF document back, call it

currentRDFDocument.
2. From currentRDFDocument, collect all the e-mail addresses of Dan’s friends.
3. For each friend, if she/he has a representing URI, add this URI into

friendsToVisit (an URICollection instance); if she/he also has a
rdfs:seeAlso property defined, collect the object URI of this property into
friendsToVisit as well.

4. Repeat step 3 until all friends are covered.
5. Retrieve a new URI from friendsToVisit collection, make it currentURI,

go back to step 1. If no URI is left in friendsToVisit collection, stop.

And the code is given in List 15.2.

List 15.2 EmailAddressCollector.java definition

1: package test;
2:
3: import java.util.HashSet;
4: import java.util.Iterator;
5:
6: import com.hp.hpl.jena.query.Query;
7: import com.hp.hpl.jena.query.QueryExecution;
8: import com.hp.hpl.jena.query.QueryExecutionFactory;
9: import com.hp.hpl.jena.query.QueryFactory;
10: import com.hp.hpl.jena.query.QuerySolution;
11: import com.hp.hpl.jena.query.ResultSet;
12: import com.hp.hpl.jena.rdf.model.Literal;
13: import com.hp.hpl.jena.rdf.model.Model;
14: import com.hp.hpl.jena.rdf.model.ModelFactory;
15: import com.hp.hpl.jena.rdf.model.RDFNode;
16: import com.hp.hpl.jena.rdf.model.Resource;
17: import com.hp.hpl.jena.sparql.vocabulary.FOAF;
18: import com.hp.hpl.jena.vocabulary.RDFS;
19:
20: public class EmailAddressCollector {
21:
22: private URICollection friendsToVisit = null;
23: private HashSet emailAddresses = null;
24:
25: public EmailAddressCollector(String uri) {
26: emailAddresses = new HashSet();

564 15 More Application Examples on the Semantic Web

27: friendsToVisit = new URICollection();
28: friendsToVisit.addNewURI(uri);
29: }
30:
31: public void work() {
32:
33: // get the next URI to work on (step 1 in algorithm)
34: String currentURI = friendsToVisit.getNextURI();
35: if (currentURI == null) {
36: return;
37: }
38:
39: try {
40: System.out.println("\n...visiting <" +
40a: currentURI + ">");
41:
42: // dereference currentURI (step 1 in algorithm)
43: Model currentRDFDocument =
43a: ModelFactory.createDefaultModel();
44: currentRDFDocument.read(currentURI);
45:
46: // collect everything about currentURI
46a: // (step 2-4 in algorithm)
47: int currentSize = friendsToVisit.getSize();
48: collectData(currentRDFDocument,currentURI);
49: System.out.println("..." + emailAddresses.size() +
49a: " email addresses collected.");
50: System.out.println("..." + (friendsToVisit.getSize() -
50a: currentSize) + " new friends URI added.");
51: System.out.println("...all together " +
51a: friendsToVisit.getSize() + " more to visit.");
52:
53: } catch (Exception e) {
54: System.out.println("∗∗∗ errors when handling (" +
54a: currentURI + ") ∗∗∗");
55: }
56:
57: // extend the social network by following
57a: // friends of friends’ (step 5 in algorithm)
58: work();
59:
60: }
61:
62: private void collectData(Model model, String uri) {
63:
64: if (uri == null) {
65: return;
66: }
67:
68: String queryString =
69: "SELECT ?myself ?who ?email ?seeAlso " +

15.1 Building Your Circle of Trust: A FOAF Agent You Can Use 565

70: "WHERE {" +
71: " ?myself <" + FOAF.knows + "> ?who. " +
72: " optional { ?who <" + FOAF.mbox + "> ?email. }" +
73: " optional { ?who <" + RDFS.seeAlso + "> ?seeAlso. }" +
74: " }";
75:
76:
77: Query query = QueryFactory.create(queryString);
78: QueryExecution qe =
78a: QueryExecutionFactory.create(query,model);
79:
80: try {
81: ResultSet results = qe.execSelect();
82: while (results.hasNext()) {
83:
84: QuerySolution soln = results.nextSolution() ;
85: Resource who = (Resource)(soln.get("who"));
86:
87: // step 2 in algorithm
88: Resource email = (Resource)soln.get("email");
89: if (email != null) {
90: if (email.isLiteral()) {
91: emailAddresses.add(((Literal)email).
91a: getLexicalForm());
92: } else if (email.isResource()) {
93: emailAddresses.add(email.getURI());
94: }
95: } else {
96: // there is no foaf:mbox property value
96a: // for this friend
97: }
98:
99: // step 3 in algorithm
100: if (who.isAnon() == false) {
101: friendsToVisit.addNewURI(who.getURI());
102: } else {
103: // there is no URI specified for this friend
104: }
105:
106: // step 3 in algorithm
107: Resource seeAlso = (Resource)soln.get("seeAlso");
108: if (seeAlso != null) {
109: if (seeAlso.isLiteral()) {
110: friendsToVisit.addNewURI(((Literal)seeAlso).
110a: getLexicalForm());
111: } else if (seeAlso.isResource()) {
112: friendsToVisit.addNewURI(seeAlso.getURI());
113: }
114: } else {
115: // there is no rdfs:seeAlso property specified
115a: // for this friend

566 15 More Application Examples on the Semantic Web

116: }
117:
118: }
119: }
120: catch(Exception e) {
121: // doing nothing for now
122: }
123: finally {
124: qe.close();
125: }
126:
127: }
128:
129: public void showemailAddresses() {
130: if (emailAddresses != null) {
131: Iterator it = emailAddresses.iterator();
132: int counter = 1;
133: while (it.hasNext()) {
134: System.out.println(counter + ": " +
134a: it.next().toString());
135: counter ++;
136: }
137: }
138: }
139:
140: }

Lines 25–29 is the constructor of the EmailAddressCollector agent. The
URI that is passed in to this constructor represents the person for whom we would
like to create an e-mail list. In our example, this will be Dan Brickley’s URI given
by the following:

http://danbri.org/foaf.rdf#danbri

Line 26 creates a HashSet object, emailAddresses, which holds all the col-
lected e-mail addresses. The reason of using a HashSet is to make sure there is no
repeated e-mail address in this collection.

Line 27 creates another important collection, friendsToVisit, which is an
instance of class URICollection. As we have discussed earlier, this class uses
a stack as its underlying data structure to implement depth-first search. In addi-
tion, the implementation of this class makes sure no URI is repeatedly visited. For
our application, friendsToVisit holds the URIs that needed to be dereferenced
next. A given URI in this collection represents either a friend or an object value
of rdfs:seeAlso property. Also note that at the time the agent gets started, Dan
Brickley’s URI is the only URI stored in friendsToVisit; it is used as the seed
URI (line 28) for the whole collecting process.

Lines 31–60 is the key method, work(), which implements the algorithm pre-
sented at the beginning of this section. Line 34 gets the next URI that needs to be

15.1 Building Your Circle of Trust: A FOAF Agent You Can Use 567

dereferenced from friendsToVisit collection; lines 43–44 dereference this URI
and create a default RDF model in memory. These steps map to step 1 as described
in the algorithm.

Line 48 collects the necessary information from the created model, and the details
are implemented in collectData() method. Once collectData() is executed,
steps 2–4 as described in our algorithm are completed and we are ready to move on
to the next URI contained in the friendsToVisit collection.

Obviously, the handling of the next URI is an exact repeat of the above steps. As a
result, we process the next friend’s document by recursively calling work() method
(line 58). This recursive calling step maps to step 5 as described in our algorithm.

collectData() (lines 62–127) is where the data collection work is done. Let
us understand it by starting with the SPARQL query string (lines 68–74). List 15.3
shows this query in a more readable format.

List 15.3 SPARQL query used in line 68 of List 15.2

1: SELECT ?myself ?who ?email ?seeAlso

2: WHERE {

3: ?myself <http://xmlns.com/foaf/0.1/knows> ?who.

4: optional {

5: ?who <http://xmlns.com/foaf/0.1/mbox> ?email.

6: }

7: optional {

8: ?who <http://www.w3.org/2000/01/rdf-schema#seeAlso>

8a: ?seeAlso.

9: }

10: }

This query finds all the friends (identified by foaf:knows property) from the
current RDF model and also gets their foaf:mbox values and rdfs:seeAlso

values if available.
To let you understand it better, Table 15.1 shows part of the result if we had

written a small separate Java class just to execute the query. Note that in order to fit
into the page, ?myself field is not included in Table 15.1.

As shown in Table 15.1, some friends have both foaf:mbox and rdfs:seeAlso
defined (b0, b2 and ∗∗∗), some only have foaf:mbox or rdfs:seeAlso defined
(b4, b5), and some have no foaf:mbox nor rdfs:seeAlso defined (b10). In addi-
tion, for all the friends he knows, Dan Brickley has not used any URI to represent
them, except for Tim Berners-Lee (see the ∗∗∗ line, we put ∗∗∗ there in order to fit
into the page). Therefore, from Dan’s FOAF file, that is the only URI that identifies
a person; all the other collected URIs are coming from values of rdfs:seeAlso
property.

With the understanding of the query string, the rest of the code is easy to under-
stand. The above query is created and executed (lines 77–78), and the result set
is examined line by line to get the required information (lines 82–118). More

568 15 More Application Examples on the Semantic Web

Table 15.1 Part of the result when running the query shown in List 15.3

who email seeAlso

_:b0 <mailto:em@w3.org> <http://purl.org/net/eric/webwho.xrdf>
_:b2 <mailto:barstow@w3.org> <http://www.w3.org/People/Barstow/

webwho.rdf>
...
_:b4 <mailto:libby.miller@

bristol.ac.uk>
_:b5 <http://people.w3.org/amy/foaf.rdf>
...
_:b10∗∗∗ <mailto:timbl@w3.org> <http://www.w3.org/People/Berners-Lee/

card>

∗∗∗: http://www.w3.org/People/Berners-Lee/card#i

specifically, lines 88–97 implement step 2 as described in our algorithm, where the
e-mail addresses are collected. Note that although most FOAF files use a resource as
the value of foaf:mbox property (lines 92–94), some FOAF files use value string
as its value (lines 90–92); therefore we need to collect them by using different meth-
ods. Either way, the collected e-mail addresses are stored in the emailAddresses
collection (lines 91 and 93).

Lines 100–116 implement step 3 of our algorithm. Since it is perfectly fine not to
use any URI to represent a given person, we first have to check if a friend is identified
by an URI or a blank node (line 100). If a friend is identified by a URI, this URI will
be visited later to expand the e-mail network, and for now, we simply save it in our
friendsToVisit collection (line 101). If a friend is represented by a blank node,
there is not much we can do (line 103) except to continue checking whether there
is a rdfs:seeAlso property value we can use to explore the sub-network that is
headed by this friend.

Lines 107–116 are used to check rdfs:seeAlso property. Similarly, since
rdfs:seeAlso property can use either datatype or object type as its value, we need
to check both (lines 108–114). Either way, if a value of this property is found, we
save it into friendsToVisit collection so we can visit it later (lines 110 and 112).

The above examination is repeated for all the records in the result set. Once this
process is done, we may have gathered a number of e-mail addresses and identified
quite a few new URIs yet to visit. This is precisely where the circle of trust is being
built and expanded.

At this point, we have discussed the details of our implementation. It is obvious
that this way of expanding the e-mail network could result in a fairly deep and wide
search tree that needs to be covered. For example, when I ran this collector on my
own PC, after 1 hour or so, it ran out of memory, with about 150 e-mail addresses
collected and still 1,000 more friends of friends yet to explore.

Unless you have access to large machines which provide much stronger comput-
ing power than a home PC, you do want to change the code a little bit, in order to

15.1 Building Your Circle of Trust: A FOAF Agent You Can Use 569

make a complete run. List 15.4 shows the modified definition of URICollection
class. Since we have seen this class already, only the method with the change is
included here.

List 15.4 URICollection.java definition

1: package test;
2:
3: import java.net.URI;
4: import java.net.URISyntaxException;
5: import java.util.HashSet;
6: import java.util.Iterator;
7: import java.util.Stack;
8:
9: public class URICollection {
10:
11: private Stack URIs = null;
12: private HashSet visitedURIs = null;
13:
14: public URICollection() {
15: URIs = new Stack();
16: visitedURIs = new HashSet();
17: }
18:
19: public void addNewURI(String uri) {
20: if (uri == null) {
21: return;
22: }
23: // testing purpose: we don’t want to go into
23a: // these social sites
24: URI myURI = null;
25: try {
26: myURI = new URI(uri);
27: if (myURI.getHost().contains("my.opera.com")) {
28: return;
29: }
30: if (myURI.getHost().contains("identi.ca")) {
31: return;
32: }
33: if (myURI.getHost().contains("advogato.org")) {
34: return;
35: }
36: if (myURI.getHost().contains("foaf.qdos.com")) {
37: return;
38: }
39: if (myURI.getHost().contains("livejournal.com")) {
40: return;
41: }
42: if (myURI.getHost().contains("openlinksw.com")) {
43: return;
44: }

570 15 More Application Examples on the Semantic Web

45: if (myURI.getHost().contains("rdf.opiumfield.com")) {
46: return;
47: }
48: if (myURI.getHost().contains("ecademy.com")) {
49: return;
50: }
51: if (myURI.getHost().contains("revyu.com")) {
52: return;
53: }
54: if (myURI.getHost().contains("xircles.codehaus.org")) {
55: return;
56: }
57: } catch (URISyntaxException e1) {
58: // e1.printStackTrace();
59: }
60: // end of testing purpose: you can clean this part out to
60a: // do more crawling
61:
62: try {
63: if (visitedURIs.contains(uri) == false) {
64: visitedURIs.add(uri);
65: URIs.push(uri);
66: }
67: } catch(Exception e) {};
68: }
69:
70: public String getNextURI() {
...
75: }
76:
... // other methods you have seen already
103: }
104:
105: }

As you can tell, lines 23–60 are added to make the crawling process more focus.
More specifically, we take a look at the URI that is passed in for collection; if it is
from a social Web site, we simply reject it and move on. In general, these social
sites can link quite a large number of people into their networks, and we would not
want them to be included in our e-mail list.

With the above change in place, I could finish the run in a little over an hour, with
216 e-mail addresses collected for Dan Brickley.

Finally, List 15.5 is the driver I use to run the collector, and not much explanation
is needed here.

List 15.5 Test driver for our e-mail collector

1: package test;
2:
3: public class EmailListBuilderTester {

15.1 Building Your Circle of Trust: A FOAF Agent You Can Use 571

4:
5: // http://www.w3.org/People/Berners-Lee/card#i
6: public static final String startURI =
6a: "http://danbri.org/foaf.rdf#danbri";
7:
8: public static void main(String[] args) {
9:
10: EmailAddressCollector eac =
10a: new EmailAddressCollector(startURI);
11: eac.work();
12:
13: // here are all the collected email addresses
14: eac.showemailAddresses();
15:
16: }
17:
18: }

15.1.3.2 Running the EmailAddressCollector Agent

Now, find the following class definitions from the package you have downloaded:

EmailAddressCollector.java

URICollection.java

EmailAddressCollectorTester.java

Build the application and fire it up, you can see the search is in action. For exam-
ple, the following is part of the output when I was running the agent using Dan’s
FOAF file as the starting point:

...visiting <http://danbri.org/foaf.rdf#danbri>

...21 email addresses collected.

...17 new friends URI added.

...all together 17 more to visit.

...visiting <http://heddley.com/edd/foaf.rdf>

...43 email addresses collected.

...10 new friends URI added.

...all together 26 more to visit.

...visiting <http://clark.dallas.tx.us/kendall/foaf.rdf>

And you can add more output lines into the source code so that you can see
more clearly about what is happening during the search. The following is part of the
collected e-mail addresses:

1: mailto:nova@radarnetworks.com

2: mailto:aditkal@yahoo.com

572 15 More Application Examples on the Semantic Web

3: mailto:lac@ecs.soton.ac.uk

4: mailto:rafa@sidar.org

5: mailto:et@progos.hu

6: mailto:alerer@mit.edu

7: mailto:kidehen@openlinksw.com

8: mailto:nmg@ecs.soton.ac.uk

9: mailto:mauro.buratti@nontorno.com

10: mailto:stefan.decker@deri.org

11: mailto:wvasconc@csd.abdn.ac.uk

12: mailto:joe.brickley@btopenworld.com

13: mailto:simonstl@simonstl.com

14: mailto:em@zepheira.com

15: mailto:simon.price@bristol.ac.uk

16: mailto:hendler@cs.umd.edu

17: mailto:giles@gilest.org

18: mailto:ian.sealy@bristol.ac.uk

19: mailto:b.j.norton@open.ac.uk

20: mailto:danny666@virgilio.it

21: mailto:ben@benhammersley.com

22: mailto:swh@ecs.soton.ac.uk

23: mailto:elias@torrez.us

24: mailto:dino@w3.org

25: mailto:phil@chimpen.com

...

To add these e-mail addresses into your e-mail system’s address book, all you
need to do is cut-and-paste. And now, you have created your circle of trust based on
your FOAF network, and this is made possible by the open Linked Data principles
and the Semantic Web technologies.

It is also important to realize the dynamic nature of the Web: your friend’s circle
is growing and so is yours: you will get to know new friends, and your friends’
friends will get to expand their circles, so on and so forth. As a result, it is important
to run this agent from time to time, you will see a quick grow of the harvested e-mail
addresses.

15.1.4 Can You Do the Same for Traditional Web?

As usual, try to figure out a plan which helps you to implement exactly the same
agent on the traditional Web. The truth is that it is going to be quite difficult, if not
completely impossible. And even if you can do it now, wait until you run it again a
while later: you will need to make significant changes to make it work again. I will
leave this to you to consider, which will for sure make you appreciate the value of
the Semantic Web more.

15.2 A ShopBot on the Semantic Web 573

15.2 A ShopBot on the Semantic Web

So far in this chapter, we have built a simple FOAF agent, which works in the
environment of the Semantic Web and exhibits the traits that we have always been
looking for from Web agents: a much smarter way of accomplishing the given task,
with the required scalability and maintainability.

In the second half of this chapter, we are going to create another interesting Web
application: a smart ShopBot. We will first discuss ShopBot in general and will then
build a ShopBot step by step in a simulated Semantic Web world. This will not
only show you some necessary techniques when it comes to development on the
Semantic Web but will also give you some hints for other possible applications.

15.2.1 A ShopBot We Can Have

A ShopBot is a software agent that works on the Web. For a particular product
specified by the consumer, it searches different online stores and retailers so as to
provide the consumer with the prices offered by these stores and retailers.

There are quite a few Web sites powered by ShopBot. For example,

www.pricescan.com

www.pricewatch.com

www.dealtime.com

You can visit these sites to get a feeling about ShopBot.
It is important to realize that ShopBots normally operate by a form of screen

scraping (there have been some changes in recent years, as discussed below), mean-
ing that they download the pages and get the necessary information by parsing the
content. In general, screen scraping is a method used to extract data from a set of
Web pages with the goal of consolidating the data on a single Web page, which can
then be conveniently viewed by a user.

The fact that ShopBots operate by screen scraping also dictates their basic
assumption during the course of their work. Once a page is downloaded, a ShopBot
will have to search for the name of the specified product. If it can locate the item
successfully, it will then search for the nearest set of characters that has a dollar
sign, assuming this set of characters is the price of the item.

Obviously, this solution may not be as robust as we expect. For instance, imagine
that on a given Web page, after the name of the product, the first set of characters
that has a dollar sign is actually the suggested retail price, and somewhere down the
page, another set of characters that also has a dollar sign is the current sale price. A
ShopBot may completely miss the target in this case.

To handle the situations like above, a ShopBot just has to be “smarter”, either
by applying some heuristics that works for most of the time or by processing the
pages on a case-by-case basis. In fact, some Web sites powered by ShopBots have
established agreements with big retailers to make sure the price information can be
correctly obtained.

574 15 More Application Examples on the Semantic Web

In recent years, some ShopBots are created based on the Mashup concept we have
introduced in Chap. 11. Instead of screen scraping, these new breeds of ShopBots
obtain the price and related information of a product by consuming the Web services
provided by a given retailer. This is certainly a much better solution compared to
screen scraping, since the results from the Web service calls are structured data
where no assumption is needed. However, two issues still exist. First, not all the
retailers offer Web services, and second, Web services offered by different retailers
have to be consumed by using different APIs; the development team of a ShopBot
therefore has to learn a new set of APIs every time a new retailer is considered. As
a result, this solution is still not a scalable one.

In fact, even with better Mashup support and smarter heuristics, the ShopBots
we can build today can only offer limited usage to us. More specifically, we have to
tell the ShopBot exactly what is the product we are looking for; we cannot simply
describe what we want to buy.

For example, we cannot tell the ShopBot to search for a camera that is manufac-
tured by Nikon and has at least 6 megapixels as its picture quality, and can support
a lens which has an 18–200mm zoom. Instead, we have to specifically tell it to find
a product that has a model number given by Nikon D200.

This clearly presents some difficulty for probably most of us. Quite often, we
can only describe what we want and we do not have a particular product in mind.
Ideally, a particular product that satisfies our needs should be part of the information
we get by using a ShopBot.

To solve this issue, some Web sites powered by ShopBots allow you to search for
a product first by using a search engine-like interface on their sites. For example, you
can type in the word camera to start your search. However, it is then up to you to
read all the returned items to figure out exactly which product you would like to
have. Again, this is a tedious manual process that can take up lots of time before
you settle down with one specific product.

The Semantic Web seems to be the right solution for all these issues. By adding
semantics to a retailer’s Web page, the content of the Web site becomes understand-
able to a ShopBot. For example, an added RDF file describing the products is for
the ShopBot to read, while the traditional HTML content is still there for human
eyes.

In the next few sections, we will construct a ShopBot we really want: a ShopBot
that can accept our description of a product instead of a specific model number, a
ShopBot that is easy to maintain and also has excellent scalability.

15.2.2 A ShopBot We Really Want

15.2.2.1 How Does It Understand Our Needs?

To make sure a ShopBot can understand our description about what we want, using
RDF model to express the description is a good choice. For a casual user, a HTML
form can be presented to him, and he/she can express his/her needs by filling out the

15.2 A ShopBot on the Semantic Web 575

form, which is then mapped to an RDF model. In other words, there is no need for
a user to learn RDF beforehand.

Now, let us assume we would like to buy a camera, and the following RDF
document shown in List 15.6 describes what exactly we want for our ideal camera.

List 15.6 An RDF document describing what camera we are looking for

1: <?xml version="1.0" encoding="UTF-8"?>
2: <rdf:RDF
2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xml:base="http://www.liyangyu.com/shopbot/request">
4:
5: <!-- here is what I am looking for -->
6:
7: <Digital rdf:ID="myDigitalCamera"
7a: xmlns="http://www.liyangyu.com/camera#">
8:
9: <effectivePixel rdf:datatype=
9a: "http://www.liyangyu.com/camera#MegaPixel">
9b: 6.0</effectivePixel>
10:
11: <body>
12: <Body>
13: <shutterSpeed>
14: <ValueRange>
15: <minValue rdf:datatype=
15a: "http://www.w3.org/2001/XMLSchema#float">
15b: 0.0005</minValue>
16: </ValueRange>
17: </shutterSpeed>
18: </Body>
19: </body>
20:
21: <lens>
22: <Lens>
23: <focalLength rdf:datatype=
23a: "http://www.w3.org/2001/XMLSchema#string">

18-200mm</focalLength>
24: <aperture>
25: <ValueRange>
26: <minValue rdf:datatype=
26a: "http://www.w3.org/2001/XMLSchema#float">
26b: 1.8</minValue>
27: <maxValue rdf:datatype=
27a: "http://www.w3.org/2001/XMLSchema#float">
27b: 22</maxValue>
28: </ValueRange>
29: </aperture>
30: </Lens>
31: </lens>

576 15 More Application Examples on the Semantic Web

32:
33: </Digital>
34:
35: </rdf:RDF>

Figure 15.1 represents List 15.6 in an RDF graph format.
Note that that in Fig. 15.1, an oval represents a class and a box represents an

instance or resource; the URI of the resource is included inside the box. If the box is
representing a blank node, there is no URI given inside the box. Also, if a property
value takes a simple string or a float number, the number or string is simply used
without having a box.

Since the only purpose of List 15.6 is to describe our target camera, the URI
we use to identify this camera will not be reused by anyone, and the properties
we have said about this ideal camera are not important to the outside world either.
Therefore, we have used an rdf:ID (line 7) together with xml:base attribute (line
3) to identify the camera, which has the following URI:

http://www.liyangyu.com/shopbot/request#myDigitalCamera

and all the property values, such as myCamera:Lens, myCamera:Body, and
myCamera:ValueRange, are represented by blank nodes. Notice that we do use
our camera ontology in List 15.6 (the default namespace in line 7), and we will
come back to this point later.

Now, based on List 15.6, here is what we are looking for:

Figure 15.1 List 15.6 in a graph format

15.2 A ShopBot on the Semantic Web 577

• We want a digital camera (line 7).
• The camera should have at least a 6.0-megapixel resolution (line 9).
• The shutter speed of the camera should be able to reach as fast as 1/2,000 s (lines

11–19).
• The camera should have a lens that has a zoom range of 18–200 mm, and mini-

mum aperture is given by 1.8, with the maximum aperture having a value of 22
(lines 21–30).

As you can see, to be able to describe our needs like the above is a great enhance-
ment to the user experience when using the ShopBot: all we have described is a
camera that satisfies our needs, and we don’t have to specify a product model at all.

Note that our camera ontology is specified in line 7 by using the following
statement:

xmlns="http://www.liyangyu.com/camera#"
and List 15.6 is equivalent to List 15.7, which probably looks more familiar to you.

List 15.7 An equivalent form of List 15.6

1: <?xml version="1.0" encoding="UTF-8"?>
2: <rdf:RDF
2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:myCamera="http://www.liyangyu.com/camera#"
4: xml:base="http://www.liyangyu.com/shopbot/request">
5:
6: <!-- here is what I am looking for -->
7:
8: <myCamera:Digital rdf:ID="myDigitalCamera">
9:
10: <myCamera:effectivePixel rdf:datatype=
10a: "http://www.liyangyu.com/camera#MegaPixel">
10b: 6.0</myCamera:effectivePixel>
11:
12: <myCamera:body>
13: <myCamera:Body>
14: <myCamera:shutterSpeed>
15: <myCamera:ValueRange>
16: <myCamera:minValue rdf:datatype=
16a: "http://www.w3.org/2001/XMLSchema#float">
16b: 0.0005</myCamera:minValue>
17: </myCamera:ValueRange>
18: </myCamera:shutterSpeed>
19: </myCamera:Body>
20: </myCamera:body>
21:
22: <myCamera:lens>
23: <myCamera:Lens>
24: <myCamera:focalLength rdf:datatype=
24a: "http://www.w3.org/2001/XMLSchema#string">

578 15 More Application Examples on the Semantic Web

24b: 18-200mm</myCamera:focalLength>
25: <myCamera:aperture>
26: <myCamera:ValueRange>
27: <myCamera:minValue rdf:datatype=
27a: "http://www.w3.org/2001/XMLSchema#float">
27b: 1.8</myCamera:minValue>
28: <myCamera:maxValue rdf:datatype=
28a: "http://www.w3.org/2001/XMLSchema#float">
28b: 22</myCamera:maxValue>
29: </myCamera:ValueRange>
30: </myCamera:aperture>
31: </myCamera:Lens>
32: </myCamera:lens>
33:
34: </myCamera:Digital>
35:
36: </rdf:RDF>

15.2.2.2 How Does It Find the Next Candidate?

Making the ShopBot understand our need is only the first step; the next step is to
make it work as we expected. Before we dive into the details, let us summarize our
assumptions for our ShopBot:

1. There is a list of retailers that the ShopBot will visit.
2. Each one of these retailers publishes on the Web its own product catalog

documents by using RDF model.
3. When it comes to describing camera in their RDF catalog documents, all of these

retailers have agreed to use our camera ontology.

First off, in its most general form, to make sure it will not miss any poten-
tial retailer and product, a ShopBot will have to visit the Web just as a crawler
does. In this example, we will not ask it to crawl every Web site it has randomly
encountered, rather, it will crawl some Web sites from a pre-defined list that has
been given to it as part of the input. For instance, this list might include retailers
such as BestBuy, RitzCamera, Sam’s Club, just to name a few. Obviously, doing so
can greatly improve the performance of the ShopBot and can also ensure that our
ShopBot will visit only the sites that we trust, which is another important issue on
the Web.

The second assumption is vital for an agent that works on the Semantic Web. For
instance, BestBuy could have one catalog file for all the PCs it sells, another catalog
for all the TVs, another catalog for all the cameras. Furthermore, these catalog files
are created by using terms defined in some ontologies, and they have to be published
by the retailer on its Web site so that our ShopBot can have access to these catalog
files. Clearly, this is one big extra step that has to be taken by the retailers.

Once our ShopBot reaches a retailer’s Web site, it will only inspect its published
catalog files and skip all the traditional Web documents that are constructed using

15.2 A ShopBot on the Semantic Web 579

HTML on the same Web site. Obviously, this is one important difference between
this new ShopBot and the one we currently have in our traditional Web.

The third assumption is to make sure all the retailers are sharing a common
vocabulary so that it is easier for the ShopBot to work. This is also the reason why
ontology reuse is vital in the world of the Semantic Web. However, in reality, it may
as well be true that some retailers who sell cameras have instead used some other
camera ontology to describe his items. We will come back to this point in a later
section.

With the above assumptions in place, our ShopBot can continue to locate the next
retailer and further decide whether any camera products are offered by this retailer.

In general, a given retailer could have a large number of RDF documents pub-
lished on its Web site, and only a few of these RDF files are real product catalogs.
Therefore, when visiting a retailer’s Web site, the first step is to decide, for a given
RDF file, whether it contains some description of camera products. If the conclusion
is yes, it will then be considered as a candidate that can be potentially collected by
our ShopBot.

To make this decision, the following observation is the key: if a given catalog
RDF file has made use of our camera ontology, this catalog file will be considered
as one candidate for further verification. If not, our ShopBot will skip this file.

For example, List 15.6 specifies our request, and the terms used in List 15.6 have
been taken from the following ontology namespaces:

http://www.w3.org/1999/02/22-rdf-syntax-ns#

http://www.liyangyu.com/camera#

Now, our ShopBot encounters an RDF document as shown in List 15.8 from a
retailer’s Web site.

List 15.8 An example catalog document in RDF format

1: <?xml version="1.0" encoding="UTF-8"?>
2: <rdf:RDF
2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xml:base="http://www.retailerExample1.com/onlineCatalog">
4:
5: <Retailer rdf:ID="Retailer-1"
5a: xmlns="http://www.eBusiness.org/retailer#">
6:
7: <location>Norcross, GA</location>
8: <address>6066 Cameron Pointe</address>
9: <webSite>www.bestStuff.com</webSite>
10:
11: <catalog rdf:parseType="Collection">
12:
13: <Notebook rdf:ID="PC_TOP_08"
13a: xmlns="http://www.ontologyExample.org/ontology/pcspec#">
14:
15: <memory>
16: <Memory>

580 15 More Application Examples on the Semantic Web

17: <mem_capacity>1.0GB</mem_capacity>
18: </Memory>
19: </memory>
20:
21: <processor>
22: <Processor>
23: <cpu_name>Intel Pentium M processor</cpu_name>
24: <cpu_speed>2.0GHz</cpu_speed>
25: </Processor>
26: </processor>
27:
28: <harddisk>
29: <HardDrive>
30: <hd_capacity>120GB</hd_capacity>
31: </HardDrive>
32: </harddisk>
33:
34: </Notebook>
35:
36: <Processor rdf:ID="intel_m"
36a: xmlns="http://www.ontologyExample.org/ontology/pcspec#">
37: <cpu_name>Intel Pentium M processor</cpu_name>
38: <cpu_speed>2.0GHz</cpu_speed>
39: <cost>
40: <Money>
41: <price>$199.99</price>
42: </Money>
43: </cost>
44: </Processor>
45:
46: <Mointor rdf:ID="Monitor-Hanns-G" xmlns=
46a: "http://www.ontologyExample.org/ontology/monitorspec#">
47: <dimension>
48: <Dimension>
49: <size>17</size>
50: <resolution>1440x900</resolution>
51: </Dimension>
52: </dimension>
53: </Mointor>
54:
55: <DSLR rdf:ID="Nikon_D70"
55a: xmlns="http://www.liyangyu.com/camera#">
56: <body>
57: <Body>
58: <shutter>
59: <ValueRange>
60: <minValue rdf:datatype=
60a: "http://www.w3.org/2001/XMLSchema#float">
60b: 0.00002</minValue>
61: </ValueRange>
62: </shutter>

15.2 A ShopBot on the Semantic Web 581

63: </Body>
64: </body>
65: <lens>
66: <Lens>
67: <zoomRange rdf:datatype=
67a: "http://www.w3.org/2001/XMLSchema#string">
67b: 18-200mm</zoomRange>
68: </Lens>
69: </lens>
70: </DSLR>
71:
72: </catalog>
73:
74: </Retailer>
75:
76: </rdf:RDF>

Obviously, this retailer is selling more than just cameras; it is also selling PCs,
processors, and monitors. Our ShopBot is able to discover that terms used in this
catalog are from the following ontology namespaces:

http://www.w3.org/1999/02/22-rdf-syntax-ns#

http://www.liyangyu.com/camera#

http://www.eBusiness.org/retailer#

http://www.ontologyExample.org/ontology/monitorspec#

http://www.ontologyExample.org/ontology/pcspec#

Clearly, our camera ontology namespace

http://www.liyangyu.com/camera#

has been used by both the request file (List 15.6) and the catalog file (List 15.8). The
ShopBot will then treat this catalog file as one candidate and will further investigate
whether there is a matched camera contained in this catalog file. We will discuss the
matching process in the next section.

15.2.2.3 How Does It Decide Whether There Is a Match or Not?

First off, you might have noticed that in List 15.8, the following property is used
(line 67) to describe the Nikon D70 camera:

http://www.liyangyu.com/camera#zoomRange

and it is not a term from our camera ontology. In fact, in this chapter, in order to
make our ShopBot more interesting, we will change our camera ontology a little
bit. More specifically, our camera ontology is given in List 5.30, and we will make
some changes to several property definitions, as shown in List 15.9.

582 15 More Application Examples on the Semantic Web

List 15.9 Property definition changes in our camera ontology (see List 5.30)

1: <owl:ObjectProperty
1a: rdf:about="http://www.liyangyu.com/camera#effectivePixel">
2: <owl:equivalentProperty rdf:resource="#resolution"/>
3: <rdfs:domain rdf:resource="#Digital"/>
4: <rdfs:range
4a: rdf:resource="http://www.liyangyu.com/camera#MegaPixel"/>
5: </owl:ObjectProperty>
6: <rdfs:Datatype
6a: rdf:about="http://www.liyangyu.com/camera#MegaPixel">
7: <rdfs:subClassOf
7a: rdf:resource="http://www.w3.org/2001/XMLSchema#decimal"/>
8: </rdfs:Datatype>
9:
10: <owl:ObjectProperty
10a: rdf:about="http://www.liyangyu.com/camera#shutterSpeed">
11: <owl:equivalentProperty rdf:resource="#shutter"/>
12: <rdfs:domain rdf:resource="#Body"/>
13: <rdfs:range rdf:resource="#ValueRange"/>
14: </owl:ObjectProperty>
15:
16: <owl:DatatypeProperty
16a: rdf:about="http://www.liyangyu.com/camera#focalLength">
17: <owl:equivalentProperty rdf:resource="#zoomRange"/>
18: <rdfs:domain rdf:resource="#Lens"/>
19: <rdfs:range
19a: rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
20: </owl:DatatypeProperty>
21: <rdfs:Datatype
21a: rdf:about="http://www.w3.org/2001/XMLSchema#string"/>

As shown in List 15.9, the only change we have made to the current camera ontol-
ogy (List 5.30) is in lines 2, 11, and 17. And now, myCamera:effectivePixel
is equivalent to myCamera:resolution, myCamera:shutterSpeed is equiva-
lent to myCamera:shutter, and finally, myCamera:focalLength is equivalent
to myCamera:zoomRange. With these changes, line 67 in List 15.8 simply uses a
different term which has the same meaning as myCamera:focalLength does.

Now, to further decide whether there is a real match or not, our ShopBot first
has to decide which item described in this given catalog could potentially satisfy
our needs. In our example, the ShopBot will figure out that Nikon D70 described in
the catalog has a type of DSLR, which is a sub-class of Digital. As a result, it can
be considered as a candidate product. Also note that that this item will be the only
product from List 15.8 that will be further considered by the ShopBot.

With this potential candidate, the ShopBot will have to dive into more details:

• We are looking for a digital camera whose lens has a specific value for its
focalLength property. In the catalog, Nikon D70’s lens has a property called
zoomRange. With the inferencing power provided by the camera ontology, our

15.2 A ShopBot on the Semantic Web 583

ShopBot will be able to understand that focalLength and zoomRange are
equivalent properties; therefore, the description of what we are looking for does
match the description of the item on sale.

• The same process has to be repeated for other terms. For example, our ShopBot
will also understand that shutter and shutterSpeed are also equivalent. If all
the terms match, the given product can be considered as a match to our need.

With all these said, let us move on to the construction of our ShopBot, and you
will have another chance to see the inferencing power at work.

15.2.3 Building Our ShopBot

Given the previous discussions, the building of our ShopBot becomes fairly easy.
Let us start with some basic utilities first.

15.2.3.1 Utility Methods and Class

The first utility method we would like to mention is the method shown in List 15.10,
which is used to understand our search request.

List 15.10 Method to understand our search need

1: private boolean getItemToSearch(Model m) {

2:

3: String queryString =
4: "SELECT ?subject ?predicate ?object " +

5: "WHERE {" +

6: " ?subject <" + RDF.type + "> ?object. " +

7: " }";

8:

9: Query q = QueryFactory.create(queryString);

10: QueryExecution qe = QueryExecutionFactory.create(q,m);

11: ResultSet rs = qe.execSelect();

12:

13: // collect the data type property names

14: while (rs.hasNext()) {

15: ResultBinding binding = (ResultBinding)rs.next();

16: RDFNode rn = (RDFNode)binding.get("subject");

17: if (rn != null) {

18: targetItem = rn.toString();

19: }

20: rn = (RDFNode)binding.get("object");

21: if (rn != null) {

22: targetType = rn.toString();

23: }

584 15 More Application Examples on the Semantic Web

24: }

25: qe.close();

26:

27: if (targetItem == null || targetItem.length() == 0){

28: return false;

29: }

30: if (targetType == null || targetType.length() == 0){

31: return false;

32: }

33: return true;

34: }

More specifically, we express our need in an RDF document (as shown in Lists
15.6 and 15.7), and we create an RDF model based on this document. This model
is then passed to this method so that we can have the following two pieces of
information:

• the URI that represents the product we are looking for and
• the type information of the product.

To accomplish this, we run the following SPARQL query against the model that
represents our need:

SELECT ?subject ?predicate ?object

WHERE {

?subject <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

?object.

}

and this query is coded in lines 3–7. Once the query is run against the model, we
can scan the result for the URI and type information as shown in lines 14–24. Note
that it is important to understand the following two assumptions here:

• One request document describes only one item.
• We will always give a URI to represent this item; in other words, it will not be

represented by a blank node.

With these assumptions, the query in lines 3–7 and the scan in lines 14–24 will
be able to find the item and its type. Note that URI that represents the item is stored
in variable called targetItem, and its type is stored in variable targetType.

Once the above is done, both targetItem and targetType should have their
value. If either one of them is not populated, a false value is returned (lines 27–32),
indicating the RDF document that represents the request is not properly created.

If you run the method against the request document shown in List 15.6, these two
variables will hold the following values when this method finishes:

targetItem:

http://www.liyangyu.com/shopbot/request#myDigitalCamera

15.2 A ShopBot on the Semantic Web 585

targetType:

http://www.liyangyu.com/camera#Digital

The second utility method is used to solve the problem discussed in
Sect. 15.2.2.2. This method itself uses another method to accomplish the goal, and
these two methods are shown in List 15.11.

List 15.11 Methods used to decide whether a given catalog document should be
further investigated

1: private boolean isCandidate(Model m) {

2:

3: if (m == null) {

4: return false;

5: }

6:

7: HashSet ns = new HashSet();

8: this.collectNamespaces(m,ns);

9: return ns.contains(ontologyNS);

10:

11: }

12:

13: private void collectNamespaces(Model m,HashSet hs) {

14: if (hs == null || m == null) {

15: return;

16: }

17: NsIterator nsi = m.listNameSpaces();

18: while (nsi.hasNext()) {

19: hs.add(nsi.next().toString());

20: }

21: }

These two methods should be fairly straightforward to follow. Method
collectionNamespaces() uses Jena API listNameSpaces() method to col-
lect all the namespaces used on a given RDF model (line 17), and these namespaces
are saved in a Hash set as shown in lines 18–20.

Method isCandidate() is called when our ShopBot encounters a new RDF
document. Based on this RDF document, a model is created and passed on to method
isCandidate(). Inside the method, a collection of namespaces used by the given
model is created by calling collectNamespaces() method (line 8), and if the
namespace of our camera ontology is one of the namespaces used (line 9), method
isCandidate() will return true, indicating the given RDF document should be
further investigated. Note that variable ontologyNS holds the namespace of our
camera ontology.

Another important utility is findCandidateItem()method. Once the ShopBot
has decided that a given RDF document possibly contains the product we are

586 15 More Application Examples on the Semantic Web

interested in, it then needs to decide exactly what are these products, and this is
done by findCandidateItem() method. List 15.12 shows the definition of the
method.

List 15.12 Method used to find all the candidate products in a given RDF
catalog

1: private Vector findCandidateItem(Model m) {
2:
3: Vector candidates = new Vector();
4: String queryString =
5: "SELECT ?candidate " +
6: "WHERE {" +
7: " ?candidate <" + RDF.type + "> <" + targetType + ">. " +
8: " }";
9:
10: Query q = QueryFactory.create(queryString);
11: QueryExecution qe = QueryExecutionFactory.create(q,m);
12: ResultSet rs = qe.execSelect();
13:
14: while (rs.hasNext()) {
15: ResultBinding binding = (ResultBinding)rs.next();
16: RDFNode rn = (RDFNode)binding.get("candidate");
17: if (rn != null && rn.isAnon() == false) {
18: candidates.add(rn.toString());
19: }
20: }
21: qe.close();
22: return candidates;
23: }

As you can tell, the idea is very simple. Since we know we are looking for some-
thing that has http://www.liyangyu.com/camera#Digital as it type, all we
need to do is to run the following query against the RDF model that represents the
given catalog document:

SELECT ?candidate
WHERE {

?candidate <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.liyangyu.com/camera#Digital>.

}

Note that this query is implemented by lines 4–8, and variable targetType has
http://www.liyangyu.com/camera#Digital as its value.

The rest of the method is quite straightforward: a SPARQL query is created and
submitted to run against the catalog (line 10–11) and the results are analyzed in lines
14–20, where the URIs of the candidate products are collected.

Now, the interesting part comes from the fact that if you simply take the RDF
catalog shown in List 15.8 and create a simple RDF model from it and use method
findCandidateItem() on this model, you will not find any candidate product
at all.

15.2 A ShopBot on the Semantic Web 587

This is not surprising. After all, the Nikon D70 camera described in the catalog
has a type of DSLR, and it is not the exact type as we have specified in the query.
However, as we have discussed earlier, DSLR is a sub-class of Digital; therefore,
Nikon D70 is also an instance of Digital camera and it should be returned in the
query result.

Now, in order for our ShopBot to see this, we cannot use a simple RDF model to
represent the catalog file. Instead, we need to create an ontology model that has the
inferencing power. More specifically, List 15.13 shows the steps needed.

List 15.13 To find the candidate products from a given catalog document, we
need to create an inferencing model

1: Model catalogModel = getModel(catalog);
2:
3: // create ontology model for inferencing
4: OntModel ontModel = ModelFactory.createOntologyModel
4a: (OntModelSpec.OWL_MEM_RULE_INF,catalogModel);
5: FileManager.get().readModel(ontModel,ontologyURL);
6:
7: candidateItems = findCandidateItem(ontModel);

First off, catalog represents the path of the given RDF catalog file as shown
in List 15.8 and ontologyURL is the path of our camera ontology. Line 1 calls
another utility method, getModel(), to create a simple RDF model based on
the catalog document, and this model is stored in variable catalogModel. Lines
4 and 5 use catalogModel and ontologyURL to create an ontology model,
which has the derived statements added by the OWL inferencing engine provided
by Jena.

One way to make this more understandable is to print out all the statements about
the type of Nikon D70 camera contained in the two models at both lines 2 and 6
in List 15.13. More specifically, line 1 calls getModel() to create a simple RDF
model based on the catalog document. If we were to collect all the type statements
about Nikon D70 at line 2, we would collect only one such statement.

<http://www.retailerExample1.com/onlineCatalog#Nikon_D70>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.liyangyu.com/camera#DSLR>.

And this is exactly the reason why the query (lines 4–8 in List 15.12) fails to
identify Nikon D70 as a potential product for us. Now, if we were to collect the same
type statements in line 6 against the ontology model, we would see the following
statements:

<http://www.retailerExample1.com/onlineCatalog#Nikon_D70>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.liyangyu.com/camera#DSLR>.

<http://www.retailerExample1.com/onlineCatalog#Nikon_D70>

588 15 More Application Examples on the Semantic Web

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.w3.org/2002/07/owl#Thing>.

<http://www.retailerExample1.com/onlineCatalog#Nikon_D70>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.liyangyu.com/camera#Camera>.

<http://www.retailerExample1.com/onlineCatalog#Nikon_D70>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.liyangyu.com/camera#Digital>.

<http://www.retailerExample1.com/onlineCatalog#Nikon_D70>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.w3.org/2000/01/rdf-schema#Resource>.

As you can tell, all these statements except the first one are added by Jena’s
inferencing engine, and they are all contained in the ontology model. Clearly, this
is why the query in lines 4–8 (List 15.12) can now successfully identify all the
potential products from the given catalog file.

We will see more reasoning power along the same line in the next section. Before
we move on, we need to discuss a utility class named CameraDescription, and
you will see more about its usage in the later sections.

This class has the following private variables for describing a camera:

private float pixel;

private float minFocalLength;

private float maxFocalLength;

private float minAperture;

private float maxAperture;

private float minShutterSpeed;

private float maxShutterSpeed;

And obviously, each one of these variables represents a property that is defined
in our camera ontology. In fact, this class is quite easy to understand once you see
its connection to the camera ontology.

A key method we would like to briefly mention is sameAs() method, which tries
to decides whether a given camera can satisfy our needs or not. This method takes an
instance of CameraDescription class and returns true if the calling instance is
the same as the parameter instance, and returns false otherwise. You can check out
the method to see how “same as” is defined in the method, but here is one example.
The cameras

pixel value is: 6.0ˆˆhttp://www.liyangyu.com/camera#MegaPixel
focalLength value is:

18-200mmˆˆhttp://www.w3.org/2001/XMLSchema#string
min aperture value is:

1.8ˆˆhttp://www.w3.org/2001/XMLSchema#float
max aperture value is: 22ˆˆhttp://www.w3.org/2001/XMLSchema#float

15.2 A ShopBot on the Semantic Web 589

min shutterSpeed value is:
0.0005ˆˆhttp://www.w3.org/2001/XMLSchema#float

max shutterSpeed value is not specified.

and

focalLength value is:

18-200mmˆˆhttp://www.w3.org/2001/XMLSchema#string

min aperture value is not specified.

max aperture value is not specified.

min shutterSpeed value is:

0.00002ˆˆhttp://www.w3.org/2001/XMLSchema#float

max shutterSpeed value is not specified.

are considered to be the same. Note that only those available properties are taken
into account. In other words, if one camera has a pixel value defined and the other
one does not, then at least these two cameras are not different on this aspect. In
addition, for those available properties, such as shutter speed as an example, if the
parameter camera instance is not worse than the calling instance, the method will
return a true value. Therefore, a true value indicates the camera instance passed
to the method can be selected as a candidate, since it satisfies our requirements as
far as all the explicitly defined properties are concerned.

15.2.3.2 Processing the Catalog Document

Once our ShopBot has decided that the given RDF catalog document contains some
products that can potentially be what we are looking for, it will start the process
of handling the catalog document. In this section, we will discuss the main idea of
processing the catalog document and we will also see the key method to implement
the idea.

The main idea is again closely related to the camera ontology we are using. For a
given candidate camera contained in the catalog document, since there is only a fixed
number of properties defined in the ontology that can be used to describe a camera,
we can query the value of each one of these properties for this candidate camera and
store the value of that particular property into a CameraDescription instance.
Once we are done with all the properties, this CameraDescription instance can
be used in a comparison to decide whether the given camera is a match or not.

At this point, based on our camera ontology, the following methods defined by
CameraDescription class can be used to query the property value of a candidate
camera:

private String getPixel(Model m, String itemURI)

private String getFocalLength(Model m, String itemURI)

private String getAperture(Model m, String itemURI,

int minMaxFlag)

private String getShutterSpeed(Model m, String itemURI,

int minMaxFlag)

590 15 More Application Examples on the Semantic Web

Let us take a look at one example. List 15.14 shows the definition of
getPixel() method.

List 15.14 Definition of getPixel() method

1: private String getPixel(Model m, String itemURI) {

2:

3: String queryString =
4: "SELECT ?value " +

5: "WHERE {" +

6: " <" + itemURI +

6a: "> <http://www.liyangyu.com/camera#effectivePixel>

6b: ?value. " +

7: " }";

8:

9: Query q = QueryFactory.create(queryString);

10: QueryExecution qe = QueryExecutionFactory.create(q,m);

11: ResultSet rs = qe.execSelect();

12:

13: while (rs.hasNext()) {

14: ResultBinding binding = (ResultBinding)rs.next();

15: RDFNode rn = (RDFNode)binding.get("value");

16: if (rn != null && rn.isAnon() == false) {

17: return rn.toString();

18: }

19: }

20: qe.close();

21: return null;

22:

23: }

First off, note that at this point, our ShopBot has decided that the catalog file (List
15.8) does contain a camera that could potentially satisfy our need, and this camera
has the following URI:

http://www.retailerExample1.com/onlineCatalog#Nikon_D70

which is passed in as the itemURI parameter to the method (line 1).
Now, the following SPARQL query is used to get the pixel value of the given

camera:

SELECT ?value

WHERE {

<http://www.retailerExample1.com/onlineCatalog#Nikon_D70>

<http://www.liyangyu.com/camera#effectivePixel> ?value.

}

and this query is coded in lines 3–7 and is submitted to the model in lines 9–11.

15.2 A ShopBot on the Semantic Web 591

As you can tell, in the query, myCamera:effectivePixel is specified as the
property name. What if some retailer has used other name for the same query?
myCamera:resolution, for example, can be used (see List 15.9).

Again, to handle this issue, we need the inferencing power from the ontology
model. More specifically, the catalog document is represented as a ontology model
(see List 15.13), and it is passed in as the Model m parameter to the method (line 1).
The query shown in lines 3–7 will be run against this ontology model that has all the
inferred statements; the final result is that our ShopBot seems to be smart enough
to realize that myCamera:effectivePixel and myCamera:resolution are
equivalent properties, and the correct property value will be retrieved successfully.

Therefore, using an ontology model which has all the derived statements is the
key to make sure a given query can return all the facts. This is also true for all the
other methods when it comes to handling the catalog document. To see one more
example, List 15.15 shows the method which queris the shutter speed of a given
camera.

List 15.15 Definition of getShutterSpeed() method

1: private String getShutterSpeed(Model m, String itemURI,
1a: int minMaxFlag) {
2:
3: String queryString = null;
4: if (minMaxFlag == MyShopBot.MIN) {
5: queryString =
6: "SELECT ?value " +
7: "WHERE {" +
8: " <" + itemURI +
8a: "> <http://www.liyangyu.com/camera#body> ?tmpValue0. " +
9: " ?tmpValue0
9a: <http://www.liyangyu.com/camera#shutterSpeed>
9b: ?tmpValue1." +
10: " ?tmpValue1 <http://www.liyangyu.com/camera#minValue>
10a: ?value . " +
11: " }";
12: } else {
13: queryString =
14: "SELECT ?value " +
15: "WHERE {" +
16: " <" + itemURI +
16a: "> <http://www.liyangyu.com/camera#body> ?tmpValue0. " +
17: " ?tmpValue0
17a: <http://www.liyangyu.com/camera#shutterSpeed>
17b: ?tmpValue1." +
18: " ?tmpValue1
18a: <http://www.liyangyu.com/camera#maxValue> ?value . " +
19: " }";
20: }
21:
22: Query q = QueryFactory.create(queryString);

592 15 More Application Examples on the Semantic Web

23: QueryExecution qe = QueryExecutionFactory.create(q,m);
24: ResultSet rs = qe.execSelect();
25:
26: String resultStr = "";
27: while (rs.hasNext()) {
28: ResultBinding binding = (ResultBinding)rs.next();
29: RDFNode rn = (RDFNode)binding.get("value");
30: if (rn != null && rn.isAnon() == false) {
31: return rn.toString();
32: }
33: }
34: qe.close();
35: return null;
36:
37: }

Obviously, querying the value of myCamera:shutterSpeed property is more
complex than querying the value of myCamera:effectivePixel property. More
specifically, we need the following SPARQL query to accomplish this:
SELECT ?value
WHERE {

<http://www.retailerExample1.com/onlineCatalog#Nikon_D70>
<http://www.liyangyu.com/camera#body> ?tmpValue0.
?tmpValue0
<http://www.liyangyu.com/camera#shutterSpeed> ?tmpValue1 .

?tmpValue1 <http://www.liyangyu.com/camera#minValue> ?value .
}

which in fact needs a reference chain to reach the required shutter speed value.
This chain starts from myCamera:body property, which uses a resource as its
value. This resource has a myCamera:Body type and is bonded to tmpValue0

variable. Next, this myCamera:Body resource has a myCamera:shutterSpeed

property, which uses another resource as its value, and this new resource
is of type myCamera:ValueRange and is bonded to another variable called
tmpValue1. Finally, resource tmpValue1 has two properties, and for this query,
we use myCamera:minValue property, which tells us the minimum shutter
speed this camera can offer. Note that this query is coded from lines 5–11 in
List 15.15.

Now, what about the maximum shutter speed this camera body can offer?
A similar query is used (lines 13–19), with the only difference being that
myCamera:maxValue property has replaced myCamera:minValue property. To
let the method understand which value we need, we have to pass in a third parameter,
minMaxFlag, as shown in line 1 of this method.

Similar to the query about myCamera:effectivePixel property,
myCamera:shutterSpeed property also has an equivalent property. In order to
recognize all the possible terms, we again need to represent our catalog document
as an ontology model which has all the inferred statements, and pass it to the
method using the Model m parameter as shown in line 1.

15.2 A ShopBot on the Semantic Web 593

For our catalog RDF document (List 15.8), myCamera:shutter property is
used instead of myCamera:shutterSpeed (lines 58–62). Since we have passed
in the ontology model that represents this catalog, the above query is able to find the
shutter speed value. This is another example that shows the reasoning power you
have gained from an ontology model.

This also shows how much dependency we have on a specific ontology, since the
above query is constructed based on the ontology structure. This gives a key reason
why ontology reuse is important: applications are often developed to understand
some specific ontology; by reusing this ontology, we can quickly develop a new
application since a large portion of the existing applications can also be reused.

The other methods, namely getFocalLength() and getAperture(), are all
quite similar to List 15.15. I will leave them for you to understand. At this point, we
are ready to discuss the overall work flow of our ShopBot, and we will cover that in
next section.

15.2.3.3 The Main Work Flow

With the above discussion, the overall work flow of our ShopBot is quite easy to
understand. This work flow is defined in the following work() method, as shown
in List 15.16.

List 15.16 Main work flow of our ShopBot agent

1: private void work() {
2:
3: // for the product we are looking for,
3a: //get its URI and type info
4: Model requestModel = getModel(requestRdf);
5: if (getItemToSearch(requestModel) == false) {
6: System.out.println("your request description
6a: is not complete!");
7: }
8: System.out.println("this URI describes the resource
8a: you are looking for:");
9: System.out.println("<" + targetItem + ">");
10: System.out.println("its type is given by
10a: the following class:");
11: System.out.println("<" + targetType + ">");
12:
13: // find all the requested parameters
14:
15: CameraDescription myCamera = new CameraDescription();
16:
17: String targetPixel = getPixel(requestModel,targetItem);
18: myCamera.setPixel(targetPixel);
19: show("pixel(target)",targetPixel);
20:
21: String targetFocalLength =
21a: getFocalLength(requestModel,targetItem);

594 15 More Application Examples on the Semantic Web

22: myCamera.setFocalLength(targetFocalLength);
23: show("focalLength(target)",targetFocalLength);
24:
25: String targetAperture =
25a: getAperture(requestModel,targetItem,MyShopBot.MIN);
26: myCamera.setMinAperture(targetAperture);
27: show("min aperture(target)",targetAperture);
28:
29: targetAperture =
29a: getAperture(requestModel,targetItem,MyShopBot.MAX);
30: myCamera.setMaxAperture(targetAperture);
31: show("max aperture(target)",targetAperture);
32:
33: String targetShutterSpeed =
33a: getShutterSpeed(requestModel,targetItem,MyShopBot.MIN);
34: myCamera.setMinShutterSpeed(targetShutterSpeed);
35: show("min shutterSpeed(target)",targetShutterSpeed);
36:
37: targetShutterSpeed =
37a: getShutterSpeed(requestModel,targetItem,MyShopBot.MAX);
38: myCamera.setMaxShutterSpeed(targetShutterSpeed);
39: show("max shutterSpeed(target)",targetShutterSpeed);
40:
41: CameraDescription currentCamera = new CameraDescription();
42: while (true) {
43:
44: Model catalogModel = getModel(catalog);
45:
46: // see if it has potential candidates
47: if (isCandidate(catalogModel) == false) {
48: continue;
49: }
50:
51: // create ontology model for inferencing
52: OntModel ontModel = ModelFactory.createOntologyModel
52a: (OntModelSpec.OWL_MEM_RULE_INF,catalogModel);
53: FileManager.get().readModel(ontModel,ontologyURL);
54:
55: // which item could be it?
56: candidateItems = findCandidateItem(ontModel);
57: if (candidateItems.size() == 0) {
58: continue;
59: }
60:
61: for (int i = 0; i < candidateItems.size(); i ++) {
62:
63: String candidateItem =
63a: (String)(candidateItems.elementAt(i));
64: System.out.println("\nFound a candidate: " +
64a: candidateItem);
65: currentCamera.clearAll();
66:

15.2 A ShopBot on the Semantic Web 595

67: // find the pixel value
68: String pixel = getPixel(ontModel,candidateItem);
69: currentCamera.setPixel(pixel);
70:
71: // find lens:focalLength value
72: String focalLength =
72a: getFocalLength(ontModel,candidateItem);
73: currentCamera.setFocalLength(focalLength);
74: show("focalLength",focalLength);
75:
76: // find lens:aperture value
77: String aperture =
77a: getAperture(ontModel,candidateItem,MyShopBot.MIN);
78: currentCamera.setMinAperture(aperture);
79: show("min aperture",aperture);
80: aperture =
80a: getAperture(ontModel,candidateItem,MyShopBot.MAX);
81: currentCamera.setMaxAperture(aperture);
82: show("max aperture",aperture);
83:
84: // find body:shutterSpeed value
85: String shutterSpeed =
85a: getShutterSpeed(ontModel,candidateItem,MyShopBot.MIN);
86: currentCamera.setMinShutterSpeed(shutterSpeed);
87: show("min shutterSpeed",shutterSpeed);
88: shutterSpeed =
88a: getShutterSpeed(ontModel,candidateItem,MyShopBot.MAX);
89: currentCamera.setMaxShutterSpeed(shutterSpeed);
90: show("max shutterSpeed",shutterSpeed);
91:
92: if (myCamera.sameAs(currentCamera) == true) {
93: System.out.println("found one match!");
93a: // more interesting action?
94: }
95: }
96:
97: break; // or next catalog file.
98: }
99:
100: }

The work flow starts from line 4, where an RDF model (requestModel)
representing our search request is created. It is then passed into method
getItemToSearch() so that our ShopBot can understand more about the require-
ment (line 5).

As we have discussed earlier, we describe our need by creating a resource.
Method getItemToSearch() looks for the URI that represents this resource
(saved in targetItem variable); it also collects the type information of this
resource (saved in targetType variable). If it cannot find these two pieces of infor-
mation, a false value is returned with an error message shown to the user (lines

596 15 More Application Examples on the Semantic Web

5–7). In case of success, targetItem and targetType are echoed back to the
user, as shown in lines 8–11.

Once the above is successfully done, our ShopBot creates a new instance
of class CameraDescription named myCamera, which represents our detailed
requirements about the camera we want to find (line 15).

To populate myCamera, getPixel() method is first called (line 17), with
requestModel and targetItem as its parameters. This method returns the value
of myCamera:effectivePixel property, which is then stored in myCamera

instance, as shown in line 18.
Similarly, the ShopBot calls method getFocalLength() and stores the

returned value into myCamera (lines 21–23). Then it calls getAperture() method
to query both the minimum and maximum aperture values, and these values are
again used to populate myCamera instance (lines 25–31). Same is true for shutter
speed, as shown from lines 33–39. Once all these are done, our ShopBot has fin-
ished the task of understanding our needs: all our requirements about our camera is
now stored in myCamera instance.

At this point, our ShopBot is ready to handle catalog files. To do so, the first thing
it does is to create another CameraDescription instance called currentCamera,
which is used as a place to hold the descriptions of a potential camera found in a
given catalog document (line 41).

Obviously, there are multiple catalog documents our ShopBot needs to visit, and
it will visit them one by one, using a loop of some kind. So far, since we have
established only one example catalog document (List 15.8), and given the fact that
the exact same processing flow will work for any catalog file, I will not create more
catalog file examples. Therefore, instead of actually having a list of documents to
visit, I will simply use a while() loop (lines 42–98) to represent the idea of having
a collection of documents to visit. It is up to you to come up with more example
catalog files and change the while() loop so that none of these document will be
missed.

Now, for a given catalog file on hand, our ShopBot first creates a simple RDF
model to represent it (line 44) and then calls isCandidate() method to see
whether there is any need to study this catalog more (line 47). If the current catalog
file does not have any product that can potentially satisfy our needs, our ShopBot
moves on to the next catalog document (line 48).

When the ShopBot decides to investigate more on the current catalog file, it first
creates an ontology model based on the catalog document as shown in lines 52–53.
As we have discussed earlier, this is necessary since the inferencing engine can add
derived statements into the model, and it is the reason why all the queries can work
correctly.

The ShopBot then tries to find from the catalog document all the products that
could be the potential matches by calling findCandidateItem() method (line
56). We have discussed this method already, and it returns a collection of URIs
(a Vector), with each one of these URIs representing such a potential prod-
uct. In our example, this collection has only one product that has the following
URI:

15.2 A ShopBot on the Semantic Web 597

http://www.retailerExample1.com/onlineCatalog#Nikon_D70

If the returned collection is empty, meaning the current catalog document does
not have any possible matches, our ShopBot skips this catalog and moves onto the
next one, as shown on lines 57–59.

It is certainly possible that a given catalog document has more than one cameras
that can potentially satisfy our needs. To examine these products one by one, we
need to have a loop as shown in lines 61–95.

To start the examination, our ShopBot takes one URI from this collection (line
63). Since we have only one currentCamera instance that holds the description of
the current product, it may still contain the description of the previous product, so
our ShopBot clears it first, as shown in line 65.

Next, our ShopBot starts to query against the current catalog document to retrieve
the values of the applicable properties, namely pixel value, focal length value, aper-
ture value, and shutter speed value. And once a value is retrieved, it is saved into
currentCamera instance. This process is shown from lines 67–90, and it is the
same process that our ShopBot has used to understand the request document (lines
17–39).

Once this process is done, currentCamera instance holds the description of the
current product. It is then used to compare with myCamera instance, which holds
our request. If this comparison returns a true value, our ShopBot declares the fact
that a match has been found (lines 92–94). In our example, to declare a match simply
means a system printout is used to alert the user (line 93). You can change this line
to whatever you would like to do. For example, collecting the retailer’s name and
the Web site that describes this product in more details, including its pricing and
shipping information.

Once all the potential products from the current catalog are examined, our
ShopBot should continue onto the next catalog file, which should be done in line 97.
Again, for this example, currently only one catalog file is used, so line 97 simply
breaks the loop. For you, if you want our ShopBot to visit more catalog documents,
this is the place where you should change.

At this point, we have finished building our ShopBot. Note that the classes and
methods that have been discussed here are the major ones; you can find the complete
code from the package you have downloaded. With what we have learned here, you
should not have any problem in understanding the complete code.

15.2.3.4 Running Our ShopBot

The best way to understand our ShopBot agent is to download the complete code,
compile it using your own java project and favorite IDE, and of course, run it.

Also, to make the ShopBot run, I have used the following files:

• request file: C:/liyang/myWritings/data/myCameraDescription

.rdf

• catalog file: C:/liyang/myWritings/data/catalogExample1.rdf
• ontology file: C:/liyang/myWritings/data/camera.owl

598 15 More Application Examples on the Semantic Web

You should be able to find these files when you download the code for our
ShopBot, and you should change the paths of these files so that your ShopBot agent
can have access to these files.

List 15.17 shows the driver we use to start the ShopBot.

List 15.17 Test driver for our ShopBot agent

1: public static void main(String[] args) {

2:

3: MyShopBot myShopBot = new MyShopBot();

4: myShopBot.work();

5:

6: }

List 15.18 shows the output you should see when running the ShopBot.

List 15.18 Screen output generated by our ShopBot agent

this URI describes the resource you are looking for:

<http://www.liyangyu.com/shopbot/request#myDigitalCamera>

its type is given by the following class:

<http://www.liyangyu.com/camera#Digital>

pixel(target) value is:

6.0ˆˆhttp://www.liyangyu.com/camera#MegaPixel

focalLength(target) value is:

18-200mmˆˆhttp://www.w3.org/2001/XMLSchema#string

min aperture(target) value is:

1.8ˆˆhttp://www.w3.org/2001/XMLSchema#float

max aperture(target) value is:

22ˆˆhttp://www.w3.org/2001/XMLSchema#float

min shutterSpeed(target) value is:

0.0005ˆˆhttp://www.w3.org/2001/XMLSchema#float

max shutterSpeed(target) value is not specified.

Found a candidate:

http://www.retailerExample1.com/onlineCatalog#Nikon_D70

focalLength value is:

18-200mmˆˆhttp://www.w3.org/2001/XMLSchema#string

min aperture value is not specified.

max aperture value is not specified.

min shutterSpeed value is:

0.00002ˆˆhttp://www.w3.org/2001/XMLSchema#float

max shutterSpeed value is not specified.

found one match!

15.2 A ShopBot on the Semantic Web 599

After understanding our ShopBot and seeing its example output, you can compile
more catalog files for it to understand. Try it out and have fun!

15.2.4 Discussion: From Prototype to Reality

The ShopBot presented in this chapter is a simple prototype; its goal is to show you
another application example on the Semantic Web. You should be able to see the
following main points from this example:

• ShopBots created in the Semantic Web environment can do much more than
traditional ShopBots. For example, you don’t have to only search a specific
product; instead, you can describe what you want and let the machine find it
for you.

• There is no need for screen scraping; the Semantic Web makes it possible to
create and run ShopBots in a much more scalable and maintainable way.

There are obviously lots of things you can do to make it better. They are the
following:

• A ShopBot should be able to visit the Web to find catalog files from different
retailers. In our example, we simply feed it with catalog files.

• For now, the catalog files we are looking for are RDF files. Since the “scarcity”
of these files, what should be the best way to find them quickly?

• Instead of editing separate RDF documents, some retailers may decide to use
RDFa or microformats to add semantic markups directly into their online HTML
documents. How should we change our ShopBots to handle this situation?

• If you run our current ShopBot, you will note the fact that it runs slower when we
have to create ontology models instead of simple RDF models. This might hurt
the scalability and efficiency of our ShopBot. How to make improvements along
this direction?

All these questions are important when constructing a real ShopBot. However,
from prototype to real application, there are actually more important issues that
remain to be solved. For example,

• there has to be a set of ontologies that the whole community accepts.

For a given application domain, a set of ontologies are needed. However, who will
be responsible for creating these ontologies? How to reach the final agreement
on these ontology files? Sometimes, there might be already different ontologies
existing for a given domain. Instead of reinventing the wheel, it might be a good
idea to merge these ontologies together to form a standard one. Yet how should
this merge be done?

• each retailer has to semantically markup his/her catalog, and the markup has to
be done based on the standard ontology files.

600 15 More Application Examples on the Semantic Web

For the general public on the Web, semantic markup is never an easy process.
To mark up a Web document, either a separate RDF document can be created or
RDFa/microformats can be used to embed the markups into the Web document.
Whichever method is chosen, there is a learning curve for the users to conquer,
and they have to agree to use the terms from the standard ontologies. To overcome
the technical challenges and learning curve, user motivation plays an important
role as well.

Besides the above, there are other issues such as security and trust, and whether
sharing sensitive data on the public Web is acceptable to each retailer. Also, from
a technical perspective, building intelligent agents still have the issue of scalability
and efficiency, especially when reasoning on large ontologies is involved.

Clearly, there is still a long way to cover before our prototype can finally
become a practical application system on a large scale. However, it is our hope
that understanding these issues will make our road ahead clear and also give you the
motivation to continue the exploration on the Semantic Web, and finally, to turn the
idea into a beautiful reality.

15.3 Summary

In this chapter, we have created two more applications on the Semantic Web. The
first one is an agent that works with FOAF documents to create a trustable e-mail
list for you and the second one is a ShopBot that understands your needs and tries
to find those products that can satisfy your needs. With these examples, you should
be able to understand the following:

• the basic steps and patterns when it comes to developing applications on the
Semantic Web;

• soft agents on the Semantic Web can be developed with the scalability and effi-
ciency that cannot be matched if the same agents were to be developed on the
traditional document Web;

• in addition, soft agents are extremely suitable for dynamic and distributed data
environment, and it is almost effortless to maintain these agents.

Meanwhile, understand that to build production level soft agents in real world,
quite a few issues have to be addressed first. Noticeably, the development of shared
ontologies, the motivation for the general public to markup their Web documents
and the related security/trust issues are the top items on the list.

Finally, congratulations on finishing the whole book. I hope you have learned
something from this book, and more importantly, I hope you are now motivated to
pursue more on the vision of the Semantic Web, and soon, you will be able to deliver
applications on the Web that can make million users happy.

Index

A
Adding semantics to the current Web, see

Semantic markup
Add machine-understandable meanings, 14
AI, 156
Amazon Web Services, 3
Ambiguity

ambiguity of XML document, 82
semantic ambiguity, 27

Anonymous node, see Blank node
Anonymous resource, see Anonymous node
Artificial Intelligence, see AI
Automatic

information extraction, 388

B
Base

in-scope base URI, 57
turtle base keyword, 66–69
xml base attribute, 57

Berners-Lee, Tim, 15
Binary relationship, 39
Blank node, 36, 38

local identifier, 39
n-ary relationship, 39

bnode, see Blank node
Breadth-first search, 534
Brickley, Dan, 292

C
Camera ontology in OWL 1, 192
Camera ontology in OWL 2, 233
Camera ontology written in RDFS, 132
Collections in RDF, 61–63
Common language in sharing information, 110
Containers in RDF, 59–61
Content negotiation, 417
Crawler, 316

Create a FOAF document, 303
Creator, in DC(Dublin Core) metadata schema,

80
cURL, 434
Cyganiak, Richard, 431

D
DAML+OIL, 156
DAML, 156
DARPA Agent Markup Language, see DAML
Data integration, 1
Data mining, 11
DBpedia, 381

Berlin page, 391
core datasets, 401
datasets, 381
DBpedia URI, 395
extended datasets, 405
extractor, 388–389, 394
Federer page, 382
generic infobox extraction method, 395
links to RDF Bookmashup, 406
links to Wikicompany dataset, 405
look and feel, 385
mapping-based extraction approach, 395
as part of Linked Data, 406
persondata dataset, 404
RDF dumps, 401
RDF icon, 391
SAPRQL endpoint, 397
SPARQL viewer, 397
titles dataset, 404
URI lookup service, 408
using SPARQL to access DBpedia,

398–401
DBpedia ontology, 390

access the ontology, 390
infobox attributes map to properties,

394–396

L. Yu, A Developer’s Guide to the Semantic Web,
DOI 10.1007/978-3-642-15970-1, C© Springer-Verlag Berlin Heidelberg 2011

601

602 Index

infobox templates map to classes, 392–394
ontology dataset, 402
ontology infobox properties dataset, 403
ontology types dataset, 403

DBpedia Project, 381
Depth-first search, 534
Dereferencable URIs, 29
Dereferencing URIs, 29
Description Logic, see DL
Digital single lens reflex, see DSLR
DL, 226–227
Domain, 137
Domain model, 479
DSLR, 21
Dublin Core, 79
Dublin Core vocabulary, 79
Dynamic object model pattern, 483

E
EmailAddressCollector agent, 566

F
Facets, 211
Falcons, 441

concept search, 442
document search, 443
object search, 442
type pane, 442

Federer, Roger, 381
FOAF, 292

foaf:interest, 427
explorer, 302
foaf:, 293
foaf:Agent, 296
foaf:base_near, 428
foaf:depiction, 300
foaf:depicts, 300
foaf:Document, 296
foaf:firstName, 296
foaf:homepage, 296
foaf:Image, 296
foaf:knows, 298
foaf:mbox, 296
foaf:mbox_sha1sum, 298
foaf:name, 296
foaf:Organization, 296
foaf:Person, 295
foaf:Project, 296
in official language, 292–293
publish your FOAF document, 305–306
scutter, 302
vocabulary, 292

FOAF Bulletin Board, 306
FOAF-a-matic, 303

Follow-Your-Nose
build a Follow-Your-Nose agent, 536–543
method, 533
run a Follow-Your-Nose agent, 543–545

Framework, 467
Friend of a Friend, see FOAF

G
Gleaning Resource Descriptions from Dialects

of Languages, see GRDDL
GRDDL, 105

link element, 106
with microformats, 106–107
profile attribute, 105
with RDFa, 107

H
Hash symbol, 419
Hash URI, 28, 419
Heath, Tom, 456
Hello World example, 497–498

I
Inference engine, 524
Information integration, see Data integration
Information resources, 414
Internationalized Resource Identifiers, see IRI
International Semantic Web Conference, see

ISWC
IRI, 159
ISWC, 18

J
Jena, 468, 473, 492

add(), 507
addProperty(), 504
bindSchema(), 525
createDefaultModel(), 503–504, 508
createModelRDBMaker(), 517, 519
create RDF model, 502–507
createResource(), 504
createStatement(), 507
download Jena package, 492–495
FileManager class, 509
getId(), 511
getNsPrefixMap(), 511
getURI(), 511
inference model, 528
inferencing examples, 525–531
isAnon(), 511
listObjectsOfProperty(), 511
listResourcesWithProperty(), 511
listStatements(), 514
Literal class, 504
in-memory RDF models, 501

Index 603

ModelFactory, 503
ModelMaker class, 517
ModelRDB class, 517
multiple persistent RDF models, 522–524
OntModelSpec class, 529
persistent RDF model, 515
Property class, 504
RDFNode interface, 504
RDF/XML-ABBR parameter, 506
read a RDF model, 507–509
ReasonerRgistry class, 525
Resource class, 504
single persistent RDF model, 517–521
understand a RDF model, 510–515
using Jena in Eclipse, 495–497

Joseki, 244

K
Keyword-matching, 13
Knowledge Organization Systems, see KOS
Knowledge representation, see KR
KOS, 138
KR, 156

L
Linked Data, 16, 409

accessing the Web of Linked Data, 445
application example, 456–463
basic principles, 412
creating links, 427–433
creating links manually, 431
discover, 441
generating links automatically, 433
minimal requirements, 434
pattern-based algorithms, 433
publishing linked data on the Web,

436–438
size of, 411–412
use SPARQL to access the Web of Linked

Data, 451
validator, 438

Linked Data browsers, 410, 445
Linked Data cloud, 451
Linked Open Data, see LOD
Linking Open Data Community Project, 412
LOD, 409
LOD cloud, 431

M
Mashup, 411, 463
McBride, Brian, 468
MediaWiki, 334
Microformats, 88

hCard microformat, 89
and RDF, 94–95
syntax and examples, 89–94

Model-view-controller, see MVC architecture
Musicbrainz, 451

SPARQL endpoint, 451
Music Ontology, 424
MVC architecture, 479
MySQL, 516

Command Line Client, 517
Connector/J, 516
JDBC driver, 516
port number, 516
setup, 516

N
Negation as failure, 282
NeOn, 476

OWL editor, 476
Toolkit, 476

Nikon D300, 22
Non-information resources, 415

O
OIL, 156
Ontology, 137
Ontology development methodology, 484–489

basic steps, 487
basic tasks and fundamental rules, 485
bottom-up approach, 486
combination approach, 486
top-down approach, 486

Ontology driven architecture, see Ontology-
driven software development method

Ontology-driven software development
method, 482

Ontology engineering environment, 474
Ontology header, 219
Ontology Inference Layer, see OIL
OWL, 159

cardinality constraints, 165
Direct Model-Theoretic Semantics, 226
in official language, 156–158
from OWL 1 to OWL 2, 158–159
in plain English, 155–156
qualified cardinality constraints, 196
RDF-based Semantics, 226
value constraints, 165

OWL 1, 157
annotation property, 215
imports and versioning, 219
OWL 1 DL, 227–229
OWL 1 Full, 227–228
OWL 1 Lite, 227, 229

604 Index

owl:AllDifferent, 225
owl:allValuesFrom, 165
owl:AnnotationProperty, 216
owl:cardinality, 170
owl:Class, 161
owl:complementOf, 174
owl:DatatypePropery, 180
owl:differentFrom, 224
owl:disjointWith, 117
owl:distinctMembers, 225
owl:equivalentClass, 176, 224
owl:FunctionalProperty, 189
owl:hasValue, 168
owl:imports, 220
owl:intersectionOf, 172
owl:InverseFunctionalProperty, 192
owl:inverseOf, 190
owl:maxCardinality, 171
owl:minCardinality, 171
owl:ObjectProperty, 180
owl:oneOf, 175
owl:onProperty, 165
owl:Ontology, 220
owl:Restriction, 165
owl:sameAs, 222
owl:sameIndividualAs, 223
owl:someValuesFrom, 167
owl:SymmetricProperty, 185
owl:Thing, 161
owl:TransitiveProperty, 186
owl:unionOf, 173
owl:versionInfo, 221
reasoning based on cardinality constraints,

171–172
reasoning based on class enumeration,

equivalent and disjoint, 177
reasoning based on functionality property,

189
reasoning based on inverse functional

property, 191–192
reasoning based on inverse property,

189–190
reasoning based on owl:allValuesFrom,

166–167
reasoning based on owl:hasValue, 170
reasoning based on owl:someValuesFrom,

167–168
reasoning based on set operators, 174
reasoning based on symmetric property,

185
reasoning based on transitive property,

186–187
specifications, 156

OWL 2, 157
axiom, 159
axiom annotation, 217
entities, 159
entity declaration, 218
expressions, 159
Functional-Style syntax, 160
imports and versioning, 221
keys, see OWL 2, owl:hasKey
Manchester syntax, 160
metamodeling, see OWL 2, punning
negative fact assertions, 199
OWL 2 DL, 230
OWL 2 EL, 230
OWL 2 Full, 230
OWL 2 QL, 230–231
OWL 2 RL, 230, 232
OWL 2 specifications, 157
owl:AllDisjointClasses, 197
owl:AllDisjointProperties, 206
owl:annotatedProperty, 217
owl:annotatedSource, 217
owl:annotatedTarget, 217
owl:assertionProperty, 200
owl:AsymmetricProperty, 205
owl:Axiom, 217
owl:datatypeComplementOf, 213
owl:disjointUnionOf, 198
owl:hasKey, 209
owl:hasSelf, 201
owl:intersectionOf, 213
owl:IrreflexiveProperty, 204
owl:maxQualifiedCardinality, 203
owl:minQualifiedCardinality, 202
owl:NegativeDataPropertyAssertion, 199
owl:NegativeObjectPropertyAssertion, 199
owl:onDatatype, 212
owl:propertyDisjointWith, 206
owl:qualifiedCardinality, 203
owl:ReflexiveProperty, 204
owl:sourceIndividual, 200
owl:targetIndividual, 200
owl:unionOf, 213
owl:versionIRI, 221
owl:withRestrictions, 212
OWL/XML, 161
property chain, 207
punning, 214
RDF/XML syntax, 160
reasoning based on cardinality restrictions,

203
reasoning based on disjoint property, 207
reasoning based on key, 210

Index 605

reasoning based on property chain, 209
reasoning based on reflexive, irreflexive

and asymmetric property, 205
reasoning based on self restriction property,

201
supported datatypes, 211
syntactic sugar, 197
top and bottom properties, 219

P
Page snippet, 319
Pellet, 472
Plug-in architecture, 477
Point And Shoot, 112
Property-value pair, 3
Protégé, 475

OWL API, 476
Programming Development Kit, 476

Protocol and RDF Query Language, see
SPARQL

Q
QName, 30
Qualified name, see QName

R
RacerPro, 472
RDF

abstract model, 25–42
basic rule #1, 25
basic rule #2, 27
basic rule #3, 75
datatype URI, 37
definition, 20
graph, 26
graph structure of a statement, 26
implementation of the RDF abstract model,

26
language tag, 37
literals, 37
long form of RDF/XML syntax, 56
Notation-3, 65
N-triples, 65
object, 26
in official language, 19–21
in plain English, 21–25
predicate, 63
property, 35
property value, 36
rdf, 42
rdf:about, 44
rdf:Alt, 59
rdf:Bag, 59
rdf:datatype, 52

rdf:Description, 44
rdf:first, 61
rdf:ID, 56
rdf:li, 60
rdf:List, 61
rdf:nil, 61
rdf:nodeID, 55
rdf:object, 63
rdf:parseType, 51
rdf:predicate, 63
rdf:RDF, 42–43
rdf:resource, 44
rdf:rest, 61
rdf:Seq, 59
rdf:statement, 63
rdf:subject, 63
rdf:type, 45
rdf:value, 50
RDF/XML syntax, 42
reification of a statement, 63
reification vocabulary, 63
resource, 27
resource XML node, 44
serialization syntax, 42
short form of RDF/XML sterilization, 58
statement, 25
subject, 26
triple, 26
typed literal value, 37
typed node, 45
typed node element, see RDF, typed node
un-typed literal value, 37
validator, 84
vocabulary, 42
W3C specifications, 10

RDFa, 96
attributes and elements, 96–97
examples, 99–104
and RDF, 104
rules of markup, 97–99

RDF Bookmashup, 406
RDF data store, 243
RDFS, 111

in official language, 110–111
in plain English, 109–110
rdfs, 114
rdfs:Class, 114
rdfs:comment, 132
rdfs:Datatype, 129
rdfs:domain, 120
rdfs:isDefinedBy, 132
rdfs:label, 132
rdfs:Literal, 129

606 Index

rdfs:range, 120
rdfs:Resource, 114
rdfs:seeAlso, 131
rdfs:subClassOf, 117
rdfs:subPropertyOf, 126
rdfs:XMLLiteral, 130
reasoning based on RDFS ontology,

149–151
W3C recommendation, 110–111

RDF Schema, see RDFS
RDF/S, see RDFS
RDF-S, see RDFS
RDF triple store, 243
Reasoner, 471, 524

inference process, 471
reasoning, 471

Redland, 470
Relationship between Linked Data and the

Semantic Web, 17
Remote SPARQL query, 553
Resource Description Framework, see RDF
Revyu, 456
Rich Snippets, 319

aggregate review, 321
individual review, 321
microformats supported, 322
ontologies supported, 322
Testing Tool, 322

S
SameAs, 422
Sampras, Pete, 394
Screen-scraping, 573
Search engine, 315

anchors, 317
barrels, 317
basic flow, 315
crawling, 316
indexer, 317
indexing, 317
links, 317
PageRanking, 317
rank, 317
repository, 317
searching, 317
seed URLs, 316
sorter, 317
store server, 317
URL Resolver, 317
URL server, 316

SearchMonkey, 323
badge, 328
creating presentation applications, 327

DataRSS, 325
Enhanced Result, 327
high level architecture, 325
Infobar, 327
microformats supported, 329
online development tool, 328
ontologies supported, 329
Page custom data service, 326
Search Gallery, 328
testing tool, 329
trigger URL, 328
Web Service custom data service, 326
XSLT Custom Data Service, 326

Semantic annotation, see Semantic markup
Semantic annotation in wiki, 335

link, 339
text, 343

Semantic markup, 308
automatic markup, 313
manually markup, 313
procedure and example, 308–312

Semantic mashups, 411
Semantic MediaWiki, 334

Additional printouts, 350
built-in datatypes, 344
Factbox, 347
inferencing, 356
inferencing based on category hierarchy,

358
inferencing capability based on property

hierarchy, 358
logical AND, 351
logical OR, 353
Page type, 345
Property, 342
query language, 350
RDF feed, 362
reuse existing ontologies, 372
semantic browsing interface, 348
Semantic wiki vocabulary and terminology,

see SWiVT
Special:Ask, 350
sub-query, 354
SWiVT, 360
swivt:BuiltinType, 361
swivt:CustomType, 362
swivt:page, 361
swivt:Subject, 360
swivt:Type, 361
swivt:Wikipage, 360
type, 344

Semantics, 9, 14
The Semantic Web, 15, 17

Index 607

Semantic Web development methodologies,
478–484

Semantic Web search engines, 441, 478
Semantic Web vs. Linked Data, 410
Semantic wiki, 334
Sesame, 469
SHOE, 156
ShopBot, 573
ShopBot on the Semantic Web, 583
Sig.ma, 446
Simple HTML Ontology Extensions, see

SHOE
Simple Knowledge Organization Systems, see

SKOS
Sindice, 422, 443
Sindice’s Data Web Services API, 443
Single Lens Reflex, see SLR
SKOS, 138

skos, 142
skos:altLabel, 143
skos:broader, 144
skos:broadMatch, 148
skos:closeMatch, 148
skos:Concept, 143
skos:ConceptScheme, 146
skos:definition, 144
skos:exactMatch, 148
skos:example, 144
skos:hasTopConcept, 147
skos:hiddenLabel, 143
skos:historyNote, 144
skos:inScheme, 146
skos:narrower, 144
skos:narrowMatch, 148
skos:note, 144
skos:prefLabel, 143
skos:related, 144
skos:relatedMatch, 148
skos:scopeNote, 144
specifications, 142

Slash URI, 28
SLR, 21
Smart agent, 2
SMORE, 312
SPARQL 1, 277
SPARQL 1.1 Query, 278

AS, 283
aggregate functions, 278
count() aggregate function, 279
expressions with SELECT, 283
MINUS operator, 282
negation, 281
NOT EXISTS operator, 282

projected expressions, 283
property paths, 285
sample() aggregation function, 280
Subquery, 280
sum() aggregate function, 279

SPARQL 1.1 Update, 285
DELETE DATA operation, 287
DELETE operation, 288
graph creation, 289
graph management, 286
graph remove, 289
INSERT DATA operation, 286
INSERT operation, 287
LOAD and CLEAR operation, 289
SILNET keyword, 290

SPARQL, 241–242
alternative match, 264
ask query, 249, 275
background graph, 267
BASE directive, 252
basic SELECT queries, 252–257
bind, 250
binding, see SPARQL, bind
FROM clause, 252
CONSTRUCT query, 249, 372
DESCRIBE query, 249, 275
distinct modifier, 260
endpoint, 244
filter keyword, 261
functions and operators, 263
generic endpoints, 244
graph pattern, 250
named graphs, 267
in official language, 241–242
offset/limit modifiers, 261
optional keyword, 257
order by modifier, 260
in plain English, 242–243
PREFIX definitions, 252
projection query, see SPARQL, SELECT

query
query modifiers, 253
query solution, 259
SELECT clause, 252
SELECT query, 249, 252
solution, 259
specification, 241
specific endpoints, 244
triple pattern, 249
union keyword, 264
variable, 250
WHERE clause, 252
working with multiple graphs, 267–272

608 Index

Spider, see Crawler
Structured information, 17
Swoogle, 445
SWSE, 444
Synsets, 295

T
Taxonomy, 139
Terse RDF Triple Language, see Turtle
Thesaurus, 139
TopBraid, 477

Composer, 477
Turtle, 66

@base, 68
@prefix, 67
<>, 66
[], 71
commas (,), 70
semicolons, 70
Token a, 69
ttl, 66

Typed link, 411, 430

U
Uniform Resource Identifier, see URI
Uniform Resource Locator, see URL
303 URI, 416
URI, 28
URI aliases, 421–423
URIref, 28
URI reference, see URIref
303 URIs vs. hash URIs, 421
URL, 27
Use SPARQL to query in-memory RDF

models, 549–553
Use SPARQL to query remote datasets,

553–556

V
Vapour, 438
Virtuoso, 469, 473
Virtuoso Universal Server, see Virtuoso

W
W3C Semantic Web activity, 18
W3C Semantic Web activity news web site, 18
W3C Semantic Web community Wiki page, 18
W3C Semantic Web frequently asked

questions, 18
W3C Semantic Web interest group, 18
Web of Data, 17, 410
Web data mining, 11
Web of Linked Data, 409–411
Web 2.0 mashup, 463
Web Ontology Language, see OWL
Web services, 11
Well-known ontologies, 423
Wiki, 332

category system, 335
namespace, 336
wiki engine, 332
wikitext, 332

Wikicompany, 337
namespaces, 337
properties, 346

Wikipedia, 380
infobox, 385
template, 385

Wikipedia datasets, 401
WordNet, 295

X
XML entity, 53

Y
Yahoo! Slurp, 325

	Preface
	Objectives of the Book
	Intended Readers
	Structure of the Book
	Where to Get the Code
	Acknowledgment

	Contents
	1 A Web of Data: Toward the Idea of the Semantic Web
	1.1 A Motivating Example: Data Integration on the Web
	1.1.1 A Smart Data Integration Agent
	1.1.2 Is Smart Data Integration Agent Possible?
	1.1.3 The Idea of the Semantic Web

	1.2 A More General Goal: A Web Understandable to Machines
	1.2.1 How Do We Use the Web?
	1.2.1.1 Searching
	1.2.1.2 Information Integration
	1.2.1.3 Web Data Mining

	1.2.2 What Stops Us from Doing More?
	1.2.3 Again, the Idea of the Semantic Web

	1.3 The Semantic Web: A First Look
	1.3.1 The Concept of the Semantic Web
	1.3.2 The Semantic Web, Linked Data, and the Web of Data
	1.3.3 Some Basic Things About the Semantic Web

	Reference

	2 The Building Block for the Semantic Web: RDF
	2.1 RDF Overview
	2.1.1 RDF in Official Language
	2.1.2 RDF in Plain English

	2.2 The Abstract Model of RDF
	2.2.1 The Big Picture
	2.2.2 Statement
	2.2.3 Resource and Its URI Name
	2.2.4 Predicate and Its URI Name
	2.2.5 RDF Triples: Knowledge That Machine Can Use
	2.2.6 RDF Literals and Blank Node
	2.2.6.1 Basic Terminologies So Far
	2.2.6.2 Literal Values
	2.2.6.3 Blank Nodes

	2.2.7 A Summary So Far

	2.3 RDF Serialization: RDF/XML Syntax
	2.3.1 The Big Picture: RDF Vocabulary
	2.3.2 Basic Syntax and Examples
	2.3.2.1 rdf:RDF, rdf:Description, rdf:about, and rdf:resource
	2.3.2.2 rdf:type and Typed Nodes
	2.3.2.3 Using Resource as Property Value
	2.3.2.4 Using Un-typed Literals as Property Values, rdf:value and rdf:parseType
	2.3.2.5 Using Typed Literal Values and rdf:datatype
	2.3.2.6 rdf:nodeID and More About Anonymous Resources
	2.3.2.7 rdf:ID, xml:base, and RDF/XML Abbreviation

	2.3.3 Other RDF Capabilities and Examples
	2.3.3.1 RDF Containers: rdf:Bag, rdf:Seq, rdf:Alt, and rdf:li
	2.3.3.2 RDF Collections: rdf:first, rdf:rest, rdf:nil, and rdf:List
	2.3.3.3 RDF Reification: rdf:statement, rdf:subject, rdf:predicate, and rdf:object

	2.4 Other RDF Sterilization Formats
	2.4.1 Notation-3, Turtle, and N-Triples
	2.4.2 Turtle Language
	2.4.2.1 Basic Language Feature
	2.4.2.2 Abbreviations and Shortcuts: Namespace Prefix, Default Prefix, and @base
	2.4.2.3 Abbreviations and Shortcuts: Token a, Comma, and Semicolons
	2.4.2.4 Turtle Blank Nodes

	2.5 Fundamental Rules of RDF
	2.5.1 Information Understandable by Machine
	2.5.2 Distributed Information Aggregation
	2.5.3 A Hypothetical Real-World Example

	2.6 More About RDF
	2.6.1 Dublin Core: Example of Pre-defined RDF Vocabulary
	2.6.2 XML vs. RDF?
	2.6.3 Use an RDF Validator

	2.7 Summary

	3 Other RDF-Related Technologies: Microformats, RDFa, and GRDDL
	3.1 Introduction: Why Do We Need These?
	3.2 Microformats
	3.2.1 Microformats: The Big Picture
	3.2.2 Microformats: Syntax and Examples
	3.2.2.1 From vCard to hCard Microformat
	3.2.2.2 Using hCard Microformat to Mark Up Page Content

	3.2.3 Microformats and RDF
	3.2.3.1 What Is So Good About Microformats?
	3.2.3.2 Microformats and RDF

	3.3 RDFa
	3.3.1 RDFa: The Big Picture
	3.3.2 RDFa Attributes and RDFa Elements
	3.3.3 RDFa: Rules and Examples
	3.3.3.1 RDFa Rules
	3.3.3.2 RDFa Examples

	3.3.4 RDFa and RDF
	3.3.4.1 What Is So Good About RDFa?
	3.3.4.2 RDFa and RDF

	3.4 GRDDL
	3.4.1 GRDDL: The Big Picture
	3.4.2 Using GRDDL with Microformats
	3.4.3 Using GRDDL with RDFa

	3.5 Summary

	4 RDFS and Ontology
	4.1 RDFS Overview
	4.1.1 RDFS in Plain English
	4.1.2 RDFS in Official Language

	4.2 RDFS + RDF: One More Step Toward Machine Readable
	4.2.1 A Common Language to Share
	4.2.2 Machine Inferencing Based on RDFS

	4.3 RDFS Core Elements
	4.3.1 The Big Picture: RDFS Vocabulary
	4.3.2 Basic Syntax and Examples
	4.3.2.1 Defining Classes
	4.3.2.2 Defining Properties
	4.3.2.3 More About Properties
	4.3.2.4 RDFS Datatypes
	4.3.2.5 RDFS Utility Vocabulary

	4.3.3 Summary So Far
	4.3.3.1 Our Camera Vocabulary
	4.3.3.2 Where Is the Knowledge?

	4.4 The Concept of Ontology
	4.4.1 What Is Ontology?
	4.4.2 The Benefits of Ontology

	4.5 Building the Bridge to Ontology: SKOS
	4.5.1 Knowledge Organization Systems (KOS)
	4.5.2 Thesauri vs. Ontologies
	4.5.3 Filling the Gap: SKOS
	4.5.3.1 What Is SKOS?
	4.5.3.2 SKOS Core Constructs
	4.5.3.3 Interlinking Concepts by Using SKOS

	4.6 Another Look at Inferencing Based on RDF Schema
	4.6.1 RDFS Ontology-Based Reasoning: Simple, Yet Powerful
	4.6.2 Good, Better, and Best: More Is Needed

	4.7 Summary

	5 OWL: Web Ontology Language
	5.1 OWL Overview
	5.1.1 OWL in Plain English
	5.1.2 OWL in Official Language: OWL 1 and OWL 2
	5.1.3 From OWL 1 to OWL 2

	5.2 OWL 1 and OWL 2: The Big Picture
	5.2.1 Basic Notions: Axiom, Entity, Expression, and IRI Names
	5.2.2 Basic Syntax Forms: Functional Style, RDF/XML Syntax, Manchester Syntax, and XML Syntax

	5.3 OWL 1 Web Ontology Language
	5.3.1 Defining Classes: The Basics
	5.3.2 Defining Classes: Localizing Global Properties
	5.3.2.1 Value Constraints: owl:allValuesFrom
	5.3.2.2 Enhanced Reasoning Power 1
	5.3.2.3 Value Constraints: owl:someValuesFrom
	5.3.2.4 Enhanced Reasoning Power 2
	5.3.2.5 Value Constraints: owl:hasValue
	5.3.2.6 Enhanced Reasoning Power 3
	5.3.2.7 Cardinality Constraints: owl:cardinality, owl:min(max)Cardinality
	5.3.2.8 Enhanced Reasoning Power 4

	5.3.3 Defining Classes: Using Set Operators
	5.3.3.1 Set Operators
	5.3.3.2 Enhanced Reasoning Power 5

	5.3.4 Defining Classes: Using Enumeration, Equivalent, and Disjoint
	5.3.4.1 Enumeration, Equivalent, and Disjoint
	5.3.4.2 Enhanced Reasoning Power 6

	5.3.5 Our Camera Ontology So Far
	5.3.6 Define Properties: The Basics
	5.3.7 Defining Properties: Property Characteristics
	5.3.7.1 Symmetric Properties
	5.3.7.2 Enhanced Reasoning Power 7
	5.3.7.3 Transitive Properties
	5.3.7.4 Enhanced Reasoning Power 8
	5.3.7.5 Functional Properties
	5.3.7.6 Enhanced Reasoning Power 9
	5.3.7.7 Inverse Property
	5.3.7.8 Enhanced Reasoning Power 10
	5.3.7.9 Inverse Functional Property
	5.3.7.10 Enhanced Reasoning Power 11

	5.3.8 Camera Ontology Written Using OWL 1

	5.4 OWL 2 Web Ontology Language
	5.4.1 What Is New in OWL 2?
	5.4.2 New Constructs for Common Patterns
	5.4.2.1 Common Pattern: Disjointness
	5.4.2.2 Common Pattern: Negative Assertions

	5.4.3 Improved Expressiveness for Properties
	5.4.3.1 Property Self-Restriction
	5.4.3.2 Property Self-Restriction: Enhanced Reasoning Power 12
	5.4.3.3 Property Cardinality Restrictions
	5.4.3.4 Property Cardinality Restrictions: Enhanced Reasoning Power 13
	5.4.3.5 More About Property Characteristics: Reflexive, Irreflexive, and Asymmetric Properties
	5.4.3.6 More About Property Characteristics: Enhanced Reasoning Power 14
	5.4.3.7 Disjoint Properties
	5.4.3.8 Disjoint Properties: Enhanced Reasoning Power 15
	5.4.3.9 Property Chains
	5.4.3.10 Property Chains: Enhanced Reasoning Power 16
	5.4.3.11 Keys
	5.4.3.12 Keys: Enhanced Reasoning Power 17

	5.4.4 Extended Support for Datatypes
	5.4.4.1 Wider Range of Supported Datatypes and Extra Built-In Datatypes
	5.4.4.2 Restrictions on Datatypes and User-Defined Datatypes
	5.4.4.3 Data Range Combinations

	5.4.5 Punning and Annotations
	5.4.5.1 Understanding Punning
	5.4.5.2 OWL Annotations, Axioms About Annotation Properties

	5.4.6 Other OWL 2 Features
	5.4.6.1 Entity Declarations
	5.4.6.2 Top and Bottom Properties
	5.4.6.3 Imports and Versioning

	5.4.7 OWL Constructs in Instance Documents
	5.4.8 OWL 2 Profiles
	5.4.8.1 Why We Need All These?
	5.4.8.2 Assigning Semantics to OWL Ontology: Description Logic vs. RDF-Based Semantics
	5.4.8.3 Three Faces of OWL 1
	5.4.8.4 Understanding OWL 2 Profiles
	5.4.8.5 OWL 2 EL, QL, and RL

	5.4.9 Our Camera Ontology in OWL 2

	5.5 Summary

	6 SPARQL: Querying the Semantic Web
	6.1 SPARQL Overview
	6.1.1 SPARQL in Official Language
	6.1.2 SPARQL in Plain English
	6.1.3 Other Related Concepts: RDF Data Store, RDF Database, and Triple Store

	6.2 Set up Joseki SPARQL Endpoint
	6.3 SPARQL Query Language
	6.3.1 The Big Picture
	6.3.1.1 Triple Pattern
	6.3.1.2 Graph Pattern

	6.3.2 SELECT Query
	6.3.2.1 Structure of a SELECT Query
	6.3.2.2 Writing Basic SELECT Query
	6.3.2.3 Using OPTIONAL Keyword for Matches
	6.3.2.4 Using Solution Modifier
	6.3.2.5 Using FILTER Keyword to Add Value Constraints
	6.3.2.6 Using Union Keyword for Alternative Match
	6.3.2.7 Working with Multiple Graphs

	6.3.3 CONSTRUCT Query
	6.3.4 DESCRIBE Query
	6.3.5 ASK Query

	6.4 What Is Missing from SPARQL?
	6.5 SPARQL 1.1
	6.5.1 Introduction: What Is New?
	6.5.2 SPARQL 1.1 Query
	6.5.2.1 Aggregate Functions
	6.5.2.2 Subqueries
	6.5.2.3 Negation
	6.5.2.4 Expressions with SELECT
	6.5.2.5 Property Paths

	6.5.3 SPARQL 1.1 Update
	6.5.3.1 Graph Update: Adding RDF Statements
	6.5.3.2 Graph Update: Deleting RDF Statements
	6.5.3.3 Graph Update: LOAD and CLEAR
	6.5.3.4 Graph Management: Graph Creation
	6.5.3.5 Graph Management: Graph Removal

	6.6 Summary

	7 FOAF: Friend of a Friend
	7.1 What Is FOAF and What It Does
	7.1.1 FOAF in Plain English
	7.1.2 FOAF in Official Language

	7.2 Core FOAF Vocabulary and Examples
	7.2.1 The Big Picture: FOAF Vocabulary
	7.2.2 Core Terms and Examples

	7.3 Create Your FOAF Document and Get into the Friend Circle
	7.3.1 How Does the Circle Work?
	7.3.2 Create Your FOAF Document
	7.3.3 Get into the Circle: Publish Your FOAF Document
	7.3.4 From Web Pages for Human Eyes to Web Pages for Machines

	7.4 Semantic Markup: a Connection Between the Two Worlds
	7.4.1 What Is Semantic Markup
	7.4.2 Semantic Markup: Procedure and Example
	7.4.3 Semantic Markup: Feasibility and Different Approaches

	7.5 Summary

	8 Semantic Markup at Work: Rich Snippets and SearchMonkey
	8.1 Introduction
	8.1.1 Prerequisite: How Does a Search Engine Work?
	8.1.1.1 Basic Search Engine Tasks
	8.1.1.2 Basic Search Engine Workflow

	8.1.2 Rich Snippets and SearchMonkey

	8.2 Rich Snippets by Google
	8.2.1 What Is Rich Snippets: An Example
	8.2.2 How Does It Work: Semantic Markup Using Microformats/RDFa
	8.2.2.1 Rich Snippets Powered by Semantic Markup
	8.2.2.2 Microformats Supported by Rich Snippets
	8.2.2.3 Ontologies Supported by Rich Snippets

	8.2.3 Test It Out Yourself

	8.3 SearchMonkey from Yahoo
	8.3.1 What Is SearchMonkey: An Example
	8.3.2 How Does It Work: Semantic Markup Using Microformats/RDFa
	8.3.2.1 SearchMonkey Architecture
	8.3.2.2 Microformats Supported by SearchMonkey
	8.3.2.3 Ontologies Supported by SearchMonkey

	8.3.3 Test It Out Yourself

	8.4 Summary
	Reference

	9 Semantic Wiki
	9.1 Introduction: From Wiki to Semantic Wiki
	9.1.1 What Is a Wiki?
	9.1.2 From Wiki to Semantic Wiki

	9.2 Adding Semantics to Wiki Site
	9.2.1 Namespace and Category System
	9.2.2 Semantic Annotation in Semantic MediaWiki
	9.2.2.1 Semantic Annotation: Links
	9.2.2.2 Semantic Annotation: Text

	9.3 Using the Added Semantics
	9.3.1 Browsing
	9.3.1.1 FactBox
	9.3.1.2 Semantic Browsing Interface

	9.3.2 Wiki Site Semantic Search
	9.3.2.1 Direct Wiki Query: Basics
	9.3.2.2 Direct Wiki Query: Advanced Search
	9.3.2.3 Displaying Information

	9.3.3 Inferencing

	9.4 Where Is the Semantics?
	9.4.1 SWiVT: an Upper Ontology for Semantic Wiki
	9.4.2 Understanding OWL/RDF Exports
	9.4.3 Importing Ontology: a Bridge to Outside World

	9.5 The Power of the Semantic Web
	9.6 Use Semantic MediaWiki to Build Your Own Semantic Wiki
	9.7 Summary

	10 DBpedia
	10.1 Introduction to DBpedia
	10.1.1 From Manual Markup to Automatic Generation of Annotation
	10.1.2 From Wikipedia to DBpedia
	10.1.3 The Look and Feel of DBpedia: Page Redirect

	10.2 Semantics in DBpedia DBpedia look and feel
	10.2. Infobox Template
	10.2.2 Creating DBpedia Ontology
	10.2.2.1 The Need for Ontology
	10.2.2.2 Mapping Infobox Templates to Classes
	10.2.2.3 Mapping Infobox Template Attributes to Properties

	10.2.3 Infobox Extraction Methods
	10.2.3.1 Generic Infobox Extraction Method
	10.2.3.2 Mapping-Based Infobox Extraction Method

	10.3 Accessing DBpedia Dataset
	10.3.1 Using SPARQL to Query DBpedia
	10.3.1.1 SPARQL Endpoints for DBpedia
	10.3.1.2 Examples of Using SPARQL to Access DBpedia

	10.3.2 Direct Download of DBpedia Datasets
	10.3.2.1 The Wikipedia Datasets
	10.3.2.2 DBpedia Core Datasets
	10.3.2.3 Extended Datasets

	10.3.3 Access DBpedia as Linked Data

	10.4 Summary
	Reference

	11 Linked Open Data
	11.1 The Concept of Linked Data and Its Basic Rules
	11.1.1 The Concept of Linked Data
	11.1.2 How Big Is the Web of Linked Data and the LOD Project
	11.1.3 The Basic Rules of Linked Data

	11.2 Publishing RDF Data on the Web
	11.2.1 Identifying Things with URIs
	11.2.1.1 Web Document, Information Resource, and URI
	11.2.1.2 Non-information Resources and Their URIs
	11.2.1.3 URIs for Non-information Resources: 303 URIs and Content Negotiation
	11.2.1.4 URIs for Non-information Resources: Hash URIs
	11.2.1.5 URIs for Non-information Resources: 303 URIs vs. Hash URIs
	11.2.1.6 URI Aliases

	11.2.2 Choosing Vocabularies for RDF Data
	11.2.3 Creating Links to Other RDF Data
	11.2.3.1 Basic Language Constructs to Create Links
	11.2.3.2 Creating Links Manually
	11.2.3.3 Creating Links Automatically

	11.2.4 Serving Information as Linked Data
	11.2.4.1 Minimum Requirements for Being Linked Open Data
	11.2.4.2 Example: Publishing Linked Data on the Web
	11.2.4.3 Make Sure You Have Done It Right

	11.3 The Consumption of Linked Data
	11.3.1 Discover Specific Target on the Linked Data Web
	11.3.1.1 Semantic Web Search Engine for Human Eyes
	11.3.1.2 Semantic Web Search Engine for Applications

	11.3.2 Accessing the Web of Linked Data
	11.3.2.1 Using a Linked Data Browser
	11.3.2.2 Using SPARQL Endpoints
	11.3.2.3 Accessing the Linked Data Web Programmatically

	11.4 Linked Data Application
	11.4.1 Linked Data Application Example: Revyu
	11.4.1.1 Revyu: An Overview
	11.4.1.2 Revyu: Why It Is Different

	11.4.2 Web 2.0 Mashups vs. Linked Data Mashups

	11.5 Summary

	12 Building the Foundation for Development on the Semantic Web
	12.1 Development Tools for the Semantic Web
	12.1.1 Frameworks for the Semantic Web Applications
	12.1.1.1 What Is a Framework and Why We Need It?
	12.1.1.2 Jena
	12.1.1.3 Sesame
	12.1.1.4 Virtuoso
	12.1.1.5 Redland

	12.1.2 Reasoners for the Semantic Web Applications
	12.1.2.1 What Is a Reasoner and Why We Need It?
	12.1.2.2 Pellet
	12.1.2.3 RacerPro
	12.1.2.4 Jena
	12.1.2.5 Virtuoso

	12.1.3 Ontology Engineering Environments
	12.1.3.1 What Is an Ontology Engineering Environment and Why We Need It?
	12.1.3.2 Protégé
	12.1.3.3 NeOn
	12.1.3.4 TopBraid Composer

	12.1.4 Other Tools: Search Engines for the Semantic Web
	12.1.5 Where to Find More?

	12.2 Semantic Web Application Development Methodology
	12.2.1 From Domain Models to Ontology-Driven Architecture
	12.2.1.1 Domain Models and MVC Architecture
	12.2.1.2 The Uniqueness of Semantic Web Application Development
	12.2.1.3 Ontology-Driven Software Development
	12.2.1.4 Further Discussions

	12.2.2 An Ontology Development Methodology Proposed by Noy and McGuinness
	12.2.2.1 Basic Tasks and Fundamental Rules
	12.2.2.2 Basic Steps of Ontology Development
	12.2.2.3 Other Considerations

	12.3 Summary
	Reference

	13 Jena: A Framework for Development on the Semantic Web
	13.1 Jena: A Semantic Web Framework for Java
	13.1.1 What Is Jena and What It Can Do for Us?
	13.1.2 Getting Jena Package
	13.1.3 Using Jena in Your Projects
	13.1.3.1 Using Jena in Eclipse
	13.1.3.2 Hello World! from Semantic Web Application

	13.2 Basic RDF Model Operations
	13.2.1 Creating an RDF Model
	13.2.2 Reading an RDF Model
	13.2.3 Understanding an RDF Model

	13.3 Handling Persistent RDF Models
	13.3.1 From In-memory Model to Persistent Model
	13.3.2 Setting Up MySQL
	13.3.3 Database-Backed RDF Models
	13.3.3.1 Single Persistent RDF Model
	13.3.3.2 Multiple Persistent RDF Models

	13.4 Inferencing Using Jena
	13.4.1 Jena Inferencing Model
	13.4.2 Jena Inferencing Examples

	13.5 Summary

	14 Follow Your Nose: A Basic Semantic Web Agent
	14.1 The Principle of Follow-Your-Nose Method
	14.1.1 What Is Follow-Your-Nose Method?
	14.1.2 URI Declarations, Open Linked Data, and Follow-Your-Nose Method

	14.2 A Follow-Your-Nose Agent in Java
	14.2.1 Building the Agent
	14.2.2 Running the Agent
	14.2.3 More Clues for Follow Your Nose
	14.2.4 Can You Follow Your Nose on Traditional Web?

	14.3 A Better Implementation of Follow-Your-Nose Agent: Using SPARQL Queries
	14.3.1 In-memory SPARQL Operation
	14.3.2 Using SPARQL Endpoints Remotely

	14.4 Summary

	15 More Application Examples on the Semantic Web
	15.1 Building Your Circle of Trust: A FOAF Agent You Can Use
	15.1.1 Who Is on Your E-mail List?
	15.1.2 The Basic Idea
	15.1.3 Building the EmailAddressCollector Agent
	15.1.3.1 EmailAddressCollector
	15.1.3.2 Running the EmailAddressCollector Agent

	15.1.4 Can You Do the Same for Traditional Web?

	15.2 A ShopBot on the Semantic Web
	15.2.1 A ShopBot We Can Have
	15.2.2 A ShopBot We Really Want
	15.2.2.1 How Does It Understand Our Needs?
	15.2.2.2 How Does It Find the Next Candidate?
	15.2.2.3 How Does It Decide Whether There Is a Match or Not?

	15.2.3 Building Our ShopBot
	15.2.3.1 Utility Methods and Class
	15.2.3.2 Processing the Catalog Document
	15.2.3.3 The Main Work Flow
	15.2.3.4 Running Our ShopBot

	15.2.4 Discussion: From Prototype to Reality

	15.3 Summary

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

