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Università di Udine
Dipto. di Matematica e Informatica
Via delle Scienze 206
33100 Udine
Italy
pietro.corvaja@uniud.it

Prof. Carlo Gasbarri
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Preface

Arithmetic Geometry can be defined as the part of Algebraic Geometry connected
with the study of algebraic varieties over arbitrary rings, in particular over non-
algebraically closed fields. It lies at the intersection between classical algebraic
geometry and number theory.

In recent years, significant progress has been achieved in this field, in several
directions. More importantly, new links between arithmetic geometry and other
branches of mathematics have been developed, and new powerful tools from geom-
etry, complex analysis, differential equations and representation theory have been
imported into number theory, thus putting arithmetic geometry at the crossroads of
most of contemporary mathematics.

Some links between arithmetic geometry and classical algebraic geometry come
from the classification of algebraic varieties, an old subject initiated by the Italian
school in the case of surfaces and developed at a rapid pace in recent time.

As discovered by Osgood and Vojta about 20 years ago, there is a formal anal-
ogy between complex analysis and both diophantine approximation and arithmetic
geometry. Such analogy has revealed itself as a fertile source of ideas and problems
in both complex analysis and arithmetic geometry, and it has recently led to new
achievements.

The algebraic theory of differential equations is also connected to arithmetic
geometry, especially with algebraic geometry in positive characteristic; many au-
thors, starting with the founders of transcendental number theory, stressed the role
of differential equations in transcendence. Recently, the theory of algebraic folia-
tions showed new relations between these topics and diophantine approximation.

The C.I.M.E. Summer School Arithmetic Geometry, held in Cetraro (Cosenza,
Italy), September 10–15, aimed at presenting some of the most interesting new de-
velopments of arithmetic geometry. It consisted of four courses, given by some of
the most eminent contributors to the field.

Here is an overview of the three courses which have been written up.

Section 1 Variétés presque rationnelles, leurs points rationnels et leurs
dégénérescences, by Jean-Louis Colliot-Thélène.

This survey addresses the general question: Over a given type of field, is there
a natural class of varieties which automatically have a rational point? Fields under
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vi Preface

consideration here include: finite fields, p-adic fields, function fields in one or two
variables over an algebraically closed field, Ci-fields. Classical answers are given by
the Chevalley-Warning theorem and by Tsen’s theorem. More general answers were
provided by a theorem of Graber, Harris and Starr and by a theorem of Esnault. The
latter results apply to rationally connected varieties.

Colliot-Thélène discusses these varieties from various angles: weak approxima-
tion (see also Swinnerton-Dyer’s contribution), R-equivalence on the set of rational
points, Chow group of zero-cycles.

Loosely speaking, R-equivalence on the set of rational points of a variety defined
over a given field is generated by the elementary relation: to be connected by a ra-
tional curve defined over the given field. Rationally connected varieties are varieties
for which R-equivalence becomes trivial when one extends the ground field to an
arbitrary algebraically closed field. Rationally connected varieties play an important
rôle in the classification of algebraic varieties.

Ongoing work on “rationally simply connected” varieties over function fields in
two variables is also mentioned. A common thread in this report is the study of the
special fibre of a scheme over a discrete valuation ring: if the generic fibre has a
simple geometry, what does it imply for the special fibre?

Many examples are presented in the course showing that, despite important re-
cent advancements, still many questions remain open, keeping the subject strongly
alive.

Section 2 Topics in diophantine equations, by Sir Peter Swinnerton-Dyer.
The notes by Swinnerton-Dyer address the main problem in the theory of dio-

phantine equations: to decide whether a given algebraic equation has solutions in
integer or rational numbers.

An obvious necessary condition for the existence of rational solutions to a dio-
phantine equation is its solubility over the reals, and more generally over p-adic
completions of Q. Since an effective procedure to decide about solubility over local
fields is known, such condition is very useful in many cases. Hence it is natural to
ask for which class of diophantine equations the converse also holds:

1. If the equation is soluble over every local completion of the rational number field,
is it soluble over the rationals?

This is called the Hasse principle. It is known that its does not hold for an ar-
bitrary equation. An obstruction for its validity was discovered by Manin in the
seventies and is nowadays called the Brauer-Manin obstruction. The notes briefly
describe this obstruction, and then address the second natural question:

2. Is the Brauer-Manin obstruction the only obstruction to the Hasse principle?

In the case when a given equation is known to be soluble, one may be interested
in the distribution of its solutions, i.e., of rational points on the algebraic variety
V defined by that equation. When such points are Zariski-dense, one would like to
“measure” their density. There are at least two very distinct notions of density. First:
for every positive integer H, we let N(H) be the number of rational points of height
less than H. We ask:
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3. Can one estimate the growth of N(H), for H →∞, in terms of the geometry of V?

Secondly: embed V (Q) in the product∏p V (Qp) and consider the corresponding
product topology.

4. (Weak approximation) Is the image of V (Q) dense in every finite product as
above?

These problems and questions are related with many other aspects of arithmetic
and geometry, and the author illustrates these links in the first chapters of his text,
which can be viewed as an introduction to most of twentieth century Arithmetic
Geometry.

In the second part of the notes, answers are given to the above mentioned
questions in many concrete nontrivial cases, especially for surfaces. The methods
employed have been pioneered by Swinnerton-Dyer himself and his collaborators
in the last ten years; here a panoramic view of these methodologies is given. Also,
several new examples are presented for the first time, in particular for the most im-
portant case of elliptic and rational surfaces.

Section 3 Diophantine approximation and Nevanlinna theory, by Paul Vojta.
In the eighties, P. Vojta discovered striking analogies between Nevanlinna theory

in complex analysis, diophantine approximation, some results on entire curves and
the distribution of integral and rational points on algebraic varieties.

Suppose that X is a projective variety defined over a field K of characteristic zero.
If K is a number field we are interested in the structure of the set X(K) of its rational
points. If K = C we are interested in the image of analytic maps f : C→ X .

We may ask the following questions in the two cases:

(1ar) Is the set X(K) Zariski dense?
(1an) May we find maps f : C→ X with Zariski dense image?
(2ar) Is there a finite extension L/K such that X(L) is Zariski dense?
(2an) Is there a finite covering h : Y →C with a map f : Y → X with Zariski dense

image?
(3ar) May we control the size of the rational points in X(K) outside of a proper

Zariski closed set?
(3an) Is it possible to control the order of growth of a map f : C→ X with Zariski

dense image, in terms of the geometry of X?

Analogous question can be asked for open subsets Y ⊂ X of algebraic varieties,
namely:

(4ar) Let OK be the ring of integers of K. Is the set Y (OK) Zariski dense?
(4an) Does there exist a map f : C→ Y with Zariski dense image?

Many other similar questions may be asked.
The notes by P. Vojta begin by formalizing the language needed to attack these

questions: In the arithmetic context, the theory of height and Weil functions is de-
scribed, while in the analytic context, the appropriate Nevanlinna theory is used.
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Vojta shows how, using an appropriate dictionary, the two theories have striking
similarities. Also he shows how his “dictionary” can be used as a source of problems
in both theories. In particular, the analogies between Roth’s theorem in diophantine
approximation and Nevanlinna’s Second Main Theorem, between Schmidt’s sub-
space theorem in diophantine approximation and Cartan’s Theorem in Nevanlinna
theory are presented, and this leads to the natural analogy between Griffiths’ con-
jecture in complex analysis and his own conjecture on rational points.

After showing the classical results on the distribution of rational and integral
points in their historical perspective, he presents some of the recent developments
obtained from Schmidt’s subspace theorem (and from Cartan theorem in the Nevan-
linna setting), to give nontrivial answers to questions (4ar) and (4an) in certain cases.
In the last part of the course, he explains the relations of these theories with differ-
ent versions of the famous abc conjecture of Masser and Oesterlé, and gives some
ideas on recent developments obtained by McQuillan and Yamanoi on the so-called
1 + ε conjecture, in the function field case. Finally, he formulates some new con-
jectures in arithmetic, which are strongly inspired by the work of McQuillan on the
abc conjecture over function fields.

Pietro Corvaja
Carlo Gasbarri
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3.2 Quand la fibre spéciale a une composante
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géométriquement intègre de multiplicité 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
12.3 Variétés rationnellement simplement connexes .. . . . . . . . . . . . . . . . . . . . . . 32
12.4 Existence d’un point rationnel sur un corps de

fonctions de deux variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

ix



x Contents

12.5 Approximation faible en toutes les places d’un corps
de fonctions d’une variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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Variétés presque rationnelles, leurs points
rationnels et leurs dégénérescences

Jean-Louis Colliot-Thélène

1 Introduction

Voici une série de résultats classiques.
Toute forme quadratique en au moins trois variables sur le corps fini Fp (p pre-

mier) possède un zéro non trivial (Euler). Toute forme de degré d en n > d variables
sur Fp possède un zéro non trivial (Chevalley-Warning).

Toute forme quadratique en au moins trois variables sur le corps C(t) des fonc-
tions rationnelles en une variable possède un zéro non trivial (Max Noether). Toute
forme de degré d en n + 1 > d variables sur une extension finie de C(t) possède un
zéro non trivial (Tsen). Ceci vaut encore sur le corps C((t)) des séries formelles en
une variable (Lang).

Sur un corps fini, sur un corps de fonctions d’une variable sur C, sur le corps
C((t)), tout espace homogène d’un groupe algébrique linéaire connexe a un point
rationnel.

Toute forme de degré d en n > d variables sur le corps p-adique Qp possède un
zéro non trivial sur une extension non ramifiée de Qp (Lang).

Toute forme de degré d en n > d2 variables sur un corps de fonctions de deux
variables sur C possède un zéro non trivial (Lang).

Toute forme quadratique en n > 22 variables sur un corps p-adique possède un
zéro non trivial (Hensel, Hasse).

Toute forme cubique en n > 32 variables sur un corps p-adique possède un zéro
non trivial (Demjanov, Lewis).

Pour d donné, pour presque tout premier p, toute forme possède un zéro non
trivial (Ax-Kochen).

Sur un corps p-adique, tout espace homogène principal d’un groupe semi-simple
simplement connexe possède un point rationnel (Kneser, Bruhat-Tits).

Sur un type donné de corps, y a-t-il une classe naturelle de variétés algébriques
qui sur un tel corps ont automatiquement un point rationnel ?
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2 J.-L. Colliot-Thélène

Sur les corps de fonctions d’une variable sur C d’une part, sur les corps finis
d’autre part, des progrès décisifs ont été accomplis dans les cinq dernières années,
et on peut dans une certaine mesure dire que la situation est stabilisée. La simi-
litude apparente des résultats est trompeuse. Les résultats cités sur les corps finis
s’étendent à une classe beaucoup plus large de variétés que les résultats sur un corps
de fonctions d’une variable. Les techniques utilisées sur un corps fini relèvent de
la cohomologie étale (ou, de la cohomologie p-adique). Les techniques utilisées
sur un corps de fonctions sur les complexes relèvent de la cohomologie cohérente :
théorie de la déformation, théorèmes d’annulation de Kodaira et généralisations,
programme du modèle minimal.

Sur les corps de fonctions de deux variables, la recherche est extrêmement active.
Dans ce rapport, qui ne contient pratiquement pas de démonstrations, j’ai essayé

de présenter un instantané de la situation.
Une partie importante du texte suit un fil unifiant les travaux sur les corps de

fonctions d’une variable, ceux sur les corps de fonctions de deux variables, et l’étude
des variétés sur les corps p-adiques. C’est l’étude des modèles projectifs réguliers
au-dessus d’un anneau de valuation discrète et de leur fibre spéciale.

Certains aspects de ce texte ont fait l’objet d’exposés depuis quelques années. Je
remercie Esnault, Gabber, Hassett, de Jong, Kollár, Madore, Moret-Bailly, Starr et
Wittenberg pour diverses discussions.

J’engage les lecteurs à consulter le rapport récent d’O. Wittenberg [69].

2 Notations, rappels et préliminaires

Soit k un corps. On note ks une clôture séparable de k et k une clôture algébrique
de k. Une k-variété est par définition un k-schéma séparé de type fini sur k (non
nécessairement irréductible, non nécessairement réduit). On note X(k) =
HomSpeck(Speck,X) l’ensemble des points k-rationnels d’un k-schéma X . Une
k-variété est dite intègre si elle est irréductible et réduite. On note alors k(X) son
corps des fonctions. Une k-variété est dite géométriquement intègre si la k-variété
X ×k k est intègre. Une k-variété géométriquement intègre possède un ouvert de
Zariski non vide qui est lisse sur k. Si k est un corps de caractéristique zéro, une
k-variété intègre X est géométriquement intègre si et seulement si le corps k est
algébriquement fermé dans le corps k(X).

Pour la cohomologie galoisienne, et en particulier le groupe de Brauer d’un
corps, le lecteur consultera Serre [65]. En plusieurs endroits on fera libre usage
de la notion de dimension cohomologique d’un corps.

En quelques endroits on fera aussi usage de certaines propriétés du groupe de
Brauer d’un schéma. Le lecteur se reportera aux exposés de Grothendieck [36].

Lemme 2.1 (Nishimura, Lang) Soient k un corps, Z une k-variété régulière connexe
et Y une k-variété propre. Si l’on a Z(k) �= /0 et s’il existe une k-application ration-
nelle de Z vers Y , alors Y (k) �= /0.
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Lemme 2.2 Soient k un corps, Z/k une k-variété géométriquement intègre et Y/k
une k-variété lisse connexe. S’il existe un k-morphisme Z → Y, alors la k-variété Y
est géométriquement intègre.

Démonstration. La k-variété lisse Y est géométriquement intègre si et seulement
si Yks est irréductible. Supposons qu’elle ne le soit pas. On dispose alors du ks-
morphisme Zks → Yks . Le groupe de Galois de ks sur k permute les composantes
de Yks . L’image de Zks doit se trouver dans chaque composante de Yks . Comme Yks est
lisse, ces composantes ne se rencontrent pas. Donc Yks n’a qu’une seule composante.

Remarque 2.3. Comme l’observe Moret-Bailly, cet énoncé est une conséquence
de deux résultats généraux. Soit Z → Y un k-morphisme de k-variétés. Si Z est
géométriquement connexe et Y connexe, alors Y est géométriquement connexe. Par
ailleurs, si Y est normal et géométriquement connexe, alors Y est géométriquement
irréductible.

Obstruction élémentaire

Soient k un corps, ks une clôture séparable de k, G = Gal(ks/k) le groupe de Galois
absolu. Soit X une k-variété lisse géométriquement intègre. L’inclusion naturelle de
groupes multiplicatifs k×s → ks(X)× définit une suite exacte

1→ k×s → ks(X)× → ks(X)×/k×s → 1.

La classe e(X) de l’extension de modules galoisiens discrets obtenue est appelée
l’obstruction élémentaire à l’existence d’un k-point : si X possède un k-point,
alors e(X) = 0 (CT-Sansuc, voir [4]). Si e(X) = 0, alors pour toute extension fi-
nie séparable K/k, l’application naturelle de groupes de Brauer BrK → BrK(X) est
injective.

Construction de grands corps

Soit k un corps de caractéristique zéro. Pour chaque corps K contenant k, donnons-
nous une classe CK de K-variétés algébriques géométriquement intègres admettant
un ensemble EK de K-variétés représentant toutes les classes de K-isomorphie de
la classe. Pour k ⊂ K ⊂ L on suppose que le changement de corps de base K → L
envoie CK dans CL.

Pour tout corps K avec k ⊂ K supposons satisfaite la condition suivante :
(Stab) Si f : X → Y est un K-morphisme dominant de K-variétés géométri-

quement intègres, si Y appartient à CK et si la fibre générique de f appartient à
CK(Y ), alors X appartient à CK .

Une construction bien connue, utilisée par Merkur’ev et Suslin (cf. [23]) permet
alors de construire un plongement de corps k⊂ L possédant les propriétés suivantes :

(i) Le corps k est algébriquement fermé dans L.
(ii) Le corps L est union de corps de fonctions de k-variétés dans Ck.

(iii) Toute variété dans CL possède un point L-rationnel.
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Le principe est le suivant : s’il existe un k-variété X dans Ck qui ne possède pas de
point rationnel, on remplace k par le corps des fonctions de cette variété. Et on itère.
Je renvoie à l’article de Ducros [23] pour la construction précise, qui est reprise dans
[14] et [10].

Prenons pour CK la classe des K-variétés géométriquement intègres. Rappelons
qu’un corps L est dit pseudo-algébriquement clos (PAC) si toute L-variété géomé-
triquement intègre sur L possède un L-point. La construction ci-dessus montre que
tout corps k de caractéristique zéro est algébriquement fermé dans un corps pseudo-
algébriquement clos.

En prenant pour CK la classe des K-variétés birationnelles à des fibrations suc-
cessives de restrictions à la Weil de variétés de Severi-Brauer, Ducros [23] montre
que tout corps k de caractéristique zéro est algébriquement fermé dans un corps L
de dimension cohomologique cd(L)≤ 1.

3 Schémas au-dessus d’un anneau de valuation discrète

3.1 A-schémas de type (R), croisements normaux, croisements
normaux stricts

Soit A un anneau de valuation discrète, K son corps des fractions, F son corps
résiduel. Soit π une uniformisante de A.

Dans la suite de ce texte, on dira qu’un A-schéma X est de type (R) s’il satisfait
les conditions suivantes :

(i) Le A-schéma X est propre et plat sur A.
(ii) Le schéma X est connexe et régulier.

(iii) La fibre générique X = X ×A K = XK est une K-variété géométriquement
intègre lisse sur F .

On note K(X) le corps des fonctions de X , qui est aussi celui du schéma X .
On note Y = X ×A F = XF la fibre spéciale de X /A. La fibre spéciale Y est le
F-schéma associé au diviseur de Cartier de X défini par l’annulation de π .

Comme X est régulier donc normal, on a une décomposition de diviseurs de
Weil

Y =∑
i

niYi

où les Yi sont les adhérences des points xi de codimension 1 de X situés sur la fibre
spéciale. L’anneau local de tout tel point xi est un anneau de valuation discrète de
corps des fractions K(X). Si l’on note vi la valuation sur le corps K(X) associée à
un tel xi, alors ni = vi(π).

Comme X est régulier, les Yi sont des diviseurs de Cartier sur X . Ce sont les
composantes réduites de la fibre spéciale. Ce sont des F-variétés intègres mais non
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nécessairement géométriquement irréductibles ni (si le corps F n’est pas parfait)
nécessairement géométriquement réduites.

On dit que Y ⊂ X est à croisements normaux si partout localement pour la
topologie étale sur X l’inclusion Y ⊂ X est donnée par une équation ∏i∈I xni

i ,
où les xi font partie d’un système régulier de paramètres et les ni sont des entiers
naturels.

On dit que Y ⊂ X est à croisements normaux stricts si la fibre Y ⊂ X est
à croisements normaux et si de plus chaque composante réduite Yi de Y est une
F-variété (intègre) lisse. Une telle composante n’est pas nécessairement géométri-
quement irréductible.

On note Ah le hensélisé de A, et l’on note Ash un hensélisé strict de A. On note
Kh le corps des fractions de Ah et Ksh le corps des fractions de Ash. Les inclusions
A ⊂ Ah ⊂ Ash induisent F = F ⊂ Fs sur les corps résiduels, où Fs est une clôture
séparable de F .

On note Â le complété de A. Si les corps K et F ont même caractéristique, alors il
existe un corps de représentants de F dans Â : il existe un isomorphisme Â� F[[t]].

3.2 Quand la fibre spéciale a une composante de multiplicité 1

Proposition 3.1 Soit X un A-schéma de type (R). Les propriétés suivantes sont
équivalentes :

(1) Il existe une composante réduite Yi dont l’ouvert de lissité est non vide et qui
satisfait ni = 1.

(2) Il existe un ouvert U ⊂X lisse et surjectif sur SpecA.
(3) X → SpecA est localement scindé pour la topologie étale.
(4) X (Ash) �= /0.
(5) X(Ksh) �= /0.
(6) X (Âsh) �= /0.
(7) X(K̂sh) �= /0.

Démonstration. Laissée au lecteur.

Dans la situation ci-dessus, on dira que Y a une composante de multiplicité 1.1

Proposition 3.2 (a) Soient X un A-schéma lisse connexe fidèlement plat sur A
et X ′/A un A-schéma de type (R). S’il existe une K-application rationnelle de
X = XK dans X ′ = X ′

K, alors la fibre spéciale Y ′ de X ′/A a une composante
de multiplicité 1.

(b) Soient X et X ′ deux A-schémas de type (R). Si les fibres génériques X = XK

et X ′ = X ′
K sont K-birationnellement équivalentes, alors la fibre spéciale Y de X

1 La terminologie adoptée dans ce texte diffère de celle de [5].
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a une composante de multiplicité 1 si et seulement si la fibre spéciale Y ′ de X ′ a
une composante de multiplicité 1.

Démonstration. Il suffit d’établir (a). L’hypothèse sur X /A et le lemme de Hensel
assurent X (Ash) �= /0, donc X(Ksh) �= /0. Comme la K-variété X est régulière et la
K-variété X ′ propre, d’après le lemme 2.1 l’existence d’un Ksh-point sur X implique
l’existence d’un Ksh-point sur X ′.

Remarque 3.3. (Wittenberg) Soient K = C(u,v) le corps des fractions rationnelles
à deux variables et X ⊂ P2

K la conique lisse définie par l’équation homogène ux2 +
vy2 = z2. Pour tout anneau A ⊂ K de valuation discrète de rang 1, de corps des
fractions K, on a X(Ksh) �= /0, où Ksh est le corps des fractions d’un hensélisé strict
Ash de A. Mais si p : X → S est un morphisme propre et plat de variétés projectives
lisses connexes de fibre générique X/K, le morphisme p n’est pas localement scindé
pour la topologie étale.

3.3 Quand la fibre spéciale contient une sous-variété
géométriquement intègre

Proposition 3.4 (a) Soit X un A-schéma régulier connexe fidèlement plat sur A et
soit X ′ un A-schéma propre. Si la fibre spéciale Y/F de X /A contient une sous-
F-variété géométriquement intègre, et s’il existe une K-application rationnelle de
X = X ×A K dans X ′ = X ′ ×A K, alors la fibre spéciale Y ′ de X ′/A contient une
sous-F-variété géométriquement intègre.

(b) Soient X et X ′ deux A-schémas de type (R). Si les fibres génériques X = XK

et X ′ = X ′
K sont K-birationnellement équivalentes, alors la fibre spéciale Y contient

une sous-F-variété géométriquement intègre si et seulement si la fibre spéciale Y ′
contient une sous-F-variété géométriquement intègre.

Démonstration. Il suffit de démontrer le point (a). On peut supposer la sous-variété
intègre Z ⊂ Y fermée. Soit Zlisse ⊂ Z l’ouvert de lissité de Z/F . Soit p : X1 →X
l’éclaté de X le long de Z. L’image réciproque de Zlisse dans X1 est un fibré pro-
jectif sur Zlisse, qui est une F-variété géométriquement intègre. Soit x son point
générique. C’est un point régulier de codimension 1 sur X1. L’application ration-
nelle X1 →X ′ est donc définie au point x. Soit x′ ∈X ′ son image. L’adhérence
de x′ dans X ′ est une sous-F-variété fermée de X ′, munie d’une application F-
rationnelle dominante d’une F-variété géométriquement intègre. C’est donc une
F-variété géométriquement intègre.

Proposition 3.5 Soit A un anneau de valuation discrète de corps résiduel F et soit
X un A-schéma de type (R). Supposons les composantes réduites Yi lisses sur F.
Les propriétés suivantes sont équivalentes :

(1) La fibre spéciale Y contient une sous-F-variété géométriquement intègre.
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(2) Il existe une F-variété géométriquement intègre Z et un F-morphisme Z → Y.
(3) Il existe une composante réduite Yi de Y qui est géométriquement intègre.

Si de plus car(F) = 0, ces propriétés sont équivalentes aux propriétés suivantes :

(4) Il existe une extension locale d’anneaux de valuation discrète A ⊂ B telle que
le corps résiduel F = FA de A soit algébriquement fermé dans le corps résiduel
FB de B, et que l’on ait X(K(B)) = X (B) �= /0.

(5) Si F ↪→ E est un plongement de F dans un corps pseudo-algébriquement clos E
dans lequel F est algébriquement fermé, et si Â = F [[t]], il existe une extension
finie totalement ramifiée L/E((t)) avec X(L) �= /0.

Démonstration. Soit f : Z → Y comme en (2). Une telle application se factorise
par au moins un morphisme Z → Yi pour i convenable, et le lemme 2.2 montre que
Yi est alors géométriquement intègre, on a donc (3). Les autres implications entre
(1), (2) et (3) sont évidentes. L’énoncé (5) implique trivialement (4), et (4) implique
(5) comme l’on voit en passant aux complétés et en remplaçant B̂ � FB[[u]] dans
E[[u]], où FB ↪→ E est un plongement du corps résiduel FB dans un corps pseudo-
algébriquement clos E dans lequel FB et donc aussi FA est algébriquement fermé. De
(4) on déduit l’existence d’un F-morphisme SpecFB → Y , ce qui implique l’énoncé
(2). Soit Yi ⊂ Y une composante comme en (3). Soit B l’anneau local du point
générique de Yi sur X . L’inclusion A⊂ B satisfait (4).

Dans la situation ci-dessus, on dira que la fibre spéciale Y/F a une composante
(réduite) géométriquement intègre.

Des deux propositions précédentes il résulte :

Proposition 3.6 Soient X et X ′ deux A-schémas de type(R), de fibres spéciales
respectives Y et Y ′. Supposons les composantes réduites de Y et Y ′ lisses sur F.
S’il existe une application K-rationnelle de X = XK vers X ′ = X ′

K, et si Y a une
composante géométriquement intègre, alors Y ′ a une composante géométriquement
intègre.

Remarque 3.7. On trouvera dans l’article [24] de Ducros de nombreux compléments
et extensions des énoncés ci-dessus.

3.4 Quand la fibre spéciale a une composante géométriquement
intègre de multiplicité 1

Proposition 3.8 Soit A un anneau de valuation discrète de corps résiduel F et soit
X un A-schéma de type (R). Les propriétés suivantes sont équivalentes :

(1) Il existe une composante réduite Yi qui est géométriquement intègre et pour
laquelle ni = 1.



8 J.-L. Colliot-Thélène

(2) Il existe un ouvert U ⊂X non vide lisse, surjectif sur SpecA et à fibres géomé-
triquement intègres.

Pour F de caractéristique zéro, ces propriétés sont équivalentes aux propriétés sui-
vantes :

(3) Il existe une extension non ramifiée d’anneaux de valuation discrète A⊂ B telle
que F soit algébriquement fermé dans le corps résiduel de B et que X(K(B)) =
X (B) �= /0.

(4) Si F ↪→ E est un plongement de F dans un corps pseudo-algébriquement clos
E dans lequel F est algébriquement fermé, et si Â = F[[t]], on a X(E((t))) �= /0.

L’existence d’une composante comme en (1) est une condition nécessaire pour
l’existence d’un K-point sur X.

Démonstration. L’équivalence de (1) et (2) est claire. L’équivalence de (3) et (4) est
aussi claire. Pour l’équivalence entre (1) et (2) d’une part et (3) et (4) d’autre part,
et pour la démonstration de la dernière assertion, voir [13], fin de l’argument p. 745.

Dans la situation ci-dessus, on dira que Y a une composante géométriquement
intègre de multiplicité 1.

Proposition 3.9 Supposons F de caractéristique zéro.
(a) Soit X /A un A-schéma connexe lisse et surjectif sur SpecA, à fibres

géométriquement intègres. Soit X ′/A un A-schéma de type (R). S’il existe une ap-
plication K-rationnelle de X = XK vers X ′ = X ′

K, alors il existe un ouvert U ⊂X ′
tel que le morphisme induit U → SpecA soit lisse et surjectif.

(b) Soient X et X ′ deux A-schémas de type (R). Si les fibres génériques X = XK

et X ′ = X ′
K sont K-birationnellement équivalentes, alors la fibre spéciale Y a une

composante géométriquement intègre de multiplicité 1 si et seulement si la fibre
spéciale Y ′ a une composante géométriquement intègre de multiplicité 1.

Démonstration. Cela résulte immédiatement du lemme 2.1 et de la caractérisation
(3) dans la proposition 3.8.

Question 3.10 Soient k un corps de caractéristique zéro, K un corps de type fini sur
k, X une K-variété projective, lisse, géométriquement intègre. Supposons que pour
tout anneau de valuation discrète de rang un A contenant k et de corps des fractions
K il existe un A-modèle de type (R) de X/K dont la fibre spéciale contient une
composante géométriquement intègre de multiplicité 1. Existe-t-il un k-morphisme
X → B de k-variétés projectives, lisses, géométriquement intègres satisfaisant les
propriétés suivantes :

(a) le corps des fonctions k(B) de B est K ;
(b) la fibre générique de X → B est K-isomorphe à X ;
(c) il existe un ouvert U ⊂X tel que le morphisme induit U → B soit lisse surjectif

(fidèlement plat) et à fibres géométriquement intègres.

On comparera cette question avec la remarque 3.3.
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Remarque 3.11. On exhibe facilement un morphisme X → Y = P2
Q de Q-variétés

projectives, lisses, géométriquement intègres, de fibre générique une quadrique de
dimension 2, tel que la fibre en tout point de codimension 1 de Y soit géométrique–
ment intègre sans que pour autant l’hypothèse dans la question ci-dessus soit
satisfaite (désingulariser l’exemple de la remarque 13.4).

3.5 Un exemple : quadriques

Discutons le cas des modèles de quadriques de dimension au moins 1. Supposons
2 ∈ A×. Soit v la valuation de A. Une quadrique lisse dans Pn

K (n ≥ 2) peut être
définie par une forme quadratique diagonale sur K.

Considérons le cas des coniques. En chassant les dénominateurs et en poussant
les carrés dans les variables, on voit que l’équation définissant la quadrique dans P2

K
peut s’écrire

a0T 2
0 + a1T 2

1 + a2T 2
2 = 0

avec a0,a1 ∈A× et v(a2) = 0 ou v(a2) = 1. Cette équation définit un modèle régulier
X ⊂ P2

A, et la fibre spéciale Y ⊂X est à croisements normaux.
Si v(a2) = 0, alors la fibre spéciale Y/F est une conique lisse, en particulier

géométriquement intègre, et Y ⊂X est à croisements normaux stricts.
Si v(a2) = 1, la fibre spéciale Y possède un F-point rationnel évident, P ∈Y (F),

donné par T0 = T1 = 0.
Si v(a2) = 1 et si la classe de −a0.a1 dans F est un carré, la fibre spéciale se

décompose sous la forme
Y = Y1 +Y2

avec chaque Yi � P1
F . Dans ce cas Y ⊂X est à croisements normaux stricts.

Si v(a2) = 1 et si la classe de −a0.a1 dans F n’est pas un carré, alors la fibre
spéciale Y/F est intègre, mais se décompose sur une extension quadratique de F en
deux droites conjuguées se rencontrant en P, donc Y n’est pas lisse, Y ⊂X n’est pas
à croisements normaux stricts. Si l’on éclate le point rationnel singulier P sur X ,
on obtient un modèle X ′/A dont la fibre spéciale Y ′ se décompose sous la forme

Y ′ = Y ′0 + 2E,

où E ⊂X est le diviseur exceptionnel introduit par l’éclatement. La F-courbe Y ′0
est intègre, elle se décompose sur une extension quadratique de F en la somme de
deux droites conjuguées ne se rencontrant pas, et rencontrant E transversalement.
Donc Y ′0 est lisse, et Y ′ ⊂X ′ est à croisements normaux stricts.

En résumé, pour toute conique lisse sur K, on a les propriétés suivantes.

(a) Il existe un modèle régulier X avec Y ⊂X à croisements normaux dont au
moins une composante a multiplicité 1 et admet un ouvert non vide lisse sur F ,
mais n’est pas nécessairement géométriquement intègre.
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(b) Il existe un modèle régulier X avec Y ⊂ X à croisements normaux dont la
fibre spéciale contient une sous-F-variété géométriquement intègre.

(c) Il existe un modèle régulier X avec Y ⊂ X à croisements normaux stricts
dont une composante est géométriquement intègre (mais pas nécessairement de
multiplicité 1). D’après les paragraphes 3.2 et 3.3 les propriétés (a) et (b) valent
pour tout A-modèle de type (R) et la propriété (c) vaut pour tout A-modèle dont
la fibre spéciale est à croisements normaux stricts.

Considérons le cas des quadriques de dimension au moins 3. On peut définir une
telle quadrique dans Pn

K (n≥ 4) par une équation

n

∑
i=0

aiT
2

i = 0,

avec ai ∈ A×. Dans Pn
A, cette équation définit un modèle intègre, normal et propre

sur A. La fibre spéciale Y/F est géométriquement intègre (et en particulier de mul-
tiplicité 1). D’après le paragraphe 3.4 cette propriété vaut alors pour tout A-modèle
de type (R).

4 Groupe de Brauer des schémas au-dessus d’un anneau
de valuation discrète

Pour les démonstrations des résultats énoncés dans ce paragraphe, le lecteur se re-
portera aux exposés de Grothendieck [36].

Dans cette section, la cohomologie employée est la cohomologie étale, qui sur
un corps est la cohomologie galoisienne du corps (c’estt-à-dire de son groupe de
Galois absolu). Soit A un anneau de valuation discrète de corps des fractions K et
de corps résiduel F parfait. On dispose alors d’une application résidu

∂A : BrK → H1(F,Q/Z)

envoyant le groupe de Brauer de K dans le groupe des caractères du groupe de
Galois absolu de F . Plus précisément, on a une suite exacte

0→ BrA→ BrK → H1(F,Q/Z).

La flèche de droite est surjective sur la torsion première à la caractéristique de F .
Lorsque A est hensélien, la flèche naturelle BrA → BrF est un isomorphisme.

Si de plus F est de dimension cohomologique ≤ 1, alors BrA = 0 et BrK �
H1(F,Q/Z).

Soit A ↪→ B un homomorphisme local d’anneaux de valuation discrète à corps
résiduels parfaits. Soit K ⊂ L l’inclusion de corps de fractions correspondante. Soit
e l’indice de ramification de B sur A, c’est-à-dire la valuation dans B de l’image
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d’une uniformisante de A. Soit FA ↪→ FB l’inclusion des corps résiduels. On a alors
le diagramme commutatif suivant :

BrK
∂A−→ H1(FA,Q/Z)

↓ ResK,L ↓ eB/A.ResFA,FB

BrL
∂B−→ H1(FB,Q/Z).

Soit F ′B ⊂ FB la fermeture algébrique de FA dans FB. Le noyau de

eB/A.ResFA,FB : H1(FA,Q/Z)→H1(FB,Q/Z)

s’identifie au noyau de

eB/A.ResFA,FB : H1(FA,Q/Z)→H1(F ′B,Q/Z)

Soit A un anneau de valuation discrète de corps des fractions K de corps résiduel
un corps F de caractéristique zéro. Soit X un A-schéma de type (R). Soit X/K la
fibre générique. Soit Y =∑i eiYi la décomposition de la fibre spéciale Y en diviseurs
intègres. Soit Fi la fermeture algébrique de F dans F(Yi).

Comme les schémas intègres X et X sont réguliers, les applications de res-
triction BrX → BrX → BrK(X) sont injectives. On dispose alors du diagramme
commutatif de suites exactes

0 → BrA → BrK
∂A−→ H1(F,Q/Z)

↓ ↓ ↓ ei.ResF,F(Yi)

0 → BrX → BrX
⊕i∂i−→ ⊕iH1(F(Yi),Q/Z)

et de la suite exacte qui s’en déduit

0→Ker [BrA→ BrK(X)]→ Ker[BrK → BrK(X)]→

Ker[H1(F,Q/Z)
⊕iei.ResF,Fi−→ ⊕iH

1(Fi,Q/Z)]

Proposition 4.1 Soit A un anneau de valuation discrète hensélien à corps résiduel
F de caractéristique zéro et de dimension cohomologique au plus 1. Soit X un
A-schéma de type (R), de fibre générique X. Avec les notations ci-dessus, les deux
propriétés suivantes sont équivalentes :

(i) L’application BrK → BrX/BrX est injective.

(ii) L’application H1(F,Q/Z)
⊕iei.ResF,Fi−→ ⊕iH1(Fi,Q/Z) est injective.

En particulier, si la fibre spéciale Y possède une composante géométriquement
intègre de multiplicité 1, ou plus généralement si le pgcd des entiers ei.[Fi : F ] est
égal à 1, alors BrK→BrX/BrX est injective, et il en est donc de même de BrK→
BrX et de BrK → BrK(X).

Je renvoie à [15] pour une discussion du cas où le corps résiduel F est fini.
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5 Corps Ci

Théorème 5.1 (Tsen, 1933) Soit F un corps algébriquement clos et K = F(C) un
corps de fonctions d’une variable sur F. Soit X ⊂ Pn

K une hypersurface de degré d.
Si l’on a n≥ d, alors X(K) �= /0.

On notera que l’on ne fait aucune hypothèse sur X , qui peut être réductible.
Le cas des coniques (d = 2,n = 2) avait été établi par Max Noether par une

méthode géométrique.
Soit i ≥ 0 un entier. On dit qu’un corps K possède la propriété Ci si toute forme

à coefficients dans K, de degré d en n+1 > di variables a un zéro non trivial sur K.
On dit qu’un corps K possède la propriété C′i si pour toute famille finie de formes
{Φ j(X0, . . . ,Xn)} j=1,...,r de degrés respectifs d1, . . . ,dr avec n+1 >∑r

j=1 di
j il existe

un zéro commun non trivial sur K.
La propriété Ci implique la propriété ci-dessus pour un système de formes {Φ j}

lorsque tous les degrés d j sont égaux (Artin, Lang, Nagata). On ne sait pas si en
général Ci implique C′i (voir [63]).

Un corps est algébriquement clos si et seulement si il est C0. Le théorème de Tsen
dit qu’un corps de fonctions d’une variable sur un corps algébriquement clos est un
corps C1. Dans sa thèse, suivant des suggestions d’E. Artin, S. Lang généralisa le
théorème de Tsen. Son résultat, pour lequel on trouve quelques antécédents dans
les textes des géomètres algébristes italiens, fut complété par Nagata. Le résultat
général est le suivant.

Théorème 5.2 (Lang, Nagata) [54] Soit K un corps Ci. Toute extension algébrique
de K est un corps Ci. Le corps des fractions rationnelles en une variable K(t) est
Ci+1. De façon générale, toute extension de degré de transcendance n de K est un
corps Ci+n.

Lang établit aussi le théorème suivant.

Théorème 5.3 (Lang) [54] Soit A un anneau de valuation discrète hensélien de
corps des fractions K et de corps résiduel F. Soit K̂ le complété de K. Supposons K̂
séparable sur K. Si F est algébriquement clos, alors K est un corps C1.

En particulier l’extension maximale non ramifiée Qnr
p du corps p-adique Qp est

un corps C1.
Dans la situation considérée au paragraphe 3 (voir la Proposition 3.1), si l’on

suppose le corps résiduel F de A parfait, ce théorème assure que la fibre spéciale
d’une hypersurface de degré d dans Pn

K avec n ≥ d possède une composante de
multiplicité 1.

Théorème 5.4 (Greenberg)[35] Si F est un corps Ci alors K = F((t)) est un
corps Ci+1.
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Ce théorème ne s’étend pas dans une situation d’inégale caractéristique : les
corps p-adiques ne sont pas C2 (Terjanian). Ils ne sont en fait Ci pour aucun i
(Arkhipov et Karatsuba).

Le théorème de Tsen est souvent mis en parallèle avec l’énoncé suivant, qui
implique que les corps finis sont des corps C1.

Théorème 5.5 (Chevalley, Warning, 1935) Soit F un corps fini de caractéristique
p. Soit X ⊂ Pn

F une hypersurface de degré d. Si l’on a n ≥ d, alors X(F) �= /0. Plus
précisément, le cardinal de X(F) est congru à 1 modulo p.

On montra plus tard (Ax (1964), Katz (1971)) que si le cardinal de F est q alors
le cardinal de X(F) est congru à 1 modulo q.

Pour le corps fini à p éléments, le cas des coniques avait été établi par Euler [29],
dans un article où il établit aussi la formule de multiplication pour les sommes de
quatre carrés. La combinaison de ces deux résultats lui permit de montrer que tout
rationnel positif est une somme de quatre carrés de rationnels.

Comme pour le théorème de Tsen, le théorème de Chevalley-Warning ne fait
aucune hypothèse sur X . On peut voir là l’origine de la conjecture suivante.

Conjecture 5.6 (Ax) [2] Soient K un corps et X ⊂ Pn
K une hypersurface de degré

d. Si l’on a n≥ d, alors il existe une sous-K-variété Y ⊂ X qui est géométriquement
irréductible.

Si K est parfait, dans la conclusion on peut remplacer � géométriquement
irréductible par � géométriquement intègre. Mais comme l’exemple de la forme
irréductible T 2

0 +xT 2
1 +yT 2

2 sur le corps K = F2(x,y) le montre, ceci ne vaut pas sur
K corps non parfait.

Le cas d = 2 a été discuté plus haut. Le cas d = 3 est facile. Le cas d = 4 fut établi
par Denef, Jarden et Lewis dans [22]. Dans le même article, les auteurs établissent
la conjecture lorsque K contient un corps algébriquement clos. La démonstration de
ce résultat utilise la théorie des corps hilbertiens.

En caractéristique nulle, la conjecture d’Ax est maintenant un théorème de Kollár
(Théorème 7.10 ci-après).

Les corps finis, les corps de fonctions d’une variable, le corps C((t)) sont des
corps de dimension≤ 1 au sens de Serre ([65], II.3.1) : le groupe de Brauer de toute
extension finie de k est trivial. De fait, tout corps C1 est de dimension ≤ 1. On sait
(Ax) que la réciproque est fausse (pour des références et d’autres résultats dans cette
direction, voir [14]).

Tout espace homogène d’un groupe algébrique linéaire connexe sur un corps
parfait de dimension≤ 1 a un point rationnel (Steinberg, Springer, voir [65]).

Les corps finis et le corps C((t)) ont des groupes de Galois isomorphes au groupe
Ẑ. Tout espace homogène d’une variété abélienne sur un corps fini possède un point
rationnel (Lang) mais ceci n’est pas vrai sur C((t)), comme le montre l’exemple de
la courbe de genre 1 donnée dans P2

C((t)) par l’équation X3 + tY 3 + t2Z3 = 0.
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6 R-équivalence et équivalence rationnelle sur les zéro-cycles

Soient k un corps et X une k-variété. Deux k-points de X sont élémentairement
R-liés s’il existe un k-morphisme U → X d’un ouvert U de P1

k tel que les deux
points soient dans l’image de U(k). La relation d’équivalence sur X(k) engendrée
par cette relation est appelée la R-équivalence [59]. Pour k de caractéristique zéro,
l’ensemble X(k)/R est un invariant k-birationnel des k-variétés projectives, lisses,
géométriquement intègres [16].

La R-équivalence a été beaucoup étudiée lorsque X est un k-groupe linéaire
[16, 31].

Soit X/k une k-variété algébrique. On note Z0(X) le groupe abélien libre sur
les points fermés de X . C’est le groupe des zéro-cycles de X . Le groupe de Chow
(de degré zéro), noté CH0(X), est le quotient du groupe Z0(X) par le sous-groupe
engendré par les zéro-cycles de la forme π∗(divC(g)), où π : C → X est un k-
morphisme propre d’une k-courbe C normale intègre, g est une fonction rationnelle
sur C et divC(g) ∈ Z0(C) est son diviseur.

Si X/k est propre, l’application linéaire degk : Z0(X) → Z envoyant un point
fermé P sur son degré [k(P) : k] passe au quotient par l’équivalence rationnelle ci-
dessus définie. On note A0(X) le noyau de l’application deg : CH0(X)→ Z, et on
l’appelle le groupe de Chow réduit de X .

Le groupe de Chow réduit est un invariant k-birationnel des k-variétés projec-
tives, lisses, géométriquement intègres.

Pour X/k propre, l’application évidente X(k)→ Z0(X) induit une application

X(k)/R→CH0(X)

dont l’image tombe dans l’ensemble des classes de cycles de degré 1.

7 Autour du théorème de Tsen : variétés rationnellement
connexes

Dans le programme de classification de Mori est apparue au début des années 1990
la notion de variété rationnellement connexe. Les travaux fondateurs résultent d’une
collaboration entre Kollár, Miyaoka et Mori ; certains des résultats sont dus à Cam-
pana. Un rôle-clé y est joué par la théorie des déformations, plus précisément par
l’étude infinitésimale des schémas Hom, cas particulier des schémas de Hilbert. On
consultera les livres [46] et [21], ainsi que les articles [1] et le récent rapport [67].

Tout fibré vectoriel sur la droite projective est isomorphe à une somme directe de
fibrés de rang 1, donc de la forme O(n),n ∈ Z. Soit k un corps algébriquement clos.
Soit X une k-variété algébrique projective, lisse, connexe, de dimension d. Soit TX

son fibré tangent. On dit que X est séparablement rationnellement connexe (SRC)
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s’il existe un morphisme f : P1 → X très libre, c’est-à-dire tel que dans une (donc
dans toute) décomposition du fibré vectoriel

f ∗TX �⊕d
i=1O(ai),

on ait ai ≥ 1 pour tout i.
On dit qu’une variété projective lisse et connexe X est rationnellement connexe

(RC) si, pour tout corps algébriquement clos Ω contenant k, par un couple général
de points de X(Ω) il passe une courbe de genre zéro, i.e. il existe un Ω -morphisme
P1
Ω → XΩ dont l’image contient les deux points.

On dit qu’une variété projective lisse et connexe X est rationnellement connexe
par chaı̂nes (RCC) si, pour tout corps algébriquement clos Ω contenant k, tout
couple général de points de X(Ω) est lié par une chaı̂ne de courbes de genre zéro.
Cette dernière propriété est équivalente à la condition que tout couple de points de
X(Ω) est lié par une chaı̂ne de courbes de genre zéro. En d’autres termes, l’en-
semble X(Ω)/R est réduit à un élément.

Au lieu de faire les hypothèses ci-dessus pour tout corps algébriquement clos Ω
contenant k, il suffit de les faire pour un tel corps non dénombrable.

Toute variété RC est clairement RCC.

Théorème 7.1 (Kollár-Miyaoka-Mori) Toute variété SRC est RC donc RCC. En
caractéristique zéro, ces trois propriétés sont équivalentes, et elles impliquent :

Pour tout corps algébriquement closΩ contenant k et tout ensemble fini de points
x1, . . . ,xn ∈ X(Ω) il existe un morphisme f : P1

Ω → XΩ très libre tels que tous les xi

soient dans l’image de f .

En dimension 1, une variété est RC si et seulement si elle est une courbe lisse
de genre zéro. En dimension 2, une variété est SRC si et seulement si elle est
rationnelle, i.e. birationnelle à un espace projectif. Une variété projective et lisse
unirationnelle est RC. Une variété projective et lisse séparablement unirationnelle
est SRC. Sur k algébriquement clos, le groupe de Chow réduit A0(X) d’une variété
RCC est clairement trivial.

Si k est un corps quelconque, une k-variété est dite rationnellement connexe
resp. rationnellement connexe par chaı̂nes, respectivement séparablement rationnel-
lement connexe si elle est géométriquement intègre et si elle est RC, resp. RCC,
resp. SRC, après passage à un corps algébriquement clos contenant k.

Les compactifications lisses d’espaces homogènes de groupes algébriques
linéaires connexes sont des variétés RC.

En dimension 2, on dispose d’une classification k-birationnelle des k-surfaces
SRC, c’est-à-dire des k-surfaces projectives, lisses (géométriquement) rationnelles
(Enriques, Manin, Iskovskikh, Mori) : toute telle surface est k-birationnelle à une k-
surface de del Pezzo ou à une k-surface fibrée en coniques au-dessus d’une conique
lisse. Une surface de del Pezzo X est une surface projective et lisse dont le fibré
anticanoniqueω−1

X est ample. Le degré d’une telle surface est l’entier d = (ω .ω). Il
satisfait 1≤ d ≤ 9.
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Le groupe de Chow réduit A0(X) d’une variété RCC sur un corps k quelconque
est clairement un groupe de torsion. On peut montrer (Prop. 11.1) qu’il est annulé
par un entier N = N(X) > 0.

Une variété de Fano est une variété projective lisse dont le fibré anticanonique
est ample. Si X ⊂ Pn est une intersection complète lisse connexe définie par des
formesΦ j, j = 1, . . . ,r de degrés respectifs d j, j = 1, . . . ,r, alors X est de Fano si et
seulement si n≥ ∑ j d j. On reconnaı̂t là la condition C1.

Un théorème difficile est le suivant ([6, 51] ; voir aussi [46, 21]) :

Théorème 7.2 (Campana, Kollár-Miyaoka-Mori) Une variété de Fano est ration-
nellement connexe par chaı̂nes.

Le théorème suivant peut donc être vu comme une généralisation du théorème de
Tsen.

Théorème 7.3 (Graber, Harris, Starr [34] ; de Jong, Starr [42]) Soit F un corps
algébriquement clos et K = F(C) un corps de fonctions d’une variable sur F. Soit
X une K-variété séparablement rationnellement connexe. Alors X(K) �= /0.

Ce théorème implique le résultat suivant.

Théorème 7.4 Soit F un corps algébriquement clos de caractéristique zéro. Soit f :
X →Y un morphisme dominant de F-variétés projectives et lisses, à fibre générique
géométriquement intègre. Si Y est rationnellement connexe et si la fibre générique
est une variété rationnellement connexe, alors X est une variété rationnellement
connexe.

Le théorème 7.3 a aussi le corollaire suivant, connu des experts.

Théorème 7.5 Soit R un anneau de valuation discrète hensélien équicaractéristique
de corps résiduel F algébriquement clos, de corps des fractions K. Soit X ⊂ Pn

K une
K-variété séparablement rationnellement connexe. Alors X(K) �= /0.

Démonstration. Soit S le complété de R et L le corps des fractions de S. Comme
X/K est lisse, X(K) est dense dans X(L) pour la topologie définie par la valuation
de K ([5], Chap. 3.6, Cor. 10 p. 82). Il suffit donc d’établir le théorème en remplaçant
R par S et K par L. L’anneau S admet alors un corps de représentants isomorphe à
F , on peut donc identifier S = F [[t]] et L = F((t)).

Les lettres R et K étant désormais libres, notons maintenant R le hensélisé de F [t]
en t = 0 et K le corps des fractions de R. Le corps L = F((t)) est le complété de K.

Soit X ′ ⊂ Pn
S l’adhérence schématique de X ⊂ Pn

L. C’est un schéma intègre
projectif et plat sur S. La F-algèbre S est la limite inductive filtrante de ses F-sous-
algèbres de type fini. Il existe donc une F-algèbre de type fini intègre A ⊂ S et un
A-schéma X projectif et plat tel que X ×A S�X ′. En particulier la fibre générique
de X /A est une variété séparablement rationnellement connexe. Il existe un ouvert
non vide U ⊂Y = SpecA, qu’on peut prendre lisse sur F , tel que toutes les fibres du
morphisme X →Y au-dessus de U sont des variétés séparablement rationnellement
connexes (Kollár, Miyaoka, Mori, voir [46] IV.3.11).
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Notons ξ ∈ Y (S) ⊂ Y (L) le point correspondant à A ⊂ S. Munissons U(L) de
la topologie définie par la valuation de L. L’ensemble U(K) est dense dans U(L)
([5], Chap. 3.6, Cor. 10 p. 82). Pour tout entier n≥ 1 l’application naturelle Y (S)→
Y (S/tn) a ses fibres ouvertes dans Y (S)⊂Y (L). On peut donc trouver dans U(K)⊂
Y (K) un point ξn qui soit dans Y (S) et donc dans Y (R) et qui ait même image
que ξ dans Y (R/tn) = Y (S/tn). On peut donc pour tout n≥ 1 trouver un R-schéma
projectif Xn à fibre générique Xn/K séparablement rationnellement connexe, tel que
Xn×R R/tn �X ×A×SS/tn (noter que l’on a R/tn = S/tn.) Le corps des fractions
du hensélisé R de F [t] en t = 0 est l’union de corps de fonctions de F-courbes.
Le théorème 7.3 assure donc Xn(K) �= /0. Comme Xn/R est projectif, on a donc
Xn(R) = Xn(K) �= /0, donc X (S/tn) = Xn(R/tn) �= /0. On a donc X (S/tn) �= /0 pour
tout entier n. Par un théorème de Greenberg ([35], Thm. 1) ceci implique X (S) �= /0.
On a donc X(L) �= /0.

On ne connaı̂t pas de démonstration de ce théorème qui ne passe pas par le cas
global K = F(C).

Le théorème 7.3 admet un théorème � réciproque :

Théorème 7.6 (Graber-Harris-Mazur-Starr)[33] Soit k = C. Soit S une variété
lisse sur C de dimension au moins 2. Soit X → S un morphisme projectif et lisse à
fibre générique géométriquement intègre. Si la restriction de X → S à toute courbe
C⊂ S admet une section, alors il existe une C(S)-variété Z géométriquement intègre
et rationnellement connexe et un C(S)-morphisme de Z dans la fibre générique de
X → S.

Les variétés rationnellement connexes sont donc en quelque sorte caractérisées
par le fait d’avoir automatiquement un point sur le corps des fonctions d’une courbe
sur les complexes.

La classe des variétés rationnellement connexes semble être la classe la plus large
de variétés projectives lisses à laquelle on peut étendre le théorème de Tsen. Un
exemple explicite de surface d’Enriques sur K = C((t)) sans K-point a été construit
par Lafon [53]. Un modèle affine, avec variables x,y,u,z, est défini par le système

x2− tu2 + t = (t2u2− t)y2

x2−2tu2 +(1/t) = t(t2u2− t)z2.

[Dans la classification des surfaces, les surfaces d’Enriques sont en quelque sorte
les plus proches des surfaces rationnelles, une telle surface X satisfait en particulier
H1(X ,OX) = 0 et H2(X ,OX) = 0.]

En caractéristique zéro, le théorème 7.5 est équivalent à l’assertion suivante :

Théorème 7.7 Soit A un anneau de valuation discrète de corps résiduel de ca-
ractéristique zéro et soit X un A-schéma intègre propre régulier. Si la fibre
générique est une variété SRC, alors la fibre spéciale possède une composante de
multiplicité 1.
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Comme indiqué ci-dessus, le théorème ci-dessus ne vaut déjà plus si la fibre
générique est une surface d’Enriques.

Remarque 7.8. On ne sait pas si l’analogue de ce théorème vaut dans le cas
d’inégale caractéristique. Par exemple, si X est une variété rationnellement connexe
sur le corps p-adique Qp, a-t-elle un point dans une extension non ramifiée de Qp ?
C’est vrai en dimension 1 ou 2. En effet l’extension maximale non ramifiée de Qp est
un corps C1 (théorème de Lang) et par inspection de la classification k-birationnelle
des k-surfaces rationnelles, on montre (Manin, l’auteur) que toute k-surface ration-
nelle (projective et lisse) sur un corps k qui est C1 possède un point k-rationnel.

Motivé par la conjecture 5.6 (Ax), par les énoncés des théorèmes de Tsen et de
Chevalley-Warning, et par plusieurs résultats qui seront discutés plus bas, on peut,
suivant Kollár [49], envisager les énoncés suivants :

Suggestions 7.9 Soit A un anneau de valuation discrète de corps résiduel F. Soit
X un A-schéma régulier, propre et plat sur A, à fibre générique X lisse géométri-
quement connexe, à fibre spéciale un diviseur Y/F à croisements normaux stricts.
Si X/K est une variété séparablement rationnellement connexe, alors

(a) il existe une composante réduite Yi de Y qui est géométriquement intègre sur F ;
(b) mieux, il existe une F-variété rationnellement connexe Z et un F-morphisme de

Z dans Y ;
(c) encore mieux, il existe une composante réduite Yi de Y qui est une F-variété

rationnellement connexe.

Dans cette direction, on a les résultats suivants.

Théorème 7.10 (Kollár)[49] Soit F un corps de caractéristique zéro. Soit C une
courbe lisse sur F, soit A l’anneau local de C en un point fermé de corps résiduel
E, soit X un A-schéma régulier, propre et plat sur A, à fibre générique X lisse, à
fibre spéciale un diviseur Y/E à croisements normaux stricts. Si X/K est une variété
de Fano, alors il existe une composante réduite Yi de Y qui est géométriquement
irréductible sur E.

Toute hypersurface est une dégénérescence d’une hypersurface lisse de même
degré. Le résultat de Kollár établit ainsi la conjecture 5.6 (Ax) en caractéristique
zéro : toute F-hypersurface de degré d dans Pn

F avec n ≥ d contient une sous-F-
variété géométriquement intègre.

Corollaire 7.11 Soit k un corps de caractéristique zéro. Il existe un corps L conte-
nant k possédant les propriétés suivantes :

(i) Le corps k est algébriquement fermé dans L.
(ii) Le corps L est union de corps de fonctions de k-variétés géométriquement

intègres.
(iii) Toute L-variété géométriquement intègre possède un point L-rationnel (le

corps L est � pseudo-algébriquement clos ).
(iv) Le corps L est un corps C1.
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Démonstration. La construction du paragraphe 2 donne un corps L satisfaisant les
propriétés (i) à (iii). Le point (iv) est alors une application de la conjecture d’Ax.

Théorème 7.12 (Starr)[66] Soit F un corps parfait contenant un corps algébri-
quement clos. Soit C une courbe lisse sur F, soit A l’anneau local de C en un point
fermé de corps résiduel E, soit X un A-schéma régulier, propre et plat sur A, à
fibre générique X/K lisse, à fibre spéciale un diviseur Y/E à croisements normaux
stricts. Si X est une K-variété séparablement rationnellement connexe, alors il existe
une composante réduite Yi de Y qui est géométriquement irréductible sur E.

Le théorème suivant implique en particulier que le théorème 7.10 vaut plus
généralement lorsque la fibre générique est une variété rationnellement connexe.

Théorème 7.13 (Hogadi et Xu)[40] Soient F un corps de caractéristique zéro, C
une F-courbe lisse, A l’anneau local de C en un point fermé P, et E le corps résiduel
en P. Soit X un A-schéma propre et plat sur A, de fibre générique X une K-variété
rationnellement connexe. Alors

(a) Il existe une E-variété rationnellement connexe Z et un E-morphisme de Z
dans la fibre Y/E de X →C en P.

(b) Si X est régulier, connexe, de dimension relative au plus 3, et si la fibre
spéciale est un diviseur Y/E à croisements normaux stricts, alors il existe une com-
posante réduite Yi de Y qui est une E-variété rationnellement connexe.

Sous l’hypothèse supplémentaire que F contient un corps algébriquement clos,
le résultat (a) avait été établi antérieurement par de Jong.

Corollaire 7.14 Soit k un corps de caractéristique zéro. Il existe un corps L conte-
nant k possédant les propriétés suivantes :

(i) Le corps k est algébriquement fermé dans L.
(ii) Le corps L est union de corps de fonctions de k-variétés rationnellement

connexes.
(iii) Toute L-variété rationnellement connexe possède un point L-rationnel.
(iv) Le corps L est un corps C1.

Démonstration. On reprend la construction du paragraphe 2 mais à la place des F-
variétés géométriquement intègres on utilise les F-variétés intègres F-birationnelles
à une F-variété rationnellement connexe. La conditions (Stab) du paragraphe 2 est
satisfaite grâce au théorème 7.4 (conséquence du théorème de Graber, Harris et
Starr). Le corps L ainsi construit satisfait les propriétés (i) à (iii). Toute hypersurface
est une dégénérescence d’une hypersurface lisse de même degré. Le théorème 7.13
implique donc que le corps L est un corps C1 (voir [40], Cor. 1.5).

Une variante de la démonstration du théorème 7.5 permet de généraliser la partie
(a) du théorème 7.13.
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Théorème 7.15 Soit A un anneau de valuation discrète, de corps des fractions K et
de corps résiduel F de caractéristique nulle. Soit X un A-schéma projectif et plat
sur A, de fibre générique une K-variété rationnellement connexe. Alors il existe une
F-variété rationnellement connexe Z et un F-morphisme de Z dans la fibre spéciale
Y = X ×A F.

Démonstration. Pour établir le résultat, on peut remplacer A par son complété.
Comme la caractéristique de F est nulle, ce complété est isomorphe à F [[t]]. On
est donc réduit au cas A = F[[t]]. Soit R le hensélisé de F [t] en t = 0. Soit L son
corps des fractions. On a R̂ = A et L̂ = K. La démonstration du théorème 7.5 montre
qu’il existe un R-schéma projectif et plat X1 (non nécessairement régulier) de fibre
générique une L-variété rationnellement connexe, tel que X1×R F �X ×F[[t]] F =
Y , en d’autres termes, la fibre spéciale Y de X1 est F-isomorphe à la fibre spéciale
de X . D’après le théorème 7.13 (Hogadi et Xu), il existe une F-variété rationnelle-
ment connexe Z et un F-morphisme Z →X1×R F .

Remarque 7.16. (Wittenberg) Soit A un anneau de valuation discrète de corps des
fractions K et de corps résiduel F de caractéristique zéro. Soit X un A-schéma
régulier, propre et plat sur A, à fibre générique X lisse, à fibre spéciale un di-
viseur Y/F à croisements normaux stricts. Lorsque la fibre générique X est une
K-compactification lisse d’un espace homogène d’un K-groupe algébrique linéaire
connexe, on peut facilement établir le théorème 7.10 et l’énoncé (a) du théorème
7.13. On remplace A par F[[t]]. Comme rappelé au paragraphe 2, le corps F est
algébriquement fermé dans un corps E de dimension cohomologique cd(E) ≤ 1,
corps qui est union de corps de fonctions de F-variétés d’un type spécial, en par-
ticulier rationnellement connexes. Le corps L limite inductive des corps E((t1/n))
a le même groupe de Galois que E . Il est donc de dimension cohomologique 1, et
X a un L-point. Ceci implique l’existence d’une F-application rationnelle d’une F-
variété rationnellement connexe Z dans une composante réduite de la fibre spéciale,
composante qui étant lisse doit en particulier être géométriquement intègre.

Remarque 7.17. De même que l’on ne peut espérer étendre le théorème 7.7 à
d’autres classes de variétés que celle des variétés rationnellement connexes, de
même il semble déraisonnable d’espérer une réponse positive à la suggestion 7.9 (a)
pour d’autres classes que celle des variétés rationnellement connexes, par exemple
pour les variétés projectives et lisses X telles que Hi(X ,OX ) = 0 pour i≥ 1, ou telles
que le groupe de Chow de X réduit des zéro-cycles sur tout corps algébriquement
clos soit nul (voir le paragraphe suivant). Starr (communication privée) a donné un
exemple de surface d’Enriques sur un corps K(t) telle que pour tout modèle de type
(R) de cette surface sur l’anneau local de K[t] en t = 0, à croisements normaux
stricts, aucune composante réduite ne soit géométriquement intègre.
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8 Autour du théorème de Chevalley-Warning : variétés dont le
groupe de Chow géométrique est trivial

Le théorème de Chevalley-Warning a fait l’objet de plusieurs généralisations (Ax,
Katz, Esnault, voir [7]).

Théorème 8.1 (Weil, 1954) Toute surface projective lisse géométriquement ration-
nelle sur un corps fini possède un point rationnel.

Théorème 8.2 (formule de Woods Hole 1964, de Lefschetz-Verdier, voir
Grothendieck/Illusie SGA 5 III, Katz SGA7 XXII) Soit F un corps fini de ca-
ractéristique p. Soit X/F une variété propre. Si H0(X ,OX ) = F et si Hr(X ,OX) = 0
pour r ≥ 1, alors le nombre de points rationnels de X est congru à 1 modulo p.

En caractéristique nulle, les groupes Hr(X ,OX) (r ≥ 1) s’annulent pour une
variété de Fano, mais on ne sait pas le démontrer en caractéristique positive (sauf en
dimension au plus 3, le cas de la dimension 3 étant dû à Shepherd-Barron).

H. Esnault a obtenu le résultat suivant.

Théorème 8.3 (Esnault 2003) [25] Soit F un corps fini de cardinal q. Pour X/F

lisse, projective, géométriquement intègre, et Ω un corps algébriquement clos
contenant le corps F(X), si l’on a A0(XΩ ) = 0, alors le nombre de points F-
rationnels de X est congru à 1 modulo q.

Soit l un nombre premier, l �= car(F). Par un argument remontant à Spencer Bloch
et développé par Bloch et Srinivas, l’hypothèse assure que la cohomologie l-adique
de X est de coniveau 1, c’est-à-dire qu’elle satisfait Hi

ét(X ,Ql) = N1Hi
ét(X ,Ql)

pour tout i≥ 1 (toute classe de cohomologie s’annule sur un ouvert de Zariski non
vide). Sous cette condition, H. Esnault utilise des résultats de Deligne pour établir
la congruence annoncée.

Ce théorème s’applique pour les variétés rationnellement connexes par chaı̂nes,
et en particulier pour les variétés de Fano, à la différence du théorème 8.2.

A noter que le théorème s’applique aussi pour des variétés qui ne sont pas ration-
nellement connexes, comme les surfaces d’Enriques et aussi certaines surfaces de
type général.

Comme dans l’énoncé initial de Chevalley-Warning et dans l’énoncé du théorème
de Tsen, on dispose de versions portant sur les fibres spéciales, singulières, de telles
variétés.

Théorème 8.4 (N. Fakhruddin et C.S. Rajan, 2004) [30] Soit f : X → Y un mor-
phisme propre dominant de variétés lisses et géométriquement irréductibles sur un
corps fini F de cardinal q. Soit Z la fibre générique, supposée géométriquement
intègre. Soit F(Y ) une clôture algébrique du corps des fonctions F(Y ). Si l’on a
A0(ZF(Y)) = 0, alors pour tout point y ∈ Y (F), le cardinal de Xy(F) est congru à 1
modulo q. Si l’hypothèse X lisse est omise mais si la fibre générique Z est lisse, on
a Xy(F) �= /0 pour tout y ∈ Y (F).
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Donc sur toute dégénérescence de variété RCC (lisse) il y a un F-point. Ceci vaut
aussi sur une dégénérescence d’une surface d’Enriques ou de certaines surfaces de
type général.

Théorème 8.5 (Esnault [26, 27] ; Esnault et Xu [28]) Soit A un anneau de va-
luation discrète complet de corps des fractions K et de corps résiduel F fini de
cardinal q. Soit X un A-schéma intègre propre et plat. Soit l un nombre premier,
l �= car(F). Supposons la fibre générique géométriquement intègre, lisse et à coho-
mologie l-adique de coniveau 1. Soit Y/F la fibre spéciale. Alors

(i) Y (F) �= /0 ;
(ii) si de plus X est régulier, alors card(Y (F))≡ 1 mod q.

L’hypothèse sur la cohomologie est satisfaite si A0(X ×K Ω) = 0, où Ω est un
corps algébriquement clos contenant K(X), en particulier pour les variétés RCC
mais aussi pour les surfaces d’Enriques et certaines surfaces de type général.

En particulier il y a un point rationnel sur la fibre spéciale. En particulier si toutes
les composantes de la fibre spéciale sont lisses, alors l’une d’entre elles est géomé-
triquement intègre sur Fq.

Il y a des théorèmes de géométrie algébrique qui se démontrent par réduction
au cas des corps finis. On part d’une variété sur un corps k. Une telle variété est
obtenue par changement de base A→ k à partir d’un A-schéma de type fini, pour
une Z-algèbre de type fini A convenable. On réduit ensuite aux points fermés de A
(leurs corps résiduels sont finis) et on applique les résultats obtenus sur les corps
finis.

Les théorèmes établis par H. Esnault sont de ce point de vue � trop bons  : la
classe des K-variétés auxquelles ses résultats s’appliquent est plus large que celle
des K-variétés rationnellement connexes. On ne peut donc espérer les utiliser pour
établir des résultats comme le théorème 7.3 (Graber-Harris-Starr) ou le théorème
7.10 ci-dessus (Kollár) – pas plus d’ailleurs que l’on ne pouvait utiliser le théorème
de Chevalley-Warning pour établir le théorème de Tsen ou la conjecture d’Ax. Un
obstacle essentiel semble être le fait bien connu suivant : il existe des polynômes en
une variable sur Z qui n’ont pas de zéro sur Q mais dont la réduction en tout premier
p sauf un nombre fini a un zéro, par exemple (x2−a)(x2−b)(x2−ab), avec a,b∈Z

non carrés.
Les résultats sur les corps finis peuvent néanmoins en suggérer d’autres sur les

corps de fonctions d’une variable. On en trouvera un exemple récent dans [44], §9.8,
Remarque 3.

9 Approximation faible pour les variétés rationnellement
connexes

Suggestion 9.1 Soit K un corps de fonctions d’une variable sur un corps
algébriquement clos. Pour toute variété rationnellement connexe X sur K,
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l’approximation faible vaut : pour tout ensemble fini I de places v de K, l’appli-
cation diagonale

X(K)→∏
v∈I

X(Kv)

a une image dense. Ici Kv est le complété de K en v et X(Kv) est muni de la topologie
induite par la topologie de la valuation sur Kv.

Des arguments élémentaires ([11]) permettent d’établir l’approximation faible en
tout ensemble fini de places pour les compactifications lisses d’espaces homogènes
de groupes linéaires connexes, puis pour les variétés obtenues par fibrations en de
telles variétés. On traite ainsi les intersections complètes lisses de deux quadriques
dans Pn pour n≥ 4.

Théorème 9.2 (Hassett-Tschinkel)[37] Soit K un corps de fonctions d’une variable
sur un corps algébriquement clos de caractéristique zéro. Soit X/K une K-variété
rationnellement connexe. Si I est un ensemble fini de places de K de bonne réduction
pour X/K, alors l’approximation faible vaut pour X en ces places : l’application
diagonale X(K)→∏v∈I X(Kv) a une image dense.

Ceci généralise un résultat de Kollár, Miyaoka et Mori (cas où l’on demande une
réduction fixée, sans obtenir d’approximations aux jets d’ordre supérieur).

Le cas particulier des surfaces cubiques lisses avait été traité par Madore [57].
Hassett et Tschinkel [38] ont aussi des résultats d’approximation en des places

de mauvaise, mais pas trop mauvaise réduction. Mais comme ces auteurs le notent,
le cas suivant est ouvert.

Question 9.3 L’approximation faible en la place λ = 0 vaut-elle pour la surface
cubique x3 + y3 + z3 +λ t3 = 0 sur le corps K = C(λ ) ?

Lorsque le nombre de variables est suffisamment grand par rapport au degré, on a
pu établir l’approximation faible en toutes les places. Voir la section 12.5 ci-dessous.

10 R-équivalence sur les variétés rationnellement connexes

Soient k un corps non algébriquement clos et X une k-variété (séparablement)
rationnellement connexe. Que sait-on sur l’ensemble X(k)/R ?

Théorème 10.1 (Kollár)[47] Soit K un corps local usuel (localement compact)
et soit X une K-variété séparablement rationnellement connexe. Alors la R-équi-
valence sur X(K) est une relation ouverte. L’ensemble X(K)/R est fini. Dans le cas
K = R les classes de R-équivalence coı̈ncident avec les composantes connexes de
X(R).

Ce résultat est une vaste généralisation de cas particuliers antérieurement connus
(surfaces fibrées en coniques, compactifications de groupes algébriques linéaires
connexes, hypersurfaces cubiques lisses, intersections lisses de deux quadriques
dans Pn pour n≥ 4).
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Suggestion 10.2 (Kollár) Soient F un corps fini et X une F-variété séparablement
rationnellement connexe. Alors tous les points de X(F) sont R-équivalents :
l’ensemble X(F)/R a un élément.

Swinnerton-Dyer montra qu’il en est ainsi pour les surfaces cubiques lisses. Ce
résultat a été récemment étendu par J. Kollár [50] à toutes les hypersurfaces cubiques
lisses sur un corps fini de cardinal au moins 8.

Théorème 10.3 (Kollár-Szabó)[52] Soient F un corps fini et X une F-variété
séparablement rationnellement connexe. Si l’ordre de F est plus grand qu’une cer-
taine constante qui dépend seulement de la géométrie de X alors X(F)/R est réduit
à un point.

Théorème 10.4 (Kollár-Szabó)[52] Soit K un corps local non archimédien de
corps résiduel le corps fini F. Soit A l’anneau de la valuation. Soit X un A-
schéma régulier, intègre, projectif et plat sur A, de fibre spéciale Y/F une F-variété
séparablement rationnellement connexe – ce qui implique que la fibre générique
X = X ×A K est SRC. Si l’ordre de F est plus grand qu’une certaine constante qui
dépend seulement de la géométrie de X alors X(K)/R est réduit à un point.

Ici encore on se demande si la condition sur l’ordre du corps résiduel est
nécessaire. A tout le moins, le résultat ci-dessus implique :

Théorème 10.5 [52] Soient K un corps de nombres et X/K une K-variété ration-
nellement connexe. Alors pour presque toute place v de K, notant Kv le complété de
K en v, on a card X(Kv)/R = 1.

Soit A un anneau de valuation discrète de corps des fractions K et de corps
résiduel F . Soit X un A-schéma intègre, propre et lisse. Soit X = X ×A K la fibre
générique et Y = X ×A F la fibre spéciale.

La spécialisation X(K) = X (A)→ Y (F) passe au quotient par la R-équivalence
(voir [55]). On a donc une application de spécialisation :

X(K)/R→ Y (F)/R.

Théorème 10.6 (Kollár) [48] Dans la situation ci-dessus, si Y/F est SRC, et si
A est hensélien, alors l’application de spécialisation X(K)/R → Y (F)/R est une
bijection.

On dit qu’un corps K est fertile (les anglo-saxons disent � large field ) si sur
toute K-variété lisse intègre avec un K-point les K-points sont denses pour la topo-
logie de Zariski.

Exemples :

(a) Une extension algébrique infinie d’un corps fini (estimations de Lang–Weil).
(b) Un corps local usuel (non archimédien, à corps résiduel fini), plus géné-

ralement le corps des fractions d’un anneau de valuation discrète hensélien de
corps résiduel quelconque.
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(c) Le corps R des réels, plus généralement un corps réel clos, plus généralement un
corps dont le groupe de Galois absolu est un pro-p-groupe (p étant un nombre
premier).

(d) Un corps pseudo-algébriquement clos.

Théorème 10.7 (Kollár) Soient K un corps fertile et X une K-variété séparablement
rationnellement connexe.

(1) [47] Pour tout point M ∈ X(K), il existe un K-morphisme très libre f : P1
K →

X tel que M appartienne à f (P1(K)).
(2) [48] Si deux K-points sont R-équivalents, alors il existe un K-morphisme

P1
K → X tel que ces deux points soient dans l’image de P1(K).

Corollaire 10.8 [48] Pour K corps fertile et X/K comme ci-dessus, pour tout ou-
vert de Zariski non vide U ⊂ X, l’application U(K)/R→ X(K)/R est bijective.

On ne sait pas si les deux énoncés précédents valent sur un corps K infini quel-
conque.

Théorème 10.9 (Kollár) [48] Soit K un corps local usuel, soit f : X → Y un K-
morphisme projectif et lisse de K-variétés lisses, dont les fibres géométriques sont
des variétés SRC. L’application Y (K)→ N qui à un point y ∈ Y (K) associe le car-
dinal de Xy(K)/R est semi-continue supérieurement : tout point de Y (K) admet
un voisinage (pour la topologie sur Y (K) définie par celle du corps local K) tel
que pour z dans ce voisinage le cardinal de Xz(K)/R soit au plus égal à celui de
Xy(K)/R.

Question 10.10 [48] Le cardinal de Xy(K)/R est-il localement constant quand y
varie dans Y (K) ?

Question 10.11 Soient k un corps et X une k-variété séparablement rationnelle-
ment connexe. Dans chacun des cas suivants :

(a) k = C(C) est un corps de fonctions d’une variable sur les complexes,
(b) k = C((t)) est un corps de séries formelles en une variable,
(c) k est un corps C1,
(d) k est un corps parfait de dimension cohomologique cd(k)≤ 1,

l’ensemble X(k)/R a-t-il au plus un élément ?

On ne s’attend pas à une réponse positive. Cependant, pour k de caractéristique
nulle, sous la simple hypothèse cd(k)≤ 1, c’est connu dans les cas suivants :

(i) X est une compactification lisse d’un groupe linéaire connexe [16].
(ii) X est une surface fibrée en coniques de degré 4 sur la droite projective [18].

(iii) X est une intersection lisse de deux quadriques dans Pn
k et n ≥ 5 ([17], Thm.

3.27 (ii)).
(iv) Le corps k est C1, la variété X est une hypersurface cubique lisse dans Pn

k avec
n≥ 5 [58].

On a aussi le résultat suivant, portant sur des variétés singulières :
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(v) Soit k un corps de caractéristique nulle tel que toute forme quadratique sur k en
3 variables ait un zéro non trivial. Alors pour toute surface cubique singulière
X ⊂ P3

k l’ensemble X(k)/R a au plus un élément.

Lorsque X possède un point singulier k-rationnel, ceci est établi dans [58], §1.
Dans le cas général, on établit ce résultat en utilisant la classification des surfaces
cubiques singulières. Le seul cas non couvert par les arguments donnés au §5 de
[56] (voir aussi [58], Remarque 1) est le cas des surfaces de Châtelet (cas 7 p. 182
de [56]). Le résultat dans ce cas s’obtient en combinant le Théorème 8.6 (d) de [17]
et les résultats de [20].

Une réponse positive à la question 10.11 pour les surfaces (projectives et lisses)
géométriquement rationnelles définies sur C(t) impliquerait l’unirationalité des
variétés de dimension 3 sur C qui admettent une fibration en coniques sur le plan
projectif. Il s’agit là d’une question largement ouverte.

Question 10.12 Soient K un corps de nombres et X une K-variété rationnellement
connexe. Le quotient X(K)/R est-il fini ?

C’est connu dans les cas suivants :

(i) La variété X est une compactification lisse d’un groupe linéaire connexe G.
L’immersion ouverte G ⊂ X induit une bijection G(k)/R � X(k)/R ([32]). La
finitude dans le cas général est due à Gille [31], elle s’appuie sur des résultats
antérieurs de Margulis (groupes semi-simples simplement connexes) et CT-
Sansuc ([16], cas des tores algébriques).

(ii) La variété X est une surface fibrée en coniques de degré 4 sur la droite projec-
tive (CT-Sansuc, cf. [18]).

(iii) La variété X est une intersection lisse de deux quadriques dans Pn
K et n ≥ 6

[17].

La question de la finitude de X(K)/R sur K un corps de nombres est ouverte pour
les compactifications lisses d’espaces homogènes de groupes linéaires connexes,
même en supposant les groupes d’isotropie géométrique connexes.

On pourrait se poser la question de la finitude de X(K)/R pour X/K rationnel-
lement connexe et K de type fini sur l’un quelconque des corps suivants : un corps
fini, Q, C, R, Qp.

On a par exemple la finitude dans ce cadre dans le cas (ii) ci-dessus [18], et c’est
une question ouverte lorsque X est de dimension 2, i.e. est une surface géométri-
quement rationnelle. Dans le cas (i), on a la finitude lorsque G est un tore [16].
C’est une question largement ouverte pour G un groupe linéaire quelconque.

Mais, sur chacun des corps Q(t), R(t), R((t)), la réunion pour tout n ≥ 1 des
R((t1/n)) (qui est un corps réel clos non archimédien), Kollár [48] a construit des
exemples d’hypersurfaces lisses X de degré 4 dans Pn

K , avec n arbitrairement grand,
telles que X(K)/R soit infini.
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11 Équivalence rationnelle sur les zéro-cycles des variétés
rationnellement connexes

Proposition 11.1 [9] Soient k un corps et X une k-variété RCC. Il existe un entier
N = N(X) > 0 tel que pour toute extension de corps L/k on ait NA0(X ×k L) = 0.

Soient F un corps fini et X une F-variété séparablement rationnellement connexe.
Du théorème de Kollár et Szabó [52] il résulte que l’on a A0(X) = 0. Mais ceci
n’est qu’un cas particulier d’un théorème général en théorie du corps de classes
supérieur :

Théorème 11.2 (K. Kato et S. Saito, 1983) Soient F un corps fini et X une F-variété
projective et lisse géométriquement intègre. Soit AlbX la variété d’Albanese de X
(c’est une variété abélienne) et μ le F-groupe fini commutatif dual de la torsion du
groupe de Néron-Severi géométrique de X. Le groupe A0(X) est fini, et l’on a une
suite exacte

0→ H1(F,μ)→ A0(X)→ AlbX(F)→ 0.

Question 11.3 Soient k un corps et X une k-variété séparablement rationnellement
connexe. Dans chacun des cas suivants :

(a) k = C(C) est un corps de fonctions d’une variable sur les complexes,
(b) k = C((t)) est un corps de séries formelles en une variable,
(c) k est un corps parfait de dimension cohomologique 1,

a-t-on A0(X) = 0 ?

On ne s’attend pas à une réponse positive. Cependant, pour k de caractéristique
nulle, sous la simple hypothèse cd(k) ≤ 1, il en est ainsi dans chacun des cas sui-
vants :

(i) Compactification lisse d’espace homogène principal de groupe algébrique
linéaire connexe [16].

(ii) Surface SRC, i.e. surface géométriquement rationnelle. La situation est ici
bien meilleure que pour la R-équivalence (voir la question 10.11). On établit
A0(X) = 0 par des méthodes de K-théorie algébrique [8].

(iii) Hypersurface cubique lisse dans Pn
k (n ≥ 3) avec un k-point, pour n ≥ 3. Soit

P ∈ X(k). Pour établir (iii), il suffit de montrer que tout k-point M est ra-
tionnellement équivalent au point P (on applique ensuite cet énoncé sur toute
extension finie de k.)

Soit L ⊂ Pn
k un espace linéaire de dimension 3 contenant P et M. Soit Y =

X ∩L ⊂ L� P3
k la surface cubique découpée par L. Si Y est singulière, alors P

et M sont R-équivalents sur Y , donc sur X : voir l’énoncé (v) après la question
10.11. Si Y est non singulière, on a A0(Y ) = 0 d’après le point (ii) ci-dessus.
Dans tous les cas on voit que P et M sont rationnellement équivalents.
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(iv) Intersection lisse de deux quadriques dans Pn
k avec un k-point, pour n≥ 5. Ceci

résulte de l’énoncé (iii) suivant la question 10.11. Une adaptation de l’argument
donné ci-dessus pour les hypersurfaces cubiques devrait donner le résultat pour
n≥ 4.

Théorème 11.4 (CT-Ischebeck 1981) Soit X une R-variété projective et lisse géo-
métriquement intègre avec X(R) �= /0. Soit s le nombre de composantes connexes de
X(R).

Le sous-groupe 2A0(X) est le sous-groupe divisible maximal de A0(X) et le quo-
tient A0(X)/2A0(X) = (Z/2)s−1.

En particulier si X est rationnellement connexe et X(R) �= /0, alors A0(X) est fini
et A0(X) = (Z/2)s−1.

Soit R un corps réel clos. Knebusch et Delfs ont montré comment l’on peut, pour
toute R-variété algébrique X , donner une définition adéquate des � composantes
connexes de X(R). Celles-ci sont en nombre fini. Le théorème ci-dessus vaut dans
ce cadre plus large. On comparera ceci avec la remarque finale de la section 10.

Question 11.5 Soient K un corps p-adique (extension finie de Qp) et X une K-
variété rationnellement connexe. Le groupe A0(X) est-il fini ?

Soit A l’anneau de la valuation du corps local K, soit F le corps fini résiduel.
Voici des résultats obtenus dans cette direction.

(i) Si dim(X) = 2, le groupe A0(X) est fini [8].
(ii) Si X est une intersection lisse de deux quadriques dans Pn

K ,n≥ 4 et X(K) �= /0,
le groupe A0(X) est fini ([17, 19] et [62]).

(iii) Si X est un fibré en quadriques de dimension relative au moins 1 sur la droite
projective, le groupe A0(X) est fini [19, 62].

(iv) Si X est une K-compactification lisse d’un K-groupe linéaire connexe, alors
A0(X) est somme d’un groupe fini et d’un groupe de torsion p-primaire (d’ex-
posant fini) [9].

(v) (Kollár-Szabó) [52] Si X a bonne réduction SRC, i.e. s’il existe un A-schéma
X régulier, intègre, propre et lisse de fibre spéciale Y/F SRC, alors A0(X) = 0.

(vi) (S. Saito et K. Sato) [64] Soit X une K-variété projective, lisse,
géométriquement connexe. Supposons que X/K possède un modèle X /A
régulier intègre, propre et plat, de fibre spéciale réduite Yred/F à croisements
normaux stricts. Alors le groupe A0(X) est somme directe d’un groupe fini
et d’un groupe divisible par tout entier premier à p. Si en outre X est une
variété rationnellement connexe, alors A0(X) est somme d’un groupe fini et
d’un groupe de torsion p-primaire d’exposant fini.

On s’est longtemps posé la question de savoir si pour toute variété projective lisse
X sur un corps p-adique le sous-groupe de torsion de A0(X) est fini. M. Asakura et
S. Saito ont montré récemment qu’il n’en est rien (exemples : surfaces de degré
d ≥ 5 suffisamment générales dans P3).
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Question 11.6 Soient K un corps de type fini sur le corps premier et X une K-
variété rationnellement connexe. Le groupe A0(X) est-il fini ?

C’est connu lorsque dim(X) = 2 et X(K) �= /0 [8], et lorsque X est une compacti-
fication lisse d’un K-tore de dimension 3 (Merkur’ev [60]).

Mais le cas général des compactifications lisses de tores sur un corps de nombres
est ouvert.

De façon générale, on se demande si pour toute variété X connexe, projective et
lisse sur un corps K de type fini sur le corps premier, le groupe A0(X) est un groupe
de type fini.

12 Vers les variétés supérieurement rationnellement connexes

12.1 Deux exemples

12.1.1 Formes tordues d’hyperquadriques

D. Tao [68] a obtenu les résultats suivants. Soit K un corps possédant une algèbre
simple centrale A de degré 2n ≥ 6 dont la classe [A] dans le groupe de Brauer de
K est non nulle et d’exposant 2. La condition 2.[A] = 0 assure l’existence sur A
d’une involution de première espèce σ qu’on peut choisir orthogonale. A une telle
situation est alors associée une K-variété X qui est une forme tordue d’une quadrique
lisse dans P2n−1 et pour laquelle

Ker(BrK → BrK(X)) = Z/2 = Z.[A]⊂ BrK.

Il y a donc une obstruction élémentaire à l’existence d’un K-point, en particulier
X(K) = /0.

On peut trouver des algèbres A du type requis sur l’un quelconque des corps
suivants : un corps p-adique, le corps des séries formelles itérées C((u))((v)), un
corps de fonctions de deux variables sur C.

Sur K l’un quelconque de ces corps, pour m≥ 4, les quadriques dans Pm
K ont un

point rationnel. Mais pour m impair les formes tordues obtenues n’ont pas de point
K-rationnel.

Si l’on considère une telle forme tordue X sur le corps K = C((u))((v)), pour
laquelle l’application Br K→BrK(X) n’est pas injective, il résulte de la proposition
4.1 que la fibre spéciale sur F = C((u)) d’un modèle propre, plat, régulier de X sur
l’anneau de valuation discrète A = C((u))[[v]] n’a aucune composante géométri-
quement intègre de multiplicité 1.

12.1.2 Une hypersurface cubique

L’hypersurface cubique diagonale X ⊂ P8
K de coefficients

(1,u,u2,v,vu,vu2,v2,v2u,v2u2)

sur le corps K = C((u))((v)) n’a pas de point rationnel.
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La condition d’injectivité sur le groupe de Brauer BrK ↪→ BrK(X) est ici sa-
tisfaite, plus généralement, l’obstruction élémentaire s’annule : il en est ainsi pour
toute hypersurface lisse de dimension au moins 3 (cf. [4]).

L’anneau de valuation discrète A = C((u))[[v]] a pour corps des fractions K.
La K-hypersurface cubique X admet un modèle régulier X projectif sur A dont
une composante réduite de la fibre sur F = C((u)) est géométriquement intègre et
de multiplicité 1 : un ouvert est donné par un ouvert du cône de P8

F d’équation
homogène x3 + uy3 + u2z3 = 0. Mais cette composante n’est pas rationnellement
connexe, elle ne possède même pas de C((u))-point lisse. De fait, la fibre spéciale
Y de X ne saurait posséder une composante géométriquement intègre rationnelle-
ment connexe de multiplicité 1 : d’après le théorème 7.5 toute telle composante
posséderait des points lisses sur C((u)), points qui seraient Zariski-denses car
C((u)) est fertile, et l’on pourrait relever un C((u))-point non situé sur les autres
composantes en un K-point de X . Le même argument montre qu’aucune compo-
sante de multiplicité 1 de la fibre spéciale d’un modèle X de type (R) de X , à
croisements normaux stricts, n’est le but d’une application rationnelle depuis une
C((u))-variété rationnellement connexe.

12.2 Fibres spéciales avec une composante géométriquement
intègre de multiplicité 1

Soit A un anneau de valuation discrète, K son corps des fractions, F son corps
résiduel. Soit π une uniformisante de A. Soit X /A un A-schéma de type (R) (voir
le paragraphe 2), X/K sa fibre générique, Y/F sa fibre spéciale. Si l’on a X(K) �= /0
alors l’on a X (A) �= /0. Comme X est régulier, une A-section de X/A rencontreY en
un F-point M possédant les propriétés suivantes : il est sur une unique composante
réduite de Y , il est lisse sur cette composante, cette composante est de multiplicité 1
et géométriquement intègre. Inversement, si A est hensélien, un tel point M se relève
en un K-point de X .

On voit donc qu’une condition nécessaire pour l’existence d’un K-point sur X
est l’existence d’une composante géométriquement intègre de multiplicité 1 de la
fibre spéciale Y . Au paragraphe 3.4 on a discuté cette propriété. Par analogie avec
les suggestions 7.9 on est amené ici à s’intéresser aux propriétés suivantes d’un
A-schéma X de type (R).

(i) La fibre spéciale Y/F contient une composante géométriquement intègre de
multiplicité 1.

(ii) La fibre spéciale Y/F contient une composante géométriquement intègre de
multiplicité 1 qui admet un F-morphisme depuis une F-variété séparablement
rationnellement connexe.

(iii) La fibre spéciale Y/F contient une composante géométriquement intègre de
multiplicité 1 qui est une F-variété séparablement rationnellement connexe.
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On laisse ici au lecteur le soin de vérifier que la propriété (ii) satisfait la même
propriété d’invariance K-birationnelle que la propriété (i) (cf. §3.4).

Théorème 12.1 (CT-Kunyavskiı̌ 2006) [13] Soit A un anneau de valuation discrète,
de corps des fractions K, de corps résiduel F de caractéristique zéro. Soit X un
A-schéma régulier propre intègre de fibre générique XK une compactification lisse
d’un espace homogène principal d’un groupe semi-simple simplement connexe, à
fibre spéciale un diviseur à croisements normaux stricts. Il existe alors une compo-
sante de la fibre spéciale qui est géométriquement intègre et de multiplicité 1, et qui
de plus admet un F-morphisme depuis une F-variété rationnellement connexe.

Démonstration. Comme rappelé au paragraphe 2, on peut suivant Ducros [23] plon-
ger F dans un corps L satisfaisant :

(i) Le corps F est algébriquement fermé dans L.
(ii) Le corps L est un corps de dimension cohomologique 1.

(iii) Le corps L est limite inductive de corps de fonctions de F-variétés admettant
des fibrations successives (par applications rationnelles) en variétés qui sont
des restrictions à la Weil de variétés de Severi-Brauer. On voit aisément que de
telles variétés sont birationnelles à des variétés rationnellement connexes (on
n’a pas ici besoin d’invoquer le théorème 7.4).

D’après Bruhat et Tits, tout espace homogène principal sous un groupe semi-
simple simplement connexe sur le corps local L((t)), dont le corps résiduel est
parfait et de dimension cohomologique 1, est trivial, i.e. possède un point L((t))-
rationnel. Je renvoie ici le lecteur à [13] pour l’algèbre commutative utilisée pour
terminer la démonstration.

Remarque 12.2. L’assertion sur l’existence d’un F-morphisme depuis une F-variété
rationnellement connexe ne figurait pas dans [13].

Théorème 12.3 [10] Soit A un anneau de valuation discrète de corps des fractions
K, de corps résiduel F de caractéristique zéro. Soit Φ ∈ A[x0, . . . ,xn] une forme
homogène de degré d en n + 1 > d2 variables. Supposons que l’hypersurface X/K
définie par Φ = 0 dans Pn

K est lisse. Soit X /A un modèle régulier de cette hy-
persurface, propre et plat sur A, à fibre spéciale à croisements normaux stricts. Il
existe alors une composante de la fibre spéciale qui est géométriquement intègre
et de multiplicité 1, et qui de plus admet un F-morphisme depuis une F-variété
rationnellement connexe.

Démonstration. Pour établir le résultat on peut supposer A = F [[t]]. D’après le
théorème 7.14, on peut plonger F dans un corps L qui est union de corps de fonc-
tions de F-variétés rationnellement connexes, et qui est un corps C1. On remplace
F [[t]] par L[[t]] et on utilise le fait que L((t)) est un corps C2 puisque L est un corps
C1 (théorème 5.4). On a donc X(L((t)) �= /0 et donc X (L[[t]]) �= /0. De ceci on déduit
que la fibre spéciale contient une composante géométriquement intègre de multipli-
cité 1. On termine alors la démonstration comme dans le théorème 12.1 ci-dessus.
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Remarque 12.4. L’assertion sur l’existence d’un F-morphisme depuis une F-variété
rationnellement connexe ne figurait pas dans [10]. C’est l’utilisation du théorème
7.13 (Hogadi et Xu) au lieu du théorème 7.10 (Kollár) qui permet ici de l’obtenir.

Remarque 12.5. Soit A l’anneau des entiers d’un corps p-adique, F son corps
résiduel. Soit Φ,n,d et X /A comme dans l’énoncé du théorème 12.3, en parti-
culier on suppose donné un modèle à fibre spéciale à croisements normaux stricts.
Supposons que le théorème 12.3 vaille encore dans ce cas d’inégale caractéristique.

On dispose alors d’une composante de Y qui est de multiplicité 1 et est
géométriquement intègre sur le corps fini F. Par les estimations de Lang-Weil, il
existe un zéro-cycle de degré 1 (par rapport au corps F) de support dans le lieu
lisse de cette composante et non situé sur les autres composantes. Par le lemme de
Hensel, on peut relever ce zéro-cycle sur K et l’on obtient que X/K possède un zéro-
cycle de degré 1. Pour K un corps p-adique, l’existence d’un zéro-cycle de degré 1
sur toute hypersurface lisse de degré d dans Pn

K , avec n ≥ d2, est une conjecture de
Kato et Kuzumaki [45], établie par ces auteurs lorsque d est un nombre premier.

On dispose plus précisément d’une F-application rationnelle d’une F-variété
séparablement rationnellement connexe sur un corps fini vers une composante lisse
de multiplicité 1 de la fibre spéciale. Le théorème 8.3 (Esnault) assure l’existence
d’un F-point sur toute F-variété séparablement rationnellement connexe, donc par
le lemme 2.1 sur la composante lisse. Mais tout tel F-point peut se trouver aussi sur
une autre composante, donc ne pas être lisse sur Y , ce qui empêche de le relever en
un K-point de X . C’est heureux. Sinon (modulo l’existence de bons modèles) Qp se-
rait un corps C2 (ex-conjecture d’E. Artin). Mais les exemples fameux de Terjanian
et de ses successeurs montrent que Qp n’est pas C2.

Il vaudrait d’ailleurs la peine de regarder les nombreux contre-exemples à la
conjecture d’Artin qui ont été construits et de vérifier qu’il existe toujours dans
ces cas un zéro-cycle de degré 1. Il en est ainsi pour l’exemple initial de Terjanian
sur Q2.

12.3 Variétés rationnellement simplement connexes

Les variétés rationnellement connexes sont un analogue algébrique des espaces to-
pologiques connexes par arcs. B. Mazur a demandé s’il y a un analogue en géométrie
algébrique des espaces simplement connexes. En topologie, on demande que l’es-
pace des lacets pointés soit connexe par arcs. A la suite d’une suggestion de Mazur,
de Jong et Starr [43] proposent les définitions suivantes. Dans l’état actuel des re-
cherches, il faut considérer ces définitions comme provisoires.

Soit X une variété projective et lisse sur C, équipée d’un fibré ample H. Soit
M0,2(X ,e) l’espace de Kontsevich paramétrisant les données suivantes : une courbe
C propre, réduite, connexe, à croisements normaux, de genre arithmétique 0, un
couple ordonné (p,q) de points lisses de C, un morphisme h : C→ X de cycle image
de degré e, tels que de plus la situation n’ait qu’un nombre fini d’automorphismes.
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On dispose alors d’un morphisme d’évaluation

M0,2(X ,e)→ X×X .

La fibre générale de ce morphisme est un analogue de l’espace des chemins à points
base en topologie.

La variété (projective et lisse) X est dite rationnellement simplement connexe si
pour e≥ 1 suffisamment grand il existe une composante M de M0,2(X ,e) dominant
X ×X telle que la fibre générique de M → X ×X soit une variété rationnellement
connexe.

De Jong et Starr [43] considèrent aussi l’espace

M0,m(X ,e)

où cette fois-ci l’on fixe m ≥ 2 points lisses ordonnés sur la courbe de genre
arithmétique zéro, et l’évaluation

M0,m(X ,e)→ Xm.

Ils appellent X fortement rationnellement simplement connexe si pour tout m≥ 2
et tout entier e suffisamment grand (fonction de m) il existe une composante M de
M0,m(X ,e) dominant Xm telle que la fibre générique de M → Xm soit une variété
rationnellement connexe.

De Jong et Starr (travaux en cours) ont obtenu une série de résultats sur les in-
tersections complètes lisses dans l’espace projectif. Pour simplifier, je cite leurs
résultats pour les hypersurfaces.

Théorème 12.6 (de Jong-Starr) [43] Une hypersurface lisse de degré d ≥ 2 dans
Pn

C avec
n≥ d2−1

est rationnellement simplement connexe, à l’exception des quadriques dans P3
C.

Théorème 12.7 (de Jong-Starr) [43] Une hypersurface lisse de degré d ≥ 2 dans
Pn

C avec
n≥ 2d2−d−1

est fortement rationnellement simplement connexe.

Dans la définition ci-dessus on peut prendre e≥ 4m−6.

Théorème 12.8 (de Jong-Starr) [43] Pour n≥ d2, il existe un ouvert de Zariski non
vide de l’espace des hypersurfaces de degré d dans Pn

C tel que toute hypersurface
paramétrée par un point de cet espace est fortement rationnellement simplement
connexe.

La suggestion suivante est une version locale d’une suggestion globale de de
Jong (12.11 ci-après).
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Suggestion 12.9 Soit A un anneau de valuation discrète de corps des fractions
K ⊂ C et soit F son corps résiduel, supposé de caractéristique zéro. Soit X un
A-schéma de type (R), X/K sa fibre générique, Y/F sa fibre spéciale. Si les condi-
tions suivantes sont satisfaites :

(i) la C-variété X×K C est fortement rationnellement simplement connexe,
(ii) l’obstruction élémentaire pour X/K s’annule,

alors la fibre spéciale Y/F contient une composante géométriquement intègre de
multiplicité 1 qui admet un F-morphisme depuis une F-variété rationnellement
connexe.

Remarque 12.10. Dans (i), l’exemple 12.1.2 et le théorème 12.6 justifient la res-
triction aux variétés fortement rationnellement simplement connexes, plutôt qu’aux
variétés rationnellement simplement connexes. L’exemple 12.1.1 justifie la condi-
tion (ii).

12.4 Existence d’un point rationnel sur un corps de fonctions
de deux variables

Sur K un corps de fonctions d’une variable sur C, le théorème de Graber-Harris-
Starr dit que les K-variétés rationnellement connexes ont automatiquement un point
K-rationnel (et le théorème de Graber-Harris-Starr-Mazur dit que ce sont essentiel-
lement les seules).

On peut se demander s’il existe une classe de variétés qui ont la propriété que
lorsqu’elles sont définies sur un corps K de fonctions de deux variables sur C, elles
ont automatiquement un K-point.

Voici deux familles de variétés pour lesquelles ceci est connu.
Le théorème de Tsen-Lang implique que toute hypersurface de degré d dans Pn

K
avec n≥ d2 possède un K-point.

Soit G un K-groupe semi-simple simplement connexe, E un espace homogène
principal de G et X une K-compactification lisse de E . La conjecture II de Serre pour
le corps K affirme que E et donc aussi X ont un K-point. Ceci est connu lorsque G
n’a pas de facteur de type E8 (Merkur’ev-Suslin, Suslin, Bayer-Parimala, P. Gille).
Pour avoir l’énoncé dans tous les cas il reste à traiter le cas E8 déployé. La résolution
de ce dernier cas a été récemment annoncée par de Jong et Starr, leur démonstration
utilise les techniques de variétés rationnellement simplement connexes.

Suggestion 12.11 (de Jong) Soit K = C(S) le corps de fonctions d’une surface sur
le corps des complexes. Soit X une K-variété fortement rationnellement simplement
connexe. Supposons l’application de restriction BrK → BrK(X) injective. Alors X
possède un point K-rationnel.
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Remarque 12.12. L’exemple 12.1.1 montre la nécessité de la condition non
géométrique portant sur le groupe de Brauer. Des conditions supplémentaires de
même nature pourraient être nécessaires. Par exemple on peut demander que pour
toute extension finie (ou non) de corps L/K l’application Br L → BrL(X) soit in-
jective. De façon encore plus générale, on peut demander que pour toute extension
finie (ou non) de corps L/K il n’y ait pas d’obstruction élémentaire à l’existence
d’un L-point sur X×K L (voir [4]).

Pour une K-variété X intersection complète lisse de dimension au moins 3 dans
un espace projectif Pn

K , l’obstruction élémentaire s’annule. Il en est de même pour
une K-variété projective et lisse géométriquement connexe qui contient un ou-
vert U qui est un espace homogène principal d’un groupe semi-simple simplement
connexe. Pour ces résultats, voir [4].

Remarque 12.13. Dans [4] on s’intéresse aux compactifications lisses d’espaces
homogènes de groupes linéaires connexes sur K = C(S) un corps de fonctions de
deux variables, lorsque les stabilisateurs géométriques sont connexes (et qu’il n’y a
pas de facteur E8). On montre que dans ce cas l’obstruction élémentaire à l’existence
d’un point rationnel est la seule obstruction.

Pour une hypersurface cubique lisse de dimension au moins 3 sur un corps K,
l’obstruction élémentaire s’annule. Sur l’exemple 12.1.2 on voit donc que
l’obstruction élémentaire est loin de contrôler l’existence d’un point rationnel pour
les variétés rationnellement connexes sur un corps de fonctions de deux variables
sur les complexes.

Remarque 12.14. De Jong et Starr ont un travail en préparation sur les variétés ra-
tionnellement simplement connexes où ils montrent que certains espaces homogènes
projectifs sur un corps de fonctions de deux variables sur C ont automatiquement
un point rationnel. Cela leur permet de donner une nouvelle démonstration (la
troisième !) du théorème de de Jong [41] qu’indice et exposant coı̈ncident pour les
algèbres simples centrales sur un tel corps.

12.5 Approximation faible en toutes les places d’un corps
de fonctions d’une variable

Rappelons que c’est une question ouverte (9.1) de savoir si toute variété rationnel-
lement connexe sur un corps de fonctions d’une variable satisfait l’approximation
faible en toute place.

Théorème 12.15 (Hassett-Tschinkel)[39] Soit K un corps de fonctions d’une va-
riable sur un corps algébriquement clos de caractéristique zéro. Il existe une
fonction ϕ : N→N satisfaisant la propriété suivante. Pour toute hypersurface lisse
de degré d dans Pn avec n≥ ϕ(d), l’approximation faible vaut en tout ensemble fini
de places de K.
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Pour d = 3, ϕ(3) = 6 convient.
Un travail en cours sur les variétés rationnellement simplement connexes (de

Jong-Starr [43], appendice de Hassett) donne ϕ(d) ≤ 2d2−d−1 et, si l’hypersur-
face est � générale , ϕ(d)≤ d2.

Théorème 12.16 (Hassett) Soit K = C(C) le corps des fonctions d’une courbe. Si
X/K est une variété fortement rationnellement simplement connexe, alors elle sa-
tisfait l’approximation faible par rapport à tout ensemble fini de places de K.

12.6 R-équivalence et équivalence rationnelle

Dans la recherche de la bonne définition de variétés � supérieurement rationnel-
lement connexes, on peut aussi penser à des conditions de trivialité de X(k)/R et de
A0(X) sur les corps � de dimension 2 , comme les corps p-adiques, les corps de
fonctions de deux variables sur les complexes, les corps de séries formelles itérées
C((a))((b)).

12.6.1 Groupes semi-simples simplement connexes

Si K est un corps p-adique, ou si K est un corps de fonctions de deux variables sur les
complexes, ou si K = C((a))((b)), et si G/K est un groupe semi-simple simplement
connexe sans facteur de type E8, on sait établir G(K)/R = 1 et X(K)/R = 1 (voir
[12]). Pour X une compactification lisse d’un tel G, ceci implique A0(X) = 0.

12.6.2 Hypersurfaces cubiques lisses

Proposition 12.17 (Madore) [58] Soit K un corps p-adique ou un corps C2.
Soit X ⊂ Pn

K une hypersurface cubique lisse. Pour n≥ 11, on a card X(K)/R = 1 et
A0(X) = 0.

Soit K un corps p-adique. Pour n = 3, on sait donner des exemples avec X(K)/R
et A0(X) d’ordre plus grand que 1. On ignore ce qui se passe pour 4≤ n≤ 10.

Par exemple, qu’en est-il pour l’hypersurface cubique d’équation :

x3 + y3 + z3 + pu3 + p2v3 = 0

dans P4
Qp

?

Supposons p≡ 1 mod 3, et soit a∈Z×p non cube. Qu’en est-il pour l’hypersurface

x3 + y3 + z3 + p(u3
1 + au3

2)+ p2(v3
1 + av3

2) = 0

dans P6
Qp

?
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Sur le corps K = C((a))((b)), en utilisant la théorie de l’intersection sur un
modèle au-dessus de C((a))[[b]], Madore [58] a montré que pour l’hypersurface
cubique lisse X ⊂ P4

K d’équation

x3 + y3 + az3 + bu3 + abv3 = 0,

on a A0(X) �= 0.

12.6.3 Intersections lisses de deux quadriques

Soit K un corps p-adique, et soit X ⊂ Pn
K , avec n≥ 4, une intersection complète lisse

de deux quadriques possédant un K-point. Si n ≥ 7, alors card X(K)/R = 1 [17] et
donc A0(X) = 0 (ceci vaut aussi pour un corps C2). L’ensemble fini X(K)/R peut
être non trivial pour n = 4. Les cas n = 5 et n = 6 sont ouverts. Le groupe A0(X) est
nul si n = 6 et k est non dyadique [62]. Le groupe fini A0(X) peut être non trivial
pour n = 4. Les cas n = 5 et n = 6 (k dyadique) sont ouverts.

Soient ai, i = 1, . . . ,3, bi, i = 1, . . . ,3 dans Zp satisfaisant ai �= bi et aib j−a jbi ∈
Z×p pour i �= j. Soit X ⊂P5

Qp
l’intersection complète lisse de deux quadriques donnée

par le système
3

∑
i=0

aiX
2
i + pX2

4 = 0,
3

∑
i=0

biX
2
i + pX2

5 = 0.

Que valent X(Qp)/R et A0(X) ?

12.6.4 Fibrés en quadriques sur la droite projective

Soit K un corps p-adique, et soit X une K-variété géométriquement intègre, projec-
tive et lisse sur K, fibrée en quadriques de dimension d ≥ 1 sur la droite projective
P1

K . Si p �= 2 et d ≥ 3, alors A0(X) = 0 [62]. Dans le cas d = 2, Parimala et Suresh
[62] ont un exemple intéressant avec A0(X) �= 0. Dans cet exemple, un élément non
nul de A0(X) est détecté par la mauvaise réduction de X de façon subtile, le groupe
de Brauer de X ne permet pas de détecter cet élément.

13 Surjectivité arithmétique et surjectivité géométrique

Mis à part bien sûr le théorème d’Ax et Kochen, les énoncés de ce paragraphe sont
établis dans des notes non publiées de l’auteur. Le lecteur ne devrait pas avoir de
difficulté à reconstituer les démonstrations.
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13.1 Morphismes définis sur un corps de nombres et applications
induites sur les points locaux

On s’intéresse dans la suite à la situation suivante.
(*) On est sur un corps de nombres k, X et Y sont deux k-variétés lisses géo-

métriquement intègres, la k-variété Y est projective, on a un k-morphisme projectif
f : X → Y de fibre générique géométriquement intègre. On note U ⊂ X l’ouvert de
lissité du morphisme f .

On demande quels sont les liens entre la géométrie du morphisme f et les pro-
priétés de surjectivité des applications induites X(kv)→ Y (kv) pour presque toute
place v, ou déjà pour une infinité de places v du corps de nombres k.

Les théorèmes 13.1 et 13.3 ci-après jouent un rôle central dans l’étude du principe
de Hasse pour les variétés algébriques sur un corps de nombres.

Théorème 13.1 Sous les hypothèses (*), si Y est une courbe et si l’application in-
duite U →Y est surjective (ce qui équivaut à : f : X →Y est localement scindé pour
la topologie étale sur Y), alors il existe une infinité de places v de k pour lesquelles
l’application induite X(kv)→ Y (kv) est surjective.

Démonstration. Pour chaque point fermé P de Y à fibre XP = f−1(P) non lisse on
choisit une composante ZP de multiplicité 1 de XP. L’existence d’une telle compo-
sante est garantie par l’hypothèse que la fibration est localement scindée pour la
topologie étale sur Y . Soit kP le corps résiduel de Y en P. Soit KP la clôture intégrale
de kP dans le corps des fonctions de ZP. Soit K/k une extension finie galoisienne de
k dans laquelle se plongent toutes les extensions KP/k. La fibration fK : XK → YK

satisfait alors les hypothèses du théorème 13.3 ci-après. En combinant ce théorème
et le théorème de Tchebotarev, qui garantit l’existence d’une infinité de places v de k
décomposées dans K, on conclut. Cette démonstration montre que l’ensemble infini
de places cherché contient un ensemble de places de k de densité positive.

Remarques 13.2. (1) L’hypothèse que l’application f : X → Y est localement
scindée pour la topologie étale sur Y est en particulier satisfaite si après extension
finie convenable de k la fibration f admet une section. D’après le théorème 7.3 (Gra-
ber, Harris et Starr), c’est le cas si la fibre générique est une variété rationnellement
connexe.

(2) Le théorème ne s’étend pas à Y de dimension supérieure, comme l’on voit
en considérant une fibration en coniques sur P2

Q dont le lieu de ramification est
une courbe C lisse et dont le revêtement double D→ C associé est donné par une
courbe D/Q géométriquement intègre. On peut par exemple prendre pour C ⊂ P2

Q

une courbe elliptique d’équation affine v2 = u(u− a)(u− b) et une famille de co-
niques d’équation générique

X2−uY2− (v2−u(u−a)(u−b))T2 = 0.

En utilisant le théorème de Lang-Weil, on établit le théorème suivant.
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Théorème 13.3 Sous les hypothèses (*), s’il existe un ouvert V ⊂ X tel que le mor-
phisme induit V → Y soit lisse, surjectif, à fibres géométriquement intègres, alors
pour presque toute place v de k, l’application induite X(kv)→ Y (kv) est surjective.

Remarque 13.4. Il ne suffit pas d’avoir la propriété en codimension 1 sur Y , comme
le montre l’exemple suivant. Prendre a ∈Q non carré et X ⊂ P3×Q P2 donnée par

uX2
0 −avX2

1 + wX2
2 −a(u + v + w)X2

3 = 0.

Pour une infinité de p, la flèche X(Qp)→ P2(Qp) n’est pas surjective : pour a∈Zp,
a non carré dans Zp, et M un point (p2n+1α, p2m+1β ,1) avec n,m≥ 0, α et β in Z∗p
et α.β carré dans Zp, la fibre en M n’a pas de Qp-point.

Le célèbre théorème d’Ax et Kochen [3] peut se formuler de la façon suivante.

Théorème 13.5 (Ax et Kochen) Fixons des entiers d et n ≥ d2. Soit N + 1 la di-
mension de l’espace des formes homogènes de degré d en n + 1 variables. Soit
F(x0, . . . ,xN ;y0, . . . ,yn) la forme universelle de degré d en n + 1-variables. Soit
Z ⊂ PN ×Q Pn le fermé défini par l’annulation de cette forme. Soit π : Z → PN

la projection sur le premier facteur. Sur tout corps de nombres k, pour presque toute
place v de k, la projection induite Z(kv)→ PN(kv) est surjective.

Remarque 13.6. En combinant le théorème 13.3 et le théorème 12.3, on établit un
énoncé du type Ax-Kochen pour la restriction de Z → PN au-dessus d’une droite de
PN (passant par un point à fibre lisse).

Si l’on pouvait répondre par l’affirmative à la question 3.10, la combinaison
du théorème 12.3 et du théorème 13.3 donnerait une nouvelle démonstration du
théorème d’Ax et Kochen.

Sans répondre à la question 3.10, Jan Denef a tout récemment (juin 2008) ob-
tenu une nouvelle démonstration du théorème d’Ax et Kochen, en établissant une
conjecture générale de [10].

On s’intéresse aux réciproques des énoncés ci-dessus.

Théorème 13.7 Plaçons-nous sous les hypothèses (*), avec Y une courbe.

(i) Si pour une infinité de places v l’application X(kv)→Y (kv) est surjective, alors
pour tout point P ∈Y (k) il existe une composante de multiplicité 1 de f−1(P).

(ii) Si pour toute extension finie K/k, pour une infinité de places w de K, l’appli-
cation X(Kw)→ Y (Kw) est surjective, alors l’application induite U → Y est
surjective : le morphisme X → Y est localement scindé pour la topologie étale
sur Y .

Théorème 13.8 Plaçons-nous sous les hypothèses (*), avec Y une courbe. Suppo-
sons que pour presque toute place v de k l’application X(kv)→Y (kv) est surjective.

Alors :

(a) L’application induite U →Y est surjective : le morphisme X→Y est localement
scindé pour la topologie étale sur Y .
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(b) Toute fibre connexe de U → Y est géométriquement connexe.
(c) Si P est un point fermé de Y , de corps résiduel κ et la fibre f−1(P) s’écrit

∑i eiDi avec chaque Di diviseur intègre, de corps des fonctions κi, la flèche

H1(κ ,Q/Z)→⊕iH
1(κi,Q/Z)

obtenue par somme des applications ei.Resκi/κ est injective.

Remarque 13.9. Le théorème 13.8 est le meilleur possible, comme le montre
l’exemple suivant. Soit k un corps de nombres, a,b ∈ k∗ avec a,b,ab /∈ k∗2. Soit
f : X → P1

k un modèle projectif de la situation affine suivante :

(x2−ay2)(u2−bv2)(z2−abw2) = t,

la flèche de projection sur A1
k étant donnée par la coordonnée t. Alors

a) La fibre de f en 0 ne contient aucune composante géométriquement intègre de
multiplicité 1.

b) Pour toute extension finie K/k, pour presque toute place w de K, l’application
X(Kw)→ Y (Kw) est surjective.

Tout le problème est qu’un polynôme en une variable sur un corps de nombres
peut avoir une solution partout localement sans en avoir sur le corps de nombres,
dès qu’il est réductible. Ainsi on ne peut pas partir du théorème d’Ax et Kochen
pour en déduire le théorème 12.3 sur la réduction des formes lisses de degré d en
n > d2 variables.

13.2 Quelques autres questions

Diverses questions connexes ont été discutées dans la littérature.
Soient k un corps de nombres et f : X → Y un k-morphisme propre de k-variétés

lisses géométriquement intègres, Y étant une courbe.

Question 1. Si sur toute extension finie K/k l’application X(K)→ Y (K) est surjec-
tive (à un nombre fini de points près), le morphisme admet-il une section ?

Question 2. Si sur tout complété kv le kv-morphisme Xkv → Ykv a une section, le
morphisme f admet-il une section ?

En dimension relative 1, pour les courbes relatives de genre zéro, la réponse à ces
deux questions est oui pour Y = P1 (Schinzel, Salberger, Serre). Ceci utilise l’injec-
tion Brk(t) ↪→∏v Brk(t) qui s’établit en considérant la suite exacte de localisation
pour le groupe de Brauer sur la droite projective. La réponse est non pour Y une
courbe de genre 1 : on utilise une courbe elliptique Y avec un élément de 2-torsion
dans son groupe de Tate-Shafarevich représenté par une algèbre de quaternions sur
le corps de fonctions k(Y ) (voir [61]).
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En dimension relative 1, pour les courbes relatives de genre 1 et Y = P1, la ques-
tion 1 est ouverte. La question 2 a une réponse négative (prendre X = C×k P1 avec
C une courbe de genre 1 qui est un contre-exemple au principe de Hasse).

Pour les familles de quadriques de dimension relative d ≥ 2 au-dessus de Y = P1
Q

la réponse aux deux questions ci-dessus est négative, et ce pour tout tel d.
Soit k un corps de nombres totalement imaginaire. Pour les familles de qua-

driques de dimension relative d ≥ 2 au-dessus de Y = P1
k , la réponse aux deux

questions est négative pour 2 ≤ d ≤ 6. (Pour d ≥ 7, on conjecture qu’il y a tou-
jours une section.)

Pour justifier ces réponses négatives, partons d’un couple de formes quadratiques
f (x1, . . . ,xn),g(y1, . . . ,ym) sur le corps de nombres k tel que sur tout complété de k
l’une des deux formes ait un zéro non trivial (donc n et m sont au moins égaux à 2)
mais que pour chacune de ces formes il existe un complété kv sur lequel la forme
n’a pas de zéro non trivial.

Un théorème d’Amer et de Brumer (voir les références dans [17]) garantit que
sur toute extension F de k, la forme quadratique f (x1, . . . ,xn)+ tg(y1, . . . ,ym) sur le
corps F(t) admet un zéro non trivial sur F(t) si et seulement si le système

f (x1, . . . ,xn) = 0, g(y1, . . . ,ym) = 0

admet un zéro non trivial dans Fn+m.
La forme f (x1, . . . ,xn)+tg(y1, . . . ,ym) sur le corps k(t) a alors un zéro sur chaque

kv(t) mais n’en a pas sur k(t). Ceci donne les réponses négatives à la question 2, et
les réponses négatives à la question 1 résultent du principe de Hasse pour les formes
quadratiques sur un corps de nombres.
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Topics in Diophantine Equations

Sir Peter Swinnerton-Dyer

1 Introduction

These notes fall into two parts. The first part, which goes up to the end of Sect. 5,
is a general survey of some of the topics in the theory of Diophantine equations
which interest me and on which I hope to see progress within the next 10 years.
Because of the second condition, I have for example not covered the Riemann Hy-
pothesis or the Birch/Swinnerton-Dyer conjectures, both of which at the moment
appear intractable. Another such survey can be found in Silverberg [1]; it has little
overlap with this one but should appeal to the same readers. In the second part of
these notes, I go into more detail on some particular topics than there was time for
in the lectures.

A Diophantine problem over Q or Z is concerned with the solutions either in Q
or in Z of a finite system of polynomial equations

Fi(X1, . . . ,Xn) = 0 (1≤ i≤ m) (1)

with coefficients in Q. Without loss of generality we can obviously require the co-
efficients to be in Z. A system (1) is also called a system of Diophantine equations.
Often one will be interested in a family of such problems rather than a single one; in
this case one requires the coefficients of the Fi to lie in some Q(c1, . . . ,cr), and one
obtains an individual problem by giving the c j values in Q. Again one can get rid of
denominators. Some of the most obvious questions to ask about such a family are:

(A) Is there an algorithm which will determine, for each assigned set of values of
the c j, whether the corresponding Diophantine problem has solutions, either
in Z or in Q?

(B) When the answer to (A) is positive, is there for values of the c j for which the
system is soluble an algorithm for exhibiting a solution? For example, is there
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an upper bound for the height of the smallest solution in terms of the heights
of the coefficients of (1)?

For individual members of such a family, it is also natural to ask:

(C) Can we describe the set of all solutions, or even its structure?
(D) Is the phrase “density of solutions” meaningful, and if so, what can we say

about it?

The attempts to answer these questions have led to the introduction of new ideas
and these have generated new questions. Progress in mathematics usually comes
by proving results; but sometimes a well justified conjecture throws new light on
the structure of the subject. (For similar reasons, well motivated computations can
be helpful; but computations not based on a feeling for the structure of the subject
have generally turned out to be a waste of time.)

Though the problems associated with solutions in Z and in Q may look very
similar (and indeed were believed for a long time to be so), it now appears that
the methods which are useful are actually very different; and currently the theory
for solutions in Q has much more structure than that for solutions in Z. The main
reason for this seems to be that in the rational case the system (1) defines a variety
in the sense of algebraic geometry, and many of the tools of that discipline can be
used. Despite the advent of Arakelov geometry, this is much less true of integral
problems. However, for most families of varieties of degree greater than 2 it is only
in low dimension that we yet know enough of the geometry for it to be useful.
Uniquely, the Hardy-Littlewood method is useful both for integral and for rational
problems; it was designed for integral problems but it can also be applied to rational
problems by making the equations homogeneous. There is a brief discussion of this
method in Sect. 5 and a comprehensive survey in [2].

Denote by V the variety defined by (1) and let V ′ be any variety birationally
equivalent to V over Q. Rational solutions of (1) in Q are just rational points on V ,
and finding them is almost the same as finding rational points on V ′. Hence (ex-
cept for Question (D) above) one expects the properties of the rational solutions of
(1) to be essentially determined by the birational equivalence class of V over Q.
Classifying Diophantine problems over Q therefore corresponds to classifying bi-
rational equivalence classes of varieties over Q. A first crude approximation to this
is to classify them over C. So number theorists would be helped if geometers could
develop an adequate classification of varieties. At the moment, such a classification
is reasonably complete for curves and surfaces, but it is still fragmentary even in
dimension 3; so for those number theorists who use geometric methods it is natural
to concentrate on curves and surfaces and on certain particularly simple kinds of
variety of higher dimension.

The definitions and the questions above can be generalized to an arbitrary alge-
braic number field and the ring of integers in it; the answers are usually known or
conjectured to be similar to those over Q or Z, though the proofs can be very much
harder. (But there are exceptions; for example, the modularity of elliptic curves
only holds over Q.) Some of the questions above can also be posed for other fields
of number-theoretic interest – in particular for finite fields and for completions of
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algebraic number fields – and when one studies Diophantine problems it is often
essential to consider these fields also. If V is defined over a field K, the set of points
on V defined over K is denoted by V (K). If V (K) is not empty we say that V is sol-
uble in K. In the special case where K = kv, the completion of an algebraic number
field k at the place v, we also say that V is locally soluble at v. From now on we
denote by Qv any completion of Q; thus Qv means R or some Qp.

One major reason for considering solubility in complete fields and in finite fields
is that a necessary condition for (1) to be soluble in Q is that it is soluble in every
Qv. The condition of solubility in every Qv is computationally decidable; see Sect. 2.
Moreover the first step in deciding solubility in Qp is to study the solutions of the
system reduced mod p in the finite field Fp of p elements.

Diophantine problems were first introduced by Diophantus of Alexandria, the
last of the great Greek mathematicians, who lived at some time between 300 BC
and 300 AD; but he was handicapped by having only one letter available to repre-
sent variables, all the others being used in the classical world to represent specific
numbers. Individual Diophantine problems were studied by such great mathemati-
cians as Fermat, Euler and Gauss. But it was Hilbert’s address to the International
Congress in 1900 which started the development of a systematic theory. His tenth
problem asked:

Given a Diophantine equation with any number of unknown quantities and with rational
integral numerical coefficients: to devise a process according to which it can be determined
by a finite number of operations whether the equation is soluble in rational integers.

Most of the early work on Diophantine equations was concerned with rational rather
than integral solutions; presumably Hilbert posed this problem in terms of integral
solutions because such a process for integral solutions would automatically pro-
vide the corresponding process for rational solutions also. In the confident days
before the First World War, it was assumed that such a process must exist; but in
1970 Matijasevič showed that this was impossible. He exhibited a polynomial
F(c;x1, . . . ,xn) such that there cannot exist an algorithm which will decide for every
given integer c whether F = 0 is soluble in integers. His proof is part of the great
program on decidability initiated by Gödel; good accounts of it can be found in [3],
pp 323–378 or [4]. The corresponding question for rational solutions is still open;
I am among the few who believe that it may have a positive answer. Certainly it is
important to ask for which families of varieties such a process exists, and to find
such a process when it does exist.

2 The Hasse Principle and the Brauer-Manin Obstruction

Let V be a variety defined over Q. If V is locally soluble at every place of Q, we say
that it satisfies the Hasse condition. If V (Q) is not empty then V certainly satisfies
the Hasse condition, so the latter is necessary for solubility. What makes this remark
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valuable is that the Hasse condition is computable – that is, one can decide in finitely
many steps whether a given V satisfies the Hasse condition. This follows from the
next two lemmas.

Lemma 2.1. Let W be an absolutely irreducible variety of dimension n defined over
the finite field k = Fp. Then N(p), the number of points on W defined over k, satisfies

|N(p)− pn|< Cpn−1/2

where the constant C depends only on the degree and dimension of W and is com-
putable.

This follows from the Weil conjectures, for which see Sect. 3; but weaker results
which are adequate for the proof that the Hasse condition is computable were known
much earlier. Since the singular points of W lie on a proper subvariety, there are at
most C1 pn−1 of them, where C1 is also computable. It follows that if p exceeds
a computable bound depending only on the degree and dimension of W then W
contains a nonsingular point defined over Fp.

Let V be an absolutely irreducible nonsingular variety defined over Q, embedded
in affine or projective space. We obtain Ṽp, its reduction mod p, by taking all the
equations for V with coefficients in Z and mapping the coefficients into Fp. If Ṽp is
nonsingular and has the same dimension as V , then V is said to have good reduction
at p; this happens for all but a finite computable set of primes p. If p is large enough,
it follows from the remarks above that Ṽp contains a nonsingular point Qp defined
over Fp. The result which follows, which is known as Hensel’s Lemma though the
idea of the proof goes back to Newton, now shows that V contains a point Pp defined
over Qp.

Lemma 2.2. Let V be an absolutely irreducible variety defined over Q which has
a good reduction Ṽp mod p. If Ṽp contains a nonsingular point Qp defined over Fp

then V contains a nonsingular point Pp defined over Qp whose reduction mod p
is Qp.

In view of this, to decide whether V satisfies the Hasse condition one only has to
check solubility in R and in finitely many Qp. Each of these checks can be shown
to be a finite process.

A family F of varieties is said to satisfy the Hasse Principle if every V contained
in F and defined over Q which satisfies the Hasse condition actually contains at
least one point defined over Q. Again, a family F is said to admit weak approxi-
mation if every V contained in F and defined over Q, and such that V (Q) is not
empty, has the following property: given any finite set of places v and correspond-
ing non-empty sets Nv ⊂ V (Qv) open in the v-adic topology, there is a point P in
V (Q) which lies in each of the Nv. In the special case when F consists of a single
variety V , and V (Q) is not empty, we simply say that V admits weak approximation.
Whether V admits weak approximation appears not to be computable in general; for
a case where it is, see [5]. All this generalizes effortlessly to an arbitrary algebraic
number field.
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The most important families which are known to have either of these properties
(and which actually have both) are the families of quadrics of any given dimension;
this was proved by Minkowski for quadrics over Q and by Hasse for quadrics over
an arbitrary algebraic number field. They also both hold for Severi-Brauer varieties,
which are varieties biregularly equivalent to some Pn over C. But many families,
even of very simple varieties, do not satisfy either the Hasse Principle or weak ap-
proximation. (For example, neither of them holds for nonsingular cubic surfaces.) It
is therefore natural to ask

Question 2.3. For a given family F , what are the obstructions to the Hasse Princi-
ple and to weak approximation?

For weak approximation there is a variant of this question which may be more in-
teresting and and is certainly easier to answer. For another way of stating weak
approximation on V is to say that if V (Q) is not empty then it is dense in the adelic
space V (A) =∏v V (Qv). This suggests the following:

Question 2.4. For a given V , or family F , what can be said about the closure of
V (Q) in the adelic space V (A)?

For the example of cubic surfaces, see [5]. However, there are families for which
Question 2.3 does not seem to be a sensible question to ask; these probably include
for example all families of varieties of general type. So one should also back up
Question 2.3 with

Question 2.5. For what kinds of families is either part of Question 2.3 a sensible
question to ask?

The only known systematic obstruction to the Hasse Principle or to weak ap-
proximation is the Brauer-Manin obstruction, though obstructions can be found in
the literature which are not Brauer-Manin. (See for example Skorobogatov [6].) It
is defined as follows. Let A be a central simple algebra – that is, a simple algebra
which is finite dimensional over a field K which is its centre. Each such algebra
consists, for fixed D and n, of all n×n matrices with elements in a division algebra
D with centre K. Two central simple algebras over K are equivalent if they have the
same underlying division algebra. Formation of tensor products over K gives the
set of equivalence classes the structure of a commutative group, called the Brauer
group of K and written Br(K). There is a canonical isomorphism ıp : Br(Qp)�Q/Z
for each p; and there is a canonical isomorphism ı∞ : Br(R)� {0, 1

2}, the nontrivial
division algebra over R being the classical quaternions.

Let B be an element of Br(Q). Tensoring B with any Qv gives rise to an element
of Br(Qv), and this element is trivial for almost all v. There is an exact sequence

0→ Br(Q)→
⊕

Br(Qv)→Q/Z→ 0,

due to Hasse, in which the third map is the sum of the ıv; it tells us when a set of
elements, one in each Br(Qv) and almost all trivial, can be generated from some
element of Br(Q).
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Now let V be a complete nonsingular variety defined over Q and A an Azumaya
algebra on V – that is, a simple algebra with centre Q(V) which has a good special-
ization at every point of V . The group of equivalence classes of Azumaya algebras
on V is denoted by Br(V ). If P is any point of V , with field of definition Q(P),
we obtain a simple algebra A(P) with centre Q(P) by specializing at P. For all but
finitely many p, we have ıp(A(Pp)) = 0 for all p-adic points Pp on V . Thus, as was
first noticed by Manin, a necessary condition for the existence of a rational point P
on V is that for every v there should be a v-adic point Pv on V such that

∑ ıv(A(Pv)) = 0 for all A. (2)

Similarly, a necessary condition for V with V (Q) not empty to admit weak approxi-
mation is that (2) should hold for all Azumaya algebras A and all adelic points∏v Pv.
In each case this is the Brauer-Manin condition. It is clearly unaffected if we add to
A a constant algebra – that is, an element of Br(Q). So what we are really interested
in is Br(V )/Br(Q).

All this can be put into highbrow language. For any V there is an injection of
Br(V ) into the étale cohomology group H2(V,Gm); and if for example V is a com-
plete nonsingular surface, this injection is an isomorphism. If we write

Br1(V ) = ker(Br(V )→ Br(V̄ )) = ker(H2(V,Gm)→ H2(V̄ ,Gm)),

there is a filtration
Br(Q)⊂ Br1(V )⊂ Br(V ).

However, not even the abstract structure of Br(V )/Br1(V ) is known; and there is
no known systematic way of finding Azumaya algebras which represent nontrivial
elements of this quotient, though in a particular case Harari [7] has exhibited a
Brauer-Manin obstruction coming from such an algebra. In contrast, provided the
Picard variety of V is trivial there is an isomorphism

Br1(V )/Br(Q)� H1(Gal(Q̄/Q),Pic(V ⊗ Q̄)),

and this is computable in both directions provided the Néron-Severi group of V over
Q̄ is known and is torsion-free. (For details of this, see [8].)

There is no known systematic way of determining the Néron-Severi group for ar-
bitrary V , and there is strong reason to suppose that this is really a number-theoretic
rather than a geometric problem. One may need to approach this question through
the Tate conjectures, for which see Sect. 3; but this is a very long-term strategy.
However, it is usually possible to determine it for any given V , even if one cannot
prove that this determination is correct.

Question 2.6. Is there a general algorithm (even conjectural) for determining the
Néron-Severi group of V for varieties V defined over an algebraic number field?

Lang has conjectured that if V is a variety of general type defined over an alge-
braic number field K then there is a finite union S of proper subvarieties of V such
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that every point of V (K) lies in S . (Faltings’ theorem, for which see Sect. 4, is the
special case of this for curves.) This raises another question, similar to Question 2.6
but probably somewhat easier:

Question 2.7. Is there an algorithm for determining Pic(V ) where V is a variety
defined over an algebraic number field?

The Brauer-Manin obstruction was introduced by Manin [9] in order to bring
within a single framework various sporadic counterexamples to the Hasse principle.
The theory of this obstruction has been extensively developed, largely by Colliot-
Thélène and Sansuc. In particular, for rational varieties they have shown how to go
back and forth between the Brauer-Manin condition and the descent condition for
torsors under tori. They also defined universal torsors and showed that if there is
no Brauer-Manin obstruction to the Hasse principle on a variety V then there exists
a universal torsor over V which has points everywhere locally. This suggests that
one should pay particular attention to Diophantine problems on universal torsors.
Unfortunately, it is usually not easy to exploit what is known about the geomet-
ric structure of universal torsors. Indeed there are very few families for which the
Brauer-Manin obstruction can be nontrivial but for which it has been shown that
it is the only obstruction to the Hasse principle. (See however [10] and, subject to
Schinzel’s hypothesis, [11, 12].) Colliot-Thélène and Sansuc have conjectured that
the Brauer-Manin obstruction is the only obstruction to the Hasse principle for ra-
tional surfaces – that is, surfaces birationally equivalent to P2 over Q̄. On the other
hand, Skorobogatov ([6], and see also [13]) has exhibited on a bielliptic surface an
obstruction to the Hasse principle which is definitely not Brauer-Manin.

Question 2.8. Is the Brauer-Manin obstruction the only obstruction to the Hasse
principle for all unirational (or all Fano) varieties?

For the method of universal torsors, the immediate question to address must be the
following:

Question 2.9. Does the Hasse principle hold for universal torsors over a rational
surface?

We can of course ask similar questions for weak approximation. Both for the Hasse
principle and for weak approximation one can alternatively ask what is the most
general class of varieties for which the Brauer-Manin obstruction is the only one.
Colliot-Thélène has suggested that this class probably includes all rationally con-
nected varieties.

There are families F whose universal torsors appear to be too complicated
to be systematically investigated, but for which it is still possible to identify the
obstruction to the Hasse principle. It is sometimes possible to start from the ab-
sence of a Brauer-Manin obstruction (the most impressive example being Chap. 3
of Wittenberg [14]); but there are also alternative strategies. Implementing these
falls naturally into two parts:

1. Assuming that V in F satisfies the Hasse condition, one finds a necessary and
sufficient condition for V to have a rational point, or to admit weak approximation.
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2. One then shows that this necessary and sufficient condition is equivalent to the
Brauer-Manin condition.

Both parts of this strategy have been applied to pencils of conics, where one uses
Schinzel’s Hypothesis to implement (1); see [12, 11]. Except for Skorobogatov’s
example above, I know of no families for which it has been possible to carry out (1)
but not (2). But there are families for which it has been possible to find a sufficient
condition for solubility (additional to the Hasse condition) which appears rather
weak but which is definitely stronger than the Brauer-Manin condition. The obvious
examples of such a condition are the various forms of what is called Conditions D
or E in [15, 16, 17, 18]. However, in these cases it is not obvious that a condition
stronger than the Brauer-Manin condition is actually necessary; and I attribute the
gap to clumsiness in the proofs.

Question 2.10. When the Brauer-Manin condition is trivial, how can one make use
of this fact?

In addition to the work of Wittenberg cited above, there are at least two known
approaches to this question: by descent using torsors, and by the fibration method
exploited in particular by Harari.

3 Zeta-Functions and L-Series

Let W ⊂ Pn be a nonsingular and absolutely irreducible projective variety of
dimension d defined over the finite field k = Fq, and denote by φ(q) the Frobenius
automorphism of W given by

φ(q) : (x0,x1, . . . ,xn) �→ (xq
0,x

q
1, . . . ,x

q
n).

For any r > 0 the fixed points of (φ(q))r are precisely the points of W which are
defined over Fqr ; suppose that there are N(qr) of them. Although the context is
totally different, this is almost the formalism of the Lefschetz Fixed Point theorem,
since for geometric reasons each of these fixed points has multiplicity +1. This
analogy led Weil to conjecture that there should be a cohomology theory applicable
in this context. This would imply that there were finitely many complex numbers
αi j such that

N(qr) =
2d

∑
i=0

Bi

∑
j=1

(−1)iαr
i j for all r > 0, (3)

where Bi is the dimension of the ith cohomology group of W and the αi j are the
characteristic roots of the map induced by φ(q) on the ith cohomology. For each i
duality asserts that Bi = B2d−i and the α2d−i, j are a permutation of the qd/αi j. If we
define the local zeta-function Z(t,W ) by either of the equivalent relations
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logZ(t) =
∞

∑
r=1

N(qr)tr/r or tZ′(t)/Z(t) =
∞

∑
r=1

N(qr)tr,

then (3) is equivalent to

Z(t) =
P1(t,W ) · · ·P2d−1(t,W )

P0(t,W )P2(t,W ) · · ·P2d(t,W )

where Pi(t,W ) = ∏ j(1−αi jt). Each Pi(t,W ) must have coefficients in Z, and the
analogue of the Riemann hypothesis is that |αi j| = qi/2. (For a fuller account of
Weil’s conjectures and their motivation, see the excellent survey [19].) All this has
now been proved, the main contributor being Deligne.

Now let V be a nonsingular and absolutely irreducible projective variety defined
over an algebraic number field K. If V has good reduction at a prime p of K we can
form Ṽp, the reduction of V mod p, and hence form the Pi(t,Ṽp). For s in C, we can
now define the ith global L-series Li(s,V ) of V as a product over all places of K, the
factor at a prime p of good reduction being (Pi(q−s,Ṽp))−1 where q = NormK/Qp.
The rules for forming the factors at the primes of bad reduction and at the infinite
places can be found in [20]. These L-series of course depend on K as well as on V .
In particular, L0(s,V ) is just the zeta-function of the algebraic number field K.

To call a function F(s) a (global) zeta-function or L-series ought to carry with it
certain implications, though some authors have used these terms very loosely:

• F(s) should be the product of a Dirichlet series and possibly some Gamma-
functions, and the half-plane of absolute convergence for the Dirichlet series
should have the form Rs > σ0 with 2σ0 in Z.

• The Dirichlet series should be expressible as an Euler product∏p fp(p−s) where
the fp are rational functions.

• F(s) should have an analytic continuation to the entire s-plane as a meromorphic
function all of whose poles are in Z.

• There should be a functional equation relating F(s) and F(2σ0−1− s).
• The zeroes of F(s) in the critical strip σ0− 1 < Rs < σ0 should lie on Rs =
σ0− 1

2 .

In our case, the first two implications are trivial; and fortunately one is not expected
to prove the last three, but only to state them as conjectures. The last one is the
Riemann Hypothesis, which appears to be out of reach even in the simplest case,
which is the classical Riemann zeta-function; and the third and fourth have so far
only been proved in a few favourable cases.

Question 3.1. Can one extend the list of V for which analytic continuation and the
functional equation can be proved?

It seems likely that any proof of analytic continuation will carry a proof of the
functional equation with it.

It has been said about the zeta-functions of algebraic number fields that “the zeta-
function knows everything about the number field; we just have to prevail on it to
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tell us”. If this is so, we have not yet unlocked the treasure-house. Apart from the
classical formula which relates hR to ζK(0) all that has so far been proved are certain
results of Borel [21] which relate the behaviour of ζK(s) near s = 1−m for integers
m > 1 to the K-groups of OK . One might hope that when a mysterious number turns
up in the study of Diophantine problems on V , some L-series contains information
about it; and this is certainly sometimes true, the most spectacular examples being
the Birch/Swinnerton-Dyer conjecture and the far-reaching generalizations of it due
to Bloch and Kato. But it appears to be false for the order of the Chow group of
a rational surface; this is always finite, but two such surfaces can have the same
L-series while having Chow groups of different orders.

Suppose for convenience that V is defined over Q, and let its dimension be d.
Even for varieties with B1 = 0 we do not expect a product like

∏
p

N(p)/pd or ∏
p

N(p)
/(

pd+1−1
p−1

)
(4)

to be necessarily absolutely convergent. But in some contexts there is a respectable
expression which is formally equivalent to one of these, with appropriate modifica-
tions of the factors at the bad primes. The idea that such an expression should have
number-theoretic significance goes back to Siegel (for genera of quadratic forms)
and Hardy/Littlewood (for what they called the singular series). Using the ideas
above, we are led to replace the study of the products (4) by a study of the behaviour
of L2d−1(s,V ) and L2d−2(s,V ) near s = d. By duality, this is the same as studying
L1(s,V ) near s = 1 and L2(s,V ) near s = 2. The information derived in this way ap-
pears to relate to the Picard group of V , defined as the group of divisors defined over
Q modulo linear equivalence. By considering simultaneously both V and its Picard
variety (the abelian variety which parametrises divisors algebraically equivalent to
zero modulo linear equivalence), one concludes that L1(s,V ) should be associated
with the Picard variety and L2(s,V ) with the group of divisors modulo algebraic
equivalence – that is, with the Néron-Severi group of V . These ideas motivated the
weak forms of the Birch/Swinnerton-Dyer conjecture (for which see Sect. 4) and the
case m = 1 of the Tate conjecture below. For the strong forms (which give expres-
sions for the leading coefficients of the relevent Laurent series expansions) heuristic
arguments are less convincing; but one can formulate conjectures for these coeffi-
cients by asking what other mysterious numbers turn up in the same context and
should therefore appear in the formulae for the leading coefficients.

The weak form of the Tate conjecture asserts that the order of the pole of
L2m(s,V ) at s = m + 1 is equal to the rank of the group of classes of m-cycles
on V defined over K, modulo algebraic equivalence; it is a natural generalization
of the case m = 1 for which the heuristics have just been shown. For a more de-
tailed account of both of these, including the conjectural formulae for the leading
coefficients, see [22] or [23].
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Question 3.2. What information about V is contained in its L-series?

There is in the literature a beautiful edifice of conjecture, lightly supported by
evidence, about the behaviour of the Li(s,V ) at integral points. The principal archi-
tects of this edifice are Beilinson, Bloch and Kato. Beilinson’s conjectures relate to
the order and leading coefficients of the Laurent series expansions of the Li(s,V )
at integer values of s; in them the leading coefficients are treated as elements of
C∗/Q∗. (For a full account see [24] or [25].) Bloch and Kato [26, 27] have strength-
ened these conjectures by treating the leading coefficients as elements of C∗. But I
do not believe that anything like the full story has yet been revealed.

4 Curves

The most important invariant of a curve is its genus g. In the language of algebraic
geometry over C, curves of genus 0 are called rational, curves of genus 1 are called
elliptic and curves of genus greater than 1 are of general type. But note that for a
number theorist an elliptic curve is defined to be a curve of genus 1 with a distin-
guished point P0 on it, both being defined over the ground field K. The effect of this
is that the points on an elliptic curve form an abelian group with P0 as its identity
element, the sum of P1 and P2 being the other zero of the function (defined up to
multiplication by a constant) with poles at P1 and P2 and a zero at P0.

A canonical divisor on a curve Γ of genus 0 has degree −2; hence by the
Riemann-Roch theoremΓ is birationally equivalent over the ground field to a conic.
The Hasse principle holds for conics, and therefore for all curves of genus 0; this
gives a complete answer to Question (A) at the beginning of these notes. But it does
not give an answer to Question (B). Over Q, a very simple answer to Question (B)
is as follows:

Theorem 4.1. Let a0,a1,a2 be nonzero elements of Z. If the equation

a0X2
0 + a1X2

1 + a2X2
2 = 0

has a nontrivial solution in Z, then it has a solution for which each aiX2
i is absolutely

bounded by |a0a1a2|.
Siegel [28] has given an answer to Question (B) over arbitrary algebraic number
fields, and Raghavan [29] has generalized Siegel’s work to quadratic forms in more
variables.

The knowledge of one rational point on Γ enables us to transform Γ birationally
into a line; so if Γ is soluble there is a parametric solution which gives explicitly all
the points on Γ defined over the ground field. This answers Question (C).

If Γ is a curve of general type defined over an algebraic number field K, Mordell
conjectured and Faltings proved that Γ (K) is finite; and a number of other proofs
have appeared since then. But it does not seem that any of them enable one to com-
pute Γ (K), though some of them come tantalizingly close. For a survey of several
such proofs, see [30].
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Question 4.2. Is there an algorithm for computing Γ (Q) when Γ is a curve of
general type defined over Q?

The study of rational points on elliptic curves is now a major industry, almost
entirely separate from the study of other Diophantine problems. If Γ is an ellip-
tic curve defined over an algebraic number field K, the group Γ (K) is called the
Mordell-Weil group. Mordell proved that Γ (K) is finitely generated and Weil ex-
tended this to all Abelian varieties. Thanks to Mazur [31] and Merel [32] the theory
of the torsion part of the Mordell-Weil group is now reasonably complete; but for the
non-torsion part all that was known before 1960 is that for any n > 1 Γ (K)/nΓ (K)
could be embedded into a certain group (the n-Selmer group, for which see Sect. 10)
which is finitely generated and computable. The process involved, which is known
as the method of infinite descent, goes back to Fermat; various forms of this for
n = 2 will be described in Sect. 10. By means of this process one can always com-
pute an upper bound for the rank of the Mordell-Weil group of any particular Γ ,
and the upper bound thus obtained can frequently be shown to be equal to the actual
rank by exhibiting enough elements of Γ (K). It was also conjectured that the dif-
ference between the upper bound thus computed and the actual rank was always an
even integer, but apart from this the actual rank was mysterious. This not wholly sat-
isfactory state of affairs has been radically changed by the Birch/Swinnerton-Dyer
conjecture, the weak form of which is described at the end of this section. A survey
of what is currently known or conjectured about the ranks of Mordell-Weil groups
can be found in [33].

Suppose now that Γ is a curve of genus 1 defined over K but not necessarily
containing a point defined over K. Let J be the Jacobian of Γ , defined as a curve
whose points are in one-one correspondence with the divisors of degree 0 on Γ
modulo linear equivalence. Then J is also a curve of genus 1 defined over K, and
J(K) contains the point which corresponds to the trivial divisor. So J is an elliptic
curve in our sense.

Conversely, if we fix an elliptic curve J defined over K we can consider the equiv-
alence classes (for birational equivalence over K) of curves Γ of genus 1 defined
over K which have J as Jacobian. For number theory, the only ones of interest are
those which contain points defined over each completion Kv. These form a commu-
tative torsion group, called the Tate-Shafarevich group and usually denoted by X;
the identity element of this group is the class which contains J itself, and it consists
of those Γ which have J as Jacobian and which contain a point defined over K. (The
simplest example of a nontrivial element of a Tate-Shafarevich group is the curve

3X3
0 + 4X3

1 + 5X3
2 = 0 with Jacobian Y 3

0 +Y 3
1 + 60Y3

2 = 0.)

Thus for curves of genus 1 the Tate-Shafarevich group is by definition the obstruc-
tion to the Hasse principle.

The weak form of the Birch/Swinnerton-Dyer conjecture states that the rank
of the Mordell-Weil group of an elliptic curve J is equal to the order of the zero
of L1(s,J) at s = 1; the conjecture also gives an explicit formula for the leading
coefficient of the power series expansion at that point. Note that this point is at the
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centre of the critical strip, so that the conjecture pre-supposes the analytic continu-
ation of L1(s,J). At present there are two well-understood cases in which analytic
continuation is known: when K = Q, so that J can be parametrised by means of mod-
ular functions, and when J admits complex multiplication. In consequence, these
two cases are likely to be easier than the general case; but even here I do not expect
much further progress in the next decade. In each of these two cases, if one assumes
the Birch/Swinnerton-Dyer conjecture one can derive an algorithm for finding the
Mordell-Weil group and the order of the Tate-Shafarevich group; and in the first of
the two cases this algorithm has been implemented by Gebel [34]. Without using
the Birch/Swinnerton-Dyer conjecture, Heegner long ago produced a way of gener-
ating a point on J whenever K = Q and J is modular; and Gross and Zagier [35, 36]
have shown that this point has infinite order precisely when L′(1,J) �= 0. Building
on their work, Kolyvagin (see [37]) has shown the following.

Theorem 4.3. Suppose that the Heegner point has infinite order; then the group
J(Q) has rank 1 and X(J) is finite.

Kolyvagin [38] has also obtained sufficient conditions for both J(Q) and X(J) to
be finite. The following result is due to Nekovar and Plater.

Theorem 4.4. If the order of L(s,J) at s = 1 is odd then either J(Q) is infinite or
the p-part of X(J) is infinite for every good ordinary p.

If J is defined over an algebraic number field K and can be parametrized by mod-
ular functions for some arithmetic subgroup of SL2(R) then analytic continuation
and the functional equation for L1(s,J) follow; but there is not even a plausible con-
jecture identifying the J which have this property, and there is no known analogue
of Heegner’s construction.

In the complex multiplication case, what is known is as follows.

Theorem 4.5. Let K be an imaginary quadratic field and J an elliptic curve defined
and admitting complex multiplication over K. If L(1,J) �= 0, then

(i) J(K) is finite;
(ii) For every prime p > 7 the p-part of X(J) is finite and has the order predicted

by the Birch/Swinnerton-Dyer conjecture.

Here (i) is due to Coates and Wiles, and (ii) to Rubin. For an account of the proofs,
see [39]. Katz has generalized (i) and part of (ii) to behaviour over an abelian exten-
sion of Q, but with the same J as before.

In general we do not know how to compute X. It is conjectured that it is always
finite; and indeed this assertion can be regarded as part of the Birch/Swinnerton-
Dyer conjecture, for the formula for the leading coefficient of the power series for
L1(s,J) at s = 1 contains the order of X(J) as a factor. If indeed this order is finite,
then it must be a square; for Cassels has proved the existence of a skew-symmetric
bilinear form on X with values in Q/Z, which is nonsingular on the quotient of
X by its maximal divisible subgroup. In particular, finiteness implies that if X
contains at most p−1 elements of order exactly p for some prime p then it actually
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contains no such elements; hence an element which is killed by p is trivial, and the
curves of genus 1 in that equivalence class contain points defined over K. For use
later, we state the case p = 2 as a lemma.

Lemma 4.6. Suppose that X(J) is finite and the quotient of the 2-Selmer group of
J by its soluble elements has order at most 2; then that quotient is actually trivial.

5 Varieties of Higher Dimension and the Hardy-Littlewood
Method

A first coarse classification of varieties of dimension n is given by the Kodaira
dimension κ , which can take the values −∞ or 0,1, . . . ,n. Denote the genus of a
curve by g; then for curves κ =−∞ corresponds to g = 0, κ = 0 to g = 1 and κ = 1
to g > 1; so the major split in the Diophantine theory of curves corresponds to the
possible values of κ .

Over C a full classification of surfaces can be found in [40]. But what is also
significant for the number theory (and cuts across this classification) is whether the
surface is elliptic – that is, whether over C there is a map V → C for some curve
C whose general fibre is a curve of genus 1. The case when the map V → C is
defined over the ground field K and C has genus 0 is discussed below; in this case
the Diophantine problems for V are only of interest when C(K) is nonzero, so that
C can be identified with P1. When C has genus greater than 1, the map V → C
is essentially unique and it and C are therefore both defined over K. By Faltings’
theorem, C(K) is then finite; thus each point of V (K) lies on one of a finite set of
fibres, and it is enough to study these. In contrast, we know nothing except in very
special cases when C is elliptic.

The surfaces with κ =−∞ are precisely the ruled surfaces – that is, those which
are birationally equivalent over C to P1×C for some curve C. Among these, by far
the most interesting are the rational surfaces, which are birationally equivalent to
P2 over C. From the number-theoretic point of view, there are two kinds of rational
surface:

• Pencils of conics, given by an equation of the form

a0(u,v)X2
0 + a1(u,v)X2

1 + a2(u,v)X2
2 = 0 (5)

where the ai(u,v) are homogeneous polynomials of the same degree. Pencils of
conics can be classified in more detail according to the number of bad fibres.

• Del Pezzo surfaces of degree d, where 0 < d ≤ 9. Over C, such a surface is
obtained by blowing up (9− d) points of P2 in general position – except when
d = 8, in which case the construction is more complicated. It is known that Del
Pezzo surfaces of degree d > 4 satisfy the Hasse principle and weak approxima-
tion; indeed those of degree 5 or 7 necessarily contain rational points. Del Pezzo
surfaces of degree 2 or 1 have attracted relatively little attention; it seems sen-
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sible to ignore them until the problems coming from those of degrees 4 and 3
have been solved. The Del Pezzo surfaces of degree 3 are the nonsingular cubic
surfaces, which have an enormous but largely irrelevant literature, and those of
degree 4 are the nonsingular intersections of two quadrics in P4. For historical
reasons, attention has been concentrated on the Del Pezzo surfaces of degree 3;
but the problems presented by those of degree 4 are necessarily simpler.

Surfaces with κ = 0 fall into four families:

• Abelian surfaces. These are the analogues in two dimensions of elliptic curves,
and there is no reason to doubt that their number-theoretical properties largely
generalize those of elliptic curves.

• K3 surfaces, including in particular Kummer surfaces. Some but not all K3 sur-
faces are elliptic.

• Enriques surfaces, whose number theory has been very little studied. Enriques
surfaces are necessarily elliptic.

• Bielliptic surfaces.

Surfaces with κ = 1 are necessarily elliptic.
Surfaces with κ = 2 are called surfaces of general type – which in mathematics is

generally a derogatory phrase. About them there is currently nothing to say beyond
Lang’s conjecture stated in Sect. 2.

For varieties of higher dimension (other than quadrics and Severi-Brauer va-
rieties) there seem to be at the moment only two ways of obtaining results: by
deduction from special results for surfaces, and by the Hardy/Littlewood method.
The latter differs from most geometric methods in that it is not concerned with an
equivalence class of varieties under birational or biregular transformation, but with
a particular embedding of a variety V in projective or affine space. A point P in
Pn defined over Q has a representation (x0, . . . ,xn) where the xi are integers with
no common factor; and this representation is unique up to changing the signs of
all the xi. We define the height of P to be h(P) = max |xi|; a linear transformation
on the ambient space multiplies heights by numbers which lie between two positive
constants depending on the linear transformation. Denote by N(H,V ) the number of
points of V (Q) whose height is less than H; then it is natural to ask how N(H,V ) be-
haves as H → ∞. This is the core question for the Hardy-Littlewood method, which
when it is applicable is the best (and often the only) way of proving that V (Q) is not
empty. In very general circumstances that method provides estimates of the form

N(H,V ) = leading term + error term. (6)

The leading term is usually the same as one would obtain by probabilistic argu-
ments. But such results are only valuable when it can be shown that the error term is
small compared to the leading term, and to achieve this the dimension of V needs to
be large compared to its degree. The extreme case of this is the following theorem,
due to Birch [41].

Theorem 5.1. Suppose that the Fi(X0, . . . ,XN) are homogeneous polynomials with
coefficients in Z and degFi = ri for i = 1, . . . ,m, where r1, . . . ,rm are positive odd
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integers. Then there exists N0(r1, . . . ,rm) such that if N ≥ N0 the Fi have a common
nontrivial zero in ZN+1.

The proof falls into two parts. First, the Hardy-Littlewood method is used to prove
the result in the special case when m = 1 and F1 is diagonal – that is, to show that if
r is odd and N ≥ N1(r) then

c0Xr
0 + . . .+ cNXr

N = 0

has a nontrivial integral solution. Then the general case is reduced to this special
case by purely elementary methods. The requirement that all the ri should be odd
arises from difficulties connected with the real place; over a fixed totally complex
algebraic number field there is a similar theorem for which the ri can be any positive
integers.

The Hardy-Littlewood method was designed for a single equation in which the
variables are separated – for example, an equation of the form

f1(X1)+ . . .+ fN(XN) = c

where the fi are polynomials, the Xi are integers, and one wishes to prove solubility
in Z for all integers c, or all large enough c, or almost all c. But it has also been ap-
plied both to several simultaneous equations and to equations in which the variables
are not separated. The following theorem of Hooley [42] is the most impressive
result in this direction.

Theorem 5.2. Homogeneous nonsingular nonary cubics over Q satisfy both the
Hasse principle and weak approximation.

6 Manin’s Conjecture

Even on the most optimistic view, one can only hope to make the Hardy-Littlewood
method work for families for which N(H,V ) is asymptotically equal to its proba-
bilistic value; in particular it seems unlikely that it can be made to work for families
for which weak approximation fails. On the other hand, one can hope that the lead-
ing term in (6) will still have the correct shape for other families, even if it is in
error by a constant factor. Manin has put forward a conjecture about the asymptotic
density of rational solutions for certain geometrically interesting families of vari-
eties for which weak approximation is unlikely to hold: more precisely, for Fano
varieties embedded in Pn by means of their anticanonical divisors. A general survey
of the present state of the Manin conjecture can be found in [43]. In the full gener-
ality in which he stated the conjecture, it is known to be false; and in what follows
I consider it only for Del Pezzo surfaces V of degrees 3 and 4. These are the most
natural ones for the number theorist to consider, because of the simplicity of the
equations which define them – one cubic and two quadratic respectively. The anal-
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ogy of the Hardy-Littlewood method suggests an estimate AH∏(N(p)/(p+1)) for
N(H,V ), where the product is taken over all primes less than a certain bound which
depends on H. In view of what is said in Sect. 3, this product ought to be replaced
by something which depends on the behaviour of L2(s,V ) near s = 1. The way in
which the leading term in the Hardy-Littlewood method is obtained suggests that
here we should take s−1 to be comparable with (logH)−1. Remembering the Tate
conjecture, this gives the right hand side of (7) as a conjectural estimate for N(H,V ).
But to ask about N(H,V ) is the wrong question, for V may contain lines L defined
over Q, and for any line N(H,L)∼ AH2 for some nonzero constant A. This is much
greater than the order-of-magnitude estimate for N(H,V ) given by a probabilistic ar-
gument. Manin’s way to resolve this absurdity is to study not N(H,V ) but N(H,U),
where U is the open subset of V obtained by deleting the finitely many lines on V .
He therefore conjectured that

N(H,U)∼ AH(logH)r−1 where r is the rank of Pic(V ). (7)

Peyre [44] has given a conjectural formula for A. Unfortunately there are no nonsin-
gular Del Pezzo surfaces of degrees 3 or 4, and very few singular ones, for which
(7) has been proved.

Question 6.1. Are there nonsingular Del Pezzo surfaces V of degree 3 or 4 for which
the Manin conjecture can be proved by present methods?

In the first instance, it would be wise to address this problem under rather restric-
tive hypotheses about V , not least because the Brauer-Manin obstruction to weak
approximation occurs in the conjectural formula for A and therefore the problem is
likely to be easier for families of V for which weak approximation holds. The sim-
plest cases of all are likely to be among those for which V is birationally equivalent
to P2 over Q. For nonsingular cubic surfaces, for example, it has long been known
that this happens if and only if V is everywhere locally soluble and contains a di-
visor defined over Q which is the union of 2, 3 or 6 skew lines. In the case when
V contains two skew lines each defined over Q, a lower bound for N(H,U) of the
correct order of magnitude was proved in [45].

An alternative method of describing the statistics of rational points on U is by
means of the height zeta function

Z(h,U,s) =∑P∈U(Q)(h(P))−s

where h is some height function – for example, the classical one defined in Sect. 5.
(Note that, despite the name, we do not expect this function to have the properties
listed in Sect. 3.) Now (7) is more or less equivalent to

Z(h,U,s)∼ A′(s−1)−r as s tends to 1 from above.

It is now natural to hope that Z(h,U,z) can be analytically continued to some
halfplane Rs > c for some c < 1, subject to a pole of order r at s = 1. If this is
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so, we can derive N(H,U) from Z(U,s) by means of Perron’s formula

N(H,U) =
1

2π i

∫ c+i∞

c−i∞
Bs Z(U,s)

s
ds

where H−1 < B < H and c > 1. Now (7) can be strengthened to

N(H,U) = H f (logH)+ O(Hc+ε) (8)

where f is a polynomial of degree r−1.
De la Bretèche and Browning [46, 47, 48] have proved results of the form (8) for

several singular Del Pezzo surfaces of degrees 3 and 4. Their methods are intricate,
and it would be interesting to know what features of the geometry of their particular
surfaces underlie them. The simplest surface of this kind, and the one about which
most is known, is the toric surface

X3
0 = X1X2X3. (9)

Let U be the open subset of (9) given by X0 �= 0. Building on earlier work of de la
Bretèche [49] and assuming the Riemann Hypothesis, he and I have proved [50] that

N(U,H) = H f (logH)+CH9/11 +R∑γnH3/4+ρn/8 + O(H4/5) (10)

where C and the γn are constants, ρn runs through the zeros of the Riemann zeta
function, and f is a certain polynomial of degree 6. Some bracketing of terms for
which the ρn are nearly equal may be needed to ensure convergence. The associated
height zeta function can be meromorphically continued to Rs > 3

4 but no further.
The key idea in the proofs of (10) and of analytic continuation is to introduce the

multiple Dirichlet series

φ(s1,s2,s3) =∑P∈U(Q)|x1|−s1 |x2|−s2 |x3|−s3

where (x0,x1,x2,x3) is a primitive integral representation of P. At the cost of a factor
4, we can confine ourselves in the definition of φ to points with all coordinates
positive. We have

|x1|−s1 |x2|−s2 |x3|−s3 =∏p p−{s1vp(x1)+s2vp(x2)+s3vp(x3)}

from which it follows that φ(s1,s2,s3) = 4∏p φ∗(p−s1 , p−s2 , p−s3) where the factor
associated with p is the sum over the points all of whose coordinates are powers of
p. A straightforward calculation shows that

φ∗(z1,z2,z3) =
1 +∑z2

i z j(1− z3
k)− z3

1z3
2z3

3

(1− z3
1)(1− z3

2)(1− z3
3)

,
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the sum being taken over the six permutations i, j,k of 1, 2, 3. This expresses
φ(s1,s2,s3) as an Euler product and enables its meromorphic continuation to the
open set in which Rsi > 0 for i = 1,2,3. (A simpler example of the same process
will be found in the next paragraph.) Moreover

Z(h,U,s) =
1

(2π i)2

∫ c2+i∞

c2−i∞

∫ c3+i∞

c3−i∞

sφ(s− s2− s3,s2,s3)
s2s3(s− s2− s3)

ds2ds3

provided Rs,c2 and c3 are chosen so that the series for φ is absolutely conver-
gent. One can now move the contours of integration to the left, though the reader is
warned that this imvolves technical problems as well as some tedious calculation.
In the end (10) and the meromorphic continuation of Z(h,U,s) follow.

The estimate (10) is reminiscent of the explicit formula of prime number theory.
But the second term on the right is unexpected, and one would have hoped that the
exponent in the third term would have been ρn rather than 3

4 + 1
8ρn. Both these blem-

ishes are caused by the fact that h(P), though classical, is not the most natural height
function. For comparison, we now consider what happens if we use as our height
function h1(P) = |x0| where (x0,x1,x2,x3) is a primitive integral representation of
P. Now we obtain

Z(h1,U,s) = 4∏p

1 + 7p−s + p−2s

(1− p−s)2 .

The factor corresponding to p on the right is

(1− p−s)−9{(1− p−s)7(1 + 7p−s + p−2s)}

where the expression in curly brackets is 1 + O(p−2s); so using the known analytic
continuation of the Riemann zeta function, this gives the continuation of Z(h1,U,s)
to Re s > 1

2 . The expression in curly brackets is actually

1−27p−2s + O(p−3s);

so we can take out a factor (1− p−2s)27 and obtain the continuation of Z(h1,U,s) to
Res > 1

3 – and so on. The eventual conclusion is that Z(h1,U,s) can be meromor-
phically continued to Re s > 0 but that Res = 0 is a natural boundary. Using Perron’s
formula we can obtain a complicated formula for the corresponding counting func-
tion N1(H,U) of which the leading terms are

N1(H,U) = H f1(logH)+ H1/3g1(logH)+∑γ1n(logH)Hρn/2 + O(H1/5+ε).

Here f1 and g1 are polynomials of degrees 8 and 104 respectively, ρn runs through
the complex zeros of the Riemann zeta function and the γ1n are polynomials of
degree 26.

The second term here is much smaller than that in (10). This raises the question
of what is the best height function to choose, and indeed whether there is a canonical
height function on at least some Del Pezzo surfaces. (Recall that on abelian varieties



64 P. Swinnerton-Dyer

there certainly is a canonical height function.) A very partial answer to this can be
found in [51], where reasons are given for using for (9) the height function h∗(P) =
∏p p−sαp where

αp =
1
2
((vp(x1))2 +(vp(x2))2 +(vp(x3))2−3(vp(x0))2).

With this choice, again assuming the Riemann Hypothesis, the natural boundary
for the height zeta function Z(h∗,U,s) is Rs = 0 and we can exhibit a (very compli-
cated) formula for the corresponding counting function N∗(H,U) with error O(Hε).
This time the polynomial f ∗ in the leading term H f ∗(logH) has degree 5 and the
remaining terms contribute O(H1/2+ε).

In the light of these results it is natural to wonder what is the shape of the error
term in (8) when V is nonsingular. At present, the only way to approach this question
is by computation. It is advantageous to study varieties whose equations have the
form g1(X0,X1) = g2(X2,X3) because counting rational points is then much faster
than for general cubic surfaces. Some computations have been made for V of the
form

a0X3
0 + a1X3

1 + a2X3
2 + a3X3

3 = 0.

Now r = 1 and the evidence strongly suggests that in (8) we can take c = 1
2 . The

results are indeed compatible with a conjecture of the form

N(H,V ) = AH +∑γnH1/2+itn + O(H1/2−ε) (11)

for a discrete sequence of real tn. But the evidence available so far, which is for
H ≤ 105, is too scanty for one to be able to estimate the first few tn with any great
accuracy. However, the way in which they appear in (11) suggests that they should
be the zeros of some L-series – and of course there is one L-series naturally associ-
ated with V .

There is no reason why one should not also ask about the density of rational
points on surfaces which are not Fano. For Del Pezzo surfaces, the conjectural value
of c for which N(H,U)∼ AH(logH)c is defined by the geometry rather than by the
number theory, though that is not true of A. For other varieties, the corresponding
statement need no longer be true. We start with curves. For a curve of genus 0
and degree d, we have N(H,V ) ∼ AH2/d; and for a curve of genus greater than 1
Faltings’ theorem is equivalent to the statement that N(H,V ) = O(1). But if V is an
elliptic curve then N(H,V ) ∼ A(logH)r/2 where r is the rank of the Mordell-Weil
group. (For elliptic curves there is a more canonical definition of height, which is
invariant under bilinear transformation; this is used to prove the result above.)

For pencils of conics, Manin’s question is probably not the best one to ask, and it
would be better to proceed as follows. A pencil of conics is a surface V together with
a map V → P1 whose fibres are conics. Let N∗(H,V ) be the number of points on P1

of height less than H for which the corresponding fibre contains rational points.
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Question 6.2. What is the conjectural estimate for N∗(H,V ) and under what condi-
tions can one prove it?

It may be worth asking the same questions for pencils of curves of genus 1.
For surfaces of general type, Lang’s conjecture implies that questions about

N(H,V ) are really questions about certain curves on V ; and for Abelian surfaces
(and indeed Abelian varieties in any dimension) the obvious generalisation of the
theorem for elliptic curves holds. The new case of greatest interest is that of K3
surfaces, and in particular that of nonsingular quartic surfaces. The same heuristics
which led to (7) for Del Pezzo surfaces now lead one to

N(H,V )∼ A(logH)r (12)

where r is as before the rank of Pic(V ). Unfortunately, if V contains at least one
soluble curve of genus 0 it contains infinitely many; and on each one of them the
rational points will outnumber the estimate given by (12). To delete all these curves
and count the rational points on what is left appears neither sensible nor feasible; so
we have to assume that V contains no such curves. If V contains a pencil of curves of
genus 1 it again seems unlikely that (12) can hold. Van Luijk has tabulated N(H,V )
for certain quartic surfaces which have neither of these properties and which have
r = 1 or 2, and his results fit the conjecture (12) very well.

7 Schinzel’s Hypothesis and Salberger’s Device

Schinzel’s Hypothesis gives a conjectural answer to the following question: given
finitely many polynomials F1(X), . . . ,Fn(X) in Z[X ] with positive leading coeffi-
cients, is there an arbitrarily large integer x at which they all take prime values?
There are two obvious obstructions to this:

• One or more of the Fi(X) may factorize in Z[X ].
• There may be a prime p such that for any value of x mod p at least one of the

Fi(x) is divisible by p.

If the congruence Fi(x) ≡ 0mod p is non-trivial, it has at most deg(Fi) solutions;
so the second obstruction can only happen for p ≤ ∑deg(Fi) or if p divides every
coefficient of some Fi. Schinzel’s Hypothesis is that these are the only obstructions:
in other words, if neither of them happens then we can choose an arbitrarily large x
so that every Fi(x) is a prime.

If one assumes Schinzel’s Hypothesis the corresponding result over any algebraic
number field follows easily. But in most applications there is a predetermined set B
of bad places, and we need to impose local conditions on x at some or all of them.
These conditions constrain the values of the Fi(x) at those places, and therefore
we cannot necessarily require these values to be units at the bad primes; nor in
the applications do we need to. I have stated Lemma 7.1 in a form which applies
to homogeneous polynomials Gi in two variables; but the reader who wishes to
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do so will have no difficulty in stating and proving the corresponding (stronger)
result for polynomials in one variable. Just as with the original version of Schinzel’s
Hypothesis, provided that the coefficients of Gi for each i have no common factor
we need only verify the existence of the yp,zp in the statement of the lemma when
the absolute norm of p does not exceed ∑deg(Gi).

Lemma 7.1. Let k be an algebraic number field and o the ring of integers of k.
Let G1(Y,Z), . . . ,Gn(Y,Z) be homogeneous irreducible elements of o[Y,Z] and B
a finite set of primes of k. Suppose that for each p not in B there exist yp,zp in o
such that none of the Gi(yp,zp) is in p. For each p in B, let Vp be a non-empty open
subset of kp×kp; and for each infinite place v of k let Vv be a non-empty open subset
of k∗v . Assume Schinzel’s Hypothesis; then there is a point η×ζ in k∗×k∗, with η ,ζ
integral outside B, such that

• η× ζ lies in Vp for each p in B;
• η/ζ lies in Vv for each infinite place v;
• Each ideal (Gi(η ,ζ )) is the product of a prime ideal not in B and possibly

powers of primes in B.

Proof. Choose α,β in o so that α/β lies in Vv for each infinite place v and no
Gi(α,β ) vanishes. We can repeatedly adjoin a further prime p to B provided we
define the corresponding Vp to be the set of all y× z in op× op such that each
Gi(y,z) is a unit at p. We can therefore assume that B contains all ramified primes
p and all primes p such that

• The absolute norm of p is not greater than [k : Q]∑deg(Gi); or
• p divides any Gi(α,β ).

Let B be the set of primes in Q which lie below some prime of B, and further
adjoin to B all the primes of k not already in B which lie above some prime of B.
By the Chinese Remainder Theorem we can choose η0,ζ0 in k, integral outside B
and such that each Gi(η0,ζ0) is nonzero and η0× ζ0 lies in Vp for each p in B. For
reasons which will become clear after (13), we also need to ensure that βη0 �= αζ0;
this can be done by varying η0 or ζ0 by a suitable element of o divisible by large
powers of each p in B. As an ideal, write

(Gi(η0,ζ0)) = aibi

where the prime factors of each ai are outside B and those of each bi are in B; thus
ai is integral. Let Ni be the absolute norm of bi. Now choose γ �= 0 in o to be a unit
at all the primes outside B which divide any Gi(η0,ζ0) and to be divisible by such
large powers of each p in B that

η× ζ = (αγξ +η0)× (βγξ + ζ0)

is in Vp for all ξ ∈ o and all p ∈B, and that if we write

gi(X) = Gi(αγX +η0,βγX + ζ0), (13)
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then every coefficient of gi(X) is divisible by at least as great a power of p as is bi.
We have arranged that the two arguments of Gi in (13), considered as linear forms in
X , are not proportional; thus if gi(X) factorizes in k[X ] then Gi(αγU +η0V,βγU +
ζ0V ) would factorize in k[U,V ], contrary to the irreducibility of Gi(Y,Z). We shall
also require for each i that gi(X) is prime to all its conjugates as elements of k̄[X ];
since the zeros of gi(X) have the form γ−1ξi j for some ξi j independent of γ , this
merely requires the ratios of γ to its conjugates to avoid finitely many values. Write

Ri(X) = Normk(X)/Q(X)(gi(X))/Ni;

then Ri(X) has all its coefficients integral, for at each prime it is the norm of a
polynomial with locally integral coefficients. An irreducible factor of Ri(X) in Q[X ]
cannot be prime to gi(X), because then it would also be prime to all the conju-
gates of gi(X) and therefore to their product – which is absurd. If Ri(X) had two
coprime factors in Q[X ], their highest common factors with gi(X) would be non-
trivial coprime factors of gi(X) in k[X ], whence gi(X) would not be irreducible in
k[X ]. Finally, Ri(X) cannot have a repeated factor because the conjugates of gi(X)
are pairwise coprime. So Ri(X) = AiHi(X) in Z[X ], with Hi(X) irreducible. Clearly
we can require the leading coefficient of each Hi(X) to be positive. But the only
primes which divide the constant term in Ri(X) are the primes outside B which
divide Gi(η0,ζ0), and none of them divide the leading coefficient of Ri(X); hence
Ai =±1. Now apply Schinzel’s Hypothesis to the Hi(X), which we can do because
no Hi(0) is divisible by any prime in B. But if Hi(x) is equal to a prime not in B
then the ideal (gi(x)) must be equal to the product of bi and a prime ideal not in B.

��
If we are content to obtain results about 0-cycles of degree 1 instead of results

about points, it would be enough to prove solubility in some field extension of each
large enough degree. Arguments of this type were pioneered by Salberger. Unfortu-
nately neither of the recipes below enables us to control either the units or the ideal
class group of the field involved, so at present the usefulness of this idea is rather
limited.

Lemma 7.2. Let k be an algebraic number field and P1(X), . . . ,Pn(X) monic irre-
ducible non-constant polynomials in k[X ]; and let N ≥ ∑deg(Pi) be a given integer.
Let B be a finite set of places of k which contains the infinite places, the primes at
which some coefficient of some Pi is not integral and any other primes p at which
∏Pi(X) does not remain separable when reduced mod p. Let b > 1 be in Z and such
that no prime of k which divides b is in B. For each v in B let Uv be a non-empty
open set of separable monic polynomials of degree N in kv[X ]. Let M > 0 be a fixed
rational integer. Then we can find an irreducible monic polynomial G(X) in k[X ] of
degree N which lies in each Uv and for which λ , the image of X in K = k[X ]/G(X),
satisfies

(Pi(λ )) = PiAiC
M
i (14)

for each i, where the Pi are distinct first degree primes in K not lying above any
prime in B, the Ai are products of bad primes in K and the Ci are integral ideals
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in K. (Here we call a prime in K bad if it divides b or any prime in B.) Moreover
we can arrange that λ = α/β where α is integral and β is an integer all of whose
prime factors are bad.

Lemma 7.3. Let k be an algebraic number field and P1(X), . . . ,Pn(X) monic irre-
ducible non-constant polynomials in k[X ]; and let N ≥ ∑deg(Pi) be a given integer.
Let B be a finite set of places of k which contains the infinite places, the primes at
which some coefficient of some Pi is not integral and any other primes p at which
∏Pi(X) does not remain separable when reduced mod p.

Let L be a finite extension of k in which all the polynomials Pi split completely,
and which is Galois over Q. Let V be an infinite set of finite primes of k lying over
primes in Q which are totally split in L. Suppose that we are given for each v ∈B a
non-empty open set Uv of separable monic polynomials in kv[X ] of degree N. Then
we can find an irreducible monic polynomial G(X) in k[X ] of degree N such that if
θ is the image of X in k[X ]/G(X) then

(i) θ is an integer except perhaps at primes in k(θ ) above those in B∪V;
(ii) G(X) is in Uv for each v in B;

(iii) For each i there is a finite prime wi in k(θ ), of absolute degree one, such that
Pi(θ ) is a uniformizing parameter for wi and a unit at all primes except wi and
possibly some of those above some prime in B∪V.

The existence of V follows from Tchebotarov’s density theorem. The proof of
Lemma 7.3 can be found in [52]. The proof of Lemma 7.2 is currently unpub-
lished. The idea underlying the proofs of both these Lemmas is as follows. Write
R(X) = ∏Pi(X) and Ri(X) = R(X)/Pi(X). Any polynomial G(X) in k[X ] can be
written in just one way in the form

G(X) = R(X)Q(X)+∑Ri(X)ψi(X) (15)

with deg ψi < deg Pi; for if λi is a zero of Pi(X) this is just the classical partial
fractions formula

G(X)
∏Pi(X)

= Q(X)+∑ψi(X)
Pi(X)

with ψi(λi) = G(λi)/Ri(λi). This property determines for each i a unique ψi(X) in
k[X ] of degree less than degPi. The same result holds over any kv. If the coefficients
of G are integral at v, for some v not in B, then so are those of Q and eachψi because
R and the Ri are monic and Ri(λi) is a unit outside B. For each v in B let Gv(X) be
a polynomial of degree N lying in Uv, and write

Gv(X) = R(X)Qv(X)+∑Ri(X)ψiv(X)

with deg ψiv < deg Pi. We adjoin to B a further finite place w at which b is a unit,
and associate with it a monic irreducible polynomial Gw(X) in kw[X ] of degree N;
the only purpose of Gw is to ensure that the G(X) which we construct is irreducible
over k. We then build G(X), close to Gv(X) for every v ∈B including w.
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Let pi be the prime in k below Pi. By computing the resultant of Pi(X) and G(X)
in two different ways, we obtain

NormK/kPi(λ ) =±Normki/kG(λi) =±Normki/k(φiRi(λi)) (16)

where λi is a zero of Pi(X). By hypothesis Ri(λi) is a unit at every place of k(λi)
which does not lie above a place in B; and we can arrange that the denominator of
Normki/kφi is only divisible by bad primes, and its numerator is the product of the
first degree prime pi, powers of primes in B and other factors which we can largely
control by the way in which we build G(X). That depends on which Lemma we are
trying to prove, and it is the presence of these factors that lead to the complications
in the statements of the two Lemmas.

8 The Legendre-Jacobi Function

If α,β are elements of k∗ and v is a place of k, the multiplicative Hilbert symbol
(α,β )v is defined by

(α,β )v =

{
1 if αX2 +βY2 = Z2 is soluble in kv,

−1 otherwise.

The additive Hilbert symbol is defined in the same way except that it takes the values
0 and 1 in F2 instead of 1 and −1. The Hilbert symbol is effectively a replacement
for the quadratic residue symbol, with the advantage that it treats the even primes
and the infinite places in just the same way as any other prime. It is symmetric in
α,β and its principal properties are

• (α1α2,β )v = (α1,β )v(α2,β )v and (α,β1β2)v = (α,β1)v(α,β2)v;
• For fixed α,β , (α,β )v = 1 for almost all v, and∏(α,β )v = 1 where the product

is taken over all places v of k.

The second of these is one of the main results of class field theory.
The Legendre-Jacobi function L is crucial to much of what follows. Its theory is

described in some detail here, because there is no adequate source for it in print. Let
F(U,V ),G(U,V ) be homogeneous coprime square-free polynomials in k[U,V ]. Let
B be a finite set of places of k containing the infinite places, the primes dividing 2,
those at which any coefficient of F or G is not integral, and any primes p at which
FG does not remain separable when reduced mod p.

Let N 2 = N 2(k) be the set of α×β with α,β integral and coprime outside B,
and let N 1 = N 1(k) be k∪{∞}. For α ×β in k× k with α,β not both zero, we
shall consistently write λ = α/β with λ in N 1(k). Provided F(α,β ) and G(α,β )
are nonzero, we define the function

L(B;F,G;α,β ) : α×β �→∏
p

(F(α,β ),G(α,β ))p (17)
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on N 2, where the outer bracket on the right is the multiplicative Hilbert symbol
and the product is taken over all primes p of k outside B which divide G(α,β ). By
the definition of B, F(α,β ) is a unit at any such prime. We can restrict the product
in (17) to those p which divide G(α,β ) to an odd power; thus we can also write
it as ∏χp(F(α,β )) where χp is the quadratic character mod p and the product is
taken over all p outside B which divide G(α,β ) to an odd power. This relationship
with the quadratic residue symbol underlies the proof of Lemma 8.1. The function
L does depend on B, but the effect on the right hand side of (17) of increasing
B is obvious. Some of the more interesting properties of L depend on degF being
even, but this usually holds in applications. In the course of the proofs, however, we
need to consider functions (17) with degF odd; and for this reason it is expedient to
introduce

M(B;F,G;α,β ) = L(B;F,G;α,β )(∏(α,β )v)(degF)(degG),

where the product is taken over all p outside B which divide β and therefore do not
divide α .

Lemma 8.1. The value of M is continuous in the topology induced on N 2 by B.
For each v in B there is a function m(v;F,G;α,β ) with values in {±1} which is
continuous on N 2 in the v-adic topology, such that

M(B;F,G;α,β ) = ∏
v∈B

m(v;F,G;α,β ). (18)

Proof. If degF is even, so that M = L, the neatest proof of the lemma is by means
of the evaluation formula in [11], Lemma 7.2.4. When degG is even but degF may
not be, the result follows from (20), and (19) then gives the general case. (The proof
in [11] is for k = Q, but there is not much difficulty in modifying it to cover all k.)
However, the proof which we shall give, using the ideas of [53], provides a more
convenient method of evaluation.

For this proof we have to impose on B the additional condition that it contains
all primes whose absolute norm does not exceed deg(FG). As the proof in [11]
shows, this condition is not needed for the truth of Lemma 8.1 itself; but we use it
in the proof of (25) below, and the latter is crucial to the subsequent argument. In
any case, to classify all small enough primes as bad is quite usual. We repeatedly
use the fact that L(B;F,G) and M(B;F,G) are multiplicative in both F and G; the
effect of this is that we can reduce to the case when both F and G are irreducible in
oB[U,V ], where oB is the ring of elements of k integral outside B. Introducing M
and dropping the parity condition on degF are not real generalizations since if we
increase B so that the leading coefficient of F is a unit outside B then

M(B;F,G) = L(B;F,GV degG) (19)

by (21), and we can apply (20) to the right hand side.
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It follows from the product formula for the Hilbert symbol that

L(B; f ,g;α,β )L(B;g, f ;α,β ) = ∏
v∈B

( f (α,β ),g(α,β ))v, (20)

provided that f (α,β ), g(α,β ) are nonzero. The right hand side of (20) is the prod-
uct of continuous terms each of which only depends on a single v in B. This formula
enables us to interchange F and G when we want to, and in particular to require that
degF ≥ degG in the reduction process which follows. We also have

L(B; f ,g;α,β ) = L(B; f −gh,g;α,β ) (21)

for any homogeneous h in k[U,V ] with degh = deg f − degg provided the coeffi-
cients of h are integral outside B, because corresponding terms in the two products
are equal. Both (20) and (21) also hold for M.

We deal first with two special cases:

• G is a constant. Now M(B;F,G) = 1 because all the prime factors of G must
be in B, so that M(B;F,G) = L(B;F,G) and the product in the definition of
L(B;F,G) is empty.

• G = V . Choose H so that F − GH = γUdegF for some nonzero γ . Now
M(B;F,G) = 1 follows from the previous case and (21), since all the prime
factors of γ must be in B.

We now argue by induction on deg(FG). Since we can assume that F and G are
irreducible, we need only consider the case when

degF ≥ degG > 0, G = γUdegG + . . . , F = δUdegF + . . .

for some nonzero γ,δ . Let B1 be obtained by adjoining to B those primes of k not
in B at which γ is not a unit. By (21) we have

M(B1;F,G) = M(B1;F− γ−1δGUdegF−degG,G). (22)

By taking a factor V out of the middle argument on the right, and using (20), the
second special case above and the induction hypothesis, we see that M(B1;F,G) is
continuous in the topology induced by B1 and is a product taken over all v in B1

of continuous terms each one of which depends on only one of the v. Hence the
same is true of M(B;F,G), because this differs from M(B1;F,G) by finitely many
continuous factors, each of which depends only on one prime in B1 \B.

But B1 \B only contains primes whose absolute norm is greater than deg(FG).
Thus by an integral unimodular transformation from U,V to U,V1 we can arrange
that G = γ1UdegG + . . . and F = δ1UdegF + . . . where γ1 is a unit at each prime in
B1 \B. Let B2 be obtained from B by adjoining all the primes at which γ1 is not
a unit; then M(B;F,G) has the same properties with respect to B2 that we have
already shown that it has with respect to B1. Since B1∩B2 = B, this implies that
M(B;F,G) already has these properties with respect to B. ��
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Of course there will be finitely many values of α/β for which at some stage of
the argument the right hand side of (20) appears to be indeterminate; but by means
of a preliminary linear transformation on U,V one can avoid this and ensure that the
formula (18) is meaningful except when F(α,β ) or G(α,β ) vanishes.

When degF is even, the value of L(B;F,G;α,β ) is already determined by λ =
α/β regardless of the values of α and β separately; here λ lies in k∪{∞} with the
roots of F(λ ,1) and G(λ ,1) deleted. We shall therefore also write this function as
L(B;F,G;λ ). But note that it is not necessarily a continuous function of λ ; see the
discussions in [12] and Sect. 9 of [11], or Lemma 8.4 below. Moreover if B does
not contain a base for the ideal class group of k then not all elements of k∪{∞} can
be written in the form α/β with α,β integers coprime outside B; so we have not
yet defined L(B;F,G;λ ) for all λ . To go further in the case when degF is even, we
modify the definition (17) so that it extends to all α×β in k× k such that F(α,β )
and G(α,β ) are nonzero. For any such α,β and any p not in B, choose αp,βp

integral at p, not both divisible by p and such that α/β = αp/βp. Write

L(B;F,G;α,β ) =∏(F(αp,βp),G(αp,βp))p (23)

where the product is taken over all p not in B such that p|G(αp,βp). This is a finite
product whose value does not depend on the choice of the αp and βp; indeed it only
depends on λ = α/β and when α,β are integers coprime outside B it is the same
as the function given by (17). Thus we can again write it as L(B;F,G;λ ). This
generalization is not really needed until we come to (27); but at that stage we cannot
take account of the ideal class group of K because we need B to be independent of
K. Its disadvantage is that L is no longer necessarily a continuous function of α×β .

If deg F or deg G is 0 or 1, it is easy to obtain an evaluation formula; so the first
case of interest is when degF = degG = 2. Suppose that

F = a1U2 + b1UV + c1V 2, G = a2U2 + b2UV + c2V
2 (24)

and that B contains the infinite places and the primes which divide 2 or

R = (a1c2−a2c1)2−b1b2(a1c2 + a2c1)+ a1c1b2
2 + a2c2b2

1,

the resultant of F and G. Suppose also that η× ζ and ρ×σ are in N 2. Then

L(B;F,G;η ,ζ )L(B;F,G;ρ ,σ)

= ∏
v∈B

{( f/(ση−ρζ ),R)v( f G(ρ ,σ),− f G(η ,ζ ))v}

where
f = F(η ,ζ )G(ρ ,σ)−F(ρ ,σ)G(η ,ζ ).

If we set ρ ,σ to convenient values, this gives the value of L(B;F,G;η ,ζ ).
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The proof of Lemma 8.1 constructs an evaluation formula all of whose terms
come from the right hand side of (20) for various pairs f ,g. For α ×β in N 2, the
formula can therefore be described by an equation of the form

m(v;F,G;α,β ) =∏
j
(φ j(α,β ),ψ j(α,β ))v. (25)

Here the φ j,ψ j are homogeneous elements of k[U,V ] which depend only on F and
G and not on v or B. The decomposition (25) is not unique, but we can display an
invariant aspect of it.

Let θ = γ1U + γ2V be a linear form with γ1,γ2 coprime integers in k. By using
(φ ,ψ)v = (φ ,θψ)v(φ ,θ )v and (−θ ,θ )v = 1, we can ensure that all the φ j,ψ j in (25)
have even degree except perhaps that ψ0 = θ . Denote by Θ the group of elements
of k∗ which are not divisible to an odd power by any prime of k outside B, and by
Θ0 ⊂Θ the subgroup consisting of those ξ which are quadratic residues mod p for
all p in B; thus we are free to multiply φ0 by any element ofΘ0.

Lemma 8.2. Provided degF is even, if ψ0 = θ we can take φ0 to be inΘ .

The evaluation formula for (24) shows that (φ0,ψ0)v may not be trivial even when
F and G both have even degree.

Proof. Let γ in k∗ be a unit outside B, and apply (25) to the identity

L(B;F,G;γα,γβ ) = L(B;F,G;α,β ),

where α×β is in N 2. On cancelling common factors, we obtain

∏
v∈B

(φ0(α,β ),γ)v = 1. (26)

If we can chooseα×β in N 2 so that φ0(α,β ) is not inΘ , this gives a contradiction.
For let δ prime to φ0(α,β ) be such that∏(φ0(α,β ),δ )p =−1 where the product is
taken over all primes p outside B at which φ0(α,β ) is not a unit. Let B1 be obtained
by adjoining to B all the primes at which δ is not a unit; then∏(φ0(α,β ),δ )v =−1
by the Hilbert product formula, where the product is taken over all places v in B1.
Recalling that φ0 does not depend on B and writing B1,δ for B,γ in (26), we
obtain a contradiction. It follows that φ0(α,β ) lies in Θ for all α,β ; this can only
happen if φ0(U,V ) is itself inΘ modulo squares of elements of k[U,V ]. ��

In practice, what we usually need to study is the subspace of N 2 given by n con-
ditions L(B;Fν ,Gν ;α,β ) = 1, or the subspace of N 1 given by the
L(B;Fν ,Gν ;λ ) = 1, where the degFν are all even. Let Λ be the abelian group
of order 2n whose elements are the n-tuples each component of which is ±1; then
there is a natural identification, which we shall write τ , of each element of Λ with
a partial product of the L(B;Fν ,Gν ). Thus each element of Λ can be interpreted
as a condition, which we shall write as L = 1. If φ0 is as in Lemma 8.2, there is a
homomorphism
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φ0 ◦ τ :Λ →Θ/Θ0;

let Λ0 denote its kernel. It turns out that the conditions which are continuous in λ
are just those which come from Λ0. The following lemma corresponds to Harari’s
Formal Lemma (Theorem 3.2.1 of [11]); it shows that for most purposes we need
only consider the conditions coming from the elements of Λ0. For obvious reasons,
we call these the continuous conditions.

Lemma 8.3. Suppose that every degFν is even and all the conditions corresponding
to Λ0 hold at some given λ0. Then there exists λ arbitrarily close to λ0 such that all
the conditions L(B;Fν ,Gν ) = 1 hold at λ .

Proof. Let λ0 = α0/β0. For a suitably chosen γ we show that we can take λ = α/β ,
where α ×β is close to γα0× γβ0 at every finite prime in B and α/β is close to
α0/β0 at the infinite places. For any c inΛ , write φ0c = φ0 ◦τ(c) for the correspond-
ing element of Θ/Θ0. If θ is as defined just before Lemma 8.2, the corresponding
partial product L of the L(B;Fν ,Gν ;λ ) is equal to

fc(λ )∏
v∈B

(φ0c,θ (α0,β0))v ∏
v∈B

(φ0c,γ)v

where fc comes from the φ j,ψ j with j > 0 and is therefore continuous. The map
c �→ fc(λ ) is a homomorphismΛ →{±1} for any fixed λ ; moreover if two distinct
c give rise to the same φ0c their quotient comes from an element of Λ0; so the
quotient of the corresponding fc takes the value 1 at λ0. In other words, if λ is close
enough to λ0 then fc(λ ) only depends on the class of c in Λ/Λ0. The map c �→ φ0c

induces an embeddingΛ/Λ0→Θ/Θ0. The homomorphism Image(Λ/Λ0)→{±1}
induced by c �→ fc(λ ) can be extended to a homomorphismΘ/Θ0 →{±1} because
Θ/Θ0 is killed by 2; and any such homomorphism can be written in the form

θ → ∏
v∈B

(θ ,γ)v

for a suitably chosen γ , because the Hilbert symbol induces a nonsingular form on
Θ/Θ0. But given any such γ we can construct λ = α/β having the properties listed
above. ��

In circumstances in which we wish to use Salberger’s device, we need analogues
of these last statements for positive 0-cycles. To state these, we introduce more
notation. We continue to assume that degF is even. Let K be the direct product of
finitely many fields ki each of finite degree over k, and let B be the set of places of
K lying over some place v in B, and Bi the corresponding set of places of ki. (The
place ∏vi, where vi is a place of ki, lies over v if each vi does so.) For λ in P1(K)
write λ = ∏λi with λi in P1(ki); for each place w in ki write λi = αiw/βiw where
αiw,βiw are in ki and integral at w and at least one of them is a unit at w. For any λ
in K such that each F(λi,1) and G(λi,1) is nonzero, we define the function

L∗(B;K;F,G;λ ) : λ �→∏
Pi

(F(αiw,βiw),G(αiw,βiw))Pi (27)
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where w is the place associated with the prime Pi in ki and the product is taken over
all i and all primes Pi of ki not lying in Bi and such that G(αiw,βiw) is divisible by
Pi. As with (17), we can restrict the product to those Pi which divide G(αiw,βiw)
to an odd power. Note that the functions φ j,ψ j in the evaluation formula (25) are
the same for ki ⊃ k as they are for k. Now let a be a positive 0-cycle on P1 defined
over k and let a = ∪ai be its decomposition into irreducible components. Let λi be
a point of ai and write ki = k(λi). If K =∏ki and λ =∏λi, write

L∗(B;F,G;a) = L∗(B;K;F,G;λ ) =∏iL(Bi;F,G;λi). (28)

This is legitimate, because the right hand side does not depend on the choice of the
λi. If K = k this L∗ is the same as the previous function L. Moreover L∗(a∪ b) =
L∗(a)L∗(b). We can define a topology on the set of positive 0-cycles a of given
degree N by means of the isomorphism between that set and the points on the N-
fold symmetric power of P1. With this topology, it is straightforward to extend to L∗
the results already obtained for L.

The product in (27) is finite; so there is a finite set S of primes of k, disjoint
from B and such that every Pi which appears in this product lies above a prime in
S . For each i we can write λi = αi/βi with αi,βi integers in ki. Let (αi,βi) = ai and
choose an integral ideal bi in ki which is prime to ai, in the same ideal class as ai

and such that no prime of ki which divides bi also divides G(αi,βi) or any φ j(αi,βi)
or ψ j(αi,βi) or lies above any prime in S . Let γi be such that (γi) = bi/ai and let
B1 be obtained from B by adjoining all the primes of k which lie below any prime
of ki which divides bi. For most purposes it costs us nothing to replace B by B1,
and we then have

λ =∏λi =∏(αiγi/βiγi) where αiγi×βiγi is in N 2(ki).

The following lemma is a trivial consequence of earlier results.

Lemma 8.4. Suppose that degF is even, and let L = 1 be a continuous condition
derived from the L and L ∗ = 1 the corresponding condition derived from the L∗.
For each v in B there is a function �∗(v;F,G;a) with values in {±1} which is a
continuous function of a in the v-adic topology and is such that

L ∗(B;F,G;a) = ∏
v∈B

�∗(v;F,G;a). (29)

9 Pencils of Conics

Let W be the surface fibred by the pencil of conics

a0(U,V )Y 2
0 + a1(U,V )Y 2

1 + a2(U,V )Y 2
2 = 0. (30)
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We normally expect this pencil to be presented in a form in which a0,a1,a2 are
homogeneous of the same degree. But this is not the most convenient form for the
arguments which follow. Instead we shall call the pencil reduced if a0,a1,a2 are
homogeneous elements of k[U,V ] square-free and coprime in pairs and such that

dega0 ≡ dega1 ≡ dega2 mod2.

After a linear transformation on U,V if necessary, we can also assume that a0a1a2

is not divisible by V . Clearly any pencil of conics can be put into reduced form; for
if ai has a squared factor f 2 we write f−1Yi for Yi, and if for example a0 and a1 have
a common factor g we write gY2 for Y2 and divide (30) by g. Suppose that (30) is
reduced and everywhere locally soluble. Let λ = α/β be a point of P1(k); whether
(30) is soluble at α ×β depends only on λ and not on the choice of α,β . Similar
statements hold for local solubility at a place v and for solubility in the adeles. Let
B be a finite set of places of k containing the infinite places, the primes dividing
2, those whose absolute norm does not exceed deg(a0a1a2), those at which any
coefficient of any ai is not integral, and any other primes p at which a0a1a2 does
not remain separable when reduced mod p. We also assume that B contains a base
for the ideal class group of k. Denote by c(U,V ) an irreducible factor of a0a1a2 in
k[U,V ]; we can assume that c(U,V ) has integer coefficients whose highest common
factor is not divisible by any prime outside B. To prove local solubility, we need
only check it at the places of B, because it is trivial at any other prime. Local
solubility of (30) at the place v is equivalent to (−a0a1,−a0a2)v = 1, which can be
written in the more symmetric form

(a0,−a1)v(a1,−a2)v(a2,−a0)v = (−1,−1)v. (31)

The singular fibres of the pencil are given by the values of λ at which a0a1a2

vanishes. If there is a singular fibre defined over k, then (30) is certainly soluble on
it; but little if any of the argument which follows makes sense there. We therefore
work not on P1 but on the subset L1 obtained by deleting the zeros of a0a1a2, and
not on W but on W0, the inverse image of L1 in W . Let λ ∈ k∪{∞} be a point of
L1(k), and write λ = α/β where α,β are integers of k coprime outside B; it will
not matter which pair α,β we choose.

There is a non-empty set N ⊂ L1(k), open in the topology induced by B, such
that the conic (30) is soluble at every place of B if and only if λ lies in N . Let p be
a prime of k not in B and consider the solubility of (30) in kp at the point λ . If none
of the ai(α,β ) is divisible by p, then local solubility of (30) is trivial. Otherwise
there is just one c such that c(α,β ) is divisible by p; to fix ideas, suppose that this c
divides a2. The condition for local solubility at p is then

(−a0(α,β )a1(α,β ),c(α,β ))p = 1 (32)

where the outer bracket is the multiplicative Hilbert symbol. Hence necessary con-
ditions for the local solubility of (30) at λ for all p outside B are the conditions like
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L(B;−a0a1,c;λ ) =∏(−a0(α,β )a1(α,β ),c(α,β ))p = 1 (33)

where the product is taken over all p outside B which divide c(α,β ), and the func-
tion L is well defined since−a0a1 has even degree. There is one of these conditions
for each irreducible c which divides a0a1a2.

What makes the set of conditions (33) interesting is that they give not merely
a necessary but also a sufficient condition for solubility – at least if one assumes
Schinzel’s Hypothesis. In view of Lemma 8.3, it is enough to require the continuous
conditions derived from the conditions (33) to hold. The following theorem provides
the exact obstruction both to the Hasse principle and to weak approximation.

Theorem 9.1. Assume Schinzel’s Hypothesis. Let A ⊂N be the subset of L1(k)
at which all the continuous conditions derived from (33) hold and (30) is locally
soluble at each place in B. Then the λ in L1(k) at which (30) is soluble form a
dense subset of A in the topology induced by B.

Proof. Let α0 × β0 correspond to a point λ0 in A , and let N0 ⊂ A be an open
neighbourhood of λ0. We have to show that we can find λ2 in N0 such that (30) is
soluble at λ2; for this it is enough to show that (30) is everywhere locally soluble
there. Let ci run through the factors c. By Lemma 8.3 we can find α1,β1 in k∗,
integral and coprime outside B and such that λ1 = α1/β1 is in N0 and all the
conditions (33) hold at α1 × β1. By Lemma 7.1 we can now find α2 × β2 close
to α1×β1 and such that each ideal (ci(α2,β2)) is the product of a prime ideal pi

not in B and prime ideals in B. We claim that (30) is everywhere locally soluble
at α2×β2. Since N0 ⊂ A , local solubility at each place of B is automatic. If p is
a prime outside B which does not divide any of the a j(α2,β2) then (30) at α2×β2

is certainly soluble at p; so it only remains to consider the pi. To fix ideas, suppose
that ci(U,V ) is a factor of a2(U,V ). Taking α = α2,β = β2 and c = ci, the product
in (33) reduces to the single term with p = pi. In other words, (32) holds in this case,
and this proves local solubility at pi. ��

An apparently weaker result, but one for which it is easier to check the hypothe-
ses, is the following. Here the hypotheses give us the existence of the α1 × β1

generated in the proof of Theorem 9.1, and the rest of the proof is as there. The
advantage of this is that we do not need the arguments which follow (25).

Corollary 9.2. Assume Schinzel’s Hypothesis. Let A1 ⊂ k× k be the open set in
which none of the ai vanish, the conditions (33) hold and (30) is locally soluble at
each place in B. Then the α ×β for which (30) is soluble form a dense subset of
A1 in the topology induced by B.

The corresponding theorem for positive 0-cycles, or equivalently for 0-cycles of
degree 1, does not require Schinzel’s Hypothesis; instead we use Lemma 7.2 and
the notation introduced at (27). We apply Lemma 7.2 to the surface W0 fibred by the
pencil (30), again assuming that B satisfies the conditions listed after (30) and that
L1 has the same meaning as there.

Lemma 9.3. With the notation above, let N ≥ deg(a0a1a2) be a fixed integer, and
for each v in B let b′v be a positive 0-cycle on W0 of degree N and defined over kv.
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Then we can find a positive 0-cycle a of degree N on L1 defined over k and for each
v in B a positive 0-cycle bv on W0 of degree N and defined over kv, close to b′v and
such that the projection of each bv on P1 is a.

The proof of this Lemma is a straightforward application of the Chinese Remainder
Theorem. Its purpose is to show that the hypotheses of the following Theorem are
less restrictive than might appear.

Theorem 9.4. With the notation above, let N ≥ deg(a0a1a2) be a fixed integer. Let
a be a positive 0-cycle of degree N on L1 defined over k, and for each place v of
k suppose that bv is a positive 0-cycle on W0 of degree N and defined over kv; for
v in B suppose further that the projection of bv on L1 is a. If all the continuous
conditions derived from the conditions

L∗(B;−a0a1,c;a) = 1 (34)

hold, then there is a positive 0-cycle of degree N on W0 defined over k whose pro-
jection is arbitrarily close to a in the topology induced by B.

Proof. We must first show that for the purpose of proving this theorem we are al-
lowed to increase B. Suppose that B0 satisfies the conditions which were imposed
on B after (30), and let p be a prime of k not in B0. Suppose also that the hypothe-
ses of the theorem hold for B = B0 and a = a0. Having chosen bp we can find a
positive 0-cycle a′ on L1 of degree N and defined over k which is close at every v in
B0 to a and close at p to the projection of bp. Now

L∗(B0∪{p};−a0a1,c;a′) = L∗(B0;−a0a1,c;a′);

for writing both sides as products by means of (27), if there is a factor on the right
hand side which is not present on the left, that factor must come from p and is
therefore equal to 1. But a continuous condition for B0 holds at a′ if and only
if it holds at a, which it does by hypothesis. Hence the continuous conditions for
B0 ∪{p} hold at a′. Now suppose that the theorem holds for B0 ∪{p}; then there
is a positive 0-cycle b of degree N on W0 defined over k whose projection on L1 is
close to a′ in the topology induced by B0 ∪{p}. The same projection is close to a
in the topology induced by B0. So the theorem also holds for B0.

Note that if a is actually the projection of a positive 0-cycle of degree N in W0,
then the continuous conditions certainly hold in view of (28); thus imposing the
hypothesis that they all hold costs us nothing. To simplify the notation, we assume
henceforth that K is an algebraic number field; this will be true for the application
in this article because K will be constructed by means of Lemma 7.2. In view of the
previous paragraph, we can assume that B is so large that it satisfies the conditions
imposed on B in the statement of Lemma 7.2 and contains the additional place w
which was adjoined to B in the first paragraph of the proof of Lemma 7.2; and if b
is as in Lemma 7.2 we also adjoin to B all the primes in k which divide b. By the
analogue of Lemma 8.3, we can now choose a′′ close to a so that all the conditions
like L∗(B;−a0a1,c;a′′) = 1 hold. As was remarked in the previous paragraph, we
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can now increase B so that if λ0 = α0/β0 is a point of L1(K) in a′′ then α0,β0 are
coprime and integral except perhaps at primes of K above a prime in B. Now apply
Lemma 7.2 with M = 2, where we take the c(X ,1), normalized to be monic, to be
the Pi(X) and each Uv to be a small neighbourhood of the monic polynomial whose
roots determine a′′. Let G(X) be given by Lemma 7.2, and let a′ be the associated
0-cycle on L1(k) and λ a point of L1(K) in a′. For each v in B, the cycle a′ is close
to a′′ in the v-adic topology; so (30) at λ is soluble in Kw for each w above v, by
continuity. But λ = α/β with α,β coprime except at primes of K above a prime
of B. So

∏
P

(−a0(α,β )a1(α,β ),c(α,β ))P = L∗(B;−a0a1,c;α,β ) = 1,

where the product is taken over all primes P not above a prime in B and such that
c(α,β ) is divisible to an odd power by P. Here the first equality holds by definition
and the second one follows from the evaluation formula (25) by continuity. But if
c(X ,1) = Pi(X) then the product on the left reduces to the single term for which P is
the prime of K above pi whose existence was proved by means of (16). Hence (30)
at λ is locally soluble at this prime; and because these are the only primes not lying
above a prime of B which divide any c(α,β ) or any ai(α,β ) to an odd power, they
are the only primes not lying above a prime of B at which local solubility might
present any difficulty. Thus λ can be lifted to a point of the fibre above λ , which is
a conic, and the theorem now follows because weak approximation holds on conics.

��
Since (30) contains positive 0-cycles of degree 2 defined over k, it is trivial to

deduce from Theorem 9.4 the corresponding result for 0-cycles of degree 1; con-
versely, if we know the analogue of Theorem 9.4 for 0-cycles of degree 1 we can
deduce that (30) contains positive 0-cycles of some odd degree defined over k. It is
tempting to hope that if a pencil of conics contains 0-cycles of degree 1 then it con-
tains points; indeed, the corresponding result is true for Del Pezzo surfaces of degree
4, as is proved in Theorem 14.3. But this hope is false. A simple counterexample is
given by the pencil

Y 2
0 +Y2

1 −7(U2−UV −V 2)(U2 +UV −V 2)(U2−2V2)Y 2
2 = 0. (35)

This is insoluble in Q. For we can take B = {∞,2,3,5,7}, and the three possible
c(U,V ) are U2−UV −V 2, U2 +UV −V 2 and U2−2V 2. By (20) we have

L(B;−1,c) = (−1,c)∞(−1,c)2(−1,c)7,

the factors at 3 and 5 being trivial. Local solubility of (35) holds at each place; at
α ×β local solubility at 2 and at 7 requires respectively that 4|α and α2− 2β 2 is
divisible by an odd power of 7. Hence

(−1,α2±αβ −β 2)2 =−1, (−1,α2−2β 2)2 =−1
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and
(−1,α2±αβ −β 2)7 = 1, (−1,α2−2β 2)7 =−1.

To satisfy the conditions (33) we therefore need

(−1,α2±αβ −β 2)∞ =−1, (−1,α2−2β 2)∞ = 1;

but this is equivalent to α2±αβ −β 2 < 0 <α2−2β 2, which is impossible. Now let
K = Q(ρ) where ρ = 2cos(2π/7), so that ρ3 +ρ2−2ρ−1 = 0. If U = ρ2 +2ρ−3
and V = ρ2 +ρ−2 then

Y0 = (ρ−2)2(ρ2−ρ+ 1), Y1 = (ρ−2)2(ρ2−1), Y2 = 1

gives a solution in K.
On pencils of conics the appropriate Brauer-Manin condition is a necessary and

sufficient condition for the Hasse principle and for weak approximation (in each
case subject to Schinzel’s Hypothesis) and for the existence of positive 0-cycles
of degree N for all large enough N. This is the same as saying that the appropri-
ate Brauer-Manin condition is equivalent to the necessary and sufficient conditions
stated in Theorems 9.1 and 9.4. That is the content of the following lemma.

Lemma 9.5. Let W0 be everywhere locally soluble. Then the continuous conditions
derived from (30) are collectively equivalent to the Brauer-Manin conditions for
the existence of points of W0 defined over k. The continuous conditions similarly
derived from the L∗(a) are collectively equivalent to the Brauer-Manin conditions
for the existence of positive 0-cycles of degree N on W0 defined over k.

Proof. The first assertion is proved for k = Q in [11], Sect. 8; as with Lemma 8.1, the
proof there can easily be extended to our more general case. The second sentence
follows trivially from the first in the light of (28). ��

10 2-Descent on Elliptic Curves

In this section we describe the process of 2-descent on elliptic curves defined over
an algebraic number field k which have the form

Γ : y2 = (x− c1)(x− c2)(x− c3)

– that is, elliptic curves all of whose 2-division points are rational. We can clearly
take the ci to lie in o, the ring of integers of k. Let B, the set of bad places, be any
finite set of places containing the even primes, the infinite places, all the odd primes
dividing (c1− c2)(c1− c3)(c2− c3) and a set of generators for the ideal class group
of k; thus B contains the primes of bad reduction for Γ .

The basic version of 2-descent, which over Q goes back to Fermat, is as follows.
To any point (x,y) onΓ (k) there correspond m1,m2,m3 in k∗ with m1m2m3 = m2 �= 0
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such that the three equations

miy
2
i = x− ci for i = 1,2,3 (36)

are simultaneously soluble. We can multiply the mi by non-zero squares; indeed we
should really think of them as elements of k∗/k∗2, with a suitable interpretation of
the equations which involve them. Denote by C (m) the curve given by the three
equations (36), where m = (m1,m2,m3). Looking for points of Γ (k) is the same as
looking for quadruples x,y1,y2,y3 which satisfy (36) for some m. If for example p
divides m1 and m2 to an odd power and therefore m3 to an even power, then x must
be an integer at p and therefore p|(c1− c2). Hence in looking for soluble C (m)
we need only consider the finitely many m for which the mi are units at all primes
outside B.

One question of interest is the effect of twisting on the arithmetic properties of
the curve Γ . If b is in k∗, the quadratic twist of Γ by b is defined to be the curve

Γb : y2 = (x−bc1)(x−bc2)(x−bc3),

where we can regard b as an element of k∗/k∗2. The curve Γb is often written in the
alternative form

v2 = b(u− c1)(u− c2)(u− c3).

The analogue of (36) for Γb is

miy
2
i = x−bci for i = 1,2,3;

we shall call the curve given by these three equations Cb(m). It is often useful to
compare C (m) and Cb(m) for the same m.

Provided one treats the mi as elements of k∗/k∗2, the triples m form an abelian
group under componentwise multiplication:

m′ ×m′′ �→m′m′′ = (m′1m′′1,m
′
2m′′2,m

′
3m′′3).

The m for which C (m) is everywhere locally soluble form a finite subgroup, called
the 2-Selmer group. This is computable, and it contains the group of those m for
which C (m) is actually soluble in k. This smaller group is Γ (k)/2Γ (k), where Γ (k)
is the Mordell-Weil group of Γ . The quotient of the 2-Selmer group by this smaller
group is 2X, the group of those elements of the Tate-Safarevic group which are
killed by 2. One of the key conjectures in the subject is that the order of X is finite
and hence a square.

The process of going from the curve Γ to the set of curves C (m), or the finite
subset which is the 2-Selmer group, is called a 2-descent, or sometimes a first de-
scent, and the curves C (m) themselves are called 2-coverings. The reason for this
terminology is that there is a commutative diagram
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Γ −→ Γ
‖ ↗

C (m)
(37)

in which the left hand map is biregular (but defined over k̄ rather than k), the top map
is multiplication by 2 and the diagonal map is given by y = my1y2y3. A 2-covering
which is everywhere locally soluble, and therefore in the 2-Selmer group, can also
be written in the form

η2 = f (ξ ) where f (ξ ) = aξ 4 + bξ 3 + cξ 2 + dξ + e,

and many 2-coverings do arise in this way; but a 2-covering which is not in the
2-Selmer group cannot always be put into this form.

We now put this process into more modern language. In what follows, italic cap-
itals will denote vector spaces over F2, the finite field of two elements, and each of
p and q will be either a finite prime or an infinite place. Write

Yp = k∗p/k∗2p , YB =⊕p∈BYp.

Let Vp denote the vector space of all triples (μ1,μ2,μ3) with each μi in Yp and
μ1μ2μ3 = 1; and write VB =⊕p∈BVp. This is the best way to introduce these spaces,
because it preserves symmetry; but the reader should note that the prevailing custom
in the literature is to define Vp as Yp×Yp, which is isomorphic to the Vp defined
above but not in a canonical way. Next, write XB = o∗B/o∗2B where o∗B is the group
of elements of k∗ which are units outside B; and let UB be the image in VB of
the group of triples (m1,m2,m3) such that the mi are in XB and m1m2m3 = 1. It is
known that the map XB → YB is an embedding and dimUB = 1

2 dimVB; both these
depend on the requirement that B contains the even primes and the infinite places,
and the first of them depends also on the fact that B contains a base for the ideal
class group. Finally, if (x,y) is a point of Γ (kp) other than a 2-division point then
the product of the three components in the triple (x− c1,x− c2,x− c3) is y2 which
is in k∗2p ; so this triple has a natural image in Vp. We can supply the images of the
2-division points by continuity; for example the image of (c1,0) is

((c1− c2)(c1− c3),c1− c2,c1− c3), (38)

and the image of the point at infinity is the trivial triple (1,1,1), which is also the
product of the three triples like (38). Thus we obtain a map Γ (kp)→Vp. This map,
which is called the Kummer map, is a homomorphism. We denote its image by Wp;
clearly Wp is the set of those triples m for which (36) is soluble in kp. The 2-Selmer
group of Γ can now be identified with UB ∩WB where WB = ⊕p∈BWp; for as was
noted above, (36) is soluble at every prime outside B if and only if the elements of
m are in XB.
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Over the years, many people must have noticed that

dimWB = dimUB = 1
2 dimVB. (39)

The next major step, which explains and may well have been inspired by this rela-
tion, was taken by Tate. He introduced the bilinear form ep on Vp×Vp, defined by

ep(m′,m′′) = (m′1,m
′′
1)p(m′2,m

′′
2)p(m′3,m

′′
3)p.

Here (u,v)p is the multiplicative Hilbert symbol already defined in Sect. 8.
The bilinear form ep is non-degenerate and alternating on Vp ×Vp, so that

eB = ∏p∈B ep is a non-degenerate alternating bilinear form on VB ×VB. (For a
bilinear form with values in {±1}, “symmetric” and “skew-symmetric” are the
same and they each mean that e(m′,m′′) = e(m′′,m′); “alternating” means that also
e(m,m) = 1.) It is known from class field theory that UB is a maximal isotropic
subspace of VB. Tate showed that Wp is a maximal isotropic subspace of Vp, and
therefore WB is a maximal isotropic subspace of VB. (The proof of this, which is
difficult, can be found in Milne [54].) This explains (39); and it also shows that the
2-Selmer group of Γ can be identified with both the left and the right kernel of the
restriction of eB to UB×WB.

For both aesthetic and practical reasons, one would like to show that this restric-
tion is symmetric or skew-symmetric – these two properties being the same. But to
make such a statement meaningful we need an isomorphism between UB and WB ;
and though they have the same structure as vector spaces it is not obvious that there
is a natural isomorphism between them. The way round this obstacle was first shown
in [16]. It requires the construction inside each Vp of a maximal isotropic subspace
Kp such that VB = UB⊕KB where KB =⊕p∈BKp. Assuming that such spaces Kp

can be constructed, let tB : VB →UB be the projection along KB and write

U ′
B = UB ∩ (WB + KB), W ′

B = WB/(WB ∩KB) =
⊕

p∈B
W ′

p

where W ′
p = Wp/(Wp∩Kp). The map tB induces an isomorphism

τB : W ′
B →U ′

B,

and the bilinear function eB induces a bilinear function

e′B : U ′
B×W ′

B → {±1}.

The bilinear functions U ′
B ×U ′

B → {±1} and W ′
B×W ′

B → {±1} defined respec-
tively by

θ �
B : u′1×u′2 �→ e′B(u′1,τ

−1
B (u′2)) and θ �

B : w′1×w′2 �→ e′B(τBw′1,w
′
2) (40)
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are symmetric. (For the proof, see [16].) Here the images of w′1 ×w′2 under the
second map and of τBw′1× τBw′2 under the first map are the same. The 2-Selmer
group of Γ is isomorphic to both the left and the right kernel of e′B, and hence also
to the kernels of the two maps (40).

There is considerable freedom in choosing the Kp, and this raises three obvious
questions:

• Is there a canonical choice of the Kp?
• How small can we make U ′ and W ′?
• Can we ensure that the functions (40) are not merely symmetric but alternating?

These questions were first raised and also to a large extent answered in [55]; proofs
of the assertions which follow can be found there. The motive for ensuring that the
functions (40) are alternating is that it implies that the ranks of these functions are
even; this means that their coranks, which are equal to the dimension of the 2-Selmer
group, are congruent mod 2 to dimU ′

B and dimW ′
B.

The answer to the first question appears to be negative, though there is little
freedom in the optimum choice of the Kp – particularly if one wishes to obtain not
merely Lemma 10.1 but Theorem 10.2. Since U ′

B ⊃ UB ∩WB, the best possible
answer to the second question would be that we can achieve U ′

B = UB∩WB ; we do
this by satisfying the stronger requirement

WB = (UB ∩WB)⊕ (KB ∩WB). (41)

For suppose that (41) holds; then WB + KB = (UB ∩WB)+ KB and it follows im-
mediately that

U ′
B = UB ∩ (WB + KB) = UB ∩WB. (42)

The motivation for (41) is that we want to make WB∩KB as large as possible – that
is, to choose KB so that as much of it as possible is contained in WB. But because
KB must be complementary to UB, only the part of WB which is complementary to
WB ∩UB is available for this purpose.

Since the 2-Selmer group UB∩WB is identified with the left and right kernels of
each of the functions (40), if (42) holds then these functions are trivial and therefore
alternating. The formal statement of all this is as follows.

Lemma 10.1. We can choose maximal isotropic subspaces Kp ⊂ Vp for each p in
B so that VB = UB⊕KB. We can further ensure that

WB = (UB ∩WB)⊕ (KB ∩WB),

which implies U ′
B = UB ∩WB . If so, the functions θ �

B and θ �
B defined in (40) are

trivial.

But the other properties of the Kp chosen in this way are not at all obvious. Hence it
is advantageous to consider other recipes for choosing the Kp, for which (41) does
not hold but we can still prove that the functions (40) are alternating.
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For this purpose we write B as the disjoint union of B′ and B′′, where we shall
always suppose that the even primes and the infinite places are all in B′. For any
odd prime p we denote by Tp the subset of Vp consisting of those triples (μ1,μ2,μ3)
with μ1μ2μ3 = 1 for which each μi is in o∗p/o∗2p – that is, each μi is the image of a
p-adic unit. The main point of the following theorem is that for p in B′′ it enables
us to replace the complicated inductive definition of Kp used in the proof of Lemma
10.1 by the much simpler choice Kp = Tp. How one chooses B′′ depends on the
particular application which one has in mind.

Theorem 10.2. Let B be the disjoint union of B′ and B′′, and suppose that B′
contains the even primes and the infinite places. We can construct maximal isotropic
subspaces Kp ⊂Vp such that VB = UB⊕KB,

WB′ = (UB′ ∩WB′)⊕ (KB′ ∩WB′) (43)

and Kp = Tp for all p in B′′; and (43) implies that U ′
B′ = UB′ ∩WB′ . Moreover

U ′
B = j∗U ′

B′ ⊕ τBW ′
B′′ = j∗U ′

B′ ⊕
(⊕p∈B′′τBW ′

p

)
, (44)

and the restriction of θ �
B to j∗U ′

B′ × j∗U ′
B′ is trivial.

If B′ also contains all the odd primes p such that the vp(ci− c j) are not all con-
gruent mod 2, then we can choose the Kp for p in B′ so that also θ �

B is alternating
on U ′

B.

The appearance of j∗U ′
B′ in and just after (44) calls for some explanation. Let u

be any element of UB′ ; then u is in UB. Moreover, for p in B′′ the image of u in Vp

is in Tp = Kp and therefore in Kp +Wp; hence u is in U ′
B. In this way we define a

map U ′
B′ →U ′

B which is clearly an injection and which we denote by j∗.
Lemma 10.1 is the special case of Theorem 10.2 in which B′ = B and B′′

is empty. But the proof of Lemma 10.1 is a necessary step (and indeed the most
substantial step) in the proof of Theorem 10.2.

The main application of Theorem 10.2 is to twisted curves Γb, where we can
clearly take b to be an integer. Let S denote the set of bad primes for Γ itself and
let B ⊃S be the set of bad primes for Γb. If we are to apply any part of Theorem
10.2, B′′ must in practice consist entirely of primes which divide b and are not
in S . To describe the effect of twisting, we shall denote by db the dimension of
the 2-Selmer group of Γb regarded as a vector space over F2; we write d = d1 for
the dimension of the 2-Selmer group of Γ itself. It is now possible to prove results
about db−d, the change in the dimension of the 2-Selmer group as one goes from
Γ to Γb. There is reason to expect that statements about the parities of d and db will
be simpler and much easier to prove than statements about their actual values. The
two major statements known about db are Lemmas 10.3 and 10.4; both of these are
easy consequences of Theorem 10.2.

Lemma 10.3. If b is in o∗p for every p∈S , then db ≡ dim(US ∩WS ) mod 2 where
WS =⊕p∈S Wp and the Wp must be defined with respect to Γb and not with respect
to Γ . Thus db mod 2 only depends on the classes of b in the k∗p/k∗2p for p in S .
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Lemma 10.4. Let p be an odd prime in S such that

vp(c1− c2) > 0, vp(c1− c3) = vp(c2− c3) = 0.

Let b in k∗ be such that b is in k∗2q for all q in S other than p and b is a quadratic
non-residue at p. Then d and db have opposite parities.

11 Pencils of Curves of Genus 1

In this section we shall be concerned with pencils of 2-coverings of elliptic curves
defined over an algebraic number field k, where the underlying pencil of elliptic
curves has the form

E : Y 2 = (X− c1(U,V ))(X − c2(U,V ))(X− c3(U,V )). (45)

Here the ci(U,V ) are homogeneous polynomials in o[U,V ] all having the same even
degree. By means of a linear transformation on U,V we can ensure that the leading
coefficients of the ci(U,V ) are nonzero. Write

R(U,V ) = p12(U,V )p23(U,V )p31(U,V )

where pi j = ci− c j.
The 2-coverings of (45) are given by

mi(U,V )Y 2
i = X− ci(U,V ) for i = 1,2,3 (46)

where the mi(U,V ) are square-free homogeneous polynomials in o[U,V ] of even
degree such that m1m2m3 is a square. We should really regard the mi as homoge-
neous polynomials modulo squares, but this complicates the notation. Equation (46)
are equivalent to the three equations

miY
2
i −m jY

2
j = (c j− ci)Y 2

0 (47)

of which only two are independent. The sum of two 2-coverings is obtained by
multiplying the corresponding triples m = (m1,m2,m3) componentwise and then
removing squared factors. Denote by Γ = Γ (m;U,V ) the curve given by the three
equations (46) or the three equations (47) for particular values of m,U,V , and by
Ci j = Ci j(m;U,V ) the conic given by a single equation (47). There are natural maps
Γ →Ci j. Equation (47) also imply

m1(c2− c3)Y 2
1 + m2(c3− c1)Y 2

2 + m3(c1− c2)Y 2
3 = 0, (48)
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and forΓ to be soluble so too must be this conic. These are Brauer-Manin conditions;
they do not appear explicitly in the statement of Theorem 11.2 but they are implied
by the condition that N is not empty.

Our objective is to provide sufficient conditions for the solubility of a particular
pencil of curvesΓ , where the pencil is assumed to be everywhere locally soluble. We
shall use a superscript 0 to denote a curve of this pencil or other objects connected
with it. We shall need to distinguish between S , the set of bad places for the pencil
of curves Γ , and the larger set B of bad places for the particular curve Γ 0(α,β )
on which we want to prove that there are rational points. Thus S is a finite set
containing the infinite places, the primes above 2, those which divide the resolvent
of any two coprime factors of R(U,V ) in o[U,V ] or have norm not greater than
deg(R(U,V)), and those which are bad in the sense of Sect. 9 for any of the pencils
of conics Ci j. (In particular, this ensures that S contains a base for the ideal class
group of k.) In terms of the definitions below, B must contain S and all the pkτ .
The additional prime p which we introduce at each step of the algorithm should be
thought of as being thereby adjoined to S .

We denote the irreducible factors of pi j(U,V ) in k[U,V ] by fkτ (U,V ), and we
assume that the coefficients of any fkτ are integers and that there is no prime outside
S which divides all of them. When we apply the results of Sect. 10 it will be with
U = α,V = β where α ×β is so chosen that each ideal ( fkτ (α,β )) is the product
of primes in S and one prime pkτ outside S ; to do this we appeal to Lemma
7.1. In what follows, we shall call the pkτ the Schinzel primes. The arguments of
Sect. 10 show that we can confine ourselves to those triples m whose components
take values in o∗B when U = α,V = β . Because of the constraint just stated on the
choice of α,β , this means that we can restrict the components of m to be products of
some of the fkτ (U,V ) by elements of o∗S . In view of the description of 2-descents in
Sect. 10, we can further restrict ourselves to the triples m such that m1m2m3 divides
R2 and mi is prime to p jk in k[U,V ] up to factors in S , where here and throughout
this section i, j,k is any permutation of 1,2,3.

We shall also assume that the pi j(U,V ) are coprime in k[U,V ]. The case when
this condition fails is also of interest, but the methods used and the conclusions are
quite different; for a more detailed account see [56]. This assumption is weaker than
that in [16], which was that R(U,V ) is square-free in k[U,V ], and it enables us to
bring the example of diagonal quartics within the scope of the general theory.

The parity conditions on the degrees of the ci and mi are needed to ensure that
the curves (45) and Γ with U = α,V = β only depend on λ = α/β and not on α,β
separately; otherwise we would not be dealing with pencils. But even if two of the
mi have odd degree, which can happen if R has factors of odd degree, the curve Γ
given by (46) or (47) is a 2-covering of E; and such 2-coverings do play a part in our
arguments. For given E , let G be the group of all triples (m1,m2,m3) satisfying the
conditions above, including that the degrees of the mi are even, and define G∗ ⊃ G
by dropping the condition that the mi have even degree. Provided we take the mi

modulo squares, both G and G∗ are finite; and either G or G∗ can be regarded as
defining those pencils of 2-coverings of the pencil E which are of number-theoretic
interest.
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Now suppose that we are given a triple m0 = (m0
1,m

0
2,m

0
3) in G. Denote by Γ 0 =

Γ (m0,U,V ) the curve of genus 1 given by the three equations (47) with m = m0,
and similarly for the C0

i j. For simplicity we assume that the elliptic curve (45) has
no primitive 4-division points defined over k(U,V ), and to avoid trivialities we also
assume that the 2-coveringΓ 0 does not correspond to a 2-division point.

The only values of U/V for which Γ 0 can be soluble are ones for which Γ 0 is
everywhere locally soluble; so for any such value of U/V the 2-Selmer group of E
must contain the subgroup of order 8 generated by Γ 0 and the 2-coverings coming
from the 2-division points. We shall call this the inescapable part of the 2-Selmer
group. The essential tool in proving solubility will be the special case p = 2 of
Lemma 4.6, which we restate for ease of reference.

Lemma 11.1. Suppose that the Tate-Shafarevich group of E/k is finite and the 2-
Selmer group of E has order 8. Then every curve representing an element of the
2-Selmer group contains rational points.

As this shows, everything in this section will depend on the finiteness of X; and
everything will also depend on Schinzel’s Hypothesis.

As in Sect. 9, we need to work not in P1 but in the subset L1 obtained by deleting
the points λ = α/β at which R(α,β ) vanishes. The topology on L1(k) will be that
induced by S . There is an open set N ⊂ L1(k) such that Γ 0(α,β ) is soluble at
every place of S if and only if λ lies in N . Let us assume temporarily that we
are going to apply Lemma 7.1 to choose α,β so that each ideal ( fkτ (α,β )) is a
prime pkτ up to possible (and well determined) factors in S . Until we have chosen
α,β we do not know the pkτ ; but we do already know a set of generators of UB

as polynomials in U,V , and in the notation of Sect. 10 we also know the bilinear
form eB because of the results of Sect. 8. It is therefore possible to implement all
the apparatus of Sect. 10. Solubility of Γ 0(α,β ) at a particular Schinzel prime pkτ
is equivalent to the bilinear form eB defined in Sect. 10 taking the value 1 at each
m0×w, where w is either of the two generators of W associated with pkτ . This is
a Legendre-Jacobi condition, so it determines a certain open set Np ⊂ L1(k) where
p = pkτ . If we take any α/β not in Np and make no assumption about fkτ (α,β ),
then ∏eB(m0,w) taken over the w coming from the prime factors of fkτ (α,β ) not
in S will be the same Legendre-Jacobi function which we have just studied and will
therefore have the same value−1. In other words,Γ 0(α,β ) will be locally insoluble
at some prime dividing fkτ (α,β ). Thus for studying the solubility of (46) we can
replace N by the intersection of N with all the Np. In what follows we assume
that this new N is not empty.

In contrast to what happened in Sect. 9, nothing is gained by simply applying
Lemma 7.1 to choose α,β so that all the fkτ (α,β ) are prime up to possible factors
in S , because this might give rise to a 2-Selmer group too big for us to be able
to apply Lemma 11.1. What we do instead is most conveniently described as an
algorithm, which consists of repeatedly introducing a further well-chosen prime p
into S , with a corresponding extra condition on the set N of possible values of
U×V , in such a way that if we then apply Lemma 7.1 the dimension of the 2-Selmer
group is one less than it would have been before. If we can go on doing this as long as
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the 2-Selmer group remains too big, we shall eventually reach a situation to which
we can apply Lemma 11.1. However, this process cannot be always possible; for
otherwise we would be able to prove that the Hasse principle held for the pencil
(46), and this is known to be false. Hence there must be a potential obstruction to
the argument. This is provided by Condition D, which will be introduced below.
What we thereby obtain is Theorem 11.2 below.

The process of introducing a new prime p is as follows. We choose an fkτ and
integers θp,φp not both divisible by p and such that p‖ fkτ(θp,φp). Without loss of
generality we can assume that θp,φp are coprime. Choose integers γp,δp such that
θpδp−φpγp = 1, write

U = θpU1 + γpV1, V = φpU1 + δpV1

and impose on N the additional condition p2|V1. Thus at any point of N the value
of fkτ is exactly divisible by p, and the values of all the other functions f·· are prime
to p.

For given fkτ which p satisfy the condition that there exist αp,βp as above? Let
Kkτ = k[X ]/ fkτ(X ,1) be the field obtained by adjoining to k a root of fkτ , and let
ξkτ be the class of X in Kkτ ; thus fkτ (ξkτ ,1) = 0. The singular fibres of the pencil of
elliptic curves (45), as also those of the pencil of 2-coverings (46), correspond to the
roots of the fkτ . The reason for being interested in the singular fibres is as follows.
Let p be a prime of k not in S , and let αp,βp in o be such that p‖ fkτ(αp,βp);
such αp,βp exist if and only if there is a prime P in Kkτ whose relative norm over
k is p. This last condition may appear tiresome. But what one really does is to
choose a first-degree prime P in Kkτ and define p to be the prime below it in k. Now
norm P = p is automatic.

The arguments needed to validate each step of the algorithm are lengthy, and we
list them as (i)–(v) below. We impose further conditions on the additional prime p
which ensure (i); we then deduce (ii), (iii) and (iv). Finally we use Condition D to
show that unless the process is complete, we can choose p so that (v) holds. After all
this we choose α×β according to the recipe in Lemma 7.1 for the fkτ , and with the
additional property that L(S ;U,V ;α,β ) = 1 if there is any fkτ of odd degree. One
can satisfy this additional requirement by a slight modification of the construction
used to prove Lemma 7.1. Alternatively, one can render it unnecessary by replacing
U,V by homogeneous quadratic forms in U1,V1; this does not alter the values of the
functions L.

(i) We determine necessary and sufficient conditions for Γ (α,β ) to be locally sol-
uble at p. We use these immediately to choose p-adic conditions on N such that
Γ 0(α,β ) is locally soluble at p; but in (v) we shall also need them to ensure for
a particular m that the correspondingΓ (α,β ) is not locally soluble at p.

For (ii)–(iv) we assume that α×β satisfies the conditions of Lemma 7.1.

(ii) The bilinear form θ �
B : W ′

B×W ′
B → {±1} defined in (40) does not depend on

the choice of α×β and hence of the pkτ .
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By this we mean that if we change α,β , thereby replacing the old W ′ by a new
W ′ canonically isomorphic to it and replacing the old pkτ in B by the new ones,
then this isomorphism preserves θ �

B . The next result which we need, which is only
meaningful once we have proved (ii), is as follows:

(iii) We determine the effect on the function θ �
B of introducing a new prime p in the

way described above.
(iv) The curve Γ 0(α,β ) is locally soluble at pkτ .

By requiring that λ = α/β is in N we ensure that Γ 0(α,β ) is soluble in kv for
every v in S including p; and it is also soluble at all the Schinzel primes other than
possibly pkτ . Thus (i) and (iv) prove that the class of Γ 0(α,β ) is in the 2-Selmer
group of the curve E(α,β ) given by (45) provided that α,β are chosen according
to the recipe in Lemma 7.1. The pkτ are not determined until we know α and β ;
but this is unimportant because of (ii). Finally, the condition which we need for our
algorithm to achieve what we want is as follows:

(v) If m is in the kernel of the old θ �
B but not in the inescapable part of it, then we

can introduce a new prime p which removes m from the kernel and does not put
anything new into it.

It is in the proof of (v) that we need Condition D. Once we have (v), we can after
a sufficient number of steps satisfy the conditions of Lemma 11.1, and this implies
that Γ 0(α,β ) has rational solutions. The result of this process is Theorem 11.2.
A more sophisticated treatment of the solubility of pencils (46) can be found in
Chap. I of [14].

Theorem 11.2. Assume Schinzel’s Hypothesis and the finiteness of X, and sup-
pose that the three pi j(U,V ) are coprime in k[U,V ]. Suppose that the N con-
structed above is not empty and that Condition D holds. Then we can construct a
non-empty set A which lies in the closure of the set of λ in L1(k) at which Γ 0(α,β )
is soluble in k.

Theorem 11.2 gives a sufficient condition for the Hasse principle to hold, though the
condition is not always necessary. Indeed, we shall see at the end of this section that
we can replace Condition D by a potentially weaker Condition E; but probably even
the latter is not always necessary for solubility. The relation between Condition D
and the Brauer-Manin obstructions is addressed in [16].

Achieving (i). The condition that any particular Γ is soluble in kp throughout some
neighbourhood of αp×βp is that the reduction of Γ (αp,βp) mod p should contain
a point defined over o/p which is liftable to a point on Γ defined over kp. Denote
by Lkτ the least extension of Kkτ over which some absolutely irreducible component
of the singular fibre at ξkτ × 1 is defined; conveniently, all these components are
defined over the same least extension, which is normal over Kkτ . The decomposition
of Γ (αp,βp) mod p corresponds to the decomposition of the fibre Γ (ξkτ ,1); so we
can solve Γ in kp in a suitable neighbourhood of αp× βp if and only if P splits
completely in Lkτ .
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If fkτ‖pi j, each singular fibre given by fkτ = 0 of the pencil of curves Γ splits as
a pair of irreducible conics which meet in two points and are each defined over the
field Lkτ = Kkτ(

√
gkτ(ξkτ ,1)); here gkτ = mk if fkτ divides neither of mi and m j or

gkτ = mk p jk if fkτ divides both of them. The same holds if f 2
kτ |pi j and fkτ divides

neither mi nor m j, and again we have gkτ = mk. If f 2
kτ |pi j and fkτ divides both mi

and m j, then each singular fibre given by fkτ = 0 splits as a set of four lines which
form a skew quadrilateral, and each of these lines is defined over

Lkτ = Kkτ

(√
mk(ξkτ ,1),

√
p jk(ξkτ ,1)

)
. (49)

Write L0
kτ for the field corresponding to Γ 0 under this construction. To test for Con-

dition D, we need to list those m for which Lkτ is contained in L0
kτ . It is easy to

verify that they form a group, which contains m0 and the triples coming from the
2-division points.

Proof of (ii). We are allowed to choose α×β only within a set which is small in the
topology induced by S . In particular, this means that the power of any prime in S
which divides any fkτ (α,β ) is independent of α and β . Since the only other prime
which divides any particular fkτ (α,β ) is pkτ , which does so to the first power, the
ideal class of pkτ is fixed. If the place v is given by some pkτ then a generator of W ′

v
can be lifted back to σ ×τ where each of σ and τ is either 1 or fkτ (α,β ); and if v is
in S the elements of a base for W ′

v can be lifted back to elements σ×τ independent
of α,β with σ ,τ in o∗S . We choose a base for W ′

B composed of these two kinds of

elements; then the value of θ �
B at any pair of elements of this base is a product of

expressions of the form (σ ′(α,β ),τ ′(α,β ))v where v is in B and each of σ ′ and
τ ′ is the product of an element of o∗S and possibly an fkτ . If v is in S the value
of this expression is independent of α,β . If v is given by pkτ then using symmetry
and (ξ ,−ξ )v = 1 if necessary we can reduce to the case when σ ′ is not divisible
by fkτ . If also τ ′ is not divisible by fkτ then (σ ′(α,β ),τ ′(α,β ))v = 1; otherwise
(σ ′(α,β ),τ ′(α,β ))v = L(S ;σ ′,τ ′;α,β ) is continuous.

Achieving (iii). When we introduce p we adjoin two more generators to W , and the
description in terms of U,V of the product of p and the new pkτ is the same as the
description of the old pkτ . We use Theorem 10.2 with B′′ = {p,pkτ} to describe
the change in W ′. In the notation of Sect. 10 all the triples in Wp have vp(mk) even.
Since Kp = Tp, the set of triples all whose components are units at p, it follows that
Wp ∩Kp has dimension 1 and so has W ′

p. A similar argument holds for the primes
pkτ provided by Lemma 7.1, and shows that to each such prime there corresponds
one generator of W ′. Hence introducing p increases the dimension of W ′ by 1. If we
regard the θ � defined at (40) as being given by a matrix whose last two columns are
the only ones which depend on pkτ ,p respectively, the old θ � can be obtained from
the new one by adding together the last two rows and the last two columns.

Proof of (iv). As we have just noted,

e∗(m0,wold) = e∗(m0,wp)e∗(m0,wnew)
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where wold and wnew correspond to the old and the new pkτ . The first two factors
here are 1, so the third must be so.

Choice of p. Let wp be a lift to Wp of the non-trivial element of W ′
p, and let m be an

element of UB∩WB which is not in the inescapable part of the 2-Selmer group. Thus
τ−1
B m is in the kernel of e∗B. Suppose that we can choose p so that the 2-covering

corresponding to m is locally insoluble at p. On the one hand this is equivalent
to e∗(τ−1

B m,wp) = −1. On the other hand it requires P to split completely in L0
kτ

but not in Lkτ . The condition below, which in the literature is called Condition D,
ensures that such a choice is possible. We shall see later that Condition D can be
replaced by a weaker condition, but one which is less natural and sometimes less
computationally convenient.

Condition D: If m is not in the inescapable subgroup of the 2-Selmer group, then there is a
pair k,τ such that the field Lkτ is not contained in L0

kτ .

By incorporating the definitions of Lkτ and L0
kτ into this condition, we can restate it

as follows:

The kernel of the composite map

m �→ ⊕k,τgkτ (m) �→ ⊕k,τK
∗
kτ/〈K∗2kτ ,Hkτ〉

is generated by the inescapable subgroup of the 2-Selmer group, where

gkτ =

{
mk if fk divides neither of mi and m j,

mk p jk if fk divides both of mi and m j,

and

Hkτ =

⎧
⎪⎨

⎪⎩

mk(ξkτ ,1) if fkτ divides neither of mi and m j,

mk(ξkτ ,1)p jk(ξkτ ,1) if fkτ‖pi j and fkτ divides mi and m j,

{mk(ξkτ ,1), p jk(ξkτ ,1)} if f 2
kτ‖pi j and fkτ divides mi and m j.

The m for which Lkτ is contained in L0
kτ for each subscript kτ are those which do

not satisfy Condition D. If m satisfies Condition D we can choose k,τ and a P
which splits in L0

kτ but not in Lkτ . The underlying p has the properties we want. This
process remove m from the 2-Selmer group without creating any new elements of
that group. So we have certainly decreased the dimension of the 2-Selmer group,
which is what we needed to show to justify the algorithm. In fact it is easy to show
that we have decreased it by exactly 1.

It will be seen that we have not used the full force of Condition D; indeed it is
stated for all elements of G∗, but we have only used it for those elements which
lie in the initial 2-Selmer group. These are the ones for which the corresponding
2-covering is locally soluble at each place in B. The proof of (ii) above shows that
local solubility in S implies local solubility at each pkτ ; and the proof of (iii) shows
that this 2-Selmer group, considered as a subgroup of G∗, does not vary as α ×β
varies within a small enough open set. We actually use Condition D only for the m
which lie in this 2-Selmer group; and to require merely that such m satisfy Condi-
tion D is weaker than the full Condition D. We call this weaker condition Condition
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E. Its disadvantage is that Condition D is independent of α and β , whereas Condi-
tion E is not; however Condition E becomes independent of α ×β when α ×β is
restricted to a small enough open set. A particularly favourable case is when the 2-
Selmer group has order 8, because then Condition E is trivial. I do not know whether
Condition E, together with the conditions imposed in Theorem 11.2, is necessary as
well as sufficient for global solubility, nor whether these conditions are together
equivalent to the Brauer-Manin conditions, though I doubt whether either of these
is true. However, the arguments in [11] do enable one to link Conditions D and E to
the Brauer-Manin obstructions.

12 Some Examples

In this section we consider three particular families of surfaces to which the ideas
of the previous section (suitably modified in the last two examples) can be applied.
The first family consists of diagonal quartic surfaces (51), subject to the additional
condition (52) which ensures that (51) contains a pencil of curves of genus 1 whose
Jacobian has rational 2-division points. The second family is a particular family
of Kummer surfaces, and the third consists of diagonal cubic surfaces. What these
last two examples have in common is that the argument does not use Schinzel’s
Hypothesis; more precisely, we only need to force one linear polynomial to take a
prime value, and this can be done by means of Dirichlet’s Theorem on primes in
arithmetic progression. But the price of this is that we have to apply Lemma 4.6 to
two pencils of elliptic curves rather than to one, and to make the process work the
constraints on the choice of additional primes associated with the two pencils must
not interfere with each other. Thus the proof requires some additional (but not very
restrictive) conditions which are unlikely to be actually needed for solubility. For
the third example we also need to require that the field k over which we work does
not contain

√−3.

12.1 Diagonal Quartic Surfaces

Let V be a smooth quartic surface whose equation can be put into the form AD = BC,
where A, . . . ,D are linearly independent homogeneous quadratics in X0, . . . ,X3. Such
a V is fibred by the pencil of curves of genus 1

yA = zB, yC = zD, (50)

which are 2-coverings of elliptic curves. Recall that if M1,M2 are the matrices asso-
ciated with the quadratic forms yA− zB and yC− zD respectively, then the Jacobian
of (50) can be written in the form Y 2 = f (Z) where f is the resolving cubic of the
quartic polynomial det(M1− XM2). Hence if A, . . . ,D are linear combinations of
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the X2
i then the 2-division points of the Jacobian of (50) are all rational. Over an

algebraic number field k the K3 surfaces whose equations have the form

a0X4
0 + a1X4

1 + a2X4
2 + a3X4

3 = 0 (51)

satisfy the condition above if and only if

a0a1a2a3 is a square. (52)

Full details of the argument which follows can be found in [17]. We shall always
assume that (51) is everywhere locally soluble and the ai are integral. The surfaces
(51) are very special within the family of nonsingular quartic surfaces for at least
two reasons: they are Kummer surfaces, and their Néron-Severi groups over C have
maximal rank, which is 20. But this is probably the simplest family of K3 surfaces
that can be written down explicitly.

It is known that the Néron-Severi group of (51) over C is generated by the 48 lines
on the surface. However, what is equally important for our purposes is the Néron-
Severi group over k. When k = Q there are now 282 possibilities for the Galois group
over Q of the least field of definition of the 48 lines; these have been tabulated by
Martin Bright in his Cambridge Ph.D. thesis [57], which can be found at

http://www.boojum.org.uk/maths/quartic-surfaces/

together with a good deal of other relevent material. The large number of cases
means that the calculation needed to be automated, and one interesting feature of
the thesis is that it shows that this is possible.

Write A = α0X2
0 +α1X2

1 +α2X2
2 +α3X2

3 and so on. Eliminating each of the four
variables Xν from (50) in turn, we obtain four equations of the form

di�X
2
i + d j�X

2
j + dk�X

2
k = 0, (53)

only two of which are linearly independent. Here i, j,k, � is any permutation of
1,2,3,4 and dμν is the value of the determinant formed by columns μ and ν of
the matrix (

α0y−β0z α1y−β1z α2y−β2z α3y−β3z
γ0y− δ0z γ1y− δ1z γ2y− δ2z γ3y− δ3z

)
.

We have the unexpected result that each dk� is a constant multiple of di j, where
i, j,k, � is any permutation of 0,1,2,3. We note the identity

d01d23 + d02d31 + d03d12 = 0,

which is frequently useful. The Jacobian of the curve (50) has the form

E : Y 2 = (X− c1)(X − c2)(X− c3)

http://www.boojum.org.uk/maths/quartic-surfaces/
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where
c1− c2 = d03d21, c2− c3 = d01d32, c3− c1 = d02d13,

and the map from the curve (50) to its Jacobian is given by

Y = d12d23d31X1X2X3/X3
0 , X− ci = di jdkiX

2
i /X2

0

where i, j,k is any permutation of 1,2,3. Although everything so far is homogeneous
in y,z, we have to work in k(y,z) rather than k(y/z), for reasons which are already
implicit in Sect. 8.

There is an obvious map from (51) to the quadric surface

a0Y 2
0 + a1Y 2

1 + a2Y
2
2 + a3Y

2
3 = 0. (54)

We have assumed that (51), and therefore (54), is everywhere locally soluble; so (54)
is soluble in k. From this and the fact that a0a1a2a3 is a square it follows that−a1 is
represented by a2Y 2

2 +a3Y 2
3 over k. In other words, there exist integers r1,r2,r3 and

h such that
a1r2

1 + a2r2
2 + a3r2

3 = 0, h2 = a0a1a2a3.

After rescaling (51) if necessary, we can take

A(X2) = hr2X2
0 + a1a3(r3X2

1 − r1X2
3 ),

B(X2) = hr3X2
0 −a1a2(r2X2

1 + r1X2
2 ),

C(X2) = a3hr3X2
0 −a1a2a3(r2X2

1 − r1X2
2 ),

D(X2) = −a2hr2X2
0 −a1a2a3(r3X2

1 + r1X2
3 );

and the di j are given by

d23 = a2
1a2a3r2

1(a3y2 + a2z2), d01 = (h/a2a3)d23,

d31 = a2
1a2a3r1(a3r2y2−2a3r3yz−a2r2z2), d02 = (h/a3a1)d31,

d12 = a2
1a2a3r1(a3r3y2 + 2a2r2yz−a2r3z2), d03 = (h/a1a2)d12.

These choices do not preserve the symmetry, but that loss appears to be unavoidable.
Changing the ri corresponds to a linear transformation on y,z; changing the sign of
h gives the pencil yA = zC,yB = zD instead of (50).

The 2-covering of E given by the triple (m1,m2,m3) with m1m2m3 = 1 is

miZ
2
i = X− ci for i = 1,2,3 and Y 2 = Z1Z2Z3.

As in Sect. 11, values associated with the particular 2-covering given by (50) will be
denoted by a superfix 0; the 2-covering itself is given by

m0
1 =−d21d31, m0

2 =−d12d32, m0
3 =−d13d23.
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We shall also need to know the 2-coverings corresponding to the 2-division points.
That corresponding to (c1,0), for example, is given by

m1 =−a0a1, m2 = d03d21, m3 = d02d31, (55)

which can alternatively be written

m1 =−a0a1, m2 =−h/a1a2, m3 = h/a3a1.

It follows from the expressions for the di j that, up to a squared factor, the dis-
criminant of di j is equal to −aia j; thus in particular di j has no repeated linear factor
and it is a product of two linear factors over k if and only if −aia j is in k∗2. If i, j,k
is a cyclic permutation of 1,2,3 then

d0i/d jk = a0ai/h = h/a jak.

Moreover the resultant of di j and dik is −4a2
i a jak, so that di j and dik cannot

have a common root. The pencil (50) has six singular fibres, given by the roots
of d01d02d03 = 0, and each singular fibre consists of four lines which form a skew
quadrilateral. Thus each of the 48 lines on (51) is part of a singular fibre of one of
the two pencils on V .

Martin Bright’s thesis contains a dictionary which gives the Néron-Severi group
of (51) over any field k. This group has rank at least 2 whenever (52) holds; subject
to (52), it has rank greater than 2 if and only if up to fourth powers there is a relation
of the form a j = 4ai or a j =−ai or aia j = aka�.

In order to apply Theorem 11.2, we must know when Condition D holds, and we
must evaluate the relevent Legendre-Jacobi functions. This is where a splitting of
cases becomes necessary. In what follows, we confine ourselves to the case when
none of the −aia j is in k∗2, which is equivalent to requiring that all the di j are
irreducible over k.

Lemma 12.1. Suppose that no −aia j is in k∗2. Then for any m which does not
satisfy Condition D, one of m and mm0 can be chosen to be independent of y and z.
Moreover the group of such m has order exactly 8 (and consists of the inescapable
part of the 2-Selmer group) if and only if a0a1a2a3 is not a fourth power and no aia j

is a square.

What happens in the exceptional cases is as follows. If for example a2a3 is a
square then (1,−a1a2,−a1a2) does not satisfy Condition D. Again, if h is in −k∗2
then (a1a3,a1a2,a2a3) does not satisfy Condition D, whereas if h is in k∗2 then
(a1a2,a2a3,a3a1) does not satisfy Condition D. In each of these cases, the group of
inescapable elements of the 2-Selmer group acquires one extra generator, which is
the m just listed; and this provides a straightforward description of Condition E. If
some aia j and one of ±h are both squares, then we acquire two extra generators in
this way.
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We can now state the main result of this subsection, which is simply the special-
ization of Theorem 11.2 to our case, and which therefore requires no further proof.
The set S of bad places consists of the infinite places, the primes which divide
2a0a1a2a3 and a basis for the ideal class group of k. Denote by A the closure of
the set of points α ×β in N 2 at which (50) is locally soluble for y = α,z = β at
each place of S and all the Legendre-Jacobi conditions associated with any pencil
of conics (53) hold.

Theorem 12.2. Suppose that (51) is everywhere locally soluble and such that
a0a1a2a3 is a square, and that no −aia j is in k∗2. Assume Schinzel’s Hypothesis
and the finiteness of X. If A is not empty and Condition D holds, then (51) con-
tains rational points.

As was remarked at the end of Sect. 11, we can here replace Condition D by the
weaker Condition E.

The solubility of the pencil of conics (53) is equivalent to three Legendre-Jacobi
conditions, of which a typical one is

L(B;−di�d j�,dk�) = 1. (56)

There are 12 conditions of this kind, but they are not all independent. Indeed in
the notation of Lemma 8.3 the continuous conditions, which form a subgroup there
called Λ0, are all Brauer-Manin; and Bright’s table shows that in the most general
case satisfying (52) there is only one algebraic Brauer-Manin condition. In general
the twelve conditions of the form (56) all reduce to F12F23F31 = 1 where

Fi j = L(B;−di�d j�,dk�;α,β ) = L(B;−dikd jk,d�k;α,β ).

If however one of the aia j is a square then the corresponding condition Fi j = 1 is
also in Λ0. The remarks which follow Lemma 12.1 show that Condition D cannot
then hold, but Condition E may still hold in some part of A . One can evaluate the
Fi j by using the formulae which follow (24). Of the surfaces (51) defined over Q
which satisfy (52) and have the ai integral with each |ai| < 16, there are just two
which are everywhere locally soluble but do not have a solution in Q. They are

2X4
0 + 9X4

1 = 6X4
2 + 12X4

3 and 4X4
0 + 9X4

1 = 8X4
2 + 8X4

3 .

The first of these fails the condition F12F23F31 = 1 and the second has a0a1 square
and fails the condition F01 = 1.

Using the methods of Cassels [58] we can carry out a second descent on some of
the surfaces considered in this subsection, and thereby prove that certain equations
(51) are insoluble or do not admit weak approximation. The prettiest result that has
been obtained in this way is as follows.

Lemma 12.3. Suppose that X4
0 +4X4

1 = W 2
0 −2W2

1 for X0,X1,W0,W1 in Z such that
no prime p≡ 7 mod 8 divides both W0 and W1. Then |W0| �≡ 5 or 7 mod 8.
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This is a weak approximation property, but of a rather unusual sort; and it appears
unlikely that it corresponds to a Brauer-Manin condition.

12.2 Some Kummer Surfaces

In this subsection we consider Kummer surfaces of the form

Z2 = f (1)(X) f (2)(Y ) (57)

defined over an algebraic number field k, where the f (i) are separable quartic poly-
nomials. For (57) to be everywhere locally soluble, for each place v of k there must
exist cv in k∗v such that both the equations

U2 = cv f (1)(X) and V 2 = cv f (2)(Y )

are soluble in kv. For (57) to be soluble in k requires the stronger condition that there
exists c in k∗ such that both the equations

U2 = c f (1)(X) and V 2 = c f (2)(Y ) (58)

are everywhere locally soluble. For the existence of the cv to imply the existence of
c is a local-to-global theorem, and the obstruction to this turns out to be a Brauer-
Manin obstruction. In my view, this is the most interesting feature of the whole
argument.

To be able to use the methods of Sect. 11 on the pair of equations (58), we must
require that their Jacobians each have all their 2-division points rational. In this case
it turns out that the Brauer-Manin obstruction introduced in the previous paragraph
is trivial; in other words, we can always find the c that we need. Call one such value
c0; then we can replace c0 by any c which is close to c0 at all the bad places of
(57) and is such that the good primes p which divide it to an odd power are such
that both equations (58) are soluble in kp. To prove solubility of (57) we introduce
well-chosen primes into c in such a way as to reduce the orders of the 2-Selmer
groups of both the underlying Jacobians to 8. This requires some intricate but ele-
mentary arguments; and for these we need to assume that for each Jacobian there are
two primes which are bad in a specified way for that curve but which are good for
the other. Full details can be found in [23], but this is definitely not recommended
reading.

12.3 Diagonal Cubic Surfaces

In this subsection we consider diagonal cubic surfaces
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a0X3
0 + a1X3

1 = a2X3
2 + a3X3

3 (59)

over certain algebraic number fields k. Without loss of generality we can assume
that the ai in (59) are integers. To show that (59) has a rational solution it is enough
to show that there exists c in k∗ such that each of the two curves

a0X3
0 + a1X3

1 = cX3, and a2X3
2 + a3X3

3 = cX3 (60)

is soluble. The hypothesis that (59) is everywhere locally soluble implies that for
each place v in k there exists cv in k∗v such that each of

a0X3
0 + a1X3

1 = cvX3, and a2X3
2 + a3X3

3 = cvX3

is soluble in kv. The first step in the argument is to deduce from the existence of the
cv the existence of c in k∗ such that each of the two equations (60) is everywhere
locally soluble. In contrast with what happened in the previous subsection, such a c
always exists; and indeed if S is any given finite set of places of k, we can choose
c integral and such that c/cv is in k∗3v for each v in S . Following the methods of
Sect. 11, we denote by L1 the affine line with the origin deleted. Let S be a set of
bad places for the surface (59), which means that S must contain all the primes of
k dividing 3a0a1a2a3 and a basis for the ideal class group of k; and let B ⊃S be
a set of bad places for the pair of curves (60), so that B must also contain all the
primes dividing c. Under the topology induced by S , let A be the open subset of
L1(k) on which each of the two curves (60) is locally soluble at each place of S , let
c0 be a given point of A and let N0 ⊂A be an open neighbourhood of c0. Because
of the possible presence of Brauer-Manin obstructions, it is not necessarily true that
there exists c in N0 such that the two equations (60) are both soluble. But one may
still ask what additional assumptions are needed in order to prove solubility by the
methods of Sect. 11 – always of course on the basis that X is finite.

The Jacobians of the two curves (60) are

Y 3
0 +Y 3

1 = a0a1cY 3 and Y 3
2 +Y3

3 = a2a3cY 3 (61)

respectively. The obvious descent to apply to each of them is the ρ-descent, where
ρ =

√−3. Applying this to the elliptic curve

X3 +Y3 = AZ3 (62)

replaces it by the equations

ρX +ρ2Y = m1Z3
1 , ρ2X +ρY = m2Z3

2 , X +Y = AZ3
3/m1m2

where Z = Z1Z2Z3. Here m1,m2,Z1,Z2 are in K = k(ρ) and if ρ is not in k then
m1,m2 are conjugate over k, as are Z1,Z2; but Z3 is in k. It would appear natural to
work in K rather than k, since if (59) is soluble in K it is soluble in k. But actually
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our methods could not then be applied, for complex multiplication by ρ induces
an isomorphism on (62), so that the Mordell-Weil group of (62) over K has an even
number of generators of infinite order and there is no possibility of applying Lemma
4.6. Thus a prerequisite for applying the methods of Sect. 11 is the unexpected con-
straint: √−3 is not in k. (63)

This does however allow us to take k = Q, for example. But even if (63) holds, there
is considerable interplay between the descent theory over K and that over k; and it
seems necessary to make use of this interplay in the argument.

The basic idea is to write c as a product of primes in S (which are forced on
us by the choice of N0) and some other well-chosen primes; the latter make up
the set B \S . We need to choose the latter so that the ρ-Selmer group of each
of the curves (61) has order 9; and following the precedent of Sect. 11 we expect
to do this by adjoining additional primes one by one to B, always preserving the
local solubility of the curves (60) and keeping c within N0. The latter condition
simply means that each new prime p should be close to 1 in our topology and should
be such that a0/a1 and a2/a3 are in k∗3p . But here we encounter the final pair of
complications. To adjoin one more prime divides or multiplies the order of each ρ-
Selmer group by 3. If one of these orders has already been reduced to 9 we cannot
reduce it further; so adjoining one more prime can no longer improve the situation.
Instead we eventually reach the stage when we have to adjoin two more primes
simultaneously, in such a way that the order of one of the ρ-Selmer groups remains
unchanged, while the order of the other is divided by 9. To be able to reduce the
orders of both ρ-Selmer groups to 9, we therefore need the initial choice of c to
satisfy the following additional condition:

The product of the orders of the ρ-Selmer groups of the two curves (61) is a power of 9.

As should be clear from the preceding discussion, the truth or falsehood of this
statement depends only on N0 (provided it is small enough) and not on the value
of c within N0. In other words, it depends only on the choice of c0; and we need to
show that we can choose c0 so that (in addition to the previous requirements) this
condition holds at c0. Having done all this, we still need the equivalent of Condition
D or Condition E.

However, at the end of all these complications we do obtain Theorem 12.4 below;
the full details of the proof can be found in [18]. The sufficient conditions stated in
Theorem 12.4 are clumsy and could certainly be improved; but I do not believe that
this method is powerful enough to replace them by the Brauer-Manin conditions.

Theorem 12.4. Let k be an algebraic number field not containing the primitive cube
roots of unity. Assume that X is always finite. If (59) is everywhere locally soluble
and the ai are all cubefree, then each of the following criteria is sufficient for the
solubility of (59) in k.

(i) There exist primes p1,p3 of k not dividing 3 such that a1 is a non-unit at p1 and
a3 is a non-unit at p3, but for j = 1 or 3 the three ai with i �= j are units at p j .
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(ii) There is a prime p of k not dividing 3 such that a1 is a non-unit at p but the
other ai are units there; and a2,a3,a4 are not all in the same coset of k∗3p .

(iii) There is a prime p of k not dividing 3 such that exactly two of the ai are units
at p, and (59) is not birationally equivalent to a plane over kp.

13 The Case of One Rational 2-Division Point

It is possible to carry out a 2-descent without using information about a field ex-
tension provided that the elliptic curve involved has one rational 2-division point
– though it is then necessary to implement the process in two stages. The details
of this process have been worked out, with increasing degrees of sophistication, in
[15, 59] and Chap. II of [14]. I sketch it in this section.

We are concerned with pencils of 2-coverings whose pencil of Jacobians has the
form

Y 2 = (X− c(U,V))(X2−d(U,V))

where c,d are homogeneous polynomials in k[U,V ] with degd = 2degc. We start
by recalling the standard machinery for 2-descent on

E ′ : Y 2 = (X− c)(X2−d)

for c,d in k and d not in k2.
If O′ is the point at infinity on E ′ and P′ the 2-division point (c,0) then there is

an isogeny φ ′ : E ′ → E ′′ = E ′/{O′,P′} where E ′′ is

E ′′ : Y 2
1 = (X1 + 2c)(X2

1 + 4(d− c2));

the places of bad reduction for E ′′ are the same as those for E ′. Explicitly, φ ′ is given
by

X1 =
d−X2

c−X
−2c, Y1 =

Y (X2−2cX + d)
(X− c)2 .

There is also a dual isogeny φ ′′ : E ′′ → E ′, and φ ′′ ◦φ ′ and φ ′ ◦φ ′′ are the doubling
maps on E ′ and E ′′ respectively. We are primarily interested in the case when neither
d nor c2− d is a square in k, so that E ′ and E ′′ each contain only one primitive 2-
division point defined over k.

The elements of H1(k,{O′,P′}) ∼ k∗/k∗2 classify the φ ′-coverings of E ′′; the
covering corresponding to the class of m′ is

V 2
1 = m′(X1 + 2c), V 2

2 = m′(X2
1 + 4(d− c2)) (64)

with the obvious two-to-one map to E ′′. The φ ′-covering corresponding to P′′ is
given by m′ = d. Similarly the φ ′′-coverings of E ′ are classified by the elements of
H1(k,{O′′,P′′})∼ k∗/k∗2, the covering corresponding to the class of m′′ being
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W 2
1 = m′′(X − c), W 2

2 = m′′(X2−d). (65)

The φ ′′-covering corresponding to P′ is given by m′′ = c2−d. We denote by S′2 the
2-Selmer group of E ′, and by S′φ ,S

′′
φ the φ ′-Selmer group of E ′′ and the φ ′′-Selmer

group of E ′ respectively.
Write K = k(d1/2); then the group of 2-coverings of E ′ is naturally isomorphic

to K∗/K∗2, where the 2-covering corresponding to the class of a+bd1/2 is given by

Z2
1 = (a2−db2)(X − c), (Z2±d1/2Z3)2 = (a±bd1/2)(X ±d1/2).

In homogeneous form, this can be written

Z2
2 + dZ2

3 = aZ2
1/(a2−db2)+ (ac + bd)Z2

0,

2Z2Z3 = bZ2
1/(a2−db2)+ (a + bc)Z2

0.

}
(66)

Call this curve Γ ′; then the map Γ ′ → E ′ has degree 4 and is given by

X =
Z2

1

(a2−db2)Z2
0

+ c, Y =
Z1(Z2

2 −dZ2
3)

(a2−db2)Z3
0

.

The map Γ ′ → E ′ can be factorized as Γ ′ →C′′ → E ′, where C′′ is the φ ′′-covering
of E ′ given by (65) with m′′ = a2−db2 and the map Γ ′ →C′′ is

W1 = Z1/Z0, W2 = (Z2
2 −dZ2

3)/Z2
0 .

Conversely, suppose that we have a curve of genus 1 defined over k and given by
the equations

α0U2
0 +α1U2

1 +α2U2
2 +α3U2

3 + 2α4U2U3 = 0,

β0U2
0 +β1U2

1 +β2U2
2 +β3U2

3 + 2β4U2U3 = 0,

}
(67)

where the αi,βi are in o. We have just seen that any 2-covering of an elliptic curve
with one rational 2-division point can be put in this form, and we shall now prove
the converse. Write di j =αiβ j−α jβi; then the curve (67) takes the more convenient
form

d10U2
0 + d12U2

2 + 2d14U2U3 + d13U2
3 = 0,

d01U2
1 + d02U2

2 + 2d04U2U3 + d03U2
3 = 0.

}
(68)

If we write U0 = 2Z0(d2
14− d12d13) and U1 = Z1/4d34(d2

14− d12d13), this last pair
of equations can be identified with (66) provided that

a =−2(2d14d34 + d13d23)(d2
14−d12d13), b = d−1

01 d13(d2
14−d12d13),

c = 4d04d14−2d02d13−2d03d12, d = 4d2
01(d

2
23 + 4d24d34);

it also follows from these that
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c2−d = 16(d2
04−d02d03)(d2

14−d12d13),
m′′ = a2−db2 = 16d2

34(d
2
14−d12d13)3.

We assume that d(c2−d) �= 0, so that (67) defines a nonsingular curve of genus 1.
Now let S be a finite set of places which contains the infinite places, the primes

which divide 2, the odd primes of bad reduction for E ′ (or E ′′) and a set of generators
for the ideal class group of k. For any v in S we write

V ′v = H1(kv,{O′,P′})∼ k∗v/k∗2v

and similarly for V ′′v ; and we denote by W ′
v the image of E ′′(kv)/φ ′E ′(kv) in V ′v and

similarly for W ′′
v . Thus m′ lies in W ′

v if and only if Γ ′ is soluble over kv, and similarly
for W ′′

v . There is a non-degenerate canonical pairing

V ′v ×V ′′v → {±1} (69)

induced by the Hilbert symbol, under which the orthogonal complement of W ′
v is

W ′′
v . As in Sect. 10, we write

V ′S =⊕v∈S V ′v , W ′
S =⊕v∈S W ′

v

and similarly for V ′′ and W ′′. The machinery in the first half of Sect. 10 needs to be
modified to take account of the changed circumstances, but the proofs involve no
new ideas.

Lemma 13.1. Let S0 consist of the infinite places, the even primes, and a set of
generators for the ideal class group of k. For each v in S there exist subspaces
K′v ⊂V ′v and K′′v ⊂V ′′v such that

(i) K′′v is the orthogonal complement of K′v under the pairing (69);
(ii) V ′S = U ′

S ⊕K′S and V ′′S = U ′′
S ⊕K′′S where U ′

S ,U ′′
S are the images of XS ×

XS = (o∗S /o∗2S )2 in V ′S and V ′′S respectively;
(iii) If v is not in S0 we can take K′v and K′′v to be the images of (o∗v/o∗2v )2.

It follows from (69) that there is a non-degenerate canonical pairing

V ′S ×V ′′S → {±1} (70)

and from (i) that K′′S = ⊕v∈S K′′v is the orthogonal complement of K′S under this
pairing.

Lemma 13.2. If S ⊃S0 then S′φ is isomorphic to each of U ′
S ∩W ′

S , the left kernel
of the map U ′

S ×W ′′
S →{±1} induced by (70), and the left kernel of the map W ′

S ×
U ′′

S → {±1} induced by (70). A similar result holds for S′′φ .

Let t ′S : V ′S →U ′
S be the projection along K′S and similarly for t ′′S . We now

diverge from the notation of Sect. 10, writing
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U′S = U ′
S ∩ (W ′

S + K′S ), W′
S = W ′

S /(W ′
S ∩K′S )

and similarly for U′′S and W′′
S ; as in Sect. 10, the map t ′S induces an isomorphism

τ ′S : W′
S → U′S , and there is an analogous isomorphism τ ′′S : W′′

S → U′′S . The
pairing (70) induces pairings

U′S ×W′′
S →{±1}, W′

S ×U′′S →{±1} (71)

and the action of τ ′S × (τ ′′S )−1 takes the first pairing into the second. The left kernel
of either of these pairings is isomorphic to S′φ and the right kernel to S′′φ . The action
of τ ′S ×1 takes the first pairing into the pairing

W′
S ×W′′

S → {±1}.

Our objective is to prove the solubility in k of pencils of curves (67) under suit-
able conditions. The appropriate modification of Lemma 11.1 is as follows.

Lemma 13.3. Suppose that P′ is the only primitive 2-division point of E ′ defined
over k and similarly for P′′ on E ′′. If the orders of S′φ and S′′φ are 2 and 4 respectively
then the order of S′2 is at most 4.

Proof. LetΓ ′ be a 2-covering of E ′ and denote by C′′ the quotient of Γ ′ by the action
of the group {O′,P′}; then C′′ is a φ ′′-covering of E ′ and we have a commutative
diagram

E ′ φ ′−−−−→ E ′′ φ ′′−−−−→ E ′
∥∥∥

∥∥∥
∥∥∥

Γ ′ −−−−→ C′′ −−−−→ E ′

where the first two vertical double lines mean that Γ ′ and C′′ are principal homo-
geneous spaces for E ′ and E ′′ respectively. If Γ ′ is identified with the element f of
H1(k,E ′[2]) then C′′ is identified with φ ′ ◦ f as an element of H1(k,E ′′[φ ′′]). If Γ ′
is in S′2 then C′′ is in S′′φ ; so we can construct all the elements of S′2 by lifting back
the elements of S′′φ . But by hypothesis P′′ is not in φ ′E ′(k), so the two elements of
S′φ must correspond to the points O′′ and P′′ as members of E ′′(k)/φ ′E ′(k); hence
regarded as elements of S′2 they are equivalent. In other words, E ′′ regarded as an
element of S′′φ lifts back to only one element of S′2; so the same is true of each ele-
ment of S′′φ . ��

We now have to study simultaneously the φ ′-descent on E ′′ and the φ ′′-descent
on E ′. As in Sect. 11, by introducing a sequence of well-chosen primes we reduce S′φ
and S′′φ until we can apply Lemma 13.3; but the process is more complicated than in
Sect. 11. The strongest version of the argument is due to Wittenberg [14]; assuming
Schinzel’s Hypothesis and the finiteness of X, to prove solubility he needs little
more than the triviality of the Brauer-Manin obstruction.
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14 Del Pezzo Surfaces of Degree 4

Let V be a Del Pezzo surface of degree 4 (that is, the smooth intersection of two
quadrics in P4) defined over an algebraic number field k. Salberger and Skoroboga-
tov [60] have shown that the only obstruction to weak approximation on V is the
Brauer-Manin obstruction, and a more elementary proof can be found in [61].

Theorem 14.1. Suppose that V (k) is not empty. Let A be the subset of the adelic
space V (A) consisting of the points∏Pv such that

∑ invv(A(Pv)) = 0 in Q/Z

for all A in the Brauer group Br(V ). Then the image of V (k) is dense in A .

The idea behind the proof in [61] is that we can use the existence of a point of V (k)
to fibre V by conics. Theorem 9.4 now allows us to find a positive 0-cycle of degree
8 on V defined over k satisfying pre-assigned approximation conditions; and the
proof is then completed by a modification of an argument of Coray [62]. Coray’s
result is Theorem 14.3 below; it will probably turn out to be a fundamental tool in
the Diophantine theory of Del Pezzo equations of degree 4. Lemma 14.2 is weaker
than Theorem 14.3, but appears to be a necessary step in the proof of the latter.

Lemma 14.2. Let V be a Del Pezzo surface of degree 4, defined over a field L of
characteristic 0. If V contains a positive 0-cycle of degree 2 and a positive 0-cycle
of odd degree n, both defined over L, then V (L) is not empty.

Proof. We can suppose V embedded in P4 as the intersection of two quadrics. We
proceed by induction on n. If the given 0-cycle of degree 2 consists of the two points
P′ and P′′ then we can suppose that they are conjugate over L and distinct, because
otherwise the lemma would be trivial. By a standard result, there are infinitely many
points on V defined over L(P′) and hence infinitely many positive 0-cycles of degree
2 defined over L. Choose d so that

2d(d + 1) > n > 2d(d−1)

and let {P′i ,P′′i } be 1
2{2d(d + 1)− n− 1} distinct pairs of points of V , the points

of each pair being conjugate over L. The hypersurfaces of degree d cut out on V a
system of curves of dimension 2d(d + 1); hence there is at least a pencil of such
curves passing through the P′i and P′′i and the points of the given 0-cycle of degree
n, and this pencil is defined over L. We have accounted for 2d(d + 1)− 1 of the
4d2 base points of the pencil; so the remaining ones form a positive 0-cycle of
degree 2d(d− 1)+ 1 defined over L. This completes the induction step unless n =
2d(d−1)+ 1.

In this latter case we must have d > 1 because if d = 1 then n = 1 and the lemma
is already proved; hence 2d(d + 1)− n− 1 = 4d− 2 ≥ 6. Instead of the previous
construction we now choose our pencil of curves to have double points at P′0 and
P′′0 and to pass through 1

2{2d(d + 1)− n− 7} other pairs P′i ,P′′i as well as through
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the points of the given 0-cycle of degree n. In this case each of P′0 and P′′0 is a base
point of the pencil with multiplicity 4; so we have accounted for 2d(d +1)+1 of the
base points of the pencil, and the remaining ones form a positive 0-cycle of degree
2d(d−1)−1 defined over L. This completes the induction step in this case. ��
Theorem 14.3. Let V be a del Pezzo surface of degree 4, defined over a field L of
characteristic 0. If V contains a 0-cycle of odd degree defined over L then V (L) is
not empty.

Proof. By decomposing the 0-cycle into its irreducible components, we can assume
that V contains a positive 0-cycle a of odd degree defined over L. We can write V
as the intersection of two quadrics, each defined over L; let W be one of them. We
can find a field L1 ⊃ L with [L1 : L] ≤ 2 and a point P on W defined over L1. The
lines on W through P are parametrised by the points of a conic, so we can find a
field L2 ⊃ L1 with [L2 : L1] ≤ 2 and a line � on W , passing through P and defined
over L2. The intersection of this line with another quadric containing V cuts out on
V a positive 0-cycle of degree 2 defined over L2. Applying Lemma 14.2 to a and
this 0-cycle, we obtain a point P2 on V defined over L2. Repeating this argument for
a and the positive 0-cycle of degree 2 consisting of P2 and its conjugate over L1, we
obtain a point P1 on V defined over L1; and one further repetition of the argument
gives us a point on V defined over L. ��

To use and then collapse a field extension in this way is a device which probably
has a number of uses. For such a collapse step to be feasible, the degree of the field
extension needs to be prime to the degree of the variety; and this leads one to phrase
the same property somewhat differently.

Question 14.4. Let V be a variety defined over a field K, not necessarily of a
number-theoretic kind. For what families of V is it true that if V contains a 0-cycle
of degree 1 defined over K then it contains a point defined over K?

As stated above, this is true for Del Pezzo surfaces of degree 4. For pencils of conics
it is in general false, even for algebraic number fields K, as was shown at the end
of Sect. 9. For Del Pezzo surfaces of degree 3 the question is open: I expect it to be
true for algebraic number fields K but false for general fields.

The methods of Sect. 13 have enabled Wittenberg [14] to prove the solubility
of almost all Del Pezzo surfaces of degree 4 on which there is no Brauer-Manin
obstruction. His starting point is as follows. Let V be a nonsingular Del Pezzo sur-
face of degree 4, defined over an algebraic number field k and everywhere locally
soluble. Then, after a field extension of odd degree, we can exhibit a family of hy-
perplane sections of V which is of the form considered in Sect. 13. This family is
parametrised by the points of P3 blown up along a certain curve and at four other
points. The construction, which was first sketched in [15], is as follows.

The surface V is the base locus of a pencil of quadrics; because V is nonsingular,
the pencil contains exactly 5 cones defined over k̄ and these are all distinct. Hence
one at least of them is defined over a field k1 which is of odd degree over k; and
by Theorem 14.3 it is enough to ask whether V contains points defined over k1.
Henceforth we work over k1. After a change of variables, we can assume that the
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singular quadric just described has vertex (1,0,0,0,0) and therefore an equation of
the form f (X1,X2,X3,X4) = 0. By absorbing multiples of the other Xi into X0, we
can write V in the form

f (X1,X2,X3,X4) = 0, aX2
0 + g(X1,X2,X3,X4) = 0 (72)

with a �= 0. Now let P be any point on X0 = 0, let Q be the quadric of the pencil (72)
which passes through P, and let Π be the tangent hyperplane to Q at P. For general
P the curve of genus 1 in which Π meets V can be put in the form (68) and hence
is of the type considered in Sect. 13. For provided that P does not lie on f = 0, by a
further change of variables we can take P to be (0,1,0,0,0) and require

f (X1,X2,X3,X4) = bX2
1 + f1(X2,X3,X4).

The equation of Q has no term in X2
1 , so by a further change of variables we can

take it to have the form

aX2
0 + cX1X4 + h(X2,X3,X4) = 0 (73)

with c �= 0; this is equivalent to requiring the equation ofΠ to be X4 = 0. Since V is
given by f = 0 and (73), its intersection with X4 = 0 has the required form.

This construction breaks down if P lies on V or is the vertex of one of the other
singular quadrics of the pencil, because thenΠ is no longer well-defined. To remedy
this, what we do is to choose a point P on X0 = 0 together with a hyperplaneΠ which
touches at P some quadric of the pencil (72). Thus P should be considered as a point
of the variety W obtained by blowing up X0 = 0 (which can be identified with P3)
along the curve V ∩{X0 = 0} and at the vertices of the other four singular quadrics
of the pencil.

Denote by U the variety over W whose fibres are the curves V ∩Π in the con-
struction above; then what we have obtained is a diagram

W ←−U −→V

in which the left hand map is a fibration. The right hand map here is not a fibration,
and it seems unlikely that there is even a subvariety of U on which the restriction
of the map is a fibration. But this is not important. What matters is the existence
of a section – that is, a map V →U such that the composite map V → U → V is
the identity; and for this we only need the map V → U to be rational rather than
everywhere defined. In the notation of (72) let P0 = (x0, . . . ,x4) be a point of V
with x0 �= 0, and choose P = (0,x1,x2,x3,x4). The equation of Π has no term in X0;
hence since P lies on Π so does P0. This defines the rational map V →U . Provided
V is everywhere locally soluble, so is U . If we can find a field extension k2/k1 of
odd degree such that U is soluble in k2, then V will also be soluble in k2 and two
applications of Theorem 14.3 will show that V is soluble in k.
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We cannot apply Wittenberg’s results cited in Sect. 13 to W directly, because W
is too big; but it is simple enough to find a line L defined over k1 in the P3 which
underlies W such that

• L is in sufficiently general position, and
• The inverse image of L in U is everywhere locally soluble.

To do this, we choose any P1 on X0 = 0 and defined over k1. The fibre above P1 is
locally soluble except at a finite set S of places. For each of these places there is
a point of U in the corresponding local field, and this maps down to a point of P3.
Using weak approximation on P3 we can therefore find a point P2 in P3 such that
the fibre above P2 is locally soluble at each place in S . We can now take L to be the
line P1P2.
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46. de la Brèteche, R., Browning, T.D.: On Manin’s conjecture for singular Del Pezzo surfaces of
degree four, I. Mich. Math. J (to appear)
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48. de la Brèteche, R., Browning, T.D., Derenthal, U.: On Manin’s conjecture for a certain singular
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Diophantine Approximation
and Nevanlinna Theory

Paul Vojta

1 Introduction

Beginning with the work of Osgood [65], it has been known that the branch of
complex analysis known as Nevanlinna theory (also called value distribution the-
ory) has many similarities with Roth’s theorem on diophantine approximation. This
was extended by the author [87] to include an explicit dictionary and to include geo-
metric results as well, such as Picard’s theorem and Mordell’s conjecture (Faltings’
theorem). The latter analogy ties in with Lang’s conjecture that a projective variety
should have only finitely many rational points over any given number field (i.e., is
Mordellic) if and only if it is Kobayashi hyperbolic.

This circle of ideas has developed further in the last 20 years: Lang’s conjecture
on sharpening the error term in Roth’s theorem was carried over to a conjecture in
Nevanlinna theory which was proved in many cases. In the other direction, Bloch’s
conjectures on holomorphic curves in abelian varieties (later proved; see Sect. 15
for details) led to proofs of the corresponding results in number theory (again, see
Sect. 15). More recently, work in number theory using Schmidt’s Subspace Theorem
has led to corresponding results in Nevanlinna theory.

This relation with Nevanlinna theory is in some sense similar to the (much older)
relation with function fields, in that one often looks to function fields or Nevanlinna
theory for ideas that might translate over to the number field case, and that work
over function fields or in Nevanlinna theory is often easier than work in the number
field case. On the other hand, both function fields and Nevanlinna theory have con-
cepts that (so far) have no counterpart in the number field case. This is especially
true of derivatives, which exist in both the function field case and in Nevanlinna
theory. In the number field case, however, one would want the “derivative with re-
spect to p,” which remains as a major stumbling block, although (separate) work of
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Buium and of Minhyong Kim may ultimately provide some answers. The search for
such a derivative is also addressed in these notes, using a potential approach using
successive minima.

It is important to note, however, that the relation with Nevanlinna theory does not
“go through” the function field case. Although it is possible to look at the function
field case over C and apply Nevanlinna theory to the functions representing the
rational points, this is not the analogy being described here. Instead, in the analogy
presented here, one holomorphic function corresponds to infinitely many rational or
algebraic points (whether over a number field or over a function field). Thus, the
analogy with Nevanlinna theory is less concrete, and may be regarded as a more
distant analogy than function fields.

These notes describe some of the work in this area, including much of the nec-
essary background in diophantine geometry. Specifically, Sects. 2–4 recall basic
definitions of number theory and the theory of heights of elements of number fields,
culminating in the statement of Roth’s theorem and some equivalent formulations of
that theorem. This part assumes that the reader knows the basics of algebraic num-
ber theory and algebraic geometry at the level of Lang [45] and Hartshorne [36],
respectively. Some proofs are omitted, however; for those the interested reader may
refer to Lang [46].

Sections 5–7 briefly introduce Nevanlinna theory and the analogy between Roth’s
theorem and the classical work of Nevanlinna. Again, many proofs are omitted;
references include Shabat [75], Nevanlinna [60], and Goldberg and Ostrovskii [29]
for pure Nevanlinna theory, and Vojta [87] and Ru [69] for the analogy.

Sections 8–16 generalize the content of the earlier sections, in the more geometric
context of varieties over the appropriate fields (number fields, function fields, or C).
Again, proofs are often omitted; most may be found in the references given above.

Section 15 in particular introduces the main conjectures being discussed here:
Conjecture 15.2 in Nevanlinna theory (“Griffiths’ conjecture”) and its counterpart
in number theory, the author’s Conjecture 15.6 on rational points on varieties.

Sections 17 and 18 round out the first part of these notes, by discussing the func-
tion field case and the subject of the exceptional sets that come up in the study of
higher dimensional varieties.

In both Nevanlinna theory and number theory, these conjectures have been
proved only in very special cases, mostly involving subvarieties of semiabelian va-
rieties. This includes the case of projective space minus a collection of hyperplanes
in general position (Cartan’s theorem and Schmidt’s Subspace Theorem). Recent
work of Corvaja, Zannier, Evertse, Ferretti, and Ru has shown, however, that using
geometric constructions one can use Schmidt’s Subspace Theorem and Cartan’s the-
orem to derive other weak special cases of the conjectures mentioned above. This is
the subject of Sects. 19–23.

Sections 24–28 present generalizations of Conjectures 15.2 and 15.6. Conjecture
15.2, in Nevanlinna theory, can be generalized to involve truncated counting func-
tions (as was done by Nevanlinna in the 1-dimensional case), and can also be posed
in the context of finite ramified coverings. In number theory, Conjecture 15.6 can
also be generalized to involve truncated counting functions. The simplest nontrivial
case of this conjecture, involving the divisor [0]+ [1]+ [∞] on P1, is the celebrated
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“abc conjecture” of Masser and Oesterlé. Thus, Conjecture 23.5 can be regarded
as a generalization of the abc conjecture as well as of Conjecture 15.6. One can
also generalize Conjecture 15.6 to treat algebraic points; this corresponds to finite
ramified coverings in Nevanlinna theory. This is Conjecture 25.1, which can also be
posed using truncated counting functions (Conjecture 25.3).

Sections 29 and 30 briefly discuss the question of derivatives in Nevanlinna
theory, and Nevanlinna’s “Lemma on the Logarithmic Derivative.” A geometric
form of this lemma, due to Kobayashi, McQuillan, and Wong, is given, and it is
shown how this form leads to an inequality in Nevanlinna theory, due to McQuil-
lan, called the “tautological inequality.” This inequality then leads to a conjecture
in number theory (Conjecture 30.1), which of course should then be called the
“tautological conjecture.” This conjecture is discussed briefly; it is of interest since
it may shed some light on how one might take “derivatives” in number theory.

The abc conjecture infuses much of this theory, not only because a Nevanlinna-
like conjecture with truncated counting functions contains the abc conjecture as
a special case, but also because other conjectures also imply the abc conjecture,
and therefore are “at least as hard” as abc. Specifically, Conjecture 25.1, on alge-
braic points, implies the abc conjecture, even if known only in dimension 1, and
Conjecture 15.6, on rational points, also implies abc if known in high dimensions.
This latter implication is the subject of Sect. 31. Finally, implications in the other
direction are explored in Sect. 32.

2 Notation and Basic Results: Number Theory

We assume that the reader has an understanding of the fundamental basic facts
of number theory (and algebraic geometry), up through the definitions of (Weil)
heights. References for these topics include [46] and [87]. We do, however, recall
some of the basic conventions here since they often differ from author to author.

Throughout these notes, k will usually denote a number field; if so, then Ok will
denote its ring of integers and Mk its set of places. This latter set is in one-to-one
correspondence with the disjoint union of the set of nonzero prime ideals of Ok,
the set of real embeddings σ : k ↪→ R, and the set of unordered complex conjugate
pairs (σ ,σ) of complex embeddings σ : k ↪→ C with image not contained in R.
Such elements of Mk are called non-archimedean or finite places, real places, and
complex places, respectively.

The real and complex places are collectively referred to as archimedean or
infinite places. The set of these places is denoted S∞. It is a finite set.

To each place v ∈Mk we associate a norm ‖ ·‖v, defined for x ∈ k by ‖x‖v = 0 if
x = 0 and

‖x‖v=

⎧
⎪⎪⎨

⎪⎪⎩

(Ok:p)ordp(x) if v corresponds to p⊆ Ok;

|σ(x)| if v corresponds to σ : k ↪→ R; and

|σ(x)|2 if v is a complex place, corresponding to σ : k ↪→ C

(1)
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if x �= 0. Here ordp(x) means the exponent of p in the factorization of the fractional
ideal (x). If we use the convention that ordp(0) = ∞, then (1) is also valid when
x = 0.

We refer to ‖ · ‖v as a norm instead of an absolute value, because ‖ · ‖v does not
satisfy the triangle inequality when v is a complex place. However, let

Nv =

⎧
⎪⎪⎨

⎪⎪⎩

0 if v is non-archimedean;

1 if v is real; and

2 if v is complex.

(2)

Then the norm associated to a place v of k satisfies the axioms

(3.1) ‖x‖v ≥ 0, with equality if and only if x = 0;
(3.2) ‖xy‖v = ‖x‖v‖y‖v for all x,y ∈ k; and
(3.3) ‖x1 + · · ·+ xn‖v ≤ nNv max{‖x1‖v, . . . ,‖xn‖v} for all x1, . . . ,xn ∈ k, n ∈ N.

(In these notes, N = {0,1,2, . . .}.)
Some authors treat complex conjugate embeddings as distinct places. We do not

do so here, because they give rise to the same norms.
Note that, if x ∈ k, then x lies in the ring of integers if and only if ‖x‖v ≤ 1 for

all non-archimedean places v. Indeed, if x �= 0 then both conditions are equivalent
to the fractional ideal (x) being a genuine ideal.

Let L be a finite extension of a number field k, and let w be a place of L. If w is
non-archimedean, corresponding to a nonzero prime ideal q⊆OL, then p := q∩Ok

is a nonzero prime of Ok, and gives rise to a non-archimedean place v ∈ Mk. If v
arises from w in this way, then we say that w lies over v, and write w | v. Likewise, if
w is archimedean, then it corresponds to an embedding τ : L ↪→C, and its restriction
τ
∣∣
k : k ↪→ C gives rise to a unique archimedean place v ∈Mk, and again we say that

w lies over v and write w | v.
For each v ∈Mk, the set of w ∈ML lying over it is nonempty and finite. If w | v

then we also say that v lies under w.
If S is a subset of Mk, then we say w | S if w lies over some place in S; otherwise

we write w � S.
If w | v, then we have

‖x‖w = ‖x‖[Lw:kv]
v for all x ∈ k, (4)

where Lw and kv denote the completions of L and k at w and v, respectively. We also
have

∏
w∈ML

w|v

‖y‖w = ‖NL
k y‖v for all v ∈Mk and all y ∈ L . (5)

This is proved by using the isomorphism L⊗k kv
∼= ∏w|v Lw; see for example

[59, Chap. II, Cor. 8.4].
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Let L/K/k be a tower of number fields, and let w′ and v be places of L and k,
respectively. Then w′ | v if and only if there is a place w of K satisfying w′ | w and
w | v.

The field k = Q has no complex places, one real place corresponding to the inclu-
sion Q ⊆ R, and infinitely many non-archimedean places, corresponding to prime
rational integers. Thus, we write

MQ = {∞,2,3,5, . . .} .

Places of a number field satisfy a Product Formula

∏
v∈Mk

‖x‖v = 1 for all x ∈ k∗ . (6)

This formula plays a key role in number theory: it is used to show that certain ex-
pressions for the height are well defined, and it also implies that if∏v ‖x‖v < 1 then
x = 0.

The Product Formula is proved first by showing that it is true when k = Q (by
direct verification) and then using (5) to pass to an arbitrary number field.

3 Heights

The height of a number, or of a point on a variety, is a measure of the complexity of
that number. For example, 100/201 and 1/2 are very close to each other (using the
norm at the infinite place, at least), but the latter is a much “simpler” number since
it can be written down using fewer digits.

We define the height (also called the Weil height) of an element x ∈ k by the
formula

Hk(x) = ∏
v∈Mk

max{‖x‖v,1} . (7)

As an example, consider the special case in which k = Q. Write x = a/b with a,b∈Z

relatively prime. For all (finite) rational primes p, if pi is the largest power of p
dividing a, and p j is the largest power dividing b, then ‖a‖p = p−i and ‖b‖p = p− j,
and therefore max{‖x‖p,1} = pb. Therefore the product of all terms in (7) over all
finite places v is just |b|. At the infinite place, we have ‖x‖∞ = |a/b|, so this gives

HQ(x) = max{|a|, |b|} . (8)

Similarly, if P ∈ Pn(k) for some n ∈ N, we define the Weil height hk(P) as
follows. Let [x0 : . . . : xn] be homogeneous coordinates for P (with the xi always
assumed to lie in k). Then we define

Hk(P) = ∏
v∈Mk

max{‖x0‖v, . . . ,‖xn‖v} . (9)
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By the Product Formula (6), this quantity is independent of the choice of homoge-
neous coordinates.

If we identify k with A1(k) and identify the latter with a subset of P1(k) via the
standard injection i : A1 ↪→ P1, then we note that Hk(x) = Hk(i(x)) for all x ∈ k.
Similarly, we can identify kn with An(k), and the standard embedding of An into Pn

gives us a height

Hk(x1, . . . ,xn) = ∏
v∈Mk

max{‖x1‖v, . . . ,‖xn‖v,1} .

The height functions defined so far, all using capital “H,” are called multiplica-
tive heights. Usually it is more convenient to take their logarithms and define
logarithmic heights:

hk(x) = logHk(x) = ∑
v∈Mk

log+ ‖x‖v (10)

and

hk([x0 : . . . : xn]) = logHk([x0 : . . . : xn]) = ∑
v∈Mk

logmax{‖x0‖v, . . . ,‖xn‖v}.

Here
log+(x) = max{logx,0}.

Equation (5) tells us how heights change when the number field k is extended to
a larger number field L:

hL(x) = [L : k]hk(x) (11)

and
hL([x0 : . . . : xn]) = [L : k]hk([x0 : . . . : xn]) (12)

for all x ∈ k and all [x0, . . . ,xn] ∈ Pn(k), respectively.
Then, given x ∈Q, we define

hk(x) =
1

[L : k]
hL(x)

for any number field L ⊇ k(x), and similarly given any [x0 : . . . : xn] ∈ Pn(Q), we
define

hk([x0 : . . . : xn]) =
1

[L : k]
hL([x0 : . . . : xn])

for any number field L ⊇ k(x0, . . . ,xn). These expressions are independent of the
choice of L by (11) and (12), respectively.

Following EGA, if x is a point on Pn
k , then κ(x) will denote the residue field of

the local ring at x. If x is a closed point then the homogeneous coordinates can be
chosen such that k(x0, . . . ,xn) = κ(x).
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With these definitions, (11) and (12) remain valid without the conditions x ∈ k
and [x0 : . . . : xn] ∈ Pn(k), respectively.

It is common to assume k = Q and omit the subscript k. The resulting heights are
called absolute heights.

It is obvious from (7) that hk(x)≥ 0 for all x ∈ k, and that equality holds if x = 0
or if x is a root of unity. Conversely, hk(x) = 0 implies ‖x‖v ≤ 1 for all v; if x �= 0
then the Product Formula implies ‖x‖v = 1 for all v. Thus x must be a unit, and the
known structure of the unit group then leads to the fact that x must be a root of unity.

Therefore, there are infinitely many elements of Q with height 0. If one bounds
the degree of such elements over Q, then there are only finitely many; more gener-
ally, we have:

Theorem 3.1. (Northcott’s finiteness theorem) For any r ∈ Z>0 and any C ∈ R,
there are only finitely many x ∈Q such that [Q(x) : Q]≤ r and h(x)≤C. Moreover,
given any n ∈ N there are only finitely many x ∈ Pn(Q) such that [κ(x) : Q]≤ r and
h(x)≤C.

The first assertion is proved using the fact that, for any x∈Q, if one lets k = Q(x),
then Hk(x) is within a constant factor of the largest absolute value of the largest coef-
ficient of the irreducible polynomial of x over Q, when that polynomial is multiplied
by a rational number so that its coefficients are relatively prime integers. The sec-
ond assertion then follows as a consequence of the first. For details, see [48, Chap. II,
Thm. 2.2].

This result plays a central role in number theory, since (for example) proving an
upper bound on the heights of rational points is equivalent to proving finiteness.

4 Roth’s Theorem

Roth [67] proved a key and much-anticipated theorem on how well an algebraic
number can be approximated by rational numbers. Of course rational numbers are
dense in the reals, but if one limits the size of the denominator then one can ask
meaningful and nontrivial questions.

Theorem 4.1. (Roth) Fix α ∈ Q, ε > 0, and C > 0. Then there are only finitely
many a/b∈Q, where a and b are relatively prime integers, such that

∣∣∣
a
b
−α

∣∣∣≤ C
|b|2+ε . (13)

Example 4.2. As a diophantine application of Roth’s theorem, consider the dio-
phantine equation

x3−2y3 = 11, x,y ∈ Z. (14)

If (x,y) is a solution, then x/y must be close to 3
√

2 (assuming |x| or |y| is large,
which would imply both are large):
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∣∣∣∣
x
y
− 3
√

2

∣∣∣∣=
∣∣∣∣

11

y(x2 + xy 3
√

2 + y2 3
√

4)

∣∣∣∣�
1
|y|3 .

Thus Roth’s theorem implies that (14) has only finitely many solutions.
More generally, if f ∈ Z[x,y] is homogeneous of degree≥ 3 and has no repeated

factors, then for any a ∈ Z f (x,y) = a has only finitely many integral solutions.
This is called the Thue equation and historically was the driving force behind the
development of Roth’s theorem (which is sometimes called the Thue-Siegel-Roth
theorem, sometimes also mentioning Schneider, Dyson, and Mahler).

The inequality (13) is best possible, in the sense that the 2 in the exponent
on the right-hand side cannot be replaced by a smaller number. This can be
shown using continued fractions. Of course one can conjecture a sharper error term
[49, Intro. to Chap. I].

If a/b is close to α , then after adjusting C one can replace |b| in the right-hand
side of (13) with HQ(a/b) (see (8)). Moreover, the theorem has been generalized to
allow a finite set of places (possibly non-archimedean) and to work over a number
field:

Theorem 4.3. Let k be a number field, let S be a finite set of places of k containing
all archimedean places, fix αv ∈ Q for each v ∈ S, let ε > 0, and let C > 0. Then
only finitely many x ∈ k satisfy the inequality

∏
v∈S

min{1,‖x−αv‖v} ≤ C
Hk(x)2+ε . (15)

(Strictly speaking, S can be any finite set of places at this point, but requiring S to
contain all archimedean places does not weaken the theorem, and this assumption
will be necessary in Sect. 6. See, for example, (29).)

Taking − log of both sides of (15), dividing by [k : Q], and rephrasing the logic,
the above theorem is equivalent to the assertion that for all c ∈ R the inequality

1
[k : Q] ∑v∈S

log+
∥∥∥∥

1
x−αv

∥∥∥∥
v
≤ (2 + ε)h(x)+ c (16)

holds for all but finitely many x ∈ k.
In writing (15), we assume that one has chosen an embedding iv : k̄ ↪→ kv over k

for each v ∈ S. Otherwise the expression ‖x−αv‖v may not make sense.
This is mostly a moot point, however, since we may restrict to αv ∈ k for

all v. Clearly this restricted theorem is implied by the theorem without the ad-
ditional restriction, but in fact it also implies the original theorem. To see this,
suppose k, S, ε , and c are as above, and assume that αv ∈ Q are given for all
v ∈ S. Let L be the Galois closure over k of k(αv : v ∈ S), and let T be the set
of all places of L lying over places in S. We assume that L is a subfield of k̄,
so that αv ∈ L for all v ∈ S. Then (iv)

∣∣
L : L → kv induces a place w0 of L over

v, and all other places w of L over v are conjugates by elements σw ∈ Gal(L/k):
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‖x‖w = ‖σ−1
w (x)‖w0 for all x ∈ L. Letting αw = σw(αv) for all w | v, we then have

‖x−αw‖w = ‖σ−1
w (x−αw)‖w0 = ‖x−αv‖[Lw0 :kv]

v for all x ∈ k by (4), and therefore

∑
w|v

log+
∥∥∥∥

1
x−αw

∥∥∥∥
w

=∑
w|v

[Lw0 : kv] log+
∥∥∥∥

1
x−αv

∥∥∥∥
v
= [L : k] log+

∥∥∥∥
1

x−αv

∥∥∥∥
v

since L/k is Galois. Thus

1
[k : Q] ∑v∈S

log+
∥∥∥∥

1
x−αv

∥∥∥∥
v
=

1
[L : Q] ∑w∈T

log+
∥∥∥∥

1
x−αw

∥∥∥∥
w

for all x ∈ k. Applying Roth’s theorem over the field L (where now αw ∈ L for all
w ∈ T ) then gives (16) for almost all x ∈ k.

Finally, we note that Roth’s theorem (as now rephrased) is equivalent to the fol-
lowing statement.

Theorem 4.4. Let k be a number field, let S ⊇ S∞ be a finite set of places of k, fix
distinct α1, . . . ,αq ∈ k, let ε > 0, and let c ∈R. Then the inequality

1
[k : Q] ∑v∈S

q

∑
i=1

log+
∥∥∥∥

1
x−αi

∥∥∥∥
v
≤ (2 + ε)h(x)+ c (17)

holds for almost all x ∈ k.

Indeed, given αv ∈ k for all v ∈ S, let α1, . . . ,αq be the distinct elements of the
set {αv : v ∈ S}. Then

1
[k : Q] ∑v∈S

log+
∥∥∥∥

1
x−αv

∥∥∥∥
v
≤ 1

[k : Q] ∑v∈S

q

∑
i=1

log+
∥∥∥∥

1
x−αi

∥∥∥∥
v
,

so Theorem 4.4 implies the earlier form of Roth’s theorem (as modified).
Conversely, given distinct α1, . . . ,αq ∈ k, we note that any given x ∈ k can be

close to only one of the αi at each place v (where the value of i may depend on v).
Therefore, for each v,

q

∑
i=1

log+
∥∥∥∥

1
x−αi

∥∥∥∥
v
≤ log+

∥∥∥∥
1

x−αv

∥∥∥∥
v
+ cv

for some constant cv independent of x and some αv ∈ {α1, . . . ,αq} depending on x
and v. Thus, for each x ∈ k, there is a choice of αv for each v ∈ S such that

1
[k : Q] ∑v∈S

q

∑
i=1

log+
∥∥∥∥

1
x−αi

∥∥∥∥
v
≤ 1

[k : Q] ∑v∈S

log+
∥∥∥∥

1
x−αv

∥∥∥∥
v
+ c′,
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where c′ is independent of x. Since there are only finitely many choices of the system
{αv : v ∈ S}, finitely many applications of the earlier version of Roth’s theorem
suffice to imply Theorem 4.4.

5 Basics of Nevanlinna Theory

Nevanlinna theory, developed by R. and F. Nevanlinna in the 1920s, concerns the
distribution of values of holomorphic and meromorphic functions, in much the same
way that Roth’s theorem concerns approximation of elements of a number field.

One can think of it as a generalization of a theorem of Picard, which says that a
nonconstant holomorphic function from C to P1 can omit at most two points. This,
in turn, generalizes Liouville’s theorem.

An example relevant to Picard’s theorem is the exponential function ez, which
omits the values 0 and ∞. When r is large, the circle |z| = r is mapped to many
values close to ∞ (when Re z is large) and many values close to 0 (when Re z is
highly negative).

So even though ez omits these two values, it spends a lot of time very close to
them. This observation can be made precise, in what is called Nevanlinna’s First
Main Theorem. In order to state this theorem, we need some definitions.

First we recall that log+ x = max{logx,0}, and similarly define

ord+
z f = max{ordz f ,0}

if f is a meromorphic function and z ∈ C.

Definition 5.1. Let f be a meromorphic function on C. We define the proximity
function of f by

m f (r) =
∫ 2π

0
log+∣∣ f (reiθ )

∣∣ dθ
2π

(18)

for all r > 0. We also define

m f (∞,r) = m f (r) and m f (a,r) = m1/( f−a)(r)

when a ∈ C.

The integral in (18) converges when f has a zero or pole on the circle |z|= r, so
it is defined everywhere. The proximity function m f (a,r) is large to the extent that
the values of f on |z|= r are close to a.

Definition 5.2. Let f be a meromorphic function on C. For r > 0 let n f (r) be the
number of poles of f in the open disc |z|< r of radius r (counted with multiplicity),
and let n f (0) be the order of the pole (if any) at z = 0. We then define the counting
function of f by
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Nf (r) =
∫ r

0
(n f (s)−n f (0))

ds
s

+ n f (0) logr. (19)

As before, we also define

Nf (∞,r) = Nf (r) and Nf (a,r) = N1/( f−a)(r)

when a ∈ C.

The counting function can also be written

Nf (a,r) = ∑
0<|z|<r

ord+
z ( f −a) · log

r
|z| + ord+

0 ( f −a) · logr. (20)

Thus, the expression Nf (a,r) is a weighted count, with multiplicity, of the number
of times f takes on the value a in the disc |z|< r.

Definition 5.3. Let f be as in Definition 5.1. Then the height function of f is the
function Tf : (0,∞)→R given by

Tf (r) = m f (r)+ Nf (r). (21)

Classically, the above function is called the characteristic function, but here we
will use the term height function, since this is more in parallel with terminology in
the number field case. The height function Tf does, in fact, measure the complexity
of the meromorphic function f .

In particular, if f is constant then so is Tf (r); otherwise,

liminf
r→∞

Tf (r)
logr

> 0. (22)

Moreover, it is known that Tf (r) = O(logr) if and only if f is a rational func-
tion. Although this is a well-known fact, I was unable to find a convenient refer-
ence, so a proof is sketched here. If f is rational, then direct computation gives
Tf (r) = O(logr). Conversely, if Tf (r) = O(logr) then f can have only finitely
many poles; clearing these by multiplying f by a polynomial changes Tf by at
most O(logr), so we may assume that f is entire. We may also assume that f is
nonconstant. By [37, Thm. 1.8], if f is entire and nonconstant and K > 1, then

liminf
r→∞

logmax|z|=r | f (z)|
Tf (r)(logTf (r))K = 0.

This implies that f (z)/zn has a removable singularity at ∞ for sufficiently large n,
hence is a polynomial.

The following theorem relates the height function to the proximity and counting
functions at points other than ∞.
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Theorem 5.4. (First Main Theorem) Let f be a meromorphic function on C, and
let a ∈C. Then

Tf (r) = m f (a,r)+ Nf (a,r)+ O(1),

where the constant in O(1) depends only on f and a.

This theorem is a straightforward consequence of Jensen’s formula

log |c f |=
∫ 2π

0
log

∣∣ f (reiθ )
∣∣ dθ

2π
+ Nf (∞,r)−Nf (0,r),

where c f is the leading coefficient in the Laurent expansion of f at z = 0. For details,
see [60, Chap. VI, (1.2’)] or [69, Cor. A1.1.3].

As an example, let f (z) = ez. This function is entire, so Nf (∞,r) = 0 for all r.
We also have

m f (∞,r) =
∫ 2π

0
log+ er cosθ dθ

2π
= r

∫ π/2

−π/2
cosθ

dθ
2π

=
r
π

.

Thus
Tf (r) =

r
π

.

Similarly, we have Nf (0,r) = 0 and m f (0,r) = r/π for all r, confirming the First
Main Theorem in the case a = 0.

The situation with a =−1 is more difficult. The integral in the proximity function
seems to be beyond any hope of computing exactly. Since ez = −1 if and only if z
is an odd integral multiple of π i, we have

Nf (−1,r) = 2
∫ r

0

[
s

2π
+

1
2

]
ds
s
≈ 2

∫ r

0

s
2π

ds
s

=
r
π

,

where [ · ] denotes the greatest integer function. The error in the above approximation
should be o(r), which would give m(−1,r) = o(r). Judging from the general shape
of the exponential function, similar estimates should hold for all nonzero a ∈ C.

In one way of thinking, the First Main Theorem gives an upper bound on the
counting function. As the above example illustrates, there is no lower bound for
an individual counting function (other than 0), but it is known that there cannot be
many values of a for which Nf (a,r) is much smaller than the height. This is what
the Second Main Theorem shows.

Theorem 5.5. (Second Main Theorem) Let f be a meromorphic function on C, and
let a1, . . . ,aq ∈ C be distinct numbers. Then

q

∑
j=1

m f (a j,r)≤exc 2Tf (r)+ O(log+ Tf (r))+ o(logr), (23)

where the implicit constants depend only on f and a1, . . . ,aq.
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Here the notation ≤exc means that the inequality holds for all r > 0 outside of a
set of finite Lebesgue measure.

By the First Main Theorem, (23) can be rewritten as a lower bound on the count-
ing functions:

q

∑
j=1

Nf (a j,r) ≥exc (q−2)Tf (r)−O(log+ Tf (r))−o(logr). (24)

As another variation, (23) can be written with a weaker error term:

q

∑
j=1

m f (a j,r)≤exc (2 + ε)Tf (r)+ c (25)

for all ε > 0 and any constant c. The next section will show that this correponds to
Roth’s theorem.

Corollary 5.6. (Picard’s “little” theorem) If a1,a2,a3 ∈ P1(C) are distinct, then any
holomorphic function f : C→ P1(C)\ {a1,a2,a3} must be constant.

Proof. Assume that f : C→P1(C)\{a1,a2,a3} is a nonconstant holomorphic func-
tion. After applying an automorphism of P1 if necessary, we may assume that all a j

are finite. We may regard f as a meromorphic function on C.
Since f never takes on the values a1, a2, or a3, the left-hand side of (24) van-

ishes. Since f is nonconstant, the right-hand side approaches +∞ by (22). This is a
contradiction. ��

As we have seen, (24) has some advantages over (23). Other advantages include
the fact that q− 2 on the right-hand side is the Euler characteristic of P1 minus q
points, and it will become clear later that the dependence on a metric is restricted to
the height term. It is also the preferred form when comparing with the abc conjec-
ture.

6 Roth’s Theorem and Nevanlinna Theory

We now claim that Nevanlinna’s Second Main Theorem corresponds very closely to
Roth’s theorem. To see this, we make the following definitions in number theory.

Definition 6.1. Let k be a number field and S ⊇ S∞ a finite set of places of k. For
x ∈ k we define the proximity function to be

mS(x) =∑
v∈S

log+ ‖x‖v
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and, for a ∈ k with a �= x,

mS(a,x) = mS

(
1

x−a

)
=∑

v∈S

log+
∥∥∥∥

1
x−a

∥∥∥∥
v
. (26)

Similarly, for distinct a,x ∈ k the counting function is defined as

NS(x) =∑
v/∈S

log+ ‖x‖v

and

NS(a,x) = NS

(
1

x−a

)
= ∑

v/∈S

log+
∥∥∥∥

1
x−a

∥∥∥∥
v
. (27)

By (10) it then follows that

mS(x)+ NS(x) = ∑
v∈Mk

log+ ‖x‖v = hk(x) (28)

for all x ∈ k. This corresponds to (21).
Note that k does not appear in the notation for the proximity and counting func-

tions, since it is implied by S.
We also note that all places outside of S are non-archimedean, hence correspond

to nonzero prime ideals p⊆ Ok. Thus, by (1), (27) can be rewritten

NS(a,x) =∑
v/∈S

ord+
p (x−a) · log(Ok : p), (29)

where p in the summand is the prime ideal corresponding to v. This corresponds
to (20).

The number field case has an analogue of the First Main Theorem, which we
prove as follows.

Lemma 6.2. Let v be a place of a number field k, and let a,x ∈ k. Then

∣∣∣log+ ‖x‖v− log+ ‖x−a‖v

∣∣∣≤ log+ ‖a‖v + Nv log2. (30)

Proof. Case I: v is archimedean.
We first claim that

log+(s+ t)≤ log+ s+ log+ t + log2 (31)

for all real s, t ≥ 0. Indeed, let f (s,t) = log+(s+ t)− log+ s− log+ t. By considering
partial derivatives, for each fixed s the function has a global maximum at t = 1,
and for each fixed t it has a global maximum at s = 1. Therefore all s and t satisfy
f (s, t) ≤ f (1,1) = log2.
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Now let z,b ∈ C. Since |z| ≤ |z−b|+ |b|, (31) with s = |z−b| and t = |b| gives

log+ |z|− log+ |z−b| ≤ log+(|z−b|+ |b|)− log+ |z−b| ≤ log+ |b|+ log2.

Similarly, since |z−b| ≤ |z|+ |b|, we have

log+ |z−b|− log+ |z| ≤ log+(|z|+ |b|)− log+ |z| ≤ log+ |b|+ log2.

These two inequalities together imply (30).
Case II: v is non-archimedean.
In this case Nv = 0, so the last term vanishes. Also, since v is non-archimedean, at

least two of ‖x‖v, ‖x−a‖v, and ‖a‖v are equal, and the third (if different) is smaller.
If ‖x‖v = ‖x−a‖v, then the result is obvious, so we may assume that ‖a‖v is equal
to one of the other two. If ‖a‖v = ‖x‖v, then

∣∣∣log+ ‖x‖v− log+ ‖x−a‖v

∣∣∣= log+ ‖x‖v− log+ ‖x−a‖v ≤ log+ ‖x‖v = log+ ‖a‖v

since 0 ≤ log+ ‖x− a‖v ≤ log+ ‖x‖v. If ‖a‖v = ‖x− a‖v then (30) follows by a
similar argument. ��

Corresponding to Theorem 5.4, we then have:

Theorem 6.3. Let k be a number field, let S ⊇ S∞ be a finite set of places of k, and
fix a ∈ k. Then

hk(x) = mS(a,x)+ NS(a,x)+ O(1),

where the constant in O(1) depends only on k and a. In fact, the constant can be
taken to be hk(a)+ [k : Q] log2.

Proof. First, we note that

mS(a,x)+ NS(a,x) = mS

(
1

x−a

)
+ NS

(
1

x−a

)
= hk

(
1

x−a

)
.

Next, by comparing with the height on P1, we have

hk

(
1

x−a

)
= hk([x−a : 1]) = hk([1 : x−a]) = hk(x−a).

Therefore, it suffices to show that

hk(x−a) = hk(x)+ O(1),

with the constant in O(1) equal to [k : Q] log2. This follows immediately by applying
Lemma 6.2 termwise to the sums in the two height functions. ��
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It will later be clear that this theorem is a well-known geometric property of
heights.

We now consider the Second Main Theorem. With the notation of Definition
6.1, Roth’s theorem can be made to look very similar to Nevanlinna’s Second Main
Theorem. Indeed, multiplying (17) by [k : Q] and substituting the definition (26) of
the proximity function gives the inequality

q

∑
j=1

mS(a j,x)≤ (2 + ε)hk(x)+ c,

which corresponds to (25). As has been mentioned earlier, it has been conjectured
that Roth’s theorem should hold with sharper error terms, corresponding to (23).
Such conjectures predated the emergence of the correspondence between number
theory and Nevanlinna theory, but the latter spurred renewed work in the area. See,
for example, [101, 49, 12].

Unfortunately, the correspondence between the statements of Roth’s theorem and
Nevanlinna’s Second Main Theorem does not extend to the proofs of these the-
orems. Roth’s theorem is proved by taking sufficiently many x ∈ k not satisfying
the inequality, using them to construct an auxiliary polynomial, and then deriving a
contradiction from the vanishing properties of that polynomial. Nevanlinna’s Sec-
ond Main Theorem has a number of proofs; for example, one proof uses curvature
arguments, one follows from Nevanlinna’s “lemma on the logarithmic derivative,”
and one uses Ahlfors’ theory of covering spaces. All of these proofs make essen-
tial use of the derivative of the meromorphic function, and it is a major unsolved
question in the field to find some analogue of this in number theory.

A detailed discussion of these proofs would be beyond the scope of these notes.
Beyond Roth’s theorem and the Second Main Theorem, one can define the defect

of an element of C or of an element a ∈ k, as follows.

Definition 6.4. Let f be a meromorphic function on C, and let a ∈ C∪{∞}. Then
the defect of a is

δ f (a) = liminf
r→∞

m f (a,r)
Tf (r)

.

Similarly, let S⊇ S∞ be a finite set of places of a number field k, let a ∈ k, and let Σ
be an infinite subset of k. Then the defect is defined as

δS(a) = liminf
x∈Σ

mS(a,x)
hk(x)

.

By the First Main Theorem (Theorems 5.4 and 6.3), we then have

0≤ δ f (a)≤ 1 and 0≤ δS(a)≤ 1,

respectively. The Second Main Theorems (Theorems 5.5 and 4.4) then give
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∑
a∈C

δ f (a)≤ 2 and
q

∑
j=1
δS(a j)≤ 2,

respectively. This is just an equivalent formulation of the Second Main Theorem,
with a weaker error term in the case of Nevanlinna theory, so it is usually better to
work directly with the inequality of the Second Main Theorem.

The defect gets it name because it measures the extent to which Nf (a,r) or
NS(a,x) is smaller than the maximum indicated by the First Main Theorem.

We conclude this section by noting that Definition 6.1 can be extended to x ∈ k̄.
Indeed, let k and S be as in Definition 6.1, and let x ∈ k̄. Let L be a number field
containing k(x), and let T be the set of places of L lying over places in S. If L′ ⊇ L is
another number field, and if T ′ is the set of places of L′ lying over places of k, then
(4) gives

mT ′(x) = [L′ : L]mT (x) and NT ′(x) = [L′ : L]NT (x). (32)

This allows us to make the following definition.

Definition 6.5. Let k, S, x, L, and T be as above. Then we define

mS(x) =
1

[L : k]
mT (x) and NS(x) =

1
[L : k]

NT (x).

These expressions are independent of L⊇ k(x) by (32). As in (26) and (27), we also
let

mS(a,x) = mS

(
1

x−a

)
and NS(a,x) = NS

(
1

x−a

)
.

Likewise, Theorem 6.3 (the number-theoretic First Main Theorem) extends to
x ∈ k̄, by (11), (32), and (6.5). The expression (28) for the height also extends.
Roth’s theorem, however, does not extend in this manner, and questions of extending
Roth’s theorem even to algebraic numbers of bounded degree are quite deep and
unresolved.

7 The Dictionary (Non-Geometric Case)

The discussion in the preceding section suggests that there should be an analogy
between the fields of Nevanlinna theory and number theory. This section describes
this dictionary in more detail.

The existence of an analogy between number theory and Nevanlinna theory was
first observed by Osgood [65, 66], but he did not provide an explicit dictionary for
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comparing the two theories. This was provided by Vojta [87]. An updated version
of that dictionary is provided here as Table 1.

The first and most important thing to realize about the dictionary is that the ana-
logue of a holomorphic (or meromorphic) function is an infinite sequence of rational
numbers. While it is tempting to compare number theory with Nevanlinna theory by
way of function fields – by viewing a single rational point as being analogous to a
rational point over a function field over C and then applying Nevanlinna theory to

Table 1 The dictionary in the one-dimensional case

Nevanlinna theory Number theory

f : C→ C, non-constant {x} ⊆ k, infinite

r x

θ v ∈ S

| f (reiθ )| ‖x‖v, v ∈ S

ordz f ordv x, v /∈ S

log
r
|z| log(Ok : p)

Height function Logarithmic height

Tf (r) =
∫ 2π

0
log+ | f (reiθ )| dθ

2π
+Nf (∞, r) hk(x) = ∑

v∈Mk

log+ ‖x‖v

Proximity function

m f (a, r) =
∫ 2π

0
log+

∣∣∣∣
1

f (reiθ )−a

∣∣∣∣
dθ
2π

mS(a,x) =∑
v∈S

log+
∥∥∥∥

1
x−a

∥∥∥∥
v

Counting function

Nf (a, r) = ∑
|z|<r

ord+
z ( f −a) log

r
|z| NS(a,x) = ∑

v/∈S

ord+
p (x−a) log(Ok : p)

First main theorem Property of heights

Nf (a, r)+m f (a, r) = Tf (r)+O(1) NS(a,x)+mS(a,x) = hk(x)+O(1)

Second main theorem Conjectured refinement of Roth
m

∑
i=1

m f (ai, r) ≤exc 2Tf (r)−N1, f (r)

+O(r logTf (r))

m

∑
i=1

mS(ai,x)≤ 2hk(x)+O(loghk(x))

Defect

δ (a) = liminf
r→∞

m f (a, r)
Tf (r)

δ (a) = liminf
x

mS(a,x)
hk(x)

Defect relation Roth’s theorem

∑
a∈C

δ (a)≤ 2 ∑
a∈k

δ (a) ≤ 2

Jensen’s formula Artin-Whaples product formula

log |c f |=
∫ 2π

0
log | f (reiθ )| dθ

2π
+Nf (∞, r)−Nf (0, r)

∑
v∈Mk

log‖x‖v = 0
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the corresponding section map – this is not what is being compared here. Note that
the Second Main Theorem posits the non-existence of a meromorphic function vi-
olating the inequality for too many r, and Roth’s theorem claims the non-existence
of an infinite sequence of rational numbers not satisfying its main inequality.

We shall now describe Table 1 in more detail. Much of it (below the top six rows)
has already been described in Sect. 6, with the exception of the last line. This is left
to the reader.

The bottom two-thirds of the table can be broken down further, leading to the top
six rows. The first row has been described above. One can say more, though. The
analogue of a single rational number can be viewed as the restriction of f to the
closed disc Dr of radius r. Of course f

∣∣
Dr

for varying r are strongly related, in the
sense that if one knows one of them then all of them are uniquely determined. This
is not true of the number field case (as far as is known); thus the analogy is not
perfect.

However, when comparing f
∣∣
Dr

to a given element of k, there are further similar-
ities between the respective proximity functions and counting functions. As far as
the proximity functions are concerned, in Nevanlinna theory m f (a,r) depends only
on the values of f on the circle |z|= r, whereas in number theory mS(a,r) involves
only the places in S. So places in S correspond to ∂Dr, and both types of proxim-
ity functions involve the absolute values at those places. Moreover, in Nevanlinna
theory the proximity function is an integral over a set of finite measure, while in
number theory the proximity function is a finite sum.

As for counting functions, they involve the open disc Dr in Nevanlinna theory,
and places outside of S (all of which are non-archimedean) in number theory. Both
types of counting functions involve an infinite weighted sum of orders of vanishing
at those places, and the sixth line of Table 1 compares these weights.

It should also be mentioned that many of these theorems in Nevanlinna theory
have been extended to holomorphic functions with domains other than C. In one
direction, one can replace the domain with Cm for some m > 0. While this is useful
from the point of view of pure Nevanlinna theory, it is less interesting from the point
of view of the analogy with number theory, since number rings are one-dimensional.
Moreover, in Nevanlinna theory, the proofs that correspond most closely to proofs
in number theory concern maps with domain C.

There is one other way to change the domain of a holomorphic function, though,
which is highly relevant to comparisons with number theory. Namely, one can re-
place the domain C with a ramified cover. Let B be a connected Riemann surface, let
π : B→C be a proper surjective holomorphic map, and let f : B→C be a meromor-
phic function. In place of Dr in the above discussion, one can work with π−1

(
Dr
)

and define the proximity, counting, and height functions accordingly. For detailed
definitions, see Sect. 27.

When working with a finite ramified covering, though, the Second Main Theorem
requires an additional term NRam(π)(r), which is a counting function for ramifica-
tion points of π (Definition 27.3c). The main inequality (23) of the Second Main
Theorem then becomes
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q

∑
j=1

m f (a j,r)≤exc 2Tf (r)+ NRam(π)(r)+ O(log+ Tf (r))+ o(logr)

in this context.
In number theory, the corresponding situation involves algebraic numbers of

bounded degree over k instead of elements of k itself. Again, the inequality in the
Second Main Theorem becomes weaker in this case, conjecturally by adding the
following term.

Definition 7.1. Let Dk denote the discriminant of a number field k, and for number
fields L⊇ k define

dk(L) =
1

[L : k]
log |DL|− log|Dk|.

For x ∈ k̄ we then define
dk(x) = dk(k(x)).

It is then conjectured that Roth’s theorem for x ∈ k̄ of bounded degree over k still
holds, with inequality

q

∑
j=1

mS(a j,x)≤ (2 + ε)hk(x)+ dk(x)+C. (33)

For further discussion of this situation, including its relation to the abc conjecture,
see Sects. 25–26.

8 Cartan’s Theorem and Schmidt’s Subspace Theorem

In both Nevanlinna theory and number theory, the first extensions of the Second
Main Theorem and its counterpart to higher dimensions were theorems involving
approximation to hyperplanes in projective space.

We start with a definition needed for both theorems.

Definition 8.1. A collection of hyperplanes in Pn is in general position if for all
j ≤ n the intersection of any j of them has dimension n− j, and if the intersection
of any n + 1 of them is empty.

The Second Main Theorem for approximation to hyperplanes in Pn was first
proved by Cartan [11]. Before stating it, we need to define the proximity, counting,
and height functions.

Definition 8.2. Let H be a hyperplane in Pn(C) (n > 0), and let a0x0 + · · ·+ anxn

be a linear form defining it. Let P ∈ Pn \H be a point, and let [x0 : . . . : xn] be
homogeneous coordinates for P. We then define
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λH(P) =−1
2

log
|a0x0 + · · ·+ anxn|2
|x0|2 + · · ·+ |xn|2 (34)

(this depends on a0, . . . ,an, but only up to an additive constant). It is independent of
the choice of homogeneous coordinates for P.

If n = 1 and H is a finite number a ∈ C (via the usual identification of C as a
subset of P1(C)), then

λH(x) = log+
∣∣∣∣

1
x−a

∣∣∣∣+ O(1). (35)

Recall that a holomorphic curve in a complex variety X is a holomorphic func-
tion from C to X(C).

Definition 8.3. Let n, H, and λH be as in Definition 8.2, and let f : C→ Pn be a
holomorphic curve whose image is not contained in H. Then the proximity function
for H is

m f (H,r) =
∫ 2π

0
λH( f (reiθ ))

dθ
2π

. (36)

For the following, recall that an analytic divisor on C is a formal sum

∑
z∈C

nz · z,

where nz ∈ Z for all z and the set {z ∈ C : nz �= 0} is a discrete set (which may be
infinite).

Definition 8.4. Let n, H, and f be as above. Then f ∗H is an analytic divisor on
C, and for z ∈ C we let ordz f ∗H denote its multiplicity at the point z. Then the
counting function for H is defined to be

Nf (H,r) = ∑
0<|z|<r

ordz f ∗H · log
r
|z| + ord0 f ∗H · logr (37)

Definition 8.5. Let f : C→ Pn(C) be a holomorphic curve (n > 0). We then define
the height of f to be

Tf (r) = m f (H,r)+ Nf (H,r)

for any hyperplane H not containing the image of f . The First Main Theorem can
be shown to hold in the context of hyperplanes in projective space, so the height
depends on H only up to O(1).

We may now state Cartan’s theorem.

Theorem 8.6. (Cartan) Let n > 0 and let H1, . . . ,Hq be hyperplanes in Pn in general
position. Let f : C→ Pn(C) be a holomorphic curve whose image is not contained
in any hyperplane. Then
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q

∑
j=1

m f (Hj,r)≤exc (n + 1)Tf (r)+ O(log+ Tf (r))+ o(logr). (38)

If n = 1 then by (35) this reduces to the classical Second Main Theorem (Theo-
rem 5.5).

Inequality (38) can also be expressed using counting functions as

q

∑
j=1

Nf (Hj,r)≥exc (q−n−1)Tf (r)−O(log+ Tf (r))−o(logr) (39)

(cf. (24)).
The corresponding definitions and theorem in number theory are as follows.

These will all assume that k is a number field, that S⊇ S∞ is a finite set of places of
k, and that n > 0.

Definition 8.7. Let H be a hyperplane in Pn
k and let a0x0 + · · ·+anxn = 0 be a linear

form defining it. (Since Pn
k is a scheme over k, this implies that a0, . . . ,an ∈ k.) For

all places v of k and all P ∈ Pn(k) not lying on H we then define

λH,v(P) =− log
‖a0x0 + · · ·+ anxn‖v

max{‖x0‖v, . . . ,‖xn‖v} , (40)

where [x0 : . . . : xn] are homogeneous coordinates for P. Again, this is independent
of the choice of homogeneous coordinates [x0 : . . . : xn] and depends on the choice
of a0, . . . ,an only up to a bounded function which is zero for almost all v.

These functions are special cases of Weil functions (Definition 9.6), with domain
restricted to Pn(k)\H.

Definition 8.8. For H and P as above, the proximity function for H is defined to be

mS(H,P) =∑
v∈S

λH,v(P), (41)

and the counting function is defined by

NS(H,P) =∑
v/∈S

λH,v(P). (42)

We then note that

mS(H,P)+ NS(H,P) = ∑
v∈Mk

− log
‖a0x0 + · · ·+ anxn‖v

max{‖x0‖v, . . . ,‖xn‖v}
= ∑

v∈Mk

logmax{‖x0‖v, . . . ,‖xn‖v}

= hk(P)

by the Product Formula.
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Although this equality holds exactly, the proximity and counting functions de-
pend (up to O(1)) on the choice of linear form a0x0 + · · ·+anxn describing D, so we
regard them as being defined only up to O(1).

The counterpart to Theorem 8.6 (with, of course, a weaker error term) is a slightly
weaker form of Schmidt’s Subspace Theorem.

Theorem 8.9. (Schmidt) Let k, S, and n be as above, let H1, . . . ,Hq be hyperplanes
in Pn

k in general position, let ε > 0, and let c ∈ R. Then

q

∑
j=1

mS(Hj,x)≤ (n + 1 + ε)hk(x)+ c (43)

for all x∈Pn(k) outside of a finite union of proper linear subspaces of Pn
k. This latter

set depends on k, S, H1, . . . ,Hq, ε , c, and the choices used in defining the mS(Hj,x),
but not on x.

When n = 1 this reduces to Roth’s theorem (in the form of Theorem 4.4).
Note, in particular, that the Hi are hyperplanes in the k-scheme Pn

k . This automat-
ically implies that they can be defined by linear forms with coefficients in k. This
corresponds to requiring the α j to lie in k in the case of Roth’s theorem. Schmidt’s
original formulation of his theorem allowed hyperplanes with algebraic coefficients;
the reduction to hyperplanes in Pn

k is similar to the reduction for Roth’s theorem
and is omitted here. Also, Schmidt’s original formulation was stated in terms of
hyperplanes in An+1

k passing through the origin and points in An+1
k with integral co-

efficients. He also used the size instead of the height. For details on the equivalence
of his original formulation and the form given here, see [87, Chap. 2, Sect. 2].

Theorem 8.9 is described as a slight weakening of Schmidt’s Subspace Theorem
because Schmidt actually allowed the set of hyperplanes to vary with v. Thus, to
get a statement that was fully equivalent to Schmidt’s original theorem, (43) would
need to be replaced by

∑
v∈S

qv

∑
j=1

mS(Hv, j,x)≤ (n + 1 + ε)hk(x)+ c,

where for each v ∈ S, Hv,1, . . . ,Hv,qv are hyperplanes in general position (but in to-
tality the set {Hv, j : v ∈ S, 1 ≤ j ≤ qv} need not be in general position, even after
eliminating duplicates). Of course, at a given place v a point can be close to at most
n of the Hv, j , so we may assume qv = n for all v (or actually n+1 is somewhat easier
to work with).

Thus, a full statement of Schmidt’s Subspace Theorem, rendered using the nota-
tion of Sect. 6, is as follows. It has been stated in a form that most readily carries
over to Nevanlinna theory.

Theorem 8.10. (Schmidt’s Subspace Theorem [71, Chap. VIII, Thm. 7A]) Let k, S,
and n be as above, and let H1, . . . ,Hq be distinct hyperplanes in Pn

k . Then for all
ε > 0 and all c ∈ R the inequality
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∑
v∈S

max
J
∑
j∈J
λHj ,v(x)≤ (n + 1 + ε)hk(x)+ c (44)

holds for all x∈Pn(k) outside of a finite union of proper linear subspaces depending
only on k, S, H1, . . . ,Hq, ε , c, and the choices used in defining the λHj ,v. The max in
this inequality is taken over all subsets J of {1, . . . ,q} corresponding to subsets of
{H1, . . . ,Hq} in general position.

In Nevanlinna theory there are infinitely many angles θ , so if one allowed the
collection of hyperplanes to vary with θ without additional restriction, then the re-
sulting statement could involve infinitely many hyperplanes, and would therefore
likely be false (although this has not been proved). Therefore an overall restriction
on the set of hyperplanes is needed in the case of Cartan’s theorem, and is why
Theorem 8.10 was stated in the way that it was.

Cartan’s theorem itself can be generalized as follows.

Theorem 8.11. [90] Let n ∈ Z>0, let H1, . . . ,Hq be hyperplanes in Pn
C, and let

f : C→ Pn(C) be a holomorphic curve whose image is not contained in a hyper-
plane. Then

∫ 2π

0
max

J
∑
j∈J
λHj ( f (reiθ ))

dθ
2π
≤exc (n + 1)Tf (r)+ O(log+ Tf (r))+ o(logr),

where J varies over the same collection of sets as in Theorem 8.10.

This has proved to be a useful formulation for applications; see [90] and [68].
The latter reference also improves the error term in Theorem 8.11.

Remark 8.12. It has been further shown that in Theorem 8.10, the finite set of linear
subspaces can be taken to be the union of a finite number of points (depending
on the same data as given in the theorem), together with a finite union of linear
subspaces (of higher dimension) depending only on the collection of hyperplanes
[88]. In other words, the higher-dimensional part of the exceptional set depends only
on the geometric data. Correspondingly, Theorem 8.11 holds for all nonconstant
holomorphic curves whose image is not contained in the union of this latter set [90].
For an example of the collection of higher dimensional subspaces for a specific set
of lines in P2, see Example 14.3.

9 Varieties and Weil Functions

The goal of this section and the next is to carry over the definitions of the proximity,
counting, and height functions to the context of varieties.
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First it is necessary to define variety. Generally speaking, varieties and other
algebro-geometric objects are as defined in [36], except that varieties (when dis-
cussing number theory at least) may be defined over a field that is not necessarily
algebraically closed.

Definition 9.1. A variety over a field k, or a k-variety, is an integral separated
scheme of finite type over k (i.e., over Speck). A curve over k is a variety over
k of dimension 1. A morphism of varieties over k is a morphism of k-schemes.
Finally, a subvariety of a variety (resp. closed subvariety, open subvariety) is an
integral subscheme (resp. closed integral subscheme, open integral subscheme) of
that variety (with induced map to Speck).

As an example, X := SpecQ[x,y]/(y2−2x2) is a variety over Q. Indeed, it is an
integral scheme because the ring Q[x,y]/(y2−2x2) is entire. However, X×Q Q

(√
2
)

is not a variety over Q
(√

2
)
, since Q[x,y]/(y2− 2x2)⊗Q Q

(√
2
)

is not entire (the
polynomial y2− 2x2 is not irreducible over Q

(√
2
)
). Therefore, some authors re-

quire a variety to be geometrically integral, but we do not do so here. The advantage
of not requiring geometric integrality is that every reduced closed subset is a finite
union of closed subvarieties, without requiring base change to a larger field.

Many people would be tempted to say that the variety X:= SpecQ[x,y]/(y2−2x2)
is not defined over Q. Such wording does not make sense in this context (the variety
is, after all, a Q-variety). This wording usually comes about because the variety (in
this instance) is associated to the line y =

√
2x in A2

Q
, which does not come from

any subvariety of A2
Q (without also obtaining the conjugate y =−√2x). The correct

way to express this situation is to say that X is not geometrically irreducible (or not
geometrically integral).

Strictly speaking, if k ⊆ L are distinct fields, then X(k) and X(L) are disjoint
sets. However, we will at times identify X(k) with a subset of X(L) in the obvious
way. Following EGA, if x ∈ X is a point, then κ(x) will denote the residue field of
the local ring at x. If x ∈ X(L), then it is technically a morphism, but by abuse of
notation κ(x) will refer to the corresponding point on X (so κ(x) may be smaller
than L).

We also recall that the function field of a variety X is denoted K(X). If ξ is the
generic point of X , then K(X) = κ(ξ ).

The next goal of this section is to introduce Weil functions. These functions were
introduced in Weil’s thesis [98] and further developed in a later paper [99]. Weil
functions give a way to write the height as a sum over places of a number field,
and are exactly what is needed in order to generalize the proximity and counting
functions to the geometric setting.

The description provided here will be somewhat brief; for a fuller treatment, see
[46, Chap. 10].

We start with the very easy setting used in Nevanlinna theory.
Weil functions are best described using Cartier divisors.

Definition 9.2. Let D be a Cartier divisor on a complex variety X . Then a Weil
function for D is a function λD : (X \ SuppD)(C) → R such that for all x ∈ X
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there is an open neighborhood U of x in X , a nonzero function f ∈ K(X) such
that D

∣∣
U = ( f ), and a continuous function α : U(C)→ R such that

λD(x) =− log | f (x)|+α(x) (45)

for all x ∈ (U \SuppD)(C). Here the topology on U(C) is the complex topology.

It is fairly easy to show that if λD is a Weil function, then the above condition is
satisfied for any open set U and any nonzero f ∈ OU satisfying D

∣∣
U = ( f ).

Recall that linear equivalence classes of Cartier divisors on a variety are in natu-
ral one-to-one correspondence with isomorphism classes of line sheaves (invertible
sheaves) on that variety. Moreover, for each divisor D on a variety X , if L is the
corresponding line sheaf, then there is a nonzero rational section s of L whose van-
ishing describes D: D =(s). As was noted by Néron, Weil functions on D correspond
to metrics on L .

Recall that if X is a complex variety and L is a line sheaf on X , then a metric on
L is a collection of norms on the fibers of the complex line bundle corresponding to
the sheaf L , varying smoothly or continuously with the point on X . Such a metric is
called a smooth metric or continuous metric, respectively. In these notes, smooth
means C∞. If X is singular, then we say that a function f : X(C)→C is C∞ at a point
P∈ X(C) if there is an open neighborhood U of P in X(C) in the complex topology,
a holomorphic function φ : U → Cn for some n, and a C∞ function g : Cn → C

such that f = g ◦ φ . This reduces to the usual concept of C∞ function at smooth
points of X .

To describe a metric on L in concrete terms, let U be an open subset of X and let
φU : OU

∼→L
∣∣
U be a local trivialization. Then the function ρU : U(C)→R>0 given

by ρU(x) = |φU(1)(x)| is smooth (resp. continuous), and for any section s ∈L (U)
and any x ∈U(C), we have |s(x)| = ρU(x) · |φ−1

U (s)(x)|. Moreover, if V is another
open set in X and φV : OV

∼→L
∣∣
V is a local trivialization on V , then φ−1

U ◦φV (ap-
propriately restricted) is an automorphism of OU∩V corresponding to multiplication
by a function αUV ∈ O∗

U∩V . Again letting ρV (x) = |φV (1)(x)|, we see that ρU and
ρV are related by ρV (x) = |αUV (x)|ρU(x) for all x ∈ (U ∩V )(C).

Conversely, an isomorphism class of line sheaves on X can be uniquely specified
by giving an open cover U of X and αUV ∈ O∗

U∩V for all U,V ∈ U satisfying
αUU = 1 and αUW = αUVαVW on U ∩V ∩W for all U,V,W ∈ U . Moreover, with
these data, one can specify a metric on the associated line sheaf by giving smooth or
continuous functions ρU : U(C)→ R>0 for each U ∈U that satisfy ρV = |αUV |ρU

on U ∩V for all U,V ∈U .
A continuous metric on a line sheaf L determines a Weil function for any as-

sociated Cartier divisor D. Indeed, if s is a nonzero rational section of L such that
D = (s), then λD(x) =− log |s(x)| is a Weil function for D. Conversely, a Weil func-
tion for D determines a continuous metric on L .

In Nevanlinna theory it is customary to work only with smooth metrics, and
hence it is often better to work with Weil functions associated to smooth metrics
(equivalently, to Weil functions for which the functions α in (45) are all smooth).
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An example of a Weil function in Nevanlinna theory (and perhaps the primary
example) is the function λH of Definition 8.2 used in Cartan’s theorem.

Likewise, the function λH,v of Definition 8.7 is an example of a Weil function in
number theory. In this case, it is no longer sufficient to say that two Weil functions
agree up to O(1): the implied constant also has to vanish for almost all v. For exam-
ple, Lemma 6.2 compares the difference of two Weil functions, and shows that the
difference is bounded by a bound that vanishes for almost all v. A plain bound of
O(1) would not suffice to give a finite bound in Theorem 6.3.

Before defining Weil functions in the number theory case, we first give some
definitions relevant to the domains of Weil functions.

Definition 9.3. Let v be a place of a number field k. Then Cv is the completion of
the algebraic closure k̄v of the completion kv of k at v.

Recall [42, Chap. III, Sects. 3 and 4] that if v is non-archimedean then k̄v is not
complete, but its completion Cv is algebraically closed. If v is archimedean, then
Cv is isomorphic to the field of complex numbers (as is k̄v). The norm ‖ · ‖v on k
extends uniquely to norms on kv, on k̄v, and on Cv. If X is a variety, then the norm
on Cv defines a topology on X(Cv), called the v-topology. It is defined to be the
coarsest topology such that for all open U ⊆ X and all f ∈ O(U), U(Cv) is open
and f : U(Cv)→Cv is continuous.

One can also work just with the algebraic closure k̄v when defining Weil func-
tions, without any essential difference.

Definition 9.4. Let X be a variety over a number field k. Then X(Mk) is the disjoint
union

X(Mk) =
∐

v∈Mk

X(Cv).

This set is given a topology defined by the condition that A⊆ X(Mk) is open if and
only if A∩X(Cv) is open in the v-topology for all v.

Definition 9.5. Let k be a number field. Then an Mk-constant is a collection (cv) of
constants cv ∈ R for each v ∈Mk, such that cv = 0 for almost all v. If X is a variety
over k, then a functionα : X(Mk)→R is said to be OMk (1) if there is an Mk-constant
(cv) such that |α(x)| ≤ cv for all x ∈ X(Cv) and all v ∈Mk.

We may then define Weil functions as follows.

Definition 9.6. Let X be a variety over a number field k, and let D be a Cartier
divisor on X . Then a Weil function for D is a function λD : (X \SuppD)(Mk)→ R

that satisfies the following condition. For each x ∈ X there is an open neighborhood
U of x, a nonzero function f ∈O(U) such that D

∣∣
U = ( f ), and a continuous locally

Mk-bounded function α : U(Mk)→ R satisfying

λD(x) =− log‖ f (x)‖v +α(x) (46)

for all v ∈Mk and all x ∈ (U \SuppD)(Cv).
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For the definition of locally Mk-bounded function, see [46, Chap. 10, Sect. 1].
The definition is more complicated than one would naively expect, stemming from
the fact that Cv is totally disconnected, and not locally compact. For our purposes,
though, it suffices to note that if X is a complete variety then such a function is
OMk (1). (In other contexts, these problems are dealt with by using Berkovich spaces,
but Weil’s work does not use them, not least because it came much earlier.)

As with Definition 9.2, if λ is a Weil function for D, then it can be shown that the
above condition is true for all open U ⊆ X and all f ∈ O(U) for which D

∣∣
U = ( f ).

If λD is a Weil function for D, then we write

λD,v = λD
∣∣
(X\SuppD)(Cv)

for all places v of k. If v is an archimedean place, then Cv
∼= C, and λD,v is a Weil

function for D in the sense of Definition 9.2(up to a factor 1/2 if v is a complex
place).

In the future, if x ∈ X(Mk) and f is a function on X , then ‖ f (x)‖ will mean
‖ f (x)‖v for the (unique) place v such that x ∈ X(Cv). Thus, (46) could be shortened
to λ (x) =− log‖ f (x)‖+α(x) for all x ∈ (U \SuppD)(Mk).

Of course, this discussion would be academic without the following theorem.

Theorem 9.7. Let k be a number field, let X be a projective variety over k, and let
D be a Cartier divisor on X. Then there exists a Weil function for D.

For the proof, see [46, Chap. 10]. This is also true for complete varieties, using
Nagata’s embedding theorem to construct a model for X and then using Arakelov
theory to define the Weil function. But, again, the details are beyond the scope of
these notes.

Weil functions have the following properties.

Theorem 9.8. Let X be a complete variety over a number field k. Then

(a) Additivity: If λ1 and λ2 are Weil functions for Cartier divisors D1 and D2 on X,
respectively, then λ1 +λ2 extends uniquely to a Weil function for D1 + D2.

(b) Functoriality: If λ is a Weil function for a Cartier divisor D on X, and
if f : X ′ → X is a morphism of k-varieties such that f (X ′) � SuppD, then
x �→ λ ( f (x)) is a Weil function for the Cartier divisor f ∗D on X ′.

(c) Normalization: If X = Pn
k , and if D is the hyperplane at infinity, then the func-

tion

λD,v([x0 : . . . : xn]) :=− log
‖x0‖v

max{‖x0‖v, . . . ,‖xn‖v} (47)

is a Weil function for D.
(d) Uniqueness: If both λ1 and λ2 are Weil functions for a Cartier divisor D on X,

then λ1 = λ2 + OMk(1).
(e) Boundedness from below: If D is an effective Cartier divisor and λ is a Weil

function for D, then λ is bounded from below by an Mk-constant.
(f) Principal divisors: If D is a principal divisor ( f ), then− log‖ f‖ is a Weil func-

tion for D.
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The proofs of these properties are left to the reader (modulo the properties of
locally Mk-bounded functions).

Parts (b) and (c) of the above theorem combine to give a way of computing Weil
functions for effective very ample divisors. This, in turn, gives rise to the “max-min”
method for computing Weil functions for arbitrary Cartier divisors on projective
varieties.

Lemma 9.9. Let λ1, . . . ,λn be Weil functions for Cartier divisors D1, . . . ,Dn, re-
spectively, on a complete variety X over a number field k. Assume that the divisors
Di are of the form Di = D0 + Ei, where D0 is a fixed Cartier divisor and Ei are
effective for all i. Assume also that SuppE1∩·· ·∩SuppEn = /0. Then the function

λ (x) = min{λi(x) : x /∈ SuppEi}

is defined everywhere on (X \SuppD0)(Mk), and is a Weil function for D0.

Proof. See [46, Chap. 10, Prop. 3.2]. ��
Theorem 9.10. (Max-min) Let X be a projective variety over a number field k,
and let D be a Cartier divisor on X. Then there are positive integers m and n, and
nonzero rational functions fi j on X, 1 = 1, . . . ,n, j = 1, . . . ,m, such that

λ (x) := max
1≤i≤n

min
1≤ j≤m

(− log‖ fi j‖
)

defines a Weil function for D.

Proof. We may write D as a difference E−F of very ample divisors. Let E1, . . . ,En

be effective Cartier divisors linearly equivalent to E such that
⋂

SuppEi = /0 (for
example, pull-backs of hyperplane sections via a projective embedding associated
to E). Likewise, let F1, . . . ,Fm be effective Cartier divisors linearly equivalent to F
with

⋂
SuppFj = /0. Then D−Ei + Fj is a principal divisor for all i and j; hence

D−Ei + Fj = ( fi j)

for some fi j ∈ K(X)∗ and all i and j. Applying Lemma 9.9 to − log‖ fi j‖ then im-
plies that min1≤ j≤m

(− log‖ fi j‖
)

is a Weil function for D−Ei for all i. Applying
Lemma 9.9 again to the negatives of these Weil functions then gives the theorem.��

To conclude the section, we give some notation that will be useful for working
with rational and algebraic points.

Definition 9.11. Let X be a variety over a number field k, let D be a Cartier divisor
on X , and let λD be a Weil function for D. If L is a number field containing k, and
if w is a place of L lying over a place v of k, then we identify Cw with Cv in the
obvious manner, and write

λD,w = [Lw : kv]λD,v. (48)
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(Recall that ‖x‖w = ‖x‖[Lw:kv]
v for all x ∈ Cv, by (4).) Finally, each point x ∈ X(L)

gives rise to points xw ∈ X(Cw) for all w ∈ML, and we define

λD,w(x) = λD,w(xw) (49)

if x /∈ SuppD.

Note that, if x ∈ (X \SuppD)(L), if L′ is a number field containing L, if w is a
place of L, and if w′ is a place of L′ lying over w, then

λD,w′(x) = [L′w′ : Lw]λD,w(x), (50)

regardless of whether the left-hand side is defined using (48) or (49) (by regarding
X(L) as a subset of X(L′) for the latter).

If (cv) is an Mk-constant, if w is a place of a number field L containing k, and if
v is the place of k lying under w, then we write

cw = [Lw : kv]cv, (51)

so that the condition λD,w ≤ cw will be equivalent to λD,v ≤ cv, by (48).

10 Height Functions on Varieties in Number Theory

Weil functions can be used to generalize the height hk (defined in Sect. 3) to arbitrary
complete varieties over k. This can also be done by working directly with heights;
see [46, Chap. 3] or [77].

Throughout this section, k is a number field, X is a complete variety over k,
and D is a Cartier divisor on X , unless otherwise specified.

Definition 10.1. Let λ be a Weil function for D, and let x ∈ X(k̄) be an algebraic
point with x /∈ SuppD. Then the height of x relative to λ and k is defined as

hλ ,k(x) =
1

[L : k] ∑w∈ML

λw(x) (52)

for any number field L⊇ κ(x). It is independent of the choice of L by (50).

In particular, if x ∈ X(k), then

hλ ,k(x) = ∑
v∈Mk

λv(x).
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Specializing in a different direction, if X = Pn
k , if D is the hyperplane at infinity,

and if λ is the Weil function (47), then

hλ ,k([x0 : . . . : xn]) = − 1
[L : k] ∑w∈ML

log
‖x0‖v

max{‖x0‖v, . . . ,‖xn‖v}

=
1

[L : k] ∑w∈ML

logmax{‖x0‖v, . . . ,‖xn‖v}

= hk([x0 : . . . : xn]) (53)

for all [x0 : . . . : xn] ∈ Pn(k̄) with x0 �= 0, where L is any number field containing the
field of definition of this point.

The restriction x /∈ SuppD can be eliminated as follows.
Let D′ be another Cartier divisor on X linearly equivalent to D, say D′ = D+( f );

then λ ′ := λ − log‖ f‖ is a Weil function for D′. If x ∈ X(k̄) does not lie on
SuppD∪SuppD′, and if L is a number field containing κ(x), then

hλ ′,k(x) =
1

[L : k] ∑w∈ML

λ ′v(x)

=
1

[L : k] ∑w∈ML

λv(x)− 1
[L : k] ∑w∈ML

log‖ f (x)‖w

= hλ ,k(x)

(54)

by the Product Formula (6). Thus we have:

Definition 10.2. Let λ be a Weil function for D, and let x ∈ X(k̄). Then, for any
f ∈ K(X)∗ such that the support of D+( f ) does not contain x, we define

hλ ,k(x) = hλ−log‖ f‖,k(x),

where hλ−log‖ f‖,k on the right-hand side is defined using Definition 10.1. This ex-
pression is independent of the choice of f by (54), and agrees with Definition 10.1
when x /∈ SuppD since we can take f = 1 in that case.

With this definition, (53) holds without the restriction x0 �= 0.

Proposition 10.3. If both λ and λ ′ are Weil functions for D, then

hλ ′,k = hλ ,k + O(1).

Proof. Indeed, this is immediate from Theorem 9.8d. ��
Thus, the height function defined above depends only on the divisor; moreover,

by (54) it depends only on the linear equivalence class of the divisor.
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Definition 10.4. The height hD,k(x) for points x ∈ X(k̄) is defined, up to O(1), as

hD,k(x) = hλ ,k(x)

for any Weil function λ for D. If L is a line sheaf on X , then we define

hL ,k(x) = hD,k(x)

for points x ∈ X(k̄), where D is any Cartier divisor for which O(D)∼= L . Again, it
is only defined up to O(1).

By (53), we then have
hO(1),k = hk + O(1)

on Pn
k for all n > 0. Since the automorphism group of Pn

k is transitive on the set
of rational points, and since automorphisms preserve the line sheaf O(1), the term
O(1) in the above formula cannot be eliminated without additional structure. Thus,
Definition 10.4 cannot give an exact definition for the height without additional
structure. (This additional structure can be given using Arakelov theory.)

Theorem 9.8 and (50) also immediately imply the following properties of heights:

Theorem 10.5. (a) Functoriality: If f : X ′ → X is a morphism of k-varieties, and
if L is a line sheaf on X, then

h f ∗L ,k(x) = hL ,k( f (x))+ O(1)

for all x ∈ X ′(k̄), where the implied constant depends only on f , L , and the
choices of the height functions.

(b) Additivity: If L1 and L2 are line sheaves on X, then

hL1⊗L2,k(x) = hL1,k(x)+ hL2,k(x)+ O(1)

for all x ∈ X(k̄), where the implied constant depends only on L1, L2, and the
choices of the height functions.

(c) Base locus: If hD,k is a height function for D, then it is bounded from below
outside of the base locus of the complete linear system |D|.

(d) Globally generated line sheaves: If L is a line sheaf on X, and is generated by
its global sections, then hL ,k(x) is bounded from below for all x ∈ X(k̄), by a
bound depending only on L and the choice of height function.

(e) Change of number field: If L⊇ k then

hL ,L(x) = [L : k]hL ,k(x)

for all line sheaves L on X and all x ∈ X(k̄). (Strictly speaking, the left-hand
side should be hL ′,L(x′), where L ′ is the pull-back of L to XL := X ×k L and
x′ is the point in XL(k̄) corresponding to x ∈ X(k̄).)
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Corollary 10.6. If L is an ample line sheaf on X, then hL ,k(x) is bounded from
below for all x ∈ X(k̄), by a bound depending only on L and the choice of height
function.

Proof. By Theorem 10.5b, we may replace L with L ⊗n for any positive integer n,
and therefore may assume that L is very ample. Then the result follows from The-
orem 10.5d. ��

The following result shows that heights relative to ample line sheaves are the
largest possible heights, up to a constant multiple.

Proposition 10.7. Let L and M be line sheaves on X, with L ample. Then there
is a constant C, depending only on L and M , such that

hM ,k(x)≤C hL ,k(x)+ O(1)

for all x∈X(k̄), where the implied constant depends only on L , M , and the choices
of height functions.

Proof. By the definition of ampleness, there is an integer n such that the line sheaf
L ⊗n⊗M ∨ is generated by global sections. Therefore an associated height function

hL⊗n⊗M∨,k = nhL ,k−hM ,k + O(1)

is bounded from below, giving the result with C = n. ��
For projective varieties, Northcott’s finiteness theorem can be carried over.

Theorem 10.8. (Northcott) Assume that X is projective, and let L be an ample line
sheaf on X. Then, for all integers d and all c ∈ R, the set

{x ∈ X(k̄) : [κ(x) : k]≤ d and hL ,k(x)≤ c} (55)

is finite.

Proof. First, if X = Pn
k and L = O(1), then the result follows by bounding the

heights of [xi : x0] (if x0 �= 0, which we assume without loss of generality), and
applying Theorem 3.1 to these points for each i. The general case then follows by
replacing L with a very ample positive multiple and using an associated projective
embedding and functoriality of heights. ��

Of course, if X is not projective then it has no ample divisors, making the above
two statements vacuous. Complete varieties have a notion that is almost as good,
though.

Definition 10.9. Let X be a complete variety over an arbitrary field. A line sheaf L
on X is big if there is a constant c > 0 such that
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h0(X ,L ⊗n)≥ cndimX

for all sufficiently large and divisible n. A Cartier divisor D on X is big if O(D) is
big.

If X is a complete variety over an arbitrary field, then by Chow’s lemma there is
a projective variety X ′ and a proper birational morphism π : X ′ → X . If L is a big
line sheaf on X , then π∗L is big on X ′. Therefore, it makes some sense to compare
big line sheaves with ample ones.

Proposition 10.10. (Kodaira’s lemma) Let X be a projective variety over an arbi-
trary field, and let L and A be line sheaves on X, with A ample. Then L is big
if and only if there is a positive integer n such that H0(X ,L ⊗n⊗A ∨) �= 0. Equiva-
lently, if D and A are Cartier divisors on X, with A ample, then D is big if and only
if some positive multiple of it is linearly equivalent to the sum of A and an effective
divisor.

Proof. See [87, Prop. 1.2.7]. ��
The above allows us to show that heights relative to big line sheaves are also,

well, big.

Proposition 10.11. Let X be a complete variety over a number field. Let L and
M be line sheaves on X, with L big. Then there is a constant C and a proper
Zariski-closed subset Z of X, depending only on L and M , such that

hM ,k(x)≤C hL ,k(x)+ O(1)

for all x ∈ X(k̄) outside of Z, where the implied constant depends only on L , M ,
and the choices of height functions.

Proof. After applying Chow’s lemma and pulling back L and M , we may assume
that X is projective. We may also replace L with a positive multiple, and hence may
assume that L is isomorphic to A ⊗O(D), where A is an ample line sheaf and D
is an effective Cartier divisor. Then the result follows from Proposition 10.7, with
Z = SuppD, by Theorem 10.5. ��

Unfortunately, it is still not true that an arbitrary complete variety must have a
big line sheaf. But it is true if the variety is nonsingular, since one can then take the
complement of any open affine subset.

For general complete varieties, we can do the following.

Remark 10.12. For a general complete variety X over k, we can define a big height
to be a function h : X(k̄)→ R for which there exist disjoint subvarieties U1, . . . ,Un

of X (not necessarily open or closed), with
⋃

Ui = X ; and for each i = 1, . . . ,n a
projective embedding Ui ↪→ Ui, an ample line sheaf Li on Ui, and real constants
ci > 0 and Ci such that h(x)≥ ci hLi,k(x)+Ci for all x ∈Ui(k̄). One can then show:
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• Every complete variety over k has a big height;
• Any two big heights on a given complete variety are bounded from above by

linear functions of each other;
• If X is a projective variety and L is an ample line sheaf on X then hL ,k is a big

height on X ;
• If L is a line sheaf on X then there are real constants c and C such that

hL ,k(x)≤ ch(x)+C for all x ∈ X(k̄);
• The restriction of a big height to a closed subvariety is a big height on that sub-

variety; and
• A counterpart to Proposition 10.13 (below) holds for big heights on complete

varieties.

Details of these assertions are left to the reader.
Big heights are useful for error terms: the conjectures and theorems that follow

are generally stated for projective varieties, with an error term involving a height
relative to an ample divisor. However, they can also be stated more generally for
complete varieties if the height is changed to a big height. For concreteness, though,
the more restricted setting of projective varieties is used.

Finally, we note a case in which Z can be bounded explicitly. This will be used
in the proof of Proposition 30.3.

Proposition 10.13. Let f : X1 → X2 be a morphism of projective varieties over a
number field, and let A1 and A2 be ample line sheaves on X1 and X2, respectively.
Then there is a constant C, depending only on f , A1, and A2 such that

hA1,k(x)≤C hA2,k( f (x))+ O(1) (56)

for all points x ∈ X1(k̄) that are isolated in their fibers of f , where the implied
constant depends only on f , A1, A2, and the choices of height functions.

Proof. If no closed points x of X1 are isolated in their fibers of f , then there is
nothing to prove. If there is at least one such point x, then dim f (X1) = dimX1, so
f ∗A2 is big. The result then follows by Proposition 10.11 and noetherian induction
applied to the irreducible components of the set Z in that proposition ��

Note that if any fiber component of f has dimension >0, then it contains al-
gebraic points of arbitrarily large height, so (56) cannot possibly hold for all such
points.

11 Proximity and Counting Functions on Varieties
in Number Theory

The definitions of proximity and counting functions given in Sects. 6 and 8 also
generalize readily to points on varieties.
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Throughout this section, k is a number field, S is a finite set of places of k
containing S∞, and X is a complete variety over k.

Definition 11.1. Let D be a Cartier divisor on X , let λD be a Weil function for D,
let x ∈ X(k̄) with x /∈ SuppD, let L⊇ k be a number field such that x ∈ X(L), and let
T be the set of places of L lying over places in S. Then the proximity function and
counting function in this setting are defined up to O(1) by

mS(D,x) =
1

[L : k] ∑w∈T

λD,w(x) and NS(D,x) =
1

[L : k] ∑
w/∈T

λD,w(x).

These expressions are independent of the choice of L, by (48). They depend on the
choice of λD only up to O(1).

Unlike the height, the proximity and counting functions depend on D, even within
a linear equivalence class. Therefore the restriction x /∈ SuppD cannot be eliminated.

By (52) and Definition 10.4, we have

hD,k(x) = mS(D,x)+ NS(D,x)

for all x ∈ X(k̄) outside of the support of D. This is, basically, the First Main
Theorem. The Second Main Theorem in this context is still a conjecture (Conjecture
15.6).

Theorem 9.8 immediately implies the following properties of proximity and
counting functions.

Proposition 11.2. In number theory, proximity and counting functions have the fol-
lowing properties.

(a) Additivity: If D1 and D2 are Cartier divisors on X, then

mS(D1 + D2,x) = mS(D1,x)+ mS(D2,x)+ O(1)

and

NS(D1 + D2,x) = NS(D1,x)+ NS(D2,x)+ O(1)

for all x ∈ X(k̄) outside of the supports of D1 and D2.
(b) Functoriality: If f : X ′ → X is a morphism of complete k-varieties and D is a

divisor on X whose support does not contain the image of f , then

mS( f ∗D,x) = mS(D, f (x))+ O(1)
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and

NS( f ∗D,x) = NS(D, f (x))+ O(1)

for all x ∈ X ′(k̄) outside of the support of f ∗D.
(c) Effective divisors: If D is an effective Cartier divisor on X, then mS(D,x) and

NS(D,x) are bounded from below for all x ∈ X(k̄) outside of the support of D.
(d) Change of number field: If L is a number field containing k and if T is the set

of places of L lying over places in S, then

mT (D,x) = [L : k]mS(D,x)+ O(1)

and

NT (D,x) = [L : k]NS(D,x)+ O(1)

for all x ∈ X(k̄) outside of the support of D (with the same abuse of notation as
in Theorem 10.5e).

In each of the above cases, the implied constant in O(1) depends on the varieties,
divisors, and morphisms, but not on x.

When working with proximity and height functions, the divisor D is almost al-
ways assumed to be effective.

12 Height, Proximity, and Counting Functions
in Nevanlinna Theory

The height, proximity, and counting functions of Nevanlinna theory can also be
generalized to the context of a divisor on a complete complex variety.

In this section, X is a complete complex variety, D is a Cartier divisor on
X , and f : C→ X is a holomorphic curve whose image is not contained in
the support of D. Throughout these notes, we will often implicitly think of a
complex variety X as a complex analytic space [36, App. B].

We begin with the proximity and counting functions.

Definition 12.1. Let λ be a Weil function for D. Then the proximity function for
f relative to D is the function

m f (D,r) =
∫ 2π

0
λ ( f (reiθ ))

dθ
2π

.

It is defined only up to O(1).
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If λ ′ is another Weil function for D, then |λ −λ ′| is bounded, so the proximity
function is independent of D (up to O(1)).

Definition 12.2. The counting function for f relative to D is the function

Nf (D,r) = ∑
0<|z|<r

ordz f ∗D · log
r
|z| + ord0 f ∗D · logr.

Unlike the proximity function and the counting function in Nevanlinna theory,
this function is defined exactly.

Corresponding to Proposition 11.2, we then have

Proposition 12.3. In Nevanlinna theory, proximity and counting functions have the
following properties.

(a) Additivity: If D1 and D2 are Cartier divisors on X, then

m f (D1 + D2,r) = m f (D1,r)+ m f (D2,r)+ O(1)

and

Nf (D1 + D2,r) = Nf (D1,r)+ Nf (D2,r).

(b) Functoriality: If φ : X → X ′ is a morphism of complete complex varieties and
D′ is a Cartier divisor on X ′ whose support does not contain the image of φ ◦ f ,
then

m f (φ∗D′,r) = mφ◦ f (D′,r)+ O(1) and Nf (φ∗D′,r) = Nφ◦ f (D′,r).

(c) Effective divisors: If D is effective, then m f (D,r) is bounded from below and
Nf (D,r) is nonnegative.

In each of the above cases, the implied constant in O(1) depends on the varieties,
divisors, and morphisms, but not on f or r.

We can now define the height.

Definition 12.4. The height function relative to D is defined, up to O(1), as

TD, f (r) = m f (D,r)+ Nf (D,r).

Proposition 12.5. The height function TD, f is additive in D, is functorial, and is
bounded from below if D is effective, as in Proposition 12.3.
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Proof. Immediate from Proposition 12.3. ��
Proposition 12.6. (First Main Theorem) Let D′ be another Cartier divisor on X
whose support does not contain the image of f , and assume that D′ is linearly equiv-
alent to D. Then

TD′, f (r) = TD, f (r)+ O(1). (57)

Proof. We first consider the special case X = P1
C, D = [0] (the image of the

point 0 under the injection A1 ↪→ P1), and D′ = [∞] (the point at infinity, with
multiplicity one). Then TD′, f (r) = Tf (r) + O(1), m f (D,r) = m f (0,r) + O(1), and
Nf (D,r) = Nf (0,r) (where Tf (r), m f (0,r), and Nf (0,r) are as defined in Sect. 5).
The result then follows by Theorem 5.4 (the First Main Theorem for meromorphic
functions).

In the general case, write D−D′ = (g) for some g ∈ K(X)∗. Then g defines
a rational map X ��� P1

C. Let X ′ be the closure of the graph, with projections
p : X ′ → X and q : X ′ → P1

C. By the additivity property of heights, (57) is equiva-
lent to TD−D′ , f (r) being bounded. By the special case proved already, T[0]−[∞],g◦ f (r)
is bounded. The holomorphic curve f : C→ X lifts to a function f ′ : C→ X ′ that
satisfies p ◦ f ′ = f and q ◦ f ′ = g ◦ f . By functoriality, we then have

TD−D′ , f (r) = Tp∗(D−D′), f ′(r)+ O(1)

= Tq∗([0]−[∞]), f ′(r)+ O(1)

= T[0]−[∞],q◦ f ′(r)+ O(1)

= T[0]−[∞],g◦ f (r)+ O(1)

= O(1),

which implies the proposition. ��
Definition 12.7. The height function of f relative to a line sheaf L on X is defined
to be TL , f (r) = TD, f (r)+O(1) for any divisor D such that O(D)∼= L and such that
the support of D does not contain the image of f . It is defined only up to O(1).

One can obtain a precise height function (defined exactly, not up to O(1)), by fix-
ing a Weil function for any such D, or by choosing a metric on L . It is also possible
to use a (1,1)-form associated to such a metric (the Ahlfors-Shimizu height), but
this will not be used in these notes.

Continuing on with the development of the height, we have the following coun-
terpart to Theorem 10.5.

Theorem 12.8. (a) Functoriality: If φ : X → X ′ is a morphism of complete com-
plex varieties and if L is a line sheaf on X ′, then

Tφ∗L , f (r) = TL ,φ◦ f (r)+ O(1).

(b) Additivity: If L1 and L2 are line sheaves on X, then
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TL1⊗L2, f (r) = TL1, f (r)+ TL2, f (r)+ O(1).

(c) Base locus: If the image of f is not contained in the base locus of the complete
linear system |D|, then TD, f (r) is bounded from below.

(d) Globally generated line sheaves: If L is a line sheaf on X, and is generated by
its global sections, then TL , f (r) is bounded from below.

The implicit constants can probably also be made to depend only on the geo-
metric data and the choice of height functions (and not on f ), but this is not very
important since it is the independence of r that is useful.

The following three results correspond to similar results in the end of Sect. 10.

Corollary 12.9. If L is an ample line sheaf on X, then TL , f (r) is bounded from
below, is bounded from above if and only if f is constant, and is O(logr) if and only
if f is algebraic.

Proof. When X = P1, see [29, Chap. 1, Thm. 6.4] for the second assertion. The
general case is left as an exercise for the reader. ��
Proposition 12.10. Let L and M be line sheaves on X, with L ample. Then there
is a constant C, depending only on L and M , such that

TM , f (r) ≤C TL , f (r)+ O(1).

Proof. This is true for essentially the same reasons as Proposition 10.7. The details
are left to the reader. ��
Proposition 12.11. Let L and M be line sheaves on X, with L big. Then there is
a constant C and a proper Zariski-closed subset Z of X, depending only on L and
M , such that

TM , f (r) ≤C TL , f (r)+ O(1),

provided that the image of f is not contained in Z.

Proof. Similar to the proof of Proposition 10.11; details are again left to the reader.
��

Remark 12.12. For an arbitrary complete variety X over C and a holomorphic curve
f : C→ X , one can define a big height to be a real-valued function Tbig, f (r) with
the property that if Z is the Zariski closure of the image of f , if Z̃ → Z is a
proper birational morphism with Z̃ projective, if L is an ample line sheaf on Z̃,
and if f̃ : C→ Z̃ is a lifting of f , then there are constants c > 0 and C such that
Tbig, f (r)≥ cTL , f (r)+C for all r > 0. This condition is independent of the choices
of L and Z̃. This height satisfies the same properties as in Remark 10.12. (There is
no list of subvarieties in this case since in Nevanlinna theory f is usually fixed;
however, one could define the big height instead by using the same U1, . . . ,Un,
U1, . . . ,Un, and L1, . . . ,Ln as in Remark 10.12; then extend f−1(Ui) → Ui to a
map C→Ui for i such that Ui contains the generic point of Z.)
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13 Integral Points

Weil functions can be used to study integral points on varieties. This includes not
only affine varieties, but also non-affine varieties. Integral points on non-affine va-
rieties come up in some important applications, such as moduli spaces of abelian
varieties.

To begin, let k be a number field and recall that a point (x1, . . . ,xn) ∈An(k) is an
integral point if all xi lie in Ok. More generally, if S⊇ S∞ is a finite set of places of
k, then (x1, . . . ,xn) as above is an S-integral point if all xi lie in the ring

Ok,S := {x ∈ k : ‖x‖v ≤ 1 for all v /∈ S} (58)

of S-integers. Algebraic points (x1, . . . ,xn) ∈ An(k̄) are integral (resp. S-integral)
if all of the xi are integral over Ok (resp. Ok,S). (Of course, Ok = Ok,S∞ , so only one
definition is really needed.) These definitions are inherited by points on a closed
subvariety X of An

k .
Given an abstract affine variety X over k, however, the situation becomes a little

more complicated. Indeed, for any rational point x ∈ X(k), there is a closed em-
bedding into An

k for some n that takes x to an integral point. The same is true for
algebraic points.

Instead, therefore, we refer to integrality of a set of points [74, § 1.3]: Let X be
an affine variety over k. Then a set Σ ⊆ X(k) (resp. Σ ⊆ X(k̄)) is S-integral if there
is a closed immersion i : X ↪→An

k for some n and a nonzero element a ∈ k such that,
for all x ∈ Σ , all coordinates of i(x) lie in (1/a)Ok,S (resp. a times all coordinates
are integral over Ok,S).

As noted above, this definition is meaningful only if Σ is an infinite set.
This definition can be phrased in geometric terms using Weil functions. Indeed,

we identify An
k with the complement of the hyperplane x0 = 0 in Pn

k , by identifying
(x1, . . . ,xn) ∈ An

k with the point [1 : x1 : . . . : xn] ∈ Pn
k . Let H denote the hyperplane

x0 = 0 at infinity, and let λH be the Weil function (47):

λH,v([1 : x1 : . . . : xn]) =− log
‖1‖v

max{‖1‖v,‖x1‖v, . . . ,‖xn‖v}
= logmax{‖1‖v,‖x1‖v, . . . ,‖xn‖v}.

(59)

Now let a be a nonzero element of k, let x∈ k̄, and let L be a number field containing
k(x). Then ax is integral over Ok,S if and only if ‖ax‖w ≤ 1 for all places w of ML

lying over places in Mk \ S, which holds if and only if ‖x‖w ≤ ‖a‖−1
w for all such

w. Thus, by (59), Σ ⊆ X(k̄) is S-integral if and only if there is a closed immersion
i : X ↪→ An

k for some n and an Mk-constant (cv) with the following property. For all
x ∈ Σ , λH,w(x) ≤ cw for all places w of Mk(x) lying over places not in S. (Here, as
above, we identify An

k with Pn
k \H.)

By functoriality of Weil functions (Theorem 9.8b), this leads to the following
definition.
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Definition 13.1. Let k be a number field, let S ⊇ S∞ be a finite set of places of k,
let X be a complete variety over k, and let D be an effective Cartier divisor on X .
Then a set Σ ⊆ X(k̄) is a (D,S)-integral set of points if (i) no point x ∈ Σ lies in
the support of D, and (ii) there is a Weil function λD for D and an Mk-constant (cv)
such that

λD,w(x)≤ cw

for all x ∈ Σ and all places w of Mk(x) not lying over places in S.

We may eliminate S from the notation if it is clear from the context, and refer to
a D-integral set of points.

From the above discussion, it follows that the condition in the earlier definition
of integrality holds for some closed immersion into An

k , then it holds for all such
closed immersions (with varying n).

Similarly, by Theorem 9.8d, one can use a fixed Weil function λD in Definition
13.1 (after adjusting (cv)). One can also vary the divisor, as follows.

Proposition 13.2. If k, S, and X are as above, and if D1 and D2 are effective Cartier
divisors on X with the same support, then a set Σ ⊆ X(k̄) is D1-integral if and only
if it is D2-integral.

Proof. This follows from Theorem 9.8a, e (additivity and boundedness of Weil
functions). Details are left to the reader. ��

Thus, D-integrality depends only on the support of D. In fact, one can go further:
It depends only on the open subvariety X \SuppD:

Proposition 13.3. Let k and S be as above, let X1 and X2 be complete k-varieties,
and let D1 and D2 be effective Cartier divisors on X1 and X2, respectively. Assume
that

φ : X1 \SuppD1
∼→ X2 \SuppD2

is an isomorphism. Then a set Σ ⊆ X1(k̄) is a D1-integral set on X1 if and only if

φ(Σ) := {φ(x) : x ∈ Σ}

is a D2-integral set on X2.

Proof. By working with the closure of the graph, we may assume that φ extends to
a morphism from X1 to X2. In that case, it follows from Theorem 9.8a, e. ��
Definition 13.4. Let k and S be as above, and let U be a variety over k. A set
Σ ⊆U(k̄) is integral if there is an open immersion i : U → X of U into a complete
variety X over k and an effective Cartier divisor D on X such that i(U) = X \SuppD
and i(Σ) is a D-integral set on X .

Proposition 13.5. Let φ : X1 → X2 be a morphism of complete k-varieties, and let
D1 and D2 be effective Cartier divisors on X1 and X2, respectively. Assume that the
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support of D2 does not contain the image of φ , and that the support of D1 contains
the support of φ∗D2. If Σ is a D1-integral set on X1, then

φ(Σ) := {φ(x) : x ∈ Σ}

is a D2-integral set on X2.

Proof. By Proposition 13.2, we may assume that D1− φ∗D2 is effective, and then
the result follows by Theorem 9.8a, e. ��

If we let U1 = X1 \SuppD1 and U2 = X2 \SuppD2, then the above conditions on
the supports of D1 and D2 are equivalent to φ(U1)⊆U2. Therefore Proposition 13.5
says that integral sets of points on varieties are preserved by morphisms of those
varieties. This phenomenon is more obvious when using models over SpecOk to
work with integral points, but this will not be explored in these notes.

We also note that Definition 13.4 does not require U to be affine. Indeed, many
moduli spaces are neither affine nor projective, and it is often useful to work with
integral points on those moduli spaces (although this is usually done using models).
In an extreme case, U can be a complete variety. This corresponds to taking D = 0
in Definition 13.1, and the integrality condition is therefore vacuous in that case.

When working with rational points, Definition 13.1 can be stated using counting
functions instead: Σ ⊆ X(k) is integral if and only if NS(D,x) is bounded for x ∈ Σ .
This is no longer equivalent when working with algebraic points, or when working
over function fields, though.

The discussion of the corresponding notion in Nevanlinna theory is quite short:
an (infinite) D-integral set of rational points on a complete k-variety X corresponds
to a holomorphic curve f in a complete complex variety X whose image is disjoint
from the support of a given Cartier divisor D on X . (In other words, Nf (D,r) = 0
for all r.) The next section will discuss an example of this comparison.

Of course, holomorphic curves omitting divisors also behave as in Proposition
13.3: Let φ : X1 → X2 be a morphism of complete complex varieties, let D1 and D2

be effective Cartier divisors on X1 and X2, respectively, with

φ−1(SuppD2)⊆ SuppD1,

and let f : C→ X1 be a holomorphic curve which omits D1. Then φ ◦ f : C→ X2

omits D2, for trivial reasons.
Now consider the situation where φ : X ′ → X is a morphism of complete com-

plex varieties, D is an effective Cartier divisor on X , and D′ is an effective Cartier
divisor on X ′ with SuppD′ = φ−1(SuppD). Assume that φ is étale outside of
SuppD′. Then any holomorphic curve f : C → X \ SuppD lifts to a holomorphic
curve f ′ : C→ X ′ \SuppD′ such that φ ◦ f ′ = f , essentially for topological reasons.

What is surprising is that this situation carries over to the number field case.
Indeed, let φ : X ′ → X be a morphism of complete k-varieties, and let D and D′
be as above, with φ étale outside of SuppD′. If Σ is a set of D-integral points in
X(k), then φ−1(Σ) is a set of integral points in X ′(k̄). The Chevalley-Weil theorem
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extends to integral points by Serre [74], Sect. 4.2 or Vojta [87], Sect. 5.1, and implies
that although the points of Σ ′ may not lie in X ′(k), the ramification of the fields k(x)
over k is bounded uniformly for all x ∈ X ′(k). Combining this with the Hermite-
Minkowski theorem, it then follows that there is a number field L ⊇ k such that
Σ ′ ⊆ X ′(L).

14 Units and the Borel Lemma

Units in a number field k can be related to integral points on the affine variety xy = 1
in P2

k : u is a unit if and only if there is a point (u,v) on this variety with u,v ∈ Ok.
This variety is isomorphic to P1 minus two points, which we may take to be 0 and∞.
More generally, a set of rational points on P1 \ {0,∞} is integral if and only if it is
contained in finitely many cosets of the units in the group k∗.

Units therefore correspond to entire functions that never vanish. An entire func-
tion f never vanishes if and only if it can be written as eg for an entire function g.
This leads to what is called the “Borel lemma” in Nevanlinna theory.

Theorem 14.1. [7] If g1, . . . ,gn are entire functions such that

eg1 + · · ·+ egn = 1, (60)

then some g j is constant.

Proof. We may assume that n ≥ 2. The homogeneous coordinates [eg1 : . . . : egn ]
define a holomorphic curve f : C→ Pn−1(C). The image of this map omits the n
coordinate hyperplanes, and also omits the hyperplane x1 + · · ·+xn = 0 (expressed in
homogeneous coordinates [x1 : . . . : xn]). Therefore Nf (Hj,r) = 0, as Hj varies over
these n + 1 hyperplanes. This contradicts (39) unless the image of f is contained in
a hyperplane (note that n is different in (39)). One can then use the linear relation
between the coordinates of f to eliminate one of the terms eg j and then conclude by
induction. ��

In fact, by induction, it can be shown that some nontrivial subsum of the terms
on the left-hand side of (60) must vanish.

To find the counterpart of this result in number theory, change the eg j to units.
This theorem is due to van der Poorten and Schlickewei [84], and independently to
Evertse [19].

Theorem 14.2. (Unit Theorem) Let k be a number field and let S ⊇ S∞ be a finite
set of places of k. Let U be a collection of n-tuples (u1, . . . ,un) of S-units in k that
satisfy the equation

a1u1 + · · ·+ anun = 1, (61)

where a1, . . . ,an are fixed nonzero elements of k. Then all but finitely many elements
of U have the property that there is a nonempty proper subset J of {1,2, . . . ,n} such
that ∑ j∈J a ju j = 0.
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Proof. Assume that the theorem is false, and let U ′ be the set of all (u1, . . . ,un) for
which there is no such J as above. Then U ′ is infinite.

If we regard each (u1, . . . ,un) ∈ U ′ as a point [u1 : . . . : un] ∈ Pn−1
k , then by

looking directly at the formula (40) for Weil functions, we see that NS(Hj,x) is
bounded as x varies over U ′, for the same set of n+1 hyperplanes as in the previous
proof. This gives mS(Hj,x) = hk(x) + O(1) for all x ∈ U ′ and all j, contradicting
Theorem 8.9 unless all points in Pn−1 corresponding to points in U ′ lie in a finite
union of proper linear subspaces.

Consider one of those linear subspaces containing infinitely many points of U ′.
Combining the equation of some hyperplane containing that subspace with (61)
allows one to eliminate one or more of the u j, since by assumption there is no set
J as in the statement of the theorem. We then proceed by induction on n (the base
case n = 1 is trivial). ��
Example 14.3. The condition with the set J is essential because, for example, the
unit equation (61) with n = 3 and a1 = a2 = a3 = 1 has solutions u +(−u)+ 1 = 1
for infinitely many units u (if k or S is large enough). Geometrically, if H1, . . . ,H4

are the hyperplanes in Pn
k occurring in the proofs of Theorems 14.1 and 14.2, then

the possible sets J = {1,2}, J = {1,3}, and J = {2,3} correspond to the line joining
the points H1∩H2 and H3∩H4, the line joining the points H1∩H3 and H2∩H4 and
the line joining the points H1 ∩H4 and H2 ∩H3. Each such line meets the divisor
D := ∑Hj in only two points, so if we map P1 to that line in such a way that 0 and
∞ are taken to those two points, then integral points on P1

k \ {0,∞} (i.e., units) are
taken to integral points on P2

k \D.

Finally, we note that theorems on exponentials of entire functions that can be
reduced to Theorem 14.1 by elementary geometric arguments can be readily trans-
lated to theorems on units, by replacing the use of Theorem 14.1 with Theorem 14.2.
For example, Theorem 14.4 below leads directly to Theorem 14.5.

Theorem 14.4. [16, Théorème XVI]; see also [26] and [30]. Let f : C→ Pn be a
holomorphic curve that omits n + m hyperplanes in general position, m ≥ 1. Then
the image of f is contained in a linear subspace of dimension ≤ [n/m], where [ · ]
denotes the greatest integer function.

Theorem 14.5. [50, Cor. 3] Let Σ ⊆ Pn(k) be a set of D-integral points, where D is
the sum of n + m hyperplanes in general position, m≥ 1. Then Σ is contained in a
finite union of linear subspaces of dimension ≤ [n/m].

15 Conjectures in Nevanlinna Theory and Number Theory

Since the canonical line sheaf K of P1 is O(−2), the main inequality of Theorem
5.5 can be stated in the form

m f (D,r)+ TK , f (r)≤exc O(log+ Tf (r))+ o(logr),

leading to a general conjecture in Nevanlinna theory. This first requires a definition.
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Definition 15.1. A subset Z of a smooth complex variety X is said to have normal
crossings if each P ∈ X(C) has an open neighborhood U and holomorphic local
coordinates z1, . . . ,zn in U such that Z ∩U is given by z1 = · · · = zr = 0 for some r
(0≤ r ≤ n). A divisor on X is reduced if all multiplicities occurring in it are either
0 or 1. Finally, a normal crossings divisor on X is a reduced divisor whose support
has normal crossings.

(Note that not all authors assume that a normal crossings divisor is reduced.)

Conjecture 15.2. Let X be a smooth complex projective variety, let D be a normal
crossings divisor on X , let K be the canonical line sheaf on X , and let A be an
ample line sheaf on X . Then:

(a) The inequality

m f (D,r)+ TK , f (r)≤exc O(log+ TA , f (r))+ o(logr) (62)

holds for all holomorphic curves f : C→ X with Zariski-dense image.
(b) For any ε > 0 there is a proper Zariski-closed subset Z of X , depending only on

X , D, A , and ε , such that the inequality

m f (D,r)+ TK , f (r)≤exc ε TA , f (r)+C (63)

holds for all nonconstant holomorphic curves f : C→ X whose image is not
contained in Z, and for all C ∈R.

The form of this conjecture is the same as the (known) theorem for holomorphic
maps to Riemann surfaces. It has also been shown to hold, with a possibly weaker
error term, for holomorphic maps Cd → X if d = dimX and the jacobian determi-
nant of the map is not identically zero; see [82] and [10]. The conjecture itself is
attributed to Griffiths, although he seems not to have put it in print anywhere.

Conjecture 15.2 has been proved for curves (Theorem 23.2 and Corollary 29.7),
but in higher dimensions very little is known. If X = Pn and D is a sum of hyper-
planes, then the normal crossings condition is equivalent to the hyperplanes being in
general position, and in that case the first part of the conjecture reduces to Cartan’s
theorem (Theorem 8.6). The second part is also known in this case [90].

A consequence of Conjecture 15.2 concerns holomorphic curves in varieties of
general type, or of log general type.

Proposition 15.3. Assume that either part of Conjecture 15.2 is true. If X is a
smooth variety of general type, then a holomorphic curve f : C→ X cannot have
Zariski-dense image. More generally, if X is a smooth variety, D is a normal cross-
ings divisor on X, and X \D is a variety of log general type, then a holomorphic
curve f : C→ X \D cannot have Zariski-dense image.

Proof. Assume that part (a) of the conjecture is true. The proof for (b) is similar and
is left to the reader.
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As was the case with (24) and (39), (62) can be rephrased as

Nf (D,r)≥exc TK (D), f (r)−O(log+ TA , f (r))−o(logr). (64)

In this case, since f misses D, the left-hand side is zero. By the definition of log
general type, the line sheaf K (D) := K ⊗O(D) is big. Therefore, this inequality
contradicts Proposition 12.11. ��

This consequence is also unknown in general. It is known, however, in the special
case where X is a closed subvariety of a semiabelian variety and D = 0. Indeed, if X
is a closed subvariety of a semiabelian variety and is not a translate of a semiabelian
subvariety, then a holomorphic curve f : C→ X cannot have Zariski-dense image.
See [41, 32, 78] for the case of abelian varieties, and [61] for the more general case
of semiabelian varieties. All of these references build on work of Bloch [5].

Conjecture 15.2b is also known if X is an abelian variety and D is ample [79].
The theorem has been extended to semiabelian varieties again by Noguchi [63],
but only applies to holomorphic curves whose image does not meet the divisor at
infinity. Again, these proofs build on work of Bloch [5].

Conjecture 15.2 will be discussed further once its counterpart in number theory
has been introduced. This, in turn, requires some definitions.

Definition 15.4. Let X be a nonsingular variety. A divisor D on X is said to have
strict normal crossings if it is reduced, if each irreducible component of its support
is nonsingular, and if those irreducible components meet transversally (i.e., their
defining equations are linearly independent in the Zariski cotangent space at each
point). We say that D has normal crossings if it has strict normal crossings locally
in the étale topology. This means that for each P ∈ X there is an étale morphism
φ : X ′ → X with image containing P such that φ∗D has strict normal crossings.

This definition is discussed more in [95, Sect. 7].

Definition 15.5. [83] Let X be a variety. A subset of X(k̄) is generic if all infinite
subsets are Zariski-dense in X .

The number-theoretic counterpart to Conjecture 15.2 is then the following.

Conjecture 15.6. Let k be a number field, let S ⊇ S∞ be a finite set of places of k,
let X be a smooth projective variety over k, let D be a normal crossings divisor on
X , let K be the canonical line sheaf on X , and let A be an ample line sheaf on X .
Then:

(a) Let Σ be a generic subset of X(k)\SuppD. Then the inequality

mS(D,x)+ hK ,k(x)≤ O(log+ hA ,k(x)) (65)

holds for all x ∈ Σ .
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(b) For any ε > 0 there is a proper Zariski-closed subset Z of X , depending only on
X , D, A , and ε , such that for all C ∈ R the inequality

mS(D,x)+ hK ,k(x)≤ ε hA ,k(x)+C (66)

holds for almost all x ∈ (X \Z)(k).

By Remark 10.12, one can replace hA ,k in this conjecture with a big height (after
possibly adjusting Z and ε in part (b)). One can then relax the condition on X to
be just a smooth complete variety. The resulting conjecture actually would follow
from the original Conjecture 15.6 by Chow’s lemma, resolution of singularities, and
Proposition 25.2 (without reference to dS(x) in the latter, since lifting a rational point
to the cover does not involve passing to a larger number field in this case). This can
also be done for Conjecture 15.2.

Except for error terms, the cases in which Conjecture 15.6 is known correspond
closely to those cases for which Conjecture 15.2 is known. Indeed, Conjecture 15.6b
is known for curves by Roth’s theorem, by a theorem of Lang [44], Thm. 2, and by
Faltings’s theorem on the Mordell conjecture [21, 22], for genus 0, 1, and > 1, re-
spectively. For curves, part (a) of the conjecture is identical to part (b) except for the
error term. Also, Schmidt’s Subspace Theorem (Theorem 8.10) proves Conjecture
15.6 except for the error term in part (a), and the assertion on the dependence of
the set Z in part (b). As noted earlier, however, the latter assertion is also known
(without the dependence on A and ε).

Remark 15.7. Conjecture 15.6 (and also Conjecture 15.2) are compatible with
taking products. Indeed, let X = X1×k X2 be the product of two smooth projec-
tive varieties, with projection morphisms pi : X → Xi (i = 1,2). Let D1 and D2 be
normal crossings divisors on X1 and X2, respectively, and let K , K1 and K2 be the
canonical line sheaves on X , X1, and X2, respectively. We have K ∼= p∗1K1⊗ p∗2K2.
Then the conjecture for D1 on X1 and for D2 on X2 imply the conjecture for
p∗1D1 + p∗2D2 on X .

Remark 15.8. One may ask whether one can make the same change to this conjec-
ture as was done in going from Theorem 8.9 to 8.10 (and likewise in the Nevanlinna
case). One can, but it would not make the conjecture any stronger. Indeed, suppose
that D1, . . . ,Dq are normal crossings divisors on X . There exists a smooth projective
variety X ′ over k and a proper birational morphism π : X ′ → X such that the support
of the divisor ∑π∗Di has normal crossings. Let D′ be the reduced divisor on X ′ for
which SuppD′ = Supp∑π∗Di, and let K ′ and K be the canonical line sheaves of
X ′ and X , respectively. By Proposition 25.2, we have

∑
v∈S

max{λDi,v(x) : i = 1, . . . ,q}+ hK ,k(x)≤ mS(D′,x′)+ hK ′,k(x′)+ O(1) (67)

for all x′ ∈ X ′(k), where x = π(x′). Therefore, if the left-hand side of (65) or (66)
were replaced by the left-hand side of (67), then the resulting conjecture would be
a consequence of Conjecture 15.6 applied to D′ on X ′.
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Theorems 8.10 and 8.11 are still needed, though, because Conjectures 15.6 and
15.2 have not been proved for blowings-up of Pn.

Corresponding to Proposition 15.3, we also have

Proposition 15.9. Assume that either part of Conjecture 15.6 is true. Let k and S
be as in Conjecture 15.6, let X be a smooth projective variety over k, and let D be
a normal crossings divisor on X. Assume that X \D is of log general type. Then no
set of S-integral k-rational points on X \D is Zariski dense.

Proof. As in the earlier proof, (65) is equivalent to

NS(D,x)≥ hK (D),k(x)−O(log+ hA ,k(x)),

and (66) can be rephrased similarly. For points x in a Zariski-dense set of k-rational
S-integral points, NS(D,x) would be bounded, contradicting Proposition 10.11 since
K (D) is big. ��

This proof shows how Conjecture 15.6 is tied to the Mordell conjecture.
As was the case in Nevanlinna theory, the conclusion of Proposition 15.9 has

been shown to hold for closed subvarieties of semiabelian varieties, by Faltings [24]
in the abelian case and Vojta [89] in the semiabelian case.

In addition, Conjecture 15.6b has been proved when X is an abelian variety and D
is ample [23]. This has been extended to semiabelian varieties [92], but in that case
(66) was shown only to hold for sets of integral points on the semiabelian variety.

In parts (b) of Conjectures 15.2 and 15.6, the exceptional set Z must depend on
ε; this is because of the following theorem.

Theorem 15.10. [52] There are examples of smooth projective surfaces X contain-
ing infinitely many rational curves Zi for which the restrictions of (62) and (65) fail
to hold.

These examples do not contradict parts (b) of the conjectures of this section, since
the degrees of the curves increase to infinity. Nor do they preclude the sharper error
terms in parts (a) of the conjectures. However, they do prevent one from combining
the two halves of each conjecture.

Lang [48, Chap. I, Sect. 3] has an extensive conjectural framework concerning
how the exceptional set in part (b) of Conjectures 15.2 and 15.6 may behave, es-
pecially for varieties of general type (which would not include the examples of
Theorem 15.10). See also Sect. 17. Note, however, that the exceptional sets of that
section refer only to integral points (or holomorphic curves missing D), so the ex-
ceptional sets referenced here are more general.

As a converse of sorts, there are numerous examples of theorems in analysis
that apply only to “very generic” situations; i.e., they exclude a countable union of
proper analytic subsets. One could pose Conjecture 15.2a in such a setting as well.
Such a change would not be meaningful for Conjecture 15.6a, however, since the
set of rational (and even algebraic) points on a variety is at most countable.
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The formulation of Conjecture 15.6 suggests that, in a higher-dimensional setting,
the correct counterpart in number theory for a holomorphic curve with Zariski-
dense image is not just an infinite set of rational (or algebraic) points, but an
infinite generic set. Corresponding to holomorphic curves whose images need not
be Zariski-dense, we also make the following definition.

Definition 15.11. Let X be a variety over a number field k. If Z is a closed sub-
variety of X , then a Z-generic subset of X(k̄) is a generic subset of Z(k̄). Also, a
semi-generic subset of X(k̄) is a Z-generic subset of X(k̄) for some closed subvari-
ety Z of X .

A version of Conjecture 15.6 has also been posed for algebraic points. See Con-
jecture 25.1.

16 Function Fields

Although function fields are not emphasized in these lectures, they provide useful
insights, especially when discussing Arakelov theory or use of models. They are
briefly introduced in this section. Most results are stated without proof.

Mahler [54] and Osgood [64] showed that Roth’s theorem is false for function
fields of positive characteristic. Therefore these notes will discuss only function
fields of characteristic zero.

For the purposes of these notes, a function field is a finitely-generated field ex-
tension of a “ground field” F , of transcendence degree 1. Such a field is called a
“function field over F .”

If k is a function field over F , it is the function field K(B) for a unique (up to
isomorphism) nonsingular projective curve B over F . For each closed point b on B,
the local ring OB,b is a discrete valuation ring whose valuation v determines a non-
archimedean place of k with a corresponding norm given by ‖x‖v = 0 if x = 0 and
by the formula

‖x‖v = e−[κ(b):F]v(x)

if x �= 0. Here v is assumed to be normalized so that its image is Z. We set Nv = 0,
so that axioms (3) hold.

Let L be a finite extension of k. Then it, too, is a function field over F , and
(4) and (5) hold in this context. If B′ is the nonsingular projective curve over F
corresponding to L, then the inclusion k⊆ L uniquely determines a finite morphism
B′ → B over F .

The field F is not assumed to be algebraically closed. In this context, note that
the degree of a divisor on B is defined to be

deg∑nb ·b =∑nb[κ(b) : F ]. (68)
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This degree depends on F , since if F ⊆ F ′ ⊆ k and k is also of transcendence degree
1 over F ′, then F ′ is necessarily finite over F ,1 and the degree is divided by [F ′ : F ]
if it is taken relative to F ′ instead of to F .

With this definition of degree, principal divisors have degree 0, which implies
that the Product Formula (6) holds, where the set Mk is the set of closed points on the
corresponding nonsingular curve B. The Product Formula is the primary condition
for k to be a global field (for the full set of conditions, see [2, Chap. 12]). There are
many other commonalities between function fields and number fields; for example,
the affine ring of any nonempty open affine subset of B is a Dedekind ring.

A function field is always implicitly assumed to be given with the subfield F ,
since (for example) C(x,y) can be viewed as a function field with either F = C(x)
or F = C(y), with very different results.

For the remainder of this section, k is a function field of characteristic 0 over
a field F , and B is a nonsingular projective curve over F with k = K(B).

A key benefit of working over function fields is the ability to explore diophantine
questions using standard tools of algebraic geometry, using the notion of a model.

Definition 16.1. A model for a variety X over k is an integral scheme X , given
with a flat morphismπ : X →B of finite type and an isomorphism X ×B Speck∼= X
of schemes over k. The model is said to be projective (resp. proper) if the morphism
π is projective (resp. proper).

If X is a projective variety over k, then a projective model can be constructed
for it by taking the closure in PN

B . Likewise, a proper model for a complete variety
exists, by Nagata’s embedding theorem. In either case the model may be constructed
so that any given finite collection of Cartier divisors and line sheaves extends to the
same sorts of objects on the model [96].

If X is a proper model over B for a complete variety X over k, then ratio-
nal points in X(k) correspond naturally and bijectively to sections i : B → X of
π : X → B. Indeed, if i is such a section then it takes the generic point of B to a
point on the generic fiber of π , which is X . Conversely, given a point in X(k), one
can take its closure to get a curve in X ; it is then possible to show that the restriction
of π to this curve is an isomorphism.

More generally, if L is a finite extension of k, and B′ is the nonsingular projective
curve over F corresponding to L, then points in X(L) correspond naturally and bijec-
tively to morphisms B′ →X over B. This follows by applying the above argument
to X ×B B′, which is a proper model for X ×k L over B′.

With this notation, we can define Weil functions in the function field case as
follows.

1 Let t ∈ k be transcendental over F . Then F(t) and F ′ are linearly disjoint over F , and therefore
[F ′ : F] = [F ′(t) : F(t)]≤ [k : F(t)] < ∞.
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Definition 16.2. Let X be a complete variety over k, let D be a Cartier divisor on X ,
and let π : X → B be a proper model for X . Assume that D extends to a Cartier
divisor on X , also denoted by D. Let L be a finite extension of k, let x ∈ X(L) be a
point not lying on SuppD, let i : B′ →X be the corresponding morphism, as above,
and let w be a place of L, corresponding to a closed point b′ of B′. Then the image
of i is not contained in SuppD on X , so i∗D is a Cartier divisor on B′. Let nw be the
multiplicity of b′ in i∗D. We then define

λD,w(x) = nw[κ(b′) : F ].

(One may be tempted to require the notation to indicate the choice of F , but this
is not necessary since the choice of F is encapsulated in the place w, which comes
with a norm ‖ · ‖w that depends on F .)

It is possible to show that this definition satisfies the conditions of Definition
9.6 (where now k is a function field). Consequently, Theorems 9.8 and 9.10 hold
in this context. Moreover, this definition is compatible with (50) (corresponding to
changing B′).

In the case of Theorem 9.8, though, a bit more is true: the Mk-constants are not
necessary when one works with Cartier divisors on the model. Indeed, if D is an
effective Cartier divisor on a model X of a k-variety X , then (in the notation of Def-
inition 16.2) i∗D is an effective divisor on B′, so nb ≥ 0 for all b, hence λD,w(x)≥ 0
for all w and all x /∈ SuppD. Similarly, suppose that D is a Cartier divisor on X ,
and that λD and λ ′D are two Weil functions obtained from extensions D and D′ of
D to models X and X ′, respectively, using Definition 16.2. We may reduce to the
situation where the two models are the same: let X ′′ be the closure of the graph of
the birational map between X and X ′, and pull back D and D′ to X ′′. But now
the difference D−D′ is a divisor on X which does not meet the generic fiber, so
it is supported only on a finite sum of closed fibers of π : X → B. Therefore the
Weil function associated to D−D′, and hence the difference between λD and λ ′D, is
bounded by an Mk-constant.

Following Sect. 10, one can then define the height of points x /∈ SuppD, starting
from a model X for X over B and a Cartier divisor D on X : with notation as in
Definition 16.2, we have

hD,k(x) =
1

[L : k] ∑w∈ML

λD,w(x)

=
1

[L : k] ∑w∈ML

nw[κ(b′) : F ]

=
deg i∗D
[L : k]

(69)

by (68).
Therefore, heights can be expressed using intersection numbers. It is this obser-

vation that led to the development of Arakelov theory, which defines models over Ok
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of varieties over number fields k, with additional information at archimedean places
which again allows heights to be described using suitable intersection numbers.

Returning to function fields, heights defined as in (69) are defined exactly (given
a model of the variety and an extension of the Cartier divisor to that model). Except
for Theorem 10.8 (Northcott’s theorem), all of the results of Sect. 10 extend to the
case of heights defined as in (69). In particular, if L is a line sheaf on a model X
for X , then

hL ,k(x) =
deg i∗L
[L : k]

. (70)

Northcott’s theorem is false over function fields (unless F is finite). Instead, how-
ever, it is true that the set (55) is parametrized by a scheme of finite type over F .

Models also provide a very geometric way of looking at integral points. For ex-
ample, consider the situation with rational points. Let S be a finite set of places of k;
this corresponds to a proper Zariski-closed subset of B, which we also denote by S.
Let X , π : X → B, x ∈ X(k), and i : B→X be as in Definition 16.2 (with L = k),
let D be an effective Cartier divisor on X , and let λD be the corresponding Weil
function as in Definition 16.2. Then, for any place v ∈Mk, we have λD,v(x) > 0 if
and only if i(b) lies in the support of D, where b∈ B is the closed point associated to
v. Thus, a rational point satisfies the condition of Definition 13.1 with λD as above
and cv = 0 if and only if it corresponds to a section of the map π−1(B\S)→ B\S. A
similar situation holds with algebraic points, which then correspond to multisections
of π−1(B\ S)→ B\ S.

Conversely, given a set of integral points as in Definition 13.1, by performing
some blowings-up one can construct a model and an effective Cartier divisor on
that model for which each of the given integral points corresponds to a section (or
multisection) as above.

This formalism works also over number fields, without the need for Arakelov
theory.

17 The Exceptional Set

The exceptional set mentioned in Conjectures 15.2b and 15.6b leads to interest-
ing questions of its own, even when working only with rational points (or integral
points) in the contexts of Propositions 15.3 or 15.9. This question has been explored
in more detail by Lang; this is the main topic of this section. For references, see
[47], [48, Chap. I, Sect. 3], and [51].

Definition 17.1. Let X be a complete variety over a field k.

(a) The exceptional set Exc(X) is the Zariski closure of the union of the images
of all nonconstant rational maps G ��� X , where G is a group variety over an
extension field of k.
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(b) If k is a finitely generated extension field of Q, then the diophantine exceptional
set Excdio(X) is the smallest Zariski-closed subset Z of X such that (X \Z)(L)
is finite for all fields L finitely generated over k.

(c) If k = C then the holomorphic exceptional set Exchol(X) is the Zariski closure
of the union of the images of all nonconstant holomorphic curves C→ X .

Each of these sets (when defined) may be empty, all of X , or something in be-
tween. For each of these types of exceptional set, Lang has conjectured that the
exceptional set is a proper subset if the variety X is of general type (but not con-
versely – see below). He also has conjectured that Excdio(X) = Exc(X) if k is a
finitely-generated extension of Q, and that Exchol(X) = Exc(X) if k = C. And, fi-
nally, if k is finitely generated over Q, then he conjectured that

Excdio(X)×k C = Exchol(X ×k C)

for all embeddings k ↪→ C.
The main example in which this conjecture is known is in the context of closed

subvarieties of abelian varieties [41]:

Theorem 17.2. (Kawamata Structure Theorem) Let X be a closed subvariety of
an abelian variety A over C. The Kawamata locus of X is the union Z(X) of all
translated abelian subvarieties of A contained in X. It is a Zariski-closed subset
of X, and is a proper subset if and only if X is not fibered by (nontrivial) abelian
subvarieties of A.

This theorem is also true for semiabelian varieties, and by induction on dimen-
sion it follows from [61] that the image of a nonconstant holomorphic curve C→ X
must be contained in Z(X). Similarly, if X is a closed subvariety of a semiabelian
variety A over a number field k, then any set of integral points on X can contain
only finitely many points outside of Z(X). It is also known that a closed subvariety
X of a semiabelian variety A is of log general type if and only if it is not fibered
by nontrivial semiabelian subvarieties of A. Thus, (restricting to A abelian) Lang’s
conjectures have been verified for closed subvarieties of abelian varieties.

In a similar vein, the finite collections of proper linear subspaces of positive
dimension in Remark 8.12 are the same in Theorems 8.10 and 8.11.

In the context of integral points or holomorphic curves missing divisors, one can
also define the same three types of exceptional sets. The changes are obvious, except
possibly for Exc(X \D): In this case it should be the Zariski closure of the union of
the images of all non-constant strictly rational maps G ��� X \D, where G is a group
variety. A strictly rational map [39, Sect. 2.12] is a rational map X ���Y such that
the closure of the graph is proper over X . This variation has not been studied much,
though.

More conjectures relating the geometry of a variety and its diophantine properties
are described by Campana [9]. He further classifies varieties in terms of fibrations.
For example, let X = C×P1 where C is a smooth projective curve of genus ≥ 2.
This is an example of a variety which is not of general type, but for which all of
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Lang’s exceptional sets are the entire variety. Yet, for any given number field, X(k)
is not Zariski dense, and there are no Zariski-dense holomorphic curves in X . Cam-
pana’s framework singles out the projection X →C. This projection has general type
base, and fibers have Zariski-dense sets of rational points over a large enough field
(depending on the fiber).

For varieties of negative Kodaira dimension, the diophantine properties are stud-
ied in conjectures of Manin concerning the rate of growth of sets of rational points
of height≤ B, as B varies. This is a very active area of number theory, but is beyond
the scope of these notes.

18 Comparison of Problem Types

Before the analogy with Nevanlinna theory came on the scene, things were quite
simple: You tried to prove something over number fields, and if you got stuck you
tried function fields. If you succeeded over function fields, then you tried to trans-
late the proof over to the number field case. For example, the Mordell conjecture
was first proved for function fields by Manin, then Grauert modified his proof. But,
those proofs used the absolute tangent bundle, which has no known counterpart
over number fields. Ultimately, though, Faltings’ proof of the Mordell conjecture
did draw upon work over function fields, of Tate, Szpiro, and others.

The analogy with Nevanlinna theory gives a second way of working by analogy,
although it is more distant. Also, more recent work has placed more emphasis on
higher dimensional varieties, lending more importance to the exceptional set. Thus,
a particular diophantine problem leads one to a number of related problems which
may be easier and whose solutions may provide some insight into the original prob-
lem. These can be (approximately) linearly ordered, as follows. In each case, one
looks at a class of pairs (X ,D) consisting of a smooth complete variety X over the
appropriate field and a normal crossings divisor D on X . Each class has been split
into a qualitative part (A) and a quantitative part (B).

1A: Find the exceptional set Exc(X \D).
B: For each ε > 0, find the exceptional subset Z in Conjectures 15.2 and 15.6. This

should be the Zariski closure of the union of all closed subvarieties Y ⊆ X such
that, after resolving singularities of Y and of D

∣∣
Y , the main inequality (63) or

(66) on Y is weaker than that obtained by restricting the same inequality on X .
2A: Prove that, given any smooth projective curve Y over a field of characteristic

zero, and any finite subset S ⊆ Y , the set of maps Y \ S→ X \D whose image
is not contained in the exceptional set, is parametrized by a finite union of
varieties.

B: Prove Conjecture 15.6 in the split function field case of characteristic zero.
3A: Prove that all holomorphic curves C→ X \D must lie in the exceptional set.

B: Prove Conjecture 15.2 for holomorphic curves C→ X .
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4A: In the (general) function field case of characteristic zero, prove that the set of
integral points on X \D outside of the exceptional set is finite.

B: Prove Conjecture 15.6 over function fields of characteristic zero.
5A: Prove over number fields that the set of integral points on X \D outside of the

exceptional set is finite.
B: Prove Conjecture 15.6 (in the number field case).

In the case of the Mordell conjecture, for example, X would lie in the class of
smooth projective curves of genus > 1 over the appropriate field, and D would
be zero.

As another example, see Corollary 29.9, in going from 2A or 2B to 3A or 3B.
In each of the above items except 1A and 1B, one might also consider algebraic

points of bounded degree (or holomorphic functions from a finite ramified covering
of C). See Sects. 25 and 27.

19 Embeddings

A major goal of these lectures is to describe recent work on partial proofs of Conjec-
ture 15.6 (as well as Conjecture 15.2). One general approach is to use embeddings
into larger varieties to sharpen the inequalities. This can only work if the conjec-
ture is known on the larger variety, and if the exceptional set is also known. At the
present time, all work on this has used Schmidt’s Subspace Theorem (and Cartan’s
theorem).

This section will discuss some of the issues involved, before delving into some
of the specific methods in following sections.

We begin by considering the example where X = P2
k and D is a normal crossings

divisor of degree ≥ 4. Then X \D is of log general type, and therefore (if k is a
number field) integral sets of points on X \D cannot be Zariski dense, or (if k = C)
holomorphic curves C→ X \D cannot have Zariski-dense image. From now on we
will refer only to the number-theoretic case; the version in Nevanlinna theory is
similar.

If D is a smooth divisor, then there is no clue on how to proceed. In the other
extreme, if D is a sum of at least four lines (in general position), then Schmidt’s
Theorem gives the answer; see Sect. 14.

If D is a sum of three lines and a conic, some results are known. For example, if
L1, L2, and L3 are linear forms defining the lines and Q is a homogeneous quadratic
polynomial defining the conic, then all L2

i /Q must be units (or nearly so) at integral
points. Since they are algebraically dependent, we can apply the unit theorem; see
[31] and [87, Cor. 2.4.3].

More recently, nontrivial approximation results have been obtained for conics
and higher-degree divisors in projective space by using r-uple embeddings.

For example, under the 2-uple embedding P2 ↪→ P5, the image of a conic is
contained in a hyperplane. Therefore Schmidt’s Subspace Theorem can be applied
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to P5 to give an approximation result (provided there are sufficiently many other
components in the divisor). Under the 3-uple embedding P2 ↪→ P9, things are better:
the image of a conic spans a linear subspace of codimension 3, so there are three
linearly independent hyperplanes containing it.

More generally, suppose D is a divisor of degree d in Pn. We consider its image

under the r-uple embedding Pn ↪→ P(r+n
n )−1. This image spans a linear subspace of

codimension
(r+n−d

n

)
, because there are that many monomials of degree r− d in

n+1 variables (they then get multiplied by the form defining D to get homogeneous
polynomials of degree r in the homogeneous coordinate variables in Pn, hence hy-
perplanes in the image space).

Applying Schmidt’s Subspace Theorem to P(r+n
n )−1 would would then give an

inequality of the form

(
r + n−d

n

)
m(D,x)+ · · · ≤

((
r + n

n

)
· r + ε

)
hk(x)+ O(1)

for x ∈ Pn(k) outside of a finite union of proper subvarieties of degree≤ r. The idea
is to take r large. As r→∞, the ratio of the coefficients in the above inequality tends
to 0, because

(r+n−d
n

)
(r+n

n

) · r =
(r−d + n) · · ·(r−d + 1)

(r + n) · · · (r + 1)r
=

rn + O(rn−1)
r(rn + O(rn−1))

→ 1
r
→ 0. (71)

This is not useful, but we can try harder. Some hyperplanes in the image space can
be made to contain D twice, or three times, etc. After taking this into account, the
inequality improves to

((
r + n−d

n

)
+
(

r + n−2d
n

)
+ . . .

)
m(D,x)+ . . .

≤
((

r + n
n

)
· r + ε

)
hk(x)+ O(1).

To estimate the factor in front of m(D,x), we have

(
r− kd + n

n

)
=

(r− kd + n) · · ·(r− kd + 1)
n!

=
(r− kd)n + On((r− kd)n−1)

n!

and therefore the coefficient in front of the proximity term is

[r/d]

∑
k=1

(
r− kd + n

n

)
=

(r−d)n + · · ·+(r− [r/d]d)n + On,d(rn)
n!

.

As r → ∞, the ratio of this coefficient to the one in front of the height term now
converges to
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∑[r/d]
k=1

(r−kd+n
n

)

r
(r+n

n

) ≈
rn+1

(n+1)d·n!

rn+1

n!

→ 1
(n + 1)d

. (72)

This indeed gives a nontrivial inequality

1
d

mS(D,x)+ · · · ≤ (n + 1 + ε)hk(x)+ O(1). (73)

If d = 1 then this is best possible (but of course is not new, since then D is already a
hyperplane in Pn). If d > 1 then it is less than ideal, but is still new and noteworthy.

If D is the only component in the divisor, then (73) will never lead to a use-
ful inequality, however, since the left-hand side is always bounded by hk(x). This
approach only works if the divisor in question has more than one irreducible com-
ponent. Having more than one component in the divisor, however, introduces some
additional complications.

Suppose, for example, that there are two divisor components D1 and D2, and
their images under the r-uple embedding span linear subspaces L1 and L2 of codi-
mensions ρ1 and ρ2, respectively. We have

codim(L1∩L2)≤ ρ1 +ρ2 (74)

(assuming L1∩L2 �= /0). If this inequality is strict then this causes problems. Indeed,
let y denote the image of x under the d-uple embedding. If y is close to L1 at some
place v ∈ S, and also close to L2 at that same place, then it is necessarily close to
L1 ∩L2. If L1 ∩L2 is too large, though, then we will not be able to choose enough
hyperplanes containing it to fully utilize both m(D1,x) and m(D2,x).

Indeed, choose ρ1 generic hyperplanes containing L1 and ρ2 generic hyperplanes
containing L2. If these ρ1 +ρ2 hyperplanes are in general position then this implies

codim(L1∩L2)≥ ρ1 +ρ2.

So if this inequality does not hold, then the ρ1 +ρ2 hyperplanes cannot (collectively)
be in general position, and the max on the left-hand side of (44) will not be as large
as one would hope.

So, in order to apply the reasoning leading up to (73) independently for each
irreducible component of the divisor, equality must hold in (74) for each pair of
components. (Similar considerations also apply to triples of components, etc.)

However, the standard computation of Hilbert functions using short exact se-
quences gives (for sufficiently large n) that the codimension of the linear span of
D1∩D2 is

(
n−d1 + r

n

)
+
(

n−d2 + r
n

)
−
(

n−d1−d2 + r
n

)
.

This is too small by
(n−d1−d2+r

n

)
. So, any use of this approach would have to take

this into account, and would also have to incorporate the changes made in going
from (71) to (72).
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As noted earlier, the purpose of this section is not to actually prove anything, but
merely to highlight the general idea, together with some of the stumbling blocks.

20 Schmidt’s Subspace Theorem Implies Siegel’s Theorem

One way to avoid the difficulties mentioned in the last section is to restrict to curves,
since in that case irreducible divisors are just points, so they do not intersect. Of
course, using Schmidt’s theorem to imply Roth’s theorem would not be interest-
ing, since the latter is already a special case. However, if one restricts to a curve
contained in projective space, then one can get a nontrivial result by applying the
methods of Sect. 19. This was done by Corvaja and Zannier [13], and gave a new
proof of Siegel’s theorem.

Theorem 20.1. (Siegel) Let C be a smooth affine curve over a number field k. As-
sume that C has at least 3 points at infinity (i.e., at least three points need to be
added to obtain a nonsingular projective curve). Then all sets of integral points on
C are finite.

Proof. By expanding k, if necessary, we may assume that the points at infinity are
k-rational. Let C be the nonsingular projective closure of C, let g be its genus, let
Q1, . . . ,Qr be the points at infinity, and let D be the divisor Q1 + · · ·+ Qr. Pick
N large, and embed C into PM−1 by the complete linear system |ND|; we have
M = Nr+1−g. Assume that {P1,P2, . . .} is an infinite S-integral set of points on C,
for some finite set S ⊇ S∞ of places of k. After passing to an infinite subsequence,
we may assume that for each v ∈ S there is an index j(v) ∈ {1, . . . ,r} such that each
Pi is at least as close to Q j(v) as to any other Q j in the v-adic topology.

For all � ∈ N, we have h0(C,O(ND− �Q j))≥ Nr− �+ 1−g, so we can choose
Nr− � + 1− g linearly independent hyperplanes in PM−1 vanishing to order ≥ �
at Q j. For each v ∈ S, do this with j = j(v), obtaining one hyperplane vanishing to
order Nr−g, a second vanishing to order Nr−g−1, etc. Obtaining M hyperplanes
in this way for each v, and applying Schmidt’s Subspace Theorem, we obtain

∑
v∈S

Nr−g

∑
�=0

�λQj(v),v(Pi)≤ (M + ε)hk(Pi)+ O(1) (75)

outside of a finite union of proper linear subspaces of PM−1. Here the height hk(Pi)
is taken in PM−1. The finitely many linear subspaces correspond to only finitely
many points on C, and they can be removed from the set of integral points.

By the assumption on the distance from Pi to Q j(v) (and the fact that the points
Q j are separated by a distance independent of i), we have λQj ,v(Pi) = O(1) for all
j �= j(v) and all v ∈ S. Therefore

λQj(v) ,v(Pi) = λD,v(Pi)+ O(1)
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for all v ∈ S, with the constant independent of i. Also, since the embedding in PM−1

is obtained from the complete linear system |ND|, we have hk(Pi)=hND,k(Pi)+O(1).
Therefore (75) becomes

(Nr−g)(Nr−g + 1)
2

mS(D,Pi)≤ N(Nr−g + 1 + ε)hD,k(Pi)+ O(1).

Since the Pi are integral points, though, we have mS(D,Pi) = hD,k(Pi)+ O(1), and
the inequality becomes

(
(Nr−g)(Nr−g + 1)

2
−N(Nr−g + 1)−Nε

)
hD,k(Pi)≤ O(1).

If N is large and ε is small, then the quantity in parentheses is negative (since r≥ 2),
leading to a contradiction since D is ample. ��

Of course, if g ≥ 1 then Siegel only required r > 0. This can be proved by
reducing to the above case. Indeed, embed C in its Jacobian and pull back by mul-
tiplication by 2. This gives an étale cover of C of degree at least 4, so the pull-back
of D will have at least three points. Integral points on C will pull back to integral
points on the pull-back of C in the étale cover, by the Chevalley-Weil theorem for
integral points (see the end of Sect. 13).

21 The Corvaja-Zannier Method in Higher Dimensions

Corvaja and Zannier further developed their method to higher dimensions; see for
example [14]. It did not provide the full strength of Conjecture 15.6, even when
X = Pn, but it did provide noteworthy new answers. The key to their method can be
summarized in the following definition, which is due to Levin [51].

Definition 21.1. Let X be a nonsingular complete variety over a field. A divisor D
on X is very large if D is effective and, for all P ∈ X , there is a basis B of L(D) such
that

∑
f∈B

ordE f > 0 (76)

for all irreducible components E of D passing through P. A divisor D is large if it
is effective and has the same support as some very large divisor.

In the following discussion, it will be useful to have the following functoriality
property of large divisors.

Proposition 21.2. Let X ′ and X be nonsingular complete varieties over fields L
and k, respectively, with L ⊇ k, and let φ : X ′ → X be a morphism of schemes such
that the diagram
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X ′
φ−−−−→ X

⏐⏐�
⏐⏐�

SpecL −−−−→ Speck

commutes. Let D be a very large divisor on X, and let D′ = φ∗D be the correspond-
ing divisor on X ′. Assume that the natural map

α : H0(X ,O(D))⊗k L→ H0(X ′,O(D′)) (77)

is an isomorphism. Then D′ is very large.

Proof. Let P′ be a point on X ′, and let B be a basis for L(D) that satisfies (76) for D
at φ(P′) ∈ X . We have a commutative diagram

L(D)⊗k L
(·1D)⊗kL−−−−−→ H0(X ,O(D))⊗k L

⏐⏐�β
⏐⏐�α

L(D′)
·1D′−−−−→ H0(X ′,O(D′))

in which β is an isomorphism because the other three arrows are isomorphisms.
Therefore we let B′ = {β ( f ⊗1) : f ∈ B}; it is a basis of L(D′).

Now let E ′ be an irreducible component of D′ passing through P′. For each irre-
ducible component E of D passing through φ(P′), let nE be the multiplicity of E ′ in
φ∗E . For all nonzero f ∈ L(D), we have

ordE ′ β ( f ⊗1)≥∑
E

nE ordE f , (78)

where the sum is over all irreducible components E of D passing through φ(P′)
(and in particular it includes all irreducible components of D containing φ(E ′)).
Indeed, to verify (78), note that if s is a nonzero element of H0(X ,O(D)), then
ordE ′ α(s⊗1)≥∑E nE ordE s, with equality if (s) = D. (Strictness may arise if E ′ is
exceptional for φ and s vanishes along prime divisors containing φ(E ′) that do not
occur in D.)

By (78), we then have

∑
f ′∈B′

ordE ′ f ′ ≥∑
E

nE ∑
f∈B

ordE f > 0

(since at least one nE is strictly positive). Thus B′ satisfies (76) for E ′. ��
Corollary 21.3. Let X be a nonsingular complete variety over a field k, let D be
a divisor on X, let L be a field containing k, let XL = X ×k L with projection
φ : XL → X, and let DL = φ∗D. If D is large (resp. very large), then so is DL.
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Proof. Indeed, we may assume that D is very large, and note that (77) is an
isomorphism because L is flat over k [36, III Prop. 9.3]. ��
Corollary 21.4. Let φ : X ′ → X be a proper birational morphism2 of nonsingular
complete varieties over a field, and let D be a divisor on X. If D is large (resp. very
large), then φ∗D is a large (resp. very large) divisor on X ′.

Proof. Again, we may assume that D is very large. In this case (77) is an isomorphism
because φ∗OX ′ = OX ; see [36, proof of III Cor. 11.4 and III
Remark 8.8.1]. ��
Remark 21.5. More generally, for a linear subspace V of L(D), one may define
V -very large. For this definition, Proposition 21.2 holds with the weaker assump-
tion that (77) is injective.

We also note that the definition of largeness is (vacuously) true for D = 0.
Having discussed the definition of large divisor, the theorem that makes the defi-

nition useful is the following.

Theorem 21.6. (Corvaja-Zannier) Let k be a number field, let S⊇ S∞ be a finite set
of places of k, let X be a nonsingular complete variety over k, and let D be a nonzero
large divisor on X. Then any set of (D,S)-integral points on X is not Zariski-dense.

Proof. By Proposition 13.2, we may assume that D is very large.
Since D �= 0, there is a component E as in the definition of very large, so �(D)> 1.

Therefore there is a nontrivial rational map Φ : X ��� P
�(D)−1
k .

We may assume that Φ is a morphism. Indeed, let X ′ be a desingularization of
the closure of the graph of Φ . Replace X with X ′ and D with its pull-back. By
Corollary 21.4 the pull-back remains very large. Moreover, the notion of integral set
of points remains unchanged, by functoriality of Weil functions (or by the fact that
the desingularization may be chosen such that the map X ′ → X is an isomorphism
away from the support of D).

Now suppose that there is a Zariski-dense set {Pi} of integral points. After pass-
ing to a Zariski-dense subset, we may assume that for each v ∈ S there is a point
Pv ∈ X(kv) such that the Pi converge to Pv in the v-topology. For each such v, let
Bv = { fv,1, . . . , fv,�(D)} be a basis for L(D) that satisfies (76) at the point Pv. Let

Hv,1, . . . ,Hv,�(D) be the corresponding hyperplanes in P
�(D)−1
k . (Corollary 21.3 is not

really needed here, but can be used if the reader prefers. When finding Pv, one should
think of Pv and the Pi as points on the (complex, real, or p-adic) manifold X(kv), and
when defining Bv one should realize that Pv is a morphism from Speckv to X , whose
image is a point in X (which may be the generic point).)

To obtain a contradiction, it will suffice to find an ε > 0 such that

∑
v∈S

�(D)

∑
j=1
λHv, j ,v(Φ(Pi))≥ (�(D)+ ε)hk(Φ(Pi))+ O(1) (79)

2 This requires φ to be a morphism, not just a rational map.
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for all i. Indeed, Schmidt’s Subspace Theorem would then imply that the Φ(Pi) are

contained in a finite union of proper linear subspaces of P
�(D)−1
k , contradicting the

fact that the Pi are Zariski-dense in X and that Φ(X) is not contained in any proper

linear subspace of P
�(D)−1
k .

Let μ be the largest multiplicity of a component of D, and let ε = 1/μ , so that
ε ordE D≤ 1 for all irreducible components E of D.

Let v ∈ S, and let E be an irreducible component of D. First suppose that E
contains Pv. Then ∑ordEΦ∗Hv, j > �(D)ordE D (by (76)), so

�(D)

∑
j=1

ordEΦ∗Hv, j ≥ �(D)ordE D+ 1≥ (�(D)+ ε)ordE D

and therefore

�(D)

∑
j=1

(ordEΦ∗Hv, j)λE,v(Pi)≥ (�(D)+ ε)(ordE D)λE,v(Pi)+ O(1)

since λE,v(Pi) ≥ O(1). This latter inequality also holds if E does not contain Pv,
since in that case λE,v(Pi) = O(1). Therefore, we have

�(D)

∑
j=1

λHv, j ,v(Φ(Pi))≥
�(D)

∑
j=1
∑
E

(ordEΦ∗Hv, j)λE,v(Pi)+ O(1)

≥ (�(D)+ ε)∑
E

(ordE D)λE,v(Pi)+ O(1)

= (�(D)+ ε)λD,v(Pi)+ O(1),

where the sums over E are sums over all irreducible components E of D.
Summing over v ∈ S then gives

∑
v∈S

�(D)

∑
j=1
λHv, j ,v(Φ(Pi))≥ (�(D)+ ε)mS(D,Pi)+ O(1) = (�(D)+ ε)hD,k(Pi)+ O(1)

since the Pi are (D,S)-integral. This is equivalent to (79) by functoriality of heights.
��

This proof does not carry over directly to Nevanlinna theory, because it relies on
the finiteness of S; moreover, the whole idea of passing to a subsequence is unsuited
to Nevanlinna theory. In fact, the proof does not even work for function fields over
infinite fields, since in such cases the local fields are not locally compact.

The following lemma, essentially due to Levin [51], works around this problem.
The key idea is that it suffices to use only finitely many bases in Definition 21.1.
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Lemma 21.7. Let X be a nonsingular complete variety over C, and let D be an
effective divisor on X. Let σ0 be the set of prime divisors occurring in D, and let Σ
be the set of subsets σ of σ0 for which

⋂
E∈σ E is nonempty. For each σ ∈ Σ let Dσ

be the sum of those components of D not lying in σ , with the same multiplicities as
they have in D. Pick a Weil function for each such Dσ . Then there is a constant C,
depending only on X and D, such that

min
σ∈Σ

λDσ (P)≤C (80)

for all P ∈ X(C).

Proof. The conditions imply that

⋂

σ∈Σ
SuppDσ = /0,

since for all P ∈ X the set σ := {E ∈ σ0 : E # P} is an element of Σ , and then
P /∈ SuppDσ . The lemma then follows from Lemma 9.9, since Σ is a finite set. ��
Lemma 21.8. Let X be a nonsingular complete variety over C, let D be a very large
divisor on X whose complete linear system is base-point-free, and let
Φ : X → P�(D)−1 be a corresponding morphism to projective space. Then there is
a finite collection H1, . . . ,Hq of hyperplanes and ε > 0 such that, given choices
λH1 , . . . ,λHq and λD of Weil functions on P�(D)−1 and X, respectively, we have

max
J
∑
j∈J
λHj (Φ(P))≥ (�(D)+ ε)λD(P)+ O(1), (81)

where the implicit constant in O(1) is independent of P∈X(C). Here, as in Theorem
8.11, J varies over all subsets of {1, . . . ,q} corresponding to subsets of {H1, . . . ,Hq}
that lie in general position.

Proof. Let Σ be the (finite) set of Lemma 21.7, and for each σ ∈ Σ let Bσ be a
basis for L(D) that satisfies (76) at some (and hence all) points P ∈ ⋂

E∈σ E . Let
H1, . . . ,Hq be the distinct hyperplanes in P�(D)−1 corresponding to elements of the
union

⋃
σ∈Σ Bσ , and choose Weil functions λHj for them. For each σ ∈ Σ let Dσ

be as in Lemma 21.7, and choose a Weil function λDσ for it. Let C be a con-
stant that satisfies (80). Finally, choose Weil functions λE for each prime divisor
E occurring in D.

Let μ be the largest multiplicity of a component of D, and let ε = 1/μ .
Now let P ∈ X(C). Pick σ ∈ Σ for which

λDσ ≤C, (82)

and let J ⊆ {1, . . . ,q} be the subset for which {Hj : j ∈ J} are the hyperplanes
corresponding to the elements of Bσ . As before, (76) applied to Bσ implies that
∑ j∈J ordEΦ∗Hj > �(D)ordE D for all E ∈ σ ; hence
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∑
j∈J

ordEΦ∗Hj ≥ (�(D)+ ε)ordE D,

and therefore

∑
j∈J

(ordEΦ∗Hj)λE(P)≥ (�(D)+ ε)(ordE D)λE(P)+ O(1) (83)

since λE(P)≥ O(1). Also

D = Dσ + ∑
E∈σ

(ordE D) ·E. (84)

By (83), (82), and (84), we then have

∑
j∈J

λHj (Φ(P)) ≥∑
j∈J
∑

E∈σ
(ordEΦ∗Hj)λE(P)+ O(1)

≥ (�(D)+ ε)(λDσ (P)−C)+ (�(D)+ ε) ∑
E∈σ

(ordE D)λE(P)+ O(1)

= (�(D)+ ε)λD(P)+ O(1).

In the above, the constants in O(1) depend only on the choices of Bσ and the choices
of Weil functions, and on σ (which has only finitely many choices). Since J is one
of the sets in (81), the lemma then follows. ��

This then leads to the theorem in Nevanlinna theory corresponding to
Theorem 21.6:

Theorem 21.9. [51] Let X be a nonsingular complete variety over C, let D be a
nonzero large divisor on X, and let f : C→ X be a holomorphic curve whose image
is disjoint from D. Then the image of f is not Zariski dense.

Proof. As in the proof of Theorem 21.6, we may assume that D is very large and

base point free. Let Φ : X → P
�(D)−1
C

be a morphism corresponding to a complete
linear system of D. Let f : C→ X be a holomorphic curve whose image does not
meet D. Let H1, . . . ,Hq and ε be as in Lemma 21.8. By that lemma, we then have

∫ 2π

0
max

J
∑
j∈J
λHj (Φ( f (reiθ )))

dθ
2π
≥ (�(D)+ ε)m f (D,r)+ O(1)

= (�(D)+ ε)TΦ◦ f (r)+ O(1)

for all r > 0. This contradicts Theorem 8.11 unless the image of Φ ◦ f is contained

in a proper linear subspace of P
�(D)−1
C (since �(D) > 1). This in turn implies that the

image of f cannot be Zariski dense. ��
This proof can also be adapted back to the number field case, and it also works

over function fields.
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Some concrete examples of large divisors follow. First, in order to show that
Theorem 20.1 is a consequence of Theorem 21.6, we have the following.

Proposition 21.10. Let C be a smooth projective curve over a field k, and let D be
an effective divisor supported on (distinct) rational points Q1, . . . ,Qr. If r = 0 or
r ≥ 3 then D is large.

Proof. If r = 0 then D = 0, which is already known to be large.
Assume r≥ 3. It will suffice to show that if D = N(Q1 + · · ·+Qr) then D is very

large for sufficiently large integers N. As in the proof of Theorem 20.1, we have
h0(C,O(D− �Q j)) ≥ Nr− � + 1− g for all � ∈ N and all j = 1, . . . ,r, where g is
the genus of C. For each such j there is a basis (s1, . . . ,sNr+1−g) of H0(C,O(D))
such that s� vanishes to order ≥ �−1 at Q j. Dividing each such s� by the canonical
section 1D then gives a basis ( f1, . . . , fNr+1−g) of L(D) such that ordQj f� ≥ �−1−N
for all �. Thus

Nr+1−g

∑
�=1

ordQj f� ≥ (Nr + 1−g)
(

Nr−g
2

−N

)

if N > (g−1)/r, and is strictly positive if also N > g/(r−2). ��
Proposition 21.11. Let X1 and X2 be smooth complete varieties over a field k, and
let D1 and D2 be divisors on X1 and X2, respectively. If D1 and D2 are large (resp.
very large), then p∗1D1 + p∗2D2 is a large (resp. very large) divisor on X1×k X2,
where pi : X1×k X2 → Xi is the projection (i = 1,2).

Proof. It will suffice to show that if D1 and D2 are very large, then so is p∗1D1 + p∗2D2.
Write D = p∗1D1 + p∗2D2.

We first claim that the natural map

H0(X1,O(D1))⊗k H0(X2,O(D2))−→ H0(X1×k X2,O(D)) (85)

is an isomorphism. Indeed, the projection formula [36, II Ex. 5.1d] gives an isomor-
phism

O(D1)⊗k H0(X2,O(D2))
∼−→ (p1)∗O(p∗1D1 + p∗2D2),

of sheaves on X1, and taking global sections gives (85).
To show that D is very large, let P ∈ X1×k X2. Let B1 and B2 be bases of L(D1)

and L(D2) satisfying (76) with respect to the points p1(P) and p2(P), respectively.
By (85), {p∗1 f1 · p∗2 f2 : f1 ∈ B1, f2 ∈ B2} is a basis for L(D); call it B. Let E be an
irreducible component of D passing through P. If E = p∗1E1 for a component E1 of
D1, then

∑
h∈B

ordE h = �(D2) ∑
f∈B1

ordE1 f > 0,

so (76) is satisfied for E . Otherwise, we must have E = p∗2E2 for an irreducible
component E2 of D2, and (76) is satisfied for a symmetrical reason. Thus D is very
large. ��
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The following gives a slightly more complicated example of large divisors. For
this example, recall that a Cartier divisor D on a complete variety X over a field k is
nef (“numerically effective”) if deg j∗O(D)≥ 0 for all maps j : C→ X from a curve
C over k to X .

Theorem 21.12. [51, Thm. 9.2] Let X be a nonsingular projective variety of di-
mension q, and let D = ∑Di be a divisor on X for which all Di are effective and
nef. Assume also that all irreducible components of D are nonsingular, and that
Dq > 2qDq−1DP for all P ∈ SuppD, where DP = ∑{i:Di#P}Di. Then D is large.

For the proof, see [51]. Note that this generalizes Proposition 21.10.
As another example of this method, we note another theorem of Levin.

Definition 21.13. A variety V over a number field k is Mordellic if for all number
fields L ⊇ k and all finite sets S ⊇ S∞ of places of L, there are no infinite sets of
S-integral L-rational points on VL := V ×k L. A variety V over k is quasi-Mordellic
if there is a proper Zariski-closed subset Z of V such that, for all L and S as above,
and for all S-integral sets of L-rational points on VL, almost all points in the set are
contained in ZL.

Theorem 21.14. [51, Thm. 9.11A] Let X be a projective variety over a number field
k. Let D =∑r

i=1 Di be a divisor on X such that each Di is an effective Cartier divisor,
and the intersection of any m+ 1 of the supports of the Di is empty. Then:

(a) If Di is big for all i and r > 2mdimX then X \D is quasi-Mordellic.
(b) If Di is ample for all i and r > 2mdimX then X \D is Mordellic.

The proof of this theorem, as well as its counterpart in Nevanlinna theory, appear
in [51].

Again, we note that if X is a nonsingular curve, then this reduces to the combi-
nation of Theorem 21.6 and Proposition 21.10.

22 Work of Evertse and Ferretti

Evertse and Ferretti also found a way of using Schmidt’s Subspace Theorem in com-
bination with d-uple embeddings to get partial results on more general varieties,
with respect to more general divisors. Their method is based on using Mumford’s
degree of contact, which was originally developed to study moduli spaces, but
which is also well suited for this application. It uses a bit more machinery than the
method of Corvaja and Zannier, and this machinery makes direct comparisons more
difficult.

Because of the machinery, we offer here only a sketch of the methods, without
proofs.

The idea originated from a paper of Ferretti [25], and was further developed
jointly with Evertse; see for example [20]. This work was translated into Nevanlinna
theory by Ru [70], solving a conjecture of Shiffman.
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Throughout this section, k is a field of characteristic 0 and X ⊆ PN
k is a

projective variety over k of dimension n and degree Δ .

Definition 22.1. The Chow form of X is the unique (up to scalar multiple)
polynomial

FX ∈ k[u0, . . . ,un] = k[u00, . . . ,u0N ,u10, . . . ,unN ],

homogeneous of degree Δ in each block ui, characterized by the condition

FX(u0, . . . ,un) = 0 ⇐⇒ X ∩Hu0 ∩·· ·∩Hun �= /0,

where Hui is the hyperplane in PN
k corresponding to ui ∈ (PN

k )∗.

For more details on Chow forms, see Hodge and Pedoe [38, Vol. II, Chap. X,
Sect. 6–8].

Definition 22.2. Let c = (c0, . . . ,cN) ∈ RN+1 and let FX be as above. For an inde-
terminate t, write

FX(tc0u00, . . . ,t
cN u0N , . . . ,tcN unN) = te0G0(u0, . . . ,un)+ · · ·+ ter Gr(u0, . . . ,un),

where G0, . . . ,Gr are nonzero polynomials in k[u00, . . . ,unN ] and e0 > · · ·> er. Then
the Chow weight of X with respect to c is eX(c) = e0.

If I is the (prime) homogeneous ideal in k[x0, . . . ,xN ] corresponding to X ⊆ PN
k ,

then recall that the Hilbert function HX (m) for m ∈N is defined by

HX(m) = dimk k[x0, . . . ,xN ]m/Im,

where the subscript m denotes the homogeneous part of degree m.
Recall also that the Hilbert polynomial of X (which agrees with the Hilbert func-

tion for mγ0) has leading term Δmn/n!.

Definition 22.3. Let I be as above, and let c ∈ RN+1. The the Hilbert weight of X
with respect to c is

SX(m,c) = max

(
HX (m)

∑
�=1

a� · c
)

,

where the max is taken over all collections (a1, . . . ,aHX (m)) with a� ∈NN+1 for all �,
whose corresponding monomials xa1 , . . . ,xaHX (m) give a basis (over k) when mapped
to k[x0, . . . ,xN ]m/Im. (Here xa� denotes xa�0

0 · · ·xa�N
N , and the conditions necessarily

imply that a�0 + · · ·+ a�N = m for all �.)
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Mumford showed that

SX(m,c) = eX(c) · mn+1

(n + 1)!
+ O(mn),

and Evertse and Ferretti showed further that if m > Δ then

SX(m,c)
HX(m)

≥ m
(n + 1)Δ

eX (c)− (2n + 1)Δ max
0≤ j≤N

c j (86)

[20, Prop. 3.2]. (To compare these two inequalities, note that HX(m)∼ Δmn/n!.)
In diophantine applications, k is a number field and S ⊇ S∞ is a finite set of

places of k. The following is a slight simplification of the main theorem of Evertse
and Ferretti [20].

Theorem 22.4. Assume that n = dimX > 0. For each v ∈ S let D(v)
0 , . . . ,D(v)

n be a
system of effective divisors on PN

k satisfying

X ∩
n⋂

j=0

SuppD(v)
j = /0.

Then for all ε with 0 < ε ≤ 1, there are hypersurfaces G1, . . . ,Gu in PN, not con-
taining X and of degree

degGi ≤ 2(n + 1)(2n + 1)(n +2)Δdn+1ε−1, (87)

where d is the least common multiple of the degrees of the D(v)
j , such that all solu-

tions x ∈ X(k) of the inequality

∑
v∈S

n

∑
j=0

λ
D(v)

j ,v
(x)

degD(v)
j

≥ (n + 1 + ε)hk(x)+ O(1) (88)

lie in the union of the Gi. In particular, these solutions are not Zariski-dense.

(Evertse and Ferretti also prove a more quantitative version of this theorem,
which gives explicit bounds on u, if one ignores solutions of (88) of height below a
given explicit bound. They obtain a weaker bound than (87), because of this added
strength.)

Note that this result is weaker than Conjecture 15.6, since the latter conjecture
does not divide the Weil functions by the degrees of the divisors. It is also stronger,
though, in the sense that the sum of the divisors does not have to have normal
crossings.

Here we will restate this theorem in a way that translates more readily into
Nevanlinna theory. The proof will roughly follow Evertse and Ferretti [20], with
substantial simplifications since we are not bounding u. In particular, the “twisted
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heights” (which are related to the first successive minima in Schmidt’s original
proof) are not needed here. Because of these simplifications, it may be easier to
follow Ru [70], even though he is working in Nevanlinna theory.

Theorem 22.5. Assume that n = dimX > 0. Let D0, . . . ,Dq be effective divisors on
PN

k , whose supports do not contain X. Let J be the set of all (n+1)-element subsets
J of {0, . . . ,q} for which

X ∩
⋂

j∈J

SuppD j = /0, (89)

and assume that J is not empty. Then for all ε with 0 < ε ≤ 1, all constants C ∈R,
and all choices of Weil functionsλDj ,v, there are hypersurfaces G1, . . . ,Gu, as before,
such that all solutions x ∈ X(k) of the inequality

∑
v∈S

max
J∈J
∑
j∈J

λDj ,v(x)
degD j

≥ (n + 1 + ε)hk(x)+C (90)

lie in the union of the Gi.

Proof (sketch). First, by replacing each D j with a suitable positive integer multiple,
we may assume that all of the D j have the same degree d.

Next, we reduce to d = 1, as follows. Let φ : PN
k → PM

k be the d-uple embedding,
where M =

(N+d
N

)−1, and let Y = φ(X). Then Y has dimension n, degree Δdn, and
φ multiplies the projective height by d. Moreover, there are hyperplanes E0, . . . ,Eq

on PM
k such that φ∗E j = D j for all j. Thus if y = φ(x) then (90) is equivalent to

∑
v∈S

max
J
∑
j∈J
λE j ,v(y)≥ (n + 1 + ε)hk(y)+C′ (91)

for a suitable constant C′ independent of x. Applying Theorem 22.5 with d = 1 to
Y and E0, . . . ,Eq then gives hypersurfaces G′1, . . . ,G

′
u in PM

k , of degrees bounded by
(8n + 6)(n + 2)2Δdnε−1, not containing Y , but containing all solutions y ∈ Y (k) of
the inequality (91). Pulling these hypersurfaces back to PN

k multiplies their degrees
by d, so these pull-backs satisfy (91).

By a further linear embedding of PN
k , we may assume that D0, . . . ,Dq are the

coordinate hyperplanes x0 = 0, . . . ,xq = 0, respectively. We may also assume that
all of the Weil functions occurring in (90) are nonnegative.

Now assume, by way of contradiction, that the set of solutions of (90) is not
contained in a finite union of hypersurfaces Gi satisfying (87). By a partitioning
argument [20, Lemma 5.3] there is a subset Σ of X(k), not contained in a finite union
of hypersurfaces Gi as before, (n + 1)-element subsets Jv of {0, . . . ,q} satisfying
(89) for each v ∈ S, and nonnegative real constants c j,v for all v ∈ S and all j ∈ Jv,
such that

∑
v∈S
∑
j∈Jv

c j,v = 1 (92)

and such that the inequality
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λDj ,v(x)≥ c j,v

(
n + 1 +

ε
2

)
hk(x) (93)

holds for all v ∈ S, all j ∈ Jv, and all x ∈ Σ . Also let c j,v = 0 if v ∈ S and j /∈ Jv, so
that (93) holds for all v ∈ S and all j = 0, . . . ,q.

Now for some m > Δ (its exact value is given by (103)), let

φm : PN
k → P

Rm
k

be the m-uple embedding; here Rm =
(N+m

m

)− 1. Let Xm be the linear subspace of

P
Rm
k spanned by φm(X). We have

dimXm = HX (m)−1.

For each v ∈ S let

cv = (c0,v, . . . ,cq,v,0, . . . ,0) ∈ RN+1
≥0 ,

and let a1,v, . . . ,aHX (m),v be the elements of NN+1 for which the monomials xa�,v ,
� = 1, . . . ,HX (m), give a basis for k[x0, . . . ,xN ]m/Im satisfying

SX(m,cv) =
HX (m)

∑
�=1

a�,v · cv. (94)

For each v the monomials xa�,v , � = 1, . . . ,HX(m), define linear forms L�,v in the
homogeneous coordinates on P

Rm
k which are linearly independent on φm(X), and

therefore on Xm. For each v and � choose Weil functions λL�,v on P
Rm
k . We have

λL�,v,v(φm(x))≥
q

∑
j=0

a�,v, jλDj ,v(x)+ O(1)

for all v and �. After adjusting the Weil function, we may assume that the O(1) term
is not necessary.

By (93) and (94), we then have

HX (m)

∑
�=1

λL�,v,v(φm(x))≥ SX(m,cv)
(

n + 1 +
ε
2

)
hk(x) (95)

for all x ∈ Σ and all v ∈ S. Assume for now that there is an integer m≥ Δ such that

m≤ 2(n + 1)(2n + 1)(n + 2)Δ
ε

(96)

and such that
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(
n + 1 +

ε
2

)
∑
v∈S

SX(m,cv) > mHX (m). (97)

Then, for sufficiently small ε ′ > 0, (95) will imply

∑
v∈S

HX (m)

∑
�=1

λL�,v,v(φm(x))≥ (Hm(x)+ ε ′)mhk(x)+ O(1) (98)

for all x ∈ Σ . Note that hk(φm(x)) = mhk(x)+ O(1). Applying Schmidt’s Subspace

Theorem to Xm (via some chosen isomorphism Xm
∼= P

HX (m)−1
k ) it follows that there

is a finite union of hyperplanes in Xm, and hence in P
Rm
k , containing φm(Σ). These

pull back to give homogeneous polynomials Gi of degree m on PN
k ; they satisfy (87)

by (96).
We now show that (97) holds for some m satisfying (96).
By (86), we have

∑
v∈S

SX(m,cv)≥ HX(m)∑
v∈S

(
m

(n + 1)Δ
eX(cv)− (2n + 1)Δmax

j∈Jv
c j,v

)
. (99)

By [20, Lemma 5.1], we have

eX(cv)≥ Δ ∑
j∈Jv

c j,v, (100)

and therefore

∑
v∈S

eX (cv)≥ Δ ∑
v∈S
∑
j∈Jv

c j,v = Δ (101)

by (92). Thus (99) becomes

∑
v∈S

SX(m,cv)≥ HX(m)

(
m

n + 1
− (2n + 1)Δ ∑

v∈S

max
j∈Jv

c j,v

)

≥ HX(m)
(

m
n + 1

− (2n + 1)Δ
)

.

(102)

Now let

m =
⌊

2(n + 1)(2n + 1)(n +2)Δ
ε

⌋
. (103)

This clearly satisfies (96); in addition, we have

m <
(

n + 1 +
ε
2

)( m
n + 1

− (2n + 1)Δ
)

. (104)

Thus (102) becomes
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(
n + 1 +

ε
2

)
∑
v∈S

SX(m,cv) > mHX (m),

which is (97). ��
In Nevanlinna theory, the counterpart to Theorem 22.5 was proved by Ru [70].

Here we give a slightly stronger version of his theorem: X is not required to be
nonsingular, and we incorporate the set J . This stronger version still follows from
his proof without essential changes, though.

Theorem 22.6. Let k = C and assume that n = dimX > 0. Let D0, . . . ,Dq be ef-
fective divisors on PN

C, whose supports do not contain X. Let J be the set of all
(n + 1)-element subsets J of {0, . . . ,q} for which

X ∩
⋂

j∈J

SuppD j = /0,

and assume that J is not empty. Fix ε ∈ R with 0 < ε ≤ 1, fix C ∈ R, and
choose Weil functions λDj for all j. Let f : C → X(C) be a holomorphic curve
whose image is not contained in any hypersurface in PN not containing X of degree
≤ 2(n + 1)(2n + 1)(n +2)Δdn+1ε−1. Then

∫ 2π

0
max
J∈J
∑
j∈J

λDj ( f (reiθ ))
degD j

dθ
2π
≤exc (n + 1 + ε)Tf (r)+C. (105)

Proof (sketch). This proof uses the same general outline as the proof of Theorem
22.5, but there is an essential difference in that one cannot take a subsequence in
order to define constants c j,v, since the interval [0,2π ] is not a finite set. Instead,
however, it is possible to drop the condition (92); then (101) is no longer valid.
However, (100) still holds, and is homogeneous in the components of c. Therefore,
we may omit the step of dividing by the height, and just let the components of c be
the Weil functions themselves (assumed nonnegative).

In detail, as before we assume that D0, . . . ,Dq are restrictions of the coordinate
hyperplanes x0 = 0, . . . , xq = 0, and that the Weil functions λDj are nonnegative.

For each r > 0 and θ ∈ [0,2π ] let Jr,θ be an element of J for which

∑
j∈Jr,θ

λDj ( f (reiθ ))

is maximal, for each j ∈ Jr,θ let

c j,r,θ = λDj ( f (reiθ )),

and for each j ∈ {0, . . . ,N} \ Jr,θ let c j,r,θ = 0. Let

cr,θ = (c0,r,θ , . . . ,cN,r,θ ) ∈RN+1
≥0 .
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Then, as before, [20, Lemma 5.1] gives

eX (cr,θ )≥ Δ ∑
j∈Jr,θ

c j,r,θ . (106)

Let m be as in (103). By (86), (106), and nonnegativity of c j,r,θ , we have

1
HX(m)

∫ 2π

0
SX(m,cr,θ )

dθ
2π
≥
∫ 2π

0

(
m

(n + 1)Δ
eX(cr,θ )− (2n + 1)Δ max

j∈Jr,θ
c j,r,θ

)
dθ
2π

≥
∫ 2π

0

(
m

n + 1 ∑j∈Jr,θ

c j,r,θ − (2n + 1)Δ max
j∈Jr,θ

c j,r,θ

)
dθ
2π

≥
(

m
n + 1

− (2n + 1)Δ
)∫ 2π

0

(
∑

j∈Jr,θ

c j,r,θ

)
dθ
2π

.

(107)

By (104) there is an ε ′ > 0 such that

m
n + 1

− (2n + 1)Δ ≥ m
n + 1 + ε/2

· HX(m)+ ε ′

HX(m)
;

hence (107) becomes

(
n + 1 +

ε
2

)∫ 2π

0
SX(m,cr,θ )

dθ
2π
≥ m(HX(m)+ ε ′)

∫ 2π

0

(
∑

j∈Jr,θ

c j,r,θ

)
dθ
2π

. (108)

This corresponds to (97) in the earlier proof.
Now let φm : PN

C → P
Rm
C be the m-uple embedding. Then the image of φm ◦ f is

not contained in any hyperplane not also containing φm(X). As before, let Xm be the
linear subspace of P

Rm
C spanned by φm(X).

As before, for each r and θ there are a1,r,θ , . . . ,aHX (m),r,θ ∈ NN+1, corresponding
to a basis of C[x0, . . . ,xN ]m/Im, such that

SX(m,cr,θ ) =
HX (m)

∑
�=1

a�,r,θ · cr,θ . (109)

These correspond to linear forms L�,r,θ on P
Rm
C , � = 1, . . . ,HX(m), which are linearly

independent on Xm for each r and θ , and which satisfy

λL�,r,θ (φm( f (reiθ )))≥
q

∑
j=0

a�,r,θ , jλDj ( f (reiθ )) (110)

for suitable choices of Weil functions λL�,r,θ .
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By the definitions of Jr,θ and of c j,r,θ , by (108), by (109), by (110), and by ap-
plying Cartan’s Theorem 8.11 to Xm, we then have

∫ 2π

0
max
J∈J
∑
j∈J

λDj ( f (reiθ ))
dθ
2π

=
∫ 2π

0
∑

j∈Jr,θ

λDj ( f (reiθ ))
dθ
2π

=
∫ 2π

0

(
∑

j∈Jr,θ

c j,r,θ

)
dθ
2π

≤ n + 1 + ε/2
m(HX (m)+ ε ′)

∫ 2π

0
SX(m,cr,θ )

dθ
2π

=
n + 1 + ε/2

m(HX (m)+ ε ′)

∫ 2π

0

(HX (m)

∑
�=1

a�,r,θ · cr,θ

)
dθ
2π

≤ n + 1 + ε/2
m(HX (m)+ ε ′)

∫ 2π

0

(HX (m)

∑
�=1

λL�,r,θ (φm( f (reiθ )))
)

dθ
2π

≤exc
n + 1 + ε/2

m
Tφm◦ f (r)+C′

≤
(

n + 1 +
ε
2

)
Tf (r)+C,

where C′ is chosen so that the last inequality holds. ��
(This is better than (105) by ε/2, since we have removed the partitioning argu-

ment. Thus, the bound (87) can be improved by a factor of 2. This can be done in
the number field case too, also by eliminating the partitioning argument there. We
decided to keep the partitioning argument in that case, though, since such arguments
are common in number theory and it is useful to know how to translate them into
Nevanlinna theory.)

23 Truncated Counting Functions and the abc Conjecture

Many results in Nevanlinna theory, when expressed in terms of counting functions
instead of proximity functions, hold also in strengthened form using what are called
truncated counting functions. As usual, one can define truncated counting functions
in the number field case as well, and this leads to deep conjectures of high current
interest. Perhaps the best-known such conjecture is the abc conjecture of Masser
and Oesterlé.

Definition 23.1. Let X be a complete complex variety, let D be an effective Cartier
divisor on X , let f : C→ X be a holomorphic curve whose image is not contained
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in the support of D, and let n ∈ Z>0. Then the n-truncated counting function with
respect to D is

N(n)
f (D,r) = ∑

0<|z|<r

min{ordz f ∗D,n} log
r
|z| + min{ord0 f ∗D,n} logr.

As with the earlier counting function, the n-truncated counting function is func-
torial and nonnegative. It is not additive in D, though, due to the truncation. We only
have an inequality: If D1 and D2 are effective, then

N(n)
f (D1 + D2,r)≤ N(n)

f (D1,r)+ N(n)
f (D2,r).

In Nevanlinna theory, the Second Main Theorem for curves has been extended to
truncated counting functions:

Theorem 23.2. Let X be a smooth complex projective curve, let D be a reduced
effective divisor on X, let K be the canonical line sheaf on X, and let A be an
ample line sheaf on X. Then the inequality

N(1)
f (D,r)≥exc TK (D), f (r)−O(log+ TA , f (r))−o(logr)

holds for all nonconstant holomorphic curves f : C→ X.

Of course, X needs to be a curve of genus ≤ 1 for this to be meaningful, since
otherwise there is no function f . However, if the domain is a finite ramified cov-
ering of C, then X can have large genus; see Conjecture 27.5 and the discussion
following it.

Also, in Theorem 8.6, the counting functions in (39) can be replaced by
n-truncated counting functions:

q

∑
j=1

N(n)
f (Hj,r)≥exc (q−n−1)Tf (r)−O(log+ Tf (r))−o(logr) (111)

Theorem 8.11 is not suitable for using truncated counting functions, though, due to
its emphasis on the proximity function.

Conjecture 15.2, though, should also be true with counting functions. The ques-
tion arises, however: truncation to what? Note that (111) is false if the terms
N(n)

f (Hj,r) are replaced by N(1)
f (Hj,r), unless one allows the exceptional set to con-

tain hypersurfaces of degree greater than 1 (see Example 23.6). I do believe that
Conjecture 15.2 should be true with 1-truncated counting functions, though, even
though it would involve substantial complications.

The translation of the above into number theory is straightforward (except that
the counterparts to Theorem 23.2 and 111 are only conjectural).

Definition 23.3. Let k be a number field, let S ⊇ S∞ be a finite set of places of k,
let X be a complete variety over k, let D be an effective Cartier divisor on X , and
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let n ∈ Z>0. For every place v /∈ S (necessarily non-archimedean), let pv denote the
corresponding prime ideal in Ok. Then the n-truncated counting function with
respect to D is

N(n)
S (D,x) = ∑

v/∈S

min{λD,v(x),n log(Ok : pv)}

for all x ∈ X(k) not lying in the support of D. If x ∈ X(k̄) lies outside the support of
D, then we let L = κ(x), let T be the set of places of L lying over S, and define

N(n)
S (D,x) =

1
[L : k] ∑

w/∈T

min{λD,v(x),n log(OL : pw)}. (112)

Truncation does not respect (48) at ramified places, so (112) is not independent
of the choice of L. It is independent of the choice of Weil function, up to O(1). As
in the case of Nevanlinna theory, this truncated counting function is functorial and
nonnegative, and obeys an inequality

N(n)
S (D1 + D2,x)≤ N(n)

S (D1,x)+ N(n)
S (D2,x)

if D1 and D2 are effective.
We conjecture that a counterpart to Conjecture 15.6 holds with truncated count-

ing functions:

Conjecture 23.4. Let k be a number field, let S ⊇ S∞ be a finite set of places of k,
let X be a smooth projective variety over k, let D be a normal crossings divisor on
X , let K be the canonical line sheaf on X , and let A be an ample line sheaf on X .
Then:

(a) Let Σ be a generic subset of X(k)\SuppD. Then the inequality

N(1)
S (D,x)≥ hK (D),k(x)−O

(√
hA ,k(x)

)
(113)

holds for all x ∈ Σ .
(b) For any ε > 0 there is a proper Zariski-closed subset Z of X , depending only on

X , D, A , and ε , such that for all C ∈ R the inequality

N(1)
S (D,x)≥ hK (D),k(x)− ε hA ,k(x)−C (114)

holds for almost all x ∈ (X \Z)(k).

Note that the error term in (113) is weaker than in (65); see Stewart and Tijdeman
[81] and van Frankenhuijsen [86].

Unlike the situation in Nevanlinna theory, this conjecture is not known in any
case over number fields (other than those for which X(k) is not Zariski dense).
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The simplest (nontrivial) case of this conjecture is when X = P1
k and D is a divisor

consisting of three points, say D = [0]+ [1]+ [∞]. In that case, it is equivalent to the
“abc conjecture” of Masser and Oesterlé [62, (9.5)]. This conjecture can be stated
(over Q for simplicity, and with a weaker error term) as follows.

Conjecture 23.5. Fix ε > 0. Then there is a constant Cε such that there are only
finitely many triples (a,b,c) ∈ Z3 satisfying a + b + c = 0, gcd(a,b,c) = 1, and

logmax{|a|, |b|, |c|} ≤ (1 + ε) ∑
p|abc

log p +Cε . (115)

To see the equivalence with the above-mentioned special case of Conjecture 23.4,
let (a,b,c) be a triple of relatively prime rational integers satisfying a + b + c = 0,
and let x ∈ P2

Q be the corresponding point with homogeneous coordinates [a : b : c].
Then the left-hand side of (115) is just the height hQ(x).

Now let D be the divisor consisting of the coordinate hyperplanes H0, H1, and H2

in P2
Q (defined respectively by x0 = 0, x1 = 0, and x2 = 0). Since gcd(a,b,c) = 1,

we have

λH0,p(x) =− log
‖a‖p

max{‖a‖p,‖b‖p,‖c‖p} = ordp(a) log p,

for all (finite) rational primes p, where ordp(a) denotes the largest integer m for
which pm | a. Thus

N(1)
{∞}(H0,x) =∑

p|a
log p.

Similarly

N(1)
{∞}(H1,x) =∑

p|b
log p and N(1)

{∞}(H2,x) =∑
p|c

log p.

Therefore, by relative primeness,

N(1)
{∞}(D,x) = ∑

p|abc

log p,

so (115) is equivalent to

hQ(x)≤ (1 + ε)N(1)
{∞}(D,x)+Cε .

Since a + b + c = 0, the points [a : b : c] all lie on the line x0 + x1 + x2 = 0 in
P2

Q. Choosing an isomorphism of this line with P1
Q such that the restriction of D

corresponds to the divisor [0]+ [1]+ [∞] on P1
Q, it follows by functoriality of hQ and

N(1)
{∞}(D,x) that Conjecture 23.5 is equivalent to the special case of Conjecture 23.4

with k = Q, S = {∞}, X = P1
Q, D = [0]+ [1]+ [∞], and with a weaker error term.
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Some effort has been expended on finding a higher-dimensional counterpart to
the abc conjecture (in the spirit of Cartan’s and Schmidt’s theorems). One major
decision, for example, is how to extend the condition on relative primeness. For
the equation a + b + c = 0, the condition gcd(a,b,c) = 1 is equivalent to pairwise
relative primeness, since p | a and p | b easily implies p | c. With more terms, such as
a+b+ c+d = 0, though, the two variants are no longer equivalent. For the sake of
the present discussion, we use weaker condition of overall relative primeness. This is
all that is needed for the largest absolute value to be equivalent to the (multiplicative)
height.

So let a0, . . . ,an+1 be integers with gcd(a0, . . . ,an+1) = 1 and a0 + · · ·+an+1 = 0.
Such an (n + 2)-tuple gives a point x := [a0 : . . . : an] ∈ Pn

Q with

h(x) = logmax{|a0|, . . . , |an+1|}+ O(1).

Let D be the divisor on Pn consisting of the sum of the coordinate hyperplanes and
the hyperplane x0 + · · ·+ xn = 0. Then we have

N(1)
{∞}(D,x) = ∑

p|a0···an+1

p + O(1).

Since the canonical line sheaf K on Pn is O(−n− 1) and D has degree n + 2, we
have K (D)∼= O(1) and therefore (114) would (if true) give

∑
p|a0···an+1

log p≥ (1− ε) logmax{|a0|, . . . , |an+1|}−C (116)

for all ε > 0 and all C, for almost all rational points x = [a0 : . . . : an] outside of some
proper Zariski-closed subset of Pn

Q depending on ε .
The following example, due to Brownawell and Masser [8, p. 430], then shows

that an obvious extension of the abc conjecture to hyperplanes in Pn is false with
1-truncated counting functions, unless one allows exceptional hypersurfaces of
degree > 1.

Example 23.6. Let n ∈ Z>0, and consider the map φ : P1
Q → Pn

Q given by

φ([x0 : x1]) =
[

xn
0 :

(
n
1

)
xn−1

0 x1 :

(
n
2

)
xn−2

0 x2
1 : . . . : xn

1

]
.

Let D be the divisor (x0x1(x0 + x1)) = [0] + [−1] + [∞] on P1
Q and let D′ be the

(similar) divisor (y0 · · ·yn(y0 + · · ·+ yn)) on Pn
Q. Note that Suppφ∗D′ = SuppD, so

that
N(1)
{∞}(D

′,φ([x0 : x1])) = N(1)
{∞}(D, [x0 : x1])

if x0 �= 0 and x1 �= 0, and that hQ(φ([x0 : x1])) = nhQ([x0 : x1])+ O(1). It is known
that there are infinitely many pairs (a,b) of relatively prime integers for which
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N(1)
{∞}(D, [a : b])≤ hQ([a : b]) ;

therefore we have

N(1)
{∞}(D

′,φ([a : b]))≤ 1
n

hQ(φ([a : b]))+ O(1),

contrary to (116). The points φ([a : b]) are not contained in any hyperplane in Pn
Q.

They are, of course, contained in the image of φ , hence are not Zariski dense.

The abc conjecture is still unsolved, and is regarded to be quite deep. This is so
even though its counterpart in Nevanlinna theory is already known (and has been
known for decades). The remainder of these notes discuss extensions of Conjecture
15.6 that all have the property of implying the abc conjecture.

24 On Discriminants

This section discusses some facts about discriminants of number fields. These will
be used to formulate a diophantine conjecture for algebraic points in Sect. 25.

Definition 24.1. Let L ⊇ k be number fields, and let DL denote the absolute dis-
criminant of L. Then the logarithmic discriminant of L (relative to k) is

dk(L) =
1

[L : k]
log |DL|− log|Dk|.

Also, if X is a variety over k and x ∈ X(k̄), then let

dk(x) = dk(κ(x)).

The discriminant of a number field k is related to the different Dk/Q of k over Q

by the formulas
|Dk|= (Z : Nk

QDk/Q) = (Ok : Dk/Q).

By multiplicativity of the different in towers, we therefore have

dk(L) =
1

[L : k]
log(OL : DL/k)

=
1

[L : k] ∑
q∈SpecOL

q�=(0)

ordq DL/k · log(OL : q)
(117)

for number fields L⊇ k.
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This expression can be used to define a “localized” log discriminant term:

Definition 24.2. Let L⊇ k be number fields, and let S⊇ S∞ be a finite set of places
of k. Let OL,S denote the localization of OL away from (finite) places of L lying over
places in S; note that OL,S = OL⊗Ok Ok,S (cf. (58)). Then we define

dS(L) =
1

[L : k] ∑
q∈SpecOL,S

q�=(0)

ordq DL/k · log(OL,S : q). (118)

Also, if X is a variety over k and x ∈ X(k̄), then let

dS(x) = dS(κ(x)).

By (117), if S = S∞ ⊆ Mk then dS(L) = dk(L). Other than in this section, these
notes will be concerned only with dk(·). In fact, for any rational prime p the portion
of (log |Dk|)/[k : Q] coming from primes over p is bounded by (1+ logp[k : Q]) log p
[73, Chap. III, Remark 1 following Prop. 13]. These notes will be primarily con-
cerned with number fields of bounded degree over Q, so the difference between dS

and dk is bounded and can be ignored. However, for this section (only) the general
situation will be considered, since the results may be useful elsewhere and may not
be available elsewhere.

For the remainder of this section, k is a number field and S ⊇ S∞ is a finite set
of places of k.

The following lemma shows that the discriminant is not increased by taking the
compositum with a given field.

Lemma 24.3. Let
LE

k

EL

be a diagram of number fields. Then

dS(LE)−dS(E)≤ dS(L).

Proof. We first show that
DLE/E |DL/k ·OLE , (119)

which really amounts to showing that DL/k ⊆ DLE/E . Recall that DL/k is the ideal
in OL generated by all elements f ′(α), as α varies over the set {α ∈OL : L = k(α)}



192 P. Vojta

and f is the (monic) irreducible polynomial for α over k. Such α also lie in OLE ,
and generate LE over E . Let g be the irreducible polynomial for α over E; we note
that g | f and therefore f = gh for a monic polynomial h ∈ OE [t]. We also have
f ′(α) = g′(α)h(α). Since h(α) ∈ OLE , it then follows that f ′(α) ∈ DLE/E , which
then implies (119).

It then suffices to show that

ordq DL/k · log(OL : q) =
1

[LE : L] ∑
Q∈SpecOLE

Q|q

ordQ(DL/kOLE) · log(OLE : Q)

for all nonzero q ∈ SpecOL. But this follows immediately from the classical fact
that [LE : L] = ∑eQ/q fQ/q. ��

The Chevalley-Weil theorem may be generalized to a situation where ramifi-
cation is allowed. This involves a proximity function for the ramification divisor,
which is defined as follows.

Definition 24.4. Let φ : X → Y be a generically finite, dominant morphism of non-
singular complete varieties over a field k. Assume that the function field extension
K(X)/K(Y ) is separable. Then the natural map φ∗ΩY/k → ΩX/k induces a natu-
ral map φ∗KY → KX of canonical sheaves, which in turn defines a natural map
OX →KX ⊗φ∗K ∨

Y . This latter map defines a section of KX ⊗φ∗K ∨
Y , whose divi-

sor is the ramification divisor of X over Y . It is an effective divisor R, and we have
KX

∼= KY (R).

(The remainder of this section will be quite technical. Most readers will likely
be interested only in the statement of Theorem 24.11, and should now skip to the
statement of that theorem and to Theorem 24.13.)

The following definition will also be needed to generalize Chevalley-Weil.

Definition 24.5. Let M be a finitely generated module over a noetherian ring R, and
let

Rm f−→ Rn −→M −→ 0 (120)

be a presentation of M. Then the 0th Fitting ideal of M is the ideal F0(M) in R gen-
erated by the determinants of all n×n submatrices of the n×m matrix representing
f . It is independent of the presentation [17, 20.4]. This globalizes: if F is a coherent
sheaf on a noetherian scheme X , then locally one can form presentations (120) and
glue them to give a sheaf of ideals F0(F ).

Lemma 24.6. Let F be a coherent sheaf on a noetherian scheme X.

(a) Forming the Fitting ideal commutes with pull-back: Let φ : X ′ → X be a mor-
phism of noetherian schemes. Then

F0(φ∗F ) = φ∗F0(F ) ·OX ′ . (121)
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(b) If F � F ′ is a surjection, then

F0(F ′)⊇ F0(F ).

Proof. Let φ : X ′ → X be as in (a). Since tensoring is right exact, a presentation of
F pulls back to give a presentation of φ∗F on X ′, and (121) follows directly.

If F � F ′ is a surjection, then one can use the same middle terms in the local
presentations of F and of F ′, and the first term in the presentation of F can be a
direct summand of the first term in the presentation of F ′. In this case, the resulting
generators of F0(F ) are a subset of the generators of F0(F ′). This gives (b). ��

The ramification divisor can be described using a Fitting ideal.

Lemma 24.7. Let φ : X → Y be as in Definition 24.4. Then F0(ΩX/Y ) is a sheaf of
ideals, locally principal and generated by functions f which locally generate the
ramification divisor as a Cartier divisor.

Proof. Indeed, the first exact sequence of differentials

φ∗ΩY/k −→ΩX/k −→ΩX/Y −→ 0

gives a locally free presentation of ΩX/Y , and the two initial terms have the same
rank. ��

The proof of Theorem 24.11 will also need the notion of a model of a variety
over a number field (corresponding to Definition 16.1 in the function field case).

Definition 24.8. Let X be a variety over a number field k. A model for X over Ok

is an integral scheme X , flat over Ok, together with an isomorphism X ∼= X ×Ok k.

If X is a complete variety, then a model X can be constructed using Nagata’s em-
bedding theorem. Moreover, X can be chosen to be proper over SpecOk. On such a
model, rational points correspond naturally and bijectively to sections Ok →X by
the valuative criterion of properness, and algebraic points SpecL → X correspond
naturally and bijectively to morphisms SpecOL →X over Ok.

As is the case over function fields, a key benefit of working with models is the
fact that Weil functions, and therefore the proximity, counting, and height functions,
can be defined exactly once one has chosen an extension of the given Cartier divisor
D to the model. (Such an extension may not always exist, but the model can be
chosen so that it does exist.) At archimedean places, these definitions rely on the
additional data specified in Arakelov theory. These definitions, however, will not be
described in these notes.

For the purposes of this section, however, we do need to define the proximity
function relative to a sheaf of ideals.

Definition 24.9. Let X be a complete variety over a number field k, let X be a
proper model for X over Ok, let I be a sheaf of ideals on X , and let S ⊇ S∞ be a
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finite set of places of k. Let x ∈ X(k̄), and assume that x does not lie in the closed
subscheme of X defined by I . Then the counting function NS(I ,x) is defined as
follows. Let L be some number field containing κ(x), let i : SpecOL →X be the
morphism over SpecOk corresponding to x, and let I be the ideal in OL correspond-
ing to the ideal sheaf i∗I ·OSpecOL on SpecOL. Then we define

NS(I ,x) =
1

[L : k]
log(OL,S : IOL,S)

=
1

[L : k] ∑
q∈SpecOL,S

q�=(0)

ordq I · log(OL,S : q).

It can be shown (although we will not do so here) that if X is a proper model
over SpecOk for a complete variety X over k, if I is an ideal sheaf on X , and if
the restriction of I to X corresponds to a Cartier divisor D, then

NS(I ,x) = NS(D,x)+ O(1) (122)

for all x ∈ X(k̄) not lying in SuppD.
Counting (and proximity and height) functions relative to sheaves of ideals were

first introduced by Yamanoi [102], in the context of Nevanlinna theory.
The different can be described via differentials as well. Indeed, DL/k is the anni-

hilator of the sheaf of relative differentials:

DL/k = AnnΩOL/Ok
. (123)

In this case ΩOL/Ok
is a torsion sheaf locally generated by one element; hence (118)

can be rewritten as

dS(L) =
1

[L : k] ∑
q∈SpecOL,S

q�=(0)

lengthqΩOL/Ok
· log(OL,S : q)

=
1

[L : k]
log#H0(OL,S,ΩOL,S/Ok,S

).

(124)

The following lemma does most of the work in generalizing the Chevalley-Weil
theorem. It has been stated as a separate lemma because it will also be used in the
Nevanlinna case.

Lemma 24.10. Let A → B be a local homomorphism of discrete valuation rings,
with B finite over A, let φ : X → Y be a generically finite morphism of schemes, and
let
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SpecB
j−−−−→ X

⏐⏐�
⏐⏐�φ

SpecA −−−−→ Y

(125)

be a commutative diagram. Assume also that the image of j is not contained in the
support of ΩX/Y , that j∗OX generates the fraction field of B over the fraction field
of A, and that the fraction field of B is separable over the fraction field of A. Then

DB/A ⊇ j∗F0(ΩX/Y ) ·B. (126)

Proof. The map j factors through the product SpecA×Y X :

SpecB
j′′−−−−→ SpecA×Y X

q−−−−→ X
⏐⏐�

⏐⏐�

SpecA −−−−→ Y ;

here j = q ◦ j′′. We may replace SpecA×Y X in this diagram with an open affine
neighborhood SpecB′′ of j′′(b), where b denotes the closed point of SpecB. By
Lemma 24.6a, we have

j∗F0(ΩX/Y ) ·B = ( j′′)∗F0(ΩB′′/A) ·B. (127)

The map SpecB → SpecB′′ corresponds to a ring homomorphism B′′ → B; let B′
denote its image. Then j′′ factors through j′ : SpecB → SpecB′ and a closed im-
mersion SpecB′ → SpecB′′. By the second exact sequence for differentials, the map
ΩB′′/A

∣∣
B′ →ΩB′/A is surjective, and by Lemma 24.6b

( j′′)∗F0(ΩB′′/A) ·B⊆ ( j′)∗F0(ΩB′/A) ·B. (128)

By [43, Def. 10.1 and p. 166], F0(ΩB′/A) is the Kähler different dK(B′/A). Since
B′ is finite over A and the fraction field of B′ is separable over the fraction field of A,
[43, Prop. 10.22] gives

F0(ΩB′/A)⊆DB′/A (129)

(note that DB′/A is dD(B′/A) in Kunz’s notation). Finally, since B′ ⊆ B, it follows
directly from the definition (see for example [43, G.9a]) that

DB′/A ⊆DB/A. (130)

Combining (127)–(130) then gives (126). ��
The generalized Chevalley-Weil theorem can now be stated as follows. This was

originally proved in [87, Thm. 5.1.6], but the proof there is only valid if X and Y
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have good reduction everywhere, or if the points x∈ X(k̄) have bounded degree over
k. Therefore we will give a general proof here.

Theorem 24.11. Let φ : X → Y be a generically finite, dominant morphism of non-
singular complete varieties over k, with ramification divisor R. Then for all x∈X(k̄)
not lying on SuppR, we have

dS(x)−dS(φ(x)) ≤ NS(R,x)+ O(1). (131)

Proof. Let X and Y be models for X and Y over Ok, respectively. By replacing X
with the closure of the graph of the rational map φ : X → Y if necessary, we may
assume that φ extends to a morphism X → Y over SpecOk. By Lemma 24.7 and
(122), it will then suffice to show that

dS(x)−dS(φ(x)) ≤ NS(F0(ΩX /Y ),x). (132)

Fix x ∈ X(k̄) as above, and let E = κ(x) and L = κ(φ(x)). Then dS(x) = dS(E)
and dS(φ(x)) = dS(L). Let w be a place of E with w � S, and let v be a place of L
lying under w. Let Ow and Ov denote the localizations of OE and OL at the primes
corresponding to w and v, respectively. Let j : SpecOw →X be the restriction of
the map SpecOE →X over Ok corresponding to x. By (118), multiplicativity of
the different in towers, Definition 24.9, and compatibility of various things with
localization, it suffices to show that

DOw/Ov ⊇ j∗F0(ΩX /Y ) ·Ow. (133)

The point φ(x) ∈ Y (L) determines a map SpecOv → Y , so there is a diagram

SpecOw
j−−−−→ X

⏐⏐�
⏐⏐�

SpecOv −−−−→ Y .

This satisfies the conditions of Lemma 24.10, which implies (133). ��
Remark 24.12. More generally, the above proof shows that if one replaces (131)
with (132), then Theorem 24.11 still holds without the assumptions that X and Y are
nonsingular.

The counterpart to this theorem in Nevanlinna theory is the following. (This is
much easier in the special case dimX = dimY = 1. The general case is more com-
plicated because then the ramification divisor may not be easy to describe.)

Theorem 24.13. Let B be a connected (nonempty) Riemann surface, let φ : X → Y
be a generically finite, dominant morphism of smooth complete complex varieties,
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with ramification divisor R, and let f : B→ X be a holomorphic function whose im-
age is not contained in φ(SuppR). Then there is a connected Riemann surface B′, a
proper surjective holomorphic map π : B′ → B of degree bounded by [K(X) : K(Y )],
and a holomorphic function g : B′ → X such that the diagram

B′ g−−−−→ X
⏐⏐�π

⏐⏐�φ

B
f−−−−→ Y

(134)

commutes. Moreover, if e is the ramification index of B′ over B at at any given point
of B′, then e− 1 is bounded by the multiplicity of the analytic divisor g∗R at that
point. (In other words, the ramification divisor of π is bounded by g∗R, relative to
the cone of effective analytic divisors.)

Proof. Let d = [K(X) : K(Y )]. Let B0 = {(b,x) ∈ B×X : f (b) = φ(x)}; it is an
analytic variety, of degree d over B (i.e., fibers of the projection B0 → B have at
most d points, and some fibers have exactly d points). Let B′ be the normalization
of B0 [35, R13]; again B′ is of degree d over B. After replacing B′ with one of its
connected components, we may assume that B′ is connected (of degree≤ d over B).
We then have holomorphic functions π : B′ → B and g : B′ → X as in (134). Also,
B′ is a Riemann surface [35, Q13].

Now fix b′ ∈ B′, and let b = π(b′) ∈ B. Fix holomorphic local coordinates z′ at b′
and z at b, vanishing at the respective points. Via the local coordinate z, we identify
an open neighborhood of b in B with an open neighborhood of 0 in C, and identify
the ring O of germs of holomorphic functions on B at b with the ring of germs of
holomorphic functions on C at 0. Also let O ′ be the ring of germs of holomorphic
functions on B′ at b′, and let e be the ramification index of π at b′. Then the germ
of the analytic variety B′ at b′ is a finite branched covering of the germ of B at b,
of covering order e, and we identify O with a subring of O ′ via π . By [35, C5 and
C8], there is a canonically defined monic polynomial P ∈ O[t] of degree e such that
P(z′) = 0, and

O ′ ∼= O[t]/P(t).

Since B′ is regular at b′, the germ of the variety B′ at b′ is irreducible, so O ′ is an
entire ring [35, B6]. Therefore P(t) is irreducible, and by the Weierstrass Preparation
Theorem [35, A4] it is a Weierstrass polynomial. This means that all non-leading
coefficients vanish at b. A straightforward computation then gives

ΩO ′/O = O ′/(z′)e−1.

By [35, A8 and G20], O and O ′ are discrete valuation rings, hence Dedekind, and
then (123) gives

DO ′/O = (z′)e−1.

Moreover, we have a commutative diagram
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SpecO ′ j−−−−→ X
⏐⏐�

⏐⏐�φ

SpecO −−−−→ Y

which satisfies the conditions of Lemma 24.10. Therefore,

DO ′/O ⊇ j∗F0(ΩX/Y ) ·O ′.

This, together with Lemma 24.7, implies the theorem. ��
Remark 24.14. As was the case in Remark 24.12, Theorem 24.13 remains true when
X and Y are allowed to be singular, provided that the conclusion is replaced by
the assertion that the ramification divisor of π is bounded by the analytic divisor
associated to g∗F0(ΩX/Y ).

25 A Diophantine Conjecture for Algebraic Points

This section describes an extension of Conjecture 15.6 to allow algebraic points
instead of rational points. This comes at a cost of adding a discriminant term to the
inequality.

This conjecture is subject to some doubt: see Remark 27.6.

Conjecture 25.1. Let k be a number field, let S⊇ S∞ be a finite set of places of k, let
X be a smooth projective variety over k, let D be a normal crossings divisor on X ,
let K be the canonical line sheaf on X , let A be an ample line sheaf on X , and let
r be a positive integer. Then:

(a) Let Σ be a generic subset of X(k̄)\SuppD such that [κ(x) : k]≤ r for all x ∈ Σ .
Then the inequality

mS(D,x)+ hK ,k(x)≤ dk(x)+ O(log+ hA ,k(x)) (135)

holds for all x ∈ Σ .
(b) For any ε > 0 there is a proper Zariski-closed subset Z of X , depending only on

X , D, A , and ε , such that for all C ∈ R the inequality

mS(D,x)+ hK ,k(x)≤ dk(x)+ ε hA ,k(x)+C (136)

holds for almost all x ∈ (X \Z)(k̄) with [κ(x) : k]≤ r.

When r = 1, this just reduces to Conjecture 15.6, since then κ(x) = k for all x.
Other than with r = 1, no case of this conjecture is known (for number fields). Over
function fields, some parts are known.
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One may also ask if the conjecture is true without the bound on r. This would
require changing the quantization of C in part (b): for example, there are infinitely
many roots of unity, which all have height zero. It would also require changing the
dk(x) terms to dS(x). Other than that, though, it seems to be a reasonable conjecture.

As with any mathematical statement, it is often useful to be aware of how its
strength varies with the parameters. For this conjecture, replacing k with a larger
number field (and S with the corresponding set), adding places to S, increasing D,
increasing r, or (in the case of part (b)) decreasing ε results in a stronger statement.

As was the case with Conjecture 15.6, this Conjecture 25.1 can also be posed for
smooth complete varieties X , provided that hA ,k is replaced by a big height.

Remark 15.7 does not extend trivially to Conjecture 25.1, though, since the dis-
criminant terms may not add up.

By [87, Prop. 5.4.1],3 Conjecture 25.1b with D = 0 implies the full Conjecture
25.1b. This uses a covering construction.

Next, we show how Conjecture 25.1 relates to generically finite ramified covers.

Proposition 25.2. Let k and S be as in Conjecture 25.1, let π : X ′ → X be a sur-
jective generically finite morphism of complete nonsingular varieties over k, and let
D be a normal crossings divisor on X. Let D′ = (π∗D)red (this means the reduced
divisor with the same support as π∗D), and assume that it too has normal crossings.
Let K and K ′ denote the canonical line sheaves on X and X ′, respectively. Then,
for all x ∈ X ′(k̄) not lying on SuppD′ or on the support of the ramification divisor,

mS(D,π(x))+ hK ,k(π(x))−dS(π(x))≤ mS(D′,x)+ hK ′,k(x)−dS(x)+ O(1).
(137)

In particular, since the pull-back of any big line sheaf on X to X ′ remains big, either
part of Conjecture 25.1 for D′ on X ′ implies that same part for D on X.

Proof. Let R be the ramification divisor for X ′ over X ; since K ′ ∼= π∗K ⊗O(R),
we then have

hK ,k(π(x))−hK ′,k(x) =−mS(R,x)−NS(R,x)+ O(1).

Also, Theorem 24.11 gives

dS(x)−dS(π(x))≤ NS(R,x)+ O(1).

Finally, by [87, Lemma 5.2.2], π∗D− (π∗D)red ≤ R (relative to the cone of effective
divisors). Therefore

mS(D,π(x))−mS(D′,x)≤ mS(R,x)+ O(1).

3 The proposition is actually valid in more generality than its statement indicates. However, the
proof has an error. The functions f1, . . . , fn must be chosen such that each point of SuppD has an
open neighborhood U such that D = ( fi) on U for some i.



200 P. Vojta

Adding this equation and the two inequalities then gives (137). ��
It was this proposition that motivated the original version of Conjecture 25.1 [87,

p. 63].
Finally, we note that Conjecture 25.1 can also be posed with truncated counting

functions.

Conjecture 25.3. Let k, S, X , D, K , A , and r be as in Conjecture 25.1. Then:

(a) Let Σ be a generic subset of X(k̄)\SuppD such that [κ(x) : k]≤ r for all x ∈ Σ .
Then the inequality

N(1)
S (D,x)+ dk(x)≥ hK (D),k(x)−O(log+ hA ,k(x)) (138)

holds for all x ∈ Σ .
(b) For any ε > 0 there is a proper Zariski-closed subset Z of X , depending only on

X , D, A , and ε , such that for all C ∈ R the inequality

N(1)
S (D,x)+ dk(x)≥ hK (D),k(x)− ε hA ,k(x)−C (139)

holds for almost all x ∈ (X \Z)(k̄) with [κ(x) : k]≤ r.

Remark 25.4. Using a covering construction, it has been shown that Conjecture
25.3b would follow from Conjecture 25.1b [91]. As noted earlier in this section,
the latter would then follow from Conjecture 25.1b with D = 0, again using a cover-
ing construction. In both of these cases, the coverings involved are generically finite,
so the implication holds for varieties of any given dimension. Thus, as is noted in
the next section, Conjecture 25.3b has been fully proved for curves over function
fields of characteristic 0.

Proposition 25.2 does not extend to the situation of truncated counting functions,
though.

26 The 1+ ε Conjecture and the abc Conjecture

The special case of Conjecture 25.1 in which dimX = 1 and D = 0 is perhaps the
most approachable unsolved special case, and has drawn some attention. It is called
the “1 + ε conjecture.”

Conjecture 26.1. Let k be a number field, let X be a smooth projective curve over
k, let K denote the canonical line sheaf on X , let r be a positive integer, let ε > 0,
and let C ∈ R. Then

hK ,k(x)≤ (1 + ε)dk(x)+C

for almost all x ∈ X(k̄) with [κ(x) : k]≤ r.

This conjecture was recently proved over function fields of characteristic 0 by
McQuillan [57] and (independently) by Yamanoi [103]. See also McQuillan [58]
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and Gasbarri [27]. Thus, Conjectures 25.1 and 25.3 hold for curves over function
fields of characteristic 0, by Remark 25.4; see also [103, Thm. 5]

Conjecture 26.1 is known to imply the abc conjecture [87, pp. 71–72].

Proposition 26.2. If Conjecture 26.1 holds, then so does the abc conjecture.

Proof. Let ε > 0, and let a,b,c be relatively prime integers with a + b + c = 0. For
large integers n, there is an associated point

Pn =
[

n
√

a : n
√

b : n
√

c
] ∈ Xn(Q),

where Xn is the nonsingular curve xn
0 + xn

1 + xn
2 = 0 in P2

Q. This point has height

hK ,Q(Pn) =
n−3

n
logmax{|a|, |b|, |c|}+ O(1),

since the canonical line sheaf K on Xn is the restriction of O(n− 3). Here the
implicit constant depends only on n. We also have

dQ(Pn)≤ n−1
n ∑

p|abc

log p + O(1),

where the implicit constant depends only on n. Therefore, applying Conjecture 26.1
to points Pn on Xn gives, for all n and all ε ′ > 0 a constant Cn,ε ′ ∈ R such that

n−3
n

logmax{|a|, |b|, |c|} ≤
(

n−1
n

+ ε ′
)
∑

p|abc

log p +Cn,ε ′ .

The proof concludes by taking n sufficiently large and ε ′ sufficiently small so that

(
n−1

n
+ ε ′

)/ n−3
n

< 1 + ε,

and noting that the constants in the above discussion are independent of the triple
(a,b,c). ��

27 Nevanlinna Theory of Finite Ramified Coverings

In Nevanlinna theory, changing the domain of the holomorphic function from C

to a finite ramified covering is the counterpart to working with algebraic points of
bounded degree.

References on finite ramified coverings include Lang and Cherry [49], Chap. III
and Yamanoi [103].
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Throughout this section, B is a connected Riemann surface, π : B → C is a
proper surjective holomorphic map, X is a smooth complete complex variety,
and f : B→ X is a holomorphic function.

Note that π has a well-defined, finite degree, denoted degπ .
We again refer to f as a holomorphic curve.

Definition 27.1. Define

B[r] = {b ∈ B : |π(b)| ≤ r},
B(r) = {b ∈ B : |π(b)|< r}, and

B〈r〉= {b ∈ B : |π(b)|= r}.

On B〈r〉, let σ be the measure

σ =
1

degπ
π∗
(

dθ
2π

)
.

Definition 27.2. Let D be an effective divisor on X whose support does not contain
the image of f , and let λD be a Weil function for D. Then the proximity function
of f with respect to D is

m f (D,r) =
∫

B〈r〉
λD ◦ f ·σ .

Definition 27.3.

(a) The counting function for an analytic divisor Δ = ∑
b∈B

nb ·b on B is

NΔ (r) =
1

degπ

⎛

⎝ ∑
b∈B(r)\π−1(0)

nb log
r

|π(b)| + ∑
b∈π−1(0)

nb logr

⎞

⎠.

(b) If D is a divisor on X whose support does not contain the image of f , then the
counting function for D is the function

Nf (D,r) = Nf ∗D(r).

(c) The ramification counting function for π is the counting function for the ram-
ification divisor of π . It is denoted NRam(π)(r).

If B = C and π is the identity mapping, then the proximity function of Definition
27.2 and the counting function of Definition 27.3b extend those of Definitions 12.1
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and 12.2, respectively. They also satisfy additivity, functoriality, and boundedness
properties, as in Proposition 12.3.

If B′ is another connected Riemann surface and π ′ : B′ → B is another proper
surjective holomorphic map, then

m f◦π ′(D,r) = m f (D,r) and Nf◦π ′(D,r) = Nf (D,r). (140)

This holds in particular if B = C and π is the identity map. It is the counterpart to
the fact that the proximity and counting functions in number theory are independent
of the choice of number field used in Definition 11.1.

In this situation (but without the assumption B = C), we also have

NRam(π◦π ′)(r) = NRam(π)(r)+ NRam(π ′)(r). (141)

(Note that the first term on the right-hand side is a counting function on B, while
the others are on B′.) This corresponds to multiplicativity of the different in towers.
Note also that, although in general Ram(π) has infinite support, its support in any
given set B(r) is finite, in parallel with the fact that any given extension of number
fields has only finitely many ramified primes. However, given a sequence of alge-
braic points of bounded degree, the corresponding sequence of number fields will in
general have no bound on the number of ramified primes, corresponding to the fact
that Ram(π) may have infinite support.

The height is defined similarly to Definitions 12.4 and 12.7:

Definition 27.4. If D is an effective divisor on X whose support does not contain
the image of f , then the height of f relative to D is defined up to O(1) by

TD, f (r) = m f (D,r)+ Nf (D,r).

If L is a line sheaf on X , then the height TL , f (r) is defined to be TD, f (r) for any divi-
sor D on X for which O(D)∼= L and whose support does not contain the image of f .

A First Main Theorem holds for the height as defined here, so the height relative
to a line sheaf is well defined [49, III Thm. 2.1]. Theorem 12.8 also holds for heights
in this context, as do Propositions 12.10 and 12.11. Corollary 12.9 is not meaningful
in this context, since B need not be algebraic.

If π ′ : B′ → B is as in (140) and D and L are as in Definition 27.4, then

TD, f◦π ′(r) = TD, f (r)+ O(1) and TL , f◦π ′(r) = TL , f (r)+ O(1).

Griffiths’ conjecture (Conjecture 15.2) can be posed in this context, without
any changes other than the domain of the holomorphic curve f , and adding terms
NRam(π)(r) to the right-hand sides of (62) and (63). It will not be repeated here.

The variant with truncated counting functions reads as follows.
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Conjecture 27.5. Let X be a smooth complex projective variety, let D be a normal
crossings divisor on X , let K be the canonical line sheaf on X , and let A be an
ample line sheaf on X . Then:

(a) The inequality

N(1)
f (D,r)+ NRam(π)(r)≥exc TK (D), f (r)−O(log+ TA , f (r))−o(logr) (142)

holds for all holomorphic curves f : B→ X with Zariski-dense image.
(b) For any ε > 0 there is a proper Zariski-closed subset Z of X , depending only on

X , D, A , and ε , such that the inequality

N(1)
f (D,r)+ NRam(π)(r)≥exc TK (D), f (r)− ε TA , f (r)−C (143)

holds for all nonconstant holomorphic curves f : B → X whose image is not
contained in Z, and for all C ∈ R.

This is proved in many of the same situations where Conjecture 15.2 is proved
(except possibly for the level of truncation of the counting functions). See for exam-
ple [49], and also Corollary 29.7 for the case when dimX = 1.

Remark 27.6. This conjecture, and therefore also Conjecture 25.1, is doubted by
some. For example, McQuillan [56, Example V.1.5] notes that if X is a quotient of
the unit ball in C2, if f : B→ X is a one-dimensional geodesic, and if π : B→ C is
a proper surjective holomorphic map, then

TKX , f (r) = NRam(π)(r)+ o(TKX , f (r)).

However, loc. cit. does not address how to show that a suitable map π exists, and in
subsequent communications McQuillan has referred only to proper ramified cover-
ings of the unit disk. Therefore, this is not strictly speaking a counterexample, but
McQuillan finds it persuasive.

28 The 1+ ε Conjecture in the Split Function Field Case

This section describes how the 1+ε conjecture can be easily proved in what is called
the “split function field case,” following early work of de Franchis [46, p. 223].

Throughout this section, F is a field, B is a smooth projective curve over F ,
and k = K(B) is the function field of B.
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If L is a finite separable extension of k, corresponding to a smooth projective
curve B′ over F and a finite morphism B′ → B over F , then the logarithmic discrim-
inant term in the function field case is defined as

dk(L) =
degK ′

[L : k]
−degK , (144)

where K ′ and K are the canonical line sheaves of B′ and B, respectively, and
degrees are taken relative to F . As before, we then define dk(x) = dk(κ(x)) for
x ∈ X(k̄). The discriminant can also be written

dk(L) =
1

[L : k]
dimF H0(B′,ΩB′/B) (145)

(cf. (124)).
This definition is valid for general function fields.
The remainder of this section will restrict to the split function field case. This

refers to the situation in which X is of the form X ∼= X0×F k for a smooth projective
curve X0 over F , the model X is a product X0×F B (so that the model splits into a
product), and π : X → B is the projection morphism to the second factor.

Following early work of de Franchis [46, p. 223], it is fairly easy to prove the
1 + ε conjecture in the split function field case of characteristic 0.

Theorem 28.1. Let F be a field of characteristic 0, let X0 be a smooth projective
curve over F, let X = X0×F k, and let X = X0×F B. Let K be the canonical line
sheaf on X0, and let A be an ample line sheaf on X0. View both of these line sheaves
as line sheaves on X or on X by pulling back via the projection morphisms. Then

hK ,k(x)≤ dk(x)+ degΩB/F (146)

for all x ∈ X(k̄).

Proof. The proof is particularly easy if F is algebraically closed.
In that case, let q : X → X0 denote the projection morphism. If q◦ i is a constant

morphism, then by (70) the left-hand side of (146) is zero. Since the right-hand side
is nonnegative by (145), the inequality is true in this case.

If q ◦ i is nonconstant, then it is finite and surjective, and we have

hK ,k(x) =
(2g(X0)−2)deg(q ◦ i)

[K(B′) : k]
≤ 2g(B′)−2

[K(B′) : k]
= dk(x)+ 2g(B)−2.

by (70), the Riemann-Hurwitz formula (twice), and by (144). (Here, as usual, g(B),
g(B′), and g(X0) denote the genera of these curves.)

The general case proceeds by reducing to the above special case. First, we may
assume that F is algebraically closed in k (i.e., that k/F is a regular field extension).
Indeed, replacing F with a finite extension divides both sides of (146) by the degree
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of that extension, due to the fact that all quantities are expressed in terms of degrees
of line sheaves, which depend in that way on F .

Let x be an algebraic point on X , let B′ be the smooth projective curve over F
corresponding to κ(x), and let i : B′ →X be the morphism over B corresponding
to x. Again, K(B′) need not be a regular extension of F; let F ′ be the algebraic
closure of F in K(B′). We may replace X0 with X0×F F , B with B×F F , X with
X ×F F , and B′ with B′ ×F ′ F . This again does not affect the validity of (146), since
both sides are divided by [F ′ : F ]. Indeed, replacing B′ with B′ ×F F would have left
both sides of the inequality unchanged, but B′ would now be a disjoint union of
[F ′ : F] smooth projective curves. Choosing one of those curves amounts to taking
B′ ×F ′ F instead of B′ ×F F for some choice of embedding F ′ ↪→ F . Also, these
changes do not affect the fact that X = X0×F B.

This reduces to the case in which F is algebraically closed. ��
A way to look at this proof is to think of the derivative of the map i : B′ →X . It

takes values in the absolute tangent bundle TX /F . Since X is a product, though, the
tangent bundle is also a product p∗TX0/F ×q∗TB/F , where p and q are the projection
morphisms. This allows us to project onto the second factor TX0/F , which gives a
way to bound TK ,k(x).

In the general (non-split) function field case, there is first of all no bundle TX0/F
to project to. Instead, we have only the relative tangent bundle TX /B. This is a
subbundle of the absolute tangent bundle, not a quotient, and there is no canonical
projection from TX /F to TX /B. McQuillan’s proof works mainly because, for points
of large height, the tangent vectors giving the derivative of i : B′ →X are “more
vertical” than for points of smaller height. Therefore, two arbitrarily chosen ways of
projecting the absolute tangent bundle to the relative tangent bundle will differ by a
smaller amount, measured relative to the size of the tangent vector. This is sufficient
to make the argument carry over.

29 Derivatives in Nevanlinna Theory

Generally speaking, proofs of theorems in Nevanlinna theory rely upon either of
two methods for their basic proofs. Historically, the first was Nevanlinna’s “Lemma
on the Logarithmic Derivative” (Theorem 29.1). Slightly more recently, methods
using differential geometry, especially focusing on curvature, have also been used.
Although the latter has obvious geometric appeal, the method of the lemma on the
logarithmic derivative has also been phrased in geometric terms, and (at present) is
the preferred method for comparisons with number theory.

Throughout this section, B is a connected Riemann surface and π : B→ C is
a proper surjective holomorphic map.
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Nevanlinna’s original Lemma on the Logarithmic Derivative (LLD) is the
following.

Theorem 29.1. (Lemma on the Logarithmic Derivative) Let f be a meromorphic
function on C. Then

∫ 2π

0
log+

∣∣∣∣
f ′(reiθ )
f (reiθ )

∣∣∣∣
dθ
2π
≤exc O(log+ Tf (r))+ o(logr). (147)

More generally, if f is a meromorphic function on B, then

∫

B〈r〉
log+

∣∣∣∣
d f/π∗dz

f

∣∣∣∣σ ≤exc O(logTf (r)+ logr). (148)

Proof. For the first part, see [60, IX 3.3], or [76, Thm. 3.11] for the error term given
here. The second part follows from [3, Thm. 2.2]. ��

A geometrical adaptation of this lemma has recently been discovered by
Kobayashi, McQuillan, Wong, and others. This first requires a definition.

Definition 29.2. Let X be a smooth complex projective variety, and let D be a nor-
mal crossings divisor on X . Then the sheafΩ 1

X (logD) is the subsheaf of the sheaf of
meromorphic sections of Ω 1

X generated by the holomorphic sections and the local
sections of the form d f/ f , where f is a local holomorphic function that vanishes
only on D [15, II 3.1]. This is locally free of rank dimX . The log tangent sheaf
TX(− logD) is its dual. There are corresponding vector bundles, of the same names.

Theorem 29.3. (Geometric Lemma on the Logarithmic Derivative) Let X be a
smooth complex projective variety, let D be a normal crossings divisor on X, and let
f : B→ X be a holomorphic curve whose image is not contained in SuppD. Let A
be an ample line sheaf on X. Finally, let | · | be a hermitian metric on the log tangent
bundle TX(− logD), and let dD f : B→ TX (− logD) denote the canonical lifting of
f (as a meromorphic function). Then

∫

B〈r〉
log+∣∣dD f (reiθ )

∣∣σ ≤exc O(logTA , f (r)+ logr). (149)

Proof (Wong). The general idea of the proof is that one can work locally on finitely
many open sets to reduce the question to finitely many applications of the classical
LLD. This proof presents a geometric rendition of this idea.

We first note that the assertion is independent of the choice of metric, since by
compactness any two metrics are equivalent up to nonzero constant factors.

Next, note that the special case X = P1, D = [0]+[∞], is equivalent to the classical
Lemma on the Logarithmic Derivative. Indeed, in this case TX(− logD)∼= X×C is
just the trivial vector bundle of rank 1. Choose the metric on TX (− logD) to be the
one corresponding to the obvious metric on X×C; then (149) reduces to (147).
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The assertion of the theorem is preserved by taking products. Indeed, if it holds
for holomorphic curves f1 : B → X1 and f2 : B → X2 relative to normal crossings
divisors D1 and D2 on smooth complex projective varieties X1 and X2, respectively,
then it is true for the product ( f1, f2) : B→ X1×X2 relative to the normal crossings
divisor D := p∗1D1 + p∗2D2, where p j : X1×X2 → Xj are the projection morphisms
( j = 1,2). This follows by choosing the obvious metric on TX1×X2(− logD) and
applying (31); details are left to the reader.

Finally, let D′ be a normal crossings divisor on a smooth complex projective
variety X ′, let Z be a closed subvariety of X that contains the image of f , and let
φ : Z ��� X ′ be a rational map. Assume that there is a nonempty Zariski-open subset
U of Z and a constant C > 0 such that |φ∗(v)| ≥C|v| for all v ∈ TX(− logD) lying
over U , that the holomorphic curve f meets U , and that Theorem 29.3 holds for the
holomorphic curve φ ◦ f in X ′ relative to D′. We then claim that the theorem also
holds for f . Indeed, the left-hand side of (149) does not decrease by more than logC
if f is replaced by φ ◦ f , and the right-hand sides in the two cases are comparable
by Proposition 12.11 and properties of big line sheaves.

Therefore, we may assume that the divisor D has strict normal crossings. In-
deed, there is a smooth complex projective variety X ′ and a birational morphism
π : X ′ → X , isomorphic over X \SuppD, such that D′ := (π∗D)red is a strict normal
crossings divisor. This is true because one can resolve the singularities of each com-
ponent of D. Since π∗ induces a holomorphic map TX ′(− logD′)→ TX(− logD), the
inverse rational map π−1 satisfies the conditions of the claim.

Thus, to prove the theorem, it suffices to let Z be the Zariski closure of the image
of f , and find nonzero elements f1, . . . , fn ∈ K(Z) for which the corresponding ra-
tional map φ : Z ��� (P1)n satisfies the conditions of the claim (for suitable U ⊆ Z
and C > 0) relative to the divisor D′ = ∑n

j=1 p∗j([0]+ [∞]), where p j : (P1)n → P1 is
the projection morphism to the jth factor, 1≤ j ≤ n.

To satisfy the conditions of the claim, it suffices to find a finite set G of nonzero
functions in K(X) such that at each closed point z ∈ Z there is a subset Gz ⊆ G such
that for each g ∈ Gz the differential dg/g determines a regular section of Ω 1

X(logD)
in a neighborhood of z in X , and such that as g varies over Gz the differentials dg/g
generate Ω 1

X(logD) at z.
To construct G , let z be a closed point of Z. For some open neighborhood V

of z in X there are regular functions g1, . . . ,gr on V whose vanishing determines
the components of D passing through z in V . Letting m denote the maximal ideal
of z in X , the strict normal crossings condition implies that the g j are linearly in-
dependent in the complex vector space m/m2 (the Zariski cotangent space). After
shrinking V if necessary, we may choose regular functions gr+1, . . . ,gd on V , such
that the functions g1, . . . ,gr,gr+1− 1, . . . ,gd − 1 all vanish at z, and such that their
images in m/m2 form a basis. Then dg1/g1, . . . ,dgd/gd determine regular sections
of Ω 1

X(logD) in a neighborhood of z in X , and generate the sheaf on that neighbor-
hood. By a compactness argument, one then obtains a finite collection G satisfying
the condition everywhere on Z. ��
Remark 29.4. There is no NRam(π)(r) term in either of these theorems; it appears
subsequently. The same is true of the exceptional set (it appears later still).
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Remark 29.5. When B = C and π is the identity map, the error term in (149) can be
sharpened to O(log+ TA , f (r))+o(logr). This will also be true in subsequent results,
but will not be explicitly mentioned.

The Geometric LLD leads to an inequality, due originally to McQuillan [55,
Thm. 0.2.5]. This inequality presently shows more promise for possible diophantine
analogies, since it omits some of the information on the derivative, and since it may
be related to parts of the proof of Schmidt’s Subspace Theorem.

Before stating the theorem, we note that for the purposes of these notes, if E is a
quasi-coherent sheaf on a scheme X , then

P(E ) = Proj
⊕

d≥0

SdE

(as in EGA). In particular, if E is a vector sheaf, then points on P(E ) correspond
bijectively to hyperplanes (not lines) in the fiber over the corresponding point on X .
This scheme comes with a tautological line sheaf O(1), which gives rise to the
name of McQuillan’s inequality.

If X and D are as in Theorem 29.3, then Ω 1
X(logD) is defined as a locally free

sheaf on X as an analytic space. This is a coherent sheaf, hence by GAGA [72],
it comes from a coherent sheaf on X as a scheme. This latter sheaf is denoted
ΩX/C(logD). In fact it is locally free – see the introduction to Sect. 30.

Theorem 29.6. (McQuillan’s “Tautological Inequality”) Let X, D, f : B→ X, and
A be as in Theorem 29.3. Assume also that f is not constant. Let

f ′ : B→ P(ΩX/C(logD))

be the canonical lifting of f , associated to the nonzero map from f ∗Ω 1
X (logD) to

the cotangent sheaf of B. Then

TO(1), f ′(r)≤exc N(1)
f (D,r)+ NRam(π)(r)+ O(logTA , f (r)+ logr). (150)

Proof. Let
V = V(ΩX/C(logD)) = Spec

⊕

d≥0

SdΩX/C(logD).

This is the total space of TX(− logD). Also let

V = P(ΩX/C(logD)⊕OX).

We have a natural embedding V ↪→ V that realizes V as the projective closure on
fibers of V .

Let [∞] denote the (reduced) divisor V \V . The integrand of (149) can be viewed
as a proximity function for [∞], and the strategy of the proof is to use this to get a
bound on TO(1), f ′(r), via the rational map V ��� P(ΩX/C(logD)). To compare the
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geometries of these two objects, we use the closure of the graph of this rational map
in V ×X P(ΩX/C(logD)), which is the blowing-up of V along the image [0] of the
zero section. Let p : P→V be this blowing-up, let E be its exceptional divisor. Let
q : P→ P(ΩX/C(logD)) be the projection to the second factor. We have a diagram

P

V P(ΩX/C(logD))

p q

B

C

π

φ

dDf

f

There is a unique lifting φ : B→ P that satisfies dD f = p◦φ and f ′ = q◦φ . We also
have

p∗O(1)∼= q∗O(1)⊗O(E)

(where the first O(1) is on V and the second one is on P(ΩX/C(logD))). This is
because any given nonzero rational section s of ΩX/C(logD) on X gives a rational
section (s,1) of O(1) on V , and also a rational section of O(1) on P(ΩX/C(logD)).
Their pull-backs to P coincide except that the first one also vanishes to first order
along E .

We also have O([∞]) ∼= O(1) on V , because the divisor [∞] is cut out by the
section (0,1) of ΩX/C(logD)⊕OX .

Thus, we have

TO(1), f ′(r) = Tq∗O(1),φ (r)+ O(1)

= TO(1),dD f (r)−TO(E),φ (r)+ O(1)

= NdD f ([∞],r)−TO(E),φ (r)+ mdD f ([∞],r)+ O(1)

≤exc N(1)
f (D,r)+ NRam(π)(r)+ O(logTA , f (r)+ logr).

To explain the last step above, mdD f ([∞],r) is bounded by Theorem 29.3. Since E
is effective and does not contain the image of φ (since f is not constant), TO(E),φ (r)
is bounded from below. (It can also be used to subtract a term NRam( f )(r) from the
right-hand side of (150).)

Now consider NdD f ([∞],r). Fix a point b ∈ B, let w be a local coordinate on B
at b, let z be the coordinate on C, and let z1, . . . ,zn be local coordinates on X at
f (b) such that D is locally given by z1 · · · zr = 0 nearby. Then, near f (b), V has
homogeneous coordinate functions dz1/z1, . . . ,dzr/zr,dzr+1, . . . ,dzn,1. Relative to
these coordinates, the value of dD f in a punctured neighborhood of b is given by

[
d(z1 ◦ f )/dz

z1 ◦ f
: . . . :

d(zr ◦ f )/dz
zr ◦ f

:
d(zr+1 ◦ f )

dz
: . . . :

d(zn ◦ f )
dz

: 1

]

=
[

d(z1 ◦ f )/dw
z1 ◦ f

: . . . :
d(zr ◦ f )/dw

zr ◦ f
:

d(zr+1 ◦ f )
dw

: . . . :
d(zn ◦ f )

dw
:

dz
dw

]
.
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Then dD f will meet [∞] to the extent that there are poles among the first n coor-
dinates or a zero in the last coordinate. Poles among the first n coordinates can
only occur in the first r coordinates (using the second representation above), and in
that case they will at most be simple poles and will only occur if f (b) ∈ SuppD.
Thus the contribution to NdD f ([∞],r) from poles in these coordinates is bounded by

N(1)
f (D,r). The contribution coming from zeroes in the last coordinate is bounded

by NRam(π)(r). ��
As a sample application of this theorem, it implies the Second Main Theorem

with truncated counting functions for maps to Riemann surfaces, including the
case in which the domain is a finite ramified cover of C. This is the (proved) case
dimX = 1 of Conjecture 27.5.

Corollary 29.7. Let X be a smooth complex projective curve, let D be an effective
reduced divisor on X, and let f : B→ X be a non-constant holomorphic curve. Then

N(1)
f (D,r)+ NRam(π)(r)≥exc TK (D), f (r)−O(logTA , f (r)+ logr). (151)

Proof. Since X is a curve, the vector sheaf ΩX/C(logD) is isomorphic to the line
sheaf K (D). Therefore the canonical projection p : P(ΩX/C(logD))→ X is an iso-
morphism, O(1)∼= p∗K (D), and f ′ = p−1 ◦ f . Thus

TO(1), f ′(r) = TK (D), f (r)+ O(1),

so (151) is equivalent to (150). ��
Remark 29.8. In fact, when dimX = 1, McQuillan’s inequality is directly equivalent
to Conjecture 27.5, as can be seen from the above proof. This is not true in higher
dimension, though (McQuillan’s inequality is proved, but Conjecture 27.5 is not).

Cartan’s theorem (Theorem 8.6) can also be proved using McQuillan’s inequal-
ity, but this requires more work than can be included here. See [97]. The modified
version (Theorem 8.11) requires a modified form of McQuillan’s inequality (involv-
ing the same type of change).

It is hoped that other key results in Nevanlinna theory can also be proved using
Theorem 29.6.

We end the section with another corollary, which often has applications in
Nevanlinna theory. It generalizes the Schwarz lemma, which has played an impor-
tant role in Nevanlinna theory for a long time; see [80, Thm. 3], where it is proved
for jet differentials. The introduction of op. cit. also describes some of the history of
this result. See also [53, Sect. 4], [93, Cor. 5.2], and [94].

Corollary 29.9. Let X be a smooth complex projective variety, let D be a normal
crossings divisor on X, let f : B→ X be a holomorphic map, let A be an ample line
sheaf on X, let L be a line sheaf on X, let d be a positive integer, and let ω be a
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global section of SdΩX/C(logD). If f ∗ω �= 0 (i.e., it does not vanish everywhere on
B), then

1
d

TL , f (r)≤exc N(1)
f (D,r)+ NRam(π)(r)+ O(logTA , f (r)+ logr).

Proof. Let f ′ : B→ P(ΩX/C(logD)) be as in Theorem 29.6, and let

p : P(ΩX/C(logD))→ X

be the canonical projection. Then ω corresponds to a global section

ω ′ ∈ Γ (P(ΩX/C(logD)),O(d)⊗ p∗L ∨),

and ( f ′)∗ω ′ = f ∗ω . Thus the image of f ′ is not contained in the base locus of
O(d)⊗L ∨, so

TO(d), f ′(r)≥ TL , f (r)+ O(1)

by Theorem 12.8c. The result then follows immediately from (150). ��
One can think of this result as a generalization of the fact that if f : C → X

is a nonconstant map from a nonsingular projective curve of genus g to a smooth
complete variety X , then deg f ∗KX ≤ 2g−2, where KX is the canonical line sheaf
of X . Thus, it is useful in carrying over results from the split function field case
to Nevanlinna theory (see Sect. 18). It is used in this manner in the proof of [93,
Thm. 5.3].

30 Derivatives in Number Theory

Whether one uses the Lemma on the Logarithmic Derivative or curvature,
Nevanlinna theory depends in an essential way on the ability to take the deriva-
tive of a holomorphic function. In the number field case, on the other hand, there is
currently no known counterpart to the derivative. Even in the function field case, the
derivative lives in the absolute tangent bundle, but any counterpart to the derivative
as in Nevanlinna theory should live in the relative tangent bundle. McQuillan gets
around this in his proof of the 1 + ε conjecture, by noting that for points of large
height the derivative has an approximate projection to the relative tangent bundle
that is precise enough to be useful (see the end of Sect. 28). Although this method
shows a great deal of promise, it will not be explored further here.

Instead, this section will describe a conjecture in number theory based on
McQuillan’s tautological inequality. Because of its origin, the name “tautological
conjecture” is too good to pass up.

If X is a smooth complete variety over a field k, and if D is a normal crossings
divisor on X , then an algebraic definition of ΩX/k(logD) is given in [40, 1.7]. Kato
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[40, 1.8] also shows this to be locally free in the étale topology of rank dimX . This
then descends to a quasi-coherent sheaf on X in the Zariski topology by [33, VIII
Thm. 1.1]. It is a vector sheaf (with non-obvious generators) by [34, IV 2.5.2].

Conjecture 30.1. (Tautological Conjecture) Let k be a number field, let S ⊇ S∞ be
a finite set of places of k, let X be a nonsingular complete variety over k with
dimX > 0, let D be a normal crossings divisor on X , let r be a positive integer,
let A be an ample line sheaf on X , and let ε > 0. Then, for all x ∈ X(k̄) \SuppD
with [κ(x) : k]≤ r, there is a closed point x′ ∈ P(ΩX/k(logD)) lying over x such that

hO(1),k(x
′)≤ N(1)

S (D,x)+ dk(x)+ ε hA ,k(x)+ O(1). (152)

Moreover, given a finite collection of rational maps gi : X ��� Wi to varieties Wi,
there are finite sets Σi of closed points on Wi for each i with the following property.
For each x as above, x′ may be chosen so that, for each i, if x lies in the domain
of gi and if gi(x) /∈ Σi, then x′ lies in the domain of the induced rational map
P(ΩX/k(logD)) ��� P(ΩWi/k). Moreover, the constant implicit in the O(1) term de-
pends only on k, S, X , D, r, A , ε , the rational maps gi, and the choices of height
and counting functions.

This extra condition (involving the rational maps gi) should perhaps be explained
a bit. This condition seems to be necessary in order to ensure that the points x′
behave more like derivatives. For example, consider the special case in which r = 1,
D = 0, and X is a product X1×X2. Then the points x must be rational points, and
(152) for X is the sum of the same inequality for X1 and X2. But then, without the
last condition in the conjecture, the conjecture would hold if it held for either factor,
since one could take x′ tangent to the copy of X1 or X2 sitting inside of X . This seems
a bit unnatural. In addition, the last condition is useful for applications.

McQuillan’s work is not the only support for this conjecture. For some time, it
has been known that parts of Schmidt’s proof of his Subspace Theorem correspond
to a proof of Cartan’s theorem due to H. and J. Weyl [100], further developed by
Ahlfors [1]. Both of these proofs can be divided up into an “old” part (correspond-
ing to an extension to higher dimensions of the proofs of Roth and Nevanlinna of
the earlier case on P1), and a “new” part. In Ahlfors’ case, the “new” part consists
of working with the associated curves (Frenet formalism); in Schmidt’s case, it con-
sists of working with Minkowski’s theory of successive minima. In either case, the
proof involves geometric constructions on

∧p Cn+1 or
∧p kn+1, respectively. This

strongly suggested that the theory of successive minima may be related to the use
of derivatives in number theory [87, Chap. 6]. This has been recently refined [97] to
more explicitly involve a variant of Conjecture 30.1, and also to use the geometry
of flag varieties.

The tie-in between successive minima and the tautological conjecture proceeds
as follows. Let X be a nonsingular complete variety over a number field k, let D be
a normal crossings divisor on X , let Y = SpecOk, and let X →Y be a proper model
for X . Then we have a relative tangent sheaf TX /Y (− logD) on X . This is not nec-
essarily a vector sheaf, since X need not be smooth over Y and D need not extend
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as a normal crossings divisor. However, we shall ignore that distinction for the sake
of discussion. Via the mechanisms of Arakelov theory, one can assign a Hermitian
metric to the sheaf at all archimedean places. If i : SpecY →X is the section of
X → Y corresponding to a given rational point, then i∗TX /Y (− logD) is a vector
sheaf on Y = SpecOk, which can then be viewed as a lattice in Rn (if k = Q), or as a
lattice in (k⊗Q R)n (generally). Bounds on the metrics at archimedean places corre-
spond to giving a convex symmetric body in (k⊗Q R)n, and therefore Minkowski’s
theory of successive minima can be translated into Arakelov theory as a search for
linearly independent nonzero sections of i∗TX /Y (− logD), obeying certain upper
bounds on its metric at each infinite place. See, for example, [28]. Or, in the function
field case, it is known that Minkowski’s theory corresponds to a search for nonzero
global sections with bounded poles at certain places (an application of Riemann-
Roch).

Giving a nonzero section as the first successive minimum is basically equivalent
to giving a line subsheaf of largest degree (unless the first two successive minima
are close). This corresponds to giving a quotient subbundle L of i∗ΩX /Y (logD) of
smallest degree. This, in turn, corresponds to giving a point x′ ∈ P(ΩX/Y (logD))
lying over the rational point in question [36, II 7.12]. The sheaf L is none
other than the pull-back of the tautological bundle O(1) to Y via the section
i′ : Y → P(ΩX /Y (logd)) corrsponding to the point x′. Therefore, the degree of L
is the height hO(1),k(x′) (see (70)). This again leads to Conjecture 30.1.

We emphasize that specific bounds on the O(1) term in (152) are not given, so
Conjecture 30.1 is meaningful only for an infinite set of points – or, better yet, for a
generic or semi-generic set of points (Definitions 15.5 and 15.11).

Remark 30.2. The assertions of Remark 29.8 also apply in the arithmetic situa-
tion. When dimX = 1, the extra conditions involving the rational functions gi in
the Tautological Conjecture are automatically satisfied. Therefore, in this case the
Tautological Conjecture is equivalent to Conjecture 25.3b (for the same reasons
as in Remark 29.8). Thus, by Remark 25.4, the Tautological Conjecture is proved
for curves over function fields of characteristic 0. As in Remark 29.8, though,
Conjectures 30.1 and 25.3b are not as closely related when dimX > 1.

We also note that points of low height as in Conjecture 30.1 behave like deriva-
tives in the following sense.

Proposition 30.3. (Arithmetic Chain Rule) Let f : X1 → X2 be a morphism of com-
plete varieties over a number field k. Then, for all x ∈ X1(k̄) where f is étale, and
for all closed points x′ ∈ P(ΩX1/k) lying over x, the rational map f∗ : P(ΩX1/k) ���
P(ΩX2/k) takes x′ to a point x′2 (lying over f (x)) for which

hO(1),k(x
′
2)≤ hO(1),k(x

′)+ O(1).

Moreover, assume that X1 and X2 are projective, with ample line sheaves A1 and
A2, respectively, and that ε1 > 0 is a positive number for which (152) holds for all
x in some set Σ ⊆ X1(k̄) (with respect to A1 and ε1). Then there is an ε2 > 0 such
that (152) holds for f (x) ∈ X2(k̄) for all x ∈ Σ , with respect to A2 and ε2.
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Proof. Let X1 and X2 be models for X1 and X2 over Y := SpecOk, respectively,
chosen such that f extends as a morphism f : X1 → X2, let Y ′ = SpecOκ(x′),
and let i : Y ′ →X1 be the multisection corresponding to x (which factors through
SpecOκ(x)). Then x′ corresponds to a surjection i∗ΩX1/Y � L for a line sheaf L
on Y ′, and hO(1),k(x′) is the Arakelov degree of L divided by [κ(x′) : k]. We also
have a morphism f ∗ΩX2/Y → ΩX1/Y , isomorphic at x. This gives a nonzero map
( f ◦ i)∗ΩX2/Y →L , so hO(1),k(x′2) ≤ hO(1),k(x′) (with heights defined using these
models).

The second assertion is immediate from the first assertion, by Proposition 10.13.
��

A similar result holds for closed immersions (but without the assumption on
étaleness).

The name “Arithmetic Chain Rule” comes from the fact that this result shows
that the “derivatives” x′ and x′2 are related in the expected way.

31 Another Conjecture Implies abc

Conjecture 23.4, involving truncated counting functions, is of course a vast general-
ization of the abc conjecture, and Conjecture 25.1, which involved algebraic points,
also rather easily implies abc. Actually, though, the (seemingly) weaker Conjecture
15.6 has also been shown to imply the abc conjecture [93]. This implication, how-
ever, (necessarily) needs to use varieties of dimension > 1, whereas knowing either
of the former two conjectures even for curves would suffice.

This section sketches the proof of the implication mentioned above.

Theorem 31.1. For any ε > 0 there is a nonsingular projective variety Xε over Q, a
normal crossings divisor Dε on Xε , and a real number ε ′ > 0, such that if Conjecture
15.6b holds for Xε , Dε , and ε ′, then the abc conjecture (Conjecture 23.5) holds for ε .

Proof (sketch). Fix an integer n > 3/ε+3. Let Xn be the closed subvariety in
(
P2
)n

in coordinates
([x1 : y1 : z1], . . . , [xn : yn : zn])

given by the equation
n

∏
i=1

xi
i +

n

∏
i=1

yi
i +

n

∏
i=1

zi
i = 0.

There is a rational map Xn ��� P2 given by

([x1 : y1 : z1], . . . , [xn : yn : zn]) �→
[
∏xi

i :∏yi
i :∏zi

i

]
. (153)

Let Γn be the closure of the graph of this rational map in Xn×P2, and let φ : Γn→ P2

be the projection to the second factor. The image of φ is a line, which we identify
with P1.
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Given relatively prime integers a,b,c with a+b+ c = 0, define a point in Xn(Q)
as follows. Let

xn =∏
p

p[(ordp a)/n] and xi = ∏
ordp a≡i (mod n)

p (i < n).

(The brackets in the definition of xn denote the greatest integer function.) With these
definitions, we have a = ∏xi

i, with xn as large as possible subject to all xi being
integers. Similarly define y1, . . . ,yn using b and z1, . . . ,zn using c. This point lifts to
a unique point in Γn(Q), which we denote Pa,b,c.

Let D be the effective Cartier divisor on Γn obtained by pulling back the divisor
x1 · · ·xny1 · · ·ynz1 · · · zn = 0 from Xn, and let E be the divisor on the image P1 of φ ,
obtained by restricting the coordinate hyperplanes on P2. The latter divisor is the
sum of the points [1 : −1 : 0], [0 : 1 : −1], and [−1 : 0 : 1]. Let S = {∞} ⊆MQ. It is
possible to show that if p is a rational prime and v is the corresponding place of Q,
then

λE,v([a : b : c]) = ordp(abc) log p

and
λD,v(Pa,b,c) = ordp(x1 · · ·xny1 · · ·ynz1 · · ·zn) log p,

using Weil functions suitably defined using (40). It then follows that

NS(D,Pa,b,c)≤ ∑
p|abc

log p +
1
n

NS(E,φ(Pa,b,c)).

One would like to apply Conjecture 15.6 to the divisor D on Γn, but this is
not possible since Γn is singular. However, there is a nonsingular projective va-
riety Γ ′n , a normal crossings divisor D′ on Γ ′n , and a proper birational morphism
ψ : Γ ′n → Γn, such that SuppD′ = ψ−1(SuppD), ψ is an isomorphism over a suit-
ably large set, and KΓ ′n (D′) ≥ ψ∗φ∗O(1) relative to the cone of effective divisors.
For details see [93, Lemma 3.9].

Let P′a,b,c be the point on Γ ′n lying over Pa,b,c. Then one can show that

hQ([a : b : c]) = hψ∗φ∗O(1),Q(P′a,b,c)+ O(1)

≤ hKΓ ′n (D′),Q(P′a,b,c)+ O(1)

≤ NS(D′,P′a,b,c)+ ε ′hA ,Q(P′a,b,c)+ O(1)

≤ NS(D,Pa,b,c)+ ε ′hA ,Q(P′a,b,c)+ O(1)

≤ ∑
p|abc

log p +
3
n

hQ([a : b : c])+ ε ′′hQ([a : b : c])+ O(1)

≤ ∑
p|abc

log p +
ε

1 + ε
hQ([a : b : c])+ O(1),
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and therefore hQ([a : b : c]) ≤ (1 + ε)∑p|abc log p + O(1). Here we have used the
fact that NS(D′,P′a,b,c)≤ NS(D,Pa,b,c), which follows from the fact that ψ∗D−D′ is
effective.

This chain of inequalities holds outside of some proper Zariski-closed subset of
Γ ′n , but it is possible to show that this set can be chosen so that it only involves
finitely many triples (a,b,c). ��

The variety Xn admits a faithful action of G2n−2
m , by letting the first n− 1 coor-

dinates act by xi �→ txi and x1 �→ t−ix1 for i = 2, . . . ,n, and letting the other n− 1
coordinates act similarly on the yi. This action respects fibers of the rational map
(153), so the action extends to Γn, and the construction of Γ ′n can be done so that the
group action extends there, too. Since dimXn = 2n−1, the group acts transitively on
open dense subsets of suitably generic fibers of φ . It is this group action that allows
one to control the proper Zariski-closed subset ofΓ ′n arising out of Conjecture 15.6b.
The group action also provides some additional structure, and in fact Conjecture
15.2 can be proved in this context [93, Thm. 5.3].

32 An abc Implication in the Other Direction

The preceding sections give a number of ways in which some conjectures imply
the abc conjecture. It is also true, however, that the abc conjecture implies parts
of the preceding conjectures. While this is mostly a curiousity, since the implied
special cases are known to be true whereas the abc conjecture is still a conjecture,
this provides some insight into the geometry of the situation.

The implications of this section were first observed by Elkies [18], who showed
that “Mordell is as easy as abc,” i.e., the abc conjecture implies the Mordell con-
jecture. This was extended by Bombieri [6], who showed that abc implies Roth’s
theorem, and then by van Frankenhuijsen [85], who showed that the abc conjec-
ture implies Conjecture 15.6b for curves. In each of these cases, the abc conjecture
for a number field k would be needed to imply any given instance of Conjecture
15.6b. Here “the abc conjecture for k” means Conjecture 23.4b over k with X = P1

k
and D = [0] + [1] + [∞]. It is further true that a “strong abc conjecture,” namely
Conjecture 25.3b with X = P1

k and D = [0] + [1] + [∞], would imply Conjecture
25.1b for curves; in other words van Frankenhuijsen’s implication holds also for
algebraic points of bounded degree.

This circle of ideas stems from two observations. The first of these is due to Belyı̆
[4]. He showed that a smooth complex projective curve X comes from a curve over
Q (i.e., there is a curve X0 over Q such that X ∼= X0×Q C) if and only if there is a

finite morphism from X to P1
C ramified only over {0,1,∞}. For our purposes, this

can be adapted as follows.

Theorem 32.1. (Belyı̆) Let X be a smooth projective curve over a number field
k, and let S be a finite set of closed points on X. Then there is a finite morphism
f : X → P1

k which is ramified only over {0,1,∞}, and such that S⊆ f−1({0,1,∞}).
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Proof. See Belyı̆ [4] or Serre [74]. ��
The other ingredient is a complement (and actually, a converse) to Proposition

25.2, using truncated counting functions.

Proposition 32.2. Let k be a number field or function field, let S ⊇ S∞ be a finite
set of places of k, let π : X ′ → X be a surjective generically finite morphism of
complete nonsingular varieties over k, and let D be a normal crossings divisor on
X. Let D′ = (π∗D)red, and assume that it too has normal crossings. Assume also that
the ramification divisor R of π satisfies

R = π∗D−D′ (154)

(and therefore that π is unramified outside of SuppD′).4 Let K and K ′ denote the
canonical line sheaves on X and X ′, respectively. Then, for all x ∈ X ′(k̄) not lying
on SuppD′,

N(1)
S (D′,x)+ dS(x)−hK ′(D′),k(x)

≥ N(1)
S (D,π(x))+ dS(π(x))−hK (D),k(π(x))+ O(1),

(155)

with equality if [κ(x) : k] is bounded. In particular, either part of Conjecture 25.3
for D′ on X ′ is equivalent to that same part for D on X.

Proof. First, by (154), we have K ′(D′)∼= π∗(K (D)). Thus

hK ′(D′),k(x) = hK (D),k(π(x))+ O(1),

so it suffices to show that

N(1)
S (D′,x)+ dS(x)≥ N(1)

S (D,π(x))+ dS(π(x))+ O(1), (156)

with equality if [κ(x) : k] is bounded.
Now let YS = SpecOk,S (or, if S = /0, which can only happen in the function

field case, let YS be the smooth projective curve over the field of constants of k for
which K(YS) = k). Let X be a proper model for X over YS for which D extends
to an effective Cartier divisor, which will still be denoted D. (This can be obtained
by taking a proper model, extending D to it as a Weil divisor, and blowing up the
sheaf of ideals of the corresponding reduced closed subscheme.) Let X ′ be a proper
model for X ′ over YS. We may assume that π extends to a morphism π : X ′ →X ,
and that D′ extends to an effective Cartier divisor on X ′. We assume further that
SuppD′ = π−1(SuppD) (on X ′). Indeed, one can obtain X ′ and D′ by blowing up
the reduced sheaf of ideals corresponding to π−1(SuppD).

4 This condition is equivalent to (X ′,D′) being log étale over (X,D) by [40, (3.12)], using the fact
that (X ′,D′) is log smooth over Speck by (3.7)(1) of op. cit.
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For x ∈ X ′(k̄), let L = κ(π(x)), let L′ = κ(x), and let Y �
S and Y ′S be the normaliza-

tions of YS in L and L′, respectively. Then we have a commutative diagram

Y ′S
i′−−−−→ X ′

⏐⏐�p
⏐⏐�π

Y �
S

i−−−−→ X

(157)

in which the maps i′ and i correspond to the algebraic points x and π(x), respectively.

We use the divisors D and D′ to define N(1)
S (D,π(x)) and N(1)

S (D′,x), respectively.

Then a place w of L contributes to N(1)
S (D,π(x)) if and only if the corresponding

closed point of Y �
S lies in i−1(SuppD), and similarly for places w′ of L′. By commu-

tativity of (157) and the condition SuppD′ = π−1(SuppD), it follows that

N(1)
S (D,π(x))−N(1)

S (D′,x) =
1

[L′ : k]∑w′
(ew′/w−1) log#Fw′ ,

where the sum is over places w′ of L′ corresponding to points in (i′)∗(SuppD′), w is
the place of L lying under w′, ew′/w is the ramification index of w′ over w, and Fw′
is the residue field of w′. (In the function field case, replace log#Fw′ with [Fw′ : F].)

We also have

dS(x)−dS(π(x)) =
1

[L′ : k]∑Q′
ordQ′ DL′/L · log#Fw′ ,

where the sum is over nonzero prime ideals Q′ of OL′,S, and w′ is the correspond-
ing place of L′. This sum can be restricted to primes corresponding to points in
(i′)∗(SuppD′), since the other primes are unramified over L by Lemma 24.10 ap-
plied to π : X ′ →X and the relevant local rings. Therefore the inequality (156)
follows from the elementary fact that

ordQ′ DL′/L ≥ eQ′/Q−1, (158)

where Q = Q′ ∩OL,S . (This inequality may be strict if Q′ is wildly ramified over Q.)
Now if [L′ : k] is bounded, then the differences in (158) add up to at most a

bounded amount, so (156) holds up to O(1) in that case.
The last assertion of the proposition follows trivially from (155). ��
The implications mentioned in the beginning of this section then follow immedi-

ately from Theorem 32.1 and Proposition 32.2, upon noting that (154) always holds
for finite morphisms of nonsingular curves.
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fonctions algébroı̈des. Ann. Sci. École Norm. Sup. 61(3), 1–44 (1944) ISSN 0012-9593
17. Eisenbud, D.: Commutative algebra (with a view toward algebraic geometry), vol. 150 In:

Graduate texts in mathematics. Springer, New York (1995). ISBN 0-387-94268-8; 0-387-
94269-6

18. Elkies, N.D.: ABC implies Mordell. Int. Math. Res. Notices, 1991(7), 99–109 (1991). ISSN
1073-7928

19. Evertse, J.-H.: On sums of S-units and linear recurrences. Compositio Math. 53(2), 225–244
(1984). ISSN 0010-437X

20. Evertse, J.-H., Ferretti, R.G.: A generalization of the subspace theorem with polynomials of
higher degree. In: Diophantine approximation. Dev. Math., vol. 16, pp. 175–198. Springer,
NewYork (2008). ArXiv:math.NT/0408381

21. Faltings, G.: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73(3),
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[1991], 214
global field, 161
Goldberg, Anatoly A. and Ostrovskii, Iossif V.

[2008], 112, 150
Grauert, H., 165
Green, M. L.

[1972], 155
[1975], 166

Griffiths, P. A., 156
Griffiths, P. and Carlson, J.

[1972], 156
Grothendieck, A. and Dieudonné, J.
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Séminaire de Probabilités XLIII (2011)
Vol. 2007: G. Gromadzki, F.J. Cirre, J.M. Gamboa,
E. Bujalance, Symmetries of Compact Riemann Surfaces
(2010)
Vol. 2008: P.F. Baum, G. Cortiñas, R. Meyer, R. Sánchez-
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