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Preface

The European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases, ECML PKDD 2010, was held in Barcelona,
September 20–24, 2010, consolidating the long junction between the European
Conference on Machine Learning (of which the first instance as European work-
shop dates back to 1986) and Principles and Practice of Knowledge Discovery
in Data Bases (of which the first instance dates back to 1997). Since the two
conferences were first collocated in 2001, both machine learning and data min-
ing communities have realized how each discipline benefits from the advances,
and participates to defining the challenges, of the sister discipline. Accordingly,
a single ECML PKDD Steering Committee gathering senior members of both
communities was appointed in 2008.

In 2010, as in previous years, ECML PKDD lasted from Monday to Fri-
day. It involved six plenary invited talks, by Christos Faloutsos, Jiawei Han,
Hod Lipson, Leslie Pack Kaelbling, Tomaso Poggio, and Jürgen Schmidhuber,
respectively. Monday and Friday were devoted to workshops and tutorials, orga-
nized and selected by Colin de la Higuera and Gemma Garriga. Continuing from
ECML PKDD 2009, an industrial session managed by Taneli Mielikainen and
Hugo Zaragoza welcomed distinguished speakers from the ML and DM indus-
try: Rakesh Agrawal, Mayank Bawa, Ignasi Belda, Michael Berthold, José Luis
Flórez, Thore Graepel, and Alejandro Jaimes. The conference also featured a dis-
covery challenge, organized by András Benczúr, Carlos Castillo, Zoltán Gyöngyi,
and Julien Masanès.

From Tuesday to Thursday, 120 papers selected among 658 submitted full
papers were presented in the technical parallel sessions. The selection process
was handled by 28 area chairs and the 282 members of the Program Committee;
additional 298 reviewers were recruited. While the selection process was made
particularly intense due to the record number of submissions, we heartily thank
all area chairs, members of the Program Committee, and additional reviewers
for their commitment and hard work during the short reviewing period. The
conference also featured a demo track, managed by Ulf Brefeld and Xavier Car-
reras; 12 demos out of 24 submitted ones were selected, attesting to the high
impact technologies based on the ML and DM body of research.

Following an earlier tradition, seven ML and seven DM papers were distin-
guished by the program chairs on the basis of their exceptional scientific quality
and high impact on the field, and they were directly published in the Machine
Learning Journal and the Data Mining and Knowledge Discovery Journal, re-
spectively. Among these papers, some were selected by the Best Paper Chair
Hiroshi Motoda, and received the Best Paper Awards and Best Student Paper
Awards in Machine Learning and in Data Mining, sponsored by Springer.



VI Preface

A topic widely explored from both ML and DM perspectives was graphs, with
motivations ranging from molecular chemistry to social networks. The point of
matching or clustering graphs was examined in connection with tractability and
domain knowledge, where the latter could be acquired through common pat-
terns, or formulated through spectral clustering. The study of social networks
focused on how they develop, overlap, propagate information (and how infor-
mation propagation can be hindered). Link prediction and exploitation in static
or dynamic, possibly heterogeneous, graphs, was motivated by applications in
information retrieval and collaborative filtering, and in connection with random
walks.

Frequent itemset approaches were hybridized with constraint programming
or statistical tools to efficiently explore the search space, deal with numerical
attributes, or extract locally optimal patterns. Compressed representations and
measures of robustness were proposed to optimize association rules. Formal con-
cept analysis, with applications to pharmacovigilance or Web ontologies, was
considered in connection with version spaces.

Bayesian learning features new geometric interpretations of prior knowledge
and efficient approaches for independence testing. Generative approaches were
motivated by applications in sequential, spatio-temporal or relational domains,
or multi-variate signals with high dimensionality. Ensemble learning was used to
support clustering and biclustering; the post-processing of random forests was
also investigated.

In statistical relational learning and structure identification, with motivating
applications in bio-informatics, neuro-imagery, spatio-temporal domains, and
traffic forecasting, the stress was put on new learning criteria; gradient ap-
proaches, structural constraints, and/or feature selection were used to support
computationally effective algorithms.

(Multiple) kernel learning and related approaches, challenged by applications
in image retrieval, robotics, or bio-informatics, revisited the learning criteria and
regularization terms, the processing of the kernel matrix, and the exploration
of the kernel space. Dimensionality reduction, embeddings, and distance were
investigated, notably in connection with image and document retrieval.

Reinforcement learning focussed on ever more scalable and tractable ap-
proaches through smart state or policy representations, a more efficient use of
the available samples, and/or Bayesian approaches.

Specific settings such as ranking, multi-task learning, semi-supervised learn-
ing, and game-theoretic approaches were investigated, with some innovative ap-
plications to astrophysics, relation extraction, and multi-agent systems. New
bounds were proved within the active, multi-label, and weighted ensemble learn-
ing frameworks.

A few papers aimed at efficient algorithms or computing environments, e.g.,
related to linear algebra, cutting plane algorithms, or graphical processing units,
were proposed (with available source code in some cases). Numerical stability
was also investigated in connection with sparse learning.



Preface VII

Among the applications presented were review mining, software debugging/
process modeling from traces, and audio mining.

To conclude this rapid tour of the scientific program, our special thanks go
to the local chairs Ricard Gavaldà, Elena Torres, and Estefania Ricart, the Web
and registration chair Albert Bifet, the sponsorship chair Debora Denato, and
the many volunteers that eagerly contributed to make ECML PKDD 2010 a
memorable event.

Our last and warmest thanks go to all invited speakers and other speakers, to
all tutorial, workshop, demo, industrial, discovery, best paper, and local chairs,
to the area chairs and all reviewers, to all attendees — and overall, to the au-
thors who chose to submit their work to the ECML PKDD conference, and thus
enabled us to build up this memorable scientific event.

July 2010 José L Balcázar
Francesco Bonchi
Aristides Gionis

Michèle Sebag
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Abstract. Partially observable Markov decision processes (POMDPs)

are widely used for planning under uncertainty. In many applications, the

huge size of the POMDP state space makes straightforward optimization

of plans (policies) computationally intractable. To solve this, we intro-

duce an efficient POMDP planning algorithm. Many current methods

store the policy partly through a set of “value vectors” which is updated

at each iteration by planning one step further; the size of such vectors fol-

lows the size of the state space, making computation intractable for large

POMDPs. We store the policy as a graph only, which allows tractable

approximations in each policy update step: for a state space described by

several variables, we approximate beliefs over future states with factor-

ized forms, minimizing Kullback-Leibler divergence to the non-factorized

distributions. Our other speedup approximations include bounding po-

tential rewards. We demonstrate the advantage of our method in several

reinforcement learning problems, compared to four previous methods.

1 Introduction

Planning under uncertainty is a central task in many applications, such as control
of various robots and machines, medical diagnosis, dynamic spectrum access for
cognitive radio, and many others. Such planning can often be described as a
reinforcement learning problem where an agent must decide a behavior (action
policy), and the quality of any policy can be evaluated in terms of a reward
function. Partially observable Markov decision processes (POMDPs) [1] are a
widely used class of models for planning (choosing good action policies) in such
scenarios. In brief, in a POMDP the latent state of the world evolves according to
a Markov model given each action chosen; the state is not directly observable, and
end results of potential actions are not known, but the agent receives observations
that depend on the state, and can plan ahead based on probabilistic beliefs about
current and future states. For a survey of POMDP applications see, e.g., [2].

Policies are optimized in POMDPs by iterative algorithms. A central problem
is that the optimization becomes computationally intractable when the size of the

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part III, LNAI 6323, pp. 1–16, 2010.
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underlying state space is large. We consider POMDPs with discrete state spaces;
if the state is described by N variables, the number of states is at worst expo-
nential in N and the number of state transitions is at worst exponential in 2N .
To combat computational intractability, many planning algorithms have been
introduced with various approaches for improving efficiency [3–5]; we describe
several approaches in Section 2.1. Overall, however, computational intractability
remains a large problem which limits current applicability of POMDPs.

We present a novel method for efficient planning with POMDPs. In POMDPs
the state can often be described by several variables whose individual transition
probabilities do not depend on the whole state but only on a subset of variables.
However, this does not yet ensure tractability: POMDP planning requires pos-
terior probabilities of current and future states integrated over a distribution
(belief) about previous states. Such integration is done over values of the whole
previous state, and does not reduce to a computationally tractable form. How-
ever, the result can be approximated by a tractable form: in each such computa-
tion we use a factorized approximation optimized to minimize Kullback-Leibler
divergence to the non-factorized intractable belief. We apply such factorized ap-
proximation in several central parts of the computation, which is organized based
on a policy graph. The approximate computations ensure that beliefs over states
remain in a factorized form, which crucially reduces complexity of evaluating and
optimizing plans. We use a speedup based on computing bounds for potential
policy rewards, to avoid evaluating policy alternatives that cannot compete with
best existing policies; effectiveness of such pruning can be further increased with
suitable ordering of evaluations. We describe our method in Section 3.

We compare the performance of our method to four existing POMDP solu-
tions: two traditional approaches (Perseus [3] and HSVI [4]) and two methods
designed for large problems (Symbolic Perseus [5] and Truncated Krylov Iter-
ation combined with Perseus [5]). We compare the methods on four POMDP
benchmark problems of scalable size, including two new benchmarks introduced
here: the Uncertain RockSample problem, which is a more difficult variant of
the traditional RockSample benchmark, and Spectrum Access which is adapted
from a cognitive radio application and is described further below. Our method
gets better policies than others in the same running time, and can handle large
problems where other methods run out of memory, disk space, or time.

One increasingly important application area of reinforcement learning is
opportunistic spectrum access, where devices such as cognitive radios detect
available unused radio channels and exploit them for communication, avoiding
collisions with existing users of the channels. This task can be formulated as a
POMDP problem, and various POMDP solutions with different levels of model
detail exist [6, 7]. Computational intractability is a problem for POMDP solu-
tions: if the status of each channel (describing ongoing packet trains) is modeled
with a detailed model having several states, like 15 in [6], state space grows ex-
ponentially as 15N with respect to the number of channels N used by the model;
this makes POMDP computation challenging. The simple solution, restricting
policies to few channels only, is not desirable: the more channels one can take
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into account, the more efficient will be the use of spectrum and the more benefit
the users will get. We present a new benchmark problem for POMDPs called
Spectrum Access which is directly adapted from our proposal for a cognitive ra-
dio solution [6]. We use spectrum access as one of the benchmark problems in
the experiments, and show that our method yields the best results for it.

In the following, we first describe the basic concepts of POMDPs and review
existing methods for planning in POMDP problems in Section 2; in Section 3 we
present our solution; and in Section 4 we describe the comparison experiments
including the two new benchmark problems. In Section 5 results are discussed.
We give conclusions in Section 6.

2 Partially Observable Markov Decision Processes

A partially observable Markov decision process (POMDP) is defined completely
by (1) a Markov model describing the possible state transitions and observation
probabilities given each action of the agent, and (2) a reward model defining how
much reward is given when performing an action in a certain state. Formally a
POMDP consists of the finite sets of states S, actions A, observations O, and
rewards R : S × A → R. At each time step, the agent performs action a, the
world transitions from its current state s to a new state s′ chosen according to the
transition probabilities P (s′|s, a), and the agent receives observation o according
to the observation probability P (o|s′, a). The reward at each time step is R(s, a).

The goal of the agent is to choose her actions to maximize a cumulative
reward over time. We discuss the typical infinite-horizon discounted objective [1]
E (
∑∞

t=0 γtRt), where γ is the discount factor, 0 < γ < 1, and Rt is the reward
at time step t. The exact state of the world is not known to the agent, but
a probability distribution, which tells the probability for being in state s can
be maintained. This distribution is the so-called belief b: we denote the whole
distribution by b, and the belief (probability) of being in state s is b(s). The Bayes
formula for updating the belief, after doing action a and getting observation o is

b′(s′|b, a, o) = P (o|s′, a)
∑

s

P (s′|s, a)b(s)/P (o|b, a) , (1)

where b′(s′|b, a, o) is the posterior belief, given o, that after action a the world is in
state s′. The normalization term is the overall observation probability given a and
the belief about the starting state, P (o|b, a) =

∑
s′ P (o|s′, a)

∑
s P (s′|s, a)b(s).

An optimal action a maximizes expected total discounted reward over possible
futures; a precise definition is given later. Choosing a, given belief b over current
states s, entails considering all possible action–observation sequences into the
future. A function choosing an action for each b is called a plan or policy.

A brute force approach to choosing optimal actions would yield exponential
complexity for planning with respect to how many steps ahead it looks. Many
state-of-the-art algorithms exploit the Bellman equation for planning:

V ∗(b) = max
a∈A

[∑
s∈S

R(s, a)b(s) + γ
∑
o∈O

P (o|b, a)V ∗(b′(s′|b, a, o))

]
, (2)
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where V ∗(b) is the value (total expected discounted reward) that can be attained
when acting optimally if the current state is distributed according to belief b; we
call this the “value of b” for short. Above, differently from our usual notation,
b′(s′|b, a, o) denotes the whole posterior distribution over states s′, rather than
a single value. The action a giving the maximum at right in (2) is optimal for
belief b. State-of-the-art methods use Equation 2 iteratively to optimize policies.

Factored definition of POMDPs. POMDP problems can have millions of states.
It would be computationally intractable to define such problems in a “flat” for-
mat with transitions as |S|×|S| probability tables for each action. Luckily, many
POMDP problems can be defined in factored form [8]. In a factored POMDP
the state s is described as a combination of several variables si; an observation
o is described by several variables oi. There can be millions of states s, and a
large number of observations o, but the POMDP can be defined in terms of the
individual si and oi, which have only few elements each. The transition prob-
abilities of each si and observation probabilities of each oi depend only on a
subset of the state variables: Parents(si) denotes the set of state variables af-
fecting transitions of si, and Parents(oi) is the set of state variables affecting
the observation probabilities of oi. The transition probabilities are then writ-
ten as P (s′|s, a) =

∏
i P (s′i|Parents(s′i), a), and observation probabilities are

P (o|Parents(o), a) =
∏

i P (oi|Parents(oi, a)). The reward functions are defined
as functions over subsets Si of state variables: R(s, a) =

∑
i Ri(Si, a), where Ri

is a reward function operating on subset Si.

2.1 POMDP Methods

Several methods exist for planning in POMDPs. In principle, exact optimal plan-
ning in POMDPs can be done using incremental algorithms based on linear pro-
gramming [9] to cover all possible beliefs. However, such algorithms can handle
only problems with few states. Point based value iteration algorithms do not com-
pute a solution for all beliefs, but either sample a set of beliefs (as in Perseus [3])
before the main algorithm or select beliefs during planning (as in HSVI [4]).
‘Value iteration’ refers to updating the value for a belief using a form of the
Bellman equation (2). Point based value iteration algorithms scale to problems
with thousands of states [4], which can still be insufficient. To cope with large
state spaces, POMDP compression methods [10, 11] reduce the size of the state
space. A linear static compression is computed and used to compress the transi-
tion and observation probabilities and the reward function. These compressions
can then be fed to modified versions of POMDP algorithms like Perseus, to com-
pute policies; this can give good performance [5] despite the (lossy) compression.
In all these methods the value function is stored explicitly in vector form or in
algebraic decision diagram (ADD) form; even for factored problems, its storage
size grows exponentially with the number of state variables.

Some algorithms [5] store the policy as a finite state controller (FSC), a graph
with actions as nodes and observations as edges. Any two nodes can be con-
nected. ‘Policy iteration’ can improve the FSC by repeated policy improvement
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and evaluation. Even if the FSC can be kept compact, the computed value func-
tions have the same size as in the value iteration algorithms above. We maintain
the value function as a policy graph using value iteration one layer at a time;
nodes in each layer are connected only to the next layer.

Some methods approximate belief updates. In [12] it is shown that approxi-
mation errors in belief updates are bounded; a bound is given when minimizing
Kullback-Leibler divergence between approximated and true belief. In [13] the-
oretical bound analysis of POMDP planning with approximated beliefs is done.
Dynamic Bayesian network inference is performed in [14] using approximations
similar to two of our approximations in Section 3.1.

The online POMDP method in [15] uses a factorized belief similar to ours;
their planning involves searching different action-observation paths using a prun-
ing heuristic; the worst case complexity is exponential in the search depth.

We lastly note that we use a policy graph based approach; a similar approach
has been discussed in [16] for optimizing POMDP policy for unknown stationary
transition probabilities but the setting is very different and approximation is not
considered. We next describe our approach.

3 Our Algorithm: Factorized Belief Value Projection

We present our novel POMDP planning algorithm called Factorized Belief Value
Projection (FBVP). Similarly to Perseus [3], FBVP starts by sampling a set of
beliefs B before the actual planning. The main planning algorithm (Algorithm 1)
takes the belief set B as input and produces a policy graph that can be used for
decision making during online operation.

On a high level, Algorithm 1 works as follows. Initially, a simple policy α0

is created, and all beliefs in B are associated with it. Then, at each iteration,
beliefs are picked in random order, and for each belief b, a new policy α is
optimized that looks one step further than previously; this optimization is called
the backup operation. The belief b is associated with this new policy α. The policy
α may have been optimal also for other beliefs earlier during this iteration;
if not (α is new at this iteration), we check if any beliefs that haven’t been
processed yet during this iteration could get improved value from policy α. If
they do get improved value, we simply associate those beliefs with α instead
of separately picking them for optimization during this iteration. A speedup is
to run backup for a small set of beliefs concurrently (randomly chosen set with
heuristically chosen size) and check if any returned policy improves the values
of the unprocessed beliefs; in the following description we omit this speedup
for clarity. When all beliefs have been associated to some improved policy, the
iteration ends and the new policies found during the iteration become the nodes
of a new layer in the policy graph. The main algorithm is similar to the main
algorithm of Perseus [3].

The key operations are the backup operation and evaluation (called eval) of
the value of a policy for a belief. To perform them tractably, we exploit the
policy graph from previous iterations, and use approximations; we describe the
equations and approximations in Section 3.1 after the algorithms.
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Algorithm 1. The main algorithm of our planning method FBVP
1: Input: P (s′i|Parents(s′i), a), P (oi|Parents(oi), a), R(Si, a), V0, B
2: Output: policy graph G
3: Initialize n = 0, α0(b) = V0, G0 = α0

4: repeat
5: Initialize B̃ = B and H = ∅.
6: repeat
7: Sample belief b from B̃ and compute α = backup(b, G, P, R).

8: if α /∈ H then
9: H = (H,α)

10: if α /∈ G then
11: for b ∈ B̃ do
12: Compute Vn+1(b) = eval(α, b, G, P, R)

13: end for
14: end if
15: B̃ = (b ∈ B̃ : Vn+1(b) < Vn(b))
16: end if
17: until B̃ is ∅
18: n = n + 1

19: Gn = H
20: until convergence

The eval algorithm (Algorithm 2) evaluates the value of a belief at a graph node
α, as follows: we proceed through the graph from the newest layer where α is to
the oldest. At each layer, we process all nodes: for each node αk, we know which
younger nodes link to it (we call them “caller nodes”), and which observation is
associated to each such link. At each caller node αc we have previously computed
a projected belief bac

c with values bac
c (s′) = b′c(s

′|bc, ac); here bc is the belief pro-
jected from the starting node α all the way to αc, and ac is the action given by
node αc. The observations when leaving αc are taken into account next: at each
caller node αc we have previously computed the path probability, pc, of arriving at
that node. The belief at αk is a sum of caller beliefs, weighted by their path proba-
bilities and the probabilities p(αc → αk) of continuing their paths to αk. We have
p(αc → αk) = p(oc,k|ac, bc) where oc,k is the observation in the link (αc → αk).
Similarly, the path probability pk at αk is a sum of incoming path probabilities; pk

is used to normalize the beliefs at αk. As a computational trick, we multiply the
path probability by the discount factor. The newest layer is a special case since it
has no caller nodes: there, we just set the belief at the starting node and set the
path probability to one for the starting node and zero for others. Having the belief
at αk, we compute expected direct reward over the belief, given the action ak cho-
sen by αk. We multiply the expected reward by the path probability at αk, and
add it to total reward for the original node α; since we incorporated the discount
factor into path probabilities, the added rewards get properly discounted. Lastly,
we compute the distribution bak

k with values bak

k (s′) = b′k(s′|bk, ak). Now the node
αk can be used as a “caller node” for further layers. We process all nodes in the
layer, then proceed to the next layer, and so on through the graph.
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Algorithm 2. Evaluate belief value at an α node: eval(αn,j , b, G, P, R)
1: Input: node αn,j (where n is the index of the newest graph layer and j is the index

of the node within the layer), belief b at the node, graph G, probability tables P ,

reward tables R
2: Output: value V of using αn,j as policy for belief b
3: At the newest layer initialize beliefs : bn,j = b, compute ba

n,j (Equation 3) using

action an,j , and initialize path probabilities: pn,j = 1 and pn,i = 0 for all i �= j .

4: Compute immediate reward at start: V = R(bn,j , an,j) (by Equation 7).

5: for layers i = n − 1 to 1 do
6: for each node k in layer i do
7: For this node αi,k (here denoted αk for short) do the following:

8: 1. For each caller node αc linked to αk from the previous layer, compute

b
ac,oc,k
c pcp(αc → αk), where p(αc → αk) = p(oc,k|ac, bc), oc,k is the observation

associated with the link (αc → αk), ac and bc are the action and belief at αc,

and bac,oc,k is the belief conditioned on ac and oc,k using Equation 4.

9: 2. The path probability pi,k at this node is a weighted sum over incoming path

probabilities from caller nodes: pi,k =
∑

c pcp(oc,k|ac, bc).

10: 3. The belief at this node αk is a weighted sum of incoming beliefs from caller

nodes: bi,k =
∑

c b
ac,oc,k
c pcp(oc,k|ac, bc)/pi,k. Approximate the sum by a single

factorized belief by minimizing KL-divergence (Equation 6).

11: 4. Calculate expected immediate reward Ri,k for the belief bi,k and the action

ai,k at this node (Equation 7).

12: 5. Add the path-weighted reward Ri,kpi,k to the total value V .

13: 6. Project the belief bi,k using the action ai,k but not conditioning on obser-

vations, to obtain ba
i,k with values ba

i,k = b′i,k(s′|bi,k, ai,k) (Equation 3).

14: 7. Multiply the path probability pi,k by the discount factor γ.

15: end for
16: end for

Figure 1 illustrates eval, when computing value of the node α (marked with
green color and bold outline) for a given belief. The algorithm is currently pro-
cessing node αk (marked with yellow color and an asterisk) in Layer 2. Nodes
αc in Layer 3 are caller nodes for αk. Bold red arrows show where the belief at
αk originates. The a indicate actions chosen in each state (many indices omitted
for clarity) and o are observations attached to each link.

The backup (Algorithm 3) finds an improved policy for belief b as follows.
The candidate improved value V is first −∞. We plan to create a new node into
the graph, and we must decide which action to choose there, and which further
nodes it should link to for each observation. A posterior belief b′ with values
b′(s′|a, o) is computed for all actions a and observations o. For each action, we
go through all observations, and for each observation we try nodes from the next
graph layer, as candidates the new node could link to. We use eval to get the
value given by each candidate for the belief b′ we computed above. We choose
the candidate with the highest value as the link for this action-observation pair.
Having processed all observations for action a, we compute the value given by
a for the original belief b: it is the sum of immediate rewards for this belief-
action pair, and values given by the links chosen above for observation of this
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Fig. 1. Illustration of the eval algorithm, which proceeds through a fixed policy graph

from the left to the right, evaluating the reward acquired by starting from a certain

node. The graph that eval operates on is constructed by Algorithm 1, adding one layer

to the left end in each iteration and creating nodes into it using the backup algorithm.

a, which are weighted by observation probabilities and by the discount factor. If
this value is the best found so far, action a (along with the associated links for
each observation from a) replaces the previous best action.

3.1 Equations and Approximations

We keep the belief values always in a fully factored form b(s) =
∏

i b(si). We
maintain an exact lower bound for the value function in the form of the policy
graph. However, when using the graph for belief value evaluation, there are three
operations that can potentially break the fully factored form of beliefs. For each
of these operations we find a fully factorized approximation (sometimes called a
mean-field approximation).

We approximate the transition from the current belief to the next without
observation conditioning with Equation 3. Let state variable si have K parents
out of all N state variables; denote them Parents(s′i) = s1, . . . , sK . It is easy
to show that when we want to approximate the posterior distribution of sev-
eral state variables by a fully factored form, the best approximation minimizing
KL divergence from the real posterior is simply the product of marginals of
the real posterior; for our model each marginal depends on the parents of the
corresponding variable. The approximation is

ba(s′i) = b′(s′i|b, a) =
∑
s1

b(s1) · · ·
∑
sK

b(sK)P (s′i|s1, . . . , sK , a) . (3)

This approximation minimizes KL divergence from the real posterior belief
ba(s′) to the factorized approximation

∏
i ba(s′i), where ba(s′) = b′(s′|b, a) =
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Algorithm 3. Backup operation α = backup(b, G, P, R)
1: Input: belief b for which an improved policy is wanted, policy graph G, Markov

model P , reward function R
2: Output: policy graph node α corresponding to an improved policy for b
3: Initialize the value of the improved policy to Vmax = −∞.

4: Compute posterior belief ba,o (having values b(s′|a, o, b)) for all actions a and ob-

servations o
5: for all a do
6: for all o do
7: for candidate link target nodes α̃ ∈ Gn−1 do
8: compute value V (ba,o, α̃) = eval(α̃, ba,o, Gn−1,...,1, P, R)

9: end for
10: choose the link target as the best candidate, α̂a,o = arg maxα̃ V (ba,o, α̃)

11: end for
12: Compute value of this action a, V = R(b) + γ

∑
o P (o|b, a)V (ba,o, α̂a,o)

13: if V > Vmax then
14: This action becomes the best candidate so far, Vmax = V
15: Set the new node to use this action and its associated link targets,

α = (a, (α̂a,o : ∀o ∈ O))

16: end if
17: end for

∑
s1,...,sN

(
∏

i P (s′i|Parents(s′i), a)) b(s1) . . . b(sN). We next approximate the
conditioning of the above approximated belief on an observation, with Equa-
tion 4. Let observation o have L parents out of N state variables, call them
Parents(o) = s′1, . . . , s

′
L. We minimize KL divergence to a factored approxima-

tion
∏

i ba,o(s′i); we set the gradient of the divergence with respect to each factor
(distribution) to zero, which yields the distribution

ba,o(s′i) =
1

p(o|b, a)

∑
s′
1

ba(s′1) · · ·
∑
s′

i−1

ba(s′i−1)

∑
s′

i+1

ba(s′i+1) · · ·
∑
s′

L

ba(s′L)P (o|s′1, . . . , s′L, a) , (4)

where p(o|b, a) =
∑

s′
1
ba(s′1) · · ·

∑
s′

L
ba(s′L)P (o|s′1, . . . , s′L, a). The approxima-

tions in Equations 3 and 4 are used in [14] for inference in Bayesian networks.
We also update the path probability (used in Algorithm 2) for each path

arriving at a node αk from a node αc, associated with a belief bc, an action ac

and an observation oc,k:

p(c, c → k) = pcp(oc,k|ac, bc) (5)

When multiple beliefs “arrive” at a node αk from previous nodes αc (see Algo-
rithm 2 for details), the belief at αk is a sum

∑
c(p(c, c → k)/pk)

∏N
i=1 b

ac,oc,k
c (si)

where pk is the path probability at αk; this belief is approximated as a factored
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form
∏N

i=1 bk(si) using Equation 6; minimizing KL divergence (by again setting
the gradient with respect to each discrete distribution to zero) we have

bk(si) =
∑

c

(p(c, c → k)/pk)bac,oc,k
c (si) , (6)

where pk =
∑

c p(c, c → k).
The reward at the α nodes can be calculated exactly using Equation 7:

R(b, a) =
∑
s1

b(s1) · · ·
∑
sN

b(sN )R(s1, . . . , sN , a) . (7)

Note that the approximation error in FBVP can reduce further into the policy
graph, with a rate depending on several factors; see [12] for analysis. The value
function is a convex piecewise linear function [1] corresponding to the policy
graph; beliefs that share the same optimal linear function, i.e. same optimal
policy graph node, are more likely to be “near” each other in the belief simplex.
Thus the error in the approximation in Equation 6 is usually small, because
beliefs in the approximated sum are usually similar.

3.2 Pruning

In the worst case, in iteration t each belief is evaluated O(|A||O||Gt−1 |) times,
where |Gt−1| is the number of policy graph nodes in layer t − 1; for each belief,
the maximum number of calls to Equations 3, 6, and 7 is O(

∑t−1
i=1 |Gi|) and

O(|O|∑t−1
i=1 |Gi|) for Equation 4. The algorithm has polynomial complexity with

respect to the number of state variables and to the horizon (maximum plan-ahead
depth) and scales well to large state spaces, but evaluating the whole belief tree
yields significant computational overhead. When the number of α nodes is large,
the backup algorithm (see Algorithm 3) dominates. To eliminate a part of policy
graph evaluation we compute an approximate upper bound for the value at each
graph node. This bound is used to compute maximum values during policy graph
evaluation. Evaluation can be stopped if the value accumulated so far, added to
the maximum value possible, is smaller than the best found solution’s value.

The requirements for a policy graph node upper bound are: it should not un-
derestimate the value of a node, should be tight, fast to evaluate, and to a lesser
extent fast to compute.

Each of our policy graph nodes would, in a traditional approach [3], correspond
to a vector, whose dot product with a belief, would yield the value for the belief.
Because of the state space size, we use a sum of linear functions of individual
state variables as an approximation. Then Bv = V , where B is the matrix of
beliefs in factored form for which we have computed values V and v is a vector
of concatenated linear state variable functions. Each row of the matrix B has
the probabilities of the single state variables concatenated. The approximation
is not exponential in the number of state variables and is tractable. To guarantee
v does not underestimate the value, all extreme points of the beliefs would have
to be added to B. But as the number of extreme points equals the size of the
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state space, we calculate additional values for a randomly selected set of beliefs,
with individual belief component values set to unity.

In order to find a tight bound we can reformulate the problem as vT BT Bv−
V T BT v = ε, Bv ≥ V and find the v that minimizes ε using quadratic pro-
gramming or fit v using least squares. The quadratic programming approach is
possible in many problems, because the individual state variables can be very
small. For example in the computer network problem (see Section 4 for more
details) there are 16 computers each having a binary state variable.

We either compute a fit with least squares or a bound with quadratic pro-
gramming (with a time limit), and then use cross-validation to estimate the
maximum error of the bound and add that to the bound to ensure optimal ac-
tions for the current belief set are not pruned. The procedure does not guarantee
an exact bound for future belief sets but performed well in the experiments; we
used 5-fold cross-validation and quadratic programming to compute the bounds.

A further optimization can be done by observation ordering. The value for an
action is the sum of the immediate reward for the belief and the values for the
beliefs projected for each observation. When we have accumulated the sum of the
immediate reward and the rewards for part of the observations, the remaining
observations must produce at least a “minimum” value that is greater than the
best found action value so far, minus the accumulated value, in order for the
current action to exceed previous actions. As we can compute maximum values
for policy graph nodes, we can use the probability of the observation under
consideration, the required “minimum” value, and the maximum values for the
remaining observations to compute the smallest possible value for an observation
that can make the current action exceed previous actions. If the observation does
not reach this smallest possible value during value evaluation, the action under
consideration can be pruned. By ordering projected beliefs according to their
observation probability (see line 6 of Algorithm 3) this early stopping can be
made more likely and the effectiveness of the upper bound pruning increased.

4 Experiments

We compare our method against four others on several benchmark problems.
We next describe the comparison methods, benchmark problems, and results.

4.1 Comparison Methods

We use the following POMDP algorithms as comparison methods:

1. Perseus1 iteratively improves a value function lower bound processing a fixed
set of belief samples in random order. The proposed method FBVP resembles
Perseus in that it also samples a fixed set of beliefs and then improves the
value lower bound for each belief.

1 Code available at http://staff.science.uva.nl/~mtjspaan/software/approx/

http://staff.science.uva.nl/~mtjspaan/software/approx/
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2. HSVI22 maintains both an upper and lower bound on the value function. In
contrast to Perseus it generates beliefs during training and applies a depth-
first type of search, while Perseus uses a breadth-first type of search.

3. Symbolic Perseus3 is a version of Perseus that uses abstract decision dia-
grams (ADDs) for representing the POMDP data structures and is config-
ured in factored form. It uses a mean-field approximation on the beliefs in
Bellman backups and cuts of non-significant ADD leafs. Symbolic Perseus
has been applied on POMDP problems with millions of states [17].

4. In truncated Krylov iteration [5] the POMDP problem is compressed into
a linear approximation with smaller dimension than the original problem
and a policy is found by using a (slightly modified) standard POMDP solver
with the compressed problem. We use Perseus [3] as the POMDP solver.
For factored problems the problem structure can potentially be exploited
to perform Krylov iteration efficiently. We have a generic truncated Krylov
iteration implementation using ADD data structures as suggested in [5] to
provide a fair comparison. In our implementation the basis vectors are stored
as sums of products of state variable functions. With this implementation
we were able to compute compressions even for the largest problems.

4.2 POMDP Problems

We use two traditional benchmarks: RockSample [4] (a rover moves on a grid and
tries to sample rocks that are “good”; e.g. RS(5,15) denotes a 5×5 field with 15
rocks) and Computer Network (computers are up or down and administrators
can ping or reboot them; included with Symbolic Perseus software; e.g. CN(16)
denotes 16 computers). In RockSample, the rover’s position is deterministic; we
introduce a new Uncertain RockSample problem, where the rover stays at the
same location (except when moving to a terminal state) with 0.05 probability,
when it should move. The uncertain location makes the problem harder. E.g.
URS(5,15) again denotes a 5 × 5 field with 15 rocks.

We also present a new benchmark problem for POMDPs which we call Spec-
trum Access (SA).4 It is motivated by real-life needs of growing wireless com-
munication: the number of devices communicating over wireless connections is
growing, and ever more data is transmitted due to e.g. increasing video com-
munication. To avoid congestion over the limited amount of available spectrum,
it is important to allocate resources over the spectrum efficiently; here a cog-
nitive radio [18] must predict when a radio channel will be free of traffic, and
use such “time slots” for communication but avoid access conflicts with existing
(primary) users of the channels. Each channel evolves according to a 15-state
Markov model estimated from simulated data; it describes packet burst lengths,
pauses etc. The cognitive radio device can only sense three channels at a time
and transmit on one at each step. Observations tell if a channel is busy/idle but

2 Software available from http://www.cs.cmu.edu/~trey/zmdp/
3 Software available from http://www.cs.uwaterloo.ca/~ppoupart/software.html
4 See SA and URS specifications at www.cis.hut.fi/jpajarin/pomdp/problems/

http://www.cs.cmu.edu/~trey/zmdp/
http://www.cs.uwaterloo.ca/~ppoupart/software.html
www.cis.hut.fi/jpajarin/pomdp/problems/
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not the exact channel state (burst type etc.). Rewards are given for successful
transmissions penalties for using energy for listening (−0.01 per channel) and
strong penalties for access conflicts. E.g. SA(4) denotes four radio channels.

5 Results and Discussion

Table 1 shows discounted expected rewards for all the problems and algorithms
tested. The discount factor was 0.95. In the classic RockSample (RS) problem,
because of time constaints, algorithms were run for two days and in the other prob-
lems for three days. Part of the algorithms converged on some of the problems be-
fore maximum running time. The algorithms were initialized using their default
initialization and FBVP was initialized with zero valued initial values for all prob-
lems. In spectrum access 3000 beliefs were used and 10000 in the other problems
for Perseus, FBVP, and Symbolic Perseus. If an algorithm ran out of memory, then
the intermediate policy output (if any) was used for evaluation. Evaluation was
run for 500 runs of 60 steps. The methods were evaluated using their default eval-
uation method. Symbolic Perseus and FBVP were evaluated by following their
policy graphs after belief evaluation, and Perseus, HSVI, and truncated Krylov
iteration with Perseus were evaluated by using the computed value vectors.

Each maximum time experiment was run on one core of a “AMD Opteron
2435” processor with 8GB allocated memory. In only few cases such as Symbolic
Perseus in the 16-machine computer network problem, all 8GB was needed.

Perseus and HSVI performed best in the smallest RS problem, but FBVP
was very close to them. In the other RS problems Perseus and HSVI could
not be configured. Truncated Krylov iteration together with Perseus did not
perform well in any of the RS problems. In the 15-rock RS problem Symbolic
Perseus achieved best results. Symbolic Perseus seems to be able to exploit the
deterministic location of the rover using its ADD data structures. In the largest
RS problems only FBVP had good results.

In the Computer Network (CN) problems we were not able to reproduce the
results of Poupart et al. reported in [5] with our truncated Krylov iteration
with Perseus implementation. This can be due to truncated Krylov iteration
selecting basis vectors using an Euclidean metric. At what point the exact L1-
normalization of basis vectors suggested in [5] is done in the truncated Krylov
iteration algorithm may change the order of basis vectors added to the compres-
sion matrix. Also, even if the required adding of a constant to rewards does not
change the optimal policy for the objective function, it changes the Euclidean
distance between vectors. We used the results from [5] as an additional com-
parison and ran additional evaluation for Symbolic Perseus and FBVP for the
reported running times. Note that the running times are not directly compara-
ble. For the full training time Symbolic Perseus gave a policy that was very slow
to evaluate and thus was limited to 276 evaluation runs.

In the CN problems Perseus and HSVI could not be configured due to size of
the POMDP configurations. For the 16-machine problem FBVP and Symbolic
Perseus gave better results than truncated Krylov iteration with Perseus. For
the shorter training times Symbolic Perseus was better than FBVP and for the
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Table 1. Performance of selected POMDP algorithms

Problem (states Reward Time

/actions/obs.)

RS(5,5) (801s 10a 2o)

Perseus 19.05 2days

HSVI2 19.05 converged

SymbolicPerseus 17.78 2days

Tr.Kry.+Perseus 7.02 2days

FBVP 18.67 2days

RS(5,15) (819201s 20a 2o)

Perseus - config. fail

HSVI2 - config. fail

SymbolicPerseus 31.66 2days

Tr.Kry.+Perseus −14.81 2days

FBVP 24.29 2days

RS(5,20) (26214401s 25a 2o)

Perseus - config. fail

HSVI2 - config. fail

SymbolicPerseus - out of mem

Tr.Kry.+Perseus. −20.70 2days

FBVP 23.89 2days

RS(6,25) (∼ 1.2Gs 30a 2o)

Perseus - config. fail

HSVI2 - config. fail

SymbolicPerseus - out of mem

Tr.Kry.+Perseus 0.00 2days

FBVP 18.05 2days

CN(16) (216s 33a 2o)

Perseus - config. fail

HSVI2 - config. fail

SymbolicPerseus 107.98 12658sec

SymbolicPerseus 108.14 3days

Tr.Kry.+Perseus 103.6 [Poupart05]

Tr.Kry.+Perseus 88.84 3days

FBVP 105.97 12658sec

FBVP 109.05 3days

CN(25) (225s 51a 2o)

Perseus - config. fail

HSVI2 - config. fail

SymbolicPerseus - out of mem

Tr.Kry.+Perseus 148 [Poupart05]

Tr.Kry.+Perseus 136.69 3days

FBVP 152.01 8574sec

FBVP 154.66 3days

Problem (states Reward Time

/actions/obs.)

URS(5,5) (801s 10a 2o)

Perseus 16.25 3days

HSVI2 16.43 out of mem

SymbolicPerseus 15.47 3days

Tr.Kry.+Perseus 16.73 3days

FBVP 15.64 3days

URS(5,15) (819201s 20a 2o)

Perseus - config. fail

HSVI2 - config. fail

SymbolicPerseus 13.21 3days

Tr.Kry.+Perseus −8.37 3days

FBVP 21.15 3days

URS(5,20) (26214401s 25a 2o)

Perseus - config. fail

HSVI2 - config. fail

SymbolicPerseus - out of mem

Tr.Kry.+Perseus 2.25 3days

FBVP 18.55 3days

URS(6,25) (∼ 1.2Gs 30a 2o)

Perseus - config. fail

HSVI2 - config. fail

SymbolicPerseus - out of mem

Tr.Kry.+Perseus 0.00 3days

FBVP 19.22 3days

SA(4) (154s 9a 8o)

Perseus - out of mem

HSVI2 13.71 out of mem

SymbolicPerseus 14.19 3days

Tr.Kry.+Perseus 13.14 3days

FBVP 14.52 3days

SA(8) (158s 25a 8o)

Perseus - config. fail

HSVI2 - config. fail

SymbolicPerseus - out of mem

Tr.Kry.+Perseus −43.07 3days

FBVP 13.86 3days
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longer training times at the same level. In the 25-machine problem Symbolic
Perseus ran out of memory and FBVP performed best.

In the smallest Uncertain RockSample (URS) problem Perseus and HSVI
could be configured and trained successfully. All five methods got discounted
rewards that were roughly at the same level. The second smallest URS problem
had hundreds of thousands of states and FBVP performed best. Most likely the
uncertain location of the rover makes the abstract decision diagram presentation
in Symbolic Perseus less efficient than in the original RS problem of same size.
For the two largest URS problems only FBVP had acceptable results. Symbolic
Perseus ran out of memory in these problems. Truncated Krylov iteration with
Perseus did not produce good results.

In the four channel Spectrum Access (SA) problem Perseus ran out of mem-
ory before actual training, but HSVI could be configured and trained for a while
before memory ran out. FBVP and Symbolic Perseus had the best results. Trun-
cated Krylov iteration with Perseus and HSVI had results that were not bad for
such a big problem. In this problem truncated Krylov iteration was able to pro-
duce a compression close to a lossless compression in 1000 dimensions, when the
original state space had 50625 dimensions. Only FBVP got good performance
in the eight channel SA problem. Perseus, HSVI, and Symbolic Perseus did not
yield any policy, and the reward obtained by truncated Krylov iteration with
Perseus was much lower than that of FBVP.

6 Conclusions

We have presented a novel efficient POMDP algorithm policy graph based com-
putation with factorized approximations and bounding. The approximations and
policy graph approach ensure polynomial complexity with respect to number of
state variables and look ahead depth. The results show that our algorithm, called
Factorized Belief Value Projection (FBVP), scales well to very large problems
and produces adequate rewards for smaller problems compared to algorithms
that do not employ similar approximations. FBVP does not require a domain
expert for specific tasks such as grouping state variables.

In the future it may be interesting to extend FBVP to problems where using
the policy graph as the only value function representation can be inherently
advantageous such as for POMDPs with unknown transition probabilities [16].
The effect of pruning and observation ordering also needs further study.

Acknowledgments. JoP belongs to AIRC; JaP to AIRC and HIIT. The work
was supported by TEKES, PASCAL2, and Academy of Finland decision 123983.

References

1. Sondik, E.J.: The optimal control of partially observable Markov processes over

the infinite horizon: Discounted costs. Operations Research 26(2), 282–304 (1978)

2. Cassandra, A.R.: A Survey of POMDP Applications. Technical report, Austin,

USA (1998) Presented at the AAAI Fall Symposium (1998)



16 J. Pajarinen et al.

3. Spaan, M., Vlassis, N.: Perseus: Randomized point-based value iteration for

POMDPs. Journal of Artificial Intelligence Research 24, 195–220 (2005)

4. Smith, T., Simmons, R.: Point-Based POMDP Algorithms: Improved Analysis

and Implementation. In: Twenty-First Annual Conf. on Uncertainty in Artif. Int.,

Arlington, Virginia, pp. 542–549. AUAI Press (2005)

5. Poupart, P.: Exploiting structure to efficiently solve large scale partially observable

Markov decision processes. PhD thesis, Univ. of Toronto, Toronto, Canada (2005)

6. Pajarinen, J., Peltonen, J., Uusitalo, M.A., Hottinen, A.: Latent state models of

primary user behavior for opportunistic spectrum access. In: 20th Intl. Symposium

on Personal, Indoor and Mobile Radio Communications, pp. 1267–1271. IEEE, Los

Alamitos (2009)

7. Zhao, Q., Tong, L., Swami, A., Chen, Y.: Decentralized cognitive MAC for oppor-

tunistic spectrum access in ad hoc networks: A POMDP framework. IEEE J. Sel.

Areas Commun. 25(3), 589–600 (2007)

8. Boutilier, C., Poole, D.: Computing optimal policies for partially observable de-

cision processes using compact representations. In: Thirteenth National Conf. on

Artif. Int., pp. 1168–1175. The AAAI Press, Menlo Park (1996)

9. Cassandra, A., Littman, M., Zhang, N.: Incremental pruning: a simple, fast, exact

method for partially observable Markov decision processes. In: 13th Annual Conf.

on Uncertainty in Artif. Int., pp. 54–61. Morgan Kaufmann, San Francisco (1997)

10. Poupart, P., Boutilier, C.: Value-directed compression of POMDPs. In: Becker, S.,

Obermayer, K. (eds.) Advances in Neural Information Processing Systems, vol. 15,

pp. 1547–1554. MIT Press, Cambridge (2003)

11. Li, X., Cheung, W., Liu, J., Wu, Z.: A novel orthogonal NMF-based belief compres-

sion for POMDPs. In: Ghahramani, Z. (ed.) 24th Annual International Conference

on Machine Learning, pp. 537–544. Omnipress (2007)

12. Boyen, X., Koller, D.: Tractable inference for complex stochastic processes. In:

Fourteenth Annual Conf. on Uncertainty in Artif. Int., pp. 33–42. Morgan Kauf-

mann, San Francisco (1998)

13. McAllester, D., Singh, S.: Approximate planning for factored POMDPs using belief

state simplification. In: Fifteenth Annual Conf. on Uncertainty in Artif. Int., pp.

409–417. Morgan Kaufmann, San Francisco (1999)

14. Murphy, K., Weiss, Y.: The factored frontier algorithm for approximate inference

in DBNs. In: Seventeenth Annual Conf. on Uncertainty in Artif. Int., pp. 378–385.

Morgan Kaufmann, San Francisco (2001)

15. Paquet, S., Tobin, L., Chaib-draa, B.: An online POMDP algorithm for com-

plex multiagent environments. In: Fourth International Joint Conference on Au-

tonomous Agents and Multiagent systems, pp. 970–977. ACM, New York (2005)

16. Poupart, P., Vlassis, N.: Model-based Bayesian reinforcement learning in partially

observable domains. In: Tenth Intl. Symp. on Artif. Intelligence and Math. (2008)

17. Boger, J., Poupart, P., Hoey, J., Boutilier, C., Fernie, G., Mihailidis, A.: A decision-

theoretic approach to task assistance for persons with dementia. In: Nineteenth

Intl. Joint Conf. on Artif. Int., vol. 19, pp. 1293–1299 (2005)

18. Haykin, S.: Cognitive radio: brain-empowered wireless communications. IEEE J.

Sel. Areas Commun. 23, 201–220 (2005)



J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part III, LNAI 6323, pp. 17–33, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Unsupervised Trajectory Sampling 

Nikos Pelekis1, Ioannis Kopanakis2, Costas Panagiotakis3, and Yannis Theodoridis4 

1 Dept. of Statistics and Insurance Science, Univ. of Piraeus, Greece 
npelekis@unipi.gr 

2 Tech. Educational Inst. of Crete, Greece 
i.kopanakis@emark.teicrete.gr 

3 Dept. of Computer Science, Univ. of Crete, Greece 
cpanag@csd.uoc.gr 

4 Dept. of Informatics, Univ. of Piraeus, Greece 
ytheod@unipi.gr 

Abstract. A novel methodology for efficiently sampling Trajectory Databases 
(TD) for mobility data mining purposes is presented. In particular, a three-step 
unsupervised trajectory sampling methodology is proposed, that initially adopts 
a symbolic vector representation of a trajectory which, using a similarity-based 
voting technique, is transformed to a continuous function that describes the 
representativeness of the trajectory in the TD. This vector representation is then 
relaxed by a merging algorithm, which identifies the maximal representative 
portions of each trajectory, at the same time preserving the space-time mobility 
pattern of the trajectory. Finally, a novel sampling algorithm operating on the 
previous representation is proposed, allowing us to select a subset of a TD in an 
unsupervised way encapsulating the behavior (in terms of mobility patterns) of 
the original TD. An experimental evaluation over synthetic and real TD 
demonstrates the efficiency and effectiveness of our approach.  

Keywords: Trajectory Databases, Sampling, Symbolic Trajectories. 

1   Introduction 

Data analysis and knowledge discovery over trajectory databases [8] discovers 
behavioral patterns of moving objects that can be exploited in several fields. Example 
domains include traffic engineering, climatology, social anthropology and zoology, 
studying vehicle position data, hurricane track data, human and animal movement 
data, respectively. In the literature, there have been proposed several works that try to 
analyze trajectory data either in an exploratory way [1], [3], [4] or by mining 
movement-aware patterns, such as clusters of moving objects [5], [15], [12], [19], 
[14], [10], sequential trajectory patterns [7], and flock patterns [9]. 

All of these approaches usually operate on large TD and it is natural for an analyst 
to wonder whether she could extract the same patterns operating on a much smaller 
and representative subset of the TD. In other words, the question is rephrased to 
whether one can appropriately reduce a large TD, taking only a sample of it, whose 
size is automatically computed, in an optimized and unsupervised way, and which 
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encapsulates the mobility patterns hidden in the whole TD. Fig. 1 illustrates the above 
discussion. Let us assume that mining a TD (Fig. 1(a)) results in a set of movement 
patterns (say, those illustrated by different colours in Fig. 1(a)). The question is 
whether we could extract an appropriate subset of the original TD (Fig. 1(b)) that 
would again capture the same patterns. If the answer to the above question is yes, such 
a methodology would radically speed up several analysis and mining tasks in the field. 

  

Fig. 1. (a) original TD, (b) sample TD 

The problem of trajectory sampling is very challenging due to the complexity of 
movement data (e.g. lack of ordering, lack of compact representation) that makes 
standard (e.g. uniform or stratified sampling) or point density-biased sampling 
techniques (e.g. [17], [11], [16]) inappropriate for the TD domain. A naïve solution 
for trajectory sampling would first cluster the TD and select the centroids of each 
cluster as the TD samples. However, existing trajectory-oriented clustering algorithms 
provide a single representation associated with each cluster (called Representative 
[12] or Centroid trajectory [19]). In addition, the aim of clustering is to partition the 
data into groups and not to downsize the TD. More importantly, such a solution 
would fail to select trajectories important for mobility patterns other than clusters (e.g. 
sequential trajectory patterns [7], or trajectory outliers [13]). To the best of our 
knowledge, it is only explorative, supervised sampling techniques that have been 
proposed for TD [3], [4], which however suffer from the above mentioned problems, 
as they imply a-priori knowledge of the underlying trajectory clusters. 

In this paper, we propose a three-step approach to tackle the problem of trajectory 
sampling. Initially, we adopt a symbolic representation of trajectories that allows us to 
model all trajectories of the TD in an approximate way as vectors (i.e., sequences of 
regions wherefrom a moving object passes), whose dimensionality implies the 
intended space-time granularity of the application. This symbolic representation 
preserves the mobility pattern of each trajectory (by vanishing jerky movements), 
speeds up computations, and, moreover, turns out to be lossless in terms of mobility 
patterns, as shown in our experimental study. 

On top of this representation, we propose an effective method to represent each 
trajectory by a continuous function that implicitly describes the representativeness of 
each constituent part of it (i.e., dimension) with respect to the whole TD. Given such 
an intuitive representation, we devise an algorithm, called SyTra (Symbolic 
Trajectory), which improves the initial representation of each trajectory by relaxing its 
vector representation. The idea is to adopt a merging algorithm that identifies the 
maximal time period wherein the mobility pattern of each trajectory is preserved, while 
in this augmented period it presents uniform behavior in terms of representativeness. 
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In other words, this merging process is an optimization trade-off between local 
(trajectory’s mobility pattern) and global (representativeness in TD) criteria. 

At the third step of our approach, we propose an automatic method for trajectory 
sampling, called T-Sampling, based on the representativeness of the trajectories. An 
important aspect of this method is that it takes into account not only the most (i.e., 
dense, frequent) but also the least representatives, which are quite interesting in 
various application scenarios (e.g. detecting movement outliers or sparse clusters), 
thus they should somehow survive in the sample TD.  

The contributions and merits of our work are summarized below: 

• Based on a symbolic vector representation of a trajectory, we propose a global 
voting method allowing us to quantify the representativeness of each trajectory in 
a TD as a continuous descriptor. 

• We devise an algorithm (SyTra) that relaxes the time-based point representation of 
the centroid trajectories, allowing the modeling of the mobility pattern of each 
trajectory at a higher level abstraction, as well as in a ‘homogenous’ way 
according to its representativeness in TD. 

• We propose a novel unsupervised method (T-Sampling) for sampling the 
representative trajectories in a TD. The cardinality of the sample is either given as 
input or selected by the method itself. 

• Finally, we conduct a comprehensive set of experiments over synthetic and real 
trajectory datasets, in order to thoroughly evaluate our approach. 

The rest of this paper is structured as follows: Section 2 discusses related work. In 
Section 3, we set the scene by formulating the problem. The proposed methodology 
for trajectory sampling is presented in Section 4. In Section 5, we conduct an 
experimental study over synthetic and real TD in order to evaluate our approach. 
Finally, Section 6 concludes the paper. 

2   Related Work 

Recently there is an increasing interest in TD mining. Trajectory sampling is a very 
challenging task with great potential applications in TD mining, however very limited 
work has been carried out. Among the various proposals for the discovery of mobility 
patterns, the works in [12], [19] further provide aggregate representation of the 
extracted patterns (representative trajectories). 

In [12], the authors proposed TRACLUS, a partition-and-group framework for 
clustering 2D trajectories which enables the discovery of common sub-trajectories. 
TRACLUS clusters trajectories as line segments (sub-trajectories). The notion of the 
representative trajectory of a cluster is also defined. In this approach, the temporal 
information is not taken into consideration, while the partitioning is performed per 
trajectory and it does not use global criteria. This is in contrast to our approach where 
our merging algorithm, which can also be considered as a segmentation method, 
views trajectories as sequences of sub-trajectories that are identified using global 
criteria. Furthermore, in contrast to our work, the representative sub-trajectories 
identified by TRACLUS conform to straight movement and cannot identify complex 
(e.g. snakelike) patterns, which are common in real world applications. 
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In [19], an approach for clustering trajectories as a whole is proposed, using a 
symbolic representation of trajectories and local criteria, also with special care for 
handling uncertainty. In particular, a density- as well as similarity-based algorithm, 
called CenTra, is proposed in order to discover the centroid of a group of trajectories. 
Then, an FCM variation, called CenTR-I-FCM, clusters trajectories by utilizing 
CenTra. In comparison to the present work where we target at sampling, this approach 
also uses a global but static and predefined temporal segmentation of trajectories, 
which are symbolically represented as intuitionistic fuzzy vectors. 

For trajectory segmentation, related work includes [1], [18]. In [1], global distance-
based criteria have been proposed for the segmentation of trajectories using 
spatiotemporal information. The distance-based segmentation problem is given as a 
solution of a maximization problem that attempts to create minimum bounding 
rectangles (used as simplifications of parts of trajectories) in such a way that the 
original pairwise distances between all trajectories are minimized. In comparison with 
our merging approach, we also use global criteria; however these are entailed by the 
representativeness of each trajectory with respect to the TD. At the same time, our 
merging process gives special attention to preserve the movement pattern of each 
trajectory, as our ultimate goal is to succeed effective sampling. In [18], an approach 
for expressing the representativeness in a TD via a voting process is proposed. This 
process is improved in the present work in order to support the first step of our 
methodology, which is to describe the representativeness of each trajectory in the TD. 

Explorative TD analysis using visual techniques is proposed in [3], [4]. The 
authors use uniform sampling to minimize the volume of the trajectories that can be 
clustered by a density-based clustering algorithm [15]. This approach suffers from the 
limitations discussed in the introduction, as sampling is supervised by the user and 
solely depends on the results of the clustering. 

Finally, in [17], [11], [16], density biased sampling (DBS) techniques for point sets 
are proposed, which, obviously, cannot find straightforward application in TD. 
Nevertheless, in our approach we extend the idea of DBS in a way that density 
properties as well as the similarity of trajectories segments are taken into account.  

Summarizing, although very interesting as a problem and with great potentials in 
the TD domain, to the best of our knowledge there is no related work on unsupervised 
trajectory sampling taking the complex nature of TD into consideration. 

3   Setting the Scene 

Let D = {T1, T2, …, TN} be a dataset of N trajectories. Assuming linear interpolation 
between consecutive time-stamped positions, a trajectory Ti = <(xi,0, yi,0, ti,0), …, (xi,ni, yi,ni, 
ti,ni)>, consists of a sequence of ni > 0 line segments in 3D space, where the j-th segment 
interpolates positions sampled at time ti,j-1 and ti,j. In this paper, we adopt an approximate 
representation of trajectories, originally proposed in [19], by transforming trajectories in 
a space where each Ti is represented as a p-dimensional point. (In this way, as shown in 
[19], we speed up computations, at the same time vanishing negligent movements while 
preserving the shape designating the mobility pattern of each trajectory.) More 
specifically, we use an approximation technique and define the dimensionality of 
trajectories by dividing the lifespan of each trajectory in p sub-intervals (e.g. 1 min. 
periods). Regarding the spatial dimension, we assume a regular grid of equal rectangular 
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cells with user-defined size (e.g. 100×100 m2). Given this setting, we extend the 
technique used in [19] where each trajectory Ti is partitioned into p << ni equi-sized 
temporal periods and substitutes the trajectory 3D line segments of each period with (a) 
the set of the grid cells that Ti crosses during this period and (b) a motion vector d  that 
specifies the direction of the trajectory during the period. Formally: 

Definition 1. Given a regular grid G of granularity m × n consisting of cells ck,l (1 § k 
§ m and 1 § l § n), the lifespan ls of all trajectories in the trajectory database D, a 
trajectory Ti in D as a sequence of ni line segments, and a target dimension p << ni, 
the approximate trajectory (ApTra) iT = ‚(ri,1, ,1id ), …, (ri,p, ,i pd )Ú of Ti is the one 

resulted by Ti when all trajectory triplets (xi,j, yi,j, ti,j) of Ti found inside a temporal 

period ( )1
,

ls j ls j
j p pp

⋅ − ⋅⎡ ⎤= ⎣ ⎦ , 1 ≤ j ≤ p, are replaced by a pair (ri,j, ,i jd ), called directed 

region dri,j, consisting of a region ri,j, which is composed by the set of cells ck,l

 

crossed 
by Ti during pj and a directed segment ,i jd starting from the center of the first cell and 

ending at the center of the last crossed cell.                                                                   

This technique allows us to view all trajectories in D as vectors in the same, user-
defined dimensionality p, where each value of the vector corresponds to a dynamic 
time-ordered list of cells crossed by the trajectory, accompanied with the 
corresponding motion vector. Note that, depending on the choice of the space-time 
granularity of grid G, intended by the application requirements, a trajectory may 
introduce gaps (i.e., regions with empty set of cells) when there is no motion during 
the particular period of time. Fig. 2(a) depicts three trajectories and their 
corresponding ApTra illustrated in different colours (red, green, blue). The 
dimensionality p is set to p = 6, the arrows imply direction, while, regarding the blue 
trajectory it is only the motion vectors that are coloured, for clarity. 

  
(a) (b) 

Fig. 2. (a) ApTra for 3 trajectories (b) Merged ApTra 

  
(a) (b) 

Fig. 3. (a) ReTra before merging (b) ReTra after merging 
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The representativeness of a trajectory in TD is then defined by extending the 
definition of density biased sampling (DBS) in point sets [11], [17] for trajectories 
segments. According to DBS, the local density for each point of the set is 
approximated by the number of points in a region, divided by the volume of the 
region. In our case, the representativeness of a trajectory corresponds to the number of 
other trajectories that are similar to that in terms of time, space, and direction. 
Technically speaking, the representativeness is calculated by a voting process that is 
applied for each directed region pair dri,j of iT , extending and improving a 

preliminary version of the proposed method, presented in [18]. Thus, dri,j will be 
voted by the approximate trajectories of TD, according to the distance of dri,j to each 
trajectory of the TD. The sum of these votes is related to the number of trajectories 
that are similar to dri,j, called hereafter v(dri,j). More formally: 

Definition 2. Given an ApTra iT = ‚(ri,1, ,1id ), …, (ri,p, ,i pd )Ú and a voting function v(.) 

we define a representative trajectory (ReTra) as a set of triplets (ri,j, ,i jd ,v(dri,j)) where 

the third value corresponds to the representativeness of each directed region (i.e., 
sub-trajectory) dri,j of ApTra.                                                                                          

Under this definition, the representativeness is formulated as a continuous descriptor 
v(dri,j) over j = 1, …, p. Fig. 3(a) depicts the descriptors v(dri,j) for the trajectories of 
Fig. 2(a) where one can see the votes each trajectory collected in each of the six  
periods (vertical lanes), as well as to realize that the red and blue trajectories appear to 
have similar mobility patterns, while this is not the case for the green trajectory. A 
novel approach for the extraction of ReTra is given in Section 4.1. 

Viewing dimensionality from a different perspective, one may consider it as a 
segmentation of the trajectories in time axis. Although intuitive, this segmentation is 
static and predefined for the whole TD. As we aim at sampling whole trajectories, we 
argue that a more intuitive representation would be to aggregate each trajectory along 
the temporal dimension. Such a representation would model each trajectory with a 
(possibly) different number of time periods (less than p) of varying longer duration. 
Each such period would be the result of merging successive periods (and the 
respective regions and motion vectors) of the initial representation, having as aim to 
identify the maximal temporal periods during which some uniformity criterions hold. 
These criteria are a trade-off between the preservation of the (local) mobility pattern 
of each trajectory and the uniformity of the (global) representativeness of the merged 
directed regions.  

Definition 3. Given a representative trajectory (ReTra) of p triplets ‚(ri,j, ,i jd ,v(dri,j))Ú, 
j = 1,…, p, a threshold Δd over the distance Dd between successive motion vectors of 
ReTra (see Definition 7), and a threshold Δv over the difference between successive 
values of v(dri,j), we define its symbolic trajectory (SyTra) as a set of triplets 
(sri,k, ,i ksd ,v(sdri,k)), k = 1,…, Ki, where Ki ≤ p denotes the number of directed regions 
dri,j that are merged to define a symbolic directed region sdri,k, sri,k is the union of 
successive Δv-similar regions ri,j, ,i ksd  is the motion vector of sri,k where the motion 

vectors of the merged ,i jd  are Δd-similar, and v(sdri,k) is the representativeness (see 

Definition 2) after the merging.                                                                                       
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In other words, the symbolic trajectory (SyTra) can be considered as a trajectory 
segmentation of into Ki sub-trajectories, where each sub-trajectory contains 
successive regions that are similar to each other with respect to trajectory 
representativeness (Δv-similar) and shape (Δd-similar), thus providing a compact 
representation of ReTra.  

Similarly to Definition 2, the SyTra based representativeness descriptor shows 
how many objects follow the specific k-sub-trajectory at almost the same time, space 
and direction. Note here that, as the symbolic directed regions sdri,k are different from 
directed regions dri,j the voting process is applied again to SyTra. Fig. 2(b) illustrates 
the results of merging the three ReTra of Fig. 2(a), while Fig. 3(b) illustrates the 
updated representativeness of the new voting process. A novel algorithm for 
computing SyTra is provided in Section 4.2. 

Definition 4. The trajectory representativeness descriptor Vi of a SyTra is defined as 
the weighting average over v(sdri,k), 
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where weight ,i ktδ denotes the duration of k-sub-trajectory.                                           

The trajectory representativeness descriptor Vi is to be used for the trajectory 
sampling problem. Actually, the goal of trajectory sampling is to select the most 
representative trajectories of the TD. However, by selecting the top-voted sub-
trajectories, which sounds to be an obvious decision, the high density regions of the 
TD will be oversampled, resulting in a non-representative sample. On the contrary, 
we propose the sampling to be considered as an optimization problem that aims to 
maximize a formula (Equation 2), taking into account the representativeness Vi(D) in 
the original TD D as well as the representativeness Vi(S) in the sample S (Vi(S) is 
defined similarly to Vi(D)). So, our goal is that S should contain trajectories of high 
representativeness trying at the same time to cover the full space of D. Recalling Fig. 
2, this implies that a reasonable decision of an intuitive sampling algorithm would be 
to select the green and either the red or the blue trajectory in case that the top-2 
representative trajectories are requested (i.e., |S| = 2). 

Definition 5. Let Si be equal to one when trajectory Ti of dataset D belongs to the 
sampling set, and equal to zero otherwise. The Trajectory Sampling problem is 
defined as the optimization of finding an appropriate subset S of D, which maximizes 
the function SR(S):  
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This implies that the number of trajectories in D that find their representatives in S is 
maximized.                                                                                                                       

Obviously, the idea of SR(S) is to favour Vi(D) and penalize Vi(S), at the same time 
producing a non-monotonously increasing SR(S) with N. A novel solution to the 
Trajectory Sampling problem is provided in Section 4.3. 
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4   Sampling Trajectories 

In this section, we present our approach for trajectory sampling in detail. The 
proposed methodology (consisting of three steps) is sketched by an algorithm, called 
T-Sampling and illustrated in Fig. 4. The input of the algorithm is a TD D, the 
parameters of our methodology (namely, a grid G, the dimensionality p, a control 
parameter σ – to be discussed in Section 4.1 – and thresholds Δv and Δd), and a 
number topk for the desired cardinality of the sampling set S; the output is the 
sampling set S. Although in the presented algorithm, topk is given as input, it is 
important to note that an ‘optimal’ value of it can be also recommended by the 
method itself (this interesting property will be discussed in Section 4.3).  

The T-Sampling algorithm works as follows. First, trajectories are transformed into 
a low-dimensional symbolic space and their representatives (ReTra) are elected using 
a similarity-based voting technique (lines 1-2). Second, the maximal symbolic 
representative portions of trajectories (SyTra) are extracted (lines 3-5; line 5 is 
included only for clarity as its computation is incrementally performed in line 4). 
Third, sampling is achieved by a novel sampling algorithm (TrajectorySampling) in 
an unsupervised way (line 6). 

Algorithm T-Sampling 
(TD D, Grid G,int p, Real σ, Real Δv, 
Real Δd, int topk) 
    // STEP 1, see Sec. 4.1 
01. for i=1 to N iT =ApTra(G,p,Ti); 
02. for i=1 to N Ri=ReTra( iT ,σ); 
    // STEP 2, see Sec. 4.2 
03. for i=1 to N Si=SyTra(Ri,G,Δv,Δd); 
04. for i=1 to N Ri=ReTra(Si,σ); 
05. forall Ri compute Vi(D); //Eq.1 
    // STEP 3, see Sec. 4.3 
06. S = TrajectorySampling(V(D),topk);
07. return S; 
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Fig. 4. T-Sampling Algorithm Fig. 5. Dr(ri, rj) distance function 

The three steps of the algorithm are described in the following sections. 

4.1   Voting for Trajectory Representatives 

As already discussed, in order to define the representativeness of a trajectory we 
measure distance Ddr between two directed regions. The key observation is that such a 
distance function can be decomposed in two parts, distance Dr between two regions 
and distance Dd between two motion vectors; then, we combine them into a single 
distance function using an aggregator, e.g. the average of the two components (for 
clarity we suppress the second subscript notating the trajectory id): 

( )( , ) ( , ) ( , ) 2dr i j d i j r i jD dr dr D d d D r r= +  (3)

Below we give the definition of the distance between two regions (i.e., sets of cells), 
taking also into account the time periods that they correspond to. 
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Definition 6. Given two 3D regions ri and rj, their distance ( , )r i jD r r  is defined as 

follows: 

( )( ) ( )( )
( )( )

dim dim

dim   { , , } dim

1
( , ) 1

3 2

i j

r i j
x y t i j

e m r e m r
D r r

e m r r∈
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⎜ ⎟= −
⎜ ⎟⋅ ∪⎝ ⎠
∑ , (4)

where e.g. ( )( )x ie m r  is the extent of the minimum bounding box (mbb) of ri along the 

x- axis (similar for y- and t- axis).                                                                                   

Fig. 5 illustrates the 2D spatial projection of two regions (time is omitted for clarity), 
as well as the respective motion vectors. It is clear that ( , )r i jD r r  is bounded in [0,1]. 

Intuitively, ( , )r i jD r r  takes into account both the Euclidean distance between two 

regions and their extents, while it produces non-zero results in the case of overlapping 
(in space or time) but non identical regions. 

Similarly, we give the definition of the distance between two motion vectors (i.e., 
directed segments) id  and jd  as the minimum normalized energy of rotation of line 

segment id  to jd , or vice-versa, which depends on the angle θ formed between the 

two directed segments. 

Definition 7. Given two motion vectors (directed segments) id  and jd , their distance 

( , )d i jD d d  is defined as the normalized distance, that a segment will cover, after its 

rotation of θ rads, 0 ≤ θ ≤ π, where θ is the angle between the two segments after they 
have been translated so as to have a common starting points. Formally:                                           

( , )d i jD d d
θ
π

=  (5)

According to the problem formulation presented in Section 3, the representativeness 
of a directed region dri depends on its distance to every trajectory in TD. We define 
distance ( , )dr i mD dr T between dri and a trajectory Tm of the TD as the distance between 

two directed regions, namely dri and the closest directed region of Tm to dri. In the 
literature, several voting functions have been proposed, either step or continuous. In 
this work, we have selected to use the following continuous function of Gaussian 
kernel, which is widely used in a variety of applications in the field of pattern 
recognition [21].  

2

2

( , )

2( , )
dr i mD dr T

i mv dr T e σ
−

= i  (6)

Since 0 ≤ ( , )dr i mD dr T ≤ 1, the control parameter 0 ≤ σ ≤ ½ tunes how fast the function 

(i.e., voting influence) decreases with distance. According to this definition, it holds 
that 0 ≤ ( , )i mv dr T  ≤ 1. The lower the ( , )dr i mD dr Τ  the higher the value of the voting 

function and vice-versa. 
Adopting a continuous voting function, like the Gaussian kernel, we get smooth 

results for slight changes on parameters (σ in our case), and getting decimal values as 
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results of the voting process increases the robustness of the method. Finally, v(dri) is 
computed by summating the votes from all trajectories Tm.  

 
1... ,

( ) ( , )
N

i i mm n m k
v dr v dr T

= ≠
=∑  (7)

Lemma 1. The time complexity of the Trajectory Voting step of our methodology is 
O(N·p·log(N·p)), where p is the dimensionality of the symbolic representation and N 
is the cardinality of D. 

Proof: Assuming that L denotes the average number of directed regions per 
trajectory, the computational cost of representativeness v(dri) is O(N·L). This is 
measured L times on the average for each of N trajectories in TD. As such, the total 
computation cost is O(N2·L2). However, in order to be able to execute the algorithm in 
large databases, this computation cost may be reduced using a spatial index, such as 
the R-tree-like structures used in [6]. Using R-trees reduces the cost of voting for each 
dri to O(log(N·L)), resulting in a total cost O(N·L·log(N·L)). The voting method is 
applied twice: first, on the p-dimensional ApTra and, second, on the merged SyTra. In 
the first case, L = p while in the second case L << p. Overall, the cost of the trajectory 
voting step is the sum of the two phases, hence O(N·p·log(N·p)).                                  

4.2   Global Symbolic Trajectories 

As already discussed, a more intuitive representation for ReTra that certainly has added 
value for an analyst would be to provide an aggregate representation along the 
temporal dimension (i.e., SyTra). Fig. 6 presents an algorithm that transforms ReTra to 
SyTra, according to Definition 3. The main idea of the algorithm is, starting from an 
initial time period to follow a local time-based clustering approach in the form of a 
greedy time-expansion (merging) technique that concatenates a set of successive 
periods, as long as distance Dd of the directed segments is low enough to preserve the 
(local) mobility pattern (sketch) of the trajectory, but also the representativeness of the 
candidate (for merging) regions remains more or less the same. More specifically, after 
the initialization (lines 1-2), the algorithm starts an iterative procedure until all time 
periods are used (lines 3-15). At each iteration, it appends a local merged ReTra to the 
transformed SyTra (line 14). The new local ReTra is initialized with the corresponding 
old local ReTra of the first time period not used so far (line 4). Subsequently, using the 
previous region as seed, the merging (M) begins (line 5) by searching the best among 
the candidates periods (lines 6-8), which if concatenated to local ReTra the resulted 
region will be Δd-similar, while the relative difference in representativeness, before 
and after the merging is low (i.e., Δv-similar) (line 8). The best period to stop 
expansion is the one that minimizes the relative difference after merging (lines 9-12). 
The whole process continues until no more merging can be done (line 13). 

Lemma 2. The time complexity of the SyTra algorithm is O(p2), where p is the 
dimensionality of the symbolic representation. 

Proof: There are two loops that determine the complexity of the algorithm (lines 3 
and 5). The loop (line 3) that revokes the merging process (line 5) may be repeated at 
most p times. This will happen if no actual merging occurs. This means that in this  
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Algorithm SyTra 
(ReTra retra, Grid G, Real Δv, Real Δd) 
01. sytra=∅ ; j=1; c=1; 
02. forall i in [j,P] used(pi)=false; 
03. repeat  
04.   retrac = retra(pj); 
05.   repeat 
06.     forall periods pk, k in [j+1,p]   
07.       Mj,k = retrac expanded with    
                retra(pk); 
08. M ={Mj,k| Dd(retrac, Mj,k) < Δd and 
     
                ,( ) ( )

( )

j k c

c

v M v retra

v retra

−  < Δv }; 
 
09.     if M ≠ ∅  
10.       retrac=

,
arg min

j kM M∈ ( ,( ) ( )

( )

j k c

c

v M v retra

v retra

− ); 
 
11.       forall i in [j,k] used(pi)=true;
12.       j=k+1; 
13.   until M ≠ ∅; 
14.   sytra =sytra∪ retrac; c=c+1; 
15. until used(pP)==true; 
16. return sytra; 

Algorithm TrajectorySampling 
(Vector V(D),int topk) 
01. for i=1 to N Si=0; 
02. V=sort_asceding(V); 
03. for k=1 to topk  
04.   SRgain

max = -1;  
05.   for i=1 to N 
06.     if Si == 0 AND  
           SRgain(i)>SRgain

max 
07.       SRgain

max = SRgain(i); 
08.       id = i; 
09.     end 
10.     if SRgain

max > Vi 
11.       break; 
12.     end 
13.   end 
14.   if  SRgain

max <= 0 
15.     topk = i-1; 
16.     return S; 
17.   end      
18.   Sid=1; 
19. end 
20. return S; 

 

Fig. 6. SyTra Algorithm Fig. 7. TrajectorySampling Algorithm 

case the internal loop (line 5) will be revoked only once for each period (i.e., M = Ø) 
and, as such, its cost is only the cost of the loop through all (the remaining) time 
periods (lines 6-7), which is p; plus the cost of the filtering (line 8), which is also p, as 
the Dd calculation has constant cost and the aggregated calculations are computed 
incrementally. Consequently, in this case the complexity of the algorithm is 
O(p(p+p)), hence O(p2). In the other extreme case, the loop (line 3) that revokes the 
time expansion process (line 5) is revoked only once, implying that all periods are 
merged in one. In this case, the cost of the algorithm is dominated by the internal loop 
(line 5), which, in the worst case, will be revoked p times. Again the cost of each 
iteration is O(p+p) as delineated in the previous paragraph, even if M = Ø in this case, 
as the actual merging (line 10) can also be calculated incrementally for all iterations 
of the merging process. So, the overall complexity is again O(p2).                                

4.3   Trajectory Sampling Based on Representativeness  

At the final step of our methodology, we provide a solution to the trajectory sampling 
problem defined in Section 3. In detail, the TrajectorySampling algorithm (illustrated 
in Fig. 7) takes the representativeness vector descriptor of the trajectories and returns 
the sampled subset. Recall that the goal of sampling is the maximization of the 
number of trajectories SR(S) of the original TD that find their representatives in the 
sampling set (see Definition 5). The complexity of an exhaustive algorithm would 
search for all possible solutions in order to maximize Equation (2), resulting in a 

prohibitive cost 
top

N
O

k

⎛ ⎞
⎜ ⎟
⎝ ⎠

. On the other hand, the proposed algorithm suboptimally 

solves the problem in ( top- )O N ki  iterations adopting a greedy optimization approach. 
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In detail, the TrajectorySampling algorithm starts with an empty sampling set Si = 
0 for each i = 1, …, N (line 1). In each iteration, an unselected trajectory of D that 
maximizes Equation (2) is added in S, which is equivalent with the maximization of 
SRgain(i) that is defined as: 

( ) ( ) (1 ( ))gain i iSR i V D V S= −i  (8)

SRgain(i) expresses the gain of SR(S) if the i-th trajectory of D is added in S. According 
to the proposed algorithm, it holds that SRgain is a monotonically decreasing function 
as sampling size increases, while it also holds that SRgain(i) ≤ ( )iV D . Therefore, an 

efficient way to reduce the computation cost of the maximization of SRgain(i), is to 
keep the trajectories in a list sorted in ascending order by ( )iV D  (line 2). Instead of 

computing SRgain(i) for each trajectory in D in order to find the maximum, we get the 
i-th trajectory from the list and we compare its representativeness with the current 
highest SRgain (SRgain

max) (lines 6-9). This loop terminates if SRgain
max is higher than the 

representativeness of the i-th trajectory (line 10), because it holds that the SRgain of 
each trajectory from the rest trajectories of the list would be lower than its 
representativeness and lower than SRgain

max, since the contents of the list are in 
ascending order by trajectory representativeness. The algorithm terminates either 
when the size of sampling set reaches topk (which is given as an input parameter); or 
when SRgain

max becomes a non positive number, which means that SR(S) has been 
maximized (lines 14-17), as the latter is increased in each step by SRgain

max. In the 
second case, the algorithm has automatically found an ‘optimal’ topk, assuming it is 
lower than the given input. 

An advantage of the proposed method is that it provides a deterministic solution in 
contrary with other probabilistic techniques [11], [16] that provide a randomly 
constructed sampling set trying to fit it to a desired distribution. 

Lemma 3. Assuming topk << N, the time complexity of the TrajectorySampling is 
O(N·log(L·topk) + N·logN), Ω(N·log(N) + topk ·L·log(L·topk)), where N is the number 
of trajectories in TD and L is the average number of directed regions per trajectory. 

Proof: First, sorting V(D) costs O(N·log(N)). Next, in the worst case, the method 
computes SRgain(k) topk·N times. SRgain(k) computation requires the computation of 
Vk(S). The cost for Vk(S) is O(L·log(topk·L)) according to Lemma 1, since the 
maximum size of sampling set is topk. Therefore, in the worst case the cost of the 
method is O(topk·N·log(L·topk) + N·log(N)), which results in O(N·log(L·topk) + 
N·logN) if topk << N. In the best case, the break of line 11 of the algorithm can stop 
the intrinsic loop in two (O(1)) instead of N steps (O(N)). In this case, the cost is 
Ω(N·log(N) + topk ·L·log(L·topk)).                                                                                  

5   Experimental Study 

In this section, we present an experimental study in order to evaluate our approach 
over real and synthetic TD. In particular, we have used the Athens trucks real dataset 
(available at http://www.rtreeportal.org), which consists of 112,300 GPS-tracked 
positions from 50 trucks transporting concrete in the metropolitan area of Athens, 
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partitioned in 1100 trajectories. For further experimentation, we have also used 
synthetic datasets generated by a custom generator based on the popular GSTD [20]. 
Specifically, this generator produces trajectory datasets based on a given distribution 
of spatio-temporal focal points, to be visited by each trajectory in a specific order. 
The generated dataset then forms a natural cluster, since all trajectories follow more 
or less the same behavior. For example, Fig. 8(a) illustrates the 2D projection of a 
cluster generated with the above generator, using points 1 to 5 as focal points. The 
generator also allows adjusting the speed of each moving point (which may follow 
random or normal distribution), and also the temporal periods between sampled points 
(e.g., temporal gap between two sampled positions). Finally, by choosing focal points 
of varying distributions one may produce parts of a cluster with varying density (e.g. 
in Fig. 8(a) motions from focal point 1 to point 2 are sparser than those from point 4 
to point 5). Using this methodology, we produced four synthetic clusters of 
trajectories, called C1 to C4, whose 3D visualization is presented in Fig. 8(b). Each 
cluster contains 50 trajectories, while each trajectory has 50 segments in average. It is 
obvious that the produced clusters were produced by mixing the focal points, and as 
such hiding the latent mobility patterns. Moreover, we produced three clusters, called 
C2

40, C3
30, C4

20, by randomly removing trajectories from the original clusters. For 
example, C2

40 has been produced by removing 10 trajectories from C2. Finally we 
concatenate clusters (i.e. C1C2, C1C2

40, C1C2
40C3

30, C1C2
40C3

30C4
20) as such producing 

datasets having various numbers of clusters with diverse density. 

  
(a) (b) 

Fig. 8. Synthetic data: (a) cluster C1 in 2D, (b) 4 clusters in 3D 

The parameters introduced in our approach are: (a) those regarding the 
approximate representation of the trajectories (i.e., p and G), and which mainly affect 
the execution time of our approach as trajectories are initially transformed to vectors 
in various spatio-temporal granularities; (b) the control parameter 0 ≤ σ ≤ ½ that in 
our experiments was set to 0.1, which corresponds to a smooth voting influence; (c) 
the thresholds Δv and Δd of SyTra algorithm that in our experiments were both set to 
0.1,  which corresponds to 10% relative difference to representativeness and 18° 
directional deviation, respectively; (d) the topk parameter. 

The experiments were run on a PC with Intel Core Duo at 2.53 GHz, 4 GB RAM 
and 240 GB hard disk. We implemented the proposed algorithms using C++. 
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5.1   Experimenting with Real Data 

In this section, we evaluate the effectiveness and efficiency of our approach in the 
Athens trucks TD, which is visualized in Fig. 9(a) and where the majority of motions 
are around two dense areas (see the two ellipsoids in Fig. 9(a)). 

In our first experiment, we sample the TD scaling the topk parameter, and we test 
the ability of our approach to capture the sketch of the whole TD by visualizing the 
sampled trajectories. Fig. 9(b) and (c) prove that our approach succeeds to preserve 
this sketch with various diverse granularities of approximation. The cell size is shown 
as percentage of the size of the total space. 

Fig. 9. Visualization of Athens trucks TD scaling top-k 

Note that Fig. 9(b) with topk set to less than 20% of the TD cardinality captures 
almost completely the space, while with less than 4% Fig. 9(c) leads to the same 
comprehension (not only confining the main two patterns but also the behavior in the 
non-dense areas). Actually, this result is in accordance to our second experiment 
where we try to automatically identify the ‘optimal’ topk by scaling the size of the 
sampling size and computing the SRgain which expresses the gain of including the i-th 
trajectory of the TD in the sampling set. Fig. 10(a) clearly depicts that a topk value 
between 35 and 40 (where SRgain becomes very low) captures the most representative 
portions of the TD. Another conclusion is that the increase of dimensionality p 
slightly increases the ‘optimal’ topk, which is expected as the level of detail gets finer. 

The second set of experiments is about the execution time of the various steps in 
our approach. Fig. 10(b) presents the accumulative processing time scaling the 
dimensionality p, and setting the cell size to 2.5%, and topk to 200 (i.e., we choose the 
maximum values used in the first experiment). In detail, we compute the processing 
time for each of the main steps presented in Fig. 4, namely the voting method applied 
in ApTra (line 2), the computation of SyTra (line 3), the re-application of the voting 
scheme to SyTra (line 4) and the actual sampling (line 6). The conclusions that can be 
drawn are: a) the processing time of every step is linear with dimensionality p; b) the 
computation of SyTra is extremely fast, negligible to the overall time, though 
extremely important as it relaxes the initially static dimensionality constraint 
discovering maximal mobility patterns; c) the processing time of SyTra voting is 
significantly lower than that of ApTra (due to merging), while both appear to be 
affordable (a few seconds are required even without index support). Fig. 10(c) presents  
 

(a) 
Full dataset (1100), 
2 identified clusters 

(b) 
topk = 200, p = 30, 
cell size = 1.25% 

(c) 
topk = 40, p = 50, 
cell size = 2.5% 
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Fig. 10. (a) SRgain scaling the sampling set size, (b) and (c) T-Sampling processing time, (d) 
Clustering accuracy error vs. topk 

the overall execution time for T-Sampling, where a smooth superlinear behavior of the 
algorithm appears, resulting in a few tens of seconds even for very large 
dimensionality and topk values. 

5.2   Experimenting with Synthetic Data 

The purpose of experimenting with synthetic data is to assess the ability of the 
proposed methodology to preserve patterns extracted by trajectory data mining 
algorithms. In our first experiment, we use a state-of-the-art trajectory clustering 
algorithm [5], and we measure the effect of sampling in clustering. We sampled the 
C1C2

40, C1C2
40C3

30, C1C2
40C3

30C4
20 datasets including 2, 3, and 4 clusters respectively, 

scaling the topk from 50% to 10% of the cardinality of each dataset (i.e. the reduction 
after sampling was up to 90%). We measure the clustering accuracy error (i.e. the 
difference in the clustering accuracy before and after the sampling) for various 
granularity levels, ranging p from 10 to 50 (step 10), and cell size equal to 0.15%, 
0.25%, 0.5%, 0.75% and 1% of total space. As such, for each dataset and for each 
topk we performed 5×5=25 experiments. Fig. 10(d) illustrates the range of values, the 
minimum, maximum, and average (i.e., the horizontal in-between crossing segment)  
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clustering accuracy error for each set of experiments, where it is clear that the error 
introduced in the clustering patterns is low (around 5%). We would like to note that 
the maximum error is introduced only in one out of 25 experiments, when p = 50 and 
cell size = 0.15%. 

In the second experiment, we employ two algorithms that extract the so-called 
representative or centroid of a trajectory cluster, namely TRACLUS [12] and CenTra 
[19], respectively. TRACLUS identifies local, more or less linear clusters of segments 
of trajectories without using the temporal information, while CenTra discovers 
clusters of whole symbolic trajectories. As such, these two approaches are typical 
examples of two different clustering techniques having as output different mobility 
patterns. The idea of the experiment is to evaluate whether the two techniques capture 
more or less similar mobility patterns when applied before and after sampling. For 
this purpose, we use the C1C2 dataset from which we sample the topk = 50% of the 
cardinality of each dataset. The visualization of the clusters and their mobility patterns 
in Fig. 11 clearly shows the resemblance of the resulted patterns, before and after 
sampling. We repeated the experiment several times tuning the parameters of these 
algorithms and with various sampling sizes and the conclusion remained the same. 

    

Fig. 11. TRACLUS [12] (a-b) and CenTra [19] (c-d) results before and after sampling 

6   Conclusion and Future Work 

In this work, we proposed a novel solution to the challenging problem of trajectory 
sampling, where the challenge is to build a sample by selecting representatives among 
a large set of trajectories in an unsupervised way for general purpose. To the best of 
our knowledge, there is no related work that addresses this problem apart from 
explorative, supervised by the user, approaches. 

In the future, we plan to add a least enlargement criterion of the merged directed 
regions to the process of SyTra algorithm (as in [1]), so as to tight our implementation 
with an R-tree like access method for efficiency purposes. Moreover, we plan to 
evaluate our approach on other types of mobility patterns, such as T-patterns [7] and 
flock patterns [9], and we will try to adapt it for the purpose of outlier detection [13]. 

Acknowledgements. Research partially supported by the FP7 ICT/FET Project 
MODAP (Mobility, Data Mining, and Privacy) funded by the European Union. URL: 
www.modap.org. 
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Abstract. This article introduces the problem of searching locally opti-

mal patterns within a set of patterns constrained by some anti-monotonic

predicate: given some pattern scoring function, a locally optimal pat-

tern has a maximal (or minimal) score locally among neighboring pat-

terns. Some instances of this problem have produced patterns of interest

in the framework of knowledge discovery since locally optimal patterns

extracted from datasets are very few, informative and non-redundant

compared to other pattern families derived from frequent patterns. This

article then introduces the concept of variation consistency to charac-

terize pattern functions and uses this notion to propose GALLOP, an

algorithm that outperforms existing algorithms to extract locally opti-

mal itemsets. Finally it shows how GALLOP can generically be applied

to two classes of scoring functions useful in binary classification or clus-

tering pattern mining problems.

1 Introduction

Pattern mining consists in searching in some dataset relevant patterns in relation
to some knowledge extraction problem. Formally, a family of patterns may be
modeled as any partially ordered set (P ,≤P) and a dataset as a multiset D ⊆
P of patterns representing objects or observations. Then a pattern P is said
to describe or cover a datum d ∈ D if P ≤P d. When objects are described
by a set I of items, patterns are subsets of I called itemsets, ordered by set
inclusion ≤P=⊆. Whatever their type (itemsets, sequences, graphs,. . . ), datasets
are intended to be analyzed by experts of the application domain in the hope of
revealing some new pieces of knowledge. It is thus essential that these patterns
are simultaneously characteristics of data, application-relevant, non-redundant,
and as few as possible to make the analysis of these patterns practicable.

With respect to these requirements, many pattern mining methods generate
too many patterns sharing too much similarity so that in practice, a study of
these patterns is an annoying or even impossible task. This is a well-known
problem with frequent patterns [1], i.e patterns P such that the proportion of
data covered by P in dataset D, called relative frequency σ(P ), is not less than
some threshold σ0 ∈ [0, 1]. But this problem also applies to many other pattern
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families like emerging patterns for classification [2], or even condensed repre-
sentations of frequent patterns like frequent closed patterns [3] or frequent free
patterns [4] that are not much fewer than frequent patterns in many applications.
A postprocessing step is thus required to select a subset of these patterns. It gen-
erally consists in computing for each pattern a non-monotonic score combining
frequency with other pattern characteristics like length, classification measures,
etc. The list of patterns is then sorted in descending order of score and only the
few first hundred patterns of this list (also called top-k patterns [5]) are actually
analyzed by experts. However this approach does not address the problem of
redundancy: as similar patterns are likely to have similar scores, the top ranked
patterns are likely to be considered by experts as clones of the same pattern (see
examples of section 2.1 in [6]).

The family of Most Informative Patterns, or MIPs, has been introduced in [6]
to address previous requirements similarly to pattern teams [7] and other global
models like [8,9]. MIPs are defined as patterns maximizing locally some scoring
function, that is, patterns whose score is not smaller than scores of neighboring
patterns. Neighbors of a pattern P are defined as the set of immediate predeces-
sors and successors of P , i.e. the set of every pattern P ′ such that there exists no
other pattern included in between P and P ′. MIPs are interesting for two rea-
sons: first some scoring function estimates the value of a pattern specific to the
application, second the local maximum criterion removes pattern redundancy
and drastically reduces the number of selected patterns. The way this criterion
removes pattern redundancy corresponds to the way experts are likely to select
non-redundant patterns within the list of patterns sorted by descending order
of score (see section 2.1 in [6]). The associated data-mining problem then con-
sists in extracting every frequent MIP from a dataset. However the brute-force
algorithm to extract frequent MIPs requires much more processing time than
the extraction of frequent patterns as i) contrary to pattern frequency, scoring
functions are not assumed to have specific properties enabling efficient pruning
strategies, ii) while mining algorithms generate every frequent pattern only once,
MIP extraction potentially requires to generate every pair of frequent neighbor-
ing patterns. A faster and more scalable extraction algorithm has been proposed
in [6] but its performance is still two orders of magnitude slower than best fre-
quent pattern mining algorithms like FP-growth [10]. This gap of performance
prevents a complete extraction of MIPs for low frequency thresholds.

While the MIP model [6] considers some specific class of scoring functions
whose properties ensure MIPs are “clustering patterns”, i.e. descriptive of sub-
stantial fractions of datasets, the key idea of using the local maximum criterion
to remove redundancy may serve other purposes. For this reason, the present ar-
ticle considers the more general problem of extracting Locally Optimal Patterns
relatively to any pattern scoring function. The main contribution of this paper
is the introduction of an algorithm called GALLOP (for Generic ALgorithm to
extract Locally Optimal Patterns) that outperforms with typically one order of
magnitude prior algorithm of [6] to extract MIPs when patterns are itemsets.
Moreover the article shows GALLOP’s performance generalizes to another type
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of scoring function suiting binary classification problems. More fundamentally,
this article contributes to provide useful concepts to characterize pattern scoring
functions in the same way real analysis in mathematics provides useful concepts
to characterize real functions. In particular this article introduces concepts of
consistent variation and dominance influence, on which GALLOP’s heuristics
are based. The rest of this paper is structured as follows: section 2 formally de-
fines Locally Optimal Patterns, section 3 introduces GALLOP and its heuristics
based on both aforementioned concepts, section 4 analyzes results of tests run
on reference datasets and section 5 concludes.

2 Locally Optimal Patterns

For the sake of generality, no restriction is made at this stage on the type of con-
sidered patterns (itemsets, sequences, graphs. . . ). Therefore let a pattern space
P be a set of patterns ordered by some partial ordering relation ≤P . A pattern
scoring function is any function s : (P ,≤P) → (S,≤S) mapping a pattern P to
a score s(P ), where scores are elements of any set S ordered by some partial
or total ordering relation ≤S. A simple example of scoring function is the area
function sa that maps an itemset P to a real number called area, that is, the
product sa(P ) = |P | · σ(P ) · |D| of pattern length |P | and absolute frequency
σ(P ) · |D| of P in some dataset. This function is useful in clustering problems
as it privileges descriptive patterns representative of large fractions of datasets.
This scoring function is illustrated on Fig. 1(a) by the lattice of itemsets made
of items a, b, c, and d, ordered by inclusion and scored with their area. The

∅ (0)

a (5) b (5) c (3) d (3)

ab (8) ac (4) ad (4) bc (4) bd (4) cd (4)

abc (6) abd (6) acd (3) bcd (3)

abcd (4)

(a) Area sa

∅ (0,0)

a (-1/12,1) b (-1/12,1) c (5/12,1)

ab (2/12,2) ac (1/12,2) bc (1/12,2)

abc (1/12,3)

(b) Difference sd

Fig. 1. Itemset lattices with score and dominance relation (an arrow P1 → P2 means

pattern P1 dominates pattern P2) for the area function (a) and the extended difference

function (b). Locally optimal patterns appear in bold.

area of pattern P is computed from frequency of P in a dataset made of seven
objects, whose descriptions are respectively a, b, ab, cd, abc, abd, and abcd. For
instance, score of pattern ac is sa(ac) = |{a, c}|× σ(ac)× 7 = 2× 2 = 4 since ac
is a subset of data abc and abcd, and thus σ(ac) = 2/7.
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Another example of scoring function is the difference function sd privileging
class discriminating patterns extracted from binary classification oriented data.
This function maps pattern P to a real number sd(P ) = σ+(P ) − σ−(P ) where
σ+(P ) and σ−(P ) respectively denote relative frequencies of P in datasets of
positive and negative examples of some target concept. Length of pattern P
might optionally be appended to sd(P ), so that scores are vectors (sd(P ), |P |)
ordered by lexicographic order (i.e. second dimensions of two scores are compared
only if first dimensions are found equal). This second dimension is a refinement
to privilege ≤P-maximal patterns within equivalence classes of patterns covering
the same sets of positive and negative examples. Lattice on Fig. 1(b) illustrates
this extended difference function assuming positive and negative examples are
respectively data with and without item d in the aforementioned dataset. For
instance, score of pattern ac is sd(ac) = (σ+(ac) − σ−(ac), |{a, c}|) = (1/3 −
1/4, 2). The length dimension allows to distinguish abc of length 3 from ac and
bc of length 2 while all three patterns cover the same positive (i.e. abcd) and
negative (i.e. abc) data and thus have the same frequency difference 1/3 − 1/4.

The general objective that is pursued by the author is to get better insights
about how any given pattern function s “behaves” in the pattern space on which
s is defined. This article provides first concepts and methods to address this
question by searching for patterns maximizing locally function s within their
neighboring patterns. Two patterns are hereafter neighbors if one is the im-
mediate successor of the other. A pattern P ′ is an immediate successor of a
pattern P (denoted P ≺P P ′) if P <P P ′ and no pattern P ′′ exists such that
P <P P ′′ <P P ′. Pattern P is then an immediate predecessor of P ′. Two item-
sets P1 and P2 are thus neighbors if they differ with one item only, or equivalently,
if their edit distance hereafter defined as the cardinality of their symmetric dif-
ference d(P1, P2) = |P1 \ P2| + |P2 \ P1| is equal to one.

Definition 1. Given a scoring function s : P → (S,≤S), a pattern p1 ∈ P is
said to dominate pattern p2 ∈ P if and only if p1 and p2 are neighbors and
s(p1) >S s(p2). A locally optimal pattern or LOP is a pattern that is not domi-
nated by any pattern. Then given an anti-monotonic predicate p defined over P,
a pattern is said valid if it satisfies p. The problem of the extraction of valid
locally optimal patterns consists in extracting every optimal pattern relatively to
s that is valid relatively to p.

Figure 1 represents dominance by orienting lattice edges: an arc from pattern P1

to pattern P2 means P1 dominates P2. Locally optimal patterns, called optimal
patterns for short, are patterns that are not pointed by any arc like patterns
ab and cd on Fig. 1(a). The anti-monotonic predicate p is introduced to control
the number of patterns to process as pattern spaces are generally very large
or even infinite sets. In pattern mining applications, valid patterns are likely
to be frequent patterns. Because p is a secondary parameter of the problem, it
is important that the range of the dominance relation be not limited only to
valid patterns but to every neighbor of every valid pattern (including these that
are not valid). Otherwise the locally optimal character of valid patterns would
depend on the arbitrary choice of predicate p, which is a negative side effect. For
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instance on Fig. 1(a), pattern c of frequency 3 is not optimal as it is dominated
by pattern ac of frequency 2. However if one arbitrarily sets threshold σ0 = 3,
pattern c appears not dominated by any other frequent pattern and could be
mistakenly believed optimal.

3 Locally Optimal Pattern Extraction

LOP extraction algorithms have to proceed unit tasks called pattern compar-
isons, consisting in comparing scores of two neighboring patterns and discarding
the dominated neighbor (if any) from the output set. LOP extraction is a prob-
lem of higher time and space complexities than a simple enumeration of patterns
as used in frequent pattern mining, since the number of pattern comparisons may
reach the number of pairs of neighboring patterns (i.e the number of edges in the
diagram of order (P ,≤P)) instead of the number of patterns (i.e. the number of
vertices in the order diagram).

3.1 Existing Algorithms

The brute-force extraction of LOPs described in [6] to extract frequent MIPs,
consists in an exhaustive depth first order exploration of the pattern space start-
ing from the empty pattern. This approach called direct extraction in [6] is clearly
not scalable as it requires to memorize every investigated pattern (with its score
and a selection flag) and it is also very slow for several reasons: in particular, the
method systematically generates every invalid (e.g non-frequent) pattern having
at least one valid predecessor. This set, called hereafter the disjunctive negative
border, is in many applications much larger than the set of valid patterns itself
and its generation requires a lot of processing time [6].

A better solution is proposed in [6] based on a level-wise filtering algorithm: in
a first step, the method splits valid (e.g frequent) patterns into levels (Ln)n≥0 of
patterns of size n, so that a pattern P in level Ln is provided to the second step,
only if P is not dominated by any valid neighbor found in levels Ln−1 or Ln+1.
This way the second step, called postfiltering, only has to consider a small number
of patterns called candidates to compare with their successors in the disjunctive
negative border. The level-wise method is considerably faster than the direct
extraction as it does not generate any pattern of the disjunctive negative border
during the first step and only a small fraction of it during the second step. The
method is also more scalable as it only stores one level of frequent patterns in
memory at a time.

However, the method systematically compares every pair of valid neighbor-
ing patterns. Moreover it requires to split input patterns produced by fastest
frequent pattern mining algorithms like FP-Growth into as many files as levels,
implying many slow parallel file system accesses. In order to further reduce the
gap between times to extract the list of frequent patterns and to extract optimal
patterns from them, GALLOP has been designed with two goals: first, GALLOP
avoids costly IO access times due to the reordering of many input patterns in
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levels by processing sequentially the input pattern file in only one pass, while at
the same time reducing memory needs. Second GALLOP reduces the number of
useless pattern comparisons that do not discard any pattern from the candidate
set. The next two subsections detail how GALLOP addresses each of these goals.

3.2 GALLOP’s Pattern Sequential Processing

GALLOP retains the previous idea of a two-step processing to avoid the com-
plete generation of the overlarge disjunctive negative border. Indeed for the full
extraction process to be generic, it has been broken down in four successive
steps:

1. The mining step first enumerates every valid pattern relatively to some
predicate p, like for instance computing every frequent pattern with its fre-
quency.

2. The scoring step sequentially processes valid patterns to score each of them
relatively to some function s.

3. In the filtering step, GALLOP extracts candidates from scored patterns,
later called input patterns.

4. The postfiltering step compares scores of candidates with those of their
successors in order to determine which candidates are optimal.

As a consequence, GALLOP is a generic algorithm that only compares pattern
scores and thus does not depend on s and p. Nevertheless GALLOP depends
on the scoring order (S,≤S). In practice the current implementation assumes
scores are real vectors ordered by either lexicographic or product ordering re-
lation. As already stated, one objective of GALLOP is to process the very
large input pattern file in one single pass while remaining complete. Since the
fastest frequent pattern mining algorithms like FP-growth used in the first step
mentioned above enumerate itemsets in lexicographic order (assuming some
implementation-dependent ordering of items), GALLOP processes input pat-
terns in the same enumeration order thanks to a recursive procedure.

Definition 2. A pattern enumeration is formally defined as a linear ordering
relation � called precedence relation defined over the set of patterns, so that P1 �
P2 means “P1 is enumerated before P2”. P1 then precedes P2 or conversely P2

succeeds P1. A lexicographic enumeration of itemsets has a precedence relation
equal to some lexicographic ordering of itemsets : (i1, . . . , in) � (i′1, . . . , i

′
n′) if

there exists a subscript j ≥ 0 such that for all k ≤ j, ik = i′k and either j = n
and n < n′ or ij+1 <I i′j+1 where <I is an arbitrary linear ordering of items.

Such enumeration may be efficiently implemented by extending recursively ev-
ery pattern P = (i1, . . . , in) to pattern P ′ = (i1, . . . , in, in+1) by appending the
smallest item in+1 >I in not already appended to P . Pattern P ′ is one of the
children of P and P is the parent of P ′. In such enumeration, two neighboring
patterns are said lineal neighbors if one pattern is the parent of the other. Oth-
erwise they are said transverse neighbors. Thus every pattern P has up to four
classes of neighbors as illustrated on Fig. 2: one lineal predecessor (or parent)
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and several transverse successors that all precede P , and several lineal succes-
sors and transverse predecessors that all succeed P . This distinction between

bde

bd be de

abde bcde bdef bdeg

Fig. 2. Lineal and transverse neighbors of itemset bde wrt lexicographic enumeration

of itemsets made of items from a to g ordered alphabetically: bd (parent), bdef and

bdeg (children) are lineal neighbors. be, de, abde and bcde are transverse neighbors. An

arrow from pattern P1 to pattern P2 means P1 precedes P2.

lineal and transverse neighbors is important as a sequential processing of pat-
terns enumerated in some lexicographic ordering may compare current pattern
P with its lineal neighbors at almost no computational cost since the score of
P can be passed to recursive processing of its children. In contrast, comparison
of P with a transverse predecessor P ′ raises a much more difficult problem as
the number of patterns succeeding P and preceding P ′ may be arbitrarily large.
However comparisons with transverse neighbors are essential to screen efficiently
candidates as later shown in section 4. Figure 3 illustrates this importance: Only

∅ (0)

a (5) b (5) c (3) d (3)

ab (8) ac (4) ad (4) bc (4) bd (4) cd (4)

abc (6) abd (6) acd (3) bcd (3)

abcd (4)

Fig. 3. Itemset lattice of Fig. 1(a) with lineal (thick) and transverse (dashed) neigh-

boring. Bold patterns (i.e ab, b, cd, and d) are not dominated by any lineal neighbor.

comparisons with transverse neighbors are able to eliminate non-optimal candi-
dates b and d among the four patterns that are not lineally dominated.

In order to compute efficiently comparisons with transverse neighbors, the
sequential process of patterns enumerated in lexicographic order presents an in-
teresting possibility: given some currently processed pattern P , the algorithm
may “postpone” comparisons of P with its transverse predecessors until these
predecessors (which succeed P ) are in turn processed. This postponing can be
implemented by inserting predecessors of P into a priority queue (i.e. binary
heap) of patterns. The sorting order underlying the queue is the same lexico-
graphic order used to enumerate input patterns, so that the top queue element
is always the next pattern to process among all queued patterns. Every entry
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in the queue carries the postponing pattern P , its score s(P ) and a flag to
remember if P has already been found dominated. Then since P is valid and p is
anti-monotonic, every transverse predecessor P ′ of P is valid and will eventually
be processed. When P ′ becomes the currently processed pattern, GALLOP may
learn whether some transverse successor of P ′ like P has previously postponed
a comparison with P ′, by checking whether the top of the queue is P ′. In this
case, the top entry of the queue is popped, P and P ′ are compared before their
flags are updated accordingly. In practice, since the processing of transverse
predecessors of P occur in some deterministic order, only the next occurring
of these predecessors is present in the queue. When this predecessor P ′ of P is
processed, the next occurring transverse predecessor P ′′ of P is computed from
P ′ and P ’s entry is pushed down to the position of P ′′ in the queue. This limits
the size of the queue to the number of currently postponing patterns. Figure 4
summarizes the general principle of GALLOP’s recursive procedure.

function filter(Current pattern P, Value V of P)
(Integer nBT and priority queue Q are global variables)
while(Q is not empty)

Let (Pattern P’,Value V’) be the top of Q
if(P’ �= P) break;
if(V.score <S V’.score), V.lop ← false
else if(V.score >S V’.score), V’.lop ← false

Be P′′ the next predecessor of V’.pattern succeeding P.

if(P′′ is defined)

1 if((P′′,V’) is to be postponed), move (P′′, V’) in Q
else

if(V’.lop), output candidate (V’.pattern, V’.score)
pop Q

end if
end while
(Pattern P’, Score S, nBT) ← readNextPattern()
Be value V’ with

V’.pattern ← P’, V’.score ← S, V’.lop ← true
while(nBT = 0)

if(V.score <S V’.score), V.lop ← false
else if(V.score >S V’.score), V’.lop ← false
call filter(P’,V’)
nBT ← nBT - 1

end while
2 if((P, V) is to be postponed),

Be P′′ the first transverse predecessor of P succeeding parent of P
insert (P′′,V) into Q

end if
end

Fig. 4. Sketch of GALLOP’s recursive procedure

Since postfiltering compares every candidate with its successors, GALLOP
must only guarantee two conditions i) every candidate in the output is not
dominated by any predecessor ii) every LOP is not discarded from the output.
Therefore, a pattern known to be dominated might not be compared with ev-
ery of its transverse predecessors. This freedom authorizes different strategies
appearing in GALLOP’s algorithm on lines 1 and 2, where GALLOP decides
whether pattern comparisons must be postponed or not. Determining the best
strategy is fundamentally a problem of balancing effort between GALLOP and
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postfiltering: in other words, the fewer postponed comparisons, the faster GAL-
LOP, but the many more candidates, and finally the slower postfiltering. This
optimal strategy must lie between two extreme strategies:

Maximal effort strategy. Given current pattern P , an obvious strategy con-
sists in postponing systematically comparisons of current pattern P even if
P is already known to be dominated by some pattern preceding P . Like the
level-wise algorithm, this maximal effort strategy guarantees that every pair
of valid neighbors has been compared so that GALLOP’s output is reduced
to the minimal set of candidates, that is, valid patterns that are not domi-
nated by any other valid pattern. The postfiltering is thus the fastest possible
but systematic postponing is likely to require a lot of time and memory.

Minimal effort strategy. Conversely minimal effort strategy consists in stop-
ping postponing comparisons with predecessors of current pattern P as soon
as P appears dominated by some patterns. A pattern dominated by a lin-
eal neighbor or a transverse successor is thus never inserted in the queue.
This strategy provides the fastest possible version of GALLOP that still
guarantees every candidate produced as output is not dominated by any
predecessor. However this strategy is “selfish” as its only concern is pattern
P : this strategy does not help to discard transverse predecessors dominated
by P . Consequently this strategy is likely to produce many candidates and
to require a long postfiltering.

3.3 GALLOP’s Heuristics Based on Variation Consistency

The optimal strategy consists in making only comparisons which discard one of
the two compared neighbors from the candidate set, that is, when one pattern
is dominated by the other while it was not already known to be dominated by
some preceding pattern. Such comparisons are called useful, all others are said
useless. However the optimal strategy is not achievable as the decision that a
pattern P has to be compared with some of its transverse predecessors must
be made when P is currently processed, at a time no transverse predecessors
are already known to be dominated. Therefore the processing of P may only
guess, based on some heuristics, which comparisons with P ’s predecessors are
useful and must be postponed in the queue. These heuristics must rely on some
expected properties of the scoring function over the pattern space. While scor-
ing functions are not required to have any theoretical property, pattern scores
found in practical applications are expected to have some regular distribution,
in the same way data points used in regression models are expected to be sam-
ples randomly scattered around some piecewise continuous function. The notion
of consistent variation is hereafter introduced to model regularity existing in
variations of pattern functions.

Definition 3. A diamond configuration is a set of four patterns P1, P2, P3 and
P4 such that P1 ≺P P2 ≺P P4 and P1 ≺P P3 ≺P P4 as illustrated on Fig. 5.
Given such a diamond configuration and a scoring function s, variations of s
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P1

P2

P3

P4

(a)

P1

P2

P3

P4

(b)

P1

P2

P3

P4

(c)

P1

P2

P3

P4

(d)

Fig. 5. Diamond configurations: examples of inconsistent (a and b) and consistent (c

and d) variations. Arrows give dominance directions.

from P1 to P2 and from P3 to P4 are inconsistent if P1 dominates P2 and P4

dominates P3 or if P2 dominates P1 and P3 dominates P4.

Definition 4. A scoring function has consistent variations within a set S of
patterns if no diamond configuration within S has some inconsistent variation.

Non-decreasing pattern functions (i.e. ∀P1, ∀P2, P1 ≤P P2 ⇒ s(P1) ≤S s(P2))
like pattern length, or conversely non-increasing functions like pattern frequency
have by definition consistent variations over the whole pattern space. However
consistent variation is still statistically true for more complex non-monotonous
scoring functions like area or difference scoring functions as shown in Tab. 1. The

Table 1. Variation consistency ratio for different datasets

Scoring Positive Negative Thres. Number of Consistency
Dataset function class class σ0 diamonds Ratio
Mushrooms area 0.05 132 M 98 %

diff. edible poisonous 0.05 59 M 97 %
Breast-Cancer area 0.001 3.9 M 85 %

diff. cancerous healthy 0.001 1.6 M 85 %
Vote area 0.01 10 M 94 %

diff. republican democrat 0.01 4.3 M 95 %
Chess area 0.5 41 M 97 %
Connect area 0.8 173 M 98 %

table provides the consistency ratio of both scoring functions sa and sd (when
target classes are available) for some UCI datasets. This ratio is computed from
a set of frequent patterns: for every possible diamond configuration of frequent
patterns, consistency of both possible pairs of variations is tested. The ratio is
defined as the number of consistent pairs over the total number of pairs. For
every function and dataset (but Breast-Cancer), the ratio is at least 94 %. This
observation leads to an alternative strategy called lazy strategy.

Comparison Pruning based on a Lazy Evaluation Strategy. This strat-
egy consists in making comparisons of current pattern P with its transverse
predecessors only if P is not dominated by any lineal neighbor. To understand
why this strategy is sound, let some current pattern P be dominated by some
lineal neighbor PL. Figure 6 illustrates the case PL is a predecessor of P . For
every transverse predecessor P ′ of P , let i be the item such that P = P ′ ∪ {i}
and let P ′

L be the itemset such that PL = P ′
L∪{i}. Then the four patterns builds



44 F. Pennerath

P ′
L = I

PL = I ∪ {i} P ′ = I ∪ {i′}

P = I ∪ {i, i′}

Fig. 6. Lazy strategy heuristic: if current pattern P is dominated by a lineal neighbor

PL (here a predecessor), every transverse predecessor P ′ is likely to be dominated by

one of its lineal neighbor P ′
L.

P = IP1 = I ∪ {i1}

P2 = I ∪ {i2}Popt

Fig. 7. Consistent influence: P is dominated by two transverse successors P1 and P2

because of a common influence of some remote locally optimal pattern Popt. Dashed

and dotted lines represent resp. transverse neighborhood and influence of Popt.

a diamond where arcs P → PL and P ′ → P ′
L are parallel and have the same

orientation in the order diagram. Assuming variations of the scoring function s
are consistent and since PL dominates P , P ′ is likely to be dominated by P ′

L.
As P is known to be dominated, comparing P with its transverse predecessors
is thus likely to be useless. Implementing the lazy strategy when processing P is
possible by delaying the decision to postpone comparisons with transverse pre-
decessors after processing recursively lineal children of P (cf line 2 on Fig. 4).
At that point, P is known to be lineally dominated or not.

More Comparison Pruning based on LOP Dominance Influence. The
concept of variation consistency over current pattern P and its lineal neighbors
leads to define the lazy strategy as an optimized version of the maximal strategy.
Similarly the concept of dominance influence leads to define an optimized version
of the lazy strategy.

Definition 5. Given a locally optimal pattern Popt relatively to some scoring
function s and a set E of patterns, Popt has a dominance influence over E if for
every pair of neighbors {P, P ′} in E such that P is strictly closer to Popt than
P ′ (according to the edit distance d defined in Sect. 2), P dominates P ′.

The intuition behind this concept is that every local optimal pattern exerts a
dominance influence over some surrounding pattern subspace: for example, op-
timal pattern ab on Fig. 1(a) exerts a dominance influence over all patterns but
cd, c, and d while optimal pattern cd only exerts a dominance influence over cd,
c, d, ∅ and bcd. This hypothesis is used to prune more useless comparisons in
the case current pattern P is not lineally dominated but is under the dominance
influence of some optimal pattern Popt through a number of transverse succes-
sors {Pi, 1 ≤ i ≤ n} such that ∀i, P ≺ Pi ⊆ Popt and P1 � · · ·� Pn as illustrated
on Fig. 7. Since P is not dominated lineally, it is likely that transverse succes-
sors Pi are also not dominated lineally, according to the hypothesis of variation
consistency. Therefore the lazy strategy will postpone comparisons of every Pi.
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0 0 0

10 1 0 1

0 1 2

∅ (0)

a (0) b (0) c (0) d (0)

ab (0) ac (0) ad (0) bc (1) bd (1) cd (1)

abc (0) abd (0) acd (1) bcd (2)

abcd (0)

Fig. 8. Shifting technique for potential candidate Pcand = abcd. Red dashed, blue

dotted, and black plain edges represent resp. postponed transverse, skipped transverse,

and lineal comparisons. Number attached to itemset is its initial shift value, and number

attached to edge representing a postponed comparison is the shift value of the edge

successor once comparison occurs.

P will thus be compared n times with each Pi whereas one comparison with P1

would have sufficed to discard P from the candidate set.
The proposed heuristic called pattern shifting aims at avoiding the n− 1 use-

less comparisons with P by ensuring that for every potential candidate Pcand (i.e.
a current pattern that has not been found dominated by any neighbor so far,
and might potentially have a dominance influence over surrounding patterns),
if P ⊂ Pcand, P will be compared with one and only one transverse successor
Pk of P , such that P ⊂ Pk ⊆ Pcand. The heuristic expects a single comparison
of Pk will suffice to discard P according to the dominance influence hypothe-
sis. In practice k is chosen to be 1, so that pattern Pk is the first enumerated
transverse successor of P such that Pk ⊆ Pcand and is called eldest successor.
For instance, if Pcand = abcd, then P = ad has two transverse successors in the
lattice of Fig. 3, that are abd and acd and its eldest successor is P1 = abd. These
eldest successors build a forest structure whose trees are built upward as shown
by postponed comparisons (red dashed edges) on Fig. 8. Shifting is an efficient
implementation of this forest structure starting from potential candidate Pcand.
Given current pattern P , shifting determines which is the first transverse prede-
cessor P ′, pattern P should be compared with (i.e should be the eldest successor
of). All comparisons with transverse predecessors of P preceding P ′ may thus
be ignored. The number of these skipped patterns is called shift and initialized
to 0. In the optimal case, P receives a postponed comparison from one unique
transverse predecessor which is the eldest successor P ′ of P . The shift of P is
then initialized to the shift of P ′, and every time P is compared with a new
transverse predecessor, its shift is incremented by one. However the shift of P
is sometimes forced to be initialized to 0 when P appears to be a new poten-
tial candidate. This simple algorithm builds upward trees between transverse
neighbors starting from potential candidates as illustrated on Fig. 8: assuming
abcd is a potential candidate, its initial shift is set to 0. This shift is incremented
when comparing abcd with abd, acd, and bcd. Initial shift for abd, acd, and bcd are
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thus resp. 0, 1, and 2. When acd is processed as the current pattern, its shift is
1 and skips its first transverse predecessor ad, since ad is already compared with
its eldest successor abd. When bcd is processed, its shift value is 2, and since
it has only two transverse predecessors bd and cd, bcd does not postpone any
comparison as it is not the eldest successor of any of its transverse predecessors.
A consequence of discovering several new potential candidates is that a current
pattern P can be compared with more than one eldest successor, with different
interfering shift values. In this case, the most cautious choice is to skip a minimal
number of postponed comparisons, by setting the shift of P to the minimal shift
of eldest successors that postponed comparisons with P .

4 Tests and Empirical Analysis

Tests on some standard PC (Intel Core2 1.8GHz with 1.5GB RAM) have been
performed on reference itemset datasets from the UCI repository in order to com-
pare both processing time and scalability (measured by the maximum number
of memorized patterns at a time) of each different algorithm: the prior level-wise
algorithm presented in [6] and the four GALLOP’s versions using the maxi-
mal, minimal, lazy strategy, and the lazy strategy with shifting (referred as
GALLOP-Lazy+). All these algorithms have been used to extract frequent opti-
mal patterns relatively to both area and difference functions. Table 2 summarizes
test results. Whatever the dataset and scoring function are, the level-wise algo-
rithm, GALLOP-Maximal, GALLOP-Lazy, and GALLOP-Lazy+ always appear
in this order in the list of algorithms sorted in descending order of processing
time. GALLOP-Lazy+ outperforms the level-wise processing time with at least
one order of magnitude but for the Connect dataset. Speed improvements from
GALLOP-Maximal to GALLOP-Lazy and from GALLOP-Lazy to GALLOP-
Lazy+ attest the soundness of consistent variation and dominance influence
heuristics. Since the level-wise algorithm and GALLOP-Maximal compare every
pair of frequent neighbors, they always produce the same number of candidates.
More surprising is that GALLOP-Lazy, while pruning many more comparisons
than GALLOP-Maximal, produces the same number of candidates and thus
does not slow down postfiltering: as a consequence, the lazy strategy noticeably
reduces processing time and improves scalability of the filtering step without
increasing time of the postfiltering step. This is also true about pattern shift-
ing: even if GALLOP-Lazy+ sometimes produces few more candidates than
GALLOP-Lazy, the time saved by pruning more comparisons largely balances
the small extra time spent in postfiltering. These observations are confirmed
for every threshold value as shown on Fig. 9(a) and (b). Connect is the only
dataset where heuristics do not substantially reduce the total processing time.
This is because postfiltering has a time complexity in Θ(|D| · |C|), proportional
to the number of candidates |C| and to the very large size |D| of dataset Con-
nect. Since every GALLOP’s version but GALLOP-minimal produces the same
214 candidates and since postfiltering of these candidates is about 500 longer
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Table 2. Comparison of algorithm performances for different datasets, scoring func-

tions, and frequency thresholds. Every test is described by total processing time (in-

cluding time for filtering input patterns and postfiltering candidate patterns), ratio

of time spent on postfiltering, candidate number and maximal number of memorized

patterns. Algorithms are sorted in descending order of processing time. The absence of

some algorithm in a test means its processing was too long and aborted.

Scoring Thres. Frequent Freq. Algorithm Total Postfilt. LOP Max. memo.
Dataset function σ0 patterns LOPs time (s) ratio candidates patterns

Mushrooms area 0.134 110 K 10 Minimal 1010 99 % 14 K 6.7 K
Level-wise 36 1 % 11 41 K

8124 data Maximal 6 5 % 11 40 K
Lazy 3 10 % 11 20 K
Lazy+ 1.5 26 % 17 17 K

0.044 4.2 M 19 Maximal 833 0.5 % 19 2 M
Lazy 220 0.2 % 19 1 M
Lazy+ 74 0.6 % 25 0.8 M

difference 0.086 328 K 24 Minimal 1950 99 % 27 K 23 K
Maximal 23 7 % 140 144 K

edible Lazy 12 13 % 140 72 K
minus Lazy+ 6 27 % 140 61 K

poisonous 0.035 4.7 M 29 Lazy 246 2 % 553 1.1 M
Lazy+ 98 4 % 556 1 M

Breast-cancer area 0.001 297 K 402 Minimal 93 97 % 28 K 15 K
Level-wise 76 0.5 % 402 150 K

699 data Maximal 13 1 % 402 103 K
Lazy 7 3 % 402 50 K
Lazy+ 3 6 % 430 38 K

difference 0.001 147 K 383 Minimal 72 98 % 23 K 9 K
cancerous Maximal 5 5 % 607 51 K

minus Lazy 3 10 % 607 24 K
healthy Lazy+ 1.6 17 % 622 18 K

Vote area 0.017 1.5 M 6 Level-wise 585 <0.1 % 7 0.5 M
Maximal 146 <0.1 % 7 0.7 M

435 data Lazy 45 0.1 % 42 0.3 M
Lazy+ 24 0.4 % 120 0.2 M
Minimal 13 36 % 1.3 K 5 K

difference 0.005 3.3 M 53 Minimal 1000 95 % 304 K 157 K
republican Maximal 349 0.2 % 2311 1.4 M

minus Lazy 155 0.4 % 2325 0.7 M
democrat Lazy+ 65 1 % 2415 0.67 M

Chess area 0.585 328 K 1 Minimal 826 99 % 16 K 31 K
Level-wise 118 3 % 79 144 K

3196 data Maximal 26 15 % 79 218 K
Lazy 14 27 % 79 110 K
Lazy+ 11 35 % 79 110 K

Connect area 0.907 20 K 0 Minimal 4400 99 % 3300 2.5 K
Level-wise 290 98 % 214 10 K

67757 data Maximal 285 99 % 214 14 K
Lazy 284 99 % 214 7 K
Lazy+ 284 99 % 214 7 K

than GALLOP running time due to the large dataset, differences of speed be-
tween GALLOP’s versions are completely overwhelmed by the same very long
postfiltering. The same reasoning explains why GALLOP-Minimal is the slowest
algorithm for all tests but one: the poor filtering capability of the algorithm typi-
cally produces a hundred to a thousand more candidates than the other methods
so that the very long postfiltering overhelms the very short filtering time. The
only exception is the test with the area function and the Vote dataset, where
GALLOP-Minimal jumps from the last to the first place as show Fig. 9(a) and
(c): this surprising result is only possible because Vote is a particularly small
dataset and that the number of candidates produced by GALLOP-Minimal is
relatively small (this is not true anymore for the difference function). However
as shown on Fig. 9(c), GALLOP-Minimal only keeps this top position when
the number of candidates is kept relatively small, that is, for relatively high
frequency threshold.
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Fig. 9. Processing times for Mushrooms (a) and Vote (c) using the area function,

and candidate numbers bounded by number of frequent patterns and frequent optimal

patterns for Mushrooms (b) and Vote (d). All axis have a logarithmic scale. The

number of candidates is non-monotonic as a frequent candidate that is dominated by

some non-frequent successor M is removed once the frequent threshold decreases and

M gets frequent.

5 Conclusions

This article proposes a generic algorithm GALLOP that outperforms with one
order of magnitude previous methods to extract locally optimal itemsets, even if
long postfiltering might hide this benefit when datasets are very large and many
candidates are generated. More fundamentally this article raises a very general
problem that is to find patterns optimizing locally any scoring function within
the pattern space. Not only some instances of these patterns show interesting
properties in the framework of knowledge discovery but optimal patterns along
with notions like variation consistency and dominance influence are believed
to be part of a more global research perspective: the development of relevant
concepts and tools for representing and studying (scoring) functions defined
over ordered sets (of patterns).
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Abstract. We present a discriminative learning framework for Gaussian

mixture models (GMMs) used for classification based on the extended

Baum-Welch (EBW) algorithm [1]. We suggest two criteria for discrim-

inative optimization, namely the class conditional likelihood (CL) and

the maximization of the margin (MM). In the experiments, we present

results for synthetic data, broad phonetic classification, and a remote

sensing application. The experiments show that CL-optimized GMMs

(CL-GMMs) achieve a lower performance compared to MM-optimized

GMMs (MM-GMMs), whereas both discriminative GMMs (DGMMs)

perform significantly better than generatively learned GMMs. We also

show that the generative discriminatively parameterized GMM classifiers

still allow to marginalize over missing features, a case where generative

classifiers have an advantage over purely discriminative classifiers such

as support vector machines or neural networks.

1 Introduction

In statistical learning theory [2], the PAC bound on the expected risk for un-
seen data depends on the empirical risk on training data and a measure for
the generalization ability of the empirical model which is directly related to the
Vapnik-Chervonenkis (VC) dimension. One of the most successful discrimina-
tive classifiers, namely the support vector machine (SVM) [3], finds a decision
boundary which maximizes the margin between samples of distinct classes result-
ing in good generalization properties of the classifier. In contrast, conventional
discriminative training methods relying on the conditional likelihood (CL) opti-
mize only the empirical risk which is suboptimal. Taskar et al. [4] observed that
undirected graphical models can be efficiently trained to maximize the mar-
gin. More recently, Guo et al. [5] introduced the maximization of the margin to
Bayesian networks. Unlike in undirected graphical models, the main difficulty
for Bayesian networks is the normalization constraint of the local conditional
probabilities. In [5], this constraint is relaxed to obtain a convex optimization
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problem, whereby conditions on the graph structure are given where the relaxed
problem matches the normalized network [6]. In [7], margin optimization has
been applied to GMMs, but similar as above, the normalization constraint has
been neglected leading to a convex optimization problem. Since then, different
margin-based training algorithms have been proposed for HMMs in [8,9] and
references therein.

Compared to [5,8], we aim to follow a quite different approach in this pa-
per to maximize the margin in GMM-based classifiers. We keep the sum-to-one
constraint which maintains the probabilistic interpretation of the network, e.g.
marginalization over missing variables is still possible (as we show in this paper).
However, we no longer have a convex optimization problem in general. Convex
optimization requires convex loss function, whereas we can also use differen-
tiable non-convex loss functions. Collobert et al. [10] show that the optimization
of non-convex loss functions in SVMs can lead to sparse solutions (lower number
of support vectors) and accelerated training performance. They conclude that
the sacrosanct popularity of convex approaches should not anticipate the explo-
ration of alternative techniques, since they may offer computational advantages.
Similar observations are reported in [9].

In this paper, we derive a discriminative training method for GMM-based
Bayesian classifiers. The algorithm is based on the EBW parameter re-estimation
method [1]. In [11] it is shown that the EBW algorithm resembles the gradi-
ent descent algorithm for discriminative GMM optimization using a particular
choice of step size in the gradient descent method. Nevertheless, EBW offers
an EM-like parameter update, whereas the gradient descent method requires
additional prudence, e.g. line search or learning rate. We suggest to either op-
timize the conditional likelihood (CL) or to maximize the margin (MM).1 The
CL criterion is related to the maximum mutual information (MMI) criterion
which is popular in speech processing [12,13]. In [14], EBW has been applied
to optimize Gaussian mixture models with respect to CL. However, they ne-
glect to optimize the class prior. In the experiments, we depict the differences
of the decision boundary for generatively and discriminatively learned GMMs
for classification using synthetic data. Furthermore, we show results for broad
phonetic classification [15] and compare discriminative GMM classifiers to SVMs
and neural networks (NNs). Moreover, one of the key advantages of generative
models over discriminative ones (such as SVMs or NNs) is that it is still possible
to marginalize over missing features. We provide empirical results showing that
the performance advantage of discriminatively learned GMMs for classification
can be maintained for a low number of missing values. This is also shown for a
remote sensing application on hyperspectral data.

The paper is organized as follows: In Section 2, we shortly review the Bayesian
classifier and generative learning of GMMs, respectively. Additionally, nota-
tion is introduced. In Section 3, we derive a discriminative learning method for
CL-GMMs based on the EBW algorithm used for classification. Margin-based

1 Both algorithms are implemented in Matlab and can be downloaded at:

http://www.spsc.tugraz.at/people/franz_pernkopf/

http://www.spsc.tugraz.at/people/franz_pernkopf/
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GMM learning is presented in Section 4. We report experimental results on
synthetic and real-world data in Section 5. Finally, Section 6 concludes the paper.

2 Bayesian Classifier

The Bayesian classifier [16] relies on the Bayes rule to determine the class pos-
terior probability according to

p (c|xn
) =

p (xn|c) p (c)∑C
c′=1 p (xn|c′) p (c′)

, (1)

where c ∈ {1, . . . , C}, and C is the number of classes. The posterior probability
p (c|xn) models the probability of c given the feature vector of the nth sample
xn. We predict the class label using the MAP (maximum posterior) estimate,
i.e. the most likely class label c∗ is determined using the class posteriors as

c∗ = arg max
c∈{1,...,C}

p (c|xn
) = arg max

c∈{1,...,C}
p (xn|c) p (c) , (2)

where the denominator of Eq. (1) can be neglected since it only scales p (c|xn)
and does not alter the decision in Eq. (2). This equation is a solution of the
Bayesian risk minimization problem with the 0/1-loss function. The term p (c)
is known as class prior distribution. We use GMMs to model the term p (xn|c),
i.e. for each class c we have a GMM p (xn|Θc). A Gaussian mixture model
p (xn|Θc) is the weighted sum of M > 1 Gaussian components N (xn|θm

c ) in

Rd, p (xn|Θc) =
M∑

m=1
αm

c N (xn|θm
c ), where αm

c corresponds to the weight of

each component m ∈ {1, . . . ,M}. These weights are constrained to be positive
αm

c ≥ 0 and
∑M

m=1 α
m
c = 1. The GMM is specified by the set of parameters

Θc =
{
α1

c , α
2
c , . . . , α

M
c ,θ1

c ,θ
2
c , . . . ,θ

M
c

}
, where the Gaussians are specified by the

mean vector μm
c and the covariance matrix Σm

c , i.e. θm
c = {μm

c ,Σ
m
c }. The EM

algorithm [16,17] commonly used for learning GMMs consists of an expectation
step (E-step) and a maximization step (M-step) which are alternately used until
the log p (Xc|Θc) = log

∏Nc

n=1 p (xn|Θc) converges to a local optimum, where
Xc =

{
x1,x2, . . . ,xNc

}
c

are Nc i.i.d. samples belonging to class c. X contains
samples of all classes X = {X1, . . . ,XC} where N denotes the size of X , i.e.
N = |X | =

∑C
c=1Nc. The performance of the EM algorithm depends strongly

on the choice of the initial parameters.

3 Discriminative CL-Based Learning of GMMs in
Bayesian Classifiers

Optimizing CL is tightly connected to good classification performance. Hence,
we want to learn parameters of the GMM-based Bayesian classifier so that CL
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is maximized. Unfortunately, CL does not decompose. The objective function of
the conditional log likelihood (CLL) using GMMs in Eq. (1) is

CLL (X|Θ) = log

N∏
n=1

p (cn|xn
) =

N∑
n=1

log
p (xn|Θcn) ρcn

C∑
c′=1

p (xn|Θc′) ρc′

=

N∑
n=1

[
log

[(
M∑

m=1

αm
cnN (xn|θm

cn )

)
ρcn

]
− log

C∑
c′=1

[(
M∑

m=1

αm
c′N (xn|θm

c′ )

)
ρc′

]]
,

(3)

where, cn is the class of xn, ρcn = p (cn) is the class prior of the nth sample,
0 < ρcn < 1, and

∑C
c=1 ρcn = 1. The set of parameters Θ is composed of

Θ = {Θ1, . . . ,ΘC , ρ1, . . . , ρC}.
The EBW algorithm (more details are given in Appendix A) is an iterative

procedure which can be used to optimize rational functions [1]. Clearly, the CL
criterion in Eq. (3) is a rational function over the discrete model parameters ρc

and αm
c and the parameter re-estimation equation of the form

θj
i ←

θj
i

(
∂CLL(X|Θ)

∂θ
j
i

+ D

)
∑
l

θj
l

(
∂CLL(X|Θ)

∂θ
j
l

+ D

) , (4)

is used, where θj
i ≥ 0,

∑
i θ

j
i = 1, and j indicates a particular discrete variable.

EBW requires the partial derivative ∂CLL(X|Θ)

∂θj
i

and D. Both terms are provided
in the sequel. Specifically,

∂CLL (X|Θ)

∂ρc
=

N∑
n=1

[
11{c=cn}

ρc
− p (xn|Θc) ρc∑C

c′=1 p (xn|Θc′) ρc′

1

ρc

]
=

1

ρc

N∑
n=1

(
11{c=cn} − wn

c

)
,

(5)

where wn
c = p (c|xn) (same as Eq. (1)) and 11{i=j} is the indicator function (i.e.

equals 1 if i = j and 0 if i �= j).
Further, the derivative for the parameters αm

c is

∂CLL (X|Θ)

∂αm
c

=

N∑
n=1

[
γn,m

c

αm
c

(
11{c=cn} − wn

c

)]
, (6)

where
γn,m

c =
αm

c N (xn|θm
c )∑M

m′=1 αm′
c N (xn|θm′

c )
. (7)

Considering the derivative in Eq. (6) (similar for Eq. (5)) in the re-estimation
Eq. (4) we obtain

αm
c ←

∑N
n=1

[
γn,m

c

(
11{c=cn} − wn

c

)]
+ αm

c D∑M
m′=1

∑N
n=1

[
γn,m′

c

(
11{c=cn} − wn

c

)]
+ D

.
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The derivatives (Eq. (5) and (6)) are sensitive to small parameter values. Meri-
aldo [18] observed that low-valued parameters ρc and αm

c in Eq. (5) and (6)
may cause a large magnitude of the gradient. Hence, the optimization concen-
trates on those parameters which are usually unreliably estimates due to lack of
data. Therefore, he suggests to focus on modifying better estimated high-valued
parameters by using an approximation for the derivative in Eq. (6) (similar for
Eq. (5))

∂CLL (X|Θ)

∂αm
c

≈
∑N

n=1 γn,m
c 11{c=cn}∑M

m′=1

∑N
n=1 γn,m′

c 11{c=cn}
−

∑N
n=1 γn,m

c wn
c∑M

m′=1

∑N
n=1 γn,m′

c wn
c

. (8)

EBW has been formulated for discrete probability distributions. Normandin and
Morgera [19] introduced a discrete approximation of the Gaussian distribution
assuming diagonal covariance matrices. This leads to the re-estimation equation
for μ̄m

c and Σ̄m
c given as

μ̄m
c ←

∑N
n=1

[
γn,m

c

(
11{c=cn} − wn

c

)
xn
]
+ Dμm

c∑N
n=1

[
γn,m

c

(
11{c=cn} − wn

c

)]
+ D

and

Σ̄m
c ←

∑N
n=1

[
γn,m

c

(
11{c=cn} − wn

c

)
(xn)

2
]
+ D

(
Σm

c + (μm
c )

2
)∑N

n=1

[
γn,m

c

(
11{c=cn} − wn

c

)]
+ D

− (μ̄m
c )

2 , (9)

where the squares of the vectors xn and μm
c are element-wise.

The EBW algorithm converges to a local optimum of CLL (X|Θ) providing
a sufficiently large value for D. Setting the constant D is not trivial. If it is
chosen too large then training is slow and if it is too small the update may fail
to increase the objective function. In practical implementations heuristics have
been suggested [13,14]. We initialize D = 1 and double D until all variances in
Eq. (9) are positive in the re-estimation step. Next, we multiply the obtained
D with a global factor F (In Section 5.1, we empirically show the dependency
of F on the convergence of EBW.). Value D is adapted in each iteration of the
algorithm. The parameters Θc for discriminative learning are initialized to the
ML estimates of the GMM determined by the EM algorithm (see Section 2).
The class prior is set to the normalized class frequency in X , i.e. ρc = Nc

N .

4 Discriminative Margin-Based Learning of GMMs in
Bayesian Classifiers

The multi-class margin [5] of sample n is

dn
Θ = min

c �=cn

p (cn|xn,Θ)

p (c|xn,Θ)
= min

c �=cn

p (cn, xn|Θ)

p (c,xn|Θ)
=

p (cn,xn|Θ)

maxc �=cn p (c,xn|Θ)
. (10)
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If dn
Θ > 1, then sample n is correctly classified and vice versa. We replace the

max operator by the differentiable approximation maxx f(x) ≈ [
∑

x (f(x))η]
1
η ,

where η ≥ 1 and f (x) is non-negative. In the limit of η → ∞ the approximation
converges to the max operation. Replacing the max with its approximation, we
obtain

dn
Θ =

p (cn,xn|Θ)[∑
c �=cn (p (c,xn|Θ))

η
] 1

η

.

Usually, the max margin approach maximizes the margin of the sample with the
smallest margin, i.e. minn=1,...,N dn

Θ for a separable classification problem [3].
We aim to relax this by introducing a soft margin, i.e. we focus on samples with
a dn

Θ close to one. Therefore, we consider the hinge loss function according to

D̃ (X|Θ) =

N∏
n=1

min

[
2, (dn

Θ)
λ
]

using the margin. Maximizing this function with respect to the parameters Θ
implicitly means to increase the margin dn

Θ whereas the emphasis is on samples
with a margin (dn

Θ)λ
< 2, i.e. samples with a large positive margin have no

impact on the optimization. The parameter λ > 0 scales the margin and is
set by cross-validation. Maximizing D̃ (X|Θ) via EBW or gradient descent is
not straight forward due to the discontinuity in the derivative at (dn

Θ)λ = 2.
Therefore, we propose to use for the hinge function h(y) = min [2, y] a smooth
hinge function which enables a smooth transition of the derivative and has a
similar shape as h(y). We propose the following smooth hinge function

h(y) =

⎧⎨⎩
y + 1

2
, if y ≤ 1

2 − 1
2
(y − 2)2, if 1 < y < 2

2, if y ≥ 2

which requires to divide the data X into three partitions depending on y =
(dn

Θ)λ, i.e. X 1 contains samples where (dn
Θ)λ ≤ 1, X 2 consists of samples with

a margin in the range 1 < (dn
Θ)λ

< 2, and X 3 = X \ {X 1 ∪ X 2
}
. Hence, our

objective function for margin maximization is

D (X|Θ) =

N∏
n=1

h((dn
Θ)

λ
) =

⎧⎨⎩ ∏
n∈X1

(
(dn

Θ)
λ

+
1

2

)⎫⎬⎭
⎧⎨⎩ ∏

n∈X2

[
2 − 1

2

(
(dn

Θ)
λ − 2

)2
]⎫⎬⎭ 2

|X3|

using the smooth hinge function. The λ for scaling the margin is usually selected
as fraction number leading to fractional polynomials in the numerator and de-
nominator of dn

Θ. The growth transform of the EBW algorithm (see [1]) extends
to fractional polynomials and we can use the EBW algorithm for maximizing
D (X|Θ). Therefore, the derivative ∂ log D(X|Θ)

∂Θ for the re-estimation equation
(see Eqn. 4) of the EBW algorithm is
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∂ log D (X|Θ)

∂Θ
=

N∑
n=1

sn ∂ log dn
Θ

∂Θ

where sn denotes a sample dependent weight given as follows:

sn
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λ(dn

Θ)
λ

(dn
Θ)

λ
+ 1

2

, if n ∈ X 1

λ
(
2−(dn

Θ)
λ
)

2− 1
2 (dn

Θ)
λ , if n ∈ X 2

0, if n ∈ X 3

.

Introducing GMMs in Eq. 10 and using the log gives

log dn
Θ = log

[(
M∑

m=1

αm
cnN (xn|θm

cn)

)
ρcn

]
− 1

η
log
∑

c′ �=cn

[(
M∑

m=1

αm
c′N (xn|θm

c′ )

)
ρc′

]η

.

Similar as in Eq. 5 (Section 3), the partial derivative of log dn
Θ for the parameters

ρc is

∂ log dn
Θ

∂ρc
=

11{c=cn}
ρc

−11{c �=cn}
[p (xn|Θc) ρc]

η[∑
c′ �=cn p (xn|Θc′) ρc′

]η 1

ρc
=

1

ρc

(
11{c=cn} − 11{c �=cn}r

n,η
c

)
,

where we introduced

rn,η
c =

[p (xn|Θc) ρc]
η[∑

c′ �=cn p (xn|Θc′) ρc′
]η .

Furthermore, the derivative for the parameters αm
c is

∂ log dn
Θ

∂αm
c

=
N (xn|θm

c )∑M
m′=1 αm′

c N (xn|θm′
c )

(
11{c=cn} − 11{c �=cn}r

n,η
c

)
=

γn,m
c

αm
c

(
11{c=cn} − 11{c �=cn}r

n,η
c

)
,

where γn,m
c is given in Eq. 7. For the Gaussian distributions we use again the

discrete approximation proposed in [19] assuming diagonal covariance matrices.
This leads to the re-estimation equation for μ̄m

c and Σ̄m
c given as

μ̄m
c ←

∑N
n=1

[
snγn,m

c

(
11{c=cn} − 11{c �=cn}rn,η

c

)
xn
]
+ Dμm

c∑N
n=1

[
snγn,m

c

(
11{c=cn} − 11{c �=cn}r

n,η
c

)]
+ D

and

Σ̄m
c ←

∑N
n=1

[
snγn,m

c

(
11{c=cn} − 11{c �=cn}r

n,η
c

)
(xn)

2
]
+ D

(
Σm

c + (μm
c )

2
)∑N

n=1

[
snγn,m

c

(
11{c=cn} − 11{c �=cn}r

n,η
c

)]
+ D

− (μ̄m
c )

2 ,
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where the squares of the vectors are element-wise. Furthermore, the value D is
determined in a similar manner as in Section 3. The EBW algorithm to dis-
criminatively optimize the margin of GMM-based classifiers is summarized in
Algorithm 1. Again, we use a more robust approximation for the derivatives of
ρc and αm

c as suggested in Section 3.

5 Experimental Results

First we show the differences in the decision boundaries of generatively and
discriminatively trained GMM-based Bayesian classifiers using synthetic data.
Then, we provide classification results for a remote sensing and broad phonetic
classification task.

5.1 Synthetic Data

We have two classes where each class is represented by a spiral. For class 1, sam-
ple x ∈ R2 is determined according to x = [t cos (4πt) + ε1 t sin (4πt) + ε2]

T ,
where ε1 and ε2 are independent samples from a zero-mean Gaussian noise pro-
cess with σ = 1, and t is sampled from an uniform distribution. Likewise, samples
for class 2 are obtained by using x = [−t cos (4πt) + ε1 − t sin (4πt) + ε2]

T . For
each class we draw Nc = 5000 and Nc = 1000 samples for training and testing,
respectively. Figure 1 shows various cases of generatively and discriminatively
learned GMM-based Bayesian classifiers using M = 12 components per class, i.e.
(a) decision boundary of generative GMM, (b) decision boundary of CL-GMM,

(a)
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Fig. 1. Synthetic data: (a) generative GMM, (b) CL-GMM, (c) MM-GMM, and (d)

decision boundary of all learning approaches
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Input: X = {X1, . . . ,XC} , η, λ, F

Output: ρc, {αm
c , μm

c , Σm
c }M

m=1 ∀c ∈ {1, ..., C}
Initialization: For each c, train {αm

c , μm
c , Σm

c }M
m=1 on Xc, using the EM-algorithm. Set ρc

to class frequency in X , i.e. ρc ← |Xc|
|X|

while D (X|Θ) not converged do

dn
Θ =

(∑M
m=1 αm

cnN(xn|θm
cn )

)
ρcn[∑

c′ �=cn

[(∑M
m=1 αm

c′N
(
xn|θm

c′
))

ρ
c′
]η ] 1

η

∀n ∈ {1, ..., N}

Determine: X 1,X 2,X 3 based on (dn
Θ)λ

Determine: sn ∀n ∈ {1, ..., N} based on X 1, X 2,X 3

E-step:
for c ← 1 to C do

rn,η
c ← [p(xn|Θc)ρc]η[∑

c′ �=cn p(xn|Θ
c′ )ρ

c′
]η ∀n ∈ {1, ..., N}

∂ρc ←
∑N

n=1 sn11{c=cn}∑C
c′=1

∑N
n=1 sn11{c′=cn}

−
∑N

n=1 sn11{c �=cn}r
n,η
c∑C

c′=1
∑N

n=1 sn11{c′ �=cn}r
n,η
c′

for m ← 1 to M do

γn,m
c ← αm

c N(xn|θm
c )∑M

m′=1
αm′

c N
(
xn|θm′

c

) ∀n ∈ {1, ..., N}

∂αm
c ←

N∑
n=1

snγ
n,m
c 11{c=cn}

M∑
m′=1

N∑
n=1

snγ
n,m′
c 11{c=cn}

−
N∑

n=1
snγ

n,m
c 11{c �=cn}r

n,η
c

M∑
m′=1

N∑
n=1

snγ
n,m′
c 11{c �=cn}r

n,η
c

end

end

Determine D: D ← 1
2

for c ← 1 to C do
for m ← 1 to M do

repeat
D ← 2 D

μ̄m
c ←

∑N
n=1

[
snγ

n,m
c

(
11{c=cn}−11{c �=cn}r

n,η
c

)
xn
]
+Dμm

c∑N
n=1

[
snγ

n,m
c

(
11{c=cn}−11{c �=cn}r

n,η
c

)]
+D

Σm
c ←∑N
n=1

[
snγ

n,m
c

(
11{c=cn}−11{c �=cn}r

n,η
c

)
(xn)2

]
+D

(
Σm

c +(μm
c )2

)
∑N

n=1

[
snγ

n,m
c

(
11{c=cn}−11{c �=cn}r

n,η
c

)]
+D

− (μ̄m
c )2

until all variances in Σ̄m
c positive ;

end

end
D ← DF
M-step:
for c ← 1 to C do

ρ̄c ← ρc(∂ρc+D)∑C
c′=1

ρ
c′ (∂ρ

c′+D)

for m ← 1 to M do

ᾱm
c ← αm

c (∂αm
c +D)∑M

m′=1
αm′

c

(
∂αm′

c +D
)

μ̄m
c ←

∑N
n=1

[
snγ

n,m
c

(
11{c=cn}−11{c �=cn}r

n,η
c

)
xn
]
+Dμm

c∑N
n=1

[
snγ

n,m
c

(
11{c=cn}−11{c �=cn}r

n,η
c

)]
+D

Σm
c ←

∑N
n=1

[
snγ

n,m
c

(
11{c=cn}−11{c �=cn}r

n,η
c

)
(xn)2

]
+D

(
Σm

c +(μm
c )2

)
∑N

n=1

[
snγ

n,m
c

(
11{c=cn}−11{c �=cn}r

n,η
c

)]
+D

− (μ̄m
c )2

μm
c ← μ̄m

c

end
αm

c ← ᾱm
c ∀m ∈ {1, ..., M}

end
ρc ← ρ̄c ∀c ∈ {1, ..., C}

end

Algorithm 1. Discriminative Margin-based training of GMMs (MM-GMM Algo-

rithm).
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Fig. 2. Convergence of CL-GMM and MM-GMM depending on F . The x-axis denotes

the number of iterations. (a) CLL (X|Θ), (b) log D (X|Θ).

Table 1. Classification results in [%] on the synthetic training and test data

GMM CL-GMM MM-GMM
Train Data 79.48 ± 0.40 86.47 ± 0.34 86.58 ± 0.34
Test Data 80.05 ± 0.89 85.80 ± 0.78 86.05 ± 0.77

(c) decision boundary of MM-GMM, and (d) shows the decision boundary of all
learning approaches. The decision boundary of the DGMM classifiers is smoother
and better approximates the original spiral data. Discriminative learning is able
to change the decision boundary to improve the classification rate (see Table 1).

Furthermore, we show the evolution of both the conditional log likelihood
CLL (X|Θ) and the margin logD (X|Θ) depending on F over the iterations
of the algorithms (see Figure 2(a) and (b)). As mentioned above, the rate of
convergence of EBW strongly depends on the value of F . Additionally, the per-
formances do not increase at each iteration. One reason is the approximation
of the derivative in Eq. (8) as suggested in [18]. In [20], they experimentally
observed that this approximation substantially improves convergence, although
it is not guaranteed at each iteration.

5.2 Broad Phonetic classification

We use the TIMIT speech corpus [21] for broad phonetic classification. Therefore,
we employ the standard NIST sets of 462 speakers and 168 speakers for training
and testing, respectively. We perform frame-by-frame phone classification. We
conduct experiments with only four classes and six classes using 1691462 and
1886792 samples, respectively. Moreover, we perform classification experiments
on data of male speakers (Ma), female speakers (Fe), and both genders (Ma+Fe).
More details about the experimental setup and the features can be found in [15].
We use the following classifiers:

– GMM: Generatively trained GMM with M = 100 components.
– CL-GMM: Discriminative CL-based trained GMM classifier using M = 100

components.
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– MM-GMM: Discriminative margin-based trained GMM classifier using M =
100 components.

– NN-100: Neural network (multi-layered perceptron) with one hidden layer.
The number of units in the input and output layer is set to the number of
features and the number of classes, respectively. In the hidden layer we use
100 neurons with a hyperbolic tangent sigmoid transfer function. Levenberg-
Marquardt backpropagation is used for training and the transfer functions
in the output layer are linear.

– SVM-1-0.1: The support vector machine with the radial basis function (RBF)
kernel uses two parameters, namely C∗ and σ, where C∗ is the penalty
parameter for the errors of the non-separable case and σ is the parameter
for the RBF kernel. We set the values for these parameters to C∗ = 1 and
σ = 0.1.

The optimal choice of the parameters (i.e., C∗, σ), number of neurons in the
hidden layer, and transfer functions of the above mentioned classifiers was ob-
tained in each case by cross-validation. The parameters for learning CL-GMM
and MM-GMM are initialized to the ML estimates.

The experimental results in Figure 3(a) show that CL-GMMs achieve about
the same performance compared to MM-GMMs, whereas both DGMMs perform
significantly better than generatively learned GMMs. The classification results
of the MM-GMM are ≈ 0.75% lower compared to NNs and SVMs. The number
of parameters for the DGMM is 16404 compared to 202425 and 400442 support
vectors of the SVM for the Ma-Fe-4Class and Ma-Fe-6Class data, respectively.
Hence, SVMs have roughly 4 ·106 and 8 ·106 parameters using the dimensionality
of d = 20 for each support vector. This means that DGMM has almost 500
times fewer parameters than the SVM for the Ma-Fe-6Class data. Although,
the classification results are slightly worse DGMMs offer advantages compared
to the SVM. DGMMs can be directly applied to problems with more than two
classes, whereas SVMs are usually limited to binary problems – the multiclass
problem is decomposed into binary problems. However, multiclass SVMs have
been proposed [22]. For SVMs we have to select C∗ and σ. For MM-GMMs the
number of components M and λ have to be determined. A substantial difference
is that the SVMs determine the number of support vectors automatically while
in the case of DGMMs the number of components M is prescribed. Hence, in
DGMMs the complexity is controlled manually. DGMMs are an excellent choice
when a probabilistic model is required, e.g. marginalizing over the unknown
variables is supported. The training time for each iteration of the DGMM scales
with O (MN), whereas for the SVM we have O (N2

)
. Hence, DGMMs have a

lower training complexity.
In Figure 3(b), we provide an in-depth analysis of the multi-class margin

(dn
Θ)λ for Ma-Fe-4 (M = 100). The cyan and green colored lines denote the

number of correctly classified samples with a margin of (dn
Θ)λ

> 2 (i.e. |X 3|)
and 1 ≤ (dn

Θ)λ ≤ 2 (i.e. |X 2|) over the iterations, respectively. The samples
with margin between one and two are still considered during optimization and
the algorithm tries to increase the margin above two, i.e the number of those
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Classifier
Data set Class GMM GMM GMM NN SVM

CL MM 100 1-0.1

Ma+Fe 4 90.17 92.54 92.30 92.58 92.78
± 0.06 ± 0.06 ± 0.06 ± 0.06 ± 0.06

Ma 4 90.17 92.50 92.31 92.73 92.69
± 0.08 ± 0.07 ± 0.07 ± 0.07 ± 0.07

Fe 4 90.56 92.55 92.63 92.91 92.97
± 0.11 ± 0.10 ± 0.10 ± 0.10 ± 0.10

Ma+Fe 6 82.42 85.81 85.14 86.05 86.26
± 0.08 ± 0.07 ± 0.07 ± 0.07 ± 0.07

Ma 6 82.49 85.66 85.19 86.04 86.16
± 0.10 ± 0.09 ± 0.09 ± 0.09 ± 0.09

Fe 6 82.84 85.74 85.69 86.37 86.65
± 0.14 ± 0.13 ± 0.13 ± 0.12 ± 0.12
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Fig. 3. Broad phonetic classification: (a) Classification accuracy in [%] for 4 and 6

classes with standard deviation. (b) Number of samples in X 1, X 2, and X 3 over the

iterations of MM-GMM.

samples decreases over the iterations while the number of samples with (dn
Θ)λ

> 2
increases. Additionally, the number of wrongly classified samples (i.e. (dn

Θ)λ
< 1)

decreases (red line).
In the following, we verify that a discriminatively parameterized generative

GMM p (x|Θc) still offers its advantages in the missing feature case. In par-
ticular, the ability to go from p (x|Θc) to p (x′|Θc) is maintained where x′ is
a subset of the features in x and x′′ is the set of missing features, i.e. x \ x′.
This amounts to performing the marginalization p (x′|Θc) =

∫
p (x|Θc) dx′′. A

discriminative model, however, is inherently conditional and it is not possible in
general to simply marginalize away any missing features. This problem is also
true for SVMs, logistic regression, and neural networks.

We are particularly interested in a testing context which has arbitrary sets of
missing features for each classification sample, unanticipated at training time.
In such a case, it is not possible to re-train the model for each potential set
of missing features without also memorizing the training set. In Figure 4, we
present the classification performance of GMM, CL-GMM, and MM-GMM as-
suming missing features using the data of TIMIT-4/6. The x-axis denotes the
number of missing features. The curves are the average over 100 classifications
of the test data with uniformly at random selected missing features. Standard
deviation bars indicate that the resulting differences are significant for a low
number of missing features. We use exactly the same missing features for each
classifier. We observe that discriminatively parameterized GMM classifiers out-
perform classical GMMs in the case of a low number of missing features. In case
of many missing features classical GMMs seem to be more robust. The rising
performance of the generative GMM classifier in case of missing features can
be attributed to the phenomenon observed in the feature selection community.
There, the reduction of the feature set size may even improve the classification
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Classification performance of GMM, CL-GMM, and MM-GMM assuming

missing features using data of TIMIT-4/6. The x-axis denotes the number of miss-

ing features and the shaded region corresponds to the standard deviation over 100

classifications. (a) Ma+Fe-4, (b) Ma-4, (c) Fe-4, (d) Ma+Fe-6, (e) Ma-6, (f) Fe-6.

rate by reducing estimation errors associated with finite sample size effects [23].
Generally, this demonstrates, at least empirically, that discriminatively param-
eterized generative GMMs do not lose their ability to impute missing features.

5.3 Remote Sensing

We use a hyperspectral remote sensing image of the Washington, D.C., Mall area
containing 191 spectral bands having a spectral width of 5-10 nm.2 As ground
reference a classification performed at Purdue University was used containing 7
classes, namely, roofs, road, grass, trees, trail, water, and shadow.3 The aerial
image using bands 63, 52, and 36 for red, green, and blue colors, respectively,
and the reference image are shown in Figure 5(a) and (b). The image contains
1280× 307 hyperspectral pixels, i.e. 392960 samples. We arbitrarily choose 5000
samples of each class to learn the classifier. This remote sensing application is in
particular interesting for our classifiers since spectral bands might be missing or
should be neglected due to atmospheric effects, i.e. radiation within the visible
range should be neglected in case of clouds or darkness. We use generative GMM
as well as discriminatively optimized GMM classifiers, whereas the parameters
for discriminative training are initialized to ML estimates. The classification

2 http://cobweb.ecn.purdue.edu/~biehl/MultiSpec/hyperspectral.html
3 http://cobweb.ecn.purdue.edu/~landgreb/Hyperspectral.Ex.html

http://cobweb.ecn.purdue.edu/~biehl/MultiSpec/hyperspectral.html
http://cobweb.ecn.purdue.edu/~landgreb/Hyperspectral.Ex.html
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(a) (b)

M GMM CL-GMM MM-GMM SVM
1 81.94±0.06 83.59±0.06 85.59±0.06
3 81.00±0.07 84.69±0.06 85.94±0.06 88.98 ±0.05
5 82.67±0.06 87.18±0.06 88.28±0.05 (C∗ = 1)
10 84.36±0.06 88.38±0.06 88.88±0.05 (σ = 0.05)

(c)

(d)

Fig. 5. Washington, D.C., Mall: (a) Spectral bands 63, 52, and 36 are used for pseudo

color image. (b) Reference image. (c) Classification results in [%]. (d) Classification

results of GMM, CL-GMM, and MM-GMM assuming missing features.

performances for M ∈ {1, 3, 5, 10} components are shown in Table 5(c). CL-
GMM and MM-GMM significantly outperforms the generative GMM classifier
whereas best performances are obtained with MM-GMM classifiers. Remarkably,
MM-GMMs and SVMs achieve a highly similar performance. The number of
parameters for the GMM if roughly 85 times lower than for SVMs (26817 versus
2279394 (i.e. 11934 support vectors, N=191)).

In Figure 5(d), we report classification results for GMM, CL-GMM, and
MM-GMM using M = 10 components assuming missing features. The x-axis
denotes the number of missing features. We average the performances over 100
classifications of the test data with randomly missing features. Standard devia-
tion bars indicate that the resulting differences are significant for a low number
of missing features. Discriminatively parameterized GMM classifiers significantly
outperform classical GMMs in the case of few missing features.

6 Conclusions

We derive two discriminative training methods for GMM-based Bayesian classi-
fiers maximizing either the conditional likelihood or the margin. Both algorithms
are based on the extended Baum-Welch (EBW) algorithm. In the experiments
we depict the differences of the decision boundary for generatively and discrimi-
natively learned GMMs for classification using synthetic data. Furthermore, we
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show results for broad phonetic classification and compare discriminatively op-
timized GMM classifiers to SVMs and NNs. DGMMs perform slightly worse
compared to SVMs in terms of classification rate, however the GMM model
uses almost 500 times fewer parameters than the SVM. Additionally, we show
that discriminatively optimized GMM classifiers are superior even in the case of
missing features. Finally, we compare our classifiers on a hyperspectral remote
sensing application which is in particular interesting concerning the missing fea-
ture aspect. Margin-based GMMs outperform CL-based GMMs, whereas both
significantly outperform generatively optimized GMMs.
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Appendix A: EBW Algorithm

In its original form [24], the Baum-Eagon inequality has been formulated for
domains of discrete probabilities. Consider a domain E of discrete probability
values Φ = {ϕj

i}, with ϕj
i ≥ 0,

∑
i ϕ

j
i = 1, and j = 1, ..., J . Given a homogeneous

polynomial Q(Φ) with nonnegative coefficients over the domain E, the Baum-
Eagon inequality offers an iterative method to find local maxima inQ. It provides
a transformation, T : E → E, such that Q (T (Φ)) > Q (Φ)), unless T (Φ) = Φ.
This transformation, called growth transform, maps from Φ̂ ∈ E to T (Φ̂) = Φ̄ ∈
E, where

ϕ̄j
i =

ϕ̂j
i

∂Q(Φ̂)

∂ϕ
j
i∑

i′ ϕ̂j
i′

∂Q(Φ̂)

∂ϕ
j

i′

. (11)

For brevity, ∂Q(Φ̂)

∂ϕj
i

denotes the partial derivative ∂Q

∂ϕj
i

evaluated at point Φ̂.

In [1], the growth transform is extended4 to rational functions R(Φ) over E:

R (Φ) =
Num(Φ)

Den(Φ)
.

4 Additionally, they show that the growth transform in Eq. (11) can be applied to

nonhomogeneous polynomials.
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This is done by converting R (Φ) into a polynomial QΦ̂(Φ) for a given Φ̂ such

that if QΦ̂

(
T
(
Φ̂
))

> QΦ̂(Φ̂), then R
(
T
(
Φ̂
))

> R
(
Φ̂
)
, except T

(
Φ̂
)

= Φ̂.
The polynomial QΦ̂(Φ) that fulfills this condition is given in [1] as

QΦ̂(Φ) = Num(Φ) − R(Φ̂)Den(Φ).

To see this, first note thatQΦ̂(Φ̂) = 0. Thus, ifQΦ̂(Φ̄) > QΦ̂(Φ̂), then Num(Φ̄) >
R(Φ̂)Den(Φ̄), and hence R(Φ̄) > R(Φ̂).

Unfortunately, the growth transform can not be applied directly to QΦ̂(Φ),
as it might have negative coefficients. To ensure nonnegativity, the growth trans-
form is instead applied to

SΦ̂(Φ) = QΦ̂(Φ) + C(Φ),

where

C(Φ) = κ

(∑
j,i

ϕj
i + 1

)r

has constant value over E, since
∑

i ϕ
j
i = 1, and r denotes the maximal order of

QΦ̂(Φ). Hence, C(Φ) adds a constant κ to every monomial in QΦ̂(Φ). This con-
stant κ must be chosen such that SΦ̂(Φ) has nonnegative coefficients for every
Φ̂. Thus, SΦ̂(Φ) has positive coefficients and still has the same important prop-
erty as QΦ̂(Φ). This polynomial with positive coefficients can now be considered
for the growth transform in Eq. (11).
As easily can be verified, the partial derivative of SΦ̂(Φ) can be expressed in

terms of ∂ log R(Φ̂)

∂ϕj
i

, according to

∂SΦ̂(Φ̂)

∂ϕj
i

= Num(Φ̂)
∂ log R(Φ̂)

∂ϕj
i

+ D,

where D = κr(J + 1)r−1 is the derivative of C(Φ). Plugging this result into
Eq. (11), we finally obtain the extended Baum-Welch re-estimation equation for
discrete probability distributions of the form

ϕ̄j
i =

ϕ̂j
i

(
∂ log R(Φ̂)

∂ϕ
j
i

+ D

)
∑
i′

ϕ̂j
i′

(
∂ log R(Φ̂)

∂ϕ
j

i′
+ D

) , (12)

where the ϕ̄j
i denotes the updated parameters, and constant D must be chosen

to be sufficiently large.
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Abstract. Ensembles of randomized trees such as Random Forests are

among the most popular tools used in machine learning and data mining.

Such algorithms work by introducing randomness in the induction of sev-

eral decision trees before employing a voting scheme to give a prediction

for unseen instances. In this paper, randomized trees ensembles are stud-

ied in the point of view of the basis functions they induce. We point out

a connection with kernel target alignment, a measure of kernel quality,

which suggests that randomization is a way to obtain a high alignment,

leading to possibly low generalization error. The connection also sug-

gests to post-process ensembles with sophisticated linear separators such

as Support Vector Machines (SVM). Interestingly, post-processing gives

experimentally better performances than a classical majority voting. We

finish by comparing those results to an approximate infinite ensemble

classifier very similar to the one introduced by Lin and Li. This method-

ology also shows strong learning abilities, comparable to ensemble post-

processing.

Keywords: Ensemble Learning, Kernel Target Alignment, Randomized

Trees Ensembles, Infinite Ensembles.

1 Introduction

Ensemble methods are among the most popular approaches used in statistical
learning. This popularity essentially comes from their simplicity and their effi-
ciency in a large variety of real-world problems. Instead of learning a single classi-
fier, ensemble methods first build several base classifiers, usually via a sequential
procedure such as Boosting ([13], [15]), or a parallel strategy using randomization
processes such as Bagging [2] or Stochastic Discrimination [21], and in a second
phase, use a voting scheme to predict the class of unseen instances.

Because of their impressive performances, understanding the mechanisms of
ensemble learning algorithms is one of the main priority in the machine learning
community. Several theoretical works have connected the Boosting framework
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with the very well known SVMs [30] highlighting the margin’s maximization
properties of both algorithms (see e.g [11] [14] [26]). Another popular theoret-
ical framework comes from [15] who pointed out its connection with forward
stagewise modelling leading to several improved Boosting strategies.

Ensembles using randomized processes suffer from a lack of well defined theo-
retical framework. Probably the most well-known result highlighting the benefits
of such a strategy is due to Breiman [5] who showed that the performance of
majority voting of an ensemble depends on the correlation between members
forming the pool and their individual strength. Other notable works concern the
study of the consistency of such algorithms [1].

In this paper, we go a step further [5] by analyzing the basis functions in-
duced by an ensemble using a randomized strategy. As pointed out in [19], most
ensemble methods can be seen as approaches looking for a linear separator in a
space of basis functions induced by the base learners. In this context, analyzing
the space of basis functions of an ensemble is of primary importance to better
understand its mechanism. We specifically focus on studying the situation where
base learners are decision trees. A lot of empirical studies have shown that this
class of classifiers is particularly well-suited for ensemble learning (see e.g [12]).

More precisely, we show a close connection between randomized trees ensem-
bles and Parzen window classifiers. Interestingly, the error of a Parzen window
classifier can be bounded from above with a kernel quality measure. This re-
sults in a generalization bound for an ensemble of randomized trees and clearly
highlights the role of diversity and individual strength on the ensemble perfor-
mance. Moreover, the connection suggests potential improvements of classical
trees ensembles strategies.

Our paper is organized as follows. In section 2, we review some basic elements
concerning decision tree induction. We focus on the importance of regularization
and we point out a connection between decision trees and Parzen window clas-
sifiers. We introduce the notion of kernel target alignment (KTA) [9], a kernel
quality measure allowing to bound the error of a Parzen window classifier. Once
those base concepts are posed, we will show that an ensemble of randomized
trees generates a set of basis functions leading to a kernel which can have a
high alignment, depending on the individual strength and correlation between
base learners (section 3). Interestingly, the connection shows that increasing the
amount of randomization leads to a more regularized classifier.

Based on those results, we present in section 4 two possibilities for improving
the performance of a randomized trees ensemble. The first strategy consists in
post-processing intensively the comittee using powerful linear separators. The
second strategy builds an approximate infinite ensemble classifier and is very
similar to the one presented in [23]. That is, instead of selecting a set of inter-
esting basis functions as realized by an ensemble, we will fit a regularized linear
separator in the (infinite dimensional) space of basis functions induced by all
possible decision trees having a fixed number of terminal nodes. Experiments
comparing all those approaches are presented in section 5. Finally in section 6
we conclude.
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2 Single Decision Tree Learning

2.1 Decision Tree Induction

We consider the binary classification case specified as follows. We are given access
to a set of n labeled examples S = {(x1, y1) , ..., (xn, yn)} drawn from some (un-
known) distribution P over X × {−1,+1}, where X is a d-dimensional abstract
instance space composed of features X1, ..., Xd taking their values in 
. The
objective of any classification algorithm is to learn a function f : X → {−1,+1}
whose generalization error rate Pr(x,y)≡P [f(x) �= y] is as low as possible. Among
the large variety of methods dedicated to this goal, decision trees are very popu-
lar thanks to their efficiency, their ability to capture non linear relations between
inputs and output and essentially because they are easily interpretable.

A binary decision tree1 consists in recursively partitioning the input space X
by searching for the transversal cut which optimizes some predefined criterion.
The algorithm starts with the root node containing all learning instances and
looks for a split of the form [Xj ∈ sjm ; Xj /∈ sjm] where sjm = (ljm;ujm]
represents a set of possible values of Xj defined by a lower and upper limit
ljm < Xj ≤ ujm. Two new nodes are then added to the tree, one containing
instances respecting [Xj ∈ sjm] and the other instances respecting [Xj /∈ sjm].
The process is then repeated for each subset (instances in a current node) until
a stopping criterion is satisfied. In this context, a decision tree can be seen as a
feature mapping Φ : X → F such that F is the space represented by the nodes
of the tree. Each node represents a basis function bt(x) (i.e a dimension of F )
taking the form of a conjunctive rule [16]:

bt(x) =
d∏

j=1

I(Xj ∈ sjm) (1)

where I(.) is the indicator function of the truth of its argument. We have bt(x) =
1 if the instance x belongs to node t and bt(x) = 0 elsewhere. Once the decision
tree has been constructed, one can make a prediction by fitting a linear function
f in F :

f(x) =
2T−1∑
t=1

αtbt(x) + α0 (2)

where T is the number of terminal nodes of the tree2. Classically a basis function
associated to a terminal node has a weight αt equal to 1 or −1 depending on
the most frequent class of all examples belonging to it, while both α0 and basis
functions associated to non terminal nodes have a weight of 0.

1 We restrict our framework to binary decision tree. Let us simply note that more

complex structures such as n-ary trees can be implicitly constructed using binary

trees (see e.g [19]).
2 A binary decision tree has a total number of node equal to 2T − 1 which explains

the upper term of the sum.
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A lot of different decision trees algorithms have been designed. The main
differences between them concern the criterion used to find the “best” split and
the strategy employed to stop the induction process. Several experimental studies
have shown that the splitting criterion has not a very significant effect on the
performance of the decision tree (see e.g [7], [29]). As pointed out in [6], the key
of success lies in controlling the tree complexity. Consequently, most efficient
decision tree algorithms such as CART [6] or C4.5 [25] particularly focus on tree
regularization.

A general method to control model complexity consists in giving a penalty
proportional to the model complexity. The goal of the induction process then
becomes to find the best tradeoff between performance (small error rate) and
complexity, which can be realized by minimizing a criterion of the following form

Criterion(f, λ) = L(y, f) + λJ(f), λ ≥ 0 (3)

where L(y, f) is a measure of the classifier error (a loss function) and J(f)
a functional penalty that should be large for complex functions f [19]. This
kind of regularization, widely used in machine learning is known as Tikhonov
regularization. In this spirit, Breiman [6] proposed to select L(y, f) as the error
rate and J(f) as the number of terminal nodes T of the decision tree. Once a
value of λ has been selected, [6] develop a tree of maximum depth using Gini
index as splitting criterion and, in a second phase, prune the tree in order to
minimizes (3) measured on a test set.

2.2 Connection with Parzen Window Classifier and Generalization
Error

The classical predictive scheme (using only terminal nodes with a weight of +1
or −1) can interestingly be seen as a Parzen window estimator based on the
kernel K(x, x′) =

∑T
t=1 bt(x)bt(x

′) with bt(x) = 1 if x belongs to leaf t and 0
elsewhere. Note that the basis functions considered here are only those associated
to terminal nodes. Here, K is a very sparse kernel since we have K(x, x′) = 1
if x and x′ are in the same terminal node and 0 if not. The Parzen window
estimator consists in labeling x with f(x) = sign(

∑n
i=1 yiK(x, xi)) which is

strictly equivalent to predict the most frequent label encountered in the terminal
node in which x falls.

Cristianini et al.[9] have shown that the generalization error GE of the ex-
pected Parzen window estimator f(x) = sign(E(x′,y′)[y′K(x′, x)]) based on a
kernel K is bounded from above with probability 1 − δ:

GE(f(x)) ≤ 1 − Â
(
K, yty

)
+

√
8
n

ln
2
δ

(4)

where Â (K, yty) is called (empirical) kernel target alignment (KTA) and is for-
mally defined on a sample S as :

Â
(
K, yty

)
=

〈K, yty〉F√〈K,K〉F 〈yty, yty〉F
=

∑n
i,s=1 yiysK(xi, xs)

n
√∑n

i,s=1 K(xi, xs)2
(5)
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where 〈., .〉F is the Frobenius product. KTA was initially designed to reflect the
goodness of a kernel and more generally the goodness of a similarity matrix.
As we can see from (5), KTA calculates the sum of similarities between objects
belonging to the same class and substracts the sum of similarities between objects
belonging to distinct classes. This quantity is then normalized to obtain an
indicator varying between −1 and 1.

The connection allows one to use the following regularization scheme. First,
we can induce a tree having the purest possible nodes, and then, look for the
subtree leading to the kernel that minimizes (4) or equivalently, that maximizes
Â (K, yty) on a test sample. Interestingly, this methodology is very similar to the
pruning technique of CART which estimates the expected Parzen window error
on a test sample and keep the subtree that minimizes a tradeoff between this
error and the tree complexity. In KTA, the complexity of the tree is penalized
implicitly because the effect of adding splits is reflected in the sparsity of K
leading to a lower value of 〈K, yty〉F .

2.3 Drawbacks of Single Decision Trees

While regularization is an essential feature of the success of decision trees, this
is generally not enough to obtain strong learning abilities. The first problem
comes from the greedy mechanism used to find a split. In some cases such as
the well known XOR problem, it is difficult for the algorithm to find the best
split because this implies finding an interaction between two (or more) features
in one shot. The second problem is their high variance. It is well-known that
small changes in data could lead to drastic changes in the decision tree. This
phenomenon comes from their hierarchical structures which implies that an error
at split k will be propagated down to all splits below it [19]. This latter problem
is reflected in the basis functions induced by a single tree. If the algorithm does
a “strong” mistake at a high level, i.e, at the top levels of the tree, it will be
impossible for any regularization strategy based on pruning to obtain a good
result.

The main question is how one can overcome these problems. An appealing so-
lution lies in increasing the number of basis functions generated by the algorithm.
However, in order to be efficient, this process should induce basis functions in
a non-hierarchical manner, else the problem of high variance will remain. Trees
ensembles are particularly well-suited to realize such a process. Indeed, they
work by generating several decision trees which is equivalent to increase the
number of generated basis functions in a non-hierarchical way. In the next sec-
tion, we will see that randomized trees ensembles allow to increase the kernel
target alignment previously introduced. Consequently they improve the classifi-
cation accuracy compared to a single decision tree and act in the same time as
regularizers.

In the same spirit, one can choose to select all basis functions generated by all
possible decision trees having a predefined number of terminal nodes. While this
seems a priori untractable due to the infinite number of possible basis functions,
we will see (section 4) that a solution can nevertheless be found by embedding
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the basis functions into an appropriate kernel. However, in this case, we should
carefully regularize the classifier which will be realized using a classical Tikhonov
regularization as in (3).

3 Randomized Trees Ensemble

3.1 Algorithms

One of the most efficient ways to improve the performance of a single decision
tree is to construct several distinct decision trees and to aggregate them through
a voting scheme. Examples of such procedures are Bagging [2], Random Forests
[5], PERT [10] or Extremely Randomized Trees [17]. These algorithms are all
particular cases of a more general methodology introducing randomization in
the induction process of base learners. The skeleton of these techniques consists
in repeating M times the following steps :

– Step 1 : Apply a sampling strategy on S to obtain a new sample Sm

– Step 2 : Induce a decision tree on Sm by searching recursively for the best
split among a random subset of all possible ones3.

Each individual learner predicts a class for an unseen instance x correspond-
ing to the most frequent class of examples belonging to the terminal node in
which x falls. The prediction associated to the ensemble corresponds to the
most frequently voted class among the M decision trees. The differences be-
tween randomized ensembles algorithms comes from the sampling strategy used
in step 1 the randomization process chosen to find a split in step 2. In the case
of Bagging, S is sampled iteratively using a bootstrap strategy, while there is
no randomization in the split’s search. Random Forests work by sampling S via
a bootstrap and look for the best split among a random subset of d′ features
(d′ ≤ d). Extremely randomized trees do not use any sampling scheme but look
for the best split among d′ cut points randomly chosen on d′ features themselves
randomly chosen. Because such procedures lead to classifers with a low variance,
each individual tree is generally fully grown (i.e, until having the purest possible
leaves) in order to reduce bias and consequently the generalization error [19].

The use of an ensemble has the effect to increase the number of generated
basis functions compared to a single decision tree. Intuitively, this is interesting
because it overcomes the problems due to the hierarchical nature of decision trees
and to their greedy split’s search. However, such a mechanism will work only if
the basis functions are enough diverse and individually correlated to the output
y. Indeed, if the trees are identical, the set of generated basis functions will
be equivalent to the basis functions generated by a single decision tree leading
to an unchanged prediction. The use of randomization procedures is then fully
3 In [24], the authors define a slightly different way of introducing randomization

into decision trees ensembles. Their definition allows to study the “spectrum” of

randomization and give interesting insights about the effect of randomization on the

performance of decision trees ensembles.
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justified. Probably the most well-known theoretical justification is due to [5] who
has shown that the generalization error GE of majority voting of an ensemble
is bounded from above : GE ≤ ρ̄(1 − s2)/s2 where ρ̄ is the average correlation
between base classifiers and s a function of their strength.

3.2 Connection with Kernel Target Alignment

We will see that the benefit of using randomized trees ensembles is also reflected
through the KTA measured on the kernel induced by the ensemble. Let us assume
that each tree of the ensemble is grown until having only pure terminal nodes.
Note that this is always possible while there are not two examples with the same
initial representation and distinct labels. It is well-known that in classification,
the best results are generally obtained by growing each tree until having only
pure nodes (see e.g [5]). Interestingly, in this case, the classical majority voting
scheme is equivalent to a Parzen window estimator based on the kernel induced
by the ensemble Kens(x, x′) = M−1

∑M
m=1

∑Tm

t=1 bmt(x)bmt(x′). Here, bmt(x)
represents the basis function associated to the terminal node t of the tree m. In
this context, the performance of the ensemble should be highly dependent on
the KTA of Kens. The main question is why introducing randomization in the
induction of trees could lead to a higher KTA.
Kens can equivalently be written Kens(x, x′) = M−1

∑M
m=1Km(x, x′) where

Km(x, x′) is the kernel induced by the mth tree in the same manner as in section
2.2. Note that dropping the constant M−1 has no effect on the prediction. In
this point of view, we see that Kens simply consists in summing several base
kernels. In [9], the authors have shown that one can benefit from summing two
kernels. Indeed, the alignment of the sum of two kernels K1 and K2 with the
target is given by :

Â
(
K1 +K2, y

ty
)

=
‖K1‖F

‖K1 +K2‖F

Â
(
K1, y

ty
)

+
‖K2‖F

‖K1 +K2‖F

Â
(
K2, y

ty
)

The alignment of the sum will be high if both kernels have a high individual align-
ment and if their correlation, i.e, Â(K1,K2) = 〈K1,K2〉F / ‖K1‖F ‖K2‖F is low.
Indeed, if the kernels are identical, we have Â (K1 +K2, y

ty) = Â (K1, y
ty) =

Â (K2, y
ty) while if they are different, we have :

‖K1‖F

‖K1 +K2‖F

+
‖K2‖F

‖K1 +K2‖F

> 1

leading to a potentially higher overall alignment. Note that if one uses M kernels,
the alignment of sum will be equal to :

Â

(
M∑

m=1

Km, y
ty

)
=

M∑
m=1

‖Km‖F∥∥∥∑M
m=1Km

∥∥∥
F

Â
(
Km, y

ty
)

(6)

The effect of randomization will be to decrease a bit the average individual
alignment of the kernels in order to decrease their correlation, i.e, to increase



74 V. Pisetta, P.-E. Jouve, and D.A. Zighed

‖Km‖F /
∥∥∥∑M

m=1Km

∥∥∥
F
. In most empirical studies on the relationship between

ensemble performance and strength-correlation, the main problem is to measure
the diversity [22]. Equation (6) clearly highlights the role of each component
and a possible way of measuring them. While randomization aims at playing on
diversity and individual strength, its exact role is more complex.

The reason comes from the concentration property of the alignment. As un-
derlined in [9], if the kernel function is selected a priori, that is, if one do not
learn the kernel, the value of the alignment measured on a sample S is highly
concentrated around its expected value. As a consequence, building an ensemble
of extremely randomized trees as realized by [17] leads to a kernel that would
have quite the same alignment on the training sample and any test sample. How-
ever, learning too intensively the kernel, i.e, introducing few randomization in
the tree induction will result in a larger difference and will be reflected in a lower
expected alignment than one could wish to have. The direct implication is that
introducing a high level of randomness leads to a more regularized classifier. This
also shows that decreasing the amount of randomization in the induction of de-
cision trees will not necessarily result in a higher individual expected alignment
of a decision tree. Interestingly, in its experiments, Breiman [5] observed that
increasing the number of features to find the best split did not necessarily lead
to higher individual strength. The explanation in terms of alignment concentra-
tion may give a clue to these results. Experiments showing all those claims are
presented in section 5.

4 Improved Randomized Trees Ensembles

In this section, we present two possible improvements of an ensembles of ran-
domized trees. Here, we describe the theoretical aspects. Experiments will be
presented in section 5.

4.1 Post-processing

Globally, randomized trees ensembles can be seen as powerful kernel construc-
tors because they aim at increasing KTA through the introduction of random-
ization. While the alignment is directly connected to Parzen window estimator,
[9] have shown experimentally that maximizing KTA is also a good strategy
before employing more complex learners such as SVMs. Because randomized
trees ensembles directly act on the kernel target alignment, it seems interesting
to post-process them using a more complex learner than a simple Parzen win-
dow estimator. That is, instead of simply giving the same weight to all basis
functions induced by the ensemble, one can learn “optimal weights” with an
appropriate learning strategy. In this case however, we are no more protected
against over-fitting because of the lack of links between the new learner and
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KTA and should consequently employ a specific regularization. A possible way
consists in searching a vector of weights α̂ such that [16]:

{α̂}|B|
0 = arg min

{α}|B|
0

n∑
i=1

L

⎛⎝yi, α0 +
|B|∑
t=1

αtbt(xi)

⎞⎠+ λ

|B|∑
t=1

|αt|p (7)

where B is the set of basis functions induced by the ensemble of decision trees4.
Different parameterizations of L(.) and p lead to classical statistical learners.
For example, choosing L(yi, f(xi)) = max(0, 1− yif(xi)) (hinge loss), and p = 2
consists in solving the SVM optimization program [30] in the space of basis func-
tions constructed by the tree, while choosing L(.) as the hinge loss and p = 1 is
equivalent to solve the LPBoost problem [11]. The choice of L(.) is mainly de-
pendent on the type of learning problem we are facing. Typically, in a regression
setting, L(.) is chosen as the square-loss function while in classification, we will
tend to choose the hinge loss. The choice of regularization is a harder task since
its effect is not yet fully understood. A well known difference is that constraining
the coefficients in L1 norm (i.e, p = 1) leads to sparser results than using the
L2 norm, i.e, most αi will tend to be equal to 0 [27]. Note that the set of basis
functions B can be chosen to be the set of basis functions associated to terminal
nodes or the set of basis functions associated to all nodes (terminal and non
terminal).

4.2 Generating an Infinite Set of Basis Functions

In case one works with a Tikhonov regularizer, an appealing strategy consists
in considering not only basis functions induced by a finite ensemble, but all
basis functions that could be induced by any decision tree and let a regularized
learner as in (7) finding an optimal solution. The main problem here is that
the program (7) will have infinitely many variables and finding a solution seems
a priori untractable. However, as we will see, there are some possibilities to
overcome this problem.

Consider the optimization problem as stated in (7). Choosing p = 2 and
L(y, f(x)) = max(0, 1−yf(x)) leads to the well-known SVM optimization prob-
lem. Most practical SVM implementations work on the dual formulation of (7)

min
β∈�n

1
2

n∑
i=1

n∑
s=1

βiβsyiysK(xi, xs) −
n∑

i=1

βi (8)

s.t 0 ≤ βi ≤ 2/λ
n∑

i=1

βiyi = 0

4 As pointed out by a reviewer, the optimization problem presented in (7) can be seen

as a particular case of Stacking [31]. The main difference is that instead of using

classifiers as new features, we use decision trees’ nodes.



76 V. Pisetta, P.-E. Jouve, and D.A. Zighed

K is a kernel function defined as K(x, x′) = 〈Φ(x), Φ(x′)〉 where Φ(x) is obtained
from the feature mapping Φ : X → F where F is assumed to be a Hilbert
space equipped with the inner product 〈., .〉 [28]. The dual form has the great
advantage to enable solving the SVM problem even if Φ maps examples into an
infinite dimensional space. Indeed, we see from (8) that K is sufficient to find
the optimal solution. This also means that the mapping Φ need not to be known
if we are sure it exists, which is automatically achieved if the Gram matrix
K̃i,s = K(xi, xs) of dimension n × n is always symmetric and semi-positive
definite [28].

The use of an SVM makes possible solving (7) for infinitely many variables
and consequently, to solve the SVM in the space represented by all possible basis
functions induced by any decision tree. To do so, one must find a kernel function
which embodies those basis functions. In section 3, we have seen that the kernel
corresponding to the basis functions induced by an ensemble of decision trees is
equal to the proportion of decision trees letting two examples x and x′ sharing
the same terminal node. The main difference here is that instead of simply
counting the number of decision trees letting x and x′ reaching the same leave,
we must calculate the probability that x and x′ end in the same terminal node
considering all possible decision trees.

Interestingly, Breiman [4] has given an implicit answer to this question. Con-
sider the following assumptions are met : 1) the space of features is entirely
bounded, i.e, X ⊆ (L1, R1) × (L2, R2) × ...(Ld, Rd) where Lj ∈ 
 and Rj ∈ 
,
1 ≤ j ≤ d, are respectively the lowest and highest bounds of feature Xj ; 2)
each split of each tree is selected at random, i.e, a feature is first randomly se-
lected, and a split point is then randomly choosen along this feature according
to an uniform distribution, 3) the probability measure P is uniform on the space.
Then Breiman [4] showed that if one builds an infinity of decision trees having
each T terminal nodes, the proportion of trees letting x and x′ sharing the same
terminal node is approximately :

Kinf (x, x′) ≈ exp−γ‖x−x‖1 (9)

where γ = log(T )/d, where d the dimensionality of the initial feature space.
Interestingly, this is the very well-known Laplacian kernel. A recent and very
interesting paper of Lin and Li has pointed a similar result [23]. Their demon-
stration shows a strict equality between the kernel and the set of basis functions
instead of just an approximation as in (9). However, the kernel is derived in a
bit different perspective and the relation between the number of terminal nodes
and kernel’s sharpness (i.e, γ) is harder to capture. For these reasons, we will
keep the framework based on [4]. With an appropriate γ, one could solve the
SVM problem using the kernel Kinf to obtain an approximate infinite ensem-
ble classifer working in the (infinite dimensional) space HT embedding all basis
functions induced by any tree with T terminal nodes.

Note that the basis functions embedded in Kinf corresponds to basis functions
associated to terminal nodes of the trees. It is not evident a priori to choose
a good γ. One could proceeds by evaluating the SVM with several values of
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γ on a test sample or by cross-validation. However, another interesting way of
proceeding consists in summing several Laplacian kernels in the following manner

KSinf (x, x′) =
Q∑

q=2

exp−γq‖x−x‖1 (10)

where γq = log(q)/d. It is well-known that summing two kernels embdedding
respectively H1 and H2 leads to a kernel embedding H1 ∪H2 (see e.g [23]). As
a consequence, solving an SVM program using the kernel KSinf in equation (8)
leads approximately to search a linear separator in the space represented by all
basis functions induced by any tree having a number of leaves from 2 to Q.

5 Experiments

5.1 KTA and Random Forests

To illustrate the link between KTA and the performance of a randomized trees
ensemble, we have run the following experiments on the Heart and Ionosphere
datasets coming from the UCI repository. Heart has 13 features and 270 ex-
amples, while Ionosphere has 351 examples and 34 features. We have randomly
splitted each dataset into two subsets of equal size, one used as a training sample
and the other as a test sample. One Random Forest of 100 trees [5] has been
run for several possible d′ (d′ is the number of features evaluated to find the
best split) on the training set. More specifically, we used d′ = {1, 3, 5, ...33} for
Ionosphere and d′ = {1, 2, 3, ..., 13} for Heart. Each tree of a Forest was grown
until having the purest possible terminal nodes. For each Random Forest, we
have calculated its KTA and its error rate on the test sample as well as the KTA
on the training sample. Fig. 1 shows the results averaged over 10 runs.

On the Heart dataset, we can note an interesting correlation between KTA
and the forest’s performance. Indeed, the lowest KTA values are met for d′ > 7
which corresponds to the poorest performances of the ensemble. The maximal
alignment is achieved for d′ = 5 which is also the best performance of the en-
semble. We clearly see that the higher the level of randomization, the lower the
difference between KTA on the training sample and test sample. The results for
Ionosphere are less conclusive. Indeed, the test error does not vary too much
with d′ as well as KTA. We can however note that the higher the level of ran-
domization, the lower the difference between KTA on the learning sample and
the test sample as expected.

Of course, more extensive experiments should be carried out to clearly test
the relation between KTA and the error rate of a randomized trees ensemble.
However, we believe that the framework presented here provides promising per-
spectives and must be further analyzed.

5.2 Comparison of Randomized Trees Ensembles

In this section, we compare the performances of the methodologies presented
previously. Our benchmark consists of 10 real-world datasets coming from the
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Fig. 1. KTA vs. performance of an ensemble. Left : Ionosphere dataset (KTA was

multiplied by a factor 1.5 for better lisibility. Right : Heart dataset - KTA was multiplied

by a factor 2.

UCI repository, three synthetic datasets (Twonorm, Threenorm and Ringnorm)
coming from [3] and three datasets coming from the NIPS 2003 Feature challenge
selection [18].

Four classifiers have been tested : a Random Forest of 100 trees [5] (RF), the
same Random Forest whose basis funtions associated to terminal nodes are
post-processed according to equation (7) with p = 2 and a hinge loss (RF-L),
the same Random Forest whose basis functions associated to all the nodes
are post-processed according to equation (7) with p = 2 and a hinge loss (RF-
N+L) and finally an SVM trained with a kernel defined in (10) (SVM-K). We
have chosen p = 2 and hinge loss for post-processed ensembles in order to have a
fair comparison with the SVM trained with (10). The error rates of each method
are averaged over 3 trials of 10-fold cross-validation.

All feature elements of all datasets were scaled to [0, 1] even for RF. For RF,
RF-L and RF-N+L, the trees forming the ensemble were grown until having
the purest possible leaves. The parameters of all algorithms were searched as
to minimize the error estimated by a 5-fold cross-validation on the training
set as suggested in [20]. That is, for RF, RF-L and RF-N+L, d′ was chosen
within

{
1,
√
d, d
}

which are references in Random Forests [5], and for RF-L,
RF-N+L and SVM-K, the regularization parameter λ was searched within the
set {0.001, 0.01, 0.1, 1, 10, 100, 1000}. Finally SVM-K was trained using 3 possible
sums of 10 Laplacian kernels. The first sum was chosen to embedd decision trees
of depth 1 to 10, the second trees of depth 4 to 13 and the third trees of depth 7 to
16. In binary trees, the relation between depth k and number of terminal nodes
T is T = 2k. Random Forests have been induced using our own implementation,
while LIBSVM [8] has been used as SVM soft-margin solver. Results are shown
in Table 1.
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Table 1. Performances of 4 classifiers on several datasets. Results in bold are signifi-

cantly better than others according to one-sided Student t-test at level 0.05.

Dataset n d RF RF-L RF-N+L SVM-K

Sonar 208 60 0.846 0.894 0.894 0.905
Breast 569 30 0.963 0.974 0.972 0.975

Ionosphere 351 34 0.940 0.940 0.940 0.945

Pima 768 8 0.754 0.782 0.775 0.772
Musk 476 166 0.917 0.927 0.948 0.979
Heart 270 13 0.807 0.839 0.845 0.856
Vote 435 16 0.960 0.958 0.958 0.940

Australian 690 14 0.801 0.853 0.866 0.858
Spambase 4601 57 0.969 0.982 0.986 0.989

Tic-Tac-Toe 958 9 0.991 1 1 0.996

Twonorm 300 20 0.973 0.971 0.971 0.972

Threenorm 300 20 0.836 0.832 0.832 0.832

Ringnorm 300 20 0.956 0.972 0.972 0.974

Dexter 600 20000 0.905 0.938 0.939 0.897

Arcene 200 10000 0.774 0.836 0.836 0.829
Gisette 7000 5000 0.968 0.978 0.978 0.961

The results show several interesting things. First, post-processing an ensem-
ble of decision trees gives quite systematically lower error rates than non post
processed ones. Secondly, RF-L and Rf-N+L share almost indistinguishable per-
formances suggesting that the basis functions induced by terminal nodes are
sufficient to learn well.

On both UCI and synthetic datasets, the performances of post-processed en-
sembles (RF-L and RF-N+L) and SVM-K are very close. Indeed, except on the
Musk dataset, there are no statistical differences between both approaches. How-
ever, on the high-dimensional datasets coming from the NIPS feature selection
challenge, post-processed ensembles tend to outperform SVM-K. This suggests
that ensemble of randomized trees are well-suited for high-dimensional data.

Using an infinite ensemble has the advantage of better space covering resulting
in a very smooth decision boundary. In the case of a finite ensemble induced by
randomized trees strategies, the lack of smoothness seems to be compensated by
the search of a subset of interesting basis functions. This can be seen as a feature
selection operating directly in the infinite feature space of basis functions induced
by all possible decision trees. This feature selection may be an explanation to the
strong performance of randomized trees ensembles in very high dimensional data.

The use of a finite ensemble has also the great advantage to give interpretable
results. Indeed, each basis function induced by a decision tree can be seen as a
rule (see section 2). Post-processing will give a weight to each basis function (i.e,
each rule) highlighting the most important ones. Note that one who focus on in-
terpretability should normalize each weight by the support of the corresponding
rule (the number of covered examples by the rule) in order to not give too much
importance on rules covering a lot of examples (see eg. [16]).
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6 Conclusion

We analyzed randomized trees ensembles through the basis functions they in-
duce. We pointed out a connection with the kernel target alignment and Parzen
window classifiers. The connection can be used to bound the generalization error
of an ensemble and gives some insights about the performance of randomized
trees ensembles. Experiments realized in this paper showed that it seems to have
an empirical relationship between KTA and the ensemble performance. This con-
nection highlights the role of classifiers diversity as well as individual strength.
We also showed that increasing the amount of randomization has the effect to
better regularize the ensemble. We should however be careful when analyzing the
relation between level of randomization and strength-diversity tradeoff. Indeed,
increasing the amount of randomization does not necessarily imply increasing
the diversity or decreasing the strength and vice-versa. Open questions and in-
teresting future aspects are : 1) how one can find another ensemble strategy
acting more intensively on KTA, 2) realizing more experiments to deeper test
the relation between KTA and the performance of an ensemble, 3) if it is pos-
sible to generalize the KTA framework to other ensemble approaches such as
Boosting algorithms.

We have also suggested two possible improvements of classical randomized
ensembles strategies. The first one consists in post-processing the ensemble with
powerful linear separators. In our experiments, post-processing always led to bet-
ter performance than a classical majority voting. Another alternative consists in
taking into account the set of all possible basis functions induced by any deci-
sion tree having a specified number of leaves. This is possible thanks to the use
of an appropriate kernel embedding those basis functions. Experimentally, both
“improvements” gives very similar results. Possible future works here are : 1)
should we benefit of using another post-processing strategy which uses a penalty
on the L1 norm of regressors. The main advantage could lie in the sparsity prop-
erty of such regularizers leading in more interpretable results. 2) Breiman [4]
showed that in a space of d dimensions, there exists a set of weights w1, ..., w∞
which applied to all possible decision trees having d + 1 terminal nodes con-
verges to the Bayes rate. Interestingly, the approach presented in section 4, as
well as the one of [23] enters completely in this framework and gives perhaps a
possible way of finding such weights. A critical step here would be to study the
consistency of SVMs when used with Laplacian kernels.
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Abstract. We consider the problem of training discriminative struc-

tured output predictors, such as conditional random fields (CRFs) and

structured support vector machines (SSVMs). A generalized loss func-

tion is introduced, which jointly maximizes the entropy and the margin

of the solution. The CRF and SSVM emerge as special cases of our frame-

work. The probabilistic interpretation of large margin methods reveals

insights about margin and slack rescaling. Furthermore, we derive the

corresponding extensions for latent variable models, in which training

operates on partially observed outputs. Experimental results for mul-

ticlass, linear-chain models and multiple instance learning demonstrate

that the generalized loss can improve accuracy of the resulting classifiers.

1 Introduction

In structured output prediction, the model predicts a discrete output y ∈ Y given
an input x ∈ X . The output domain usually consists of multiple variables, this
often renders prediction as a computationally intensive problem. Applications in-
clude multiclass and multilabel classification, part-of-speech tagging, and image
segmentation. In applications such as part-of-speech tagging or image segmenta-
tion, prediction consists of a sequence of tags or a grid of labels, respectively. In
this paper we focus on training such structured classifiers. The loss function, the
key component of training, measures the quality of fit of the model predictions
to the training outputs. In the literature, the two most prominent losses are the
log-loss and the max-margin loss. The log-loss is used in conditional random
fields (CRFs) [1]. The max-margin loss is utilized in structured Support Vector
Machines (SSVMs) [2, 3].

Our contributions in this work are as follows. We integrate the concept of a
margin and an inverse temperature into CRFs. This leads to a novel family of
loss functions for structured output learning. We show that CRF and SSVM
are two special cases of this formulation. The dual of this objective sheds new
light on the different structured output learning approaches and simplifies their
comparison. Furthermore, we show how unobserved (latent) output variables can
be integrated into this framework. Finally, we conduct a number of experiments
which show that our suggested objective outperforms log-loss and max-margin
loss on a number of synthetic and real world data sets.
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2 Structured Output Learning

Following the setting in [4], we consider a linear prediction rule in a joint in-
put/output space H. An input/output mapping φ(x, y) : X ×Y → H is specified
by domain experts, either explicitly by supplying φ(x, y) or implicitly by specify-
ing a graphical model together with the parametrization of its factors. The score
of an input/output pair is defined as the inner product of a parameter vector
w and φ(x, y). For a new input x, the inference method predicts the output y∗

with the largest score
y∗ = argmax

y∈Y
〈w, φ(x, y)〉 . (1)

Depending on Y and the structure of φ(x, y), the computational complexity
of this maximization ranges from linear complexity in the number of output
variables, to NP-hardness.

During training, a data set D = {(x(n), y(n))}N
n=1 of N pairs is given. The

learning task is to find the parameter ŵ that best predicts the outputs given the
inputs. To prevent overfitting, the goodness-of-fit measure is often complemented
by a regularizer on w. Here we use the �2 regularizer and denote it by ‖· ‖2. For a
given w, the loss on the n-th example is measured by the function �(w, x(n), y(n)).
The regularized risk of a w for a given dataset D amounts to

L�(w;D, C) =
N∑

n=1

�(w, x(n), y(n)) +
C

2
‖w‖2

2,

where C is the regularization constant. In training, the empirical risk minimiza-
tion principle chooses the parameter ŵ with the smallest loss, i.e.,

ŵ = argmin
w

L�(w;D, C). (2)

Algorithmic details of this minimization problem are given in Section 6. In the
first part of this paper we concentrate on the choice of the loss �.

3 Unification of Log-Loss and Max-Margin-Loss

We will now formulate our generalized loss. First, the CRF log-loss is modi-
fied through incorporating an inverse temperature parameter. The concept of a
margin is introduced into this modified loss, resulting in a new family of loss
functions. Both the SSVM and the CRF are special cases of this formulation.

In CRFs we consider a log-linear model

P (y|x,w) =
1

Z(x,w)
exp
(〈
w, φ(x, y)

〉)
,

with the partition sum

Z(x,w) =
∑
y′∈Y

exp
(〈
w, φ(x, y′)

〉)
.

The log-loss can be derived as the negative log-likelihood of the probabilistic
conditional model
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�LL(w, x, y) = − logP (y|x,w) = −〈w, φ(x, y)
〉

+ logZ(x,w).

Using the log-loss in the regularized training objective in Equation (2) corre-
sponds to maximum-a-posteriori (MAP) parameter estimation, where we assume
a Gaussian prior on w.

The maximum margin principle gives rise to an alternative choice for a struc-
tured loss which is employed in the SSVM. The ground-truth output is compared
to the output that maximizes the inner product

�MM (w, x, y) = −〈w, φ(x, y)
〉

+ max
y′∈Y

[〈w, φ(x, y′)〉 +Δ(y′, y)] . (3)

Here, Δ(y′, y) ensures a margin between the ground-truth output y and an out-
put y′. Δ(y′, y) will be discussed in more detail in Section 3.2 and 3.3.

3.1 Inverse Temperature

We now introduce a parameter into the log-linear model of the CRF which allows
us to control the sharpness of the distribution. For the posterior, we consider
the Gibbs distribution with an inverse temperature β ∈ R+:

Pβ(y|x,w) =
1

Zβ(x,w)
exp
(
β
〈
w, φ(x, y)

〉)
, (4)

with normalization constant

Zβ(x,w) =
∑
y′∈Y

exp
(
β
〈
w, φ(x, y′)

〉)
.

For β = 1 this reverts to the standard CRF. The inverse temperature β does not
have any influence on the MAP prediction for an input x. However, note that
the learning objective is now changed. For reasons that will become clear later
on, we choose to scale the per-example loss by 1/β. The negative log-loss for an
instance (x, y) thus becomes

− 1
β

logPβ(y|x,w) = −〈w, φ(x, y)
〉

+
1
β

log
∑
y′∈Y

exp
(
β
〈
w, φ(x, y′)

〉)
. (5)

Rearranging terms, it can be shown that the introduction of β is equivalent to
changing the regularizer in a standard CRF objective to C′ = C/β (see supple-
ment1). Hence without further modification to the loss, β is simply redundant.

3.2 Large Margin Learning

A standard CRF considers unbiased output distributions. Motivated by the con-
cept of large margin learning, we bias the conditional distribution of outputs y′,

1 Supplement and source code can be obtained from the first author’s website.

http://www.pletscher.org/academics/projects/2010ecml
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given the ground-truth output y, to have a large margin for outputs y′ that are
dissimilar. To do so, we assume that a non-negative error term is given:

Δ(y′, y) =

{
0 if y′ = y

≥ 0 otherwise.
(6)

The error term Δ(y′, y) specifies a preference on the outputs y′ when compared
to the ground-truth output y. In the coming subsection we will incorporate
the margin principle of SVMs into the conditional probabilistic model given
in Equation (4). For applications in which the output can be thought of as a
labeling, a common choice for the error term is the Hamming distance of the
two labelings y and y′.

3.3 Combining the Posterior and Error Term

The training phase exploits two sources of information: Δ(y′, y) and Pβ(y′|x,w).
In principle, there are many choices for combining the two sources over the same
output variable y′. Here, we specifically discuss two choices corresponding to
slack and margin rescaling in SSVM [2].

Margin rescaling. For a given ground-truth output y, the error terms are
transformed into conditional probabilities over outputs:

Pβ(y′|y) =
1

Zβ(y)
exp
(
βΔ(y′, y)

)
, (7)

with corresponding partition sum Zβ(y). For outputs y′ which are very different
from the ground-truth y, P (y′|y) is large. In training this is used to make such
outputs to be difficult to separate, forcing the classifier to ensure good classifi-
cation on these outputs. The first option of combining the posterior and error
term is by multiplying (4) and (7).

Pβ(y′|y, x, w) ∝ P (y′|x,w)P (y′|y)
Ensuring normalization of the probability distribution leads to

Pβ(y′|y, x, w) =
1

Zβ(y, x, w)
exp
(
β
〈
w, φ(x, y′)

〉
+ βΔ(y′, y)

)
, (8)

where the partition sum is given by

Zβ(y, x, w) =
∑

y′′∈Y
exp
(
β
〈
w, φ(x, y′′)

〉
+ βΔ(y′′, y)

)
.

Note that the distribution of an output y′ is now conditioned on the true output
y. We do this to ensure good separation of y to outputs y′ that are unfavourable
according to Δ(y′, y). In Section 4 we show that combining the two posteriors
by means of a product, corresponds to margin rescaling in the SSVM case.
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For convenience, the error term is absorbed into the feature map by including
Δ(y′, y) as an additional feature: φΔ(x, y′, y) = [φ(x, y′)T , Δ(y′, y)]T . The w
needs to be adjusted accordingly by wΔ = [wT , 1]T . The score of the ground-
truth output y remains unchanged by the introduction of the error term, i.e.,
〈w, φ(x, y)〉 = 〈wΔ, φΔ(x, y, y)〉, as Δ(y, y) = 0.

Under this transformation, the loss of an example (x, y) is defined as the
negative log-likelihood of the conditional probability in Equation (8). As before,
rescaling the loss by 1/β yields

�β(w, x, y) = −〈wΔ, φΔ(x, y, y)
〉

+
1
β

log
∑
y′∈Y

exp
(
β
〈
wΔ, φΔ(x, y′, y)

〉)
. (9)

In this paper we advocate �β(w, x, y) as a loss for structured outputs, generalizing
both CRF and SSVM.

Slack rescaling. An alternative option for combining the conditional proba-
bility Pβ(y′|x,w) with the error term Δ(y′, y), corresponds to slack rescaling in
the SSVM. Let us define g(x, y′, y) = φ(x, y′) − φ(x, y). Then

Pβ,slack(y′|y, x, w) =
1

Zβ,slack(y, x, w)
exp

(
β
(
1 +
〈
w, g(x, y′, y)

〉))Δ(y′,y)

,

with corresponding partition sum Zβ,slack(y, x, w). This results in a scaled, nega-
tive log likelihood that corresponds to the multiplicative factor in slack rescaling.

�β,slack(w, x, y) =
1
β

log
∑
y′∈Y

exp

(
βΔ(y′, y)

(
1 +
〈
w, g(x, y′, y)

〉))
.

Note that in this form there is no ground-truth term in front of the sum over all the
outputs y′. Again, the error term corresponds to a modification of the feature map.
Thus, we arrive at Equation (9) where φΔ(x, y′, y) = Δ(y′, y)[g(x, y′, y)T , 1]T and
wΔ = [wT , 1]T . The reader should notice the non-linear nature of this combina-
tion, which makes slack rescaling more challenging than margin rescaling.

The probabilistic interpretation of margin rescaling is more appealing due to
the factorization into two posterior distributions. We will therefore concentrate
our analysis on margin rescaling. Nevertheless, most of the findings also hold for
slack rescaling.

4 Connections to Maximum Entropy and Maximum
Margin Learning

In this section we will analyze the implications of our loss in Equation (9).
Observe that we recover the standard CRF loss by setting β = 1 and using an
error term Δ(y′, y) = 0 ∀y′. We start our analysis by first considering the limit
case of β → ∞ which leads to a probabilistic interpretation of the SSVM. We
then derive the dual, which shows a joint regularization by entropy and margin.
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4.1 SSVMs as a Limit Case for β → ∞
Lemma 1. The standard max-margin loss used in SSVMs is obtained for the
choice β → ∞.

Proof. The SSVM is derived as a limit case of �β(w, x, y) for β → ∞ by adopt-
ing the log-sum-exp “trick”, commonly used for stable numerical evaluation of
partition sums. The key idea is to factor out the maximum contribution of the
partition sum. Denote by y∗ = argmaxy′〈wΔ, φΔ(x, y′, y)〉 the output with the
largest score. Substituting into the second part of the loss yields

1
β

logZβ(y, x, w) =
〈
wΔ, φΔ(x, y∗, y)

〉
+

1
β

log
∑
y′∈Y

exp

(
β
(〈
wΔ, φΔ(x, y′, y)

〉− 〈wΔ, φΔ(x, y∗, y)
〉))

.

The second term becomes zero when β → ∞, as the only terms in the sum that
do not vanish, are outputs with exactly the same score as the maximum output
y∗. These terms evaluate to 1. Note that the number of maxima is independent
of β. The complete loss for β → ∞ becomes

�∞(w, x, y) = −〈wΔ, φΔ(x, y, y)
〉

+ max
y′∈Y

〈wΔ, φΔ(x, y′, y)〉,

which recovers the loss of the SSVM in Equation (3). The presented analysis is
a direct consequence of Theorem 8.1 in [5] applied to Equation (8).

A comparison of CRFs and SSVMs reveals two important differences. First,
the maximum-margin loss is only affected by the output that minimizes the
distance to the ground-truth output. All the other outputs are discarded. Second,
the error-term Δ(y′, y), which does not exist in CRFs, provides a degree of
freedom to specify how much loss a given output y′ should incur given the
ground-truth y.

4.2 Special Case: Binary Classification

To illustrate the new loss, we discuss the special case of binary classification
where y ∈ {−1,+1}. For binary classification, the feature map φ(x, y) = 1

2yφ(x),
transforms the loss to

�β(w, x, y) = 〈w, φ(x, y)〉− 1
β

log
(
exp
(
β〈w, φ(x, y)〉)+exp

(
β(〈w, φ(x, y′)〉+Δ)

))
.

Where y′ denotes the wrong label y′ = −y. The standard SVM emerges in
the limit β → ∞ and Δ = 1. The parameter choice β = 1 and Δ = 0 yields
the Logistic Regression (LR) classifier. Different instantiations of this loss are
visualized in Fig. 1, including the log-loss and the max-margin loss.

For the special case of binary classification, the influence of the inverse tem-
perature on �β(x, y, w) was in parts discussed in [6]. In our work we focus on
classifiers for structured outputs. In this setting the effective number of negative
outputs can be exponentially large, which makes the analysis more complex.
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Fig. 1. 
β(w, x, y) for different β compared to log-loss and max-margin loss

4.3 Regularization by Entropy and Margin

The dual of our new loss can be found by using the method of Lagrange, resulting
in Lemma 2. The derivations are similar as in [7], and the details are in the
supplement.

Lemma 2. The dual minimization problem corresponding to Equation (2) using
our generalized per-example loss �β(w, x, y), is given by

min
u

1
2C

uTAu− bTu+
1
β

N∑
n=1

∑
y∈Y

un,y log un,y (10)

s.t. un,y ≥ 0 and
∑
y∈Y

un,y = 1 ∀y, n

where un,y denotes the dual variable for the output y in training example n
and A is given by A(n1,y),(n2,y′) = 〈gn1,y, gn2,y′〉. The difference between two
mapped outputs is denoted by gn,y = −g(x(n), y, y(n)) = φ(x(n), y(n))−φ(x(n), y).
Furthermore, all the possible error terms are collected in a vector b: bn,y =
Δ(y, y(n)). A total of N · |Y| dual variables are required. The primal and dual
variables are related by

w =
1
C

N∑
n=1

∑
y∈Y

un,ygn,y.

The dual in Equation (10) reveals a double regularization of �β(w, x, y) by a
margin term and an entropy term. Unsurprisingly, the log-loss and max-margin
loss can also be identified as special cases in the dual: if b is the zero vector, we
obtain the dual of the standard CRF, if β → ∞ the dual of the SSVM.
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4.4 The Effect of the Inverse Temperature β

So far, we argued that in order to reconstruct the log-loss from �β, the parameters
β = 1 as well as a zero error term Δ(y′, y) need to be used. However, the dual
in Equation (10) shows that it is actually sufficient to only alter the inverse
temperature β and the regularization parameter C, but not the error term itself.
For a sufficiently small C and β, the error term contribution −bTu becomes
negligible compared to the first and third terms. As a result we identify the
CRF dual.

As we have seen, β changes the sharpness of the conditional probability
Pβ(y′|y, x, w). For β → 0 all outputs y′ have an uniform distribution, i.e.,
Pβ(y′|y, x, w) has an entropy of log(|Y|). For β ≈ 1 the distribution behaves as
a Gibbs distribution. For large values of β the probability mass concentrates on
the outputs with the largest scores. Probabilities on the outputs are in this case
not well-defined; the distribution consists of individual, scaled Dirac impulses at
the outputs y∗ with maximum scores. These findings are in line with [8], where
SVMs are shown to be incapable of estimating conditional probabilities in a
multiclass setting.

4.5 Choosing β

At this point it is natural to ask: “What is the best choice for β?” Ideally,
β is optimized based on the training data. However, looking at the dual in
Equation (10), a model order selection question arises. By naively minimizing
the loss w.r.t. β, this would always result in choosing β → ∞, which is not
desired. We thus advocate determining β via cross validation on hold out data.

5 Latent Variables

We now turn our attention to structured classifiers for partially observed data.
Two training objectives have been suggested for this more challenging setting:
The Hidden Conditional Random Field (HCRF) [9], and the Latent Support
Vector Machine [10]. Here we show that our formulation also allows for this sce-
nario. Incorporating hidden variables into the output is an important extension
of practical relevance: some outputs might for practical reasons be unobserv-
able or one might define a hidden cause that leads to better accuracy of the
predictions. Let us denote the observed variables by y and the hidden, unob-
served output variables (latent variables) by z ∈ Z. In HCRFs, the conditional
probability of observing y and z are modeled using a Gibbs distribution:

Pβ(y, z|x,w) =
1

Zβ(x,w)
exp
(
β
〈
w, φ(x, y, z)

〉)
.

Here, we directly include the inverse temperature β; β = 1 recovers the standard
HCRF [9]. The model predicts according to

y∗ = argmax
y∈Y

∑
z∈Z

Pβ(y, z|x,w).
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Comparing this to the fully observed prediction rule in Equation (1), we see that
hidden variables are marginalized out. The introduction of the error terms into
the Gibbs distribution by multiplying the two posterior distributions yields

Pβ(y′, z|y, x, w) =
1

Zβ(y, x, w)
exp
(
β
〈
wΔ, φΔ(x, y′, z, y)

〉)
.

with φΔ(x, y′, z, y) = [φ(x, y′, z)T , Δ(y′, y)]T . Here it is assumed that Δ(y′, y)
is only dependent on observed output variables. As in the CRF, training of the
parameters is performed by minimizing the regularized negative log-likelihood,
scaled by 1/β. However, for the partially observed case, the hidden variables z
have to be integrated out. This leads to

�β(w, x, y) = − 1
β

log
∑
z∈Z

exp
(
β
〈
wΔ, φΔ(x, y, z, y)

〉)
+

1
β

log
∑
y′∈Y
z′∈Z

exp
(
β
〈
wΔ, φΔ(x, y′, z′, y)

〉)
.

Taking the limit for β → ∞ and using the log-sum-exp “trick”, the Latent
SVM [10] loss emerges:

�∞(w, x, y) = −max
z∈Z
〈
wΔ, φΔ(x, y, z, y)

〉
+ max

y′∈Y
z′∈Z

〈
wΔ, φΔ(x, y′, z′, y)

〉
.

Again, the Latent SVM can be seen as a probabilistic model, in which all the
probability mass is concentrated on the y, z combination with the largest score.
The limit case of the inverse temperature also changes the prediction for new
test data to

y∗ = argmax
y∈Y,z∈Z

〈w, φ(x, y, z)〉.

Instead of marginalizing the hidden variables out, we now maximize them out.
The introduction of latent variables in general turns the empirical risk minimiza-
tion in Equation (2) into a non-convex optimization problem.

6 Algorithmic Issues

So far we have focused on the theoretical comparison of the different losses
for structured output prediction. In this section we will discuss issues that are
important for an actual implementation.

6.1 Minimization of the Objective

Our new loss �β(w, x, y) is both convex (for the completely observed case)
and smooth for any inverse temperature except when β → ∞, thus standard
conjugate-gradient or LBFGS solvers are applicable for the minimization of the
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loss. In our implementations we use the LBFGS solver of minFunc2. This is con-
trary to the minimization of the standard max-margin objective, where special
algorithms for non-differentiable minimization problems are required. For learn-
ing with �β(w, x, y), we are also interested in its derivative w.r.t. w. For fully
observed data and margin rescaling, the gradient takes a form similar to that of
standard CRFs:

∂�β(w, x, y)
∂w

= −φ(x, y) +
∑
y′∈Y

Pβ(y′|y, x, w)φ(x, y′).

In our implementation we use the gradient information for the efficient mini-
mization of the loss. The LBFGS algorithm computes an approximation to the
Hessian of the objective. For small β, this second-order information drastically
improves the running time of the training. For large β, the Hessian does not help
as the objective becomes essentially piecewise linear.

6.2 Efficient Inference in Training

One key step in the optimization of the objective function is the evaluation of
the log-partition sum Zβ(y, x, w), which is generally computationally intractable.
There exist cases, like for example a φ(x, y) that corresponds to a tree struc-
tured graphical model, where the computation of Zβ(y, x, w) can be performed
efficiently. The SSVM instead requires computing the maximum violating out-
put y∗ = argmaxy′∈Y〈wΔ, φΔ(x, y′)〉. Both tasks in general are computationally
hard, but there exist classes of problems where the maximization is tractable,
but not the computation of the partition sum. This is for example the case if
submodularity constraints are imposed on the potentials of a general graphical
model.

7 Related Work

Since [6], there have been various attempts to unify the max-margin and log
losses. The connections between SVMs and exponential families have been indi-
cated in [11], and our work makes the link between the log-loss and max-margin
loss more explicit through the inverse temperature and also extends to structured
classifiers and latent variables. In [12] an algorithm for learning multiclass SVMs
in the primal is discussed: The max-margin loss is approximated by a soft-max,
which can then be optimized by a conjugate-gradient solver. [13] considers a loss
function similar to ours, applied to multiclass SVM.

Two recent papers have appeared which combine the benefits of both the mar-
gin idea and the probabilistic model. In [14], a convex combination of log-loss and
max-margin loss was proposed. The authors prove Fisher consistency and PAC-
Bayes bounds for the resulting classifiers. We conjecture that our model shares
many of the advantages of their hybrid model with the additional advantage that
2 http://people.cs.ubc.ca/~schmidtm/Software/minFunc.html

http://people.cs.ubc.ca/~schmidtm/Software/minFunc.html
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it allows for a probabilistic interpretation. Independently, the softmax-margin
was developed in [15]. The proposed loss and ours are very similar in spirit: both
introduce the margin concept known from SSVMs also into CRFs. In the appli-
cation of named-entity recognition which they consider, the margin term shows
to improve the accuracy of the classifier. However, the connection between CRFs
and SSVMs is not established.

8 Experiments

In our experiments we will only consider settings with either a small number of
outputs |Y|, or where inference can be performed exactly, such as scenarios where
the feature map φ(x, y) corresponds to a chain structured graphical model.

8.1 Multiclass Learning

As a first experiment we consider the well-studied multiclass setting in which a
data point is assigned to one of K classes. The feature map φ(x, y) as introduced
in [16] is used,

φ(x, y) =

⎡⎢⎢⎢⎣
δ1(y)·x
δ2(y)·x

...
δK(y)·x

⎤⎥⎥⎥⎦ .
Here δk(y) denotes the Kronecker Delta function, which is 1 for y = k and 0
everywhere else. For all the multiclass experiments, we report the results of the
liblinear3 implementation of LR and SVM as baseline classifiers.

Synthetic data. We designed three synthetic datasets with the reasoning in
Section 4.4 in mind. Each of the datasets shows different characteristics, which
can be exploited by the losses. The first dataset, Synth1, consists of three
classes. Each class is sampled from a Gaussian with means at 0, 1 and 2 and
variance 1. We would expect a small β to perform best on this dataset, as the
classes overlap to a large extent. The second dataset, Synth2, consists of three
classes. Each class is sampled from a Gaussian with means at (0, 0), (1, 0.1) and
(1,−0.1), each with covariance 0.25I. Here, the prediction error is computed by
accounting only 0.1 for a confusion between class 2 and 3, and 1 otherwise. This
information is provided to the classifier using the error term. We expect the
best results with a large β, as the error term information is crucial. The third
dataset, Synth3, consists of four Gaussians. Two of which have means (0, 0)
and (1, 0), the remaining two have almost indistinguishable means of (0.5, 0.4)
and (0.5, 0.6). All classes have a covariance of I. Again, for the indistinguishable
classes we only account an error of 0.1 when confusing them. Here we would
expect an intermediate value of β to lead to the best results, as both noise and
skewed class importance are present. The training set consists of 2000 examples
3 http://www.csie.ntu.edu.tw/~cjlin/liblinear/

http://www.csie.ntu.edu.tw/~cjlin/liblinear/
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Fig. 2. Results on the different synthetic multiclass datasets. Changing the parameter

β leads to different test errors.

for each class, the test test of 10000 examples for each class. The test error is
averaged over 5 random instantiations of the data set. For all classifiers C = 1
is fixed, as there is enough data to prevent overfitting. The results of this exper-
iment are shown in Table 1 and in Fig. 2.

We observe that the inverse temperature can have a substantial influence on
the accuracy of the resulting classifier. No value of β is optimal for all three
datasets, which is in agreement with the discussion in Section 4.4. The experi-
ment also shows that the limit case of a SVM for β → ∞ is already achieved for
a relatively small β.

Table 1. Synthetic multiclass results. The first row corresponds to a LR, the third row

to a SVM. The second row is a specific instance of the novel loss. For the liblinear

SVM we use the 0/1 error term (and not the ones described in the synthetic data

generation) and thus inferior results are expected for Synth2 and Synth3.

loss test error (%)

β Δ(y′, y) Synth1 Synth2 Synth3

1 no 41.0 ± 0.4 25.8 ± 0.2 43.9 ± 0.2
5 yes 44.0 ± 0.1 24.2 ± 0.1 42.0 ± 0.2

106 yes 44.0 ± 0.1 24.2 ± 0.1 43.7 ± 0.7

liblinear LR 41.7 ± 0.3 26.5 ± 0.2 44.5 ± 0.2
liblinear SVM 44.0 ± 0.1 31.9 ± 0.8 50.2 ± 4.3

MNIST data. We consider the MNIST digits dataset, a real world multiclass
dataset. For all experiments a 0/1 error term is used. In a first experiment, we
analyze the test error and running time on a random subset of the dataset, where
for each digit 100 examples are included. The results are visualized in Fig. 3.
We observe that for larger β one needs to increase C in order to get a good
prediction error. Furthermore, the running time of the training is substantially
smaller for small values of β.
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Fig. 3. Contour plot showing the test error (left) and the running time (in seconds) of

the training (right) for combinations of β and C on a subset of the MNIST data set

Table 2. Results on the MNIST dataset for different instantiations of 
β

loss C test error (%)

β = 1 105.5 7.5
β = 10 106 7.1
β = 103 106 7.1

liblinear LR 106 8.4
liblinear SVM 106 7.1

In a second experiment we consider the full MNIST data set. Cross validation
is performed for determining the regularization parameter C. For the full dataset,
contrary to the first experiment where only a subset of the dataset is used, we
found the max-margin loss to perform best. Using cross validation the model
can automatically determine that a large β is beneficial (second row in Table 2).

8.2 Linear Chain Model

In this experiment we consider the OCR dataset from [3]. Here, the task is
to predict the letters of a word from a given sequence of binary images. By
exploiting the dependencies between neighboring letters, the accuracy of the
classifier can be improved. We use the same folds as in the original publication:
The dataset consists of 10 train/test set splits, with each approximately 600 train
and 5500 test sequences. We used the Hamming distance as our error term and
perform inference in the linear chain model by libDAI [17]. In our experiments
we found, both SSVM and CRF match the test error of around 20% (Fig. 4
right) reported in [3]. Varying the parameter β leads to a small, but consistent
improvement over log-loss and max-margin loss (Fig. 4 left).

We perform a second experiment on this dataset to evaluate the quality of
the probabilities on outputs learned by the model. To do so, we measure the er-
ror when predicting using the marginal-posterior-mode (MPM) instead of using
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Fig. 5. Results for the synthetic MIL dataset for 400 bags, averaged over 10 random

data sets. Depending on the number p of positive instances, a small β improves the

accuracy substantially. The solid line corresponds to a setting where only one instance

per bag is positive, the dashed line to 25 positive instances per bag.

the MAP predictor. For an individual variable yi of the output y, the MPM
marginalizes out all other variables y\yi:

y∗i = argmax
yi

∑
y\yi

P (y|x,w).

Using the MPM leads to good accuracy if no error term is included in training,
but fails otherwise (Fig. 4 right). This is in agreement with our discussion in
Section 4.4 that probabilities on outputs are not well-defined for SSVMs.

8.3 Multiple Instance Learning

As a last experiment we consider the problem of learning from multiple instances
(MIL). This is a scenario with latent variables in training, as the label of an
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individual instance in a bag is not observed; only the label of the whole bag.
The model for β = 1 and no error terms recovers the MI/LR from [18], for
β → ∞ the model reduces to the MI-SVM [19].

We construct a one-dimensional synthetic dataset which illustrates the de-
ficiencies of the MI-SVM. A positive bag consists of p positive instances and
50−p negative (0 < p ≤ 50), a negative bag contains 50 negative instances. The
individual instances are hard to classify: the positive instances are Gaussian dis-
tributed with mean 0.6 whereas the negative instances are Gaussian distributed
with mean 0, the variance for both classes is 1. Smaller values of β lead to better
classification performance, as this corresponds to an averaging over the different
instances in a bag, which is a good strategy for large data uncertainty (Fig. 5).

9 Conclusions

We have introduced a novel family of losses for structured output learning. The
loss is parametrized by an inverse temperature β, which controls the entropy
of the posterior distribution on outputs. The dual of the loss shows a double
regularization by a margin and an entropy term. The max-margin loss and the
log-loss emerge as two special cases of this loss. Additionally, our work also ex-
tends to models with hidden variables. We conjecture that different applications
require different values of β and validate this claim experimentally on multiclass,
linear-chain models and multiple instance learning. Choosing a large β, which
corresponds to a large margin setting, while sometimes improving the accuracy,
shows to have the severe disadvantage of deteriorating the probability distribu-
tion on outputs. The difference between the losses for different values of β is
particularly striking in the multiple instance learning experiment.

Acknowledgments. We thank Sharon Wulff and Yvonne Moh for proof-reading
an early version of this paper. This work was supported in parts by the Swiss
National Science Foundation (SNF) under grant number 200021-117946.
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Abstract. Given a contact network that changes over time (say, day

vs night connectivity), and the SIS (susceptible/infected/susceptible, flu

like) virus propagation model, what can we say about its epidemic thresh-

old? That is, can we determine when a small infection will “take-off” and

create an epidemic? Consequently then, which nodes should we immunize

to prevent an epidemic? This is a very real problem, since, e.g. people

have different connections during the day at work, and during the night

at home. Static graphs have been studied for a long time, with numerous

analytical results. Time-evolving networks are so hard to analyze, that

most existing works are simulation studies [5].

Specifically, our contributions in this paper are: (a) we formulate the

problem by approximating it by a Non-linear Dynamical system (NLDS),

(b) we derive the first closed formula for the epidemic threshold of time-

varying graphs under the SIS model, and finally (c) we show the use-

fulness of our threshold by presenting efficient heuristics and evaluate

the effectiveness of our methods on synthetic and real data like the MIT

reality mining graphs.

1 Introduction

The goal of this work is to analytically study the epidemic spread on time-varying
graphs. We focus on time-varying graphs that follow an alternating connectivity
behavior, which is motivated by the day-night pattern of human behavior. Note
that our analysis is not restricted to two graphs: we can have an arbitrary num-
ber of alternating graphs. Furthermore, we focus on the SIS model [19], which
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resembles a flu-like virus, where healthy nodes get the virus stochastically from
their infected neighbors, and infected nodes get cured with some probability and
become susceptible again. The SIS model can be also used in modeling many
different types of dynamical processes as well, for example, modeling product
penetration in marketing [36].

More specifically, the inputs to our problem are: (a) a set of T alternating
graphs, (b) the infectivity of the virus and the recovery rate (β, δ for the SIS
model), (d) k number of “vaccinations”. We want to answer two questions (rig-
orously defined in Section 3):

Q1. Can we say whether a small infection can “take-off” and create an epidemic
under the SIS model (i.e. determine the so-called epidemic threshold)?

Q2. What is an effective and fast way to vaccinate people to minimize the spread
of the virus?

While epidemic spreading on static graphs has been studied extensively (e.g.
see [19,2,33,8]), virus propagation on time-varying graphs has received little at-
tention. Moreover, most previous studies on time-varying graphs use only simu-
lations [5]. We review in more detail the previous efforts in Section 2.

We are arguably the first to study virus propagation analytically on arbitrary,
and time-varying graphs. In more detail, the contributions of our work can be
summarized in the following points:

1. We formulate the problem, and show that it can be approximated with a
Non-Linear Dynamical System (NLDS).

2. We give the first closed-formula for the epidemic threshold, involving the
first eigenvalue of the so-called system-matrix (see Theorem 2). The system-
matrix combines the connectivity information (the alternating adjacency
matrices) and the characteristics of the virus (infectivity and recovery rate).

3. We show the importance of our threshold by using it to develop and evalu-
ate several immunization policies on real data like the MIT Reality Mining
graph.

The rest of the paper is organized as follows: We review related work in Sec-
tion 2, explain the formal problem definitions in Section 3, and describe the
proofs for the threshold and illustrate the theorem in Section 4. We then discuss
various immunization policies in Section 5 and present experimental evaluations
in Section 6. We discuss and provide additional explanations in Section 7 and
finally conclude in Section 8.

2 Related Work

In this section, we review the related work, which can be categorized into three
parts: epidemic threshold, immunization algorithms and general graph mining.

Epidemic Thresholds. The class of epidemiological models that are most
widely used are the so-called homogeneous models [3,29,2]. A homogeneous model
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assumes that every individual has equal contact to others in the population,
and that the rate of infection is largely determined by the density of the in-
fected population. Kephart and White [22,23] were among the first to propose
epidemiology-based models (hereafter referred to as the KW model) to analyze
the propagation of computer viruses. The KW model provides a good approxi-
mation of virus propagation in networks where the contact among individuals is
sufficiently homogeneous. However, there is overwhelming evidence that real net-
works (including social networks [10], router and AS networks [12], and Gnutella
overlay graphs [35]) deviate from such homogeneity - they follow a power law
structure instead.

Pastor-Satorras and Vespignani studied viral propagation for such power-law
networks [32,33]. They developed an analytic model for the Barabási-Albert (BA)
power-law topology [4]. However, their derivation depends on some assumptions
which does not hold for many real networks [25,12]. Pastor-Satorras et al. [33]
also proposed an epidemic threshold condition, but this uses the “mean-field” ap-
proach, where all graphs with a given degree distribution are considered equal.
There is no particular reason why all such graphs should behave similarly in terms
of viral propagation. Newman [31] studied the epidemic thresholds for multiple
competing viruses on special, random graphs.

Immunization. Briesemeister et al. [7] focus on immunization of power law
graphs. They focus on the random-wiring version (that is, standard preferential
attachment), versus the “highly clustered” power law graphs. Their simulation
experiments on such synthetic graphs show that such graphs can be more easily
defended against viruses, while random-wiring ones are typically overwhelmed,
despite identical immunization policies.

Cohen et al. [9] studied the acquaintance immunization policy (see Section 5
for a description of this policy), and showed that it is much better than random,
for both the SIS as well as the SIR model. For power law graphs (with no
rewiring), they also derived formulae for the critical immunization fraction, above
which the epidemic is arrested. Madar et al. [27] continued along these lines,
mainly focusing on the SIR model for scale-free graphs. They linked the problem
to bond percolation, and derived formulae for the effect of several immunization
policies, showing that the “acquaintance” immunization policy is the best. Both
works were analytical, without studying any real graphs.

Hayashi et al. [18] study the case of a growing network, and they derive ana-
lytical formulas for such power law networks (no rewiring). They introduce the
SHIR model (Susceptible, Hidden, Infectious, Recovered), to model computers
under e-mail virus attack and derive the conditions for extinction under random
and under targeted immunization, always for power law graphs with no rewiring.

Thus, none of the earlier related work focus on epidemic thresholds for ar-
bitrary, real graphs, with only exceptions of [37,8], and its follow-up paper by
Ganesh et al. [13]. However, even these works [37,8,13] assume that the under-
lying graph is fixed, which is unrealistic in many applications.
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General Graph Mining. Graph mining is a very active research area in recent
years. Representative works include patterns and “laws” discovery e.g., power
law distributions [12,26], small world phenomena [30,1], and numerous other reg-
ularities. Among them, there is a lot of research interest in studying dynamic
processes on large graphs, (a) blogs and propagations [17,24,21,34], (b) informa-
tion cascades [6,14,16] and (c) marketing and product penetration [36]. These
dynamic processes are all closely related to virus propagation.

In sum, to the best of our knowledge, including comprehensive epidemiological
texts [2,3] and well-cited surveys [19], we are the first to analytically study virus
propagation on arbitrary, real and time-varying graphs.

3 Problem Definitions

Table 1 lists the main symbols used in the paper. Following standard notation, we
use capital bold letters for matrices (e.g. A), lower-case bold letters for vectors
(e.g. a), and calligraphic fonts for sets (e.g. S) and we denote the transpose with
a prime (i.e., A′ is the transpose of A). In this paper, we focus on un-directed
un-weighted graphs which we represent by the adjacency matrix.

Also we deal only with the SIS virus propagation model in the paper. The
SIS model is the susceptible/infected/susceptible virus model where β is the
probability that an infected node will transmit the infection over a link connected
to a neighbor and δ is the probability with which an infected node cures itself
and becomes susceptible again. Please see [19] for a detailed discussion on SIS
and other virus models.

Consider a setting with clearly different behaviors say, day/night, each char-
acterized by a corresponding adjacency matrix (A1 for day, A2 for night), then
what is the epidemic threshold under a SIS virus model? What are the best
nodes to immunize to prevent an epidemic as much as possible? More generally,
the problems we are tackling can be formally stated as follows:

Problem 1. Epidemic Threshold

Given: (1) T alternating behaviors, characterized by a set of T graphs A =
{A1,A2 . . . AT }; and (2) the SIS model [8] with virus parameters β and δ;

Find: A condition, under which the infection will die out exponentially quickly
(regardless of initial condition).

Problem 2. Immunization

Given: (1) T alternating behaviors, characterized by a set of T graphs A =
{A1,A2 . . . ,AT }; and (2) the SIS model with virus parameters β and δ and
(3) k vaccines;

Find: The best-k nodes for immunization.

We will next solve Problem 1 while we discuss Problem 2 later in Section 5.
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Table 1. Symbols

Symbol Definition and Description

A,B, . . . matrices (bold upper case)

A(i, j) element at the ith row and jth column of A
A(i, :) ith row of matrix A

A(:, j) jth column of matrix A
I standard n × n identity matrix

a,b, . . . column vectors

I,J , . . . sets (calligraphic)

n number of nodes in the graphs

T number of different alternating behaviors

A1, A2, . . . , AT T corresponding size n × n symmetric

alternating adjacency matrices

β virus transmission probability in the SIS model

δ virus death probability in the SIS model

λM first eigen-value (in absolute value) of a matrix M
uM corresponing first eigen-vector (for λM) of a matrix M
pi,t probability that node i is infected at time t
pt pt = (p1,t, p2,t, . . . , pn,t)

′

p2t+1 probability of infection vector for odd days

p2t probability of infection vector for even days

ηt the expected number of infected nodes at time t

4 Epidemic Threshold on Time-Varying Graphs

To simplify discussion, we consider T = 2 in Problem 1 with A to consist of
only two graphs: G1 with the adjacency matrix A1 for the odd time-stamps
(the ‘days’) and G2 with the adjacency matrix A2 for the even time-stamps
(the ‘nights’). Our proofs and results can be naturally extended to handle any
arbitrary sequence of T graphs.

4.1 The NLDS

We first propose to approximate the infection dynamics by a Non-linear dynam-
ical system (NLDS) representing the evolution of the probability of infection
vector (pt) over time. We can compute the probability ζt(i) that node i does not
receive any infections at time t. A node i won’t receive any infection if either any
given neighbor is not infected or it is infected but fails to transmit the infection
with probability 1 − β. Assuming that the neighbors are independent, we get:

ζ2t+1(i) =
∏

j∈NE1(i)

(pj,2t+1(1 − β) + (1 − pj,2t+1))

=
∏

j∈{1..n}
(1 − βA1(i, j)pj,2t+1)) (1)
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where NE1(i) is the set of neighbors of node i in the graph G1 with adjacency
matrix A1. Similarly, we can write ζ2t+2(i) as:

ζ2t(i) =
∏

j∈NE2(i)

(pj,2t(1 − β) + (1 − pj,2t))

=
∏

j∈{1..n}
(1 − βA2(i, j)pj,2t)) (2)

So, pi,2t+1 and pi,2t+2 are:

1 − pi,2t+1 = δpi,2t + (1 − pi,2t)ζ2t(i)
⇒ pi,2t+1 = 1 − δpi,2t − (1 − pi,2t)ζ2t(i) (3)

and

1 − pi,2t+2 = δpi,2t+1 + (1 − pi,2t+1)ζ2t+1(i)
⇒ pi,2t+2 = 1 − δpi,2t+1 − (1 − pi,2t+1)ζ2t+1(i) (4)

Note that we can write our NLDS as:

p2t+1 = g2(p2t) (5)
p2t+2 = g1(p2t+1) (6)

where g1 and g2 are corresponding non-linear functions as defined by Equations 3
and 4 (g1 depends only on A1 and g2 on A2).

We have the following theorem about the asymptotic stability of a NLDS at
a fixed point:

Theorem 1. (Asymptotic Stability, e.g. see [20]) The system given by
pt+1 = g(pt) is asymptotically stable at an equilibrium point p∗, if the eigenval-
ues of the Jacobian J = �g(p∗) are less than 1 in absolute value, where,

Jk,l = [�g(p∗)]k,l =
∂pk,t+1

∂pl,t
|pt=p∗

The fixed point of our interest is the 0 vector which is the state when all nodes
are susceptible and not infected. We want to then analyze the stability of our
NLDS at p2t = p2t+1 = 0. From Equations 5 and 6, we get:

∂p2t+2

∂p2t+1
|p2t+1=0 = (1 − δ)I + βA1 = S1 (7)

∂p2t+1

∂p2t
|p2t=0 = (1 − δ)I + βA2 = S2 (8)

Any eigenvalue λi
S1

of S1 and λi
S2

of S2 (i = 1, 2, ...) is related to the correspond-
ing eigenvalue λi

A1
of A1 and λi

A2
of A2 as:

λi
S1

= (1 − δ) + βλi
A1

(9)

λi
S2

= (1 − δ) + βλi
A2

(10)



Virus Propagation on Time-Varying Networks 105

Recall that as A1 and A2 are symmetric real matrices (the graphs are undi-
rected), from the Perron-Frobenius theorem [28], λA1 and λA2 are real and
positive. So, from Equations 9 and 10 λS1 and λS2 are also real and positive.

4.2 The Threshold

We are now in a position to derive the epidemic threshold. First, we have the
following lemma:

Lemma 1. If λS < 1, then p2t dies out exponentially quickly; and 0 is asymp-
totically stable for p2t, where S1 = (1 − δ)I + βA1, S2 = (1 − δ)I + βA2 and
S = S1 × S2.

Proof. Since p2t+2 = g1(g2(p2t)) (from Equations 5 and 6), we have

∂p2t+2

∂p2t
|p2t=0 = (

∂p2t+2

∂p2t+1
× ∂p2t+1

∂p2t
)|p2t=0

= (
∂p2t+2

∂p2t+1
|p2t+1=0) × (

∂p2t+1

∂p2t
|p2t=0)

= S1S2 = S (11)

The first equation is due to chain-rule, second equation is because p2t = 0 implies
p2t+1 = 0; and the final step is due to Equations 7 and 8.

Therefore, using Theorem 1, we get that if λS < 1, we have that 0 is asymp-
totically stable for p2t.

We now prove that p2t in fact goes down exponentially to 0 if λS < 1. To see
this, after linearizing both g1 and g2 at p2t = p2t+1 = 0, we have

p2t+2 ≤ S1p2t+1

p2t+1 ≤ S2p2t (12)

Doing the above recursively, we have

p2t ≤ (S1S2)tp0 = (S)tp0 (13)

Let ηt be the expected number of infected nodes at time t. Then,

η2t = |p2t|1 ≤ |(S)tp0|1
≤ |(S)t|1|p0|1 = |(S)t|1η0

≤ √
n|(S)t|2η0 =

√
nλt

Sη0 (14)

Therefore, if λS < 1, we have that η2t goes to zero exponentially fast. ��
The above lemma provides the condition for the even time-stamp probability
vector to go down exponentially. But, the next lemma shows that this condition
is enough to ensure that even the odd time-stamp probability vector to go down
exponentially.
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Lemma 2. If λS < 1, then p2t+1 dies out exponentially quickly; and 0 is asymp-
totically stable for p2t+1, where S1 = (1 − δ)I + βA1, S2 = (1 − δ)I + βA2 and
S = S1 × S2.

Proof. Doing the same analysis as in Lemma 1, we can see that the condition
for p2t+1 to be asympotically stable and die exponentially quickly is:

λS2×S1 < 1 (15)

Now note that as S1 and S2 are invertible: S1 × S2 = S1 × S2 × S1 × S−1
1 .

But this implies that S2 × S1 is similar to S1 × S2 (matrix P is similar to Q if
P = BQB−1, for some invertible B). We know that similar matrices have the
same spectrum [15], thus S2×S1 and S1×S2 have the same eigenvalues. Hence,
the condition for exponential die out of p2t+1 and asymptotic stability is the
same as that for p2t which is λS < 1. ��
Lemma 1 and Lemma 2 imply that this threshold is well-defined in the sense
that the probability vector for both the odd and even time-stamps go down
exponentially. Thus we can finally conclude the following theorem:

Theorem 2. (Epidemic Threshold) If λS < 1, then p2t and p2t+1 die out
exponentially quickly; and 0 is asymptotically stable for both p2t and p2t+1, where
S1 = (1 − δ)I + βA1, S2 = (1 − δ)I + βA2 and S = S1 × S2. Similarly for any
general T , the condition is:

λ∏
i Si

< 1 (16)

where ∀i ∈ {1, 2, .., T} Si = (1 − δ)I + βAi.

We call S as the system-matrix of the system; thus, the first eigenvalue of the
system-matrix determines whether a given system is below threshold or not.

4.3 Salient Points

Sanity check: Clearly, when T = 1, the system is equivalent to a static graph
system with A1 and virus parameters β, δ. In this case the threshold is (from
Theorem 2) λ(1−δ)I+βA1 < 1 ⇒ βλA1/δ < 1 i.e. we recover the known threshold
in the static case [8].

A conservative condition: Notice that from Equations 7 and 8 and Theorem 1,
for our NLDS to be fully asymptotically stable at 0 (i.e. pt decays monotoni-
cally), we need the eigenvalues of both S1 and S2 be less than 1 in absolute
value. Hence, βλ/δ < 1 where λ = max(λA1 , λA2) is sufficient for full stability.
Intuitively, this argument says that the alternating sequence of graphs can not be
worse than static case of having the best-connected graph of the two repeated
indefinitely. Let λA1 > λA2 . Consider a sequence of graphs S = {A1,A1 . . .}
repeating indefinitely instead of our alternating {A1,A2,A1,A2, . . .} sequence.
Clearly, if an infection dies exponentially in S, then it will die exponentially
in our original alternating sequence as well because λA1 > λA2 . The set S is
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essentially just the static graph case: hence, if βλA1/δ = βλ/δ < 1, then 0
is asymptotically stable for pt. The case when λA1 < λA2 is similar. But this
notion of a threshold is too stringent and conservative: it can happen that a
stronger virus can still lead to a general exponential decrease instead of a strict
monotonous decrease. This is because we forced the eigenvalues of both S1 and
S2 to be less than 1 in absolute value here, when we can probably get away
with less. Theorem 2 precisely formalizes this idea and gives us a more practi-
cal condition for a general decreasing trend of every corresponding alternating
time-stamp values decaying. We illustrate this further in the experiments.

4.4 Experiments

Figures 1 and 2 demonstrate our result on a synthetic example and graphs from
MIT reality data (more details on the reality mining graphs are in Section 6). In
the synthetic example, we have 100 nodes, such that G1 is a full clique (without
self loops) whereas G2 is a chain. All values are average over several runs of the
simulations and the infection is started by infecting 5 nodes. In short, as expected
from the theorem, the difference in behavior above, below and at threshold can
be distinctly seen in the figures.

Figures 1(A) and 2(A) show the time-plot of number of infections for λS values
above and below the threshold. While above threshold the infection reaches a
steady state way above the starting point, below threshold it decays fast and dies
out. In case of Figure 1(A), also note the the difference between the conservative
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state vs λS (lin-log)

Fig. 1. SIS simulations on our synthetic example (all values averages over 20 runs) (A)

Fraction of nodes infected vs Time-stamp (lin-log scale). Note the qualitative difference

in behavior under (green) and above (red) the threshold. Also, note that the green line

is below the threshold but is actually above the conservative threshold (βλ/δ = 1.100
here). Hence while both p2t and p2t+1 decrease exponentially separately, but pt itself

does not monotonously go down. (B) Plot of Max. number of infected nodes till steady

state vs λS (by varying β) (lin-log). As predicted by our results, notice that there is a

sudden ‘take-off’ and a change of behavior of the curve exactly when λS = 1.
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Fig. 2. SIS simulations on the MIT reality mining graphs (all values averages over 20

runs) (A) Fraction of nodes infected vs Time-stamp (lin-log scale). Note the qualitative

difference in behavior under (green) and above (red) the threshold. (B) Plot of Max.

number of infected nodes till steady state vs λS (by varying β) (lin-log). As predicted

by our results, notice that there is a sudden ‘take-off’ and a change of behavior of the

curve when λS = 1.

threshold and our threshold. The green curve is below our threshold but above
the conservative threshold. But again, as predicted from our theorems, clearly
while there are dampening oscillations and the infection decays but pt itself does
not monotonously go down (and hence the “bumpy” nature of the curve). This
exemplifies the practical nature of our threshold and its usefulness as we are
more concerned with the general trend of the number of infections curve and
not every small ‘bump’ because of the presence of alternating graphs.

Figures 1(B) and 2(B) show a ‘take-off’ plot showing max. number of infec-
tions till steady state (intuitively the ’footprint’) for different values of λS (by
varying β). As predicted by our theorem, note the sudden steep change and spike
in the size of the footprint when λS = 1 in both the plots.

5 Immunization Algorithms

Given the theoretical results in the previous section, can we exploit them to our
advantage to ensure effective immunization (Problem 2)?

5.1 Quality Metric

Using our results, we can evaluate the quality of any immunization policy. Note
that smaller the value of λS, lesser are chances of the virus causing any epidemic.
Put differently, we want to decrease the λS value of the system as much as
possible. Thus, the efficacy of any immunization policy should be measured using
the amount of “drop” in λS it causes and the resulting λS after immunization.
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5.2 Proposed Immunization Policies

We now discuss some new immunization policies for time-varying graphs, par-
tially motivated by known policies used for static graphs. Again, for ease of
exposition we focus our attention only on the {A1,A2} system of Section 3.
From the above, it is clear that optimally we should choose that set of k nodes
which result in the smallest λS value possible after immunization. This implies
that for each set of k node we test, we need to delete k rows/columns from
both A1 and A2 to get new matrices A∗

1 and A∗
2 and then compute the new λS

value. The number of k sets is
(
n
k

)
and therefore this method is combinatorial

in nature and will be intractable even for small graphs. Nevertheless, we call
this strategy Optimal and show experimental results for this policy too, because
this policy will give us the lower-bound on the λS that can be achieved after k
immunizations.

We want policies which are practical for large graphs and at the same time
be efficient in lowering the λS value of the system i.e. they should be close to
Optimal. Specifically to this effect, we now present several greedy policies as
well. As the heuristics are greedy in nature, we only describe how to pick the
best one node for immunization from a given set of G1 and G2 graphs. Our
proposed policies are:

Greedy-DmaxA (Highest degree on A1 or A2 matrices). Under this policy,
at each step we select the node with the highest degree considering both the
A1 or A2 adjacency matrices. This is motivated by the degree immunization
strategy used for static graphs.

Greedy-DavgA (Highest degree on the “average” matrix). We select the
node with the highest degree in the Aavg matrix where Aavg = (A1 +A2)/2.

Greedy-AavgA (Acquaintance immunization [9] on the average matrix).
The “acquaintance” immunization policy works by picking a random person,
and then immunizing one of its neighbors at random (which will probably be
a ‘hub’). We run this policy on the Aavg matrix.

Greedy-S (Greedy on the system-matrix). This is the greedy strategy of
immunizing the node at each step which causes the largest drop in λS value.
Note that even this can be expensive for large graphs as we have to evaluate
the first eigenvalue of S after deleting each node to decide which node is the
best.

Optimal. Finally, this it the optimal through combinatorial strategy mentioned
above of finding the best-k set of nodes which decrease λS the most.

6 Experimental Evaluations

In this section we present experimental results of applying the various immuniza-
tion policies discussed previously. We have already demonstrated our theoretical
threshold results in Section 4.
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6.1 Experimental Setup

We conducted a series of experiments using the MIT Reality Mining data set
[11]. The Reality Mining data consists of 104 mobile devices (cellular phones)
monitored over a period of nine months (September 2004 - June 2005). If another
participating Bluetooth device was within a range of approximately 5-10 meters,
the date and time of the contact and the device’s MAC address were recorded.
Bluetooth scans were conducted at 5-minute intervals and aggregated into two
12-hour period adjacency matrices (day and night). The epidemic simulations
were accomplished by alternating the day and night matrices over the period of
simulation. All experiments were run on a 64-bit, quad-core (2.5Ghz each) server
running a CentOS linux distribution with shared 72 GB of RAM. Simulations
were conducted using a combination of Matlab 7.9 and Python 2.6.

6.2 Results

Figure 3 shows the λS value after immunizing k = 1, 2, . . . , 10 nodes using each
of the policies outlined in Section 5. As Optimal and Greedy-S require β and
δ as inputs, we set β = 0.5, δ = 0.1. Running Optimal became prohibitively
expensive (> 4 hours on the MIT reality graphs) after k = 7 - hence we don’t
show data points for k ≥ 8 for Optimal. Moving on to the greedy strategies we
find that Greedy-S performs the best after k = 10 by dropping the λS value
as aggressively as possible - equal to Optimal at many places. We find that
Greedy-DavgA also performs very well. Intuitively this is because the highest
degree node in Aavg is very well-connected and hence has a huge effect in re-
ducing the Aavg value (we discuss more about Aavg later in Section 7). At the
same time, Greedy-DmaxA is comparable to Greedy-DavgA as we find the highest
degree among both the graphs: so this highest degree will also mostly have the

k

Immunization Strategies

Optimal

Greedy-S

Greedy-DavgA

Greedy-AavgA

Greedy-DmaxA

Fig. 3. Experiments on Reality Mining graphs: λS vs k for different immunization

policies. Lower is better. Greedy-DavgA clearly drops the λS value aggressively and is

close to the Greedy-Opt.
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Fig. 4. Scatter plot of Max. infections till steady state and λS for different immuniza-

tion policies after k = 10 immunizations. Points closer to the origin are better. All

policies perform in accordance to the λS values achieved (see Figure 3).

highest mean degree. Finally, Greedy-AavgA drops the λS value the least among
all the policies. Given the first random choice of node, Greedy-AavgA can be
“trapped” in the neighborhood of a node far form the best node to immunize,
and thus can be forced to make a choice based on the limited local information.

Figure 4 demonstrates the effectiveness of our quality metric i.e. the λS value
for each immunization policy after k = 10 immunizations. It is a scatter plot
of Max. infections till steady state and the various λS values at the end of
the immunizations. So points closer to the origin (minimum footprint and λS)
represent better policies. Clearly, Optimal should theoretically be the closest
to the origin (we don’t show it as it didn’t finish). Also as discussed before,
Greedy-AavgA is the worst and that is demonstrated by its point. From Figure 3
we can see that Greedy-S has the least λS value after k = 10, hence it is closest
to the origin and thus has the smallest footprint. Others perform well too, as
their final λS values were close as well.

To summarize, in our experiments we demonstrated that policies decreasing
λS the most are the best policies as they result in smaller footprints as well.
Also, simple greedy policies were effective and achieved similar λS values like
expensive combinatorial policies.

7 Discussion

We discuss some pertinent issues and give additional explanations in this section.

Generality of our results: How can we model more complex situations like
‘unequal duration’ behaviors etc.? Note that the alternation period T can be
longer than 2 and we can have repetitions in the set A as well e.g. to repre-
sent a weekly-style (work day-weekend) alternation we can have T = 7 and
A = {A1,A1, . . . ,A1,A2,A2}. Similarly, we can model situations like unequal
duration of ‘day’ and ‘night’ i.e. unequal duration of matrices A1 and A2. Say,
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A1 is present for only 8 hours at work, while A2 is present for the remaining 16
hours at home. Then, thinking of an hour as our time-step i.e. T = 24, the set
A = {A1, . . . ,A1,A2,A2, . . .}, where A1 occurs 8 times in A while A2 occurs 16
times. All the threshold results carry forward seamlessly in all the above cases.

Goodness of the Aavg matrix: We saw that Greedy-DavgA gave very good
results and was close to Greedy-S and Optimal. This can be explained with the
help of the following lemma.

Lemma 3. (1 − 2δ)I + 2βAavg is a first-order approximation of the S matrix.

Proof. Note that (T = 2),

S = S1 × S2

= ((1 − δ)I + βA1) × ((1 − δ)I + βA2)
= (1 − δ)2I + (1 − δ)β(A1 + A2) + β2A1A2

≈ (1 − 2δ)I + β(A1 + A2) = (1 − 2δ)I + 2β
(

A1 + A2

2

)
where we neglected second order terms involving β and δ. Thus (1−2δ)I+2βAavg

is a first-order approximation of the S matrix. ��
In other words, we can consider the time-varying system to be approximated by
a static graph system of the Aavg graph adjacency matrix with a virus of the
same strength (β/δ remains the same). The threshold for a static graph with
adjacency matrix A is βλA/δ. So in our static case, we should aim to reduce
λAavg as much as possible. Any policy which aims to reduce the λAavg value
will approximate our original goal of dropping the λS value. Thus, this gives a
theoretical justification of why Greedy-DavgA gave good results.

Temporal Immunization: In this paper, we concentrated only on static im-
munization policies - policies where once immunized, a node is ‘removed’ from
the contact graphs. While this makes sense for biological vaccinations, in a more
complex ‘resource’ oriented scenario where each ‘glove’ protects a person only
for the time it is worn, a time-varying immunization policy might be more use-
ful. e.g. we may have finite number of gloves to give and we can change the
assignment of gloves during day/night. In this case, it may be better to immu-
nize nurses in hospitals during the day by giving them the gloves but during the
night, we can decide to give gloves to restaurant waiters or children, because the
nurses are now not well-connected in the contact graph. Our threshold results
can trivially estimate the impact or any ‘what-if’ scenarios w.r.t. such temporal
immunization algorithms.

8 Conclusion

In this paper, we analytically studied virus-spreading (specifically the SIS model)
on arbitrary, time-varying graphs. Given a set of T alternating graphs, modeling
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e.g. the day/night pattern of human behavior, we ask: (a) what is the epidemic
threshold? and (b) what are the best-k nodes to immunize to defend against an
epidemic? Our main contributions are:

1. We show how to formulate the problem, namely by approximating it with a
Non-Linear Dynamical System (NLDS).

2. We give the first closed-formula for the threshold, involving the first eigen-
value of the system-matrix (see Theorem 2).

3. We use the insight from our threshold to develop and evaluate several im-
munization policies on real data like MIT reality mining graphs.

Future work can focus on providing bounds for the effectiveness of our immu-
nization heuristics.
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Abstract. Multipartite ranking is a special kind of ranking for problems

in which classes exhibit an order. Many applications require its use, for

instance, granting loans in a bank, reviewing papers in a conference or

just grading exercises in an education environment. Several methods have

been proposed for this purpose. The simplest ones resort to regression

schemes with a pre- and post-process of the classes, what makes them

barely useful. Other alternatives make use of class order information

or they perform a pairwise classification together with an aggregation

function. In this paper we present and discuss two methods based on

building a Decision Directed Acyclic Graph (DDAG). Their performance

is evaluated over a set of ordinal benchmark data sets according to the

C-Index measure. Both yield competitive results with regard to state-

of-the-art methods, specially the one based on a probabilistic approach,

called PR-DDAG.

1 Introduction

Multipartite ranking has been recently named [11] as an extension of the tradi-
tional bipartite ranking from the binary to the multiclass case. Bipartite ranking
aims to learn a model whose performance is evaluated according to its ability of
sorting positive before negative examples. Such ability is commonly assessed in
terms of the AUC, which is the area under the Receiver Operating Character-
istic (ROC) curve [6]. In fact, multipartite ranking has also been called ordinal
ranking, since it relates an ordinal classification and a ranking. Ordinal classifi-
cation means to perform a classification whose classes display an order. Ordinal
ranking goes further and also provides a ranking of the examples within the
same class. Obviously, a good multipartite ranker is expected to place examples
of the higher classes before examples of the lower ones.

Many applications may take advantage of this special kind of ranking. For
instance, a banker commonly classifies customers that ask for a mortgage into
classes as high risk, moderate risk, low risk, no risk. Imagine now that a certain
number of mortgages are able to grant according to the interests of the bank
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and that such number falls below the number of customers classified as no risk.
Obviously, the bank has to decide within the no risk customers to who give the
mortgage. Hence, an order within the examples of each class must be provided.
The same demand happens in many other environments, for instance in job
vacancies, paper reviews in a conference or waiting list in hospitals according to
the urgency degree of the disease.

The main goal of this paper is to explore the use of a Decision Directed Acyclic
Graph (DDAG) [24] to address the problem of multipartite ranking. DDAGs have
been successfully applied before, but to the best of our knowledge for classifi-
cation purposes rather than for ranking [3,7,23,24,27]. Unlike other approaches,
our proposal makes use of the class order information to lead the build of the
graph. We present two different methods that exploit the structure of a DDAG to
produce a ranking. The first one follows a crisp approach and produces a global
ranking by concatenating a set of consecutive bipartite rankings. The second
one is a probabilistic approach where each example is propagated through all
possible paths with a cumulative probability attached. The performance of both
methods is as good as some state-of-the-art techniques, outperforming them in
some situations. In addition, they are computationally more efficient than other
algorithms used for the same purpose.

The rest of the paper is organized as follows. Section 2 includes an overview of
some related work. In Section 3, the multipartite ranking problem is stated and
the main state-of-the-art approaches are described. Then, Section 4 presents the
two different DDAG-based methods proposed in this paper to tackle multipartite
ranking. In Section 5 results of the experiments over benchmark data sets are
described and analyzed. Finally, Section 6 draws some conclusions.

2 Related Work

Multipartite ranking is closely related to other fields that have been extensively
studied. Ordinal classification, a research field between classification and regres-
sion, is one of the closest. In fact, it shares properties with the former that a
specific number of classes is stated, and with the latter that such classes are
ordered. This is the reason why most of the research is focused on adapting
either classification or regression techniques to cope with ordinal classification.
However, none of them seem completely adequate, since the former discards
class order information, whereas the latter exploits that order relation but mak-
ing strong assumptions about the distances between classes [19]. Recently, some
work has been done to exploit class order information. In [2], authors reduce the
problem to the standard two-class problem using both support vector machines
and neural networks also providing generalization bounds. Two new support
vector approaches for ordinal regression, which optimize multiple thresholds to
define parallel discriminant hyperplanes for the ordinal scales are proposed in [4].
Frank and Hall [8] present a simple approach encoding the order information in
class attributes allowing the use of any classifier that provides class probability
estimates. Also, Herbrich et al. [14] proposed a distribution independent risk for-
mulation of ordinal regression. It allows to derive an uniform convergence bound
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whose application configures a large margin algorithm based on a mapping from
objects to scalar utility values, thus classifying pairs of objects.

Label ranking is another field also closely related to multipartite ranking, since
a required order for the classes is stated. In this framework the goal is to learn
a mapping from instances to rankings over a finite number of labels. However,
the labels are ranked instead of the instances, as in multipartite ranking. Some
research deal with this discipline, as the work in [17], where authors learn a
ranking by pairwise comparison or in [1], in which they propose a sophisticated
k-NN framework as an alternative to previous binary decomposition techniques.

No so much research can be found about multipartite ranking. In [26], the
authors derive distribution-free probabilistic bounds on the expected error of
a ranking function learned by a k-partite ranking algorithm. Waegeman et al.
[29] generalize the Wilcoxon-Mann-Whitney statistic to more than two ordered
categories in order to provide a better evaluation system in ordinal regression.
One of the most recent work that copes with the problem itself is [11], in which
the use of binary decomposition techniques are explored. On one hand, the au-
thors adapt for this purpose an ordinal classification method [8] that converts
the original m class problem into a m− 1 binary problems. On the other hand,
they analyze the use of pairwise classification [10] to induce also a multipartite
ranker. The main problem that arises in decomposition approaches is that after
such decomposition, an aggregation scheme must be adopted to compose again
the original problem. In multipartite ranking combining scoring functions of each
model is a better practice than combining the rankings yielded by each model
[11].

3 Multipartite Ranking

As commented above, multipartite ranking provides a ranking of instances in
ordinal classification tasks. Let us include some definitions to formally state the
problem.

Definition 1 Let be L = {�1, ..., �p} a set of classes. Then, a natural order rela-
tion denoted by ≺ is defined over L such that it holds �i ≺ �j if �i is semantically
below �j, with i, j ∈ {1, ..., p}.
Definition 2 Let be L = {�1, ..., �p} a set of classes that satisfy a natural order
relation denoted by ≺. Let also be S = {x1, ...,xm} a set of m instances from
an input space X , in which each instance xi is labeled as �xi

∈ L. Then, the
goal of multipartite ranking consists of obtaining a ranking function f : X → �

such that as many as possible xi,xj ∈ X such that �xi
≺ �xj

it must satisfy that
f(xi) < f(xj).

Thus, f(·) must place all the instances classified under the class �i before any
instance classified under the class �j whenever �i ≺ �j, with i, j ∈ 1, ..., p.

A well-known approach to address this task proposes to convert the original
problem into a single binary classification problem. It involves including several
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pairwise constraints according to the order relation defined over L, each one
being a new instance that will feed the binary classifier. Formally, since for
all i, j ∈ {1, ...,m} such that �xi ≺ �xj it must be held that f(xi) < f(xj)
and assuming that f is linear, then it holds that f(xi − xj) < 0. Analogously,
f(xk − xl) > 0 for all k, l ∈ {1, ...,m} such that �xl ≺ �xk . Hence, S+ =
{xi − xj/�xi ≺ �xj} is the set of positive examples of the binary classification
task and S− = {xk − xl/�xl ≺ �xk} conforms the negative ones. The main
disadvantage of this approach is that the number of instances for such binary
classification problem is the order of O(m2).

Decomposition methods involve several binary learning problems instead of a
single one, but with the advantage that such problems are smaller and do not
require to increase the number of instances. Some approaches fall into this kind
of decomposition previously used for classification [8,10] and recently adapted
to multipartite ranking [11]. They differ in the selection of the binary problems
they solve.

The Frank and Hall (FH) approach [8] defines p− 1 binary problems, where
the i-th problem consists of obtaining a model Mi able to separate the class
C+

i = {�1, ..., �i} from the class C−
i = {�i+1, ..., �p}, when i ranges from 1 to

p−1. This model provides the probability, denoted by P (�i ≺ �x), of an instance
x of belonging to a class higher than �i in the order relation defined over L.
Such probabilities in turn define one ranking per model. These rankings must
be aggregated to obtain a global one. The aggregation function must guarantee
that instances of lower classes keep lower in the global ranking and so does the
function defined as follows

M(x) =
p−1∑
i=1

Mi(x) =
p−1∑
i=1

P (�i ≺ �x). (1)

The learning by pairwise comparison (LPC) or round robin learning [10] defines
p(p− 1)/2 binary problems, where the i, j-th problem consists of separating the
class �i and �j , when i, j range from 1 to p and �i ≺ �j. This approach is also used
in other learning tasks, as in multiclass classification, where the output of each
induced model Mi,j for an example x is accounted as a vote for the predicted
class �i or �j; then the most voted class is predicted following the MaxWins
voting scheme [9]. But, this method is not suitable in multipartite ranking, since
it is not able to induce a ranking. In [11], the authors propose two alternative
aggregation functions, assuming that binary models yield normalized scores, i.e.
Mi,j(x) ∈ [0, 1], which is the probability that x belongs to class �j. Both sum
the predictions in favor of the higher class,

M(x) =
∑

1≤i<j≤p

Mi,j(x), (2)

but in the second one those predictions are weighted by the relative frequencies,
pi, pj of the classes �i, �j in the training set,

M(x) =
∑

1≤i<j≤p

pipjMi,j(x). (3)
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1|5

2|51|4

2|41|3 3|5

2|31|2 4|53|4

21 3 54

Fig. 1. A Decision Directed Acyclic Graph

4 Two DDAG-Based Methods for Multipartite Ranking

In this section we will present and discuss two different methods that are based
on a common idea, building a DDAG [24] to cope with the multipartite ranking
problem. The first one, called CR-DDAG, produces a global ranking by combin-
ing a set of consecutive bipartite rankings. The second one, called PR-DDAG,
adds a probabilistic framework based on the structure of a DDAG. Since both
methods share the same DDAG structure, we will first describe and motivate it.

A Directed Acyclic Graph (DAG) is a graph whose edges have an orientation
and no cycles. A special case is the DDAG presented in [24]. In that paper, the
authors describe and analyze a method to solve multiclass classification problems
employing a DAG to combine the set of binary classifiers yielded by a decom-
position scheme identical to the one used by LPC (see previous section). Thus,
DDAG also trains p(p−1)/2 classifiers, one for each pair of classes. However, LPC
and DDAG differ in the way they combine the predictions of those classifiers. In
the latter, the structure of the DDAG determines such combination.

More in detail, the nodes of a DDAG are arranged in a triangle (see Figure 1)
with the single root node at the top, two nodes in the second layer and so on
until the final layer of p leaves. The k-th node in layer l < p is connected to
the k-th and (k + 1)-th node in the (l + 1)-th layer. Except for the leaves, each
node has an associated model, namely Mi,j , aimed at separating the classes
�i and �j , and two successors which will be two leaves when i = j − 1, or
two decision nodes with models Mi,j−1 and Mi+1,j respectively. The predic-
tion procedure of a DDAG works as follows (see the example in Figure 1).
Starting from the root (model M1,5), a DDAG decides at each node, apply-
ing model Mi,j , which of the two classes �i and �j is preferred for a certain
instance x. If the former is the winner, then the instance x is evaluated over
its left child node (model Mi,j−1 in the example), so class �j is discarded. Oth-
erwise, the instance x is evaluated using its right child node (model Mi+1,j), then
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class �i is discarded. The process continues until a leave is reached whose label
is returned for the instance x. Thus, an instance is evaluated over p−1 different
models. Notice that a DDAG works as a list in which a class is discarded after
each evaluation.

There is no consensus about which classes must be considered first and which
ones in last place for each branch of the tree. For instance, in the foundational
paper [24] the choice is arbitrary, in [3] a binary decision diagram and Huffman
code [30] construction is employed and Jaakkola-Haussler [28] error bound is
proposed in [7]. In this paper, we propose an alternative idea. As it can be
easily proved, a DDAG predicts incorrectly the true class of an example x if one
competent model in the prediction path followed by x fails. As it was defined in
other papers [11], a binary model Mi,j is only competent to classify examples
that belong to classes �i or �j . Thus, it is quite dangerous to locate at the root
a model Mi,j if the classes �i and �j are hard to separate, because that model
will evaluate all examples of these classes. Hence, placing such kind of models
at lower levels is preferable, since they will classify less examples.

A simple adaptation of this idea to multipartite ranking (and in general to
ordinal classification tasks) is based on the intuitive assumption, validated exper-
imentally in [16], that the ordinal structure of the set of classes is also reflected
in the topology of the input space. Thus, it seems that the lowest (�1) and high-
est (�p) classes of the order defined over L are those likely to be separated best.
So, model M1,p is proposed to be located at the root and, therefore, either the
lowest or the highest class is discarded in the first layer. Recursively applying
the same idea, our DDAG will place at each node the model between the two
extreme classes of the ordered subset of classes that have not been discarded by
its ancestor models.

Assuming that the order of the classes is �1 ≺ �2 ≺ �3 ≺ �4 ≺ �5, Figure 1
shows the structure of a DDAG employed for both methods proposed in this
paper. In symbols, if Mi,j corresponds to the k-th node in layer l < p, then
Mi,j−1 and Mi+1,j correspond to the k-th and (k+ 1)-th node in the (l+ 1)-th
layer. For instance, in Figure1 the node 2|4 is the 2-nd node of the 3-rd layer
that correspond to the model M2,4 which separates classes �2 and �4 and it is
connected to the 2-nd and 3-rd nodes (respectively 2|3 and 3|4) of the 4-th layer
that respectively correspond to models M2,3 and M3,4.

4.1 Consecutive Rankings DDAG (CR-DDAG)

At first sight, it is not trivial how to adapt a DDAGs to obtain a multipartite
ranking. Originally, they were designed to deal with multiclass classification [24],
which is a quite different task. Our first proposal works under the hypothesis
that a multipartite ranking can be broken down into a set of ordered bipartite
rankings. For instance, for a problem with 5 classes, i.e. L = {�1, ..., �5}, then
the whole multipartite ranking can be formed concatenating the consecutive
bipartite rankings {1−2, 2−3, 3−4, 4−5}. Notice that these consecutive rankings
correspond to the last level before the leaves in the structure of the DDAG
described before (see Figure 1).
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This method relies on the assumption that if each bipartite ranker orders
well the examples of its two classes, then concatenating those consecutive binary
rankings will lead to a good overall ranking. But, first of all a classification
procedure is required to decide which bipartite ranker will be used for each
instance. Here is when the DDAG structure plays its role. Taking Figure 1 as
reference, the proposal consists of employing the remaining models, displayed
in the higher levels of the DDAG, to select the bipartite ranker that must be
applied. Thus, our DDAG is divided in two parts: the upper levels take charge of
classifiying examples, and the lower level of ordering them. Hence, a mechanism
to merge the consecutive rankings into a global ranking is required.

For that purpose some modifications in DDAG are carried out in order to
obtain a CR-DDAG. First, the leaves are ruled out. Secondly, the models of the
layer immediately before the leaves, i.e. the set of consecutive bipartite rankers
(Mi,i+1), must yield a value in the interval (0, 1). Finally, the final ranking score
is computed according to the following expression

M(x) = i+ Mi,i+1(x), (4)

where Mi,i+1 correspond to the model selected by the cascade classification
process carried out by the higher nodes of the DDAG. Adding the class index
i to the output of the bipartite ranker guarantees that an instance ranked by
Mi,i+1 is placed in the global ranking higher than an instance ranked by Mj,j+1

with j < i.
The main disadvantage of CR-DDAG is that if a competent model for an

instance of class �j fails during the classification process, then such instance will
follow a path ending in node whose model will be Mi,i+1 with j �∈ {i, i + 1}.
Then, if j < i (respectively j > i+ 1), the instance may be placed much higher
(respectively much lower) in the global ranking than it should be. Therefore,
CR-DDAG has two potential sources of errors. On one hand, the classification
process can choose the incorrect ranking model, and, on the other hand, the
bipartite rankers may commit mistakes. The first one is more damaging in the
sense that it could produce bigger losses in ranking evaluation measures.

4.2 Probabilistic Ranking DDAG (PR-DDAG)

In order to diminish some of the undesirable drawbacks of CR-DDAG, we pro-
pose a Probabilistic Ranking Decision Directed Acyclic Graph in which examples
are propagated through every edge with a probability attached, so no irrevoca-
ble decisions are taken. In fact, PR-DDAG shares some ideas with the LPC
approach. First, it exploits the redundancy considering the outcomes of several
models to rank an instance. And second, it relies on the assumption that the
order of the output space is also reflected on the topology of the input space,
in the sense that the prediction of Mi,k(x) for an instance of class �j will be
higher if k ≤ j and lower if j ≤ i. However, the main difference with LPC is
that PR-DDAG computes the posterior probabilities using the structure of the
DDAG. The goal is that the contribution of competent models will be higher in
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the global ranking, reducing the effect of the so-called non-competence problem.
In the next section, we will explain deeply this property.

PR-DDAG suposses that every model Mi,j(x) predicts the probability of x
of belonging to the positive class (�j). Obviously, the probability of being of
the negative class (�i) will be 1 −Mi,j(x). These probabilities are successively
propagated through the graph from the root to the leaves, in such a way that
an instance will reach a node i|j with a probability Pi,j(x) computed as follows

Pi,j(x)=

⎧⎪⎪⎨⎪⎪⎩
1, i = 1, j = p,
Pi,j+1(x) · (1 −Mi,j+1(x)), i = 1, j < p,
Pi−1,j(x) ·Mi−1,j(x), i > 1, j = p,
Pi−1,j(x)·Mi−1,j(x) + Pi,j+1(x)·(1−Mi,j+1(x)), i > 1, j < p.

(5)

Notice that the method states that P1,p(x) = 1, since any instance x must arrive
to the root node with probability 1. At the end, this propagation process provides
a probability distribution of the classes for an instance x, that is, {Pi,i(x) : i =
1, . . . , p}.

Finally, in order to produce the global ranking, PR-DDAG employes the ag-
gregation function proposed in [20]:

M(x) =
p∑

i=1

T (i) · Pi,i(x), (6)

where T (i) is some monotone increasing function of the relevance level i. Ac-
cording to [20], it seems that complex functions do not provide better rankings,
hence, the simple T (i) = i, called expected relevance, can be a sensible and sta-
ble choice. In this case, the product by the index of the class in the summation
enhances the value of the probability as the index of the class increases.

4.3 Analyzing the Properties of CR-DDAG and PR-DDAG

Table 1 shows a summary of the main properties of all approaches described
above (FH, LPC, CR-DDAG and PR-DDAG). All methods solve p(p − 1)/2
binary problems except FH which solves just p − 1, which is related to the
training set used in each binary problem they solve. Particularly, FH employs
the whole data set, whereas only instances of two classes are used in the rest
of the approaches. All of them take each instance (p − 1) times, and assuming
an uniform distribution of the instances through the classes, LPC, CR-DDAG
and PR-DDAG only handle m/p instances in each binary problem against m
that FH uses. Then, taking into account the training size and that a O(mα)
binary classifier (typically with α > 1) is chosen, FH has a complexity O(pmα),
whereas LPC, CR-DDAG and PR-DDAG reduce it to O(p2−αmα). Thus, those
methods are more efficient than FH whenever a base learner with super-linear
complexity is applied. Concerning to the evaluation stage (see again Table 1)
FH is comparable to CR-DDAG, which only need to compute p− 1 evaluations,
while LPC and PR-DDAG evaluate all models.
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Table 1. Binary problems and evaluations required by each method

FH LPC CR-DDAG PR-DDAG

Binary problems p − 1 p(p − 1)/2 p(p − 1)/2 p(p − 1)/2
Classes in training All classes Only two Only two Only two

Whole Training size (p − 1)m (p − 1)m (p − 1)m (p − 1)m
Binary Training size m m/p m/p m/p
Binary complexity O(mα) O(p−αmα) O(p−αmα) O(p−αmα)

Whole complexity O(pmα) O(p2−αmα) O(p2−αmα) O(p2−αmα)

Evaluations p − 1 p(p − 1)/2 p − 1 p(p − 1)/2
Non-competence problem No Yes No Yes

Redundancy No Yes No Yes

In classification, the non-competence problem does actually not matter so
much for LPC provided all competent models make correct predictions; the same
is true for DDAGs. As explained in [11], however, this property is lost for LPC
in the case of multipartite ranking. Interestingly, it seems to be maintained for
CR-DDAG: as long as all competent binary classifiers make correct decisions,
an instance from class �i must end up either in the bipartite models Mi−1,i or
Mi,i+1, and these are in turn handled by competent bipartite rankers.

PR-DDAG reduces the influence of non-competent models. Let us explain it
with a simple example. Imagine a problem with 3 classes, so the model M1,3 will
be at the root, and the models M1,2 and M2,3 at the second level. If we evaluate
an instance of class 2, the prediction of M1,3 will distribute its input probability
(1, since it is the root of the DDAG) between its child nodes. Applying recursively
Equation (5), the posterior probability for class 2 will be:

P2,2(x) = (1 −M1,3(x)) ·M1,2(x) + M1,3(x) · (1 −M2,3(x)).

Notice that the sum of the input probabilities of models M1,2 and M2,3 is 1.
Thus, the role of the non-competent model M1,3 is to distribute the importance
of models M1,2 and M2,3 in order to compute that posterior probability. But,
since both models are competent to that task, the decision of M1,3 is not so
important. In fact, due to the design of the DDAG, it can be proved that,
for any class, the sum of the input probabilities of all its competent models
coming from non-competent models is always 1. This means that the role of the
non-competent models placed above them on the DDAG is to distribute those
input probabilities. At the end, posterior probabilities will depend heavily on
competent models.

On the other hand, LPC is the most redundant method. In fact, it is the redun-
dancy obtained from applying such number of models what seems to thwart the
misclassification errors produced by the non-competence problem. PR-DDAG
also provides some kind of redundancy, due to the evaluations over all compe-
tent models, but in a lower degree compared to LPC.
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Table 2. Properties of the data sets used in the experiments. All of them were

taken from the WEKA repository (http://www.cs.waikato.ac.nz/~ml/weka/index_

datasets.html)

Data set #examples #numeric feat. #nominal feat. #classes

asbestos 83 1 2 3

balance-scale 625 4 0 3

cmc 1473 2 7 3

pasture 36 21 1 3

post-operative 90 0 8 3

squash (unst.) 52 20 3 3

car 1728 0 6 4

grub-damage 155 8 6 4

nursery 1000 0 9 4

swd 1000 100 0 4

bondrate 57 4 7 5

eucalyptus 736 14 5 5

lev 1000 4 4 5

era 1000 4 4 9

esl 488 4 4 9

5 Experiments

In this section we report the results of the experiments performed to evaluate
the approaches proposed in this paper to tackle multipartite ranking. This set of
experiments was designed to address three main goals. Firstly, CR-DDAG and
PR-DDAG were compared with the main state-of-the-art binary decomposition
approaches for mutipartite ranking, FH and LPC (see Section 3). Secondly, we
studied the influence of the learning algorithm used to build each binary classifier
on the compared multipartite ranking methods. Finally, since our aim is to
predict a ranking, we included a base learner able to optimize the AUC measure
in a bipartite ranking task.

Before discussing the experimental results, the next subsection describes the
settings used in the experiments: learning algorithms, data sets, procedures to
set parameters, and the measure to estimate the scores.

5.1 Experimental Settings

Due to the lack of ordinal benchmark data sets, several previous works have used
discretized regression data sets. Despite this can be reasonable, here we wanted
to study the performance of the different approaches only on truly ordinal data
sets. Thus, the experiments were performed over several ordinal data sets whose
main properties are shown in Table 2. This group of data sets were previously
used in [16].

We compared the five multipartite ranking algorithms described through the
paper, namely, FH (Eq. 1), the two different aggregation methods for LPC

http://www.cs.waikato.ac.nz/~ml/weka/index_datasets.html
http://www.cs.waikato.ac.nz/~ml/weka/index_datasets.html
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approach: the unweighted variant (Eq. 2), called LPCU in the following, and
the weighted version LPCW (Eq. 3), and finally the two proposed DDAG-based
methods, CR-DDAG (Eq. 4) and PR-DDAG (Eq. 6).

All of them were implemented with three different base learners. First, we
employed a binary SVM (libsvm implementation [31]) with probabilistic outputs,
the second one was the logistic regression of [21], and finally, the implementantion
of SVMperf presented in [18], setting the target maximization function to be
the AUC. In this last case, since its output is not a probability, the algorithm
reported in [25] was used to map it into a probability [22]. SVMperf and libsvm
were used with the linear kernel. In all cases, the regularization parameter C was
established for each binary problem performing a grid search over the interval
C ∈ [10−2, . . . , 102] optimizing the accuracy in the cases of libsvm and logistic
regression and the AUC in the case of SVMperf . Both, accuracy and AUC, were
estimated by means of a 2-fold cross validation repeated 5 times.

The ranking performance of the methods was measured in terms of the C-
index, estimated using a 5-fold cross validation. C-index is a metric of concor-
dance [12] commonly used in statistics and equivalent to the pairwise ranking
error [14]. It has been recently used in [11] for multipartite ranking as an estima-
tion of the probability that a randomly chosen pair of instances from different
classes is ranked correctly. If M is a model, S the whole training set, p the num-
ber of different classes and Sk with k = 1, ..., p the instances of S of the class k,
then the C-index is defined by

C(M,S) =
1∑

i<j |Si||Sj |
∑

1≤i<j≤p

|Si||Sj |AUC(M,Si ∪ Sj). (7)

This metric considers that each class contribution is proportional to its size.
An analogous metric that grants the same importance for all classes is the
Jonckheere-Terpstra statistic [15], proposed in [13] as another multiclass ex-
tension of the AUC. However, conclusions reported in [11] show little differences
between them.

Finally, according to the recommendations exposed in [5], a two-step statisti-
cal test procedure is carried out. The first step consists of a Friedman test of the
null hypothesis that all rankers have equal performance. Then, in case that this
hypothesis is rejected, a Nemenyi test to compare learners in a pairwise way is
conducted. The average ranks over all data sets are computed and shown at the
last row of every table. The ranks of each data sets are indicated in brackets close
to the corresponding C-index. In case of ties, average ranks are shown. Since we
are comparing 5 algorithms over 15 data sets, the critical rank differences are
1.58 and 1.42 for significance levels of 5% and 10%, respectively.

5.2 Experimental Results

Table 3, Table 4 and Table 5 show the ranking performance in terms of the
C-index for all approaches when libsvm, logistic regression and SVMperf were
respectively adopted as base learners. Analyzing the obtained results using libsvm
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Table 3. C-index for all approaches using libsvm as the base learner

FH LPCU LPCW CR-DDAG PR-DDAG

asbestos 84.83 (1.00) 75.79 (4.00) 76.48 (2.00) 72.78 (5.00) 76.41 (3.00)
balance-scale 97.91 (4.00) 97.95 (3.00) 97.90 (5.00) 97.99 (2.00) 98.03 (1.00)
cmc 68.59 (1.00) 66.41 (5.00) 66.88 (4.00) 67.24 (3.00) 67.68 (2.00)
pasture 90.40 (4.00) 92.13 (1.50) 92.13 (1.50) 88.67 (5.00) 90.53 (3.00)
post-operative 53.78 (4.00) 50.95 (5.00) 54.48 (2.00) 54.23 (3.00) 57.43 (1.00)
squash (unst.) 89.14 (3.00) 89.59 (1.00) 88.89 (4.50) 88.89 (4.50) 89.41 (2.00)
car 98.59 (2.00) 88.37 (5.00) 98.44 (3.00) 98.92 (1.00) 98.30 (4.00)
grub-damage 73.21 (1.00) 70.67 (2.00) 69.68 (3.00) 68.39 (5.00) 69.13 (4.00)
nursery 98.13 (4.00) 97.03 (5.00) 98.33 (2.00) 98.52 (1.00) 98.30 (3.00)
swd 81.03 (3.00) 81.19 (2.00) 81.01 (4.00) 80.64 (5.00) 81.44 (1.00)
bondrate 66.66 (1.00) 52.76 (5.00) 56.57 (4.00) 61.73 (3.00) 61.98 (2.00)
eucalyptus 93.72 (1.00) 89.47 (5.00) 90.37 (4.00) 93.44 (3.00) 93.63 (2.00)
lev 86.36 (3.00) 86.32 (4.00) 86.46 (1.00) 86.03 (5.00) 86.38 (2.00)
era 73.91 (1.00) 73.81 (3.00) 73.88 (2.00) 72.90 (5.00) 73.66 (4.00)
esl 95.58 (4.00) 95.62 (3.00) 96.16 (1.00) 96.13 (2.00) 95.48 (5.00)

Avg. rank (2.47) (3.57) (2.87) (3.50) (2.60)

to learn each binary model (see Table 3), we observe that the best method is FH,
following by PR-DDAG, LPCW, CR-DDAG and LPCU. However, none of the
methods is significantly better using a Nemenyi test. Between our approaches,
PR-DDAG wins in 11 out of 15 data sets. The same happens between LPCW
and LPCU, the former outperforms the latter 10 times and it is only worse in 4
data sets.

These first results were quite surprising because they contradict in some way
the experimental results reported in [11]. In that work, FH was significantly
better than LPCW and LPCU. The reasons that can explain these quite opposite
conclusions can be: i) we used only truly ordinal data sets, and ii) the base
learner was different (in [11] logistic regression was used). Motivated for this
second reason, we also employed logistic regression as the learning algorithm
(see Table 4). In this case, the obtained results were similar to those presented
in [11]. Now, our approach PR-DDAG obtains better performance, followed by
FH. According to a Nemenyi test, PR-DDAG is only significantly better than
LPCU (for a significance level of 5%), the worst method in this experiment.
The difference between PR-DDAG and LPCW (1.4) is very close to the critical
difference (1.42), but it is not significant (see Figure 2). In this case, CR-DDAG
obtains better results than both approaches based on LPC. It seems that logistic
regression is not a good choice as base learner for LPC, since both versions offer
the worst performance. However, it keeps the fact that LPCW provides better
results than LPCU, although the differences are less remarkable than in case of
libsvm adopted as base learner.

In the last experiment the goal was to check if these multipartite ranking
algorithms can benefit of using a ranking base learner, like SVMperf optimizing
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Table 4. C-index for all approaches using logistic regression as the base learner

FH LPCU LPCW CR-DDAG PR-DDAG

asbestos 82.96 (5.00) 83.50 (2.00) 83.10 (4.00) 83.51 (1.00) 83.46 (3.00)
balance-scale 97.66 (2.00) 97.63 (5.00) 97.65 (3.50) 97.90 (1.00) 97.65 (3.50)
cmc 67.99 (3.00) 67.51 (5.00) 67.98 (4.00) 68.54 (2.00) 68.74 (1.00)
pasture 85.73 (5.00) 86.53 (3.50) 86.53 (3.50) 87.47 (1.00) 86.80 (2.00)
post-operative 45.47 (3.00) 45.52 (2.00) 43.74 (4.00) 42.87 (5.00) 45.66 (1.00)
squash (unst.) 91.26 (2.00) 90.81 (3.00) 90.30 (5.00) 90.64 (4.00) 91.67 (1.00)
car 99.04 (3.00) 86.57 (5.00) 98.94 (4.00) 99.12 (1.00) 99.07 (2.00)
grub-damage 74.16 (1.00) 71.67 (3.00) 71.66 (4.00) 71.04 (5.00) 73.59 (2.00)
nursery 98.58 (1.00) 89.47 (4.00) 88.12 (5.00) 98.57 (2.00) 97.15 (3.00)
swd 81.10 (4.00) 81.14 (3.00) 81.17 (2.00) 81.07 (5.00) 81.49 (1.00)
bondrate 73.07 (3.00) 72.01 (4.00) 71.33 (5.00) 76.85 (1.00) 73.95 (2.00)
eucalyptus 93.99 (2.00) 88.35 (5.00) 89.84 (4.00) 93.76 (3.00) 94.06 (1.00)
lev 86.44 (2.50) 86.41 (4.00) 86.53 (1.00) 86.32 (5.00) 86.44 (2.50)
era 73.90 (2.00) 73.84 (4.00) 73.96 (1.00) 72.83 (5.00) 73.89 (3.00)
esl 96.18 (1.00) 95.39 (5.00) 96.17 (2.00) 95.91 (4.00) 96.08 (3.00)

Avg. rank (2.63) (3.83) (3.47) (3.00) (2.07)

Fig. 2. Friedman-Nemenyi Test (p < 0.1) for all methods using logistic regression

the AUC measure (see Table 5). In this case the differences between all the
approaches are smaller, only 0.74 between the best (FH) and the worst (LPCU).
Now, LPCW and PR-DDAG are almost tied, and the difference between PR-
DDAG and CR-DDAG is the smallest of the three experiments. Again, LPCU
attains worse results than the other methods. It seems that neither CR-DDAG
nor PR-DDAG take advantage of optimizing the AUC. However, it is a good
choice for LPCW, since it obtains better position in this case.

Summarizing all these results, we can draw some conclusions. In general, none
of the methods is significantly better than the others. In fact, only in one case, an
algorithm (PR-DDAG) is significantly better than another (LPCU). However,
it seems that FH, PR-DDAG and LPCW perform slightly better than the rest.
Both PR-DDAG and FH are quite stable, no matter what base learner is used.
On the other hand, the choice of the base learner is quite important for LPC
methods. Particularly, in the case of using a logistic regression, applying LPC
approaches is not the best choice.
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Table 5. C-index for all approaches using SVMperf as the base learner

FH LPCU LPCW CR-DDAG PR-DDAG

asbestos 82.34 (4.00) 82.62 (3.00) 81.97 (5.00) 84.37 (1.00) 83.69 (2.00)
balance-scale 98.06 (1.50) 97.91 (4.50) 97.91 (4.50) 98.06 (1.50) 97.92 (3.00)
cmc 68.15 (2.00) 67.32 (4.00) 67.72 (3.00) 67.10 (5.00) 68.44 (1.00)
pasture 90.40 (4.00) 93.20 (1.50) 93.20 (1.50) 83.07 (5.00) 90.53 (3.00)
post-operative 53.75 (5.00) 55.31 (4.00) 62.81 (1.00) 59.16 (2.00) 56.38 (3.00)
squash (unst.) 87.73 (1.00) 85.58 (4.50) 87.01 (3.00) 87.21 (2.00) 85.58 (4.50)
car 98.86 (3.00) 89.71 (5.00) 98.88 (1.00) 98.83 (4.00) 98.87 (2.00)
grub-damage 72.23 (1.00) 70.72 (3.00) 69.84 (4.00) 64.67 (5.00) 72.03 (2.00)
nursery 98.56 (2.00) 96.90 (5.00) 98.31 (4.00) 98.55 (3.00) 98.60 (1.00)
swd 80.57 (3.00) 81.08 (1.00) 81.03 (2.00) 80.56 (4.00) 80.51 (5.00)
bondrate 69.37 (2.00) 59.95 (5.00) 69.89 (1.00) 68.54 (3.00) 65.77 (4.00)
eucalyptus 93.19 (1.00) 91.11 (4.00) 91.78 (2.00) 88.46 (5.00) 91.46 (3.00)
lev 86.32 (4.00) 86.56 (1.00) 86.27 (5.00) 86.47 (2.00) 86.46 (3.00)
era 73.64 (4.00) 73.78 (2.00) 73.99 (1.00) 72.84 (5.00) 73.73 (3.00)
esl 96.03 (2.00) 95.74 (3.00) 93.90 (5.00) 96.07 (1.00) 95.34 (4.00)

Avg. rank (2.63) (3.37) (2.87) (3.23) (2.90)

Focusing on our proposals, PR-DDAG obtains quite similar results than FH
and besides it is computationally more efficient. Despite its appealing idea, CR-
DDAG performs worse, but not significantly, than PR-DDAG. One reason for
this behavior may be the lack of redundancy CR-DDAG suffers from. Indeed, the
performance is affected by the classification stage before the consecutive ranking
combination takes place.

Finally, using a binary base learner that optimizes the AUC does not improve
the results of decomposition multipartite methods. Following [5], we used the
Wilcoxon signed ranks test to compare the performance of the same method
using different base learners. Only twice significantly differences were found. For
LPCU, SVMperf is better than libsvm at level p < 0.05, and for LPCW, logistic
regression is better than SVMperf at level p < 0.10.

6 Conclusions

This paper proposes two multipartite ranking approaches that exploits the or-
der information the classes exhibits. Both have as the point of the departure
the structure of a Decision Directed Acyclic Graph (DDAG) and include a pair-
wise decomposition technique. One of them, called Consecutive Ranking DDAG
(CR-DDAG) combines a set of consecutive bipartite rankings to obtain a global
ranking, but first it performs a classification to decide which bipartite ranker
must be applied. The other, called Probabilistic Ranking DDAG (PR-DDAG)
includes a probabilistic framework based on propagating probabilities through
the graph.
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Several experiments over a benchmark ordinal data set were carried out using
different base learners, including one algorithm that optimizes the AUC measure.
None of the methods outperforms the others, but PR-DDAG exhibits competi-
tive performance, in terms of the C-index measure, with regard to other state-
of-the-art algorithms previously proposed in the literature for the same purpose.
PR-DDAG also presents interesting theoretical properties, as its computational
complexity and its capacity of reducing the non-competence problem.
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16. Hühn, J.C., Hüllermeier, E.: Is an ordinal class structure useful in classifier learn-

ing? Int. J. of Data Mining Modelling and Management 1(1), 45–67 (2008)
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Abstract. Recent years have witnessed a widespread interest on meth-

ods using both link structure and node information for link prediction on

graphs. One of the state-of-the-art methods is Link Propagation which is

a new semi-supervised learning algorithm for link prediction on graphs

based on the popularly-studied label propagation by exploiting informa-

tion on similarities of links and nodes. Despite its efficiency and effec-

tiveness compared to other methods, its applications were still limited

due to the computational time and space constraints. In this paper, we

propose fast and scalable algorithms for the Link Propagation by intro-

ducing efficient procedures to solve large linear equations that appear

in the method. In particular, we show how to obtain a compact repre-

sentation of the solution to the linear equations by using a non-trivial

combination of techniques in linear algebra to construct algorithms that

are also effective for link prediction on dynamic graphs. These enable us

to apply the Link Propagation to large networks with more than 400,000

nodes. Experiments demonstrate that our approximation methods are

scalable, fast, and their prediction qualities are comparably competitive.

1 Introduction

Many interactions in the real world can be expressed as networks that consist of
a set of entities mapped to nodes and a set of links for the relationships between
entities. Each entity may have additional information that influences its rela-
tionship with other entities. There are many natural examples of such networks,
such as a network of webpages where the entities, relationships, and additional
information are, respectively, the webpages, URL links, and the textual content
of the pages. There are many other networks that exhibit similar properties;
ranging from friendships and actions among people in Social Networking Service
(SNS) to biological interactions among proteins. In many such networks the total
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number of entities is large and the number of relationships per entity is often
more than one.

Link mining is one of the most popular research topics that deals with extract-
ing useful insights from such networks. It includes the link prediction problem,
which is the problem of predicting the existence of unknown links between nodes
using information from the known parts of the network. Link prediction has a
broad range of applications. In marketing, users’ ad-clicking actions might be
predicted from the history of their actions and the relationships among their
friends (or similar users) and the online ads. In social network analysis, users
can be guided to contents of interest based on the friendship relations in their
networks. Recent advances in storage technologies have made it possible to col-
lect and store large amounts of information for link prediction. However, this
also adds to the complexity of solving the link prediction problem.

Methods for the link prediction problem can be classified into two categories
depending on the information used for prediction: link-information [13,14,19,28]
and node-information [2,3,16] -based methods. Link-information-based methods
such as matrix factorization [18] and link metrics [14] can predict the struc-
tures of networks from the observed parts of the networks. However, when only
a small parts of the networks are known, the link-information-based methods
work poorly. In contrast, node-information-based methods use node features as
auxiliary information and can work well even in such cases.

Recently, a novel node-information-based link prediction method, which used
a semi-supervised label propagation learning method to predict links (and hence,
the method name Link Propagation) was proposed by the authors of [10]. Com-
bined with information on node similarities, they devised a method for the Link
Propagation by the conjugate gradient method and the vec-tricks techniques [24].
They also demonstrated that the qualities of the link prediction by the Link
Propagation were competitive to those of other state-of-the-art methods. (See
also Figure 1 in Section 3 for the comparison on the effectiveness of the exact
Link Propagation by our method with existing state-of-the-art methods). How-
ever, like many other methods using node information, it has severe limitations
in terms of computational time and space to handle networks with more than
thousands of nodes, not to mention the difficulties in coping with link prediction
on dynamic networks.

In this paper, we tackle these typical limitations of the node-information-
based semi-supervised learning by proposing fast and scalable methods for the
Link Propagation. Instead of using the conjugate gradient, our methods utilize
the matrix factorization techniques, such as the Cholesky and eigen- decomposi-
tion. These enable us to exactly solve linear equations in the Link Propagation
with less computational time and space. Moreover, the exact methods open the
paths to define an approximate method for the Link Propagation that needs
significantly less computational cost while maintaining accuracy. Our methods
are also compatible with the vec-tricks techniques, which are useful to furtherly
reduce the computational time. In addition, our methods can be applied for link
prediction on dynamic networks. Recently, there is an emerging interest in the
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study of dynamic network models (e.g., see [7]), and accordingly, there were
many prior studies for link prediction and proximities on dynamic graphs, such
as, in [9,21,22]. However, almost all of them are link-information based ones.

The contributions of this work are:

(1) We propose a new Link Propagation for developing a fast and scalable semi-
supervised link prediction method based on the node information. The tech-
niques used in the method also utilize matrix factorization and approximation.
Thus, the new Link Propagation method can be considered as a kind of node-
information-based link prediction that utilizes fast and scalable techniques in
topological-based link prediction.
(2) We show that the new Link Propagation can also be used for efficient link
prediction on large dynamic graphs whose edges evolve over time.
(3) We demonstrate experimental results on the effectiveness of the proposed
method for link prediction in a large network with 400, 000 nodes and more. We
show that despite using much less computational time and space, the prediction
qualities of the approximated version of the Link Propagation are competitive
to (and sometimes are better than) those of the exact ones.

The rest of the paper is organized as follows. Section 2 defines the link prediction
problem that we consider in this paper. Section 3 reviews the Link Propagation
method first proposed in [10]. In Section 4, the procedures for an exact and
approximate Link Propagation methods on static and dynamic (time-evolving)
graphs are presented. In Section 5, several experimental results to demonstrate
the scalability of the proposed methods and the accuracies of their approxima-
tions are shown. Section 6 summarizes the related work, and Section 7 concludes
this paper with some discussion and promising future work.

2 Link Prediction Problem

The link prediction problem is usually described as a task to predict how likely
a link exists between an arbitrary pair of nodes in a graph or network.

Let us denote two subsets of nodes of a network by X ≡ {x1, x2, . . . , xM} and
Y ≡ {y1, y2, . . . , yN}. Some or all of X and Y may be identical depending on
the applications. We denote the number of nodes by M ≡ |X | and N ≡ |Y |.

Our goal is to predict how likely a link exists for arbitrary node pair (xi, yj) ∈
X × Y , which we refer to as the link strength. Namely, we want to output a
matrix F, each of whose element [F]i,j is the link strength between xi and yj. A
large value of link strength indicates high confidence in the existence of the link,
and a small value indicates high confidence in the absence of the link.

We define another M × N matrix F∗ to represent the observed parts of the
links of the network. Each element of F∗ is defined as

[F∗]i,j ≡
{

1 if there exists a link between (i, j),
0 otherwise (link status is unknown for (i, j)).
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To estimate the link strength for the pairs whose link status is unknown (i.e. for
the elements of F∗ filled with zeros), F∗ plays the role of the target values given
in a training dataset in (positive-and-unlabelled) supervised learning.

As side information for link prediction, we assume that we are also given
similarity matrices WX and WY among the nodes in X and Y , respectively.
Those matrices are non-negative and symmetric.

In summary, the input and output of the link prediction problem discussed in
this paper is defined as follows.
[Input]: A matrix F∗ representing the known parts of the graph, and two sym-
metric non-negative matrices WX and WY for two node sets X and Y .
[Output]: A matrix F representing the link strength of all node pairs in X ×Y .

3 Review of the Link Propagation Method

In this section, we review the formulation of the Link Propagation introduced
in [10]. The Link Propagation applies the idea of the label propagation meth-
ods [29,31] to link prediction. The label propagation methods are usually used
for predicting the labels of unlabeled nodes by using the label propagation prin-
ciple: “Two nodes that are similar to each other are likely to have the same
label”. Modifying the label propagation principle, the Link Propagation states
the analogous version of the inference principle as “Two node pairs that are
similar to each other are likely to have the same link strength”.

Applying the label propagation principle to pairs of nodes, we obtain the
following objective function to minimize (notice that vec (F) is the vectorization
operation of matrix F)

J(F) =
σ

2
vec (F)� Lvec (F) +

1
2
‖ vec (F) − vec (F∗) ‖2

2, (1)

where the first term indicates that the two link strength values [F]i,j and [F]�,m
for the two pairs should be close to each other if the similarity between the two
pairs is large. The second term is the loss function that fits the predictions F to
their target values F∗ for the known parts of the network. It also plays a role as a
regularization term to prevent the predictions from being too far from zero, and
for numerical stability. The σ > 0 is a regularization parameter which balances
the two terms of Eq. (1). The MN ×MN matrix L is a Laplacian matrix. For
the Link Propagation, the previous work [10] recommended using the Kronecker
product Laplacian defined as

L ≡ DY ⊗ DX − WY ⊗ WX , (2)

or the Kronecker sum Laplacian defined as

L ≡DY ⊕ DX − WY ⊕ WX = LY ⊕ LX , (3)

where DX is a diagonal matrix whose diagonal elements are [DX ]i,i :=
∑

j [WX ]i,j ,
and LX ≡ DX − WX is the Laplacian matrix for WX . The matrices DY and LY
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are defined similarly. Note that the ⊗ operator indicates the Kronecker product
and the ⊕ operator indicates the Kronecker sum, whose definitions can be found
in [12]. Here are the ideas behind the Kronecker product and the Kronecker sum
Laplacians. Let us consider two pairs of nodes (xi, yj) and (x�, ym). The Kronecker
product Laplacian indicates that the two pairs are similar to each other if xi and
x� are similar to each other as well as yj and ym. This is basically similar to the
pair-wise similarity used in kernel methods [2,3,16]. In constrast, the Kronecker
sum Laplacian indicates that the two pairs are similar to each other if xi and x�

are identical and yj and ym are similar to each other, or xi and x� are similar to
each other and yj and ym are identical.

Minimizing Eq. (1) with respect to vec (F), we obtain the system of linear
equations

(σL + I)vec (F) = vec (F∗) . (4)

Using the elements of F for link prediction, the accuracy of the Link Propaga-
tion is shown to be competitive with the other state-of-the-art node-information-
based methods such as the pairwise SVM [2,3,16] and the metric learning [23].
Figure 1 shows a comparison of AUC values by several methods on medium-size
graphs. They are, SVD as a link-based method (with rank= 6), the pairwise
SVM (with C = 1), metric learning (with rank= 6), and the Link Propagation
method with the Kronecker product (KP) similarity and the Kronecker sum
(KS) similarity (with σ = 0.01) on predicting metabolic networks [26]1. The
similarity matrices (or kernel matrices) were constructed by taking average of
the three given matrices named ‘phylogenetic’, ‘expression’, and ‘localization’,
and the Laplacian (or kernel matrices) were normalized. The hyperparameters
were tuned appropriately. The AUC values were evaluated by 5-fold cross vali-
dation with 10% training data. We can see from the figure that the link-based
method (SVD) performs poorly because the training data is sparse, and the Link
Propagation (especially KS) achieves the best performance.

The authors of [10] proposed a conjugate gradient-based method for solving
Eq. (4). However one unavoidable drawback of the conjugate gradient-based
method is its large memory requirements for storing the matrices such as WX ,
F ∗, and F due to the nature of Kronecker operators. The matrix F is inherently
dense even when the others are sparse, and in many cases, only parts of its
elements are needed for the link prediction (e.g., on some small subset of users
and ads). In the hereafter, we will develop exact and approximate solutions
for the Link Propagation to overcome the limitation and furtherly widen its
applications on large-size and dynamic graphs.

4 Fast and Scalable Solutions for the Link Propagation

In this section, we propose novel methods for the Link Propagation that require
much less memory than those based on the conjugate gradient method. We first
show an exact method and then, extending it, present an approximate method
for the Link Propagation.
1 http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/ismb05/

http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/ismb05/
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Fig. 1. The accuracies of the Link Propagation methods (KS & KP) vs. those of other

methods

As a matter of convenience in deriving the solution, we use the normalized
versions of the Laplacian matrices in Eqs. (2) and (3). The normalized Kronecker
product Laplacian matrix is given as

L ≡ I − (DY ⊗ DX)−
1
2 (WY ⊗ WX) (DY ⊗ DX)−

1
2

= I −
(
D

− 1
2

Y WY D
− 1

2
Y

)
⊗
(
D

− 1
2

X WXD
− 1

2
X

)
, (5)

while the normalized Kronecker sum Laplacian matrix is given as

L ≡
(
I −
(
I − D

− 1
2

Y WY D
− 1

2
Y

)
⊕
(
I − D

− 1
2

X WXD
− 1

2
X

))
= 3I −

(
D

− 1
2

Y WY D
− 1

2
Y

)
⊕
(
D

− 1
2

X WXD
− 1

2
X

)
. (6)

Both of the normalized Laplacians in Eqs. (5) and (6) can be written unifiedly
in a general form as

L ≡ cI −
(
D

− 1
2

Y WY D
− 1

2
Y

)
�
(
D

− 1
2

X WXD
− 1

2
X

)
.

Notice that the operator � ∈ {⊗,⊕} corresponds to the Kronecker product ⊗,
or, the Kronecker sum ⊕ operator. In this paper, we can consider either of them
by appropriately setting the value of c (which is 1 for the Kronecker product,
and 3 for the Kronecker sum).

For simplicity, let us write:

W̃X ≡ D
− 1

2
X WXD

− 1
2

X , W̃Y ≡ D
− 1

2
Y WY D

− 1
2

Y , (7)

to obtain the following solution of Eq. (4):

vec (F) =
(
(1 + cσ) I − σW̃Y � W̃X

)−1

vec (F∗) . (8)

4.1 An Exact Link Propagation

Here we explain an algorithm to compute the exact solution of Eq. (8). The
algorithm is the foundation to develop a scalable and faster Link Propagation.
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One of the key techniques in this paper is a direct method to efficiently com-
pute the inverse matrix on the right-hand side of Eq. (8) that involves Kronecker
operators. In what follows, we will show how to obtain the exact and approxi-
mate inverse by exploiting the following well-known theorem (see. e.g., [12]) on
the eigenvalues and eigenvectors of the Kronecker sum and product.

Theorem 1. Let the eigenvalues of the matrices W̃X and W̃Y be, respectively,
{λX

(i)}M
i=1 and {λY

(j)}N
j=1, with the corresponding eigenvectors are given as,

respectively, the column of the matrices VX and VY . Then the eigenvectors of
the Kronecker product W̃Y ⊗W̃X and the Kronecker sum W̃Y ⊕W̃X are the same
(column vectors of) VY ⊗ VX , while the eigenvalues are {λX

(i)λY
(j)}M,N

(i,j)=(1,1)

for the Kronecker product, and {λX
(i) + λY

(j)} for the Kronecker sum.

Since the similarity matrices are positive semidefinite matrices, they can be
eigendecomposed as follows (those of W̃Y are omitted):

W̃X = VXdiag
(
λX

(1), λX
(2), . . . , λX

(M)
)

V�
X , (9)

Now let us define the matrix Λ to be either

[Λ]i,j ≡ λX
(i)λY

(j), or [Λ]i,j ≡ λX
(i) + λY

(j), (10)

where the former is for the Kronecker product and the latter is for the Kronecker
sum. Then by Theorem 1, we can write the inverse matrix in Eq. (8) as(

(1 + cσ) I − σW̃Y � W̃X

)−1

=
(
(1 + cσ) I − σVdiag (vec (Λ))V�)−1

, (11)

where V = VY ⊗VX . Since, it holds that V V� = I, Eq. (11) can be transformed
into(

(1 + cσ) I − σVdiag (vec (Λ))V�)−1
= V ((1 + cσ) I − σdiag (vec (Λ)))−1 V�.

Notice that ((1 + cσ) I − σdiag (vec (Λ))) is a diagonal matrix whose inverse can
be easily calculated as the following matrix D

[D]i,j ≡ (1 + σ (c− [Λ]i,j))
−1

. (12)

This gives us the the solution of Eq. (8) as vec (F) = V diag (vec (D))V�vec (F∗).
We can further simplify this equation as

vec (F) = V diag (vec (D))vec
(
V�

XF∗VY

)
= vec

(
VX

(
D ∗ (V�

XF∗VY

))
V�

Y

)
,

where in the derivation we used the “vec-tricks” techniques [12,24] as

(VY ⊗ VX)vec (F∗) = vec
(
VXF∗V�

Y

)
, (13)

and D ∗ A is the Hadamard product of matrices D and A. Taking out the vec
operation, we can describe the solution as

F = VX

(
D ∗ (V�

XF∗VY

))
V�

Y . (14)
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Algorithm 1. Exact Link Propagation. Input: (WX ,WY ,F
∗, σ).

1: Compute the normalized similarity matrices W̃X and W̃Y as Eq. (7)

2: Compute the eigendecomposition of W̃X and W̃Y as in Eq. (9)

3: Compute the elements of the matrix D as in Eq. (12), where Eq. (10) is used for

the Kronecker product or sum

4: Compute the solution from Eq. (14)

The complete procedure to compute the exact solution matrix F is summarized
in Algorithm 1.

Although computing the exact solution of the Link Propagation with Algo-
rithm 1 requires intensive matrix operations, in the worst-case analysis it is more
efficient than the one with the conjugate gradient in [10]. Algorithm 1 requires
only O(M3 + N3 + M2N + N2M + MN |F∗|) computational time. In detail,
Step 1 needs O(M2 + N2) time, while Step 2 and Step 3 require O(M3 +N3)
and O(MN) time, respectively. Computing all elements of F in Step 4 takes
O(M2N +MN2 +MN |F∗|) time, which means approximately N or M opera-
tions is required for computing each element of F. When M = N , Algorithm 1
only requires O(N3) time in contrast to O(N5) time of the conjugate gradient
method. The space complexity is O(N2), which is the same with the conjugate
gradient method2. However, the exact solution in Algorithm 1 is potentially
more useful because it opens a path to apply rich techniques of linear algebra,
such as matrix approximation and factorization, so that the time and space com-
plexities can be reduced while the accuracy levels are maintained. Moreover, it
also enables us to design a fast incremental method for the Link Propagation in
dynamic graphs without recomputing from scratch. We will briefly explain the
techniques in the following sections.

4.2 An Approximate Link Propagation

Here we present an approximate solution of the Link Propagation that mitigates
the large computational time and space complexities of the exact solution.

For nodes on the order of millions, not only F, but also storing the similarity
matrices in main memory is already prohibitive. Therefore, we need to consider
more scalable and faster ways to compute the approximations of the Link Propa-
gation. For this purpose, we can use any matrix approximation technique whose
computation process does not require storing all elements of the matrix in the
main memory. One of the approximation techniques used in this paper is the
incomplete Cholesky decomposition. However, note that other matrix approxi-
mation techniques, such as those based on singular value decomposition, could
also be used. Thus, we can obtain the low-rank approximation of the similarity
matrices WX and WY as

WX ≈ GXG�
X , WY ≈ GY G�

Y . (15)

2 Without the vec-tricks, the time and space complexities of the conjugate gradient

are O(N6) and O(N4), respectively.



Fast and Scalable Algorithms for Semi-supervised Link Prediction 139

Here, GX and GY are M×M̄ and N× N̄ matrices, respectively, where M̄ and N̄
are the parameters for the approximation ranks whose values can be set appro-
priately by the users. The total computational cost of obtaining such matrices
by the incomplete Cholesky decomposition is O(MM̄2 + NN̄2). Moreover, the
sum of each row of the approximate matrices can be computed from GX and
GY by DX = diag

(
GXG�

X1
)

and DY = diag
(
GY G�

Y 1
)
. Thus, by defining the

following matrices:

G̃X ≡ D
− 1

2
X GX , G̃Y ≡ D

− 1
2

X GY , (16)

we can write the normalized similarity matrices as

W̃X ≈ D
− 1

2
X GXG�

XD
− 1

2
X = G̃X G̃�

X , W̃Y ≈ D
− 1

2
Y GY G�

Y D
− 1

2
Y = G̃Y G̃�

Y .

Notice that since M̄ � M and N̄ � N , the eigendecomposition of G̃�
X G̃X and

G̃�
Y G̃Y can be performed easily to obtain the following eigenvalues (which are the

same as those of the approximate similarity matrices) and eigenvectors satisfying
(those of G̃�

Y G̃Y are omitted)

G̃�
X G̃X = ŪXdiag

(
λ̄

(1)
X , λ̄

(2)
X , . . . , λ̄

(M̄)
X

)
Ū�

X . (17)

Now, the eigenvectors of the approximate similarity matrix W̃X (and similarly
for W̃Y ) can be computed from the equation

V̄X ≡ G̃XŪXdiag
(
λ̄

(1)
X , λ̄

(2)
X , . . . , λ̄

(M̄)
X

)− 1
2
. (18)

Similar to the exact case, by Eqs. (15) and (18), letting V̄ = V̄Y ⊗ V̄X , we can
write the inverse matrix in Eq. (8) as(

(1 + cσ) I − σW̃Y � W̃X

)−1

=
(
(1 + cσ) I − σV̄ diag

(
vec
(
Λ̄
))

V̄�)−1
. (19)

Notice that the elements of the matrix Λ̄ are appropriately defined as in Eq. (10)
for the Kronecker product or sum as in the exact case. However, differing from
the exact case, we have

(
V̄Y ⊗ V̄X

) (
V̄Y ⊗ V̄X

)� �= I. Fortunately, by using the
Woodbury equation (see, e.g., [4]) and V̄� V̄ = I, we can compute the inverse
matrix in Eq. (19), as follows.(

(1 + cσ) I − σW̃Y � W̃X

)−1

=
I

1 + cσ
+

V̄

(1 + cσ)2

(
diag
(
vec
(
Λ̄
))−1

σ
− I

1 + cσ

)−1

V̄�.

Defining the matrix D̄ as

[D̄]i,j ≡
(

1
σ[Λ̄]i,j

− 1
1 + cσ

)−1

=
σ (1 + cσ) [Λ̄]i,j
1 + cσ − σ[Λ̄]i,j

, (20)
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Algorithm 2. Approximate Link Propagation. Input: (WX ,WY ,F
∗, σ).

1: Compute the low-rank approximation matrices of WX and WY as in Eq. (15)

2: Compute the normalized matrices, G̃X and G̃Y , as in Eq. (16)

3: Compute the eigendecomposition of G̃�
X G̃X and G̃�

Y G̃Y as in Eq. (17)

4: Compute the eigenvectors of G̃X G̃�
X and G̃Y G̃�

Y according to Eq. (18)

5: Compute the elements of the matrix D̄ according to Eq.(20), where the values of

elements of Λ̄ are adjusted according to that in the Kronecker sum or product

6: Using the core solution in Eq. (22), compute the elements of F according to Eq. (21)

we can compute the approximate solution of the Link Propagation as

vec (F) =
1

1 + cσ
vec (F∗) +

1
(1 + cσ)2

V̄ diag
(
vec
(
D̄
))

V̄�vec (F∗) .

By using the vec-trick techniques and taking-out the vec operation, the solution
matrix F is efficiently obtained as

F =
1

1 + cσ
F∗ +

1
(1 + cσ)2

V̄X

(
D̄ ∗ (V̄�

XF∗V̄Y

))
V̄�

Y . (21)

Since F is a large matrix, storing all of its elements is prohibitively expensive.
Instead, we can store its compact representation by computing and storing the
smaller core matrix

D̄ ∗ (V̄�
XF∗V̄Y

)
, (22)

along with the eigenvectors of the approximate similarity matrices. This infor-
mation is sufficient to compute the elements of F on demand. We summarize
the procedure to compute the approximate solution of the Link Propagation in
Algorithm 2. Two major advantages of Algorithm 2 are its using much less com-
putational space and time, and its capability to compactly represent the elements
of F by storing the core matrix and the eigenvectors of the low-rank similarity
matrices whose sizes are mostly linear in the number of nodes (we will show later
in the experiments that low-rank approximation matrices are sufficient). That
is, its space complexity is only O(M̄N̄+M̄M+N̄N), where the first term is due
to the core matrix, and the last two terms are due to the eigenvectors. With re-
gards to its computational complexity, we can see that up to Step 5, Algorithm 2
requires O(MM̄2 +NN̄2 + M̄3 + N̄3 + |F∗|M̄N̄) time: Step 1 and Step 4 need
O(MM̄2 + NN̄2) time, Step 2 requires O(MM̄ +NN̄) time, and Step 3 takes
O(MM̄2 +NN̄2 + M̄3 + N̄3) time, while the computation of the core matrix in
Step 5 and Step 6 need O(M̄N̄ |F∗|) time. To compute all elements of F in Step 6,
we need O(M̄N̄M + N̄MN) time, which implies constant computation time per
element for small M̄ and N̄ . Indeed, in the experiments we could choose some
small values for M̄ and N̄ to obtain satisfactory link prediction results.

4.3 Link Prediction on Dynamic Graphs

Here we show another desirable aspect of the exact and approximated solutions
of the Link Propagation that enables an efficient adjusment of the link prediction
scores to cope with addition and deletion of edges in the networks.



Fast and Scalable Algorithms for Semi-supervised Link Prediction 141

Changes in graphs (which result in the change of values of F∗) occur quite
frequently, and hence timely updating the link prediction scores is crucial. For
example, consider the graph whose node set X is the subset of users and node
set Y is the subset of ads, where the similarity matrices are computed from the
users’ profiles, tags, etc. In this setting, the edges represent the users’ clicking
actions. New clicks can be regarded as addition, while non-clicking actions can
be regarded as subtraction of the corresponding elements in F∗. Changes in the
link prediction scores due to the addition and substraction of elements of F∗ can
be computed straightforwardly in our methods.

Let us denote the parts of F∗ that changed as ΔF∗, namely, the new matrix is
F̃∗ = F∗ +ΔF∗. It is clear from Eqs. (21) and (14), that the incremental updates
of the prediction scores for all elements of F can be performed by updating the
smaller core matrix in Eq. (22) (also Eq. (14)) as

D̄ ∗ (V̄�
XΔF∗V̄Y

)
, (23)

that implies the time complexity of the incremental update of the core matrix is
O(M̄N̄ |ΔF∗|), which is proportional to the number of changes in F∗. Notice that
aparts from the approximated similarity matrices, the incremental updates in our
methods are exact, i.e., their accuracies are the same with those of the compute-
from-scratch methods. The limitation of the incremental update presented here
is that it requires the same set of nodes and similarity matrices.

5 Experiments

In this section, we present some experimental results for predicting the links
between pair of nodes (pair-wise link prediction) using exact and approximate
solutions of the Link Propagation. The purpose of the experiments is to show
that the approximated Link Propagation performs quite well inspite of requiring
significantly less time and space than the exact one. We first describe the datasets
of the experiments.

5.1 Datasets

We tested the exact and approximate Link Propagation on two types of network
datasets available from the Web Spam Challenge archive3. The summary of the
datasets is listed in Tables 1 and 2. The Link Propagation was performed when
X = Y .

The first type of datasets were created from the network of 400,000 web pages
in a webgraph (called Web400K dataset) whose links correspond to the hy-
perlinks of webpages. For each webpage, there is a sparse feature vector that
contains the frequency of words in the web page. The (x, y) element of the simi-
larity matrix W in the experiment is the inner product of the feature vectors of
the corresponding webpages x and y. From this dataset, we created two datasets
each of which contains exactly 1,000 and 3,000 nodes of Web400K (denoted by

3 http://webspam.lip6.fr/wiki/pmwiki.php?n=Main.PhaseIITrainningCorpora

http://webspam.lip6.fr/wiki/pmwiki.php?n=Main. PhaseIITrainningCorpora
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Table 1. Datasets from the web graph

Web1K Web3K Web400K

#Nodes 1,000 3,000 400,000

#Links 20,214 38,453 13,068,666

Table 2. Datasets from the host graph

Host1K Host3K Host9K

#Nodes 1,000 3,000 9,000

#Links 6,223 156,411 505,809

Web1K, and Web3K, respectively) that are reachable and closest to the node
with id ”1” (That is, starting from node 1, we add its neighbors, by prioritizing
the node with lower id, to be the members of the dataset and repeat this pro-
cess until we find exactly k ∈ {1000, 3000} nodes. If at any time we cannot add
a node because the network is disconnected, we add the node with the lowest
id that is not in the current dataset, and repeat). We avoid extracting random
subgraphs for ease of reproducibility of the results.

The second type of datasets were created from the network of 9,000 hosts in
a hostgraph (called Host9K dataset) whose links correspond to the existences
of linked pages between pages in the hosts. For each host, there is a sparse
feature vector that represents a normalized tf-idf vector over the content of its
pages. The feature vectors were used to build the similarity matrix similarly as
in the webgraph. In our experiments, we again created two small graphs from
the hostgraph that consist of, respectively, simply the first 1,000 and 3,000 nodes
in the hostgraph. We call the datasets Host1K and Host3K, respectively. We
evaluated the effectiveness and efficiency of the exact and approximate Link
Propagation by measuring their time complexities and accuracies. Time com-
plexity means the amount of time for an algorithm to be ready to output a value
of prediction and not the amount of time to compute all elements of F (whose
size is very large). The accuracies were evaluated by AUC, area under the ROC
curve, which is commonly used in supervised learning. We randomly selected
λ = 10%, 75% of the links in the datasets for at least three times for each dataset,
and used them as training data, and evaluated averaged AUC values on all other
pair of nodes. The standard deviations of AUC values in our experiments were
small.

5.2 Implementation

In all experiments, we set σ = 0.001, used the Laplacian Sum for all graphs
because of the page limit. We evaluated the AUC values and measured the com-
putational time for ten times for datasets other than the Host3K and Web3K
graphs (which are just repeated for three times because of the time limita-
tion). All algorithms were implemented in 64-bit Java using Colt c© packages
matrix operations. They were tested on several (virtual) machines running Linux
and Microsoft R© Windows XP R©. The computation times were measured on in-
stances executed on an IBM IntelliStation R© running 64-bit Red Hat Enterprise
Linux 5 with an Intel R© Core 2 Quad CPU Q6600@2.40-GHz CPU and 8-GB
RAM.



Fast and Scalable Algorithms for Semi-supervised Link Prediction 143

Table 3. The AUC scores of link prediction

on the webgraph by 10% sampling

Dataset Exact M̄ = 20 M̄ = 50 M̄ = 100

Web1K 0.892 0.854 0.930 0.944
Web3K 0.914 0.769 0.921 0.956
Web400K NA 0.875 0.876 0.894

Table 4. The AUC scores of link prediction

on the webgraph by 75% sampling

Dataset Exact M̄ = 20 M̄ = 50 M̄ = 100

Web1K 0.926 0.858 0.934 0.954
Web3K 0.934 0.771 0.925 0.960
Web400K NA 0.893 0.888 0.908

5.3 Experimental Results on Static Graphs

Here we present the accuracies and the computational time of the exact and
approximated Link Propagation method for the link prediction on the webgraphs
and hostgraphs when some percentage of links are given as training samples.

Tables 3 and 4 show the AUC values by the exact and approximate Link
Propagation on webgraphs, when, respectively, 10% and 75% of links were used
for training. The tables show a surprising result that at low values of the ap-
proximation rank M̂ , the approximate method can sometimes produce better
AUC values than the exact method that at M̂ = 50 the AUC values of the ap-
proximate Link Propagation were better on the Web1K and Web3K graphs. The
AUC value of the exact method on the Web400K graph is not available within
our limited resources (denoted by NA in the tables), but the AUC values of the
approximate method were sufficiently high.

Tables 5 and 6 summarize the AUC values on the hostgraphs similarly as in
the previous tables. From the tables, we can see that the AUC values of the
approximate method increased as the the values of M̂ and the number of sample
links increased. However, the AUC values were less than the corresponding AUC
values of the exact method (For the same reason, we could not compute the AUC
value of the exact method on the Host9K). Unlike what we have observed from
the webgraphs, they are never better than those of the exact ones. This might
reflect the properties of similarity matrices: the feature vectors of nodes in the
webgraphs correspond to pages and tend to be of low rank, while the feature
vectors of hosts in the hostgraphs correspond to accumulation of feature vectors
of various pages and thus, tend to be of high rank and hard to approximate. The
comparison of the computation time for the exact and approximate methods for
each graph in the datasets is shown in Figure 2. The approximate method is
efficient enough that we could compute the link prediction over the Web400K
and Host9K graphs within reasonable time. For example, from the figure we can
see that the link prediction on the Web400K graph, whose size is more than one
hundred times of that of the Web3K graph can be performed within almost half
of the time spent on the Web3K graph to perform the exact Link Propagation.
On the Host3K graph, the approximation method can be 50 times faster than
the exact one while retaining the accuracy level.

5.4 Experimental Results on Dynamic Graphs

Here we present experimental results for another contribution of our method for
the link prediction on dynamic graphs as summarized in Figure 3. We simulated
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Table 5. The AUC scores of link predic-

tion on the hostgraph by 10% sampling

Dataset Exact M̄ = 20 M̄ = 50 M̄ = 100

Host1K 0.829 0.644 0.685 0.711

Host3K 0.910 0.610 0.655 0.686

Host9K NA 0.629 0.560 0.638

Table 6. The AUC scores of link predic-

tion on the hostgraph by 75% sampling

Dataset Exact M̄ = 20 M̄ = 50 M̄ = 100

Host1K 0.876 0.649 0.703 0.741

Host3K 0.938 0.611 0.660 0.694

Host9K NA 0.618 0.570 0.646

Host1K Host3K Host9K Web1K Web3K Web400K

Exact
R20
R50
R100

tim
e(

s)

1
5

10
50

50
0

50
00

Fig. 2. Comparison of computational time by the exact method, rank-20 approximation

(R20), rank-50 approximation (R50) and rank-100 approximation (R100)

the changes of edges by first performing the Link Propagation with 10% of links
of the corresponding graph and then incrementally adding 10%, 20%, 30%, 40%,
and 65% of the rest of the links at a time. Notice that the effect of deletion of
edges is similar as implied by Eq. (23) and therefore omitted.

The left part of Figure 3 shows the computational time with regards to the
number of links used in the training on the Host1K and Host3K graphs. The
value at 10% links denotes the computational time used for computing the core
matrix, the most dominant part, from scratch, while the rest of the values denote
those from incrementally updating the core matrix computed from scratch with
10% of links until sufficient portion of links are added. From the figure we can
see that on a large-size graph like the Host3K, incrementally updating the core
matrix due to addition (deletion) of 10% links is about 10 times faster than
computing it from scratch.

The right part of Figure 3 shows the corresponding AUCs where we can notice
that the more samples are available, the higher the prediction qualities are. Thus,
even for the exact Link Propagation, we only need computing from scratch once
(mainly for reading and decomposing the similarity matrices) and then update
the core matrix as needed when edges are added or deleted.

6 Related Work

The link prediction problem has been thoroughly studied in the context of pre-
dicting biological networks such as protein-protein interaction networks and gene
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Fig. 3. Computational time (left) and AUCs (right) for the link prediction with incre-

mental addition of links. The initial link prediction was computed with 10% links of

the corresponding graph, and the rest was performed with incremental updates.

regulatory networks in the bioinformatics area, and also in the context of link
mining [6] in the data mining community.

In bioinformatics, several node-information-based approaches have been pro-
posed, such as an EM-based [11] and dimension-reduction-based approaches
[23,26]. The pair-wise kernel with which we compared our method in Figure 1
was proposed for predicting protein-protein interactions [3]. Interestingly, the
same kernel was independently proposed for entity resolution [16] and collabo-
rative filtering [2]. In the data mining community, the link prediction problem
is being studied as one of the fundamental tasks for the link mining. There
are several methods that utilize structural information only such as link met-
rics (e.g. [14]). Matrix factorization approaches [13,19] are also grouped into
topological-information-based methods. There are also supervised learning meth-
ods using node information as well as topological information such as [8,15]. Sev-
eral previous works, e.g. [17,20], that apply the framework of statistical relational
learning to link prediction also exist. A similar framework using the so-called ex-
ponential random graph model is used in social network analysis [1]. Recently,
sophisticated generative models of networks from a Bayesian perspective have
been proposed [5,27].

The matrix “vec-trick” in Eq. (13) was first proposed by Vishwanathan et
al. [24] for accelerating the computation of the graph kernels. The label propa-
gation technique on graphs was also used in [30], where a batch and incremental
method for finding a good low-dimensional latent-space embedding of documents
utilizing side information from multiple graphs was proposed. The use of Wood-
bury equation for handling dynamic bipartite graphs can also be found in [22]
(and its conference version). Notice that unlike those in [22], our methods can
be used beyond pair-wise link prediction.

7 Discussion and Concluding Remarks

We show fast and scalable semi-supervised learning algorithms for link prediction
on static and dynamic graphs using both link information and node information
by devising novel methods for exact and approximate Link Propagation. The
applications of our methods to large networks with more than 400, 000 nodes
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demonstrated that our methods are scalable and their approximation are quite
good. The proposed algorithms avoid the use of the conjugate gradient method
and directly solve the huge linear equations by (approximating) the matrix in-
verse, which also allow us to perform efficient leave-one-out estimation [25] for
determining the hyper-parameters in the Link Propagation. This will be inves-
tigated in the future. Finally, we should also note that although the methods
presented in this paper were described for pair-wise link prediction, they can
be extended for triplets, quadlets, etc. This can be done by using higher order
tensors. We omit the details due to the space limitation.
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Abstract. Several recent works on relation extraction have been apply-
ing the distant supervision paradigm: instead of relying on annotated
text to learn how to predict relations, they employ existing knowledge
bases (KBs) as source of supervision. Crucially, these approaches are
trained based on the assumption that each sentence which mentions the
two related entities is an expression of the given relation. Here we argue
that this leads to noisy patterns that hurt precision, in particular if the
knowledge base is not directly related to the text we are working with.
We present a novel approach to distant supervision that can alleviate
this problem based on the following two ideas: First, we use a factor
graph to explicitly model the decision whether two entities are related,
and the decision whether this relation is mentioned in a given sentence;
second, we apply constraint-driven semi-supervision to train this model
without any knowledge about which sentences express the relations in
our training KB. We apply our approach to extract relations from the
New York Times corpus and use Freebase as knowledge base. When com-
pared to a state-of-the-art approach for relation extraction under distant
supervision, we achieve 31% error reduction.

1 Introduction

In relation extraction we often encounter a lack of explicitly annotated text, but
an abundance of structured data sources such as company databases or large
scale public knowledge bases like Freebase [2]. In the spirit of distant supervi-
sion1 [8,19], recent work [18,3] has shown how to exploit such knowledge: they
heuristically align the given knowledge base to text and use this alignment to
learn a relation extractor. Their approach is based on the following distant su-
pervision assumption:

If two entities participate in a relation, all sentences that mention these
two entities express that relation.

In practice, this allows them to extract features from all the sentence to feed a
relation classifier. This approach has helped [18] to extract several thousand re-
lations from Wikipedia at a precision of about 70% using Freebase as supervision
source, a knowledge base derived in large parts from Wikipedia info-boxes.
1 Also referred to as weak or self supervision.

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part III, LNAI 6323, pp. 148–163, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In this work we argue that the distant supervision assumption is too strong
and needs to be relaxed, in particular when the training knowledge base is
an external source of information and not primarily derived from the training
text. This is the case, for example, when we want to extract new relations from
newswire instead of Wikipedia. This scenario is very relevant in practice—after
all, many structured data sources are not derived from the textual data we want
to extract new relations from.

When the knowledge base is external, entities may just appear in the same
sentence because they are related to the same topic, not necessarily because the
sentence is expressing their relations in our training knowledge base. In fact, by
manual inspection (see section 2) we find that the distant supervision assumption
is violated approximately 13% of the time when aligning Freebase to Wikipedia,
but 31% when aligning to the New York Times Corpus [22].2

In this paper we employ the following expressed-at-least-once assumption and
show that it leads to more accurate results:

If two entities participate in a relation, at least one sentence that
mentions these two entities might express that relation.

Intuitively this statement holds with more certainty, but it also complicates
our prediction task. Previously, we could simply take all sentences, aggregate
features, and then solve a simple classification task. Now we do not know which
sentences express relations, both during testing and training.

To tackle this problem we make two contributions. First, we introduce a novel
undirected graphical model that captures both the task of predicting relations
between entities, and the task of predicting which sentences express these rela-
tions. Our model connects a relation variable for two entities with a set of binary
relation mention variables that indicate whether certain candidate sentences are
expressing this relation. Crucially, the relation mention variables are unobserved
at training time: we only know that a relation is expressed at least once, but not
in which sentences.

Second, we propose to train this graphical model by framing distant super-
vision as an instance of constraint-driven semi-supervision [5,4,1,16]. This type
of supervision is applied to settings where some variables are latent. Roughly
speaking, here model parameters are optimized to ensure that predictions will
satisfy a set of user-defined constraints, as opposed to a set of target labels. In
this framework our approach of distant supervision can be implemented by using
the expressed-at-least-once constraint at training time.

As learner we choose SampleRank [27], a very efficient method to train pa-
rameters of large scale factor graphs. Recent work has shown that it can be
naturally extended to the case of constraint-driven learning [24]. We believe
that this choice will also be crucial for future work, where we expect our models
to make joint relation, entity and coreference decisions across a whole corpus.
SampleRank supports this setup because it makes parameter updates early and
within inference.
2 This is the average over three relation types: nationality, contains and

place_of_birth.



150 S. Riedel, L. Yao, and A. McCallum

We apply our model to extract relations from the New York Times corpus
using Freebase as the external supervision source. We observe that our model
with expressed-at-least-once assumption leads to 91% precision for our top 1000
predictions. When compared to 87% precision for a model based on the distant
supervision assumption, this amounts to 31% error reduction.

In the following we will first give some background on relation extraction
and distant supervision, then present our factor graph for joint relation type
and relation mention identification. We then explain how to use SampleRank to
incorporate the expressed-at-least-once assumption, present related work, show
our empirical results, and conclude.

2 Relation Extraction under Distant Supervision

Relation Extraction is understood here as the task of predicting the relations
expressed in natural language text. Consider, for example, the following sentence

Elevation Partners, the $ 1.9 billion private equity group that was
founded by Roger McNamee ...

Here the pair of entity mentions “Elevation Partners” and “Roger McNamee”
is a relation mention candidate because its context might express a semantic
relation between the corresponding pair of entities. A relation extractor takes
such a candidate and determines the semantic relation that it might express,
if any. In the above case a good extractor predicts the founded relation; this
implies that the relation mention candidate is indeed a relation mention.3

In the works of [18,3,8], relation extraction is understood somewhat differently.
Their primary goal is to determine whether a relation between a given pair of
entities is expressed somewhere in the text, not necessarily where it is expressed.
In other words, they care for relations, not relation mentions.

Focusing on relations instead of relation mentions has several benefits. First,
it is very relevant in practice because downstream applications often care for
entities and their relations, not for every mention of these. Second, it allows us
to aggregate evidence for a relation from several places in the corpus. Finally, it
simplifies the machine learning task: while we usually only have a few annotated
relation mentions, we often have many existing pairs of related entities of the
type we want to extract.

To illustrate the final point, let us consider the work of [18]. Their task is to
extract relations of Freebase, a large online and collaborative knowledge base,
from Wikipedia text. They tackle it by using the existing relations in Freebase
as training data: for each related pair of entities they collect all sentences that
mention both entities as input observation x, and use their relation type in
Freebase as label y. Together with a set of unrelated pairs of entities as negative
instances, they train a classifier to predict relations (but not relation mentions).

3 Note that in this work we focus on closed relation extraction where the extractor
predicts one of a finite and fixed set of relations.
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The approaches of [18,3] assume that each relation mention candidate is in-
deed a relation mention. Clearly, this assumption can be violated. Let us again
consider the founded relation between “Roger McNamee” and “Elevation Part-
ners. In an 2007 article of the New York Times we find this relation mention
candidate:

Roger McNamee, a managing director at Elevation Partners, ...

This sentence does not express that Roger McNamee is a founder of Elevation
Partners. It may make it more likely, but there are certainly cases where man-
aging directors are not founders. The problem with this observation is that at
training time we may learn some positive weight for the feature “<Entity1>,
a managing director at <Entity2>”. When testing our model we may see this
feature for a director A that is not a founder of a company B, and predict a false
positive.

To get a sense of how frequently the distant supervision assumption is violated
in practice, we test it for the case of Freebase and two different text corpora:
Wikipedia articles and the New York Times corpus. To this end we consider
three frequent relation types: nationality, place_of_birth, and contains. For each
type we sample 100 relation mention candidates from both corpora, and evaluate
whether these candidates are or are not expressing the relation in question. Table
1 presents the gathered statistics.

Table 1. Percentage of times a related pair of entities is mentioned in the same sen-
tence, but where the sentence does not express the corresponding relation

Relation Type New York Times Wikipedia
nationality 38% 20%

place_of_birth 35% 20%
contains 20% 10%

We can see that for NYT data, the probability that a candidate mention is a
non-mention is quite high. This is not difficult to understand: Take nationality as
an example. Since a citizen of a country usually lives in the country, he/she will be
involved in events happening in the country. News articles will report such events,
and hence naturally mention the country and the person together. However, there
is usually no need to express the fact that the person is indeed a citizen of the
country—most readers care about the events but not the nationality of their
participants.

How does this compare to relation mentions in Wikipedia? Here articles are
centered around entities, and express targeted information about them. For ex-
ample, if the article concerns a person, we expect the article to mention the
person’s citizenship. However, unless the person holds a special role (say, a po-
litical role) in his country, we do not expect many additional sentences that
mention both him and his country. Indeed, when comparing the percentage of
non-mentions for nationality, we find about twice as many cases of non-mentions
in NYT articles than in Wikipedia data.
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1

founded

...
0

Elevation Partners, the private
the $ 1.9 billion private equity
group that was founded by 
Roger McNamee ...

relation(Roger McNamee,Elevation Partners)

Roger McNamee , a managing
director at Elevation Partners ...

Y

Z1 Zn

Fig. 1. Factor Graph for joint relation mention prediction and relation type identifi-
cation. For each pair of entities that are mentioned together in at least one sentence
we create one relation variable (the top variable here). For each of the pairs of entity
mentions that appear in a sentence we create one relation mention variable, and con-
nect it to the corresponding relation variable. Note that relation variables for different
pairs of entities are considered to be independent.

3 Model

Our observations in the previous section suggest that we should model both
relations and relation mentions in order to avoid the use of noisy patterns. We
propose to achieve this using an undirected graphical model with two types of
hidden variables. First, for a pair of entities S (source) and D (destination)
that appears together in at least one sentence, a relation variable Y denotes
the relation between them, or NA if there is no such relation. See an example
relation variable in figure 1. Second, for each relation mention candidate i, we
define a binary relation mention variable Zi that is true if and only if mention
i is indeed expressing the relation Y between the two entities. Two example
mention variables can be seen in figure 1.

For each relation mention variable Zi we will refer to its two argument entity
mentions as (source) Si and (destination) Di. We will store additional informa-
tion about the sentence Zi appears in, such as the dependency path between
Si and Di, in an observed value xi. This information is aggregated across all
mention candidates in the vector x. Finally, we will use Z to denote the state
of all mention candidates, and ‖z‖ to represent the number of active relation
mentions for a given assignment z of Z.
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Our conditional probability distribution over these variables is defined as
follows:

p (Y = y,Z = z|x) def=
1
Zx

Φr (y)Φjoin (y, z,x)
∏

i

Φm (zi,xi) .

Here the factor (template) Φr assesses the general bias of the model towards a
particular relation type y and is defined as a loglinear potential function Φr (y) =
exp
(
θr

y

)
. The factor Φm is defined as a function over a relation mention variable

and its corresponding observation xi:

Φm (zi,xi)
def= exp

⎛⎝∑
j

θm
j φ

m
j (zi,xi)

⎞⎠
The feature functions φm

j are taken to be the binary features presented in [18].
For example, the feature

φm
101 (zi,xi)

def=

{
1 zi = 1 ∧ Si, a managing director of Di ∈ xi

0 otherwise

returns 1 if Zi is active and there is a sequence “Si, a managing director of Di”,
and 0 otherwise.

The factor Φjoin links relation variables to their mentions. It is defined as
follows:

Φjoin (y, z,x) def= exp

⎛⎝∑
j

θjoin
j,y φjoin

j (z,x)

⎞⎠
Here the feature functions φjoin

j are defined in terms of the mention feature
functions φm

j :

φjoin
j (z,x) def=

{
1 ∃i : zi = 1 ∧ φm

j (zi,xi) = 1
0 otherwise

Hence, the feature φjoin
j indicates whether feature φm

j is active for any of the
active relation mentions (as indicated by zi = 1). For example, Φjoin

101 fires if “a
managing director” appears between the corresponding entity mentions of any
the active relation mentions. This is precisely the type of feature used in [18] for
the relation classifier. The crucial difference is that here we consider only active
mention candidates, instead of all mention candidates.

To construct this factor graph for each pair of candidate entities, we use
FACTORIE [17], a probabilistic programming language that simplifies the con-
struction process, as well as inference and learning.
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3.1 Inference

There are two types of inference in the model: sampling from the posterior during
training (see section 4), and finding the most likely configuration (aka MAP in-
ference). In both settings we employ a block Gibbs sampler [14,13] that randomly
picks a relation mention i, and jointly samples both Zi and the corresponding
relation variableY . Here the sample is drawn conditioned on the state of all re-
maining relation mention variables. At test time we decrease the temperature of
our sampler in order to find an approximation of the MAP solution.

We use block sampling instead of single-variable Gibbs sampling because of
the strong correlation between mention variables Zi and relation type Y . Assume,
for example, that the current relation type Y is set to NA, all relation mentions
Zi are inactive, and we want to sample a new state for the first relation mention
Z1. In this case a model will give a near zero probability for Z1 = 1 because it has
learned that this assignment is inconsistent with Y = NA. Likewise, changing
Y with all Zi fixed to be 0 will also receive a very low probability. This may
happen even if the model assigns a high probability to the combination of Z1 = 1
and, say, Y = founder. Changing both relation and relation variable in concert
overcomes this problem.

4 Rank-Based Learning and Distant Supervision

Most learning methods need to calculate the model expectations [15] or the MAP
configuration [7] before making an update to the parameters. This step of infer-
ence is usually the bottleneck for learning, even when performed approximately.

SampleRank [21,27] is a rank-based learning framework thatalleviates this prob-
lem by performing parameter updates within MCMC inference. Every pair of con-
secutive samples in the MCMC chain is ranked according to the model and the
ground truth, and the parameters are updated when the rankings disagree. This
allows the learner to acquire more supervision per instance, and has led to efficient
training for models in which inference is expensive and generally intractable [23].

SampleRank considers two ranking functions for an assignment y: (1) the
probability (model ranking) p (y) = 1

Z exp (〈Θ, φ (y)〉), where φ (y) is a feature
representation of y, and (2) a truth function F(y) (objective ranking). One such
truth function could be a per-entity-pair accuracy with respect to some labeled
relations, another could be the F1-measure.

The goal of applying SampleRank is to find parameters that make model rank-
ing and objective ranking as consistent as possible. To achieve this, SampleRank
performs the following update at each step of an MCMC chain (see section 3.1).
Let yi−1 be the previous sample, and yi the current sample of the chain, α be
the learning rate, and Δ = φ

(
yi−1
) − φ(yi). Then the weights Θ are updated

as follows:

Θ = Θ +

⎧⎪⎪⎨⎪⎪⎩
αΔ if p(yi−1)

p(yi) < 1 ∧ F(yi−1) > F(yi)

−αΔ if p(yi−1)
p(yi)

> 1 ∧ F(yi−1) < F(yi)

0 otherwise

.
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Note that to evaluate the model ratios we do not require to calculate the partition
function Z.

To better illustrate SampleRank, let us consider the factor graph of figure
1, and assume we are in the shown state. Our Gibbs Sampler in section 3.1
now assigns a new state to relation variable and one of the relation mention
variables. For example, it leaves the relation mention variable unchanged but
sets the relation variable to child-of.

In early stages of training, this proposal may still have a higher probability
than the previous state, hence p(yi−1)

p(yi)
< 1. However, since we know that Roger

McNamee is not a child of Elevation Partners, the previous state has higher
truth score than the current state, and hence F(yi−1) > F(yi). This means
that SampleRank will update weights into the direction Δ of the feature vector
φ
(
yi−1
)

for the previous state.
In the following we will show how several distant supervision approaches can

be incorporated into this framework. In all cases the truth function F(y, z) for
an assignment of relation and relation mention variables is decomposed into

F(y, z) = Fr(y) + Fm (z, ytruth)

where Fr(y) only assesses the truth of the relation variable y and Fm (z, ytruth)
assesses the truth of the relation mention variables. Here ytruth is set to be the
relation associated with the entity pair of y in our training knowledge base, or
NA if no such relation exists. We will see later why Fm needs knowledge of ytruth.

For all approaches Fr(y) is fixed to be

Fr(y) =

{
1 y = ytruth

−1 otherwise
.

That is, a match with the true relation increases the truth score by one, otherwise
the score is decreased by one.

4.1 Distant Supervision

A distant supervision baseline akin to [18] and [3] can be easily implemented
using SampleRank. In this case we simply consider all variables Zi to be fixed:
Zi = 0 if the corresponding relation variable y is NA, and Zi = 1 otherwise.
Inference then only considers the Y variables.

4.2 Joint Supervision

We essentially propose two modifications to the original distant supervision ap-
proach. First, jointly infer mentions and relations, and second, relax the assump-
tion that each candidate mention is indeed an actual mention. We can easily
implement the first modification by using the distant supervision truth function

Fdistant
m (z, ytruth) =

{
‖z‖ ytruth �= NA
−‖z‖ otherwise

. (1)
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That is, if the two entities in question are related in our training knowledge base
(i.e.,ytruth �= NA), every active relation mention is encouraged. Otherwise every
relation mention is preferred to be inactive.

4.3 Expressed-at-Least-Once Supervision

SampleRank allows us to naturally incorporate the expressed-at-least-once as-
sumption we presented in section 1. We simply use the following truth function
for relation mentions:

Fonce
m (z, ytruth) =

⎧⎪⎨⎪⎩
1 ytruth �= NA ∧ ‖z‖ ≥ 1
−1 ytruth �= NA ∧ ‖z‖ = 0
−‖z‖ otherwise

. (2)

That is, if the true relation type ytruth is not NA, an assignment to the relation
mention variables has maximal rank if at least one mention is active. In case the
pair of entities is not related according to Freebase, an assignment is discouraged
proportional to the amount of active relation mentions.

5 Related Work

While much work on relation extraction has focused on fully-supervised ap-
proaches [11,9], we work in the framework of distant supervision. In this context
existing work has primarily relied on the distant supervision assumption [18,3,8].
[28] use a more sophisticated heuristic to decide which candidates are rela-
tion mentions. This heuristic is tailored to extracting infobox attributes from
Wikipedia articles. By contrast, our method is designed for relations between
entity pairs mentioned in newswire.

Our work is based on constraint-driven semi-supervised learning [6,16]. Gen-
erally, constraint-driven methods are used when (a) only a small set of labelled
training instances are available, and (b) there are some (hard or soft) constraints
that are known to hold across the unlabelled data. These constraints are then used
as additional source of supervision. To our knowledge, constraint-driven learning
has not been applied to information extraction under distant supervision.

There are many approaches to train undirected models with latent variables
besides SampleRank. An alternative method is the latent perceptron [26]. Here
in each iteration the MAP assignment for a set of latent variables is predicted.
Then the non-latent label variable is deterministically inferred from the latent
variables and compared to the gold label. If labels disagree, weights are updated
in a manner similar to the regular perceptron. For us this approach would not
directly be helpful for two reasons: First, it is not clear how we could incorporate
prior knowledge such as the at-least-once assumption; second, in our case the
relation between latent and non-latent label variables is not deterministic.
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Contrastive estimation [25] is another related approach. Here parameters of
a model with latent variables are learned by maximizing the ratio between the
probability of the observed data x and the sum of probabilities over “sensible
but wrong” x′ in a local neighborhood of x. In some sense, what we do is similar
if we consider the relation variables as observed x, and their negated state 1−x
as local neighborhood. However, we do not maximize probability, but match
rankings. Also, our at-least-once constraint would need to be formulated as a
(complex) prior over the set of hidden mention variables.

Finally, our approach can be seen as a novel take on Multi-Instance Learn-
ing [10]. Here training instances are divided into bags, and we only know that
some bags contain at least one positive example while the remaining ones con-
tain only negative examples. Our constraint-driven approach works in the same
setting. However, it also allows to include additional constraints that a user may
have. For example, we could inject constraints corresponding to the heuristics
used in[28]. Moreover, our approach is the first that can discriminatively train
general factor graphs. This will be important for future work such as joint coref-
erence, entity type and relation extraction. Here the graphical structure will get
more involved.

6 Evaluation

Our experiments aim to provide evidence for the following hypothesis: explicitly
relaxing the distant supervision assumption in a probabilistic model can lead to
substantial increase in precision. To this end we follow [18] and compare it against
both the distant and the supervised joint model using a held-out set of relations
and documents. Since this type of evaluation suffers from false negatives (some
negative relations we extracted may in fact be positive but not in the knowledge
base), we also manually evaluate the predicted relations.

Note that for all our models we use exactly the same feature set. However,
we choose the best number of training epochs for each model individually. Also
note that for training we need negative instances. For this purpose we generally
pick 10% of the entity pairs that appear in the same sentence but are not related
according to Freebase.

6.1 Data

Following [18] we use Freebase as our distant supervision source. Freebase is an
online database that stores facts about entities and their relations. We extract
all relations from a December 2009 snapshot of Freebase. Four categories of
Freebase relations are used: “people”, “business”, “person”, and “location”. These
types of relations are chosen because we expect that they appear frequently in
the newswire corpus. In total this provided over 3.2 million relation instances
of 430 Freebase relation types, and over 1.8 million entities that participate in
these relations.

For the choice of text corpus we divert from [18] and use the New York Times
corpus [22]. This allows us to evaluate our approach when the distant supervision
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source is external. The New York Times data contains over 1.8 million articles
written and published by the New York Times between January 1, 1987 and June
19, 2007. Generally, we find that Freebase entities are frequently mentioned in
the NYT corpus. For example, for the year 2007 about 700,000 mentions of
Freebase entities appear in the corpus. Naturally, we observe a smaller number
of cases in which two related entities are mentioned in the same sentence: again
for the year 2007 we find about 170,000 such cases.

6.2 Preprocessing

In order to find entity mentions in text we first used the Stanford named entity
recognizer [12]. The NER tagger segments each document into sentences and
classifies each token into four categories: PERSON, ORGANIZATION, LOCA-
TION and NONE. We treat consecutive tokens which share the same category as
single entity mention. Then we associate these mentions with Freebase entities.
This is achieved by simply performing a string match between entity mention
phrase and the canonical names of entities in Freebase.

Next, for each pair of entities participating in a relation of our training KB, we
traverse the text corpus and find sentences in which the two entities co-occur. Each
pair of entity mentions is considered to be a relation mention candidate. For each
such candidate we extract a set of features (see section 3). The types of features
are essentially corresponding to the ones used by [18]: we used lexical, Part-Of-
Speech (POS), named entity and syntactic features (i.e. features obtained from
the dependency parsing tree of a sentence). We applied the openNLP POS tagger4
to obtain POS tags and used the MaltParser [20] for dependency parsing.

6.3 Held-Out Evaluation

Following [18] we divide the Freebase relations into two parts, one for training
and one for testing. The former is aligned to the years 2005-2006 of the NYT
corpus, the latter to the year 2007. As candidate relation instances we use all
pairs of Freebase entities that are at least once mentioned in the same sentence.
Note that the amount of Freebase relations mentioned in the training set (4700)
and test set (1950) is relatively low due to a smaller overlap between Freebase
and the New York Times. Hence we cannot evaluate our models with the same
quantity of data as [18].

In figure 2 we compare the precision and recall curve for the baseline distant-
supervision model (distant), the supervised joint model (joint) and the distant
model with expressed-at-least-once assumption (at-least-once). The curve is con-
structed by ranking the predicted relation instances using their loglinear score.
For the distant supervision baseline this score is first normalized by the number
of mentions.5 We traverse this list from high score to low score, and measure
precision and recall at each position.
4 Available at http://opennlp.sourceforge.net/
5 This yielded the best results for the baseline. We also tried to use conditional prob-

abilities to rank. This lead to poor results because SampleRank training has no
probabilistic interpretation.

http://opennlp.sourceforge.net/
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Fig. 2. Precision and recall for the held out data and three approaches: distant super-
vision, joint supervision, and at-least-once supervision

We can see that the model with expressed-at-least-once assumption is consis-
tently outperforming the distant supervision baseline and the supervised joint
model. This suggests that the at-least-once model has the best sense of how rela-
tions that are already contained in Freebase are expressed in NYT data. However,
it does not necessarily mean that it knows best how relations are expressed that
are not yet in Freebase. We address this in the next section.

6.4 Manual Evaluation

For manual evaluation all Freebase entities and relations are used as training
instances. As candidate relation instances we choose those entity pairs which
appear together in the NYT test set, but for which least one participating entity
is not in Freebase. This means that there is no overlap between the held-out and
manual candidates. Then we apply our models to this test set, and asked two
annotators to evaluate the top 1000 predicted relation instances.

We cannot calculate recall in this case, since we cannot provide all relation
instances expressed in our corpus. Instead we use a “Precision at K” metric
with respect to the ranked lists we extracted in section 6.3. Figure 3 shows the
precisions for values of K between 0 and 1000.

We first note that the precision is much higher for manual evaluation than
for held-out evaluation. This shows that false negatives in Freebase are an issue
when doing held-out evaluation. Many of the false positives we predict are in
fact true relation instances and just do not appear in Freebase.

For manual evaluation the at-least-once model is still the winner. At K = 1000
we observe a precision of 91% for at-least-once supervision, 87% for distant
supervision. This amounts to an error reduction rate of 31%. The sign test shows
that the at-least-once model is significantly better than the distant supervision
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Fig. 3. Precision at K for manually evaluated predictions

model, with p � 0.05. We also note that despite using the same assumption, the
joint model performs much worse than the distant supervision approach in this
scenario. Learning a model of relations and mentions is inherently more difficult.
Using a wrong assumption will hence more likely hurt performance.

Does the at-least-once model help to fix the type of error discussed in section
2? To find out, we inspect the results of the founded relation. When we consider
the top 100 instances of this relation for the distant supervision system, we
observe a precision of 45%. Compare this to 72% precision for the at-least-once
model.

On close inspection, most of the distant supervision errors for the founded
relation stem from cases where patterns such as “director of” appear. They in-
dicate that the person in question works for the given company. Because in the
training set such patterns often appear when a person is a founder, they gain
high weights and appear high up in the ranking.

The at-least-once model also makes this type of error, but to a much lesser
extent. This is not surprising if we consider that for training instances with
only one mention, the at-least-once and distant supervision assumptions are
equivalent. Assume that according to Freebase, person A founded company B.
If there is only one mention of A and B in the NYT training corpus, it has to
be a mention of founded, even if the sentence says “director-of”. This leads to a
higher weight for “director-of” as founded pattern.

7 Conclusion

This paper presents a novel approach to extract relations from text without
explicit training annotation. Recent approaches assume that every sentence that
mentions two related entities expresses the corresponding relation. Motivated
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by the observation that this assumptions frequently does not hold, in particular
when considering external knowledge bases, we propose to relax it. Instead we
assume that at least one sentence which mentions two related entities expresses
the corresponding relation.

To model this assumption we make two contributions. First, we introduce a
novel undirected graphical model that captures both the task of predicting rela-
tions between entities, and the task of predicting which sentences express these
relations. Second, we propose to train this graphical model by framing distant
supervision as an instance of constraint-driven semi-supervision. In particular,
we use SampleRank, a discriminative learning algorithm for large factor graphs,
and inject the expressed-at-least-once assumption through a truth function.

Empirically this approach improves precision substantially. For the task of ex-
tracting 1000 Freebase relation instances from the New York Times, we measure
a precision of 91% for at-least-once supervision, and 87% for distant supervision.
This amounts to an error reduction rate of 31%.

A crucial aspect of our approach is its extensibility: framed exclusively in
terms of factor graphs and truth functions, it is conceptually easy to apply it to
larger tasks such as the joint prediction of relations and entity types. In future
work we will exploit this aspect and extend our model to jointly perform other
relevant tasks for the automatic construction of KBs.
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Abstract. We present an efficient and scalable constraint-based algo-

rithm, called Hybrid Parents and Children (HPC), to learn the par-

ents and children of a target variable in a Bayesian network. Finding

those variables is an important first step in many applications includ-

ing Bayesian network structure learning, dimensionality reduction and

feature selection. The algorithm combines ideas from incremental and

divide-and-conquer methods in a principled and effective way, while still

being sound in the sample limit. Extensive empirical experiments are

provided on public synthetic and real-world data sets of various sample

sizes. The most noteworthy feature of HPC is its ability to handle large

neighborhoods contrary to current CB algorithm proposals. The num-

ber of calls to the statistical test, en hence the run-time, is empirically

on the order O(n1.09), where n is the number of variables, on the five

benchmarks that we considered, and O(n1.21) on a real drug design char-

acterized by 138,351 features.

Keywords: Bayesian network structure learning, constraint-based meth-

ods, feature selection.

1 Introduction

This paper presents a novel algorithm which thoroughly exploits Bayesian net-
works (BN) theory in order to find the variables that are directly associated
with a target, that is, those variables that remain probabilistic associated with
a target even when conditioning on values of any subset of the other variables
in a data set. Those variables are often called among the BN community as the
parents and children of the target variable. A BN is a probabilistic model formed
by a structure and parameters. The structure of a BN is a directed acyclic graph
(DAG), whilst its parameters are conditional probability distributions associated
with the variables in the model. The graph of a BN itself is an independence
map (I-map), which is very useful for many applications, including feature sub-
set selection, dimensionality reduction, and inferring causal relationships from
observational data. However, the recent explosion of high dimensional data sets
poses a serious challenge to existing BN learning algorithms. A principled solu-
tion to this problem is to directly seek a local network around the target without
having to find the whole DAG.
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Two types of BN structure learning methods have been proposed so far:
constraint-based (CB) and score-and-search methods. Basically, CB learning
methods systematically check the data for conditional independence relation-
ships, whilst score-and-search methods make use of a score function for evalu-
ating graphical structures with regard to the data set. While score-and-search
methods are efficient for learning the full BN structure (see [18] for instance),
the ability to scale up to hundreds of thousands of variables is a key advantage of
CB methods over score-and-search methods. Several CB algorithms have been
proposed recently [8, 11, 14–16, 20, 21] for local BN structure learning. They
construct a local skeleton (i.e., the edges without their orientation) around the
target node without having to construct the whole BN first, hence their scala-
bility. Fortunately, the scalability of CB methods does not come at the loss of
accuracy; they were recently shown to be among the top-ranking entrants in the
WCCI2008 Causation and Prediction Challenge [9]. One of the best prediction
accuracy was obtained by [4] using CB methods discussed in [20]. Even the more
sophisticated approaches using novel structure-based causal discovery, such as
[3], used the standard CB methods, in the first phase of the discovery process,
to find a local skeleton.

CB methods can be divided in two classes: incremental methods (e.g., IAMB
[20], BFMB [8]) and divide-and-conquer methods (e.g., MMMB [20]), PCMB
[11]). While these algorithms are appropriate for situations where the number of
parents and children (PC set) is relatively small, they are plagued by a severe
problem: the number of false negatives (missing variables) increases swiftly as
the size of the PC set increases1. There are mainly two reasons for this. The first
is the unreliability of the conditional independence tests as the conditioning sets
become large. This well known problem is common to all CB methods and has
led several authors to reduce, as much as possible, the size of the conditioning
sets with a view to enhancing the data-efficiency of their methods [8, 11]. The
second reason is that the decisions for a node to enter the candidate PC set
are often too severe and conservative. In practice, those problems plague all
CB methods for target variables with many adjacent nodes and relatively few
instances.

In this paper, we introduce an algorithm called Hybrid Parents and Children
(HPC) that combines ideas from incremental and divide-and-conquer methods in
order to alleviate the problem discussed above. A thorough discussion is provided
for explaining why HPC can handle large number of adjacent nodes while still
being sound in the sample limit. Extensive empirical experiments are then car-
ried out on public synthetic data sets to assess its accuracy and scalability. Such
experiments show that significant improvements in accuracy are obtained. In
addition, the empirical number of calls to the independence test (and hence the
effective complexity) is only O(n1.09) in practice on synthetic data and O(n1.21)
on real-world data, where n is the number of variables. Finally, a proof of HPC’s

1 For instance, [4], the winners of the WCCI2008 challenge, outputs only 9 features

out of 14 true features with a data set that consists of 500 instances.
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correctness under the so called faithfulness condition is provided in the final part
of this article.

2 Preliminaries

Formally, a BN is a tuple < G, P >, where G =< U,E > is a directed acyclic
graph (DAG) whose nodes represent the variables in the domain U, and whose
edges represent direct probabilistic dependencies between them. P denotes the
joint probability distribution on U. The BN structure encodes a set of condi-
tional independence assumptions: that each nodeXi is conditionally independent
of all of its non descendants in G given its parents PaG

i . These independence
assumptions, in turn, imply many other conditional independence statements,
which can be extracted from the network using a simple graphical criterion called
d-separation [12].

We denote by X ⊥P Y |Z the conditional independence between X and Y
given the set of variables Z where P is the underlying probability distribution.
Note that an exhaustive search of Z such that X ⊥P Y |Z is a combinatorial
problem and can be intractable for high dimension data sets. We use X ⊥G Y |Z
to denote the assertion that X is d-separated from Y given Z in G. We denote by
dSep(X,Y ), a set that d-separates X from Y . If < G, P > is a BN, X ⊥P Y |Z
if X ⊥G Y |Z. The converse does not necessarily hold. We say that < G, P >
satisfies the faithfulness condition if the d-separations in G identify all and only
the conditional independencies in P , i.e., X ⊥P Y |Z if and only if X ⊥G Y |Z.

An important concept of BN is the Markov blanket of a variable, which is
the set of variables that completely shields off this variable from the others. In
other words, a Markov blanket MT of T is any set of variables such that T is
conditionally independent of all the remaining variables given MT . A Markov
boundary, MBT , of T is any Markov blanket such that none of its proper sub-
sets is a Markov blanket of T . Suppose < G, P > satisfies the faithfulness con-
dition. Then, for all X , the set of parents, children of X , and parents of children
(spouses) of X is the unique Markov boundary of X . A proof can be found for
instance in [10]. We denote by PCG

T , the set of parents and children of T in G,
and by SPG

T , the set of spouses of T in G, i.e., the variables that have common
children with T . These sets are unique for all G, such that < G, P > satisfies the
faithfulness condition and so we will drop the superscript G.

2.1 Constraint-Based Structure Learning

The induction of local BN structures is handled by CB methods through the
identification of local neighborhoods. Hence their scalability to very high di-
mensional data sets. CB methods systematically check the data for conditional
independence relationships in order to infer a target’s neighborhood. Typically,
the algorithms run a χ2 independence test when the data set is discrete and
a Fisher’s Z test when it is continuous in order to decide on dependence or
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independence, that is, upon the rejection or acceptance of the null hypothesis of
conditional independence. The reliability of a conditional independence test is
dependent on the number of instances in the data set and the degree of freedom
of the test. A practical consideration regarding the reliability of a conditional
independence test is the size of the conditioning set as measured by the number
of variables in the set, which in turn determines the number of values that the
variables in the set may jointly take. Large conditioning sets produce sparse
contingency tables and unreliable tests. This is why it is difficult to learn the
neighborhood of a node having a large degree with CB methods. The number of
possible configurations of the variables grows exponentially with the size of the
conditioning set.

3 Pitfalls and Related Work

Both families of CB methods, that is divide-and-conquer and incremental meth-
ods, can be very useful when working in very high dimension data sets because
they do not have to search the whole structure of a BN in order to find the local
network around a target. Divide-and-conquer methods are based on the identi-
fication of the direct neighborhood of a target, that is, its parents and children
(PCT ). Of course, divide-and-conquer methods can be iteratively used for find-
ing local networks or the Markov boundary of a target, for instance that is exact
what do the algorithms MMMB [19] and PCMB [11]. Those algorithms identify
first the parents and children of T (PCT ) and then the set of the spouses of
T (SPT ) for forming the Markov boundary of T (MBT = PCT ∪ SPT ). On
the other hand incremental methods incrementally searches the whole Markov
boundary of a target (MBT ) without distinguishing the two subsets PCT and
SPT . However, incremental methods can also be used for searching PCT . This
can be achieved by first finding MBT and then eliminating the variables of
SPT (PCT = MBT \ SPT ). This procedure is very simple and can be sum-
marized as follows: ∀X ∈ MBT , X ∈ SPT (that is, X �∈ PCT ) if and only if
∃Z ∈ (MBT \ X) such that X ⊥P T |Z. Nonetheless incremental methods are
considered as data-inefficient because it often makes use of unnecessary large
conditioning sets [11].

Inferring automatically from data the set PCT by the use of independence
tests is not as easy as one could think at first sight. The following property serves
as the common rule for discarding non-adjacent variables: Let U be the set of
all the variables in the data set, thus, under the faithfulness assumption, X and
Y are not adjacent in G if and only if ∃Z ∈ U\{X∪Y } such that X ⊥ Y |Z [10].
An exhaustive search of Z is a combinatorial problem and can be intractable for
high dimension data sets. To solve this problem parents and children learning
algorithms generally search a candidate set for PCT by starting with an empty
set PCT = ∅ and iteratively adding to the current set PCT the best candidate
X such that there exists no set Z ⊆ PCT \X such that X ⊥P T |Z. Let’s call this
generic procedure LearnPC. It can be implemented in several ways. For instance,
it is called GetPCD in [11] and MMPC in [20]. However, this rule actually leads
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Fig. 1. Toy problem about PC learning: � ∃Z ∈ PCT , so that, X ⊥G T |Z

to a superset of PCT as noted in [11, 20]. Consequently, the algorithms must
further process PCT in order to search and eliminate false positives.

For sake of illustration, consider the example in Figure 1. Let T be the
target and U = {P, T, C, S,X}. The set of parents and children is clearly
PCT = {P,C}. As we can see in Figure 1, � ∃Z ⊆ PCT \X such that T ⊥P X |Z.
Therefore, to remove X , the output of LearnPC(T ) must be further processed.
Fortunately, owing to Theorem 1 [10], a false positive node X may be easily
identified by testing whether T ∈ LearnPC(X). In fact, X ∈ PCT if and only
if [X ∈ LearnPC(T )] & [T ∈ LearnPC(X)]. This is the way divide-and-conquer
methods correct the flaw discussed above. Clearly, for the boolean operator to
return TRUE, both its operands should be TRUE. In practice, however, the
procedure is conservative because makes it harder for a true positive node to
enter the set PCT . Consequently, the procedure is highly sensitive to the false
negative errors. This problem plagues divide-and-conquer methods for target
variables with many adjacent nodes and relatively few instances. Loosely speak-
ing, the larger PCT , the more likely it is to have false negative errors in the
output of divide-and-conquer parents and children learning algorithms.

Theorem 1. Let G = (V,E) be a DAG and X,Y ∈ U. Then if X and Y are
d-separated by some set, they are d-separated either by the set consisting of the
parents of X or the set consisting of the parents of Y .

The conservative procedure applied by divide-and-conquer methods is also a
source of errors in the search process when their are some approximate deter-
ministic relationships (see Definition 1) among the variables on the data set. For
instance let us consider again Figure 1. Considering that the variables S and
C are associated through a deterministic relationship, then clearly C ⊥ T |S.
In this case divide-and-conquer methods will fail in finding the variable C as a
child of the target T because the output of LearnPC(C) will contain only the
variable S. Consequently, the necessarily boolean operator used by divide-and-
conquer methods will exclude C from the set PCT even if LearnPC(T ) finds C
as a parent or child of T . Deterministic relationships are a source of unfaithful-
ness, but a DAG G and a joint probability distribution P can still be faithful
if some approximate deterministic relationships (ADR) are present in the data
set. ADR can well lead to various errors in the search process as deterministic
relationships do because conditional independence tests are highly unreliable in
the presence of ADR. The existence of ADR in data is rather frequent. For in-
stance, ADR are often present in survey data owing to hidden redundancies in
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the questions [2, 17]. The exclusion of the obligation of applying the conservative
boolean operator could help alleviating that problem.

Definition 1. The association between the set of variables X and a target T
is an approximate deterministic relationship if and only if the fraction of tuples
that violate the deterministic dependency is at most equal to some threshold.

Divide-and-conquer methods have tried to improve the data-efficiency of the
learning process by reducing the size of conditioning sets in the independence
tests. However, they are not always more data-efficient than incremental meth-
ods. For instance, Figure 2 shows a case where divide-and-conquer methods are
even less data-efficient than incremental methods. As one can see in Figure 2 the
maximum size of the conditioning set Z for a divide-and-conquer LearnPC(T )
will be 4, that is, Z = {P,C,X, Y }, whilst for an incremental LearnPC(T ) it
will be 3, that is, Z = {P,C, S}.

Fig. 2. Toy example where divide-and-conquer algorithms can be less data-efficient
than incremental algorithms

4 The Hybrid Parents and Children Algorithm

In this section, we present the Hybrid Parents and Children (HPC) algorithm
with the view to alleviate some of the shortcomings discussed previously. HPC
combines characteristics from divide-and-conquer, incremental and ensemble
methods in order to improve the accuracy of CB algorithms, specially when
searching dense networks from data sets with relatively few instances. HPC (Al-
gorithm 1) can be viewed as an ensemble method for combining many weak
PC learners in an attempt to produce a stronger PC learner. HPC is based
on three subroutines: Data-Efficient Parents and Children Superset (DE-PCS),
Data-Efficient Spouses Superset (DE-SPS), and Interleaved Incremental Asso-
ciation Parents and Children (Inter-IAPC), a weak PC learner based on Inter-
IAMB [19] that requires little computation. HPC may be thought of as a way to
compensate for the large number of false negatives, at the output of the weak
PC learner, by performing extra computations.

HPC receives a target node T, a data set D and a set of variables U as
input and returns an estimation of PCT . It is hybrid in that it combines the
benefits of incremental and divide-and-conquer methods. The procedure starts
by extracting a superset PCST of PCT (line 1) and a superset SPST of SPT
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(line 2) with a severe restriction on the maximum conditioning size (Z <= 2)
in order to significantly increase the reliability of the tests. A first candidate
PC set is then obtained by running the weak PC learner on PCST ∪ SPST

(line 3). The key idea is the decentralized search at lines 4-8 that includes, in
the candidate PC set, all variables in the superset PCST ∪ SPST that have T
in their vicinity. Note that, in theory, X is in the output of Inter-IAPC(Y ) if
and only if Y is in the output of Inter-IAPC(X). However, in practice, this may
not always be true, particularly when working in high-dimensional domains with
relatively few instances. By loosening the criteria by which two nodes are said
adjacent, the effective restrictions on the size of the neighborhood are now far less
severe. The decentralized search has significant impact on the accuracy of HPC.
It enables the algorithm to handle large neighborhoods while still being correct
under the faithfulness condition. The proof of HPC’s correctness is provided in
Appendix A.

Algorithm 1. HPC
Require: T : target; D: data set; U: the set of variables

Ensure: PCT : Parents and Children of T

1: [PCST ,dSep] ← DE-PCS(T,D)

2: SPST ← DE-SPS(T,D, PCST ,dSep)

3: PCT ← Inter-IAPC(T,D(T ∪ PCST ∪ SPST ))

4: for all X ∈ PCST \ PCT do
5: if T ∈ Inter-IAPC(X,D(T ∪ PCST ∪ SPST )) then
6: PCT ← PCT ∪ X
7: end if
8: end for

We now discuss the subroutines in more detail. Inter-IAPC (Algorithm 2)
is a fast incremental method that receives a data set D and a target node T
as its input and promptly returns a rough estimation of PCT , hence the term
“weak” PC learner. Inter-IAPC is an straightforward extension of the algorithm
Inter-IAMB [19]. Notice that neither MMPC [20] nor GetPC [11] should be used
to implement this weak PC learner. The reason is that any break of symmetry
of the PC relation in the output of these algorithms is an indication of a false
negative member; the decentralized search would not aid in reducing the number
of false negative variables at all. Inter-IAPC starts with a two-phase approach
to infer MBT , that is, the Markov boundary of T . A growing phase attempts
to iteratively add the best candidate variables to MBT , followed by a shrinking
phase that attempts to remove as many irrelevant variables as possible, that is,
the false negatives in the current set MBT . The function dep(T,X |MBT ) at line
4 returns a statistical estimation of the association between T and X given the
current set MBT . The shrinking phase is interleaved with the growing phase.
Interleaving the two phases allows to eliminate as soon as possible some of the
false positives in the current Markov blanket as the algorithm progresses during
the Markov boundary search. PCT is obtained by removing the spouses of the
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target from the final MBT (lines 14-19). Inter-IAPC is very fast and sound (the
proof of soundness is provided in Appendix A), despite its data-inefficiency in
practice. The decentralized search in HPC is an attempt to alleviate this problem
as discussed earlier.

Algorithm 2. Inter-IAPC
Require: T : target; D : data set; U: set of variables;

Ensure: PCT : Parents and children of T ;

1: MBT ← ∅
2: repeat
3: * Add true positives to MBT

4: Y ← argmaxX∈(U\MBT \T)dep(T, X|MBT )

5: if T �⊥ Y |MBT then
6: MBT ← MBT ∪ Y
7: end if

* Remove false positives from MBT

8: for all X ∈ MBT do
9: if T ⊥ X|(MBT \ X) then

10: MBT ← MBT \ X
11: end if
12: end for
13: until MBT has not changed

* Remove spouses of T from MBT

14: PCT ← MBT

15: for all X ∈ MBT do
16: if ∃Z ⊆ (MBT \ X) such that T ⊥ X | Z then
17: PCT ← PCT \ X
18: end if
19: end for

The subroutines DE-PCS (Algorithm 3) and DE-SPS (Algorithm 4) search a
superset of PCT and SPT respectively with a severe restriction on the maximum
conditioning size (|Z| <= 1 in DE-PCS and |Z| <= 2 in DE-SPS) in order to
significantly increase the reliability of the tests. The variable filtering has two
advantages : i) it allows HPC to scale to hundreds of thousands of variables by
restricting the search to a subset of relevant variables, and ii) it eliminates many
ADRs that produce many false negative errors in the output of the algorithm,
as explained in the last section. DE-SPS works in two steps. First, a growing
phase (lines 4-8) adds the variables that are d-separated from the target but still
remain associated with the target when conditioned on another variable from
PCST . The shrinking phase (lines 9-16) discards irrelevant variables that are
ancestors or descendants of a target’s spouse. Pruning such irrelevant variables
speeds up HPC.
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Algorithm 3. DE-PCS
Require: T : target; D: data set; U: set of variables;

Ensure: PCST : parents and children superset of T ; dSep: d-separating sets;

Phase I: Remove X if T ⊥ X
1: PCST ← U \ T
2: for all X ∈ PCST do
3: if (T ⊥ X) then
4: PCST ← PCST \ X
5: dSep(X) ← ∅
6: end if
7: end for

Phase II: Remove X if T ⊥ X|Y
8: for all X ∈ PCST do
9: for all Y ∈ PCST \ X do

10: if (T ⊥ X | Y ) then
11: PCST ← PCST \ X
12: dSep(X) ← Y
13: break loop FOR
14: end if
15: end for
16: end for

Algorithm 4. DE-SPS
Require: T : target; D: data set; U: the set of variables; PCST : parents and children

superset of T ; dSep: d-separating sets;

Ensure: SPST : Superset of the spouses of T ;

1: SPST ← ∅
2: for all X ∈ PCST do
3: SPSX

T ← ∅
4: for all Y ∈ U \ {T ∪ PCST } do
5: if (T �⊥ Y |dSep(Y ) ∪ X) then
6: SPSX

T ← SPSX
T ∪ Y

7: end if
8: end for
9: for all Y ∈ SPSX

T do
10: for all Z ∈ SPSX

T \ Y do
11: if (T ⊥ Y |X ∪ Z) then
12: SPSX

T ← SPSX
T \ Y

13: break loop FOR
14: end if
15: end for
16: end for
17: SPST ← SPST ∪ SPSX

T

18: end for
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5 Experimental Validation

In this section, we assess the accuracy and the scalability of HPC through sev-
eral empirical experiments. We first compared HPC with two distinguished CB
algorithm proposals that appeared recently in the literature, namely MMPC2

(Max-Min Parents and Children) [20] and GetPC3 [11]. Both algorithms are cor-
rect under the faithfulness condition and are also scalable to high dimensional
data sets. Only the authors’ own implementations were used for the empirical
experiments. HPC was also compared to Inter-IAPC (Algorithm 2), the weak
PC learner. The same critical p-value (α = 0.05) was used to make fair com-
parisons. We also compared HPC with two well known search-and-score global
network learning algorithms, namely Greedy Equivalent Search (GES) [6] and
SCA (Sparse Candidate Algorithm) [7]. For SCA, we used the implementation
available in the Causal Explorer system [1]. The code uses the Bayesian scoring
heuristic and an equivalent sample size of 10. The maximum allowed size for the
candidate parents’ sets k is set to k=10. For GES, we used the command-line
tool in the WinMine Toolkit4. All the data sets used for the empirical experi-
ments presented in this section were sampled from well-known BNs that have
been previously used as benchmarks for BN learning algorithms, namely Asia,
Alarm, Barley, Child, Genes, Insulin, Insurance, Link, Mildew, Pigs and Carpa
(see [20] for details). Three samples sizes have been considered: 200, 500 and
1500. We do not claim that those data sets resemble real-world problems, how-
ever, they make it possible to compare the outputs of the algorithms with the
known PCT set of the BNs sampled.

5.1 Accuracy

Each CB algorithm was run 10 times on each node of each benchmark. The
variables in the output of the algorithms were compared against the true neigh-
bors. As GES and SCA are global network learning algorithms, they were run
10 times on each benchmark. To evaluate the accuracy, we combined precision
(i.e., the number of true positives in the output divided by the number of nodes
in the output) and recall (i.e., the number of true positives divided the true
size of the PC) as

√
(1 − precision)2 + (1 − recall)2, to measure the Euclidean

distance from perfect precision and recall, as proposed in [11]. Figure 3 plots the
Euclidean distance, averaged over all nodes, as a function of the PC size. The
advantage of HPC against the other algorithms is clearly noticeable.

5.2 Scalability

We now provide an empirical evaluation of the scalability of HPC on real and
artificial high-dimensional data sets. First, the five benchmarks were replicated
2 http://discover1.mc.vanderbilt.edu/discover/public
3 http://www.ida.liu.se/∼jospe
4 WinMine Toolkit can be downloaded at

http://research.microsoft.com/en-us/um/people/dmax/WinMIne/Download.html

http://discover1.mc.vanderbilt.edu/discover/public
http://research.microsoft.com/en-us/um/people/dmax/WinMIne/Download.html
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(dotted line) and on synthetic data sets (plain lines) from 5 benchmarks replicated

several times, versus the number of variables.

several times (up to 100 000 variables) to increase artificially the number of vari-
ables. Each network is obtained by tiling several copies of the original network.
The tiling is performed by maintaining the structural and probabilistic proper-
ties of the original network in the tiled network. The learning task is the same
as in the previous subsection, but instead of the accuracy, we report in Figure 4
(in plain lines) the average number of conditional independence tests that were
conducted for each tiled network (in log-log scale) as a function of the number
of variables. The average value is estimated over 100 data sets with only 100
instances for each network size. The number of calls to the statistical test was
empirically on the order O(n1.09) where n is the number of variables, regardless
of the size of the neighborhood of the target in the corresponding BN.

The scalability claims were based on taking a basic graph and creating a larger
graph by tiling the smaller graph repeatedly. One could claim that the empirical
number of O(n1.09) may be optimistic as it hinges on our tilling construction.
Running HPC on increasing parts of a real-world database would lend more va-
lidity to our statement. To this aim, we considered the Thrombin database which
was provided by DuPont Pharmaceuticals for KDD Cup 2001. It is exemplary of
a real drug design [5]. The training set contains 1909 instances characterized by
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139,351 binary features. Each instance represents a drug compound tested for
its ability to bind to a target site on Thrombin, a key receptor in blood clotting.
Each compound is labeled with one out of two classes, either it binds or not.
The task is again to learn the PC set of the target variable from 1909 given
compounds (the learning data). We picked at random 0.01% 0.1%, 1%, 10% and
the full set of variables including the target and used these subsets to learn the
target neighborhood. The overall process was repeated 100 times by bootstrap.
As done before we measured the average number of conditional independence
tests as a function of the number of variables. Here again, the number of calls
to the test varies by a multiplicative factor when the size of the neighborhood is
varied. The results show that the number of calls to the statistical test is empiri-
cally on the order O(n1.21), that is, slightly superior to the behavior on synthetic
data. Nonetheless, the almost-linear time complexity of HPC shows promise for
a variety of applications involving hundreds of thousands of variables.

6 Conclusion

We discussed a novel scalable algorithm for local BN structure learning, called
Hybrid Parents and Children (HPC). Extensive simulations have been conducted
on public synthetic and real-world data sets of various sample sizes to assess its
accuracy and scalability. Significant improvements in accuracy were obtained in
all experiments compared to state-of-the-art algorithms. The effective complex-
ity is only O(n1.09) in practice on the five benchmarks that we considered and
O(n1.21) on the real-world Thrombin database. The moderate time complexity
of HPC shows great promise for a variety of applications involving hundreds
of thousands of variables. The HPC algorithm was designed for detecting the
parents and children of a vertex in a graphical model. Learning the parents and
children of a target is a key routine used in constraint-based BN structure learn-
ing algorithms. HPC can be applied iteratively to find the Markov boundary of
a target for classification purposes, the local or the whole skeleton of the BN
although this is not discussed here for the sake of conciseness. Regarding causal
inference, HPC assumes no hidden common causes, which is pretty unrealistic.
On the other hand, it could easily be modified to detect hidden common causes
[3, 13]. These adaptations of HPC are left for future work.
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A Proof of Correctness

A structure learning algorithm from data is said to be correct (or sound) if it
returns the correct DAG pattern (or a DAG in the correct equivalence class)
under the assumptions that the independence tests are reliable and that the
learning data set is a sample from a distribution P faithful to a DAG G. The
(ideal) assumption that the independence tests are reliable means that they de-
cide (in)dependence if and only if the (in)dependence holds in P . Consequently,
a parents and children learning algorithm is said to be correct (or sound) when
under the assumptions that the independence tests are reliable and that the
learning data set is a sample from a distribution P faithful to a DAG G, the
algorithm returns the correct set of parents and children of the target, that is,
the target direct neighborhood. Correctness is a desirable asymptotic property
though the underlying assumptions may not hold in practice. In general, we
would want an edge to mean a direct dependence. Several definitions and inter-
mediate theorems are required before we demonstrate HPC ’s correctness under
faithfulness condition.

Definition 2. A Markov blanket MT of T is any set of variables such that T
is conditionally independent of all the remaining variables given MT . A Markov
boundary, MBT , of T is any Markov blanket such that none of its proper subsets
is a Markov blanket of T .

Theorem 2. Suppose < G, P > satisfies the faithfulness condition. Then for
each variable X, the set of parents, children of X, and parents of children
(spouses) of X is its unique Markov boundary.

A proof can be found in [10]. Indeed, as PCST ∪ SPST is a subset of U, a
difficulty arises: a marginal distribution PV of V ⊂ U may not satisfy the
faithfulness condition with any DAG even if PU does. This is an example of
embedded faithfulness, which is defined as follow:

Definition 3. Let PV be a distribution of the variables in V where V ⊂ U
and let G =< U,E > be a DAG. < G, PV > satisfies the embedded faithfulness
condition if G entails all and only the conditional independencies in PV, for
subsets including only elements of V.

We obtain embedded faithfulness by taking the marginal of a faithful distribution
as shown by the next theorem:

Theorem 3. Let PU be a joint probability of the variables in U with V ⊆ U
and G =< U,E >. If < G, PU > satisfies the faithfulness condition and PV is
the marginal distribution of V, then < G, PV > satisfies the embedded faithful
condition.

The proof can be found in [10]. Note that not every distribution does admit an
embedded faithful representation. This property is useful to prove the correctness
of HPC under the faithfulness condition. Let PCU

X denote the variables Y ∈ U
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so that there is no set Z ⊆ U \ {X,Y } such that X ⊥P Y |Z. If < G, PU >
satisfies the faithfulness condition, PCU

X are the parents and children of X in
U. In any case, PCU

X is the unique set of the variables Yi that remain dependent
on X conditioned on any set Z ⊆ U \ {X,Yi}.
Theorem 4. Let U be a set of random variables and G =< U,E > be a DAG.
If < G, PU > satisfies the faithfulness condition, then every target T admits a
unique Markov boundary MBU

T . Moreover, for all V such that MBU
T ⊆ V ⊆ U,

T admits a unique Markov boundary over V and MBV
T = MBU

T .

Proof: If MBU
T is the Markov boundary of T in U, then T is independent of all

variable Y ∈ [V \ (MBU
T ∪ T )] conditionally on MBU

T , then MBU
T is a Markov

blanket in V. Moreover, none of the proper subsets of MBU
T is a Markov blanket

of T in V, so MBU
T is also a Markov boundary of T in V. So if it is not the

unique MB for T in V there exists some other set ST not equal to MBU
T , which

is a MB of T in V. Since MBU
T �= ST and MBU

T cannot be a subset of ST ,
there is some X ∈ MBU

T such that X �∈ ST . Since ST is a MB for T , we would
have T ⊥P X |ST . If X is a parent or child of T , we would not have T ⊥G X |ST

which means we would have a conditional independence that is not entailed by
d-separation in G, which contradicts the faithfulness condition. If X is a parent
of a child of T in G, let Y be their common child in U. If Y ∈ ST we again would
not have T ⊥G X |ST . If Y �∈ ST we would have T ⊥P Y |ST because ST is a MB
of T in V but we do not have T ⊥G Y |ST because T is a parent of Y in G. So
again we would have a conditional independence which is not a d-separation in
G. This proves that there can not be such set ST . �

Theorem 5. Let U be a set of random variables and T a target variable. Let
G =< U,E > be a DAG such that < G, PU > satisfies the faithfulness condition.
Let V be such that MBU

T ⊆ V ⊆ U then, PCV
T = PCU

T .

Proof: Clearly PCU
T ⊆ PCV

T as MBU
T ⊆ V ⊆ U. If X ∈ PCV

T and X �∈ PCU
T ,

∃Z ⊆ MBU
T \X such that T ⊥P X |Z because all non adjacent nodes may be

d-separated in G by a subset of its Markov boundary. As MBU
T = MBV

T owing
to Theorem 4, so X and T can be d-separated in V \ {X,T }. Therefore, X
cannot be adjacent to T in V. �

Theorem 6. Let U be a set of random variables and T a target variable. Let
G =< U,E > be a DAG such that < G, PU > satisfies the faithfulness condition.
Let V be such that MBU

T ⊆ V ⊆ U. Under the assumption that the independence
tests are reliable, Inter-IAPC(T,D,V) returns PCU

T . Moreover, let X ∈ V \ T ,
then ∀T ∈ V, T is in the output of Inter-IAPC(X,D,V) iff X ∈ PCU

T .

Proof: We prove first that Inter-IAPC (T,D,V) returns PCU
T . In lines 1-13,

Inter-IAPC seeks a minimal set ST ⊆ V \ T that renders V \ ST independent
of T conditionally on ST . This set is unique owing to Theorem 4, therefore
ST = MBV

T = MBU
T . In the backward phase, Inter-IAPC removes the variables

X ∈ MBV
T such that ∃Z ⊆ (MBV

T \X) for which T ⊥ X | Z. These variables are
the spouses of T in G, so Inter-IAPC (T,D,V) returns PCU

T . Now, if X �∈ PCU
T
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then X �∈ PCV
T owing to Theorem 5. So there is a set Z ⊆ V \ {X,Y } such that

T ⊥ X | Z. Therefore, X cannot be in the output of Inter-IAPC (T,D,V), nor
T can be in the output of Inter-IAPC (X,D,V). �

Theorem 7. Under the assumptions that the independence tests are reliable and
that the data set is a sample from a probability distribution PU faithful to a DAG
G, then HPC(T,D,U) returns PCU

T .

Proof: Let V = (PCS ∪ SPS), then V is a superset of MBU
T . Based on what

is stated by Theorem 4 we know that MBV
T = MBU

T . If T is in the output of
Inter-IAPC(X,V,D) then X should be in the output of Inter-IAPC(T,V,D)
owing to Theorem 6. So HPC returns PCU

T . �
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Abstract. We investigate how well di�erent information di�usion models can
explain observation data by learning their parameters and discuss which model is
better suited to which topic. We use two models (AsIC, AsLT), each of which is
an extension of the well known Independent Cascade (IC) and Linear Threshold
(LT) models and incorporates asynchronous time delay. The model parameters
are learned by maximizing the likelihood of observation, and the model selec-
tion is performed by choosing the one with better predictive accuracy. We first
show by using four real networks that the proposed learning algorithm correctly
learns the model parameters both accurately and stably, and the proposed selec-
tion method identifies the correct di�usion model from which the data are gen-
erated. We next apply these methods to behavioral analysis of topic propagation
using the real blog propagation data, and show that although the relative propa-
gation speed of topics that are derived from the learned parameter values is rather
insensitive to the model selected, there is a clear indication as to which topic bet-
ter follows which model. The correspondence between the topic and the model
selected is well interpretable.

1 Introduction

The growth of Internet has enabled to form various kinds of large-scale social networks,
through which a variety of information including innovation, hot topics and even ma-
licious rumors can be propagated in the form of so-called ”word-of-mouth” communi-
cations. Social networks are now recognized as an important medium for the spread of
information, and a considerable number of studies have been made [1–5]. Widely used
information di�usion models in these studies are the independent cascade (IC) [6–8]
and the linear threshold (LT) [9, 10]. They have been used to solve such problems as
the influence maximization problem [7, 11].
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These two models focus on di�erent information di�usion aspects. The IC model
is sender-centered and each active node independently influences its inactive neighbors
with given di�usion probabilities. The LT model is receiver-centered and a node is
influenced by its active neighbors if their total weight exceeds the threshold for the node.
Which model is more appropriate depends on the situation and selecting the appropriate
one is not easy. First of all, we need to know how di�erent model behaves di�erently
and how well or badly explain the observation data. Both models have parameters that
need be specified in advance: di�usion probabilities for the IC model, and weights for
the LT model. However, their true values are not known in practice. This poses yet
another problem of estimating them from a set of information di�usion results that are
observed as time-sequences of influenced (activated) nodes.

This falls in a well defined parameter estimation problem in machine learning frame-
work. Given a generative model with some parameters and the observed data, it is pos-
sible to calculate the likelihood that the data are generated and the parameters can be
estimated by maximizing the likelihood. This approach has a thorough theoretical back-
ground. In general, the way the parameters are estimated depends on how the genera-
tive model is given. To the best of our knowledge, we are the first to follow this line of
research. We addressed this problem for the IC model [12] and its variant that incor-
porates asynchronous time delay (referred to as the AsIC model) [13]. Gruhl et.al. also
challenged the same problem of estimating the parameters and proposed an EM-like
algorithm, but they did not formalize the likelihood and it is not clear what is being
optimized in deriving the parameter update formulas. Goyal et.al attacked this problem
from a di�erent angle [14]. They employed a variant of the LT model and estimated the
parameter values by four di�erent methods, all of which are directly computed from the
frequency of the events in the observed data. Their approach is eÆcient, but it is more
likely ad hoc and lacks in theoretical evidence. Bakshy et.al [15] addressed the problem
of di�usion of user-created content (asset) and used the maximum likelihood method
to estimate the rate of asset adoption. However, they only modeled the rate of adoption
and did not consider the di�usion model itself. Their focus is on data analysis.

In this paper, we first propose a method of learning the parameter values of a variant
of the LT model that incorporates asynchronous time delay, similarly to the AsIC model,
under the maximum likelihood framework. We refer to this di�usion model as the AsLT
model. The model is similar to the one used in [14] but di�erent in that we explicitly
model the delay of node activation after the activation condition has been satisfied. Next
we propose a method of model selection based on the predictive accuracy, using the two
models: AsIC and AsLT.

It is indispensable to be able to cope with asynchronous time delay to do realistic
analyses of information di�usion because, in the real world, information propagates
along the continuous time axis, and time-delays can occur during the propagation asyn-
chronously. In fact, the time stamps of the observed data are not equally spaced. Thus,
the proposed learning method has to estimate not only the weight parameters but also
the time-delay parameters from the observed data. Incorporating time-delay makes the
time-sequence observation data structural, which makes the analyses of di�usion pro-
cess diÆcult because there is no way of knowing which node has activated which other
node from the observation data sequence. Knowing the optimal parameter values does
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not mean that the observation follows the model. We have to decide which model better
explains the observation. We solve this problem by comparing the predictive accuracy
of each model. We use a variant of hold-out method applied to a set of sequential data,
which is similar to the leave-one-out method applied to a multiple time sequence data.
Extensive experiments have been performed to evaluate the e�ectiveness of the pro-
posed method using both artificially generated data and real observation data. Experi-
ments that used artificial data using four real network structures showed that the method
can correctly 1) learn the parameters and 2) select the model by which the data have
been generated. Experiments that used real di�usion data of topic propagation showed
that 1) both AsIC and AsLT models well capture the global characteristics of topic
propagations but 2) the predictive accuracy of each model is di�erent for each topic and
some topics have clear indication as to which model each better follows.

2 Information Di�usion Models

We first present the asynchronous independent cascade (AsIC) model introduced in
[13], and then define the asynchronous linear threshold (AsLT) model. We mathemati-
cally model the spread of information through a directed network G � (V� E) without
self-links, where V and E (� V � V) stand for the sets of all the nodes and links, re-
spectively. For each node v in the network G, we denote F(v) as a set of child nodes of
v, i.e., F(v) � �w; (v�w) � E�. Similarly, we denote B(v) as a set of parent nodes of v,
i.e., B(v) � �u; (u� v) � E�. We call nodes active if they have been influenced with the
information. In the following models, we assume that nodes can switch their states only
from inactive to active, but not the other way around, and that, given an initial active
node set S , only the nodes in S are active at an initial time.

2.1 Asynchronous Independent Cascade Model

We first recall the definition of the IC model according to [7], and then introduce the
AsIC model. In the IC model, we specify a real value �u�v with 0 � �u�v � 1 for each
link (u� v) in advance. Here �u�v is referred to as the di�usion probability through link
(u� v). The di�usion process unfolds in discrete time-steps t � 0, and proceeds from a
given initial active set S in the following way. When a node u becomes active at time-
step t, it is given a single chance to activate each currently inactive child node v, and
succeeds with probability �u�v. If u succeeds, then v will become active at time-step t�1.
If multiple parent nodes of v become active at time-step t, then their activation attempts
are sequenced in an arbitrary order, but all performed at time-step t. Whether or not u
succeeds, it cannot make any further attempts to activate v in subsequent rounds. The
process terminates if no more activations are possible.

In the AsIC model, we specify real values ru�v with ru�v � 0 in advance for each
link (u� v) � E in addition to �u�v, where ru�v is referred to as the time-delay parameter
through link (u� v). The di�usion process unfolds in continuous-time t, and proceeds
from a given initial active set S in the following way. Suppose that a node u becomes
active at time t. Then, u is given a single chance to activate each currently inactive child
node v. We choose a delay-time Æ from the exponential distribution with parameter



Selecting Information Di�usion Models 183

ru�v
1. If v has not been activated before time t � Æ, then u attempts to activate v, and

succeeds with probability �u�v. If u succeeds, then v will become active at time t � Æ.
Under the continuous time framework, it is unlikely that v is activated simultaneously
by its multiple parent nodes exactly at time t � Æ. So we ignore this possibility. The
process terminates if no more activations are possible.

2.2 Asynchronous Linear Threshold Model

Similarly to the above, we first define the LT model. In this model, for every node v � V ,
we specify a weight (�u�v � 0) from its parent node u in advance such that

�
u�B(v) �u�v �

1. The di�usion process from a given initial active set S proceeds according to the
following randomized rule. First, for any node v � V , a threshold �v is chosen uniformly
at random from the interval [0� 1]. At time-step t, an inactive node v is influenced by
each of its active parent nodes, u, according to weight �u�v. If the total weight from
active parent nodes of v is no less than �v, that is,

�
u�Bt(v) �u�v � �v, then v will become

active at time-step t � 1. Here, Bt(v) stands for the set of all the parent nodes of v that
are active at time-step t. The process terminates if no more activations are possible.

Next, we define the AsLT model. In the AsLT model, in addition to the weight set
��u�v�, we specify real values rv with rv � 0 in advance for each node v � V . We re-
fer to rv as the time-delay parameter on node v. Note that rv depends only on v unlike
ru�v of the AsIC model, which means that it is the node v’s decision when to receive
the information once the activation condition has been satisfied2. The di�usion process
unfolds in continuous-time t, and proceeds from a given initial active set S in the fol-
lowing way. Suppose that the total weight from active parent nodes of v became no less
than �v at time t for the first time. Then, v will become active at time t � Æ, where we
choose a delay-time Æ from the exponential distribution with parameter rv. Further, note
that even if some other non-active parent nodes of v has become active during the time
period between t and t � Æ, the activation time of v, t � Æ, still remains the same. The
other di�usion mechanisms are the same as the LT model.

3 Learning Algorithms

We define the time-delay parameter vector r and the di�usion parameter vector � by
r � (ru�v)(u�v)�E and � � (�u�v)(u�v)�E for the AsIC model and the parameter vectors �
and r by � � (�u�v)(u�v)�E and r � (rv)v�V for the AsLT model. We next consider an
observed data set of M independent information di�usion results, �Dm; m � 1� � � � � M�.
Here, each Dm is a set of pairs of active nodes and their activation times in the mth
di�usion result, Dm � �(u� tm�u)� (v� tm�v)� � � � �. For each Dm, we denote the observed
initial time by tm � min�tm�v; (v� tm�v) � Dm�, and the observed final time by Tm �

max�tm�v; (v� tm�v) � Dm�. Note that Tm is not necessarily equal to the final activation
time. Hereafter, we express our observation data by 	M � �(Dm� Tm); m � 1� � � � � M�.
For any t � [tm� Tm], we set Cm(t) � �v; (v� tm�v) � Dm� tm�v � t�. Namely, Cm(t) is the set

1 Similar formulation can be derived for other distributions such as power-law and Weibull.
2 It is also possible to adopt the same edge time-delay model as in the AsIC model, in which

case, for example, rv in Equation (2) in Section 3 is replaced with ru�v.



184 K. Saito et al.

of active nodes before time t in the mth di�usion result. For convenience sake, we use
Cm as referring to the set of all the active nodes in the mth di�usion result. Moreover,
we define a set of non-active nodes with at least one active parent node for each by
�Cm � �v; (u� v) � E� u � Cm� v � Cm�. For each node v � Cm 
 �Cm, we define the
following subset of parent nodes, each of which has a chance to activate v.

�m�v �

�
B(v) � Cm(tm�v) if v � Cm(tm�v)�
B(v) � Cm if v � �Cm�

Note that the underlying model behind the observed data is not available in real-
ity. Thus, we investigate how the model a�ects the information di�usion results, and
consider selecting a model which better explains the given observed data from the can-
didates, i.e., AsIC and AsLT models. To this end, we first have to estimate the values
of r and � for the AsIC model, and the values of r and � for the AsLT model for the
given 	M . For the former, we adopt the method proposed in [13], which is only briefly
explained here. For the latter, we propose a novel method of estimating those values.

3.1 Learning Parameters of AsIC Model

To estimate the values of r and � from	M for the AsIC model, We derived the following
likelihood function (r� �;	M) to use as the objective function [13],

(r� �;	M) �
M�

m�1

�
v�Cm

��������hm�v

�
w�F(v)�Cm

gm�v�w

�������	 � (1)

where hm�v is the probability density that the node v such that v � Dm with tm�v � 0 for
the mth di�usion result is activated at time tm�v, and gm�v�w is the probability that a node
w is not activated by a node v within the observed time period [tm� Tm] when there is a
link (v�w) � E and v � Cm for the mth di�usion result. Then, we derived an iterative
algorithm to stably obtain the values of r and � that maximize equation (1). Please refer
to [13] for more details. Hereafter, we refer to this method as the AsIC model based
method.

3.2 Learning Parameters of AsLT Model

Likelihood function. To estimate the values of r and � from 	M for the AsLT model,
we first derive the likelihood function(r��;	M) with respect to r and � in a rigorous
way to use as the objective function. For the sake of technical convenience, we introduce
a slack weight �v�v for each node v � V such that �v�v �

�
u�B(v) �u�v � 1. Here note that

we can regard each weight ���v as a multinomial probability since a threshold �v is
chosen uniformly at random from the interval [0� 1] for each node v.

Suppose that a node v became active at time tm�v for the mth result. Then, we know
that the total weight from active parent nodes of v became no less than �v at the time
when one of them, u � �m�v, became first active. However, in case of ��m�v� � 1, there is
no way of exactly knowing the actual nodes due to the asynchronous time-delay. Sup-
pose that a node v was actually activated when a node 	 � �m�v became activated. Then
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�v is between
�

u�B(v)�Cm(tm�� ) �u�v and ���v �
�

u�B(v)�Cm(tm�� ) �u�v. Namely, the probability
that �v is chosen from this range is ���v. Here note that such events with respect to dif-
ferent active parent nodes are mutually disjoint. Thus, the probability density that the
node v is activated at time tm�v, denoted by hm�v, can be expressed as

hm�v �



u��m�v

�u�vrv exp(�rv(tm�v � tm�u))� (2)

Here we define hm�v � 1 if tm�v � tm.
Next, we consider any node w � V belonging to �Cm � �w; (v�w) � E�v � Cm(Tm)�

w � Cm(Tm)� for the mth result. Let gm�v denote the probability that the node v is not
activated within the observed time period [tm� Tm]. We can calculate gm�v as

gm�v � 1 �



u��m�v

�u�v

� Tm

tm�u

rv exp(�rv(t � tm�u))dt � 1 �



u��m�v

�u�v(1 �exp(�rv(Tm � tm�u)))

� �v�v �



u�B(v)��m�v

�u�v �



u��m�v

�u�v exp(�rv(Tm � tm�u))� (3)

Therefore, by using Equations (2) and (3), and the independence properties, we can
define the likelihood function (r��;	M) with respect to r and � by

(r��;	M) �
M�

m�1

���������
v�Cm

hm�v

�������	
�������� �

v��Cm

gm�v

�������	 � (4)

Thus, our problem is to obtain the time-delay parameter vector r and the di�usion pa-
rameter vector �, which together maximize Equation (4).

Learning Algorithm. For the above learning problem, we can derive an estimation
method based on the Expectation-Maximization algorithm in order to stably obtain its
solutions. Hereafter, we refer to this proposed method as the AsLT model based method.
By the following formulas, we define 
m�u�v for each v � Cm and u � �m�v, �m�u�v for each
v � �Cm and u � �v� 
 B(v) � �m�v, and �m�u�v for each v � �Cm and u � �m�v, respectively.


m�u�v � �u�vrv exp(�rv(tm�v � tm�u))  hm�v� �m�u�v � �u�v  gm�v�

�m�u�v � �u�v exp(�rv(Tm � tm�u))  gm�v�

Let r̄ � (r̄v) and �̄ � (�̄u�v) be the current estimates of r and �, respectively. Similarly,
let 
̄m�u�v, �̄m�u�v, and �̄m�u�v denote the values of 
m�u�v, �m�u�v, and �m�u�v calculated by
using r̄ and �̄, respectively.

From equations (2), (3), (4), we can transform (r��;	M) as follows:

log(r��;	M) � Q(r��; r̄� �̄) � H(r��; r̄� �̄)� (5)

where Q(r��; r̄� �̄) is defined by

Q(r��; r̄� �̄) �
M


m�1

��������

v�Cm

Q(1)
m�v �



v��Cm

Q(2)
m�v

�������	 � (6)
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Q(1)
m�v �



u��m�v


̄m�u�v log(�u�vrv exp(�rv(tm�v � tm�u)))

Q(2)
m�v �



u��v��B(v)��m�v

�̄m�u�v log(�u�v) �



u��m�v

�̄m�u�v log(�u�v exp(�rv(Tm � tm�u)))�

It is easy to see that Q(r��; r̄� �̄) is convex with respect to r and �, and H(r� �; r̄� �̄) is
defined by

H(r��; r̄� �̄) �
M


m�1

��������

v�Cm

H(1)
m�v �



v��Cm

H(2)
m�v

�������	 � (7)

H(1)
m�v �



u��m�v


̄m�u�v log(
m�u�v)�

H(2)
m�v �



u��v��B(v)�Cm

�̄m�u�v log(�m�u�v) �



u��m�v

�̄m�u�v log(�m�u�v)�

Since H(r��; r̄� �̄) is maximized at r � r̄ and� � �̄ from equation (7), we can increase
the value of (r��;	M) by maximizing Q(r��; r̄� �̄) (see equation (5)).

Thus, we obtain the following update formulas of our estimation method as the so-
lution which maximizes Q(r��; r̄� �̄) with respect to r :

rv �

����������



m�	(1)
v



u��m�v


̄m�u�v

���������	�
����������



m�	(1)
v



u��m�v


̄m�u�v(tm�v � tm�u) �



m�	(2)
v



u��m�v

�̄m�u�v(Tm � tm�u)

���������	

1

where �(1)
v and �(2)

v are defined by

�(1)
v � �m � �1� � � � � M�; v � Cm�� �(2)

v � �m � �1� � � � � M�; v � �Cm��

As for �, we have to take the constraints �v�v �
�

u�B(v) �u�v � 1 into account for each
v, which can easily be made using the Lagrange multipliers method, and we obtain the
following update formulas of our estimation method:

�u�v �



m�	(1)
u�v


̄m�u�v �



m�	(2)
u�v

�̄m�u�v �



m�	(3)
u�v

�̄m�u�v� �v�v �



m�	(2)
v

�̄m�v�v

where �(1)
u�v, �(2)

u�v and �(3)
u�v are defined by

�(1)
u�v � �m � �1� � � � � M�; v � Cm� u � �m�v��

�(2)
u�v � �m � �1� � � � � M�; v � �Cm� u � B(v) � �m�v��

�(3)
u�v � �m � �1� � � � � M�; v � �Cm� u � �m�v��

The actual values are obtained after normalization. Recall that we can regard our es-
timation method as a kind of the EM algorithm. It should be noted that each time the
iteration proceeds the value of the likelihood function never decreases and the iterative
algorithm is guaranteed to converge.
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3.3 Model Selection

Next, we describe our model selection method. We select the model based on predic-
tive accuracy. Here, note that we cannot use an information theoretic criterion such as
AIC (Akaike Information Criterion) or MDL (Minimum Description Length) because
we need to select one from models with completely di�erent probability distributions.
Moreover, for both models, it is quite diÆcult to eÆciently calculate the exact activation
probability of each node more than two information di�usion cascading steps ahead. In
oder to avoid these diÆculties, we propose a method based on a hold-out strategy, which
attempts to predict the activation probabilities at one step later.

For simplicity, we assume that for each Dm, the initial observation time tm is zero,
i.e., tm � 0 for m � 1� � � � � M. Then, we introduce a set of observation periods

� � �[0� �n); n � 1� � � � � N��

where N is the number of observation data we want to predict sequentially and each �n

has the following property: There exists some (v� tm�v) � Dm such that 0 � �n � tm�v. Let
Dm;�n denote the observation data in the period [0� �n) for the mth di�usion result, i.e.,

Dm;�n � �(v� tm�v) � Dm; tm�v � �n��

We also set 	M;�n � �(Dm;�n � �n); m � 1, � � � , M�. Let � denote the set of parameters
for either the AsIC or the AsLT models, i.e., � � (r� �) or � � (r��). We can estimate
the values of � from the observation data 	M;�n by using the learning algorithms in
Sections 3.1 and 3.2. Let ���n denote the estimated values of �. Then, we can calculate
the activation probability q�n

(v� t) of node v at time t (� �n) using ���n .
For each �n, we select the node v(�n) and the time tm(�n)�v(�n) by

tm(�n)�v(�n) � min

������tm�v; (v� tm�v) �
M�

m�1

(Dm � Dm;�n)

������� �
Note that v(�n) is the first active node in t � �n. We evaluate the predictive performance
for the node v(�n) at time tm(�n)�v(�n). Approximating the empirical distribution by

p�n
(v� t) � Æv�v(�n) Æ(t � tm(�n)�v(�n))

with respect to (v(�n)� tm(�n)�v(�n)), we employ the Kullback-Leibler (KL) divergence

KL(p�n
�� q�n

) � �


v�V

� �

�n

p�n
(v� t) log

q�n
(v� t)

p�n
(v� t)

dt�

where Æv�w and Æ(t) stand for Kronecker’s delta and Dirac’s delta function, respectively.
Then, we can easily show

KL(p�n
�� q�n

) � � log hm(�n)�v(�n)� (8)

By averaging the above KL divergence with respect to �, we propose the following
model selection criterion � (see Equation (8)):

�(�; D1 
 � � � 
 DM) � �
1
N

N

n�1

log hm(�n)�v(�n)� (9)
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where� expresses the information di�usion model (i.e., the AsIC or the AsLT models).
In our experiments, we adopted

� � �[0� tm�v); (v� tm�v) � D1 
 � � � 
 DM � tm�v � �0��

where �0 is the median time of all the observed activation time points.

3.4 Behavioral Analysis

Thus far, we assumed that� can vary with respect to nodes and links but is independent
of the topic of information di�used. However, they may be sensitive to the topic. We
follow [13] and place a constraint that � depends only on topics but not on nodes and
links of the network G, and assign a di�erent m to a di�erent topic. Therefore, we set
rm�u�v � rm and �m�u�v � �m for any link (u� v) � E in case of the AsIC model and
rm�v � rm and �m�u�v � qm�B(v)�
1 for any node v � V and link (u� v) � E in case of the
AsLT model. Here note that 0 � qm � 1 and �v�v � 1 � qm. Without this constraint, we
only have one piece of observation for each (m� u� v) and there is no way to learn �.

Using each pair of the estimated parameters, (rm� qm) for the AsLT model and (rm� �m)
for the AsIC model, we can discuss which model is more appropriate for each topic,
and analyze the behavior of people with respect to the topics of information by simply
plotting them as a point in 2-dimensional space.

4 Performance Evaluation by Artificial Data

Our goal here is to evaluate the parameter learning and model selection methods to see
how accurately it can detect the true model that generated the data, using topological
structure of four large real networks. Here, we assumed the true model by which the
data are generated to be either AsLT or AsIC.

4.1 Data Sets

We employed four datasets of large real networks (all bidirectionally connected). The
first one is a trackback network of Japanese blogs used in [8] and has 12� 047 nodes and
79� 920 directed links (the blog network). The second one is a network of people derived
from the “list of people” within Japanese Wikipedia, also used in [8], and has 9� 481
nodes and 245� 044 directed links (the Wikipedia network). The third one is a network
derived from the Enron Email Dataset [16] by extracting the senders and the recipients
and linking those that had bidirectional communications. It has 4� 254 nodes and 44� 314
directed links (the Enron network). The fourth one is a coauthorship network used in
[17] and has 12� 357 nodes and 38� 896 directed links (the coauthorship network).

Here, according to [13], we assumed the simplest case where the parameter values
are uniform across all links and nodes, i.e., �u�v � q�B(v)�
1, rv � r for AsLT, and
ru�v � r, �u�v � � for AsIC. Under this assumption there is no need for the observation
sequence data to pass through every link or node at least once. This drastically reduces
the amount of data necessary to learn the parameters. Then, our task is to estimate the
values of these parameters from data. The true value of q was set to 0�9 for every net-
work to achieve reasonably long di�usion results, and the true value of r was set to 1�0.
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Table 1. Parameter estimation error of the
learning method for four networks

Network Blog Wiki Enron Coauthor

�M(AsLT ) r 0.248 0.253 0.200 0.244
q 0.080 0.078 0.077 0.089

�M (AsIC) r 0.114 0.026 0.029 0.167
� 0.020 0.013 0.002 0.054

Table 2. Accuracy of the model selection
method for four networks

Network Blog Wiki Enron Coauthor

�M(AsLT ) 79 86 99 76
(28.2) (54.0) (47.7) (19.0)

�M (AsIC) 92 100 100 93
(370.2) (920.8) (1500.6) (383.5)

According to [7], we set � to a value smaller than 1d̄, where d̄ is the mean out-degree of
a network. Thus, the true value of � was set to 0�2 for the coauthorship network, 0�1 for
the blog and Enron networks, and 0�02 for the Wikipedia network. Using these values,
two sets of data were generated for each network, one for the true AsLT model and the
other for the true AsIC model, denoted by	M(AsLT ) and 	M(AsIC), respectively. For
each of these, sequences of data were generated, each starting from a randomly selected
initial active node and having at least 10 nodes. In our experiments, we set M � 100 and
evaluated our model selection method in the framework of behavioral analysis. Parame-
ter updating is terminated when either the iteration number reaches its maximum (set to
100) or the following condition is first satisfied: �r(s�1)� r(s)�� �q(s�1)�q(s)� � 10
6

for AsLT, �r(s � 1) � r(s)� � ��(s � 1) � �(s)� � 10
6 for AsIC. In most of the cases, the
latter inequality is satisfied in less than 100 iterations. The converged values are rather
insensitive to the initial values, and we confirmed that the parameter updating algorithm
stably converges to the correct values. In actual computation, the learned values for �n

is used as the initial values for �n�1 for eÆciency purpose.

4.2 Learning Results

Table 1 shows the error in the estimated parameters for four networks by the proposed
learning method. In this evaluation we treated each sequence as a separate observation
and learned the parameters from each, repeated this M (�100) times and took the av-
erage. More specifically, the parameters of AsLT were estimated from 	M(AsLT ), and
those of AsIC from 	M(AsIC). Even though each pair of the parameters for individual
models was estimated by using only one sequence data, we can see that the estimated
values were reasonably close to the true one. This confirms that our proposed learning
methods work well. The results indicate that the estimation performance on AsIC is
substantially better than that on AsLT. We consider that this performance di�erence is
attributed to the average sequence length, as discussed later.

4.3 Model Selection Results

The average KL divergence given by equation (9) is the measure for the goodness of
the model �, given the data Dm. The smaller its value is, the better the model explains
the data in terms of predictability. Thus, we can estimate the true model from which Dm

is generated to be AsLT if �(AsLT ; Dm) � �(AsIC; Dm), and vice versa.
Table 2 summarizes the number of sequences for which the model selection method

correctly identified the true model. The number within the parentheses is the average
length of the sequences in each dataset. From these results, we can say that the proposed
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Fig. 1. Relation between the length of sequence and the the accuracy of model selection for
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Fig. 2. Relation between the length of sequence and the the accuracy of model selection for
�M(AsIC)

method achieved a good accuracy, 90.6% on average. Especially, for the Enron network,
its estimation was almost perfect. To analyze the performance of the proposed method
more deeply, we investigated the relation between the length of sequence and the model
selection result. It is shown in Fig. 1 for 	M(AsLT ), where the horizontal axis denotes
the length of sequence in each dataset and the vertical axis is the di�erence of the
average KL divergence defined by J(AsLT ; AsIC) � �(AsIC; Dm) � �(AsLT ; Dm).
Thus, J(AsLT ; AsIC) � 0 means that the proposed method correctly estimated the
true model for the dataset Dm(AsLT ) because it means �(AsLT ; Dm) is smaller than
�(AsIC; Dm). From these figures, we can see that there is a correlation between the
length of sequence and the estimation accuracy, and that the misselection occurs only in
short sequences for every network. We notice that the overall accuracy becomes 95.5%
when considering only the sequences that contain no less than 20 nodes. This means
that the proposed model selection method is highly reliable for a long sequence and its
accuracy could asymptotically approach to 100% as the sequence gets longer. Figure 2
is the results for 	M(AsIC), where J(AsIC; AsLT ) � �(AsLT ; Dm) � �(AsIC; Dm).
The results are better than for 	M(AsLT ). In particular, Wikipedia and Blog networks
have no misselection. We note that the plots are shifted to the right for all networks,
meaning that the data sequences are longer for 	M(AsIC) than for 	M(AsLT ). The
better accuracy is attributed to this.

5 Behavioral Analysis of Real World Blog Data

We analyzed the behavior of topics in a real world blog data. Here, again, we assumed
the true model behind the data to be either AsLT or AsIC. Then, we first applied our
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Fig. 3. Results for the Doblog database

learning method to behavioral analysis based on the method described in Section 3.4,
assuming two possibilities, i.e. the true model being either AsLT or AsIC for all the
topics, and investigated how each topic spreads throughout the network by comparing
the learned parameter values. Next, we estimated the true model of each data sequence
for each topic by applying the model selection method described in Section 3.3.

5.1 Data Sets

We used the real blogroll network used in [13], which was generated from the database
of a blog-hosting service in Japan called Doblog 3. In the network, bloggers are con-
nected to each other and we assume that topics propagate from blogger x to another
blogger y when there is a blogroll link from y to x. In addition, according to [18], it is
assumed that a topic is represented as a URL which can be tracked down from blog to
blog. We used the propagation sequences of 172 URLs for this analysis, each of which
has at least 10 time steps. Please refer to [13] for more details.

5.2 Behavioral Analysis

We ran the experiments for each identified URL and obtained the parameters q and r for
the AsLT model based method and � and r for the AsIC model based method. Figures
3a and 3b are the plots of the results for the major URLs (topics) by the AsLT and AsIC
methods, respectively. The horizontal axis is the di�usion parameter q for the AsLT
method and � for the AsIC method, while the vertical axis is the delay parameter r for
both. The latter axis is normalized such that r � 1 corresponds to a delay of one day,
meaning r � 0�1 corresponds to a delay of 10 days. In these figures, we used five kinds
of markers other than dots, to represent five di�erent typical URLs: the circle (Æ) stands
for a URL that corresponds to the musical baton which is a kind of telephone game on
the Internet (the musical baton), the square (�) for a URL that corresponds to articles
about a missing child (the missing child), the cross (�) for a URL that corresponds
to articles about fortune telling (the fortune telling), the diamond (�) for a URL of a
certain charity site (the charity), and the plus (�) for a URL of a site for flirtatious

3 Doblog(
���������������������), provided by NTT Data Corp. and Hotto Link, Inc.
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Table 3. Results of model selection for
the Doblog dataset

Topic Total AsLT AsIC
Musical baton 9 5 4
Missing child 7 0 7
Fortune telling 28 4 24

Charity 6 5 1
Flirtation 7 7 0

Others 115 11 104
101 102

0

1

2

3

4

length of sequence

J(
A

s
LT

 ; 
A

sI
C)

musical baton
missing child
fortune telling
flirtation
charity
others

Fig. 4. The relation between the KL di�erence
and sequence length for the Doblog database

tendency test (the flirtation). All the other topics are denoted by dots (�), which means
they are a mixture of many topics.

The results indicates that in general both the AsLT and AsIC models capture rea-
sonably well the characteristic properties of topics in a similar way. For example, it
captures the urgency of the missing child, which propagates quickly. Musical baton
which actually became the latest craze on the Internet also propagates quickly. In con-
trast non-emergency topics such as the flirtation and the charity propagate very slowly.
Unfortunately, this highlights the people’s low interest level of the charity activity in
the real world. We further note that the dependency of topics on the parameter r is al-
most the same for both AsLT and AsIC, but that on the parameters q and � is slightly
di�erent, e.g., relative di�erence of musical baton, missing child and charity. Although
q and � are di�erent parameters but both are the measures that represent how easily the
di�usion takes place. We showed in [13] that the influential nodes are very sensitive to
the model used and this can be attributed to the di�erences of these parameter values.

5.3 Model Selection

In the analysis of previous subsection, we assumed that each topic follows the same
di�usion model. However, in reality this is not true and each topic should propagate
following more closely to either one of the AsLT and AsIC models. Thus, in this sub-
section, we attempt to estimate the underlying behavior model of each topic by applying
the model selection method to individual sequence as described in section 4. Namely,
we regard that each observation consists of only one observed data sequence, i.e., 	1,
and calculate its KL divergences by equation (9) for the both models, and compare the
goodness.

Table 3 and Fig. 4 summarize the results. From these results, we can see that most of
the di�usion behaviors on this blog network follows the AsIC model. It is interesting to
note that the model estimated for the musical baton is not identical to that for the missing
child although their di�usion patterns are very similar in the previous analysis. The
missing child strictly follows the AsIC model. This is attributed to its greater urgency.
On the other, musical baton seems to follow more closely to AsLT. This is because the
longer sequence results in a better accuracy and the models selected in longer sequences
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are all AsLT in Fig. 4 although the numbers are almost tie (4 vs. 5) in Table 3. This
can be interpreted that people follow their friends in this game. Likewise, it is easy to
imagine that one would align oneself with the opinions of those around when requested
to raise funds. This explains that charity follows AsLT. The flirtation clearly follows
AsLT. This is probably because the information of this kind of play site easily di�uses
within close friends. Note that there exists one dot at near the top center in Fig. 4,
showing the greatest tendency to follow AsLT. This dot represents a typical circle site
that distributes one’s original news article on personal events.

6 Discussion

We now have ways to compare the di�usion process with respect to two models (the
AsLT model and the AsIC model) for the same observed dataset. Being able to learn the
parameters of these models enable us to analyze the di�usion process more precisely.
Comparing the results bring us deeper insights into the relation between models and
information di�usion processes.

We note that the formulation in Sections 2 and 3 allows the parameters to depend on
links and nodes, but the analysis we showed in Section 4is for the simplest case where the
parameters are uniform across the whole network. Actually, if all the parameters are node
and link dependent, the number of the parameters becomes so huge and it is not practical
(almost impossible) to estimate them accurately because the amount of observation data
needed is prohibitively huge and there is always a problem of overfitting. However, this
can be alleviated. In a more realistic setting we can divide E into subsets E1� E2� ���� EL

and assign the same value for each parameter within each subset. For example, we may
divide the nodes into two groups: those that strongly influence others and those not, or
we may divide the nodes into another two groups: those that are easily influenced by
others and those not. If there is some background knowledge about the node grouping,
our method can make the best use of it. Obtaining such background knowledge is also
an important research topic in the knowledge discovery from social networks.

The discussion above is also related to the use of the data for model selection in
Section 5 in which we used each sequence separately to learn the model parameter
values and select the model rather than using them altogether for the same topic and
obtaining a single set of parameter values. The results in Section 5 show that the model
parameters thus obtained for each sequence are very similar to each other for the same
topic. This in turn justifies the use of the same parameter values for multiple sequence
observation data (the way we formulated in Section 3.3).

As we mentioned in Section 5.2 but did not show in this paper due to the space limita-
tion, the ranking results that involve detailed probabilistic simulation is very sensitive to
the underlying model which is assumed to generate the observed data. In other words, it
is very important to select an appropriate model for the analysis of information di�usion
from which the data has been generated if the node characteristics are the main objec-
tive of analysis, e.g. such problems as the influence maximization problem [7, 11], a
problem at a more detailed level. However, it is also true that the parameters for the top-
ics that actually propagated quickly�slowly in observation converged to the values that
enable them to propagate quickly�slowly on the model, regardless of the model chosen.
Namely, we can say that the di�erence of models does not have much influence on the
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relative di�erence of topic propagation which indeed strongly depends on topic itself.
Both models are well defined and can explain this property at this level of abstraction.
Nevertheless, the model selection is very important if we want to characterize how each
topic propagates through the network.

Finally, the proposed learning method is eÆcient and the runtime is not an issue.
The convergence is fast and it can handle networks of millions of nodes because the
complexity depends directly on the data size, not the number of nodes. In particular, the
complexity of learning from a single sequence is proportional to the number of active
nodes, their average degree, and the EM iteration number.

7 Conclusion

We considered the problem of analyzing information di�usion process in a social net-
work using two kinds of information di�usion models, incorporating asynchronous time
delay, the AsLT model and the AsIC model, and investigated how the results di�er ac-
cording to the model used. To this end, we proposed novel methods of 1) learning the
parameters of the AsLT model from the observed data (the method for learning the pa-
rameters of the AsIC model has already been reported), and 2) selecting models that
better explains the observation. We experimentally confirmed that the learning method
converges to the correct values very stably and the model selection method can cor-
rectly identifies the di�usion models by which the observed data is generated based on
extensive simulations on four real world datasets. We further applied the methods to the
real blog data and analyzed the behavior of topic propagation. The relative propagation
speed of topics, i.e. how far�near and how fast�slow each topic propagates, that are de-
rived from the learned parameter values is rather insensitive to the model selected, but
the model selection algorithm clearly identifies the di�erence of model goodness for
each topic. We found that many of the topics follow the AsIC models in general, but
some specific topics have clear interpretations for them being better modeled by either
one of the two, and these interpretations are consistent with the model selection results.
There are numerous factors that a�ect the information di�usion process, and there can
be a number of di�erent models. Model selection is a big challenge in social network
analysis and this work is the first step towards this goal.
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Abstract. In this paper, we introduce a simple but efficient greedy algorithm,
called SINCO, for the Sparse INverse COvariance selection problem, which is
equivalent to learning a sparse Gaussian Markov Network, and empirically inves-
tigate the structure-recovery properties of the algorithm. Our approach is based on
a coordinate ascent method which naturally preserves the sparsity of the network
structure. We show that SINCO is often comparable to, and, in various cases,
outperforms commonly used approaches such as glasso [7] and COVSEL [1],
in terms of both structure-reconstruction error (particularly, false positive error)
and computational time. Moreover, our method has the advantage of being easily
parallelizable. Finally, we show that SINCO’s greedy nature allows reproduction
of the regularization path behavior by applying the method to one (sufficiently
small) instance of the regularization parameter λ only; thus, SINCO can obtain a
desired number of network links directly, without having to tune the λ parameter.
We evaluate our method empirically on various simulated networks and real-life
data from biological and neuroimaging applications.

1 Introduction

In many practical applications of statistical learning the objective is not simply to
construct an accurate predictive model but rather to discover meaningful interactions
among the variables. For example, in applications such as reverse-engineering of gene
networks, discovery of functional brain connectivity patterns, or analysis of social inter-
actions, the main focus is on reconstructing the network structure representing depen-
dencies among multiple variables, such as genes, brain areas, or individuals. Probabilis-
tic graphical models, such as Markov networks, provide a statistical tool that captures
such variable interactions explicitly in a form of a graph.

Herein, we focus on learning sparse Markov Networks over Gaussian random vari-
ables (also called Gaussian Markov Random Fields, or GMRFs), which is equivalent to
reconstructing the inverse covariance (concentration, or precision) matrix C, assuming
the data are centered to have zero mean. Following the parsimony principle, our objec-
tive is to choose the simplest model, i.e. the sparsest network (matrix) that adequately
explains the data. This sparsity requirement not only improves the interpretability of the
model, but also serves as a regularizer that helps to avoid overfitting.

The sparse inverse covariance selection problem, first introduced in [4], is to find
the maximum-likelihood model with a constraint on the number of parameters
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(i.e., small l0-norm ofC). In general, this is an intractable combinatorial problem. Early
approaches used greedy forward or backward search that required O(p2) maximum-
likelihood-estimation (MLE) fits for different models in order to add (delete) an edge
[8], where p is the number of variables. This approach does not scale well with the num-
ber of variables1; moreover, the existence of MLE for C is not even guaranteed when
the number of variables exceeds the number of observations [3].

Recently, however, an alternative approximation approach to the above problem was
suggested in [21,1] that replaces the intractable l0 constraint with its l1-relaxation,
known to enforce sparsity, and yields a convex optimization problem that can be solved
efficiently. A variety of algorithms for solving this problem were proposed in the past
few years [21,1,7,14,5,15,9]2.

In this paper, we introduce a very simple algorithm for solving the above l1-regularized
maximum-likelihood problem, and provide a convergence proof. Our algorithm, called
SINCO (for Sparse INverse COvariance), solves the primal problem, unlike most of
its predecessors that focus on the dual (e.g. COVSEL [1], glasso [7], as well as [5]).
SINCO uses coordinate ascent, in a greedy manner, optimizing one diagonal or two
symmetric off-diagonal elements of C at each step, unlike, for example, COVSEL or
glasso which optimize one row (column) of the dual matrix. Thus, SINCO naturally
preserves the sparsity of the solution and tends to avoid introducing unnecessary (small)
nonzero elements, which appears to be beneficial when the “ground-truth” structure is
sufficiently sparse.

Note that, although the current state-of-art algorithms for the above problem are
converging to the same optimal solution in the limit, the near-optimal solutions ob-
tained after any fixed number of iterations can be different structure-wise, even though
they reach similar precision in the objective function reconstruction. Indeed, it is well-
known that similar likelihoods can be obtained by two distributions with quite different
structures due to multiple (sufficiently) weak links. As to the l1-norm regularization,
although it often tends to enforce solution sparsity, it is still only an approximation to l0
(i.e. a sparse solution may have same l1-norm as a much denser one). Adding l1-norm
penalty is only guaranteed to recover the “ground-truth” model under certain condition
on the data (that are not always satisfied in practice) and for certain asymptotic growth
regimes of the regularization parameter, with growing number of samples n and dimen-
sions p (with unknown constant). So the optimal solution, as well as near-solutions at
given precision, could possibly include false positives, and one optimization method
can potentially choose sparser near-solutions (at same precision) than another method.

Thus, especially in case of sufficiently sparse ground-truth models, a method such as
SINCO may be preferable, since it is more “cautious” about adding nonzero elements
than its competitors (i.e., it adds at most two nonzero elements at a time, which are also
providing the maximum improvement in the objective function - i.e., the method selects,
in a sense, the “most important” edges first). Indeed, as demonstrated by our empirical
results, SINCO has a better capability of reducing the false-positive error rate (while

1 E.g., [11] reported difficulties running “the forward selection MLE for more than thirty nodes
in the graph”.

2 Moreover, recent extensions of this approach impose additional structure on the graph, allow-
ing, for example, to learn blockwise-sparse models [5,15,10].
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maintaining a similar true positive rate) when compared to glasso, a commonly used
method that we choose as a baseline here (together with the similar but less efficient
COVSEL method), since it is the only other method that maintains the initial sparsity of
solution in a controlled manner.

Another property of SINCO is that evaluating each candidate edge can be performed
very efficiently, in constant time, by solving a quadratic equation. In terms of the overall
computational time, while glasso is comparable to, or faster than SINCO for a relatively
small number of variables p, SINCO appears to have much better scaling when p in-
creases (e.g., gets closer to 1000 variables), and can significantly outperform glasso
(and, of course, COVSEL). Moreover, SINCO has the advantage of being easily paral-
lelizable due to the nature of its greedy steps. While we are not claiming SINCO’s com-
putational superiority to all state-of-art methods in the sequential setting (it is known
that the recently proposed projected gradient [5] and smooth optimization [9] methods
outperform glasso which is comparable to SINCO), we must underscore that straight-
forward massive parallelization appears to be SINCO’s unique property, as none of its
competitors seem to be parallelizable, at least not in such an easy way. In particular,
glasso solves a sequence of Lasso problems, each of which is solved using sequen-
tial coordinate descent, which does not gain from parallelization. The gradient-based
methods of [5] and [9] require an eigenvalue factorization or a matrix inverse. These
operations, while parallelizable, do not scale as efficiently as simple arithmetic opera-
tions involved in SINCO’s computations.

Next, we investigate empirically the “path-building” property of SINCO. Note that
the structure reconstruction accuracy is known to be quite sensitive to the choice of
the regularization parameter λ, and the problem of selecting the “best” value of this
parameter in practical settings remains open. (As mentioned before, recent theoreti-
cal work has focused mainly on asymptotic consistency results [11,21,1,18,13].) Thus,
we explore SINCO vs glasso behavior in several regimes of λ. What we observe is
that SINCO’s greedy approach introduces “important” nonzero elements in a manner
similar to the path-construction process based on sequentially reducing the value of
λ. SINCO can reproduce the regularization path behavior without actually varying the
value of the regularization parameter, following instead the “greedy solution path”, i.e.
sequentially introducing non-zero elements. We observe such behavior on both syn-
thetic problems and real-life biological networks, such as E.coli transcriptional network
from the DREAM-07 challenge [16]. This behavior is somewhat similar to LARS [6]
for Lasso, however, unlike LARS, SINCO updates the coordinates which provide the
best optimal function value improvement, rather than the largest gradient component.

Finally, experiments on real-life brain imaging (fMRI) data demonstrate that SINCO
reconstructs Markov Networks that achieve the same or better classification accuracy
than its competitors while using much smaller fraction of edges (non-zero entries of the
inverse-covariance matrix). In summary, the advantages of SINCO include (1) simplic-
ity, (2) natural tendency to preserve sparsity (beneficial on sufficiently sparse problems),
(3) efficiency and a relatively straightforward massive parallelization, as well as (4) an
interesting property associated with its solution path.
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2 Problem Formulation

We consider a multivariate Gaussian probability density function over a set of p ran-
dom variables X = {X1, ..., Xp} with the covariance matrix Σ and zero mean. A
Markov network (also called a Markov Random Field, or MRF) represents the condi-
tional independence structure of a joint distribution, where a missing edge (i, j) im-
plies conditional independence between Xi and Xj given all remaining variables [8].
In Gaussian MRFs, missing edges correspond to zero entries in the inverse covariance
(concentration) matrix C = Σ−1, and vice versa [8]. Thus, learning the structure of a
Gaussian MRF is equivalent to recovering the zero-pattern of the corresponding inverse-
covariance matrix. Note that the straightforward approach of just taking the inverse
of the empirical covariance matrix A = 1

n

∑n
i=1 xT

i xi, where xi is the i-th sample,
i = 1, ..., n (i.e., the inverse of the maximum-likelihood estimate of the covariance ma-
trix Σ), does not produce the desired result. Indeed, even if the inverse exists (which is
not necessarily the case when p >> n), it does not typically contain any elements that
are exactly zero. Therefore, an explicit sparsity-enforcing constraint needs to be added
to the maximum-likelihood formulation.

A common approach to enforcing sparsity of C is to include as a penalty the (vector)
l1-norm of C, which is equivalent to imposing Laplace priors on the elements of C in
the maximum-likelihood framework [21,7,1,5,15] (see [21] for the derivation details).
The standard approach assumes that all entries of C follow the same Laplace distribu-
tion with a common parameter λ, i.e. p(Cij) = λij

2 e−λij |Cij|, yielding the following
penalized log-likelihood maximization problem [21,1,7].

max
C�0

n

2
[ln det(C) − tr(AC)] − λ||C||1. (1)

Herein, we make a more general assumption about p(C), allowing different elements
of C to have different parameters λij (as, for example, in [5]). Hence we consider the
following formulation

max
C�0

n

2
[ln det(C) − tr(AC)] − ‖C‖S . (2)

Here by ‖C‖S we denote the sum of absolute values of the elements of the matrix S ·C,
where · denotes the element-wise product. For example, if S is a product of ρ = n

2λ
and the matrix of all ones, then the problem reduces to the standard problem in the eq.
1. The dual of this problem is

max
W�0

{n
2

ln det(W ) − np/2 : s.t. − S ≤ n

2
(W −A) ≤ S}, (3)

where the inequalities involving matricesW ,A and S are element-wise. The optimality
conditions for this pair of primal and dual problems imply that W = C−1 and that
(n/2)Wij −Aij = Sij if Cij > 0 and (n/2)Wij −Aij = −Sij if Cij < 0.
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3 The SINCO Method

3.1 Relation to Prior Art

Problem (2) is a special case of a semidefinite programming problem (SDP) [20], which
can be solved in polynomial time by interior point methods (IPM). However, each it-
eration requires O(p6) time and O(p4) space, which is very costly. Another reason
why using IPMs is less desirable for the structure recovery problem is that the spar-
sity pattern is recovered only in the limit, i.e., the solution does not typically include
exact zeros, and thus numerical inaccuracy can potentially interfere with the structure
recovery.

As an alternative to IPMs, several more efficient approaches were developed recently
for problem (2). Most of those approaches are primarily focused on solving the dual
problem in (3). For example, [1] and [7] apply the block-coordinate descent method to
the dual formulation, [9] uses a first-order optimal gradient ascent approach, and [5]
uses a projected gradient approach.

Herein, we propose a novel algorithm, called SINCO, for Sparse INverse COvari-
ance problem. SINCO solves the primal problem directly and uses coordinate ascent,
which naturally preserves the sparsity of the solution. Unlike, for example, COVSEL
and glasso that optimize one row (and the corresponding symmetric column) of the
dual matrix is at each step, SINCO only optimizes one diagonal or two (symmetric)
off-diagonal entries of the matrix C at each step. The advantage of our approach is
that the solution to each subproblem is available in closed form as a root of a quadratic
equation. Computation at each step requires a constant number of arithmetic operations,
independent of p. Hence, in O(p2) operations a potential step can be computed for all
pairs of symmetric elements (i.e., for all pairs (i, j)). Then the step which provides
the best function value improvement can be chosen, which is the essence of the greedy
nature of our approach. Once the step is taken, the update of the gradient information
requiresO(p2) operations. Hence, overall, each iteration takesO(p2) operations. As we
will see later, each step is also suitable for massive parallelization.

In comparison, glasso and COVSEL require solving a quadratic programming prob-
lem when updating a row (column)3, and its theoretical and empirical complexity varies
depending on the method used, but always exceedsO(p2): it isO(p4) for COVSEL and
O(p3) for glasso. Also, the methods of [14] and [5] iterate through the columns and
require O(p4) and O(p3) time per iteration, respectively (see [5] for detailed discus-
sion). Note, however, that the overall number of iterations can be potentially lower than
in the case of SINCO, since the above methods update each row (column) at once. We
will mainly focus on comparing our method with glasso as a representative state-of-the
art technique, particularly since it is the only other method that maintains the initial
sparsity of the solution in a controlled manner. (In some cases, when we only compare
the accuracy of the solution (Section 4.4), we perform experiments with COVSEL, a
similar but less efficient implementation of the same approach as glasso).

3 COVSEL solves the subproblems via an interior point approach (as second order cone
quadratic problems (SOCP)), while glasso poses the subproblem as a dual of the Lasso prob-
lem [17], which is solved by coordinate descent method.
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As we will show in our numerical experiments, SINCO, in a serial mode, is compara-
ble to or faster than glasso, which is orders of magnitude faster than COVSEL [7]. Also,
SINCO often reaches lower false-positive error than glasso since it introduces nonzero
elements greedily. Perhaps the most interesting consequence of SINCO’s greedy nature
is that it reproduces the regularization path behavior while using only one value of the
regularization parameter λ (see Section 4.1). Another important feature of SINCO is
the ability to efficiently utilize warm starts in various modes. For instance, it is easy to
compute a range of solutions for various values of λ, which defines matrix S.

3.2 Algorithm Description

The main idea of the method is the following: at each iteration, the matrix C′ or the
matrix C′′ is updated by changing one element on the diagonal or two symmetric off-
diagonal elements. This implies that the updatedC can be written atC+θ(eie

T

j +eje
T

i ),
where i and j are the indices corresponding to the elements that are being changed.
We can therefore rewrite the objective function of the problem (2) as a function of
θ (denoted f(θ) below). The key observation is that, given the matrix W = C−1,
the exact line search that optimizes f(θ) along the direction eie

T

j + eje
T

i reduces to a
solution of a quadratic equation. Hence each such line search takes a constant number of
operations. Moreover, given the starting objective value, the new function value on each
step can be computed in a constant number of steps. This means that we can perform
such line search for all (i, j) pairs in O(p2) time, which is linear in the number of
unknown variablesCij . We then can choose the step that gives the best improvement in
the value of the objective function. After the step is chosen, the dual matrix W = C−1

and, hence, the objective function gradient, are updated in O(p2) operations4.
We now present the method. First, we can reformulate the problem (2) as:

max
C′,C′′

n

2
[ln det(C′ − C′′) − tr(A(C′ − C′′))] − ||C′ − C′′||S ,

s. t. C′ ≥ 0, C′′ ≥ 0, C′ − C′′ " 0

Note that ||C′ −C′′||S = tr(S(C′ +C′′)) if C′ and C′′ have non-overlapping nonzero
structure.

For a fixed pair (i, j), we consider the update of C′ given byC′(θ) = C′ +θ(eie
T

j +
eje

T

i ), such that C′ ≥ 0. Then we can write the objective as the function of θ:

f ′(θ) =
n

2
(ln det(C + θeie

T

j + θeje
T

i ) − tr(A(C + θeie
T

j + θeje
T

i )) − ||C + θeie
T

j + θeje
T

i ||S

Similarly, if we consider the update of the form C′′(θ) = C′′ + θ(eie
T

j + eje
T

i ) such
that C′′ > 0, the objective function becomes

f ′′(θ) =
n

2
(ln det(C − θeie

T

j − θeje
T

i ) − tr(A(C − θeie
T

j − θeje
T

i )) − ||C − θeie
T

j − θeje
T

i ||S
4 Note that there is no need to enforce the posdef constraint explicitly, as ln det(C) goes to

negative infinity when C approaches singularity. At each step, we maximize the objective
along the direction of increase until the local maximum is reached. Hence, it is impossible for
the method to move past the point where the objective is negative infinity.
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The method we propose works as follows:

Algorithm 1

0. Initialize C′
= I, C′′

= 0, W = I

1. Form the gradient G′
=

n

2
(W − A) − S and G′′

= −S − n

2
(W + A)

2. For each pair (i, j) such that

(i)G′
ij > 0, C′′

ij = 0, compute the maximum off ′
(θ) for θ > 0.

(ii)G′
ij < 0, C′

ij > 0, compute the maximum off ′
(θ) for θ < 0 subject to C

′ ≥ 0.

(iii)G′′
ij > 0, C′

ij = 0, compute the maximum off ′′
(θ) for θ > 0.

(iv)G′′
ij < 0, C′′

ij > 0, compute the maximum of f ′′
(θ) for θ < 0 subject to C

′′ ≥ 0.

3. Choose the step which provides the maximum function improvement.

If relative function improvement is below tolerance, then Exit.

4. Update W−1
and the function value and repeat.

The inverse W , then, is updated, according to the Sherman-Morrison-Woodbury for-
mula (X+ ab

T

)−1 = X−1−X−1a(1+ b
T

X−1a)−1b
T

X−1 in O(p2) operations. The
following theorem is the result of the analysis presented in Appendix.

Theorem 1. The steps of SINCO algorithm are well-defined (that is, the quadratic
equation always yields the maximum of f(C) along the chosen direction). The algo-
rithm converges to the unique optimal solution of (2).

Note that the algorithm lends itself readily to massive parallelization. Indeed, at each
iteration of the algorithm the step computation for each (i, j) pair can be parallelized
and the procedure that updates W involves simply adding to each element of W a
function that involves only two rows ofW (see Appendix for details). Hence the updates
can be also done in parallel and in very large scale cases the matrixW can also be stored
in a distributed manner. The same is true for the storage of matricesA and S (assuming
that S needs to be stored, that is not all elements of S are the same), while the best way
to store C′ and C′′ matrices may be in sparse form.

4 Empirical Evaluation

In order to test structure-reconstruction accuracy, we first performed experiments on
several types of synthetic problems. Note that, unlike prediction of an observed variable,
structure reconstruction accuracy is harder to test on “real” data since (1) the “true”
structure may not be available and (2) known links in “real” networks (e.g., known
gene networks) may not necessarily correspond to links in the underlying Markov net.
We generated uniform-random, as well as semi-realistic, structured “scale-free” net-
works, that follow a power-law degree distribution; such networks are known to model
well various biological, ecological, social, and other real-life networks [2]. The scale-
free (SF) networks were generated using the preferential attachment (Barabasi-Albert)
model [2]5.

5 We used the open-source Matlab code available at
http://www.mathworks.com/matlabcentral/fileexchange/11947

http://www.mathworks.com/matlabcentral/fileexchange/11947
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We generated networks with various density, measured by the % of non-zero off-
diagonal entries. For each density level, we generated the networks over p variables, that
defined the structure of the “ground-truth” inverse covariance matrix, and for each of
them, we generate matrices with random covariances corresponding to the non-diagonal
non-zero entries (while maintaining positive definiteness of the resulting covariance
matrix). We then sampled n instances, with the value of n depending on the experiment,
from the corresponding multivariate Gaussian distribution over p variables.

We also experimented with several real-life datasets, including (a) microarray data
for the genome-scale transcriptional network of E.coli (a DREAM-2007 challenge [16]),
and (b) the brain activity data from a set of fMRI experiments described in [12]6.

We used ε = 10−6 threshold on the improvement in the objective function as a
stopping criterion.

4.1 Regularization Path

One of the main challenges in sparse inverse covariance selection is the proper choice of
the weight matrixS in (2). Typically the matrix S is chosen to be a multiple of the matrix
of all ones. The multiplying coefficient is denoted by λ and is called the “regularization
parameter”. Hence the norm ‖C‖S in (2) reduces to λ‖C‖1 (in the vector-norm sense)
as in ([1]). Clearly, for large values of λ as λ→ ∞ the solution to (2) is likely to be very
sparse and eventually diagonal, which means that no structure recovery is achieved.
On the other hand, if λ is small as λ → 0, the solution C is likely to be dense and
eventually approach A−1, and, again, no structure recovery occurs. Hence exploration
of a regularization path is an integral part of the sparse inverse covariance selection.

The SINCO method is very well-suited for the efficient regularization path compu-
tation, since it directly exploits warm starts. When λ is relatively large, a very sparse
solution can be obtained quickly. This solution can be used as a warm start to the prob-
lem with a smaller value of λ and, if the new value of λ is not much smaller than the
previous value, then the new solution is typically obtained in just a few iterations, be-
cause the new solution has only a few extra nonzero elements. Warm starts can also be
used to initiate different subproblems for the leave-one-out validation approach, where
the structure learning is performed on n subsets of the data (one sample being left out
each time), so that the stability of the solution can be evaluated. Since each leave-one-
out subproblem differs from another one by a rank-two update of matrix A, and since
the resulting nonzero pattern is expected to be not very different, the solution to one
subproblem can be an efficient warm start for another subproblem.

Typically the output of the regularization path is evaluated via the ROC curves show-
ing the trade-off between the number of true positive (TP) element recovered and the
number of false positive (FP) elements. Producing better curves (where the number of
TPs rises fast relative to FPs) is usually an objective of any method that does not focus
on specific λ selection. An interesting property of SINCO is that it introduces nonzero
entries to the matrix C as it progresses. Hence, if we use looser tolerance and stop the
algorithm early, then we will observe fewer nonzero entries, hence a sparse solution
for any specific value of λ. What we observe, as seen in Figure 1, is that if we apply

6 For more details, see the StarPlus website
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/
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Fig. 1. Scale-free networks: SINCO and glasso paths when varying tolerance (tolerance path -
blue ’o’) and λ (lambda, or regularization, path - red ’x’). (a) and (b) show SINCO paths, on
problems with (a) p = 100, n = 5000 and (b) p = 100, n = 500, respectively; (c) and (d) show
glasso paths on the same problems

SINCO to problem (2) with ever tighter tolerance (equivalent to observing the path of
intermediate solutions) then the ROC curves obtained from the tolerance solution path
match the ROC curves obtained from the regularization path. Here we show examples
of the matching ROC curves for various networks with which we experimented. We use
a randomly generated structured (scale-free) network that is 21% dense and a randomly
generated unstructured network, 3% dense (due to space restriction, we only show the
results for scale-free networks; random unstructured networks produce very similar re-
sults). We use p = 100 and two instances: n = 500 and n = 5000. We applied SINCO
to one instance of problem (2) with λ = 0.01 (very small regularization) with a range
of stopping tolerances from 10−4 to 10−7. The ROC curve of that path is presented by
a line with “o”s. We also applied SINCO with fixed tolerance of 10−6 to a range of
λ values from 300 to 0.01. The corresponding ROC curves are denoted by lines with
“x”s. We can see that the ROC curve of the regularization path for the given range of
values of λ is somewhat less steep than that of the tolerance path, but the curves are still
very close in the area where they overlap. For baseline we also present the ROC curve
of the regularization path computed by glasso, which is very similar to the SINCO’s
ROC curves. Note that changing tolerance does not have the same effect on glasso as it
does on SINCO. The number of TP and FP does not change noticeably with increasing
tolerance. This is due to the fact that the algorithm in glasso updates a whole row and a
column of C at each iteration while it cycles through the rows and columns, rather than
selecting the updates in a greedy manner.
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Fig. 2. SINCO’s tolerance path vs regularization path: (a) two path for the E.coli subnetwork; (b)
comparing positives on scale-free networks

Figure 2a shows a very similar behavior when comparing the two paths for the
DREAM-07 challenge problem of E.coli transcriptional network reconstruction, for
n = 300 microarray samples and a subset of p = 133 transcription factors that form a
connected component in the graph.

Note, however, that it is not always the case that SINCO’s solution path (tolerance
path) is actually the same as the regularization path. In Figure 2b, the lower curve shows
the percentage of the positives (nonzero entries in C) in solutions from SINCO’s toler-
ance path which are not present in the solution on the regularization path. The higher
curve represents the percentage of true positives; the x axis of the figure represent the
points along the tolerance and regularization paths, which are matched to each other.
We observe that the SINCO and the regularization paths largely coincide until the TP
reach its maximum and further nonzeros are in the FP category and hence, in a way, are
random noise.

Our observations imply that SINCO can be used to greedily select the elements of
graphical model until the desired trade-off between FPs and TPs or the desired number
of nonzero elements is achieved or the allocated CPU time is exhausted. In the limit
SINCO solves the same problem as glasso and hence the limit number of the true and
false positives is dictated by the choice of λ. But since the real goal is to recover the
true nonzero structure of the covariance matrix, it is not necessary to solve problem (2)
accurately. For the purpose of recovering a good TP/FP ratio one can apply the SINCO
method, without the adjustments to λ.

We should note that computing the regularization path presented in our experiments
is typically more efficient in terms of CPU time than computing the tolerance path; the
largest computational cost lies in computing the tail of the path for smaller tolerances.
On the other hand, the tolerance path appears to be more precise and exhaustive, in
terms of possible FP/TP tradeoffs. It is also important to note that the entire tolerance
path is automatically produced as a sequence of iterates produced by SINCO, while the
regularization path can only be computed as a sequence of solutions for a given set of
values of λ.

4.2 Empirical Complexity

Here we will discuss the empirical dependence of the runtime of the SINCO algorithm
on the choice of stopping tolerance and the problem size p. We also investigate the effect
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Fig. 3. CPU time: SINCO vs glasso on (a) random networks (n = 500, fixed range of λ) and
(b) scale-free networks (density 21%, n and λ scaled by the same factor with p, n = 500 for
p = 100). ROC curves: SINCO vs glasso on (c) random networks (p = 100, n = 500, fixed
range of λ) and (d) scale-free networks (p = 300, n = 1500, density 21%, n and λ scaled by the
same factor with p, starting with n = 500 for p = 100).

increasing p has on the results produced by SINCO and glasso. Both methods were
executed on Intel Core 2Duo T7700 processor (2.40GHz); note, however, that glasso is
based on well-tuned Fortran code with an R interface, while SINCO a straight-forward
C++ implementation of the algorithm in Section 3 with Matlab interface.

We consider the situation when p increases. If together with p the number of nonze-
ros in the true inverse covariance also increases, then to obtain a comparable problem
we need to increase n accordingly. Increasing n, in turn, affects the contribution of λ,
since the problem scaling changes. Here we chose to consider the following two simple
settings, where we can account for these effects. In the first setting, we increase p while
keeping the number of the off-diagonal nonzero elements in the randomly generated
unstructured network constant (around 300). We do not, therefore, increase n or λ. The
CPU time necessary to compute the entire path for λ ranging from 300 to 0.01 is plotted
for p = 100, 200, 300, 500, 800 and 1000 in Figure 3a. In the second case, we generated
block-diagonal matrices of sizes p = 100, 200, 300, 500, 800, 1000, with 100 × 100
diagonal blocks, each of which equals the inverse covariance matrix of a 21%-dense
structured (scale-free) network from the previous section. Since the number of nonzero
elements grows linearly with p, we increased n and the appropriate range of λ linearly
as well. The CPU time for this case is shown in the last plot of Figure 3b.

The first two plots in Figure 3 shows that the CPU time (in seconds) for SINCO
scales up more slowly than that of glasso, with increasing number of variables, p. The



Learning Sparse Gaussian Markov Networks 207

10
1

10
2

10
3

10
4

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1
Lambda=log10(N), random nets,  density = 0.03 

N

T
ru

e 
P

os
iti

ve
s

 

 
glasso
SINCO

10
1

10
2

10
3

10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Lambda=log10(N), random nets,  density = 0.03 

N

F
al

se
 P

os
iti

ve
s

 

 
glasso
SINCO

(a) Random: TP (b) Random: FP

10
1

10
2

10
3

10
4

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Lambda=log10(N), SF nets,  density = 0.21 

N

T
ru

e 
P

os
iti

ve
s

 

 
glasso
SINCO

10
1

10
2

10
3

10
4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Lambda=log10(N), SF nets,  density = 0.21 

N

F
al

se
 P

os
iti

ve
s

 

 
glasso
SINCO

(c) Scale-free: TP (d) Scale-free: FP

Fig. 4. SINCO and glasso accuracy with growing n: (a) and (b) show the results averaged over
20 random networks (p = 100, density 3%), (c) and (d) show similar results averaged over 25
scale-free networks (p = 100, density 21%)

reason for the difference in scaling rates is evident in the ROC curves shown in Figures
3c and 3d, which demonstrate that, for similarly high true-positive rate, glasso tends to
have much higher false-positive rate than SINCO, thus producing a less sparse solution,
overall.

4.3 Asymptotic Behavior with Increasing λ

Finally, we investigate the behavior of SINCO for a fixed value of p as n grows. In this
setting, we expect to obtain larger TP values and smaller FP error with increasing n.
The consistency result in [21] suggests that for our formulation, to obtain an accurate
asymptotic structure recovery, we should pick λ that grows with n, but so that its growth
is slower than

√
n.

Here we useλ = log10(n). We again apply our algorithm and glasso to the 21%-dense
scale-free networks with p = 100. In Figure 4 we show the how the value of TP and FP
returned by the two algorithms changes with growing n (note that λ is kept fixed for
each value of n). We observe that SINCO achieves in the limit nearly 0% false-positive
error and nearly 100% true-positive rate, while glasso’s FP error grows with increasing
n. This result is, again, a consequence of the greedy approach utilized by SINCO.

4.4 Application to fMRI Analysis

Here we describe the results of applying SINCO to a real-life data, where the “ground
truth” network structure was not available; thus, we could not measure the structure
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Fig. 5. SINCO vs. COVSEL on fMRI data

reconstruction accuracy, and instead evaluated the prediction accuracy of the resulting
Markov networks. In this section, we compare SINCO with COVSEL [1] rather than
glasso, since COVSEL is the other available Matlab implementation solving the same
dual problem as glasso (as opposed to SINCO solving the primal one), and, although
SINCO was shown to be slower than glasso[7], the objective here was rather to compare
the prediction accuracy of the two approaches and the density of solutions.

We used fMRI data for the mind-state prediction problem described in [12]7. The
data consists of a series of trials in which the subject is being shown either a picture
(+1) or a sentence (−1). Our dataset consists of 1700 to 2200 features, dependent on a
particular subject, and 40 samples, where half of the samples correspond to the picture
stimulus (+1) and the remaining half correspond to sentence stimulus (-1). (One sample
corresponds to the averaged fMRI image over 6 scans sequentially taken while a subject
is presented with a particular stimulus). We used leave-one-out cross-validation, and
report average results over 40 cross-validation folds, each corresponding to one sample
left out for testing, and the remaining 39 used for training.

For each class Y = {−1, 1}, we learn a sparse Markov Net model that pro-
vides us with an estimate of the Gaussian conditional density p(x|y), where x is
the feature (voxel) vector; on the test data, we choose the most-likely class label
argmaxy p(x|y)P (y) for each unlabeled test sample x.

Figure 5 show the results of comparing SINCO versus COVSEL for one of the
subjects in the above study (similar results were obtained for two more subjects). We
observe that SINCO produces classifiers that are equally (or more) accurate that those
produced by COVSEL (Figure 5c), but is much faster (Figure 5b) and uses much sparser
Markov Net models (Figure 5a), which suggests that COVSEL (and hence glasso, since
they are different implementations of the same approach) learns many links that are not
essential for the discriminative ability of the classifier8.

7 For more details, see the StarPlus website
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/

8 It is also interesting to note that both Markov Net classifiers are competitive with, and often
more accurate than the (linear) SVM classifier (Figure 5c). Herein, we used the SVM code by
A. Schwaighofer available at
http://ida.first.fraunhofer.de/˜anton/software.html
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5 Discussion

We proposes a novel approach, called SINCO, for solving the sparse inverse-covariance
selection problem, which is equivalent to learning the structure (and parameters) of a
Gaussian MRF. Our method is very simple; it uses greedy coordinate ascent, efficiently
performing each evaluation step in a constant time, by solving a quadratic equation.
We also provide a convergence proof. The method we present has two major advan-
tages: (1) natural tendency to preserve the sparsity of solution, leading to better true-
positive vs. false-positive error rate trade-off, especially on sparse problems, and (2)
potential for a straightforward massive parallelization that could provide a significant
O(p2) speedup at each iteration. Also, our method has interesting (and useful) property
of replicating the regularization path behavior (although not necessarily replicating the
actual regularization path) by applying the method to one (sufficiently small) instance
of the regularization parameter λ only. Thus, a desired number of network links can be
obtained directly from the greedy solution path, without having to tune the λ param-
eter. SINCO properties are evaluated on a range of randomly generated problems, as
well as on two real-life applications including gene-network reconstruction and neu-
roimaging. A important direction for future work is a more detailed investigation of the
near-solution space of the sparse inverse covariance problem considered herein, and a
better characterization of the relation between the objective function near its optimum
and the variance in the structure of potential solutions.

Appendix

Herein we present the derivation of the SINCO algorithm.
As mentioned in Section 3.2, the maximum of the one-dimensional function in Step

3 of SINCO is available in closed form. Indeed, consider the step C̄′ = C′ + θ(eie
T

j +
eje

T

i ). Let us assume that θ > 0 and that C′′
ij = 0, which implies that we can write the

step as C̄ = C + θ(eie
T

j + eje
T

i ), since the (i, j) and (j, i) elements do not become
zero for any such step.

The inverse W , then, is updated, according to the Sherman-Morrison-Woodbury
formula (X + ab

T

)−1 = X−1 −X−1a(1 + b
T

X−1a)−1b
T

X−1, as follows:

W̄ = W − θ(κ1WiW
T

j + κ2WiW
T

i + κ3WjW
T

j + κ1WjW
T

i ),

κ1 = −(1 + θWij)/κ, κ2 = θWjj/κ, κ3 = θWii/κ,

κ = θ2(Wii ∗Wjj −W 2
ij) − 1 − 2θWij .

Let us now compute the objective function as the function of θ:

f(θ) = n
2 (ln det(C + θeie

T

j + θeje
T

i ) − tr(A(C + θeie
T

j + θeje
T

i )) − ||C +
θeie

T

j + θeje
T

i ||S .

We use the following property of the determinant:

det(X + ab
T

) = det(X)(1 + b
T

X−1a)
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and the Scherman-Morisson-Woodbury formula. We have

det(C + θeie
T

j + θeje
T

i ) = det(C + θeje
T

i )(1 + θe
T

j (C + θeje
T

i )−1ei) =

det(C)(1 + θe
T

i C
−1ej)(1 + θe

T

j C
−1ei − θ2e

T

j C
−1ej(1+ θe

T

i C
−1ej)−1e

T

i C
−1ei) =

det(C)(1 + 2θe
T

i C
−1ej + (θe

T

j C
−1ei)2 − θ2e

T

i C
−1eie

T

j C
−1ej).

Given the dual solution W = C−1, and recalling that W and A are symmetric,
but S is not necessarily so, we can write the above as

det(C + θeie
T

j + θeje
T

i ) = det(C)(1 + 2θWij + θ2(W 2
ij −WiiWjj)).

Then the change in the objective function is

f(θ) − f = n
2 (ln(1 + 2θWij + θ2(W 2

ij −WiiWjj)) − 2Aijθ) − Sijθ − Sjiθ,

the last term being derived from the fact that Cij + θ and Cji + θ remain posi-
tive. Let us now consider the derivative of the objective function with respect to θ

df(θ)
dθ =

nWij+nθ(W 2
ij−WiiWjj )

θ2(W 2
ij−WiiWjj)+1+2θWij

− nAij − Sij − Sji.

To find the maximum of f(θ) we need to find θ > 0 for which df(θ)
dθ = 0. Let-

ting a denote WiiWjj −W 2
ij , this condition can be written as:

nWij−nAij−Sij−Sji−(na+2Wij(nAij +Sij +Sji)θ+a(nAij +Sij +Sji)θ2 = 0.

To find the value of θ for which the derivative of the objective function equals
zero we need to solve the above quadratic equation

abθ2 − (na+ 2Wijb)θ + nWij − b = 0, (4)

where a = WiiWjj − W 2
ij and b = nAij + Sij + Sji. Notice that a is always

nonnegative, because matrix W is positive definite, and it equals zero only when i = j.
We know that at θ = 0 df(θ)

dθ > 0. Let us investigate what happens when θ grows. The
discriminant of the quadratic equation is

D = (na+2Wijb)2−4ab(nWij−b) = (na)2+4nWijab+4W 2
ijb

2−4abnWij +4ab2

= (na)2 + 4b2WiiWjj > 0,

hence the quadratic equation always has a solution. At θ = 0 the quadratic
function equals

nWij − nAij − Sij − Sji = G′
ij +G′

ji > 0.
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Now let us again consider the derivative df(θ)
dθ . At θ = 0 we know that the derivative is

positive. We also know that the denominator

θ2(W 2
ij −WiiWjj) + 1 + 2θWij = (1 + θWij)2 − θ2WiiWjj

is positive when θ = 0 and is equal to zero when θ = θmax = 1/(
√
WiiWjj −Wij) >

0. The function f(θ) approaches negative infinity when θ → θmax, hence so does
df(θ)

dθ . This implies that df(θ)
dθ has to reach the value zero for some θ ∈ (0, θmax).

Hence the quadratic equation (4) has one positive solution in this interval. This solution
gives us the maximum of f(θ) and hence the length of the step along the direction
eie

T

j + eje
T

i .
The objective function value is easy to update using the formula

det(C′ − C′′ + θ(eie
T

j + eje
T

i )) = det(C′ − C′′)(1 + 2θWij − θ2a)).

Let us consider the negative step along the direction eie
T

j + eje
T

i when C′
ij > 0. The

derivations are exactly as above, except for we are now looking for solution θ < 0. As
discussed above, the term under the logarithm

θ2(W 2
ij −WiiWjj) + 1 + 2θWij = (1 + θWij)2 − θ2WiiWjj

is positive when θ = 0 and is also equal to zero when θ = θmin =
−1/(

√
WiiWjj + Wij) < 0. The derivative of f(θ) at θ = 0 is negative, this

time (which is why we are considering a negative step, in the first place), which means
that there exists a θ ∈ (θmin, 0) for which this derivative is zero, hence the quadratic
equation (4) has a negative solution. This negative solution θ− < 0 determines the
length of the step in the direction −eie

T

j − eje
T

i . It is important to note that the length
of the step cannot exceed the value C′

ij , hence the final step length is computed as
max(θ−,−C′

ij).
The other two possible steps listed in Step 3 can be analyzed analogously, the main

difference being the sign before the terms nAij , Sij and Sji in the case of the step that
updates C′′.

Each step can be computed by a constant number of arithmetic operations, hence
to find the step that provides the largest function value improvement it takes O(p2)
operations - the same amount of work (up to a constant) that it takes to update W and
the gradient after one iteration. Hence the overall per-iteration complexity is O(p2).
Moreover, this algorithms lends itself readily to massive parallelization, as discussed
earlier in Section 3.2.

The convergence of the method follows from the convergence of a block-coordinate
descent method on a strictly convex objective function. The only constraints are box
constraints (nonnegativity) and they do not hinder the convergence. In fact we can view
our method as a special case of the row by row (RBR) method for SDP described in [19].
In the case of SINCO we extensively use the fact that each coordinate descent step is
cheap and, unlike the RBR algorithm, we select the next step based on the best function
value improvement. On the other hand, we maintain the inverse matrix W , which RBR
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method does not. However, none of these differences prevent the convergence result for
RBR in [19] to apply to our method. Hence the convergence to the optimal solution
holds for SINCO.
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Abstract. The goal of graph clustering is to partition objects in a graph

database into different clusters based on various criteria such as vertex

connectivity, neighborhood similarity or the size of the maximum com-

mon subgraph. This can serve to structure the graph space and to im-

prove the understanding of the data. In this paper, we present a novel

method for structural graph clustering, i.e. graph clustering without gen-

erating features or decomposing graphs into parts. In contrast to many

related approaches, the method does not rely on computationally expen-

sive maximum common subgraph (MCS) operations or variants thereof,

but on frequent subgraph mining. More specifically, our problem for-

mulation takes advantage of the frequent subgraph miner gSpan (that

performs well on many practical problems) without effectively generat-

ing thousands of subgraphs in the process. In the proposed clustering

approach, clusters encompass all graphs that share a sufficiently large

common subgraph. The size of the common subgraph of a graph in a

cluster has to take at least a user-specified fraction of its overall size. The

new algorithm works in an online mode (processing one structure after

the other) and produces overlapping (non-disjoint) and non-exhaustive

clusters. In a series of experiments, we evaluated the effectiveness and ef-

ficiency of the structural clustering algorithm on various real world data

sets of molecular graphs.

1 Introduction

Mining graph data has attracted a lot of attention in the past ten years [1–3].
One family of methods is concerned with mining subgraph patterns in graph
databases [1, 2]. The criteria for interestingness are often based on the support
of a pattern in the graph database, e.g., requiring a minimum and/ or maxi-
mum frequency, closedness, freeness or class-correlation. However, in all of these
cases, the structural diversity of graph databases, i.e. the existence of groups of
similar or dissimilar graphs, is not explicitly taken into account or revealed by
the algorithm. Vice versa, the structural composition and existence of groups of
similar graphs has a serious impact on the output and runtime performance of

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part III, LNAI 6323, pp. 213–228, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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pattern mining algorithms. To gain insights into the structural characteristics of
graph data sets, we developed a graph clustering algorithm that discovers groups
of structurally similar and dissimilar graphs. The algorithm can be practically
useful for a variety of purposes: benchmarking other graph mining algorithms,
descriptor calculation (e.g., for QSAR studies), computing local models for clas-
sification or regression (e.g., one per cluster) and calculation of the so-called
applicability domain of models.

To illustrate the impact of structural diversity on graph mining results, we con-
sider two data sets of molecular graphs of the same size and with approximately
the same number of atoms per molecule. The first data set, the COX2 data set
(http://pubs.acs.org/doi/suppl/10.1021/ci034143r), contains 414 com-
pounds, which possess a relatively high structural homogeneity. The second data
set is a subset of the CPDB data set (http://potency.berkeley.edu/) that
matches the COX2 data both in the number of structures and the number of
atoms per structure. The results of a typical graph mining representative, gSpan,
and the results of the graph clustering algorithm presented in this paper are
shown in Figure 1. In the upper part of the figure, we see the huge difference
in the runtime and the number of discovered patterns. For structurally homo-
geneous data (COX2), the number of patterns and runtime explodes, whereas
for structurally heterogeneous data (CPDB) the algorithm behaves as expected.
The reason for this difference in performance becomes evident in the graph clus-
tering results in the lower part of Figure 1. As can be seen, there is a small
number of large clusters in COX2 and a large number of small clusters in CPDB
(for each value of a parameter that is varied on the x-axis). This indicates a high
degree of structural homogeneity in COX2 and a low degree in CPDB, and also
hints at the usefulness of graph clustering to make the characteristics of a graph
database explicit.

The graph clustering algorithm presented in this paper operates directly on
the graphs, i.e. it does not require the computation of features or the decom-
position into subgraphs. It works online (processing one graph after the other)
and creates a non-disjoint and non-exhaustive clustering: graphs are allowed to
belong to several clusters or no cluster at all. One important component of the
algorithm is a variant of gSpan to determine cluster membership. Thus, the
proposed graph clustering approach is based on a practically fast graph mining
algorithm and not on typically time-consuming maximum common subgraph
(MCS) operations [4]. In contrast to another graph clustering approach based
on graph pattern mining [5], the (often quite numerous) frequent subgraphs are
just by-products, and not part of the output of the algorithm: the actual output
consists just of the clustered graphs sharing a common scaffold.

The remainder of the paper is organized as follows. In Section 2 the methodol-
ogy of our structure-based clustering algorithm is introduced. Section 3 presents
a description of the data sets and experiments as well as an interpretation of the
results. In Section 4 related work is discussed before Section 5 gives a conclusion
and an outlook to future work.

http://pubs.acs.org/doi/suppl/10.1021/ci034143r
http://potency.berkeley.edu/
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(a) (b)

(c) (d)

Fig. 1. (Above) (a) Runtime behavior and (b) number of subgraphs for gSpan on COX2

and CPDB. (Below) Results of structural clustering on (c) COX2 and (d) CPDB.

2 Structural Clustering

The following section presents the structural clustering algorithm that can be
used to cluster graph instances based on structural similarity. Starting with
some definitions from graph theory, we present the problem definition and the
algorithm in detail.

2.1 Notation and Definitions

In the following, all graphs are assumed to be labeled, undirected graphs. To be
more precise, a graph and its subgraphs are defined as follows: A labeled graph
is represented as a 4-tuple g = (V,E, α, β), where V is a set of vertices and
E ⊆ V ×V is a set of edges representing connections between all or some of the
vertices in V . α : V → L is a mapping that assigns labels to the vertices, and
β : V × V → L is a mapping that assigns labels to the edges. Given two labeled
graphs g = (V,E, α, β) and g′ = (V ′, E′, α′, β′), g′ is a subgraph of g, (g′ ⊆ g) if:

– V ′ ⊆ V
– E′ ⊆ E
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Fig. 2. Schematic overview of the cluster membership assignment for instance xi.

Graph instances are represented by x1, ..., xn, clusters by C1, ..., Ck.

– ∀x ∈ V ′ : α′(x) = α(x)
– ∀(x, y) ∈ V ′ × V ′ : β′((x, y)) = β((x, y))

Given two arbitrary labeled graphs g1 = (V1, E1, α1, β1) and g2 =
(V2, E2, α2, β2), a common subgraph of g1 and g2, cs(g1, g2), is a graph g =
(V,E, α, β) such that there exists a subgraph isomorphism from g to g1 and from
g to g2. This can be generalized to sets of graphs. The set of common subgraphs
of a set of graphs {g1, ..., gn} is then denoted by cs({g1, ..., gn}). Moreover, given
two graphs g1 and g2, a graph g is called a maximum common subgraph of g1
and g2 if g is a common subgraph of g1 and g2 and there exists no other common
subgraph of g1 and g2 that has more vertices than g. Finally, we define the size
of a graph as the number of its vertices, i.e. |V |.

2.2 Problem Definition

Structural clustering is the problem of finding groups of graphs sharing some
structural similarity. Instances with similar graph structures are expected to be
in the same cluster provided that the common subgraphs match to a satisfac-
tory extent. Only connected subgraphs are considered as common subgraphs.
The similarity between graphs is defined with respect to some user-defined size
threshold. The threshold is set such that the common subgraphs shared among
a query graph and all cluster instances make up a specific proportion of the size
of each graph. A graph is assigned to a cluster provided that there exists at least
one such common subgraph whose size is equal or bigger than the threshold. In
this way, an object can simultaneously belong to multiple clusters (overlapping
clustering) if the size of at least one common subgraph with these clusters is
equal or bigger than the threshold. If an object does not share a common sub-
graph with any cluster that meets the threshold, this object is not included in
any cluster (non-exhaustive clustering). A graphical overview is shown in Figure
2. For one graph after the other, it is decided whether it belongs to an existing
cluster or whether a new cluster is created.
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Formally, we frame the problem of structural clustering as follows. Given a set
of graph objectsX = {x1, ..., xn}, we need to assign them into clusters which may
overlap with each other. In clustering these objects, one objective is considered:
to maximize the average number of objects contained in a cluster, such that
at any time for each cluster C there exists at least one common subgraph that
makes up a specific proportion, θ, of the size of each cluster member. Considering
the state of a cluster C = {x1, ..., xm}1 at any point in time, the criterion can
formally be defined as:

∃ s ∈ cs({x1, ..., xm})∀xi ∈ C : |s| ≥ θ|xi| (1)

where s is a subgraph and θ ∈ [0, 1] is a user-defined similarity coefficient. Ac-
cording to this goal, a minimum threshold for the size of the common subgraphs
shared by the query graph xm+1 and the instances in cluster C can be defined as

minSize = θ max(|xmax|, |xm+1|), (2)

where θ ∈ [0, 1] and xmax is the largest graph instance in the cluster. To obtain
meaningful and interpretable results, the minimum size of a graph considered for
cluster membership is further constrained by a minGraphSize threshold. Only
graphs whose size is greater than minGraphSize are considered for clustering.
Thus, the identification of the general cluster scaffold will not be impeded by
the presence of a few graph structures whose scaffold is much smaller than the
one the majority of the cluster members share. This will be especially useful
in real-world applications that often contain small fragments (see the minimum
size column in Table 1).

2.3 Algorithm

The clustering algorithm works as follows. Let minGraphSize be the minimum
threshold for the graph size and minSize be the minimum threshold for the size
of the common subgraphs specified by the user and defined in Equation 2. In
the first step, an initial cluster is created containing the first graph object that
is larger than minGraphSize. In the following steps, each instance is compared
against all existing clusters. In case the query instance meets the minGraphSize
threshold and shares at least one common subgraph with one or more clusters
that meets the cluster criterion in Equation 2, the instance is added to the
respective cluster. Unlike many traditional clustering algorithms, an object is
allowed to belong to no cluster, since it is possible that an object is not similar
to any cluster. Thus, in this case, a new singleton cluster is created containing
the query instance. The proposed clustering algorithm has two main advantages
over many clustering algorithms. First, the algorithm works in an online mode,
since it does not keep all the examples in memory at the same time, but pro-
cesses them one by one in a single pass. Second, in contrast to many clustering
algorithms which assume that the number of clusters is known beforehand, our
algorithm does not require the specification of the number of clusters a priori.
1 In slight abuse of notation, we use the same indices as above.
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Algorithm 1. Structural Clustering

1: // graph[] - array of n graphs to be clustered

2: // θ - similarity coefficient (θ ∈ [0, 1])
3: // minGraphSize - minimum graph size

4: procedure SC(graph[], θ, minGraphSize)
5: // Initialize the clustering with graph[0]

6: clusters[] ← ∞
7: // loop over all graphs

8: for (j ← 0, n) do
9: hasCluster ← false

10: if (graph[j] ≥ minGraphSize) then
11: // compare graph against all existing clusters

12: for all c ∈ clusters[] do
13: minSize ← θ · max(size(graph[j]), size(c.max))

14: // check for cluster exclusion criteria defined in Equation 3 and 4

15: if (3) || (4) then
16: continue
17: else
18: minSup ← c.size + 1

19: // add graph[j] to cluster c if gSpan finds at least one

20: // common subgraph that meets the minSize threshold

21: if gSpan′′(graph[j] ∪ c.graphs,minSup, minSize) then
22: c[last + 1] ← graph[j]
23: hasCluster ← true
24: end if
25: end if
26: end for
27: // create new cluster if the graph was not clustered

28: if (hasCluster = false) then
29: clusters[last + 1] ← newCluster(graph[j])
30: end if
31: end if
32: end for
33: end procedure

The pseudocode for the structural clustering algorithm is shown in Algorithm 1.
For computing common subgraphs, we use a modified version of the graph

mining algorithm gSpan [2] that mines frequent subgraphs in a database
of graphs satisfying a given minimum frequency constraint. In this paper,
we require a minimum support threshold of minSup = 100% in a set
of graphs, i.e. all common subgraphs have to be embedded in all cluster
members. For our experiments with molecular graph data, we use gSpan’,
an optimization of the gSpan algorithm for mining molecular databases
(http://wwwkramer.in.tum.de/projects/gSpan.tgz). Since we do not need
to know all common subgraphs of a set of graphs, but rather only want to find
out if there exists at least one common subgraph that meets the minimum size
threshold defined in Equation 2, it is possible to terminate search once a solution

http://wwwkramer.in.tum.de/projects/gSpan.tgz
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is found. Due to the structural asymmetry of the search tree (all descendants
of a subgraph are generated before its right siblings are extended), it is thus
possible to modify gSpan’ such that the procedure exits immediately when a
common subgraph is found that satisfies the minimum size threshold defined in
Equation 2. In this way, a substantial improvement in runtime performance can
be achieved. In the pseudocode, this modification of gSpan’ is called gSpan”. We
introduced a special label for edges in cyclic graphs to ensure that cylic graph
structures are not subdivided any further. Moreover, we introduced the following
two cluster exclusion criteria to avoid unnecessary calls to the gSpan” algorithm:

|xm+1| > |xmax| ∧ minSize > |xmin| (3)

|xm+1| < |xmin| ∧ minSize > |xm+1|, (4)

where xmin is the smallest graph in cluster C and xm+1 and xmax are defined
as above. Due to these exclusion criteria, graph instances which cannot fulfill
the minimum subgraph size threshold are eliminated from further consideration.
The first criterion (3) excludes too large query instances that would break up
an existing cluster while the second one (4) excludes too small query instances.
In case at least one of the two exclusion citeria is met, we omit the computation
of the common subgraphs and continue with the next cluster comparison.

In summary, three factors contribute to the practically favorable performance
of the approach: First, the use of a gSpan variant to compute a sufficiently large
common subgraph, which is known to be effective on graphs of low density.
Second, the possibility to terminate search as soon as such a subgraph is found.
Third, the cluster exclusion criteria to avoid unnecessary runs of gSpan”.

3 Experiments

To evaluate the the effectiveness and efficiency of the new structure-based clus-
tering approach introduced in Section 2.3, we conducted several experiments on
eight publicly available data sets of molecular graphs (Table 1). In this section,
we describe the experimental set-up and the results.

Baseline Comparison with Fingerprint Clustering The structure-based
clustering algorithm was compared with a baseline clustering algorithm based on
fingerprint similarity. The goal of this experiment is to determine if our algorithm
is able to increase cluster homogeneity as compared to fingerprint clustering.
Fingerprint-based similarities can be calculated extremely fast and have been
found to perform reasonably well in practice. For the fingerprint calculation of
the molecular graph data, the chemical fingerprints in Chemaxon’s JChem Java
package are used. The Tanimoto coefficient is used as similarity measure between
fingerprints, since these fingerprints are equivalent to Daylight fingerprints
(http://www.daylight.com/dayhtml/doc/theory/theory.finger.html)
which were shown to work well in combination with the Tanimoto coefficient
[4, 6].

http://www.daylight.com/dayhtml/doc/theory/theory.finger.html
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Table 1. Overview of the data sets used for assessing the structural clustering method

Short-hand n min size mean size max size

CPDBAS MOUSEa 444 2 13 64

CPDBAS RAT a 580 2 14 90

CY P b 700 1 24 86

NCIanti − HIV c 36255 3 25 139

SACAd 107 5 27 79

EPAFHMe 580 2 10 55

FDAMDDf 1216 3 23 90

RepDoseg 590 2 10 88

a http://epa.gov/NCCT/dsstox/sdf_cpdbas.html b http://pubs.acs.org/doi/suppl/10.1021/ci0500536
c http://dtp.nci.nih.gov/docs/aids/aids_data.html d http://dtp.nci.nih.gov/docs/cancer/

searches/standard_mechanism.html e http://epa.gov/NCCT/dsstox/sdf_epafhm.html
f http://epa.gov/NCCT/dsstox/sdf_fdamdd.html g http://www.fraunhofer-repdose.de/

The fingerprint-based clustering (FP clustering) works as follows. Iteratively,
each molecular graph is compared against all yet existing clusters. In case the
query graph meets a predefined minimum graph size threshold, minGraphSize,
and exceeds the minimum accepted Tanimoto similarity coefficient compared to
each graph in the cluster, the query graph is added to the respective cluster;
otherwise a new singleton cluster is created containing the query graph. As the
FP does not provide a measure for the size of the shared subgraph between
the FP cluster members, the common cluster scaffold is obtained by calculating
the MCS common to all members in order to get a comparison metric for the
proportion of the common subgraph. Note that this step can be omitted in our
structural clustering approach, since the defined similarity coefficient provides a
measure for the proportion of the common subgraph. In case a graph i is added to
a cluster, the MCS between i and the current MCS of the cluster j is calculated.
This MCS is iteratively reduced in size as it is compared to the new cluster
members that may not share the entire subgraph. For the MCS calculation the
maximum common edge subgraph algorithm was used which is implemented in
Chemaxon’s JChem java package.

Our structural clustering approach was compared with the baseline FP clus-
tering method on the data sets in Table 1. Due to space limitations, we present
the results on three representative data sets, CPDBAS MOUSE, CPDBAS RAT
and EPAFHM. In all experiments, we performed structural clustering for θ ∈
[0.2, 0.8]. For FP clustering we used a Tanimoto coefficient value in the range of
[0.4, 0.8]. Due to the different input parameters of both clustering approaches,
it is not obvious how to compare the clustering results. However, the clustering
statistics in Figure 3 suggest a correlation between the results from structural
clustering for a similarity coefficient value of x (x ∈ [0, 1]) and the results from
FP clustering for a Tanimoto similarity value of y = x − 0.1 (y ∈ [0, 1]), due
to similar clustering results in terms of the number of clusters, the number of
singletons and the mean and maximum size of the clusters. Thus, we compare
the clustering results from both algorithms with respect to this heuristic. Figure

http://epa.gov/NCCT/dsstox/sdf_cpdbas.html
http://pubs.acs.org/doi/suppl/10.1021/ci0500536
http://dtp.nci.nih.gov/docs/aids/aids_data.html
http://dtp.nci.nih.gov/docs/cancer/
searches/standard_mechanism.html
http://epa.gov/NCCT/dsstox/sdf_epafhm.html
http://epa.gov/NCCT/dsstox/sdf_fdamdd.html
http://www.fraunhofer-repdose.de/
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Results of structural clustering (a), (c), (e) vs. fingerprint clustering (b), (d),

(f) on CPDBAS MOUSE, CPDBAS RAT and EPAFHM

4 shows the histogram of the share of the MCS of the largest cluster instance for
all non-singleton FP clusters for a sample Tanimoto coefficient value of 0.6. The
results indicate that the MCS size proportions are, in many cases, below the ac-
cording structural similarity coefficient θ, which serves as a lower bound on the
MCS size proportion. In contrast, each cluster obtained by structural clustering
contains at least one common subgraph whose share of each cluster member is
equal or bigger than θ. The results suggest that, in comparison to FP clustering,
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(a) (b) (c)

Fig. 4. Histogram of the share of the MCS of the largest cluster instance for fingerprint

clustering on (a) CPDBAS MOUSE, (b) CPDBAS RAT and (c) EPAFHM using a

Tanimoto coefficient value of 0.6.

structural clustering provides a superior clustering with reduced heterogeneity
in the individual clusters in the overall clustering.

Qualitative Analysis of Structure-Based Clustering. Cluster analysis was
performed on the data set of 107 standard anti-cancer agents (SACA) whose class
labels corresponding to their mechanisms of action have been clearly classified
[7, 8]. The purpose of the experiment was to test if the clusters obtained by
structural clustering were in good agreement with the known SACA class labels.
As an external measure for clustering validation we used the Rand index to
quantify the agreement of the clustering results with the SACA classes. Larger
values for the Rand index correspond to better agreement between the clustering
results and the SACA classes, with 1.0 indicating perfect concordance. Table 2
shows the Rand index values for different similarity coefficient values. Structural
clustering clearly shows the peak point of the Rand index at θ = 0.6. In the
following, we present the clustering results for θ = 0.6 partitioning the 107
agents into 52 clusters. 23 of these clusters have at least two members, while the
final 29 clusters consist of a single graph. Figure 5(a) gives a representation of the
structural clusters with at least two instances in a hypothetical (non-Euclidean)
two-dimensional (descriptor) space, where large circles represent clusters and
dots, rectangles and stars denote cluster members according to the SACA classes.
The results indicate that the clusters tend to be associated with certain SACA
classes. Across different values for θ we observed that with a higher similarity
coefficient a finer but cleaner grouping of the structures at the cost of generating
a larger number of smaller clusters is achieved. The graphs in each class are more
cleanly discriminated from other graphs in the data set. Moreover, the clustering
produces less overlapping clusters with internally higher structural similarity. In
summary, structural clustering is capable of effectively grouping the 107 agents.
Graphs instances from the same cluster not only share common subgraphs but
are also strongly associated with specific SACA classes of mechanisms of action.

Graph Clustering Comparison Method. Our method was compared with
a graph-based clustering based on variational Dirichlet process (DP) mixture
models and frequent subgraph mining by Tsuda and Kurihara [5]. This clus-
tering approach addresses the problem of learning a DP mixture model in the
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Table 2. Number of clusters and Rand index values for structural clustering on SACA

θ 0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

# Clusters 6 7 11 22 32 39 48 52 60 66 82

Rand Index 0.408 0.436 0.515 0.765 0.827 0.854 0.863 0.869 0.866 0.848 0.833

(a) (b)

Fig. 5. Results of (a) structural clustering for θ = 0.6 and (b) DP Clustering for α = 0.1
and m = 1000 on the SACA data set. The different symbols for the cluster instances

represent the six SACA classes.

high dimensional feature space of graph data. We investigated if the approach
is also able to rediscover the known structure classes in the SACA database.
In this experiment, we varied the number of features m from 50 to 5000 and
set α = 0.01, 0.1, 1, 10. Table 3 shows the experimental results for α = 0.1. The
results for α = 0.01, 1, 10 were similar. We observed that the number of clusters
increases along with the number of features for m ≤ 500; form > 500 the number
of clusters decreases significantly. Compared to structural clustering, DP clus-
tering produces less clusters. In order to make the results more comparable to
the results of our method, we varied the user-specified parameters. Nonetheless,
it is impossible to parameterize the DP clustering method to obtain more than
seven clusters. Figure 5(b) presents the clustering results for m = 1000, since
Tsuda reported a good behavior of the algorithm for this value. Moreover, addi-
tional features can reveal detailed structure of the data. However, this advantage
presents a disadvantage at the same time, since graph clusters with thousands
of features are difficult to interpret. The DP clustering results indicate that the
method is not able to discriminate the known structure classes in the SACA
data set very well. In contrast to the results of structural clustering presented in
Section 3, the DP clusters are, in many cases, associated with different structure
classes, indicated by lower values of the Rand index (Table 3).
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Table 3. Number of clusters and size of the DFS code tree for DP clustering on the

SACA data set with α = 0.1

# Features 50 100 500 1000 5000

# Clusters 6 7 7 6 2

Rand Index 0.639 0.572 0.761 0.747 0.364

Cluster Stability. The outcome of the proposed structure-based clustering
approach is dependent on the order in which the objects in the data set are
processed. In this experiment, we studied the impact of the order of objects in the
data sets by assessing the stability of the resulting clusters. We performed several
experiments on data sets that are based on different permutations of a data
set. The Tanimoto similarity coefficient was used as a cluster-wise measure of
cluster stability, which defines the similarity between two clusters in terms of the
intersection of common instances compared to the union of common instances.
Our results suggest that structural clustering is sensitive to the particular order
of the data sets. However, the obtained clusters are stable with respect to data
permutations, since approximately 85% of the clusters of size ≥ 2 of a clustering
yield a Tanimoto similarity value of 1 compared to the most similar cluster in
a reference clustering. Taking also singletons into account, the similarity of the
clusters rises to 94%.

Performance with/without Cluster Exclusion Criteria. We investigated
the impact of the cluster exclusion criteria defined in Equation 3 and 4 on the
performance of the structure-based clustering algorithm. Therefore, we ran the
algorithm on the data sets in Table 1 with and without the exclusion criteria.
Figure 6 shows the results of the experiment on three representative data sets,
i.e. CPDBAS MOUSE, CPDBAS RAT and EPAFHM. The results indicate that
a significant performance improvement can be achieved with the application of
the cluster exclusion criteria.

Scalability Experiments. To study the scalability, we performed experiments
on ten data sets from the NCI anti-HIV database that consist of x graphs (x ∈
[1000, 10000]) with a similarity coefficient θ ∈ [0.2, 0.8]. As it can be seen in
Figure 7, the structure-based clustering algorithm scales favorably as the size of

(a) (b) (c)

Fig. 6. Runtime performance of structure-based clustering with and without clustering

exclusion criteria on (a) CPDBAS MOUSE, (b) CPDBAS RAT and (c) EPAFHM
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Fig. 7. Runtime performance of the structure-based clustering approach on ten data

sets from the NCI anti-HIV database consisting of x graphs (x ∈ [1000, 10000])

the data set increases. However, for 0.6 ≤ θ ≤ 0.8, the algorithm did not respond
within a certain timeout period for a data set size larger than 4000 / 5000 objects.
The overall results suggest that, depending on reasonable parameter settings, our
clustering approach can handle data sets of at least 10,000 graphs.

4 Related Work

Graph clustering has been extensively investigated over the past few years. Ba-
sically, there exist two complementary approaches to graph clustering [9]. The
simpler and more established one is to calculate a vectorial representation of the
graphs and use standard similarity or distance measures in combination with
standard clustering algorithms. The feature vector can be composed of prop-
erties of the graph and/ or of subgraph occurrences [10]. Yoshida et al. [11]
describe a graph clustering method based on structural similarity of fragments
(connected subgraphs are considered) in graph-structured data. The approach
is experimentally evaluated on synthetic data only and does not consider edge
and node labels. The second approach is to use the structure of the graphs di-
rectly. Tsuda and Kudo [3] proposed an EM-based method for clustering graphs
based on weighted frequent pattern mining. Their method is fully probabilistic,
adopting a binomial mixture model defined on a very high dimensional vector
indicating the presence or absence of all possible patterns. However, the num-
ber of clusters has to be specified a priori, and the model selection procedure is
not discussed in their paper. Bunke et al. [12] proposed a new graph clustering
algorithm, which is an extension of Kohonen’s well-known Self-Organizing Map
(SOM) algorithm [13] into the domain of graphs. The approach is experimentally
evaluated on the graph representations of capital letters that are composed of
straight line segments. Chen and Hu [14] introduced a non-exhaustive clustering
algorithm that allows for clusters to be overlapping by modifying the traditional
k-medoid algorithm. This implies the drawback that the number of clusters has
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to be known beforehand. In a comparison of an MCS-based clustering with a
fingerprint-based clustering, Raymond et al. [15] report that no obvious ad-
vantage results from the use of the more sophisticated, graph-based similarity
measures. They draw the conclusion, that although the results obtained from the
use of graph-based similarities are different from fingerprint-based similarities,
there is no evidence to suggest that one approach is consistently better than the
other.

Summing up, all MCS-based clustering approaches appear to suffer from the
NP-hardness of the MCS computation. While no running times are reported and
no implementations appear to be publicly available, the graph data sets tested
in related papers typically contain less than 500 graphs [4, 15]. Our choice to
modify a frequent graph miner instead is partly motivated by the observation by
Bunke et al. [16] that for dense graphs association graph methods are preferable,
whereas for sparse graphs (as the molecular structures occurring in our applica-
tion domains) methods enumerating frequent subgraphs are to be preferred.

Related to our clustering approach, Aggarwal et al. [17] propose a structural
clustering method for clustering XML data. It employs a projection based struc-
tural approach and uses a set of frequent substructures as the representative
with respect to an intermediate cluster of XML documents. Paths extracted
from XML documents are used as a document representation. To mine frequent
closed sequences, the sequential pattern mining algorithm BIDE [18] was revised
in order to terminate search once a sequence reaches a specified size. Our work is
most closely related to the graph clustering approach by Tsuda and Kurihara [5].
They presented a graph clustering approach based on frequent pattern mining
that addresses the problem of learning a DP mixture model in the high dimen-
sional feature space of graph data. To keep the feature search space small, an
effective tree pruning condition was designed. Although our clustering approach
is similarly based on frequent subgraph mining there are several important dif-
ferences. First, there are differences in the output that makes our clustering
results easier to interpret. Despite the proposed feature selection method to ob-
tain a reduced feature set, DP clustering still outputs quite numerous frequent
subgraphs which make the graph clusters difficult to interpret. In contrast, our
method actually outputs just the clustered graphs sharing a common cluster
scaffold. Second, we provide an effective online algorithm that allows for over-
lapping and non-exhaustive clustering. Non-exhaustive clustering may be more
robust in case the set of objects to be clustered contains outliers. The rationale
of overlapping clustering is that in some applications it is not appropriate for an
object to belong to only one cluster.

5 Conclusion and Future Work

We presented a new online algorithm for clustering graph objects in terms of
structural similarity. Structural graph clustering can offer interesting new in-
sights into the composition of graph data sets. Moreover, it can be practically
useful to benchmark other graph mining algorithms, to derive new substructural
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descriptors, to compute local models for classifying graphs, and to calculate the
applicability domain of models. Several experiments were designed to evaluate
the effectiveness and efficiency of our approach on various real world data sets
of molecular graphs. First of all, the results indicate that the clustering method
is able to rediscover known structure classes in the NCI standard anti-cancer
agents. Moreover, a baseline comparison with a fingerprint-based clustering was
presented. The results demonstrate that the structural clustering approach yields
larger and more representative cluster scaffolds compared to FP based clus-
tering, thus reducing the heterogeneity in the clusters obtained by fingerprint
clustering. To show the importance of the cluster exclusion criteria defined in
Equation 3 and 4, we evaluated the performance of the structural clustering
approach with and without these criteria. Finally, to investigate how well the
algorithm scales regarding running time, we performed extensive experiments
with 10,000 compounds selected from the NCI aids anti-viral screen data. In
summary, our results suggest that this overlapping, non-exhaustive structural
clustering approach generates interpretable clusterings in acceptable time. Fur-
ther work, from an application point of view, includes the following: First, it
would be interesting to investigate the effects of preprocessing steps, e.g., down-
weighting longer chains (acyclic substructures) or reduced graph representations
(transforming cycles, in chemical terms: rings, into special nodes). Second, the
algorithm could be extended easily to take into account the physico-chemical
properties of whole molecules. Technically, this would mean that only graphs
within a certain distance with respect to such global graph properties are added
to a cluster.
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Abstract. In this paper, we present an extensive study of the cutting-

plane algorithm (CPA) applied to structural kernels for advanced text

classification on large datasets. In particular, we carry out a compre-

hensive experimentation on two interesting natural language tasks, e.g.

predicate argument extraction and question answering. Our results show

that (i) CPA applied to train a non-linear model with different tree

kernels fully matches the accuracy of the conventional SVM algorithm

while being ten times faster; (ii) by using smaller sampling sizes to ap-

proximate subgradients in CPA we can trade off accuracy for speed, yet

the optimal parameters and kernels found remain optimal for the exact

SVM. These results open numerous research perspectives, e.g. in natural

language processing, as they show that complex structural kernels can

be efficiently used in real-world applications. For example, for the first

time, we could carry out extensive tests of several tree kernels on mil-

lions of training instances. As a direct benefit, we could experiment with

a variant of the partial tree kernel, which we also propose in this paper.

Keywords: Structural Kernels; Support Vector Machines; Natural Lan-

guage Processing.

1 Introduction

In many computer science areas such as Natural Language Processing (NLP),
Bioinformatics, Data Mining and Information Retrieval, structural kernels have
been widely used to capture rich syntactic information, e.g. [3,12,29,30]. In par-
ticular, in NLP, tree kernel functions can capture a representation of syntac-
tic parse trees, which is considerably more effective than the one provided by
straightforward bag-of-words models. This often results in higher accuracy, e.g.
[16,18,31,11]. Unfortunately, the use of kernels forces us to solve SVM optimiza-
tion problem in the dual space, which, in case of the very large datasets, makes
SVM learning prohibitively expensive.

Recently, cutting plane approaches have been proposed to achieve a great
speed-up in the learning of linear models on large datasets, but they still fail to
provide the same training performance on non-linear learning tasks. Indeed, the

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part III, LNAI 6323, pp. 229–244, 2010.
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number of kernel evaluations scales quadratically with the number of examples.
To overcome this bottleneck, Yu and Joachims [28] developed two approximate
cutting plane algorithms (CPAs). However, their experiments were carried out
using only Gaussian kernels on unstructured data.

In this paper, we study models that combine the speed of CPAs with the effi-
ciency of SVM-light-TK, which encodes state of the art structural kernels [17,18]
in SVM-light [6]. More specifically, by the means of extensive experimentation
we examine the applicability of CPAs to well-known structural kernels, i.e. sub-
tree (ST), subset tree (SST), and partial tree (PT) kernels, which provide a good
sample of the efficient tree kernel technology currently available. To obtain more
general results we considered two advanced and very different text categoriza-
tion tasks for which syntactic information is essential: (i) Semantic Role Labeling
(SRL) or predicate argument extraction [20,15] whose associated dataset con-
tains several millions of examples; and (ii) Question Classification (QC), e.g.
[13,26] from question answering domain. Some of the distinct properties of the
aforementioned datasets (compared to the previous works) are:

– Features are structured and embed syntactic information: from their rela-
tionship, the classifier derives higher semantics.

– The number of features is huge (millions) and they tend to be very sparse.
– The space is discrete, the a-priori weights are very skewed, and large frag-

ments receive exponentially lower scores than small fragments.
– There is high redundancy and inter-dependency between features.

Finally, we defined a novel kernel, unlexicalized PTK (uPTK), which is a
variant of PTK. It excludes single nodes from the feature space so that structural
features are better emphasized.

Our findings reveal that:

– As the theory suggests, CPAs can be successfully applied to structural spaces.
Indeed, we show that CPA is at least 10 times as fast as the exact version
while giving the same classification accuracy. For example, training a con-
ventional SVM solver with tree kernels on 1 million examples requires more
than seven days, while CPAs match the same accuracy in just a few hours.

– By decreasing the sampling size used in the approximation of the cutting
planes, we can trade off accuracy to a small degree for even faster training
time. For example, learning a model that is only 1.0 percentage point apart
from the exact model reduces the training time by a factor of 50.

– Using a sample size of only 100 instances for CPAs, which takes just a couple
of minutes of learning on one million of examples, we can correctly estimate
the best kernel, its hyper-parameters, and the trade-off parameter. The iden-
tified set of optimal parameters can be used by more computationally ex-
pensive and accurate models (CPAs with larger sample sizes or SVM-light).

– Thanks to the gained speed-up we could efficiently compare different kernels
on the large SRL datasets and establish an absolute rank, where uPTK
proves to be more effective than PTK.
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Our results open up new perspectives for the application of structural kernels
in various NLP tasks. The experiments that could not be carried out until now
on full subsets of very large corpora, e.g. training SVM-based SRL classifier such
as in [22,15] using either polynomial or tree kernels on the full dataset; training
SVM re-rankers for syntactic parsing [3,25] using tree kernels on the available
data; and training SVM question classifiers using tree kernels and other features
on large subsets of Yahoo! Answers dataset. The aforementioned motivations
encouraged us to release the new Tree Kernel toolkit to the public1.

In the remainder of this paper, Section 2 reviews the related work, while Sec-
tion 3 gives careful theoretical treatment to the workings of the cutting plane ap-
proach. Section 4 introduces well-known tree kernels along with the new uPTK.
The experimental analysis (Section 5) describes our experiments on SRL and QC
datasets and also discusses how approximate cutting plane algorithms could be
used to drive parameter selection for the exact SVM solver. Finally, in Section 6,
we draw conclusions and provide directions for the further research.

2 Related Work

Since the introduction of SVMs, a number of fast algorithms that can efficiently
train non-linear SVMs have been proposed: for example, decomposition method
along with working set selection [6]. Decomposition methods work directly in the
dual space and perform well on moderately large datasets but their performance
degrades when the number of training examples reaches a level of millions of
examples.

Recently, a number of efficient algorithms using cutting planes to train con-
ventional SVM classifiers have been proposed. For example, SVMperf [7] is based
on a cutting plane algorithm and exhibits linear computational complexity in the
number of examples when linear kernels are used. To improve the convergence
rate of the underlying cutting plane algorithm, Franc and Sonnenburg [5] de-
veloped the optimized cutting plane algorithm (OCAS) that achieves speed-up
factor of 29 over SVMperf. Alternatively, another promising approach based on
stochastic gradient descent and projection steps called Pegasos [24] has shown
promising performance for linear kernels in binary classification tasks.

While the aforementioned algorithms deliver state of the art performance with
respect to accuracy and training time, they scale well only when linear kernels
are used. To overcome this bottleneck, an idea to use approximate cutting planes
with random sampling was employed by Yu and Joachims [28]. At each iteration
step an exact cutting plane is replaced by its approximation that is built from a
small subset of examples sampled from the training dataset.

Another approximate technique to speed up the computation time of tree
kernels by comparing only a sparse subset of relevant subtrees is discussed in [23].

Among the basis pursuit approaches that find a set of basis vectors to con-
struct sparse kernel SVMs are works by Keerthi [9] and Joachims [8]. The former
uses a greedy technique to select vectors, while the latter extracts basis vectors
1 Available at http://projects.disi.unitn.it/iKernels

http://projects.disi.unitn.it/iKernels
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as a part of the cutting-plane optimization process. Not only the trained sparse
model speeds up the classification time, but it also improves the training com-
plexity. Even though the achieved scaling behavior is roughly linear, the method
in [8] is limited to the use of only Gaussian kernels.

Following a different line of research, a number of methods that exploit low-rank
approximation of a kernel matrix have been proposed in [4,27]. However, the ex-
periments were carried out only on fairly small datasets (thousands of examples).

The approach we choose to employ in this paper is different in a sense that it
is generally applicable to the learning of any non-linear discriminant function,
structural kernels in particular, and can efficiently handle datasets with hundreds
of thousands examples.

3 Cutting Plane Algorithm for Structural Kernels

In this section, we illustrate the cutting plane approach. Previous works focus on
structural SVMs whereas the topic of this paper is binary classification, thus we
present a re-elaborated version of the algorithm tailored for the binary classifi-
cation task starting off with the derivation of the dual formulation. This results
in an easier discussion of the sampling approach to compute the approximate
cutting planes.

3.1 Cutting-Plane Algorithm (Dual)

Below is an equivalent formulation of an SVM optimization problem, known as
a 1-slack reformulation [7], used to derive the cutting-plane algorithm:

minimize
w,ξ≥0

1
2
‖w‖2 + Cξ

subject to ∀c ∈ {0, 1}n :

1
n

w ·
n∑

i=1

ciyixi ≥ 1
n

n∑
i=1

ci − ξ,

(1)

where each constraint can be viewed as an average sum of a subset of constraints
of the form: yi(w · xi) ≥ 1 − ξi that are selected by a vector c = (c1, . . . , cn) ∈
{0, 1}n. While the total number of constraints is 2n, there is only a single slack
variable ξ shared across all the constraints. For more details on the 1-slack
formulation, an interested reader should refer to [7].

To derive the dual formulation, the Lagrangian of the primal problem (1) is
computed as:

LP =
1
2
‖w‖2 + Cξ −

|S|∑
j=1

αj

( 1
n

n∑
k=1

ckj(ykw · xk − 1) + ξ
)
, (2)

where S denotes the set of constraints in (1) and |S| = 2n, ckj denotes the kth

component of a vector cj that corresponds to the the jth constraint in (1), and
αj ≥ 0 are the Lagrange multipliers.
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Using the fact that both gradients of LP with respect to w and ξ vanish:

δLP

δw
= w −

|S|∑
j=1

αj

( 1
n

n∑
k=1

ckjykxk

)
= 0

δLP

δξ
=

1
n

|S|∑
j=1

αj − C = 0,

(3)

and by substituting variables from (3) into (2), we obtain the dual Lagrangian:

LD =
|S|∑
i=1

αih
(i) − 1

2

|S|∑
i=1

|S|∑
j=1

αiαjg
(i) · g(j) (4)

where h(i) = 1
n

∑n
k=1 cki and g(i) = − 1

n

∑n
k=1 ckiykxk are respectively the bias

and the subgradient that define a cutting plane model (h(i), g(i)). Now we can
state the dual variant of the optimization problem (1):

maximize
a≥0

hT α − 1
2
αTHα

subject to αT1 ≤ C,

(5)

where Hij = g(i) · g(j). Using the first equation from (3), we get the connection
between the primal and dual variables:

w =
|S|∑
j=1

αj

( 1
n

n∑
k=1

ckjykxk

)
= −

|S|∑
j=1

αjg
(j), (6)

Now we are ready to present the CPA method (Algorithm 1). It starts with an
empty set of constraints S and computes the optimal solution (line 5) to the un-
constrained problem (1). Next, the algorithm finds the most violated constraint
(lines 9-11) by forming a binary vector c that defines the maximum sum of vi-
olated constraints. This requires the computation of the following quantity for
each training example:

w · φ(xi) = −
|S|∑
j=1

αjg
(j)φ(xi) =

n∑
k=1

( |S|∑
j=1

1
n
αjckjyk

)
K(xi,xk), (7)

where φ(x) is a mapping from the input to the feature space and K(xi,xk) =
φ(xi) ·φ(xi) is a kernel. We then compute the bias h(t) and the subgradient g(t)

(lines 12 and 13 respectively) to build a new cutting plane which defines a half-
space h(t) +w ·g(t) ≤ ξ corresponding to the constraint that is most violated by
the current solution. Then it is included in the set of active constraints S (line
14). This way, a series of successively tightening approximations to the original
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Algorithm 1. Cutting Plane Algorithm (dual) with uniform sampling
1: Input: (x1, y1), . . . , (xn, yn), C, ε
2: S ← ∅; t = 0;

3: repeat
4: Update matrix H with a new constraint
5: α ← optimize QP problem (5)

6: ξ = 1
C

(hT α − 1
2
αT Hα)

7: w = −∑|S|
j=1 αjg

(j)

8: Sample r examples from the training set
/* find the most violated constraint (cutting plane) */

9: for i = 1 to r do

10: ci ←
{

1 yi(w · φ(xi)) ≤ 1

0 otherwise
11: end for
12: h(t) = 1

r

∑r
i=1 ci

13: g(t) = − 1
r

∑r
i=1 ciyiφ(xi)

/* add a constraint to the active set */
14: S ← S ∪ {(h(t), g(t))}
15: t = t + 1

16: until h(t) + w · g(t) ≤ ξ + ε
17: return w, ξ

problem is constructed. The algorithm stops when no constraints are violated
by more than ε, which is formalized by the criteria in line 16.

The analysis of the inner product given by (7) reveals that, since it needs to
be computed for each training example, it requires the time O(n2 + Tn) after
total of T iterations. Similarly, as we add a cutting plane to S at each iteration
t, a new column is added to the matrix H (Algorithm 1, line 4) requiring the
computation of

Hit = g(i) · g(t) =
1
n2

n∑
k=1

n∑
l=1

ckicltykylK(xk,xl) (8)

which takes O(Tn2). Thus, the obtained O(n2) scaling behavior makes cutting
plane training no better than conventional decomposition methods.

To address this limitation, we employ the approach of Yu and Joachims [28]
to construct approximate cuts by sampling r examples from the training set.
They suggest two strategies to sample examples, namely uniform and importance
sampling (the pseudocode of the algorithm using uniform sampling is presented
in Algorithm 1). These two strategies derive constant-time and linear-time al-
gorithms. The former uniformly samples r examples from the training set to
approximate the cut. Thus, we approximate a subgradient g(t) with only r ex-
amples, which replaces the number of expensive kernel evaluations in (7) over
n by a more tractable:

∑r
i,j=1 K(xi,xj) (lines 9-13). The importance sampling

acts in a more targeted way as it looks through the whole dataset to compute
two cutting planes, one to be used in the optimization problem (line 5), and the
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other for termination criterion (line 16). The training complexity reduces from
O(n2) to O(T 2r2), when the uniform sampling algorithm is used, to O(Tnr) for
the importance sampling.

4 Tree Kernels

The main idea underlying tree kernels is to compute the number of common
substructures between two trees T1 and T2 without explicitly considering the
whole fragment space. Let F = {f1, f2, . . . , f|F|} be the set of tree fragments
and χi(n) an indicator function equal to 1 if the target fi is rooted at node n
and equal to 0 otherwise. A tree kernel function over T1 and T2 is defined as

TK(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

Δ(n1, n2),

where NT1 and NT2 are the sets of nodes in T1 and T2, respectively, and

Δ(n1, n2) =
|F|∑
i=1

χi(n1)χi(n2).

The Δ function is equal to the number of common fragments rooted in nodes n1

and n2 and thus depends on the fragment type.

4.1 Fragment Types

In [17], we pointed out that there are three main categories of fragments: the
subtree (ST), the subset tree (SST) and the partial tree (PT) fragments corre-
sponding to three different kernels. STs are fragments rooted in any node of a
tree along with all its descendants. The SSTs are more general structures since,
given the root node of an SST, not all its descendants (with respect to the refer-
ring tree) have to be included, i.e. the SST leaves can be non-terminal symbols.
PT fragments are still more general since their nodes can contain a subset of the
children of the original trees, i.e. partial sequences.

For example, Figure 1 illustrates the syntactic parse tree of the sentence
Autism is a disease on the left along with some of the possible fragments on
the right of the arrow. ST kernel generates complete structures like [D a] or [NP
[D a] [N disease]]. SST kernel can generate more structures, e.g. [NP [D]
[N disease]] whereas PT kernel can also separate children in the fragments,
e.g. [NP [N disease]], and generate the individual tree nodes as features, e.g.
Autism or VBZ.

[30] provided a version of SST kernel, which also generates leaves, i.e. words,
as features, hereafter, SST-bow. However, such lexical features, when the data
is very sparse, tend to cause overfitting. Thus, we give the definition of a variant
of PTK, namely, the unlexicalized partial tree kernel (uPTK), which does not
include lexicals and individual nodes in the feature space. This will promote the
importance of structural information.
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Fig. 1. A tree for the sentence “Autism is a disease” (top left) with some of its partial

tree fragments (PTFs)

4.2 Unlexicalized Partial Tree Kernel (uPTK)

The algorithm for the uPTK computation straightforwardly follows from the
definition of the Δ function of PTK provided in [17]. Given two nodes n1 and
n2 in the corresponding two trees T1 and T2, Δ is evaluated as follows:

1. if the node labels of n1 and n2 are different then Δ(n1, n2) = 0;

2. else Δ(n1, n2)=μ
(
λ2+

∑
I1,I2,l(I1)=l(I2)

λd(I1)+d(I2)

l(I1)∏
j=1

Δ(cn1(I1j), cn2(I2j))
)
,

where: (a) I1 = 〈h1, h2, h3, ..〉 and I2 = 〈k1, k2, k3, ..〉 are index sequences asso-
ciated with the ordered child sequences cn1 of n1 and cn2 of n2, respectively; (b)
I1j and I2j point to the j-th child in the corresponding sequence; (c) l(·) returns
the sequence length, i.e. the number of children; (d) d(I1) = I1l(I1) − I11 + 1
and d(I2) + 1 = I2l(I2) − I21+1; and (e) μ and λ are two decay factors for the
size of the tree and for the length of the child subsequences with respect to the
original sequence, i.e. we account for gaps.

The uPTK, can be obtained by removing λ2 from the equation in the step 2.
An efficient algorithm for the computation of PTK is given in [17]. This evaluates
Δ by summing the contribution of tree structures coming from different types
of sequences, e.g. those composed by p children such as:

Δ(n1, n2) = μ
(
λ2 +

∑lm
p=1 Δp(cn1 , cn2)

)
, (9)

where Δp evaluates the number of common subtrees rooted in subsequences of
exactly p children (of n1 and n2) and lm = min{l(cn1), l(cn2)}. It is easy to
verify that we can use the recursive computation of Δp proposed in [17] by
simply removing λ2 from Eq. 9.

5 Experiments

In these experiments, we study the impact of the cutting plane algorithms
(CPAs), reviewed in Section 3, on learning complex text classification tasks in
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structural feature spaces. For this purpose, we compare the accuracy and the
learning time of CPAs, according to different sample size against the conven-
tional SVMs.

In the second set of experiments, we investigate the possibility of using fast pa-
rameter and kernel selection with CPA for conventional SVM. For this purpose,
we carried out experiments with different classifiers on two different domains.

5.1 Experimental Setup

We integrated two approximate cutting plane algorithms using sampling [28]
with SVM-light-TK [17]. For brevity, in this section we will refer to the algo-
rithm that uses uniform sampling as uSVM, importance sampling as iSVM, and
SVM-light-TK as SVM. While the implementation of sampling algorithms uses
MOSEK to optimize quadratic problem, SVM is based on SVM-light 5.0 solver.
As the stopping criteria of the algorithms, we fix the precision parameter ε at
0.001.

We experimented with five different kernels: the ST, SST, SST-bow, PT, uPT
kernels described in Section 4, which are also normalized in the related kernel
space. All the experiments that do not involve parameter tuning use the default
trade-off parameter (i.e. 1 for normalized kernels) and the default λ fixed at 0.4.

As a measure of classification accuracy we use the harmonic average of the
Precision and Recall, i.e. F 1-score. All the experiments were run on machines
equipped with Intel R© Xeon R© 2.33GHz CPUs carrying 6Gb of RAM under Linux
2.6.18 kernel.

5.2 Data

We used two different natural language datasets corresponding to two different
tasks: Semantic Role Labeling (SRL) and Question Answering.

The first consists of the Penn Treebank texts [14], PropBank annotation [20]
and automatic Charniak parse trees [2] as provided by the CoNLL 2005 eval-
uation campaign [1]. In particular, we tackle the task of identification of the
argument boundaries (i.e. the exact sequence of words compounding an argu-
ment). This corresponds to the classification of parse tree nodes in correct or
not correct boundaries2. For this purpose, we train a binary Boundary Classifier
(BC) using the AST subtree defined in [15], i.e. the minimal subtree, extracted
from the sentence parse tree, including the predicate and the target argument
nodes. To test the learned model, we extract two sections, namely sec23 and
sec24, that contain 234,416 and 149,140 examples respectively. The models are
trained on two subsets of 100,000 and 1,000,000 examples. The proportion of
positive examples in the whole corpus is roughly 5%. The dataset along with
the exact structural representation is available at http://danielepighin.net/
cms/research/MixedFeaturesForSRL.

2 In the automatic trees some boundary may not correspond to any node. In this case,

we choose the lower node dominating all the argument words.

http://danielepighin.net/cms/research/MixedFeaturesForSRL
http://danielepighin.net/cms/research/MixedFeaturesForSRL
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Fig. 2. F1-score as a function of the sampling size on SRL dataset (1 million examples).

Horizontal axis at top is the training time of the uSVM algorithm.

The second corpus, is a Question Classification (QC) dataset, whose testset
comes from the TREC 10 - Question Answering evaluation campaign whereas
the training set3 was developed in [13]. The task consists in selecting the most ap-
propriate type of the answer from a set of given possibilities. The coarse grained
question taxonomy [30,13] consists of six non overlapping classes: Abbreviations
(ABBR), Descriptions (DESC, e.g. definitions or explanations), Entity (ENTY,
e.g. animal, body or color), Human (HUM, e.g. group or individual), Location
(LOC, e.g. cities or countries) and Numeric (NUM, e.g. amounts or dates). For
each question, we used the full parse tree as its representation (similarly to
[30,17,19]). This is automatically extracted by means of the Stanford parser4

[10]. We actually have only 5,483 questions in our training set, due to parsing
issues with a few of them. The testset is constituted by 500 questions and the
size of the categories varies from one thousands to few hundreds.

5.3 Accuracy and Efficiency vs. Sampling Size

In these experiments, we test the trade-off between speed and accuracy of CPAs.
We use uSVM, since it is faster than iSVM, and compare it against SVM on the
SRL task by training on 1 million examples and testing on the two usual testing
sections, i.e. sec23 and sec24. We used the SST kernel since it has been indicated
as the most accurate in similar tasks, e.g. [17]. Figure 2 plots the F1-score for
different values of the sampling size. The dashed horizontal lines denote the
accuracy achieved by the exact SVM. The training time for the uSVM algorithm
is plotted along the top horizontal axis.

3 http://l2r.cs.uiuc.edu/cogcomp/Data/QA/QC/
4 http://nlp.stanford.edu/software/lex-parser.shtml

http://l2r.cs.uiuc.edu/cogcomp/Data/QA/QC/
http://nlp.stanford.edu/software/lex-parser.shtml
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Fig. 3. Number of support vectors (displayed beside each data point) as a function of

the sampling size for the 1-slack algorithm

We note that:

– changing the sample size allows us to tune the trade-off between accuracy
and speed. Indeed, as we increase the sampling size, the F1-score grows until
it reaches the accuracy of the exact SVM (at 5,000). In this case, the uSVM
produces the same accuracy of SVM while being 10 times faster.

– with a sample size of 2,500 the accuracy of the uSVM is only 1.0 percentage
point apart fromt the exact model whereas the training time savings are of
a factor over 50. This corresponds to a training time smaller than 4 hours
for uSVM vs. 7.5 days for SVM.

– finally, we note that our reported F1-score for boundary classification is
state-of-the-art only if tree kernels are used, e.g. [21].

5.4 Producing a Sparse Model

Another interesting dimension to compare sampling algorithms with the exact
SVM solver would be to evaluate the sparseness of the produced solutions. As
we have already mentioned in Section 3.1, uSVM and iSVM employ the 1-slack
formulation that produces very sparse models [7]. This becomes especially im-
portant when very large datasets are used, as the improved sparsity can greatly
reduce the classification time. Figure 3 is different from Figure 2, as it displays
the classification results for sec23 subset of SRL dataset along with the number
of support vectors (plotted beside a data point) learned by each model.

Indeed, the number of support vectors grows, as we increase the sampling size
in an attempt to match the accuracy of the exact SVM. The model learned by
the exact SVM contains 61,881 support vectors, while uSVM model produces
41,714 support vectors. We would like to have more experimental data to make
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the comparison more sound but the slow training of the exact SVM makes this
endeavor almost infeasible (just the training of the exact SVM on 1 million of
examples takes over 7.5 days!)

5.5 Fast Parameterization

On very large datasets, finding the best set of parameters for an exact solver,
e.g. SVM-light, using structural kernels becomes prohibitively expensive, thus
greatly limiting the possibility to find the best performing model. Hence, we test
the idea of fast parameter selection for the exact SVM using CPAs and small
samples.

We chose the trade-off parameter, C, as our target parameter and we select a
subset of 100,000 examples from SRL data to train uSVM, iSVM, and SVM with
C ∈ {0.01, 0.1, 1, 10, 100, 1000}. We could not use 1 million dataset since SVM
prevents to carry out experiments within a tractable time frame. The left plot
of Figure 4 shows that F1 of the three models has the same behavior according
to C. Thus, we can select the optimum value according to the fast method (e.g.
with a sample size 1000) to estimate the best value of C of SVM.

Moreover, it is interesting to observe the plot on the right of Figure 4. This
shows the training time on the previous subset with respect to C values. It reveals
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Table 1. F1 measured on two testsets, sec23 and sec24, for five different kernels:

ST, SST, SST-bow, PT, and uPT kernels, trained on 1 million instances. The best

results are shown in bold. The training time is given in minutes. The bottom row is

the performance of SVM trained on only 100k examples.

Sample
size

ST SST SST-bow PT uPT
F1 time

F1 time
F1 time

F1 time
F1 time

sec23 sec24 sec23 sec24 sec23 sec24 sec23 sec24 sec23 sec24

100 6.8 6.5 3.9 74.9 72.6 1.0 74.3 73.0 2.2 71.9 70.7 3.7 73.3 71.4 3.7
250 14.2 13.0 14.4 78.4 76.2 4.1 78.5 76.3 6.1 74.6 73.2 13.7 76.5 74.6 14.2
500 20.3 18.7 46.6 80.2 77.2 14.0 79.5 77.3 16.9 76.3 74.4 45.0 78.3 76.3 47.6
1000 23.5 21.2 143.7 82.0 79.7 45.3 81.3 79.0 55.9 78.2 76.2 158 79.6 76.9 158.8

SVM 12.6 10.94 213.8 80.78 78.56 37.5 80.38 78.13 42.2 74.39 73.47 89.1 77.54 75.87 100.4

that the use of sampling algorithms, particularly uSVM, provides substantial
speed-up in the training time, especially when large values for C are used. Not
surprisingly, uSVM is a preferable choice, since it has a constant-time scaling
behavior. These results show that the proposed algorithms can provide fast and
reliable parameter search for the best model.

To generalize the findings above we carried out the same experiment on the
second dataset. We ran tests for a range of values on all six categories of the QC
dataset. Since each category has only 5500 examples, here, however, the main
concern is not the training time, but the ability of uSVM and iSVM to match
the behavior of the exact SVM with respect to the parameter C. For brevity, we
provide the results only for DESC and NUM categories. Figures 5 shows that
both sampling algorithms match well the behavior of the exact SVM for DESC
and NUM categories of QC dataset.

5.6 Kernel Testing and Selection

The previous section has shown that sampling algorithms can be used for fast
selection of the parameter C. Here we investigate if the same approach can be
applied for the efficient selection of the best kernel. The aim is to check if a
very fast uSVM algorithm, i.e. using a small sample size, can identify the best
performing kernel. Thus, we ran uSVM algorithm on 1 million subset of SRL
dataset by varying the sample size and using five different structural kernels:
ST, SST, SST-bow, PT and uPT kernels. The results reported in Table 1 show
that:

– uSVM has a consistent behavior across different sample sizes for all kernel
functions. This suggests that a small sample, e.g. 100 training examples, can
be used to select the most suitable kernel for a given task in a matter of a
couple of minutes.

– the bottom row of the Table 1 reports the results of SVM trained on a smaller
subset of 100k examples (only one experiment with SVM on a subset of 1
million examples takes over 7 days), which demonstrates that the results
obtained with uSVM are consistent with the exact solver.
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– as already happened in similar tasks, SST kernel appears to provide the best
performance with respect to the training time and accuracy whereas the ST
kernel, as expected, cannot generate enough features to characterize correct
or incorrect boundary. Indeed, its F1 is very low even when large amount of
data is used.

– surprisingly the SST-bow kernel which simply adds bow to SST is less accu-
rate. This suggests that adding words can reduce the generalization ability
of the tree kernels, while the syntactic information is very important like
in SRL. This aspect is confirmed by the F1 of uPT, which is higher than
PT. Indeed, the former does not generate pure lexical features, i.e. words,
whereas the latter does.

– finally, since we can quickly pick the most appropriate kernel, we can also
perform a fast tuning of kernel hyper-parameters. For this task, we experi-
ment with λ, which is one of the most important factors defining tree kernel
performance. Figure 6 displays the behavior of F1 with respect to the range
of λ values. The plot shows that F1 varies considerably so several values
should be tested. We carried out these experiment in a few minutes but
using SVM we would have required several weeks.

6 Conclusions

In this paper, we have studied the cutting plane technique for training SVMs and
we have shown that it is also effective with structural kernels. The experiments on
Semantic Role Labeling and Question Classification show very promising results
with respect to accuracy and efficiency. Our major achievement is a speed-up
factor of over 10 compared to the exact SVM, while obtaining the same precise
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solution. In addition, the proposed method gives the flexibility to train very fast
models by trading off accuracy for the training time.

The main idea promoted in the paper is that CPA with sampling, while be-
ing as accurate as exact SVM, provides the possibility to quickly select optimal
kernels or model parameters. Unlike other approximate techniques, which use
small subsets of original data to train a model, CPA uses smaller samples only
to approximate the subgradient while working on the entire dataset. Our exper-
iments show that parameters/kernels selected by CPA are also optimal for the
exact SVM. To the best of our knowledge, this is the first attempt to demonstrate
this fact.
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Abstract. The study of extraordinary observations is of great interest

in a large variety of applications, such as criminal activities detection,

athlete performance analysis, and rare events or exceptions identification.

The question is: how can we naturally flag these outliers in a real complex

data set? In this paper, we study outlier detection based on a novel

powerful concept: synchronization. The basic idea is to regard each data

object as a phase oscillator and simulate its dynamical behavior over time

according to an extensive Kuramoto model. During the process towards

synchronization, regular objects and outliers exhibit different interaction

patterns. Outlier objects are naturally detected by local synchronization

factor (LSF). An extensive experimental evaluation on synthetic and real

world data demonstrates the benefits of our method.

Keywords: Outlier Detection, Synchronization, Kuramoto model.

1 Introduction

“An outlying observation, or outlier, is an observation that deviates so
much from other observations as to arouse suspicion that it was generated
by a different mechanism.” [1]

Such irregular observations often contain useful information on abnormal behav-
ior of the system described by the data. The detection of these irregular data is
thus equally or even more interesting and useful than finding regular patterns
applicable to a considerable portion of objects in a data set. For example, the
identification of criminal activities, such as credit card fraud, is crucial in elec-
tronic commerce applications. The detection of potential outstanding players is
critical for athlete performance analysis and management. The wide range of
applications also include clinical trials, voting irregularity analysis, data cleans-
ing, network intrusion, gene expression analysis, severe weather prediction, geo-
graphic information systems, and may more.

Currently, outlier detection has attracted increasing attention and many algo-
rithms have been proposed (e.g. [2] [3] [4] [5]). However, they suffer from one or
more of the following drawbacks: They explicitly or implicitly assume the data
to follow a given distribution model, such as Gaussian, uniform or Exponential
Power Distribution. The results of many methods strongly depend on suitable
parametrization and/or their results are difficult to interpret. In addition, most
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approaches are restricted to a flat data structure and do not support complex
hierarchical data. A more detailed discussion on these studies will be given in
Section 2.

In this paper, we consider outlier detection from a novel different point of view:
synchronization. Synchronization is the phenomenon that a group of events spon-
taneously comes into co-occurrence with a common rhythm, despite of the differ-
ences between individual rhythms of the events. It is a powerful concept in nature
regulating a large variety of complex processes ranging from the metabolism in
the cell to social behavior in groups [6]. For example, the effect of synchrony
has been described in experiments of people conversation, song or rhythm, or of
groups of children interacting to an unconscious beat. In all cases the purpose
of the common wave length or rhythm is to strengthen the group bond. The
members lacking of synchrony are called “out of synchronization”.

To illustrate synchronization, consider for example opinion formation. In the
beginning, each person usually has their own view about the problem. After
mutual influence by conversation or discussion, people with similar educational
background, age span, hobby, career or experience will easily talk together and
finally form a common opinion (synchronization). Over time groups with dif-
ferent opinions emerge. For some people (outliers) with significantly different
educational background, experience or other characteristics, it is not easy to
join any group for discussion. Therefore, they tend to isolate from other peo-
ple and keep their own opinions over time (out of synchronization). Inspired
by such natural synchronization phenomena, we propose a novel technique for
outlier detection. Our approach robustly identifies outliers based on their com-
pletely different behaviors in comparison to regular objects during the process
towards synchronization.

The remainder of this paper is organized as follows: in the following section,
we briefly survey the related work. Section 3 presents our algorithm in detail.
Section 4 contains an extensive experimental evaluation and Section 5 concludes
the paper.

2 Related Work

Currently, most existing approaches to outlier detection can be mainly clas-
sified into three categories: distribution-, distance-, and density-based outlier
detection. In addition, a brief survey of the application of Kuramoto Model and
synchronization is given.

Distribution-based Outlier Detection. Methods in this category are mainly
developed in the field of statistics. Generally, they assume a known distribution
model (Gaussian, Poisson, Exponential Power Distribution, etc.) for the obser-
vations based on statistical analysis of a given data set. Outliers are defined as
those objects that deviate considerably from the model assumptions [7] [1] [8]. In
[7], numerous discordancy tests are discussed for different scenarios. In [9] [10],
authors propose SmartSifter (SS), which is an on-line real-time outlier detection
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algorithm. The basic principle of SS is to use a probabilistic model (a finite mix-
ture model) to represent the underlying distribution of a given data set. Each
time a datum is input and SS employs an on-line learning algorithm to adjust
the probability model. An anomaly score is calculated for each datum based
on the learned model. However, the method relies on histograms and requires
preparing as many Gaussian mixture models as cells in the histogram density.
Moreover, in real-world applications, it is not trivial to find an appropriate model
to fit an arbitrary data distribution without prior knowledge. Recently, CoCo, an
information-theoretic outlier detection approach has been proposed by Böhm, et
al. [5]. Based on the MDL principle, outliers are flagged as those objects which
need more coding cost than regular objects. For coding each object, the optimal
neighborhood size is heuristically determined. Independent Component Analysis
and Exponential power distribution (EPD) are used to estimate the probability
and the corresponding coding cost. Like most distribution-based methods, CoCo
tends to fail if the estimated distribution does not fit the data model well. It is
also time consuming to find the optimal neighborhood to estimate the coding
cost for each object by screening for suitable neighborhood sizes.

Distance-based Outlier Detection. The concept of distance-based outlier
detection is proposed by E.M. Knorr and R.T. Ng [3] [4]. These techniques iden-
tify potential outliers from ordinary points based on the number of points in
the specified neighborhood. It defines a point in a data set T to be an outlier
if at least p fraction of points in T have greater distance than d from it. The
basic notion is extended in [11] by computing the distances to the k nearest
neighbors and then ranking the objects based on their proximity to their k-th
nearest neighbors. Consequently top n outliers are obtained using a partition-
based algorithm. However, it is difficult to accurately determine the parameters
p and d for a arbitrary data set.

Density-based Outlier Detection. M. Breunig, et al. [2], introduce a notion
of local outlier from a density-based perspective. An object is regarded as an
outlier if its local density does not fit well into the density of its neighboring
objects. The local outlier factor (LOF) is then proposed to capture the degree
to which the object is an outlier. It is defined as the average of the ratio of the
local reachability density of the object and those of the objects in its neighbor-
hood. A LOF value of approximately 1 indicates the object is located inside a
cluster, while the objects with higher LOF values are more rather considered as
outliers. In [12], a connectivity-based outlier factor (COF) scheme is proposed
to improve the effectiveness of LOF scheme when a pattern itself has a similar
neighborhood density as an outlier. Although these approaches to outlier detec-
tion are useful, their performances are sensitive to the parameter Minpts which
can be very difficult to determine. The Local Outlier Integral (LOCI) [13] flags
outliers, based on probabilistic reasoning and motivated from the concept of a
multi-granularity deviation factor (MDEF). Similar to LOF, the LOCI outlier
model takes the local object density into account, but differently, the MDEF of
LOCI uses ε-neighborhoods rather than MinPts nearest neighbors. The local
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neighborhood in LOCI model is defined by two parameters: the counting and
the sampling neighborhood. The counting neighborhood specifies some volume
of the feature space which is used to estimate the local object density. The sam-
pling neighborhood is larger than the counting neighborhood and contains all
points which are used to compute the average object density in the neighbor-
hood. Objects which deviate in their local object density more than three times
of the standard deviation are regarded as outliers. The flagging scheme of LOCI
thus assumes the object densities follow a Gaussian distribution.

Kuramoto Model and Synchronization. Currently, the study of synchro-
nization phenomena have widely used in physical, biological, chemical, and social
systems. The Kuramoto model [14] [15] is one the most famous models to ex-
plore collective synchronization. Arenas et al. [16] apply the Kuramoto model
for network analysis, and study the relationship between topological scales and
dynamic time scales in complex networks. This analysis provides a useful con-
nection between synchronization dynamics, network topology and spectral graph
analysis. Recently, the Kuramoto model has attracted some attention in cluster-
ing [17] [18]. Aeyels et. al [19] introduce a mathematical model for the dynamics
of chaos system. They characterize the data structure by a set of inequalities in
the parameters of the model and apply it to a system of interconnected water
basins. In summary, previous approaches mainly focus on the synchronization
phenomena of a dynamic system from a global perspective. Inspired by ideas
from the synchronization phenomena and existing dynamical system analysis,
we propose a novel outlier detection technique based on synchronization.

3 Synchronization-Based Outlier Detection

In this section, we introduce SOD, to detect outliers based on synchronization
principle. We first illustrate the basic idea and then propose an extensive Ku-
ramoto Model for outlier detection. In Section 3.3 we discuss the algorithm SOD
and its properties in detail.

3.1 Basic Idea

The concept of synchronization provides a natural way to outlier detection. The
basic idea is to flag outliers by distinguishing the object dynamical behaviors
during the process towards synchronization. In our work, each data object is
regarded as a phase oscillator and interacts dynamically with other objects ac-
cording to an Extensive Kuramoto model (EKM), which we will introduce in
Section 3.2.

To give an intuition of the synchronization-based outlier detection, let’s con-
sider a simple data set as illustrated in Figure 1. For an object within a cluster,
such as P1, many similar objects are located around it and P1 starts interacting
with these similar objects. Through non-linear dynamical interaction, the object
changes its initial phase and moves towards the main direction of its interaction
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P1

(a) (b)

P2

(c)

P1

P2

P1

P2

Fig. 1. Illustration of synchronization-based outlier detection. (a)-(c): The dynamics

of objects towards synchronization. (d): Interaction Plot.

partners (Figure 1(a)). The situation is like the mutual influence of people in dis-
cussion. As time evolves, regular objects move gradually closer together through
mutual interaction and thus more and more objects can interact with them. Fig-
ure 1(b) displays the new positions of the objects for comparison. The objects
with similar attributes gradually synchronize together. The initial points (black
color) are replaced by the red points after one time stamp. Then, in a sequential
process, all these similar objects synchronize together, which finally have the
same phase (Figure 1(c)). Outliers, such as P2, due to the significantly different
attributes in comparison with regular objects, have difficulties to interact with
other objects and tend to keep their own phases. Therefore, the dynamics of the
objects show two different patterns during the process towards synchronization.
For each regular object, as time evolves, it interacts with more and more ob-
jects and finally synchronized together with other objects. For outliers, there is
none or only very minor interaction. Strong outliers keep their unique phase over
the whole time during the process towards synchronization. The two different
patterns can be easily visualized: Figure 1(d) shows the Interaction Plot, which
displays for each object the number of interactions on the time scale.

3.2 Extensive Kuramoto Model

One of the most successful attempts to understand collective synchronization
phenomena is due to Kuramoto [14] [15], who analyzes a model of phase oscilla-
tors which are coupled through the sine of their phase differences. The Kuramoto
model (KM) consists of a population of N coupled phase oscillators where the
phase of the i-th unit, denoted by θi, evolves in time according to the following
dynamics:

dθi

dt
= ωi +

K

N

N∑
j=1

sin(θj − θi), (i = 1, . . . , N), (1)

where ωi stands for its natural frequency and K describes the coupling strength
between units. dθi

dt denotes the instantaneous frequency. θi describes the phase
of i-th unit.

The Kuramoto model well describes the global synchronization behavior of
all coupled phase oscillators. In real-life, this situation rarely occurs. Partial
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synchronization is observed more frequently, which is the case when a local
ensemble of oscillators are synchronized together. It is also observed that the sets
of oscillators with high similarity synchronize more easily than those with large
variance. Therefore, partial synchronization provides rich information about the
object behaviors. In order to explore the different dynamic behaviors between
regular objects and outliers, we extensively reformulate Eq.(1). Formally, we first
need to define the notion of ε-neighborhood.

Definition 1: (ε-neighborhood of an object x) The ε- neighborhood of object
x, which denoted by Nbε(x), is defined as:

Nbε(x) = {y ∈ D|dist(y, x) ≤ ε}, (2)

where dist(y, x) is metric distance function.

Definition 2: (Extensive Kuramoto model) Let x ∈ Rd be an object in the data
set D and xi be the i-th dimension of the data object x respectively. We regard
each object x as a phase oscillator, according to Eq.(1), with a ε-neighborhood
interaction. The dynamics of each dimension xi of the object x is governed by:

dxi

dt
= ωi +

K

|Nbε(x)|
∑

y∈Nbε(x)

sin(yi − xi). (3)

Let dt = Δt, then:

xi(t+ 1) = xi(t) +Δt · ωi +
Δt ·K

|Nbε(x(t))| · (4)∑
y∈Nbε(x(t))

sin(yi(t) − xi(t)).

For unsupervised outlier detection we assume that all objects having the same
frequency w, since we have no external knowledge on the data. Thus the term
Δt · ωi is the same for each object and can be ignored. Similarly, Δt · K is a
constant which we set to 1. Finally the dynamics of each dimension xi of the
object x over time is provided by:

xi(t+ 1) = xi(t) +
1

|Nbε(x(t))| ·
∑

y∈Nbε(x(t))

sin(yi(t) − xi(t)). (5)

The object x at time step t = 0: x(0) (x1(0), ..., xd(0)) represents the initial
phase of the object (the original location of object x). The xi(t + 1) describes
the renewal phase value of i-th dimension of object x at the t = (0, . . . , T ) time
evolution.

To characterize the level of synchronization between oscillators during the
process, an order parameter needs be defined. Instead of considering a global
observable, we define a local order parameter r, measuring the coherence of
local oscillator population.
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Definition 3: (Local Order Parameter) The local order parameter r character-
izing the degree of local synchronization is provided by:

r =
1
N

N∑
i=1

( ∑
y∈Nbε(x)

e−||y−x||∣∣x ∈ D
)
. (6)

The value of r increases as more neighbors synchronize together with time evo-
lution. The process toward synchronization will terminate when r converges,
which indicates local similar objects achieve phase coherence. At this moment,
all local similar objects have the same phase (location).

3.3 The SOD Algorithm

In this section, we elaborate the SOD algorithm based on our extensive Ku-
ramoto model.

First, without any interaction, all objects in a data set have their own phases.
As time evolves, each object starts to interact with its ε-neighborhood, cf. Def-
inition 1. The traces of all objects are in line with the main direction of their
neighborhoods. Gradually, regular objects with similar attributes synchronize
together following the intrinsic structure of a data set. In contrast, outliers are
difficult to interact with other objects due to the large variance. Finally, the lo-
cal regular objects with similar attributes synchronize together with same phase
while outliers tend to keep their original phases. The objects synchronization
process is terminated when the local order parameter converges.

To simply illustrate the objects dynamical movement, the Figure 2 (a)-(d)
shows the detailed dynamics of 2-dimensional points at time steps: t = 0, 1, 3, 5.
t = 0 indicates the original data set at the initial time. From that moment
on, all objects with similar attributes start to synchronize together through
the dynamical interaction according to Eq.(5) and finally, all objects in the
data set synchronize at two different phases after 5 time steps. A more intuitive
visualization of the objects movement is illustrated in Figure 2(e). Figure 2 (f)
demonstrates the local order parameter of the data set with time evolution.

Definition 4: (Local Synchronization Factor of an object x) The local synchro-
nization factor LSF (x) of object x is defined as:

LSF (x) =
1
T

T∑
t=0

(
1

|Nbε(x(t))|
∑

y(t)∈Nbε(x(t))

cos(||y(t) − x(t)||)
)
. (7)

where T is the whole time steps for the process of synchronization. The synchro-
nization factor captures the degree to which the object of being an outlier. The
smaller the LSF value, the higher the probability of being an outlier.

According to the definition, LSF shows major desirable properties:

1. Intuitive. Since the LSF value indicates each object synchronization factor,
it provides an intuitive way to summarize its dynamical interaction behavior
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(a) t = 0 (b) t = 1 (c) t = 3 (d) t = 5

(e) Objects’ movement (f) Local order parameter (g) Interaction Plot

Fig. 2. The dynamics of objects toward to synchronization. (a)-(d): The detailed ob-

jects’ movement during the time resolution. (e): Objects movement. (f): Local order

parameter, (g): Interaction Plot for three objects circled in (a).

with other objects during the process towards synchronization. The easier an
object synchronizes with other objects, the higher is its LSF value. Outliers
are objects which are out of synchronization.

2. Tightness. The range of LSF is restricted to [0 1). The lower bound of LSF
value is 0, which means that the object does not interact with any other
object during the synchronization process. For cluster points which easily
synchronize the LSF value is close to 1. The LSF value can thus be eas-
ily interpreted as the probability of each object of being an outlier, e.g.
Probability(p) = 1 − LSF (p).

3. Distinguishable. Due to the different dynamics between regular objects and
outliers during the synchronization process, the values of LSF are fairly
distinguishable. For outliers, the LSF value is around 0 while the regular
objects nearly to 1. It can easily discern them.

In addition, in order to explore each object dynamics during the process towards
synchronization, the Interaction Plot is defined to characterize the interaction
behavior pattern between objects over time.

Definition 5: (Interaction Plot) For any object x, the plot of the number of
objects involved in mutual interaction with x versus the time step, is called
Interaction Plot.

As a valuable addition to LSF, the Interaction Plot provides a detailed vi-
sualization of the dynamic behavior of each object according to the Extensive
Kuramoto model. With the same data set above , the interaction plot is illus-
trated in Figure 2(g). From this plot, two distinct interaction patterns become
evident. For regular objects, during the synchronization process, more and more
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objects interact together along with the time steps. Outliers often fail to interact
with other objects (maybe a few at the beginning). As time evolves, the number
of objects for interaction tend to keep the same. For example, two regular ob-
jects and one outlier are visualized with dash color lines to illustrate the different
interaction patterns in Figure 2 (a),(g).

Outliers Flagging. After LSF is obtained for each object, all outliers exhibit
usually low values in comparison to the regular objects. The denser of the local
region of an object, the higher its value of LSF. Therefore, selecting a suitable
threshold for flagging outliers could be easily selected since the LSF value is
distinct for outliers and regular objects. However, for automatically flagging, in
this work, the K-Means algorithm are applied on the LSF values to split the
data into two clusters: outliers and regular objects. Finally, the Pseudocode of
the SOD is illustrated in Algorithm 1.

Algorithm 1. SOD(D, ε)

LSF := {}; // Synchronization Factors

while loopFlag=true do
for each object p ∈ D do

Compute Nbε(p);

Obtain new value of object p using Eq.(5); // Update value

end for
Compute local order r using Eq.(6);
if r converges then

loopFlag=false;

for each object p ∈ D do
Compute local synchronization factor LSF (p) using Eq.(7);

end for
end if

end while

Flagging outliers by K-Means based on LSF values.

Runtime Complexity. For SOD, to detect outliers based on synchronization,
the runtime complexity with respect to the number of data objects is O(T ·N2),
where N is the number of objects and T is the time evolution. In most cases,
T is small with 5 ≤ T ≤ 20. If there exists an efficient index, the complexity
reduces to O(T ·N logN).

Parameter Setting. In order to flag outliers based on synchronization prin-
ciple, an interaction range (ε) needs to be specified for EKM. The question is:
how to determine the ε value and how does the LSF value change when the ε
value is adjusted?

Given a data set, theoretically, the ε value can be 0, which means there is
no interaction at all among the objects. In order to generate object interaction,
there should be a lower bound of ε. To generate a stable interaction for most
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Fig. 3. Influence of ε on LSF

objects, a heuristic way is to use the average value of the k-nearest neighbor
distance determined by a sample from the data set for a small k. The ε should
not be very large that enclose all data objects for interaction. In that way, we can
not detect the local object dynamical behaviors. However, the range of suitable
values for ε is very large. In all experiments on different data sets, we set ε the
the average value of the k-nearest neighbor distances for k ranging from 10 to 50.

To asses the impact of ε value on LSF value and outlier detection, Figure 3
shows a simple data set which consists of 2 clusters with different size (C1:50,
C2:200) and density. 17 outliers are added to the data. For each ε value, the
mean and standard deviation of LSF values are calculated for each cluster as
well as for the outliers. Figure 3 displays the LSF value with respect to ε. For
all settings of ε, the mean LSF value for the points in cluster C1 and C2 are
clearly much larger than 0, in most cases close to 1 while the mean and standard
deviation of LSF value for outliers remain stable at 0. With the increase of ε, the
LSF value of cluster objects begin to decrease. The reason behind it is that more
and more objects are enclosed to interact with each other at each time step and
thus more difficult to synchronize together. The situation is like two persons are
much easier to agree with one thing than a larger group of people. Moreover,
since objects in denser cluster are easier to synchronize, the LSF values are much
more closer to 1 (e.g. the mean LSF value of objects in C1 are larger than that
in C2). For different parameters, outliers and regular objects show distinct LSF
values and can be discerned easily. For further evaluation on the robustness of
SOD w.r.t. parameter settings please refer to the experimental section.

4 Experimental Evaluation

In the following we evaluate our outlier detection SOD in comparison to LOF [2],
LOCI [13], CoCo [5] on synthetic data set as well as NBA data. We implemented
SOD and LOF in Java and obtained the implementation of LOCI and CoCo from
the authors.
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Synthetic Data. We start the evaluation with two-dimensional synthetic data
sets to facilitate presentation. The data set displayed in Figure 4 consists of six
clusters (C1-C6): one Gaussian cluster (C2:39), two correlation clusters (C1:167
and C3:73), two arbitrarily shaped clusters (C4:60 and C6:67 ) and one a spheri-
cal hierarchical cluster (C5:131), including a nested cluster. 30 outliers are added
to the data set. Figure 4 provides the results of outlier detection by using SOD,
LOF, LOCI and CoCo for the same synthetic data set.

(a) SOD (b) LOF (c) LOCI (d) CoCo

Fig. 4. Outlier detection results with different methods. (a): SOD (k = 10 − 40), (b):

LOF (MinPts = 20, selecting only the top 30 outliers), (c): LOCI (α= 1, rmin = 10

and rmax =50), (d): CoCo. Detected outliers are highlighted with red crosses.

Without any prior knowledge, SOD successfully detects all 30 outlier points
(Figure 4 (a)) from the complex data. The outliers are highlighted with red
crosses and cluster objects are shown in black. Moreover, SOD obtains the same
result with the parameter ε set to the average k-nearest neighbor distance for k
ranging from 10 to 40.

For LOF, we try a wide range of different settings for the parameters MinPts
from 10 to 50, which is suggested by authors. The top 30 outliers are obtained
according to the LOF value. For different parameters, there are 17, 17, 9, 8 and
10 out of 30 correctly assigned with MinPts = {10, 20, 30, 40, 50}, respectively.
Most cluster objects, especially for the objects of hierarchical cluster are wrongly
flagged as outliers. The best result is presented in Figure 4 (b) obtained with
parameter MinPts =20. Obviously, the result of LOF is very much influenced
by the parameter MinPts. In addition, we often have no a priori information
about the number of desired outliers.

Fig. 5. LOCI Plot of cluster point P1 (left) and outlier P2(middle); Interaction Plot

of P1 and P2 (right)
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Fig. 6. Visualization of the LSF, LOF and CoCo for the synthetic data set

LOCI is applied to our synthetic data set with α = 1, rmin = 10 and rmax
=50 (Figure 4 (c)). 46 outlier points are detected based on the suggested outlier
flagging criteria and 16 true outliers are correctly detected. Many cluster points
of C2, C4 and C6 are wrongly flagged. With the decrease of rmin value, more true
outlier points are found, but at the same time more cluster points are mislabeled
as outliers. As the LOCI plot provides the information for each object, we thus
have a closer look at the cluster point (Fig. 4 (c): P1) and outlier point (P2).
It is noticeably that the two LOCI plots look very similar (Figure 5(a)-(b)).
For comparison, Interaction Plot is displayed for the same two points (Figure
5(c)). It is very clear that the cluster point P1 and outlier point P2 have totally
different characteristics.

CoCo identifies all 95 outliers for the synthetic data and only one outlier is
missing. However, 66 cluster points are wrongly flagged as outliers. CoCo relies
on the assumption that the data follows an Exponential Power Distribution,
which is not the case for our example and therefore CoCo yields many false-
positives.

To visualize the degree of “outlierness” for each object, the Local Synchro-
nization Factor (LSF) is further compared to the outlier factor of LOF and CoCo
in Figure 6. For LSF, the local synchronization factor of all outlier points are
nearly 0 and all cluster points are close to 1. Due to the desirable properties of
LSF, such as tightness and distinguishable, cluster points and outliers are eas-
ily to differentiate. As to LOF and CoCo, the range of values is very wide and
the gap between outliers and cluster points is not clear. For example, the range
of LOF is from 0.85 to 2.15, which makes it difficult to determine a suitable
threshold for outlier flagging.

NBA Performance Statistics. After extensive evaluation of SOD on syn-
thetic data sets, we apply our novel outlier detection method to the real data.
We use the NBA data available at the NBA website http://www.nba.com. In
the Season 2008/09, the performance of 444 players are described with four
attributes: the number of games played (GP), the number of points (PPG),
the rebounds (RPG), and assists (APG) per game.SOD is applied to this NBA
data detecting 18 outliers with k = 30. Figure 7 displays scatter plots of the data
with different attributes and the histogram of each attribute in the diagonal re-
spectively. Obviously, the data distribution is non-Gaussian. All 18 outliers are

http://www.nba.com
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Fig. 7. Outlier detection with SOD for the NBA data set. All 18 outliers are marked

in red. The strongest outliers with LSF = 0 are also marked with the name.

highlighted in red. For the most outstanding players with LSF = 0 also the names
are provided. For comparison with other techniques, Table 1 lists the top 10 out-
liers for various settings of k. For different parametrization (k=30,40,50) the same
players are among the top 10 outliers of SOD. Eight of 10 players are strongest out-
liers with a LSF of 0 for all parameterizations. For comparison, Table 2 lists the
top 10 outliers identified by LOF with MinPts =50. Only seven players are repro-
ducibly detected as top 10 for MinPts =40. LOCI (α = 1, rmin = 10 and rmax
=50) and CoCo detect the top 10 outliers listed in Table 3 and Table 4, respec-
tively. For the comparison methods, the intersection with SOD is marked in bold.
Gilbert Arenas with LSF = 0 is a strong outlier which is among the top 10 for all
methods. Having played only 2 games, he has shown outstanding performance in
terms of rebounds, points and especially in terms of assists. Most other players
with an LSF of zero are also among the top 10 of at least one of the comparison
methods, e. g. the well-known and truly outstanding players Brendan Haywood,
Dwyane Wade and LeBron James. Interestingly, Chris Paul is not among the top
10 of any comparison methods although he is especially outstanding in the number
of points and assists per game. In the 2006-07 season he has been ranked fourth
in the overall NBA in assists (http://www.nba.com/playerfile/chris_paul/
bio.html). Another strong outlier missed by the comparison methods is Dwight

http://www.nba.com/playerfile/chris_paul/bio.html
http://www.nba.com/playerfile/chris_paul/bio.html
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Table 1. Top 10 outliers identified by SOD on NBA data

LSF(k=30) (k=40) (k=50) Name GP PPG RPG APG

0 0 0 Chris Paul (NOH) 78 22.8 5.5 11

0 0 0 Jason Kidd (DAL) 81 9 6.2 8.7

0 0 0 Dwyane Wade (MIA) 79 30.2 5 7.5

0 0 0 LeBron James (CLE) 81 28.4 7.6 7.2

0 0 0 Kevin Martin (SAC) 51 24.6 3.6 2.7

0 0 0 Dwight Howard (ORL) 79 20.6 13.8 1.4

0 0 0 Gilbert Arenas (WAS) 2 13 4.5 10

0 0 0 Brendan Haywood (WAS) 6 9.7 7.3 1.3

0 0.036 0 Cuttino Mobley (LAC) 11 13.7 2.6 1.1

0 0.260 0.035 Deron Williams (UTA) 68 19.4 2.9 10.7

Table 2. Top 10 outliers identified by LOF on NBA data

LOF Name GP PPG RPG APG

1.5058 Gilbert Arenas (WAS)* 2 13 4.5 10

1.4938 Brendan Haywood (WAS)* 6 9.7 7.3 1.3

1.4463 DJ White (OKC)* 7 8.9 4.6 0.9

1.4069 Michael Redd (MIL)* 33 21.2 3.2 2.7

1.4011 Cuttino Mobley (LAC) 11 13.7 2.6 1.1

1.3623 Carlos Boozer (UTA)* 37 16.2 10.4 2.1

1.3532 Monta Ellis (GSW)* 25 19 4.3 3.7

1.3492 Elton Brand (PHI)* 29 13.8 8.8 1.3

1.3365 Chris Kaman (LAC) 31 12 8 1.5

1.3294 Tracy McGrady (HOU) 35 15.6 4.4 5

Table 3. Top 10 outliers identified by LOCI on NBA data

Name GP PPG RPG APG

Dwyane Wade (MIA) 79 30.2 5 7.5

LeBron James (CLE) 81 28.4 7.6 7.2

Ben Wallace (CLE) 56 2.9 6.5 0.8

Monta Ellis (GSW) 25 19 4.3 3.7

Pops Mensah-Bonsu (TOR-SAS) 22 5 5.1 0.3

Corey Brewer (MIN) 15 6.2 3.3 1.7

Gilbert Arenas (WAS) 2 13 4.5 10

Kobe Bryant (LAL) 82 26.8 5.2 4.9

Jason Kidd (DAL) 81 9 6.2 8.7

Michael Redd (MIL) 33 21.2 3.2 2.7

Howard who has been named the NBA Defensive Player of the Year in 2008-2009
season (http://www.nba.com/playerfile/dwight_howard/bio.html). Dwight
Howard is especially characterized by an outstanding number of 13.8 rebounds per
game.

http://www.nba.com/playerfile/dwight_howard/bio.html
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Table 4. Top 10 outliers identified by CoCo on NBA data

CoCo o.f. Name GP PPG RPG APG

20.76 Michael Redd (MIL) 33 21.2 3.2 2.7

17.39 Andrew Bogut (MIL) 36 11.7 10.2 2

17.31 Kevin Martin (SAC) 51 24.6 3.6 2.7

16.55 Monta Ellis (GSW) 25 19 4.3 3.7

14.42 Elton Brand (PHI) 29 13.8 8.8 1.3

13.84 Gilbert Arenas (WAS) 2 13 4.5 10

13.80 Tracy McGrady (HOU) 35 15.6 4.4 5

12.12 Kobe Bryant (LAL) 57 17.5 3 5

11.85 Cuttino Mobley (LAC) 11 13.7 2.6 1.1

11.45 Tyson Chandler (NOH) 45 8.8 8.7 0.5

5 Conclusions

In this paper, we propose SOD, a novel outlier detection algorithm inspired by
synchronization phenomenon. The major benefits of SOD can be summarized as
follows:

1. Natural outlier detection. Based on the synchronization principle, outliers are
naturally flagged from a data set due to their unique dynamical interaction
pattern during the process towards synchronization.

2. Intuitive to interpret. Outliers are represented as those objects which hardly
interact with other objects since they have been generated by a different
mechanism. Outlier objects are the members of the system which are out of
synchronization. The probability for each object of being an outlier can be
characterized by a numerical value: The Local Synchronization Factor (LSF).
The Interaction Plot provides a detailed view of the dynamical behavior
pattern of each object.

3. Without any data distribution assumption. Without any data distribution
assumption or any prior knowledge, outliers are easily flagged by investigat-
ing the different interact patterns, which are driven by the intrinsic data
structure.

4. Complex data handling. The SOD allows to detect outliers from a complex
data set including clusters with arbitrary number, shape, size and densities
as well as hierarchical data structures.

5. Robustness to parametrization. The outlier detection result is insensitive to
parameter settings.

In ongoing and future work, we will focus on fully automatic outlier detection
based on the powerful concept of synchronization and study online algorithms
for outlier detection in data streams, which is essential in many applications.
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Abstract. The eigenspectrum of a graph Laplacian encodes smooth-

ness information over the graph. A natural approach to learning involves

transforming the spectrum of a graph Laplacian to obtain a kernel. While

manual exploration of the spectrum is conceivable, non-parametric learn-

ing methods that adjust the Laplacian’s spectrum promise better perfor-

mance. For instance, adjusting the graph Laplacian using kernel target

alignment (KTA) yields better performance when an SVM is trained on

the resulting kernel. KTA relies on a simple surrogate criterion to choose

the kernel; the obtained kernel is then fed to a large margin classification

algorithm. In this paper, we propose novel formulations that jointly opti-

mize relative margin and the spectrum of a kernel defined via Laplacian

eigenmaps. The large relative margin case is in fact a strict generaliza-

tion of the large margin case. The proposed methods show significant

empirical advantage over numerous other competing methods.

Keywords: relative margin machine, graph Laplacian, kernel learning,

transduction.

1 Introduction

This paper considers the transductive learning problem where a set of labeled
examples is accompanied with unlabeled examples whose labels are to be pre-
dicted by an algorithm. Due to the availability of additional information in the
unlabeled data, both the labeled and unlabeled examples will be utilized to es-
timate a kernel matrix which can then be fed into a learning algorithm such
as the support vector machine (SVM). One particularly successful approach for
estimating such a kernel matrix is by transforming the spectrum of the graph
Laplacian [8]. A kernel can be constructed from the eigenvectors corresponding
to the smallest eigenvalues of a Laplacian to maintain smoothness on the graph.
In fact, the diffusion kernel [5] and the Gaussian field kernel [12] are based on
such an approach and explore smooth variations of the Laplacian via specific
parametric forms. In addition, a number of other transformations are described
in [8] for exploring smooth functions on the graph. Through the controlled vari-
ation of the spectrum of the Laplacian, a family of allowable kernels can be
explored in an attempt to improve classification accuracy. Further, Zhang &
Ando [10] provide generalization analysis for spectral kernel design.

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part III, LNAI 6323, pp. 261–276, 2010.
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Kernel target alignment (KTA for short) [3] is a criterion for evaluating a
kernel based on the labels. It was initially proposed as a method to choose a
kernel from a family of candidates such that the Frobenius norm of the differ-
ence between a label matrix and the kernel matrix is minimized. The technique
estimates a kernel independently of the final learning algorithm that will be uti-
lized for classification. Recently, such a method was proposed to transform the
spectrum of a graph Laplacian [11] to select from a general family of candidate
kernels. Instead of relying on parametric methods for exploring a family of ker-
nels (such as the scalar parameter in a diffusion or Gaussian field kernel), Zhu
et al. [11] suggest a more general approach which yields a kernel matrix non-
parametrically that aligns well with an ideal kernel (obtained from the labeled
examples).

In this paper, we propose novel quadratically constrained quadratic programs
to jointly learn the spectrum of a Laplacian with a large margin classifier. The
motivation for large margin spectrum transformation is straightforward. In ker-
nel target alignment, a simpler surrogate criterion is first optimized to obtain a
kernel by transforming the graph Laplacian. Then, the kernel obtained is fed to
a classifier such as an SVM. This is a two-step process with a different objective
function in each step. It is more natural to transform the Laplacian spectrum
jointly with the classification criterion in the first place rather than using a
surrogate criterion to learn the kernel.

Recently, another discriminative criterion that generalizes large absolute mar-
gin has been proposed. The large relative margin [7] criterion measures the mar-
gin relative to the spread of the data rather than treating it as an absolute
quantity. The key distinction is that large relative margin jointly maximizes the
margin while controlling or minimizing the spread of the data. Relative margin
machines (RMM) implement such a discriminative criterion through additional
linear constraints that control the spread of the projections. In this paper, we
consider this aggressive classification criterion which can potentially improve
over the KTA approach. Since large absolute margin and large relative margin
criteria are more directly tied to classification accuracy and have generaliza-
tion guarantees, they potentially could identify better choices of kernels from
the family of admissible kernels. In particular, the family of kernels spanned by
spectral manipulations of the Laplacian will be considered. Since the RMM is
more general compared to SVM, by proposing a large relative margin spectrum
learning, we encompass large margin spectrum learning as a special case.

1.1 Setup and Notation

In this paper we assume that a set of labeled examples (xi, yi)l
i=1 and an un-

labeled set (xi)n
i=l+1 are given such that xi ∈ Rm and yi ∈ {±1}. We denote

by y ∈ Rl the vector whose ith entry is yi and by Y ∈ Rl×l a diagonal matrix
such that Yii = yi. The primary aim is to obtain predictions on the unlabeled
examples; we are thus in a so-called transductive setup. However, the unlabeled
examples can be also be utilized in the learning process.
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Assume we are given a graph with adjacency matrix W ∈ Rn×n where the
weight Wij denotes the edge weight between nodes i and j (corresponding to the
examples xi and xj). Define the graph Laplacian as L = D−W where D denotes
a diagonal matrix whose ith entry is given by the sum of the ith row of W. We
assume that L =

∑n
i=1 θiφiφ

�
i is the eigendecomposition of L. It is assumed

that the eigenvalues are already arranged such that θi ≤ θi+1 for all i. Further,
we let V ∈ Rn×q be the matrix whose ith column is the (i + 1)th eigenvector
(corresponding to the (i + 1)th smallest eigenvalue) of L. Note that the first
eigenvector (corresponding to the smallest eigenvalue) has been deliberately left
out from this definition. Further, U ∈ Rn×q is defined to be the matrix whose ith

column is the ith eigenvector. vi (ui) denotes the ith column of V� (U�). For any
eigenvector (such as φ,u or v), we use the horizontal overbar (such as φ̄, ū or v̄)
to denote the subvector containing only the first l elements of the eigenvector,
in other words, only the entries that correspond to the labeled examples. We
overload this notation for matrices as well; thus V̄ ∈ Rl×q (Ū ∈ Rl×q) denotes1

the first l rows of V (U). Δ is assumed to be a q × q diagonal matrix whose
diagonal elements denote scalar values δi (i.e., Δii = δi). Finally 0 and 1 denote
vectors of all zeros and all ones; their dimensionality can be inferred from the
context.

2 Learning from the Graph Laplacian

The graph Laplacian has been particularly popular in transductive learning.
While we can hardly do justice to all the literature, this section summarizes
some of the most relevant previous approaches.

Spectral Graph Transducer. The spectral graph transducer [4] is a transductive
learning method based on a relaxation of the combinatorial graph-cut problem.
It obtains predictions on labeled and unlabeled examples by solving for h ∈ Rn

via the following problem:

min
h∈Rn

1
2
h�VQV�h + C(h − τ )�P(h − τ ) s.t. h�1 = 0, h�h = n (1)

where P is a diagonal matrix2 with Pii = 1
l+

( 1
l−

) if the ith example is positive
(negative); Pii = 0 for unlabeled examples (i.e., for l+1 ≤ i ≤ n). Further, Q is
also a diagonal matrix. Typically, the diagonal element Qii is set to i2 [4]. τ is
a vector in which the values corresponding to the positive (negative) examples

are set to
√

l−
l+

(
√

l+
l− ).

Non-parametric transformations via kernel target alignment (KTA). In [11], a suc-
cessful approach to learning a kernel was proposed which involved transforming

1 We clarify that V̄� (Ū�) denotes the transpose of V̄ (Ū).
2 l+(l−) is the number of positive (negative) labeled examples.
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the spectrum of a Laplacian in a non-parametric way. The empirical alignment
between two kernel matrices K1 and K2 is defined as [3]:

Â(K1,K2) :=
〈K1,K2〉F√〈K1,K1〉F 〈K2,K2〉F

.

When the target y (the vector formed by concatenating yi’s) is known, the ideal
kernel matrix is yy� and a kernel matrix K can be learned by maximizing the
alignment Â(K̄,yy�). The kernel target alignment approach [11] learns a kernel
via the following formulation:3

max
Δ

Â(ŪΔŪ�,yy�) (2)

s.t. trace(UΔU�) = 1 δi ≥ δi+1 ∀2 ≤ i ≤ q − 1, δq ≥ 0, δ1 ≥ 0.

The above optimization problem transforms the spectrum of the given graph
Laplacian L while maximizing the alignment score of the labeled part of the
kernel matrix (ŪΔŪ�) with the observed labels. The trace constraint on the
overall kernel matrix (UΔU�) is used merely to control the arbitrary scaling.
The above formulation can be posed as a quadratically constrained quadratic
program (QCQP) that can be solved efficiently [11]. The ordering on the δ’s is
in reverse order as that of the eigenvalues of L which amounts to monotonically
inverting the spectrum of the graph Laplacian L. Only the first q eigenvectors
are considered in the formulation above due to computational considerations.

The eigenvector φ1 is made up of a constant element. Thus, it merely amounts
to adding a constant to all the elements of the kernel matrix. Therefore, the
weight on this vector (i.e. δ1) is allowed to vary freely. Finally, note that the φ’s
are the eigenvectors of L so the trace constraint on UΔU� merely corresponds
to the constraint

∑q
i=1 δi = 1 since U�U = I.

Parametric transformations. A number of methods have been proposed to ob-
tain a kernel from the graph Laplacian. These methods essentially compute the
Laplacian over labeled and unlabeled data and transform its spectrum with a
particular mapping. More precisely, a kernel is built as K =

∑n
i=1 r(θi)φiφ

�
i

where r(·) is a monotonically decreasing function. Thus, an eigenvector with a
small eigenvalue will have a large weight in the kernel matrix. Several methods
fall into this category. For example, the diffusion kernel [5] is obtained by the
transformation r(θ) = exp(−θ/σ2) and the Gaussian field kernel [12] uses the
transformation r(θ) = 1

σ2+θ . In fact, kernel PCA [6] also performs a similar
operation. In kPCA, we retain the top k eigenvectors of a kernel matrix. From
an equivalence that exists between the kernel matrix and the graph Laplacian
(shown in the next section), we can in fact conclude that kernel PCA features
also fall under the same family of monotonic transformations. While these are
very interesting transformations, [11] showed that KTA and learning based ap-
proaches are empirically superior to parametric transformations so we will not
3 In fact, [11] proposes two formulations, we are considering the one that was shown

to have superior performance (the so-called improved order method).



Laplacian Spectrum Learning 265

elaborate further on these approaches but rather focus on learning the spectrum
of a graph Laplacian.

3 Why Learn the Laplacian Spectrum?

We start with an optimization problem which is closely related to the spectral
graph transducer (1). The main difference is in the choice of the loss function.
Consider the following optimization problem:

min
h∈Rn

1
2
h�VQV�h + C

l∑
i=1

max(0, 1 − yihi), (3)

where Q is assumed to be an invertible diagonal matrix to avoid degeneracies.4

The values on the diagonal of Q depend on the particular choice of the kernel.
The above optimization problem is essentially learning the predictions on all the
examples by minimizing the so-called hinge loss and the regularization defined
by the eigenspace of the graph Laplacian. The choice of the above formulation is
due to its relation to the large margin learning framework given by the following
theorem.

Theorem 1. The optimization problem (3) is equivalent to

min
w,b

1
2
w�w + C

l∑
i=1

max(0, 1 − yi(w�Q− 1
2 vi + b)). (4)

Proof. The predictions on all the examples (without the bias term) for the
optimization problem (4) are given by f = VQ− 1

2 w. Therefore Q
1
2 V�f =

Q
1
2 V�VQ− 1

2 w = w since V�V = I. Substituting this expression for w in
(4), the optimization problem becomes,

min
f ,b

1
2
f�VQV�f + C

l∑
i=1

max(0, 1 − yi(fi + b)).

Let h = f + b1 and consider the first term in the objective above,

(h − b1)�VQV�(h − b1)

=h�VQV�h + 2h�VQV�1 + 1�VQV�1 = h�VQV�h,

where we have used the fact that V�1 = 0 since the eigenvectors in V are
orthogonal to 1. This is because 1 is always an eigenvector of L and other
eigenvectors are orthogonal to it. Thus, the optimization problem (3) follows.

��
4 In practice, Q can be non-invertible, but we consider an invertible Q to elucidate

the main point.
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The above theorem5 thus implies that learning predictions with Laplacian reg-
ularization in (3) is equivalent to learning in a large margin setting (4). It is easy
to see that the implicit kernel for the learning algorithm (4) (over both labeled
and unlabeled examples) is given by VQ−1V�. Thus, computing predictions on
all examples with VQV� as the regularizer in (3) is equivalent to large margin
learning with the kernel obtained by inverting the spectrum Q. However, it is
not clear why inverting the spectrum of a Laplacian is the right choice for a ker-
nel. The parametric methods presented in the previous section construct this ker-
nel by exploring specific parametric forms. On the other hand, the kernel target
alignment approach constructs this kernel by maximizing alignment with labels
while maintaining an ordering on the spectrum. The spectral graph transducer
in Section 2 uses6 the transformation i2 on the Laplacian for regularization. In
this paper, we explore a family of transformations and allow the algorithm to
choose the one that best conforms to a large (relative) margin criterion. Instead
of relying on parametric forms or using a surrogate criteria, this paper presents
approaches that jointly obtain a transformation and a large margin classifier.

4 Relative Margin Machines

Relative margin machines (RMM) [7] measure the margin relative to the data
spread; this approach has yielded significant improvement over SVMs and has
enjoyed theoretical guarantees as well. In its primal form, the RMM solves the
following optimization problem:7

min
w,b,ξ

1
2
w�w + C

l∑
i=1

ξi (5)

s.t. yi(w�xi + b) ≥ 1 − ξi, ξi ≥ 0, |w�xi + b| ≤ B ∀1 ≤ i ≤ l.

Note that when B = ∞, the above formulation gives back the support vector
machine formulation. For values ofB below a threshold, the RMM gives solutions
that differ from SVM solutions. The dual of the above optimization problem can
be shown to be:

max
α,β,η

− 1
2
γ�X�Xγ + α�1−B

(
β�1 + η�1

)
(6)

s.t. α�y − β�1 + η�1 = 0, 0 ≤ α ≤ C1, β ≥ 0, η ≥ 0.

In the dual, we have defined γ := Yα − β + η for brevity. Note that α ∈ R
l,

β ∈ Rl and η ∈ Rl are the Lagrange multipliers corresponding to the constraints
in (5).
5 Although we excluded φ1 in the definition of V in these derivation, typically we

would include it in practice and allow the weight on it to vary freely as in the kernel

target alignment approach. However, experiments show that the algorithms typically

choose a negligible weight on this eigenvector.
6 Strictly speaking, the spectral graph transducer has additional constraints and a dif-

ferent motivation.
7 The constraint |w�xi + b| ≤ B is typically implemented as two linear constraints.
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4.1 RMM on Laplacian Eigenmaps

Based on the motivation from earlier sections, we consider the problem of jointly
learning a classifier and weights on various eigenvectors in the RMM setup. We
restrict the family of weights to be the same as that in (2) in the following
problem:

min
w,b,ξ,Δ

1
2
w�w + C

l∑
i=1

ξi (7)

s.t. yi(w�Δ
1
2 ui + b) ≥ 1 − ξi, ξi ≥ 0 ∀1 ≤ i ≤ l

|w�Δ
1
2 ui + b| ≤ B ∀1 ≤ i ≤ l

δi ≥ δi+1 ∀2 ≤ i ≤ q − 1, δ1 ≥ 0, δq ≥ 0,

trace(UΔU�) = 1.

By writing the dual of the above problem over w, b and ξ, we get:

min
Δ

max
α,β,η

− 1
2
γ�ŪΔŪ�γ + α�1−B

(
β�1 + η�1

)
(8)

s.t. α�y − β�1 + η�1 = 0, 0 ≤ α ≤ C1, β ≥ 0, η ≥ 0,

δi ≥ δi+1 ∀2 ≤ i ≤ q − 1, δ1 ≥ 0, δq ≥ 0,
q∑

i=1

δi = 1.

where we exploited the fact that trace(UΔU�) =
∑q

i=1 δi. Clearly, the above
optimization problem, without the ordering constraints (i.e., δi ≥ δi+1) is sim-
ply the multiple kernel learning8 problem (using the RMM criterion instead of
the standard SVM). A straightforward derivation–following the approach of [1]–
results in the corresponding multiple kernel learning optimization. Even though
the optimization problem (8) without the ordering on δ’s is a more general
problem, it may not produce smooth predictions over the entire graph. This
is because, with a small number of labeled examples (i.e., small l), it is un-
likely that multiple kernel learning will maintain the spectrum ordering unless
it is explicitly enforced. In fact, this phenomenon can frequently be observed in
our experiments where multiple kernel learning fails to maintain a meaningful
ordering on the spectrum.

5 STORM and STOAM

This section poses the optimization problem (8) in a more canonical form to
obtain practical large-margin (denoted by STOAM) and large-relative-margin
(denoted by STORM) implementations. These implementations achieve globally
optimal joint estimates of the kernel and the classifier of interest. First, the min
8 In this paper, we restrict our attention to convex combination multiple kernel learn-

ing algorithms.
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and the max in (8) can be interchanged since the objective is concave in Δ and
convex in α, β and η and both are strictly feasible [2]9. Thus, we can write:

max
α,β,η

min
Δ

− 1
2
γ�

q∑
i=1

δiūiū�
i γ + α�1−B

(
β�1 + η�1

)
(9)

s.t. α�y − β�1 + η�1 = 0,
0 ≤ α ≤ C1, β ≥ 0, η ≥ 0,

δi ≥ δi+1 ∀2 ≤ i ≤ q − 1, δ1 ≥ 0, δq ≥ 0,
q∑

i=1

δi = 1.

5.1 An Unsuccessful Attempt

We first discuss a naive attempt to simplify the optimization that is not fruitful.
Consider the inner optimization over Δ in the above optimization problem (9):

min
Δ

− 1
2

q∑
i=1

δiγ
�ūiū�

i γ (10)

s.t. δi ≥ δi+1 ∀2 ≤ i ≤ q − 1, δ1 ≥ 0, δq ≥ 0,
q∑

i=1

δi = 1.

Lemma 1. The dual of the above formulation is:

max
τ,λ

− τ s.t.
1
2
γ�ūiū�

i γ = λi−1 − λi + τ, λi ≥ 0 ∀1 ≤ i ≤ q.

where λ0 = 0 is a dummy variable.

Proof. Start by writing the Lagrangian of the optimization problem:

L = −1
2

q∑
i=1

δiγ
�ūiū�

i γ −
q−1∑
i=2

λi(δi − δi+1) − λqδq − λ1δ1 + τ(
q∑

i=1

δi − 1),

where λi ≥ 0 and τ are Lagrange multipliers. The dual follows after differenti-
ating L with respect to δi and equating the resulting expression to zero. ��

Caveat. While the above dual is independent of δ’s, the constraints 1
2γ�ūiū�

i γ =
λi−1 −λi + τ involve a quadratic term in an equality. It is not possible to simply
leave out λi to make this constraint an inequality since the same λi occurs
in two equations. This is non-convex in γ and is problematic since, after all,
we eventually want an optimization problem that is jointly convex in γ and the
other variables. Thus, a reformulation is necessary to pose relative margin kernel
learning as a jointly convex optimization problem.

9 It is trivial to construct such α, β, η and Δ when not all the labels are the same.
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5.2 A Refined Approach

We proceed by instead considering the following optimization problem:

min
Δ

− 1
2

q∑
i=1

δiγ
�ūiū�

i γ (11)

s.t. δi − δi+1 ≥ ε ∀2 ≤ i ≤ q − 1, δ1 ≥ ε, δq ≥ ε,

q∑
i=1

δi = 1

where we still maintain the ordering of the eigenvalues but require that they
are separated by at least ε. Note that ε > 0 is not like other typical machine
learning algorithm parameters (such as the parameter C in SVMs), since it can
be arbitrarily small. The only requirement here is that ε remains positive. Thus,
we are not really adding an extra parameter to the algorithm in posing it as a
QCQP. The following theorem shows that a change of variables can be done in
the above optimization problem so that its dual is in a particularly convenient
form; note, however, that directly deriving the dual of (11) fails to give the desired
property and form.

Theorem 2. The dual of the optimization problem (11) is:

max
λ≥0,τ

− τ + ε

q∑
i=1

λi (12)

s.t.
1
2
γ�

i∑
j=2

ūjū�
j γ = τ(i− 1) − λi ∀2 ≤ i ≤ q

1
2
γ�ū1ū�

1 γ = τ − λ1.

Proof. Start with the following change of variables:

κi :=

⎧⎨⎩
δ1 for i = 1,
δi − δi+1 for 2 ≤ i ≤ q − 1,
δq for i = q.

This gives:

δi =
{
κ1 for i = 1,∑q

j=i κj for 2 ≤ i ≤ q.
(13)

Thus, (11) can be stated as,

min
κ

− 1
2

q∑
i=2

q∑
j=i

κjγ
�ūiū�

i γ + κ1γ
�ū1ū�

1 γ (14)

s.t. κi ≥ ε ∀1 ≤ i ≤ q, and
q∑

i=2

q∑
j=i

κj + κ1 = 1.
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Consider simplifying the following term within the above formulation:

q∑
i=2

q∑
j=i

κjγ
�ūiū�

i γ =
q∑

i=2

κi

i∑
j=2

γ�ūjū�
j γ and

q∑
i=2

q∑
j=i

κj =
q∑

i=2

(i− 1)κi.

It is now straightforward to write the Lagrangian to obtain the dual. ��
Even though the above optimization appears to have non-convexity problems
mentioned after Lemma 1, these can be avoided. This is facilitated by the fol-
lowing helpful property.

Lemma 2. For ε > 0, all the inequality constraints are active at the optimum
of the following optimization problem:

max
λ≥0,τ

− τ + ε

q∑
i=1

λi (15)

s.t.
1
2
γ�

i∑
j=2

ūjū�
j γ ≤ τ(i− 1) − λi ∀2 ≤ i ≤ q

1
2
γ�ū1ū�

1 γ ≤ τ − λ1.

Proof. Assume that λ∗ is the optimum for the above problem and constraint i
(corresponding to λi) is not active. Then, clearly, the objective can be further max-
imized by increasing λ∗i . This contradicts the fact that λ∗ is the optimum. ��
In fact, it is not hard to show that the Lagrange multipliers of the constraints
in problem (15) are equal to the κi’s. Thus, replacing the inner optimization
over δ’s in (9), by (15), we get the following optimization problem, which we call
STORM (Spectrum Transformations that Optimize the Relative Margin):

max
α,β,η,λ,τ

α�1 − τ + ε

q∑
i=1

λi −B
(
β�1 + η�1

)
(16)

s.t.
1
2
(Yα − β + η)�

i∑
j=2

ūjū�
j (Yα − β + η) ≤ (i− 1)τ − λi ∀2 ≤ i ≤ q

1
2
(Yα − β + η)�ū1ū�

1 (Yα − β + η) ≤ τ − λ1

α�y − β�1 + η�1 = 0, 0 ≤ α ≤ C1, β ≥ 0, η ≥ 0, λ ≥ 0.

The above optimization problem has a linear objective with quadratic con-
straints. This equation now falls into the well-known family of quadratically
constrained quadratic optimization (QCQP) problems whose solution is straight-
forward in practice. Thus, we have proposed a novel QCQP for large relative
margin spectrum learning. Since the relative margin machine is strictly more
general than the support vector machine, we obtain STOAM (Spectrum Trans-
formations that Optimize the Absolute Margin) by simply setting B = ∞.
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Obtaining δ values. Interior point methods obtain both primal and dual solutions
of an optimization problem simultaneously. We can use equation (13) to obtain
the weight on each eigenvector to construct the kernel.

Computational complexity. STORM is a standard QCQP with q quadratic con-
straints of dimensionality l. This can be solved in time O(ql3) with an interior
point solver. We point out that, typically, the number of labeled examples l is
much smaller than the total number of examples (which is n). Moreover, q is
typically a fixed constant. Thus the runtime of the proposed QCQP compares
favorably with the O(n3) time for the initial eigendecomposition of L which is
required for all the spectral methods described in this paper.

6 Experiments

To study the empirical performance of STORM and STOAM with respect to pre-
vious work, we performed experiments on both text and digit classification prob-
lems. Five binary classification problems were chosen from the 20-newsgroups
text dataset (separating categories like baseball-hockey (b-h), pc-mac (p-m),
religion-atheism (r-a), windows-xwindows (w-x), and politics.mideast-politics.
misc (m-m)). Similarly, five different problems were considered from the MNIST
dataset (separating digits 0-9, 1-2, 3-8, 4-7, and 5-6). One thousand randomly
sampled examples were used for each task.

A mutual nearest neighbor graph was first constructed using five nearest
neighbors and then the graph Laplacian was computed. The elements of the
weight matrix W were all binary. In the case of MNIST digits, raw pixel values
(note that each feature was normalized to zero-mean and unit variance) were
used as features. For digits, nearest neighbors were determined by Euclidean
distance, whereas, for text, the cosine similarity and tf-idf was used. In the ex-
periments, the number of eigenvalues q was set to 200. This was a uniform choice
for all methods which would not yield any unfair advantages for one approach
over any other. In the case of STORM and STOAM, ε was set to a negligible
value of 10−6.

The entire dataset was randomly divided into labeled and unlabeled exam-
ples. The number of labeled examples was varied in steps of 20; the rest of the
examples served as the test examples (as well as the unlabeled examples in graph
construction). We then ran KTA to obtain a kernel; the estimated kernel was
then fed into an SVM (this was referred to as KTA-S in the Tables) as well as to
an RMM (referred to as KTA-R). To get an idea of the extent to which the order-
ing constraints matter, we also ran multiple kernel learning optimization which
are similar to STOAM and STORM but without any ordering constraints. We
refer to the multiple kernel learning with the SVM objective as MKL-S and with
the RMM objective as MKL-R. We also included the spectral graph transducer
(SGT) and the approach of [9] (described in the Appendix) in the experiments.
Predictions on all the unlabeled examples were obtained for all the methods.
Error rates were evaluated on the unlabeled examples. Twenty such runs were
done for various values of hyper-parameters (such as C,B) for all the methods.
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The values of the hyper-parameters that resulted in minimum average error rate
over unlabeled examples were selected for all the approaches. Once the hyper-
parameter values were fixed, the entire dataset was again divided into labeled
and unlabeled examples. Training was then done but with fixed values of various
hyper-parameters. Error rates on unlabeled examples were then obtained for all
the methods over hundred runs of random splits of the dataset.

Table 1. Mean and std. deviation of percentage error rates on text datasets. In each

row, the method with minimum error rate is shown in dark gray. All the other algo-

rithms whose performance is not significantly different from the best (at 5% significance

level by a paired t-test) are shown in light gray.

DATA l [9] MKL-S MKL-R SGT KTA-S KTA-R STOAM STORM

r-a

30 44.89±5.2 37.14±5.6 37.14±5.6 19.46±1.4 22.98±4.8 22.99±4.8 25.81±6.1 25.81±6.1

50 42.18±3.8 29.93±5.1 30.01±5.2 18.92±1.1 19.87±3.1 19.87±3.1 21.49±4.0 21.49±4.0

70 40.15±2.5 25.18±4.4 25.43±4.3 18.44±1.0 18.30±2.4 18.30±2.4 18.48±3.1 18.48±3.1

90 38.86±2.5 22.33±3.3 22.67±3.3 18.22±0.9 17.32±1.5 17.32±1.5 17.21±1.8 17.23±1.9

110 37.74±2.3 20.43±2.4 20.41±2.4 18.10±1.0 16.46±1.3 16.46±1.3 16.40±1.2 16.41±1.2

w-m

30 46.98±2.4 22.74±8.7 22.74±8.7 41.88±8.5 16.03±8.8 16.08±8.8 14.26±5.9 14.26±5.9

50 45.47±3.5 15.08±3.8 15.08±3.8 35.63±9.3 13.54±3.4 13.56±3.4 11.49±3.4 11.52±3.4

70 43.62±4.0 13.03±1.6 13.04±1.6 29.03±7.8 12.75±4.8 12.89±5.0 10.72±0.9 10.76±1.0

90 42.85±3.6 12.20±1.6 12.20±1.6 22.55±6.3 11.30±1.5 11.41±1.7 10.43±0.6 10.43±0.6

110 41.91±3.8 11.84±1.0 11.85±1.0 18.16±5.0 10.87±1.4 10.99±1.7 10.31±0.6 10.28±0.6

p-m

30 46.48±2.7 41.21±4.9 40.99±5.0 39.58±3.8 28.00±5.8 28.05±5.8 30.58±6.6 30.58±6.6

50 44.08±3.5 35.98±5.3 35.94±4.9 37.46±3.8 24.34±4.8 24.34±4.8 25.72±4.6 25.72±4.6

70 42.05±3.5 31.48±4.6 31.18±4.3 35.52±3.4 22.14±3.6 22.14±3.6 22.33±4.9 22.33±4.9

90 39.54±3.2 28.15±3.8 28.30±3.8 33.57±3.4 20.58±2.8 20.59±2.7 20.44±3.0 20.77±3.2

110 38.10±3.2 25.88±3.1 26.16±2.9 32.16±3.2 19.53±2.2 19.56±2.2 19.74±2.4 19.70±2.4

b-h

30 47.04±2.1 4.35±0.8 4.35±0.8 3.95±0.2 3.91±0.4 3.80±0.3 3.90±0.3 3.87±0.3

50 46.11±2.2 3.90±0.1 3.91±0.1 3.93±0.2 3.81±0.3 3.80±0.4 3.87±0.3 3.73±0.3

70 45.92±2.4 3.91±0.2 3.90±0.2 3.90±0.2 3.76±0.3 3.76±0.3 3.78±0.3 3.68±0.3

90 45.30±2.5 3.88±0.2 3.89±0.2 3.85±0.3 3.69±0.3 3.67±0.3 3.75±0.3 3.61±0.3

110 44.99±2.6 3.88±0.2 3.88±0.2 3.83±0.3 3.71±0.4 3.66±0.3 3.67±0.3 3.56±0.3

m-m

30 48.11±4.7 12.35±5.2 12.35±5.2 41.30±3.5 7.35±3.6 7.36±3.8 7.60±3.9 6.88±2.9

50 46.36±3.3 7.47±3.1 7.25±2.9 31.18±7.5 6.25±2.8 6.19±2.9 5.45±1.0 5.39±1.2

70 45.31±5.7 6.05±1.3 5.98±1.4 22.30±7.5 5.43±1.0 5.35±1.1 5.20±0.7 4.90±0.6

90 42.52±5.0 5.71±1.0 5.68±1.0 15.39±5.9 5.13±0.9 5.14±1.1 5.09±0.6 4.76±0.6

110 41.94±5.2 5.44±0.7 5.16±0.6 10.96±3.9 4.97±0.8 4.92±0.9 4.95±0.5 4.65±0.5

The results are presented in Table 1 and Table 2. It can be seen that STORM
and STOAM perform much better than all the methods. Results in the two ta-
bles are further summarized in Table 3. It can be seen that both STORM and
STOAM have significant advantages over all the other methods. Moreover, the
formulation of [9] gives very poor results since the learned spectrum is indepen-
dent of α.
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Table 2. Mean and std. deviation of percentage error rates on digits datasets. In each

row, the method with minimum error rate is shown in dark gray. All the other algo-

rithms whose performance is not significantly different from the best (at 5% significance

level by a paired t-test) are shown in light gray.

DATA l [9] MKL-S MKL-R SGT KTA-S KTA-R STOAM STORM

0-9

30 46.45±1.5 0.89±0.1 0.89±0.1 0.83±0.1 0.90±0.1 0.90±0.1 0.88±0.1 0.88±0.1

50 45.83±1.9 0.89±0.1 0.90±0.1 0.85±0.1 0.91±0.1 0.91±0.1 0.89±0.1 0.89±0.1

70 45.55±2.0 0.88±0.1 0.87±0.1 0.87±0.1 0.89±0.1 0.93±0.2 0.88±0.1 0.88±0.1

90 45.68±1.6 0.90±0.1 0.85±0.2 0.86±0.1 0.91±0.2 0.91±0.2 0.87±0.1 0.86±0.1

110 45.40±2.0 0.85±0.2 0.90±0.2 0.87±0.1 0.89±0.1 0.89±0.1 0.92±0.3 0.86±0.1

1-2

30 47.22±2.0 3.39±3.3 4.06±5.9 11.81±6.8 2.92±0.6 2.92±0.6 2.88±0.5 2.85±0.4

50 46.02±2.0 2.85±0.5 2.58±0.4 3.57±2.7 2.78±0.4 2.84±0.5 2.80±0.7 2.80±0.7

70 45.56±2.4 2.64±0.3 2.34±0.3 2.72±0.5 2.74±0.3 2.76±0.4 2.61±0.3 2.70±0.3

90 45.00±2.7 2.71±0.3 2.35±0.3 2.60±0.2 2.76±0.3 2.73±0.4 2.70±0.4 2.70±0.3

110 44.97±2.3 2.77±0.3 2.36±0.3 2.61±0.2 2.61±0.6 2.61±0.6 2.51±0.3 2.51±0.3

3-8

30 45.42±3.0 13.02±3.7 12.63±3.6 9.86±0.9 8.54±2.7 7.58±2.2 7.93±2.2 7.68±1.8

50 43.72±3.0 9.54±2.3 9.04±2.2 8.76±0.9 6.93±1.8 6.61±1.6 6.42±1.5 6.37±1.4

70 42.77±3.1 7.98±2.1 7.39±1.7 8.00±0.8 6.31±1.6 6.07±1.4 5.85±1.3 5.85±1.1

90 41.28±3.4 7.02±1.6 6.60±1.3 7.33±0.8 5.69±1.1 5.69±1.1 5.45±1.0 5.40±0.9

110 41.09±3.5 6.56±1.2 6.15±1.0 6.91±0.9 5.35±0.9 5.43±0.9 5.25±0.8 5.24±0.9

4-7

30 44.85±3.5 5.74±3.4 5.54±3.3 5.60±1.2 4.27±1.9 4.09±1.9 3.64±1.4 3.57±1.1

50 43.65±3.3 4.31±1.2 3.97±0.9 4.50±0.5 3.50±0.9 3.40±0.8 3.24±0.7 3.17±0.6

70 44.05±3.3 3.66±0.8 3.31±0.6 4.04±0.4 3.38±0.8 3.23±0.7 3.11±0.6 3.04±0.5

90 42.04±3.3 3.46±0.8 3.13±0.6 3.77±0.4 3.12±0.6 3.00±0.6 2.92±0.5 2.89±0.5

110 41.85±3.1 3.28±0.7 3.00±0.5 3.60±0.4 2.99±0.6 2.98±0.6 2.92±0.5 2.91±0.5

5-6

30 46.75±2.6 5.18±2.7 4.91±3.2 2.49±0.2 3.48±1.3 3.32±1.1 3.19±1.4 2.96±0.9

50 45.98±3.1 3.30±1.3 2.93±0.8 2.46±0.2 2.94±0.7 2.86±0.5 2.73±0.4 2.67±0.4

70 45.75±3.5 2.80±0.5 2.62±0.3 2.49±0.2 2.70±0.4 2.65±0.4 2.63±0.3 2.83±0.6

90 45.19±3.8 2.68±0.3 2.60±0.3 2.49±0.2 2.62±0.4 2.60±0.4 2.60±0.3 2.52±0.4

110 43.59±2.8 2.62±0.3 2.52±0.3 2.51±0.2 2.57±0.4 2.53±0.4 2.55±0.4 2.49±0.4

To gain further intuition, we visualized the learned spectrum in each prob-
lem to see if the algorithms yield significant differences in spectra. We present
four typical plots in Figure 1. We show the spectra obtained by KTA, STORM
and MKL-R (the difference between the spectra obtained by STOAM (MKL-
S) was much closer to that obtained by STORM (MKL-R) compared to other
methods). Typically KTA puts significantly more weight on the top few eigen-
vectors. By not maintaining the order among the eigenvectors, MKL seems to
put haphazard weights on the eigenvectors. However, STORM is less aggressive
and its eigenspectrum decays at a slower rate. This shows that STORM obtains
a markedly different spectrum compared to KTA and MKL and is recovering a
qualitatively different kernel. It is important to point out that MKL-R (MKL-S)
solves a more general problem than STORM (STOAM). Thus, it can always
achieve a better objective value compared to STORM (STOAM). However, this
causes over-fitting and the experiments show that the error rate on the unlabeled
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Table 3. Summary of results in Tables 1 & 2. For each method, we enumerate the

number of times it performed best (dark gray), the number of times it was not signif-

icantly worse than the best performing method (light gray) and the total number of

times it was either best or not significantly worse from best.

[9] MKL-S MKL-R SGT KTA-S KTA-R STOAM STORM

#dark gray 0 1 5 9 5 2 8 22

#light gray 0 1 2 4 8 12 16 13

#total 0 2 7 13 13 14 24 35
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Fig. 1. Magnitudes of the top 15 eigenvalues recovered by the different algorithms. Top:

problems 1-2 and 3-8. Bottom: m-m and p-m. The plots show average eigenspectra over

all runs for each problem.

examples actually increases when the order of the spectrum is not preserved. In
fact, MKL obtained competitive results in only one case (digits:1-2) which could
be attributed to chance.

7 Conclusions

We proposed a large relative margin formulation for transforming the eigenspec-
trum of a graph Laplacian. A family of kernels was explored which maintains
smoothness properties on the graph by enforcing an ordering on the eigenvalues
of the kernel matrix. Unlike the previous methods which used two distinct crite-
ria at each phase of the learning process, we demonstrated how jointly optimizing
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the spectrum of a Laplacian while learning a classifier can result in improved
performance. The resulting kernels, learned as part of the optimization, showed
improvements on a variety of experiments. The formulation (3) shows that we
can learn predictions as well as the spectrum of a Laplacian jointly by convex
programming. This opens up an interesting direction for further investigation. By
learning weights on an appropriate number of matrices, it is possible to explore
all graph Laplacians. Thus, it seems possible to learn both a graph structure
and a large (relative) margin solution jointly.
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A Approach of Xu et al. [9]

It is important to note that, in a previously published article [9], other authors
attempted to solve a problem related to STOAM. While this section is not
the main focus of our paper, it is helpful to point out that the method in [9]
is completely different from our formulation and contains serious flaws. The
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previous approach attempted to learn a kernel of the form K =
∑q

i=1 δiuiu�
i

while maximizing the margin in the SVM dual. They start with the problem
(Equation (13) in [9] but using our notation):

max
0≤α≤C1,α�y=0

α�1− 1
2
α�YKtrYα (17)

s.t δi ≥ wδi+1 ∀1 ≤ i ≤ q − 1, δi ≥ 0, K =
q∑

i=1

δiuiu�
i , trace(K) = μ

which is the SVM dual with a particular choice of kernel. Here Ktr =
∑q

i=1δiūiū�
i .

It is assumed that μ, w and C are fixed parameters. The authors discuss op-
timizing the above problem while exploring K by adjusting the δi values. The
authors then claim, without proof, that the following QCQP (Equation (14) of
[9]) can jointly optimize δ’s while learning a classifier:

max
α,δ,ρ

2α�1− μρ (18)

s.t. μ =
q∑

i=1

δiti, 0 ≤ α ≤ C1, α�y = 0, δi ≥ 0 ∀1 ≤ i ≤ q

1
ti

α�Yūiū�
i Yα ≤ ρ ∀1 ≤ i ≤ q, δi ≥ wδi+1 ∀1 ≤ i ≤ q − 1

where ti are fixed scalar values (whose values are irrelevant in this discussion).
The only constraints on δ’s are: non-negativity, δi ≥ wδi+1, and

∑q
i=1 δiti = μ

where w and μ are fixed parameters. Clearly, in this problem, δ’s can be set
independently of α! Further, since μ is also a fixed constant, δ no longer has any
effect on the objective. Thus, δ’s can be set without affecting either the objec-
tive or the other variables (α and ρ). Therefore, the formulation (18) certainly
does not maximize the margin while learning the spectrum. This conclusion is
further supported by empirical evidence in our experiments. Throughout all the
experiments, the optimization problem proposed by [9] produced extremely weak
results.
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Abstract. k-Version spaces were introduced in [6] to handle noisy data. They
were defined as sets of k-consistent hypotheses; i.e., hypotheses consistent with
all but k instances. Although k-version spaces were applied, their implementation
was intractable due to the boundary-set representation.

This paper argues that to classify with k-version spaces we do not need an
explicit representation. Instead we need to solve a general k-consistency prob-
lem and a general k0-consistency problem. The general k-consistency problem
is to test the hypothesis space for classifier that is k-consistent with the data.
The general k0-consistency problem is to test the hypothesis space for classi-
fier that is k-consistent with the data and 0-consistent with a labeled test instance.
Hence, our main result is that the k-version-space classification can be (tractably)
implemented if we have (tractable) k-consistency-test algorithms and (tractable)
k0-consistency-test algorithms. We show how to design these algorithms for any
learning algorithm in multi-class classification setting.

Keywords: Classification, k-Version Spaces, Consistency Problems.

1 Introduction

Version spaces form a well-known approach to two-class classification [6–8]. Given a
hypothesis space, version spaces are sets of hypotheses consistent with training data D.
The consistency criterion implies that version spaces provide correct instance classifi-
cations if D is noise-free. Otherwise, version spaces can misclassify instances.

To tackle the problem with noisy data Mitchell introduced k-version spaces in [6].
k-Version spaces were defined as sets of all the hypotheses that are k-consistent with
the training data D; i.e., hypotheses that are consistent with all but k instances in D.
The key idea is that if we have m class-mislabeled instances in D and m ≤ k, we can
still have a hypothesis in the k-version space that is inconsistent with these m-instances
and consistent with most of the remaining data in D. Thus, the parameter k is capable
of filtering the noise in the training data D.

Representing k-version spaces is a difficult problem. Any k-version space consists of( |D|
|D|−k

)
number of 0-version spaces that are not overlapped in the worst case. Thus, any
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version-space representation employed (such as boundary sets [6–8], one-sided bound-
ary sets [4], instance-based boundary sets [9, 10, 12] etc.) results in intractable repre-
sentation of k-version spaces. This implies that the classification algorithm of k-version
spaces is intractable as well in this case.

Following [5] this paper focuses on the classification side of the problem instead
of the representational. We prove that the problem of k-version-space classification
is a recursive problem that consists of the problem of k − 1-version-space classifica-
tion, the general k-consistency problem, and the general k0-consistency problem. We
define the general k-consistency problem as a problem of determining whether there
exists classifier in the hypothesis space that is k-consistent with the data. We define
the general k0-consistency problem as a problem of determining whether there exists
classifier in the hypothesis space that is k-consistent with the data and 0-consistent
with a labeled test instance. Thus, our main result is that the k-version-space classifi-
cation can be (tractably) implemented as soon as we have a (tractable) k-consistency-
test algorithm and a (tractable) k0-consistency-test algorithm for the hypothesis space.
The consistency-test algorithms can be applied to any class. Thus, we allow k-version
spaces to be applied for multi-class classification tasks. This contrasts with the original
formulation of k-version spaces proven for two-class classification tasks only due to the
Boolean nature of version-space representations [6–8].

The practical contribution of our paper is that we show how to design k-consistency-
test algorithms and k0-consistency-test algorithms for any learning algorithm and its
hypothesis space. We demonstrate how consistency-test algorithms can be used in log-
ical and probabilistic settings. Hence, our work converts k-version spaces to a meta
framework applicable for any learning algorithm.

The paper is organized as follows. Section 2 formalizes the classification task. The
k-version spaces are introduced in Section 3. Subsections 3.1, 3.2, and 3.3 provide
our generalization of the k-consistency criterion, k-version spaces, and their classifica-
tion rule for multi-class classification. The classification function of k-version spaces
together with the general k-consistency problem and the general k0-consistency prob-
lem are introduced in Subsection 3.4. Sections 4 and 5 show how to implement k-
consistency-test and k0-consistency-test algorithms in logical and probabilistic settings.
The experiments are given in Section 6. Finally, Section 7 concludes the paper.

2 Classification Task

Let X be a non-empty instance space and Y be a non-empty class set s.t. |Y | > 1. A
labeled instance is defined as a tuple (x, y) where x ∈ X and y ∈ Y . Training data D
is a multi-set of labeled instances.1 Given data D and instance x ∈ X to be classified,
the classification task is to assign a class y ∈ Y to x.

To assign a class y ∈ Y to an instance x ∈ X we need a scoring classifier h : X →
P(R) from a hypothesis space H . The classifier h outputs for x a posterior distribution
of scores {s(y)}y∈Y over the classes in Y . The final class y ∈ Y for x is determined
by a class function c : P(R) → Y . The function c receives as argument the score
distribution {s(y)}y∈Y and then outputs a class y ∈ Y according to some rule (usually

1 The multi-set notation employed in this paper is that from [14].
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the class with highest score s(y)). Hence, the function composition c(h(x)) forms a
discrete classifier that assigns the final class y ∈ Y to the instance x to be classified.

To identify the scoring classifier h we need a learning algorithm l : P(X × Y ) →
P(R)X . Given training data D, the algorithm l searches the hypothesis space H and
then outputs the scoring classifier h ∈ H . The goal is to find the classifier h s.t. the
discrete classifier c(h) classifies correctly future unseen instances iid drawn from the
same probability distribution from which D was drawn.

3 Multi-class k-Version Spaces

Mitchell proposed k-version spaces in [6] for two-class classification in the presence of
noisy training data. This section extends the k-version spaces for multi-class classifica-
tion. We first introduce the k-consistency criterion. Then we define k-version spaces and
show how they can be used for classification if we can implement two consistency tests.

3.1 k-Consistency Criterion

The multi-class k-consistency criterion generalizes the two-class k-consistency crite-
rion [6]. Its definition and properties are given below.

Definition 1. Given hypothesis spaceH , class function c, dataD, and integer k ≤ |D|,
scoring classifier h ∈ H is said to be k-consistent with D, denoted by consk(h,D), iff:

(∃Dk ∈ Pk(D))(∀(x, y) ∈ Dk)c(h(x)) = y,

where Pk(D) = {Dk ⊆ D||Dk| = |D| − k}.

The integer k determines the extent of consistency of classifier h with respect to D. The
boundary cases for k are given in Corollary 1.

Corollary 1. Consider data D and integer k ≤ |D|. Then:

- if k < 0, (∀h ∈ H)¬consk(h,D);
- if k = 0, (∀h∈ H)(consk(h,D)↔(∀(x, y) ∈ D)c(h(x)) = y);
- if k = |D|, (∀h ∈ H)consk(h,D).

The k-consistency has an important implication property formulated in Theorem 1.

Theorem 1. Consider scoring classifier h ∈ H , data D1 and D2 s.t. D2 ⊆ D1, and
integers k1 and k2 s.t. k1 ≤ k2 ≤ |D2|. Then: consk1(h,D1) → consk2(h,D2).

Proof. Consider arbitrary scoring classifier h ∈ H s.t. consk1(h,D1). By Definition 1:

(∃Dk1 ∈ Pk1(D1))(∀(x, y) ∈ Dk1)c(h(x)) = y. (1)

k1 ≤ k2 and D2 ⊆ D1 imply (∀Dk1 ∈ Pk1(D1))(∃Dk2 ∈ Pk2(D2))Dk1 ⊇ Dk2 .
Thus, formula (1) implies (∃Dk2 ∈ Pk2(D2))(∀(x, y) ∈ Dk2)c(h(x)) = y. The latter
by Definition 1 is equivalent to consk2(h,D2). �
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3.2 k-Version Spaces: Definition and Properties

The multi-class k-version space for training data D is the set of all the classifiers in a
hypothesis space H that are k-consistent with D.

Definition 2. Given dataD and integer k ≤ |D|, the k-version space VSk(D) equals:

{h ∈ H |consk(h,D)}.

The key idea of k-version spaces is that if we have m class-mislabeled instances in
the training data D and m ≤ k, then we can still have a scoring classifier h in the
k-version space that is inconsistent with these m-instances and consistent with most of
the remaining data in D. Thus, the integer k is capable of filtering the noise in D. We
consider three boundary cases for k formulated in Corollary 2.

Corollary 2. Consider data multi-set D and integer k ≤ |D|. Then:

(1) if k < 0, then V Sk(D) = ∅,
(2) if k = 0, then VSk(D) = {h ∈ H |(∀(x, y) ∈ D)c(h(x)) = y},
(3) if k = |D|, then V Sk(D) = H .

The implication property of the k-consistency from Theorem 1 entails a sub-set property
of the k-version spaces formulated in Theorem 2.

Theorem 2. Consider data D1 and D2 s.t. D2 ⊆ D1, and integers k1 and k2 s.t.
k1 ≤ k2 and k2 ≤ |D2|. Then: VSk1(D1) ⊆ VSk2(D2).

Proof. The proof follows from Theorem 1. �

3.3 k-Version-Space Classification

Given k-version space VSk(D), the k-version-space classification rule assigns a class
set VSk(D)(x) ⊆ Y to any instance x ∈ X . The class set VSk(D)(x) includes any
class y ∈ Y s.t. there exists a scoring classifier h ∈ VSk(D) that is 0-consistent with
�(x, y)�; i.e., the discrete classifier c(h(x)) assigns class y to x.

Definition 3. Given data D, integer k < |D|, and k-version space VSk(D), instance
x ∈ X receives a k-class set VSk(D)(x) equal to:

{y ∈ Y |(∃h ∈ VSk(D))cons0(h, �(x, y)�)}.

Our k-version-space classification rule is more general than the Mitchell’s one [6]. It
provides a k-class set VSk(D)(x) for any instance x ∈ X instead of just one class or
no class. To test whether VSk(D)(x) is empty or not we introduce Theorem 3. The
Theorem states that VSk(D)(x) is empty iff the k-version space VSk(D) is empty.

Theorem 3. For any data D and instance x ∈ X:

VSk(D)(x) = ∅ ↔ VSk(D) = ∅.
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Proof. For any data D and instance x ∈ X :

VSk(D)(x) = ∅ iff [by Definition 3]

(∀y ∈ Y )¬(∃h ∈ VSk(D))cons0(h, �(x, y)�) iff [by Definition 1]

(∀y ∈ Y )¬(∃h ∈ VSk(D))c(h(x)) = y iff

(∀y ∈ Y )(∀h ∈ VSk(D))c(h(x)) �= y iff [c is a function from P(R) to Y ]

VSk(D) = ∅. �

The problem to classify an instance x ∈ X by a k-version space VSk(D) according to
Definition 3 is called the k-version-space classification problem. In the next Subsection
3.4 we propose one solution to this problem based on two consistency tests.

3.4 k-Consistency Tests

Consider a k-version space VSk(D) and an instance x ∈ X to be classified. By Theo-
rem 3 if VSk(D) is empty, then the k-class set VSk(D)(x) is empty. If VSk(D) is non-
empty, then to classify x we need to compute the non-empty k-class set VSk(D)(x).
Therefore, we divide the k-version-space classification problem into two sub-problems:

(1) k-collapse problem: to decide whether the k-version space VSk(D) is empty;
(2) k-class-set problem: to compute the k-class set VSk(D)(x) for the instance x if

VSk(D) is non-empty.

For the k-collapse problem we formulate Theorem 4. The Theorem introduces a test to
decide whether the k-version space VSk(D) is empty.

Theorem 4. Consider data D and integer k ≤ |D|. Then:

VSk(D) �= ∅ ↔ (VSk−1(D) �= ∅ ∨ (∃h ∈ H)(consk(h,D)∧¬consk−1(h,D))).

Proof. For any data D and integer k ≤ |D|:
VSk(D) �= ∅ iff [by Definition 2]

(∃h ∈ H)consk(h,D) iff

(∃h ∈ H)((consk(h,D)∧consk−1(h,D))∨(consk(h,D)∧¬consk−1(h,D))) iff

[by Theorem 1 consk(h,D) ← consk−1(h,D)]
(∃h ∈ H)(consk−1(h,D) ∨ (consk(h,D) ∧ ¬consk−1(h,D))) iff

(∃h ∈ H)consk−1(h,D) ∨ (∃h ∈ H)(consk(h,D) ∧ ¬consk−1(h,D)) iff

[by Definition 2]

V Sk−1(D) �= ∅ ∨ (∃h ∈ H)(consk(h,D) ∧ ¬consk−1(h,D)). �

By Theorem 4 a k-version space VSk(D) is non-empty iff the k − 1-version space
VSk−1(D) is non-empty or there exists a scoring classifier h ∈ H that is k-consistent
and k − 1-inconsistent with data D. We note that the problem to decide whether the
k − 1-version space VSk−1(D) is empty is the k − 1-collapse problem. The problem
to decide whether there exists a scoring classifier h ∈ H that is k-consistent and k− 1-
inconsistent with D is a new problem that we call exact k-consistency problem. Thus,
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the k-collapse problem is a recursive problem. By Corollary 1 the recursion is restricted
below for k = −1, since cons−1(h,D) is false.

Theorem 4 does not specify whether to solve first the k − 1-collapse problem or the
exact k-consistency problem. However, by Lemma 1, if the test for the k − 1-collapse
problem is negative (i.e., VSk−1(D) = ∅), then the exact k-consistency problem is
simplified to a problem to decide whether there exists a scoring classifier h ∈ H that is
only k-consistent with D.

Lemma 1. Consider data D and integer k ≤ |D|. If VSk−1(D) = ∅, then:

(∃h ∈ H)(consk(h,D) ∧ ¬consk−1(h,D)) ↔ (∃h ∈ H)consk(h,D).

Proof. The (→) part of the proof is obvious. Thus, we provide the (←) part only. Con-
sider data D and integer k ≤ |D|. If VSk−1(D) = ∅, then ¬(∃h ∈ H)consk−1(h,D);
i.e., (∀h ∈ H)¬consk−1(h,D). The latter and (∃h ∈ H)consk(h,D) imply:

(∃h ∈ H)(consk(h,D) ∧ ¬consk−1(h,D)). �

The problem to decide whether there exists a scoring classifier h ∈ H that is k-
consistent with data D is a new problem that we call general k-consistency problem.

Definition 4. (General k-Consistency Problem). Given hypothesis space H and data
D, the general k-consistency problem is to determine: (∃h ∈ H)consk(h,D).

By combining the results of Theorem 4 and Lemma 1 we determine the order of com-
putation for the k-collapse problem. First we solve the k − 1-collapse problem. If
VSk−1(D) �= ∅, then by Theorem 4 VSk(D) �= ∅. If VSk−1(D) = ∅, then we solve
the general k-consistency problem since this problem by Lemma 1 is equivalent to the
exact k-consistency problem. Thus, we conclude that the k-collapse problem is a recur-
sive problem that consists of the k − 1-collapse problem and the general k-consistency
problem in the proposed order of computations.

For the k-class-set problem we formulate Theorem 5. The Theorem introduces a test
for any class y ∈ Y to determine whether y belongs to the k-class set VSk(D)(x)
assigned to instance x to be classified.

Theorem 5. For any data D, integer k ≤ |D|, instance x ∈ X , and class y ∈ Y :

y∈VSk(D)(x)↔(y∈VS k−1(D)(x) ∨
(∃h ∈H)(consk(h,D)∧cons0(h, �(x, y)�)∧¬consk−1(h,D))).

Proof. For any data D, integer k ≤ |D|, instance x ∈ X , and class y ∈ Y :

y ∈ VSk(D)(x) iff [by Definition 3]

(∃h ∈ VSk(D))cons0(h, �(x, y)�) iff [by Theorem 2 VSk−1(D) ⊆ VSk(D)]
(∃h ∈ VSk−1(D))cons0(h, �(x, y)�) ∨
(∃h ∈ VSk(D) \ VSk−1(D))cons0(h, �(x, y)�) iff [by Definitions 2 and 3]

y ∈ VSk−1(D)(x) ∨
(∃h ∈ H)(consk(h,D) ∧ cons0(h, �(x, y)�) ∧ ¬consk−1(h,D)). �
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By Theorem 5 a class y ∈ Y belongs to the k-class set VSk(D)(x) iff y belongs to
the k − 1-class set VSk−1(D)(x), or there exists a scoring classifier h ∈ H that is k-
consistent with D, 0-consistent with �(x, y)�, and k − 1-inconsistent with D. We note
that the problem to determine whether the class y belongs to the class set VSk−1(D)(x)
is the k−1-class-set problem for the class y. The problem to decide whether there exists
a scoring classifier h ∈ H that is k-consistent with D, 0-consistent with �(x, y)�, and
k− 1-inconsistent with D is a new problem that we call exact k0-consistency problem.
Thus, the k-class-set problem is a recursive problem. By Corollary 1 the recursion is
restricted below for k = −1, since cons−1(h,D) is false.

Theorem 5 does not specify whether we have first to solve the k−1-class-set problem
or the exact k0-consistency problem. However, by Lemma 2, if for some class y ∈ Y
the result of the k − 1-class-set problem is negative (i.e., y /∈ VSk−1(D)(x)), the
exact k0-consistency problem is simplified to a problem to decide whether there exists
a classifier h ∈ H that is only k-consistent with D and 0-consistent with �(x, y)�.

Lemma 2. Consider data D, integer k ≤ |D|, instance x ∈ X , and class y ∈ Y . If
y /∈ VSk−1(D)(x), then:

(∃h ∈ H)(consk(h,D) ∧ cons0(h, �(x, y)�) ∧ ¬consk−1(h,D)) ↔
(∃h ∈ H)(consk(h,D) ∧ cons0(h, �(x, y)�)).

Proof. The (→) part of the proof is obvious. Hence, we provide the (←) part only. Con-
sider data D, integer k ≤ |D|, instance x ∈ X , and class y ∈ Y . If y /∈ VSk−1(D)(x),
by Definition 3 ¬(∃h ∈ VSk−1(D))cons0(h, �(x, y)�). By Definition 2 the latter im-
plies ¬(∃h ∈ H)(consk−1(h,D) ∧ cons0(h, �(x, y)�)) which is equivalent to:

(∀h ∈ H)(¬consk−1(h,D) ∨ ¬cons0(h, �(x, y)�)).
Thus,

(∃h ∈ H)(consk(h,D) ∧ cons0(h, �(x, y)�)) iff

(∃h ∈ H)(consk(h,D) ∧ cons0(h, �(x, y)�) ∧
(¬consk−1(h,D) ∨ ¬cons0(h, �(x, y)�))) iff

(∃h ∈ H)(consk(h,D) ∧ cons0(h, �(x, y)�) ∧ ¬consk−1(h,D)). �

The problem to decide whether there exists a scoring classifier h ∈ H that is k-
consistent with data D and 0-consistent with �(x, y)� is a new problem that we call
general k0-consistency problem. Below we provide a definition of this problem.

Definition 5. (General k0-Consistency Problem) Given hypothesis spaceH , dataD,
integer k ≤ |D|, instance x ∈ X , and class y ∈ Y , the general k0-consistency problem
is to determine: (∃h ∈ H)(consk(h,D) ∧ cons0(h, �(x, y)�)).
By combining the results of Theorem 5 and Lemma 2 we determine the order of com-
putation for the k-class-set problem for any k-version space VSk(D), instance x ∈ X ,
and class y ∈ Y . First we solve the k − 1-class-set problem. If y ∈ VSk−1(D)(x),
then by Theorem 5 y ∈ VSk(D)(x). If y /∈ VSk−1(D)(x), then we solve the gen-
eral k0-consistency problem since this problem by Lemma 2 is equivalent to the exact
k0-consistency problem. Thus, we conclude that the k-class-set problem is a recursive
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Function Classify:

Input: integer k, data D, instance x.
Output: class set VSk(D)(x) assigned to x.

if k < 0 then
return ∅;

Yk−1 := Classify(k − 1, D, x);
if Yk−1 = ∅ then

if ¬(∃h ∈ H)consk(h, D) then
return ∅;

Yk := Yk−1;
for each class y ∈ Y \ Yk−1 do

if (∃h ∈ H)(consk(h, D) ∧ cons0(h, �(x, y)�) then
Yk := Yk ∪ {y};

return Yk.

Fig. 1. Classification function of k-version spaces based on the k-consistency tests

problem that consists of the k − 1-class-set problem and the general k0-consistency
problem in the proposed order of computations.

So far we showed that the k-version-space classification problem consists of the k-
collapse problem and the k-class-set problem. The k-collapse problem consists of the
k−1-collapse problem and the general k-consistency problem. The k-class-set problem
consists of the k − 1-class-set problem and the general k0-consistency problem. Thus,
since the k−1-collapse problem and the k−1-class-set problem form the k−1-version-
space classification problem, it follows that the k-version-space classification problem
is a recursive problem that consists of the k − 1-version-space classification problem,
the general k-consistency problem, and the general k0-consistency problem. This result
implies that the k-version-space classification can be (tractably) implemented as soon
as we can (tractably) test for k-consistency and k0-consistency in the given hypothesis
space. The consistency tests can be applied to any class. Thus, we allow k-version
spaces to be applied for multi-class classification tasks.

The classification function of k-version spaces based on the consistency tests is given
in Figure 1. The function input includes data D, integer k, and instance x ∈ X . The
output is the k-class set VSk(D)(x) for x provided according to Definition 3.

The function is recursive. It first checks whether k < 0. If k < 0, then by Corollary
2 the k-version space VSk(D) is empty. This implies by Theorem 3 that the k-class set
VSk(D)(x) is empty. Thus, the function returns empty set.

If k ≥ 0, we note that the k-version-space classification problem includes the k −
1-version-space classification problem. Hence, the function calls itself recursively for
k − 1. The result of the call is the set Yk−1 of classes assigned by the k − 1-version
space VSk−1(D) to the instance x. If the class set Yk−1 is empty, then by Theorem
3 the k − 1-version space VSk−1(D) is empty. Thus, by Theorem 4 and Lemma 1 in
order to decide whether the k-version space VSk(D) is non-empty we solve the general
k-consistency problem; i.e., we test whether there exists a scoring classifier in H that is
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k-consistent withD. If the test is negative, by Definition 2 the k-version space VSk(D)
is empty and by Definition 3 the function returns ∅. If the test is positive, by Definition
2 VSk(D) is non-empty. Therefore, the function continues the classification process
by initializing the class set Yk (assigned to the instance x by VSk(D)). By Theorem
5 Yk−1 ⊆ Yk. Thus, Yk is initialized equal to Yk−1. Then the function tests whether
the classes from Y \ Yk−1 can de added to Yk. We note that for each of these classes
Lemma 2 holds. Thus, by Theorem 5 for each class y ∈ Y \ Yk−1 we solve the general
k0-consistency problem for the data D and �(x, y)�. This is done by testing whether
there exists a scoring classifier h ∈ H that is k-consistent with D and 0-consistent with
�(x, y)�. If so, then by Theorem 5 the class y is added to the set Yk. Once all the classes
in Y \ Yk−1 have been visited the class set Yk is outputted.

Let Tk be the time complexity of the general k-consistency test and Tk0 be the time
complexity Tk0 of the general k0-consistency test. Assuming that Tk < Tk0 the worst-
case time complexity of the classification function of k-version spaces equals:

O(Tk + k|Y |Tk0). (2)

4 Consistency Algorithms

To implement the classification function of k-version spaces based on the consistency
tests we need k-consistency-test algorithms and k0-consistency-test algorithms. Below
we propose two approaches to implement these algorithms. The first one is for the case
when there exists a 0-consistent learning algorithm l for the hypothesis space H . It
allows designing consistency-test algorithms valid for the whole hypothesis space H .
Hence, it is called hypothesis-unrestrictive approach. The second approach is for the
case when there exists no 0-consistent learning algorithm l for the hypothesis space H .
It allows designing consistency-test algorithms valid for a sub-space of the hypothesis
space H . Hence, it is called hypothesis-restrictive approach.

4.1 Hypothesis-Unrestrictive Approach

The hypothesis-unrestrictive approach assumes that there exists a 0-consistent learning
algorithm l for the hypothesis spaceH . Thus,H contains hypothesis that is 0-consistent
with data D iff l succeeds; i.e., l outputs for D some hypothesis (that by definition is
consistent with D). This implies that the 0-consistency-test algorithm in this case is the
0-consistent learning algorithm l plus a success test. In the past (cf. [5]) 0-consistency-
test algorithms were proposed for different hypothesis spaces such as 1-decision lists,
monotone depth two formulas, halfspaces etc. They guarantee tractable 0-version-space
classification, if they are tractable.

By Definition 1 if we can test for 0-consistency, we can test for k-consistency. Thus,
given data D and integer k, we design a k-consistency-test algorithm as follows. We
start with m = 0 and then for eachDm ⊆ D with size |D|-mwe apply a 0-consistency-
test algorithm. If the 0-consistency-test algorithm identifies 0-consistency for at least
one Dm, by Theorem 1 there is 0-consistency for some Dk ⊆ Dm and we return value
“true”. Otherwise, we continue with the next Dm or increment m in the boundary of
k. If this is not possible, we return value “false”. Thus, the worst-case time complexity
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of the k-consistency-test algorithm is O(
( |D|
|D|−k

)
Tl) where Tl is the time complexity of

the learning algorithm l used in the 0-consistency-test algorithm.
The k0-consistency-test algorithms and their worst-case time complexity are analo-

gous. Thus, we conclude that the k-consistency-test and k0-consistency-test algorithms
based on 0-consistency learning algorithms are intractable in the worst case. Thus, ac-
cording to formula (2) the k-version space classification is intractable in this case.

4.2 Hypothesis-Restrictive Approach

The hypothesis-restrictive approach assumes that the learning algorithm l provided is
not a 0-consistent learning algorithm for the hypothesis spaceH . The approach restricts
H s.t. we can implement the tests for the k-consistency and k0-consistency in the con-
strained space H(k,D) ⊆ H using the algorithm l. Below we define H(k,D) and
condition s.t. the consistency tests can be implemented using the learning algorithm l.

The restricted hypothesis space H(k,D) is defined for the learning algorithm l, data
D, and integer k. It is non-empty if the scoring classifier l(D) ∈ H is k-consistent with
D. In this caseH(k,D) consists of l(D) plus any scoring classifier l(D'�(x, y)�) ∈ H
for some instance (x, y) ∈ X × Y that is k-consistent with the data D ' �(x, y)�.

Definition 6. Consider hypothesis space H , integer k ≤ |D|, and data D. If scoring
classifier l(D) is k-consistent with D, the hypothesis sub-space H(k,D) ⊆ H equals:

{l(D)}∪{l(D'�(x, y)�) ∈ H |(x, y) ∈ X×Y ∧consk(l(D'�(x, y)�), D'�(x, y)�)}.
Otherwise, H(k,D) = ∅.

Any learning algorithm l can be used for consistency testing in the hypothesis sub-space
H(k,D) if the instance property holds. This property often holds for stable classifiers
like Naive Bayes [3].

Definition 7. (Instance Property) Learning algorithm l has the instance property iff
for any data D and instance (x, y) ∈ X × Y if there exists instance (x′, y′) ∈ X × Y
s.t. the classifier l(D ' �(x′, y′)�) is k-consistent with D ' �(x, y)� and 0-consistent
with �(x, y)�, then the classifier l(D ' �(x, y)�) is k-consistent with D ' �(x, y)� and
0-consistent with �(x, y)�.

Below we describe algorithm Ck for the k-consistency test and algorithm Ck0 for k0-
consistency test in the restricted hypothesis spaceH(k,D). The algorithmCk0 employs
a learning algorithm l under the assumption that the instance property holds.

Algorithm Ck for k-consistency test: The algorithm Ck tests whether there exists a
scoring classifier h in H(k,D) that is k-consistent with data D. For that purpose it
first builds the scoring classifier l(D). Then, the algorithm tests if l(D) is k-consistent
with D. If so, by Definition 6 H(k,D) is non-empty and includes the desired classifier.
Otherwise, H(k,D) is empty; i.e., it does not include the desired classifier.

Algorithm Ck0 for k0-consistency test: given a labeled instance (x, y) ∈ X × Y , the
algorithm Ck0 tests whether there exists a classifier h in H(k,D) that is k-consistent
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with data D and 0-consistent with data �(x, y)�. For that purpose it first builds the
scoring classifier l(D) and then tests whether l(D) is k-consistent with D. If l(D) is
not k-consistent with D by Definition 6 H(k,D) is empty and thus it does not include
the desired classifier. Otherwise,H(k,D) is non-empty and the algorithm tests whether
the scoring classifier l(D) is 0-consistent with �(x, y)�. If l(D) is 0-consistent with
�(x, y)�, then H(k,D) includes the desired classifier. Otherwise, the algorithm makes
a second attempt. It builds the scoring classifier l(D ' �(x, y)�) and then tests whether
l(D' �(x, y)�) is k-consistent with D' �(x, y)� and 0-consistent with �(x, y)�. If both
tests are positive, then by Definition 6 l(D ' �(x, y)�) ∈ H(k,D), and l(D ' �(x, y)�)
is k-consistent withD and 0-consistent with �(x, y)�; i.e.,H(k,D) includes the desired
classifier. If at least one of the tests is negative, then by Definition 7 it follows that there
exists no instance (x′, y′) ∈ X×Y s.t. l(D'�(x′, y′)�) is consistent with D'�(x, y)�
and 0-consistent with �(x, y)�; i.e., there exists no instance (x′, y′) ∈ X ×Y s.t. l(D'
�(x′, y′)�) is consistent with D and 0-consistent with �(x, y)�. Thus, by Definition 6
H(k,D) does not include the desired classifier.

The correctness of the algorithm Ck0 is proven in Theorem 6.

Theorem 6. If the instance property holds, then for any data D ⊆ X × Y , integer
k ≤ |D|, instance x ∈ X , and class y ∈ Y we have:

(∃h ∈ H(k,D))(consk(h,D) ∧ cons0(h, �(x, y)�)) ↔
(cons0(l(D), �(x, y)�) ∨
(consk(l(D ' �(x, y)�), D ' �(x, y)�) ∧ cons0(l(D ' �(x, y)�), �(x, y)�))).

Proof. (→) Consider arbitrary data D ⊆ X × Y , integer k ≤ |D|, instance x ∈ X , and
class y ∈ Y so that:

(∃h ∈ H(k,D))(consk(h,D) ∧ cons0(h, �(x, y)�)).
Thus, by Definition 6:

cons0(l(D), �(x, y)�) ∨
(∃(x′, y′) ∈ X × Y )(consk(l(D ' �(x′, y′)�), D ' �(x′, y′)�) ∧

consk(l(D ' {(x′, y′)}), D) ∧
cons0(l(D ' �(x′, y′)�), �(x, y)�)).

which implies:

cons0(l(D), �(x, y)�) ∨
(∃(x′, y′) ∈ X × Y )(consk(l(D ' {(x′, y′)}), D ' �(x, y)�) ∧

cons0(l(D ' �(x′, y′)�), �(x, y)�)).

By Definition 7 the latter implies:

cons0(l(D), �(x, y)�) ∨
(consk(l(D ' �(x, y)�), D ' �(x, y)�) ∧ cons0(l(D ' �(x, y)�), �(x, y)�)).

(←) This part of the Theorem follows from Definitions 6 and 7. �
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The time complexity of the consistency-test algorithmsCk andCk0 isO(Tl + |D|Tc)
where Tl is the time complexity of the learning algorithm l and Tc is the time complexity
to classify with the scoring classifier l(D) (derived by l). Thus, according to formula (2)
the hypothesis-restrictive approach guarantees tractable k-version-space classification
iff the learning algorithm l and corresponding scoring classifier l(D) are tractable.

We conclude this Section with a remark. The hypothesis-unrestrictive approach and
hypothesis-restrictive approach together allow implementing k and k0-consistency-test
algorithms independent on the type of learning algorithms. Thus, they together with the
k-version-space classification function (from Figure 1) form a meta k-version-space
framework that is applicable for any type of learning algorithms.

5 Implementing k-Consistency

The key to success of our hypothesis restrictive approach is the problem of implement-
ing k-consistency: how to decide whether a classifier is k-consistent with data. In this
Section we consider two possible implementations: logical and probabilistic.

5.1 Logical k-Consistency

The logical implementation of k-consistency follows Definition 1. To decide whether a
classifier h is k-consistent with data D we first test h on D and determine a multi-set
Dc ⊆ D of correctly classified instances from D. If |Dc| ≥ |D| − k, then we output
value “true”; otherwise, we output value “false”.

5.2 Probabilistic k-Consistency

The probabilistic implementation of k-consistency is based on Definition 1 and the
generalized binomial distribution.2 Consider a scoring classifier h ∈ H . It outputs for
any instance a distribution of scores {s(y)}y∈Y . If the scores are normalized, we receive
a distribution of estimated probabilities {p(y)}y∈Y . If yr ∈ Y is the known class of
an instance x ∈ X , the experiment to assign class to x according to the distribution
{p(y)}y∈Y (provided by h(x)) is a binary trial with probability of success p(yr). Thus,
to classify all the instances from data D we receive a sequence of |D| independent
binary trials, each with different probability of success p(yr). The probabilities p(|D|−
k) that we have |D| − k successes in the sequence of |D| trials for k ∈ 0..|D| form
generalized binomial distribution. The probabilityF (|D|−k, |D|) that we have |D|−k
or more successes equals

∑k
i=0 p(|D| − i). This probability is actually the probability

that the scoring classifier h is k-consistent with D.

Definition 8. Given the generalized binomial distribution {p(i)}i∈0..|D| of scoring clas-
sifier h ∈ H for data D and a probability threshold pt ∈ [0, 1], h is probabilistically
k-consistent with D, denoted by p-consk(h,D), iff F (|D| − k, |D|) > pt.

2 The generalized binomial distribution is a discrete probability distribution of the number of
successes in a sequence of n independent binary experiments with different success probability.
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Implementing the probabilistic k-consistency is as follows. First, we test the scor-
ing classifier h on data D to compute the probabilities of success p(yr). Then, we
derive the generalized binomial distribution {p(i)}i∈0..|D| and compute the probability
F (|D| − k, |D|). Finally, by Definition 8 we output the truth value of the probabilistic
consistency predicate p-consk(h,D).

If the probabilistic consistency predicate is employed in Definition 2 we receive the
definition of k-version spaces based on the probabilistic k-consistency. We note two
advantages of the probabilistic k-consistency over the logical one. First, it employs the
information from the probabilities p(yr) of the true classes yr for all the instances in
the data D. Second, it provides solution in the whole range of k from 0 to the size of D.

6 Experiments

This Section presents experiments with our meta k-version-space framework. We em-
ployed the k-version-space classification function from Figure 1. The base classifier
used in the framework was the Naive-Bayes classifier (NB) [8]. The consistency al-
gorithms and the hypothesis space were designed using the hypothesis-restrictive ap-
proach, since NB is not 0-consistent classifier. The k-consistency was implemented
using probabilistic k-consistency predicate (see Definition 8), since NB is a proba-
bilistic classifier. The resulting combination we call k-Naive-Bayes Version Spaces (k-
NBVSs). Note that k-NBVSs have two parameters, parameter k of k-version spaces
and parameter pt, the probability threshold of the probabilistic k-consistency predicate.

We tested k-NBVSs in the context of the reliable-classification task [1, 11, 15]. The
task is to derive a classifier that outputs only reliable instance classifications. This im-
plies that instances with unreliable classifications remain unclassified. Hence, reliable
classifiers are evaluated using two measures: coverage rate and accuracy rate. The cov-
erage rate is the proportion of the instances that receive classifications while the accu-
racy rate is the accuracy on the classified instances.

The reliable-classification task is chosen since it is typical for version spaces [13].
We assume that k-NBVSs provide reliable classification for an instance if only one class
is outputted for that instance, i.e., we have an unanimous-voting rule.

We compared k-NBVSs with the NB classifier, since they employ this classifier. NB
for reliable classification uses a rejection technique: the class with the highest posterior
probability is outputted for an instance if this probability is greater than a user-defined
probability threshold [16]. NB with the rejection technique is denoted by NBr.

The reliable classification experiments were performed on 14 UCI datasets [2] (see
Table 1). The evaluation method was 10-fold cross validation. Table 2 reports the best
results for k-NBVSs and NB obtained by a grid search for tuning the parameters of
these classifiers.3 More precisely, it shows the maximal coverage rates of each of the
classifiers for which the accuracy rate of 1.0 is achieved. The maximal coverage rates
show that k-NBVSs outperform the NBr classifier on 13 out of 14 datasets, 6 times
significantly (level 0.05).

3 Similar experiments with internal parameter tuning were performed. The results are compati-
ble with those from Table 2.
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Table 1. The UCI data sets employed in the
experiments. A is the number of attributes, I
is the number of instances, and C is the num-
ber of classes.

Data Set A I C

audiology 70 226 24
breast-cancer 10 286 2
colic 23 386 2
diabetes 9 768 2
heart-statlog 14 270 2
hepatitis 20 155 2
ionoshpere 35 351 2
iris 5 150 3
labor 17 57 2
lymphography 19 148 4
sonar 61 208 2
wisc. breast-cancer 10 699 2
wine 14 178 3
zoo 18 101 7

Table 2. Coverage rate for accuracy rate of
1.0: k-NBVS and NBr. The numbers in bold
present statistically better results on signifi-
cance level 0.05.

Data Set k-NBVS NBr

audiology 0.1238 0.0708
breast-cancer 0.0734 0.0525
colic 0.1250 0.0055
diabetes 0.0730 -
heart-statlog 0.1222 0.0334
hepatitis 0.2903 0.0259
ionoshpere 0.2706 0.1453
iris 0.8933 0.8333
labor 0.7884 0.4386
lymphography 0.1959 0.1825
sonar 0.0528 0.0048
wisc. breast-cancer 0.3147 0.0473
wine 0.9269 0.8821
zoo 0.9208 0.9208
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Fig. 2. Coverage/accuracy graphs of k-NBVS
(solid line) and NBr (dashed line) for the labor
data when the parameter k equals 0
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Fig. 3. Coverage/accuracy graphs of k-NBVS
(solid line) and NBr (dashed line) for the au-
diology data when the parameter k equals 6

In addition we derived coverage/accuracy graphs for all the 14 datasets. One point
in the graphs represents a k-NBVSs for some values of the parameters k and pt. Subse-
quent points represent k-NBVSs for the same value of k and increased values of pt in
the range (pt, 1.0]. Hence, the graphs show the potential of k-NBVSs for reliable classi-
fication. Due to page limit Figures 2 and 3 present the coverage/accuracy graphs for the
labor data and audiology data only. The graphs of NBr are derived analogously and are
present in the Figures. The coverage/accuracy graphs show two features of k-NBVSs.
First, when the unanimous-voting rule is used the coverage rate of k-NBVSs is never
1.0. This is due the fact that k-NBVSs is a set of scoring classifiers that disagree on
some part of the instance space X . Second, k-NBVSs are sensitive for parameter k: the
bigger k the bigger is the size of k-NBVSs. Thus, when the unanimous-voting rule is
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used bigger k implies less classified instances; i.e., lower coverage rate. For example the
parameter k for the labor data equals 0 and for the audiology data equals 6. Therefore
the coverage rates of k-NBVSs for the labor data is bigger.

7 Conclusions

This paper has theoretical and practical contributions. The theoretical contributions are
two. The first one is that we proved that the problem of k-version-space classification
is a recursive problem that consists of the problem of k − 1-version-space classifica-
tion, the general k-consistency problem, and the general k0-consistency problem. Thus,
the k-version-space classification can be (tractably) implemented as soon as we can
(tractably) test for k-consistency and k0-consistency. In this respect our work is a con-
tinuation of [5] showing that the 0-version-space classification problem is equivalent
to the 0-consistency problem. The second theoretical contribution is that we extended
k-version spaces to multi-class classification. This is due to the consistency tests that
can be applied to any class. This contrasts with the original formulation of k-version
spaces proven and used for two-class classification only due to the Boolean nature of
version-space representations [6–8].

The practical contributions are two. The first one consists of two approaches to
designing consistency-test algorithms for any type of learning algorithms. The most
important is the hypothesis-restrictive approach applicable for nonzero-consistent learn-
ing algorithms. The second practical contribution is that we introduced two imple-
mentations of k-consistency. They allow logical and probabilistic implementations of
consistency-test algorithms, and thus of the k-version-space classification.

The theoretical and practical contributions convert k-version spaces to a meta frame-
work applicable for any type of learning algorithms. The framework is practical for
nonzero-consistent learning algorithms. More precisely it guarantees tractablek-version-
space classification iff these algorithms are tractable.

Acknowledgements. The authors would like to thank the anonymous referees for the
useful and detailed reviews.
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Abstract. Active learning [1] is a branch of Machine Learning in which

the learning algorithm, instead of being directly provided with pairs of

problem instances and their solutions (their labels), is allowed to choose,

from a set of unlabeled data, which instances to query. It is suited to set-

tings where labeling instances is costly. This paper analyzes the speed-up

of batch (parallel) active learning compared to sequential active learning

(where instances are chosen 1 by 1): how faster can an algorithm become

if it can query λ instances at once?

There are two main contributions: proving lower and upper bounds on

the possible gain, and illustrating them by experimenting on usual active

learning algorithms. Roughly speaking, the speed-up is asymptotically

logarithmic in the batch size λ (i.e. when λ → ∞). However, for some

classes of functions with finite VC-dimension V , a linear speed-up can

be achieved until a batch size of V . Practically speaking, this means

that parallelizing computations on an expensive-to-label problem which

is suited to active learning is very beneficial until V simultaneous queries,

and less interesting (yet still bringing improvement) afterwards.

1 Introduction

Active learning [1] (AL) is a statistical Machine Learning setting in which data
comes unlabeled, the learning algorithm chooses which data points (i.e. in-
stances) are important, and queries an oracle to get their labels. Active learning
can be particularly useful if the oracle labelling the examples is expensive.

Batch active learning [12,22,13] is the particular case of active learning in
which the algorithm can choose λ examples at a time, meaning the oracle pro-
vides λ answers at once—λ is the batch size, that is the number of simultaneous
requests to the oracle. This setting is for instance suited to cases where the or-
acle is a computational code (such as in numerical engineering applications): if
λ computing units are available, the code can be run simultaneously on each
machine.

This paper provides rigorous bounds on the number of iterations before a
given precision is reached for batch active learning in binary classification, in
particular as a function of λ. This model of complexity, based on the number of
iterations only, is relevant for cases in which almost all the cost is in the calls to

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part III, LNAI 6323, pp. 293–305, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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the oracle function (expensive oracle), and when at least λ computation units are
available. The internal cost of the learning algorithm is not taken into account.

The quantity of interest when analyzing batch active learning w.r.t. sequential
active learning (i.e. when λ = 1), is the speed-up at λ: it is the ratio of the number
of iterations (number of calls to the oracle) of a sequential algorithm and the
number of iterations of an algorithm using batches of examples of size λ at each
iteration.Obviously, under this assumption, passive learning—when instances to
be queried are selected i.i.d. from the natural input distribution—has a linear
speed-up: an algorithm querying λ instances at time in an i.i.d. fashion is λ
times faster than the sequential algorithm querying 1 instance at a time. We
here investigate to which extent such a good speed-up can be recovered for
active learning.

This work was motivated notably by the task of approximating a big numerical
code, simulating some physical process or some engineering process, that require
hours or days to compute an outcome given an input. The authors have been in
contact with nuclear physicists that had such a code simulating nuclear fusion
ignition through lasers, with a low input dimension (5 to 10).

The simulation code is not parallelized itself. However, it can of course be
run simultaneously on multiple inputs if multiple processors are available, for
instance on a single cluster (e.g. a hundred cores), or on a grid (e.g. five thousand
cores). In the first case, outputs are given by batches of 100, and in the second by
batches of 5000. However, the second requires much more deployment effort. This
study shows that in such a case, if a good active learning strategy is available, it
is not worth wasting time and computational power on using the grid, since the
speed-up as compared to using the cluster would be quite low. This is naturally
specific to active learning, and would not be true for passive learning scenarios.

The paper is organized as follows:

– Section 2 presents the framework and notations, so that complexity bounds
can be properly formalized;

– Section 3 shows bounds for batch active learning using covering and packing
numbers. Results include lower and upper bounds on the speed-up of batch
active learning, seen as a parallel algorithm;

– Section 4 presents some experiments; these experiments are aimed at com-
paring predicted speed-ups (for optimal algorithms) to speed-ups of simple
or usual algorithms;

– Section 5 concludes.

State of the Art

The query learning models introduced by [1] can be viewed as the first attempts
of the learning algorithm to directly interact with the oracle. Another early work
[15] establishes a lower bound for the instance size in any active learning (AL)
classification setting, logarithmic in the ε-packing number of the hypothesis space
F—the number of disjoint ε-radius balls needed that can be put in F(see section
2 below).
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Classification. [4] devised a heuristic for error-free learning (i.e., in the realiz-
able setting) of a binary classifier (i.e. a {0, 1}-valued target function to learn),
considering a large pool of unlabeled examples and selecting the best example to
be labeled in each time step (pool-based adaptive sampling). Considering the set
of hypotheses compatible with the available examples—the version space (VS)
defined in [17]—the selected examples were meant to prune the version space.

[10] analyzed another algorithm based on a Bayesian prior on the hypothe-
sis space called Query-by-committee (QBC) from [21]; it directly reduces the VS
volume. A related research direction focuses on error reduction, meant as the ex-
pected generalization error improvement brought by an instance. Many criteria
reflecting various measures of the expected error reduction have been proposed
[5,14,18,16,8], with sometimes encouraging results in, for instance, pharmaceuti-
cal industry [25]. Specific algorithms and methods have been developed for active
learning in linear and kernel spaces, either heuristically [20]or with theoretical
foundations [3,8,2].

On the theoretical side, [10] related the efficiency of QBC to a statistical crite-
rion called Information Gain, measuring how efficiently the VS can be divided.
[6] has shown that with a Bayesian prior, greedily choosing examples that most
evenly divide the VS is an almost optimal AL strategy.

Dasgupta also studied the non-Bayesian setting [7], deriving upper and lower
complexity bounds based on a criterion called splitting index.

Batch active learning for classification. Batch active learning has received
less attention. [12] assesses the information brought by batches of examples
via a criterion based on Fisher information matrix reduction. [11] seeks sets of
examples with low uncertainty; they phrase this as an optimization problem
(NP-hard), and devise a method to find an acceptable approximation of the solu-
tion. Both works provide empirical evidence of the soundness of their strategies.
However, they do not provide any formal proof guaranteeing their behavior. Fur-
ther, we are not aware of any theoretical study of the speed-up of batch Active
Learning over sequential Active Learning, in terms of sample complexity bounds
(speed-up is in terms of gain with respect to the number of iterations, see section
2 below). Clearly, batch active learning can not reduce the overall number of eval-
uations when compared to sequential active learning; the advantage is only in the
case of a parallel use of the oracle querying λ instances at a time.

2 Framework

In all the paper, log refers to the binary logarithm. If a, b ∈ N, [[a, b]] = N
⋂

[a, b].
If x, y ∈ [0,∞[d, then we note [x, y] = {a ∈ Rd; ∀i, xi ≤ ai ≤ yi}. The speedup of
a parallel algorithm A λ over its sequential counterpart A (or equivalently A 1)
is the ratio of A ’s complexity in terms of number of iterations (i.e. of batch calls
to the oracle) on A λ’s complexity.

Only deterministic algorithms are considered here; the lower bounds can be
extended, nonetheless, to stochastic cases within logarithmic dependencies on
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the risk δ (i.e. case with confidence 1 − δ)1 and upper bounds (Theorem 2,
referred to as a simulation result) can also be extended to the stochastic case. The
framework of batch active learning is presented in Algorithm 1. A batch active
learning algorithm A λ is defined by the triplet (learnλ, generateλ, updateλ). Let
D be a domain, PD a probability measure on this domain, and f∗ : D → {0, 1}
be the unknown oracle, supposed to be deterministic and to belong to some set
F ⊂ {0, 1}D. The generalization error d(f, f∗) of an approximation f ∈ F of f∗

is defined as PD({x|f(x) �= f∗(x)}). Note that d is a distance for the space F2.
We assume that the considered concept class F has a finite VC-dimension

V . VC-dimension is a classical measure of complexity for classes of functions,
for which the reader is referred to [23,9]. It is common to consider finite VC-
dimension in active learning settings since the improvement over passive learning
is potentially much bigger in this case [15]. Indeed, the number of examples
required to learn f∗ with precision ε, i.e. to find f such that d(f∗, f) ≤ ε, is
N = Θ(V log(1/ε)) in good cases, see for instance [7,10].

Algorithm 1. Batch active learning algorithm A λ = (learnλ, generateλ,
updateλ). λ is the number of visited points per iteration.

I0 = initial state // Global state of the algorithm
n ← 0

while true do
fn ← learnλ(In)

(xnλ+1, . . . , xnλ+λ) = generateλ(In)

for i ∈ [[1, λ]] do
ynλ+i = f(xnλ+i) // label λ instances at once

end for
In+1 ← updateλ(In, xnλ+1, . . . , x(n+1)λ, ynλ, . . . , y(n+1)λ)

n ← n + 1

end while

For a given λ and a given algorithm A , the number of iterations for reaching
precision ε is noted

NA
λ (ε) = sup

f∈F
min{n; ||fn[A λ] − f ||1 ≤ ε}

with ||.||1 the L1 norm and fn[A λ] the approximation learned after n iterations
via the framework presented in Algorithm 1. The smallest achievable number of
iterations for any algorithm will be noted

Lλ(ε) = inf
A

NA
λ (ε).

Lλ depends on the considered function class F (so does NA
λ ), and will be noted

LF
λ when it is needed to make explicit which F is under study. Let packF(ε) be

1 Precisely, the sample complexity is increased by a factor −O(log(δ)) if we request

that the algorithm finds the solution with probability 1 − δ.
2 More precisely, a pseudo-metric.
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the maximum number of points in F with pairwise distance d at least 2ε for the
L1 norm. In the sequel, for some of our results, the following equation will be
assumed:

∀ε, packF(ε) ≥ (M/ε)(C×V ) (1)

for constants C and M . It states that the log-packing numbers of target function
class F are at least −CV log(ε/M). The product C×V in Eq. 1 stems from many
results emphasizing some constant C, and the VC-dimension V [7], such as, for
example, the well-known case of homogeneous linear separators 3 of the sphere
with homogeneous distribution[10,8,2], in which case V is equal to the dimension
of the domain.

3 Covering Numbers and Batch Active Learning

Eq. 1 has the following consequence (see [15,24]):

L1(ε) ≥ (CV log(M/ε)). (2)

Eq. 2 states a lower bound on the sample complexity of AL, and has the following
consequence (which is a lower bound on the sample complexity of batch AL):

Lλ(ε) ≥ (CV log(M/ε)/λ) (3)

Eq. 3 is the ultimate limit for batch active learning: it is the case of a linear
speed-up. The following explores the extent to which it can be reached, w.r.t. λ.
In a parallel setting, in which λ calls to the oracle are performed in parallel, Eq.
3 refers to a linear speed-up for the parallel (i.e. batch) form of active learning.

The first contribution of this work is the following extension of the classical
bound 2:

Theorem 1 (Lower bound for batch AL). If F has packing number

packF(ε) ≥ (M/ε)C·V , (4)

then the following holds for λ > 1:

Lλ(ε) ≥ CV log(M/ε)/ log(K) (5)

where K = λV if V ≥ 3, λV + 1 if V ≤ 2 , i.e.

Lλ(ε) ≥ C log(M/ε)/(log(λ)). (6)

Remark. K is an upper bound on the number of possible classifications of λ
points, given a class of function with VC-dimension V . K = λV stems from
Sauer’s lemma (see [19]). K is exponential in V , but finite, thanks to the finite

3 That is, linear separators whose value in the null vector is 0.
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number of possible classifications of λ points when the VC-dimension is V . Hav-
ing this upper bound on the number of reachable states for one batch, the number
of possible branches in a run of the algorithm can be bounded accordingly.

Proof: Consider an algorithm realizing Lλ(ε).
As the algorithm is deterministic, there is one and only one possible value for
the λ-uple (x1, . . . , xλ), independently of f :

(x1, . . . , xλ) = generate(I0).

Thanks to the finite VC-dimension and to Sauer’s lemma, there are at most K
possible values for y1, . . . , yλ; therefore there are at most K possible values for
I1 (since the algorithm is assumed to be deterministic).

Similarly, for each possible value of I1, there are at most K possible values
for I2; therefore the total number of possible values for I2 is at most K2.

By induction, there are at most Ki possible values for Ii. After Lλ(ε) itera-
tions, each possible state ILλ(ε) corresponds to a function learned with λLλ(ε)
examples. Since the algorithm realizes the bound Lλ(ε), for any 2 oracle functions
distant of ε or more, the algorithm must have 2 different states. Thus, the final
number of states is at least as big as the packing number: KLλ(ε) ≥ packF(ε).
As a consequence,

Lλ(ε) ≥ log(packF (ε))/ log(K). (7)

Eqs. 7 and 4 yield the expected result.

The next result shows that this bound is tight, at least asymptotically (λ→ ∞).

Theorem 2 (Upper bound for batch AL). In AL framework of Algo. 1),
assume F has VC-dimension V . Define K = λV + 1 and

λ′ = λ
KD − 1
K − 1

. (8)

Then the following holds for all D ≥ 1:

Lλ′(ε) ≤ (Lλ(ε)/D) (9)

Remark. Eq. 9 leads to

Lλ′(ε) = O ((Lλ(ε)/ log(λ′))) (10)

for fixed V and λ. This is a logarithmic speed-up: see for instance that if λ = 1,
then ∀D,L2D(ε) = O(L1(ε)

D )

Proof: The proof exhibits an algorithm realizing Eq. 9. Consider an algorithm
A λ = (learnλ, generateλ, updateλ) realizing Lλ(ε) and consider some D ≥
1. Define λ′ = λKD−1

K−1 . Consider, then, another algorithm A λ′ = (learnλ′ ,
generateλ′ , updateλ′) which generates λ′ points by simulating A λ on D steps;
if A λ has internal state In, then A λ′ has nth internal state I ′n = IDn. At each
iteration:
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– generateλ′ simulates the KD possible internal paths

(IDn, IDn+1, . . . , IDn+D.)k with k ∈ [[0,KD]] (11)

and generates for each iteration all the λ′ points visited in any of those paths.
At state IDn λ points are to be labeled. Then, there are K possible states
IDn+1 resulting in Kλ other points. Repeating the process for IDn+2, . . ., one
can see that λ′ as in Eq. 8 is enough;

– the target f is computed at these λ′ points. It is then possible to figure out
which path among the KD possible paths is the one that would actually
have happened during D steps of A λ

– updateλ′ is the result of updateλ for the path selected in generateλ′4;
– the output of learnλ′ is the output of learnλ on all points visited in the

selected path5.

Eqs. 6 and 9 show that log(λ) is the optimal speed-up when no assumption on λ
are made: theorem 2 shows that in all cases, a logarithmic speed-up is achievable
and Theorem 1 shows that we cannot do much better for λ large. The rate of
batch AL is therefore at least logarithmic as a function of λ, at most linear, and
for λ large enough at most logarithmic.

The remaining question is what happens for moderate values of λ, and in
particular how many simultaneous queries we need for removing the dependency
in V . We now show that λ = V leads to a nearly linear speed-up, for some families
F . This removes the dependency in V in runtimes—this means that the curse
of dimensionality can be broken with a batch size of V , whereas λ > V will only
provide a logarithmic speed-up.

Let us remind that for binary classification, function classes of a domain X
can equivalently be described as sets of subsets of X . In our case, the convention
is that a set describes all the instances on which the function values are 1 (the
complement of the set is thus where the function values are 0).

Theorem 3 (Linear speed-up until λ = V ). Consider FV = {[0, x], x ∈
[0, 1]V }. Then, for some M > 0,M ′ > 0,

∃C > 0, ∀V, ∃ε0, ∀ε < ε0, L
FV
1 (ε) ≥ CV log(M/ε) (12)

and
∃C′; ∀V, ∃ε0, ∀ε < ε0, L

FV

V (ε) ≤ C′ log(M ′/ε). (13)

It is a classical result that V C − dim(FV ) = V . Eqs. 12 and 13 state the linear
speed-up for batch active learning with λ = V for this family of functions (within
the constants C and C′).

4 Therefore, only Dλ points are actually used among the λ’ labeled points.
5 A big part of the points for which the target value has been computed is discarded.

This is necessary for the formal proof of tightness of complexity bounds. For real-

world applications, we guess that applying learnλ′ on all points might be much

better, within constant factors however.
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Proof: We first show that the following holds:

∃C > 0, ∀V, ∃ε0, ∀ε < ε0, packFV (ε) ≥ M/ε(C×V ). (14)

Eq. 14 is a version of Eq. 1 modified for considering only ε small; it is weaker
than Eq. 1 and sufficient for our purpose.

Eq. 14 is proved as follows:

– For x and y in [12 , 1]V , the L1 distance between [0, x] and [0, y] is lower
bounded by Θ(||x − y||1).

– Therefore, a regular grid of edge Θ(ε) can be constructed in [0, 1]V , yielding
Θ(1/εV ) points for the sole [1/2, 1]V part. Consequently, the packing number
of {[0, x];x ∈ [0, 1]V } is Θ(1/εV ) and is therefore ω(1/εV/2).

– This shows Eq. 14 for C = 1
2 .

Then, Eq. 14 classically leads to Eq. 12 (this is analogous to the proof of Eq. 2
from Eq. 1, see section 3). This is the first part of the theorem (Eq. 12). Let us
now show Eq. 13, by considering the following algorithm described at iteration
n, with λ = V :

– generateλ prepares the batch ((xnλ+1, . . . , x(n+1)λ) as follows: for each xnλ+i,
all coordinates j �= i are set to 0. The ith coordinate of xnλ+i is chosen by
looking at the n − 1 previous points in position i of each of the n − 1 pre-
vious batches. It is defined as the middle of the segment defined by the
lowest previously-observed ith coordinate whose label is 0, and the highest
previously observed ith coordinate whose label is 1. More formally: 6

(xnλ+i)i =
1
2

(
min
n′≤n

{(x′n′λ+i)i|y′n′λ+i = 0}

+ max
n′≤n

{(x′n′λ+i)i|y′n′λ+i = 1}
)
. (15)

– learnλ selects any function fn ∈ FV which is consistent with x1, . . . , xnλ.

At a given iteration n each point xn,i of the batch of size λ makes sure that
the domain will be halved along the ith coordinate. Thus, after N iterations,
it is known that the target oracle/classifier is in a square of edge size 2−N . As
a consequence, precision ε is reached in at most Θ(log(1/ε)) iterations, which
shows Eq. 13.

This theorem shows that, at least for F as above, we can have a linear speed-up
until λ = V ; this is the tightness of Eq. 3 for λ ≤ V—similarly to the tightness
of Eq. 6 (i.e. logarithmic speed-up) shown by Eq. 10 for λ large.

6 In Eq. 15, if no point xn′λ+i has been labeled as 0, the minimum is set to 1; equiv-

alently, if no point has been labeled as 1, the maximum is set to 0.
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4 Experiments

We have formally proved both lower and upper bounds on batch AL. The fol-
lowing shows that both a simple algorithm and a more sophisticated (yet usual)
AL algorithm behave as predicted by the theorems of previous sections when
adapted to the batch setting.

4.1 Experiments with Naive AL

We here experiment a simple batch AL algorithm for F = {[0, x];x ∈ [0, 1]d}
(VC-dimension V = d). The new sample(s) xnλ+1, . . . , x(n+1)λ are λ points
randomly drawn in v where

v = {x ∈ [0, 1]d; ∀j ∈ [[1, nλ]]yj = 0 ⇒ ¬(xj ≤ x)}

∩{x ∈ [[0, 1]d; ∀j ∈ [[1, nλ]]yj = 1 ⇒ xj ≤ x}.

This means that we randomly sample the version space. Note that this paral-
lel algorithm is straightforward to derive from its sequential counterpart that
queries one random sample from the version space at each iteration. This is
not true of all active learning algorithms: in many cases, it is not clear how to
efficiently turn a sequential active learning into a parallel one.

The plot shows the inverse of the number of iterations for reaching precision
0.001d2, depending on λ; this means that what lies on the Y-axis are rates of
convergence. Results are presented in Fig. 1. Each point is averaged over 33
runs.
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4.2 Experiments with Max-uncertainty

This part of the experiments is concerned with a straightforward adaptation of
a good, classical active learning heuristic that we call Maximum Uncertainty to
the batch setting. The idea is to choose the most uncertain examples, meaning
the ones for which many approximations of the target function that are still
good candidates disagree on the label.

The possible approximations lie in the version space, the space of all possible
functions of F consistent with the examples observed so far. Each example x
splits the version space in two: the functions labeling x by 1, and those labeling
x by 0. Thus, the goal is to find examples separating the version space the most
evenly. This criterion has been studied empirically and theoretically; multiple
algorithms enforcing this criterion or related criteria have been proposed[21,6].
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Fig. 2. Speed-up of batch maximum uncertainty active learning

Experiments learn homogeneous linear separators of Rd, where examples lie on
the hypersphere Sd−1 for dimensions d = 2, 4, 6, 8. This setting has been widely
studied for sequential active learning[2,8,10] and is thus fitted to a speed-up
analysis for the batch setting.

In such a setting, for d > 2, an infinite number of points of the hypersphere
maximize uncertainty given previously witnessed instances—whereas if d = 2,
the maximum is unique. Consequently, a possible batch strategy may consist in
selecting λ of those points maximizing uncertainty, at each iteration. Note that
contrary to the algorithm of the preceding subsection, it is less obvious, at first
sight, that this parallelization will be an efficient one (although a posteriori the
results emphasize good speed-ups).

Batch sizes are λ = 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64. Precision is set to
0.0001(d/2)4. For each (d, λ), the rate are averaged over 160 runs.
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Interpretation

In both cases, the results resemble the expected behavior: a steady (linear) speed-
up for small batch sizes, when λ < d (where d is the dimension), and a slow speed-
up when λ becomes much bigger than d, that somewhat resembles a logarithmic
speed-up. Thus, as expected, the gain of parallelization in high dimension is
bigger.

Remarks

– We did not study the behavior of the speed-up for values of λ in-between d
and λ large; it might be that the speed-up can remain good even for a while
when λ > d, but asymptotically it will end in a logarithmic improvement;

– The rates for high dimensions seem low (although linear) on the first figure,
while they seem higher in the second. This is due to the fact that the precision
to be reached is bigger in the second figure than in the first, in an attempt
to be more “fair” to high dimensions—since for a given number of examples,
a concept is harder to learn if the dimension of the domain is higher.

5 Discussion

This paper shows that batch active learning exhibits:

– a linear speed-up until λ = V for some families of target functions;
– a speed-up at least logarithmic in all cases;
– and a logarithmic speed-up at most for λ large.

Please note that the logarithmic speed-up is a simulation result. The point is
not to analyze the convergence rate of active learning in general, but to empha-
size that any active learning algorithm can be transformed into a batch active
learning algorithm (with λ computation units) which simulates it with speedup
D, where D is logarithmic as a function of λ.

All proofs have been made for deterministic algorithms. Extending them to
randomized algorithms, however, is straightforward.

Experiments have been performed only in moderate dimension and for easy
families of functions; the extension of the experiments to bigger dimensions and
to other families of functions, is a possible further work.

Acknowledgements. This work was supported by the French National Re-
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Abstract. We propose a novel method, called Semi-supervised Projec-

tion Clustering in Transfer Learning (SPCTL), where multiple source do-

mains and one target domain are assumed. Traditional semi-supervised

projection clustering methods hold the assumption that the data and

pairwise constraints are all drawn from the same domain. However, many

related data sets with different distributions are available in real appli-

cations. The traditional methods thus can not be directly extended to

such a scenario. One major challenging issue is how to exploit constraint

knowledge from multiple source domains and transfer it to the target do-

main where all the data are unlabeled. To handle this difficulty, we are

motivated to construct a common subspace where the difference in dis-

tributions among domains can be reduced. We also invent a transferred
centroid regularization, which acts as a bridge to transfer the constraint

knowledge to the target domain, to formulate this geometric structure

formed by the centroids from different domains. Extensive experiments

on both synthetic and practical data sets show the effectiveness of our

method.

1 Introduction

Over the past decades, clustering for high dimensional data, referred as projec-
tion clustering, has witnessed an increasing interest in the clustering literature.
It is designed to derive a subspace where the clustering performance can be en-
hanced, and the curse of high dimensionality [18] can be mitigated to some extent
as well. The projection clustering can be divided into two categories, which are
unsupervised ones [22,8] and semi-supervised ones [20]. An important branch
of semi-supervised projection clustering is to exploit additional background in-
formation posed on data points, i.e., pairwise constraints, to aid unsupervised
projection clustering. Each pairwise constraint indicates whether a pair of data
points must reside in the same cluster [21]. However, one limitation of semi-
supervised projection clustering techniques is that all the data points are drawn
from the same distribution. Unfortunately, many scenarios in real applications
do not follow this requirement. Typically, many related data sets with different
distributions are available, which may be handled by transfer learning [17,13,6].

In this paper, we investigate a new transfer clustering task that would be
met in real applications. One example [10] is clustering Web pages from four
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universities, i.e., Cornell, Texas, Wisconsin and Washington. The Web pages of
each university are grouped into 7 categories, i.e., student, faculty, staff, depart-
ment, course, project and others. The Web pages satisfy the typical setting of
transfer learning. The contents from four universities are related to each other.
However, their distributions are different, since different universities exhibit dif-
ferent features. In the first three universities, referred as three source domains,
we are given pairwise constraints inside each university. We are going to utilize
the pairwise constraint knowledge to cluster unlabeled Web pages of Washington
university, referred as the target domain. Since the distributions of the source
domains are different from that of the target domain, the pairwise constraints
from multiple source domains cannot be directly employed in the target domain.
Therefore, one challenging issue in this task is how to exploit constraint knowl-
edge from multiple source domains to aid the clustering in the target domain.
To the best of our knowledge, this issue has not been addressed in the transfer
learning literature.

To handle this challenging issue, we are motivated to invent a novel cluster-
ing method, called Semi-supervised Projection Clustering in Transfer Learning
(SPCTL), to transfer the constraint knowledge from multiple source domains
to the target domain. In the first step, we seek a common subspace where the
difference in distributions among the domains can be reduced. We do not ex-
pect that the data from different domains have the same cluster structure in
the original space, but assume the cluster centroids from all the domains follow
a certain manifold structure in the common subspace. That is, similar clusters
have similar centroids in the common subspace. For example, as to the faculty
clusters from different universities, since the common subspace is spanned by
the most relevant features among faculties, the centroids of faculty clusters from
different universities are assumed to be located nearby in the common subspace.
It has inspired us to invent a transferred centroid regularization to formulate
the manifold structure formed by the centroids in the common subspace and to
implicitly transfer the constraint knowledge to the target domain.

2 Problem Setting and Motivation

The problem setting of our method is described as follows. Suppose that we are
given source domains Ds, s = 1, 2, . . . , P (P ≥ 2), where P is the number of the
source domains, and a target domain DT . We define the data set of the source
domains as Ds = {xs

i}ns

i=1, s = 1, 2, ..., P , and the data set of the target domain
as DT = {x′

i}nT

i=1, where ns denotes the number of data points in the s-th source
domain, nT represents the number of data points in the target domain, and xs

i ,
x

′
i ∈ Rd. We assume that there is no irrelevant source domain to the target

domain. Let P(Ds) and P(DT ) be the marginal distribution of Ds and DT , re-
spectively. In general, they are somehow related to each other yet different. For
the s-th source domain Ds, Xs = {Ds, DT } represents the data points from both
the s-th source domain and the target domain, and Ns = ns +nT represents the
number of data points in Xs. We also assume a set of pairwise constraints for
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each source domain, which are must-link constraints and cannot-link constraints.
There is no assumption posed on the pairwise constraints. In general, the pair-
wise constraints are randomly selected by the users. In the s-th source domain,
the set of must-link constraints is represented as Ms = {ms

1,m
s
2, . . . ,m

s
rs
}, and

the set of cannot-link constraints is denoted by Cs = {cs1, cs2, . . . , csls}, where rs

and ls denote the number of must-link constraints and cannot-link constraints,
respectively. More precisely, ms

i consists of a pair of points belonging to the
same class while csi consists of a pair of points belonging to different classes. For
the target domain, we assume that all the data points are unlabeled. Moreover,
we assume that each domain has K clusters, and the K clusters in a domain
conceptually correspond to the K clusters in another domain. The output of our
method is a cluster indicator matrix QT for the target domain and a d× l trans-
formation matrix W with an orthogonal constraint WTW = I. W consists of l
projective vectors {w1,w2, . . . ,wl}, where l is the dimensionality of a common
subspace shared by all the domains.

The goal of our method is to obtain a good clustering performance for the
target domain in the common subspace. To achieve it, we are going to appro-
priately transfer the constraint knowledge from multiple source domains Ds,
s = 1, 2, ..., P , to the target domain DT .

2.1 Motivation for Transferred Centroid Regularization

In this subsection, we show a motivating example that empirically explains why
we build a transferred centroid regularization in a common subspace where the
difference in distributions among domains is reduced. We follow the way of [14]
to generate five domains, where the first four domains are regarded as the source
domains while the last domain is the target domain, as shown from Fig. 1a to
Fig. 1e. Each domain consists of examples belonging to one of two classes. The
examples of class one (denoted with stars) are drawn from a Gaussian Mixture
Model (GMM) and the examples of class two (denoted with circles) are drawn
from a single Gaussian. For the domains 1 and 2, the GMM parameters of class
one are prescribed by a three-component mixture defined as follows. The mix-
ture weights are (0.3, 0.3, 0.4); their respective means are (1, 1), (3, 3) and (5, 5);

their respective covariance matrices are
∑

1 =
(

0.3 0.7
0.7 3.0

)
,
∑

2 =
(

3.0 0.0
0.0 0.3

)
and

∑
3 =

(
3.0 −0.5
−0.5 0.3

)
. The examples of class two are drawn from a single

Gaussian with mean (3.5, 0.5) and diagonal covariance with symmetric vari-
ance 0.5. For the domains 3, 4 and the target domain, the three component
GMM parameters of class one are prescribed as follows. The mixture weights are
(0.3, 0.3, 0.4); their respective means are (1, 1), (3, 3) and (5, 5); their respective
covariance matrices are

∑
2,
∑

3 and
∑

1. The examples of class two are drawn
from a single Gaussian with mean (0.5, 3.5) and diagonal covariance with sym-
metric variance 0.5. Note that each source domain has 50 must-link constraints
and 50 cannot-link constraints, which are generated randomly. To keep the
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Fig. 1. Motivating example

Figures readable, the pairwise constraints are not shown in the Figures. This
motivating example is designed to obtain a one-dimensional common subspace
where the clustering for the target domain is performed.

From Fig. 1a to Fig. 1e, we can see that the data between domains 1 and 2
are similar and the data among domains 3, 4 and 5 are similar. However, the dis-
tributions between two groups of domains are obviously different. In Fig. 1f, we
show that the similarities among ten centroids in the common subspace from all
the source domains and the target domain in Hinton diagram [11], in which the
square size of the (i, j)-th element denotes the degree of similarity between the i-
th and j-th centroids. The similarity is computed by exp(−‖fi − fj‖2 /2), where
fi represents the i-th centroid. Note that a larger square in the Hinton diagram
indicates a larger value of the similarity between two centroids. It is obvious from
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Fig. 1f that the centroids from all the domains form two clusters in the common
subspace, each of which is composed of centroids from the corresponding clus-
ters in different domains. This specific geometric distribution of centroids can
be considered as a manifold structure. In addition, we employ Maximum Mean
Discrepancy (MMD) [16,15] to measure the distribution difference between each
source domain and the target domain. As shown in Fig. 1g, we can see that the
distribution difference between each source domain and the target domain in the
common subspace is much smaller than that in the original space, especially for
the domains 1 and 2. In Fig. 1h and Fig. 1i, we compare our method, SPCTL,
with other methods. Except for k-means (KM) and PCA+kmeans (PCA+KM),
the competitive methods, RCA [1]+kmeans (RCA+KM), SSDR [24]+kmeans
(SSDR+KM), and SCREEN [20], simply combine the pairwise constraints from
different source domains together. We can see that SPCTL outperforms others
in terms of two clustering evaluation measures, clustering accuracy (AC) [23]
and F1-Score [6].

From the motivating example, we observe that the centroids from all the do-
mains form a certain manifold structure in the common subspace where
the difference in distributions is reduced. This fact has motivated us to embed the
constraint knowledge from the source domains into the centroids, and exploit the
transferred centroid regularization to transfer the constraint knowledge from mul-
tiple source domains to the target domain.

3 Proposed Framework

Our framework consists of two steps. In the first step, we invent a new semi-
supervised projection clustering method which considers the domain adaptation
[15,16] and the constraint knowledge. We obtain the centroids, where constraint
knowledge is embedded, from all the source domains in the common subspace
where the difference in distributions is reduced. In the second step, we propose
the transferred centroid regularization to formulate the manifold structure of
centroids in the common subspace such that the constraint knowledge can be
transferred to the target domain.

3.1 Projection Clustering

Before introducing any further, we firstly review a projection clustering method,
named AML [22], used in our method. For the s-th source domain, each vector
xs

i in the d-dimensional space is transformed by W to a vector ys
i in the l-

dimensional space, where ys
i = WTxs

i . The distance between two points in the
common subspace is measured by the Mahalanobis distance [1] defined as follows:

dM (xs
i ,x

s
j) =

√
(ys

i − ys
j)TΣ−1

s (ys
i − ys

j) (1)

where Σs is the covariance matrix defined as follows:

Σs =
1
ns

ns∑
i=1

(ys
i − us)(ys

i − us)T (2)
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where us = 1
ns

∑ns

i=1 ys
i . In general, maximization of the Sum of Squared Intra-

cluster Error (SSIE) can be equivalently regarded as the cost function of the
standard k-means algorithm. SSIE is defined as follows:

SSIE =
∑K

j=1
nj

sdM (us
j ,u

s)2 (3)

where nj
s is the sample size of the j-th cluster Cs

j in the s-th source domain,
and us

j is the mean of Cs
j . Let Qs be a ns ×K cluster indicator matrix defined

as follows. Qs = {rs
ij}ns×K , where rs

ij = 1, if xs
i ∈ Cs

j . We define the weighted
cluster indicator matrix as Ls = [L1

s, L
2
s, . . . , L

K
s ], so that Ls = Qs(QT

s Qs)−
1
2

[8]. It follows that the j-th column of Lj
s is given by

Lj
s = (0, . . . , 0,

nj
s︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0)T /

√
nj

s (4)

Therefore, SSIE can be succinctly rewritten as the following form [22], which
needs to be maximized with respect to W and Ls:

ξs =
1
ns
tr(LT

s D
T
s W (WTΣsW )−1WTDsLs) (5)

where tr denotes the trace operator.

3.2 Semi-supervised Projecting Clustering via Domain Adaptation

The key idea of the new semi-supervised projection clustering is to integrate two
factors, which are constraint knowledge and domain adaptation, into projection
clustering. Traditional domain adaptation methods only apply to the case of one
source domain and one target domain. In our problem setting, we extend it to
the case of multiple source domains and one target domain.

As to the s-th source domain, following the idea of [12], we change the penalties
of violations in the constraints in Ms into the awards. In addition, we place a
constraint for all the source domains that the clustering result in the common
subspace is the same as that in the original space. The awards in the common
subspace can thus be written as follows:

ϕs =
∑

{xs
i ,xs

j}∈Cs

s.t.lsi =lsj

ϑij −
∑

{xs
i ,xs

j}∈Ms

s.t.lsi =lsj

θij (6)

where lsi denotes the class label of xs
i . Eq. (6), which needs to be minimized with

respect to Ls, can be rewritten as follows:

ϕs = tr(LT
s Θ

sLs) (7)

where Θs is a ns × ns matrix with its (i, j)-th entry defined as follows:

Θs
ij =

⎧⎨⎩
ϑij ,
−θij ,

0,

when {xs
i ,x

s
j} ∈ Cs

when {xs
i ,x

s
j} ∈ Ms

otherwise
(8)
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where ϑij and θij are both positive reals. To consider the domain adaptation, in
the common subspace, we employ Maximum Mean Discrepancy (MMD) [16,15]
to measure the mismatch of distributions between the s-th source domain and
the target domain. The criterion [6], which needs to be minimized with respect
to W , is defined as follows:

�s = MMD[Ds, DT ] = tr(WTXsKsX
T
s W ) (9)

where

Ksij =

⎧⎪⎨⎪⎩
1

n2
s
,

1
n2

T
,

−1
nsnT

,

when xs
i ,x

s
j ∈ Ds

when x
′
i,x

′
j ∈ DT

otherwise
(10)

So far, we only consider the s-th source domain and the target domain. In
order to exploit the constraint knowledge from all the source domains and to
derive the common subspace shared by all the domains, we then extend the
objective function considering all the domain pairs that are composed of each
source domain and the target domain. The final objective function, which needs
to be minimized with respect to W and Ls, can be written as follows.

J =
P∑

s=1

(ϕs + α�s − βξs)

s.t WTW = I, Ls ∈ {0, 1}ns×K (11)

Note that by its definition, the elements of Ls can only take binary values, which
makes the minimization of Eq. (11) very difficult. Therefore, we relax Ls into a
nonnegative continuous domain. Then the objective function in Eq. (11) turns
out to be

J =
P∑

s=1

(ϕs + α�s − βξs)

s.t WTW = I, Ls ≥ 0 (12)

where both α and β are regularization parameters.

3.3 Target Clustering via Transferred Centroid Regularization

In the setting of transfer learning, we are more concerned about the performance
of the target domain than the source domains. As shown in the previous sec-
tions, we assume that the cluster centroids from all the source domains form a
certain manifold structure that the centroid of a cluster in a source domain is
located nearby with the centroids of the corresponding clusters in other source
domains. It is natural assumed that the cluster centroids from the target domain
follow the same manifold structure. To exploit the constraint knowledge that is
implicitly embedded into the centroids in the common subspace, we thus employ
the manifold regularization [2] to formulate this specific structure.
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Since the weighted cluster indicator matrix Ls, s = 1, 2, . . . , P , can be derived
from Eq. (12), we can compute the centroid matrix Fs by using Ls. We define
FT by the centroid matrix for the target domain. By combining FT with Fs,
s = 1, 2, . . . , P , we can obtain the centroid matrix for all the domains, denoted
by F = [FT , F1, . . . , FP ] ∈ RK×(P+1). We use fi to denote the i-th column of
F . We then invent the transferred centroid regularization to depict the graph
formed by the centroids.

δ =
1
2

∑
i,j

Gij(fi − fj)2 (13)

where G is a similarity matrix defined as follows:

Gij =
{

exp(‖fi − fj‖2
/γ),

0,
fi ∈ N(fj)
otherwise. (14)

where N(fi) is defined as the P nearest neighbor set of fi. Eq. (13) can be
rewritten as follows:

δ = tr(FTMF ) (15)

where M = U − G is defined as a graph Laplacian matrix, where U is a diag-
onal matrix whose entries are column sums of G, Uii =

∑
j

Gij . In the common

subspace, we then develop a new cost function for the k-means algorithm by inte-
grating the transferred centroid regularization, which is written as the following
form:

H =
∥∥WTDT − FTQ

T
T

∥∥+ λδ (16)

where λ is a regularization parameter. Note that Eq. (16) needs to be minimized.
From Eq. (16), our method can been seen as a implicit transfer method, as the
constraint knowledge is transferred by formulating the centroid structure.

3.4 Optimization

We notice that, for minimizing Eq. (12) with respect to W and Ls, s = 1, . . . , P ,
we cannot give a closed-form solution. However, Eq. (12) can be iteratively op-
timized with respect to Ls by fixing W , and vice versa.

Specially, when W is fixed, optimizing Eq. (12) with respect to Ls is equivalent
to optimizing

JLs = tr(LT
s Θ

sLs) − β

ns
tr(LT

s (DT
s W (WTΣsW )−1WTDs)Ls)

s.t. Ls ≥ 0 (17)

We introduce the Lagrangian multiplier ψ ∈ Rns×K , and the Lagrangian func-
tion is

J∗
Ls

= tr(LT
s Θ

sLs) − β

ns
tr(LT

s (DT
s W (WTΣsW )−1WTDs)Ls)

− tr(ψLT
s ) (18)
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By setting ∂J∗
Ls

∂Ls
= 0, we obtain

ψ = 2ALs (19)

where A = Θs− β
ns

[
DT

s W (WTΣsW )−1WTDs

]
. Using the Karush-Kuhn-Tucker

condition [5] ψijLsij = 0, we get

[ALs]ij Lsij = 0 (20)

By introducing A = A+ −A− where A+ = (|Aij |+ Aij)/2 and A− = (|Aij | −
Aij)/2 [9], we obtain [

A+Ls − A−Ls

]
ij
Lsij = 0 (21)

Eq. (21) leads to the following updating formula.

Lsij ← Lsij

√
[A−Ls]ij
[A+Ls]ij

(22)

Eq. (17) can be proven to be non-increasing by using the auxiliary function
approach [9]. Due to space limitation, we leave it to the later version of our
paper.

When Ls is fixed, optimizing Eq. (12) with respect to W is equivalent to
optimizing

JW =
P∑

s=1

[
αtr(WT GsW ) − β

ns
tr((WT CsW )−1WTEsW )

]
s.t. WTW = I (23)

where Gs = XsKsX
T
s , Cs = Σs, and Es = DsLsL

T
s D

T
s . We use the gradient

descent to obtain the optimal W for Eq.(23). Starting with an initial W 0, the
gradient descent method successively updates W by

W t = W t−1 − υ
∂JW

∂W

∣∣∣∣
W=W t−1

(24)

where

∂JW

∂W
= 2α

P∑
s=1

(GsW ) + 2
P∑

s=1

[
β

ns
CsW (WTCsW )−1WT EsW (WTCsW )−1

]

+ 2
P∑

s=1

[
β

ns
EsW (WTCsW )−1

]
(25)

where υ is the step size and t is the iteration number. We also notice that the
updating rule of Eq. (24) is given without the orthogonality constraint WTW =
I. After each updating step of W t, let W t = W t

′
R be the QR decomposition

[5] of W t, where W t
′
has orthogonal columns and R is an upper triangle. W t is

then replaced by W t
′

for the next iteration. Eq. (23) is iteratively solved until
a convergence condition, which is explained in detail in the next subsection, is
satisfied.
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3.5 Clustering Framework

This clustering framework mainly includes two objective functions, which are
Eq.(12) and Eq.(16). Eq.(12) is designed to obtain the common subspace and
the weighted cluster indicator matrix Ls, s = 1, 2, . . . , P . The optimization of
Eq.(12) is achieved by both Eq. (17) and Eq. (23). In Eq.(16), besides the cost
function of the standard k-means algorithm, the transferred centroid regulariza-
tion is taken into consideration. The cluster indicator matrix QT of the target
domain can be derived through the standard k-means optimization by using
Eq.(16). After obtaining QT , the LDA criterion is employed to select the most
discriminative subspace. The optimizations for Eq.(12), Eq. (23) and Eq.(16) are
adaptively performed until the convergence is reached. Here, we define a func-
tion, named IsConvergent(ρ, l), to determine whether the convergence condition
|ρl − ρl−1|/|ρl−1| < ε holds, where l is the iteration number, ρl is the value of
the objective function in the l-th iteration, and ε is set to be 0.05. The main
steps of clustering framework are presented in Algorithm 1. Although the whole
framework is optimized by iterative steps, the empirical result shows it converges
fast and iteration times for t1, t2 and t are less than five in most cases.

4 Evaluation by Experiments

4.1 Experiments Setup

We performed experiments on the 20 Newsgroups corpus1, which consists of
approximately 20000 newsgroup documents collected evenly from 20 different
newsgroups. The documents from some different newsgroups are related. For
example, the newsgroups rec.sport.baseball and rec.sport.hockey are relevant to
recreation. According to the typical setting of transfer learning, we employed the
strategy from [6] to construct the data sets in the following way. First, we applied
the typical pre-processing steps [19]: (1) removed stop words; (2) ignored file
headers; (3) selected the top words by mutual information. In our experiments,
we selected the top 100 words by ranking the mutual information value of each
word. For each domain, we then randomly selected 200 documents for a given
upper level category, i.e., comp, rec, sci, and talk. Specific details of the data
sets are described in Table 1. We denote the data set NG1-i (i = 1, 2, 3) by the
data set where the i-th domain from NG1 is regarded as the target domain and
the remaining domains are the source domains. This specification also applies
to the data set NG2-i (i = 1, 2, 3).

In our experiments, we compare SPCTL with the following typical methods:
k-means (KM), PCA+KM, SSDR [24]+KM, RCA [1]+KM, SCREEN [20]. We
also use two metrics, the clustering accuracy (AC) [23] and F1-Score [6], to
measure the clustering performance. Since SSDR+KM, RCA+KM and SCREEN
belong to the semi-supervised methods exploiting the pairwise constraints, for
these three methods, we simply combine the data from all the domains together

1 http://people.csail.mit.edu/jrennie/20Newsgroups/

http://people.csail.mit.edu/jrennie/20Newsgroups/
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Algorithm 1
Input: Ds, DT , Ms, Cs, c (s = 1, 2, . . . , P )

Output: W , Ls, QT

1: Initialize the transformation matrix W by using PCA for the data of the target

domain

2: Initialize the indicator matrix Ls by k-means on the data for each source domain

3: Set t1 = t2 = t = 1

4: while IsConvergent(H , t) and t ≤ T do
5: while IsConvergent(J , t1) and t1 ≤ T1 do
6: for s = 1 to P do
7: Update Ls by using Eq.(22)

8: end for
9: while IsConvergent(JW , t2) and t2 ≤ T2 do

10: Update W by using Eq.(24)

11: Take QR decomposition for W
12: t2 = t2 + 1

13: end while
14: t1 = t1 + 1

15: end while
16: Use the k-means criterion to optimize Eq. (16) and obtain QT

17: Exploit LDA criterion to select W by using QT

18: t = t + 1

19: end while

and the pairwise constraints from all the source domains. However, we only
consider the data from target domain when computing ACC and F1. For KM
and PCA+KM, we directly applied them to the target domain. For each data
set, we repeated the experiments for 10 trails, and report the averages.

The parameter setting of SPCTL is listed as follows. The Gaussian kernel
parameter γ, which is used to construct the transferred centroid regularization,
is set to be 10. Since our method is iterative, we prescribe the maximum number
of iterations as T = T1 = T2 = 10. The parameters ϑ and θ, which are used
in Eq. (8) to code the information of pairwise constraints, are both set to be
0.5. The step size υ for updating W is set to be 0.01. The balancing parameters
α, β, and λ are set by searching the grid {0, 100, 101, 102, 103}. In order to
compare methods fairly, for the parameter settings of other competitive methods,
we follow the parameters recommended by them, which are considered to be
optimal. Without specific explanation, each source domain has the same number
of pairwise constraints. The number of must-link constraints is always set to be
equal to that of cannot-link constraints. Must-link constraints and cannot-link
constraints are randomly selected according to the ground-truth of class labels.

4.2 Analysis of Experiments

In this subsection, we show the effectiveness of SPCTL. First, our performance
is exhibited by varying the number of constraints when the reduced dimension is
fixed. The reduced dimension for all the data sets is set to be 50. As illustrated
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Table 1. Statistics for our data sets from Newsgroup corpus

Class label

Dataset Domain comp rec sci talk #doc

1 graphics autos crypt N/A 600

NG1 2 os.ms-windows.misc motorcycles electronics N/A 600

3 sys.ibm.pc.hardware sport.baseball med N/A 600

4 sys.mac.hardware sport.hockey space N/A 600

1 ibm.pc.hardware motorcycles electronics politics.guns 800

NG2 2 sys.mac.hardware sport.baseball med politics.mideast 800

3 os.ms-windows.misc sport.hockey crypt politics.misc 800

in Fig. 2, in most cases, SPCTL keeps the best performance when the number of
available constraints from each source domain increases from 10 to 100. The per-
formances of the three semi-supervised methods are inferior to that of SPCTL. A
possible reason is the direct use of data and pairwise constraints from source do-
mains without considering the distribution difference would not guarantee a good
performance. As shown in Fig. 2c and Fig. 2d, the performances of SCREEN
are fluctuated. The reason is probably that the dimension reduction step of
SCREEN depends only on the new generated cannot-link constraints. Because
the pairwise constraints are randomly selected, the new generated cannot-link
constraints are more likely to be affected by the random selection, so that the
subspace is largely influenced by the randomness of the new generated cannot-
link constraints. It can be seen from Fig. 2g and Fig. 2h that SPCTL is unable
to outperform others. The most probable reason is that SPCTL fails to obtain
the optimal common subspace, so that the transferred centroid regularization
behaves inappropriately.

Second, we show the performance of SPCTL when the reduced dimension
varies, i.e., 80, 40, 20, and 10, and the average performances over the four di-
mensions are also presented. In this experiment, we set the number of pairwise
constraints to be 100 for each source domain. As shown in Fig. 3, it can be seen
that, in most cases, the average performances of SPCTL over different reduced
dimensions are kept the highest, indicating that SPCTL is robust against the
change of the reduced dimensions. In addition, although PCA+KM is slightly
better than the standard k-means, PCA+KM is in general not competitive, prob-
ably because the constraint knowledge is not used. We also observe that, in most
cases, the average performances of RCA+KM and SSDR+KM are better than
those of PCA+KM. The possible reason is, although the pairwise constraints
come from different domains, they are still informative in the subspace selec-
tion. The reason that RCA+KM and SSDR+KM are inferior to SCREEN is
probably that they were not proposed for a clustering task. It is not surprising
that SPCTL outperforms SCREEN in most cases. It consists in the fact that
they behave in a different way of exploiting constraint knowledge from multi-
ple source domains. This validates our conjecture that transferring constraint
knowledge by using the transferred centroid regularization is more effective than
the way of simply combining the pairwise constraints.



318 B. Tong et al.

50 100 150 200 250 300
0.3

0.32

0.34

0.36

0.38

0.4

0.42

Number of Constraints

C
lu

st
er

in
 A

cc
ur

ac
y

SPCTL

SCREEN

RCA+KM

SSDR+KM

PCA+KM

(a) NG1-1 AC

50 100 150 200 250 300

0.2

0.25

0.3

0.35

Number of Constraints

F1
−S

co
re

(b) NG1-1 F1-Score

50 100 150 200 250 300
0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

Number of Constraints

C
lu

st
er

in
g 

A
cc

ur
ac

y

(c) NG1-2 AC

50 100 150 200 250 300
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

Number of Constraints

F1
−S

co
re

(d) NG1-2 F1-Score

50 100 150 200 250 300

0.35

0.4

0.45

0.5

Number of Constraints

C
lu

st
er

in
g 

A
cc

ur
ac

y

(e) NG1-3 AC

50 100 150 200 250 300

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Constraints

F1
−S

co
re

(f) NG1-3 F1-Score

50 100 150 200 250 300
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

Number of Constraints

F1
−S

co
re

(g) NG2-1 AC

50 100 150 200
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Number of Constraints

F1
−S

co
re

(h) NG2-1 F1-Score

50 100 150 200

0.3

0.32

0.34

0.36

0.38

0.4

0.42

Number of Constraints

C
lu

st
er

in
g 

A
cc

ur
ac

y

(i) NG2-2 AC

50 100 150 200

0.2

0.25

0.3

0.35

Number of Constraints

F1
−S

co
re

(j) NG2-2 F1-Score

50 100 150 200
0.25

0.3

0.35

0.4

Number of Constraints

C
lu

st
er

in
g 

A
cc

ur
ac

y

(k) NG2-3 AC

50 100 150 200
0.1

0.15

0.2

0.25

0.3

0.35

Number of Constraints

F1
−S

co
re

(l) NG2-3 F1-Score

Fig. 2. The performance with different numbers of constraints
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Fig. 3. The performance with different dimensions

5 Related Works

In this section, we review past research works related to our work, including
semi-supervised clustering, domain adaptation and transfer clustering.

Semi-supervised clustering can be traced back to [21], where pairwise con-
straints were employed to aid the unsupervised clustering. Semi-supervised clus-
tering for high dimensional data can be implemented by metric-based methods
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[20,1,24]. However, semi-supervised clustering assumes the data are drawn from
the same domain.

Domain adaptation is aimed to obtain a good feature representation that is
able to reduce the difference in distributions between domains. Domain adapta-
tion is one of the most significant issues in transfer learning, because different
domains would probably cause the negative transfer [17]. Blitzer et al. [4] pro-
posed a Structural Correspondence Learning (SCL) method to select domain
independent pivot features that appear frequently in different domains, so that
the same feature structure can be shared. Recently, Pan et al. [15] invented a
new dimension reduction method, named MMDE, for domain adaptation by ex-
ploiting the Maximum Mean Discrepancy (MMD) criterion. MMDE is extended
in [16] to the out-of-sample case, and reduced the computational time. However,
in these two methods, the final classification tasks were independent from the
domain adaptation. Chen et al. [6] employed the domain adaptation method to
extend a classification framework for transfer learning. It is different from our
task setting as our task is for clustering.

Our work is closely related to the transfer clustering of which goal is to im-
prove the clustering performance of the target domain. Dai et al. [7] proposed a
Self-taught Clustering (STC) method that aims at clustering a small collection
of target unlabeled data with the help of a large amount of auxiliary unla-
beled data from source domains. Bhattacharya et al. [3] invented a cross-guided
clustering method, in which the clustering partitions of the source domains are
manually prescribed. The cross-domain distance measure is then designed to aid
the alignment for centroids across domains. Unlike these methods, the input of
our transfer clustering task includes pairwise constraints.

6 Conclusions and Future Works

In this paper, we investigated a new task of handling the semi-supervised projec-
tion clustering in the transfer learning setting. In this task, we carefully designed
an iterative framework to obtain a common subspace where the difference in dis-
tributions among domains is reduced. Inspired by the specific structure formed
by the centroids in the common subspace, we transfer the constraint knowledge
to the target domain by inventing the transferred centroid regularization, such
that the clustering performance of the target domain in the common subspace
can be enhanced. The experimental results show that our method is effective.

Although we have obtained the common subspace where the distribution dif-
ferences between each source domain and the target domain are reduced, the
analysis to the similarities between source domains in the common subspace is
not sufficiently discussed. Therefore, in the future work, we are interested in
incorporating the similarities between source domains into our framework.
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Permutation Testing Improves Bayesian
Network Learning
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Abstract. We are taking a peek “under the hood” of constraint-based

learning of graphical models such as Bayesian Networks. This main-

stream approach to learning is founded on performing statistical tests of

conditional independence. In all prior work however, the tests employed

for categorical data are only asymptotically-correct, i.e., they converge

to the exact p-value in the sample limit. In this paper we present, evalu-

ate, and compare exact tests, based on standard, adjustable, and semi-

parametric Monte-Carlo permutation testing procedures appropriate for

small sample sizes. It is demonstrated that (a) permutation testing is

calibrated, i.e, the actual Type I error matches the significance level α
set by the user; this is not the case with asymptotic tests, (b) permu-

tation testing leads to more robust structural learning, and (c) permu-

tation testing allows learning networks from multiple datasets sharing a

common underlying structure but different distribution functions (e.g.

continuous vs. discrete); we name this problem the Bayesian Network
Meta-Analysis problem. In contrast, asymptotic tests may lead to erratic

learning behavior in this task (error increasing with total sample-size).

The semi-parametric permutation procedure we propose is a reasonable

approximation of the basic procedure using 5000 permutations, while

being only 10-20 times slower than the asymptotic tests for small sam-

ple sizes. Thus, this test should be practical in most graphical learning

problems and could substitute asymptotic tests. The conclusions of our

studies have ramifications for learning not only Bayesian Networks but

other graphical models too and for related causal-based variable selection

algorithms, such as HITON. The code is available at mensxmachina.org.

1 Introduction

Graphical models such as Bayesian Networks (BNs) are often at the heart of
decision support systems and employed for prediction and diagnosis [4].
Graphical-model theory has also led to successful variable selection algorithms [3].
In addition, most causal discovery methods induce some type of a graphical model
from data representing various types of causal relations among variables. This
family of models includes, among others, (static, dynamic, and causal) Bayesian
Networks (BNs) [13], Partially Directed Acyclic Graphs (PDAGs), Maximal An-
cestral Graphs (MAGs), Partially Oriented Ancestral Graphs (PAGs) [12], and

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part III, LNAI 6323, pp. 322–337, 2010.
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Pairwise Causal Graphs (PCG) [16]. Often, these models represent a set of con-
ditional dependencies and independencies that hold in the data distribution.

A major approach to learning such models from data is called the constraint-
based approach: a number of tests of conditional independence are performed on
the data whose results (dependence or independence) constrain the possible mod-
els fitting the data. A suitable test-strategy can then converge to a single model
or all models equally fitting the data and thus are statistically indistinguishable
(also called Markov Equivalent networks). Examples include the PC [13], the
Fast Causal Inference (FCI) [13], and the recently introduced cSAT+ algorithm
[16] that learn a PDAG, a PAG, and a PCG respectively. The constraint-based
approach has also been employed for variable selection with excellent results [3].

In this paper, we take a closer look into the main operation that makes all of
the above algorithm “tick”: the statistical test of conditional independence. We
denote as T (X ;Y |Z) the test of independence of variables X with Y given vari-
ables Z. We denote by Ind(X ;Y |Z) and Dep(X ;Y |Z) the actual independence
and dependence. T (X ;Y |Z) returns a p-value denoted by pXY |Z corresponding
to the probability of obtaining a test statistic equal to or more extreme than
the observed test statistic on the data, given the hypothesis Ind(X ;Y |Z) holds.
Typically, given a significance level a, the algorithm rejects Ind(X ;Y |Z) (accepts
Dep(X ;Y |Z)) if pXY |Z ≤ a and accepts Ind(X ;Y |Z) otherwise.

While foundational, testing conditional independence in the context of graph-
ical model learning has not been studied in depth. In particular, for nominal
categorical data two tests have been employed, namely the Pearson’s χ2 test
and the likelihood ratio (LR) test [14,13,17]. Both of them are asymptotic tests,
i.e., the returned p-value is approximate and converges to the true value in the
sample limit. Statisticians have long warned that the approximation is often
poor in many circumstances, particularly when the sample size is low or the
probabilities of the distribution are extreme (close to 0 or 1). However, prior
research has not been able to fully characterize these cases (see 9.8.4. [1]) to
allow automatic detection of a poor approximation.

Ideally, one would prefer to use exact tests of independence. Unfortunately,
in the general case such tests have a high computational overhead that prohibits
their use in the context of learning large graphical models. In addition, they
require highly specialized software that is often proprietary [10]. To address the
problem, we advocate and study easy-to-implement, Monte-Carlo permutation
tests. These tests are exact in the sense that E(p̂) = p, where p is the true
p-value of the test and p̂ the value returned by the test. We develop and com-
pare three procedures (a) a standard Monte-Carlo simulation, (b) an adjustable
permutation method, and (c) a semi-parametric permutation method. Similar
techniques have been successfully developed and employed for attribute selection
and pruning in Decision Trees [5], relation learning settings [11,9], rule learning
and model selection [8]. We demonstrate empirically that in terms of efficiency:

– The adjustable and the semi-parametric procedures require on average about
450 and 100 permutations respectively to achieve the same learning perfor-
mance in BNs as the basic procedure using 5000 permutations.
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– The semi-parametric procedure is only 10 to 20 times slower than an asymp-
totic test for small samples sizes (< 500).

The efficiency results show that simple permutation procedures could replace
the asymptotic tests without a prohibitive efficiency cost in many practical sit-
uations. In terms of the learning-performance benefits, we show that:

– Permutation procedures are more effective in distinguishing between depen-
dence and independence than the asymptotic tests for small sample sizes.

– Permutation procedures are calibrated, i.e, their actual Type I error matches
the significance level α; this is not the case with the asymptotic tests.

– Permutation procedures lead to more robust BN structural learning.
– Perhaps most importantly, exact tests allow the development of algorithms

that are able to learn from multiple datasets non-identically distributed. In
contrast, asymptotic tests with the heuristics lead to erratic behavior where
the error rate increases as the available data increase.

We name the problem of learning a BN from multiple datasets assumed to be
sharing the same structure, defined over the same variables, and obtained under
similar experimental and sampling conditions Bayesian Network Meta-Analysis
learning (BNMA). This is because it generalizes statistical meta-analysis: the
latter aims to induce a single dependency relation from multiple similar stud-
ies, while the former aims to learning a complete BNs (a set of dependencies
and independencies). This situation may occur when different studies measure
the same variables but on different scales or using different methods or equip-
ments. For example, in one study Smoking maybe taking a dichotomous No/Yes
value, while in another the values No/Light/Regular/Heavy smoker. In different
psychology studies the level of depression may be measured using different ques-
tionnaires and methods. In different gene-expression micro-array experiments,
gene expression values from different experiments cannot be easily translated to
a common scale for various technical reasons [7]. In all these cases, one could
not pool all the data together in a single dataset without the risk of losing in-
formation or performing an inappropriate data transformation. Techniques for
BNMA learning have been recently introduced independently by our group [18]
and Tillman et. al. [14]. Permutation tests allow these techniques to be applica-
ble in practical cases where each dataset has low sample size. We suspect exact
testing to be important in other BN learning-related procedures that depend
on the exact value of the p-values returned. Such a procedure is a technique for
controlling the False Discovery Rate of the identified edges in a BN [19].

2 Asymptotic Tests of Independence

We now consider a test T (X ;Y |Z) and denote by Nxyz the number of samples
where X = x, Y = y, and Z = z in the data, where z is a vector of values of Z
in case there are more than one variable in the conditioning set. We denote with
Nx+z =

∑
y Nxyz and similarly for N+yz, Nxy+, N++z, and N+++ = N the total



Permutation Testing Improves Bayesian Network Learning 325

sample size. Finally, we denote with |X | the size of the domain of variable X and
with |Z| the number of joint states of the variables in Z. Assuming Ind(X ;Y |Z)
the expected number of samples where X = x, Y = y, and Z = z is:

Exyz =
Nx+z ·N+yz

N++z

when the actual observed number is Nxyz. The overall discrepancy between these
two quantities in all cells of the contingency tables is captured by the following
two test statistics:

X 2 =
∑
x,y,z

(Nxyz − Exyz)2

Exyz
G = 2

∑
x,y,z

Nxyz ln
Nxyz

Exyz

Whenever Exyz is zero the corresponding term in the summation is defined as
zero as well. Both of these statistics are asymptotically distributed as χ2

df with
df = (|X |−1)(|Y |−1)|Z| degrees of freedom. Using the X 2 as a test statistic leads
to the Pearson’s χ2 test of independence, while using the G leads to a likelihood
ratio test of independence, also called a G-test [1]. The pXY |Z is calculated as
1 − F (So) where F is the cumulative distribution function of χ2

df and So the
observed value of the statistic (either the X 2 or G) in the data.

Let us denote with m = #{Nxyz} the number of counts to calculate. When
all variables are ternary then for T (X ;Y |Z1, Z2) we get m = 34. Thus, the
average number of samples to estimate each count drops exponentially with
the number of variables to condition. This reduces the statistical power and
increases the number of cells with zero counts. In other words, with a large
enough conditioning set, any T (X ;Y |Z) will return a high pXY |Z with high
probability leading the algorithm to accept Ind(X ;Y |Z).

Two heuristic solutions have appeared in the literature. First, some algorithms
(PC, MMPC) [13,17] do not perform T (X ;Y |Z) if they determine there are not
enough samples to achieve large enough power. The algorithms require that the
average sample per count N/m is at least π, where π is a user defined parameter.
Typical values for π are 10 [13], 5 [17], 0 [15] (in chronological order). We call
this the heuristic power rule.

Second, several of the zero counts Nxyz = 0 that appear in the contingency
tables are heuristically declared as “structural zeros”, i.e., they are judged to
stem from structural constraints of the problem and not as random events. A
structural zero for example, would appear if X is “taking contraceptives”, Y
measures “osteoporosis” and Z is gender. We expect that NYes,y,Male to be
zero. Since structural zeros are not free to vary, the degrees of freedom of the
test should be adjusted. Spirtes et. al. [13] consider as structural any zero that
appears in the contingency tables. They subtract one from df for every such
zero, which may actually lead to negative degrees of freedom. In [17] we present
a different heuristic where we consider as structural zero any case Nxyz = 0 and
also either of the marginals areN+yz = 0 or Nx+z = 0. For example, if N+yz = 0,
then we consider y as a structurally forbidden value for Y when Z = z and we
reduce the degrees of freedom by |X | − 1 (as if we had one column less in
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the contingency table where Z = z). We call the latter method the degrees of
freedom adjustment heuristic. There have been several pieces of work examining
the appropriateness of the approximate tests [1] and several attempts and rules
to characterize cases of poor approximation. However, a full characterization
is still lacking. The alternative is to use exact tests of independence that is
presented next.

3 Permutation Tests of Independence

The first exact test for categorical data to appear has been Fisher’s exact test [1]
that treats the special case in 2 × 2 tables (i.e., T (X ;Y |∅) with |X | = |Y | = 2).
However, generalizing exact testing in the general case of i×j×k (conditional test
with unrestricted sizes of domains for all variables) has been proven a difficult
task. A mainstream approach to exact testing is called the exact conditional
approach that considers the row and column marginals in each table Nx+z, N+yz,
and N++z as fixed [2,1,8]. The distribution of the test statistic under the null
hypothesis is then calculated conditioned on these marginals. Specifically, to
calculate the exact p-value one needs to calculate P (So ≥ S|Ind(X ;Y |Z)), where
So is the observed test statistic. This in turn implies identifying all contingency
tables with the same marginals and whose test statistic is larger or equal to the
observed one. The number of possible tables with the same marginals quickly
explodes: “a 4 × 4 table ... with a 100 observations can have about 7 × 109

such tables” [2]. Various computational methods have appeared that attempt
to do the computations implicitly without enumeration of all tables, some of
which have led to the development of the StatXact package [10]. These methods
however, are still relatively slow, hard to implement, and not freely available.

In this section, we present intuitive, easy-to-implement, and relatively efficient
permutation testing procedures. Notice that, each table (where Z = z) with the
same marginals as the observed table can be produced by permuting the values
of X or Y of the samples (while retaining Z = z). For example, for binary
variables X , Y , Z, suppose we have the observations 〈0, 1, 0〉 and 〈1, 0, 0〉 giving
N0+0 = N1+0 = N+00 = N+10 = 1. Permuting the two values of Y between the
only two observations provides the permuted data 〈0, 0, 0〉 and 〈1, 1, 0〉 with the
same marginals. Under the null hypothesis of independence, this is justified as
follows: since X and Y are assumed independent given Z, any such permutation
has the same probability of being observed.

Calculating all such possible permutations is equivalent to enumerating all pos-
sible tables with the same marginals. However, one can sample from the space of
all possible permutations (tables) randomly to estimate P̂ (So ≥ S|Ind(X ;Y |Z)).
Such methods are called Monte Carlo Permutation methods [6]. We denote with
D0 = {〈x, y, z〉}N

j=1 the unpermuted, observed data. We obtain permuted data
Di, i > 0 as follows: for each possible value z of Z, randomly permute the values
of Y in D0 only among the cases where Z = z (i.e., ensuring all marginals remain
the same). We denote with S(Di) the value of the statistic (either X 2 or the G
statistic) on the data Di. The basic procedure is shown in Algorithm 1.
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Algorithm 1. Basic Permutation T (X; Y |Z)

Input: Data D0 = {〈x, y,z〉}N
j=1, Test Statistic S, number of permutations B

Output: p̂XY |Z
for i = 1, . . . , B do1

Randomly permute data to create Di; calculate S(Di)2

end3

return p̂XY |Z = #{S(D0) ≤ S(Di), i = 1, . . . B}/B4

The procedure requires the computation of S(Di) an additional B times com-
pared to the asymptotic test, so as given it is at least that many times slower.
One obvious optimization to the procedure is to notice that the values Exyz de-
pend only on the marginals that remain the same across all datasets (observed
and permuted) and so can be computed only once.

A sufficient number of permutations B seems to range between 1000 to 5000
which makes the procedure quite costly for learning large graphical models (we
used 5000 in our experiments). To improve the computational requirements, we
design an adjustable procedure that may stop early the computation of more
permuted statistics. The procedure infers whether the current approximation
p̂XY |Z is sufficiently close to the true pXY |Z to make a decision at significance
level a, i.e., to determine whether pXY |Z ≤ a or not.

First, we implement a heuristic rule based on asymptotic tests in an effort
to completely avoid permutation testing in easy-to-determine cases. Assuming
a typical range for the significance level to be between 0.01 and 0.1, then if a
conservative asymptotic test (in our experiments the G test) returns a relatively
much lower p-value (lower than 0.001 in our experiments) we immediately accept
dependence. Similarly, if a liberal asymptotic test (X 2 with the df heuristic
adjustment) returns a high p-value (larger than 0.5), we accept independence.

Rule 1 : if pG < 0.001 return Dep., else if pX 2 > 0.5 return Ind.

If the rule does not apply, we begin permutation testing. To bound the error
of approximation at the current iteration b, we proceed as follows. We define a
Bernoulli trial Xi = I(S(D0) ≤ S(Di)), i.e., the event of a random permutation
obtaining a larger statistic than the observed. The probability of success P (Xi =
1) is equal to the exact p-value of the test by definition. Thus,

∑b
i=1Xi follows

a Binomial(B, pXY |Z). For relatively large b and non-extreme p-values we can
approximate this distribution with a normal distribution N(μ′, σ′), where μ′ =
b · pXY |Z and σ′2 = b · pXY |Z · (1 − pXY |Z). Thus, p̂XY |Z =

∑b
i=1 Xi/b follows

N(μ, σ), where μ = pXY |Z and σ2 = pXY |Z · (1 − pXY |Z)/b. Based on this
approximation, we find the confidence interval pXY |Z = p̂XY |Z ± ε, ε > 0. The
maximum magnitude of ε called r(b), where b is the current iteration, is obtained
for σ2 = 1/4 and p-value=0.5 . Then, with probability δ (exercise 3.45 at [1]):

r(b) =
Φ−1(1+δ

2 )

2 · √b
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Algorithm 2. Adjustable Permutation T (X;Y |Z)

Input: Data D0 = {〈x, y,z〉}N
j=1, Test Statistic S, maximum number of

permutations B, significance level a
Output: Independent/Dependent

Let δ = 0.991

Apply Rule 12

for b = 1, . . . , B do3

Randomly permute data to create Db; calculate S(Db)4

Apply Rule 25

Apply Rule 36

end7

if p̂XY |Z > a then8

return Independent9

else10

return Dependent11

end12

Algorithm 3. Semi-Parametric (fitted) Permutation T (X; Y |Z)

Input: Data D0 = {〈x, y,z〉}N
j=1, Test Statistic S, number of permutations B

Output: p̂XY |Z
for i = 1, . . . , B do1

Randomly permute data to create Di; calculate S(Di)2

end3

df = S(Di)4

return p̂XY |Z = 1 − F (S(D0)), where F is the cumulative distribution of χ2
df5

The adjustable procedure periodically checks whether the following rule applies
to the current approximation of the p-value p̂XY |Z(b) at iteration b:

Rule 2: if p̂XY |Z(b)+r(b)≤a return Dep., else if a ≤ p̂XY |Z(b)−r(b) return Ind.

We additionally implement an idea described in [6] that prematurely aborts fur-
ther permutations based on worst-case reasoning. Specifically, if assuming all
the remaining permutations give S(D0) ≤ S(Di) and our estimate p̂XY |Z would
still be greater than a, we can immediately determine independence. Similarly,
if assuming all remaining permutations turn out S(D0) > S(Di) and our p̂XY |Z
would still be less than a, we can immediately determine dependence. Given
these observations, a lower bound LB of p̂XY |Z at any iteration b during the
algorithm is: LB(b) = #{S(D0) ≤ S(Di), i = 1, . . . b}/B where B is the maxi-
mum allowed number of permutations. Similarly, we find an upper bound UB as
UB(b) = 1 − #{S(D0) > S(Di), i = 1, . . . b}/B and so, the final early-stopping
rule implemented is:

Rule 3 : if UB(b) < a return Dep., else if LB(b) > a return Ind.
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We formalize the procedure in Algorithm 2. Finally, we consider a semi-
parametric approach often used in resampling (permutation and bootstrapping)
methods to reduce the number of permutations required. When the distribution
of the test statistic is suspected to follow a specific parametric form of unknown
parameters it is not necessary to perform a larger number of permutations to
identify the shape of the distribution. Only a relatively small number of per-
mutations are performed to estimate the parameters. In our case, we assume
that the distribution is well-approximated by a χ2

df distribution with a single
unknown parameter, the degrees of freedom df . In preliminary experiments we
determine that a reasonable number of permutations required to estimate df is
about 100. The maximum likelihood estimate of df given samples from a χ2

df is
the sample mean. Once the df has been approximated, the test calculates the
p-value as in the asymptotic tests. The procedure is presented in Algorithm 3.

4 Distinguishing between Dependence and Independence

In this section we empirically evaluate the ability of the tests to distinguish be-
tween dependence and independence situations. We consider the following two
network structures A ← C → B and A → C ← B because they are heavily
involved in the basic reasoning operations performed by typical network algo-
rithms such as the PC. In the former structure it holds that Dep(A;B|∅) and
Ind(A;B|C). The latter independence would lead network algorithms to remove
the edge A−B in the graph. For the latter structure it holds that Ind(A;B|∅)
and Dep(A;B|C). This subgraph is called a v-structure [13] and allows net-
work algorithms to orient edges. For each structure we perform the uncondi-
tional test T (A;B|∅) and the conditional T (A;B|C). We consider the following
cases for the sizes of the domains of the variables A, B, and C respectively:
2 × 2 × k, k = 2, 4, 8 and 4 × 4 × k, k = 4, 16, 32. For each such case, we ran-
domly sample with uniform probability the parameters of the network 20 times.
For each parametrization of the networks and for each sample size in the set
{20, 40, 60, 80, 100, 150, 200, 300, 500} we randomly create 25 datasets from the
distribution of the network. The total number of tests to perform is 2 (net-
works) × 2 (types of tests) × 6 (domain definitions) × 9 (sample sizes) × 20
(parameterizations) × 25 samplings = 108K tests per method to evaluate.

The methods under study are: asymptotic tests with and without the heuristic
adjustment based on the G and the X 2 test statistic, denoted by AG, AX, AGh,
and AXh, A denoting an asymptotic test, the second letter referring to the test
statistic used, and h referring to the employment of the heuristic; the basic and
the fitted permutations based on the two statistics, denoted with PGB, PXB,
PGF, PXF, P denoting a permutation based test, the second referring to the
test statistic, and the last letter to the basic or fitted procedure. The adjustable
procedure is not included in this set of experiments because it returns a binary
decision, not a p-value. Thus, there is a total of 8 methods to evaluate.

The hardest cases (smaller ratio of samples over counts-to-estimate) are sum-
marized in Figure 1(a)-(c) that show the AUCs over sample size of all datasets
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Fig. 1. Distinguishing between Ind(X;Y |Z) and Dep(X; Y |Z). (a)-(c) AUC with

sample size for the tests based on the G statistic for the 4 × 4 × k cases. The asymp-

totic tests have an erratic behavior for the more difficult cases. (d) AUC over sample

size for all experiments. The permutation-based tests show statistically significantly

(p < 0.0001) increased AUC ranging between 1.75% and 3.39% according to the 95%

confidence intervals (Table 1).

where the domain counts 4 × 4 × k, k = 4, 16, 32. The AUCs were calculated as
follows: the p-values returned on all tests performed by a method on a group
of tests were ordered and thresholded by the significance level. Taking all pos-
sible thresholds gives the ROC curve and the AUC for that method on that
group of tests. To avoid clutter in the figures we only present the tests based on
the G statistic; the results are similar for the X 2. In figure (a) all tests have a
reasonable behavior with increasing performance as sample size increases. As k
increases and the sample is split to 16 and then 32 contingency tables (figures
(b) and (c)) the behavior of the asymptotic tests becomes erratic and large dips
in the curves appear. For the 4× 4× 32 case there are 512 counts Nxyz so in the
best case on average there is about 1 sample to estimate each count and a large
number of expected zero counts. The asymptotic approximations of the tests fail
in these cases while the permutation-based procedures are quite robust. Figure
1(d) shows the overall AUCs on all datasets; this includes the easier cases of
2 × 2 × k, k = 2, 4, 8 so the average behavior is smoother for all tests. Finally,
the AUCs of all methods are presented at Table 1. We also note that, the per-
mutation procedures do not depend as much on the choice of the test statistic
(figures omitted for brevity).

Note that, the permutation methods are worse than the asymptotic methods
for sample sizes 20-60 and k = 16, 32. This is because the number of possible
permutations (that maintain the marginal counts) is too low to estimate the
distribution of the test statistic. When sample size increases, the number of
admissible permutations grows exponentially and the methods quickly improve
over the parametric ones. E.g. the percentage of unique values of the statistic
in 10000 permutations for the 4 × 4 × 32 case and sample size 20, 40, 100, 150
turns out to be on average 0.01%, 0.06%, 3%, and 12% respectively.

To compare whether the differences between the methods are statistically
significant, we used (what else?) a permutation testing procedure. We define
AUCm the AUC returned by a method m on all results and define the statistic
Σm = AUCPGF − AUCm. To generate a single round of permuted data, we
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Table 1. AUC: The Area Under the ROC Curve of the testing procedures over all

networks, domain sizes, sample sizes, and samplings. CI(%): 95% confidence interval

of the difference with PGF Σm times 100.

Asymptotic Tests Permutation Tests
AG AX AGh AXh PGB PXB PGF PXF

AUC 0.6432 0.6197 0.6548 0.5918 0.6766 0.6749 0.6744 0.6718
CI(%) [2.85 3.39] [5.18 5.76] [1.75 2.16] [7.91 8.61] [-0.34 -0.10] [-0.19 0.07] 0 [0.037 0.16]

permute each pair of corresponding p-values (whether they come from PGF or
m) with 50% probability. We estimate the empirical distribution of Σm using
10000 such rounds. The PGF test is statistically significantly better (Σm > 0)
than all asymptotic tests (p < 0.0001) and than PXF (p < 0.0001). However,
the PGF performs worse than the PGB (p < 0.0001) and PXB (p = 0.19). To
estimate the performance difference between PGF and the other tests, we present
the 95% confidence intervals for Σm in Table 1. The improvements range from
at least 1.75% improvement in AUC over the AGh, to at least 7.91% over the
AXh. Based on these results, we forgo the use of tests based on the X 2 statistic
in the rest of the paper.

In terms of execution time, the asymptotic tests require about the same time
given that the d.f. adjusting heuristic takes time linear to the number of counts
computed. The PXB and PGB optimized versions take approximately 500-700
times more than the asymptotic procedures for the sample and domain sizes
used in the study. Finally, the PGF takes about only 10-20 times more than
the asymptotic tests. Given that the difference in performance between PGB
and PGF is less than 0.4% AUC we consider PGF a good trade-off between
performance and computational effort spent.

5 Evaluating the Calibration of the Tests

We now evaluate the relation between the actual Type I error when rejecting
the null hypothesis at confidence level a (P (p ≤ a|null)), where p is the p-value
returned by the test, and the level a. For a calibrated test these two quantities
should be equal, i.e., P (p ≤ a|null) = a. Notice that, a test may not be calibrated
(e.g., always return half the true p-value) and still achieve a high AUC if the
cases of Dep(X ;Y |Z) have a lower p-value than the cases of Ind(X ;Y |Z).

Figure 2 shows P (p ≤ a|null) (Type I error) vs. the confidence level a.
P (p ≤ a|null) is estimated as the proportion of cases where p ≤ a in datasets
where Ind(X ;Y |Z) holds. Figure 2(a)-(d) focus on the hardest case of 4×4×32
experiments. With sample size 20 all tests return non-calibrated p-values. At
sample size 60 the basic permutation procedure is already well-calibrated. At
sample size 150 the semi-parametric procedure catches up. The asymptotic tests
fail miserably to return calibrated values even for the largest sample size at-
tempted of 500 cases. In the second row, Figures 2(e)-(g) show the results for the
4×4×k domain sizes averaged out on all sample sizes. The last sub-figure shows
the average overall behavior including the easier cases of 2×2×k. The results for
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Fig. 2. Calibration Properties of Tests. The subfigures plot the Type I error

(P (p ≤ a|null)) vs. the significance level a for various cases. The legend is the same

as in Figure 1. The asymptotic G test with the heuristic (red line) underestimates

the true p-value; the asymptotic G test (green line) overestimates it. The permutation

procedures are relatively well-calibrated.

the tests based on the X 2 statistic lead to similar conclusions, not shown due to
lack of space. In conclusion, when independence holds the asymptotic G test with
the heuristic underestimates the true p-value, while the asymptotic counterpart
without the heuristic adjustment overestimates it. The permutation procedures
are well-calibrated for the complete range of the significance levels.

6 Improving Bayesian Network Learning

We now examine whether the improvements in AUC and calibration of the per-
mutation procedures translate to improved learning rates and robustness. We
consider four typical Bayesian Networks in the literature used in decision sup-
port systems, namely the ALARM, Insurance, Hailfinder, and Child [17]. These
have 37, 27, 56, 20 variables and 46, 52, 66, 25 edges respectively. From the dis-
tribution of each network and for each sample size in { 50, 75, 100, 125, 150, 175,
200, 250, 300, 500, 700, 1000, 2500, 5000} we sample 20 times simulated data.
The prototypical PC algorithm [13] is then employed to attempt to reconstruct
the network from the data. We used our implementation of the PC algorithm
with one main difference from the original version: the algorithm begins from
the empty graph and not the complete one, then adds the edges corresponding
to detectable pairwise associations (see [17] for a detailed justification).
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Fig. 3. Learning the Skeleton of Bayesian Networks. The number of structural

errors (extra and omitted edges) is presented for each network and procedure. The per-

formance of the asymptotic procedures highly depends on the network. Permutation-

based method robustly perform in all networks and sample sizes.

The PC algorithm is executed with different testing procedures to evaluate
their efficacy. PC accepts two parameters, the significance level a for the tests
and the threshold π in the heuristic power rule that determines which tests to
omit. The significance threshold used in all cases is the standard 0.05. In our
experiments π = 2 selected as the value of π ∈ {0, . . . , 15} that optimizes the
performance of the asymptotic tests.

Based on the results of Section 4, we focus on tests based only on the G statis-
tic. In addition, we exclude the basic permutation procedure from the evaluation
as having a large computational overhead. Instead, we employ the adjustable per-
mutation procedure (PGA) defined in Algorithm 2. In preliminary experiments
(not shown) this algorithm was found to be a good approximation of the basic
permutation procedure. Thus, overall there are four tests in the evaluation: AG,
AGh, PGF, and the PGA.

The structural errors are defined as the number of extra and omitted edges
and are shown in Figure 3. The adjustable and semi-parametric permutation
procedures are always close to the maximum accuracy achieved by any method
in all four networks. The permutation-based methods perform similarly in terms
of structural errors. In terms of computations, the number of permutations re-
quired for the adjustable procedure is on average about 450 while the semi-
parametric procedure performs a fixed number of only 100 permutations. The
semi-parametric permutation test performs surprisingly well; the results show
that permutation-based tests can be practical for graphical model learning.

When it comes to the asymptotic tests, it is easy to observe that their perfor-
mance highly depends on the network structure. The AGh test outperforms the
AG test in three out of the four networks. However, the reverse relation holds in
the Hailfinder network. This is explained due to the existence of several variables
with a large domain and many adjacencies: AGh in general underestimates the
true p-value and so the large-domain variables initially obtain many adjacencies
at the first iteration of the algorithm. Once this happens, it becomes impossible
to perform tests involving these variables due to the power rule, which eventu-
ally leads to a large number of false positives. The AG tests never includes edges
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with these variables and so there are many fewer false positives. E.g., for sample
size 500 on Hailfinder the average number of structural errors for nodes 3 and
40 (domain size 11) and its neighbors (19 nodes) is 61 and 31 for the AGh and
the AG respectively. For all other 37 nodes it is 23 and 23.

In contrast, the permutation procedures are highly robust over all networks.
Over all networks and sample sizes, the PGF procedure statistically significantly
outperforms the asymptotic ones (single-sided, 10000 permutations p < 0.0001)
in terms of the number of structural errors. However, we would like to note
that the learning performance of an algorithm depends on the sparseness of
the graph (ratio between edges and non-edges) and the cost associated with a
false positive (extra edge) and a false negative (omitted edges). The number of
structural errors in particular penalizes both types of errors by the same amount.
A more complete evaluation should optimize the threshold a of a test relative to
the performance measure. Given this discussion, the important conclusion from
this set of experiments in our opinion is the robustness of the permutation tests
to the different characteristics of the networks relative to asymptotic tests.

7 Bayesian Network Meta-analysis

In this set of experiments, we demonstrate the importance of exact testing pro-
cedures to the BNMA problem. Recall that in such tasks cases, one can not
pool all the data together in a single dataset. Fortunately, we can overcome this
problem. Most constraint-based algorithms that learn graphical models only re-
quire the ability to perform conditional tests. A straightforward approach that
employs all datasets is to perform the test Ti(X ;Y |Z) individually in each avail-
able dataset Di obtaining the p-values {pi}. Fisher’s Inverse χ2 test can then be
used to compute a combined statistic S = −2

∑
log pi. S follows a χ2 distribu-

tion with 2q degrees of freedom, where q is the number of datasets contributing
data to the test, from which we can obtain the combined p-value p∗ for the test
T (X ;Y |Z) on all datasets (see also [7,14] for other methods).

When combining multiple datasets, each dataset may not have enough sample
to perform the test, but their combination could have. So, we generalized the
heuristic power rule to perform a test when π ≤ ∑Ni/mi over all datasets i
where Ni is the sample size of Di and mi the number of parameters estimated by
the specific test (e.g., mi may be different from mj if a variable takes 3 possible
values in one dataset and 4 in the other). When all datasets have the same
number of parameters for the test, the rule results in testing whether π ≤ N/m
as in the single-dataset case. Again, the value of π is set to 2.

To evaluate the performance of the PC on multiple-datasets we employed the
same four networks as in Section 6. For each network we decide on the number of
datasets to feed the PC in the set {1, 2, 3, 4, 5, 7, 10, 15, 20} and the size of these
datasets within the set {50, 100, 300, 500}. For each case (4 networks × 9 dataset-
collection size × 4 sample sizes) we sample 10 times from the distribution of the
network. All reported results are averaged over the 10 samplings (repeats of an
experiment). We then execute the PC algorithm equipped with Fisher’s Inverse



Permutation Testing Improves Bayesian Network Learning 335

Fig. 4. Learning the Skeleton of Bayesian Networks from Multiple i.i.d.
Datasets: the effect of increasing number of datasets. The permutation proce-

dure dominates performance. The G-test with the heuristic adjustment has counter-

intuitive behavior showing more errors with total available sample.

χ2 test to combine p-values from the different datasets, and the AG, AGh, and
PGF to compute the p-values on each individual dataset, giving rise to three
versions of the algorithm. Obviously, in this set of experiments the datasets fed
to the PC could be pooled together; the results are to validate the methods in
the simplest case of i.i.d. datasets.

The results for sample size 50 are shown in Figures 4(a)-(d) where the num-
ber of structural errors is shown over the number of datasets combined. An
interesting phenomenon is that the AGh exhibits decreasing performance with
available datasets (and total sample size)! This is explained considering the lack
of calibration of the test demonstrated at Section 5. The p-values of the test
are underestimated to be closer to zero. When several of them are combined to-
gether in the statistic S = −2

∑
log pi the errors accumulate and falsely provide

confidence that dependency can be accepted. For example, consider combining
four exact p-values all equal to 0.2 . This gives S = 12.8755 and combined
p∗ = 0.1162. If the approximate p-values are computed instead as half the exact
values (i.e., as 0.1) then S = 18.4207 and the combined p∗ = 0.0183, i.e, 6 times
lower. Thus, as the number of datasets and p-values that are combined each time
increases, the probability of accepting dependence also increases.

Figures 5(a)-(c) show the performance (total number of structural errors in
all four networks) of each algorithm respectively, as the sample size per dataset
increases. As expected all algorithms benefit from the increased available size
per dataset. In Figure 5(a) we observe that the counter-intuitive behavior of the
AGh test is ameliorated as the asymptotic approximations of the p-values become
more accurate with increased sample size. Figure 5(c) shows the average over all
sample sizes of the total structural errors on all four networks: the permutation
procedure dominates the asymptotic ones in learning quality.

In a second set of experiments using the same exact settings we simulate non-
identically distributed networks. Specifically, for each non-binary variable in a
dataset, with probability 10% we collapse pairs of neighboring values to a single
one. For example, a variable Smoking taking values No/Light/Regular/Heavy
becomes a binary No/Yes variable. The behavior of all algorithms is very similar
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Fig. 5. (a)-(b)The effect of increasing sample size per dataset. The counter-

intuitive behavior of the G-test with the heuristic adjustment (a) is ameliorated with

increased sample size per dataset. The permutation based procedure well-behaves for

small and large datasets (b). Learning the Skeleton from Multiple i.i.d. and non
i.i.d. Datasets. The permutation procedure dominates performance in both cases. The

performance for all procedures is similar in the i.i.d. (c) and the non i.i.d. (d) data.

to the results employing i.i.d. datasets, so we select to present only the average
results over all networks and sample sizes in Figure 5(d). The maximum differ-
ence in average performance between figures (c)(i.i.d.) and (d) (non i.i.d.) cases
is between 6-9 total structural errors for each algorithm.

8 Conclusions

Procedures for testing conditional independence are foundational for learning
graphical models using constraint-based methods. The tests used in prior work
for discrete data are all based on asymptotic approximations that are not robust
to small sample sizes. We counter-suggest the use of exact tests based on per-
mutation procedures. We show that the latter are both practical (10 to 20 times
slower than asymptotic tests) and provide several benefits in learning behavior.
Specifically, we show that (a) permutation testing is calibrated, i.e, the actual
Type I error matches the significance level α set by the user; this is not the case
with asymptotic tests, (b) permutation testing leads to more robust structural
learning, and (c) permutation testing allows learning networks from multiple
datasets that cannot be pooled together; in contrast, asymptotic tests may lead
to erratic learning behavior in this task (error increasing with total sample-size).
The semi-parametric permutation procedure we propose is a reasonable approx-
imation of the basic procedure using 5000 permutations, while being only 10-20
times slower than the asymptotic tests for small sample sizes. While our evalua-
tion considers learning BNs, the conclusions of our studies should be applicable
in learning other graphical models and related causal-based variable selection
algorithms.
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Abstract. We study methods for speeding up classification time of

kernel-based classifiers. Existing solutions are based on explicitly seek-

ing sparse classifiers during training, or by using budgeted versions of

the classifier where one directly limits the number of basis vectors al-

lowed. Here, we propose a more flexible alternative: instead of using the

same basis vectors over the whole feature space, our solution uses dif-

ferent basis vectors in different parts of the feature space. At the core

of our solution lies an optimization procedure that, given a set of ba-

sis vectors, finds a good partition of the feature space and good subsets

of the existing basis vectors. Using this procedure repeatedly, we build

trees whose internal nodes specify feature space partitions and whose

leaves implement simple kernel classifiers. Experiments suggest that our

method reduces classification time significantly while maintaining per-

formance. In addition, we propose several heuristics that also perform

well.

1 Introduction

Kernel-based classifiers such as support vector machines are among the most
popular classification methods. When working with big datasets or costly ker-
nels, however, these classifiers can be slow not only during train, but also when
classifying new instances. Setting the kernel computation cost aside, the clas-
sification cost of a kernel classifier is mainly governed by the number of basis
vectors that it contains. Existing solutions to speed up classification time are
based on explicitly seeking classifiers with few basis vectors (sparse classifiers)
during training. This is the approach taken for example in [17] in the context
of support vector machines. Another approach is to limit the number of basis
vectors explicitly by means of an a-priori imposed bound, a budget, as is the case
of the budget perceptron [10] in online learning.

In this paper we propose an alternative solution that is also based on reducing
the number of basis vectors. The main difference of our approach with respect to
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existing solutions is that instead of using the same sparse classifier in the whole
feature space, we use different sparse classifiers in different parts of the feature
space. That is, the set of basis vectors that we use to classify a new example now
depends on the example, or more accurately, depends on the region where the
example lies. This added flexibility represents a challenge for learning: one not
only needs to partition the feature space, but also needs to select basis vectors
in each partition.

The idea of using different classifiers in different regions of the feature space is
not new, and is in fact used in popular methods for regression and other learning
problems, e.g. piecewise regression or functional trees [16]. However, to the best
of our knowledge, this is the first time this has been applied in the context of
sparse kernel methods. We use the framework of online learning and the kernel
perceptron algorithm [14] as the basis of our solution. We note however, that our
method can be applied as a post-processing step to any kernel-based classifier.

1.1 Related Work

Kernel methods and in particular Support Vector Machines (SVMs) [30] have
been intensely studied during the past couple of decades. Finding sparse SVMs
has been one of the main concerns from the start. Early works on this topic
include [6,5], in which the authors devise post-processing algorithms for finding
a reduced set of basis vectors from a given solution. Most of the approaches that
followed differ from [6,5] (and our paper) by formulating a version of the SVM
learning problem that attempts to directly find a sparse solution. Early examples
of this include [27,13,20,24]. More recently, [32] discuss a method to build sparse
SVMs and report results where the accuracy of the full SVM is in some cases
achieved using only a very small fraction (5%) of the original vectors. Unlike
other related work, [8] propose an ensemble-based solution. The most recent
contribution along this line or work is [17], where authors show that they can
reduce the number of basis vectors by two orders of magnitude without suffering
a decrease in classification accuracy.

Most of the approaches mentioned so far determine automatically the number
of basis vectors used in the final sparse SVM (or use some regularization parame-
ter that determines the trade-off between sparsity and accuracy of the solution).
In contrast, the approach in [12] admits a parameter specifying the maximum
number of vectors allowed in the final solution (the budget). The works in [17,32]
have this ability also.

A different line of work towards finding sparse kernel-based classifiers has
been done in the context of the perceptron algorithm [26]. Perceptrons use the
same type of classification functions as SVMs but are much faster to train. They
can also be used in conjunction with kernels [14], which has gained them much
popularity [14,3,18,9]. Starting with the work of [10], a new line of algorithms
known as the budget perceptron has emerged, of which several variants exist
[10,31,11]. All of these impose an upper bound on the number of basis vectors
allowed in the final classifier, but differ in how they behave when this budget is
exceeded. For example, on exceeding the budget [31,10,11] use different criteria
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Algorithm 1. The perceptron [26] and kernel perceptron [14] algorithms
Perceptron

1: w = 0

2: for i = 1, .., n do
3: pred = sign(wT xi)

4: if pred �= yi then
5: w = w + yixi

6: end if
7: end for

KernelPerceptron

1: S = {}
2: for i = 1, .., n do
3: pred = sign(

∑
(a,b)∈S aK(b,xi))

4: if pred �= yi then
5: S = S ∪ {(yi, xi)}
6: end if
7: end for

to chose which “old” vector is going to be replaced. In contrast, the projectron
[21] attempts to project the new example back to the space spanned by the
existing basis vectors if possible, or adds it otherwise. The projectron does not
have an apriori upper bound, but it can be shown that classifiers cannot grow
unboundedly.

All related work described so far produces a single, global, sparse classifier. In
this paper, we depart from this by allowing different solutions in different regions
of the feature space. The only works we know of that use this idea are [28] and
[2]. Especially [2] discusses a method that seems similar to the one presented
here as it combines decision trees with support vector machines. However, the
main motivation in [2] is not to reduce the number of kernel evaluations, and the
resulting algorithm is a fairly complex combination of gradient descent and tabu
search. In contrast to these, the work proposed here is done in the context of
online learning with kernel perceptrons. In particular, our tree-based approach
combines an online partitioning of the feature space with fast classification with
budgeted kernel perceptrons. We call this new model the perceptron tree.

2 Perceptron Trees

2.1 Background on Perceptrons

The kernel perceptron [14,19] is an online learning algorithm which has been
shown to perform very well in practice. Its simplicity, well-understood behavior,
and the fact that it has the ability to incorporate kernels, make it an excellent
candidate for being the basis for our solution. Given a sequence of n examples
described by feature vectors xi together with their yi ∈ ±1 class labels

(x1, y1), (x2, y2), .., (xn, yn)

the standard perceptron algorithm [26] keeps a hypothesis w in the form of a
weight vector of the same dimensionality as the examples representing a linear
classifier, which is updated as indicated in Algorithm 1 (left column).

Notice that w is a linear combination of examples xi on which the perceptron
makes a mistake [14,18]. This suggests representing w in its dual form, namely,
by maintaining the set S of coefficients yi and vectors xi on which the algorithm
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Algorithm 2. An online algorithm for learning perceptron trees
BuildTree(x, y, N)

if N is a leaf node then
if PN (x) �= y then

add x as a basis vector of PN .

end if
if |PN | > B then

(fN , NL, NR) ← Split(N)

end if
else

BuildTree(x, y, fN (x))

end if

makes mistakes during training. The advantage of this representation is that it
allows the use of a kernel functionK(·, ·). In the pseudocode for kernel perceptron
in Algorithm 1 (right column), S is the set of pairs (a,b) such that a is the
coefficient of the term K(b, ·) in the decision function, and b is a basis vector.

Clearly, the cost of classifying a new example requires the computation of
a weighted sum of kernel products between the example to classify and the
existing basis vectors. This cost is proportional to both the number of vectors
in our hypothesis |S| and the time it takes to compute the kernel.

2.2 Solution Overview

Our solution uses different budget perceptrons in different regions of the feature
space. Therefore, we need to devise a method that is able to learn mappings from
the feature space to small sets of basis vectors. On arrival of a new example x to
be classified, we use the mapping to get the basis vectors S(x) operating in the
region that x belongs to, and use the rule sign(

∑
(a,b)∈S(x) aK(b,x)) to make

the final prediction. Since we are trying to reduce classification time, we should
be able to compute the region where an example falls quickly.

We propose a top-down, tree-like approach that starts with a single node
training a budget perceptron. When we need to add a new basis vector and the
budget is exceeded, we split that perceptron node and start training two new
perceptrons as new left and right leaves to this node. The new perceptron leaf
nodes are initialized with suitable subsets of the existing basis vectors. The split
node is assigned a branching function f that sends examples to its left or right
child. The leaves continue to split as we add new examples. When the process is
finished, we end up with a tree where the branching functions fi at the internal
nodes induce a partition of the feature space, and the budget perceptrons Pj in
the leaves classify examples.

Pseudocode for the tree building algorithm is shown in Algorithm 2. To con-
struct a tree given training data, we call BuildTree once for each example x
with N being the root of the tree. When the size of the perceptron at a leaf
node exceeds a predefined budget B, we split the node. This is done by the
Split function that returns the branching function fN for node N , as well as
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the left and right child nodes, NL and NR, rooted at N . Split also initializes
the perceptrons at NL and NR using the basis vectors at node N .

Naturally, all kinds of questions related to growing trees arise, such as when
do we stop growing the tree, do we use pruning, etc. Although important in
practice, these issues are not the focus of this paper. Our focus is in how to do
the split: namely, how to find the branching functions, and how to select good
subsets of existing basis vectors for the children of a split node.

In the following sections, we present several ways of implementing the Split

function. The main method that we propose is based on solving several quadratic
and linear programming problems, although we also present a few heuristics that
perform well in our experiments.

3 Splitting Nodes

Suppose that we are at a leaf node N that has made a mistake on a new example,
and N has exhausted its budget. The perceptron at this leaf node needs to be
split into two new perceptrons. To carry out the split we need to define two
things:

1. Partition problem: what examples are assigned to the left and right subtrees,
respectively?

2. Selection problem: what basis vectors of node N form the initial perceptron
in the left and right subtrees, respectively?

Ideally we would like to solve both of these tasks in a way that minimizes the
number of errors on unseen examples. It is not clear to us how to do this prop-
erly. Instead, we propose a number of different approaches. Of these the most
important one is based on approximating the existing classifier at node N . This
strategy is the main focus in this section, while the remaining ones are covered
in Section 4.

Observe that the partition and selection problems are not independent. A
good partition may depend on the selection of basis vectors, and selecting the
basis vectors is affected by the partition. This suggests that in order to find good
solutions the two problems must be solved together in a joint optimization step.
Alternatively, we can decouple the problems by first using some criteria to define
the partition, and subsequently selecting the basis vectors given this partition.
We discuss the joint optimization approach in this section.

3.1 Basic Definitions

For now our main objective when computing the split is to maintain the current
classifier as well as possible. Let the set SN = {(a1,b1), . . . , (am,bm)} contain
all basis vectors bj together with their class labels aj that are used by node
N . Moreover, let the set XN = {x1, . . . ,xn} contain all examples that node
N has seen so far. Define the matrix G, such that Gij = ajK(xi,bj), and let
ri =

∑
j Gij . The perceptron at node N classifies xi according to sign(ri). In
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order to maintain the behavior of this classifier, we seek to approximate ri on
both sides of the split by using different subsets of SN . To make this more formal,
we define the following:

– Partition: Denote by z an n-dimensional binary vector that indicates how
to split XN . We let zi = 1 if xi ∈ XN is assigned to the left subtree, and
zi = 0 if xi is assigned to the right subtree. For simplicity, we only consider
perfectly balanced partitions, that is, partitions for which

∑
i zi = n/2.

– Left selection: Denote by p an m-dimensional binary vector that indicates
which basis vectors in SN are assigned to the left child of N . We let pj = 1
if basis vector bj is to be placed to the left, and pj = 0 indicates otherwise.

– Right selection: We define the binary vector q in the same way as p for
selecting basis vectors of the right child of N .

Using these definitions a split is represented by the triple (z,p,q). Here z defines
the assignment of examples to the subtrees, while p and q select the basis vectors
to be used in the left and right child nodes. But notice that while vector z tells
us which examples in XN go to the left and right subtrees, it tells us nothing
about new examples. In practice, we must learn the branching function fN that
allows us to classify new, unseen examples. Let us put this problem aside for
now, however, and see how to find good splits (z,p,q). Later, in Section 3.3, we
show that a simple modification of this procedure allows us to learn p and q
together with fN .

3.2 Joint Optimization with Unconstrained Branching

In this section we consider the case where vectors in XN can be placed arbitrarily
to the left and right subtree. This means that the branching function is essentially
unconstrained, and has no predefined form. We define the costs of vectors p and
q as follows:

cp(xi) =
(∑

j

pjGij − ri

)2 and cq(xi) =
(∑

j

qjGij − ri

)2
, (1)

where G and r are defined as above. We are thus seeking to minimize the squared
difference of using all the basis vectors vs. using the selection only. (Notice that
p and q need not be integer for Equation 1 to make sense.) For all xi that are
placed to the left we pay cp(xi), and for the remaining ones we pay cq(xi). The
total cost of the split is thus defined as

c(z,p,q) =
∑

i

zicp(xi) + (1 − zi)cq(xi), (2)

which is equivalent (up to an additive constant, see Appendix A) to

ĉ(z,p,q) = pTQL(z)p − 2wT
L(z)p + qTQR(z)q − 2wT

R(z)q. (3)

Here QL(z) and QR(z) are m × m matrices, and wL(z) and wR(z) are m-
dimensional vectors that depend on z. If we fix the vector z, then minimizing



344 A. Ukkonen and M. Arias

Equation 3 is a matter of solving two independent quadratic integer programs,
of which the one for p is shown below:

QPp : min
1
2
pTQL(z)p − wT

L(z)p

st.
∑

j

pj ≤ C,

pj ∈ {0, 1} for all j.

The program QPq for finding q is defined analogously. Notice that the matrices
QL(z) and QR(z) are positive semidefinite and therefore the objective function
is convex.

The constraint
∑

j pj ≤ C is imposed so that the left subtree uses at most C
basis vectors. This constant should be set by the user depending on the needs of
the application at hand or by some other empirical method beyond the scope of
our present discussion. If given a budget B, a reasonable value for C could be
set for example to B/2, so that the new perceptrons at the leaves are initialized
with half of their available budget. This is, in fact, the strategy that we adopt
in the experiments.

Finding p and q is therefore easy if we know z. We continue by showing that
given p and q it is easy to find z. Clearly Equation 2 can be rewritten as

c(z,p,q) =
∑

i

zi

(
cp(xi) − cq(xi)

)
︸ ︷︷ ︸

ci(p,q)

+
∑

i

cq(xi).

From this we see that if we know the costs cp(xi) and cq(xi) for all i, i.e., the
vectors p and q are fixed, the optimal z is found by solving the linear integer
program

LPz : min zT c(p,q)

st.
∑

i

zi = n/2,

zi ∈ {0, 1} for all i.

Note that solving this is simply a matter of setting those indices of z to 1 that
correspond to the n/2 smallest values of c(p,q).

Ideally we would like to solve (3) for z, p, and q simultaneously. This, however,
does not seem easy. But as argued above, we can find p and q given z, and vice
versa. Our solution, shown in Algorithm 3, relies on this. It iteratively optimizes
each of z, p, and q while keeping the two other vectors fixed.

The situation is further complicated by the integer constraints present in the
quadratic programs given above. Our strategy here is to use fractional solutions
(variables bounded in [0, 1]) during the iteration and round these to integers be-
fore returning a solution. We experimented with a number of rounding schemes,
and observed the following to perform well. For each i, set pi = 1 with proba-
bility equal to the value of pi in the fractional solution. Repeat this a number
of times and keep the best.
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Algorithm 3. Joint optimization with unconstrained branching
1: Initialize p and q at random.

2: while objective function value decreases do
3: Find z given q and p by solving LPz.

4: Find q given z by solving a fractional relaxation of QPq.

5: Find p given z by solving a fractional relaxation of QPp.

6: end while
7: Round p and q to integers.

8: return (z,p, q)

While Algorithm 3 clearly solves the selection part of the split, it is less
obvious whether we can use the vector z to construct a good branching function
fN . A simple approach is to find the vector x∗

i ∈ XN that is closest to an unseen
example x, and forward x to the left subtree if zi = 1, and to the right if zi = 0.
We refer to this approach as Zpq in the experiments of Section 5.

Notice that finding the nearest neighbor can be slow, and ideally we want
the branching functions to be (orders of magnitude) faster than classifying x.
To this end, we discuss next an alternative formulation of the split that directly
includes fN as part of the optimization problem.

3.3 Joint Optimization with Linear Branching

In this section we propose a split where the vectors in XN may no longer be
partitioned arbitrarily. In particular, the branching function fN is constrained
to be a linear separator in the feature space. The basis vector selection remains
as before. Denote the linear separator by w. We let z depend on w as follows:

zi =
1
2

sign(wT xi) +
1
2
,

where xi ∈ XN as above. If we further assume that ‖xi‖ = 1, ‖w‖ = 1, and
remove the sign from wT xi, we can let zi =

(
1
2w

T xi + 1
2

) ∈ [0, 1]. Using this the
objective function of LPz from the previous section can be re-written to depend
on w instead of z:

zT c =
∑

i

(
1
2
wT xi +

1
2
)ci =

1
2
wT
∑

i

xici︸ ︷︷ ︸
d

+
1
2

∑
i

ci︸ ︷︷ ︸
D

=
1
2
wTd +D.

Omitting constants, our new formulation becomes

LPw : min wTd

st. ‖w‖ = 1,

where the d is a column vector such that dj =
∑

i xijci, xij is the value of
example xi along dimension j after normalizing xi, and ci is the cost associated
with example xi which can be computed for fixed p,q.
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It can be shown that LPw is minimized for w = − d
‖d‖ . That is, as with

LPz, we do not need to solve a linear program. Notice that we have ignored the
constraint present in LPz that requires a balanced solution. In this case, this can
be enforced by using a threshold θ = median{wT xi|xi ∈ XN}. We acknowledge
that we could include θ in our optimization, but this straightforward approach
leads to good results in practice.

Again we use Algorithm 3, but modify it so that line 3 reads: “Find w given
q and p by solving LPw. Let θ = median{wTxi|xi ∈ XN}, and compute the
associated z by setting zi = sign(wT xi+θ).”. Naturally, the same considerations
regarding the rounding procedure to obtain integer solutions apply here.

With this method it is obvious that we have found both a fast to compute
branching function, sign(wT xi + θ), and a good set of basis vectors for the child
nodes. The algorithm presented here finds these simultaneously in the sense
that the solution for w depends on p and q, and vice versa. In the next section
we discuss some other approaches where the partition and selection tasks are
decoupled. We refer to this approach as Wpq in the experiments of Section 5.

4 Heuristics and Baselines for Splitting Nodes

The algorithm discussed above may be too complex for some situations as it
involves solving a number of quadratic programs. Moreover, it is difficult to say
how fast the objective function value converges. In practice we have observed
the convergence to be rapid, but there are no theoretical guarantees for this. As
a remedy we present some heuristics that are in general faster to compute.

We describe simple heuristics and baseline methods for the partition and the
selection problems, respectively. These can be combined in order to develop rea-
sonable splitting methods. As we already observed earlier, solving the selection
problem becomes easy if we fix the partition.

4.1 Partition Heuristics

With partition heuristics we mean heuristics for constructing the branching func-
tion fN . We have already seen two alternatives in the previous section. The first
one made use of a nearest neighbor algorithm, while the second one was based
on a linear separator of the feature space.

A simple baseline, which we call RndW, consists in obtaining a random par-
tition by drawing a hyperplane uniformly at random.

In addition, we propose a class of branching functions that can be represented
as axis-aligned hyperplanes in the kernel space. That is, an example x is directed
to the left subtree if K(x,bj) ≤ t for some bj ∈ SN and t, otherwise x goes to the
right. This type of branching was used in our previous work [28]. Furthermore,
we only consider balanced branching functions, i.e., those mapping half of the
examples in XN to the left, and the other half to the right.

Algorithm 4 shows how to split a node using such balanced branching func-
tions. Essentially, the algorithm goes through all basis vectors in SN and uses
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Algorithm 4.
BalancedBranchingFunction(SN , XN , K)

for (aj ,bj) ∈ SN do
tj ← median{K(x, bj) : x ∈ XN}
XL ← {x ∈ XN : K(x,bj) ≤ tj}
XR ← {x ∈ XN : K(x,bj) > tj}
sj ← Evaluate(XL, XR)

end for
j∗ ← argmaxj sj

return (bj∗ , tj∗)

each in turn to construct a branching function. The partition proposed by each is
evaluated using the Evaluate function. The algorithm returns the basis vector
together with the associated t that has the highest score. We can alter the op-
timization criteria by changing the Evaluate function, below we describe two
alternatives.

Bal This heuristic is used in combination with any of the selection methods de-
scribed below. The split is evaluated in terms of the squared error between
the approximation and the true ri values (see Section 3.1) after solving
the selection problem in the leaves.

Ent This heuristic is inspired by the impurity measure used in decision trees.
Let H(zi = 1) and H(zi = 0) be the entropies of the class labels in
left and right partitions, respectively. This heuristic chooses the split that
minimizes min(H(zi = 1), H(zi = 0)).

4.2 Selection Heuristics

Now suppose that we have selected a branching function according to some
partition heuristic from above. We have to determine how to select subsets of
existing basis vectors for the left and right children. We have experimented with
the following baselines and heuristics for this:

Rnds Pick two random subsets of size C from SN to be used as the initial basis
vectors in the left and right subtrees of N .

Inds Use the branching function fN to assign existing basis vectors in SN either
to the left or right subtree. Notice that the bound C on the number of
basis vectors may be violated, so some post-processing may be needed.

Opts Solve fractional relaxations of QPp and QPq, round p and q to obtain
integer solutions.

In our experiments, we use identifiers such as Bal-Opts or Ent-Inds for our
heuristics; these mean the combination of the balanced partition heuristic using
our optimization as evaluation function, and the combination of the entropy
heuristic for partition and partition-induced heuristic for selection, respectively.
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Table 1. Data sets used in the experimental section

name dataset size nr. attributes source

ADULT 48842 123 [1]

IJCNN 141691 22 [25]

COD-RNA 488565 8 [29]

5 Experiments

In this section we test empirically the validity of our method and the heuristics
proposed. Recall that the main goal of this work is to devise a classifier where the
basis vectors of the decision rule depend on the input example x. Our approach
is to partition the input space and use a different perceptron in each region. The
most straightforward strategy is to divide the feature space into two disjoint
regions. The first experiment is designed to show that already in this very simple
setting we can gain in accuracy by using two different perceptrons in the regions.

In the second experiment we study how well the tree-based approach com-
pares with other budgeted online learning algorithms. We do not expect them to
outperform these in accuracy. Instead our main argument is that we can achieve
a similar performance by using a considerably smaller number of basis vectors.
While our trees can grow very large, and may hence contain a large number of
leaf nodes, the total number of kernel computations for each example is bounded
by the user-specified budget B. We set B = 100 in these experiments. A more
thorough study of the effects of B is left for a longer version of this paper.

We compare our methods with the Forgetron [11] and Projectron [23]
algorithms1, and the Stoptron, a simple budget perceptron baseline that learns
a kernel perceptron but stops updating after budget is reached. The data sets
we use are publicly available at [7]. Table 1 shows details of the data sets. Each
data set was split into training (50%), testing (25%), and validation (25%) sets.
In the experiments that follow we use different portions of the datasets, which
will be appropriately described in the text.

In each case we use a Gaussian kernel. The γ parameter of the kernel was op-
timized for each data by running the basic perceptron algorithm on the training
data using different values of γ and choosing the one with the best performance
on the validation set.

5.1 Comparing Splitting Functions

This experiment compares the performance of using a single Stoptron against
using two Stoptrons at the leaves of a single split, varying and thus compar-
ing the different splitting criteria. The setting is as follows: we start training a
Stoptron on the training data. Once the number of basis vectors hits B (set
to 100), we split the node using each of the techniques described above. At this
point training is stopped, and we switch to testing. For each splitting method,

1 We use implementations of the DOGMA library [22].
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Fig. 1. Results of the splitting experiment showing medians over 30 independent runs

of the average cumulative error. The x-axis represents the number of test examples

processed so far, and the y-axis shows the average cumulative error obtained up until

that point. The different runs are obtained by permuting the training set and so the

initial Stoptron may differ in each separate run.

the resulting model is applied to the test data. We make a pass over the entire
test data, and two Stoptrons are grown on either side of the splits.

The results in Figure 1. show that splitting in combination with Stoptron

outperforms the global Stoptron, supporting our hypothesis that splitting may
be very useful. Moreover, the results also suggest that it is important to do the
split in a smart way. This is indicated by the relatively poor performance of the
completely random Rndw-Rdns heuristic in case of ADULT and IJCNN. Inter-
estingly, Rndw-Opts performs quite well, suggesting that if the basis vectors
are selected carefully, any balanced linear branching function will have a reason-
able performance. Finally, our Wpq method is the only one that consistently
shows good performance across all three datasets.

5.2 Algorithm Comparison

This experiment measures the trade-off between classification time and classifi-
cation accuracy. We use the number of basis vectors as a proxy for classification
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time, as this essentially determines the run-time complexity of evaluating the
decision function. We compare our perceptron tree approach with the regular
perceptron and recently proposed budgeted variants [11,23]. Again we set B to
100. In case of the Projectron algorithm it is not possible to set the budget
explicitly. Instead, there is a parameter η that indirectly affects the size of the
resulting model. The results include the values which we found to work best
after manual tuning.

Figure 2 shows size vs. error for a representative set of methods. The errors are
averages over 10 runs of the mean number of mistakes made by the algorithms
after doing one pass over the training data. Ideally one seeks a small model with
low error. These can be found in the lower left corner of the plots. We want
to point out that for the perceptron trees, the size is set to B because this is
the number of basis vectors that contribute to an example’s classification. The
actual size of the tree is much larger, but only B basis vectors are used to classify
an example.



Example-dependent Basis Vector Selection for Kernel-Based Classifiers 351

In general our methods show good performance. With the ADULT data the
Wpq algorithm is not only the quickest to evaluate, but outperforms every other
method in terms of the error. Unlike reported in [23] we observe a fairly poor per-
formance of the projectron with the ADULT data. In the case of IJCNN, Wpq

has a slightly higher error rate than the Projectron, but is an order of mag-
nitude smaller. With the COD-RNA data the Projectron algorithm clearly
outperforms all other methods both in size and error. However, our methods
are competitive with the perceptron while using a much smaller number of basis
vectors, which is the main objective of this work.

6 Conclusions and Future Work

We have proposed a solution to the problem of speeding up classification time
with kernel methods that is based on partitioning the feature space into disjoint
regions and using budgeted models in each region. This idea follows up prelim-
inary work by one of the authors in [28] and is, to the best of our knowledge,
the first time an example-dependent solution is applied to this problem. Clearly,
data sets that present different structure in different parts of the feature space
should benefit from this approach. Our experiments indicate the potential of
this method, and we want to further study the behavior of the algorithms using
more datasets and explore the effect of different parameter settings.

Our optimization criterion in this paper is to approximate the behavior of the
perceptron while using a smaller number of basis vectors. The motivation behind
this is that in some other learning scenarios, such as ranking for example, one
actually does care about the values output by the methods, and not just the
labels. Naturally, other objective functions could be considered, such as directly
minimizing the classification error in the context of a classification problem. In
fact, the Ent heuristic from Section 4 is a first step in this direction. We plan
to work on more principled approaches in the future.

The idea of example-dependent selection of basis functions carries naturally
over to other domains, such as ensemble or boosting methods, e.g. random
forests [4] or gradient boosted decision trees [15]. From a more theoretical per-
spective, it would be desirable to obtain an understanding of the generalization
ability of example-dependent classifiers.
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A Derivation of Equation 3
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Using similar manipulations we obtain∑
i

(1 − zi)cq(xi) = qT QR(z)q − 2wT
R(z)q + CR.

The matrix QL(z) and the vector wL(z) are thus based on all those rows of G
for which zi = 1. Likewise, the matrix QR(z) and the vector wR(z) are based
on the rows for which zi = 0. We obtain Equation 3 by summing the above
equations and omitting the constants CL and CR.
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Abstract. How long are the phone calls of mobile users? What are the chances
of a call to end, given its current duration? Here we answer these questions by
studying the call duration distributions (CDDs) of individual users in large mo-
bile networks. We analyzed a large, real network of 3.1 million users and more
than one billion phone call records from a private mobile phone company of a
large city, spanning 0.1TB. Our first contribution is the TLAC distribution to fit
the CDD of each user; TLAC is the truncated version of so-called log-logistic
distribution, a skewed, power-law-like distribution. We show that the TLAC is
an excellent fit for the overwhelming majority of our users (more than 96% of
them), much better than exponential or lognormal. Our second contribution is the
MetaDist to model the collective behavior of the users given their CDDs. We
show that the MetaDist distribution accurately and succinctly describes the calls
duration behavior of users in large mobile networks. All of our methods are fast,
and scale linearly with the number of customers.

1 Introduction

In the study of phone calls databases [18,20,17], a common technique to ease the anal-
ysis of the data is the summarization of the phone calls records into aggregated at-
tributes [10], such as the aggregate calls duration or the total number of phone calls. By
doing that, the size of the database can be reduced by orders of magnitudes, allowing
the execution of most well known data mining algorithms in a feasible time. However,
we believe that such representation veils relevant temporal information inherent in a
user or in a relationship between two people. When all the information about the phone
calls records of a user is aggregated into single summarized attributes, we do not know
anymore how often this user calls or for how long he talks per phone call. One may
suggest, for instance, to use descriptive statistics such as mean and variance to describe
the duration of the user’s phone calls, but it is well known that the distribution of these
values is highly skewed [20], what invalidate the use of such statistics.

In this paper, we tackle the following problem. Given a very large amount of phone
records, what is the best way to summarize the calling behavior of a user? In order
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c© Springer-Verlag Berlin Heidelberg 2010



Surprising Patterns for the Call Duration Distribution of Mobile Phone Users 355

to answer this question, we examine phone call records obtained from the network
of a large mobile operator of a large city. More specifically, we analyze the duration
of hundreds of million calls and we propose the Truncated Lazy Contractor (TLAC )
model to describe how long are the durations of the phone calls of a single user. Thus,
the TLAC models the Calls Duration Distribution (CDD) of a user and is parsimonious,
having only two parameters, the efficiency coefficient ρ and the weakness coefficient
β. We show that the TLAC model was the best alternative to model the CDD of the
users of our dataset, mainly because it has a heavier tail and head than the log-normal
distribution, that is the most commonly used distribution to model CDDs [7].

We also suggest the use of the TLAC parameters as a better way to summarize the
calls duration behavior of a user. We propose the MetaDist to model the population
of users that have a determined calls duration behavior. The MetaDist is the meta-
distribution of the ρi and βi parameters of each user’s i CDD and, when its isocon-
tours are visualized, its shape is surprisingly similar to a bivariate Gaussian distribution.
This fascinating regularity, observed in a significantly noisy data, makes the MetaDist
a potential distribution to be explored in the direction of better understanding the call
behavior of mobile users.

Thus, in summary, the main contributions of this paper are:

– The proposal of the TLAC model to represent the individual phone calls durations
of mobile customers;

– The MetaDist to model the group call behavior of the mobile phone users;
– The use of the MetaDist and the Focal Point to describe the collective temporal

evolution of large groups of customers;

As an additional contribution, we show the usefulness of the TLAC model. We show
that it can spot anomalies and it can succinctly verify correlations (or lack thereof)
between the TLAC parameters of the users and their total number of phone calls, ag-
gregate duration and distinct patterns. We also emphasize that the TLAC model can be
used to generate synthetic datasets and to significantly summarize a very large number
of phone calls records.

The rest of the paper is organized as follows. In Section 2, we provide a brief survey
of other work that analyzed mobile phone records. In Section 3, we describe our pro-
posed TLAC model and we show its goodness of fit. The MetaDist and the analysis on
the temporal evolution of the collective call behavior of the customers of our dataset is
shown in Section 4. In Section 5, we discuss the possible applications for our results
and, finally, we show the conclusions and future research directions in Section 6.

2 Related Work

A natural use for a mobile phone dataset is to construct the social network from its
records [10,8]. In [16,17], the authors construct a network from mobile phone calls
records and, from it, they make a detailed analysis of its network properties. They iden-
tified relationships between node weights and network topology, finding that the weak
ties are commonly responsible for linking communities, thus having a high betweenness
centrality or low link overlap. Moreover, in [8], the authors verified that the persistence
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of an edge is highly correlated to its reciprocity and to the topological overlap and,
in [4], the authors explore communication networks in order to verify the patterns that
occurs in its cliques. It is also common to analyze the networks from mobile com-
panies in order to improve their services. For instance, in [9,3], the authors proposed a
framework and data structures for identifying fraudulent consumers on telecommunica-
tion networks based on their degree distribution and dynamics and, in [15], the authors
proposed metrics that can be employed by a business strategy planner involved in the
telecom domain.

Another use for a mobile phone dataset is to study the individual attributes of the
users. In [18], the authors proposed the DPLN distribution to model the distributions
of the number of phone calls per customer, the total talk minutes per customer and the
distinct number of calling partners per customer. In [7], the authors analyzed mobile
phone calls that arrived in a mobile switch center in a GSM system of Qingdao, China,
and they found that the duration of the phone calls is best modeled by a log-normal
distribution. However, in [20], the authors studied the duration of mobile calls arriving
at a base station during different periods and found that they are neither exponentially
nor log-normally distributed, possessing significant deviations that make them hard to
model. They verified that about 10% of calls have a duration of around 27 seconds, that
correspond to calls which the called mobile users did not answer and the calls were
redirected to voicemail. This makes the call durations distribution to be significantly
skewed towards smaller durations due to nontechnical failures, e.g., failure to answer.
Finally, the authors showed that the distribution has a “semi-heavy” tail, with the vari-
ance being more than three times the mean, which is significantly higher than that of
exponential distributions. Comparing to a log-normal distribution, though the tails agree
better, they too diverge at large values, what asks for a more heavy-tailed distribution.

3 Calls Duration Distribution

3.1 Problem Definition

In this work, we analyze mobile phone records of 3.1 million customers during four
months. In this period, more than 1 billion phone calls were registered and, for each
phone call, we have information about the duration of the phone call, the date and time
it occurred and encrypted values that represent the source and the destination of the call,
that may be mobile or not. When not stated otherwise, the results shown in this work
refer to the phone call records of the first month of our dataset. The results for the other
3 months are explicitly mentioned in Section 4.

The Call Duration Distribution (CDD) is the distribution of the call duration per user
in a period of time, that in our case, is one month. In the literature, there is no consen-
sus about what well known distribution should be used to model the CDD. There are
researchers that claim that the PDD should be modeled by a log-normal distribution [7]
and others that it should be modeled by the exponential distribution [19]. Thus, in this
section, we tackle the following problem:

Problem 1. CDD FITTING. Given d1, d2, ..., dC durations of ni phone calls made by a
user i in a month, find the most suitable distribution for them and report its parameters.
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As we mentioned before, there is no consensus about what well known distribution
should be used to model the CDD, i.e., for some cases the log-normal fits well and
for others, the exponential is the most appropriate distribution. Thus, finding another
specific random distributions that could provide good fittings to a particular group of
CDDs would just add another variable to Problem 1, without solving it. Therefore,
we propose that the distribution that solves Problem 1 should necessarily obey to the
following requirements:

– R1: Intuitively explain the intrinsic reasons behind the calls duration;
– R2: Provide good reliable fits for the great majority of the users.

In the following sections, we present a solution for Problem 1. In Section 3.2, we tackle
Requirement R1 by presenting the TLAC model, that is a intuitive model to represent
CDDs. Then, in Section 3.3, we tackle RequirementR2 by showing the goodness of fit
of the TLAC model for our dataset.

3.2 TLAC Model

Given these constraints, we start solving Problem 1 by explaining the evolution of
the calls duration by a survival analysis perspective. We consider that all the calls
c1, c2, ..., cC made by a user in a month are individuals which are alive while they
are active. When a phone call cj starts, its initial lifetime lj = 1 and, as time goes by,
lj progressively increments until the call is over. It is obvious that the final lifetime of
every cj would be its duration dj .

In the survival analysis literature, an interesting survival model that can intuitively
explain the lifetime, i.e. duration, of the phone calls is the log-logistic distribution.
And besides its use in survival analysis [1,12,11], there are examples in the literature
of the use of the log-logistic distribution to model the distribution of wealth [5], flood
frequency analysis[14] and software reliability[6]. All of these examples present a mod-
ified version of the well known “rich gets richer” phenomenon. First, for a variable to
be “rich”, it has to face several risks of “dying” but, if it survives, it is more likely to
get “richer” at every time. We propose that the same occurs for phone calls durations.
After the initial risks of hanging up the call, e.g., wrong number calls, voice mail calls
and short message calls such as “I am busy, talk to you later” or “I am here. Where are
you?” type of calls, the call tends to get longer at every time. As an example, the lung
cancer survival analysis case [1] parallels our environment if we substitute endurance
to disease with propensity to talk: a patient/customer that has stayed alive/talking so
far, will remain such, for more time, i.e., the longer is the duration of the call so far, the
more the parties are enjoying the conversation and the more the call will survive.

Thus, to solve Problem 1, we propose the Truncated Lazy Contractor (TLAC )
model, that is a truncated version of the log-logistic distribution, since it not contains
the interval [01). Firstly we show, in Figure 1-a, the Probability Density Function (PDF)
of the TLAC , the log-normal and exponential distributions, in order to emphasize the
main differences between these models. The parameters were chosen accordingly to
a median call duration of 2 minutes for all distributions. The TLAC and log-normal
distributions are very similar, but the TLAC is less concentrated in the median than the
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log-normal, i.e., it has power law increase ratios in its head and in its tail. We believe
that this is another indication that the TLAC is suitable to model the users’ CDD, since
as it was verified by [20], CDDs have semi-heavy” tails. The basic formulas for the
log-logistic distribution and, consequently, for the TLAC , are [11]:

PDFTLAC(x) =
exp(z(1 + σ) − μ)

(σ(1 + ez))2

CDFTLAC(x) =
1

1 + exp(− (ln(x)−μ)
σ )

z = (ln(x) − μ)/σ

where μ is the location parameter and σ the shape parameter.

(a) PDF (b) Odds Ratio

Fig. 1. Comparison among the shapes of the log-normal, exponential and TLAC distributions

Moreover, in finite sparse data that spans for several orders of magnitude, that is the
case of CDDs when they are measured in seconds, it is very difficult to visualize
the PDFs, since the distribution is considerably noisy at its tail. One option is to smooth
the data by reducing its magnitude by aggregating data into buckets, with the cost of
lost of information. Another option is to move away from the PDF and analyze the
cumulative distributions, i.e., cumulative density function (CDF) and complementary
cumulative density function (CCDF) [2]. These distributions veil the sparsity of the
data and also the possible irregularities that may occur for any particular reason. How-
ever, by using the CDF (CCDF) you end up losing the information in the tail (head) of
the distribution. In order to escape from this drawbacks, we propose the use of the Odds
Ratio (OR) function, that is a cumulative function where we can clearly see the distribu-
tion behavior either in the head and in the tail. This OR(t) function is commonly used
in the survival analysis and it measures the ratio between the number of individuals that
have not survived by time t and the ones that survived. Its formula is given by:

OR(t) =
CDFTLAC(t)

1 − CDFTLAC(t)
(1)

Therefore, in Figure 2-b, we plot the OR function for the TLAC , the log-normal and
exponential distributions. The OR function of the exponential distribution is a power
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law until t reaches the median, and the it grows exponentially. On the other hand, the
OR function of the log-normal grows slowly in the head and then fastly in the tail.
Finally, the OR function for the TLAC is the most interesting one. When plotted in
log-log scales, is a straight line, i.e., it is a power law. Thus, as shown in [1], the OR(t)
function can be summarized by the following linear regression model:

ln(OR(t)) = ρ ln(t) + β (2)

OR(t) = eβtρ (3)

In our context, Equation 2 means that the ratio between the number of calls that will
die by time t and the ones that will survive grows with a power of ρ. Moreover, given
that the median t̂ of the CDD is given when OR(t) = 1 and OR(t) < 1 when t < t̂,
the probability of a call to end grows with t when t < t̂ and then decrease forever.
We call this phenomenon the “lazy contractor” effect, which represents the time a lazy
contractor takes to complete a job. If the job is easier and does require less effort than
the ordinary regular job, he finishes it fastly. However, for jobs that are harder and that
demand more work than the ordinary regular job, the contractor also gets more lazier
and takes even more time to complete it, i.e., the longer a job is taking to be completed,
the longer it will take. The ρ and the β are the parameters of the TLAC model, with
ρ = 1/σ.

We conclude this section and, therefore, the first part of the solution to Problem 1,
by explaining the intuition behind the parameters of the TLAC model. The parameter ρ
is the efficiency coefficient, which measures how efficient is the contractor. The higher
the ρ, the more efficient is the contractor and the faster he will complete the job. On
the other hand, the location parameter β is the weakness coefficient, which gives the
duration t̂ of the typical regular job a contractor with a determined efficiency coefficient
ρ can take without being lazy, where t̂ = exp(−β/ρ). This means that the lower the β,
the harder are the jobs that the contractor is used to handle.

3.3 Goodness of Fit

In this section, we tackle the second requirement of Problem 1 by showing the goodness
of fit of our TLAC model. First, we show in Figure 2-a, the PDF of the CDD for a high
talkative user, with 3091 calls, and with the values put in buckets of 5 seconds to ease
the visualization. We also show the best fittings using Maximum Likelihood Estimation
(MLE) for the exponential and the log-normal distributions and also for our proposed
TLAC model. Visually, it is clear that the best fittings are the ones from the log-normal
distribution and the TLAC distribution, with the exponential distribution not being able
to explain either the head and the tail of the CDD.

However, by examining the OR plot in Figure 2-b, we clearly see the the TLAC
model provide the best fitting for the real data. As verified for the exponential distribu-
tion in the PDF, in the OR case, the log-normal also could not explain either the head
and the tail of the CDD. We also point out that we can see relevant differences between
the TLAC model and the real data only for the first call durations, that happen because
these regions represent only a very small fraction of the data. The results showed in
Figure 2 once more validate our proposal that the TLAC is a good model for CDDs.
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(a) PDF (b) Odds Ratio

Fig. 2. Comparison of models for the distribution of the phone calls duration of a high talkative
user, with 3091 calls. TLAC in red, log-normal in green and exponential in black. Visually, for
the PDF both the TLAC and the log-normal distribution provide good fits to the CDD but, for the
OR, the TLAC clearly provide the best fit.

Given our initial analysis, we may state that the TLAC seems to be a good fit for
the CDDs and also serve as an intuitively explanation for how the durations of the calls
are generated. However, in order to conclude our answer for Problem 1, we must verify
its generality power and also compare it to the log-normal and exponential generality
power as well. Thus, we verify which one of the distributions can better fit the CDD of
all the users of our dataset that have n > 30 phone calls. We calculated, for every user,
the best fit according to the MLE for the TLAC , the log-normal and exponential dis-
tributions and we performed a Kolmogorov-Smirnov goodness of fit test [13], with 5%
of significance level, to verify if the user’s CDD is either one of these distributions. For
now on, every time we mention that a distribution was correctly fitted, we are implying
that we succesfully performed a Kolmogorov-Smirnov goodness of fit test.

In Figure 3, we show the percentage of CDDs that could be fitted by a log-normal,
a TLAC and a exponential distribution. As we can see, the TLAC distribution can ex-
plain the highest fraction of the CDDs and the exponential distribution, the lowest. We
observe that the TLAC distribution correctly fit almost 100% of the CDDs for users
with n < 1000. From this point, the quality of the fittings starts to decay, but sig-
nificantly later than the log-normal distribution. We emphasize that the great majority
of users have n < 1000, what indicates that some of these talkative users’ CDD are
probably driven by non natural activities, such as spams, telemarketing or other strong
comercial-driven intents. This result, allied to the fact that the TLAC distribution could
model more than 96% of the users, make it reasonable to answer Problem 1 claiming
that the TLAC distribution is the standard model for CDDs in our dataset.

Finally, we further explore Problem 1 by looking at the OR of the talkative users that
were not correctly fitted by the TLAC model. In Figure 4, we show the OR for three of
these users and, as we observe, even these customers have a visually good fitting to the
TLAC model. These results corroborate even more with the generality power of TLAC
. Despite of the fact that the irregularities of these customers’ CDDs unable them to be
correctly fitted by the TLAC model, it is clear that the TLAC can represent their CDDs
significantly well.
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Fig. 3. Percentage of users’ CDDs that were correctly fitted vs. the user’s number of calls c. The
TLAC distribution is the one that provided better fittings for the whole population of customers
with c > 30. It correctly fitted more than 96% of the users, only significantly failing to fit users
with c > 103, probably spammers, telemarketers or other non-normal behavior user.

(a) (b) (c)

Fig. 4. Odds ratio of 3 talkative customers that were not correctly fitted by the TLAC model

4 TLAC over Time

We know it is trivial to visualize the distribution of users with a determined summarized
attribute, such as number of phone calls per month or aggregate calls duration. However,
if we want to visualize the distribution and evolution of a temporal feature of the user
such as his CDD, things start to get more complicated. Thus, in this section, we tackle
the following problem:

Problem 2. EVOLUTION. Given the ρi and βi parameters of N customers (i = 1, 2...,
N), describe how they collectively evolve over time.

We propose two approaches to solve Problem 2. In Section 4.1 we describe the
MetaDist solution and, in Section 4.2, we describe the Focal Point approach.

4.1 Group Behavior and Meta-fitting

Since we know that the great majority of users’ CDD can be modeled by the TLAC
model, in order to solve Problem 2, we need to figure out how each user i is distributed
according to their parameters ρi and βi of the TLAC model. If the meta-distribution
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of the parameters ρi and βi is well defined, then we can model the collective call be-
havior of the users and see its evolution over time. From now on, we will call the
meta-distribution of the parameters ρi and βi the MetaDist distribution.

In Figure 5-a, we show the scatter plot of the parameters ρi and βi of the CDD of
each user i for the first month of our dataset. We can not observe any latent pattern
due to the overplotting but, however, we can spot outliers. Moreover, by plotting the ρi

and βi parameters using isocontours, as shown in Figure 5-b, we automatically smooth
the visualization by desconsidering low populated regions. While darker colors mean a
higher concentration of pairs ρi and βi, white color mean that there are no users with
CDDs with these values of ρi and βi.

(a) Rough scatter plot (b) Isocontours of the real data (c) Bivariate Gaussian fitting.

Fig. 5. Scatter plot of the parameters ρi and βi of the CDD of each user i for the first month of
our dataset. In (a) we can not see any particular pattern, but we can spot outliers. By plotting the
isocontours (b), we can observe how well a bivariate Gaussian (c) fits the real distribution of the
ρi and βi of the CDDs (’meta-fitting’).

Surprisingly, we observe that the isocontours of Figure 5-b are very similar to the
ones of a bivariate Gaussian. In order to verify this, we extracted from the MetaDist
distribution the means P and B of the parameters ρi and βi, respectively, and also
the covariance matrix Σ. We use these values to generate the isocontours of a bivariate
Gaussian distribution and we plotted it in Figure 5-c. We observe that the isocontours of
the generated bivariate Gaussian distribution are similar to the ones from the MetaDist
distribution, which indicates that both distributions are also similar. Thus, we conjecture
that a bivariate Gaussian distribution fits the real distribution of ρ and βs, making the
MetaDist a good model to represent the population of users with a determined calls
duration behavior.

Given that the MetaDist is a good model for the group behavior of the customers
in our dataset, we can now visualize and measure how them evolve over time. In Fig-
ure 6 we show the evolution of the MetaDist over the four months of our dataset. The
first observation we can make is that the bivariate Gaussian shape stands well during
the whole analyzed period, what validates the robustness of the MetaDist . Moreover,
a primarily view indicates that the meta-parameters also have not change significantly
over the months. This can be confirmed by the first 5 rows of Table 1, which describes
the value of the meta-parameters P , B and Σ(σ2

ρi
, σ2

βi
, cov(ρi, βi)) for the four ana-

lyzed months. This indicates that the phone company already reached a stable state be-
fore its customers concerning its prices, plans and services. In fact, the only noticeable
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difference occurs between the first month and the others. We observe that the meta-
parameters of the first month have a slightly higher variance than the others, what indi-
cates that this is probably an atypical month for the residents of the country in which
our phone records were collected. But in spite of that, in general, the meta-parameters
do not change through time. Then, we can state the following observation:

Observation 1. TYPICAL BEHAVIOR. The typical human behavior is to have a effi-
ciency coefficient ρ ≈ 1.59 and a weakness coefficient β ≈ −6.25. Thus, the median
duration for a typical mobile phone user is 51 seconds and the mode is 20 seconds.

(a) Month 1 (b) Month 2. (c) Month 3 (d) Month 4.

Fig. 6. Evolution of the MetaDist over the four months of our dataset. Note that the collective
behavior of the customers is practically stable over time.

4.2 Focal Point

An interesting observation we can derive from the MetaDist showed in Figure 5 is that
there exists a significant negative correlation between the parameters ρi and βi. This
negative correlation, more precisely of −0.86, lead us to the fact that the OR lines, i.e.,
the TLAC odds ratio plots of the customers of our dataset, when plotted together, should
cross over a determined region. In order to verify this, we plotted in Figure 7-a the OR
lines for some customers of our dataset. As we can observe, it appears that these lines
are all crossing in the same region, when the duration is approximately 20 seconds and
the odds ratio approximately 0.1. Then, in Figure 7-b, we plotted together the OR lines
of 20, 000 randomly picked customers and derived from them the isocontours to show
the most populated areas. As we can observe, there is a highly populated point when
the duration is 17 seconds and the OR is 0.15. By analyzing the whole month dataset,
we verified that more than 50% of the users have OR lines that cross this point. From
now on, we call this point the Focal Point.

Formally, the Focal Point is a point on the OR plot with two coordinates: a coordi-
nate FPduration in the duration axis and a coordinate FPOR in the OR axis. When
a set of customers have their OR plots crossing at a Focal Point with coordinates
(FPduration, FPOR), it means that for all these customers the FPOR

1+FPOR
th percentile

of their CDD is on FPduration seconds. Thus, in the 2 bottom lines of Table 1, we de-
scribe the Focal Point coordinates for the four months of our analysis and, surprisingly,
the Focal Point is stationary. Thus, we can make the following observation:

Observation 2. UNIVERSAL PERCENTILE. The vast majority of mobile phone users
has the same 10th percentile, that is on 17 seconds.
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(a) Direct plot. (b) Isocontours of the plot.

Fig. 7. The TLAC lines of several customers plotted together. We can observe that, given the
negative correlation of the parameters ρi and βi, that the lines tend to cross in one point (a). We
plot the isocontours of the lines together and approximately 50% of the customers have TLAC
lines that pass on the high density point (duration=17s, OR=0.15) (b).

Observation 2 suggests that one of the risks for a call to end acts in the same way
for everyone. We conjecture that, given the 17 seconds durations, this is the risk of a
call to reach the voice mail of the destination’s mobile phone, i.e., the callee could not
answer the call. The duration of this call involves listening to the voice mail record and
leaving a message, what is coherent with the 17 seconds mark. It would be interesting to
empirically verify the percentage of phone calls that reaches the voice mail and compare
with the Focal Point result.

Table 1. Evolution of the meta-parameters (rows 1-5) and the Focal Point (rows 6-7) during the
four months of our dataset

- 1st month 2nd month 3rd month 4th month
P 1.59 1.58 1.59 1.59
B -6.16 -6.28 -6.32 -6.30
σ2

ρi
0.095 0.086 0.084 0.083

σ2
βi

1.24 0.98 0.95 0.94
cov(ρi, βi) -0.30 -0.24 -0.24 -0.23

FPduration(s) 17 17 17 17
FPOR 0.15 0.12 0.11 0.11

5 Discussion

5.1 Practical Use

In the previous section, we showed the collective behavior of millions of mobile phone
users is stationary over time. We described two approaches to do that, one based on
the MetaDist and the other based on the Focal Point . The initial conclusions of both
approaches are same. First, the collective behavior of our dataset is stable, i.e., it does
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not change significantly over time. Second, we could see a slight difference between
the first month and the others, indicating that this month is an atypical month in the
year. We believe that these two approaches can succinctly and accurately aid the mobile
phone companies to monitor the collective behavior of their customers over time.

Moreover, since we could successfully model more than 96% of the CDDs as a
TLAC , a natural application of our models would be for anomaly detection and user
classification. A mobile phone user that does not have a CDD that can be explained
by the TLAC distribution is a potential user to be observed, since he has a distinct call
behavior from the majority of the other users. To illustrate this, we show in Figure 8 a
talkative node with a CDD that can not be modeled by a TLAC distribution. We observe
that this node, indeed, has an atypical behavior, with his CDD having a noisy behavior
from 10 to 100 seconds and also an impressive number of phone calls with duration
around 1 hour (or 5× 700 seconds). Moreover, another way to spot outliers is to check
which users have a significant distance from the main cluster of the MetaDist . As we
showed in Figure 5-c, this can be easily done even visually.

Fig. 8. Outlier whose CDD can not be modeled by the TLAC distribution

Another application that emerges naturally for our models is the summarization of
data. By modeling the users’ CDD into TLAC distributions, we are able to summarize,
for each user i, hundreds or thousands of phone calls into just two values, the parameters
ρi and βi of the TLAC model. In our specific case, we could summarize over 0.1TB
of phone calls data into less than 80MB of data. In this way, it is completely feasible
to analyze several months, or even years of temporal phone calls data and verify how
the behavior of the users is evolving through time. Also, all the proposed models in this
work can be directly applied on the design of generators that produce synthetic data,
allowing researchers that do not have access to real data to generate their own.

5.2 Generality of TLAC

As we mentioned earlier, one of the major strengths of the TLAC model is its generality
power. We showed that even for distributions that oscillate between log-normal and log-
logistic, or that have irregular spikes that unable them to be correctly fitted by TLAC ,
TLAC can represent them significantly well. Besides this, the simplicity of the TLAC
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model allow us to directly understand its form when its parameters are changed and
verify its boundaries. For instance, in the case of the CDD, eβ gives the odds ration
when duration is 1 second. Thus, when eβ > 1, most of the calls have a lower duration
than 1 second, which makes the CDD converges to a power law, i.e., the initial spike
is truncated. Moreover, as α → 0, the odds ratio tends to be the constant eβ , what
causes the variance to be infinity. By observing Figure 9 and concerning human calling
behavior, we conjecture that β is upper bounded by 1 and ρ is lower bounded by 0.5.
These values are coherent with the global intuition on human calling behavior.

(a) CDF for ρ (b) CCDF for β

Fig. 9. Cumulative distributions for ρ and β. We can observe that ρ is lower bounded by 0.5 and
β is upper bounded by 1. These values are coherent with the global intuition on human calling
behavior.

5.3 Additional Correlations

Given that the vast majority of users’ CDDs can be represented by the TLAC model,
it would be interesting if we could predict their parameters ρi and βi based on one of
their summarized attributes. One could imagine that a user that makes a large number
of phone calls per month might have a distinct CDD than a user that makes only a few.
Moreover, we could also think that a user that has many friends and talk to them by the
phone regularly may also have a distinct CDD from a user that only talks to his family
on the phone. In Figures 10 and 11, we show, respectively, the the isocontours of the
behavior of the ρi and βi parameters for users with different values of number of phone
calls ni, aggregate duration wi and number of partners pi, i.e., the distinct number of
persons that the user called in a month. With the exception made for the ρi against
wi, we observe that the variance decreases as the value of the summarized attribute
increases. This suggests that the CDD of high or long talkative users, as well as users
with many partners, is easier to predict. Moreover, as we can observe in the figures and
also in Table 2, there is no significant correlation between the TLAC parameters and
the summarized attributes of the users. Thus, we make the following observation:

Observation 3. INVARIANT BEHAVIOR. The ρi and βi parameters of user i behave
as invariant with respect to (a) number of phone calls ni, (b) aggregate durationwi and
(c) number of partners pi.
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(a) number of phone calls (b) aggregate duration (c) number of friends

Fig. 10. Isocontours of the users’ CDD efficiency coefficient ρ and their summarized attributes

(a) number of phone calls (b) aggregate duration (c) number of friends

Fig. 11. Isocontours of the users’ CDD efficiency coefficient β and their summarized attributes

Table 2. Correlations between summarized attributes and ρ and β

Attribute Correlation with ρ Correlation with β

number of phone calls 0.14 -0.18
aggregate duration -0.21 0.01
number of partners 0.18 -0.18

Finally, since there is no significant correlation between the users’ CDD parameters ρi

and βi with their summarized attributes, we emphasize that these parameters should
be considered when characterizing user behavior in phone call networks. Moreover,
besides characterizing individual customers, the TLAC model can also be directly ap-
plied to the relationship between users, analyzing how two persons call each other. One
could use, for instance, the ρ parameter as the weight of the edges of the social network
generated from phone call records.

6 Conclusions

In this paper, we explored the behavior of the calls’ duration of the users of a large
mobile company of a large city. We analyzed more than 3 million customers and 1
billion phone calls records. The main contributions of the paper are:

– The proposal of the TLAC distribution, which fits very well the vast majority of
individual phone call durations, much better than log-normal and exponential;
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– the introduction of MetaDist , which shows that the collection of TLAC parameters,
and specifically the ρ and β ones, follow a striking bivariate Gaussian, with mean
(P , B);

– Temporal evolution: the discovery that the MetaDist remains the same over time,
with very small fluctuations;

– Usefulness of TLAC : it can spot anomalies (see Figure 8) and it can succinctly de-
scribe spot correlations (or lack thereof) between total phone call duration, number
of calls, and number of distinct patterns, for a given user.

Moreover, we showed that TLAC has a very natural, intuitive explanation behind it (the
more you waited so far, the even longer you will wait), and that it includes as special
case the Pareto distribution.

Future work could focus on network effects, that is, if two people talk to each other,
what is the relationship between their TLAC parameters? A second promising direction
is to check whether TLAC also fits well other modes of human (or computer) commu-
nications, like length of SMS messages and length of postings on FaceBook “walls”.
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Abstract. We study the problem of extracting statistical dependencies

between multivariate signals, to be used for exploratory analysis of com-

plicated natural phenomena. In particular, we develop generative models

for extracting the dependencies, made possible by the probabilistic in-

terpretation of canonical correlation analysis (CCA). We introduce a

mixture of robust canonical correlation analyzers, using t-distribution to

make the model robust to outliers and variational Bayesian inference for

learning from noisy data. We demonstrate the improvements of the new

model on artificial data, and further apply it for analyzing dependen-

cies between MEG and measurements of autonomic nervous system to

illustrate potential use scenarios.

Keywords: Bayesian data analysis, canonical correlation analysis, data

fusion, latent variable models, robust models.

1 Introduction

Noisy estimates of human brain activity can be obtained with several measure-
ment techniques, such as functional magnetic resonance imaging (fMRI) and
magnetoencephalography (MEG). Given a controlled experiment, even relatively
simple approaches can shed light on brain functions. For example, linear regres-
sion from brain activity to stimulus covariates can reveal which brain regions are
related to the task at hand. For uncontrolled experiments, such as analysis of the
brain functions in natural environments, the classical approaches, however, fall
short since there are no simple covariates available and unsupervised analysis
cannot separate the relevant variation from the rest.

A recent approach to tackling the problem is to consider correlations between
the brain activity measurements and multivariate vectorial representations of the
stimulus [6,17]. This allows using the stimulus still as a supervision signal, despite
the representation not being condensed as simple covariates. Instead, we need
to assume the stimulus representation contains noise just like the brain activity
measurements do. The actual signal is separated from the noise by making one
simple assumption: Statistical dependencies between the brain activity and the
stimulus must be related to processing the stimulus, while independent variation
in either signal should be seen as structured noise.

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part III, LNAI 6323, pp. 370–385, 2010.
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Canonical correlation analysis (CCA) is a standard approach for finding cor-
relations between two multivariate sources (see, e.g., [9]), and is the method used
in [17] for analysis of fMRI data under natural stimulation. CCA has, however,
several limitations that make it suboptimal in practical applications. It assumes
the signals are stationary, does not come with an easy way of estimating the
number of correlated components, is not robust against outliers, and estimat-
ing the reliability of the components is difficult. Building on the probabilistic
interpretation of CCA, we have earlier introduced a model that removes the
stationarity assumption through mixture modeling and automatically learns the
model complexity from data [10]. The earlier model, however, has practical lim-
itations that prevent using it for neuroinformatics applications. In this article
we improve the model further, by introducing more efficient and more easily
interpretable inference procedure, and by making the model robust to outliers.

The model in [10] used posterior sampling for inference, and was formulated as
a Dirichlet process mixture for estimating the model complexity, which makes the
model suitable for small sample sizes but the inference becomes very inefficient
for large data sets. In particular, the model does not have a fully conjugate prior,
and hence less efficient sampling strategies need to be applied. Consequently, ap-
plying the model for analysis of MEG data would be beyond computationally
feasible by some orders of magnitude. Furthermore, neuroscientific interpretation
of the results of such a model would be difficult since the posterior sampler re-
turns a set of results that need to be processed further for conclusive summaries.
In this paper we solve both of these issues by switching to variational inference,
which results in highly efficient optimization and also makes interpretation more
straighforward since the approach is deterministic, while retaining the mixture
capability and automatic relevance determination prior for inferring the number
of correlating components.

The robustness to outliers is obtained by replacing the generative assumption
of Gaussian noise by that of Student’s t-distribution, modeled as a scale-mixture
[11]. Similar representation was earlier used in the robust CCA variant of [2],
but they only sought a maximum likelihood estimate for the model parameters
instead of considering the full posterior distribution. Robust variational infer-
ence has earlier been presented only for simpler projection methods such as
robust PCA [8,12] and robust factor analysis [5], using two different alternative
approximations that have not been compared earlier. We show that there is no
noticeable difference in accuracy or computational complexity between the two
alternatives.

We illustrate the technical properties of the model using artificial data, show-
ing the improvements in a set of experiments. We also demonstrate what kind of
real analysis scenarios the model is useful for, by using it to learn dependencies
between brain oscillations and autonomic nervous system (ANS) response under
emotional sound stimuli. The emotions of the user are strongly visible in ANS
but only vaguely in MEG, and correlations between these two pinpoint possible
hypotheses on what part of the variation in the signals captured by MEG might
be related to the emotions. In brief, the ANS measurements can be considered as
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noisy descriptions of the stimulus itself. The model is shown to find interpretable
clusters that capture much stronger correlations than stationary analysis could.
The model also outperforms the alternative of first clustering the data and then
applying CCA separately for each of the clusters [7].

2 Bayesian CCA

The probabilistic CCA (PCCA) [3] is a generative probabilistic model for two
multi-dimensional data sources X1 = [x11, . . . ,x1N ] and X2 = [x21, . . . ,x2N ].
The model is written as

tn ∼ N (tn|0, ID)
x1n|tn ∼ N (x1n|W1tn + μ1,Ψ1) (1)
x2n|tn ∼ N (x2n|W2tn + μ2,Ψ2),

where the Ψ denote the precision matrices of the normal distribution. The latent
variables t encode the low-dimensional statistically dependent part while projec-
tion matrices W1 and W2 specify how this dependency is manifested in each of
the data sources. Bach and Jordan [3] established the connection between this
probabilistic model and classical CCA by showing that the maximum-likelihood
solution of the model coincides with the classical solution except for an arbi-
trary rotation in the latent space and projection matrices. PCCA as such does
not solve any of the problems classical CCA has since it is merely an equivalent
description, but the probabilistic formulation makes justified extensions possible.
In the remainder of this section, we walk through the extensions and modifica-
tions required for creating a practically applicable dependency modeling tool for
real-world signals.

The first step is to make the inference more reliable by switching from the
maximum likelihood solution to full Bayesian analysis, by complementing the
likelihood with priors for the model parameters. We adopt the formulation of
[10,16] for Bayesian CCA (BCCA)

wij |αi ∼ N (wij |0, diag(αi1, . . . , αiD))
αij ∼ G(αij |ai, bi)
Ψi ∼ W(Ψi|γi,Φi) (2)
μi ∼ N (μi|0, βiI),

where G is the gamma distribution, W denotes the Wishart distribution, the
subscript i is used to denote the data sources, and the distribution of data is
given in (1). The rest of the symbols are hyper-priors of the model. The priors for
the projection matrix row vectors p(wij |αi) and the precision prior p(αij) imple-
ment the Automatic Relevance Determination (ARD) [14] which automatically
controls the number of the components in the model by adjusting the precisions
αij – the precisions for unnecessary components are driven to infinity, and hence
the posterior peaks around the zero vector. Both [10,16] experimentally verified
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that the ARD mechanism detects the correct dimensionality of the latent space,
which is the second necessary component for our practically usable model.

The Bayesian CCA model makes a strict assumption of Gaussian noise, which
is problematic for many real life signals used as stimulus representations or brain
activity measurements. This problem can be alleviated by replacing both the
Gaussian noise and the Gaussian latent variables by Student’s t-distribution
(with ν degrees of freedom) that is more robust to outliers:

tn ∼ S(tn|0, ID, ν)
x1n|tn ∼ S(x1n|W1tn + μ1,Ψ1, ν)
x2n|tn ∼ S(x2n|W2tn + μ2,Ψ2, ν).

For efficient inference, we exploit the latent infinite scale-mixture formulation of
the t-distribution [11],

S(t|μ,Λ, ν) =
∫ ∞

0

duN (t|μ,Λ)G (u|ν/2, ν/2) .

Using this formulation, we can write the robust CCA model by adding an extra
level of hierarchy

un ∼ G (un|ν/2, ν/2)
tn|un ∼ N (tn|0, unID)

x1n|un, tn ∼ N (x1n|W1tn + μ1, unΨ1)
x2n|un, tn ∼ N (x2n|W2tn + μ2, unΨ2).

This formulation has conjugate conditional distributions, which considerably
simplifies inference. The above formulation for robust CCA has earlier been
presented by [2], but they only considered the maximum likelihood estimate for
the parameters. We couple the robust noise assumption with the priors for the
Bayesian CCA model (2) to arrive at the novel model of Robust Bayesian CCA
(RBCCA). It is a basic building block of our full model.

2.1 Mixture of Robust Bayesian CCAs

Next we turn our attention to removing the stationarity assumption, by replacing
it with piecewise stationarity. In this work we follow our earlier model [10] and
introduce a probabilistic mixture of robust Bayesian CCA models, letting each
mixture cluster to model different kind of dependencies between the signals.

We formulate the probabilistic mixture by introducing an additional multi-
nomial latent variable which generates the mixture assignment [13]. The ro-
bust mixture CCA model is therefore obtained by adding the latent variable
zn ∼ Multinomial(zn|π), where π denotes the probabilities of the clusters (we
use point estimates for π, but the extension to Dirichlet prior would be straight-
forward), and conditioning all the rest of the latent variables and parameters on
the value of zn.
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Fig. 1. Plate diagram of the mixture of robust CCA models. N denotes the samples,

M the mixture clusters and V the two data sources. The hyper-priors of the variables

are excluded for clarity.

The full model including the mixture formulation for non-stationarity, ARD
prior for choosing the number of correlated components within the clusters,
and the t-distribution for handling outliers is represented in Figure 1. All of
the models described above like RBCCA and mixture of Gaussian BCCAs are
obtained as special cases of the full model, as are a number of other models.
In particular, fixing 1/αij = 0 results in (robust) Gaussian mixture model [1],
setting Ψ diagonal gives (robust) factor analysis [5], and further restricting it to
be spherical leads to (robust) Bayesian PCA [8,12].

2.2 Variational Inference

For analysis, the above model formulation needs to be coupled with an inference
algorithm. In particular, we need to learn the posterior distribution of the model
parameters, and be able to make predictions for future data. Since the goal is
to be able to apply the model for analysis of potentially very large data sets, we
steer away from the computationally heavy earlier alternatives like the Gibbs
sampling approach of [10] for mixture of BCCA inference, and instead choose
to use the deterministic variational approximation. The resulting algorithm is
computationally as efficient as finding the maximum likelihood or maximum
a posteriori estimate through the EM algorithm, but maintains the advantage
of full Bayesian analysis in capturing the uncertainty in the results. Next, we
briefly summarize the variational Bayesian (VB) approach for inference, and
only explain in more detail the choices specific for the novel parts of the model.
For more extensive introduction to variational inference see, e.g., [4].

The core of the inference process is in learning the posterior distribution
p(H |X1,X2, Θ) of both the latent variables and the model parameters, denoted
collectively as H = {Z,U,T,W1,W2,μ1,μ2,Ψ1,Ψ2}, given the observed data
and model hyper-parameters Θ. Finding the true posterior is not feasible even



Variational Bayesian Mixture of Robust CCA Models 375

for the basic CCA model, let alone the full robust mixture, because evaluating
the marginal log-likelihood

ln p(X1,X2|Θ) = ln
(∫

dH p(H,X1,X2|Θ)
)

is not tractable.
With variational Bayesian inference the problem is solved by approximating

the true posterior with a variational distribution q(H) from some limited class of
distribution functions so that the inference remains tractable [4]. In practice, the
class of distributions is limited by assuming that the full posterior factorizes into
a number of (a priori) independent terms, and the optimal distribution in this
class is chosen by minimizing the Kullback-Leibler divergence from the approx-
imation to the true posterior DKL(q(H)||p(H |X1,X2, Θ)). The full posterior is
then found by an iterative EM-style algorithm. The resulting update formulas,
based on the factorization described below, are given in the Appendix.

Following the variational Bayesian CCA by Wang [16], we consider a varia-
tional distribution for which the parameter part is fully factorised as

2∏
i=1

M∏
k=1

q(Ψk
i )q(μk

i )q(Wk
i )q(αk

i ). (3)

We then focus on the approximation used for the latent variables, naturally
factorized over the data points as

∏N
n=1 q(zn, un, tn). It is clear that we need

to consider separate terms for each cluster, q(zn)q(un, tn|zn), but for the latter
term two different tractable approximations are possible. For example [8,12]
use the approximation q(un)q(tn), assuming conditional independence between
un and tn, whereas [5] chose q(un)q(tn|un), not introducing any independence
assumptions beyond those in the actual model. In our scenario both solutions
are analytically tractable, conditioned on zn.

To our knowledge, these two choices have not been compared before, nor
the additional independence assumption justified. Since both are tractable and
lead to implementations of comparable computational complexity, the relative
accuracy of the two approximations is an interesting question for variational ap-
proximations of t-distribution models in general. Hence, we implemented both
alternatives and empirically compare them in the experiments, showing that the
difference in performance is negligible, making both alternatives valid. The for-
mulas given in the Appendix assume the approximative q(un)q(tn) factorisation.

Besides learning the posterior distribution of the latent variables and model
parameters, we are naturally interested in making predictions for new data. Both
inferring x1 given x2 (or vise versa) and inferring the latent variable t given x1

and/or x2 are useful for various application scenarios. Exact calculation of these
distributions is again untractable due to the dependency on the hidden data
posterior distributions. However, we can utilize the variational distributions to
make the predictions tractable. For a new data point, q(z, u, t) is chosen as
the distribution which maximizes the variational lower bound of ln p(X−i|Θ)
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where −i denotes the observed data source(s). As an example, we consider the
predictive density p(xi|x−i). Using the conditional independence of xi and x−i

when t is known, and integrating out t results in

xi|zk = 1, u,Ψi,μi,Wi ∼ N (xi|Wk
i μtk

+ μk
i , ((uΨ

k
i )−1 + Wk

i Σtk
(Wk

i )�)−1),

where the information from the observed data source is encapsulated in the pa-
rameters μtk

, Σtk
and the gamma distribution of u (these paremeters, however,

are slightly different in comparison to the formulas in the Appendix as we observe
only X−i). The above predictive density assumes the factored approximation for
the latent variables; with the non-factored alternative the density is of the same
form but Σtk

will explicitely depend on u.
The above expression does not yield a closed form expression for the distri-

bution p(xi|x−i) but at least the two first moments are analytically tractable.
The most important quantity is the conditional mean

E[xi|x−i] =
M∑

k=1

q(zk)〈Wk
i 〉q({Wi})μtk

+ 〈μk
i 〉q({μi}).

3 Model Validation

To validate that the model does what it promises, we performed two experiments
using artificial data. First we show how replacing the Gaussian distribution with
t-distribution considerably improves the accuracy of the model in presense of
increasing amounts of outliers. At the same time we compare the two alterna-
tive variational factorizations for t-distributed latent variable models, showing
that there is no noticeable difference in accuracy. Then we show how the model
correctly captures non-stationarity with clusters and automatically extracts the
correct number of correlated components.

In both of our artificial data experiments, we fix the hyperparameters to
values corresponding to broad priors (ai = bi = 0.1, γi = di + 1, Φi = 102I,
βi = 1) and consequently let the data determine the model parameters. The
hyper-parameters π and ν:s are updated by maximizing the variational lower
bound which leads to closed form and line-search update rules.

3.1 Robustness against Outliers

We start by showing the importance of robust modeling in presense of outliers.
We first generate data (N=500) from the model (with single cluster), and then
add a varying number of outlier data points drawn from the uniform distribu-
tion. We then compare the robust model with the two alternative variational
approximations against the Gaussian model by measuring the variational lower
bound and the mean error in predicting x1 from x2. Figure 2 shows how the
performance is identical for the case of no outliers, meaning that there is no
harm in using the robust variant, and that already for fairly modest ratios of
outliers the robust variant is considerably better.
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Fig. 2. Left: The mean prediction error for the robust CCA model stays essentially

constant irrespective of the number of outliers in the data, whereas the Gaussian CCA

model starts losing accuracy already for a low number of outliers. Even below 1% of

samples being outliers the difference in accuracy is already noticeable. Right: The same

effect is visible also in the variational lower bound. For both measures the curves for

the two alternative approximations for the robust variant are completely overlapping,

showing no difference.

The results also indicate that there does not seem to be any difference between
the two variational approximations for the t-distribution. To further compare
the alternatives, we construct an experiment designed to emphasize potential
differences. We generate the data from the t-distribution with just ν = 2 de-
grees of freedom, making the data very heavy-tailed (for high values of ν the
t-distribution approaches Gaussian). The model is trained for N = 10000 data
points, and 10 separate sets of 10000 data points are used for testing. We mea-
sure the error in predicting x1 given x2, both with the mean prediction error
and quantiles of the error distribution to emphasize potential tail effects. The
results, collected in Table 1, confirm that the accuracies are indeed comparable.

3.2 Model Selection

Next we show how the model comes with ready tools for choosing the model
complexity. For any real analysis task both the number of clusters needed to
correctly capture the non-stationary dependencies and the number of correlating
components in each of the clusters are unknown. We show how the ARD prior
for the projection matrices removes the need of explicitly specifying the number
of components, by automatically ignoring unnecessary components, and how the
marginal likelihood of the model reveals the correct number of clusters.

We created M = 3 clusters each consisting of 2000 points from the model

tn ∼ N (tn|0, I)
x1n|tn ∼ N (x1n|Wk

1tn + μk
1 , (L

k
1L

k�
1 )−1)

x2n|tn ∼ N (x2n|Wk
2tn + μk

2 , (L
k
2L

k�
2 )−1),
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Table 1. Quantitative analysis of the prediction errors of the two alternative variational

approximations for t-distributions. The table shows the mean prediction error over

10000 independent test samples, averaged over 10 different realizations of the data set,

as well as different quantiles of the distribution of the errors. The two factorizations

are equal with respect to all of the measures.

Approximation Mean 5% quantile 50% quantile 95% quantile

Predict x2|x1

q(u)q(t) 8.9180 2.1766 6.2896 22.4195

q(u)q(t|u) 8.9180 2.1766 6.2895 22.4177

Predict x1|x2

q(u)q(t) 8.5027 2.0908 5.9635 21.4362

q(u)q(t|u) 8.5028 2.0911 5.9636 21.4384

where the mean vector entries are drawn randomly so that the cluster centers
are well seperated. The entries of the lower triangular matrices L1 and L2 are
drawn from the uniform distribution between 0 and 0.5, with additional small
positive entries added to the main diagonal, and the projection matrices W1

and W2 are generated as

Wk
1 =

dk∑
j=1

wk
1je

�
j

wk
1j ∼ N (wk

1j |1, (10 ∗ I)−1),

where dk = {3, 5, 7} encodes the dimensionality of the latent space in each of
the clusters. For x2 the procedure was the same.

Figure 3 shows two illustrations of the result, clearly demonstrating that the
marginal likelihood grows until the correct number of clusters but does not im-
prove further, indicating that coupling the likelihood with a reasonable prior
on the number captures the correct complexity. The other sub-figure illustrates
the projection matrix, revealing how only five components contain non-zero ele-
ments in the cluster that was created to have exactly five correlating components,
even though the model was ran with maximal possible complexity (the number
of dimensions that is here 50). Hence, the need for choosing the complexity is
efficiently sidestepped. Note that the columns of the matrix have not been re-
ordered for the illustration, but instead the approximation automatically learns
the components roughly in the order of the magnitude.

4 MEG Analysis

To concretize the scenarios where searching for mutual dependencies is likely to
be useful, we apply the model to analysis of brain response to natural stimulus.
For natural stimuli the traditional approaches are not sufficient due to lack of
repetition and control in the stimulus, and more data-driven approaches are
needed. The primary purpose of the experiment is to illustrate potential uses for
the model, and more detailed neuroscientific analysis is omitted.
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Fig. 3. Left: Marginal likelihood as a function of the number of clusters reveals that the

data has three clusters. The likelihood remains constant for larger number of potential

clusters because the model discovers only three clusters, leaving the rest empty. Right:
Hinton plot of the projection matrix W3

x of the three cluster model shows how the

model correctly captures the correlating dimensions. The ARD prior automatically

pushes the elements to zero for excess dimensions, keeping high values only for the five

true components.

In particular, we demonstrate how statistical dependencies between brain
activity measurements done with MEG and measurements of the autonomic
nervous system (ANS) can be used to create hypotheses on where to look for
emotional responses in MEG data. MEG measures the cortical brain activity
while emotional stimuli mainly cause response in the deeper regions, and hence
it is generally unknown to which degree emotional responses are visible in MEG
data (see [15] for a analysis of a simple controlled experiment). Since ANS mea-
surements are highly informative of emotional activity, correlations between the
two sources provide a link between MEG and the emotions.

In this paper we present the results from the point of view of further validating
the applicability of the model. In detail, we show how relaxing the stationarity
assumption of the signal by mixture modeling reveals stronger correlations be-
tween the signals, and how the mixture components found by the model are
interpretable and directly linked with the emotional stimuli labels not used in
learning the model. These results complement the artificial experiments and
show the model is directly applicable also for real scenarios, even for large sam-
ple sizes.

4.1 Data

We apply the model for joint analysis of brain oscillations and autonomic nervous
system (ANS) response to emotionally loaded auditory stimuli [18]. Emotional
sounds obtained from the International Affective Digitized Sounds (IADS-2) li-
brary with varying arousal and valence values were played while the brain activ-
ity of the test subjects was measured with MEG, and pupil diameter measured
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with iView XTM MEG eye tracker was used as an example signal for the ANS
activity. A total of 48 stimuli, each lasting 6 seconds, were played with 10 second
shade-in and shade-out periods.

We extract dependencies between a single MEG channel, chosen based on
preliminary analysis, and pupil diameter, as a demonstration of what the model
can achieve. The approach directly generalizes to more MEG channels and would
also be applicable to other measurements of ANS, such as galvanic skin response
or heart-rate variability, or combinations of those.

After basic signal pre-processing consisting of resampling, de-trending, filter-
ing and renormalisation, we apply a sliding rectangular window function to both
one-dimensional signals. The stimuli-evoked responses are time-localised in the
MEG signal, and the resulting window-based feature representation is a natural
choice for such short time analysis. In the context of the CCA-type models, this
representation encodes the time-amplitude information through the mean vector
and frequency-amplitude information in the CCA projections. In other words,
projecting the signal windows to the canonical scores corresponds to filtering.

The model hyperparameters are set in exactly the same way as for the ar-
tificial data except for the prior precisions which are smaller (with the order
of magnitude estimated from the empirical covariance matrices), because the
biomedical signals are known to be very noisy.

4.2 Results

Figure 4 (left) shows the marginal likelihood as a function of the number of
clusters, showing that the data strongly supports more than one cluster and
hence that the signal is clearly non-stationary. Solutions between two and five
clusters are all sensible, whereas using more than five clusters does not improve
the likelihood anymore. In fact, the excess clusters become empty during the
learning process, and hence play no role.

One of the main advantages of relaxing the stationarity assumption is that
the regions of the data space showing strong dependency can be separated from
the rest, to better capture the correlations. This should be manifested as some
clusters having high correlations, while some other clusters learn to model the less
dependent parts. We use this observation to construct a measure for comparing
our model with the alternative solution of first clustering the data in the joint
space and applying classical CCA for each of the clusters separately: For each
model complexity we measure the difference between the highest correlations
in the most and least dependent clusters. The comparison method also uses
variational inference for learning the clusters, and the result is then turned into a
hard clustering in order to compute the CCA. It hence follows the basic approach
of [7], but the clustering model is replaced with a better one to compensate for
the gain by our improved inference.

Figure 4 (right) shows how finding the clusters and the dependencies together
improves compared to the alternative. The joint clustering is not able to separate
the dependent parts from the independent ones, but instead merely divides the
data into clusters of roughly equal size having correlations relatively close to
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Fig. 4. Left: Marginal likelihood as a function of the number of clusters, showing how

the data only supports at most five clusters. The baseline (dashed line) corresponds

to the single-cluster solution, and the clear difference shows the improvement from

relaxing the stationarity assumption. Right: Illustration of how the proposed model

outperforms the alternative of first clustering the data and then applying classical CCA.

The curves measure the ability of the model to separate different kinds of dependencies

into different clusters, evaluated as the difference between the largest correlations in

the most/least dependent cluster in the model.

each other. Increasing the number of clusters helps, since small enough clusters
will start to capture the dependencies even when they were learned to model the
joint distribution, but even then the joint clusters cannot be directly interpreted
as capturing different kind of dependencies.

Next we take the three-cluster solution of our model for closer analysis in
order to demonstrate that the clusters are interpretable. We do not proceed to
analyze the projection vectors that would reveal the signal filters needed for
full neuroscientific analysis, but instead idenfity the clusters based on the mean
profiles of the pupil data (Figure 5; left) and show how the cluster identities are
linked with the emotional stimuli labels (Figure 5; right). The labels were not
used in learning the model, and hence this serves as an external validation. The
mean vectors reveal that the largest cluster corresponds to no activity, while the
other two clusters correspond to pupil dilation and contraction. The histogram
of the stimuli labels in each of the clusters shows that the two smaller clusters
are enriched with the positive and negative stimuli, respectively, proving that
the model has learned not only a link between MEG and ANS, but that the link
is indeed related to the underlying natural stimulus.

5 Discussion

Efficient and robust models for extracting statistical dependencies between mul-
tiple co-occurring data streams or signals are needed for exploratory analysis
of complicated natural phenomena such as brain activity or cellular functions.
We introduced a novel model that synthetises the latest advances in generative
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Fig. 5. Left: Mean of the pupil diameter in each of the clusters. Right: Distribution of

the stimuli labels in each of the clusters. The stimuli enumeration from 0 to 3 refers to
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respectively. Note how samples with positive stimulus labels are enriched in the first

cluster and samples with negative stimulus label in the second cluster.

dependency modeling to create a practically applicable tool for large-scale anal-
ysis. The robust mixture of canonical correlation analyzers combines the mixture
solution of [10] with the variational approximation of [16] and the robust CCA
extension of [2] into a single model. The model is directly applicable to data sets
of tens of thousands of observations, as demonstrated by the example applica-
tion on the MEG data, and includes automatic solutions for model complexity
selection. An open-source implementation of the model written in MATLAB is
available at http://www.cis.hut.fi/projects/mi/software/vbcca/.

Furthermore, we studied alternative variational approximations for robust t-
distribution models in general. Two different independence assumptions both
lead to tractable approximations that have been used by earlier models [5,8,12].
We showed that the difference in the modeling accuracy between the two ap-
proximations is negligible, concluding that future variational approximations
of scale-mixture models can choose either alternative based on the desired func-
tional form for the predictive distributions, not needing to consider the modeling
accuracy.
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Appendix: Variational EM-Update Equations

The factorization q(un|zn)q(tn|zn) results in the variational distributions of the
following form. The parameters of the approximation are implicitly defined as
the symbols for which the right hand sides are conditioned on:

q({Ψi}) =
M∏

k=1

W(Ψk
i |γ̃k

i , Φ̃
k
i ))

q({μi}) =
M∏

k=1

N (μk
i |μμk

i
,Σμk

i
)

q({Wi}) =
M∏

k=1

di∏
j=1

N (Wk
ij |μW k

ij
,ΣW k

ij
)

q({αi}) =
M∏

k=1

d∏
j=1

G(αk
ij |ak

ij , b
k
ij)

q(tn|znk = 1) = N (tn|μtnk
,Σ−1

tnk
)

q(un|znk = 1) = G(un|αqnk
, βqnk

)
q(zn) = Multinomial(zn|rn).

The update rules needed for learning the parameters of the approximation
are then given by the following formulas, where 〈A〉q(·) denotes the expectation
of A with respect to q(·). In addition, we denote the dimensionality of xin with
di and the latent space dimensionality with D:

μtnk
= Σtk

(
2∑

i=1

〈(Wk
i )�Ψk

i (xin − μik)〉q({μi})q({Ψi})q({Wi})

)

Σ−1
tnk

= 〈un〉q(un|znk=1)

(
2∑

i=1

〈(Wk
i )�Ψk

i W
k
i 〉q({Ψi})q({Wi}) + ID

)
= 〈un〉q(un|znk=1)Σtk

αqnk
=
νk +

∑2
i=1 di +D

2

βqnk
= νk/2 + 〈1

2
t�n tn〉q(tn|znk=1)

+
2∑

i=1

〈1
2
(xin − Wk

i tn − μk
i )�Ψk

i (xin − Wk
i tn − μk

i )〉q(∗)

where q(∗) = q(tn|znk = 1)q({μi})q({Ψi})q({Wi}))
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ln ρnk = lnπk −DKL(q(un|znk = 1)||p(un|znk = 1))
− 〈DKL(q(tn|znk = 1)||p(tn|znk = 1, un))〉q(un|znk=1)

+
2∑

i=1

〈ln p(xin|znk = 1, un, tn)〉q({μi})q({Ψi})q({Wi})q(un|znk=1)q(tn|znk=1)

rnk =
ρnk∑K

j=1 ρnk

γ̃i = γi +
N∑

n=1

q(znk)

(Φ̃k
i )−1 = (Φi)−1 +

N∑
n=1

q(znk)〈((xin − Wk
i tn − μk

i ) . . .

× (xin − Wk
i tn − μk

i )�un)〉q(un,tn|znk=1)q({Wi})q({μi})

Σ−1
μk

i

= βiI +
N∑

n=1

q(znk)〈unΨk
i 〉q(un|znk=1)q({Ψi})

μμk
i

= Σμk
i
(

N∑
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q(znk)〈unΨk
i (xin − Wk

i tn)〉q(un,tn|znk=1)q({Wi})q({Ψi}))

Σ−1
W k

ij

= 〈diag(αk
i )〉q({αi}) +

N∑
n=1

q(znk)〈untnt�n (Ψk
i )(j,j)〉q(un,tn|znk=1)q({Ψi})

μW k
ij

= ΣW k
ij

(
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q(znk)〈tn(Ψk
i )(j,:)un(xin − μk
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di∑
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q(znk)〈untnt�n (Ψk
i )(j,l)Wk
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ak
ij = ai + di/2

bkij = bi + 〈||Wk
i(:,j)

||2〉q({Wi}))/2
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Abstract. In this paper we discuss the problem of extracting and

evaluating associations between drugs and adverse effects in pharma-

covigilance data. Approaches proposed by the medical informatics com-

munity for mining one drug - one effect pairs perform an exhaustive

search strategy that precludes from mining high-order associations. Some

specificities of pharmacovigilance data prevent from applying pattern

mining approaches proposed by the data mining community for simi-

lar problems dealing with epidemiological studies. We argue that Formal

Concept Analysis (FCA) and concept lattices constitute a suitable frame-

work for both identifying relevant associations, and assisting experts in

their evaluation task. Demographic attributes are handled so that the

disproportionality of an association is computed w.r.t. the relevant pop-

ulation stratum to prevent confounding. We put the focus on the under-

standability of the results and provide evaluation facilities for experts. A

real case study on a subset of the French spontaneous reporting system

shows that the method identifies known adverse drug reactions and some

unknown associations that has to be further investigated.

1 Introduction

Pharmacovigilance is the process of monitoring the safety of post-marketed
drugs. The pharmacovigilance process starts with collecting spontaneous case
reports : when suspecting an adverse drug reaction, health care practitioners
send a case report to a spontaneous reporting system (SRS), mentioning the
observed adverse effects, the drugs taken, and demographic data about the pa-
tient. These data are exploited by pharmacovigilance experts to detect signals
of unexpected adverse drug reactions that require further clinical investigation.
The size of these databases preclude their manual exploration: in 2008 more than
20,000 new cases were added to the French pharmacovigilance system while the
WHO database contains more than 3 millions of reports.

The medical informatics community proposed some approaches that extract
a set of potential signals for experts, i.e. a set of pairs (d, e) showing an un-
expected correlation between an observed adverse effect e and the prescription
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of a marketed drug d [1,2]. Disproportionality measures have been introduced
to quantify this notion of unexpectedness [3,4]. However, the exhaustive search
strategy performed by these approaches precludes from mining high-order asso-
ciations between sets of drugs and adverse effects and from efficiently applying
stratification on demographic attributes to prevent confounding.

In the meantime, the data mining community introduced statistical measures
from epidemiology into the itemset and rule mining problems [5,6]. Considering
exposures as items and a given outcome as a class label, [7,8] proposed efficient
approaches that extract risk patterns (or risk itemsets) correlated with the given
outcome. The relevance of a risk pattern is measured by statistical measures such
as relative risk. Efficient pruning strategies have been proposed to reduce the
search space and to provide concise representations of risk patterns. In particular,
[9] considered optimal risk patterns where a risk pattern is said optimal if its
relative risk is greater than the relative risk of all its subpatterns. This allows
to reduce the number of extracted itemsets by discarding factors that do not
increase the strength of shorter risk patterns.

However, some specificities of pharmacovigilance databases compared to epi-
demiological studies prevent from efficiently applying the above approaches. In
contrary to epidemiological studies, pharmacovigilance databases are not de-
signed to monitor one specific exposure to a drug or one specific outcome (ad-
verse effect). Moreover, the database only contains situations ”when things went
wrong”, leading to many potential biases that experts should take into account.
In particular, demographic features may act as confounders and lead to extract
spurious potential signals. Recent studies have shown that each demographic
subpopulation should be separetely investigated by performing stratification [10].
This paper deals with the following issues that are currently not addressed by
available tools from the medical informatics community :

1. Dealing with demographic factors. Stratification is not performed on
demographic factors such as age and gender because exhaustively generating
measures on all strata has a prohibitive cost. The aim at dealing with demo-
graphic factors is twofold. Firstly, it provides insights into the distribution
by demographic factors for a given pair (d, e) and enables a comparative
study. Secondly, demographic factors are used to guide further investigation
such as clinical trials, especially in patients selection.

2. Handling complex associations. A signal of the form (d1, e) can be re-
lated with more complex associations involving several drugs and several
adverse effects. For example, if (d1d2, e) is recognised as a potential drug
interactions, experts should be able to compare the respective strengths of
(d1d2, e), (d1, e), and (d2, e).

3. Providing a complete information. Since pharmacovigilance data con-
tain many sources of bias, a potential signal (d, e) should be presented to the
experts only if there is no hidden additional factor shared by the correspond-
ing group of patients that took d and suffered from e. For instance if this
subgroup only contains men, (d, e,M), i.e. (d, e) on the male subpopulation,
should be rather considered. Therefore, our aim is not to find the shortest
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itemsets with the highest disproportionality, but to provide experts with po-
tential associations (D,E,X) where the itemset DEX is the most complete
description of the group of patients on which the potential association is
observed.

In this paper, we propose a signal detection method based on Formal Concept
Analysis that provides answers to these three points. Section 2 presents the
issues concerning signal detection and introduces two constraints that define po-
tential associations. Section 3 describes our method based on a concept lattice
for identifying potential associations. Section 4 presents how the concept lattice
provides features that help experts in evaluating potential interactions. An ex-
periment on real data is analysed. Section 5 concludes the paper with a summary
of contributions and future work.

2 Problem Setting

Meyboom et al. [11] gives a comprehensive definition of signal detection pro-
cess as being ”A set of data constituting a hypothesis that is relevant to the
rational and safe use of a medicine. Such data are usually clinical, pharmacolog-
ical, pathological or epidemiological in nature. A signal consists of a hypothesis
together with data and arguments.” A potential signal is then an hypothesis
suggested by an automated signal detection system that has to be evaluated by
an expert. More precisely, a signal consists in (i) a pair (d, e) where d is sus-
pected to be the cause of e (hypothesis), (ii) a set of reports (data), and (iii)
disproportionality measures (arguments).

Only a few studies extended this definition to potential associations, i.e.
higher-order hypothesis (D,E) where D and E are sets, have been published
on higher-order associations, mainly about drug-drug interactions [12].

The aim of signal detection methods is to identify, among all pairs (d, e),
those that occur more than expected when assuming the independance between
d and e. However, although the number of reports for (d, e) is known in the
database, the number of patients exposed to the drug d in the whole population
is not, nor the number of patients suffering from e. Thus, the expected number
of reports can not be reliably computed [13]. A solution consists in estimating
the expected number of reports for (d, e) by considering the number of reports
concerning other drugs and other adverse effects in the database. Therefore,
contingency tables are central data structures. Table 1 depicts the contingency
table for a pair (d, e). Each cell contains the number of reports corresponding
to a given combination in the database: n11 is the number of reports containing
both d and e, i.e. the observed number of reports, n10 is the number of reports
containing d but not e, and so on. N is the total number of reports. Several
measures have been introduced to capture to what extent a pair is reported
more than expected. The most widely used is the Proportional Reporting Ratio
(PRR) [3], defined as

PRR(d, e) =
P (e|d)
P (e|d) =

n11
n11+n10

n01
n01+n00
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The pair (d, e) is considered to be a potential signal if PRR ≥ 2 and χ2 ≥ 4
and n11 ≥ 3 [3,1]. This criterion is widely used, notably by the British Medicines
and Healthcare products Regulatory Agency (MHRA). Intuitively, the first con-
dition means that there must be twice as much probabilities to suffer from e while
taking d, rather than while not taking d. The second one ensures that d and e
are not independant. The third condition tells that there must be at least three
reports containing d and e in the database. Other disproportionality measures
such as the Reporting Odds Ratio (ROR) [4] are also used. More sophisticated
methods implement disproportionality measures in a Bayesian framework [14].

Table 1. Contingency table for a

signal (d, e)

e e

d n11 n10 n11 + n10

d n01 n00 n01 + n00

n11 + n01 n10 + n00 N

Table 2. Contingency table on a

subpopulation

eM eM

dM n11 n10 n11 + n10

dM n01 n00 n01 + n00

n11 + n01 n10 + n00 supp(M)

Demographic factors such as gender and age may help in identifying vulnerable
subpopulations. Indeed, drugs may be administered differentially according to
age (e.g. vaccines), gender, or both of them (e.g. contraceptive pills), and some
adverse effects may only concern a specific subpopulation (e.g. sudden infant
death syndrome). Therefore, disproportionality should be computed on groups
of patients that belong to the same subpopulation. This stratification process
leads to compute a PRRstrat value on each subpopulation, called stratum, for a
given pair (d, e). For instance, the PRRstrat of (d, e) on the male subpopulation
is PRRstrat(d, e,M) = P (e|dM)

P (e|dM)
computed from a contingency table where each

cell is restricted to the male subpopulation (see Table 2 where supp(M) is the
number of male patients). Similarly, χ2

strat(d, e,M) denotes the χ2 value com-
puted from the restricted contingency table. Experts compare PRRstrat values
between strata to evaluate if the strength of the association between d and e
depends on a demographic factor. For instance, if (d, e) has the same PRRstrat

value on both male and female strata, gender is not an increasing factor.
Stratification also allows to detect situations where demographic factors act as

confounders [10]. Unbalanced subpopulations may lead to situations where
PRRstrat(d, e,M) andPRRstrat(d, e, F ) are equals while PRRstrat(d, e, ∅) (w.r.t.
the whole population) has a different value. In such case, PRRstrat(d, e, ∅) is
not reliable and is said to be counfounded by gender. Therefore both crude
PRRstrat(d, e, ∅) and PRRstrat(d, e, xi) on strata xi are relevant for experts to
evaluate the strength and the reliability of a signal (d, e).

The three initial issues mentioned in introduction can be refined in extracting
potential associations (D,E,X) such that:

1. the disproportionality of (D,E,X) is computed w.r.t. the subpopulation X ,
following the stratification strategy;
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2. potential associations are presented to the experts in such a way that com-
parisons between an association (d1, e,M) and its related associations (e.g.
(d1d2, e,M), (d1, e, ∅)) is straightforward;

3. considering a potential association (D,E,X), the corresponding group of
patients do not share any additional attribute than those in DEX .

3 A FCA-Based Signal Detection Method

Let D be a set of drugs, E be a set of adverse effects and X a set of binarized
demographic attributes. We look for potential associations (D,E,X), (D ⊆ D,
E ⊆ E , X ⊆ X , D �= ∅, E �= ∅) that satisfy two types of constraints:

– a closure constraint: stating that patients that cover the itemset D∪E ∪X ,
noted DEX , do not share any additional attribute,

– a strength constraint: stating that supp(DEX) ≥ 3, PRRstrat(D,E,X) ≥ 2
and χ2

strat(D,E,X) ≥ 4.

The closure constraint clearly says that DEX must be a closed itemset. Thus,
our search space for potential associations consists of closed itemsets that contain
at least one element of D and one element of E . In the following we present basics
on Formal Concept Analysis and concept lattices. We later show that the concept
lattice is a suitable structure for extracting potential associations, in the sense
that it covers our search space, and that it provides experts with efficient ways
of comparing related associations.

3.1 Basics on Formal Concept Analysis

Considering a binary relation between a set of objects O and a set of binary
attributes A, FCA extracts a set of pairs (O,A) with O ⊆ O, A ⊆ A, called
formal concepts, such that each object in O owns all attributes in A and vice-
versa. Formal concepts are partially ordered w.r.t. the inclusion of O and A, to
form a lattice structure called concept lattice. In that way, the concept lattice
can be seen as a conceptualization of the binary relation.

In the following, we present formal definitions from [15]. A formal context is
a triple K = (O,A, I) where O is a set of objects, A a set of attributes, and
I ⊆ O ×A a binary relation such that oIa if the object o owns the attribute a.
Figure 1 shows a formal context K with O = {o1 . . . o7} and A = {d1 . . . d3} ∪
{e1, e2} ∪ {M,F}.

Two derivation operators, both denoted by (.)′, link objects and attributes.
Considering a set of objects O ⊆ O, O′ = {a ∈ A|oIa}, i.e. O′ is the set of
attributes shared by all objects in O. Dually, A′ = {o ∈ O|oIa} is the set of
objects that own all attributes in A. |A′| is called the support of A, noted σ(A).
For instance, {d1, d2}′ = {o3, o4} and {o3, o4}′ = {d1, d2, e1,M}.

Two compound operators, both denoted by (.)′′, composed of the two previous
derivation operators, are closure operators on 2O and 2A. Therefore O′′ is the
maximal set of objects that share the same attributes than the objects in O.
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Dually, A′′ is the maximal set of attributes that are owned by the objects that
share attributes in A. A set of attribute A is said to be closed if A = A′′. The
set of sets B such that B′′ = A forms the equivalence class of A. All sets in the
equivalence class of A have the same support σ(A). For instance, {d1, d2} is not
closed since {d1, d2}′′ = {o3, o4}′ = {d1, d2, e1,M}, while {o3, o4} is closed since
{o3, o4}′′ = {d1, d2, e1,M}′ = {o3, o4}.

A formal concept is a pair (O,A) such that O = O′′ and A = O′. Each
object in O owns all attributes in A and vice-versa. Both O and A are closed
sets, which means that no object (resp. attribute) can be added to O (resp. A)
without changing A (resp. O). O (resp. A) is called the extent noted Ext(O,A)
(resp. the intent noted Int(O,A)) of the concept. The set of all formal concepts
of the formal context K is denoted B(K). For instance, ({o3, o4}, {d1, d2, e1,M})
is a formal concept.

Formal concepts are partially ordered w.r.t. to the inclusion of their extents.
Considering two concepts (O1, A1) and (O2, A2), (O1, A1) ≤ (O2, A2) iff O1 ⊆ O2

(which is equivalent to A1 ⊇ A2). The set of all formal concepts ordered in this
way is denoted by B(K) and is called the concept lattice of the formal context K.
The maximal concept (O,O′) is called the top concept, and the minimal concept
(A′,A) is called the bottom concept.

The concept lattice B(K), built from K is shown in Figure 1. Each box rep-
resents a formal concept with its intent in the upper part, and its extent in its
lower part.

Considering an attribute a, its attribute concept, denoted μ(a), is the unique
concept (a′′, a′), i.e. the highest concept that contains a in its intent on Figure 1.
For instance, μ(e2) = ({o1, o7}, {e2}).

In the worst case, the number of concepts of K = (O,A, I) is 2min(|O|,|A|). This
occurs when each subset of O or A is closed, which is improbable in practice.

3.2 Our Approach

Our aim is to extract potential associations that satisfy a closure constraint and
a strength constraint. We showed that only closed itemsets can satisfy these con-
straints. Moreover our aim is to provide an understandable representation of re-
sults. As said before, interpretation is a difficult task for experts since pharma-
covigilance data may contain many biases. Since the content of the database is not
the result of a sampling method, spurious potential associations may be extracted.
Disproportionality measures can not make the difference between a spurious dis-
proportion due to a selection bias and a real disproportion due to an adverse effect
reaction. Only experts can make this difference w.r.t. the content of the database
and their domain knowledge. Therefore, in order to evaluate a potential associa-
tion (D,E,X), experts need more information than disproportionality measures.
They need to put back the association in its context of extraction, i.e. in the por-
tion of the database where the disproportionality occurs.

The concept lattice is then a suitable structure for signal detection. It is built
from the context (O,A, I), where O is the set of reports, and A = D ∪ E ∪ X
is the set of attributes. Since concept intents are closed itemsets, the search
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Fig. 1. A formal context and its associated concept lattice

Fig. 2. An interaction example containing noise

space for potential associations is the set of concepts. Moreover, considering an
association (d1d2, e1,M), the partial order between concepts allows to isolate
relevant information for interpretation that will be presented to experts: more
specific strata among descendants of the concept with intent {d1, d2, e,M}, more
general strata among ascendants for instance. But also to compare strengths
of related associations: more specific associations (e.g. (d1d2, e1e2,M)) will be
found among descendants and more general among ascendants.



Adverse Drug Reaction Mining in Pharmacovigilance Data Using FCA 393

Thus, our algorithm for extracting potential associations is straightforward.
Concepts whose intent contains at least one drug and one adverse effect, and
whose extent contains at least three reports are considered as candidate associ-
ations. Their contingency table is computed w.r.t. the demographic attributes
in intent. If the MHRA criterion is satisfied, the intent is added to the set of
potential associations.

Data: a concept lattice L
Result: a set of potential associations P
foreach concept c ∈ L do

if Int(c) contains at least one element of D and one element of E and
|Ext(c)| ≥ 3 then

compute the contingency table for Int(c)
compute PRRstrat and χ2

strat values from the contingency table

if PRRstrat ≥ 2 and χ2
strat ≥ 4 then

add Int(c) to the set of potential associations P
end

end

end
Algorithm for signal detection

Therefore, the number of candidate associations is bounded by 2min |O|,|A|,
which is the number of formal concepts in the worst case. In practice, the num-
ber of reports is larger than the number of attributes, and all subsets of A are
not closed.

Computing contingency tables. Contingency tables are built from the lat-
tice, in order to compute PRRstrat and χ2

strat values.
Since each candidate association (D,E,X) is a closed itemset, there exists

a unique formal concept cDEX with Int(cDEX) = D ∪ E ∪ X . We show in the
following that the contingency table of any association can be computed knowing
the support of cDEX and the extent of the attribute-concepts μ(a), a ∈ DEX .

In the general case of an association (D,E,X), The cell values of its contin-
gency table restricted to the subpopulation X are computed as follows.

n11 = σ(DEX) = |
⋂

a∈DEX

Ext(μ(a))| = |Ext(cDEX)|

n10 = σ(DEX) = σ(DX) − σ(DEX) = |
⋂

a∈DX

Ext(μ(a))| − n11

n01 = σ(DEX) = σ(EX) − σ(DEX) = |
⋂

a∈EX

Ext(μ(a))| − n11

n00 = σ(D EX) = |
⋂

a∈X

Ext(μ(a))| − (n11 + n10 + n01)



394 J. Villerd, Y. Toussaint, and A. Lillo-Le Louët

Insights for noise detection. The concept lattice provides an additional mea-
sure that helps in evaluating the reliability of a potential association. The stabil-
ity index of a formal concept [16] quantifies the ability of the concept to remain
existent after deletion of objects in its extent. In other words, the stability index
of a concept c is low if Int(c) becomes non-closed after the removal of a few
objects from Ext(c). Then, an unstable concept c correspond to a barely closed
itemset Int(c). Therefore, stability can be presented to experts as an additional
quality measure for potential association. A potential association (D,E,X) with
a low stability index barely satisfies the closure constraint and should be con-
sidered with care by experts.

Moreover, stability can provide insights for detecting noisy reports. We illus-
trate this aspect on a real example. Trimethoprim (d1) and sulfamethoxazole
(d2) come together in the dosage form of marketed drugs, thus a unique concept
μ(d1) = μ(d2) should exist in the lattice. It is not the case (see Figure 2) since
μ(d2) ≤ μ(d1) and σ(μ(d1)) = 68 while σ(μ(d2)) = 67. This means that, among
all patients that took d1, only one did not take d2, which probably corresponds
to a badly filled report. The stability index can capture such a situation. Here,
μ(d1) has a low stability since the removal of the noisy report will lead d1 to be-
come non-closed with d′′1 = {d1, d2} and then μ(d1) will become μ(d1) = μ(d2).
Thus, a low stability index for a given concept should draw experts’ attention
to the potentially noisy reports contained in its extent.

3.3 Related Work

Several works focused on finding risk patterns in epidemiological studies. Con-
sidering a set of patients described by a set of nominal attributes, and a target
outcome e that partitions patients into two classes (presence/absence), a risk
pattern is a set of attribute-value pairs D such that the pattern is locally fre-
quent (support(De) ≥ min sup) and its relative risk is higher than a given
threshold. Relative risk RR(D, e) = P (e|D)

P (e|D)
is a widely used measure in epidemi-

ological studies. Note that PRR and RR formula are identical when ignoring
demographic factors. [9] proposed algorithms for efficiently mining risk patterns.
A risk pattern is said optimal if its relative risk is greater than the relative risk
of all its subpatterns. This allows to reduce the number of extracted patterns by
discarding factors that do not increase the strength of more general risk patterns.

Although PRR and RR formula are identical for a given outcome e and a
set of attributes D, this approach does not fit well our requirement for pharma-
covigilance.

First there is no predefined outcome in pharmacovigilance data. Each combi-
nation of adverse effects may be considered as an outcome. Applying the pre-
cited approach would consist in generating the set of optimal risk patterns for
each combination of adverse effects. This also prevents from applying other ap-
proaches such as subgroup discovery [17] and contrast set mining [18].

Secondly, in [9] demographic attributes play the same role as drugs in conti-
gency tables. This means that the PRR of the pattern {d,M} is computed as
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PRR(d, e,M) = P (e|d,M)

P (e|d,M)
. In order to be consistent with the stratification recom-

mendation about demographic factors, the PRR of {d,M} should be computed
w.r.t. the male stratum. It should compare men that took d and suffered from e

with men that did not take d and suffered from e: PRRstrat(d, e,M) = P (e|d,M)

P (e|d,M)
.

Thirdly, as defined in [9], risk patterns may not be closed itemsets and there-
fore may not satisfy our closure constraint.

Suppose that d1d2e is a closed itemset and that the closure of d1 is d′′1 =
d1d2, then PRR(d1, e, ∅) = PRR(d1d2, e, ∅) as well as PRRstrat(d1, e, ∅) =
PRRstrat(d1d2, e, ∅). The risk pattern d1d2 is not optimal since its PRR value
is not higher than its subpattern d1 and is not retrieved, while following our
constraints d1d2 has to be retrieved and not d1. Moreover, the fact that risk pat-
terns are extracted w.r.t. a given outcome would lead to generate risk patterns
for e1 and then risk patterns for e2 without paying attention to situations where
e′′1 = e2. In this case, risk patterns w.r.t. e1 do not satisfy our closure constraint
since all patients that suffer from e1 also suffer from e2.

Moreover, considering non-closed itemsets prevents from computing PRRstrat

in an accurate way. Consider the group of patients that took a drug d. Suppose
that all patients that took d are men, i.e. the closure of {d} is {d,M}. Then
PRRstrat(d, e, ∅) = P (e|d,∅)

P (e|d,∅) = P (e|d,M)

P (e|d,∅) . The numerator group of patients actu-
ally belongs to a more specific stratum (men) than the denominator group (men
and women). PRRstrat(d, e, ∅) can not be reliably computed w.r.t. the available
data since only men took d. In this case, associations involving d are only reliable
w.r.t. the male subpopulation. No reliable hypothesis can be made about d and
e on the whole population since there is no female subpopulation that would
allow to evaluate if (d, e) depends on gender or not.

Since signal detection aims at providing experts with hypothesis for further in-
vestigation, we claim that the reliability of an hypothesis is at least as important
as its statistical strength. An hypothesis (D,E,X) is reliable if the correspond-
ing set of patients do not share an additional attribute that may delude experts,
i.e. if DEX is a closed itemset. This is true for demographic attribute as shown
before but also for drugs and adverse effects.

4 Evaluation Facilities and Experimentation

This section shows how experts get a contextualized association using our ap-
proach. In addition to disproportionality measures, insights are given to help
them in deciding whether a signal or an interaction should be further investi-
gated or not.

4.1 Visualization and Navigation

The core idea is to use the concept lattice as a synthetic representation of the
database. From the list of potential association, experts access to a detailed
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Fig. 3. Subpart of the lattice illustrating a potential interaction

Fig. 4. Comparison of the different strata of a potential signal

view that shows a subpart of the concept lattice, revealing additional information
compared to statistical measures and helping experts in their interpretation and
evaluation task.

Figure 3 shows the user interface illustrating a potential interaction (d1d2, e,X)
where d1 is amoxicillin, d2 is furosemide, e is diarrhea and X is 18 60,
meaning age between 18 and 60.

A subpart of the lattice is shown, which contains the concept cd1d2eX , corre-
sponding to the interaction, at the bottom, the attribute-concepts μ(d1), μ(d2),
μ(e) at the top, and all concepts on the paths from cd1d2eX to the attribute-
concepts. Then the graph shows concepts that are more general than cd1d2eX .

Concepts are labeled with their intent, support and stability. Concepts that
own at least one drug and one adverse effect are also labelled with PRRstrat and
χ2

strat values. Through this graph, experts can compare the PRRstrat values of
the interaction (d1d2, e,X) with those of the signals (d1, e,X) and (d1, e, ∅),
and observe that there are no concepts representing the signals (d2, e,X) and
(d2, e, ∅). This gives the information that no patient took furosemide and suf-
fered from diarrhea without amoxicillin. Concepts that do not correspond
to associations are also relevant. For instance, experts can observe that among
the 24 patients that suffered from diarrhea, 10 took amoxicillin and state
whether this ratio is realistic or is due to a selection bias.
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Another graph (cf. Figure 4) shows a given association as root and those of
its subconcepts that correspond to its demographic strata with a least 3 reports.
Experts can compare their respective PRRstrat values and observe that, in this
example, age distribution is different in male and female strata.

4.2 Experimentation

We applied our method on a subset of the French national SRS database. This
subset contains 3249 cases, 976 drugs, 573 adverse effects. Two demographic
attributes, gender and age are binarized into 6 binary attributes (2 for gender and
4 for age). The resulting lattice contains 13178 concepts, among which 6788 with
support ≥ 3. Since only signals (one drug, one adverse effects), and interactions
(two drugs, one adverse effect) are currently considered by pharmacovigilance
experts, we only showed potential signals and interactions to experts. The 2812
candidate signals led to 786 potential signals and the 836 candidate interactions
to 183 potential interactions.

Review of potential signals. Potential signals were reviewed by an expert
who classified them into 5 categories (see Table 3). Categories (1),(2) contain
true positives, (3),(4) false positives and (5) unknown potential signals. 27 signals
were classified as unknown, i.e. not reported in the literature, but interesting
enough for further investigation by experts.

True positives are consistent with results of previous studies [19] and no known
true-positive is missing. In the majority of cases, the demographic attributes
associated to the couple drug/effect constitute a known risk factor or probable
risk factor. For example, cases of Pulmonary Hypertension associated with the
use of appetite suppressants amphetamine-like were observed in women, between
the ages of 18 and 60.

False positives (contained in categories (3) and (4)) are common in signal de-
tection and some of them are well-known. The signal (hydrochlorothiazide,
cough) is detected because these drug and adverse effects often appear together.
However in these cases, cough is actually caused by ACE inhibitors taken con-
comitantly with hydrochlorothiazide. Since there are several ACE inhibitors
di, each association (di,cough) appears with a lower support than the association
(hydrochlorothiazide, cough), which may delude experts. A solution would be
to introduce drug therapeutic families, such as ACE, as attributes, with (o, ACE)
∈ I for each case o containing an ACE inhibitor. Then signals of the form (ACE,
cough) would be detected, where ACE is a drug family, even if each signal (d, e)
where d is an ACE inhibitor is too rare to be detected. Current improvements
of our method aim at solving this problem.

Review of potential interactions. The evaluation of interactions is more dif-
ficult since it involves complex pharmacokinetics aspects. Moreover there is no
consensus on whether (d1d2, e,X) should be considered as an interaction when
both d1 and d2 are known to be the cause of e. Thus, we are not able to separate
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Table 3. Potential signals

category count

1. known (in reference documents) 720 (91.6%)
true positives

2. known (in a similar form) 24 (3.1%)

3. the effect is the origin of the medication 3 (0.4%)
false positives

4. due to concomitant drug 11 (1.4%)

5. unknown potential signal 28 (3.5%) further investigations needed

Table 4. Potential interactions

category count

either d1 or d2 is a known cause of e 64(35.0%)

both d1 or d2 are known causes of e 66(36.0%)

d1 and d2 in the same dosage form 34(18.6%)

neither d1 or d2 are known causes 19(10.4%)

true and false positives. Experts classified the 183 potential interactions into 4
categories (see Table 4). The last category corresponds to cases where further
investigations are needed.

We noted that, in some cases, the PRRstrat value of an interaction (d1d2, e,X)
where only d1 is a known cause of e was greater than PRRstrat(d1, e,X). In such
cases, it is not clear if the focus should be put on (d1d2, e,X) or on (d1, e,X).
To our knowledge, there has been no pharmacovigilance study on defining pref-
erences between an interaction (d1d2, e,X) and a signal (d1, e,X) w.r.t. PRR
value. Therefore, we can not discard (d1d2, e,X) when PRRstrat(d1d2, e,X) <
PRRstrat(d1, e,X). This prevents from using the pruning strategy of the optimal
risk patterns approach [9], that would discard (d1d2, e,X).

Detection of noisy reports. In a previous section, we showed that the stability
index of a concept may be a clue for noisy reports detection. However, we faced
the difficulty of defining a threshold on stability that defines unstable concepts.
Frequent unstable concepts are interesting. They can be seen as concepts that
gather a high number reports, but that actually exist because of only a few of
them, which may be noisy reports. Frequent unstable concepts should be found in
the upper left hand corner of the Figure 5. We empirically decided to investigate
the 20 concepts with a minimum support of 20 reports and a stability index
below 0.5. All of these concepts were in the same configuration than in Figure 2,
i.e. among the n reports gathered by the unstable concept, n − 1 also share
another attribute. For instance, among the 20 reports gathered by the unstable
concept with intent {tacrine, M}, 19 also own the attribute age > 60. Since
tacrine is used in the treatment of Alzheimer’s disease, the report that does not
own age > 60 is suspect and should be verified. The expert considered that the
nth report was actually suspect in 19 of the 20 unstable concepts under review.
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Fig. 5. Stability and support

5 Conclusion

In this paper, we presented an automated signal detection method, based on
concept lattices, that provides a framework for extracting potential associations
and performing qualitative analysis of the extracted associations.

We claim that only associations that are closed itemsets should be presented
to experts, since non-closed associations do not fully describe the set of factors
shared by a subgroup of patients. Demographic attributes are taken into account
in the PRR computation so that the disproportionality of an association is
computed w.r.t. the subpopulation in which the association is observed. The
closure constraint allows to identify the accurate subpopulations and prevents
from exhaustively evaluating each population stratum.

Our method is thought for extracting complex associations, i.e. extracting
associations where there are one or more drugs, one or more adverse effects and
several demographic factors. Nowadays, if signals have been quite well studied,
little work has been done on interactions, and practically none on syndromes (1
drug, several effects) or protocoles (several drugs, several effects) which justifies
the facts that our evaluation has only been performed on signal and interactions.

When evaluating extracted associations, experts have access to subparts of
the lattice for visualizing related associations, for example, an interaction is
displayed with its related signals as well as its different ”strengths” on subpop-
ulations. This visualization is of particular interest when both a signal and an
interaction pass the MHRA criterion. Only experts – no automated process –
are able to decide which of signals and interactions should be validated, mostly
because of pharmacokinetics complexity. The interface is designed to facilitate
a qualitative analysis by experts and guides exploration, interpretation and val-
idation of associations.
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Our approach is closely related to domain driven data mining [20]: start-
ing from a domain-specific problem, our goal is to discover actionable knowl-
edge to satisfy user needs. Here actionable knowledge consists of unexpected
associations that need further investigations. These actionable associations are
identified by experts among interesting associations that satisfy strength and
closure constraints. The interface supports experts in finding actionable associa-
tions among interesting ones. This approach could be used for other applications
where a synthetic graphical view is needed by experts to evaluate the actionabil-
ity of extracted patterns. Finally, we are currently investigating solutions that
include domain knowledge such as families of drugs and adverse effects.
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Abstract. Latent Dirichlet allocation is a fully generative statistical

language model that has been proven to be successful in capturing both

the content and the topics of a corpus of documents. Recently, it was even

shown that relations among documents such as hyper-links or citations

allow one to share information between documents and in turn to im-

prove topic generation. Although fully generative, in many situations we

are actually not interested in predicting relations among documents. In

this paper, we therefore present a Dirichlet-multinomial nonparametric

regression topic model that includes a Gaussian process prior on joint

document and topic distributions that is a function of document rela-

tions. On networks of scientific abstracts and of Wikipedia documents

we show that this approach meets or exceeds the performance of several

baseline topic models.

1 Introduction

One of the most fundamental problems in information retrieval is the extrac-
tion of meaningful, low-dimensional representations of data. In computer vi-
sion, where it is natural to represent images as vectors in a high-dimensional
space, they represent e.g. visual words and have been used for face and object
recognition or color classification. Social networks such as Flickr, Facebook and
Myspace, allow for a diverse range of interactions amongst their members, re-
sulting in temporal datasets relating users, media objects and actions. Here,
low-dimensional representations may be used to identify and summarize social
activities. If the data are words of documents, low-dimensional representations
yield topic models representing each document as a mixture of a small number
of topics and each word is attributable to one of the topics.

Topic models, originally explored by Deerwester et al. [9], Hofmann [13], Blei
et al. [5], Griffiths and Steyvers [11], Buntine and Jakulin [6], and many others,
have received a lot of attention due to their simplicity, usefulness in reducing the
dimensionality of the data, and ability to produce interpretable and semantically
coherent topics. They are typically fully generative, probabilistic models that
uncover the underlying semantic structure of a document collection based on
an hierarchical Bayesian analysis, see e.g. [3], and have been proven successful
in a number of applications such as analyzing emails [19], classifying natural
scenes [16], detecting topic evolutions of a document corpus [4,31], analyzing the
human semantic memory [30], and many more.

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part III, LNAI 6323, pp. 402–417, 2010.
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The starting point for our analysis here is an often perceived limitation of la-
tent Dirichlet allocation (LDA), which is one of the most popular and commonly
used topic models today [5]: it fails to make use of relations among documents.
Nowadays, however, networks of documents such as citation networks of scien-
tific papers, hyperlinked networks of web pages, and social networks of friends
are becoming pervasive in machine learning applications. Consider a collection
of hyperlinked webpages. LDA uses the word distribution within the body of
each page only to determine a per-document topic distribution. More precisely,
LDA models each document as a mixture over topics, where each vector of per-
document mixture proportions is assumed to have been drawn from a Dirichlet
distribution with the hyperparameters α shared among all documents. Web-
pages, however, do not exist in isolation: there are links connecting them. Two
pages having a common set of links are evidence for similarity between such
pages. For instance, if W1 and W2 both link to W3, this is commonly considered
to be evidence for W1 and W2 having similar topic distributions. In other words,
relational knowledge can further reveal additional correlations between variables
of interest such as topics. Therefore, it is not surprising that several fully gener-
ative relational topic models have been proposed recently, see e.g. [2,12,20,23,7],
that take correlations among inter-related documents into account. They have
been proven to be successful for modeling networks of documents and even for
predicting relations among documents. However, adding additional complexity
such as relations to a fully generative model generally results in a larger number
of variables to sample and in turn in a more complicated sampling distribution.
Thus, the flexibility of relational topic models comes at the cost of increasingly
intractable inference. If we are actually not interested in predicting relations,
this is an unnecessary complication.

Our main contribution is a novel relational topic model, called xLDA. At
the expense of not being able to predict relations among documents anymore,
we condition topic models on the metadata such as the relations among the
documents (citations, hyperlinks, and so on) as well as attributes describing each
document d (authors, year, venue, and so on) provided in the data. Specifically,
xLDA is a Dirichlet-multinomial (nonparametric) regression topic model that
includes a Gaussian process prior on joint document and topic distributions
that is a function of document attributes and relations. That is, given metadata
such as relations we generate a per-document αd, the (hyper-)parameters of
a Dirichlet distribution. Then, we model each document using LDA with the
generated αd. Intuitively, documents from the same authors, or published in
the same conference, or being related by citations are stronger correlated than
other documents. The more correlated two documents are, the more likely they
have similar topics. Because all the relational information is accounted for in the
document-specific Dirichlet hyperparameters αd, the sampling phase of xLDA
is no more complicated than a simple LDA sampler. In other words, we sacrifice
flexibility for a relatively simple inference. Moreover, we can extend the basic
xLDA model through topic meta-information that allows us to express or even to
learn conditional independencies that cannot be explained well by the document



404 M. Wahabzada, Z. Xu, and K. Kersting

meta-information only. On networks of scientific abstracts and of Wikipedia
documents we show that xLDA meets or exceeds the performance of several
baseline topic models.

We proceed as follows. After touching upon further related work, we will intro-
duce the xLDA model in Section 3. In Section 4, we then discuss its approximate
inference and learning methods. Before concluding, we present our experimental
evaluation.

2 Related Work

Network data is currently receiving a lot of attention. Several latent variable
models that decompose the network according to hidden patterns of connections
between its nodes have been proposed, see e.g. [33,15,1]. Indeed quite powerful,
these models mainly account for the structure of the network, essentially ignoring
the observed attributes of the nodes. Relational matrix factorization approaches
such as [28,17,14] are not tailored towards discovering topics.

Recently, several relational topic models have been proposed that also take the
observed attributes of nodes, i.e., documents into account [2,12,20,23,7]. They
are all fully generative models and due to the additional relations modeled have
a more complicated sampling distribution. If we are not interested in predicting
relations, this is an unnecessary complication and conditioning on the relations
is an attractive alternative.

The idea of conditioning topic models on metadata is not new. Several mod-
els have been proposed in which a hidden variable selects one of several topic
models conditioned on some metadata. For instance, Rosen-Zvi et al.’s author-
topic models [26] generates words by first selecting an author uniformly from an
observed author list and then selecting a topic from a distribution over topics
that is specific to that author. Mimno and McCallum [21] extend this author-
topic model to the author-persona topic model that associates multiple topical
mixtures with each individual author. McCallum et al. [18] employ the ”condi-
tioning” idea to model authors and recipients of email, and Dietz et al. [10] use
it for inferring the influence of individual references on citing papers. Recently,
Mimno and McCallum [22] introduced the Dirichlet-multinomial regression topic
model. It includes a log-linear prior on document-topic distributions that is a
function of observed features of the document, such as author, publication venue,
references, and dates. An investigation of this model was the seed that grew into
the current paper. It is important, however, to distinguish xLDA from Mimno
and McCallum’s model. Whereas Mimno and McCallum proposed to model re-
lational information such as citations as per-document attributes of a log-normal
prior with diagonal covariance, xLDA employs Silva et al.’s [27] directed mixed
graph Gaussian process framework to incorporate relational information into the
topic model. A directed mixed graph model propagates training data informa-
tion through other training points. Reconsider our webpage domain where each
page may have links to several other pages. A chain of intermediated pages be-
tween two pages W1 and W2 is likely to be more informative if we know the
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Relational Gaussian Process
per-document

metadata
relational 
metadata

latent 
metadata

LDA

Symbol Description

yd ∈ Y observed attribute vector of a

document d
rd ∈ R observed relation vector of a

document d
xk ∈ X latent metainformation vector

ηdk ∈ H noise-free topic k concentration

for document d
λ, λnoise hyperparameters of covariance

β prior belief on the distribution

over the vocabulary

αd prior belief on topic proportions,

αd = exp(ηd + εnoise) = exp(τd)

φk ∈ Φ preference of a topic k over

the vocabulary with
∑

n φk,n = 1

θd topic proportions of a document

Wd,n ∈ W n’th word in the document d
Zd,n ∈ Z topic assignment of a word Wd,n

D number of documents

K number of topics

Fig. 1. The xLDA topic model and the notation used in the paper. Unlike all previous

models, the hyperparameters α of the Dirichlet distribution over topics are a function

of observed document features Y , relations R, and hidden topic features X, and is

therefore specific to each distinct combination of document feature values and relations

among the documents.

α values of the pages in this chain. In contrast, a relational probabilistic model
such as a Markov logic network would — without additional modeling effort —
ignore all training pages in this chain besides the endpoints due to the Markov
assumption, see [27] for more details. In addition, most state-of-the art proba-
bilistic relational models focus on discrete quantities and not continuous ones
such as α.

3 Modeling the Influence of Document Relations with
Dirichlet-multinomial Regression

Nowadays, networks ofD many documents, such as citation networks of scientific
papers, hyperlinked networks of web pages, and social networks of friends, are
becoming pervasive in machine learning applications. For each document d, we
observe Nd words, each of which is an element in a V -term Vocabulary. To
capture the per-document meta-information, let yd be a vector containing F
many features that encode metadata values for the document d. For example, if
the observed features are indicators for the type of venue the paper was published
in, then yd would include a 1 in the positions for venue the document d has
published in, and a 0 otherwise. The network among the documents (citations,
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hyperlinks, friends relationships, and so on), form a graph and are captured by
the adjacency matrix R. For instance, if documents di cites dj , there is a 1 in
position Rij .

The topic model we propose, called xLDA, is a model of data composed of
documents, which are collections of words, and relations among them. It is graph-
ically depicted in Fig. 1 and consists essentially of two phases: (1) a relational
Gaussian process (GP) phase, and (2) a document-specific LDA phase. In the
relational GP phase, given the per-document metadata Y , the relations R among
the documents and some optional meta-information for topics X , we generate
the per-document αd Dirichlet hyperparameters for each document. To do so,
we use Silva et al.’s [27] directed mixed graph Gaussian process framework as
it propagates training αd through other training documents’ αd (as discussed
in the related work section). Then, in the LDA phase, we run standard LDA
using the generated αd for each document d. We assume that each latent αd,k

is a function value of document metadata yd, document relations rd and topic
metadata xk. The (optional) topic-metainformation xk allows one to accommo-
date for correlations not well explained by document metainformation only. All
the function values are drawn from a GP prior with mean zero and covariance
function c((yd, rd, xk), (yd′ , rd′ , xk′ )). Then, the topic proportion θd of document
d is a sample of Dir(αd). That is, we use a distinct Dirichlet distribution Dir(αd)
with hyperparameters αd as predicted by the Gaussian process. However, we
have to be a little bit more careful: we have to ensure that the αds are positive.
We do so by predicting a noisy τd ∈ τ , the logarithms τd = ηd + εnoise = log(αd)
of the concentration parameters αd.

The xLDA topic model integrates heterogeneous information, namely the per-
document metadata and the relations among documents, into a single proba-
bilistic framework. The dependencies from different sources are captured in a
natural and elegant way. Moreover, it can directly be used in combination with
various existing relational GPs to realize multiple relations, relation prediction
using fully generative relational models [8,32] — of course to the expense of a
more complicated GP inference step — or even transfer learning among topic
models [34].

Let us now discuss the prior distribution and how to generate words and
documents in more details.

Prior Distribution: For each document, we introduce a K-dimensional vec-
tor αd where each value αd,k denotes the preference of a document d on a
topic k. It is a function of the document’s metadata yd, its relations rd, and
the (optional) latent topic meta-information xk. Additionally, to meet the con-
straint on Dirichlet parameters, i.e. αd,k > 0, we assume αd,k = exp(τd,k), where
τd,k = f(yd, rd, xk) . Now, we assume that an infinite number of latent function
values {τ1,1, τ1,2, . . .} follows a GP prior with mean function m(yd, rd, xk) and
covariance function c((yd, rd, xk), (yd′ , rd′ , xk′ )) . Consequently, any finite set of
function values {τd,k : d = 1 . . .D; k = 1 . . .K} has a multivariate Gaussian
distribution with mean and covariance matrix defined in terms of the mean and
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covariance functions of the GP, see e.g. [25]. Without loss of generality, we assume
zero mean so that the GP is completely specified by the covariance function only.

In other words, to define the GP prior it is enough to specify the covariance
function c((yd, rd, xk), (yd′ , rd′ , xk′)). How does it look like in our case? The in-
put features of τd,k include document-oriented information, namely yd and rd,
and topic-oriented information, namely xk. Therefore, we decompose the overall
covariance as a product of two types of covariances, i.e., cd((yd, rd), (yd′ , rd′)) ×
cx(xk, xk′ ). Then, we notice that the document covariance component cd in-
volves per-document metadata and relational information. Unfortunately, it is
difficult — if not impossible — to represent both jointly using a single kernel
only. Consequently, we borrow the underly assumption in Silva et al.’s relational
GP model [27]: cd((yd, rd), (yd′ , rd′)) is further decomposed into a sum of two
kernels cy(yd, yd′)+cr(rd, rd′). Putting everything together, the covariance func-
tion of the GP prior is defined as [cy(yd, yd′) + cr(rd, rd′)] × cx(xk, xk′ ). The
decomposition of the covariance matrix is based on the direct sum and tensor
product of kernels [25].

For the per-document respectively per-topic covariance functions cy(yd, yd′)
respectively cx(xk, xk′), we can select any Mercer kernel. A typical choice is the
squared exponential covariance function with isotropic distance measure:

cy(yd, yd′) = κ2 exp(−ρ2

2

∑S

s
(yd,s − yd′,s)2), (1)

where κ and ρ are parameters of the covariance function, and yd,s denotes the
s-th dimension of the attribute vector yd.

For the relation-wise covariance function cr(rd, rd′), any graph kernel is a
natural candidate [29,35,27]. Here, we used the p-steps random walk kernel:

(1 − γ−1,)p =
[
(1 − γ−1)I + γ−1G−1/2WG−1/2

]p
(2)

where γ (with γ ≥ 2) and p are the two parameter of the graph kernel and
, = I − G−1/2WG−1/2. The matrix W denotes the adjacency matrix of a
weighted, undirected graph, i.e., Wi,j is taken to be the weight associated with
the edge between i and j.G is a diagonal matrix with entries gi,i =

∑
j wi,j . Here,

mutiple relations could be encoded by weighted sum of graph kernels, kernels
over weighted graphs (also to incorporate link counts) [24] or multi-relational
GP’s [32].

The overall covariance matrix Σ (a DK×DK matrix) computed with the co-
variance function c((yd, rd, xk), (yd′ , rd′ , xk′ )) can be represented as Σ = (ΣY +
ΣR) ⊗ΣT , where ⊗ denotes the Kronecker product between two matrices. The
matrix ΣY is a D × D matrix that represents the per-document metadata co-
variances between documents. It is computed using (1). The matrix ΣR is also a
D×D matrix that represents the relation-wise covariances between documents’
metadata. It is computed using (2). The sum ΣD = ΣY + ΣR represents the
document-oriented covariances. Finally, ΣT is a K ×K matrix that represents
the covariances between (optional/latent) topic metadata. Every element (k, k′)
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of ΣT is computed based on the latent attributes xk and xk′ of topics k and k′

using (1). Together, this leads to the following prior distribution:

P (τ |X ,R) = N (0, Σ) =
1

(2π)DK |Σ| 12 exp
(
−τTΣ−1τ

2

)
, (3)

where τ denotes the logarithmic level of the α = (α1,1 . . . αd,k . . . αD,K).

Generating Documents and Words: Given the prior N (0, Σ) and hyperpa-
rameters β, the generative process for documents and their words is as follows:

1. Draw τ ∼ N (0, Σ).
2. For each topic k, draw φk ∼ Dir(β).
3. For each document d,

(a) Draw θd ∼ Dir(αd) = Dir(exp(τd)) with τd ∈ τ .
(b) For each word n,

– Draw Zd,n ∼ Mult(θd).
– Draw Wd,n ∼ Mult(φZd,n

)

The model therefore includes the following fixed parameters: the hyperparame-
ters of the covariance matrix Σ; β, the Dirichlet prior on the topic-word distri-
butions; and K, the number of topics.

4 Inference and Learning

With the xLDA model defined, we now turn to approximate posterior infer-
ence and parameter estimation. The main insight for both is that knowing α
d-separates the relational Gaussian process phase and the LDA phase.

Inference: We predict α given the metadata and the relations and then run
any LDA sampler.

Learning: Given α, (1) the GP phase of xLDA is no more complicated than
a standard XGP, and (2) the sampling phase of xLDA is no more complicated
than a simple LDA sampler. Thus, we can train xLDA using a stochastic EM
sampling scheme. That is we alternate between sampling topic assignments from
the current prior distribution conditioned on the observed words, features and
relations, and numerically optimizing the parameters of the relational Gaus-
sian process given the topic assignments. For that we need the gradients of the
(log)likelihood for parts of the model that contain the GP prior respectively the
topics Z.

The likelihood can be found to be P (τ, z|GP ) = P (τ |GP )P (z|τ) with
τ = log(α) . Due to (3), the first term on the right-hand side is

P (τ |GP ) = N (0, Σ) =
1

(2π)DK |Σ| 12 exp
(
−τTΣ−1τ

2

)
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The second term can be written as (see [11] for details)

P (z|τ ) =

D∏
d

Γ (
∑K

k exp(τd,k))

Γ (
∑K

k exp(τd,k) + nd,k)

K∏
k

Γ (exp(τd,k) + nd,k)

Γ (exp(τd,k))

Consequently, the log likelihood is LL = logP (τ |GP ) + logP (z|τ) =

= −1
2
τTΣ−1τ − 1

2
log |Σ| − DK

2
log(2π)︸ ︷︷ ︸

=:�llgp

+
D∑
d

(
log

Γ (
∑K

k exp(τd,k))

Γ (
∑K

k exp(τd,k) + nd,k)
+

K∑
k

log
Γ (exp(τd,k) + nd,k)

Γ (exp(τd,k))

)
︸ ︷︷ ︸

=:�lld

The derivative of LL with respect to τ can be found to be:

∂LL

∂τ
=
∂,llgp
∂τ

+
∂,lld
∂τ

= −τTΣ−1 +
∂,lld

∂ exp(τ)
∗ ∂ exp(τ)

∂τ

= −τTΣ−1 +
∂,lld

∂ exp(τ)
∗ exp(τ).

With respect to each element τd,k ∈ τ , we can find (∂,lld)/(∂ exp(τd,k)) =

=
∂

∂ exp(τd,k)

D∑
d

(
log

Γ (
∑K

k exp(τd,k))

Γ (
∑K

k exp(τd,k) + nd,k)
+

K∑
k

log
Γ (exp(τd,k) + nd,k)

Γ (exp(τd,k))

)

= Ψ(

K∑
k

exp(τd,k)) − Ψ(

K∑
k

(exp(τd,k) + nd,k)) + Ψ(exp(τd,k) + nd,k) − Ψ(exp(τd,k))

where Ψ(·) is the logarithmic derivative of the Gamma function. This com-
pletes the partial derivative of LL w.r.t τd,k = log(αd,k). In other words, we can
numerically optimize the αd,k respectively τd,k values given topic assignments.

The partial derivatives of the GP with respect to (hyper)parameters are essen-
tially the same as for standard Gaussian processes; they only appear in ,llgp,
which is the standard data log-likelihood of GPs. Only due to the use of the Kro-
necker product, the derivatives look slightly different than the standard ones. Let
us exemplify this for the (optional/latent) topic metadata; the other ones can
be found in a similar fashion. We note that ∂LL

∂x = ∂�llgp
∂x + ∂�lld

∂x . First,

∂,llgp
∂x

= −1
2
τT ∂Σ

−1

∂x
τ − 1

2
tr(Σ−1 ∂Σ

∂x
)

=
1
2
τTΣ−1 ∂Σ

∂x
Σ−1τ − 1

2
tr(Σ−1 ∂Σ

∂x
)

=
1
2
τTΣ−1(ID ⊗ (

∂ΣT

∂x
Σ−1

T ))τ − D

2
tr(Σ−1

T

∂ΣT

∂x
)
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with Σ = ΣD ⊗ΣT where ⊗ denotes the Kronecker product. Then, we can find

∂,lld
∂x

=
∂,lld
∂ exp(τ)

∗ ∂ exp(τ)
∂τ︸ ︷︷ ︸

as above

∗∂τ
∂x

,

where we have ∂τ
∂x = ∂

∂xΣ
∗(Σ + λ2

noiseI)
−1τ =

= Σ∗ ∂Σ
−1

∂x
τ = −Σ∗Σ−1∂Σ

∂x
Σ−1τ = −I(ID ⊗ (

∂ΣT

∂x
Σ−1

T ))τ.

Σ∗ is the covariance of the training input. In our current setting, it coincides
with Σ. For sparse extensions, however, it might be different. Now, we have all
gradients together required to implement the stochastic EM approach.

5 Experimental Evaluation

Our intention here is to explore the relationship between the latent space com-
puted by xLDA and the underlying link structure. More precisely, we investigated
the following question:

(Q) Does the latent space computed by xLDA capture the underlying link struc-
ture better than LDA respectively xLDA without relational information?

To do so, we implemented LDA and xLDA in Python and C/C++. We used
a standard conjugate-gradient optimizer and a collapsed Gibbs sampling-based
LDA trainer. We also compared xLDA with Chang and Blei’s recent relational
topic model (RTM) [7]. All experiments ran on a standard Intel(R) Core(TM)2
Duo CPU with 3 GHz and 4GB main memory. All LDA and xLDA models were
initialized with Dirichlet hyperparameters set to 5. The parameters of the p-steps
graph kernel were set to γ = 2.0 and p = 3.0. (While we omit a full sensitivity
study here, we observed that the performance of the models was similar for
p = 1, 2, . . . , 8).

Description of the Datasets: For the experiments, we used two datasets: a
small dataset1 of Wikipedia web pages used by Gruber et al. [12] and the Cora
dataset2 (abstracts with citations) used by Chang and Blei [7].

The Wikipedia dataset is a collection of 105 web pages with in total 89349
words and 790 links between the pages. Gruber et al. downloaded the web pages
from Wikipedia by crawling within the Wikipedia domain, starting from the
NIPS Wikipedia page. The vocabulary consists of 2247 words. The Cora dataset
is a collection of 2410 abstracts from the Cora computer science research paper
search engine, with in total 126394 words and 4356 links between documents
that cite each other. The vocabulary consists of 2961 words. Directed links were
1 http://www.cs.huji.ac.il/~amitg/lthm.html
2 http://cran.r-project.org/web/packages/lda/

http://www.cs.huji.ac.il/~amitg/lthm.html
http://cran.r-project.org/web/packages/lda/
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converted to undirected links, and documents with no links were removed. For
Wikipedia, we also excluded the links of the ”Machine Learning” Wikipedia page
as it essentially linked to all pages. Furthermore, we turned the link structure
into the co-citation link structure. That is if two documents link to another
common document, we added an undirected link between these two documents.

Experimental Protocol: Due to the transductive nature of our datasets, we
considered how well the models predict the remaining words of a document after
observing a portion of it. Specifically, we observe p words from a document and
are interested in which model provides a better predictive distribution of the
remaining words P (w|w1, w2, . . . , wp). To compare these distributions, we use
perplexity, which can be thought of as the effective number of equally likely
words according to the model:

Perp(Θ) =
(∏D

d=1

∏Nd

i=p+1
P (wi|w1, w2, . . . , wp)

)−1/(
∑D

d=1(Nd−p))

where Θ denotes the model (hyper-)parameters. Specifically, for each dataset,
we created p% / (100 − p)% train / test splits of the words per document for
p = 10, 20, 30, . . . , 90. We trained the models on each training set and evaluated
the perplexity on the corresponding test set. We compared LDA, xLDA without
relational information, which is identical to DMR with identity matrix (DMR
id) and to LDA with hyperparameter optimization, DMR with relations as doc-
ument attributes (DMR ra, this is essentially Mimno and McCallum’s original
DMR model [22] but now using a GP and treating the relations as per-document
attributes), and xLDA using the co-citing information (xLDA). Both xLDAs es-
timated no topic metadata; its correlation matrix was set to the identity matrix.
Each experiment was repeated 5 times, each time using a different random order
of the words per document.

As noted by Gruber et al. [12], relational and non-relational LDA models
can very well be of comparable quality in terms of perplexity on a dataset. The
assignment of topics to documents, however, can be quite different. To measure
this effect, we also report the Hellinger distances among related documents, i.e.,
documents are co-linked. Consider two documents di and dj

dist(di, dj) =
∑

k

(√
θik −√θjk

)2

.

If a model captures the link structure well, we expect the Hellinger distance
smaller between co-linked documents.

Additionally, although we are not interested in link prediction per se, we
followed Chang and Blei [7] and evaluated the predictive link-likelihood of our
models by first fitting the LDA models to the documents (on the full dataset)
and then fitting a logistic regression model to the observed links, with input
given by the Hadamard (element-wise) product of the latent class distributions
of each pair of documents. That is, we first perform unsupervised dimensionality
reduction, and then regression to understand the relationship between the latent
space and underlying link structure. Here, we additionally compare to RTM [7].
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(a) Perplexity (the lower, the better) for

different percentages of observed words

per document.

(b) Perplexity using 70% / 30% train-

ing/test splits for different numbers of

topics.

(c) Hellinger distance (the lower, the bet-

ter) of linked documents for different

number of topics.

(d) Average link log likelihood (the

higher, the better) for different number

of topics.

Fig. 2. Results on the Cora: Perplexity, Hellinger distance, and average link log-

likelihood for LDA, DMR id, DMR ra, and xLDA using co-citation. For the average

link log-likelihood, we also compare to RTM. (Best viewed in color.)

Finally, we investigated the benefit of latent topic meta-information. We ran
xLDA estimating latent topic metadata (xLDAmtic) on the Wikipedia dataset
with and without co-citation relations assuming 10 topics. We show the es-
timated covariance matrices and qualitatively compare the correlations found
with the topics found.

Results: The perplexity results on Cora, Fig. 2(a), clearly show that xLDA can
significantly be less uncertain about the remaining words than LDA and DMR
(K = 25). The reason is that after seeing a few words in one topic, xLDA uses
the link structure to infer that words in a related topic may also be probable. In
contrast, LDA cannot predict the remaining words as well until a large portion
of the document has been observed so that all of its topics are represented. Only
when a very small number of words have been observed, the difference starts to
vanish. This performance gain was also very stable when varying the number of
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(a) Perplexity (the lower, the better) for

different percentages of observed words

per document.

(b) Perplexity using 70% / 30% train-

ing/test splits for different numbers of

topics.

(c) Hellinger distance (the lower, the bet-

ter) of linked documents for different

number of topics.

(d) Average link log likelihood (the

higher, the better) for different number

of topics.

Fig. 3. Results on the Wikipedia: Perplexity, Hellinger distance, and average link log-

likelihood for LDA, DMR id, DMR ra, and xLDA using co-citation. For the average

link log-likelihood, we also compare to RTM. (Best viewed in color.)

topics as shown in Fig. 2(b). For larger numbers of topics, LDA starts to break
down compared to DMR and xLDA. This effect can be broken when optimizing
the Dirichlet hyperparameters for each document separately as essentially done
by DMR id. Again, however, xLDA can make use of the link structure to
infer that words in a related topic may also be probable. That xLDA captures
the link structure better is best seen when considering the Hellinger distances
between co-linked documents as shown in Fig. 2(c). Most surprisingly, however,
in predicting links based on the topics proportions only, xLDA’s performance
is even comparable with RTM’s, a recent fully-generative model.

The perplexity results on Wikipedia, Fig. 3(a), show a similar result. When a
small number of words have been observed, there is less uncertainty about the
remaining words under DMR and xLDA than under LDA (K = 25). Given
that this dataset is much smaller, we can better observe that LDA cannot
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Table 1. The 5 nearest pages for two example Wikipedia pages (”Acadamic Confer-

ence”, ”Bayesian network”) according to Hellinger distances (shown next to the page

names) learned by xLDA, DMR id, and LDA. Bold pages denote that there is co-

citation link between the two pages, italic ones that is a directed link.

Wikipage: Academic conference

Proceedings 0.0839 Proceedings 0.0974 Proceedings 0.1634
NIPS 0.1109 MLMTA 0.1865 MLMTA 0.1641

Neural Information Processing Systems 0.1192 Morgan Kaufmann 0.1982 NIPS 0.1853
MLMTA 0.1323 Taxonomy 0.2145 Neural Information Processing Systems 0.1948

Morgan Kaufmann 0.1397 NIPS 0.2318 Inductive transfer 0.2172

Wikipage: Bayesian network

Bayes net 0.0015 Bayes net 0.005 Bayes net 0.0022
Markov network 0.0892 Markov network 0.0991 Graphical model 0.1522
Graphical model 0.0932 Random forest 0.1449 Loopy belief propagation 0.1628

Bayesian statistics 0.1153 Minimum message length 0.1467 Variational Bayes 0.1922
Conditional probability 0.1351 Graphical model 0.1498 Markov network 0.1963

xLDA DMR id LDA

No Relations Co-Citations

theory problems logic called Topic 0 theory problems logic called
information network time use Topic 1 information network time use

brain systems vision processing Topic 2 brain human systems processing
learning fixes import skins Topic 3 learning fixes import skins

science amp intelligence press Topic 4 science amp intelligence press
data neural search networks Topic 5 data neural search networks

city retrieved colorado canada Topic 6 city retrieved vancouver colorado
probability example recognition new Topic 7 probability new example recognition

function algorithm model models Topic 8 function algorithm model method
psychology used study field image Topic 9 used models analysis psychology

Fig. 4. Correlations among latent topic metadata found by xLDA on the Wikipedia

dataset

predict the remaining words as well until a large portion of the document has
been observed so that all of its topics are represented. Zooming in, we found the
LDA topics on this dataset were of comparable quality, even slightly better, cf.
Fig. 3(b). The assignments of topics to documents, however, are very different.
xLDA’s Hellinger distances between co-linked documents, as shown in Fig. 3(c),
is significantly lower for larger number of topics. Table 1 additionally shows for
two Wiki pages the 5 nearest Wiki pages. As one can see, xLDA gets more
related pages closer together. Again kind of surprising, in predicting links based
on the topics proportions only, xLDA’s performance is even comparable with
RTM’s performance.

Finally, Figure 4 shows the latent topic metdata correlations estimated by
xLDA with and without co-citations on the Wikipedia dataset. Without link
information, Topic 6 is unrelated to any other topic. This is not surprising as it
is about cities (Denver and Vancouver, the current and previous venues of the
NIPS conference). When we make uses of the link structure, however, it gets
correlated to the meta information of topic 4, science and intelligence. Also the
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metadata of topics 1,2,3 of the NIPS conference get more correlated. Note that
we used only one-dimensional topic metadata x. To model richer correlations,
one should move to higher dimensions.

To summarize, our experimental results clearly affirmatively answer our ques-
tion (Q): the latent space computed by xLDA captures the underlying link
structure better than LDA respectively xLDA without relational information.

6 Conclusions

The xLDA model is a new topic model of networks of documents. It can be
used to analyze linked corpora such as citation networks, linked web pages,
and social networks with user profiles. We have demonstrated qualitatively and
quantitatively that the xLDA model provides an effective and useful mechanism
for analyzing and using such data. It significantly improves on non-relational
topic models, integrating both node-specific information and link structure to
give better predictions.

The xLDA model provides a useful complement to fully generative relational
topic models such as hyper-linked LDA [12] and the RTM [7], which can make
predictions on relations. More importantly, it opens the door to statistical re-
lational reasoning and learning techniques in general. It is a very attractive
avenue for future work to explore this connection and to build knowledge rich
topic models using probabilistic relational models such as Markov logic network
or ProbLog.
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Abstract. Multi-task learning leverages shared information among data

sets to improve the learning performance of individual tasks. The paper

applies this framework for data where each task is a phase-shifted peri-

odic time series. In particular, we develop a novel Bayesian nonparamet-

ric model capturing a mixture of Gaussian processes where each task is

a sum of a group-specific function and a component capturing individual

variation, in addition to each task being phase shifted. We develop an

efficient em algorithm to learn the parameters of the model. As a spe-

cial case we obtain the Gaussian mixture model and em algorithm for

phased-shifted periodic time series. Experiments in regression, classifica-

tion and class discovery demonstrate the performance of the proposed

model using both synthetic data and real-world time series data from

astrophysics. Our methods are particularly useful when the time series

are sparsely and non-synchronously sampled.

1 Introduction

In many real world problems we are interested in learning multiple related tasks
where the training set for each task is quite small. For example, in pharmaco-
logical studies, we may be attempting to predict the concentration of some drug
at different times across multiple patients. Finding a good regression function
for an individual patient based only on his or her measurements can be difficult
due to insufficient training data for the patient. Instead, by using measurements
across all the patients, we may be able to leverage common patterns across
patients to obtain better estimates for the population and for each patient in-
dividually. Multi-task learning captures this intuition aiming to learn multiple
correlated tasks simultaneously. This idea has attracted much interest in the
literature and several approaches have been applied to a wide range of domains,
including medical diagnosis [1], recommendation systems [2] and HIV Therapy
Screening [3]. Building on the theoretical framework for single-task learning,
multi-task learning has recently been formulated as a multi-task regularization
problem in vector-valued Reproducing Kernel Hilbert space (RKHS) [4].

Several approaches to multi-task learning exist in the context of Bayesian
statistics. Considering hierarchical Bayesian models, one can view the parameter

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part III, LNAI 6323, pp. 418–434, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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sharing of the prior among tasks as a form of multi-task learning [5]. Recently,
Bayesian models for multi-task learning were formalized using Gaussian pro-
cesses [6,7,8]. In this nonparametric mixed-effect model, information is shared
among tasks by having each task combine a common (fixed effect) portion and
a task specific portion, each of which is generated by an independent Gaussian
process. Our work builds on this formulation extending it and the associated
algorithms in several ways.

We introduce a multi-task learning model with two novel aspects. First, we
allow the fixed effect to be multi-modal so that each task may draw its fixed
effect from a different cluster. Second, we extend the model so that each task
may be an arbitrarily phase-shifted image of the original time series. This yields
our model the Shift-invariant Grouped Mixed-effect model.

Our main technical contribution is the inference algorithm for the proposed
model. We develop details for the em algorithm optimizing the Maximum A
Posteriori (MAP) estimates for the parameters of the model. Technically, the
two main insights are in estimating the expectation for the coupled hidden vari-
ables (the cluster identities and the task specific portion of the time series) and
in solving the regularized least squares problem for a set of phase-shifted ob-
servations. As a special case our algorithm yields the Gaussian mixture model
(GMM) for phase shifted time series.

Seen from this perspective the paper provides a probabilistic extension of the
Phased K-means algorithm [9] that performs clustering for phase-shifted time
series data, and a nonparametric Bayesian extension of mixtures of random
effects regressions [10] that was recently used for for curve clustering.

Our model primarily captures regression of time series but because it is a
generative model it can be used for class discovery, clustering and classification.
We demonstrate the utility of the model for such applications with both synthetic
data and real-world time series data from astrophysics. The experiments show
that our model can yield superior results when compared to single task learning
and Gaussian mixture models, especially when each individual task is sparsely
and non-synchronously sampled.

2 Shift-Invariant Grouped Mixed-Effect Model

2.1 Preliminaries

Throughout the paper, scalars are denoted using italics, as in x, y ∈ IR; vectors
use bold typeface, as in x,y, and xi denotes the ith entry of x. For a vector x
and real valued function f : IR → IR, we extend the notation for f to vectors so
that f(x) = [f(x1), · · · , f(xn)]T where superscript the T stands for transposition
(and the result is a column vector). I is the identity matrix.

A Gaussian process (GP) is a functional extension for Multivariate Gaussian
distributions. In the Bayesian literature, it has been widely used in statistical
models by substituting a parametric latent function with a stochastic process
with Gaussian prior [11]. More precisely, under the single-task setting a simple
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Gaussian regression model is given by y = f(x) + εi, where f ’s prior is a zero-
mean GP with covariance function K and εi is independent zero mean white
noise with variance σ2. Given data set D = {xi, yi}, i = 1, · · · , N , let K =
(K(xi,xj))i,j , then f � [f(x1), · · · , f(xN )]T ∼ N (0,K) where N denotes the
normal distribution and the posterior on f is given by

Pr(f |D) = N (K(σ2
I + K)−1y, σ2(σ2

I + K)−1K).

The predictive distribution for some test point x∗ is

Pr(f(x∗)|x∗,D) =
∫

Pr(f(x∗)|x∗, f) Pr(f |D)df

= N (k(x∗)T(σ2
I + K)−1y,K(x∗,x∗) − k(x∗)T(σ2

I + K)−1k(x∗)
)

where k(x∗) = [K(x1,x∗), · · · ,K(xN ,x∗)]T. Furthermore, a Gaussian process f
corresponds to a RKHS H with kernel K such that cov[f(x), f(y)] = K(x,y) for
any x,y ∈ X . In this way, we can express a zero mean Gaussian process as a
distribution on functions f with the following probability [12]1

f ∼ exp
{
−1

2
‖f‖2

H

}
. (1)

2.2 The GMT Model

Recently, GPs have been used for multi-task learning [6,8,12]. Given data {Dj},
the Bayesian nonparametric mixed-effect model captures each task f j with re-
spect to Dj using a sum of an average effect function and an individual variation
for each task, f j(x) = f̄(x) + f̃ j(x), j = 1, · · · ,M where f̄ and {f̃ j} are zero
mean Gaussian processes. This assumes that the fixed-effect (mean function) f̄ is
sufficient to capture the behavior of the data, an assumption that is problematic
for distributions with several modes. The model is also not suitable for shifted
time series. To address these deficiencies we model our data as follows. For each
j and x ∈ [0, T ),

f j(x) = [f̄zj ∗ δtj ](x) + f̃ j(x), j = 1, · · · ,M (2)

where zj ∈ {1, · · · , k}, {f̄s}, s = 1, · · · , k and f̃ j are zero mean Gaussian pro-
cesses. We use ∗ to denote circular convolution, and δtj is the Dirac δ function
with support at tj ∈ [0, T ). Therefore, [f̄zj ∗ δtj ](x) = f̄zj(x − tj mod T ). The
underlying GPs, i.e. {f̄s}, f̃ j, are assumed to be mutually independent.

We next define the generative model which we call Shift-invariant Grouped
Mixed-effect model (GMT). In this model, k group effect functions are assumed
to share the same Gaussian prior characterized by K0. The individual effect

1 In general, a Gaussian process does not induce a probability distribution on the

corresponding RKHS but such use has been previously advocated; for further details

see [13].
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functions are Gaussian processes with covariance function K. The model is char-
acterized by parameter set {K0,K,α, {tj}, σ2} and summarized as follows:

f̄s|K0 ∼ exp
{
−1

2
‖f̄s‖2

H0

}
, s = 1, 2, · · · , k

f̃ j |K ∼ exp
{
−1

2
‖f̃ j‖2

H

}
,

zj |α ∼ Discrete(α),

yj ∼ N (f j(xj), σ2
I
)
, where f j = f̄zj ∗ δtj + f̃ j , j = 1, 2, · · · ,M

(3)

where α specifies the mixture proportions. Let X = {x1,x2, · · · ,xM} and Y =
{y1,y2, · · · ,yM}, where xj are the time points when each time series is sampled
and yj are the corresponding observations.

We assume that the group effect kernel K0 and the number of centers k are
known. The assumption on K0 is reasonable, in that normally we can get more
information on the shape of the mean waveforms, thereby making it possible
to design kernel for H0 but the individual variations are more arbitrary. The
assumption that k is known requires model selection. An extension using a non-
parametric model like the Dirichlet process that does not limit k is possible but
we leave this to future work. The group effect {f̄s}, individual shifts {tj}, noise
variance σ2 and the kernel for individual variations K are unknown and need to
be estimated.

The model above is a standard model for regression. We propose to use it
for classification by learning a mixture model for each class and using the MAP
probability for the class for classification. In particular, consider a training set
that has L classes, where the jth instance is given by Dj = (xj ,yj , oj) ∈
IRnj × IRnj × {1, 2, · · · , L}. Each observation (xj ,yj) is given a label from
{1, 2, · · · , L}. The problem is to learn the model M� for each class (L in to-
tal) separately and the classification rule for a new instance (x,y) is given by
o = argmax [Pr(y|x; M�) Pr(�)]. As we show in our experiments, the proposed
generative model can provide explanatory power for the application while giving
excellent classification performance.

2.3 Parameter Learning

Given data set D = {xj ,yj} = {xj
i , y

j
i }, i = 1, · · · , nj, j = 1, · · · ,M , the

learning process aims to find the MAP estimates of the parameter set M∗ =
{α, {f̄s}, {tj}, σ2,K} such that

M∗ = argmax
M

(
Pr(Y|X ;M) × Pr[{f̄s};K0]

)
. (4)

The direct optimization of Eq. (4) is analytically intractable because of coupled
sums that come from the mixture distribution. To solve this problem, we resort
to the em algorithm. The em algorithm is an iterative method for optimizing the
maximum likelihood (ML) or MAP estimates in the context of hidden variables.
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In our case, the hidden variables are z = {zj} (which is the same as in standard
GMM), and f = {fj � f̃ j(xj)}, j = 1, · · · ,M . The algorithm iterates between
the following expectation and maximization steps until it converges to a local
maximum.

2.4 Expectation Step

In the E-step, we calculate

Q(M,Mg) = IE{z,f |X ,Y;Mg}
[
log
{
Pr(Y, f , z|X ;M) × Pr[{f̄s};K0]

}]
(5)

where Mg stands for estimated parameters from the last iteration. For our
model, the difficulty comes from estimating the expectation with respect to the
coupled latent variables {z, f}. We next show how this can be done. First notice
that, Pr(z, f |X ,Y ;Mg) =

∏
j Pr(zj , fj |X ,Y;Mg) and further that

Pr(zj , fj |X ,Y;Mg) = Pr(zj|xj ,yj ;Mg) × Pr(fj |zj ,xj ,yj ;Mg). (6)

The first term in Eq. (6) can be further written as

Pr(zj |xj ,yj ;Mg) ∝ Pr(zj ;Mg) Pr(yj |zj ,xj ;Mg) (7)

where Pr(zj ;Mg) is specified by the parameters estimated from last iteration.
Since zj is given, Pr(yj |zj ,xj ;Mg) is the marginal distribution that can be cal-
culated using a GP regression model, that is, yj |zj ∼ N ([f̄zj ∗δtj ](xj),Kg

j +σ2I).
As a result Pr(zj |xj ,yj ;Mg) can be calculated explicitly. Next consider the sec-
ond term in Eq. (6). Given zj, we know that f j = f̄zj + f̃ j , i.e. there is no
uncertainty about the identity of f̄zj and therefore the calculation amounts to
estimating the posterior distribution under standard GP regression. The condi-
tional distribution is given by fj |zj,xj ,yj ∼ N (μg

j ,C
g
j ) where μg

j and Cg
j are

the posterior mean and covariance matrix given by

μg
j = Kg

j (K
g
j + σ2

I)−1(yj − f̄ j), Cg
j = Kg

j − Kg
j (K

g
j + σ2

I)−1Kg
j (8)

where Kg
j is the kernel matrix for the jth task using parameters from the last

iteration. To derive the concrete form of Q(M,Mg), denote zil = 1 iff zi = l.
Then the complete data likelihood can be reformulated as

L = Pr(Y, f , z;X ,M) =
∏
j

∏
s

[
αs Pr(yj |fj , zj = s;M) Pr(fj ;M)

]zjs

(9)

where we have used the fact that exactly one zjs is 1 for each j and thus included
the last term inside the product over s. Then Eq. (5) can be written as

Q(M,Mg) = −1
2

∑
s

‖fs‖2
H0

+ IE{z,f |X ,Y;Mg} [logL] . (10)
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Denote the second term by Q̃. By a version of Fubini’s theorem we have

Q̃ = IE{z|X ,Y;Mg}IE{f |z,X ,Y;Mg} [logL]

=
∑
z

Pr(z|X ,Y;Mg)

{∑
j

∑
s

zjs

×
∫
dPr(fj |zj = s) log

[
αs Pr(yj |fj , zj = s;M) Pr(fj ;M)

]}
.

(11)

Since the last term in Eq. (11) does not include any zi, the equation can be
further decomposed as

Q̃ =
∑

j

∑
s

(∑
z

Pr(z|X ,Y;Mg)zjs

)

×
{∫

dPr(fj |zj = s) log[αs Pr(yj |fj , zj = s;M) Pr(fj ;M)]
}

=
∑

j

∑
s

γjs

∫
dPr(fj |zj = s) log

[
αs Pr(yj |fj , zj = s;M) Pr(fj ;M)

]
(12)

where γjs = IE[zjs|yj ,xj ;Mg] can be calculated from Eq. (7) and it can be
viewed as a fractional label for the jth task in the sth group.

Recall that Pr(yj |fj , zj = s) is a normal distribution given by N (f̄zj ∗δtj (xj)+
fj , σ2I) and Pr(fj ;M) is a standard multivariate Gaussian distribution deter-
mined by its prior, that is

Pr(fj ;M) =
1√

(2π)nj |Kj |
exp
{
−1

2
fT
j K−1

j fj

}
.

Using these facts and after some algebraic manipulation, Q(M,Mg) can be
rewritten as

Q(M,Mg) = −1
2

∑
s

‖f̄s‖2
H0

−
∑

j

nj log σ +
∑

j

∑
s

γjs logαs

− 1
2σ2

∑
j

∑
s

γjsIE{fj |zj=s,xj,yj ;Mg}
[‖yj − [f̄s ∗ δtj ](x

j) − fj‖2
]

+
∑

j

∑
s

γjsIE{fj |xj ,yj;Mg} [log Pr(fj ;M)] .

(13)
2.5 Maximization Step

In this step, we aim to find

M∗ = argmax
M

Q(M,Mg) (14)
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and use M∗ to update the model parameters. As we show next, this can be
decomposed into three separate optimization problems as follows

M∗ = argmax
M

Q1(({f̄s}, {δtj}, σ)) +Q2(K) +

⎧⎨⎩∑
j

∑
s

γjs logαs

⎫⎬⎭ .

That is, α can be estimated easily using its separate term, Q1 is only a function
of ({fs}, {tj}, σ) and Q2 depends only on K. We have

Q1({f̄s}, {tj}, σ2) =
1
2

∑
s

‖f̄s‖2
H0

+
∑

j

nj log σ +
1

2σ2

∑
j

∑
s

γjs

× IE{fj |zj=s,xj,yj ;Mg}
[‖yj − [fs ∗ δtj ](x

j) − fj‖2
]
.

(15)

The remaining part, Q2 is

Q2(K) =
∑

j

∑
s

γjsIE{fj |zj=s,xj,yj ;Mg} [log Pr(fj ;M)] .

= −1
2

∑
j

log |Kj | − 1
2

∑
j

∑
s

γjsTr
(
K−1

j (Cg
j + μg

j (μ
g
j )

T)
)
.

(16)

Learning {f̄s}, {tj}, σ2: To optimize Eq. (15), denote the residual ỹj = yj −
μjs, where μjs = IE[fj |yj , zj = s]. Given σ, optimizing ({f̄s}, {tj}) decouples
into k independent sub-problems, where finding the sth group effect f̄s and its
corresponding shift {tj} amounts to solving

argmin
f∈H0,t1,··· ,tM∈[0,T )

⎧⎨⎩ 1
2σ2

∑
j

γjs

nj∑
i=1

(ỹj
i − [f ∗ δtj ](x

j
i ))

2 +
1
2
‖f‖2

H0

⎫⎬⎭ . (17)

Note that different xj ,yj have different dimensions nj and they are not assumed
to be sampled at regular intervals. For further development, following [8], it
is useful to introduce the closure vector x̆ ∈ IRIN whose components are the
distinct elements of X . For example if x1 = [1, 2, 3]T ,x2 = [2, 3, 4, 5]T , then
x̆ = [1, 2, 3, 4, 5]T . For the jth task, let the binary matrix Ck be such that
xj = Cj · x̆ and f(xj) = Cj ·f(x̆). That is, Cj extracts the values corresponding
to the jth task from the closure vector.

If {tj} are fixed, then the optimization in Eq. (17) is standard and the repre-
senter theorem gives the form of the solution as f(·) =

∑IN
i=1 ciK0(x̆i, ·). Denoting

the kernel matrix as K = K0(x̆i, x̆j), i, j = 1, · · · , IN , and c = [c1, · · · , cIN]T we
get f(x̆) = Kc. To simplify the optimization we assume that {tj} can only take
values in the discrete space {t̃1, · · · , t̃L}, that is, tj = t̃i, for some i ∈ 1, 2, · · · , L
(e.g., a fixed finite fine grid), where we always choose t̃1 = 0. Therefore, we can
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write
[
f ∗ δtj

]
(x̆) = K̃T

tj
c, where K̃tj is K0(x̆, [(x̆ − t̃j) mod T ]). Accordingly,

Eq. (17) is reduced to

argmin
c∈IRIN,t1,··· ,tj∈{t̃i}

⎧⎨⎩∑
j

γjs‖ỹj − Cj · K̃T
tj
c‖2 +

1
2
cTKc

⎫⎬⎭ . (18)

To solve this optimization, we follow a cyclic optimization approach where we
alternate between steps of optimizing f and {tj} respectively.

At step �, we optimize equation (18) with respect to {tj} given c(�). Since c(�)

is known, it follows immediately that Eq. (18) decomposes to M independent
problems, where for the jth we need to find t

(�)
j such that CjK̃T

t
(
)
j

c is closest to

ỹj under Euclidean distance. A brute force search with time complexity Θ(INL)
yields the optimal solution. If the time series are synchronously sampled (i.e.
Cj = I, j = 1, · · · ,M) and the allowed time shifts are at sample points, this
reduces to finding the shift τ corresponding the cross-correlation. In this case,
one can use the convolution theorem to find the same value in Θ(IN log IN)
time [14].

At step �+1,we optimize equation (18) with respect to c(�+1) given t(�)1 , · · · , t(�)M .
For the jth task, since t(�)j is known, denote CjK̃T

t
(
)
j

as M
(�)
j . Therefore, c(�+1)

can be calculated by solving the following regularized least square problem

argmin
c∈IRIN

⎧⎨⎩∑
j

γjs‖ỹj − M
(�)
j c‖2 +

1
2
cT Kc

⎫⎬⎭ . (19)

Obviously, each step decreases the value of the objective function and therefore
the algorithm will converge.

Given {f̄s}, {tj}, the value of σ2 is optimized by (σ∗)2 = R/
∑

j nj , where
R =

∑
j Tr(Cg

j ) +
∑

j

∑
s γjs

(‖yj − [f̄∗
s ∗ δtj ](xj) − μjs‖2

)
. We use alternating

optimization steps to optimize over the three parameters together.

Learning the kernel for individual effects: The work of [12] has already
shown how to optimize the kernel in a similar context. Here we provide some of
the details for completeness. If the kernel function K admits a parametric form
with parameter θ, for example the RBF kernel

K(x, y) = a exp
{
−‖x− y‖2

2s2

}
(20)

then the optimization of K amounts to finding θ∗ such that

θ∗ = argmax
θ

{
− 1

2

∑
j

∑
s

γjsTr
(
(Kj ; θ)−1(Cg

j + μg
js(μ

g
js)

T)
)}

.

The parametric form of the kernel is a prerequisite to perform the regression task
when examples are not sampled synchronously as in our development above. If
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the data is synchronously sampled, for classification tasks we only need to find
the kernel matrix K for the given sample points and the optimization problem
can be rewritten as

K∗ = argmax
K

{
− 1

2

∑
j

log |K| − 1
2

∑
j

∑
s

γjsTr
(
K−1(Cg

j + μg
js(μ

g
js)

T)
)}

.

(21)

Similar to maximum likelihood estimation for the multivariate Gaussian distri-
bution, the solution is K∗ = 1

M

∑
j

∑
s γjs(C

g
j +μg

js(μ
g
js)

T). In our experiments,
we use both approaches. For the parametric form we use Eq. (20).

3 Experiments

Our implementation of the algorithm makes use of the gpml package2 [11] and
extends it to implement the required functions. The em algorithm is restarted 5
times and the function that best fits the data is chosen. The em algorithm stops
when the difference of the log-likelihood is less than 10e-5 or at a maximum of
200 iterations.

3.1 Regression on Synthetic Data

In the first experiment, we demonstrate the performance of our algorithm on a
regression task with artificial data. We generated data that is not phase shifted
under a mixture of two Gaussian processes. More precisely, each f̄s(x), s = 1, 2 is
generated on interval [−50, 50] from a Gaussian process with covariance function
cov[f̄s(t1), f̄s(t2)] = e−(t1−t2)2/25, s = 1, 2. The individual effect f̃j is sam-
pled via a Gaussian process with the covariance function cov[f̃j(t1), f̃j(t2)] =
0.2e−(t1−t2)

2/16. Then the hidden label zj is sampled from a discrete distri-
bution with α = [0.5, 0.5]. The vector x̆ consists of 100 samples on [−50, 50].
We fix a sample size N and each xj includes N randomly chosen points from
{x̆1, · · · , x̆100}. The observation f j(xj) is obtained as (fzj + f̃j)(xj). In the
experiment, we vary the individual sample length N from 5 to 50. Finally,
we generated 50 random tasks with the observation yj for task j given by
yj ∼ N (f j(xj), 0.01 × I), j = 1, · · · , 50. The methods compared here include:

1. Single-task learning procedure (ST), where each f̄ j is estimated only
using {xj

i ,y
j
i }, i = 1, 2, · · · , N .

2. Single center mixed-effect multi-task learning (SCMT), amounts to
the mixed-effect model [8] where one average function f̄ is learned from
{xj ,yj}, j = 1, · · · , 50 and f j = f̄ + f̃ j, j = 1, · · · , 50.

3. Grouped mixed-effect model (GMT), the proposed method.

2 Available at http://www.gaussianprocess.org/gpml/
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Fig. 1. Simulated data: Comparison of the estimated function between single, multi-

task and grouped multi-task. The red dotted line is the reference true function.

4. “Cheating” grouped fixed-effect model (CGMT), which follows the
same algorithm as the GMT but uses the true label zj instead of their ex-
pectation for each task j. This serves as an upper bound for the performance
of the proposed algorithm.

Except for ST, the other three algorithms use the same method to learn the
kernel of the individual effects, which is assumed to be RBF. The Root Mean
Square Error (RMSE) for the four approaches is reported. For task j, the RMSE
is defined as RMSEj =

√‖f(x̆) − f j(x̆)‖2/100, where f is the learned function
and RMSE for the data set is the mean of {RMSEj}, j = 1, · · · , 50.

To illustrate the results qualitatively, we first plot in Fig. (1) the true and
learned functions in one trial. The left column illustrates some task that is sam-
pled from group effect f̄1 and the right column is for f̄2. It it easy to see that,
as expected, the tasks are poorly estimated under ST due the sparse sampling.
The SCMT performs better than ST but its estimate is poor in areas where two
centers disagree. The estimates of GMT are much closer to the true function.

The left plot of Fig. (2) shows a comparison of the algorithms for 50 random
data sets under the above setting when N equals 5. We see that most of the
time GMT performs as well as its upper bound, illustrating that it recovers the
correct membership of each task. On a few data sets, our algorithm is trapped in
a local maximum yielding performance similar to SCMT and ST. The right part
of Fig. (2) shows the RMSE for increasing values of N . From the plot, we can
draw the conclusion that the proposed method works much better than SCMT
and ST when the number of samples is less than 30. As the number of samples
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Fig. 2. Comparison between single, multi-task, and grouped multi-task learning on

simulated data. Left: the figure gives 3 pairwise comparisons when sample size is 5. We

can see that the GMT is better than ST since the blue stars are concentrated on the

lower right. Similarly, the plot of red pluses demonstrates the advantage of GMT over

SCMT and the plot of green triangles shows that the algorithm behaves almost as well

as its upper bound. Right: the figure shows RMSE as a function of sample size.

for each task increases, all methods are improving, but the proposed method
always outperforms SCMT and ST in our experiments. Finally, all algorithms
converge to almost the same performance level where observations in each task
are sufficient to recover the underlying function.

3.2 Classification on Astrophysics Data

The concrete application motivating this research is the classification of stars
into several meaningful categories from the astronomy literature. Classification
is an important step within astrophysics research, as evidenced by published
catalogs such as OGLE [15] and MACHO [16,17]. However, the number of stars
in such surveys is increasing dramatically. For example Pan-STARRS [18] will
collect data on the order of hundreds of billions of stars. Therefore, it is de-
sirable to apply state-of-art machine learning techniques to enable automatic
processing for astrophysics data classification. The data from star surveys is
normally represented by time series of brightness measurements, based on which
they are classified into categories. Stars whose behavior is periodic are especially
of interest in such studies. Fig. (3) shows several examples of such time series
generated from the three major types of periodic variable stars: Cepheid, RR
Lyrae, and Eclipsing Binary. In our experiments only stars of the types in Fig.
(3) are present in the data, and the period of each star is given.

From Fig. (3), it can be noticed that there are two main characteristics of this
domain. The time series are not phase aligned, meaning that the light curves
in the same category share a similar shape but with some unknown shift. The
time series are non-synchronously sampled and each light curve has a different
number of samples and sampling times. We run our experiment on the OGLEII
data set [19]. This data set consists of 14087 time series (light curves) with
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Fig. 3. Examples of light curves of periodic variable stars. Each column shows two

stars of the same type. Left: Cepheid, middle: RR Lyrae, right: Eclipsing Binary.

(3425,3390,7272) in the categories (CEPH, RRL, EB) respectively. We perform
several experiments with this data set to explore the potential of the proposed
method. Previous work using this data [20] developed a kernel for periodic time
series and used it with svm to obtained good classification performance. We use
the results of [20] as our baseline.3

Classification using dense-sampled time series: In the first experiment, the
time series are smoothed using a simple average filter, re-sampled to 50 points
via linear-interpolation and normalized to have mean 0 and standard deviation
of 1. Therefore, the time series are synchronously sampled in the pre-processing
stage. We compare our method to GMM and 1-Nearest Neighbor (1-NN). These
two approaches are performed on the time series processed by Universal phasing
(UP), which uses the method from [14] to phase each time series according to
the sliding window on the time series with the maximum mean. We use a sliding
window size of 5% of the number of original points; the phasing takes place after
the pre-processing explained above. We learn a model for each class separately
and for each class the model order for the GMM and the GMT is set to 15.

We run 10-fold cross-validation (CV) over the entire data set and the results
are shown in Tab. (1). We see that when the data is densely and synchronously
sampled, the proposed method performs similar to the GMM, and they both
outperform the kernel based results from [20]. The poor performance of SCMT
shows that a single center is not sufficient for this data. The similarity of the
GMM and the proposed method under these experimental conditions is not
surprising. The reason is that when the time series are synchronously sampled,

3 [20] used additional features, in addition to time series itself, to improve the classifi-

cation performance. Here we focus on results using the time series only. Extensions

to add such features to our model are orthogonal to the theme of the paper and we

therefore leave them to future work in the context of the application.
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Table 1. Accuracies with standard deviations reported on OGLEII dataset

up + gmm scmt gmt up + 1-nn k + svm[20]

Results 0.956 ± 0.006 0.874 ± 0.008 0.952 ± 0.005 0.865 ± 0.006 0.947 ± 0.005

aside from the difference of phasing, finding the group effect functions is reduced
to estimating the mean vectors of the GMM. In addition, learning the kernel in
the nonparametric approach is the same as estimating the covariance matrix of
the GMM. More precisely, assuming all time series are phased and sampled at
the same time points, the following results hold:

1. By placing a flat prior on the group effect function f̄s, s = 1, · · · , k, or equiv-
alently setting ‖f̄s‖2

H0
= 0, Eq. (17) is reduced to finding a vector μs ∈ IN that

minimizes
∑

j γjs‖ỹj − μs‖2. Therefore, we obtain f̄s = μs =
∑

j γjsỹj/
∑

j γjs,
which is exactly the mean of the sth cluster during the iteration of em algorithm
under the GMM setting.

2. The kernel K is learned in a nonparametric way. Instead of estimating K
and σ2, it is convenient to put the two terms together, forming K̂ = K + σ2

I,
that is yj is a deterministic function of f j(xj) which in turn has an extra σ2

term on the diagonal of its covariance matrix. One can show that in this case the
estimate of the kernel is K̂ = 1

M

∑
j

∑
s γjs(yj −μs)(yj −μs)T. In the standard

em algorithm for GMM, this is equal to the estimated covariance matrix when
all k clusters are assumed to have the same covariance.

Accordingly, when time series are synchronously sampled, the proposed model
can be viewed as an extension of the Phased K-means [9] and a variant of [21]. In
experiments below, we extend the resulting Phased EM by allowing each cluster
to have a separate covariance matrix.

Classification using sparse-sampled time series: The OGLEII data set is
in some sense a “nice” subset of the data from its corresponding star survey.
Stars with small number of samples are often removed in pre-processing steps
(cf., [22]). The proposed method potentially provides a way to include these in-
stances in the classification process. In the second experiment, we demonstrate
the performance of the proposed method on times series with sparse samples.
Similar to the synthetic data, we started from sub-sampled versions of the origi-
nal time series to simulate the condition that we would encounter in further star
surveys.4 As in the previous experiment, each time series is universally phased,
normalized and linearly-interpolated to length 50 to be plugged into GMM and
1-NN as well as the generalized Phased em as discussed above. The RBF kernel
is used for the proposed method and we used the same model order as above.
Moreover, the performance for PKmeans is also presented, where the classifica-
tion step is as follows: we learn the PKmeans model with k = 15 for each class

4 For the proposed method, we clip the samples to a fine grid of 200 equally spaced

time points on [0, 1], which is also the set of allowed time shifts. This avoids having

a very high dimensional x̆, e.g. over 18000 for OGLEII, which is not feasible for any

kernel based regression method that relies on solving linear systems.
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Fig. 4. OGLEII data: Comparison of algorithms with sparsely sampled data

and then the label of a new example is assigned to be the same as its closest
centroid’s label. PKmeans is also restarted 5 times and the best clustering is
used for classification.

The results are shown in Fig. (4). When each time series has sparse samples
(the number of samples per task is less than 30), the proposed method has a
significant advantage over the other methods. As the number of samples per
task increases, the proposed method improves fast and performs close to its
optimal performance given by previous experiment. When the number of samples
increases, the performance of the Phased em gradually catches up and becomes
better than the proposed method when each task has more than 50 samples.
GMM plus universal phasing (UP) also achieves better performance when time
series are densely sampled. One reason for the performance difference is the
parametric form of the kernel in the GMT in this experiment (which is less
flexible). The difference can also be attributed to the sharing of the covariance
function in our model where the GMM and the Phased em do not apply this
constraint. Notice that the Phased em algorithm always outperforms the GMM
plus UP demonstrating that re-phasing the time series inside the em algorithm
improves the results. We also notice that for all 3 methods, the performance
with dense data is lower than the results in Tab. (1). This is caused because the
data set obtained by the interpolation of the sub-sampled measurements contains
less information than that interpolated from the original measurements. Finally,
note that PKmeans performs much worse than Phased em showing that the
probabilistic model adds a significant advantage. To summarize, we conclude
from this experiment that the proposed method should be used when data is
sparsely and non-synchronously sampled.
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3.3 Class Discovery on Astrophysics Data

We show the potential of our model for class discovery by running GMT on the
joint data set of the three classes (not using the labels) with a model order of
45. Then, each cluster is labeled according to the majority class of the instances
that belong to the center. For a new test point, we determine which cluster it
belongs to via the MAP probability and its label is given by the cluster that it is
assigned to. We run 10 trials with different random initialization. The accuracy
and standard deviation obtained are [0.895, 0.010]. Given the size of the data set
and the relatively small number of clusters this is a significant indication of the
potential for class discovery in astrophysics.

4 Conclusion and Future Work

We developed a novel Bayesian nonparametric multi-task learning model where
each task is modeled as a sum of a group-specific function and an individual
task function with a Gaussian process prior. We gave an efficient em algorithm
to learn the parameters of the model and demonstrated its effectiveness using
experiments in regression, classification and class discovery.

The literature includes a significant amount of work on time series classi-
fication [23] (space constraints preclude a lengthy discussion). These include
approaches based on feature extraction followed by feature based learning
model [24], approaches based on similarities for time series [20] and hidden
Markov models [25,26]. Despite the similar name, our model is different from
mixture of experts where different GPs are in control of sub-regions of the input
space [27]. Our work is most closely related to the so-called mixture of regres-
sions [10,28,29]. As discussed above our model can be seen as a nonparametric
Bayesian extension of the model in [10] and includes [21] as a special case with
shared covariance matrix when we use the diagonal kernel function on the time
grid.

For application in the astronomy context it is important to consider all steps
of processing and classification so as to provide an end to end system. Therefore,
two important issues to be addressed in future work include incorporating the
period estimation phase into the method and developing an appropriate method
for abstention in the classification step. Further, to get a full generalization of the
phased GMM, it will be interesting to generalize our model to allow individual
variations to come from cluster dependent RKHS. It would also be interesting to
develop a corresponding discriminative model extending [5] to the GP context.

Acknowledgments

This research was partly supported by NSF grant IIS-0803409. The experiments
in this paper were performed on the Odyssey cluster supported by the FAS
Research Computing Group at Harvard and the Tufts Linux Research Cluster
supported by Tufts UIT Research Computing.



Shift-Invariant Grouped Multi-task Learning for Gaussian Processes 433

References

1. Bi, J., Xiong, T., Yu, S., Dundar, M., Rao, R.: An improved multi-task learning

approach with applications in medical diagnosis. In: ECML/PKDD, pp. 117–132

(2008)

2. Dinuzzo, F., Pillonetto, G., De Nicolao, G.: Client-server multi-task learning from

distributed datasets. Arxiv preprint arXiv:0812.4235 (2008)

3. Bickel, S., Bogojeska, J., Lengauer, T., Scheffer, T.: Multi-task learning for HIV

therapy screening. In: ICML, pp. 56–63 (2008)

4. Evgeniou, T., Micchelli, C., Pontil, M.: Learning multiple tasks with kernel meth-

ods. JMLR 6(1), 615–637 (2006)

5. Xue, Y., Liao, X., Carin, L., Krishnapuram, B.: Multi-task learning for classifica-

tion with Dirichlet process priors. JMLR 8, 35–63 (2007)

6. Yu, K., Tresp, V., Schwaighofer, A.: Learning Gaussian processes from multiple

tasks. In: ICML, pp. 1012–1019 (2005)

7. Schwaighofer, A., Tresp, V., Yu, K.: Learning Gaussian process kernels via hierar-

chical Bayes. NIPS 17, 1209–1216 (2005)

8. Pillonetto, G., Dinuzzo, F., De Nicolao, G.: Bayesian Online Multitask Learning

of Gaussian Processes. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence 32(2), 193–205 (2010)

9. Rebbapragada, U., Protopapas, P., Brodley, C.E., Alcock, C.: Finding anomalous

periodic time series. Machine Learning 74(3), 281–313 (2009)

10. Gaffney, S.J., Smyth, P.: Curve clustering with random effects regression mixtures.

In: Proceedings of the Ninth International Workshop on Artificial Intelligence and

Statistics (2003)

11. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The

MIT Press, Cambridge (2005)

12. Lu, Z., Leen, T., Huang, Y., Erdogmus, D.: A reproducing kernel Hilbert space

framework for pairwise time series distances. In: ICML, pp. 624–631 (2008)

13. Seeger, M.: Gaussian processes for machine learning. International Journal of Neu-

ral Systems 14(2), 69–106 (2004)

14. Protopapas, P., Giammarco, J.M., Faccioli, L., Struble, M.F., Dave, R., Alcock,

C.: Finding outlier light curves in catalogues of periodic variable stars. Monthly

Notices of the Royal Astronomical Society 369, 677–696 (2006)

15. Udalski, A., Szymanski, M., Kubiak, M., Pietrzynski, G., Wozniak, P., Zebrun,

Z.: Optical gravitational lensing experiment. photometry of the macho-smc-1 mi-

crolensing candidate. Acta Astronomica 47, 431–436 (1997)

16. Alcock, C., et al.: The MACHO Project - a Search for the Dark Matter in the Milky-

Way. In: Soifer, B.T. (ed.) Sky Surveys. Protostars to Protogalaxies. Astronomical

Society of the Pacific Conference Series, vol. 43, pp. 291–296 (1993)

17. Faccioli, L., Alcock, C., Cook, K., Prochter, G.E., Protopapas, P., Syphers, D.:

Eclipsing Binary Stars in the Large and Small Magellanic Clouds from the MACHO

Project: The Sample. Astronomy Journal 134, 1963–1993 (2007)

18. Hodapp, K.W., et al.: Design of the Pan-STARRS telescopes. Astronomische

Nachrichten 325, 636–642 (2004)

19. Soszynski, I., Udalski, A., Szymanski, M.: The Optical Gravitational Lensing Ex-

periment. Catalog of RR Lyr Stars in the Large Magellanic Cloud 06. Acta Astro-

nomica 53, 93–116 (2003)

20. Wachman, G., Khardon, R., Protopapas, P., Alcock, C.: Kernels for Periodic Time

Series Arising in Astronomy. In: ECML/PKDD, pp. 489–505 (2009)



434 Y. Wang, R. Khardon, and P. Protopapas

21. Chudova, D., Gaffney, S.J., Mjolsness, E., Smyth, P.: Translation-invariant mixture

models for curve clustering. In: SIGKDD, pp. 79–88 (2003)

22. Wachman, G.: Kernel Methods and Their Application to Structured Data. PhD

thesis, Tufts University (2009)

23. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and

mining of time series data: experimental comparison of representations and distance

measures. VLDB 1(2), 1542–1552 (2008)

24. Osowski, S., Hoai, L., Markiewicz, T.: Support vector machine-based expert sys-

tem for reliable heartbeat recognition. IEEE Transactions on Biomedical Engineer-

ing 51(4), 582–589 (2004)

25. Hughes, N., Tarassenko, L., Roberts, S.: Markov models for automated ECG in-

terval analysis. NIPS 16 (2003)

26. Kim, S., Smyth, P.: Segmental Hidden Markov Models with Random Effects for

Waveform Modeling. JMLR 7, 945–969 (2006)

27. Rasmussen, C.E., Ghahramani, Z.: Infinite mixtures of Gaussian process experts.

NIPS 15, 881–888 (2002)

28. Gaffney, S.J., Smyth, P.: Trajectory clustering with mixtures of regression models.

In: SIGKDD, pp. 63–72 (1999)

29. Gaffney, S.J., Smyth, P.: Joint probabilistic curve clustering and alignment.

NIPS 17, 473–480 (2005)



Nonparametric Bayesian Clustering Ensembles

Pu Wang1, Carlotta Domeniconi1, and Kathryn Blackmond Laskey2

1 Department of Computer Science
2 Department of Systems Engineering and Operations Research

George Mason University

4400 University Drive, Fairfax, VA 22030 USA

Abstract. Forming consensus clusters from multiple input clusterings

can improve accuracy and robustness. Current clustering ensemble meth-

ods require specifying the number of consensus clusters. A poor choice

can lead to under or over fitting. This paper proposes a nonparametric

Bayesian clustering ensemble (NBCE) method, which can discover the

number of clusters in the consensus clustering. Three inference methods

are considered: collapsed Gibbs sampling, variational Bayesian inference,

and collapsed variational Bayesian inference. Comparison of NBCE with

several other algorithms demonstrates its versatility and superior stability.

1 Introduction

Clustering ensemble methods operate on the output of a set of base clustering
algorithms to form a consensus clustering. Clustering ensemble methods tend to
produce more robust and stable clusterings than the individual solutions [28].
Since these methods require only the base clustering results and not the raw
data themselves, clustering ensembles provide a convenient approach to privacy
preservation and knowledge reuse [31]. Such desirable aspects have generated
intense interest in cluster ensemble methods.

A variety of approaches have been proposed to address the clustering ensem-
ble problem. Our focus is on statistically oriented approaches. Topchy et al. [28]
proposed a mixture-membership model for clustering ensembles. Wang et al. [31]
applied a Bayesian approach to discovering clustering ensembles. The Bayesian
clustering ensemble model has several desirable properties [31]: it can be adapted
to handle missing values in the base clusterings; it can handle the requirement
that the base clusterings reside on a distributed collection of hosts; and it can
deal with partitioned base clusterings in which different partitions reside in dif-
ferent locations. Other clustering ensemble algorithms, such as the cluster-based
similarity partitioning algorithm (CSPA) [25], the hypergraph partitioning algo-
rithm (HGPA) [25], or k-means based algorithms [18] can handle one or two of
these cases; however, none except the Bayesian method can address them all.

Most clustering ensemble methods have the disadvantage that the number of
clusters in the consensus clustering must be specified a priori. A poor choice
can lead to under- or over-fitting. Our approach, nonparametric Bayesian clus-
tering ensembles (NBCE), can discover the number of clusters in the consensus

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part III, LNAI 6323, pp. 435–450, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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clustering from the observations. Because it is also a Bayesian approach, NBCE
inherits the desirable properties of the Bayesian clustering ensembles model [31].
Similar to the mixture modeling approach [28] and the Bayesian approach [31],
NBCE treats all base clustering results for each object as a feature vector with
discrete feature values, and learns a mixed-membership model from this feature
representation.

The NBCE model is adapted from the Dirichlet Process Mixture (DPM)
model [22]. The following sections show how the DPM model can be adapted
to the clustering ensemble problem, and examine three inference methods: col-
lapsed Gibbs sampling, standard variational Bayesian inference, and collapsed
variational Bayesian inference. These methods are compared in theory and prac-
tice. Our empirical evaluation demonstrates the versatility and superior stability
and accuracy of NBCE.

2 Related Work

A clustering ensemble technique is characterized by two components: the mech-
anism to generate diverse partitions, and the consensus function to combine the
input partitions into a final clustering. Diverse partitions are typically generated
by using different clustering algorithms [1], or by applying a single algorithm
with different parameter settings [10,16,17], possibly in combination with data
or feature sampling [30,9,20,29].

One popular methodology to build a consensus function utilizes a co-
association matrix [10,1,20,30]. Such a matrix can be seen as a similarity matrix,
and thus can be used with any clustering algorithm that operates directly on
similarities [30,1]. As an alternative to the co-association matrix, voting proce-
dures have been considered to build consensus functions in [7]. Gondek et al. [11]
derive a consensus function based on the Information Bottleneck principle: the
mutual information between the consensus clustering and the individual input
clusterings is maximized directly, without requiring approximation.

A different popular mechanism for constructing a consensus maps the prob-
lem onto a graph-based partitioning setting [25,3,12]. In particular, Strehl et
al. [25] propose three graph-based approaches: Cluster-based Similarity Parti-
tioning Algorithm (CSPA), HyperGraph Partitioning Algorithm (HGPA), and
Meta-Clustering Algorithm (MCLA). The methods use METIS (or HMETIS)
[15] to perform graph partitioning. The authors in [23] develop soft versions of
CSPA, HGPA, and MCLA which can combine soft partitionings of data.

Another class of clustering ensemble algorithms is based on probabilistic mix-
ture models [28,31]. Topchy et al. [28] model the clustering ensemble as a finite
mixture of multinomial distributions in the space of base clusterings. A consensus
result is found as a solution to the corresponding maximum likelihood problem
using the EM algorithm. Wang et al. [31] proposed Bayesian Cluster Ensembles
(BCE), a model that applies a Bayesian approach to protect against the over-
fitting to which the maximum likelihood method is prone [28]. The BCE model is
applicable to some important variants of the basic clustering ensemble problem,
including clustering ensembles with missing values, as well as row-distributed or
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column-distributed clustering ensembles. Our work extends the BCE model to
a nonparametric version, keeping all the advantages thereof, while allowing the
number of clusters to adapt to the data.

3 Dirichlet Process Mixture Model

The Dirichlet process (DP) [8] is an infinite-dimensional generalization of the
Dirichlet distribution. Formally, let S be a set, G0 a measure on S, and α0 a
positive real number. The random probability distribution G on S is distributed
according to DP with the concentration parameter α0 and the base measure G0,
if for any finite partition {Bk}1≤k≤K of S:

(G(B1), G(B2), · · · , G(BK)) ∼
Dir(α0G0(B1), α0G0(B2), · · · , α0G0(BK))

Let G be a sample drawn from a DP. Then with probability 1, G is a discrete
distribution [8]. In addition, if the firstN−1 draws fromG yieldK distinct values
θ∗1:K with multiplicities n1:K , then the probability of the N th draw conditioned
on the previous N − 1 draws is given by the Pólya urn scheme [5]:

θN =

{
θ∗

k, with prob
nk

N−1+α0
, k ∈ {1, · · · , K}

θ∗
K+1 ∼ G0, with prob

α0
N−1+α0

The DP is often used as a nonparametric prior in Bayesian mixture models
[2]. Assume the data are generated from the following generative procedure:

G ∼ Dir(α0, G0)
θ1:N ∼ G

x1:N ∼
N∏

n=1

F (·|θn)

The θ1:N typically contains duplicates; thus, some data points are generated
from the same mixture component. It is natural to define a cluster as those
observations generated from a given mixture component. This model is known as
the Dirichlet process mixture (DPM) model. Although any finite sample contains
only finitely many clusters, there is no bound on the number of clusters and any
new data point has non-zero probability of being drawn from a new cluster [22].
Therefore, DPM is known as an “infinite” mixture model.

The DP can be generated via the stick-breaking construction [24]. Stick-
breaking draws two infinite sequences of independent random variables, vk ∼
Beta(1, α0) and θ∗k ∼ G0 for k = {1, 2, · · · }. Let G be defined as:

πk = vk

k−1∏
j=1

(1 − vj) (1)

G(θ) =
∞∑

k=1

πkδ(θ, θ∗k) (2)
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where π = 〈πk|k = 1, 2, · · · 〉 are the mixing proportions of the infinite number
of components. Then G ∼ Dir(α0, G0). It is helpful to use an indicator variable
zn to denote which mixture component is associated with xn. The generative
procedure for the DPM model using the stick-breaking construction becomes:

1. Draw vk ∼ Beta(1, α0), k = {1, 2, · · · } and calculate π as in Eq (1).
2. Draw θ∗k ∼ G0, k = {1, 2, · · · }
3. For each data point:

– Draw zn ∼ Discrete(π)
– Draw xn ∼ F (·|θ∗zn

)

In practice, the process is typically truncated at level K by setting vK−1 = 1
[13]; Eq (1) then implies that all πk for k > K are zero. The truncated process is
called truncated stick-breaking (TSB). The resulting distribution, the truncated
Dirichlet process (TDP), closely approximates the Dirichlet process when K is
sufficiently large. The choice of the truncation level K is discussed in [13]. The
joint probability over data items X = 〈xn|n ∈ {1, · · · , N}〉, component assign-
ments Z = 〈zn|n ∈ {1, · · · , N}〉, stick-breaking weights v = 〈vk|k ∈ {1, · · · ,K}〉
and component parameters θ∗ = 〈θ∗k|k ∈ {1, · · · ,K}〉 is:

p(X, Z, v, θ∗
) =

[
N∏

n=1

F (xn|θ∗
zn

)πzn(v))

] [
K∏

k=1

G0(θ
∗
k)Beta(vk; 1, α0)

]

Another approach to approximate the DP is to assume a finite but large K-
dimensional symmetric Dirichlet prior (FSD) on the mixture proportion π [14],
which is π ∼ Dir(α0/K, · · · , α0/K). This results in the joint distribution:

p(X, Z , π, θ∗
) =[

N∏
n=1

F (xn|θ∗zn
)πzn

][
K∏

k=1

G0(θ∗k)

]
Dir(π;

α0

K
, · · · , α0

K
)

With TSB, the cluster weights differ in expected value, with lower-numbered
cluster indices having higher probability. With FSD, the clusters are exchange-
able. A detailed comparison of these DP approximations can be found in [19].

4 NBCE Generative Model

Following [28] and [31], we assume there are M base clustering algorithms, each
generating a hard partition on the N data items to be clustered. Let Jm denote
the number of clusters generated by the mth clustering ϕm, m ∈ {1, · · · ,M},
and let ynm ∈ {1, · · · , Jm} denote the cluster ID assigned to the nth data item
xn by ϕm, n ∈ {1, · · · , N}. The row yn = 〈ynm|m ∈ {1, · · · ,M}〉 of the base
clustering matrix Y gives a new feature vector representation for the nth data
item.

Figure 1 depicts the generative model for Y . We assume yn is generated from
a truncated Dirichlet Process mixture model, where α0 is the concentration pa-
rameter, G0 is the base measure, and K is the truncation level. The probability
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of generating a cluster ID ynm = jm by ϕm for xn is θnmjm , jm ∈ {1, · · · , Jm}
and

∑Jm

jm=1 θnmjm = 1. So yn = 〈ynm = jm|m ∈ {1, · · · ,M}〉 is generated
with probability

∏M
m=1 θnmjm . We define θnm = 〈θnmjm |jm ∈ {1, · · · , Jm}〉. We

further assume a prior G(m)
0 for θ·m = {θnm|n = 1, · · · , N}, where G(m)

0 is a
symmetric Dirichlet distribution of dimension Jm with hyperparameter β. The
base measure G0 is defined as G0 = G

(1)
0 ×· · ·×G(M)

0 . We denote θn = 〈θnm|m ∈
{1, · · · ,M}〉. Since the truncation level is K, there are K unique θn, denoted
as θ∗

k = 〈θ∗
km|m ∈ {1, · · · ,M}〉, where θ∗

km = 〈θ∗kmjm
|jm ∈ {1, · · · , Jm}〉,∑Jm

jm=1 θ
∗
kmjm

= 1 and k ∈ {1, · · · ,K}. We associate with each xn an indi-
cator variable zn to indicate which θ∗

k is assigned to xn; if zn = k, then θn = θ∗
k.

A consensus cluster is defined as a set of data items associated with the same θ∗
k.

That is, zn indicates which consensus cluster xn belongs to. There are at most
K consensus clusters, but some consensus clusters may be empty; we define the
total number of consensus clusters to be the number of distinct zn in the sample.

α0

�π �θ∗km
KG

G
(m)
0

zn ynm

MN

Fig. 1. Nonparametric Bayesian Clustering Ensembles Model

The stick breaking generative process for Y is:

1. Draw vk ∼ Beta(1, α0), for k = {1, · · · ,K} and calculate π as in Eq (1)
2. Draw θ∗

k ∼ G0, for k = {1, · · · ,K}
3. For each xn:

– Draw zn ∼ Discrete(π)
– For each base clustering ϕm, draw ynm ∼ Discrete(θ∗

znm)

Using the symmetric Dirichlet prior, step 1 becomes:

1. Draw π ∼ Dir(α0
K , · · · , α0

K )

5 Inference and Learning

This section considers three inference and learning methods: collapsed Gibbs
sampling, standard variational Bayesian, and collapsed variational Bayesian in-
ference. Table 1 gives the notation used throughout this section.
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The joint probability of observed base clustering results Y = 〈yn|n ∈
{1, · · · , N}〉, indicator variables Z = 〈zn|n ∈ {1, · · · , N}〉, component weights
π = 〈πk|k ∈ {1, · · · ,K}〉, and component parameters θ∗ = 〈θ∗

k|k ∈ {1, · · · ,K}〉
is given by:

p(Y , Z, π, θ∗|α0, G0) =(
N∏

n=1

p(zn|π)p(yn|θ∗, zn)

)
· p(π|α0)

(
K∏

k=1

p(θ∗
k|G0)

)
=(

N∏
n=1

p(zn|π)
M∏

m=1

p(ynm|θ∗
znm)

)
· p(π|α0)

(
K∏

k=1

M∏
m=1

p(θ∗
km|G(m)

0 )

)
(3)

After marginalizing out the parameters π and θ, the complete data likelihood
is:

p(Y , Z|α0, G0, ) = p(Z|α0) (4)

·
⎛⎝ M∏

m=1

K∏
k=1

Γ (Jmβ)
Γ (Jmβ + Nz·=k)

Jm∏
jm=1

Γ (β + N y·m=jm

z·=k )
Γ (β)

⎞⎠
where for the two DP approximations, p(Z|α0) is different [19]:

pTSB(Z |α0) =
∏

k<K

Γ (1 + Nz·=k)Γ (α0 + Nz·>k)
Γ (1 + α0 + Nz·≥k)

pFSD(Z|α0) =
Γ (α0)

Γ (α0 +N)

K∏
k=1

Γ (α0
K + Nz·=k)
Γ (α0

K )

5.1 Collapsed Gibbs Sampling

Collapsed Gibbs sampling [21] speeds up the convergence of Gibbs sampling by
marginalizing out the parameters π and θ, sampling only the latent indicator
variables Z over the so-called collapsed space.

From Eq (4), we can derive the distribution for sampling components of Z:

p(zn = k|Z¬n, Y ) ∝

p(zn = k|Z¬n)
M∏

m=1

(∏Jm

jm=1(β + N¬n
z·=k,y·m=jm

)
Jmβ + N¬n

z·=k

)
(5)

where for the two different DP approximations, p(zn = k|Z¬n) is different:

pTSB(zn = k|Z¬n) =
1 + N¬n

z·=k

1 + α0 + N¬n
z·≥k

∏
h<k

α0 + N¬n
z·>h

1 + α0 + N¬n
z·≥h

pFSD(zn = k|Z¬n) =
α0
K + N¬n

z·=k

α0 +N − 1
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Table 1. Notation Description

Symbols Description
N the number of data

xn the nth data item
M the number base clusterings

ϕm the mth base clustering algorithm
ynm the cluster ID assigned to xn by ϕm

K the number of consensus clusters (truncation level)

Jm the number of clusters in the mth base clustering

jm the jth cluster in the mth base clustering

G
(m)
0 the Dirichlet prior to {1, 2, · · · , Jm} of ϕm

β the hyperparameter of G
(m)
0

G0
∏M

m=1 G0m
zn the indicator variable of xn to indicate which θ∗

k assigned to xn

Z¬n the indicator variables except for xn

θnmjm the probability of ynm = jm

θnm 〈θnmjm |jm ∈ {1, · · · , Jm}〉 and
∑Jm

jm=1 θnmjm = 1

θn 〈θnm|m ∈ {1, · · · , M}〉
θ∗

kmjm
the probability of ynm = jm if zn = k

θ∗
km 〈θ∗

kmjm
|jm ∈ {1, · · · , Jm}〉 and

∑Jm
jm=1 θ∗

kmjm
= 1

θ∗
k 〈θ∗

km|m ∈ {1, · · · , M}〉, unique parameter value of θn

θ∗ 〈θ∗
k|k ∈ {1, · · · , K}〉

Nz·=k

∑N
n=1 δ(zn, k)

N¬n
z·=k

∑N
n′=1,n′ �=n

δ(zn′ , k)

Ny·m=jm
z·=k

∑N
n=1 δ(zn, k)δ(ynm, jm)

N¬n
z·=k,y·m=jm

∑N
n′=1,n′ �=n

δ(zn′ , k)δ(yn′m, jm)

Nz·≥k

∑N
n=1 1{z≥k}(zn)

N¬n
z·≥k

∑N
n′=1,n′ �=n

1{z≥k}(zn′)

5.2 Standard Variational Bayesian Inference

Variational Bayesian inference [4] approximates the posterior distribution by
adjusting free parameters of a tractable variational distribution to minimize the
KL-divergence between the variational and true distributions. This is equivalent
to maximizing a lower bound on the true log-likelihood.

We consider only the FSD prior as the DP approximation for standard vari-
ational Bayesian (VB) inference. VB assumes the following variational distribu-
tions:

q(π, θ, Z|ξ, ρ, γ) = q(π|ξ)

(
K∏

k=1

p(θ∗
k|ρk)

)(
N∏

n=1

p(zn|γn)

)

= q(π|ξ)

(
K∏

k=1

M∏
m=1

p(θ∗
km|ρkm)

)(
N∏

n=1

p(zn|γn)

)
(6)

where ξ = 〈ξk|k ∈ {1, · · · ,K}〉, ρ = 〈ρk|k ∈ {1, · · · ,K}〉 = 〈ρkm|k ∈
{1, · · · ,K},m ∈ {1, · · · ,M}〉 and γ = 〈γn|n ∈ {1, · · · , N}〉 are variational pa-
rameters, assumed to be independent. Further, given these variational parame-
ters, the model parameters and indicator variables, π, θ and Z are independent
of each other.1 In particular, ξ specifies a K-dimensional Dirichlet distribution
1 This is a strong assumption: note the dependences between π and Z , θ and Z, θ

and π depicted in Figure 1.
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for π, ρkm specifies a Jm-dimensional Dirichlet distribution for θ∗
km, and γn

specifies an N -dimensional multinomial distribution for the indicator zn of xn.
A lower bound LV B for the log-likelihood is given by:

log p(Y |α0, G0) ≥ (7)
Eq[log p(Y ,Z,π,θ∗|α0, G0)] − Eq[log q(π,θ∗,Z|ξ,ρ,γ)] =(

N∑
n=1

M∑
m=1

Eq[log p(ynm|θ∗
znm)]

)
− Eq[log p(π|α0)] +

(
N∑

n=1

Eq[log p(zn|π)]

)
+(

K∑
k=1

Eq[log p(θ∗
k|G0)]

)
− Eq[log q(π|ξ)] − Eq[log q(θ∗|ρ)] − Eq[log q(Z|γ)]

See the Appendix for the expansion of Eq (7).
A local optimum is found by setting the partial derivatives ofLV B with respect

to each variational parameter to be zero. This gives rise to the following first-
order conditions:

γnk ∝ exp
{⎛⎝ M∑

m=1

Jm∑
jm=1

δ(ynm, jm) log ρkmjm

⎞⎠+ Ψ(ξk) − Ψ(
K∑

h=1

ξh)
}

ρkmjm = β +
N∑

n=1

Jm∑
jm=1

γnkδ(ynm, jm)

ξk =
α0

K
+

N∑
n=1

γnk.

As for the remaining parameters α0 and β, we first write the parts of LV B

involving α0 and β as:

L[α0]
V B = logΓ (α0) −K logΓ (

α0

K
) +
(α0

K
− 1
) K∑

k=1

[
Ψ(ξk) − Ψ(

K∑
h=1

ξh)

]

L[β]
V B =

M∑
m=1

(
K logΓ (Jmβ) −KJm logΓ (β)+

(β − 1)
K∑

k=1

Jm∑
jm=1

[
Ψ(ρkmjm ) − Ψ(

Jm∑
h=1

ρkmh)

])

Estimates for α0 and β are then obtained by maximization of L[α0]
V B and L[β]

V B

using standard methods such as Newton-Raphson [6].

5.3 Collapsed Variational Bayesian Inference

Inspired by collapsed Gibbs sampling, collapsed variational Bayesian (CVB) in-
ference for NBCE optimizes a lower bound LCV B for the log-likelihood in the
collapsed space, in which the model parameters θ∗ are marginalized out.



Nonparametric Bayesian Clustering Ensembles 443

CVB assumes the following variational distribution:

q(Z|γ) =

N∏
n=1

q(zn|γn) (8)

where γ = 〈γn|n ∈ {1, · · · , N}〉 are variational parameters. Here, γn parameter-
izes an N -dimensional multinomial distribution for the indicator zn of xn. As
shown in Figure 2, marginalizing out θ∗ removes the need to specify variational
parameters for θ∗. Thus, CVB searches for an optimum in a less restricted space
than VB, which may lead to a better posterior approximation than VB.

zn

γn

N

Fig. 2. Graphical model representation of the collapsed variational distribution used

to approximate the posterior in NBCE

The lower bound LCV B for the log-likelihood is:

log p(Y |α0, G0, ) ≥
Eq(Z|γ)[log p(Y ,Z|α0, G0, )] − Eq(Z|γ)[log q(Z|γ)] (9)

By taking the derivatives of LCV B with respect to q(zn = k|γn), we have:

q(zn = k|γn) ∝ exp

{
Eq(Z¬n,|γ)

[
log p(zn = k|Z¬n)+⎛⎝ M∑

m=1

Jm∑
jm=1

log(β + N¬n
z·=k,y·m=jm

)

⎞⎠−
(

M∑
m=1

log(Jmβ + N¬n
z·=k)

)]}
(10)

where for the two DP approximations, log p(zn = k|Z¬n) is different:

log pTSB(zn = k|Z¬n) = log(1 + N¬n
z·=k) − log(1 + α0 + N¬n

z·≥k)+∑
h<k

[
log(α0 + N¬n

z·>h) − log(1 + α0 + N¬n
z·≥h)

]
log pF SD(zn = k|Z¬n) = log(

α0

K
+ N¬n

z·=k) − log(α0 + N − 1)

Following [26], we apply the first-order latent-space variational Bayesian
approximation to Eq (10). Applying the second-order latent-space variational
Bayesian inference [27] will lead to a better approximation, but is more expen-
sive. We plan to use it in our future work. Here we just illustrate how to calculate
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Eq(Z¬n|γ)[log(β + N¬n
z·=k,y·m=jm

)] and Eq(Z¬n|γ)[log(Jmβ + N¬n
z·=k)]. The calcu-

lation of other expectations is similar.
According to [26], we have:

Eq(Z¬n|γ)

[
log(β + N¬n

z·=k,y·m=jm
)

]
≈ log

(
β + Eq(Z¬n|γ)

[
N¬n

z·=k,y·m=jm

])
Eq(Z¬n|γ)

[
log(Jmβ + N¬n

z·=k)
]
≈ log

(
Jmβ + Eq(Z¬n|γ)

[
N¬n

z·=k

])
Denote γnk = q(zn = k|γn), then we get:

Eq(Z¬n|γ)

[
N¬n

z·=k,y·m=jm

]
=

N∑
n′=1,n′ �=n

γn′kδ(yn′m = jm)

Eq(Z¬n|γ)

[
N¬n

z·=k

]
=

N∑
n′=1,n′ �=n

γn′k (11)

Calculating all the expectations and plugging them back into Eq (10) yields
approximations to γnk = q(zn = k|γn). Repeating this process gives an EM-
style iterative algorithm for estimating the γnk. The algorithm terminates when
the change in γnk drops below a threshold.

6 Empirical Evaluation

We compared several ensemble methods. We first used k-means with different
initializations to obtain a set of base clusterings. Then we generated a consen-
sus clustering using various clustering ensemble algorithms, including Bayesian
clustering ensembles (BCE) [31], mixture model (MM) [28], CSPA, HGPA,
and MCLA [25]. All of these are parametric methods. We also compared two
different DP approximations, TSB and FSD, and the performance of NBCE
estimated with collapsed Gibbs sampling, collapsed and standard variational
approximation.

Datasets. We evaluated NBCE on both synthetic and real datasets. We gen-
erated a set of synthetic data with two clusters and some outliers to test the
robustness of NBCE. The synthetic data are plotted in Figure 3. To generate
the base clusterings on the synthetic data, following [31], we randomly added
noise into the ground-truth labeling, e.g., we randomly modified the true labels
of 5%, 10%, 15% and 20% of the data points. In each case, we generated 10 base
noisy clusterings.

We also used five benchmark datasets from the UCI Machine Learning Repos-
itory2: Glass, Ecoli, ImageSegmentation, ISOLET, and LetterRecognition. Glass
contains glass instances described by their chemical components. Ecoli contains

2 http://archive.ics.uci.edu/ml/
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Fig. 3. Synthetic Data: Two Clusters with Outliers

data on E. Coli bacteria. ImageSegmentation contains data from images that
were hand-segmented classifying each pixel. ISOLET contains data represent-
ing spoken letters of the alphabet; we selected the letters A, B, C, D, E, and
G. LetterRecognition contains character images corresponding to the capital let-
ters in the English alphabet; we selected 700 samples of the letters A to J. We
also used two time-series datasets from different application domains, namely
Tracedata and ControlChart3. Tracedata simulates signals representing instru-
mentation failures. ControlChart contains synthetically generated control charts
that are classified into one of the following: normal, cyclic, increasing trend,
decreasing trend, upward shift, and downward shift.

To generate an ensemble on real data, we varied the number of output clusters
of the base clustering algorithms. We computed clustering solutions obtained
from multiple runs of k-means with different random initializations. The output
clustering solutions were composed of a number of clusters equal to 50%, 75%,
100%, 150%, and 200% of the number of ideal classes of the specific dataset. We
used 10 base clusterings for each dataset.

Setting of Clustering Ensemble Methods. For each parametric method
and dataset, we set the number of output clusters equal to the actual number of
classes, according to the ground truth. For the graph-partitioning-based methods
(i.e., CSPA, HGPA, and MCLA), we set the METIS parameters as suggested in
[15]. For NBCE, we set the truncation level K = 100. When comparing NBCE
with other ensemble methods, we use Gibbs sampling for the inference of NBCE.

Evaluation Criteria. Since k-means, CSPA, HGPA, and MCLA are non-
generative approaches, to compare the quality of their consensus partitions
with NBCE, we evaluated their clustering accuracy using the F1-measure. The
objective is to evaluate how well a consensus clustering fits the ground-truth
partition. The F1-measure is defined as the harmonic average of precision and re-
call. Given a set D = {x1, · · · , xn} of n data objects, and A = {A1, · · · , Ah} and

3 For a description see: http://www.cs.ucr.edu/∼eamonn/time series data/
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B = {B1, · · · , Bk} being two clustering solutions defined over D, the precision
(P ) and recall (R) are defined as:

P (Ai, Bj) =
|Ai ∩Bj |

|Ai| R(Ai, Bj) =
|Ai ∩Bj |

|Bj |

P (A,B) =
1
h

k∑
i=1

max
j∈{1,··· ,k}

P (Ai, Bj)

R(A,B) =
1
h

k∑
i=1

max
j∈{1,··· ,k}

R(Ai, Bj)

The F1-measure is defined as: F1 = 2P (A,B)R(A,B)
P (A,B)+R(A,B) .

Since MM, BCE and NBCE are generative models, we used perplexity to
compare them. The perplexity of the observed base clusterings Y is defined
as [6]:

perp(Y ) = exp

(
− log p(Y )

NM

)
(12)

Clearly, the perplexity monotonically decreases with the log-likelihood. Thus, a
lower perplexity value on the training data means that the model fits the data
better, and a lower value on the test data means that the model can better
explain unseen data.

6.1 Results

Evaluation of Clustering Ensemble Methods. We held out 1/4 of the
data to evaluate the predictive performance of MM, BCE and NBCE. Table 2
compares the clustering ensemble results for k-means, CSPA, HGPA, MCLA
and NBCE in terms of the F1-measure on the real datasets excluding the hold-
out set. We can see clearly that all ensemble methods outperform the baseline
k-means algorithm, and NBCE gives the highest accuracy for each dataset. A
paired t-test of NBCE against the next best accuracy is significant at the 0.002
level. Thus the comparison results of NBCE versus all competitors are statisti-
cally significant.

Table 2. F1-measure Results

Base k-means
CSPA HGPA MCLA NBCE

max avg
Glass 0.57 0.51 0.66 0.59 0.61 0.69
Ecoli 0.61 0.56 0.67 0.65 0.68 0.72

ImageSegmentation 0.52 0.42 0.53 0.44 0.59 0.65
ISOLET 0.53 0.41 0.59 0.50 0.65 0.66

LetterRecognition 0.48 0.40 0.49 0.50 0.53 0.62
Tracedata 0.49 0.44 0.51 0.62 0.61 0.66

ControlChart 0.62 0.56 0.73 0.70 0.67 0.77
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Table 3. Perplexity Results on the Synthetic Dataset

5% 10% 15% 20%
MM 10.04 13.27 17.36 21.20
BCE 7.92 9.76 14.22 18.98

NBCE 5.63 8.31 11.16 15.87

Table 4 compares MM, BCE and NBCE in terms of the perplexity on the
synthetic datasets. It’s clear that NBCE fits the data better than BCE and
MM. BCE and MM are parametric models, and thus fail to handle outliers. In
contrast, NBCE is robust to outliers because it can find the number of clusters
that fits the data best.

Tables 4 and 5 compare MM, BCE and NBCE in terms of the perplexity on
training and test (i.e., hold-out) data for the real datasets. NBCE fits the data
better than BCE, and BCE is better than MM.

Table 4. Perplexity Results on Training data for Real Datasets

Glass Ecoli ImageSegmentation ISOLET LetterRecognition Tracedata ControlChart
MM 1.02 1.33 1.40 1.63 2.21 2.97 4.34
BCE 0.99 1.10 1.23 1.34 1.98 2.53 4.01

NBCE 0.77 0.92 1.03 1.24 1.76 2.38 3.63

Table 5. Perplexity Results on Test Data for Real Datasets

Glass Ecoli ImageSegmentation ISOLET LetterRecognition Tracedata ControlChart
MM 1.15 1.51 1.49 1.72 2.51 3.22 5.56
BCE 1.07 1.39 1.37 1.60 2.33 2.94 4.88

NBCE 0.98 1.18 1.16 1.47 1.96 2.62 4.58

Comparison of TSB and FSD. In principle, TSB tends to produce larger clus-
ters then FSD. The experimental results confirm this fact by showing that NBCE
with a TSB prior gives a smaller number of singleton clusters than NBCE with
FSD. Table 6 shows the percentage of outliers in singleton clusters for the five UCI
datasets, when using collapsed Gibbs sampling with the two different priors.

Comparison of CVB, VB and Gibbs. Table 7 illustrates the perplexity of
the three inference methods of NBCE on the UCI datasets excluding the hold-
out set. Collapsed Gibbs sampling is asymptotically unbiased, so it gives lower
perplexity than CVB and VB; CVB has less restricted assumption than VB, and
CVB has lower perplexity than VB. The perplexity is calculated at convergence.

Table 6. Outlier Percentage

TSB FSD
Glass 3.2% 5.4%
Ecoli 4.3% 5.1%

ImageSegmentation 3.2% 3.5%
ISOLET 2.9% 3.1%

LetterRecognition 3.3% 3.6%
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Table 7. Perplexity of Gibbs, CVB and VB

Gibbs CVB VB
Glass 0.77 0.85 0.91
Ecoli 0.92 0.96 1.02

ImageSegmentation 1.03 1.06 1.11
ISOLET 1.24 1.28 1.30

LetterRecognition 1.76 1.80 1.88

7 Conclusion

A nonparametric Bayesian clustering ensemble model was proposed and three in-
ference methods were considered: collapsed Gibbs sampling, variational Bayesian
inference, and collapsed variational Bayesian inference. The versatility, and su-
perior stability and accuracy of NBCE were demonstrated through empirical
evaluation.
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Appendix

LV B , Eq (7), has 7 terms. After the expansion, LV B can be rewritten as follows, where

each line corresponds to a term of Eq (7):

LV B =(
N∑

n=1

M∑
m=1

K∑
k=1

Jm∑
jm=1

γnkδ(ynm, jm) log ρkmjm

)
+

(
log Γ (α0) − K log Γ (

α0

K
) + (

α0

K
− 1)

K∑
k=1

[
Ψ(ξk) − Ψ(

K∑
h=1

ξh)

])
+

N∑
n=1

K∑
k=1

γnk[Ψ(ξk) − Ψ(

K∑
h=1

ξh)] +

M∑
m=1

(
K log Γ (Jmβ) − KJm log Γ (β)+(β − 1)

K∑
k=1

Jm∑
jm=1

[
Ψ(ρkmjm ) − Ψ(

Jm∑
h=1

ρkmh)

])
−

(
log Γ (

K∑
k=1

ξk) −
K∑

k=1

log Γ (ξk) +

K∑
k=1

(ξk − 1)[Ψ(ξk) − Ψ(

K∑
h=1

ξh)]

)
−

K∑
k=1

M∑
m=1

(
log Γ (

Jm∑
jm=1

ρkmjm ) −
Jm∑

jm=1

log Γ (ρkmjm) +

Jm∑
jm=1

(ρkmjm − 1)

[
Ψ(ρkmjm ) − Ψ(

Jm∑
h=1

ρkmh)

])
−

N∑
n=1

K∑
k=1

γnk log γnk

Here, δ(·, ·) is the Kronecker delta function; Ψ(·) is the digamma function, the
first derivative of the log Gamma function; γnk = q(zn = k|γn); ρkmjm =
q(θ∗kmjm

|ρkm); and γnk = q(zn = k|γn).
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Abstract. Many real world applications can be naturally formulated

as a directed graph learning problem. How to extract the directed link

structures of a graph and use labeled vertices are the key issues to in-

fer labels of the remaining unlabeled vertices. However, directed graph

learning is not well studied in data mining and machine learning areas.

In this paper, we propose a novel Co-linkage Analysis (CA) method to

process directed graphs in an undirected way with the directional infor-

mation preserved. On the induced undirected graph, we use a Green’s

function approach to solve the semi-supervised learning problem. We

present a new zero-mode free Laplacian which is invertible. This leads

to an Improved Green’s Function (IGF) method to solve the classifica-

tion problem, which is also extended to deal with multi-label classifica-

tion problems. Promising results in extensive experimental evaluations

on real data sets have demonstrated the effectiveness of our approach.

1 Introduction

Different from undirected graphs, which only characterize symmetric pairwise
similarity between data objects, directed graphs take into account edge direc-
tionality. This additional link structure usually brings useful information, though
it makes learning on a directed graph more challenging. As a result, in contrast to
a large number of classification methods devised for undirected graphs, classifica-
tion on directed graphs has been much less studied [29]. In this work, we explore
this area and solve the problem to classify unlabeled data on a directed graph
by leveraging directed link structures when partially labeled data are given.

Directed graph appears extensively in diverse real world applications. Typical
examples of classification on directed graphs include web page categorization [12]
and spam host identification [1] on hyperlink networks, document classification
or recommendation on citation graphs [10], and many practical problems in other
domains such as computational biology [17,15]. Besides these natural real world
directed networks, asymmetric pairwise similarities between data objects also
generate directed graphs, e.g., the immediate outputs of widely used k-Nearest
Neighbor (k-NN) graph construction method [11] and recently proposed sparse
representation based graph construction methods [5,25].

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part III, LNAI 6323, pp. 451–466, 2010.
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Because most existing graph-based semi-supervised classification algorithms
only deal with undirected graphs, directed graphs are routinely converted to
undirected ones via symmetrization in different ways prior to usage. For instance,
when constructing a k-NN graph [11], an edge is placed between two data points
xi and xj when one of them is among the k nearest neighbors of the other one.
However, in reality, xi is not necessary to be among the k nearest neighbors of
xj , when xj is among the k nearest neighbors of xi. Such symmetrization treat-
ments [11,1,5,25] indeed simply discard the important structural information
conveyed by edge directions, which inevitably impair the efficacy of subsequent
classifications. For example, it is almost impossible to detect spam host with-
out taking into consideration hyperlink direction — the main mechanism for
web spam identification [1]: spam hosts frequently link to genuine hosts, while
genuine hosts are rarely observed to link to spam ones. Therefore, there is a
great need to develop directed graph based semi-supervised learning algorithms
to make use of edge directionality of an input directed graph.

In this work, we focus on semi-supervised learning on a directed graph which
classifies unlabeled vertices on a directed graph with partially labeled vertices.
Our approach consists of two following steps.

Firstly, we provide an in-depth co-linkage analysis on co-citation and co-
reference linkages at second, third and fourth orders. This leads to a novel Co-
linkage Analysis (CA) similarity to process a directed graph in an undirected way
with the directional information preserved. We also emphasize the importance of
link normalization and refine CA similarity by symmetrically normalizing both
in-links and out-links in a balanced manner. Once the symmetric pairwise simi-
larity are obtained through this co-linkage analysis process, existing graph based
semi-supervised learning methods can be employed.

Secondly, we further develop the Green’s function learning framework [8], and
present an Improved Green’s Function (IGF) method to classify unlabeled data
on the induced graph via CA similarity. Here we solve the problem caused by
the zero-mode of the combinatorial Laplacian of an input graph. In addition,
by incorporating label correlations through the kernel regularization framework
derived from the theory of reproducing kernel Hilbert space (RKHS) [23], IGF
method is extended to deal with multi-label data.

Related works. Due to the broad usage of directed graphs in numerous real ap-
plications, directed graph learning has attracted increasing attention in recent
years. F. Chung [6] defined the combinatorial Laplacian of a directed graph,
which laid foundation for label propagation on a directed graph. Zhou et al . [30]
generalized their earlier work [28] for semi-supervised learning on undirected
graphs to that on directed graphs by discriminatively normalizing in-links and
out-links. They also proposed another method [29] upon the same intuition, in
which the regularization on a directed graph has a similar form to the combina-
torial Laplacian of a directed graph defined in [6]. Shin et al . considered learning
on an artificial directed graph derived from an undirected graph through an in-
teresting method — “graph sharpening” [18], which removes the direction from
an unlabeled datum to a labeled one on all edges. Besides label propagation,
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various other mechanisms have also been used to devise learning methods on a
directed graph to take advantage of its asymmetric nature [17,15,31,1,27].

Notations. Pairwise similarities between data objects are usually described as
an undirected graph Gu with a symmetric weight matrix W ∈ Rn×n. D =
diag (We), where e = {1, . . . , 1}T , and (D −W ) is the graph Laplacian.

Suppose Gd = (V , E) is an unweighted directed graph with vertex set V and
edge set E ⊆ V × V . Gd is described by an asymmetric adjacency matrix L =
{0, 1}n×n, such that |V| = n, and Lij = 1 if there exists an edge i → j from
vertex i to vertex j, and Lij = 0 otherwise. The edge i → j is an ordered pair,
and we say j is the out-neighbor of i, or i is the in-neighbor of j. The number
of out-neighbors of i is the out-degree of i, given by di

out =
∑

k Lik. Similarly,
the number of in-neighbors of j is the in-degree of j, given by dj

in =
∑

k Lkj . Let
Dout be a diagonal matrix and Dout (i, i) = di

out, and Din be a diagonal matrix
and Din (i, i) = di

in. When i → i ∈ E , the edge is called as a loop. A graph is
simple if it has no loop. In this work, we only consider simple directed graphs,
which are also strongly connected and aperiodic [2].

A weighted directed graph is described by a weight matrix R ∈ Rn×n when
there exists a function r : E → R+, which associates a nonnegative value Ri→j

with every edge i → j ∈ E . Here we use R for directed graph to distinguish
from W for undirected graph. An unweighted directed graph is a special case of
weighted directed graphs when R = L. For a weighted directed graph, the out-
degree is defined as di

out =
∑

kRik, and the in-degree is defined as di
in =
∑

k Rkj .
When it is clear from context, we use W and Gu interchangeably, and the

same for R (or L) and Gd.

2 Challenges of Semi-supervised Learning on A Directed
Graph

The semi-supervised learning problem on a directed graph is as following. On a
small subset of the vertices, the class labels are known. The task is to classify
the rest vertices on the graph.

On an undirected graph, this problem is easy to understand. However, on a
directed graph, this problem can be very intriguing. A semi-supervised learning
problem on a simple unweighted directed graph is shown in Fig. 1(a). On this
graph, the final class labels on the unlabeled vertices are not obvious. Fig. 1
illustrates three possible solutions.

Using nearest neighbor classification. If we use the nearest neighbor clas-
sification (NNC), the results are shown in Fig. 1(b). The NNC algorithm is the
following iterative algorithm. It computes the label (y1, · · · , yn) on all unlabeled
vertices with yi fixed to their signs on all labeled vertices while y(t=0)

j = 0 for all

unlabeled vertices. We iterate with y(t+1)
j = sign

(∑
i Lijy

(t)
i

)
until convergence.

Vertex f will be labeled as “−” due to the the incoming neighbor a. Vertex e will
be labeled as “−” due to the the incoming neighbor f . Repeating this, vertices
d and c will be labeled as “−”.
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Fig. 1. (a) Semi-supervised learning on a simple directed graph. Vertex a is positively

labeled and vertex b is negatively labeled. The task is to classify the rest vertices.

(b) Solution of the problem in (a) via nearest neighbor method.

(c) Solution of the problem in (a) via symmetrization and label propagation method.

(d) Solution of the problem in (a) via random walk method.

Using symmetrization. If we symmetrize the directed graph into an undi-
rected graph by W = L + LT , the results are shown in Fig. 1(c). In this case,
the problem becomes the semi-supervised learning on an undirected graph. It is
now obvious that the final class labels are assigned as shown in Fig. 1(c).

Using random walk. If we use information propagation via random walks,
the results are shown in Fig. 1(d), i.e., class labels on the unlabeled vertices
are undetermined. The reason is as following. A random walker starting from
vertex a will carry negative class information. This walker will walk to vertex f
with probability 1. It then will walk to vertex e with probability 1, etc. At time
tends to infinity, this walker will reach all vertices with equal probability of 1/6,
passing on a negative label.

On the other hand, a random walker starting from vertex b will carry positive
class information. It will visit each vertex with 1/6 probability as time tends to
infinity, passing on a positive label. Thus on each unlabeled vertex, the prob-
ability of positive label is equal to the probability of negative label. Therefore,
the final labeling is undetermined.

Note that the situation will be very different if the graph is undirected as
shown in Fig. 1(c). On the undirected graph, the random walker starting from
vertex a (call it walker-a) will have a higher probability reaching f than reaching
e, because after reaching f , instead of going to e (as required by the directed
graph), it has the choice of walking back to a. Thus the farther-away from a, the
smaller probability walker-a will reach. The same holds for the random walker
starting from vertex b (call it walker-b). Therefore, the probability for walker-a
reaching f is higher than the probability for walker-b reaching f , leading to a
“−” label for f .
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Challenges of learning on a directed graph The above discussions show
that semi-supervised learning on a directed graph is rather intriguing. Different
approaches lead to very different results (while on an undirected graph, different
approaches lead to the same results). Our analysis also shows that simple sym-
metrization of the adjacency matrix (link matrix L), i.e., W = L + LT , loses
critical information and results in very different outcomes.

We point out without elaboration that unsupervised learning such as cluster-
ing on a directed graph also has very similar intriguing problems. In general,
research on directed graphs learning is lacking.

In this paper, we attempt to solve this learning problem by building a sym-
metric pairwise similarity from a directed graph. Once this symmetric similarity
is constructed, the problem becomes learning on an undirected graph, and we
may solve the problem using any existing algorithm for undirected graphs.

3 Co-linkage Analysis of A Directed Graph

In this section, we propose a novel Co-linkage Analysis (CA) method to process
a directed graph in an undirected way. We first study the two fundamental
co-linkages: co-citation and co-reference [9,7], and extend them to higher orders.
Then we emphasize the importance of edge weight normalization. In our previous
work [24], we use only second-order processes to describe a directed graph. In
this work, we induce a symmetric similarity from a directed graph using both
second-order co-linkages and their high-order extensions.

3.1 Pairwise Similarity via Co-linkage Analysis

Second-order co-citation and co-reference processes. On a directed graph,
we consider the following two second-order fundamental processes: co-citation
[19] as shown in Fig. 2(a) and co-reference [13] as shown in Fig. 2(b).

If two vertices i and j are co-cited by many other vertices, such as vertex k
in Fig. 2(a), i and j are likely to be related in some sense. Thus co-citation is a
similarity measure and defined as the number of vertices that co-cite i and j:

W
(c)
ij =

∑
k

LkiLkj =
(
LTL
)
ij
. (1)

On the other hand, if two vertices i and j co-reference several other vertices,
such as vertex k in Fig. 2(b), i and j are supposed to have certain commonality.
Co-reference also measures similarity between vertices:

W
(r)
ij =

∑
k

LikLjk = (LLT )ij . (2)

Combining W (c) and W (r), we define the second-order similarity as:

W (2nd) = LTL+ LLT , (3)

where we assume co-citation and co-reference are equally important.
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(a) Co-citation (b) Co-reference

Fig. 2. Two fundamental second-order processes on a directed graph

Third-order co-citation and co-reference processes. Now we extend the
co-citation and co-reference processes to the third-order. Specifically, for the co-
citation between vertices i and j with respect to vertex k as in Fig. 2(a), an
intermediate vertex can be inserted between k and i as in Fig. 3(a) or between k
and j as in Fig. 3(b). We call them as third-order co-citations. Similarly, third-
order co-references are defined as in Fig. 3(c) and Fig. 3(d). Same as the original
second-order co-citation and co-reference, they also measure the similarities be-
tween vertices i and j.

(a)
(
LT LT L

)
ij

(b)
(
LT LL

)
ij

(c)
(
LLLT

)
ij

(d)
(
LLT LT

)
ij

Fig. 3. Third-order processes on a directed graph. (a)—(b): third-order co-citation;

(c)—(d): third-order co-reference.

For the third-order co-citation in Fig. 3(a), the similarity between vertices i
and j can be easily counted by

∑
k

∑
l LliLklLkj =

(
LTLTL

)
ij

. Following the
same way for the rest three processes, the third-order similarity is defined as:

W (3rd) = LTLTL+ LTLL+ LLLT + LLTLT

= L
(
L+ LT

)
LT + LT

(
L+ LT

)
L,

(4)

where we assume the four third-order processes in Fig. 3 are equally important.
Note that, on a directed graph, other third-order processes also exist, such

as the one shown in Fig. 4(a). However, because this process forms neither co-
citation nor co-reference, it is not taken into account.

Fourth-order co-citation and co-reference processes. We further extend
the co-citation and co-reference processes to the fourth-order, which are illus-
trated in Fig. 5. Again, we do not consider the processes not forming either
co-citation or co-reference such as the one shown in Fig. 4(b). Thus, the fourth-
order similarity is defined as:

W (4th) = LTLLL+ LTLTLTL+ LTLTLL+ LLLLT + LLTLTLT + LLLTLT

= L
(
LL+ LTLT + LLT

)
LT + LT

(
LL+ LTLT + LTL

)
L . (5)
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(a) Invalid 3rd-order process:
(
LLT L

)
ij

(b) Invalid 4th-order process:
(
LLLT L

)
ij

Fig. 4. Invalid third-order and fourth-order processes on a directed graph
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)
ij

(b)
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ij
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)
ij

(d)
(
LLLLT

)
ij

j

(e)
(
LLT LT LT

)
ij

(f)
(
LLLT LT

)
ij

Fig. 5. Fourth-order processes on a directed graph. (a)—(c): fourth-order co-citation;

(d)—(e): fourth-order co-reference.

Combining W (2nd), W (3rd) and W (4th), we obtain the proposed Co-linkage
Analysis (CA) similarity as following:

W = W (2nd) + μW (3rd) + νW (4th), (6)

where μ and ν are the parameters to balance the relative importance of the
third-order and fourth-order similarities, which are empirically selected as μ =(∑

i�=j W
(2nd)
ij

)
/
(∑

i�=j W
(3rd)
ij

)
and ν =

(∑
i�=j W

(2nd)
ij

)
/
(∑

i�=j W
(4th)
ij

)
.

3.2 Link Normalization

On the web, a vertex/web page with bigger out-degree has greater influence
than another one with smaller out-degree. However, since these out-links can be
arbitrarily added by the web page designer, and the importance of this web page
can be arbitrarily increased.

In PageRank algorithm, every out-going hyperlinks from a vertex is inversely
weighted by its out-degree, thereby every vertex has the same total out-going
weight. This can be stated as Internet Democracy : every web site has a total of one
vote. The hyperlink normalization and its importance are illustrated in Fig. 6(a).
Basically, if a web page has a large out-degree, the significance/uniqueness of its
co-citation is reduced. This points the necessity of out-degree normalization.
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(a) Out-degree normalization. (b) In-degree normalization.

Fig. 6. Importance of link normalization. (a): vertices i and j are co-cited by vertices

k, m and n. However, since vertex m also cites vertices p and q, the co-citation of i
and j by m is not as significant as that by either k or n. This fact can be compensated

by normalizing the weights on the out-bound links of a vertex, i.e., the co-citation of

i and j by m is then 2/4 = 50% as important as that by either k or n. (b): vertices i
and j co-reference vertices k, m and n. However, since vertex m is also referenced by

p and q, the co-reference of i and j by m is not as significant as that to either k or n.

This fact can be similarly compensated by normalizing the in-bound links of a vertex.

Generally speaking, the in-degree of a document is not easily manipulated
and is therefore a good indicator of the importance of the web page. But, when
counting co-reference between two web pages as in Fig. 6(b) as similarity between
the web pages, in-degree should also be normalized, because a web page i with
large in-degree lose the specificity of the those web pages pointing to i.

With these discussions, the reasonable choices of link normalizations are:

L→ D−1
outL, (7)

L→ LD−1
in , (8)

L→ D−1/2
out LD

−1/2
in . (9)

Normalization of Eq. (7) uses the out-degree and is used in the PageRank al-
gorithm [3,16], which is essentially the transition probability of a random walk.
Normalization using out-degree is related to the concept of co-citation since
co-citation uses out-links from those web pages/vertices pointing to them. Nor-
malization using out-degree will balance the importance of each of these vertices.

Normalization of Eq. (8) uses the in-degree and can be viewed as the transi-
tion probability of a random walk on the inverse direction of the directed graph.
Normalization using in-degree is related to the concept of co-reference since
co-reference uses in-links from those web pages/vertices pointing to them. Nor-
malization using in-degree will balance the importance of each of these vertices.

Normalization of Eq. (9) can be viewed as a compromise between the above
two normalizations. This is also symmetric among the in-degree and out-degree.
Considering the balance of in-degree and out-degree normalization and the bal-
ance among co-citation and co-reference, we adopt this symmetric normalization
in our work.

Replacing L in Eq. (3), Eq. (4) and Eq. (5) by the symmetrically normal-
ized D−1/2

out LD
−1/2
in defined in Eq. (9), we can compute normalized CA through
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Eq. (6), which is used in all our empirical evaluations. When a weighted directed
graph is used, L is replaced by R.

4 Semi-supervised Learning via Improved Green’s
Function Method

With the symmetric CA similarity induced from a directed graph, we may
use any existing graph-based semi-supervised learning algorithm for undirected
graphs to classify the unlabeled data points. In this paper, we further develop
the Green’s function learning framework [8], and present a Improved Green’s
Function (IGF) method for classification. In this method, we solve the problem
caused by the zero-mode of the combinatorial Laplacian of an input graph.

4.1 A Brief Review of the Green’s Function Learning Framework

Suppose we have n = nl +nu data points {xi}n
i=1, where the first nl data points

are labeled with {yi}nl
i=1 forK target classes. Here, xi ∈ Rp and yi ∈ {−1,+1}K,

such that yi (k) = +1 if xi belongs to the k-th class, and −1 otherwise. Our task
is to learn the classification {yi}n

i=nl+1 for the unlabeled data. For the unlabeled
data points, we set yi (k) = 0. We write Y = [y1, · · · ,yn]T .

Given a graph with edge weight W among the data points {xi}n
i=1, we wish to

learn the mapping function F = Rn×K such that |F −Y | is minimized, where | · |
stands for the Frobenious norm of a matrix. Adding a penalty (regularization)
term to ensure smoothness with respect to the underlying data manifold, the
Green’s function learning framework minimizes the following objective [8]:

J (F ) = |F − Y | + αFTK−1F, (10)

where K is a kernel in RKHS, and K−1 = (D −W ). Here α is a parameter to
balance the relative importance of the regularization term.

Taking the derivative of J with respect to F and set it as 0, we obtain F =
[I + α (D −W )]−1

Y . At large α limit, F is computed as following:

F = GY = (D −W )−1Y, (11)

where G = (D −W )−1 is the Green’s function of the input graph. However, G
is not well defined due the existence of the zero-mode of (D −W ).

Let (D −W )vk = λkvk, where 0 = λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of
(D −W ) and vk are the corresponding eigenvectors. Because we consider con-
nected graphs, the first eigenvector is a constant vector v1 = e/

√
n with zero

eigenvalue and multiplicity one. Thus, G is not well defined because v1vT
1 /λ1 =

eeT /nλ1. The analysis in [8] shows that this zero-mode of (D −W ) is a con-
sequence of the Von Neumann boundary condition (derivatives are continuous
at the boundary) and thus the solution is undetermined up to an overall constant.
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This overall constant is removed in [8] by explicitly discarding the zero-mode of
(D −W ) and the Green’s function is computed as follows:

G =
1

(D −W )+
=

n∑
i=2

vivT
i

λi
. (12)

4.2 Zero-Mode Free Laplacian

In this paper, we propose a zero-mode free Laplacian. The graph Laplacian is
usually defined as the embedding of q1, · · · , qn by solving

min
q

1
2

∑
ij

(qi − qj)2Wij , s.t.
∑

i

q2i = 1,
∑

i

qi = 0 . (13)

Now, we propose to modify this to the following

min
q

1
2

∑
ij

(qi − qj)2Wij +
W++

n2
(
∑

i

qi)2, s.t.
∑

i

q2i = 1,
∑

i

qi = 0, (14)

where W++ =
∑

ij Wij . Clearly, the optimal solution for Eq. (14) is identical to
that for Eq. (13). Note that

1
2

∑
ij

(qi − qj)2Wij +
W++

n2
(
∑

i

qi)2 = qTL+q, (15)

where the zero-mode free Laplacian L+ is defined as

L+ = D −W +
W++

n2
eTe . (16)

Some properties of L+ are:

(1) v1 = e/n1/2 is an eigenvector of L+ with eigenvalue λ1(L+) = W++/n.
(2) L+ and L = D−W have the same eigenvectors v2, · · · ,vn with same eigen-
values.
(3) L+ is positive definite and its inverse is well defined.

The new Green’s function becomes the following:

F =
1

D −W + W++
n2 E

Y, (17)

where E = eTe. We call Eq. (17) as Improved Green’s Function (IGF) method.

4.3 Kernel Regularized Correlative Multi-label Classification

Multi-label data present a new opportunity to improve classification accuracy
through label correlations, which is absent in single-label data. Typically, label
correlations of a multi-label data set is captured by a correlation matrix C ∈
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RK×K , which can be computed as in [23]. Adding a penalty for label correlations
to impose smoothness, we minimize the following objective:

J (F ) = β|F − Y |2 + tr
(
FTK−1F − γK− 1

2FCFTK− 1
2

)
, (18)

where K = G =
(
D −W + W++

n2 E
)−1

, β and γ are two small nonnegative
constants to balance the two regularization terms.

When 0 < γ < min {1, 1/max(ζk)} where ζk(0 < k < K) are the eigenvalues
of C, following the same derivation as in [23], the solution to the optimization
problem in Eq. (18) when β is small is obtained as:

F = GY (I − γC)−1
. (19)

We call Eq. (19) as Multi-Label Improved Green’s Function (ML-IGF) method,
which solves multi-label classification problems.

5 Experiments

We evaluate the effectiveness of the proposed CA similarity, and the classification
performances of IGF method on single-label data and ML-IGF method on multi-
label data through classification tasks on directed graphs.

Single-label data sets. Because web data naturally generate directed graphs,
we use the WebKB data set1 for single-label classification. We consider a sub-
set of the WebKB data set containing the pages from four universities, Cornell,
Texas, Washington and Wisconsin, from which we remove the isolated pages,
i.e., those have no incoming and outgoing links, resulting in 858, 825, 1195 and
1238 pages respectively, for a total of 4116. These pages have been manually
classified into the following seven categories: “student”, “faculty”, “staff”, “de-
partment”, “course”, “project” and “other”. We treat the extracted directed
graphs as unweighted directed graphs and conduct classification on them.

Multi-label data sets. The following multi-label data sets are used to evaluate
multi-label classification performance.

MSRC2 has 591 images annotated by 22 classes. We divide each image into
64 blocks by a 8× 8 grid and compute the first and second moments (mean and
variance) of each color band to obtain a 384-dimensional vector as features.

Mediamill [20] includes 43907 sub-shots with 101 classes, where each image
is characterized by a 120-dimensional vector. Eliminating the classes containing
less than 1000 samples, we have 27 classes. We randomly select 2609 sub-shots
such that each class has at least 100 labeled data points.

Music emotion [21] comprises 593 songs with 6 emotions (labels). The di-
mensionality of the data points is 72.
1 http://www-2.cs.cmu.edu/~webkb/
2 http://research.microsoft.com/en-us/projects/objectclassrecognition/

default.htm

http://www-2.cs.cmu.edu/~webkb/
http://research.microsoft.com/en-us/projects/objectclassrecognition/default.htm
http://research.microsoft.com/en-us/projects/objectclassrecognition/default.htm


462 H. Wang, C. Ding, and H. Huang

Yahoo data described in [22] came from the “yahoo.com” domain. We use
the “science” topic as it has maximum number of labels, which contains 6345
web pages with 22 labels.

Because these data sets are supplied in format of feature vectors, we construct
directed graphs using k-NN graph construction method. Different from [11], we
place a directed edge i → j if vertex xj is a k-Nearest Neighbor of vertex xi.
In our evaluations, we set k = 3 (k = 1 and k = 5 lead to similar experimental
results, which are not shown due to space limit).

5.1 Effectiveness of Co-linkage Analysis

We first evaluate the effectiveness of the proposed CA similarity defined in
Eq. (6) in processing a directed graph in an undirected way.

A special benefit to use a separate graph construction step lies in that, ex-
isting graph-based semi-supervised learning methods can also benefit from the
additional information contained in edge directions of a directed graph. There-
fore we evaluate the effectiveness of the induced undirected graph by the pro-
posed CA when it is used in the following three representative graph-based
semi-supervised learning methods: (1) Gaussian fields and harmonic functions
(GFHF) [32] method, (2) local and global consistency (LGC) [28] method, and
(3) our previous work, i.e., the Green’s function (GF) [8] method. Because these
classification methods only work on undirected graphs, given a directed graph L,
a simple symmetrization broadly used in existing works is as following: Wij = 1
if L (i→ j) = 1 or L (j → i) = 1. This graph is denoted as “Symmetrized graph”
in Table 1, and compared against the undirected graph induced by the proposed
CA which is denoted as “CA graph”.

We use the WebKB data set for evaluation. For each category of web pages
from each university, a binary classification is conducted, e.g., we classify “stu-
dent” web pages vs . non-student web pages from Cornell university, denoted as
“Cornell (student)”. Ignoring the “other” category, we perform 4 × 6 = 24 bi-
nary classifications by every compared classification method. Because web pages
within a same university are well-linked, and cross links between different uni-
versities are rare, we can imagine that a small number of training samples are
sufficient to exactly classify web pages based on only link information. Therefore,
in each binary classification, we randomly draw 4 pages as training examples,
under the constraint that there is at least one labeled instance for each class.
For each binary classification, we repeat 50 independent trials and the average
test errors are reported in Table 1.

From Table 1 we can see that, the classification performances measured by
“test error” on CA graphs always outperform those on symmetrized graphs. Due
to space limit, we cannot list all classification results, and pick up one binary
classification from each university as in Table 1, which are similar to those not
shown. Therefore, we conclude that the proposed CA method is more effective
to characterize a directed graph than the simple symmetrization methods that
do not consider edge directions.
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Table 1. Improved classification performance (test error) of three existing representa-

tive graph-based semi-supervised classification methods by using CA graph

Cornell (student) Wisconsin (student)

GFHF LGC GF GFHF LGC GF

Symmetrized graph 0.246 0.238 0.225 0.207 0.205 0.196

CA graph 0.223 0.212 0.173 0.195 0.191 0.183

Washington (course) Texas (faculty)

GFHF LGC GF GFHF LGC GF

Symmetrized graph 0.142 0.140 0.136 0.228 0.227 0.218

CA graph 0.137 0.135 0.121 0.221 0.215 0.204

5.2 Single-Label Classification Using IGF Method

We evaluate single-label classification performance of IGF method by conducting
2-class classification to distinguish “course” vs . non-course web pages in Wash-
ington University and “faculty” vs . non-faculty web pages in Texas University in
WebKB data set. We compare the classification results of our method against two
state-of-the-art classification algorithms on directed graphs: (1) Semi-Supervised
learning on Directed Graph (SSDG) [30] method, and (2) Distribution Regular-
ized classification on Directed Graph (DRDG) [29] method. We also report the
results by the Green’s Function (GF) [8] method, where a simple symmetriza-
tion of W =

(
L+ LT

)
/2 is used to form the undirected graph. The classification

performance comparison measured by average test error over 50 independent tri-
als are listed in Fig. 7, which demonstrate the superiority of our method and
thereby confirm its usefulness.
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Fig. 7. Test errors to classify “course” vs. non-course web pages in Washington Uni-

versity and “faculty” vs. non-faculty web pages in Texas University in WebKB data

set by four compared methods
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Table 2. Performance evaluations of the compared methods by 5-fold cross validations

Data sets Evaluation metrics
Compared methods

SSDG DRDG MLSI SMSE ML-IGF-S ML-IGF

MSRC

Macro

average

Precision 0.215 0.224 0.252 0.248 0.281 0.311
F1 score 0.223 0.238 0.287 0.279 0.288 0.319

Micro

average

Precision 0.201 0.223 0.253 0.247 0.279 0.317
F1 score 0.267 0.278 0.301 0.298 0.324 0.338

MediaMill

Macro

average

Precision 0.201 0.203 0.207 0.210 0.252 0.274
F1 score 0.289 0.292 0.301 0.312 0.352 0.391

Micro

average

Precision 0.203 0.206 0.207 0.215 0.259 0.282
F1 score 0.332 0.334 0.341 0.347 0.368 0.406

Music

emotion

Macro

average

Precision 0.313 0.317 0.329 0.331 0.392 0.404
F1 score 0.305 0.308 0.323 0.331 0.399 0.415

Micro

average

Precision 0.308 0.311 0.328 0.332 0.395 0.412
F1 score 0.310 0.314 0.339 0.354 0.401 0.420

Yahoo

(Science)

Macro

average

Precision 0.367 0.372 0.396 0.398 0.421 0.443
F1 score 0.278 0.282 0.296 0.305 0.361 0.379

Micro

average

Precision 0.369 0.375 0.395 0.402 0.448 0.470
F1 score 0.202 0.203 0.209 0.215 0.236 0.256

5.3 Multi-label Classification Using Multi-label IGF Method

We use standard 5-fold cross validation to evaluate multi-label classification per-
formance of ML-IGF method. We empirically selected γ = min {0.1, 1/max(ζk)}.
We compare our method with (1) SSDG method and (2) DRDG method as in
Section 5.2, which, however, are designed for single label classifications. There-
fore, for every class, we conduct a binary classification. We also compare our
method to two recent multi-label classification methods: (3) Multi-label informed
Latent Semantic Indexing (MLSI) [26] method, and (4) Semi-supervised learn-
ing by Sylvester Equation (SMSE) [4] method. The classification by these two
methods are directly conducted on original data. Because, to our best knowledge,
ML-IGF method presented in this work is the first one to exploit the informa-
tion conveyed by both link directionality and label correlations, we cannot find
a counterpart method for comparison.

We also evaluate the effectiveness of link normalization discussed in Sec-
tion 3.2, and conduct classification using ML-IGF method on the induced graph
when no normalization is used. We denote these results as ML-IGF-S in Table 2.

The widely used classification performance metrics in statistical learning, pre-
cision and F1 score, are used to evaluate the compared methods. Precision and
F1 score are computed for every class following the standard definitions for a
binary classification problem. To address multi-label classification, macro aver-
age and micro average are used to assess the overall performance across multiple
labels [14].
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Table 2 presents the classification performance comparisons by 5-fold cross
validation, which show that ML-IGF method generally outperforms all other
methods, sometimes significantly. These results quantitatively demonstrate the
effectiveness of our method, and justify the utility of the CA similarity and label
correlations. Besides, the classification performances of ML-IGF is always better
than those of ML-IGF-S method, which provide a concrete evidence that link
normalization is an indispensable part of the proposed CA similarity.

6 Conclusions

This paper explored the usage of directed graphs to solve semi-supervised learn-
ing problems. We proposed a novel Co-linkage Analysis (CA) method to trans-
form a directed graph to an undirected one, which is built upon the co-linkage
processes on directed graphs. With the induced symmetric CA similarity, a Im-
proved Green’s Function (IGF) method was presented to solve the classification
problem, which is also generalized to deal with multi-label classification prob-
lems. Extensive experimental evaluations on real data sets have demonstrated
that the performance of the proposed approach outperforms other related pre-
vious methods in literature.
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Incorporating Domain Models into Bayesian
Optimization for RL

Aaron Wilson, Alan Fern, and Prasad Tadepalli

Oregon State University School of EECS

Abstract. In many Reinforcement Learning (RL) domains there is a high cost
for generating experience in order to evaluate an agent’s performance. An ap-
pealing approach to reducing the number of expensive evaluations is Bayesian
Optimization (BO), which is a framework for global optimization of noisy and
costly to evaluate functions. Prior work in a number of RL domains has demon-
strated the effectiveness of BO for optimizing parametric policies. However, those
approaches completely ignore the state-transition sequence of policy executions
and only consider the total reward achieved. In this paper, we study how to more
effectively incorporate all of the information observed during policy executions
into the BO framework. In particular, our approach uses the observed data to learn
approximate transitions models that allow for Monte-Carlo predictions of policy
returns. The models are then incorporated into the BO framework as a type of
prior on policy returns, which can better inform the BO process. The resulting al-
gorithm provides a new approach for leveraging learned models in RL even when
there is no planner available for exploiting those models. We demonstrate the ef-
fectiveness of our algorithm in four benchmark domains, which have dynamics
of variable complexity. Results indicate that our algorithm effectively combines
model based predictions to improve the data efficiency of model free BO meth-
ods, and is robust to modeling errors when parts of the domain cannot be modeled
successfully.

1 Introduction

The advantages of direct policy search algorithms for solving the RL problem are well-
understood. In contrast to model-based methods, policy search approaches dispense
with the need to represent and employ a model for learning. Such models can be dif-
ficult to construct requiring significant engineering and domain specific knowledge.
Instead, learning is based on Monte-Carlo samples of the expected return gathered di-
rectly from the environment of interest. These returned samples are used to improve
the policy directly, removing the intermediate step of model learning. Unfortunately, by
dispensing with learning a model, the policy search methods are far less data-efficient
than the model-based alternatives. Many more samples are typically necessary before
direct policy search algorithms find good policies.

Policy search algorithms based on Bayesian Optimization (BO) have been proposed
as a method to improve the data efficiency of direct algorithms [1–3]. These methods
improve data efficiency in two ways. First, they explicitly model the surface of the ex-
pected return. Samples of the expected return, generated by interaction with the real

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part III, LNAI 6323, pp. 467–482, 2010.
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environment, are not discarded when estimating the value of new policies. Second, they
model the uncertainty in the return and use it to select which new policy should be
executed, balancing the need for exploration with the benefits of exploitation. Results
for direct RL methods based on these approaches indicate that such methods can sub-
stantially reduce the number of real world evaluations needed to find good solutions
[1].

We propose to combine domain models with the BO framework to further improve
data efficiency. Additionally, we do not require fully accurate domain models. Our ap-
proach is based on employing a (learned) approximate simulator to reduce the amount
of real world experience needed to find good solutions. Crucially, we consider the set-
ting where the simulator is not a replacement for the true domain in the sense that the
domain model cannot be accurately learned no matter the amount of data available. We
allow our simulator to have substantial errors in some regions of the state space which
would prevent the direct application of standard model-based algorithms. Despite these
significant errors the models may be partially accurate providing useful information
about the performance of some policies. Taking advantage of this information is crucial
to the success of our algorithm.

By extending the work on BO we place our efforts squarely within the growing litera-
ture on Bayesian RL. Most closely related is the extensive work by [2] which we extend
by incorporating approximate domain models. Other related work includes [4] which
models the value function as a Gaussian Process. This work, focused primarily on the
problem of estimation, did not consider parameterized policies, and did not explore the
use of domain models for improving data efficiency. Numerous model-based Bayesian
approaches, including [5–7], take advantage of uncertainty in domain models to tackle
the exploration-exploitation trade off. Like our algorithm these methods actively ex-
plore to reduce uncertainty. However, each of these methods requires the models to be
accurate to insure eventual convergence. We do not have this stringent requirement.

We test our proposed algorithm on four benchmark RL environments including Cart-
pole, Mountain Car, 3-Link Planar Arm, and Acrobot tasks. We compare our algorithm
to the standard Bayesian Optimization framework, to Least-Squares Policy Iteration
[8], to Q-Learning with CMAC function approximation [9], to Dyna-Q with CMAC
function approximation [9], and to OLPOMDP a policy gradient based algorithm for
RL [10]. The empirical results show that the proposed algorithm outperforms all of
these methods across our four benchmark tasks.

2 Bayesian Optimization

The general problem of maximizing a real valued function,

θ∗ = maxθf(θ), (1)

has been studied at length in the literature. A subset of these approaches are consid-
ered global optimization algorithms guaranteed, given enough time, to find the true
maximum of f . In some cases generating responses from f may have large costs. This
occurs in many real world RL domains particularly in cases where the agent is physi-
cally embodied in a real robot. In these cases acquiring information from the objective
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function may cost more than time (physical damage to the robot may occur). BO is
a global method for tackling expensive objective functions by explicitly reducing the
number of evaluations needed before the maximum is found.

As part of the BO approach to global optimization one must specify a prior distribu-
tion encoding uncertainty about the unknown objective functionP (f(θ)). In general the
objective function is not inherently stochastic. Many objective functions are expecta-
tions of stochastic outcomes. However, uncertainty about the true form of the objective
still justifies a Bayesian prior distribution. The goal is to combine this prior distribution
with data to compute a posterior useful for deciding what new data to acquire.

When new data is accumulated, beliefs about the function space are updated. Given
data in the form of tuples D = {〈θi, f(θi)〉}|ni=1 the posterior distribution of the func-
tion space is computed:

P (f |D1:n) ∝ P (D1:n|f)P (f). (2)

The posterior distribution is typically called a response surface or surrogate function. It
is a simplification of reality. Evaluation of the surrogate function has several advantages
over evaluations of the true objective. The surrogate is less costly to compute than the
true target function. It can be simulated internally by the agent preventing expensive
computational and physical costs. This is a standard strategy in many learning problems
where the true function may be approximated by e.g. regression trees, neural networks,
polynomials, and other structures that match properties of the target function in some
way. The surrogate function can be viewed as a function approximator from a specific
class of functions which support Bayesian methods of analysis.

The key to BO techniques sits with using the surrogate function to select new points
to evaluate. Ideally the selection should trade off improving the accuracy of the surro-
gate function (exploring the objective function) with taking advantage of points max-
imizing the mean of the surrogate (exploiting the information available so far). If the
method of selecting new points has this property the system will select points to reduce
its uncertainty about f until it is certain the true maximum f(θ∗) has been discovered.
The idea is to substitute a large number of surrogate function evaluations to construct
an exploration strategy minimizing the number of costly objective function evaluations.

To proceed we can frame the Bayesian optimization problem as minimizing the fol-
lowing function,

minθ

∫
‖ f(θ) − max

θ′
f(θ′) ‖ dP (f) (3)

specifying a search for a point θ minimizing the expected difference in value between
f(θ) and the true maximum maxθ′ f(θ′) . This is a problem of minimizing the ex-
pected risk (maximizing the value of f(θ) minimizes this quantity). Equation 3 leads
straightforwardly to a iterative process for selecting new points to evaluate,

θn+1 = argminθ

∫
‖ f(θ) − max

θ′
f(θ′) ‖ dP (f |D1:n), (4)

where the expectation is computed in terms of the posterior distribution given the data
accumulated so far. This conceptually simple procedure myopically selects the next new
point, θn+1, to evaluate (computing a non-myopic sample is hard). However, computing
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the minimum point in this fashion may require substantial computational resources,
making approximation necessary.

To keep the spirit of the optimization described above approximations can be made in
terms of the maximal point found so far. Let the tuple 〈θi, f

max〉 be the data point with
highest reported utility. Using this maximal value one can construct an improvement
function,

I(θ) = max{0, f(θ) − fmax}, (5)

which is positive at all points where f(θ) exceeds the current maximum and zero at all
other points. New experiments are selected according to,

θn+1 = argmaxθE [I(θ)|D1:n] , (6)

a Maximum Expected Improvement (MEI) criterion. Due to the uncertainty in f(θ)
the improvement function is a random variable. Crucially, the expected improvement
function, E [I(θ)|D1:n], takes into account uncertainty in the improvement at unseen
points. When sufficient probability mass exists over values exceeding the current max-
imum the MEI for the unseen point will be positive. This nicely incorporates the poste-
rior uncertainty into the optimization, encouraging exploration of the input space. This
improvement function has persisted as the preferred method of selecting new points in
Bayesian optimization because it can be computed efficiently, and leads to a good trade
off between exploitation and exploration [11]. The experiments we report make use of
this MEI criterion.

It is not satisfying to employ any optimization strategy without knowing of its ef-
fectiveness. In particular, a number of approximations have been introduced and it is
of interest whether the proposed strategy of selecting points according to the MEI will
find good solutions and whether it will converge to the global optimum. Recent work
[12] gives positive convergence results when the prior function is a Gaussian Process
(GP) with fixed mean and covariance [13]. These results hold under fairly general con-
ditions which apply to the BO algorithm on which our work is based. However, please
note that these results do not hold when either the mean or covariance function are
changed as new data is acquired. This will be an important fact when we introduce our
modifications below.

Prior distribution. Selecting an appropriate prior distribution for the function space is a
non-trivial task. However, for this work we make use of the GP. A convenient property
of the GP is that for a finite set of observations the distribution over f is represented
entirely in terms of the data as a multi-variate normal distribution. The GP for function
space f,

f ∼ GP (m(θ), k(θ, θ)), (7)

is represented by a mean functionm(θ) and kernel function k(θ, θ). The mean function
encodes base knowledge of the underlying function (frequently initialized to zero). The
kernel function encodes relationships between inputs. Substantial engineering effort is
often made to select appropriate mean functions and kernels because the impact on the
performance of GP regression is strongly impacted by these selections.

For purposes of computing the improvement functions described above the posterior
distribution at new points must be computed computed, P (f(θn+1)|D1:n). In the GP
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model this posterior has a simple form. Given the data D1:n let y be the vector of
outputs, y = [f(θ1), . . . , f(θn)] and let θ = [θ1, . . . , θn] be the matrix of observations.
The posterior distribution is Gaussian with mean and variance,

μ(θn+1|D1:n) = k(θn+1, θ)K(θ, θ)−1(y −m(θ)), (8)

σ2(θn+1|D1:n) = k(θn+1, θn+1) − k(θn+1, θ)K(θ, θ)−1k(θ, θn+1). (9)

The m(θ) is a vector of mean function evaluations made at each data point, k(θn+1, θ)
is the vector of similarities between the new point and all previously observed data, and
the vector k(θ, θn+1) is its transpose. The variable K(θ, θ) is the matrix of similarities
between all observed points.

3 Bayesian Optimization for Reinforcement Learning

3.1 Reinforcement Learning

We study the Reinforcement Learning (RL) problem in the context of Markov Deci-
sion Processes,(MDP). An MDP is described by a tuple (S,A, P, P0, R, π). Each state
s ∈ S encode all information about the world necessary to make a decision. An agent
can execute any action a ∈ A from the set of all possible actions. The transition func-
tion P encodes a probability distribution over next states P (st|st−1, at−1) given the
current state and the action selected by the agent. The initial state distribution P0 is a
distribution over starting states P0(s). The reward function R(s, a) returns a numeric
value representing the immediate reward for the state action pair. Finally, the function
π is a stochastic mapping from states to actions Pπ(a|s, θ). It is a function of a vector
of parameters θ ∈ 
n.

We express the expected return for a policy parameterized by θ as,

η(θ) =
∫

ξ

R(ξ)P (ξ; θ)dξ (10)

where the variable ξ = [s1..n, a1..n] represents a trajectory of length n through the en-
vironment, R(ξ) denotes the reward along the trajectory, R(ξ) =

∑n
t=1R(st, at), and

the conditional distribution P (ξ|θ) is the probability density over trajectories given the
policy parameters θ, P (ξ|θ) = P0(s0)

∏T
t=1 P (st|st−1, at−1)Pπ(at−1|st−1, θ). The

goal of learning in this setting is to find a set of policy parameters θ∗ maximizing Equa-
tion 10. For the purposes of our experiments we assume a fixed horizon MDP where
every trajectory has a finite length.

If η was available in a closed form then the search for the optimal policy could,
at least in principle, proceed directly. In this case the learning problem reduces to a
problem of optimization for which a variety of algorithms are available. Unfortunately,
η is hard to compute, and we are uncertain about the relationships between policies and
returns.
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Algorithm 1. Bayesian Optimization Algorithm (BOA)
1: Let D = {θi, η(θi)}|ni=1.
2: Select the next point in the policy space to evaluate: θn+1 = argmaxθE(I(θ)|D1:n).
3: Execute the policy with parameters θn+1 in the MDP.
4: Update D1:n = D1:n ∪ (θn+1, η(θn+1))

5: Return to step 2.

3.2 Bayesian Optimization for Reinforcement Learning

The subject of our uncertainty is the expected return. It is a costly objective function
for which we are uncertain of the location of its maximum. Therefore, to apply BO
in this context we model the expected return using a GP and then proceed by using
the sequential selection strategy discussed above. To make this strategy concrete please
observe the BOA algorithm, Algorithm 1.

BOA is a sequential planning algorithm that selects a new policy to evaluate, based
on the evaluations of all previous policies. BOA accumulates data, D1:n, uses this data
to estimate the posterior distribution for η, and then samples new policy parameters
by maximizing the Expected Improvement. Importantly, by using BOA the problem of
exploration in RL is addressed.

This simple algorithm, originally proposed by Mockus in the 70’s [11], has already
seen success in the RL literature. In [1] results are reported for a gait optimization
problem on an AIBO robot. In this case the high cost of running the real physical robots
motivates using BOA. They report a significant improvement in the time needed to
train the robots, 2 hours using their BO approach, by comparison to the state of the art
methods at that time, requiring 9 hours to achieve similar results. Additional RL results
are reported in [3] for a car driving task in the TORCS simulator. The goal is to optimize
the policy to guide a simulated car along a fixed trajectory. Good policies are found for
the domain after 130 trials using BOA. Such examples illustrate the power of BOA for
policy selection. Using the algorithm can lead to a significant reduction in the number
of real trials needed to find good solutions.

However, when the transition and reward function of the domain can be approxi-
mated, BOA can have substandard performance by comparison to a model-based ap-
proach. As a result, we seek a principled integration of model-based ideas from RL
with BOA. We formulate this integration below.

3.3 RL Domain Models for Bayesian Optimization

To improve BOA our goal is to make better use of the information present in the tra-
jectories the agent generates while exploring its domain. The performance of BO al-
gorithms based on GP priors depends on the selection of the mean function and the
kernel function. Because of the well-understood impact on GP prediction, much work
has been focused on the optimization of the kernel hyper parameters. However, instead
of optimizing the kernel function we seek to improve the mean function using new
information included in D. We augment the data vector D1:n to include the trajecto-
ries experienced when acting in the domainD1:n = {θi, η(θi), ξi}|ni=1. This additional
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information will be used in our model-based version of BOA. A carefully selected mean
function has the advantage of improving the predictions for points far away from the
current data; regardless of the quality of the kernel function an accurate mean function
can lead to reliable predictions at unseen points.

To begin we assume a transition function, P (st|st−1, at−1, φ), a reward function,
R(st−1, at−1, st), and a function LearnModel(D1:n) which takes the data as input
and returns updated parameters for the transition and reward functions.

Our mean function takes as input the augmented data D1:n and a set of policy pa-
rameters θ and computes a vector of expectations m(D1:n, θ). To compute element
m(D1:n, θi) we first call LearnModel(D1:n) with the current data, and then use the
estimated models to compute a Monte-Carlo estimate of the expected return for pol-
icy θi. To compute the Monte-Carlo estimate: 1. Sample a collection of initial states.
2. Simulate trajectories from the sampled initial states to terminal states using the ap-
proximate models. 3. Use the learned reward function to score the set of trajectories. 4.
Compute the average value of the scored sample trajectories. The mean for each point
θi has the concise form,

m(D1:n, θi) = η̂(θi) =
1
N

N∑
j=1

R̂(ξj), (11)

which is the average over N trajectories ξj generated using the approximate models.
The function R̂ represents the application of the learned reward function to score the
sampled trajectory.

To make use of this Monte-Carlo estimate we replace the zero mean function of the
GP prior distribution with m(D1:n, θ). The predictive distribution of the GP changes to
be Gaussian with mean,

μ(θn+1|D1:n) = m(D1:n, θn+1) + k(θn+1, θ)K(θ, θ)−1(η(θ) −m(D1:n), (12)

where m(D1:n, θ) is the vector of Monte-Carlo estimates for each policy in D. This
vector must be recomputed whenever new trajectories are added to the data. The new
predictive mean is a sum of the model-based estimate and the GPs prediction of the
residual. Ultimately this mean function will incur additional computational cost dur-
ing optimization of the expected improvement function, because for each point θn+1

considered during the optimization a Monte-Carlo estimate must be computed. The
variance remains,

σ2(θn+1|D1:n) = k(θn+1, θn+1) − k(θn+1, θ)K(θ, θ)−1k(θ, θn+1). (13)

The role of the GP has changed from directly modeling the surface of the expected
return to modeling the disagreement between the Monte-Carlo estimates and the ob-
served returns. Errors in the transition and reward functions will be compounded when
generating long trajectories. Modeling the residuals using the GP corrects for these
compounded errors in a principled way.

In the case where the single step transition models cannot be effectively approxi-
mated the model-based estimates of the expected return may badly skew the predictions.
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For instance, if m(D1:n, θ) sufficiently underestimates the true mean across the space
of policies then the expected improvement for unseen policies may be dangerously pes-
simistic. In this case, when the models are sufficiently wrong, the poor estimates can
stifle search for additional points easily preventing the optimal solution being discov-
ered. This is an atypical consideration for a model-based approach to RL. Typically it
is assumed that given sufficient data the agents models will closely approximate the
true transition and reward functions. For most model-based approaches, if this assump-
tion is not met, optimizations using the model will lead to erratic results. We desire
to have the performance of our model-based algorithm be no worse than the standard
BO algorithm discussed above even in the case where the model is wrong. Already,
the algorithm can correct for poor Monte-Carlo estimates so long as the residual func-
tion has a predictable errors. However, we have violated some of the requirements for
convergence stated in [12] by allowing the mean function to change as new data is ac-
cumulated. Intuitively this would not be problematic if we were assuming convergence
of the models. By allowing the models to have significant errors, errors that strongly
impact the mean function, we do not enjoy the safety of the proofs. We need additional
controls to prevent the model-based mean leading to degenerative performance when
errors are large and difficult to predict.

To control the impact of the model-based estimates we propose to introduce a pa-
rameter β adjusting the impact of the model-based mean function on the predictive
distribution. We model the true expected return by a sum,

η(θ) = (1 − β)f(θ) + βg(θ), (14)

of two unknown functions. We model the function f(θ) with a zero mean GP, and we
model function g(θ) with a GP distribution that uses the model-based meanm(D1:n, θ).
The kernel of both GP priors is simply the squared exponential kernel discussed earlier.
The resulting distribution for η(θ) is a GP with mean βm(D, θ) and covariance com-
puted using the squared exponential kernel. This change impacts the predicted mean
which now weights the model estimate by β, μ(θn+1|D1:n) = βm(D1:n, θn+1) +
k(θn+1, θ)K(θ, θ)−1(η(θ) − βm(D1:n, θ)). The variance remains unchanged.

We cannot know how well the chosen models will approximate the true transition and
reward functions a priori. However, as the system accumulates new data the disagree-
ment between the vector of observed returns and the mean function can be computed.
The magnitude of the residuals should impact the setting of β. To adjust the parameter
β based on the agreement between the estimates and the observed data we maximize
the log likelihood of the new GP prior. For a GP with mean βm and covariance matrix
K the log likelihood of the data is,

P (η(θ)|D1:n) = −1
2
(η(θ) − βm)tK−1(η(θ) − βm) − 1

2
log|K + σ2I| − n

2
log(2π).

(15)
Taking the gradient of the log likelihood and setting the equation to zero we get a simple
expression for β,

β =
η(θ)tK−1m

mtK−1m
. (16)

By computing the value of β prior to maximizing the expected improvement our pro-
posed algorithm can down weight the Monte-Carlo estimates when it is convinced of
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Algorithm 2. model-based Bayesian Optimization Algorithm (MBOA)
1: Let D1:n = {θi, η(θi), ξ}|ni=1.
2: Run theLearnModel(D1:n) function.
3: Compute the vector m(D1:n, θ) using the approximate models.
4: Optimize β by maximizing the log likelihood.
5: Select the next point in the policy space to evaluate: θn+1 = argmaxθE(I(θ)|D1:n).
6: Execute the policy with parameters θn+1 in the MDP.
7: Update D1:n+1 = D1:n ∪ (θn+1, η(θn+1), ξn+1)

8: Return to step 2.

the models inaccuracy. Intuitively the algorithm can return to the performance of the
unmodified BOA when errors in the transition function are large. In this case the algo-
rithm should behave no worse than BOA and should always benefit from the model in
those regions of the policy space where it performs well.

We show the additional steps added to BOA in Algorithm 2. MBOA has several nice
properties: 1) When the model is accurate or is a reasonable approximation of the true
model MBOA dramatically improves on the data efficiency of the BOA algorithm. 2) If
the approximate model cannot capture the domain dynamics then the MBOA algorithm
will quickly learn to ignore the model-based estimates resulting in performance compa-
rable to BOA. MBOA does not assume that the approximated model represents the true
domain. Furthermore, MBOA does not require a planning algorithm to take advantage
of the models. This can be a significant detail in domains with continuous states and
actions for which producing a planner can be a difficult problem. In the next section we
examine the performance of the MBOA algorithm on four benchmark RL tasks.

4 Results

We examine the performance of MBOA in domains for which domain models can be
learned successfully, and in cases where they cannot. To do so we examine the perfor-
mance in four benchmark RL tasks including a mountain car task, a cart-pole balancing
task, a 3-link planar arm task, and an acrobot swing up task. Additional details about
the cart-pole, mountain car, and acrobot domains can be found in [9].

Accurate linear models can be learned for both the cart-pole task and for the planar
arm task. The two other domains can be modeled with varying degrees of success. The
mountain car task has some non-linear behavior in specific regions of the state space.
The linear models we provide MBOA cannot model the data generated at these points.
However, many of the policies do not visit these regions of the state space. The acrobot
task cannot be modeled using a linear function. In fact, we found it difficult to find
any good non-linear models of the acrobot transition function. Modeling the system
with linear models leads to Monte-Carlo estimates of the expected return which differ
substantially from the true values. In this case standard model-based algorithms which
do not correct the model will fail to converge to a good solution. We show that MBOA
does not suffer from this drawback.
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Comparisons are made between MBOA, the model-based DYNA-Q algorithm, and
three model-free approaches: 1. BOA. 2. OLPOMDP. and 3. Q-Learning with CMAC
function approximation.

4.1 Experiment Setup

We detail the special requirements necessary to implement each algorithm in this
section.

MBOA and BOA. To use the GP prior in MBOA and BOA we must specify a ker-
nel representing the relationship between policy parameters. The squared exponential
kernel,

k(θi, θj) = exp(−1
2
ρ(θi − θj)T (θi − θj)), (17)

with a single scaling parameter ρ, was used in all experiments. Of course, more complex
kernels can be selected and optimized to improve the results of this paper (i.e. introduc-
ing scale parameters for each dimension of the policy space.). However, we were able
to get positive results with this simple kernel for both BO algorithms. The ρ parameter
was tuned for each experiment, and the same value was used in both MBOA and BOA.
The mean function of BOA is the zero function, and MBOA employs the model-based
mean function discussed above.

Both MBOA and BOA require optimization of the expected improvement function
after new data points are obtained. For purposes of optimizing Equation 6 we use a
black box global optimization algorithm called DIRECT [14]. DIRECT does require
upper and lower bounds on the input parameters passed to the objective function. We
specify an upper bound of 1 and a lower bound of -1 for each dimension of the policy.
These bounds hold for all experiments reported below.

MBOA also requires a model of the transition and reward dynamics. In all of the
tasks discussed below we make use of a collection of linear models, one for each di-
mension of the state, and one for the reward function. The models are of the form,

st
i = φiḟ(st−1, at−1)′, rt = φrf(st−1, at−1, st)′, (18)

where st
i is the ith state variable at time t, wi is the weight vector for the ith state vari-

able, and f(st−1, at−1, st)′ is the transpose of features computed from the states and
actions (and next states in the case of the reward model). We define LearnModel(D)
to be standard linear regression for all of the experiments reported below.

DYNA-Q. We make two slight modifications to the DYNA-Q algorithm. First, we pro-
vide the algorithm with the same linear models employed by MBOA. These are models
of continuous transition functions which DYNA-Q is not normally suited to handle. The
problem arises during the sampling of previously visited states during internal reason-
ing. To perform this sampling we simply maintain a dictionary of past observations and
sample visited states from this dictionary. These continuous states are then mapped to
a discrete value using a CMAC function approximator for the Q-function. The second
change we make is to disallow internal reasoning until a trial is completed. Reasoning
between steps does not happen. After each trial DYNA-Q is allowed 200000 internal
samples to update its Q-function.
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Q-Learning with CMAC function approximation. We use the standard algorithm
with ε-Greedy exploration. We optimize the number of discrete states used to approxi-
mate the Q-function and also optimize the parameters of the Q-Learning algorithm. We
set the value of ε to .1 and anneal it after each trial.

OLPOMDP. OLPOMDP is a simple gradient based policy search algorithm. It is worth
noting that in each task OLPOMDP uses the same policy as the BOA and MBOA al-
gorithms. OLPOMDP has two parameters one sets the discount factor for the gradient
traces, set to .9 for all experiments, and the other sets the size of the gradient update
which we optimize for each experiment individually.

LSPI. LSPI results are reported in the cart-pole and acrobot tasks. Despite our best
efforts we were not able to get reasonable results in the mountain car and arm tasks.
Our efforts included selecting combinations of basis functions and exploration strate-
gies. We attempted radial basis, polynomial basis, and hybrid basis. Our exploration
strategy uses policies returned from the LSPI optimization with added noise (including
fully random exploration). No combination of basis functions and exploration strategies
yielded reasonable results in two of the domains (addressing the exploration problem is
a central issue for our algorithm and this issue is completely ignored by LSPI). For those
domains with results radial basis functions were used with centers located according to
the CMAC function approximator.

4.2 Cart-Pole Task

The agents goal in the cart-pole domain is to maintain the vertical position of the pole
for 1000 steps while keeping the cart within a fixed boundary. The state of the system
includes the location of the cart, velocity of the cart, the angle of the pole, and the rate
of change of the poles angle. At each step the agent receives a positive reward of 30,
plus a penalty proportional to the difference in angle of the pole and the desired upright
position, plus a term penalizing distance away from the center of the boundary, plus a
term penalizing large changes in the angle. A reward of 100 is received for keeping the
pole upright for the complete duration. Essentially, the shaping reward encourages sta-
ble policies. MBOA, BOA, and OLPOMDP require a parameterized policy. We select
a linear policy for each algorithm,

a = θs′ + ε, (19)

where s includes the state variables described above, and the value of ε is assumed to
be Gaussian distributed. In this case θ has four parameters.

Figure 1 shows the results for the Car Pole task. In this case MBOA can accurately
model the dynamics of the system after a small number of observed trajectories. This
results in fast convergence to an excellent policy which dominates the quality of the
policies found by the other algorithms. Comparatively all other methods require much
more data before a good policy is found. BOA always finds a policy which balances the
pole for the full 1000 steps. However, some of the discovered policies have more erratic
behavior decreasing the accumulated reward for each run. Q-Learning and OLPOMDP
do not find comparable policies until after at least 250 additional episodes are experi-
enced. LSPI converges faster but cannot match the performance of either the BOA or
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Fig. 1. cart-pole Balancing Task: We report the total return per episode averaged over multiple
runs of each algorithm. MBOA, BOA, and DYNA-Q are averaged over 30 runs. Q-Learning and
OLPOMDP are averaged over 300 runs to control for the erratic behavior of these algorithms.

MBOA algorithm (please note our problem is distinct from the original LSPI balanc-
ing task, we allow the agent to apply less force, include boundaries for the cart, and
penalize unstable policies). After 30 episodes the DYNA-Q algorithm has found a solu-
tion comparable to that of MBOA. This is not surprising given that the shaping reward
provides advice useful for the local updates performed by the DYNA-Q algorithm. We
have extended the model-based results by extrapolating the best solution found after
convergence in order to show the comparative performance of BOA to the other direct
RL methods.

4.3 3-Link Planar Arm Task

In the 3-link Planar Arm task the goal is to direct an arm tip to a target region on a 2
dimensional plane. The arm is controlled by applying torques at each joint. The arm
responds kinematically to the applied torques; only the torques at the joints influence
the change of state. There are specified maximum joint angles, simulating the physical
constraints of a real robot, preventing each joint from moving through more than 1800

of rotation. The action space in this task is three dimensional, one dimension for each
joint, each of which can apply a torque of -1 or 1. The reward signal for the agent is the
squared distance between the tip of the arm and the center of the target region.

To handle the 3 dimensional action space a separate controller is learned for each
joint. For MBOA, BOA, and OLPOMDP a logistic function controls each joint (6 total
policy parameters). DYNA-Q and Q-Learning approximate separate Q-functions for
each joint. The state space for each individual joint controller is simply the computed
distance between the x and y coordinates of the arm tip and target locations respectively.
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Fig. 2. Planar Arm Task: We report the total return per episode averaged over multiple runs of each
algorithm. MBOA, BOA, and DYNA-Q are averaged over 30 runs. Q-Learning and OLPOMDP
are averaged over 300 runs.

The relative performance of each algorithm is shown in Figure 2. Like the cart-pole
task the transition and reward function can be captured by the linear model. Once the
system is successfully modeled the optimization of the expected improvement quickly
identifies the optimal policy. It takes several additional trials before the BOA algorithm
begins finding policies of similar quality. The other model-free alternatives require 1000
episodes before converging to the same result. It is worth noting that given far more
episodes the CMAC approximator for the Q-learning algorithm finds a policy superior,
on average, to the BOA algorithm. The additional internal simulations clearly benefit the
DYNA-Q algorithm. After 40 episodes we report the maximum average return achieved
by the algorithm. DYNA-Q has found a policy comparable to the MBOA algorithm, but
requires more experience.

4.4 Mountain Car Task

In the mountain car domain the goal is to accelerate a car from a fixed position at the
base of a hill to the hills apex. The state includes the location of the car on the hill and
the car’s velocity. At each step the agent receives a reward of -1. At the end of an episode
if the agent has reached the apex of the hill it receives 100 reward. To control the car the
agent can apply an acceleration of -1 or 1. It is important that the accelerations are not
sufficient to simply force the car up one side of the hill. Doing so would make the task
too trivial. Success is only achieved by using the force of gravity to augment the cars
accelerations. MBOA, BOA, and OLPOMDP optimize a logistic function to control the
car (8 policy parameters).

In Figure 3 we report the results for the MBOA and DYNA-Q algorithms. Due to
the sparse reward signal, all of the model-free methods would appear at the base of this
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Fig. 3. Mountain Car Task: We report the average total return per episode in the mountain car
task. The MBOA and DYNA-Q results were averaged over 30 runs.

graph. We omit these uninformative results. However, the important comparison be-
tween the model-based methods shows that the MBOA algorithm makes more effective
use of the continuous domain models. In this case the linear models for the system can-
not fully capture the transition function for the domain. MBOA more aptly corrects for
modeling errors than the DYNA-Q algorithm, which cannot ignore or correct the model
when it returns erroneous results. These errors accumulate when DYNA-Q performs
internal updates impacting the quality of its solution.

4.5 Acrobot Task

In the acrobot domain the goal is to swing the foot of the acrobot over a specified
threshold by applying torque at the hip. The state of the system includes the angle of the
torso of the acrobot, the angle between the torso and legs, and the rate of change of each
angle. Like the planar arm task real world constraints are placed on the articulations of
the joints which prevent the legs of the acrobot from crossing through the torso. The
agent can only control the behavior of the acrobot at the hip by applying a torque of
-1 or 1. At each step the agent receives +100 bonus if the foot reached the goal height,
or a -1 penalty in other steps. Again, MBOA, BOA and OLPOMDP optimize a logistic
function governing the probability of selecting an action (6 policy parameters).

This under-actuated task has a complicated transition between states. We were un-
able to identify even a non-linear model that predicts the controls with high accuracy.
Instead the model-based systems use a linear approximation of the transition function,
which when used for simulation reports incorrect returns for most of the policy space.
Domains with these properties typically motivate the use of model-free methods. As
indicated in Figure 4, MBOA can still make use of even this highly inaccurate model.
In the initial stages of the learning process MBOA is uncertain of the quality of its
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Fig. 4. Acrobot Task: We report the total return per episode averaged over multiple runs of each
algorithm. MBOA, BOA, and DYNA-Q are averaged over 30 runs. Q-Learning and OLPOMDP
are averaged over 300 runs.

model, but by modeling the residuals MBOA still benefits from the in regions where the
predictions are accurate. This explains why the performance of MBOA improves over
BOA’s sample complexity. Over time, as the difference in predictions increases, MBOA
slowly begins ignoring the model estimates defaulting to the behavior of BOA. By con-
trast, because the DYNA-Q algorithm treats the model as a surrogate for the domain its
estimates of the state action values are damaged during internal simulation. Regardless
of the quantity of data available the assumptions made by the DYNA-Q algorithm (an
assumption shared by most model-based algorithms) prevent it from learning in this
context. It is worth noting that LSPI fails to improve on the performance of BOA (and
barely improves on the performance of the model-free algorithms). This is additional
evidence that expending some computational effort to select policies for exploration
improves the quality of information observed. The reduction in exploratory episodes is
considerable.

5 Conclusion

We have proposed extending the Bayesian Optimization approach to RL by augment-
ing the surrogate function representing the expected return to have a mean which is
dependent on an approximate model. The MBOA algorithm which takes advantage
of the improved surrogate function is designed to both improve data efficiency when
the model reasonably approximates the domain, and be robust to extreme errors in the
model when it is highly inaccurate. We demonstrate the effectiveness of the MBOA
algorithm in four benchmark RL domains. Empirically the MBOA algorithm outper-
forms LSPI, OLPOMDP, Q-Learning with CMAC function approximation, BOA, and
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DYNA-Q in the mountain car, cart-pole, and planar arm tasks. In the case of the ac-
robot swing up task, where we could not find an accurate model for the domain, MBOA
still outperforms all other algorithms. Empirically MBOA outperforms all of the alter-
natives in terms of data efficiency. This efficiency is gained at the cost of additional
computation time for the simulations, which generate sample trajectories of candidate
policies during optimization of the expected improvement. Overall, MBOA appears to
be a useful step toward combining model-based methods with Bayesian Optimization
for purposes of handling inaccurate models and improving data efficiency.
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Abstract. We consider the problem of numerical stability and model

density growth when training a sparse linear model from massive data.

We focus on scalable algorithms that optimize certain loss function using

gradient descent, with either �0 or �1 regularization. We observed numer-

ical stability problems in several existing methods, leading to divergence

and low accuracy. In addition, these methods typically have weak con-

trols over sparsity, such that model density grows faster than necessary.

We propose a framework to address the above problems. First, the up-

date rule is numerically stable with convergence guarantee and results

in more reasonable models. Second, besides �1 regularization, it exploits

the sparsity of data distribution and achieves a higher degree of spar-

sity with a PAC generalization error bound. Lastly, it is parallelizable

and suitable for training large margin classifiers on huge datasets. Experi-

ments show that the proposed method converges consistently and outper-

forms other baselines using 10% of features by as much as 6% reduction

in error rate on average. Datasets and software are available from the

authors.

1 Introduction

In this paper, we focus on training a sparse large margin model. Assume that we
are given m labeled examples Z = {(x1, y1), . . . , (xm, ym)}, where xi ∈ Rd, i =
1, . . . ,m. We aim at solving the following optimization problem:

min
w∈Rd

1
m

m∑
i=1

L(〈w,xi〉, yi) + λ‖w‖1 (1)

L is any smooth and differentiable loss function such as logistic or hinge loss. λ
is the parameter for trading off between loss and �1 regularization. We are in-
terested in scalable algorithm, with parallelizable data accesses and small com-
munication cost. One can find such application in text mining and webspam
detection, where the number of features could be in millions.

Sparse learning aims at accurate models using a small number of non-zero
elements, with the advantages of efficiency and generalizability [13]. Some exist-
ing methods produce sparse models by forward-backward feature selection [13]

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part III, LNAI 6323, pp. 483–498, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Table 1. Notations and definitions

Notation definition Notation Definition

x Example in R
d X Data matrix

y Label of x Z A series of m labeled examples

w Linear model in R
d θ Dual vector of w in Eq. (8)

wZ Linear model learned from Z w∗ Optimal linear model

w̃ Vector to be thresholded H(·, s) Hard-thresholding function

S(·, λ) Soft-thresholding function ∇f(·) Gradient of f(·)
λ �1 regularization parameter t Index of iterations

η Learning rate [d] Set of indices {1, . . . , d}
J Set of indices, J ⊆ [d] ‖v‖0 The support of v

‖v‖1 The sum of |vi|, i ∈ [d] ‖v‖2 The Euclidean length of v
‖v‖∞ The maximum of |vi| σi Eigenvalues

or boosting [3]. Though effective, these methods have to scan the training set
at each iteration, which is expensive or even impossible for large datasets. Un-
der some restrictive assumptions [14], one can achieve sparse models via convex
programming with �1 regularization or constraint. Though scalable as methods
in [8,12], there are two main drawbacks. First, numerical problems can lead to
iteration divergence or summation cancellation, making the algorithm less use-
ful. Second, �1 regularization only encourages sparsity and may not be enough
for sparse learning. As the training proceeds, model complexity can grow faster
than necessary and result in dense models, regardless of the regularization.

In this paper, we propose a perceptron-based algorithm to address the above
problems. First, it is numerically stable with convergence guarantee. Second, in
addition to �1 regularization, it further takes advantage of the sparsity of train-
ing examples to achieve a higher degree of model sparsity, and furthermore, a
generalization error bound which is not provided in [8,12]. Experiments show
that the proposed method converges with steadily reduced test error rates as
the training proceeds. and consistently outperforms previous state-of-the-art al-
gorithms by as much as 8.4% in accuracy using only 10% of all features in one
of the tasks.

2 Numerical Challenges in Sparse Learning

Notations are summarized in Table 1. Note that an element of a vector is in
normal font, for example, wj is the j-th element of the vector w. About norms,
for any v ∈ Rd, ‖v‖p1 ≤ ‖v‖p2 for any p1 ≥ p2 [6]. If not otherwise specified,
‖ · ‖ is equivalent to ‖ · ‖2

We have observed numerical problems in two sparse learning algorithms using
either �1 or �0 regularization.
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2.1 Numerical Problems of Direct Iterative Methods

The first problem arises when directly applying matrix iterative methods to solve
a system of linear equations

y = Xw (2)

where X = (x1, . . . ,xm)�. �1 or �0 regularization are used to obtain sparse
model, as in compressive sensing or sparse learning. Suppose there exists an
optimal solution w∗ satisfying Eq. (2), namely y−Xw∗ = 0 (0 denotes the zero
vector). The direct method tries to find w∗ by minimizing the potential function

Ψ(w) =
1
2
‖y −Xw‖2 (3)

Starting with an arbitrary vector w(0) (usually 0), it follows the gradient direc-
tion at each iteration to reduce the potential function value. The gradient of Eq.
(3) is ∇Ψ(w) = −X�(y −Xw) and we update w(t) by

w(t) = w(t−1) + ηX�(y −Xw(t−1)) (4)

where η is the learning rate. To see when the above iteration fails to converge,
let ε(t) = w(t) − w∗ be the error vector.

ε(t) = w(t−1) + ηX�(y −Xw(t−1)) − w∗ − ηX�(y −Xw∗)
= (I − ηX�X)(w(t−1) − w∗) = Mε(t−1)

where M = I − ηX�X is the iteration matrix. Thus for t > 0 we have

‖ε(t)‖ = ‖w(t) − w∗‖ = ‖Mε(t−1)‖ = · · · = ‖M tε(0)‖
The sufficient and necessary condition for the update rule (4) to converge is
that the spectral radius of M , ρ(M) = maxi{|σi|}less than 1, where σi is the
eigenvalues of M . Formally,

lim
t→∞ ‖M t‖ = 0 ⇔ ρ(M) < 1 (5)

The above analysis shows that if one cannot guarantee ρ(M) < 1 at each it-
eration, then update rule (4) may not be applicable in reducing the potential
function.

In addition, we would like w(t) to be sparse. It is shown in [5] that under the
RIP condition [1], a truncated version of update rule (4) reduces the potential
function at each iteration while maintaining a sparse solution. We show that the
truncation does not automatically guarantee the convergence of �0 constrained
gradient descent. Consider the following iteration

w(t) = H(w̃(t), s) = DJ(t)(w(t−1) + ηX�(y −Xw(t−1))) (6)

with w(0) being a zero vector. w̃(t) is the t-th solution before thresholding.
H(v, s) : R

d → R
d keeps only s elements with largest absolute values in v
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and set other elements to zero. H(v, s) equals the row selection operation as
shown in Eq. (6). J (t) ⊆ [d] (

∣∣J (t)
∣∣ = s, ∀t = 1, 2, . . . ) represents the set of

indices of s remaining elements in H(w̃, s). DJ(t) is a diagonal matrix with
Dj,j = 1, ∀j ∈ J (t) and 0 otherwise. The error vector of iteration rule (6) can
then be written as

‖ε(t)‖2 = ‖w(t) − w∗‖2 = ‖DJ(t)w̃(t) − w∗‖2

≥ ‖DJ(t)w̃(t) −DJ(t)w∗‖2 (7)
= ‖DJ(t) [w(t−1) + ηX�(y −Xw(t−1))]

−DJ(t) [w∗ + ηX�(y −Xw∗)]‖2

= ‖DJ(t)M(w(t−1) − w∗)‖2

= ‖DJ(t)Mε(t−1)‖2

Inequality (7) follows since w∗
j , j �∈ J (t) are held out of the sum of the �2-norm.

Therefore, ‖ε(t)‖2 is lower-bounded by ‖DJ(t)Mε(t−1)‖2. For the �0 projected
gradient descent to converge, DJ(t)M must satisfy ρ(DJ(t)M) < 1, otherwise,
update rule (6) diverges. Simple truncation using H(v, s) doesn’t guarantee such
condition, as we demonstrated in experiments.

2.2 Numerical Problems of Mirror Descent

The mirror descent algorithm (MDA) has been recognized as an effective online
learning algorithm. For example, MDA using Bregman divergence is proposed to
approximate the exponentiated gradient (EG) algorithm, which have cumulative
loss bound logarithmically to the number of irrelevant features in the target
weight vector [6]. In convergence rate, it is proved that MDA is superior to the
usual stochastic gradient descent methods [12], where MDA is adopted in online
sparse learning. However, the price MDA pays for these advantages is numerical
unstability, especially when the dimensionality of data is high, leading to less
discriminative models. As proposed in [12], the main component of MDA for
sparse learning is the alternative updates of two vectors θ, w ∈ Rn by the
following rules:

w
(t)
j = f−1

j (θ(t)) =
sgn(θ(t)j )|θ(t)j |p−1

‖θ(t)‖p−2
p

, ∀j (8)

θ(t+1) = S(θ(t) − η∇L(w(t)), λ) (9)

where S(·, λ) is the soft-thresholding operator [2]:

S(wj , λ) = sgn(wj)(wj − λ)+ (10)

=

⎧⎪⎨⎪⎩
wj − λ, if wj > 0 and |wj | > λ

wj + λ, if wj < 0 and |wj | > λ

0, if |wj | < λ

S(v, λ) means applying Eq. (10) at each element of v. As suggested in [6], the
parameter p in Eq. (8) is set to O(ln(d)) (Note that different p lead to different
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“algorithms”, for example, in binary classification, one obtain Perceptron when
p = 2 and Weighted Majority as p → ∞. However, for MDA to approximate
the EG algorithm, p should be sufficiently large such as logarithmic p). w and
θ are called primal and dual vector, respectively. In the t-th iteration, MDA
first computes w(t) using w(t) = f−1(θ(t)), with θ(0) = 0. Then the stochastic
gradient of the loss function ∇L(w(t)) is estimated using (xi, yi) at w(t). Finally
gradient descent and soft-thresholding update θ(t) to get θ(t+1). Converting θ to
w using Eq. (8) can cause numerical problem in MDA. Specifically, elements of
w could become very small and sensitive to difference of θj ’s scale. The following
lemma reveals the numerical problem that update rules (8) and (9) can bring.

Lemma 1. Assume that the values of features and λ in Eq. (9) are in the scale
of O(1). At the t-th iteration of MDA minimizing logistic loss, where t = O(p),
θ
(t)
j is also in O(p) and w(t)

j is at most in the order of O(a−p) for some a > 1.

Proof. Elements of the gradient of the logistic loss ∇jL(·, ·) with respect to
the first argument is L′(〈w,x〉, y)x and thus in the order of O(1). θ(t)j is the
summation of t terms in O(1) and thus in the order of O(p). Since ‖θ‖p > ‖θ‖∞,
∃ε > 0 s.t. ‖θ‖p > (1 + ε)‖θ‖∞ = (1 + ε)maxi |θi|. By Eq. (8),

|wj | =
|θj |p−1

‖θ‖p−2
p

<
|θj |p−1

(1 + ε)p−2(maxi |θi|)p−2

= |θj |
( |θj |

(1 + ε)maxi |θi|
)p−2

= O(p)O(a2−p) = O(a−p)

where a = (1 + ε)maxi |θi|/|θj | > 1.

Particularly, because wj is exponential in p = O(ln(d)), small difference between
exponents of dimensions could be greatly amplified in the resulting model. Con-
sider two entries of θ: θ1 and θ2. Without loss of generality, assume that θ1 is
only one order smaller than θ2 in magnitude: |θ1| ≈ 10−1|θ2|. Reconstruct the
primal vector w from θ, we can see that w1 is p order smaller than w2 in magni-
tude : |w1| ≈ 10−p|w2|. When computing the inner product between w and x, if
the difference between exponents of w1 and w2 is larger than the precision that
the data type supports, then the 2nd element in x would be totally lost. For
example, double precision floating point number supported by C++ (64 bits in
length according to IEEE 754-2008) typically has precision of 10−16. Therefore
1.0 + 1.0−17 = 1.0 in machine addition. In general, the larger p is, the more
difference between wj ’s exponents. We’ll show in experiment (Section 4.3) how
the parameter p affects the performance of MDA.

3 Efficient and Numerically Stable Sparse Learning

We present the proposed sparse learning algorithm in Section 3.1. In Section 3.2
we show that the method is guaranteed to converge, with numerical errors taken
into account. Finally we show generalization error bound in Section 3.3.
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3.1 The Proposed Method

Given the labeled data Z = {(x1, y1), . . . , (xm, ym)}, drawn from some distri-
bution D over Rd × {−1, 1}, we consider learning a sparse large margin linear
classifier. This reduces to minimizing certain loss function. There are three con-
cerns. First, the algorithm should be scalable. One of the best practical methods
known is online learning or stochastic gradient descent, which iteratively mini-
mizes the loss function and keeps only the footprint of the sparse model without
storing any example in memory. Second, the algorithm should be numerically
stable. We prefer algorithms which rely on practical assumption and are robust
to small difference in the scale between dimensions of data. Finally, for effi-
ciency consideration, algorithms achieve better classification performance using
less features are desirable.

Algorithm 1. Numerically Stable Sparse Learning
1: Input: margin threshold τ , learning rate η,

regularization parameter λ, density upper bound s
2: initialize linear model w = 0, model density=0

3: while model density less than s do
4: Receive instance (xi, yi) and compute z = yiwxi

5: if z ≤ τ then
6: for Each non-zero element xij do
7: Update wj by wj = wj + ηxijyi

8: Soft threshold wj using Eq. (10)

9: end for
10: end if
11: end while

We alter the perceptron algorithm such that it robustly produces sparse model
with convergence and generalization error guarantees (see Section 3.2 and 3.3).
The proposed method is described in Algorithm 1. It begins with a zero vector.
During each iteration, it loads an example from secondary storage and updates
the model as the original perceptron (line 4-7). The difference is that after each
online update, the algorithm suppresses the weights in the model (line 8) us-
ing the soft-thresholding operator (Eq. (10)). Since we assume that the data is
separable by a sparse linear classifier, by the fact that the data is in high dimen-
sional space, it is expected that there would be many noisy or irrelevant features.
For an example classified with margin higher than τ , it is more likely that the
features in the current model w(t) are sufficient to make correct decision, and
the example is not used for update. This prevents unnecessarily introducing new
features into the current model and maximally preserves the sparsity without
increasing regret. In general, perceptron algorithm exploits the sparsity of the
instance space, and further leads to a model with fewer features.

The above framework can be applied to very large datasets. The main task
at each iteration is computing 〈w(t),x〉, which is in the form of summation
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and can be distributed to r machines. One can partition the dataset on a per-
feature basis into r partitions, with each assigned to a machine. Each machine
computes O((d/r)) components in 〈w(t),x〉. Adding these parts up obtains the
inner product. There are O((d/r)) cost on each machine for I/O and O(r) cost
for communication. Thus the algorithm is scalable via parallelization on columns
of the data matrix X .

3.2 Convergence of the Proposed Method

Without loss of generality, we assume that the learning rate equals 1 in the
following analysis. We alter the convergence theorem in [10] and prove similar
results of perceptron with soft-thresholding, and analyze conditions under which
the soft-thresholding version perceptron converges. Assume that the t-th mistake
happens on example (x, y). Let J0 = {j|xj = 0} and J1 = {j|xj �= 0}. Then
w

(t)
j = w

(t−1)
j for j ∈ J0 and we can only pay attention to the difference between

w
(t)
j and w(t−1)

j for j ∈ J1. By Algorithm 1 and Eq. (10),

w(t) = S(w̃(t), λ) = S(w(t−1) + yx, λ)

Project w(t−1), w(t) and x onto J0 and J1 respectively, and let the projection
of a vector v denoted by the vector with the index set as its subscript (for
example, xJ0 means keep the elements on indices in J0 unchanged and set the
other elements to zero). By simple algebra, w(t) can be decomposed into the sum
of two orthogonal vectors w(t) = w(t−1)

J0
+ w(t)

J1
. We have the following lemma.

Lemma 2. Assume that ∀(x, y) ∈ Z, ‖x‖ < R. Let J (t)
+ denote the set {j :

|w̃(t)
j | ≥ λ}∩J1 and J (t)

− be the set {j : |w̃(t)
j | < λ}∩J1. Let ε(t)λ = λ

∑
j∈J

(t)
+

|w̃(t)
j |+∑

j∈J
(t)
−

|w̃(t)
j |2. If τ ≤ ε

(t)
λ /2, ‖w(t)‖2 ≤ tR2.

Proof. Prove by induction,

‖w(t)‖2 = ‖w(t−1)
J0

+ w(t)
J1
‖2 = ‖w(t−1)

J0
‖2 + ‖w(t)

J1
‖2

≤ ‖w(t−1)
J0

‖2 + ‖w̃(t)
J1
‖2 − ε

(t)
λ (11)

= ‖w(t−1)
J0

‖2 + ‖w(t−1)
J1

+ yx‖2 − ε
(t)
λ (12)

≤ ‖w(t−1)
J0

‖2 − ε
(t)
λ + ‖w(t−1)

J1
‖2 + ‖yx‖2 + 2τ (13)

≤ ‖w(t−1)‖2 +R2 − ε
(t)
λ + 2τ (14)

Inequality (11) follows from the fact that at each iteration t, w̃(t) suffered from
at least ε(t)λ of shrinkage. Inequality (13) holds because update occurs only when
〈w, yx〉 ≤ τ . Since τ ≤ ε

(t)
λ /2, then ‖w(t)‖2 ≤ ‖w(t−1)‖2 +R2.
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Discussion. We assume the condition τ ≤ ε
(t)
λ /2 for the convenience of proof. If

τ = 0, then the condition is satisfied for ∀λ > 0. Particularly, if λ is set too small,
then the algorithm asymptotically becomes Perceptron; By using a large λ, one
can achieve a sparser model with sacrifice of accuracy. This is a more general
problem of model selection and one need to trade off sparsity for accuracy[11]. In
the experiment, we choose the parameters λ and τ via validation, then they’re
fixed during iterations.

We proved the above lemma without considering numerical errors. Let the
machine precision be eps = 2−r. Soft-thresholding introduces errors if λ and
the truncated elements are rounded-off. This gives an error up to |ε1| ≤ 2eps
which is minor and can be ignored. Note that ‖w(t)‖ usually grows with the
iterations, thus more importantly, we must consider the numerical errors associ-
ated with this term. With |ε2| ≤ eps, the exact term ‖w(t−1)

J1
+ yx‖2 in Eq. (12)

becomes ‖(1 + ε2)(w
(t−1)
J1

+ yx)‖2 and can be approximately upper-bounded by

(‖w(t−1)
J1

‖2 +‖yx‖2+2τ)(1+2ε2) by ignoring the higher order term ε22 (an exact

upper-bound should be (‖w(t−1)
J1

‖2 + ‖yx‖2 +2τ)(1+2ε2 + ε22) ). Substitute this
error into Eq. (12), we can prove the following theorem, which is the key to the
convergence proof.

Theorem 1. Given λ ≥ 0, let ε∗λ = mint ε
(t)
λ , then ‖w(t)‖2 < tR2 holds, ∀

t ∈ Z+ such that

t ≤ ε∗λ − 2τ
2ε2R2

− 2τ
R2

(15)

Proof. The inequality (14) becomes

‖w(t−1)‖2 +R2 − ε∗λ + 2τ + 2ε2(‖w(t−1)
J1

‖2 + ‖yx‖2 + 2τ)︸ ︷︷ ︸
As in the proof of Lemma 2, we need to prove that the under-braced sum is
smaller than R2. Since by induction, ‖w(t−1)

J1
‖2 ≤ ‖w(t−1)‖2 ≤ (t − 1)R2 and

‖yx‖2 ≤ R2 by assumption, we need only to prove that

−ε∗λ + 2τ + 2ε2(tR2 + 2τ) ≤ 0

Solving for t gets the conclusion.

In C++, ε2 ≈ 10−16 in double-precision. If we set λ and τ such that ε∗λ − 2τ is
not too small (for example, in the order of o(R2)), then ‖w(t)‖2 < tR2 holds for
a sufficient large t in a reasonable training process.

Theorem 2. Assume for all examples xi ∈ Z, ‖xi‖ < R. If there exists a
linear model u such that ‖u‖ = 1 and 0 < ελ,γ < 1 such that 〈(yixi − v),u〉 ≥
(1 − ελ,γ)γ for ∀(x, y) ∈ Z and any v, ‖v‖∞ < λ, then the number of mistakes
made by the online perceptron algorithm on Z is at most k = (R/(1 − ελ,γ)γ)2.
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Proof. For any t satisfying Eq. (15),

w(t) · u = w(t−1) · u + (Δ(t) + yixi) · u (16)
≥ w(t−1) · u + (1 − ελ,γ)γ

where Δ(t) = S(w̃(t), λ) − w̃(t). Thus w(t) · u ≥ (1 − ελ,γ)tγ. By Lemma (2),
‖w(t)‖2 ≤ tR2.

(1 − ελ,γ)tγ ≤ w(t) · u ≤ ‖w(t)‖ ≤ √
tR

This theorem indicates that if data in Z can be separated with margin at least
γ, and this margin does not shrink too much compared with γ (up to ελ,γ)
given the examples are soft-thresholded, then the Algorithm 1 needs at most
(R/(1− ελ,γ)γ)2 examples among Z to learn a linear classifier consistent with all
examples in Z. For the inseparable case, according to the method in [4], one can
extend all the examples x to x′ and the linear model u to u′. In this extended
space, (x′, y) is linearly separable by u′.

3.3 Generalization Error Bound of the Proposed Method

In Algorithm 1, features enter the model only when necessary. Such strategy
also allow us to construct a consistent classifier using a subset of the training
set. Combining these two properties, it is possible to learn a sparse model with
generalization error guarantee. Algorithm 1 can be seen as a compression scheme
[9] consisting of two mappings. The first mapping κ maps any training set Z of
size m to Zk ⊂ Z, called the “kernel” of Z, where k is the kernel size. The
second mapping π uses Zk to reconstruct the labels of all the examples in Z.
κ can be seen as an algorithm, learning from m training examples and encod-
ing the produced hypothesis h using only k of them. The mapping π requires
that h is consistent with all the training examples. An algorithm with the data
compression property is guaranteed with generalization error bound [9].

Lemma 3. For any compression scheme with kernel size k, the probability that
the generalization error of the learned hypothesis (with respect to distribution D)
being larger than ε is less than

(
m
k

)
(1 − ε)m−k

With a smaller k where k < /m/20, the bound on generalization error becomes
smaller. Combining Theorem 2 and Lemma 3, with high probability over the
randomly drawn training set Z, the soft-thresholding perceptron algorithm can
obtain a classifier wZ of good generalizability using only k examples out of the
total m training examples.

Theorem 3. With probability at least 1−δ over the random draw of the training
set Z of size m, given the conditions in Theorem 2, the generalization error of
the classifier found by the proposed algorithm is less than

1
m− k

(
ln
(
m

k

)
+ ln(m) + ln

1
δ

)
(17)

where k = (R/(1 − ελ,γ)γ)2 for some 0 < ελ,γ < 1.
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Table 2. Description of classification tasks. Columns sequentially show the task ids,

the tasks’ names, the size of the training sets (#Tr), validation set (#Valid), test set

(#Test) and number of total features (#Dim)

No. Task #Tr #Valid #Test #Dim

1 comp vs rec 4278 1644 2948 21317

2 comp vs sci 4248 1766 2829 22944

3 comp vs talk 3960 1577 2607 24178

4 rec vs talk 3456 1423 2353 23253

5 sci vs rec 3772 1598 2561 22839

6 sci vs talk 3397 1445 2363 24777

7 rcv1 20242 3357 6854 47236

8 webspam 50000 4999 50000 16609143

Proof. The kernel size of the model learned from Z by the soft-thresholding
algorithm is bounded by k = (R/(1 − ελ,γ)γ)2, for some 0 < ελ,γ < 1. By
Lemma 3, (

m

k

)
(1 − ε)m−k ≤

(
m

k

)
e(k−m)ε (18)

Let the right hand size of the above inequality equal to δ and solve for ε, we
obtain the conclusion.

This theorem is similar to the results given in [7] where the perceptron algorithm
is run in the dual form and the output is a linear classifier in the kernel space.
The difference is that the dual perceptron algorithm needs to store k training
examples for prediction while the proposed method stores only a sparse vector.

4 Experiment

In this section, we present experiment results of the proposed and other methods,
focusing on the numerical stability and efficiency of sparse models. After briefing
the experiment settings, three subsections address the problems listed below:

i Does it converge when applying gradient descent directly on real-world data.
ii How numerical unstability affects MDA’s convergence and model accuracy.
iii To what extent of sparsity can one achieve with performance guarantee.

4.1 Experiment Settings

We conducted experiments on three datasets. The first dataset is 20newsgroups,
from which we construct six binary classification tasks. We used word vector
representation with TFIDF weighting. The seventh and eighth tasks are con-
structed from rcv1 and webspam datasets, respectively. Note that the webspam
dataset is from Pascal Large Scale Learning Challenge1 . See Table 2 for details
1 http://largescale.first.fraunhofer.de/instructions/

http://largescale.first.fraunhofer.de/instructions/
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of tasks. We compared 4 baselines with the proposed method, focusing on nu-
merical stability, model sparsity and accuracy. The baselines are: GraDes [5],
SMIDAS (Stochastic Mirror Descent Algorithm made Sparse), SCD (Stochastic
Coordinate Descent) [12] and TG(Truncated Gradient) [8]. We next demonstrate
the numerical problems of GraDes and SMIDAS, shown in Section 2.1 and 2.2.

4.2 Numerical Problems of Direct Gradient Descent

The GraDes algorithm attempts to find a sparse solution for the least squared
error regression problem using �0 regularization. The accuracy of GraDes is not
directly comparable to the proposed method due to the difference of the loss
functions (GraDes uses squared loss while other three use logistic loss in our
experiments), therefore we report the numerical problem of GraDes without
comparing to other algorithms. As we analyzed in Section 2.1, for the direct
gradient descent method to converge, one should keep the spectral radius of the
iteration matrix M less than 1. For GraDes, though by sparsification using hard
thresholding function (Eq. 6), the iteration can still diverge.

In practice, it is unrealistic to verify that the spectral radius of M is less than
1. This is restricted by the space and time complexity (M is a dense matrix in
size of O(d2)). For instance, in one of the authors’ machines with 2GB memory,
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Table 3. Distribution and statistics of exponents

p in Eq. (8) p = 2 ln(d) p = 0.5 ln(d)

range within mean±std within mean±std

comp vs rec 0.095 -80.3±23.6 1.000 -12.7±7.2

comp vs sci 0.258 -69.8±32.4 0.999 -15.4±7.1

comp vs talk 0.282 -78.6±43.1 0.996 -17.2±9.1

sci vs rec 0.381 -63.6±29.4 1.000 -14.3±6.1

sci vs talk 0.273 -69.3±26.9 1.000 -16.0±5.9

rec vs talk 0.347 -68.4±33.7 0.999 -15.8±7.5

rcv1 0.012 -136.8±32.6 0.998 -26.3±6.5

webspam NA NA 0.976 -71.4±22.1

MATLAB ran out of memory when computing the largest eigenvalue of a 20000×
20000 matrix. It costs even more if we have to compute the spectral radius of
the thresholded iteration matrix DJ(t)M to decide how to truncate w̃(t) to w(t).
For the above 20newsgroup tasks, we reduce the number of features to around
5000 during text preprocessing while keeping the number of examples the same.
Then we compute the top eigenvalues of the iteration matrices DJ(t)M at each
iteration. |J (t)| is set to 2000 and the elements of J (t) are determined by the
GraDes algorithm, DJ(0) is the identity matrix. According to [], γ is set to 3 and
100, respectively, Note that the learning rate is 1/γ, thus we have two different
learning rate settings. The spectral radii are plotted as a function of the number
of iterations ,under two learning rates, as shown in Fig. 1 and Fig. 2.

One can easily observe that the spectral radius is far more than 1, indicating
a fast divergence speed of the solution. For example, in Fig. 1, before the first
iteration, the iteration matrix M has a spectral radius at least 7.5×103 (task
“comp vs rec”, shown in the red line with plus “+”). Although in the first iter-
ation, the spectral radii are reduced by the hard thresholding function, they are
still in the scale of 103. Moreover, the spectral radii increase as the algorithm
proceeds. The radius of the iteration matrix for task “comp vs rec” increases
from about 6× 103 at the first iteration to about 7× 103 at the 10-th iteration.
All the other spectral radii increase to some extent and remain above 103. Fig.
2 shows similar situations, the spectral radii are over 160. The large spectral
radii of the iteration matrices indicate that the solution should go beyond the
optimal solution and therefore increase the potential function. To show this, for
each iteration of GraDes, we compute the the value of Ψ(w), which is expected
to be reduced by the algorithm. However, the potential function values also go
up quickly. In Fig. 3 and Fig. 4, for the 6 20newsgroups tasks, we plot Ψ(w) in
log10 scale at each GraDes iteration under two settings of γ. The scales climb
up linearly, indicating an exponential increase of Ψ(w).

4.3 Numerical Problem of Mirror Descent Algorithm

We show the evidence of the numerical problem leading to the low accuracy
of MDA. Typical IEEE 745 double precision floating numbers have at most 52
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bits in the mantissa. If p in Eq. (8) is set too large, then small difference in
exponents of θj would be greatly amplified in wj . Adding two binary numerals
with difference in exponent larger than 52 would cause the smaller one to be
truncated. Usually, elements in one example of the data are normalized to be
in the same scale, such as in the range of [0, 1], the great disparity between
exponents in the weights would cancel out parts of the data.

For each task, we trained a model with 40% of density (i.e. the percentage of
non-zeros in the model, with 100% density we include all features in the model)
using SMIDAS. p is set to 2 ln(d) and 0.5 ln(d), respectively. For the last task,
the density is set to 0.1% due to the large number of features (over 16 millions),
and p ≈ 33 when p = 2 ln(d), this will obviously cause data truncation when
computing inner products. Thus we only report results when p = 0.5 ln(d) for
this task. We calculated the exponents of wj in 2-based numeric. Denote the
largest exponent by em. We showed in Table 3 the ratios of exponents falling
within [em − 51, em] (the column “within”). The columns “mean±std” show the
means and standard deviations of exponents. As we can see, for p = 2 ln(d),
most of the wj have their exponents out of [em − 51, em]. During prediction,
the corresponding features of these elements in the data are totally truncated,
therefore the models SMIDAS produce lack of sufficient discriminability and
lead to poor performance (black lines with empty squares in Fig. (5)). The
standard deviations are large, indicating a wide dynamic range of exponents.
For p = 0.5 ln(d), SMIDAS approximates the normal gradient descent [6] and
produces more reasonable models. Most of the exponents are in the range of
[em − 51, em] and the dynamic ranges become much smaller. The performances
go up dramatically, but still inferior to the proposed method (blue lines with
filled squares in Fig. (5)).

4.4 Sparsity and Performance Comparison

We focus on how the performance varies as a function of sparsity, and how nu-
merical problem affects the MDA. The proposed method is compared with three
scalable algorithms, SMIDAS, TG and SCD, all use logistic loss function. We
randomly split all labeled data of each task into training, test and validation
set (see Table 2). The training sets are further randomly shuffled (for task 1-7)
or split (task 8) to create 10 copies of training data. For the proposed algo-
rithm and TG, for each parameter setting, we trained 10 models using these 10
copies and calculated the average performance of the models on validation set.
For SMIDAS and SCD, since they randomly shuffle the examples and features
respectively, only one copy of training data of each task is needed. We chose the
best parameters according to this average performance. Finally we reported the
best models’ averaged accuracy on test sets. All algorithms require a regulariza-
tion parameter λ to control the intensity of sparsification. With a larger λ, we
expect more sparsity of the model. We tuned λ using 0.0001, 0.0005, 0.001, 0.01
and 0.1. For learning rate η needed in SMIDAS, TG and the proposed method,
we varied it from 0.1 to 0.5 with step size 0.1. The proposed method requires
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one more parameter τ determining the minimum margin above which to skip
one instance. τ was searched using 0.001, 0.01 and 0.1.

To compare the performance with sparsity restriction, we require the percent-
age of the non-zeros in the model (model density) to be at most 40% for task
1-7 and 0.1% for task 8. We recorded the error rates when the density reach
pre-specified percentages. For all algorithms, we stopped running the program
when they reach density upper bounds, or the maximal scans of training set (10
scans for all tasks). These error rates of each algorithms in 8 tasks are depicted
in Fig. 5. In general, the proposed algorithm achieves lower error rate using
fewer features compared with the other three. Particularly, in task 2, 7 and 8,
though the density of the proposed algorithm went up to 40%, the errors are
consistently lower than other methods. In the rest 5 tasks, the proposed method
stop updating the model before the model is too dense, even when the maximum
number of scans is reached. These not only demonstrated the convergence and
generalizability of the proposed algorithm (see Section 3.2 and 3.3), but also the
sparsity of the models it produces. Specifically, in task 1, the proposed algorithm
converges before the density reaches 30%, with approximately 5% of error rate,
which outperformed the remaining algorithms, even they used 40% of features.
In task 3, the proposed method achieved 5% of error rate at density 20% which
can only be obtained when SCD reached 40% of density, with other two have
their error rates higher than that of SCD. Note that in task 1-7 SMIDAS with
p = 2 ln(d) was beat by all other 3 methods and itself with p = 0.5 ln(d). This
showed that SMIDAS is not applicable for approximating the EG algorithm,
especially when the dimensionality is high.

In task 1-6, when d and m differ by at most one order, TG converges slower
than SCD. SCD adds features according to global information provided by all
training examples, while TG works based on stochastic gradient. This is inac-
curate compared with SCD. However, in task 8, when d are several order larger
than m and sparser model are required, SCD fails to converge before reaching
40% of density. TG converges since it exploits more features than SCD. The
proposed method takes the best of both. For any training example, it is always
possible to reduce the loss following the gradient direction. As long as the current
example does not increase the regret of online learning, we simply hold it out
of the model. In this way, the proposed method achieves better generalization
ability with a higher degree of sparsity.

5 Conclusions

We addressed several problems in existing sparse learning methods. Though RIP
provides theoretical guarantee to recover the sparse solutions, it is mostly satis-
fied by designed matrices in compressive sensing, rather than data collected in
the real world. Failing to meet RIP can cause matrix iteration-based gradient de-
scent to diverge [5], while �0 constraint doesn’t solve the problem. Second, though
MDA using Bregman divergence enjoys fast convergence and approximates the
EG algorithm, its update rules produce inaccurate models when dimensionality
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is high. Lastly, �1 regularization is insufficient for finding an sparser solution, in
several existing methods, density of model grows faster than necessary.

We have proposed to combine the perceptron algorithm with soft-thresholding.
The algorithm converges with numerical error taken into account. We have also
provided generalization error bound of the algorithm. Finally, the algorithm is
highly scalable, data access can be distributed on a per-feature basis, making it
more suitable for real-world applications. Experiments have shown that the pro-
posed method outperformed 4 existing sparse learning algorithms in numerical
stability, accuracy and model sparsity control. In one task with approximately
3.5GB of training data (16 million features, 50k examples), the proposed ap-
proach achieved 5.9% error rate using model with 0.8% density. But the best
competing approach (TG for this dataset) can only get 8.2% error rate, using
model with 0.7% density.
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Abstract. In preference learning, the algorithm observes pairwise rela-

tive judgments (preference) between items as training data for learning

an ordering of all items. This is an important learning problem for appli-

cations where absolute feedback is difficult to elicit, but pairwise judg-

ments are readily available (e.g., via implicit feedback [13]). While it was

already shown that active learning can effectively reduce the number of

training pairs needed, the most successful existing algorithms cannot gen-

eralize over items or queries. Considering web search as an example, they

would need to learn a separate relevance score for each document-query

pair from scratch. To overcome this inefficiency, we propose a link-based

active preference learning method based on Gaussian Processes (GPs)

that incorporates dependency information from both feature-vector rep-

resentations as well as relations. Specifically, to meet the requirement

on computational efficiency of active exploration, we introduce a novel

incremental update method that scales as well as the non-generalizing

models. The proposed algorithm is evaluated on datasets for information

retrieval, showing that it learns substantially faster than algorithms that

cannot model dependencies.

1 Introduction

Preference learning is a natural and widely successful problem formulation for
applications in search engines, information retrieval, and collaborative filtering
[7,3,12,8]. The learning algorithm receives pairwise preferences that compare two
entities, such as documents, webpages, products, songs etc. The goal is to learn
a general ordering function that also ranks unobserved pairs correctly. Since col-
lecting preference pairs is expensive (i.e. manual judgment effort, or presentation
of inferior rankings for implicit feedback), designing learners that actively collect
the most informative training preferences promises to reduce training cost. While
some approaches for active learning with preferences exist(e.g., [21,6,19,27,26]),
most assume the entities to be independent of each other and they do not take
into account relations between the entities [1]. However, such link structures
among entities are very informative [24,9,10,17]. For example, assume that there
are n papers related to a query q, and these papers are linked together into

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part III, LNAI 6323, pp. 499–514, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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a network with co-author relations. Generally, the papers written by the same
authors represent some similarity on research topics. If a user gives a judgement
that a paper ei is more relevant to the query q than another paper ej (ei " ej),
then a co-authored paper ei′ of ei is more likely to have similar relevance. In
particular, it is likely to be preferred to ej (ei′ " ej) as well. More generally,
known preference information on papers propagates through the network pro-
viding useful evidence about unknown preferences and in turn decreasing our
uncertainty about them. For active learning, this means that the search space is
reduced.

Most of the active preference learning methods to date, however, have re-
mained relatively agnostic to this rich structure. In fact, the most successful
existing algorithms cannot model dependencies. For instance, Saar-Tsechansky
and Provost [21] considered class-based ranking problems and proposed to use
bootstrap samples of existing training data to examine the variance in the prob-
ability estimates for not-yet-labeled data. Brinker [2] proposed an SVM-based
method which converts preference learning into a binary classification problem.
[5,25] also ignore the link structure. In the model proposed by Radlinski and
Joachims [19], the lack of dependencies manifests itself in a diagonal covariance
matrix. Each entity is associated with a latent variable representing its utility
(score) and all latent variables are independent of each other and follow Gaus-
sian distributions. The entities are ranked according to these utilities: an entity
ei is ranked above another one ej (ei " ej), if and only if the utility of ei is
larger than that of ej . For active exploration, Radlinski and Joachims propose
to select an entity pair for which a preference label promises the largest expected
reduction of uncertainty about the latent utilities. Specifically, for a user-defined
loss function, the selection criterion optimizes the expected reduction of loss due
to the variability of the utility estimates.

The method proposed in this paper overcomes the key limiting assumption
of [19], namely that all document-query utilities have zero covariance. Specifi-
cally, we propose a link-based active preference learning method using Gaussian
processes. It is based on the relational Gaussian process model for preference
learning, called XPGP, recently introduced by Kersting and Xu [14]. Like in
Radlinski and Joachims’ model, associated with each entity is a continuous la-
tent variable ξi that represents the latent utility (score) of the entity. The key
difference from Radlinski and Joachims’ model is that the latent utility (score)
of each entity consists of two function values: f(xi) and g(ri). With each entity
ei described by a vector of entity attributes xi, f(xi) is a function value of these
attributes. The {f(x1), f(x2), . . .} share a common Gaussian process prior GPa.
The term g(ri) denotes a function value of entity relations ri between ei and
other entities, and {g(r1), g(r2), . . .} share another common Gaussian process
prior GPr. The utility ξi of ei is then modeled as the weighted sum of the two
components: ξi = ω1f(xi) + ω2g(ri). Unlike [19], it is obvious that this XPGP-
based model exploits attribute and relational information in preference learning,
enabling score propagate through the network.
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Algorithm 1. The AXPGP algorithm for link-based active preference
learning

Input: X (entity attributes), R (links), A (the set of active pairs, one random

pair at the beginning)

m0 = 0; K0 is computed with Eq. (6).1

for t = 1 to T do2

Approximate the likelihood distribution of the new active pair ot (i.e.,3

compute Σ̃t and μ̃t with Eq. (22));

Update the posterior distribution of utilities for all entities given ot (i.e.,4

compute Kt and mt with Eq. (24));

Compute expected loss for each candidate entity pair with Eq. (28) and pick5

the entity pair with the largest loss based on Eq. (29);

Label the chosen entity pair and add it to A;6

Output: mT (mean) and KT (covariance matrix)7

However, using XPGPs naively for active exploration would scale as O(t3),
where t is the number of actively selected points so far. Say we have t− 1 active
data points. After selecting an additional data point, we have to invert the new
covariance matrix among all t data points, which takes O(t3) time. To meet the
requirement on computational efficiency of active exploration, we propose an
incremental update method for the XPGP model – the main contribution of the
current paper. The incremental inference approach has scaling behavior com-
parable to the diagonal covariance method in [19]. We empirically evaluate the
method using LETOR [18] benchmark datasets. The results show that AXPGP
learns substantially faster than algorithms that cannot model dependencies.

The rest of the paper is organized as follows. We start off by introducing the
link-based active preference learning method AXPGP in Sec. 2. We then discuss
the model, incremental inference, and active learning. Before concluding, we
present our experimental analysis.

2 Probabilistic Framework for Link-Based Active
Preference Learning

The active exploration model we assume can be outlined as follows. Denote with
T the set of all possible entity preferences. Starting with an empty training
set A = ∅, we perform the following steps at each iteration: (1) a score (i.e.
expected loss) is computed for all pairs in J = T \ A based on the current
distribution of the utilities; (2) the pair with the largest score is picked and
added to the training set A with its true preference; (3) the distribution of the
utilities is updated based on the new A. Note that the number of all possible
entity preferences, i.e., the size of T is O(n2) — much larger than the number
n of entities.

The procedure simulates the interactions between users and information-
retrieval systems and is summarized in Alg. 1. Before providing more details,
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let us introduce some notations. We assume that there are (1) a set of n en-
tities E = {e1, . . . , en} with attributes X = {xi : xi ∈ RD, i = 1, . . . , n}, (2)
relations R = {ri,j : i, j ∈ 1, . . . , n} among the entities, and (3) a set of m ob-
served preferences ( i.e., pairwise rankings) among entities, O = {eis " ejs : s =
1, . . . ,m; is, js ∈ 1, . . . , n} (is and js are entities involved in the s-th observed
preference). With ri, we will denote all relations in which entity ei participates.

2.1 Link-Based Preference Learning with Gaussian Processes

Gaussian process1 (GP) models [20] are powerful nonparametric tools for Bayesian
supervised learning. In contrast to other kernel machines such as support vector
machines, GPs are probabilistic models, which means that they yield “error bars”
on predictions and allow standard Bayesian model selection to be used. They
generalize multivariate Gaussian distributions over finite dimensional vectors to
infinite dimensionality. Specifically, a GP defines a distribution over functions,
i.e. each draw from a Gaussian process is a function, and it is completely char-
acterized by its mean function m(x) := [f(x)] and covariance (kernel) function
C(x, x′) := [(f(x) −m(x))(f(x′) −m(x′))]. One attractive property of GPs is
that any finite set of function values f = {f(x1), . . . , f(xn)} follow a multivari-
ate Gaussian distribution so that mean and covariance can be computed based
on the corresponding attribute vectors x = {x1, . . . , xn} with respect to the
mean function and covariance functions.

Following the link-based GP (XPGP) model, the utility of each entity is mod-
eled as a continuous latent variable, consisting of two latent function values f(xi)
and g(ri) (shortened as fi and gi). f(·) and g(·) are functions of attributes and
links, respectively. We define GP priors for the attribute-wise and for the link-
wise latent function values. Specifically, we assume an infinite number of latent
function values {f1, f2, . . .} follow a Gaussian process prior with mean function
ma(xi) and covariance function ka(xi, xj). Without loss of generality, we assume
zero mean [20] so that the GP is completely specified by the covariance function
only. Here we used the subscript a to emphasize that they are attribute-wise.
In turn, any finite set of function values {fi : i = 1, . . . , n} has a multivariate
Gaussian distribution with mean zero and covariance matrix defined in terms
of the covariance function of the GP. Formally, for the set of n entities, the
prior distribution of the attribute-wise function values f = (f1, . . . , fn)T can be
represented as

P (f |X ) =
1

(2π)
n
2 |K| 12 exp

(
−f

TK−1f

2

)
. (1)

1 Several GP models for preference learning have been proposed. For example Chu and

Ghahramani [4] also considered the entity ranking problem (i.e. the setting discussed

here) by introducing a novel likelihood function to express the entity-wise ordinal in-

formation. As another example, Guiver and Snelson [11] recently presented a sparse

GP model for soft ranking problem for large-scale datasets. All previous GP mod-

els are reported to provide good performance on real-world datasets but they do not

consider relational information.
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Here, K denotes the n × n covariance matrix whose ij-th entry is computed
in terms of the covariance function with the corresponding attributes xi and
xj . The covariance function can be any Mercer kernel function, e.g. squared
exponential (SE)

k(xi, xj) = κ2 exp(−ρ
2

2

∑D

d
(xi,d − xj,d)2), (2)

where κ and ρ are parameters of the covariance function, and xi,d denotes the
d-th dimension of the attribute xi.

Similarly, we place a zero-mean GP over {g1, g2, . . .}. Again, {gi : i = 1, . . . , n}
follow a multivariate Gaussian distribution with mean zero and covariance ma-
trix Kr. Since entities and links form a graph, we can naturally employ graph-
based kernels to obtain the covariances, see e.g. [23]. The simplest graph kernel
might be the regularized Laplacian

Kr = [β(Δ+ I/ι2)]−1, (3)

where β and ι are two parameters of the graph kernel. Δ denotes the combi-
natorial Laplacian, which is computed as Δ = D −W , where W denotes the
adjacency matrix of a weighted, undirected graph, i.e., Wi,j is taken to be the
weight associated with the edge between i and j. D is a diagonal matrix with
entries di,i =

∑
j wi,j . Formally, the prior distribution of the link-wise function

values g = (g1, . . . , gn)T is: P (g|R) = N (0,Kr)

=
1

(2π)
n
2 |Kr| 12

exp
(
−g

TK−1
r g

2

)
. (4)

The utility ξi of an entity is a linear combination of the two function values:

ξi = ω1fi + ω2gi. (5)

Since fi and gi have GP priors, their weighted sum ξi also follows a GP prior. For
a finite number of entities, the prior is again reduced to a multivariate Gaussian
distribution with mean zero and covariance matrix K, that is

P (ξ|X ,R) = N (0,K); K = ω2
1Ka + ω2

2Kr. (6)

After defining the prior of utilities, we now need to model how the utilities
probabilistically decide the preferences, i.e. the likelihood distribution. For a
preference o involving the entities ei and ej , P (os|ξi, ξj) is defined as [4]∫ ξi−ξj

−∞
N (t|0, 1)dt ≡ Φ(ξi − ξj) . (7)

The likelihood is a cumulative Gaussian. This encodes the natural assumption:
The larger the difference between the utilities of ei and ej, the more likely is it
that ei is preferred to ej .
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Finally, the joint probability of m observed preferences and n utilities ξ =
{ξ1, . . . , ξn} can be written as

P (ξ,O |X ,R) = N (ξ|0,K)
m∏

s=1

Φ(ξis − ξjs). (8)

In this link-based GP ranking framework, the utilities are dependent on each
other, meaning that knowing the preference of two entities can not only improve
our utility predictions of the two entities, but also that of other entities which are
not involved in the preference. Thus the ranking of a whole set of entities can be
refined. How to diffuse the preference information among entities is decided by
their dependencies. The probabilistic dependencies between them are captured
with the covariance cov(ξi, ξj), i.e. the entry (i, j) in the covariance matrix K,
which measures to what extent the utilities change together. If two entities are
inter-linked or have similar attributes, then their covariance cov(ξi, ξj) is high.
Roughly speaking, if ξi is high, then so is ξj , and vice versa.

2.2 Incremental Inference Method for AXPGP

Assume that in the first t iterations, we collect t preferences {o1, . . . , ot} and
have learned the posterior distribution P (ξ|X ,R, o1, . . . , ot). At iteration t+ 1,
a new preference ot+1 is collected, and we need to compute:

P (ξ|X ,R, o1, . . . , ot+1) =
P (ξ|X ,R)P (o1|ξ) · · ·P (ot|ξ)P (ot+1|ξ)

P (o1, . . . , ot, ot+1|X ,R)
. (9)

That means we have to completely re-compute the posterior based on all prefer-
ences collected so far. Then a question naturally arises: could we exploit the pre-
vious computation and only focus on the new preference. To meet the challenge,
we develop an incremental inference method. Now the posterior distribution is
represented as

P (ξ|X ,R, o1, . . . , ot+1) =
P (ξ|X ,R, o1, . . . , ot)P (ot+1|ξ)

P (ot+1|X ,R, o1, . . . , ot)
, (10)

where the first term in the numerator is obtained from the last iteration, and
can be viewed as the learned prior of the current iteration. It is approximated
with a Gaussian distribution with mean and covariance matrix denoted as mt

and Kt. Thus we have

P (ξ|X ,R, o1, . . . , ot)P (ot+1|ξ) ≈ N (ξ|mt,Kt)Φ(ot+1|ξ) .

Since the likelihood is not conjugate with the prior, an analytical solution is
intractable. To solve the inference problem, the expectation propagation (EP)
algorithm [16] is used. Namely, we use an unnormalized Gaussian distribution

Z̃t+1N (ξit+1 , ξjt+1 |μ̃t+1, Σ̃t+1) (11)
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to approximate the likelihood Φ(ot+1|ξ). Note that (11) is a 2-dimensional Gaus-
sian. Now the inference problem (10) is reduced to an optimization problem:

N (ξit+1 , ξjt+1 |μt, Σt)Φ(ot+1|ξit+1 , ξjt+1)

← N (ξit+1 , ξjt+1 |μt, Σt)Z̃t+1N (ξit+1 , ξjt+1 |μ̃t+1, Σ̃t+1), (12)

where μt and Σt denote the entries in mt and Kt corresponding to the entities
eit+1 and ejt+1 involved in the preference ot+1. The product on the right side
equals to N (ξit+1 , ξjt+1 |μ̂, Σ̂) Z̃t+1/C , where

μ̂ = Σ̂(Σ−1
t μt + Σ̃−1

t+1μ̃t+1), Σ̂ = (Σ−1
t + Σ̃−1

t+1)
−1,

C = 2π|Σt + Σ̃t+1| 12 · exp
(

1
2
(μt − μ̃t+1)T (Σt + Σ̃t+1)−1(μt − μ̃t+1)

)
. (13)

Thus the inference problem is reduced again: optimizing μ̂ and Σ̂ to make the
right side close to the left side, and then deriving μ̃t+1 and Σ̃t+1 based on (13).
To satisfy (12), we only need to match their first and second moments [20]. Since
the product on the right side is an unnormalized Gaussian, we need to impose
an additional condition, i.e. that the zero-th moments should also match. The
zero-th moment of the left side is

∫ N (ξit+1 , ξjt+1 |μt, Σt)Φ(ot+1|ξit+1 , ξjt+1)

=
∫ �T μt

−∞
N (a|0, 1 + �TΣt�)da = Φ

(
�Tμt√

1 + �TΣt�

)
, (14)

where � denotes yt+1[1,−1]T . The term yt+1 is 1 if eit+1 " ejt+1 , and −1 other-
wise. Since the zero-th moments of the two sides are equal, we have

Z̃t+1 = C Φ

(
�Tμt√

1 + �TΣt�

)
. (15)

The first moment of the left side is
∂

∂μt

∫
N (ξit+1 , ξjt+1 |μt, Σt)Φ(ot+1|ξit+1 , ξjt+1)

=
∫
N (ξit+1 , ξjt+1 |μt, Σt)Φ

(
χT�
)
(χ− μt)

T
Σ−1

t , (16)

where χT denotes the vector
[
ξit+1 , ξjt+1

]
. The first moment of the right side is

∂

∂μt
Φ(

�Tμt√
1 + �TΣt

) =
�Tμt√

1 + �TΣt

N
(

�Tμt√
1 + �TΣt

)
(17)

Making the two first moments equal, we obtain:

μ̂ = E (χ) = μt +
S

Z
√

1 + �TΣt�
Σt�,

z =
�Tμt√

1 + �TΣt�
; Z = Φ (z); S =

1√
2π

exp
(
−z

2

2

)
. (18)
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Now we compute the second moment of the left side:

∂2

∂μ2
t

∫
N (ξit+1 , ξjt+1 |μt, Σt)Φ(ot+1|ξit+1 , ξjt+1)

= Z E
[
Σ−1

t (χ− μt)(χ− μt)TΣ−1
t

]− Z Σ−1
t . (19)

and that of the right side:

∂2

∂μ2
t

Φ

(
�Tμt√

1 + �TΣt

)
= −��T zS

1 + �TΣt�
. (20)

Since the two moments are equal, we obtain E(χχT ) =:

zS

(1 + �TΣt�)Z
Σt��

TΣt +Σt + E(χ)μT
t + μtE(χT ) − μtμ

T
t . (21)

Now, the second central moment Σ̂ can be computed with E(χχT )−E(χ)E(χT ).
Substituting (18) and (21), we can get Σ̂. In summary, the moment matching
procedure yields the following equations to compute μ̃t+1, Σ̃t+1:

z =
�Tμt√

1 + �TΣt�
; S =

1√
2π

exp(−z
2

2
); Z = Φ(z);

μ̂ = μt +
SΣt�

Z
√

1 + �TΣt�
; Σ̂ = Σt − zSZ + S2

Z2(1 + �TΣt�)
Σt��

TΣt;

Σ̃t+1 = (Σ̂−1 −Σ−1
t )−1; μ̃t+1 = Σ̃t+1(Σ̂−1μ̂−Σ−1

t μt). (22)

After getting the approximate likelihood, we can compute the posterior distri-
bution of utilities. Since all entities are dependent on each other in the AXPGP
algorithm, the update of the utility of one entity will change the utilities of all
others. Thus, we need to compute the new distribution of all ξi at the iteration
t+1, i.e., the posterior distribution Eq. (10). The product of two Gaussian is an
unnormalized Gaussian, so P (ξ|X ,R, o1, . . . , ot, ot+1) is approximated with:

N (ξ|mt,Kt)Z̃t+1N (ξit+1 , ξjt+1 |μ̃t+1, Σ̃t+1)
P (ot+1|X ,R, o1, . . . , ot)

=N (ξ|mt+1,Kt+1)

Kt+1 = (K−1
t + [̂ı, ĵ] Σ̃−1

t+1 [̂ı, ĵ]
T )−1;

mt+1 = Kt+1(K−1
t mt + [̂ı, ĵ] Σ̃−1

t+1μ̃t+1). (23)

Here, [̂ı, ĵ] denotes the unit vectors, which is one at the entry it+1 (resp. jt+1)
and zero otherwise. Note that this approximate distribution is the learned prior
of the next iteration t+ 2. Given a new preference ot+2, we can update the dis-
tribution P (ξ|X ,R, o1, . . . , ot, ot+1, ot+2) via (22) and (23) efficiently. Because
the information from the historical data {o1, . . . , ot} propagates to the new it-
eration t + 1 via the learned prior P (ξ|X ,R, o1, . . . , ot), the new iteration only
needs to re-compute the distribution over utilities by one single new observation
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ot+1, rather than to re-compute the distribution conditioned on all observations.
Thus, it implements an incremental inference method.

The computation in (22) only involves operations on two-dimensional matrices
which is cheap to compute. (23), however requires to compute the inverse of a
n × n matrix, which scales O(n3). The cost, however, can be reduced by using
the Woodbury, Sherman & Morrison formula yielding a rank-two algorithm:

Kt+1 = Kt −ABAT ; A = Kt[̂ı, ĵ]; B−1 =
(
Σ̃t+1 +Σt

)
mt+1 = mt −AB

(
μt +ΣtΣ̃

−1
t+1μ̃t+1

)
+AΣ̃−1

t+1μ̃t+1, (24)

where A denotes the columns of Kt corresponding to the entities eit+1 and ejt+1

involved in the preference ot+1. In comparison with the Glicko [19] method, the
information of the preference ot+1 is propagated to all the entities based on the
dependencies between them. For example, the change of the covariance matrix is
the product ABAT , where B represents the change of covariances of the entities
eit+1 and ejt+1 introduced by the new observation. A represents the covariances
between the two entities and all other unrelated entities to the new observation,
by which the information propagates.

Here, we consider inference only in a transductive setting. However, the pro-
posed method can also be extended to an inductive setting. The key challenge
is getting the covariance between the new entities and the known ones based on
relations. This can be addressed via several possible methods: Nyström [22] and
similarity matching [28].

2.3 Active Exploration

There are two major characteristics, which distinguish the active exploration for
preference learning from the ones for classification/regression: (1) preferences
are pairwise (or list-wise) rather than entity-wise; (2) the entity property utility
that decides the preference is latent and unobservable. Even if we observe the
preferences of entity pairs, the utilities are still unknown. Now that we are armed
with the posterior distribution of the latent utilities, we can use it to decide which
is the next entity pair to query based on the expected loss.

Let ξ∗ denote the current utility estimates used to produce the predicted
ranking of items in the current iteration. Furthermore, let L(ξ∗, ξ) be the loss
incurred by the estimates ξ∗ compared to the true utilities ξ. Since the true
utilities are unknown and random, the value of the loss function is also random.
We thus use the expectation of the loss functions with respect to the distribution
of the true utilities. Suppose the loss function is pairwise decomposable (i.e. a
sum of independent pairwise losses), then the total expected loss over all pairs
can be factorized to

EP (ξ|O) [L(ξ∗, ξ)] =
∑N

i=1

∑N

j=i+1
EP (ξi,ξj |O)

[L(ξ∗i , ξ
∗
j , ξi, ξj)

]
. (25)

Based on [19], the mode (i.e., mean μ) of their approximate posterior is used as
the estimate ξ∗. [19] proves that for many loss functions, sorting entities by the
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mode results in the ranking that minimizes the expected loss Eq. (25). Radlinski
and Joachims [19] proposed the following loss function for information retrieval
problems, since it (a) models misorderings, (b) takes into account that accuracy
is more important at the top of the ranking, and (c) treats errors on pairs with
almost equal utility different from pairs with large utility gap. In particular, for
a pair of entities ei and ej,

L(μi, μj , ξi, ξj) = e−γij ((μi − μj) − (ξi − ξj))
2
1misordered, (26)

where γij denotes the minimum rank of ei and ej when all entities are ranked
by their estimates. The term e−γij emphasizes the importance of entities ranked
higher in the list. The higher the ranks of the two entities, the larger the loss if
the estimated preference is wrong. The term 1misordered is a function taking value
one if (μi−μj)(ξi−ξj) < 0, and zero otherwise. Namely, we consider the difference
between the estimations and the true values as loss only when it is substantial
enough to influence the preference of the two entities. The expectation of the
loss function (26) is computed as follows. Let δij denote ξi − ξj . Since ξi and ξj
are Gaussian, their difference δij is still Gaussian,

δij ∼ N(δij |δ̂ij , ν2
ij) , (27)

with δ̂ij = μi − μj and ν2
ij = var(ξi) + var(ξj) − 2cov(ξi, ξj) , where var(x) and

cov(x, y) denote the variance of x and the covariance between x and y. Permuting
entities in each pair such that δ̂ij is always negative, we have the expectation:

EP (ξi,ξj |O) [L(μi, μj , ξi, ξj)] = e−γij

[
ν2

ij

2

(
1 + erf

(
δ̂ij√
2νij

))
− δ̂ijνij√

2π
exp

(
−δ̂2

ij

2ν2
ij

)]
.

(28)

Radlinski and Joachims [19] introduced several exploration strategies, i.e., how
to select the most informative entity pair based on the loss function. Here, we
focus on the largest expected loss pair (LELpair), which selects the entity pair ei

and ej that has the largest pairwise expected loss contribution, i.e.,

argmax
i�=j

EP (ξi,ξj |O) [L(μi, μj , ξi, ξj)] (29)

We select the loss function (28) and the active strategy (29) due to their good
performance and low computational cost. For more details on the theoretical
and empirical analysis we refer to [19].

2.4 An Illustration

We have described the link-based active preference learning method AXPGP.
To illustrate the principle behind AXPGP, we visualize the procedure with a
simple example. Assume that there are six papers {a, b, c, d, e, f} ranked as a "
b " c " d " e " f . We know that for (a, b) and (d, e) co-author relations
exists. Intuitively, the utilities of a and b resp. d and e should be correlated.
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Fig. 1. Illustration of the AXPGP algorithm. Top-left: Three utility functions drawn at

random from a GP prior. The shaded area shows the 95% confidence region. Bottom-

left: the prior covariance matrix. The smaller the covariance is, the darker the cell is.

Top-middle: the posterior utilities learned with the prior and the observed preference

b � e. The line is the posterior mean. Bottom-middle: The posterior covariance matrix.

Top-right: The expected loss of each entity pair. The smaller the loss is, the darker

the cell is. The blue points specify the pairs with the largest loss. Bottom-right: The

updated posterior utilities given the actively collected preference b � f .

Formally, we compute the covariance matrix using the graph kernel (3), shown
in Fig 1 bottom-left, which just verifies our intuition. Since there is no preference
information given, the expected utilities are the same for all entities (Fig. 1 top-
left). Assume now that a user tells us that she prefers b to e. Our belief on
the utilities changes, and we compute the posterior distribution based on (23).
Fig. 1 top-middle clearly shows that the expected utilities of b and e reflect this.
Additionally, the expected utilities of a and d also change. Since there is co-
author relation between them, the preference information propagates through
the network to other entities. Now, we compute the loss using (28) and select
the next entity pair to ask for a label using (29). Fig. 1 top-right shows the loss
for each entity pair. One can see that the pairs {(a, d), (a, e), (b, d)} have the
smaller expected losses. The reason is again that a and d are related to b and e.
The interesting fact, however, is the two isolated entities (c, f) do not give the
largest loss. The reason is that, given loss function (26), it is more informative
to find out whether c and f beat the current leader than learning about the
relation between the two. Randomly selecting one pair (b, f) with the largest
loss, the updated utilities are shown in Fig. 1 bottom-right. At this point, the
ranking of the whole set of entities is already very close to the actual one except
for the order of a and b. That is reasonable, because so far there is no explicit
or implicit information available on their preference. The order between a and
{c, d, e, f}, however, can already be accurately estimated.
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3 Empirical Analysis

We evaluate the link-based active preference learning method AXPGP on two real-
world datasets, namely OHSUMEDand TREC in the LETORrepository [18]. The
AXPGP method is compared with the Glicko [19] method to evaluate whether
the relational model speeds up active learning. Furthermore, we compare com-
putational efficiency, and evaluate in how far active learning using the AXPGP
outperforms random sampling.

Mean average precision (MAP) is used as the performance measure [15]. MAP
is defined as the average AP over multiple rankings,AP = 1

N∗
∑N

n=1 prec(n)δ(n),
where N∗ denotes the number of relevant documents for the query. δ(n) equals
to one if the n-th document in the ranking is relevant, and zeros otherwise.
prec(n) = 1

n

∑n
i=1 δ(i) is the precision after observing the first n documents in

the ranking.
In each iteration of the following experiments, the algorithm asks for feedback

on the preference of one entity pair, ei and ej . The feedback label is generated
according to the order of the true utilities ξi and ξj . After observing a preference,
the algorithm updates the model and we compute the MAP over all documents.
To abstract from randomness in breaking ties of the LELpair criterion, each
experiment is repeated 10 times. We used (2) and (3) to capture the feature and
relational information.

3.1 Data Description

LETOR is a benchmark dataset for learning to rank in information retrieval. We
perform experiments on two datasets in LETOR: one is the OHSUMED dataset
about medical articles, the other is the TREC dataset about .gov webpages.

In the OHSUMED dataset, each document consists of title, abstract, MeSH
indexing terms, author, source, and publication type. There are 106 queries for
which manual relevance judgments on the scale ’definitely relevant’ (2), ’partially
relevant’ (1), and ’not relevant’ (0) are available. We follow the experiment setup
in [19]. In particular, since such coarse judgments are unrealistic in many real-
world applications, we break ties by adding uniform noise in the range [−0.5, 0.5]
to the true relevance degrees. Note that this preserves the relative order between
definitely relevant (resp. partially relevant) documents and partially relevant
(resp. not relevant) ones, but breaks ties within each relevance level. The dataset
contains a feature vector for each query-document pair describing the match of
the document to the query. Furthermore, we make use of the same relational
information that was previously exploited in [17]. The relations are based on
similarities, i.e. there is a weighted complete graph between documents. On
average, there are about 152 documents per query.

The TREC dataset was originally collected for a special track on web infor-
mation retrieval at TREC 2004. The goal of the track was to explore the perfor-
mance of retrieval methods on large-scale data with hyperlinked structure such
as the World Wide Web. The data was crawled from .gov domains in January,
2002. In total, there are 1,053,110 html documents with 11,164,829 hyperlinks.
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Fig. 2. MAP on the OHSUMED (top) and TREC (bottom) datasets when learning a

separate model for each query. The average performance (with standard error) is given

in the left-hand plot. The box plots show variability across queries for the AXPGP

(middle) and Glicko (right).

To each query, documents were assigned labels by human experts. Each docu-
ment has two possible states: relevant(1)/irrelevant(0). Qin et al. [18] processed
the TREC dataset and turned it into a benchmark for information retrieval.
Again, we add uniform noise in the range [−0.5, 0.5] to break ties and simulate a
realistic situation in many real-world applications. On average, there were about
1000 documents per query which are linked with about 2387 hyperlinks.

3.2 Experimental Results

Can the AXPGP Exploit Cross-Document Information? We first compare the
AXPGP to Glicko following [19]. In particular, we evaluate whether the AXPGP
can effectively transfer information between documents by using the features
and the relations, while Glicko needs to learn each utility ξi individually. We run
Glicko and AXPGP with the incremental updates separately for each individ-
ual query in the OSHUMED data. The MAP performance of the two methods
averaged over all single-query experiments is given in the top-left plot of Fig. 2.
The AXPGP does indeed learn significantly (according to both a Wilcoxon rank
sum test and a t-test at each multiple of 100 iterations) faster than Glicko. Fur-
thermore, the variability of the AP across multiple queries is substantially lower
for the AXPGP (Fig. 2, top middle) than for Glicko (Fig. 2, right), especially
for large numbers of iterations. The results on the TREC data, averaged over 10
randomly selected queries, show the similar trends.

How Efficient is the AXPGP Compared to Glicko? The left-hand plots of Fig. 3
show the average CPU time it takes to learn for a certain number of iterations.
While Glicko is the fastest in absolute time, the incremental update shows the
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Fig. 3. Computational efficiency of the AXPGP with full and incremental updates

compared to Glicko (left). Comparison of MAP for AXPGP with full and incremental

updates (right). The OSUMED (top) and TREC (bottom) results are respectively

averaged over 30 and 10 randomly selected queries for efficiency reasons.
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Fig. 4. Comparison of MAP (left), as well as variability when learning a single AXPGP

model over multiple queries with active learning (middle) vs. random sampling (right).

The top is the results on the OSHUMED with a random sample of 10 queries. The

bottom is that on the TREC data with a random sample of 5 queries.

same scaling and is slower only by a constant factor. The incremental update is
substantially faster than the full update and shows better scaling behavior. It re-
mains to investigate whether the incremental update is less accurate than the full
update. The right-hand plots of Fig. 3 show that the MAP performance of the
incremental update is not substantially lower than the MAP of the full update.
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How Large is the Benefit of Active Learning? Finally, we evaluate in how far the
active selection strategy improves on randomly selecting training pairs under
the GP model. Here, we learn a single model over multiple queries using the
feature-vector representation to define the covariance matrix of the GP. Fig. 4
(left) shows that the MAP grows significantly and substantially faster when
using active learning. Furthermore, variability over multiple runs of the learning
algorithms is much smaller for active learning (Fig. 4, middle) than for random
sampling (Fig. 4, right).

4 Conclusions

In this paper, we explored how to integrate active learning into preference learn-
ing methods that can model dependencies from both feature-vector representa-
tions as well as relations. On real-world datasets for information retrieval, we
have shown that actively learning a link-based Gaussian process ranking model
is substantially faster than algorithms that cannot model dependencies. The key
to the computational efficiency is a novel incremental update method that makes
active exploration of link-based Gaussian process models essentially as fast as
for the traditional models.

The most natural avenue for future work is the adaption of sparse Gaussian
processes techniques to tackle large-scale datasets. In general, one should explore
and develop active learning techniques for other relational models and tasks.
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Abstract. Graphs provide an efficient tool for object representation in various
machine learning applications. Once graph-based representations are constructed,
an important question is how to compare graphs. This problem is often formu-
lated as a graph matching problem where one seeks a mapping between vertices
of two graphs which optimally aligns their structure. In the classical formulation
of graph matching, only one-to-one correspondences between vertices are consid-
ered. However, in many applications, graphs cannot be matched perfectly and it
is more interesting to consider many-to-many correspondences where clusters of
vertices in one graph are matched to clusters of vertices in the other graph. In this
paper, we formulate the many-to-many graph matching problem as a discrete op-
timization problem and propose two approximate algorithms based on alternative
continuous relaxations of the combinatorial problem. We compare new methods
with other existing methods on several benchmark datasets.

1 Introduction

The necessity to process data with complex structures has triggered the wide use of
graph-based representation techniques in various applications domains. Graphs provide
a flexible and efficient tools for data representation in computer vision (segmentation,
contour and shock graphs), computational biology (biological networks), or chemoin-
formatics (representation of chemical compounds), to name just a few. A fundamental
question when data are represented as graphs is to be able to compare graphs. In partic-
ular, it is important in many applications to be able to assess quantitatively the similarity
between graphs (e.g., for applications in supervised or unsupervised classification), and
to detect similar parts between graphs (e.g., for identification of interesting patterns in
data).

Graph matching is one approach to perform these tasks. In graph matching, one tries
to “align” two graphs by matching their vertices in such a way that most edges are con-
served across matched vertices. Graph matching is useful both to assess the similarity
between graphs (e.g., by checking how much the graphs differ after alignment), and
to capture similar parts between graphs (e.g., by extracting connected sets of matched
vertices).

� Currently, Mikhail Zaslavskiy is with the bioinformatics group at Cellectis S.A.

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part III, LNAI 6323, pp. 515–530, 2010.
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Classically, only one-to-one mappings are considered in graph matching. In other
words, each vertex of the first graph can be matched to only one vertex of the second
graph, and vice-versa1. This problem can be formulated as a discrete optimization prob-
lem, where one wishes to find a one-to-one matching which maximizes the number of
conserved edges after alignment. This problem is NP-hard for general graphs, and re-
mains impossible to solve exactly in practice for graphs with more than 30 vertices or
so. Therefore much effort has been devoted to the development of approximate meth-
ods which are able to find a “good” solution in reasonable time. These methods can
roughly be divided into two large classes. The first group consists of various local opti-
mization algorithms on the set of permutation matrices, including A∗-Beam-search [2]
and genetic algorithms.The second group consists in solving a continuous relaxation of
the discrete optimization problem, such as the �1-relaxation [3], the Path algorithm [4],
various spectral relaxations [5, 6, 7, 8, 9] or power methods [10].

In practice, we are sometimes confronted with situations where the notion of one-
to-one mapping is too restrictive, and where we would like to allow the possibility to
match groups of vertices of the first graph to groups of vertices of the second graph.
We call such a mapping many-to-many. For instance, in computer vision, the same
parts of the same object may be represented by different numbers of vertices depend-
ing on the noise in the image or on the choice of object view, and it could be relevant
to match together groups of vertices that represent the same part. From an algorith-
mic point of view, this problem has been much less investigated than the one-to-one
matching problem. Some one-to-one matching methods based on local optimization
over the set of permutation matrices have been extended to many-to-many matching,
e.g., by considering the possibility to merge vertices and edges in the course of op-
timization [11, 12]. Spectral methods have also been extended to deal with many-to-
many matching by combining the idea of spectral decomposition of graph adjacency
matrices with clustering methods [13, 6]. However, while the spectral approach for
one-to-one matching can be interpreted as a particular continuous relaxation of the
discrete optimization problem [5], this interpretation is lost in the extension to many-
to-many matching. In fact, we are not aware of a proper formulation of the many-
to-many graph matching problem as an optimization problem solved by relaxation
techniques.

Our main contribution is to propose such a formulation of the many-to-many graph
matching problem as a discrete optimization problem, which generalizes the usual for-
mulation for one-to-one graph matching (Section 2), and to present two approximate
methods based on different continuous relaxations of the problem (Sections 3.1 and
3.2). In both cases, the relaxed problems are not convex, and we solve them approxi-
mately with a conditional gradient method. We also study different ways to map back
the continuous solution of the relaxed problem into a many-to-many matching. We
present experimental evidence in Section 5, both on simulated and simple real data,
that this formulation provides a significant advantage over other one-to-one or many-
to-many matching approaches.

1 Note that with the introduction of dummy nodes, one may match a vertex of the first graph to
up to one vertex of the second graph (see, e.g., [1]).
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2 Many-to-Many Graph Matching as an Optimization Problem

In this section we derive a formulation of the many-to-many graph matching problem
as a discrete optimization problem. We start by recalling the classical expression of the
one-to-one matching problem as an optimization problem. We then show how to extend
the one-to-one formulation to the case of many-to-one. Finally we describe how we can
define many-to-many matchings via two many-to-one mappings.

One-to-one graph matching. Let G and H be two graphs with N vertices (if the
graphs have different numbers of vertices, we can always add dummy nodes with no
connection to the smallest graph). We also denote by G and H their respective adja-
cency matrices, i.e, square {0, 1}-valued matrices of size N × N with element (i, j)
equal to 1 if and only if there is an edge between vertex i and vertex j.

A one-to-one matching between G and H can formally be represented by a N ×N
permutation matrix P , where Pij = 1 if the i-th vertex of graphG is matched to the j-th
vertex of graph H , and Pij = 0 otherwise. Denoting by ‖ · ‖F the Frobenius norm of
matrices, defined as ‖A‖2

F = trA�A = (
∑

i

∑
j A

2
ij), we note that ‖G−PHP�‖2

F is
twice the number of edges which are not conserved in the matching defined by the per-
mutation P . The one-to-one graph matching problem is therefore classically expressed
as the following discrete optimization problem:

min
P

||G− PHP�||2F subject to P ∈ Poto, with

Poto ={P ∈ {0, 1}N×N, P1N =1N , P
�1N =1N},

(1)

where 1N denotes the constant N -dimensional vector of all ones. We note that Poto

simply represents the set of permutation matrices. The convex hull of this set is the set
of doubly stochastic matrices, where the the constraint P ∈ {0, 1}N×N is replaced by
P ∈ [0, 1]N×N .

From one-to-one to many-to-one. Suppose now thatG has more vertices thanH , and
that our goal is to find a matching that associates each vertex of H with one or more
vertices of G in such a way that each vertex of G is matched to a vertex of H . We call
such a matching many-to-one (or one-to-many if we invert the order of G and H). The
problem of finding an optimal many-to-one matching can be formulated as minimizing
the same criterion as (1) but modifying the optimization set as follows:

Pmto(NG, NH) = {P ∈ {0, 1}NG×NH ,

P1NH = 1NG , P
�1NG ≤ kmax1NH , P

�1NG ≥ 1NH} ,
where NG denotes the size of graph G, NH denotes the size of graph H , and kmax
denotes an optional upper bound on the number of vertices that can be matched to a
single vertex. As opposed to the one-to-one matching case, each column sum of P
is allowed to be larger than one, and the non-zero elements of the j-th column of P
corresponds to the vertices of graphG which are matched to the j-th vertex of H .

Most of existing continuous relaxation techniques may be adopted for many-to-one
matching. For example, [8] describes how spectral relaxation methods may be used in
the case of many-to-one matching. Other techniques like convex relaxation [4] may be
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used as well since the convex hull of Pmto is also obtained by relaxing the constraint
P ∈ {0, 1}NG×NH to P ∈ [0, 1]NG×NH .

From many-to-one to many-to-many. Now to match two graphs G and H under
many-to-many constraints we proceed as if we matched these two graphs to a virtual
graph S under many-to-one constraints, minimizing the difference between the trans-
formed graph obtained from G and the transformed graph obtained from H . The idea
of many-to-many matching as a double many-to-one matching is illustrated in Figure 1.
Graph S (assumed to have L vertices) represents the graph of matched vertex clusters.

Fig. 1. Many-to-many matching between G and H via many-to-one matching of both graphs to
a virtual graph S

Each vertex of S corresponds to a group of vertices of G and a group of vertices of H
matched to each other. For example, in Figure 1, vertices g3 (vertex 3 of G), g4 and h3

are matched to the same vertex s3; it means that in the final many-to-many matching
between G and H , g3 and g4 will be matched to h3. Let P1 ∈ Pmto(L,NG) denote
a many-to-one matching G → S, and P2 ∈ Pmto(L,NH) a many-to one matching
H → S; we propose to formulate the many-to-many graph matching problem as an op-
timization problem where we seek S, P1 and P2 which minimize the difference between
S and P1GP

�
1 and between S and P2HP

�
2

min
P1,P2,S

||P1GP
�
1 − S||2F + ||S − P2HP

�
2 ||2F . (2)

Note that if we know P1 and P2, then the optimal S is just 1
2 (P1GP

�
1 + P2HP

t
2op)

(point in the middle between P1GP
�
1 and P2HP

�
2 ). Plugging this expression in (2) we

obtain the following objective function for the many-to-many graph matching problem

F (P1, P2) = ||P1GP
�
1 − P2HP

�
2 ||2F , (3)

where P1 ∈ Pmto(L,NG) and P2 ∈ Pmto(L,NH) denote two many-to-one mappings.
The objective function (3) is similar to the objective function for the one-to-one case (1).
In (1), we seek a permutation which makes the second graphH as similar as possible to
G. In (3), we seek combinations of merges and permutations which makes G andH as
similar as possible to each other. The only difference between both formulations is that
in the many-to-many case we add the merging operation. Given matrices P1 and P2, it
is easy to retrieve the many-to-many matching betweenG and H by considering
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M = P1P
�
2 .

Indeed,M is a NG ×NH binary matrix such that Mij = 1 if and only if gi is matched
to hj .

There are two slightly different ways of defining the set of matrices over which (3)
is minimized. We can fix in advance the number of matching clusters L, which cor-
responds to the size of S, in which case the optimization set is P1 ∈ Pmto(L,NG)
and P2 ∈ Pmto(L,NH). An alternative way which we follow in the paper is to re-
move the constraint P1NG ≥ 1L from the definition of Pmto(L,NG), in this case the
method estimates itself the number of matching clusters (number of rows with non-
zero sum). Finally, we thus formulate the many-to-many graph matching problem as
follows:

min
P1,P2

||P1GP
�
1 − P2HP

�
2 ||2F subject to

P1 ∈ {0, 1}NK×NG , P11NG ≤ kmax1NK , P
�
1 1NK = 1NG ,

P2 ∈ {0, 1}NK×NH , P21NH ≤ kmax1NK , P
�
2 1NK = 1NH ,

(4)

whereNK = min(NG, NH) represents the maximal number of matching clusters. Note
thatNK is only an upper bound on the number of matching clusters, since it can not ex-
ceed the size of the smallest graph. On the other hand some of the columns of P1 and P2

may be empty, meaning that the corresponding clusters do not contain vertices, i.e., that
these clusters do not exist. This formulation is in fact valid for many kinds of graphs,
in particular graphs may be directed (with asymmetric adjacency matrices), have edge
weights (with real-valued adjacency matrices), and self-loops (with non-zero diagonal
elements in the adjacency matrices).We also describe in Section 3.1 how this formula-
tion can be modified to include information about vertex labels, which are important for
machine learning applications.

3 Continuous Relaxations of the Many-to-Many Graph Matching
Problem

The many-to-many graph matching problem (4) is a hard discrete optimization problem.
We therefore need an approximate method to solve it in practice.

3.1 Method 1: Gradient Descent

In this section we propose an algorithm based on a continuous relaxation of (4). For
that purpose we propose to replace the binary constraints P1 ∈ {0, 1}NK×NG , P2 ∈
{0, 1}NK×NH by continuous constraints P1 ∈ [0, 1]NK×NG , P2 ∈ [0, 1]NK×NH . Let K
denote the new continuous optimization set

K = K1 ×K2, where

K1 = {P1 ∈ [0,1]NK×NG , P11NG ≤ kmax1NK , P
�
1 1NK = 1NG},

K2 = {P2 ∈ [0,1]NK×NH , P21NH ≤ kmax1NK , P
�
2 1NK = 1NH} ,

(5)
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To solve the relaxed optimization problem we propose to use the following version of
the conditional gradient (a.k.a. Frank-Wolfe method [14]):

– Input: initial values P 0
1 and P 0

2 , t = 0,
– Do

1. compute ∇F (P t
1 , P

t
2)

2. find the minimum of ∇F (P t
1 , P

t
2)�(P1, P2) w.r.t. (P1, P2) i.e. over K

3. perform line search in the direction of the optimum found in Step 2, assign the
result to P t+1

1 , P t+1
2 , t = t+ 1

– Until |ΔF | + ||ΔP1||F + ||ΔP2||F < ε
– Output: P t

1 , P t
2 .

Step 2 consists in the minimization of a linear function over a convex optimization
set. This problem can be solved by a generic linear programming solver in O(((NG +
NH)NK)3.5). The minimum of the gradient function is one of the extreme points of
the continuous optimization set. Since our ultimate objective is to minimize F (P1, P2)
over the discrete optimization set (4) it would be better to move towards one of the
points of (4) and not just any extreme point of K.The good news is that due to the
special structure of the optimization set, the gradient minimization can be solved in
O(max(kmaxNK)3) by reformulating minP ∇F (P t

1 , P
t
2)�(P1, P2) as a linear assign-

ment problem (see Appendix A). We then have to solve a linear assignment problem
for a (NG +NH) × kmax min(NH , NG) matrix, which can be done efficiently by the
Hungarian algorithm [15] .

The solution of the line search step can be found in closed form since the objective
function is a polynomial of the fourth order.

The conditional descent algorithm converges to a stationary point of (4) [14]. Be-
cause of the non-convex nature of the objective function, we can only hope to reach a
local minimum (or more generally a stationary point) and it is important to have a good
initialization. In our experiments we found that a good choice is the fixed “uniform”
initialization, where we initialize P1 by 1

NK
1NG1�NH

and P2 by the identity matrix I .
Another option would be to use a convex relaxation of one-to-one matching [4].

Algorithm complexity is mainly defined by two parameters:

N = max(kmax min(NG, NH), NG +NH) and ε.

In general the number of iterations of the gradient descent scales asO(κ
ε ) where κ is the

condition number of the Hessian matrix describing the objective function near a local
minima [14]. N has no direct influence on the number of iterations, but it defines the
cost of one iteration, i.e., the complexity of the Hungarian algorithm O(N3).

Projection
Once we have reached a local optimum of the relaxed optimization problem, we still
need to project P1 and P2 to the set of matrices with values in {0, 1} rather than in
[0, 1]. Several alternatives can be considered. A first idea is to use the columns of P1

and P2 to define a similarity measure between the vertices of both graphs, e.g., by
computing the dot products between columns. Indeed, the more similar the columns



Many-to-Many Graph Matching: A Continuous Relaxation Approach 521

corresponding to two vertices, the more likely these vertices are to be matched if they
are from different graphs, or merged if they are from the same graph. Therefore a first
strategy is to run a clustering algorithm (e.g., K-means or spectral clustering) on the
column vectors of the concatenated matrix (P1, P2) and then use the resulting clustering
to construct the final many-to-many graph matching.

An alternative to clustering is an incremental projection or forward selection pro-
jection, which uses the matching objective function at every step. Once P1 and P2 are
obtained from the continuous relaxation, we take the pair of vertices (g, h) from the
union of the graphs having the most similar column vectors in (P1, P2). We then re-
run the continuous relaxation with the new (linear) constraint that these two vertices
remain matched. We then go on and find the most similar pair of vertices from the con-
strained continuous solution. This greedy scheme can be iterated until all vertices are
matched.

In our experiments, the second approach produced better results. This is mainly due
to the fact that when we just run a clustering algorithm we do not use the objective func-
tion, while when we use incremental projection we adapt column vectors of unmatched
vertices according to earlier established matchings.

Neighbor merging. In many cases, it can be interesting to favor the merging of neigh-
boring vertices, as opposed to merging of any sets of vertices. To that end we propose
the following modification to (4):

FN (P1, P2) = F (P1, P2) − trG�P�
1 P1 − trH�P�

2 P2. (6)

The matrix product P�
1 P1 is a NG × NG matrix, with (i, j)-th entry equal to 1 if i

and j are merged into the same cluster. Therefore, the new components in the objective
function represent the number of pairs of adjacent vertices merged together in G and
H , respectively.

Local similarities. Like the one-to-one formulation, we can easily modify the many-to-
many graph matching formulation to include information on vertex pairwise similarities
by modifying the objective function as follows:

Fλ(P1, P2) = (1 − λ)F (P1, P2) + λtrC�P�
1 P2 , (7)

where the matrix C ∈ RNG×NH is a matrix of local dissimilarities between graph
vertices, and parameter λ controls the relative impact of information on graph vertices
and information on graph structures.

The new objective function is again a polynomial of the fourth order, so our algorithm
may still be used directly without any additional modifications.

3.2 Method 2: SDP Relaxation

The second method consists in a relaxation of (4) to a quadratic semidefinite program-
ming (SDP) problem.
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First, we rewrite the objective function of (4) in an alternative form

||P1GP
T
1 − P2HP

T
2 ||2F =

trP1G
T PT

1 P1︸ ︷︷ ︸
M1

GPT
1 + trP2H

T PT
2 P2︸ ︷︷ ︸
M2

HPT
2 − 2trP1G

T PT
1 P2︸ ︷︷ ︸
M12

HPT
2 =

trM1G
TM1G+ trM2H

TM2H − 2trM21G
TM12H =

tr

⎡⎢⎢⎢⎣
(
M1 M12

M21 M2

)
︸ ︷︷ ︸

M

(
GT 0
0 −HT

)
︸ ︷︷ ︸

AT

(
M1 M12

M21 M2

)(
G 0
0 −H

)⎤⎥⎥⎥⎦ =

trMATMA = vec(M)(AT ⊗A)vec(M).

(8)

Let F (M) denote our new objective function vec(M)(AT ⊗ A)vec(M), now we have
to minimize the quadratic function F (M) over the discrete set M of binary matrices
with a special structure. Since matrix M is a positive-semidefinite matrix (indeed, M
can be expressed as PTP where P is the matrix made of P1 and P2 stacked one below
another), we can relax the optimization problem minM∈M F (M) to the minimization
of a quadratic function over the convex set of positive-semidefinite matrices

min
M
0

F (M). (9)

Therefore the second method consists in the running of the Frank-Wolfe algorithm with
an SDP solver to compute conditional gradient and further projection of the produced
solution on M.

Here again we can run a clustering algorithm using the output of the Frank-Wolfe
algorith (a real-valued positive-semidefinite matrix M ) as a similarity matrix between
vertices of two graphs, or use the incremental projection strategy fixing on each step the
most probable matching and adjusting the optimum given the new constraint.

To favor the neighbor merging and to introduce local vertex similarities, we can use
the same terms that we used before. Note, P1P

T
1 = M1, P2P

T
2 = M2 and P1P

T
2 =

M12, therefore new terms in (6) and (7) can be expressed as linear functions of M

trGTM1 + trHTM2 and trCTM12

The addition of these new terms to the objective function F (P ) does not change its
structure, F (P ) stays a quadratic function, so we can use the same minimization pro-
cedure.

A serious drawback of the “SDP” approach lies in its complexity. The complexity of
a generic SDP solver scales as O(m2.5) [16] where m is the number of variables of a
given “SDP” problem. In our case, m is equal to (NG + NH)2 which means that the
complexity of the gradient minimization step is at least O((NG + NH)5). Hence, it is
almost impossible to run the “SDP” method on graphs with more than 30 vertices. To
overcome this problem we propose to use an early stopping rule i.e. replace the exact
SDP solution by an approximate one.
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4 Related Methods

There exist two major groups of methods for many-to-many graph matching, which we
briefly describe in this section. The first one consists of local search algorithms, gener-
ally used in the context of the graph edit distance, while the second one is composed of
variants of the spectral approach.

Local search algorithms. Examples of this kind of approach are given in [11] and [12].
In the classical formulation of the graph edit distance, the set of graph edit operations
consists of deletion, insertion and substitution of vertices and edges. Each operation has
an associated cost, and the objective is to find a sequence of operations with the low-
est total cost transforming one graph into another. In the case of many-to-many graph
matching, this set of operations is completed by merging (and splitting if necessary) op-
erations. Since the estimation of the optimal sequence is a hard combinatorial problem,
approximate methods such as beam search [2] as well as other examples of best-first,
breadth-first and depth-first searches are used.

Spectral approach. Caelli and Kosinov [6] discuss how spectral matching may be
used for many-to-many graph matching. Their algorithm is similar to the Umeyama
method [5] but instead of one-to-one correspondences, they search a many-to-many
mapping by running a clustering algorithm. In the first step, the spectral decomposition
of graph adjacency matrices is considered

G = VGΛGV
�
G , H = VHΛHV

�
H . (10)

Rows of eigenvector matrices VG and VH are interpreted as spectral coordinates of
graph vertices. Then vertices having similar spectral coordinates are clustered together
by a clustering algorithm, and vertices grouped in the same cluster are considered to be
matched.

Another example of spectral approach is given in [13] where, roughly speaking, the
adjacency matrix is replaced by the matrix of shortest path distances, and then spectral
decomposition with further clustering is used.

5 Experiments

In this section we compare the new methods proposed in this paper with existing tech-
niques (beam-search and spectral approach). We thus test four competitive approaches
in several experiments: beam-search “Beam” (A*-beam search from [2]), the spectral
approach “Spec” [6] and two new approaches: the gradient descent method “Grad”
(from Section 3.1), and the “SDP” relaxation (Section 3.2). All four algorithms are im-
plemented in matlab and are available at http://cbio.ensmp.fr/graphm/mtmgm.html. We
use SeDuMi (http://sedumi.ie.lehigh.edu/) to perform the gradient minimization in the
“SDP” method.

5.1 Synthetic Examples

In this section, we compare the four many-to-many graph matching algorithms on pairs
of randomly generated graphs with similar structures. We generate graphs according to

http://cbio.ensmp.fr/graphm/mtmgm.html
http://sedumi.ie.lehigh.edu/
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the following procedure: (1) generate a random graph G of size N , where each edge is
present with probability p, (2) build a randomly permuted copy H of G, (3) randomly
split the vertices in G (and inH) by taking a random vertex in G (and inH) and split it
into two vertices (operation repeated M times), (4) introduce noise by adding/deleting
σ × p×N2 random edges in both graphs.

As already mentioned, our principal interest here is to understand the behavior of
graph matching algorithms as functions of the graph size N , and their ability to resist to
structural noise. Indeed, in practice we never have identical graphs and it is important to
have a robust algorithm which is able to deal with noise in graph structures. The objec-
tive function F (P1, P2) in (4) represents the quality of graph matching, so to compare
different graph matching algorithms we plot F (P1, P2) as a function of N (Figure 2a),
and F (P1, P2) as a function of σ (Figure 2b) for the four algorithms. In both cases, we
observe that “Grad” and “SDP” significantly outperform both “Beam” and “Spec” with
the “SDP” algorithm working slightly better than “Grad”. “Beam” was run with beam
width equal to 3, which represents a good trade-off between quality and complexity,
“Spec” was run with projection on the first two eigenvectors with the normalization
presented in [6]2. To maximally accelerate the “SDP” method, the number of iterations
in SeDuMi was set to one, actually, one iteration is enough to have a good matching
quality.

Figure 2c shows how algorithms scale in time with the graph size N . The “Spec”
algorithm is the fastest one, but “Grad” has the same complexity order as “Spec” (cor-
responding curves are almost parallel lines in log-log scale, so both functions are poly-
nomials with the same degree and different multiplication constants), these curves are
coherent with theoretical values of algorithm complexity summarized in Section 3.1.
The early stopping rule makes possible the use of the “SDP” algorithm on graphs with
up to one hundred vertices, but it is still about 10 times slower than the “Grad” method,
and almost 100 times slower than the “Spec” algorithm.

5.2 Chinese Characters

In this section we quantitatively compare many-to-many graph matching algorithms
as parts of a classification framework. We use graph matching algorithms to compute
similarity/distance between objects of interest on the basis of their graph-based rep-
resentations. Our objective here is to see if with the new formulation of the many-to-
many graph matching problem (4) and corresponding continuous relaxation algorithms
improve the classification performance comparing to the existing state of the art algo-
rithms. Since “Grad” and “Spec” are essentially two alternative approximate algorithms
for the same discrete optimization problem with “Grad” working almost 10 times faster
and providing the matching quality similar to that of the “SDP” method, we decided to
test only the “Grad” algorithm. For example, to compute the similarity matrix of 600
graphs with in average 50 vertices, the running time of the “SDP” method would be
about 280 hours (≈ 50 seconds per pair).

2 “Spec” variants with three and more eigenvectors were also tested, but two eigenvectors pro-
duced almost the same matching quality and worked faster.
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Fig. 2. (a) F (P1, P2) (mean value over 30 repetitions) as a function of graph size N , simulation
parameters: p = 0.1, σ = 0.05, M = 3. (b) F (P1, P2) (mean value over 30 repetitions) as a
function of noise parameter σ, simulation parameters: N = 30, p = 0.1, M = 3. (c) Algorithm
running time (mean value over 30 repetitions) as a function of N (log-log scale), other parameters
are the same as in (a), “Beam” slope ≈ 3.9,“SDP” slope ≈ 4.2, “Grad” slope ≈ 2.9, “Spec” slope
≈ 2.7.
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Fig. 3. Different writings of the same Chinese character and the matching of the corresponding
graphs made by “Grad”. Vertices having the same id’s are matched to each other.

As the classification problem, we chose the ETL9B dataset of Chinese characters.
This dataset is well suited for our purposes, since Chinese characters may be naturally
represented by graphs with variable non-trivial structures. Figure 3 illustrates how
“Grad” works on graphs representing Chinese characters. We see that our algorithm
produces a good matching, although not perfect, providing a correspondence between
“crucial” vertices. The characters represented in Figure 3 are however very easy to rec-
ognize, and most classification algorithms show a good performance on them; for ex-
ample, “Grad” produces a classification error rate below 0.2%. To test graph matching
algorithms on more challenging situations, we chose three “hard to classify” Chinese
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Table 1. Top: Chinese characters from three different classes. Bottom: classification results (mean
and standard deviation of test error over cross-validation runs, with 50 repetitions of five folds)

Method error STD

Linear SVM 0.377 ± 0.090
SVM with Gaussian kernel 0.359 ± 0.076
k-NN (one-to-one, Path) 0.248 ± 0.075
k-NN (shape context) 0.399 ± 0.081
k-NN (shape context+tps) 0.435 ± 0.092
k-NN (Spec) 0.254 ± 0.071
k-NN (Beam) 0.283 ± 0.079
k-NN (Grad) 0.191 ± 0.063

characters, i.e., three characters sharing similar graph structures, as illustrated in Table
1. We ran k-nearest neighbor (k-NN) with graph matching algorithms used as distance
measures. The dataset consists of 600 images, 200 images of each class.

Table 1 shows classification results for the three many-to-many graph matching al-
gorithms. In addition we report results for other popular approaches, namely, a SVM
classifier with linear and Gaussian kernels, one-to-one matching with the Path algorithm
(taken from [4]) and two versions of the shape context method [1], with or without thin
plate spline smoothing. The version named “shape context” computes polar histograms
with further bipartite graph matching. To run the “shape context+tps” method we used
code available online3.

Graph matching algorithms are run using information on vertex coordinates through
(7). The elements of the matrix C are defined as Cij = e−(xi−xj)

2−(yi−yj)
2
. The pa-

rameter λ in (7) as well as k (number of neighbors in k-NN classifier) are learned via
cross-validation. We see that the “Grad” algorithm shows the best performance, outper-
forming other many-to-many graph matching algorithms as well as other competitive
approaches.

5.3 Identification of Object Composite Parts

While the pattern recognition framework is interesting and important for the compari-
son of different graph matching algorithms, it evaluates only one aspect of these algo-
rithms, namely, their ability to detect similar graphs. A second and important aspect is
their ability to correctly align vertices corresponding to the same parts of two objects.
To test this capability, we performed the following series of experiments. We chose ten
camel images from the MPEG7 dataset and we divided by hand each image into 6 parts:
head, neck, legs, back, tail and body (Figure 4). This image segmentation automatically
defines a partitioning of the corresponding graph shown in the column (c) in Figure 4:
all graph vertices are labeled according to the image part which they represent. Figure 4

3 http://www.eecs.berkeley.edu/vision/shape/

http://www.eecs.berkeley.edu/vision/shape/
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(a) (b) (c) (d)

Fig. 4. (a) Original images. (b) Manual segmentation (c) Graph-based representation (obtained
automatically from subsampled contours and shock graphs) with induced vertex labels (d) Pre-
diction of vertex labels on the basis of graph matching made by “Grad”. Best seen in color.

Table 2. Identification of object composite parts: mean and standard deviation of prediction error
(see text for details). Note that standard deviations are not divided by the square root of the sample
size (therefore differences are statistically significant).

Grad Spec Beam One-to-one
Error 0.303 0.351 0.432 0.342
STD 0.135 0.095 0.092 0.094

gives two illustrations of how this procedure works. A good graph matching algorithm
should map vertices from corresponding image parts to each other, i.e., heads to heads,
legs to legs, and so on. Therefore to evaluate the matching quality of the mapping, we
use the following score. First, we match two graphs and then we try to predict vertex
labels of one graph given the vertex labels of the second one. For instance, if vertex g1
of the first image is matched to vertices h1 and h2 representing the head of the second
image, then we predict that g1 is of class “head”. The better the graph matching, the
smaller the prediction error and vice-versa.

This experiment illustrates a promising application of graph matching algorithms.
Usually segmentation algorithms extract image parts on the basis of different character-
istics such as changing of color, narrowing of object form, etc. With our graph matching
algorithm, we can extract segments which does not only have a specific appearance, but
also have a semantic interpretation defined by a user (e.g., through the manual labelling
of a particular instance).

Table 2 presents mean prediction error over 45 pairs of camel images (we exclude
comparison of identical images). Each pair has two associated scores: prediction error
of the first image given the second one and vice-versa. We thus have 90 scores for
each algorithm, which are used to compute means and standard deviations. Like in
the previous sections, graph matching algorithms are run using information on vertex
coordinates (using Eq. (7)), with Cij = e−(xi−xj)

2−(yi−yj)
2
. The parameter λ in (7)
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as well as k (number of neighbors in k-NN classifier) are learned via cross-validation.
Here, again we observe that the “Grad” algorithm works better than other methods.

6 Conclusion and Future Work

The main contribution of this paper is the new formulation of the many-to-many graph
matching problem as a discrete optimization problem and new approximate algorithms
“Grad” and “SDP” based on two alternative continuous relaxation. The success of the
proposed methods compared to other competitive approaches may be explained by two
reasons. First, methods based on continuous relaxations of discrete optimization prob-
lems often show a better performance than local search algorithm due to their ability
to better explore the optimization set with potentially large moves. Second, “Grad”
and “SDP” algorithms aim to optimize a clear objective function naturally representing
the quality of graph matching instead of a sequence of unrelated steps. It is still diffi-
cult to run the “SDP” algorithm on real world datasets due to its time complexity, but
we think a significant progress may be made by employing approximate SDP solvers.
The hard limit on the number of iteration in SeDuMi is probably not the best way to
find an approximate solution, we are planning to see other alternatives such as SDPA
(http://sdpa.indsys.chuo-u.ac.jp/sdpa/) and CSDP (https://projects.coin-or.org/Csdp/).
The reformulation of the gradient minimization as a linear assignment problem made
possible the use of the “Grad” algorithm in large-scale graph matching problems. Prob-
ably, the special structure of the optimization set in the “SDP” relaxation may also
represent an important clue for the further acceleration of the “SDP” algorithm. In par-
ticular, this direction seems to be interesting since “SDP” was able to find better match-
ings than “Grad” in numerical tests (Section 5.1). Another interesting direction is to try
to construct a theoretical bound on the quality of the proposed approximate algorithms.

Besides a natural application of graph matching as a similarity measure between
objects with complex structures, graph matching can also be used for object alignment.
However, the structural noise usually encountered in graph-based representations have
slightly hampered its application to natural images; but we believe that the many-to-
many graph matching framework presented in this paper can provide an appropriate
notion of robustness, which is necessary for many machine learning applications.
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Appendix A

Here we present how the gradient minimization step in the “Grad” method can be re-
formulated as a linear assignment problem. Let ∇F1 and ∇F2 denote the gradient of
the function F (P1, P2) with respect to matrices P1 and P2 (∇F1 is a NK × NG

matrix and ∇F2 is a NK × NH matrix). Recall that our objective is to minimize
trFT

1 P1 + trFT
2 P2 over (4). Note that two terms of the gradient are independent linear

functions and can be minimized one by one. Let us consider the first term (we drop the
subscript 1 for simplicity)

min
P

tr∇FTP subject to

P ∈ {0, 1}NK×NG , P1NG ≤ kmax1NK , P
�1NK = 1NG .

(11)

Matrix P is aNK ×NG binary matrix with up to kmax “ones” in each row, and one and
only one “one” in each column. LetQ be a kmaxNK ×NG binary matrix with up to one
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“one” in each row (may be zero), and exactly one “one” in each column.Qmay be seen
as a splitted version of matrix P , the first kmax rows of the matrix Q correspond to the
first row of P , then rows with indexes kmax + 1, . . . , 2kmax correspond to the second
row of P and so on. We can always constructP fromQ by merging corresponding rows,
the reverse operation corresponds to splitting the rows of matrix P . We will write P ↔
Q to denote pairs (P , Q) which may be transformed to each other by merging/splitting
operations, of course the same matrix P may correspond to many matrices Q’s. Now,
let Fq denote a kmaxNK × NG real valued matrix constructed from the matrix F by
duplicating every row kmax times i.e. first kmax rows of Fq are copies of the first row
of F and so on.

This is easy to see, that if P ↔ Q then trFT
q Q = trFTP (the left side is just a

splitted version of the right side) and therefore if P ∗ = arg minP trFTP andQ∗ ↔ P ∗

then Q∗ = argminQ trFT
q Q and vice versa. Indeed, if Q∗ �= arg min trFT

q Q then
∃Q+ such that trFT

q Q
+ < trFT

q Q
∗, then we can construct P+ ↔ Q+ such that

trFTP+ < FTP ∗.
We showed that minP F

TP is equivalent to minQ F
T
q Q which is nothing else than

a linear assignment problem. Now, we can run the Hungarian algorithm to minimize
FT

q Q and then transform the optimal Q-solution to a P -solution by merging corre-
sponding rows.
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Abstract. We apply the Aggregating Algorithm to the problem of on-

line regression under the square loss function. We develop an algorithm

competitive with the benchmark class of generalized linear models (our

“experts”), which are used in a wide range of practical tasks. This prob-

lem does not appear to be analytically tractable. Therefore, we develop a
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1 Introduction

Generalized linear models have been found very useful in statistical analysis
(see [14]) for solving bounded regression problems. Classification problems as
well are often solved by means of these models.

We use the Aggregating Algorithm in a way which is somewhat similar to
the Aggregating Algorithm for Regression (AAR) introduced in [18]. Whereas
the AAR only covers the class of linear experts, our new algorithm also covers
other popular classes of experts, which are more efficient in that their predictions
always belong to the interval [Y1, Y2] assumed to contain the label that is being
predicted. When specialized to the case of linear experts, our general loss bound
coincides with the known optimal bound for the AAR. A disadvantage of our
algorithm is that we need to know [Y1, Y2] a priori to be able to apply it.

Another popular field related to competitive prediction is online convex op-
timization introduced in [20]. The two fields cover a common special case: a
compact set of experts under loss functions of a specific form (the square loss
for our application). The problems which cover in part generalized linear models
are analyzed in [10]. In the general case, online convex optimization significantly
relaxes the condition on loss functions, whereas competitive prediction removes
the compactness requirement. Since many algorithms for competitive prediction
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are designed for a narrower class of loss functions, they have a better coeffi-
cient in front of log in the regret term. Our algorithm can be applied to some
non-convex functions, which is impossible for the methods of online convex op-
timization even for a compact set of experts.

Generalized linear models are popular in Bayesian statistics for solving classi-
fication problems (see Relevance Vector Machines in Section 7.2.3 of [4]). From
the competitive prediction perspective, Bayesian mixtures are analogous to the
Aggregating Algorithm competing under the logarithmic loss function. Upper
bounds on the logarithmic loss are proved in [8], [12], [13], and [2] using different
approaches. In this paper we prove upper bounds on the square loss, which is
more often used in practice to compare the performances of different algorithms.

Our prediction problem does not appear to be analytically tractable. There-
fore, we develop a prediction algorithm using the Markov chain Monte Carlo
method, which is shown to be fast and reliable in many cases. Monte Carlo
methods are well known in the Bayesian community [16]. They are also applied,
for example, in [7] to explore exponential weighting schemes in problems with
high dimension of the input vectors.

We give suggestions about choosing the parameters of our algorithm and
perform experiments with it on a toy data set and two real world ozone level
data sets.

Our paper is organized as follows. Section 2 describes the prediction protocol
and the main theorem, and Section 3 covers a set of important examples. In
Section 4 we derive the algorithm competitive with generalized linear models.
Section 5 describes experiments with the new algorithm. In Section 6 we prove
the main theorem.

2 Prediction Algorithm and Loss Bound

This is our prediction protocol:

Protocol 1. Online bounded regression protocol
for t = 1, 2, . . . do

Reality announces xt ∈ R
n

Learner predicts γt ∈ R

Reality announces yt ∈ [Y1, Y2]

end for

Protocol 1 describes a perfect-information game between two players, Learner
(male) and Reality (female). At each step t Reality announces a vector xt ∈ Rn,
which is, intuitively, a hint that she gives to Learner to help him predict her next
move yt, called the outcome. The vector xt will be called the object, or input
vector, and its components xt,i, i = 1, . . . , n, will be called attributes. After that
Learner announces his prediction γt for yt and Reality announces the outcome
yt ∈ [Y1, Y2]. Sometimes we will say that yt is the label of the object xt. Learner’s
loss is measured by the square loss function. Learner wishes to compete with the
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class of generalized linear experts indexed by θ ∈ Θ = Rn. Expert θ’s prediction
at step t is denoted ξθ

t and is equal to

ξθ
t = Y1 + (Y2 − Y1)σ(θ′xt). (1)

Here σ : R → R is a fixed activation function. We have σ : R → [0, 1] in all the
cases except linear regression (see below). If the range of the function σ is [0, 1],
the experts necessarily give predictions from [Y1, Y2].

Learner records the cumulative losses suffered by himself, LT =
∑T

t=1(γt −
yt)2, and each expert θ, Lθ

T =
∑T

t=1(ξ
θ
t − yt)2, over the first T steps. Intuitively,

Learner’s goal is to ensure that LT ≤ Lθ
T , or at least LT ≈ Lθ

T , for a vast
majority of experts θ ∈ Θ.

Assume that the function

b(u, z) :=
(
dσ(z)
dz

)2

+ (σ(z) − u)
d2σ(z)
dz2

(2)

is uniformly bounded: b := supu∈[0,1],z∈R |b(u, z)| <∞. We will further see that
this assumption holds for the most popular generalized linear regression models.
We prove the following upper bound on Learner’s loss.

Theorem 1. Let a > 0. There exists a prediction strategy for Learner such that
for every positive integer T , every sequence of outcomes of the length T , and
every θ ∈ Rn, the cumulative loss LT of Learner satisfies

LT ≤ Lθ
T + a‖θ‖2 +

(Y2 − Y1)2

4
ln det

(
I +

b(Y2 − Y1)2

a

T∑
t=1

xtx
′
t

)
, (3)

where b := supu∈[0,1],z∈R |b(u, z)| and b(u, z) is defined by (2). If in addition
‖xt‖∞ ≤ X for all t then

LT ≤ Lθ
T + a‖θ‖2 +

n(Y2 − Y1)2

4
ln
(

1 +
b(Y2 − Y1)2X2T

a

)
. (4)

The order of the regret term in bound (4) is logarithmic in the number of steps.
It matches the order of the best bounds for the linear regression problem under
square loss proved in [18] and for the classification problem using generalized
linear regression experts under logarithmic loss proved in [12].

The prediction strategy achieving (3) is formulated as Algorithm 1, calculated
with the number of iterations M → ∞; we also call Algorithm 1 the Aggregating
Algorithm for Generalized Linear Models (AAGLM). In Section 4 we derive it
and describe its parameters. Even though Algorithm 1 is an online algorithm, it
is easy to apply it in the batch setting: it suffices to consider each example in
the test set as the next example after the training set.

3 Examples of the Models and Performance Guarantees

Now we give some examples of generalized linear models and bounds on the
losses of the corresponding algorithms.



534 F. Zhdanov and V. Vovk

3.1 Linear Regression

We have for linear regression

σ(z) =
z − Y1

Y2 − Y1
, z ∈ R (5)

(so that the experts predict ξθ
t = θ′xt). The derivatives are equal to

dσ(z)
dz

=
1

Y2 − Y1

and
d2σ(z)
dz2

= 0.

Using these expressions in the derivatives of σ in (2) we obtain

b(u, z) =
1

(Y2 − Y1)2
.

Using b = 1
(Y2−Y1)2

in (4) we have the following corollary for the linear regression
experts.

Corollary 1. There exists a prediction strategy for Learner achieving

LT ≤ Lθ
T + a‖θ‖2 +

n(Y2 − Y1)2

4
ln
(

1 +
X2T

a

)
for any expert θ ∈ Rn predicting according to (1) and (5) (i.e., ξθ

t = θ′xt).

As we can see, the upper bound is the same as the upper bound for the AAR
with Y2 = Y , Y1 = −Y (see Theorem 1 in [18]). This bound is known to have
the best possible order (see Theorem 2 in [18]) for the linear experts.

3.2 Logistic Regression

We have for logistic regression

σ(z) =
1

1 + e−z
, z ∈ R. (6)

The derivatives are equal to

dσ(z)
dz

= σ(z)(1 − σ(z))

and
d2σ(z)
dz2

= σ(z)(1 − σ(z))(1 − 2σ(z)).

Using these expressions in the derivatives of σ in (2) we obtain

b(u, z) = σ2(z)(1 − σ(z))2 + (σ(z) − u)σ(z)(1 − σ(z))(1 − 2σ(z)).

We have |b(u, z)| ≤ b ≤ 5
64 . Using this in (4) we have the following corollary for

the logistic regression experts.
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Corollary 2. Let a > 0. There exists a prediction strategy for Learner achieving

LT ≤ Lθ
T + a‖θ‖2 +

n(Y2 − Y1)2

4
ln
(

1 +
5(Y2 − Y1)2X2T

64a

)
for any expert θ ∈ Rn predicting according to (1) and (6).

3.3 Probit Regression

We have for probit regression

σ(z) = Φ(z) =
1√
2π

∫ z

−∞
e−v2/2dv, z ∈ R, (7)

where Φ is the cumulative distribution function of the normal distribution with
zero mean and unit variance. The derivatives are equal to

dσ(z)
dz

=
1√
2π
e−z2/2

and
d2σ(z)
dz2

= − z√
2π
e−z2/2.

Using these expressions in the derivatives of σ in (2) we obtain

b(u, z) =
1
2π
e−z2 − (σ(z) − u)

z√
2π
e−z2/2.

We have |b(u, z)| ≤ b ≤ 25
128 . Using this in (4) we have the following corollary for

the probit regression experts.

Corollary 3. Let a > 0. There exists a prediction strategy for Learner achieving

LT ≤ Lθ
T + a‖θ‖2 +

n(Y2 − Y1)2

4
ln
(

1 +
25(Y2 − Y1)2X2T

128a

)
for any expert θ ∈ Rn predicting according to (1) and (7).

3.4 Complementary Log-Log Regression

We have for the complementary log-log regression

σ(z) = 1 − exp(− exp(z)), z ∈ R. (8)

When the argument z of the complementary log-log function 1 − exp(− exp(z))
approaches minus infinity, this function is similar to the logistic function 1

1+e−z

and tends to zero. When the argument approaches infinity, the function tends to
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one more quickly than the logistic function. This can be used in problems with
asymmetry in outcomes. The derivatives of σ(z) are equal to

dσ(z)
dz

= ez(1 − σ(z))

and
d2σ(z)
dz2

= ez(1 − σ(z))(1 − ez).

Using these expressions in the derivatives of σ in (2) we obtain

b(u, z) = e2z(1 − σ(z))2 + ez(1 − σ(z))(1 − ez).

We have |b(u, z)| ≤ b ≤ 17
64 . Using this in (4) we have the following corollary for

the complementary log-log regression experts.

Corollary 4. Let a > 0. There exists a prediction strategy for Learner achieving

LT ≤ Lθ
T + a‖θ‖2 +

n(Y2 − Y1)2

4
ln
(

1 +
17(Y2 − Y1)2X2T

64a

)
for any expert θ ∈ R

n predicting according to (1) and (8).

4 Derivation of the Prediction Algorithm

Our prediction algorithm differs from many algorithms commonly used to fit a
generalized linear model (see, for example, [14]). First, instead of fitting the data
with the best parameter θ (as in logistic regression) it uses the regularization
parameter a > 0 preventing θ to be too large, and thus preventing overfitting
to a certain extent. Second, it tries to minimize the square loss instead of the
logarithmic loss. To predict at step T it works with the function

T−1∑
t=1

(ξθ
t − yt)2 + a‖θ‖2 (9)

with ξθ
t from (1). Third, it does not look for the best regularized expert θ, but at

each prediction step it mixes all the experts in a way which is similar to Bayesian
scheme, thus preventing overfitting even further.

We use the Aggregating Algorithm (AA) to derive the prediction algorithm.
The AA works as follows.

It is given a parameter η and an initial distribution on the experts. We choose
the normal distribution

P0(dθ) = (aη/π)n/2 exp(−aη‖θ‖2)dθ (10)

for some a > 0, the other parameter of the algorithm. After each step t the AA
updates the weights of the experts according to their losses:

Pt(dθ) = e−η(ξθ
t −yt)

2
Pt−1(dθ)
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and then normalizes the weights: P ∗
t (dθ) = Pt(dθ)∫

Θ
Pt(dθ)

. It is easy to see that at the
step t the unnormalized weight of an expert θ can be expressed as

Pt(dθ) = (aη/π)n/2e−η(Lθ
t +a‖θ‖2)dθ. (11)

To give a prediction the AA first calculates the generalized prediction

gt(y) = −1
η

ln
∫

Θ

e−η(ξθ
t −y)2P ∗

t−1(dθ) (12)

for any possible outcome y ∈ [Y1, Y2] using the normalized weights computed
on the previous step. It then gives its prediction γt = Σ(g) using a substitution
function Σ such that (γt − y)2 ≤ gt(y) for any y ∈ [Y1, Y2]. It is known [18] that
for the square loss game such a substitution function exists if η ∈

(
0, 2

(Y2−Y1)2

]
.

The following substitution function outputs a permitted prediction even if the
generalized predictions are calculated from the weights scaled by any constant
(for example, unnormalized):

γt =
1
2

(
Y2 + Y1 − Gt(Y2) −Gt(Y1)

Y2 − Y1

)
(13)

for
Gt(y) = −1

η
ln
∫

Θ

e−η((ξθ
t −y)2+Lθ

t−1+a‖θ‖2)dθ. (14)

We obtain (14) by calculating the generalized prediction (12) with unnormalized
weights (11) and omitting the factor (aη/π)n/2. Normalization is avoided because
calculating the normalizing constant is a computationally inefficient operation.
We will use the maximum value for η, η = 2

(Y2−Y1)2 . We denote

wT (θ) := exp

(
−aη‖θ‖2 − η

T∑
t=1

(
ξθ
t − yt

)2)
. (15)

Algorithm 1 is based on the MCMC technique of numerical integration in (14)
at y = Y1 and y = Y2; a good MCMC survey is given in [1]. The func-
tion e−η(ξθ

t −y)2 needs to be integrated with respect to the unnormalized pos-
terior distribution Pt−1(dθ). We choose to use the simple Metropolis sampling
to sample θ from the posterior.

Metropolis sampling from a distribution P is an iterative process, with the
initial value θ0 and a simple proposal distribution. We choose the Gaussian
proposal distribution N(0, σ2) with the parameter σ2 chosen on the data. At
each iteration i = 1, . . . ,M , the update for θ is sampled from the proposed
distribution:

θi = θi−1 + ζi, ζi ∼ N(0, σ2).

The updated θi is accepted with the probability min
(
1, fP (θi)

fP(θi−1)

)
. Here fP(θ)

is the value of the density function for the distribution P at the point θ. By
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accepting and rejecting the updates the values of the parameter θ move closer
to the value where the maximum of the density function fP is achieved. Thus
sampling is performed from the area with high density of P and covers the
tails of it only occasionally. Therefore numerical integration using sampling with
MCMC is often more efficient than the usual Monte Carlo sampling from the
uniform distribution. Sometimes the updates are accepted even if they do not
move the next θ closer to the maximum (this happens when fP (θi)

fP(θi−1) < 1). This
may allow the algorithm to move away from the local maxima of the density
function.

Algorithm 1. AAGLM
Require: Bounds Y1, Y2 for the outcomes,

maximum number M > 0 of MCMC iterations,

standard deviation σ > 0,

regularization coefficient a > 0

calculate η := 2
(Y2−Y1)2

initialize θM
0 := 0 ∈ Θ

define w0(θ) := exp(−aη ‖θ‖2
)

for t = 1, 2, . . . do
Gt,1 := 0, Gt,2 := 0

read xt ∈ R
n

initialize θ0
t := θM

t−1

for m = 1, 2, . . . , M do
θ∗ := θm−1

t + N(0, σ2I)

if wt−1(θ
∗) ≥ wt−1(θ

m−1
t ) then

θm
t := θ∗

else
flip a coin with success probability wt−1(θ

∗)/wt−1(θ
m−1
t )

if success then
θm

t := θ∗

else
θm

t := θm−1
t

end if
end if

Gt,1 := Gt,1 + e−η(ξ
θm

t
t −Y1)2 , Gt,2 := Gt,2 + e−η(ξ

θm
t

t −Y2)2

end for
output prediction γt := 1

2

(
Y2 + Y1 +

lnGt,2−lnGt,1
η(Y2−Y1)

)
read yt ∈ [Y1, Y2]

define wt(θ) := wt−1(θ) exp(−η(ξθ
t − yt)

2)

end for

It is common when using the MCMC approach to have a “burn-in” stage,
at which the integral is not calculated, but the algorithm is looking for the
best “locality” for θ. This stage is used to avoid the error accumulated while
the algorithm is still looking for the correct location of the main mass of the
distribution. Instead of that, at each prediction step t we take the new starting
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point θ0 for the Metropolis sampling to be the last point θM achieved on the
previous step t− 1.

In the case when the dimension n of input vectors is large and the sampling
is not very efficient, one can use more advanced techniques, such as adaptive
sampling or Slice sampling [16]. However, when we tried several versions of Slice
sampling, the convergence speed on our data sets was slower than for Metropolis
sampling.

The function (9) is not necessarily convex in θ, so it may have several local
minima. Thus we cannot use the Laplace approximation for the integral and
obtain reliable Iteratively Reweighted Least Square estimation of θ, the common
approach to give predictions when working with generalized linear models. The
MCMC approach to calculating similar integrals for Bayesian prediction models
was analyzed in [15]. It is stated there that it takes O(n3) operations to calculate
a general integral.

5 Experiments

In this section we investigate empirical properties of our algorithm on toy and
real data sets and suggest ways to choose the parameters for it.

5.1 Toy Data Set

In this experiment we aim to emphasize the main properties of competitive
online algorithms: how they behave if the data follow the assumptions of one
of the experts, and when the data fail to do so; how quickly online algorithms
adjust to the substantial changes in the properties of the data.

Consider the following online classification problem. Let xt ∈ R be the input
vectors x1 = −50, x2 = −49.9, . . . , xT = 100, real numbers from −50 to 100 with
step 0.1. Let the outcomes yt be

yt =

{
1 if xt < −10 or 10 < xt < 50,
0 otherwise.

We add the bias one as the second component of each input vector (input vector
dimension becomes equal to 2). We try to predict this sequence online step by
step by Algorithm 1 competing with logistic experts. The result is presented
on Figure 1. We also show the best fitted logistic predictor achieving the mini-
mum cumulative square loss. Notice three following interesting properties of the
picture.

The predictions of the AAGLM tend to the predictions of the best logistic
regression fitted to the whole data as T becomes large. This matches the fact
that the mean loss of the AAGLM converges to the mean loss of the best logistic
regression; see Corollary 2.

When x ∈ [−10, 50) both algorithms suffer large loss. Corollary 2 ensures that
the AAGLM does not suffer much more than the best logistic regression.
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Fig. 1. Sequential predictions of the AAGLM algorithm for the two-class classification

problem. The dashed curve is the predictions of the best logistic regression (under

square loss) on all the data. The horizontal axis contains the input vectors, the vertical

axis contains the outcomes and the predictions of the outcomes by the two algorithms.

During each period the AAGLM tries to fit a logistic regression function in
this and the previous periods. The dependence on the previous periods is due to
the fact that the trained AAGLM is equivalent to the untrained AAGLM which
starts predicting with initial weights distribution P ∗

t (dθ), where t is the number
of steps in the previous periods.

In order for expert-based algorithms to predict well on a certain type of data,
the best expert should suffer small loss on these data. If the sequence of outcomes
has several regimes which rarely switch from one to another, like in our figure,
“tracking the best expert” [11,17] may be a more suitable framework.

The parameters of the AAGLM used in these studies are Y1 = 0, Y2 = 1, M =
1000 (we did not use “burn-in” stage), σ = 0.00001, a = 10−100. Increasing the
regularization coefficient a leads to the regularization towards 0.5 (as expected).
Increasing M accelerates somewhat the reaction in the very beginning of each
turn, but the main trend does not change. Too low value for σ leads to slower
convergence. Too high value of this parameter forces the algorithm to fluctuate
between two classes, and never find a stable solution (this is expected as well since
with large σ the numerical integration becomes less precise). It is common when
applying the MCMC technique to use the following rule of thumb to determine
the value of the parameter σ: the rejection rate should be 30–70%.

5.2 Ozone Data Set

We perform empirical studies on two real-world data sets described in [19].

Data sets. The data sets contain various meteorology and ozone data for the
Houston, Galveston, and Brazoria (HGB) area in Texas, USA, day by day for 7
years, 1998–2004. We use both one-hour (ozone1) and eight-hour (ozone8) ozone
data sets: they contain the the daily maximum of 1 hour (ozone1) ozone concen-
tration and the daily maximum of the average over 8 consecutive hours (ozone8)
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ozone concentration. Each observation is one day. Each observation has 72 fea-
tures of various measures of air pollutant and meteorological information for the
target area in the study. Each observation is assigned the label 1 (we say its
outcome is equal to 1) if the ozone level exceeds the danger threshold, which
is 120 parts per billion (ppb) for ozone1 and 80 ppb for ozone8; otherwise, the
observation has the label 0 (outcome is equal to 0). The data are collected online,
so online prediction algorithms are more appropriate for the study than batch
algorithms. They are able to predict ozone levels day by day incorporating the
information from all the previous days. Therefore we consider online two-class
classification problems.

It is shown in [19] that all 72 features may be relevant to the prediction
problem, and thus we decided to use all of them to train our algorithms. We
replace the missing values of the features by the mean of the available values of
them from the first year (we use the first year data as our training set).

The data sets are very skewed: the number of positive examples is very low (73
for ozone1 and 160 for ozone8 out of 2534 observations). It can be expected that
for such data sets complementary log-log (comlog) regression performs better
than logistic or probit regression. Indeed, the square loss suffered by logistic
regression trained on the whole data set is 48.4178 for ozone1 and 96.2846 for
ozone8. At the same time, the square loss suffered by comlog regression trained
on the whole data set is 46.7815 and 94.8399 respectively. Thus we use the comlog
activation function (8) in this experimental study.

Algorithms and results. We normalize all the features to have mean zero and
maximum absolute value one over the first year. We also add an additional bias
feature 1 to all the examples.

We compare different algorithms in two regimes: the online regime and the
(incremental) batch regime. In the online regime the algorithms are retrained
as soon as a new observation is obtained. In the batch regime the algorithms
are only retrained yearly on all the past data. In [19] this regime is suggested
as the most realistic for meteorologists (they did not consider the online regime
though).

For the online regime the AAGLM parameters M , σ, a, and the length of the
burn-in stage are chosen to suffer the least square loss over the first year. We
choose σ from the range 10−k, 5 · 10−k, k = 0, 1, . . . , 5. We choose a from the
range 10−k, 5 · 10−k, k = −1, 0, 1, . . . , 10. The best parameters are M = 2500,
σ = 0.01, a = 0.1, and the length of the burn-in stage is 2000. It is interesting to
note that for both data sets the best parameters are the same up to our precision.
This may mean that the best parameters for the algorithm depend mostly on
the input vectors, and not on the outcomes (because the input vectors are the
same for our data sets).

The batch regime of the AAGLM can be understood as just one step of the
online algorithm repeated for each new test example. During the training stage
the batch algorithm does not calculate the integral but saves the values of θ
obtained at each iterationm = 1, 2, . . . ,M . At the prediction stage the algorithm
calculates the integral using the saved values of θ computed on the iterations
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between B < M and M , where B is the length of the burn-in stage. We choose
the same parameters σ = 0.01, a = 0.1 as for the online version, and B = 5000,
M = 15000 to ensure good convergence. There are no theoretical guarantees for
the batch setting.

The first algorithm with which we compare the AAGLM is the online comlog
regression minimizing logarithmic loss (standard generalized regression model):
at each step t it uses all the previous steps to find the best parameter θ̂ and then
gives its prediction σ(θ̂′xt) according to this parameter. In terms familiar from
the online prediction literature, it corresponds to the Follow the Best Expert
predictor under the logarithmic loss function, the natural competitor to our
algorithm.

In the batch regime in the beginning of each year the best parameter θ̃ is
found on all the previous years. All the predictions in the following year are
made using this θ̃.

We also calculate the performance of the linear Support Vector Machine
(SVM) and the SVM with the RBF kernel [6]. The SVM with the RBF ker-
nel showed the best performance on ozone8 in a different framework [19]. In the
online regime the SVMs predict only one next outcome at each step and retrain
after the actual outcome is announced. The parameter of the kernel and the
parameter C are chosen to achieve the least square loss over the first year. Note
that in the online regime one does not need the validation set: the training set
at each step does not include the next test example at which prediction is made.
Thus the risk of overfitting is less than if the testing was done on the training
set.

In the batch regime at the beginning of each year the SVMs are retrained on
all the previous years. All the predictions in the following year are made using
these trained SVMs. The parameter of the kernel and the parameter C are chosen
using 5-fold cross-validation: all the data from the previous years are randomly
separated into 5 parts. Four parts are used to train the SVM, the fifth part is
used for testing: the square loss is calculated over the fifth part. This procedure
repeats 5 times with different combinations of the parts. The parameters of the
SVMs are chosen to suffer the least average square loss.

Since the number of positive examples is small, it makes sense to compare the
precision of the predicting algorithms with the precision of the zero predictor:
the predictor which always predicts low ozone concentration.

The minimal square loss which is suffered by the comlog regression model
trained on the whole data set is equal to 28.0001 for ozone1 and 75.0001 for
ozone8. This loss is unrealistic since we do not know all the observations when
start predicting, and included here to specify the limitations of the generalized
regression model. The square loss of the online comlog regression over this period
is equal to 105.1823 and 186.6147 respectively. The square loss of the AAGLM
over this period is equal to 66.2727 and 120.8483 respectively. At the same time
the upper bounds on its loss from Corollary 4 have the values 323.9632 for ozone1
and 371.3681 for ozone8. The zero predictor suffers the square loss 73 and 160
respectively.
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Table 1. Average MSEs of different algorithms over the last 6 years of ozone1/ozone8

Algorithm MSE online MSE batch

AAGLM 8.2159/15.3288 8.2163/15.7552

SVM rbf 9.7607/14.8806 9.4497/15.9679

SVM linear 8.8624/16.1532 8.8500/16.5264

Comlog 14.4578/24.2686 13.8096/27.9474

Zeros 9.6667/21.3333 9.6667/21.3333

Table 1 contains average mean square errors for different algorithms over the
last 6 years (2–7) in the data sets.

Figure 2 presents precision (the number of correctly identified high ozone days
divided by the total number of the predicted high ozone days) and recall (the
number of correctly identified high ozone days divided by the total number of
the actual high ozone days) for different threshold values calculated for the last 6
years of ozone8. It contains information for the four algorithms applied in the
online regime. The area under the curve for the AAGLM is larger than the area
under the curve for the online comlog regression and under the curve for the
linear SVM. This shows the superiority of our algorithm over these competitors
for the classification task. We can also see that there is a point on the curve
for the online comlog regression where the reduction of the recall does not lead
to the increase in the precision. This means that the threshold becomes larger
than the predicted probability of many high-ozone days.

As we can see from the figures in Table 1, the algorithms in the online regime
perform better than the same algorithms in the batch regime on ozone8 and
usually worse on ozone1.
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Fig. 2. Precision-recall curve for different threshold values for the algorithms applied

in the online regime on ozone8
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We can also see that the AAGLM significantly outperforms the simple zero
predictor and the comlog predictor. Unlike the comlog predictor, the AAGLM is
developed to work with the square loss and achieves better empirical performance
in terms of the square loss. It performs a little worse on ozone8 than the SVM
with the RBF kernel. It is not difficult to apply kernelization to the AAGLM
as well (for the kernelization of standard generalized linear regression models
see [5]) using an analogy with non-parametric Bayesian methods; the kernelized
algorithm may achieve better performance. On ozone1 the AAGLM outperforms
all the algorithms including SVMs.

The disadvantage of our algorithm against the competitors is in its training
speed. Increasing the training speed of our algorithm is an interesting area of
future research. It would be also interesting to apply our classifier to other data
sets and find extreme data sets where the theoretical guarantee is tight.

6 Proof of Theorem 1

Let η := 2
(Y2−Y1)2

and set β = e−η. The loss of the AA over the first T trials
does not exceed the loss of the sum of the generalized predictions (12) over the
first T trials, which in turn equals (see Lemma 1 in [18])

logβ

∫
Θ

βLT (θ)P0(dθ) = −1
η

ln
(

(aη/π)n/2

∫
Θ

e−ηQ(θ)dθ

)
, (16)

where

Q(θ) :=
T∑

t=1

((Y2 − Y1)σ(θ′xt) + Y1 − yt)
2 + a‖θ‖2.

We will lower bound the integral in (16) by upper bounding Q(θ) using a
quadratic form.

Because of the second addend in the definition of Q(θ), Q(θ) → ∞ as ‖θ‖ →
∞. Therefore minθ Q(θ) is attained at some point. Let θ0 be the point where
it is attained, and thus ∇Q(θ0) = 0. We use Taylor expansion of Q(θ) at the
point θ0:

Q(θ) = Q(θ0) +
1
2
(θ − θ0)′H(φ)(θ − θ0),

where φ is a convex combination of θ0 and θ. Here H is the Hessian matrix
of Q(θ), the matrix of its second derivatives. By δj

i we denote the Kronecker
delta. The second partial derivative of Q is expressed as follows:

∂2Q

∂θi∂θj
= 2aδj

i + 2(Y2 − Y1)2

·
T∑

t=1

(
∂σ(θ′xt)
∂θi

∂σ(θ′xt)
∂θj

−
(
yt − Y1

Y2 − Y1
− σ(θ′xt)

)
∂2σ(θ′xt)
∂θi∂θj

)

= 2aδj
i + 2(Y2 − Y1)2

T∑
t=1

xt,ixt,jb

(
yt − Y1

Y2 − Y1
, θ′xt

)
.
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It is clear now that the matrix H(φ) can be represented as follows:

H(φ) = 2aI + 2(Y2 − Y1)2X ′Γ (φ)X,

where X is the design matrix T × n consisting of the rows of the input vectors
x′1, . . . , x

′
T . Here Γ (φ) is the diagonal T × T matrix which has the coefficients

b(u1, φ
′x1), . . . , b(uT , φ

′xT ) on the diagonal (with ui = yi−Y1
Y2−Y1

, i = 1, . . . , T ).
Since Γ (φ) is a symmetric matrix, we can see (Theorem 21.5.6 in [9]) that

ψ′Γ (φ)ψ ≤ ψ′λmaxψ (17)

for any ψ ∈ Rn, where λmax is the supremum over maximum eigenvalues of Γ (φ).
Since b(ut, φ

′xt) is uniformly bounded, we have λmax ≤ b.
We can take ψ = X(θ − θ0) and obtain from (17) that

Q(θ) ≤ Q(θ0) + (θ − θ0)′(aI + b(Y2 − Y1)2X ′X)(θ − θ0).

Thus the integral in (16) is lower bounded as follows:∫
Θ

e−ηQ(θ)dθ ≥ e−ηQ(θ0)

∫
Θ

e−η(θ−θ0)
′(aI+b(Y2−Y1)

2X′X)(θ−θ0)dθ.

The integral in the right-hand side can be analytically calculated (see Section
15.12 in [9]):∫

Θ

e−η(θ−θ0)
′(aI+b(Y2−Y1)

2X′X)(θ−θ0)dθ =
(π/η)n/2√

det(aI + b(Y2 − Y1)2X ′X)
.

After taking the logarithm of e−ηQ(θ0), we obtain Lθ0
T + a‖θ0‖2. Substituting

these expressions and η = 2
(Y2−Y1)2

to (16) we obtain the upper bound (3).
The determinant of a symmetric positive definite matrix is upper bounded by

the product of its diagonal elements (see Chapter 2, Theorem 7 in [3]):

det

(
I +

b(Y2 − Y1)2

a

T∑
t=1

xtx
′
t

)
≤
(

1 +
b(Y2 − Y1)2TX2

a

)n

.

This concludes the proof.
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Abstract. One solution to the lack of label problem is to exploit trans-

fer learning, whereby one acquires knowledge from source-domains to im-

prove the learning performance in the target-domain. The main challenge

is that the source and target domains may have different distributions.

An open problem is how to select the available models (including algo-

rithms and parameters) and importantly, abundance of source-domain

data, through statistically reliable methods, thus making transfer learn-

ing practical and easy-to-use for real-world applications. To address this

challenge, one needs to take into account the difference in both marginal

and conditional distributions in the same time, but not just one of them.

In this paper, we formulate a new criterion to overcome “double” distri-

bution shift and present a practical approach “Transfer Cross Validation”

(TrCV) to select both models and data in a cross validation framework,

optimized for transfer learning. The idea is to use density ratio weight-

ing to overcome the difference in marginal distributions and propose a

“reverse validation” procedure to quantify how well a model approx-

imates the true conditional distribution of target-domain. The useful-

ness of TrCV is demonstrated on different cross-domain tasks, including

wine quality evaluation, web-user ranking and text categorization. The

experiment results show that the proposed method outperforms both

traditional cross-validation and one state-of-the-art method which only

considers marginal distribution shift. The software and datasets are avail-

able from the authors.

1 Introduction

Transfer learning works in the context that the number of labeled examples in
target-domain is limited. It assumes that source-domain and target-domain are
under different marginal and conditional distributions. Recently, a number of al-
gorithms have been proposed to overcome the distribution shift, such as those re-
viewed in but not limited to [1]. Moreover, for a given target-domain in transfer
learning, a likely large number of source-domains are available. For example, if we

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part III, LNAI 6323, pp. 547–562, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Table 1. Definition of notations

Notation Description Notation Description
S Source-domain, S = {Xs, Ys} = {(xi, yi)}n

i=1 k Number of folds in cross validation
Si Data in i-th fold r(x) Value of x got by reverse validation

Y
i
s Pseudo labels of Si �∗(f) Expected loss of model f

Si Remaining data in i-th fold �(f) Empirical loss of model f in T
T Target-domain, T = {X
, Y
, Xu} �w(f) Weighted empirical loss of model f in S
L Labeled data in T , L = {X
, Y
} εu(f) Estimated accuracy of model f by TrCV
U Unlabeled data in T , U = Xu Θf Model complexity of f
n Number of instances in S P (x) Marginal distribution of x
� Number of instances in L P (y|x) Conditional distribution of (x, y)
u Number of instances in U β Density ratio vector of Xs

aim to classify the documents of 20-Newsgroup [2], RCV1 [3] and Reuters-21578 [2]
or other text collections can be treated as the candidates of source-domain. Thus,
for a transfer learning task, it is crucial to solve three problems effectively: (1) How
to select the right transfer learning algorithms? (2) How to tune the optimal pa-
rameters? (3) How to choose the most helpful source-domain from a large pool of
datasets? However, to the best of our knowledge, neither any analytical criterion
nor efficient practical procedures have been proposed and reported.

Although some analytical techniques such as AIC (Akaike Information Cri-
terion) [4], BIC (Bayesian Information Criterion) [5] and SRM (Structural Risk
Minimization) principle [6] or sample re-use method (such as Cross Validation
(CV)) to selecting the suitable model or training data (source-domain in trans-
fer learning) have been studied, as reviewed later, they can not guarantee their
performances in transfer learning for two reasons. First, due to the “double” dis-
tribution shift, including marginal and conditional distributions, the unbiased-
ness which guarantees the accuracy of these techniques does not hold anymore.
Second, due to the very small number of labeled data in target-domain, it is
unreliable to estimate the conditional distribution of target-domain directly.

To cope with these challenges, we first formulate a general criterion for model
selection in transfer learning scenario, followed by a novel variant of CV method
“Transfer Cross Validation” (TrCV) to solving the above three problems prac-
tically. Briefly, we introduce density ratio weighting to reduce the difference of
marginal distributions between two domains. As proved in Section 4.1, it makes
the estimation of TrCV unbiased. In addition, we exploit a method “Reverse
Validation” (RV) to approximate the difference between the estimated and true
conditional distribution of target-domain directly. As stated in Section 4.2, the
value of RV is reliable to indicate the true difference. In summary, by eliminating
the difference between two domains, the model selected by TrCV has a confi-
dence bound on accuracy as shown in Section 4.3. In other words, the model or
source-domain selected by TrCV is highly likely the best one among candidates
as evaluated in Section 5.

2 Problem Statement

We review the limitation of traditional validation methods and then introduce
a general criterion with transfer cross validation. The notations are summarized



Cross Validation Framework to Choose amongst Models 549

in Table 1. Let S = {Xs, Ys} = {(xi, yi)}n
i=1 denote the source-domain and T =

{X�, Y�, Xu} = {(xi, yi)}�
i=1 ∪ {(xj)}u

j=1 denote the target-domain, where n is
the number of instances in source-domain, � and u are the number of labeled and
unlabeled instances in target-domain respectively. Then, let Ps(x) and Ps(y|x)
denote the marginal and conditional distribution of source-domain, Pt(x) and
Pt(y|x) for target-domain. We use f̂ to represent the model expected to obtain.

2.1 Limitations of Existing Approaches

The model selected by analytical techniques is as follows:

f̂ = arg min
f

1

n

∑
x∈Xs

∣∣∣Ps(y|x) − P (y|x, f)

∣∣∣+ Θf (1)

where the first term represents the empirical loss and Θf is model complexity:
the number of model parameters in AIC and BIC or the VC-Dimension in SRM.
On the other hand, k-fold cross validation aims to select the model as:

f̂ = arg min
f

1

k

k∑
j=1

∑
(x,y)∈Sj

∣∣∣Ps(y|x) − P (y|x, fj)

∣∣∣ (2)

where k is the number of folds, Sj are the data in j-th fold and fj is the model
trained from the remaining data. However, these methods do not work as one
would desire, for the following two reasons. First, because Ps(x) �= Pt(x), Eq.(1)
no longer provides consistent estimation [7]. In other words, limn→∞(f̂) �= f∗,
where f∗ is the ideal hypothesis which achieves the minimal expected loss to
approximate Pt(y|x), regulated by model complexity:

f∗
= arg min

f
Ex∼Pt(x)

∣∣∣Pt(y|x) − P (y|x, f)

∣∣∣+ Θf (3)

To cope with similar problem in sample selection bias, previous work Weighted
CV (WCV) [8] proposes to use density ratio to eliminate the difference in
marginal distributions when performing cross-validation. It selects the model
that minimizes the following objective.

f̂ = arg min
f

1

k

k∑
j=1

∑
(x,y)∈Sj

Pt(x)

Ps(x)

∣∣∣Ps(y|x) − P (y|x, fj)

∣∣∣ (4)

However, neither of these explicitly considers the effect of conditional distribu-
tion shift between two domains, which is essential for most transfer learning
problems. Because Ps(y|x) �= Pt(y|x) under transfer learning context, a model
approximating Ps(y|x) is not necessarily close to Pt(y|x). Thus, the model se-
lected by Eq.(2) and Eq.(4) based on source-domain can not guarantee its per-
formance in target-domain, as demonstrated experimentally in Section 5.

On the other hand, one may consider to perform CV on the labeled target-
domain data L or to select the model trained using source-domain data S and
has a high accuracy on L. But these methods fail to perform well on the whole
target-domain, because the number of labeled data is so limited that they cannot
reliably describe the true conditional distribution of target-domain, Pt(y|x).
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2.2 The Proposed Approach

As such, we have two observations. First, the estimation based on source-domain
data need to be consistent with target-domain data. Second, the model should
approximate the conditional distribution of target-domain, instead of the source-
domain. Thus, we propose a new criterion by adding density ratio weighting and
replacing the target conditional distribution as follows:

f̂ = arg min
f

1

n

∑
x∈Xs

Pt(x)

Ps(x)

∣∣∣Pt(y|x) − P (y|x, f)

∣∣∣+ Θf (5)

We notice that it is a general criterion extending Eq.(1). Under the traditional
setting that marginal and conditional distributions do not shift, it is the same
as Eq.(1). With the analysis in Section 4, we prove that Eq.(5) approximates an
unbiased estimation to ideal hypothesis f∗. However, the model complexity term
Θf is usually hard to calculate in practice. Thus, following the same ideas, we
propose a transfer cross validation (TrCV) method to solve the stated problems
practically. It aims to select the model by minimizing the criterion:

f̂ = arg min
f

1

k

k∑
j=1

∑
(x,y)∈Sj

Pt(x)

Ps(x)

∣∣∣Pt(y|x) − P (y|x, f)

∣∣∣ (6)

Thus, algorithm selection, parameter tuning and source-domain selection in
transfer learning can be solved using TrCV. For algorithm selection, it is in-
tuitive. For other two problems, it is equivalent to pick a set of parameters or a
source-domain which can build a model minimizing the value in Eq.(6).

3 Transfer Cross Validation (TrCV)

We discuss two main issues of TrCV in this section. The first one is that the
density ratio of two domains Pt(x)

Ps(x) needs to be calculated based on the observed
finite set. We let β = {β(x1), . . . , β(xn)} be the density ratio vector, where
β(x) = Pt(x)

Ps(x) . Some methods have been exploited for this problem [9, 10]. We
adopt an existing one KMM from [10] which aims to find suitable values of β to
minimize the discrepancy between means of two domains. Formally, it tries to
minimize the following object by calculating the optimal β.

min
β

1

2
βT Kβ − κT β

s.t βi ∈ [0, B], |
n∑

i=1

βi − n| ≤ nε

where Kij = φ(xi,xj), xi,xj ∈ Xs, κi = n
�+u

∑�+u
j=1 φ(xi,xj), xi ∈ Xs,xj ∈

X� ∪Xu, φ(∗, ∗) is the kernel function, B is the upper bound for the ratio and
ε should be O(B/

√
n). In addition, β is restricted by two constraints: the first

one limits the scope of discrepancy between pt(x) and ps(x) and the second one
ensures that the measure β(x)ps(x) is close to a probability distribution.
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Input: Si, Si, T , a learner F
Output: The estimation of |Pt(y|x) − P (y|x, fi)|
Build a model fi from Si using F ;1

Predict the labels of Xu, Y
i
u;2

Build another model fi from {Xu, Y
i
u} ∪ {X�, Y�} using F ;3

Predict the labels of Si, Y
i
s;4

for each instance xij in Si do5

r(xij) = |yij − yij |, where yij ∈ Y
i
s;6

end7
return r(xij), xij ∈ Si;8

Fig. 1. Reverse Validation

Fig. 2. Flow chart of reverse validation

As follows, we focus on the second issue: how to calculate the difference be-
tween the conditional distribution estimated by model f and the true conditional
distribution, |Pt(y|x) − P (y|x, f)|. Due to the limited number of labeled exam-
ples in target-domain, it is impossible to estimate the conditional distribution
Pt(y|x) reliably. To overcome this challenge, we propose a novel method “Reverse
Validation” which estimates the approximation difference directly and avoids
computing the conditional distribution Pt(y|x). To the best of our knowledge,
this has not been well studied.

3.1 Reverse Validation (RV)

The main flow is presented in Figure 2 and the detail is stated in Figure 1. Let
Si be the source-domain data in i-th fold and Si be the remaining data. Firstly,
for the given learner, we train a model fi from Si, and then we use fi to predict
the labels of Xu and obtain Y

i

u. Next, we combine {Xu, Y
i

u} and {X�, Y�} to
form a new set. Afterwards, a new model f i is built from the new set using the
same algorithm and used to classify the instances in Si. We denote the pseudo
labels of Si as Y

i

s. Finally, for each instance {xij , yij} ∈ Si, we use the value
of |yij − yij | to estimate the difference, where yij is the corresponding pseudo
label of xij . As analysed in Section 4.2, RV value r(xij) = |yij − yij | is related
to |Pt(yij |xij) − P (yij |xij , fi)| and can be used as an indicator.

TrCV can now be introduced using KMM and RV as stated in Figure 3.
Briefly, we calculate the density ratio qualitatively and apply reverse validation
to estimate the loss of conditional distribution approximation in each fold.



552 E. Zhong et al.

Input: S, T , a learner F , number of fold k
Output: The measure value of TrCV
Calculate β using KMM;1
for i = 1 to k do2

Perform reverse validation, Vi = RV (Si, Si, T,F);3
� = � +

∑
j vij · β(xij), vij ∈ Vi;4

end5
return �/n;6

Fig. 3. Transfer Cross Validation

4 Formal Analysis

We analyse three issues. First, does the general principle bound the risk in trans-
fer learning? Second, is the loss calculated by reverse validation related to the
true difference |Pt(y|x)−P (y|x, f)|? Third, how is the confidence of the transfer
cross validation?

4.1 Generalization Bound

We first demonstrate that the model selected by Eq.(5), f̂ , provides an unbiased
estimator to f∗ defined in Eq.(3). Let the expected loss of a model f be �∗(f),
the weighted empirical loss in source-domain be �w(f) and n be the number of
examples in S, then we get the lemma.

Lemma 1. �w(f̂) + Θf̂ = �∗(f∗) + Θf∗ , when n → ∞ and f∗ and f̂ belong to
the same hypothesis class.

Proof

�w(f̂) =
1

n

∑
x∈Xs

Pt(x)

Ps(x)

∣∣∣Pt(y|x) − P (y|x, f̂)

∣∣∣
= Ex∈Xs

[ ∫
x

Pt(x)

Ps(x)

∣∣∣Pt(y|x) − P (y|x, f̂)

∣∣∣Ps(x)dx
]

= Ex∈Xs

[ ∫
x

Pt(x)

∣∣∣Pt(y|x) − P (y|x, f̂)

∣∣∣dx]
=

1

n

∑
x∈Xs,Xs∼Pt(x)

∣∣∣Pt(y|x) − P (y|x, f̂)

∣∣∣
= Ex∈Xs,Xs∼Pt(x)

∣∣∣Pt(y|x) − P (y|x, f̂)

∣∣∣
This means that, as n approaches infinity, the model minimizing the value of
weighted empirical loss in source-domain also minimizes the expected loss in
target-domain, �w(f̂) = �∗(f∗). In addition, if f∗ and f̂ belong to the same hy-
pothesis class, it leads to Θf∗ = Θf̂ . �
In addition, we conclude that the model minimizing the value of general principal
in Eq.(5) is equal to the model minimizing the empirical error of target-domain
data. In other words,
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�(f̂) =
1

n

∑
x∈Xs,Xs∼Pt(x)

∣∣∣Pt(y|x) − P (y|x, f̂)

∣∣∣
=

1

n

∑
x∈Xs

Pt(x)

Ps(x)

∣∣∣Pt(y|x) − P (y|x, f̂)

∣∣∣ (7)

Next we demonstrate that if the estimator of Θf̂ is related to VC-dimension,
f̂ constructed from source-domain data has a generalization bound over target-
domain data.

Theorem 1. Let G(f̂ ) denote the generalization error of f̂ in the target-domain,
n is the number of data in S and dvc is the VC-dimension of the hypothesis class
which f̂ belongs to, then with the probability at least 1 − δ

G(f̂) ≤ �w(f̂) +

√(
dvc(log(2n/dvc) + 1) − log(δ/4)

n

)
(8)

Proof As a conclusion from [6], for a given model f , it has a generalization
bound:

G(f) ≤ �(f) +

√(
dvc(log(2n/dvc) + 1) − log(δ/4)

n

)
(9)

In addition, let us recall Eq.(7), thus we obtain Eq.(8). �

4.2 Estimation by Reverse Validation

Due to the limited number of labeled examples in target-domain, we use re-
verse validation (RV) to estimate the difference between Pt(y|x) and P (y|x, f)
instead of estimating the conditional probability Pt(y|x) directly. As follows we
provide some insights in RV. Let fi be the model trained from Si, {Xu, Y u}
be the unlabeled data and corresponding pseudo labels predicted by fi in the
target-domain, f i be the model built from {Xu, Y

i

u} ∪ {X�, Y�} and ε(f) be the
approximation error of a model f . Thus, for a given instance x from Si, RV
returns a value

r(x) =

∣∣∣Ps(y|x) − P (y|x, f i)

∣∣∣ (10)

As an approximation to Ps(y|x), P (y|x, fi) can be rewritten as

P (y|x, fi) = Ps(y|x) + ε(fi) (11)

where ε is the approximation error. In addition, because f i is trained from the
label information Y

i

u and Y�, P (y|x, f i) can be treated as an approximation to
the nuisance between P (y|x, fi) and Pt(y|x).

P (y|x, f i) = α·P (y|x, fi) + (1 − α)·Pt(y|x) + ε(f i) (12)
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where α is the nuisance parameter related to the ratio between the size of Xu

and Xl. Thus, by combining Eq.(10), (11) and (12), r(x) can be rewritten as

r(x)

=

∣∣∣Ps(y|x) − P (y|x, f i)

∣∣∣
=

∣∣∣Ps(y|x) − αP (y|x, fi) + (1 − α)Pt(y|x) − ε(f i)

∣∣∣
=

∣∣∣(1 − α)

(
P (y|x, fi) − Pt(y|x)

)
− ε(fi) − ε(f i)

∣∣∣
(13)

This demonstrates that r(x) is related to |P (y|x, fi) − Pt(y|x)| reliably. Thus,
when the number of training data is large enough such that the model can
approximate the true conditional probability reliably. In other words, when ε(fi)
and ε(f i) are small, RV can approach a confident estimation. In addition, when
more labeled data obtained in target-domain, α tends to be smaller. This implies
that r(x) estimates |P (y|x, fi)−Pt(y|x)| more precisely. On the other hand, if no
labeled data in target-domain but Pt(y|x) = Ps(y|x), r(x) becomes |ε(fi)+ε(f i)|
instead, which approximates as much as twice the error in traditional cross
validation.

4.3 Confidence by TrCV

The discussion is based on the assumption that the classifiers are consistent:
the classifiers built in each folds have the same predictability. Following Eq.(7),
minimizing the weighted empirical loss of source-domain data in TrCV is equal
to minimizing the empirical loss of target-domain data. In addition, combining
Eq.(6) and Eq.(13), when model can approximate the true distribution well if
obtaining enough labeled data, we rewrite the accuracy estimated by TrCV,
εu(f), as

εu(f) = 1 − 1

k

k∑
j=1

∑
x∈Sj

β(x)

∣∣∣r(x)/(1 − α)

∣∣∣
= 1 − 1

k

k∑
j=1

∑
x∈Xs,Xs∼Pt(x)

∣∣∣Pt(y|x) − P (y|x, f)

∣∣∣
(14)

where r(x) is the value of reverse validation on data x and β(x) is the density
ratio of x. Let ε(f) be the true accuracy of f , based on the statement in [11],
when the size of validation set is reasonably large, the distribution of εu(f) is
approximately normal with mean ε(f) and a variance of ε(f) · (1 − ε(f))/n. By
De Moivre-Laplace Limit theorem, we have

Pr
{
− z <

εu(f) − ε(f)√
ε(f) · (1 − ε(f))/n

< z
}

≈ λ (15)

where z is the (1 + λ)/2-th quantile point of the standard normal distribution.
The low and high confidence points of ε(f) is calculated by inverting Eq.(15) as

2n · εu(f) + z2 ± z ·√4n · εu(f) + z2 − 4n · ε2u(f)
2(n+ z2)
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In addition, if the accuracy of f obtains the normal distribution in this inter-

val with mean μ = 2n·εu(f)+z2

2(n+z2) and variance σ = z·
√

4n·εu(f)+z2−4n·ε2
u(f)

2(n+z2) , the

probability between two models, f1 and f2, P
(
ε(f1) > ε(f2)

)
can be calculated.

P
(
ε(f1) > ε(f2)

)
= P
(
ε(f1) − ε(f2) > 0

)
= P (x > 0), x ∼ N(μ1 − μ2, σ

2
1 + σ2

2)

= 1 − 1√
2π(σ2

1 + σ2
2)

∫ μ2−μ1√
σ2
1+σ2

2

−∞
e−t2/2dt

(16)

where μ1 and μ2 are the means of accuracy distributions obtained by f1 and f2
with TrCV and σ1 and σ2 are the corresponding variances. By calculating the
means and variances based on the loss value of TrCV, the confidence of TrCV
can be obtained by Eq.(16).

5 Experiment

TrCV criterion is evaluated to show if it can select the best algorithm for one
task, can tune suitable parameters for one model and can choose the most useful
source-domain over different candidates. For each task, several data collections
have been utilized.

5.1 Experimental Setup

The proposal approach TrCV is compared against several other cross valida-
tion methods. The first two are the standard k-fold CV formulated by Eq.(2).
One is on source-domain (SCV), another is on labeled data from target-domain
(TCV). The third one is to build a model on the source-domain data and vali-
date on labeled target-domain data (STV). Most importantly, we compare with
Weighted CV (WCV) [8]. As discussed earlier, WCV is proposed for sample se-
lection bias problems. It uses density ratio weighting to reduce the difference of
marginal distribution between two domains, but ignores the difference in condi-
tional probability, as shown in Eq.(6).

To test different criteria, we introduce five traditional classifiers, including
Naive Bayes(NB), SVM, C4.5, K-NN and NNge(Ng), and three state-of-the-
art transfer learning methods: TrAdaBoost(TA) [12], LatentMap(LM) [13] and
LWE [14]. Among them, TrAdaBoost is based on instances weighting, LatentMap
is through feature transform and LWE uses model weighting ensemble. As a
comparison, the number of folds in SCV, TCV and TrCV is set to be the same:
10, and the number of labeled data in target-domain is fixed as the larger one
between 0.1×|T | and 20. As follows, we use “correlation” between the best clas-
sifiers and the selected classifiers by the criteria as the measure of evaluation.
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Table 2. Dataset for Algorithm and Parameters Selection

Data Set |S| |T | Description
Red-White(RW) 1599 4998 physicochemical
White-Red(WR) 4998 1599 variables
orgs vs. people(ope) 1016 1046 Documents
orgs vs. places(opl) 1079 1080 from different
people vs. places(pp) 1239 1210 subcategories
Sheep(Sp) 61 65 Web pages
Biomedical(Bl) 61 131 with different
Goats(Gs) 61 70 contents

Table 3. Dataset for Source-domain Selection

Data Set S T |S| |T |
comp windows vs. motorcycles graphics 1596

1957vs. pc.hardware vs. baseball vs. 1969
rec mac.hardware vs. hockey autos 1954
sci crypt vs. guns electronics 1895

1924vs. med vs. misc vs. 1761
talk space vs. religion mideast 1612

Let f and g denote any two models, and ε(·) and v(·) are the accuracy and value
of criteria (e.g. TrCV, standard CV, etc) on each model, respectively. Then the
measure is

corr = C2
|H| −

∑
f,g∈H

[(
ε(f) − ε(g)

)
×
(
v(f) − v(g)

)
< 0
]

where
[
x
]

is 1 when x is true and 0 otherwise, and H is the set of models.

The first term C2
|H| is the number of comparisons where |H| is the number of

models and the second term indicates how many times the criterion selects the
worse one among two models. This measure means that if one criterion can select
the better model in the comparison, it gains a higher measure value. The main
results can be found in Table 4 and 5.

Three data collections from three different domains are employed to eval-
uate the algorithm selection and parameter tuning by TrCV. Among them,
Wine Quality dataset [2] contains two subsets related to red and white variants
of the Portuguese “Vinho Verde” wine. The task is to classify wine’s quality
according to their physicochemical variables. In the experiment, red-wine set
and white-wine set are treated as source-domain and target-domain alternately.
Reuters-21578 [2] is the primary benchmark of text categorization formed by
different news with a hierarchial structure. It contains five top categories of
news wire articles, and each main category contains several subcategories. Three
top categories, “orgs”, “people” and “places” are selected in the study. All of
the subcategories from each category are divided into two parts, one source-
domain and one target-domain. They have different distributions and are ap-
proximately equal in size. The learning objective aims to classify articles into
top categories. SyskillWebert [2] is the standard dataset used to test web page
ratings, generated by the HTML source of web pages plus the user rating (“hot”
or “not hot”) on those web pages. It contains four separate subjects belonging to
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Table 4. Algorithm Selection and Parameters Tuning

Method RW WR ope opl pp Sp Bl Gs RW WR ope opl pp Sp Bl Gs RW WR ope opl pp Sp Bl Gs

Algorithm Selection Parameter Tuning (LatentMap) Parameter Tuning (SVM)
SCV 18 17 13 17 13 19 16 17 4 5 5 5 8 4 4 6 4 7 5 4 3 7 7 8
TCV 17 18 14 17 10 15 10 11 3 3 3 5 5 4 1 2 5 4 3 4 4 4 5 5
STV 16 15 13 15 14 18 17 20 4 5 4 4 7 8 1 6 4 7 4 7 3 8 7 5
WCV 20 19 17 19 18 18 15 15 4 5 5 8 8 4 3 7 8 7 6 6 5 8 6 7
TrCV 22 23 22 20 22 20 15 18 5 7 8 8 8 5 3 7 7 8 7 8 6 8 8 8

Table 5. Source-domain Selection

Method NB SVM C45 KNN Ng TA LM LWE Pr
SCV 5 6 6 5 4 4 1 6 436
STV 2 3 4 6 2 2 3 5 371
TCV 6 5 2 4 2 5 3 4 399
WCV 5 6 6 4 3 4 3 6 442
TrCV 6 6 6 6 6 5 4 6 512

different topics. The learning task is to predict the user’s preferences for the given
web pages. In the experiment, we randomly reserve “Bands-recording artists”
as source-domain and the three others as target-domain data. The details of
datasets are summarized in Table 2. These datasets are chosen because they are
highly representative of the real world data we typically encounter. For example,
some of them have few instances but have high dimensions, while others have
the opposite. In addition, to evaluate the performance of source-domain selec-
tion with TrCV, 20-Newsgroup [2] is chosen. It is another primary benchmark
of text categorization similar to Reuters-21578. In our study, 16 subcategories
from 4 top subjects, including “comp”, “rec”, “sci” and “talk”, are selected to
form 8 different datasets of two tasks, “comp vs. rec” and “sci vs. talk”. Data of
source-domain and target-domain come from the same top categories but differ-
ent sub-topics. As shown in Table 3, for “comp vs. rec” task, “graphics vs. autos”
is chose as the target-domain and three others are treated as source-domains.
Similarly, “electronics vs. mideast” is target-domain in “sci vs. talk” task, while
others are source-domains. Moreover, for SyskillWebert, Reuters-21578 and 20-
Newsgroup, only 500 features with highest information gains are selected.

5.2 Experiment Procedure

Selection among Different Algorithms. As a comparison, the parameters of tra-
ditional classifiers are set as the default values in Weka1 and those of transfer
learning approaches are chosen as the values which are suggested in the corre-
sponding papers. In addition, for TrAdaBoost, SVM with polynomial kernel is
set as base model; for LWE, five traditional classifiers stated above with default
parameters are the base models. There are 8 approaches, thus the number of
comparison is C2

8 = 28. Table 4 and Figure 4(a) present correlation measure
values for each domain transfer datasets, given by five competitive approaches:

1 www.cs.waikato.ac.nz/ml/weka/

www.cs.waikato.ac.nz/ml/weka/
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Fig. 4. The comparison of TrCV with other validation methods
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Method NB SVM C45 KNN Ng TA LM LWE

Red-White
TrCV 0.550 0.638 0.642 0.546 0.603 0.667 0.624 0.717
Accuracy 0.585 0.633 0.632 0.618 0.590 0.697 0.664 0.675

White-Red
TrCV 0.560 0.585 0.566 0.547 0.547 0.629 0.604 0.667
Accuracy 0.588 0.564 0.567 0.574 0.534 0.651 0.631 0.662

Fig. 5. The comparison between TrCV’s accuracy and the true accuracy

SCV, TCV, STV, WCV and TrCV. Dataset 1 ∼ 8 correspond to those in Table
4. It is evident that TrCV achieves the best performance in 6 out of 8 runs. Due
to “distribution gap” between source and target domains, SCV fails to select
the better model among the comparisons most of the time. To be specific, the
correlation value got by SCV is just 18 on the Red-White set and no more than
17 on the Reuters collection. In addition, TCV and STV also fail to select a
better model. This can be ascribed to the limited number of labeled data in the
target-domain. One classifier performing well in this small subset can not guar-
antees its generalizability over the whole target-domain collection. However, the
proposed approach, TrCV, which considers the difference on marginal distribu-
tion and conditional possibility between source and target domains, has a much
better performance. Specifically, we notice that TrCV performs better than SCV
by at least 4 in correlation value on Wine Quality collection, and as high as 9
on the Reuters-21578 collection. Moreover, the performance of TrCV is better
than WCV consistently. The main reason is that although WCV reduces the
difference of marginal distribution, it still selects those models which approach
conditional distribution of source-domain in stead of target-domain. Thus, as
analysed in the section 2, these models can not guarantee their performances in
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target-domain. This also affords an evidence that reverse validation is necessary
under the context of transfer learning.

In addition, the advantage of TrCV over STV is that TrCV explores the
power of unlabeled data and multiple validations, thus reducing the variance of
the testing. As analyzed, these characteristics of TrCV reduce the distribution
gap between two domains during algorithm selection. This, from the empirical
perspective, provides justification to the analysis in Section 4. In addition, Fig-
ure 5 plots TrCV values and accuracies of each classifiers in Wine collection.
It is intuitive that when one classifier achieves a higher TrCV value, it gets
a higher accuracy with high confidence. In other words, accuracy obtained by
TrCV is highly correlated to the true accuracy. Moreover, three transfer learn-
ing algorithms beat those traditional classifiers because they accommodate the
distribution gap between two domains. Classifier 1 ∼ 8 in the figure correspond
to those list in the table.

Parameter Tuning. We select SVM and LatentMap as the learning models and
generate two tasks. The first one is to select a suitable margin parameter C for
SVM (from 10−2 to 102) and the second one is to tune a good number of nearest
neighbors for LatentMap (from 5 to 45). The size of these two parameter set is 5,
so we get C2

5 = 10 comparisons. Table 4 and Figure 5(b) and (c) summarize the
correlation values of baselines: SCV, TCV, STV and WCV and the proposed
criteria TrCV on 8 datasets. Clearly, TrCV achieves higher correlation value
(from 1 to 4 higher in 6 out of 8 datasets) than the corresponding baseline
approaches on tuning the parameters of LatentMap and performs best in 7 out of
8 cases when we adjust the margin parameter in SVM. For example, on the Red-
White dataset, the correlation value has been improved from 5 achieved by SCV
and WCV to 7 by the proposed TrCV. More importantly, in total 16 comparisons,
TrCV beats WCV consistently with only one exception in RW dataset when
tuning margin parameter of SVM. On the other hand, two exceptions happened
on the SyskillWebert collection. We observe that TrCV fails to tune the best
parameters for LatentMap and does not have significant improvements to tune
SVM. This can be ascribed to the limited number of data in both domains that
makes the density ratio estimation imprecise and the reverse validation can not
reflect the approximation error to the true conditional distribution significantly
as shown in Eq.(13).

Source-domains selection. We aim to select a best source-domain among mul-
tiple candidates. Two comparisons are involved. One is to evaluate the ability
of TrCV to select among source-domains when the model is fixed, another is
to test whether TrCV can select the best pair of source-domain and classifier
given a set of classifiers and a set of source-domains. The result is presented in
Table 5 and Figure 5(d). For the first evaluation, both datasets have 3 candidate
source-domains, thus the number of comparison is 2×C2

3 = 6. Among them,
TrCV achieves the best performance over all 8 tasks in the correlation measure.
In particular, TrCV beats SCV by as much as 5 times while it defeat WCV by 7
times. Table 5 also presents the second evaluation results over 2 data collections,
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Fig. 6. Parameter Analysis

where 2×C2
(8×3) = 552 comparisons are obtained. We denote the result of this

comparison as “Pr”. Obviously, under this setting, TrCV still performs better
than SCV, STV, WCV and TCV over two datasets, implying the TrCV can
still select the best pairs of source-domains and algorithms. The performance
improvement is due to density ratio weighting and reverse validation that effec-
tively accommodate the difference between two domains. For WCV, although it
boost the ability of SCV with density ratio weighting, it does not perform well
due to the ignoring the conditional distribution shift.

Parameter Analysis. Two extended experiments were conducted on the Wine
Quality collection to test the parameter sensitivity and the relationship between
the number of labeled target-domain data and correlation value, corr. As shown
in Section 3, the number of folds need be set before running TrCV. In addition,
those labeled target-domain data affect the accuracy of TrCV to selecting a good
model or a source-domain as shown in Eq.(13).

For sensitivity testing, we vary the value of folds from 5 to 30 with step size
5 to perform algorithm selection over 8 candidate approaches. As a comparison,
we also attach the results obtained by SCV, TCV and WCV. The results are
presented in Figure 5(a). Obviously, TrCV achieves the highest correlation value
under all settings. This clearly demonstrates TrCV’s advantage over SCV, TCV
and WCV. In addition, we test TrCV when the number of labeled data � increases
from 0.1×|T | to 0.9×|T | by comparing with TCV, SVT. |T | is the number of data
in target-domain. The results are presented in Figure 5(b). Overall, three criteria
achieve a higher value with more labeled data and SVT performs better than
TrCV when the number of labeled data is significantly large. With more labeled
data in target-domain, SVT can obtain more precise estimate to the prediction
accuracies of remaining target-domain data. However, when only a few labeled
data(< 0.4 × |T |) can be obtained in the target-domain, the performance of
TrCV is much better than both SVT and TCV.
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6 Related Work

Many solutions for transfer learning have been proposed previously, such as but
not limited to [12–14], while few approach has been studied to select models or
source-domains. Though several existing standard techniques [4–6] can be ap-
plied for model selection, they fail to work in transfer learning due to the distri-
bution shift between source and target domains. Two recent approaches [8, 15]
have been proposed for model selection in covariant shift or sample selection
bias. The method in [8] “WCV” adapts the density ratio into cross validation to
handle unbias estimation under covariant shift. The technique described in [15]
performs “Reverse Testing” to select model under sample selection bias. We no-
tice that “Reverse Testing” evaluates or rather “orders” the ability of one model
based on another model and does not apply density ratio weighting that returns
an estimated value, that is different from the method proposed in this paper. In
addition, both of them do not consider the conditional distribution shift which
may make them fail under transfer learning context as demonstrated in Section
2.1. Beside these, some techniques have been proposed to estimate the density
ratio directly, including Kullback-Leibler importance estimation procedure [9]
and nonparametric kernel mean matching (KMM) method [10]. The former one
finds the density ratio to minimize the KL-divergence between two domains while
the latter estimates by making the discrepancy between means of two domains
small. On the other hand, works in [16] solved the similar problems under the
context of meta-learning, including algorithm selection, parameter tuning and
dataset selection.

7 Conclusion

Several challenges need to be resolved in order to make transfer learning methods
practical: algorithm selection, parameter tuning and source-domain data selec-
tion. Traditional approach fails to solve these problems well due to the distribu-
tion gap between two domains. This paper firstly formulates a general criterion
followed by proposing a transfer cross validation (TrCV) method. It works by
applying density weighting to reduce the difference between marginal distribu-
tions of two domains, as well as utilizing reverse validation to measure how well a
model approximates the true conditional distribution of target-domain. Formal
analysis demonstrates that the newly proposed general criterion has a general-
ization bound on target-domain, and the confidence of transfer cross validation
can also be bounded. Empirical studies under different tasks demonstrate that
TrCV has higher chance to select the best models, parameters or source-domains
than traditional approaches. In summary, it achieves the best in 28 out of 33
cases comparing with all baselines. Importantly, by considering both marginal
and conditional distribution shift, the proposed TrCV approach outperforms in
23 out of 33 cases than WCV [8], a recently proposed method that only considers
marginal distribution but ignores difference in conditional distribution.
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Abstract. In structure-activity-relationships (SAR) one aims at finding

classifiers that predict the biological or chemical activity of a compound

from its molecular graph. Many approaches to SAR use sets of binary

substructure features, which test for the occurrence of certain substruc-

tures in the molecular graph. As an alternative to enumerating very

large sets of frequent patterns, numerous pattern set mining and pattern

set selection techniques have been proposed. Existing approaches can be

broadly classified into those that focus on minimizing correspondences,

that is, the number of pairs of training instances from different classes

with identical encodings and those that focus on maximizing the num-

ber of equivalence classes, that is, unique encodings in the training data.

In this paper we evaluate a number of techniques to investigate which

criterion is a better indicator of predictive accuracy. We find that min-

imizing correspondences is a necessary but not sufficient condition for

good predictive accuracy, that equivalence classes are a better indica-

tor of success and that it is important to have a good match between

training set and pattern set size. Based on these results we propose a

new, improved algorithm which performs local minimization of corre-

spondences, yet evaluates the effect of patterns on equivalence classes

globally. Empirical experiments demonstrate its efficacy and its superior

run time behavior.

1 Introduction

The field of structure-activity relationships deals with the problem of predicting
the biological or chemical activity of molecules. For example, a researcher might
want to learn a model predicting whether or not a particular compound inhibits
tumor growth. Such a model could then be used to reduce the amount of in-
vitro experimentation. Since the molecular structure of a molecule can be easily
encoded by a labeled graph, structure-activity learning problems have been a
fertile field for structured data mining. Typically, data mining in this context
starts from a data set of molecular compounds that fall into two activity classes,
e.g. inhibiting cancer growth or not inhibiting it. Then, a first mining step gen-
erates a set of patterns. The patterns in this set are subsequences, subtrees, or
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subgraphs of the molecular graphs in the database. This means that one can
use the patterns as description features for classification. In this representation
a molecular graph is re-encoded as a bit-vector where each bit indicates presence
or absence of a specific pattern. Finally, this propositionalized data representa-
tion can then be handled by established machine learning techniques such as
Support Vector Machines (SVM) to learn a classifier.1

The traditionally first approaches to the feature generation problem involved
general substructure mining tools. For instance, some systems just generate all
patterns whose occurrence frequency exceeds some predefined threshold. This
was motivated by the use of fingerprints in bio-chemistry. In more recent devel-
opments, a variety of techniques [10,14,8,2,4,16,1,5] have been proposed to avoid
the unnecessarily large feature sets and long runtimes of these early approaches.
Newer approaches usually either post-process a set of patterns to select a rel-
atively small subset or iteratively refine a candidate pattern set so that some
quality measure is optimized.

Finding smaller pattern sets is motivated by the observation that popular
similarity measures fail to work well, if the training instances are represented by
many redundant features that check for highly similar substructures.

There is, however, less agreement on a second question connected to finding
good pattern sets for the encoding of molecules: Is it more important that
1. instances belonging to different classes are encoded differently from each

other or that
2. instances are generally encoded differently from each other, no matter the

class label?

The approach whose selection strategy is driven strongest by the former option
is the fCork technique introduced in [16] while the post-processing techniques
proposed in [10] and [2] mainly focus on the latter one. Other techniques con-
sider the two extremes to differing degrees. More generally, it is not very well
understood which quality measures a pattern set should optimize in order to
lead to classifiers with heigh predictive accuracy.

Our contribution to deciding this question in this paper is two-fold:
i We describe and compare several state-of-the-art approaches in Section 3 and

evaluate the generated feature sets according to various quality measures in
Section 4. In particular, we investigate whether the number of correspon-
dences, a class-dependent measure, or the number of equivalence classes, a
class-agnostic measure, are better indicators of good prediction accuracy.

ii Based on the obtained insights (and the identification of the currently most
successful technique), we propose a new iterative mining technique in Sec-
tion 5 and show that it improves on existing techniques in a variety of ways
in Section 6.

The quality measures used in the paper to rate pattern sets are introduced in
Section 2 and we present our conclusions in Section 7.
1 Some approaches to structural prediction [7,17,1] integrate the mining step and

learning step.
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2 Quality Measures for Pattern Sets

Let us start by introducing the notions and quality measures for pattern sets
used in the rest of the paper. Given a data set D, a pattern language L and
a pattern constraint c, the result of a constrained mining operation is a theory
T h(D,L, c), namely a set of patterns satisfying the constraint(s) c (cf. [11]). This
is e.g. the usual approach in frequent pattern mining. If the pattern constraint
employed is a measure φ and the goal is to mine the top-k patterns according
to this measure, the resulting theory is denoted by T hk(D,L, φ).

Let each pattern p be associated with a function p : D 1→ {true, false}.
We define p(t) = true if p matches t, and p(t) = false otherwise. Associating
a pattern with this boolean function does allow us to consider each pattern
as a binary feature. In addition, we assume a binary class labeling function
c : D 1→ {+,−}. Given a pattern set S ⊆ L, we define an equivalence relation ∼S

on D as:
∼S ≡ ∀ti, tj ∈ D : ti ∼S tj ⇔ ∀p ∈ S : p(ti) = p(tj)

Thus, two data instances are considered to be equivalent under S if they share
exactly the same patterns. Using the equivalence relation ∼S, an equivalence
class or block is defined in the following way:

[t] =: {t′ ∈ D : t′ ∼S t}
The partition or quotient set of D over S finally, is defined as:

P = D/ ∼S= {[t] : t ∈ D}
The partition thus induced by a pattern (and therefore feature) set corresponds
to the number of different bit-strings that can be presented to a machine learning
technique attempting to build a classifier based on them. Instances assigned to
the same block are effectively indistinguishable and will therefore be classified
in the same way. Some systems therefore maximize the number of equivalence
classes in the pattern sets:

eqD(S) =| {D/ ∼S} |
While this might be slightly worrying in case of large blocks consisting of only one
class (lump judgments can be problematic to generalize), it is clearly counter-
productive if both classes are present in a block since this introduces unavoid-
able errors. The authors of [16] define the concept of correspondence: Two data
instances t1, t2 form a correspondence under the equivalence relation ∼S iff
c(t1) �= c(t2) ∧ t1 ∼S t2. Here, c(t) denotes the class label of a training instance.
With this, the number of correspondences is:

corrD(S) =
∑

Bi∈D/∼S

| {t ∈ Bi : c(t) = +} | · | {t ∈ Bi : c(t) = −} |

A pattern set which minimizes the number of correspondences provides more
information to the learning algorithm, because it encodes the specific properties
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better that make each example differ from the other ones. On the other hand,
this might lead to overfitting or large pattern sets. To overcome this, the authors
of [10] use joint-entropy as a pattern set quality measure:

jeD(S) = −
∑

Bi∈D/∼S

| Bi |
| D | log2

| Bi |
| D |

Finally, the authors of [14] use a dispersion score to rate the quality of a pattern
set:

dispD(S) =
1

| D |2
∑

pi,pj∈S

(| {t ∈ D : pi(t) = pj(t)} | − | {t ∈ D : pi(t) �= pj(t)} |)2

Since this score grows with the size of the pattern set, we use the following
normalized version to compare pattern sets in Section 4:

dispNormD(S) = dispD(S)/(| S | · | S | −1)/2

To evaluate and compare pattern sets generated by different approaches we em-
ploy a SVM with the popular Tanimoto kernel. Given two molecules encoded as
bit-vectors x,y ∈ {0, 1}d using d mined patterns, it is defined as:

KT (x,y) =
∑d

1 min{xi, yi}∑d
1 max{xi, yi} −

∑d
1 min{xi, yi}

Obviously, if both vectors’ components are mostly 1 and only a few 0s distinguish
them, even kernel values for different instance pairs will be close to each other.
Such badly scaled kernels are known to be problematic for successful prediction.

3 Existing Approaches

The work concerned with finding good pattern sets for classification falls into
two categories: 1) post-processing of a set of patterns, which is similar to feature
selection techniques from machine learning, and 2) iterative pattern set mining
techniques that extend and improve a candidate pattern set.

The first type of approaches has the advantage that only a single pattern
mining run has to be performed. To ensure that the variety of patterns is high
enough to enable the extraction of a suitable subset, it is usually necessary to
mine a very large amount of patterns. This makes the post-processing step (and
possibly the mining step) potentially expensive, especially if some features are
not informative on their own, but lead to high predictive accuracy when consid-
ered together. In [10], this problem is addressed by assuming a size-constraint
that is always present. The authors discuss several desirable measures and dis-
cuss their potential mutual exclusivity. In a related work, the authors gave an
algorithm for finding pattern sets maximizing the joint entropy (JE ) criterion.
JE effectively measures the ability of a pattern set to induce a partition of equally
sized equivalence classes.
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Most existing systems differ in the search strategy and the criterion used
to rate the quality of a pattern set. For instance, the system presented in [4]
uses greedy search and a supervised quality measure, which is based on the
correlation of a pattern with a class and the similarity to earlier patterns. The
search uses a database coverage constraint to control pattern set size. In this
manner, it minimizes the expected number of correspondences and maximizes
the expected number of equivalence classes. The approaches discussed in [2] are
also based on greedy search, but use an unsupervised quality measure, which
quantifies how well sets of patterns partition the data, without any reference
to a class label. The search strategy in [8], finally, is a local search technique,
which selects a non-redundant set of patterns from randomly sampled maximal
graph-structures.

The second style of structured pattern mining approaches uses an iterative
approach, where a candidate pattern set is extended step by step. Iterative min-
ing has the advantage that the mining runs in later iterations can be tailored
towards the shortcomings of the previously generated pattern sets. This is in
contrast to post-processing, where one assumes (or hopes) that the number of
generated patterns is large enough to allow the extraction of an informative
subset. On the other hand, there is often no clear way to identify how many
iterations will be needed to mine a useful set, and the cumulative computational
cost of several pattern mining runs can become rather high. Iterative mining
can be performed in two settings: 1) as sequential mining: mining is performed
strictly sequentially, only one mining process per iteration. This leads to a clear
relationship among patterns: each pattern is influenced by those that were mined
before it and influences those mined after it. For efficient handling, some algo-
rithms modify the underlying graph database between iterations. The second
setting is that of 2) parallel mining: in any iteration several mining processes
can run in parallel. generally, the results of one mining process are used to split
the database into two or more parts, so the mining steps in later iterations work
on smaller subsets of data instances.

The two existing sequential approaches differ somewhat. The search strat-
egy in [14] is stochastic local search to maximize the class-correlated dispersion
score of patterns with regard to patterns mined in earlier iterations. This score,
similar to the approach in [4], trades off class-correlation with the similarity
of patterns with regard to coverage in the data, or in other words, the min-
imization of correspondences and the maximization of equivalence classes. In
[16], mining for patterns themselves is performed exhaustively using an upper
bound and minimum support criterion to heuristically optimize the submodular
correspondence-based quality criterion. Maximization of equivalence classes, if it
happens at all, is only a side effect of the process. The combination of exclu-
sive focus on correspondence minimization and sequential mining leads to very
compact sets of patterns.

The two approaches falling into the latter group [1,5], use the usual decision
tree induction mechanism: a single pattern is mined using information gain and
the data split according to matching of the pattern, before the algorithm recurses
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on the derived subsets. Since information gain rewards class discrimination, re-
peated applications will lead to the minimization of correspondences while the
fact that mining is performed on subsets of the data can lead to the split of
instances from the same class in other parts of the data, thus increasing the
number of equivalence classes.

4 Comparison of Systems and Quality Measures

In this section we describe experiments comparing the various approaches out-
lined earlier and the different quality measures that are used in literature to rate
pattern sets for classification. In particular, we investigate joint entropy, the
normalized and unnormalized dispersion score, the number of correspondences
and the number of equivalence classes. The main goal here is to explore which
approaches and quality measures lead to pattern sets with high predictive ac-
curacy as measured by the AUC of the final classifier. The trends identified in
these experiments can then be used to design fast algorithms generating small
feature sets with good predictive accuracy. We investigate the following systems:

– Baseline. The 500 most general (shortest) free graph patterns mined under
a minimum support threshold of 5%.

– Picker
∗. This is a technique introduced in [2], using the inference mea-

sure and no threshold. The underlying pattern set consists of all free graph
patterns mined with minimum support 5%, i.e. a superset of the baseline.

– Disp. The stochastic local search technique from [14], optimizing class-
correlated dispersion score.

– fCork as introduced in [16], whose authors supplied us with an executable.
Since unconstrained experiments using this technique did not terminate on
the NCI data and the cancer data set, a 5% minimum support constraint
was used.

– DTM. This is an implementation similar to MbT, introduced in [5]. We
were unfortunately not able to obtain an executable of the algorithm from
the authors of this paper. Since we had published a similar technique in
2005 under the name Tree

2 [1], however, we extended our implementation
to work on graph-structured data and discarded the decision tree after min-
ing. Based on past results [3], we chose to mine sequential patterns which
perform as well as graph-structured patterns. We will refer to this technique
as “decision tree-like miner” (DTM) in the following.

Generally, we chose the parameters so that only small frequency or weak selectiv-
ity constraints were imposed. This ensures that the systems have a large number
of candidate patterns available for inclusion. Since different methods generate
pattern sets of varying sizes, it is often difficult to compare them directly. To
allow for a fair comparison, we thus sometimes cut back the number of features
to match the number produced by other techniques. Cutting-back is done by
keeping the k highest-ranked patterns/those mined in the k first iterations, with
k derived from the size of competing techniques’ output.
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For the experiments, we used the data sets shown in Table 1. This includes
the NCI data sets first reported in [15] (specifically those on which fCork with
minimum support five percent terminated in reasonable time), as well as the
Blood Brain Barrier, NCTRER, Yoshida, and Cancer data sets used in [14].
To evaluate the quality of the derived encodings, we performed a 10-fold cross-
validation, using an SVM [9] with Tanimoto Kernel, with the C-parameter set
to 1.0. This value gave good performance over the entire range of data sets.

Table 1. An overview of the used data sets

Data set instances majority class

NCI 786 0 3154 1648

NCI A549 ATCC 3359 1710

NCI CAKI 1 3221 1678

NCI CCRF CEM 3131 1995

NCI COLO 205 3279 1748

NCI SF 539 3045 1728

Blood Brain Barrier 373 248

NCTRER 208 125

Yoshida 238 143

Cancer 30796 15590

As a first experiment we investigated how the number of features affects clas-
sification accuracy. If prediction accuracy increases with the number of features,
this would indicate that strict pattern set selection is misguided and permissive
feature generation approaches should be preferred. In Figure 1 we plot the aver-
age number of features selected per fold against the AUC, labeled by data set.
The plot shows that accuracy increases moderately or not at all with the num-
ber of features. It is remarkable that the Pearson correlation coefficient between
number of features and AUC is actually positive for the larger datasets (0.4 for
NCI and 0.57 for Cancer), but negative for the smaller data sets (-0.02 to -0.12
for Blood Brain Barrier, NCTRER, Yoshida). While this is not statistically sig-
nificant, it seems to be consistent with the results in [13]: pattern set size should
increase with the number of training instances, but overfitting is not as severe
as in many other classification settings.

In the second experiments, we examine which pattern set criterion is a good
indicator of prediction accuracy. Figures 2 – 5 give the scatter plots for the nor-
malized dispersion score, average joint entropy, number of equivalence classes
and number of correspondences. The results are mixed, but there are a few
interesting insights. First of all, joint entropy and the number of equivalence
classes appear to be fairly well correlated to prediction accuracy. Indeed, the fol-
lowing correlation coefficients are significant on the 99% significance level: The
correlation between joint entropy and AUC is between 0.8 and 0.95, with the
only outlier at 0.72 for the NCTRER data set. For the number of equivalence
classes, the Pearson correlation coefficient is large for the bigger data sets (>
0.95 for Cancer and NCI), but still reasonable for the smaller ones (0.63-0.8 for
NCTRER, Blood Brain Barrier, Yoshida). Looking at Figure 5, one can see that
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Fig. 1. AUC plotted against the average number of features selected

a large number of correspondences always indicates bad AUC performance. This
means a pattern mining system needs a way to minimize the number of occur-
rences to be successful. Unfortunately, it is clearly not enough to only optimize
for correspondences: there are a number of settings where pattern sets with low
number of correspondences still lead to terrible predictive accuracy. It is clear
that successful systems also need to optimize the variety within the instances of
the same class. This is what joint entropy and the number of equivalence classes
measure. Finally, the dispersion score is only slightly correlated with AUC. The
dispersion score varies between around -0.10 for the smaller data sets and around
+0.25 for the larger ones. It is noteworthy, though, that the dispersion score im-
proves if class information is included.

Overall, one can conclude that supervised pattern mining scores tend to be
better indicators of prediction accuracy and that the characteristics change be-
tween larger and smaller datasets. This means that successful techniques should
include information about the class label during pattern generation and that the
number of generated patterns should be in relation to the number of training in-
stances. To see how the evaluated methods succeed in this regard, Table 2 shows
the average rankings of different methods w.r.t. the four quantitative measures
and AUC. Highest-ranked in terms of AUC is DTM, which also ranks very high
in terms of equivalence classes and correspondences, coming second in terms of
equivalence classes only to Picker

∗ that directly optimizes those. Apparently,
DTM’s approach to class-sensitive pattern generation and its ability to relate
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Table 2. The respective ranking of techniques for different criteria

AUC # equivalence classes # correspondences dispersion score joint entropy

DTM (1.44) Picker
∗ (1.7) DTM (1.6) fCork (1) Picker

∗ (1.9)

Picker
∗ (2) DTM (2) fCork (1.7) Picker

∗ (2.1) DTM (2)

fCork (3.22) fCork (3.4) Picker
∗ (2.8) Disp (3) fCork (3.1)

Disp (3.33) Disp (3.8) Disp (4.2) Baseline (4.3) Disp (4)

Baseline (5) Baseline (4.1) Baseline (4.7) DTM (4.6) Baseline (4)

Table 3. Number of features divided by joint entropy of the feature set

Data set Baseline Picker
∗

Disp fCork DTM

NCI 786 0 44.89±0.0579 13.68±0.0048 19.71±0.1086 8.74±0.3560 58.39±0.7455

NCI A549 ATCC 44.77±0.1198 13.92±0.0071 19.66±0.1658 9.56±0.3645 64.33±1.1459

NCI CAKI 1 44.98±0.1417 13.64±0.0071 19.79±0.0934 8.68±0.3641 61.49±1.1933

NCI CCRF CEM 45.08±0.1046 13.85±0.0041 20.18±0.0840 8.87±0.4358 59.75±1.1532

NCI COLO 205 44.84±0.114 14.05±0.0078 19.89±0.0798 8.89±0.1390 61.66±0.7693

NCI SF 539 45.11±0.0663 13.02±0.0047 20.17±0.1445 8.79±0.2561 60.07±0.9540

Blood Brain Barrier 60.20±0.1036 6.32±0.0088 6.80±0.4355 2.74±0.1302 8.05±0.4570

NCTRER 68.17±0.3723 5.63±0.0403 6.52±0.1542 3.34±0.1906 5.33±0.3608

Yoshida 64.013±0.0963 4.84±0.0065 6.44±0.2702 2.74±0.1100 6.96±0.5243

Cancer 34.84±0.0059 23.78±0.0033 15.52±0.8953 13.46±0.2409

feature set size to training set size lead to good overall performance. DTM’s bad
dispersion score actually supports this point: the unnormalized dispersion score
we report increases in the number of patterns involved. The fact that DTM

finishes last in terms of it shows that it generates more features than most com-
peting methods on the large datasets. This is also illustrated in Table 3. Joint
entropy can be considered as giving the number of bits that are needed to encode
the partition. Since each feature acts in fact as a bit in the encoding, the table
essentially gives the average number of patterns per bit of information. One can
see that DTM adapts better to the varying training set sizes than for instance
fCork or the Baseline. In fact, it adapts a bit too well and the drawback of its
large pattern set sizes can be seen in Table 7, which gives the runtimes. Here,
DTM performs worst by a large margin. For the cancer dataset, we had to cancel
the run after 100 hours.

In order to find a highly predictive, yet fast technique, it is therefore desirable
to keep the advantages of DTM – focus on supervised partition generation and
sensitivity to the size and characteristics of the underlying dataset – while doing
away with the drawbacks – the overly large number of features and long running
times.

5 The ReMine Algorithm

DTM, shown in Algorithm 1 iteratively mines patterns in the same way as a
binary decision tree is induced on class-labeled data: first, a single test that
scores best according to information gain is extracted (line 2). In a standard
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Table 4. Running times per fold for different techniques (the techniques that are not

listed had negligible running times)

Data set fCork Disp DTM

NCI 786 0 4h40m±1h46m 1h2m±7m54s 4h46m±36m48s

NCI A549 ATCC 4h47m±1h53m 1h3m±6m39s 11h31m±4h0m

NCI CAKI 1 3h55m±1h7m 1h5m±6m28s 11h39m±3h17m

NCI CCRF CEM 4h24m±1h7m 1h1m±9m55s 12h46m±4h55m

NCI COLO 205 3h22m±1h34m 1h5m±7m33s 10h43m±3h33m

NCI SF 539 5h54m±4h16m 1h0m±5m11s 11h37m±4h44m

Blood Brain Barrier 20m12s±11m26s 6.14s±0.98s 7m 2s±1m5.65s

NCTRER 1h10m±38m 1.52s±0.18s 4m31.6s±1m3.75s

Yoshida 1m42s±1m4s 3.16s±0.42s 7m7.5s±1m23.65s

Cancer 10h41m±1h 13h8m±20m 100h+

decision tree, such a test would be an attribute-value pair, while in DTM a
graph-structured pattern is mined. The data is then split into two subsets, one
on which the test matches, the second on which it does not (line 4), and the
operation repeated on the derived subsets (line 5). A problem is that information
gain, in contrast to e.g. minimum frequency, is not anti-monotone. However,
it is possible to calculate an upper bound for information gain and use it for
forward-pruning to make mining for the best pattern according to information
gain (T h1(D,L, φ)) feasible [12].

Algorithm 1. The DTM algorithm
DTM(D)

1: F = ∅
2: Fnew = T h1(D,L, φ) – this yields zero or one feature

3: if Fnew �= ∅ then
4: P = {B1, B2} = D/ ∼Fnew

5: F = Fnew ∪ DTM(B1) ∪ DTM(B2)

6: end if
7: return F

Information gain rewards patterns that separate instances with different class
labels from each other, in this way reducing correspondences on the subset on
which a pattern is mined. We aim at keeping this basic mining process of DTM,
still mining a single best pattern from a subset. The difference lies in how we
apply the patterns to derive new subsets for the following iteration: Instead
of using each pattern to split only the subset on which it was mined, we use
all patterns derived so far to induce a partition on the entire data (line 3 in
Algorithm 2).

This can be illustrated by considering the first three iterations: in the first step,
both DTM and ReMine mine the best pattern according to information gain
and use it to split the whole data set into two subsets. In the second iteration,
two more patterns are mined but when these are used to split the subsets, DTM
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and ReMine behave differently. DTM splits each subset in two, according to the
pattern mined from each, for a maximum of four subsets. ReMine, on the other
hand, splits each subset according to both patterns. This can lead maximally to
four new subsets from each current one, for a total of maximally eight subsets
of the data. The maximum number of different blocks that can be encoded by
three binary features is eight, which shows that ReMine can use patterns much
more efficiently than DTM when it induces a partition. In the third iteration,
DTM will therefore mine for four new patterns, while ReMine mines for eight.

Accordingly, the ReMine algorithm consists of a main loop (line 2-10) where
in each iteration the whole data set D is partitioned according to the current
set of features F (line 3). Then for each of the blocks Bi of the partition P the
feature giving the highest information gain is extracted (line 6) which are then
joined with the previous features (line 8). If the new partition P′ induced by the
resulting enhanced feature set has not changed, the algorithm terminates and
returns the found set of features F .

Algorithm 2. The ReMine algorithm
1: F = ∅ – the initial set of features

2: repeat
3: P = D/ ∼F – partition induced by the current feature set

4: Fnew = ∅
5: for all blocks Bi ∈ P do
6: Fnew = Fnew ∪ T h1(Bi,L, φ)

7: end for
8: F = F ∪ Fnew

9: P
′ = D/ ∼F – partition induced by the new feature set

10: until P
′ = P

11: return F

6 Experimental Evaluation

Our goal in proposing the ReMine technique lies in keeping DTM’s good perfor-
mance in terms of AUC while at the same time reducing the number of patterns
mined which should help in achieving lower running times. We therefore repeat
our earlier experiments and compare ReMine’s results against those of fCork,
Picker

∗, and DTM. As Table 5 shows, ReMine achieves on average second-
best AUC (by a small margin), and performs at least as good as DTM in terms
of the quantitative criteria, improving on it for the number of correspondences
and the dispersion score. This means that we achieved our goal to keep the good
performance and the ranking indicates improvements in the number of features
as well. Table 6 confirms this indication, showing that while ReMine does not
mine as few patterns as Picker

∗ and fCork, it strongly reduces the size of the
feature set compared to DTM. The final aspect to be evaluated is that of running
times and as Table 4 shows, along with the reduction in features mined comes a
reduction in running times that is so pronounced that ReMine runs even faster
than fCork while mining more features (and leading to better AUC).
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Table 5. Ranking of techniques for different criteria, including ReMine now

AUC # equivalence classes # correspondences dispersion score joint entropy

DTM (1.89) DTM (2.2) ReMine (1.7) fCork (1) DTM (2.2)

ReMine (2) Picker
∗ (2.4) fCork (2.4) Picker

∗ (2.2) Picker
∗ (2.6)

Picker
∗ (2.78) ReMine (2.6) DTM (2.5) Disp (3.3) ReMine (2.7)

fCork (4.11) fCork (4.4) Picker
∗ (3.6) ReMine (3.7) fCork (4)

Disp (4.22) Disp (4.6) Disp (5.2) Baseline (5.2) Disp (4.7)

Baseline (6) Baseline (4.8) Baseline (5.6) DTM (5.6) Baseline (4.8)

Table 6. Number of features divided by joint entropy of the feature set, including

ReMine now

Data set Picker
∗

fCork DTM ReMine

NCI 786 0 13.68±0.0048 8.74±0.3560 58.385±0.745544 18.79±1.0739

NCI A549 ATCC 13.92±0.0071 9.56±0.3645 64.33±1.14595 20.23±0.9974

NCI CAKI 1 13.64±0.0071 8.68±0.3641 61.49±1.19338 19.04±0.9252

NCI CCRF CEM 13.85±0.0041 8.87±0.4358 59.75±1.15327 19.28±0.6363

NCI COLO 205 14.05±0.0078 8.89±0.1390 61.66±0.76938 19.85±0.7491

NCI SF 539 13.02±0.0047 8.79±0.2561 60.07±0.95406 19.68±1.059

Blood Brain Barrier 6.32±0.0088 2.74±0.1302 8.05±0.4570 5.36±0.4502

NCTRER 5.63±0.0403 3.34±0.1906 5.33±0.3608 4.77±0.2409

Yoshida 4.84±0.0065 2.74±0.1100 6.96±0.5243 4.95±0.2858

Cancer 23.78±0.0033 13.46±0.2409 71.55±2.5414

Table 7. Running times per fold for different techniques (the techniques that are not

listed had negligible running times)

Data set fCork DTM ReMine

NCI 786 0 4h40m±1h46m 4h46m±36m48s 59m27s±13m56s

NCI A549 ATCC 4h47m±1h53m 11h31m±4h0m 59m27s±13m56s

NCI CAKI 1 3h55m±1h7m 11h39m±3h17m 2h36m±1h57m

NCI CCRF CEM 4h24m±1h7m 12h46m±4h55m 2h20m±1h51m

NCI COLO 205 3h22m±1h34m 10h43m±3h33m 2h47m±2h17m

NCI SF 539 5h54m±4h16m 11h37m±4h44m 2h59m±1h54m

Blood Brain Barrier 20m12s±11m26s 7m 2s±1m5.65s 2m16.4s±24.2s

NCTRER 1h10m±38m 4m31.6s±1m3.75s 1m48.5s±15.9s

Yoshida 1m42s±1m4s 7m7.5s±1m23.65s 1m53.9s±11.9s

Cancer 10h41m±1h 100h+ 13h51m±2h14m

7 Conclusions and Future Work

In this paper we evaluated the importance (in terms of AUC) of several selection
criteria for pattern set mining. We found that minimizing correspondences is
necessary, but not sufficient for predictive classifiers, whereas general partitioning
scores are good overall indicators of pattern set quality. We also found that
successful methods need to adapt the pattern set size to the characteristics of the
datasets. Unfortunately, large pattern sets require many expensive mining steps
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and large runtimes.We thus designed a faster and more efficient adaptation of
the DTM algorithm. ReMine performs the local pattern mining step in the same
way as DTM, but uses all patterns instead of a single pattern per iteration on the
entire data to induce the new partition. Our experimental evaluation showed that
ReMine retains the good performance of DTM in terms of AUC, has similar
characteristics in the number of equivalence classes and correspondences, reduces
the number of patterns mined, and has lower runtimes.

The aforementioned partial redundancy among patterns mined by ReMine

could actually go as far as producing completely redundant, e.g. complementary,
patterns. Whether removing such redundant patterns or other redundancy con-
trol methods would improve or impair the usefulness of the derived encoding is
an open question. There is also the issue that decision-tree like iterative miners
like ReMine (or MbT and Tree

2) can be parallelized, giving them a further
speed advantage over sequential miners like fCork. Finally, we were only con-
cerned with graph-structured data in this work, other representations, including
unstructured data such as itemsets, remain a topic for future work.

Acknowledgements

We thank Marisa Thoma for making an executable of the fCork algorithm
available to us. We thank Luc De Raedt for helpful comments and discussion,
as well as the anonymous reviewers for their valuable input. The work presented
here was partially supported by the European Commission under the 7th Frame-
work Programme FP7-ICT-2007-C FET-Open, contract no. BISON-211898 and
by Deutsche Forschungsgemeinschaft, contract no. RU 1589/1-1.

References

1. Bringmann, B., Zimmermann, A.: Tree2 - Decision trees for tree structured data.

In: Jorge, A., Torgo, L., Brazdil, P., Camacho, R., Gama, J. (eds.) PKDD 2005.

LNCS (LNAI), vol. 3721, pp. 46–58. Springer, Heidelberg (2005)

2. Bringmann, B., Zimmermann, A.: One in a million: picking the right patterns.

Knowledge and Information Systems 18(1), 61–81 (2009)

3. Bringmann, B., Zimmermann, A., De Raedt, L., Nijssen, S.: Don’t be afraid of

simpler patterns. In: Fürnkranz, et al. (eds.) [6], pp. 55–66 (2006)

4. Cheng, H., Yan, X., Han, J., Hsu, C.W.: Discriminative frequent pattern analysis

for effective classification. In: Proceedings of the 23rd International Conference on

Data Engineering, pp. 716–725. IEEE, Los Alamitos (2007)

5. Fan, W., Zhang, K., Cheng, H., Gao, J., Yan, X., Han, J., Yu, P.S., Verscheure, O.:

Direct mining of discriminative and essential frequent patterns via model-based

search tree. In: Li, Y., Liu, B., Sarawagi, S. (eds.) Proceedings of the 14th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.

230–238. ACM, New York (2008)

6. Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.): PKDD 2006. LNCS (LNAI),

vol. 4213. Springer, Heidelberg (2006)



578 A. Zimmermann, B. Bringmann, and U. Rückert

7. Geamsakul, W., Matsuda, T., Yoshida, T., Motoda, H., Washio, T.: Performance

evaluation of decision tree graph-based induction. In: Grieser, G., Tanaka, Y.,

Yamamoto, A. (eds.) DS 2003. LNCS (LNAI), vol. 2843, pp. 128–140. Springer,

Heidelberg (2003)

8. Hasan, M.A., Chaoji, V., Salem, S., Besson, J., Zaki, M.J.: Origami: Mining rep-

resentative orthogonal graph patterns. In: Ramakrishnan, N., Zaiane, O. (eds.)

ICDM, pp. 153–162. IEEE Computer Society, Los Alamitos (2007)

9. Joachims, T.: Making large-scale support vector machine learning practical. In:

Advances in Kernel Methods: Support Vector Learning, pp. 169–184. MIT Press,

Cambridge (1999)

10. Knobbe, A.J., Ho, E.K.Y.: Pattern teams. In: Fürnkranz, et al. (eds.) [6], pp. 577–

584 (2006)

11. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge

discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)

12. Morishita, S., Sese, J.: Traversing itemset lattice with statistical metric pruning. In:

Proceedings of the 19th ACM SIGACT-SIGMOD-SIGART Symposium on Princi-

ples of Database Systems (2000)

13. Rückert, U.: Capacity control for partially ordered feature sets. In: ECML PKDD

’09: Proceedings of the European Conference on Machine Learning and Knowledge

Discovery in Databases, pp. 318–333. Springer, Heidelberg (2009)

14. Rückert, U., Kramer, S.: Optimizing feature sets for structured data. In: Kok, J.N.,

Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.)
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Abstract. The focus of this paper is a question answering system, where the 
answers are retrieved from a collection of textual documents. The system also 
includes automatic document summarization and document visualization by 
means of a semantic graph. The information extracted from the documents is 
stored as subject-predicate-object triplets, and the indexed terms are expanded 
using Cyc, a large common sense ontology. 

Keywords: question answering, summarization, ontology. 

1   Introduction 

We describe an enhanced question answering system that integrates two important 
functionalities: providing answers to questions and browsing through the document 
that supports the answer. The documents have to undergo several natural language 
processing steps before they are indexed. Moreover, the indexed terms are 
semantically enhanced by inference using WordNet1 and the Cyc [1] ontology. 
Section 3 will explain the preprocessing steps in more detail. Another feature of the 
system is that the user can choose at query time in which document collection the 
answer should be searched. Also, the user can upload his own document collection. 
To our knowledge such flexibility is not provided by other similar systems. 

Previous work has typically focused on a single topic (question answering, 
summarization, semantic representation and visualization of documents) and we see 
the advantage of the proposed system in combining these topics together. Many of the 
previous approaches, like Aqualog [2] and QuestIO [3], query structured data stored 
in ontologies. Aqualog has a restricted grammar and restricted vocabulary to which 
the query has to be compatible. QuestIO does not require a fixed grammatical 
structure of the question, but the words which it can handle are limited because of the 
dependency on an underlying ontology. Our system derives the answers only from 
unstructured text, which means that the range of questions is not limited or domain 
specific. However the questions must be in fixed grammatical forms for our system to 
“understand” them. TextRunner [4] is similar to our system in the way that it also 
consists of structured queries on unstructured text but the difference is that we also 
                                                           
1 http://wordnet.princeton.edu/ 
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provide a natural language interface to the search. Powerset2
 enables search and 

discovery in Wikipedia and Freebase, by entering keywords, phrases or simple 
questions. What distinguishes our system from Powerset is the way we describe the 
answer: by a visual representation of the document in the form of a semantic graph 
and by the document summary, which is automatically extracted based on the 
semantic graph of the document. 

2   System Overview 

AnswerArt [5] combines question answering, summarization and document 
visualization. Firstly, in a step performed offline, facts (consisting of subject - 
predicate - object triplets) are extracted from text and then stored in a triplet store. The 
user queries these triplets by asking a natural language question which is transformed 
into a structured query for the triplet store. The result consists of a list of matching 
triplets and the list of documents in which they occurred. In a detailed overview of the 
document the user can also see the list of all triplets from that document, the semantic 
graph (made out of triplets) and an automatically generated summary. Fig 1 shows a 
possible use case, while Fig 2 is a screenshot showing as an example the results we get 
for the question What could pollution have affected? 

 
 

Fig. 1. System Overview Fig. 2. Example Screenshot 

3   Document Preprocessing 

We shall now describe the preprocessing steps which are necessary to make the 
functionality described in Section 2 possible. The starting point is a document 
collection, containing unstructured text which needs to be preprocessed. The central 
part of preprocessing is triplet extraction [6]. Triplets, which are made of subject, 
predicate and object, are extracted from each sentence. It is in this form that the 
knowledge contained in the text is stored and made available for searching. Before 
triplets can be extracted, certain other preprocessing steps have to be done: Part of 
speech tagging, noun phrase chunking, parsing and named entity extraction. Thus 

                                                           
2 http://www.powerset.com/ 
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having obtained the triplets we construct a semantic graph by merging equivalent 
terms in the separate triplets. The semantic graph is used in document visualization 
[7] and summarization [8].To make the semantic graph more connected, co-reference 
resolution, anaphora resolution and normalization has to be done on the triplet terms. 

To make the search efficient, the terms contained in the triplets are indexed. Before 
indexing, the terms are expanded with related terms which are found from WordNet 
and the Cyc ontology. The related terms are found from the synonyms and related 
concepts in the ontology. For example the term water would be expanded with: lake, 
sea, ocean, stream, freshwater etc. Indexing related terms results in a semantic 
enhancement of the stored knowledge and has the goal of increasing the recall of the 
system. 

4   A Machine Learning Approach to Document Summarization 

In order to automatically generate document summaries, we consider a machine 
learning approach, where we aim at learning which sentences belong to the summary. 
More exactly, we describe a set of features for each triplet extracted from the 
document sentences, and train an SVM model for binary classification of triplets as 
belonging or not to the summary. Further we identify the corresponding sentences 
which yielded the triplets, and, relying on them, construct the document summary. 
The features used are of three kinds: document features (for e.g. position of the 
sentence in the document, position of the triplet in the sentence, words in the triplet 
elements), linguistic features (for e.g. part of speech tags, location of the triplet in the 
parse tree) and graph features (for e.g. hub and authority weights, page rank, node 
degrees, connected components).  

For training the linear SVM model and for evaluating the triplet ranking, we use 
the DUC (Document Understanding Conferences)3 datasets from 2002 and 2007, 
respectively. The 2002 dataset comprises 300 newspaper articles on 30 different 
topics and for each article we have a 100 word human written abstract. The DUC 
2007 dataset comprises 250 articles for the update task and 1125 articles for the main 
task. 

We evaluated our summarization system, by comparing our results to the ones 
obtained by other systems participating in the DUC 2007 update task; we refer to [8] 
for more details regarding the evaluation outcome. 

5   Evaluation 

To evaluate the contribution of the triplet enhancement with ontologies to the 
performance of the question answering, we have conducted the following experiment. 
We have asked 27 questions to which the system responded both with and without 
using inference from ontologies. To each question the system gave a number of 
answers. The correctness or relevance of the given answers was determined according 
to the judgement of the authors. On average a question was answered with 8 answers 
out of which on average 3 were due to using ontologies. Hence the usage of ontologies 
                                                           
3 http://duc.nist.gov/ 



582 L. Dali1 et al. 

increases the number of answers retrieved by about 60%. However the number of 
answers that are actually correct increases by only 40% when using ontologies. This 
shows that the precision of answers obtained using ontologies is lower and that trying 
to obtain more answers by inference has a negative effect on the precision. Indeed, the 
precision of the system drops from 84.17% to 76.61% when adding answers obtained 
from ontologies, because the answers using ontologies have a precision of only 63.29% 
Although the size of the experiment is too small to base any solid conclusions on it, we 
can argue that the AnswerArt system cannot find an important number of correct 
answers unless it uses ontologies. On the negative side however, ontologies introduce 
more mistakes and decrease the precision of the system. 

6   Conclusions 

We have presented a question answering system enhanced with summarization and 
document visualization functionalities. The information from which the answers are 
retrieved is stored as subject-predicate-object triplets. The indexed terms are 
expanded using inference from the Cyc ontology and WordNet. Evaluation shows that 
the use of ontologies increases recall but decreases precision. 
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Abstract. In this demo we present a robust system for delivering real-time news 
recommendation to the user based on the user’s history of the past visits to the 
site, current user’s context and popularity of stories. Our system is running live 
providing real-time recommendations of news articles. The system handles 
overspecializing as we recommend categories as opposed to items, it implicitly 
uses collaboration by taking into account user context and popular items and, it 
can handle new users by using context information. A unique characteristic of 
our system is that it prefers freshness over relevance, which is important for 
recommending news articles in real-world setting as addressed here. We 
experimentally compare the proposed approach as implemented in our system 
against several state-of-the-art alternatives and show that it significantly 
outperforms them. 

Keywords: Recommender system, SVM, collaborative filter, real-time, news. 

1   Introduction 

Recommender systems [1] and, more specifically, news recommendation [2, 3] is a 
popular topic in machine learning and data mining. This is also reflected in the well 
known competition for Netflix prize1 with hundreds of competing teams. News 
recommendation is a younger and less researched branch of recommender systems 
posing unique challenges such as real-time requirements and the lack of explicit user 
ratings. Therefore, a news recommender system should recommend relevant new 
stories as soon as they are published and handle the fact that ratings are most of the 
times binary – read/unread – and do not necessarily express the preference of a user – 
reading an article doesn’t mean one likes it and, not reading it might mean that one 
did not notice it. Also, in general the time spent on a story cannot be taken as 
indicative of the preference for that story.  

News recommender systems have to balance between long term user preferences – 
driven by professional activity, education, etc – and short term trends – driven by 
some discontinuity in the public or personal context. Long term preferences are best 
captured by content based recommendation systems where content can be defined by 
a mix of features such as history of read topics and registration data. Short term user 
interests are best captured by collaborative systems using features such as the context 
of the user (i.e. referring page) and popular stories (i.e. stories that are of general 
interest and outside the user’s long term preferences.  
                                                           
1 http://www.netflixprize.com/ 
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In this demo, we present a hybrid system which combines long term user profile, 
the current context describing the last visit and the most popular story. The long term 
user profile is built based on the user’s long term browsing habits. The context is 
described by the user’s local time and location, last read story and referring link to the 
last read story. Based on these features, the system predicts the most likely news 
categories of interest to the user. From the top three predicted categories it 
recommends the most popular news stories appearing in the last six hours. We show 
that the system can outperform several base-line systems: most popular, item-to-item 
collaborative filter, and contextual. Furthermore the system is running live providing 
real-time recommendations of news articles to a large user base.  

2   Methodology 

The proposed methodology consists of several steps. (1) First, we analyzed the user 
base data and split it into two groups: “old” users which have a history of more than 
50 visits and, “new” users which have a history of less than 50 visits (the threshold 50 
was selected based on preliminary experiments). History giving a long term user 
interest is included in feature representation for “old” users only. (2) Then, a separate 
model is trained for each of the two user groups. To avoid overspecializing, we define 
a machine learning problem as predicting the most interesting news category rather 
than specific news articles. In our specific setting the news stories were manually 
classified by domain experts into a taxonomy of 40 categories. Alternatively, one can 
use machine learning to automatically classify the articles into taxonomy.   

Experimental evaluation was conducted using different combinations of feature 
sets (as input for the SVM) to predict the top three categories of news articles the user 
would be interested in. Table 1 shows that, for “old” users, the precision2 using 
context information, such as referring page and time is relatively low (36%). 
Including requested page is more predictive (41%), while using history information 
gives the highest precision (48%). However, if we include all the features (i.e. history, 
Geo, requested and referring page and time), we obtain the highest precision (52%). 

Table 1. Precision for sets of features for “old” users (more than 50 visits) on top 3 categories 

 All History Geo Requested Referring Time 
Top precision [%] 52 48 43 41 36 36 

 
Table 2 shows that our system can do good predictions even for “new” users, and 

that the quality of the predictions using all the features again gives the highest 
precision.  

(3) After predicting the top 3 categories, the system selects the top new article in 
each category and suggests this set of news to the user. This approach provides 
robustness and diversity since we are only predicting interesting categories for each 
user and are not linking him/her directly to stories.  
                                                           
2 From the categories the SVM model predicts for user A, which were actually interesting 

enough so user A read an article from that category in the next step. 
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Table 2. Precision for sets of features for “new” users (less than 50 visits) on top 3 categories 

 All Geo Requested Referring Time 
Top precision [%] 45 36 35 37 37 

 
We deployed our system (see Fig. 1) in real-world setup with millions of requests 

and hundreds of new articles per day. In our server logs each user visit and updates 
the index in real-time (batches of 1000 visits). The logs are also archived and, along 
with the rest of the data, used daily for training new SVM models. The co-visitation 
matrix of the collaborative filtering module is updated on the fly. Newly published 
stories are crawled as soon as they get the first visit. The average time to compute and 
serve the recommendation is 20 ms3.  

 

Fig. 1. Real-time recommender system architecture (only SVM and CF modules represented) 

We compared the performance of our system against 4 other approaches (1) item-
to-item collaborative filtering based co-visitation matrix (users who read this, also 
read that), (2) random category which selects three random categories and 
recommends the most popular stories in these categories (3) most popular which 
recommends the top most popular stories at the moment of the visit, and (4) 
contextual which recommends based on the last read story. Fig. 2 presents the results 
over 2 weeks, it shows that our system outperformed all the others in terms of 
transition probabilities. This means that, provided with the set of recommended news 
articles, the user is most likely to click on the articles recommended by the SVM 
module. Random category and collaborative filter modules performed on par over the 
two weeks of the trials. The third ranked was most popular and the fourth was 
contextual. 

3   Overview of the Demonstration 

The demonstration will consist of a system running on a large live feed of news 
articles and page-views with user profiles and visit information being updated on the 

                                                           
3 This may vary according to location and connection speed. The reported value is an average 

of loading times reported by Chrome. 
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fly. We will show the three best performing modules SVM recommender, the CF 
recommender, the Random category recommender and the logging server running 
live. They will be exposed to millions of requests and hundreds of new stories. We 
will also provide a web client allowing interested participants to delete cookies, 
construct their own history and asses the quality of the recommendations. 

 

Fig. 2. Transition probabilities for the five modules (i.e number of users who read a 
recommended story divided by the total number of users who saw the recommendations) 

4   Conclusions 

In this work, we proposed an SVM based news article recommendation system and 
we compared its performance against several state-of-the-art alternatives. We proved 
via large scale real-world experimental tests that it outperforms the alternatives. The 
system is robust against overspecializing as we recommend categories as opposed to 
individual stories. It implicitly uses collaboration by taking into account context and 
popular items (i.e. users who are interested in the same categories visited these stories 
the most) and it can handle new users by using context information. A unique 
characteristic of our system is that it prefers freshness (6 hours time window) over 
relevance. 
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Abstract. We present a tool for interactive exploration of graphs that

integrates advanced graph mining methods in an interactive visualization

framework. The tool enables efficient exploration and analysis of complex

graph structures. For flexible integration of state-of-the-art graph mining

methods, the viewer makes use of the open source data mining platform

KNIME. In contrast to existing graph visualization interfaces, all parts

of the interface can be dynamically changed to specific visualization re-

quirements, including the use of node type dependent icons, methods for

a marking if nodes or edges and highlighting and a fluent graph that

allows for iterative growing, shrinking and abstraction of (sub)graphs.

1 Introduction

Today’s search is still concerned mostly with keyword-based searches and the
closed discovery of facts. Many tasks, however, can be solved by mapping the
underlying data to a graph structure and searching for structural features in
a network, e.g. the connection between certain pages in Wikipedia1 or the en-
vironment of a specific document. Exploring a hyperlink structure in a graph
representation enables these tasks to be fulfilled much more efficiently. On the
other hand, graph visualization can handle quite large graphs, but is rather
static, i.e. the layout and presentation methods calculate the graph visualiza-
tion once and are well suited for interactions, such as adding or removing nodes.
One of the famous graph layout methods, the Spring Force Layout, can yield
very chaotic results when it comes to small changes in the graph, leading to a
completely different layout if just one node is removed. Since a user relies on the
node positions during interaction with the graph, such behavior is not desirable.

With the Creative Exploration Toolkit (CET), we present a user interface with
several distinct features:

– support of interactive graph visualization and exploration,
– integration of a modular open source data analytics system,

1 http:\www.wikipedia.org

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part III, LNAI 6323, pp. 587–590, 2010.
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– easy configuration to serve specific user requirements.

In the following sections, we will describe these features in more detail.

2 The Creative Exploration Toolkit

The Creative Exploration Toolkit (CET) is the user interface that visualizes the
graph and allows interaction. The global design, shown in Figure 1, consists of

– a dashboard at the top, where the controls are located,
– a logging area, below, to show information on running processes and the tool

status,
– a sidebar on the right which displays detailed information about a node,
– and the workspace in the center, which is used for visualization.

We currently use the Stress Minimization Layout [3] to determine the initial
graph layout, which enables the user to interact with the graph: Nodes can be
moved to create certain arrangements, nodes can be selected, and nodes can
be expanded by double-clicking them. Additionally, the user may issue keyword-
based queries. The corresponding results consists of graphs and can be visualized
as well. Subsequent query results are added to the graph, enabling the user to
explore the graph itself and the structures between the query results.

While CET takes care of graph visualization and presentation, special seman-
tics are not supported. For example, the shortest path between two nodes is
displayed by highlighting all nodes on the path. However, the user interface is
not aware of the path-property, but only displays the highlight attribute of the

Fig. 1. Screenshot of the Creative Exploration Toolkit (CET)
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nodes, while the actual calculation takes place in the underlying data analy-
sis platform described in the next section. The user interface is therefore very
flexible when it comes to tasks from different domains.

As described in the next section, any KNIME workflow may be called from
inside the user interface. However, this is also meant for design and development
purposes. Finalized workflows can be integrated more directly into the UI to
provide a more natural and convenient user experience. In our current setup,
we integrate calls to a shortest path calculation and queries to the BioMine2

database. More workflow and interaction schemes will follow in the course of
future work.

3 The KNIME Information Mining Platform

KNIME [1], the Konstanz Information Miner, was initially developed by the
Chair for Bioinformatics and Information Mining at the University of Konstanz,
Germany. KNIME is released under an open source license (GPL v3) and can
be downloaded free of charge3. KNIME is a modular data exploration platform
that enables the user to visually create data flows (often referred to as pipelines),
selectively execute some or all analysis steps, and later investigate the results
through interactive views on data and models. The KNIME base version al-
ready incorporates hundreds of processing nodes for data I/O, preprocessing
and cleansing, modeling, analysis and data mining as well as various interactive
views, such as scatter plots, parallel coordinates and others. It integrates all
analysis modules of the well known Weka data mining environment and addi-
tional plugins allow, among others, R-scripts4 to be run, offering access to a vast
library of statistical routines. Within the frame of the EU FP7 project “BISON”,
KNIME was extended to also allow the flexible processing of large graphs. Com-
bined with the already existing nodes, KNIME can therefore be used to model
complex network processing and analysis tasks.

CET offers a very generic access to KNIME, enabling the user to make arbi-
trary calls without adapting the user interface. CET can be configured to directly
call a KNIME workflow via a pre-configured button. CET also provides a list
of all available workflows plus a list of parameters for a selected work, which
can be edited by the user. Essentially, all information that would be sent by
the user interface can be provided to start a KNIME workflow. The result is
then visualized in the graph. New analysis methods can therefore be integrated
easily into CET by simply adding a new workflow providing the corresponding
functionality.

Figure 2 shows an example of a workflow computing the network diameter.
In this workflow, firstly all nodes with a certain feature value are filtered, i.e. to
take only those into account that have been selected and marked by the user.
Secondly degree filters are applied on nodes and edges to filter unconnected
2 http:\www.cs.helsinki.fi\group\biomine\
3 http:\www.knime.org
4 http:\www.r-project.org
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Fig. 2. An example KNIME workflow for calculating the network diameter which is

called from CET

nodes. The shortest paths of all node pairs are subsequently computed and a
feature is assigned consisting of the path length to those nodes of the longest of
shortest paths. Finally the graph is sent back to the CET.

4 Conclusion and Future Work

We demonstrate a novel user interface for generic graph visualization with spe-
cial emphasis on extensibility by integration with data and graph analysis. The
presented interface allows for easy interaction with the visualized graphs. This
setup is particularly interesting for researchers in the area of Data Mining and
Network Analysis, as it is very simple to plug in new approaches and visualize
the results, even if there is interaction involved.
Extensions of the CET aim towards the integration of more workflows, thus
adding to the available interaction and analysis features. We will also further
improve graph visualization by incorporating constraint-based graph layout (for
a first discussion see [2]).

Acknowledgement. The work presented here was supported by the European
Commission under the 7th Framework Programme FP7-ICT-2007-C FET-Open,
contract no. BISON-211898.
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Abstract. In this paper we present NewsGist, a multilingual, multi-document
news summarization system underpinned by the Singular Value Decomposition
(SVD) paradigm for document summarization and purpose-built for the Europe
Media Monitor (EMM). The summarization method employed yielded state-of-
the-art performance for English at the Update Summarization task of the last Text
Analysis Conference (TAC) 2009 and integrated with EMM represents the first
online summarization system able to produce summaries for so many languages.
We discuss the context and motivation for developing the system and provide an
overview of its architecture. The paper is intended to serve as accompaniment of
a live demo of the system, which can be of interest to researchers and engineers
working on multilingual open-source news analysis and mining.

1 Introduction

On a daily basis, the Europe Media Monitor (EMM)1 gathers over 100k news articles in
several dozens of languages from thousands of on-line news sources worldwide [1, 8].
It clusters all these articles into major news stories and plots in real time news clus-
ters’ sizes along a time line to provide, as opposed to standard search engines, a visual
overview of the current state of affairs. It also automatically identifies spikes on the
graph and sends out relevant breaking-news alerts, where ‘relevance’ is user-defined by
using a set of intuitive semantic categories (called EMM categories), to the thousands
of subscribed users.

Additionally, EMM recognizes references to entities (locations, persons and organi-
zations) in the news [4], detects sentiment, monitors the development of news stories
over time and links news clusters across languages [7].

Currently, however, EMM does not provide succinct summaries for the, potentially
large, news clusters. This is clearly a desirable feature since these clusters may contain
hundreds of news articles which would be impossible to read in full within a short time
frame. Yet, this is often the need of EU decision makers who make use of the EMM
system on a daily- or even hourly-basis and based on the information they receive they
must produce timely responses to complex issues. Therefore, providing high quality

1 EMM’s news analysis applications are NewsBrief, NewsExplorer, MedISys and EMM labs
accessible from: http://emm.newsbrief.eu

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part III, LNAI 6323, pp. 591–594, 2010.
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summaries would substantially improve the usability of EMM as a news aggregation
and trend visualization system.

In this paper we describe the summarization system currently under development
for EMM, which we have named NewsGist. In the search for a suitable summarization
method we adopted a general processing model for summarization foreseeing three
phases [5]: interpretation, transformation and generation, and we chose the Singular
Value Decomposition (SVD) paradigm to underpin it [2, 6]. The SVD approach has
the advantage of being language-independent and has proven to be an effective sum-
marization method yielding state-of-the-art performance in international evaluation ef-
forts such as those of the Text Analysis Conference2 (TAC) [6]. Furthermore, high-
performance implementations of SVD taking advantage of heavily parallel architectures
such as GPUs are already available.

The rest of the paper is organized as follows. In the next section we provide a brief
overview of the Europe Media Monitor. Then, we describe the SVD model to summa-
rization, section 3. After that, in section 4, we present NewsGist. Finally, we conclude
the paper with pointers to further work.

2 Europe Media Monitor

The Europe Media Monitor is a web-based multilingual news aggregation system that
collects over 100k news articles per day in about 50 languages from more than 2500
web news sources. The system employs text mining techniques to provide a picture of
the present situation in the World (as conveyed in the media). Every ten minutes it au-
tomatically clusters all the collected news articles and displays the ten largest clusters
per language by plotting them on a time-by-size graph. It also provides all the neces-
sary hyperlinks to navigate through the clusters and to go to the source for a detailed
exploration. In addition, it applies some deeper information analysis techniques, as for
example, to automatically detect violent events, derive reported social networks and
analyze media impact.

The public website provides a user interface to all this information. This public web-
site is visited on a regular basis by some 30000 human users, and gets some 1.2M hits
per day.3

3 Multi-document Summarization Based on SVD

As mentioned above, we chose the SVD paradigm to build our summarizer on. Next, we
describe how each one of the three processing phases of interpretation, transformation
and generation are realized.

In SVD-based summarization the interpretation phase takes the form of building a
term-by-sentence matrix A = [A1, A2, . . . , An], where Aj = [a1j , a2j , . . . , anj ]T rep-
resents the weighted term-frequency vector of sentence j in a given set of documents.

2 http://www.nist.gov/tac/
3 For more details on EMM see [1, 8].

http://www.nist.gov/tac/
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The transformation phase is done by applying singular value decomposition (SVD)
to the initial term-by-sentence matrix and is defined as A = UΣV T .

Finally, the generation phase takes place in the form of prominent sentence
selection.4

4 NewsGist

In this section we present NewsGist.5 We provide a brief overview of its architecture
and show screenshots for several languages.

(a) EMM’s main process-
ing phases.

(b) NewsGist’s overlayed screenshots for English, French and Ger-
man.

Fig. 1. EMM and NewsGist

As mentioned earlier, NewsGist was developed as part of EMM which is built on
a pipeline architecture, where an input text document undergoes several processing
phases during which the source is augmented with several layers of metadata such as
named entities recognized in the text and semantic categories triggered by the text. The
data interchange format between processing phases is RSS, a light-weight type of XML
typically used by on-line news providers.

Thus, the input to NewGist is an RSS file enriched with information acquired by
previous processing phases. Most importantly, by the time the RSS file reaches News-
Gist, it already contains the outcome of the clustering of news articles and as output
NewsGist produces a summary for each distinct news cluster (see fig. 1(a)).

The core system is pretty compact and is implemented as a Java servlet, running on
top of Apache’s Tomcat web server6.

Language-specific tokenization and sentence splitting is provided by CORLEONE
[3]. Reading and writing of RSS files is provided by EMM utility libraries. Matrix

4 See [6] for full details of the method.
5 Online demo of the system is available at
http://emm-labs.jrc.it/EMMLabs/NewsGist.html

6 http://tomcat.apache.org/

http://emm-labs.jrc.it/EMMLabs/NewsGist.html
http://tomcat.apache.org/
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operations, and in particular singular value decomposition, is provided by the matrix-
toolkits-java libraries7 and also, alternatively, by the Java Matrix Package (JAMA)8.

In figure 1(b) we show overlayed screenshots of NewsGist’s online demo (http://
emm-labs.jrc.it/EMMLabs/NewsGist.html) for three languages of the Eu-
ropean Union: English, French and German.

5 Conclusion

In this paper we presented NewsGist, a multilingual multi-document summarization
system purpose-built for the Europe Media Monitor (EMM). We provided an overview
of EMM, briefly discussed the underlying summarization method based on the SVD
paradigm and described the architecture of the system.

In future work we intend to carry out a comprehensive evaluation of the quality of
the summaries for languages other than English.
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Abstract. A particular problem of searching news archives with named entities
is that they are very dynamic in appearance compared to other vocabulary terms,
and synonym relationships between terms change with time. In previous work,
we proposed an approach to extracting time-based synonyms of named entities
from the whole history of Wikipedia. In this paper, we present QUEST (Query
Expansion using Synonyms over Time), a system that exploits time-based syn-
onyms in searching news archives. The system takes as input a named entity
query, and automatically determines time-based synonyms for a given query wrt.
time criteria. Query expansion using the determined synonyms can be employed
in order to improve the retrieval effectiveness.

1 Introduction

News archives are publicly available nowadays, e.g., Google News Archive and The
Times Online. Nevertheless, searching for information in such resources is not straight-
forward because their contents are strongly time-dependent. To increase precision, a
user can narrow down search results by extending query keywords with the creation or
update date of documents (called temporal criteria). Two ways of obtaining temporal
criteria relevant to a query are 1) having them provided by the user [1,6], or 2) deter-
mined by the system [5]. One way of increasing recall is to perform query expansion
using synonyms. However, when queries are named entities (people, organizations, lo-
cations, etc.), a problem of expanding the queries is the effect of rapidly changing
synonyms1 over time, e.g., changes of roles or alterations of names. For example,
“Cardinal Joseph Ratzinger” is a synonym of “Pope Benedict XVI” before 2005, and
“United States Senator from New York” is a synonym of “Hillary R. Clinton” between
2001 and 2008. Instead of referring to a synonym alone, we have to always refer to an
entity-synonym relationship because a term can be a synonym of one or more entities. In
this paper, we present QUEST (Query Expansion using Synonyms over Time), a system
that exploits changing synonyms over time in searching news archives. To the best of
our knowledge, this has never been done before in the existing news archive search sys-
tems. Our system consists of two parts: 1) the offline module for extracting time-based
synonyms as depicted in Fig. 1, and 2) the online module for searching news archive as

� This work has been supported by the LongRec project, partially funded by the Norwegian
Research Council.

1 In general, synonyms are different words with very similar meanings, but in our context syn-
onyms are name variants (other names, titles, or roles) of a named entity.

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part III, LNAI 6323, pp. 595–598, 2010.
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illustrated in Fig. 2. With a web-based interface, the system can take as input a named
entity query. It automatically determines time-based synonyms for a given named en-
tity, and ranks the synonyms by their time-based scores. Then, a user can expand the
named entity with the synonyms in order to improve the retrieval effectiveness.

Our news archive search system is mainly driven by entity-synonym relationships,
which can be automatically created based on the whole history of Wikipedia. Evolving
relationships are detected using the most current version of Wikipedia, while relation-
ships for particular time in the past are discovered through the use of snapshots of
previous Wikipedia versions. Using our approach, future relationships with new named
entities can be also discovered simply by processing Wikipedia as new contents are
added. Further, we employ the New York Times Annotated Corpus2 in order to extend
the covered time range as well as improve the accuracy of time of synonyms. The rest of
the paper is organized as follows. In Sect. 2, we describe an approach to extracting syn-
onyms from Wikipedia, and ranking synonyms based on their temporal characteristic.
In Sect. 3, we outline the online search system and our proposed demo.

2 Extracting Time-Based Synonyms from Wikipedia

We extract entity-synonym relationships in an offline manner as depicted in Fig. 1. We
downloaded the complete dump of English Wikipedia from the Internet Archive3, which
is composed of all pages and all revisions. Each revision of a page has the time period
that it was in use before being replaced by the succeeding version. In other words, the
associated time of a revision is the period when it was a current version.

Fig. 1. Extracting time-based synonyms from the history of Wikipedia

First, we partition Wikipedia into snapshots {Wt1 , . . . ,Wtz} with 1-month granu-
larity. For each Wikipedia snapshot Wtk

, we identify all named entities in the snap-
shot Wtk

using the approach described by Bunescu and Paşca in [3]. After identifying
an entity page pe from a snapshot Wtk

, we will have a set of entity pages Pe,tk
=

{pe|pe ∈ Wtk
}. From this set, we will create a set of named entities Etk

at time tk
by simply extracting a title from each named entity page pe ∈ Pe,tk

. For each named
entity in Etk

, we will find synonyms by extracting anchor texts from article links, as
described by Bøhn and Nørvåg [2]. For a page pi ∈Wtk

, we extract all internal links in

2 http://www.ldc.upenn.edu/Catalog/docs/LDC2008T19/
new_york_times_annotated_corpus.pdf

3 http://www.archive.org/details/enwiki-20080103

http://www.ldc.upenn.edu/Catalog/docs/LDC2008T19/new_york_times_annotated_corpus.pdf
http://www.ldc.upenn.edu/Catalog/docs/LDC2008T19/new_york_times_annotated_corpus.pdf
http://www.archive.org/details/enwiki-20080103
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pi, but only those links that point to an entity page pe ∈ Pe,tk
are interesting. In other

words, the system extracts as synonyms all anchor texts for the associated entity, and
these synonyms are weighted by their frequencies of occurrence. We then obtain a set of
entity-synonym relationships. By accumulating the set of entity-synonym relationships
from every page pi ∈ Wtk

, we will have a set of entity-synonym relationships at time
tk, i.e., a synonym snapshot Stk

= {ξ1,1, . . . , ξn,m}. Named entity recognition and
synonym extraction steps are processed for every snapshot Wtk

. Finally, we will have
obtained the set of entity-synonym relationships from all snapshots S = {St1 , . . . , Stz},
and the set of synonyms for all entities S = {s1, . . . , sy}. Note that, the time periods
of synonyms are timestamps of Wikipedia articles in which they appear, not the time
extracted from the contents. To discover the more accurate time, we need to analyze
a document corpus with the longer time period, i.e., the New York Time Annotated
Corpus. Due to the size limitation of the paper, the reader can refer to [4] for more
detail about improving time of entity-synonym relationships. Given a named entity ei

and temporal criteria [ta, tb], we can retrieve a set of synonyms of ei wrt. [ta, tb] from
S. The synonyms can be ranked by time-based scores defined as a mixture model of a
temporal feature and a frequency feature as follows.

TB(sj , [ta, tb]) = μ · pf(sj, [ta, tb]) + (1 − μ) · tf(sj , [ta, tb]) (1)

where pf(sj , [ta, tb]) is a time partition frequency or the number of time partitions
(or time snapshots) in which a synonym sj occurs within [ta, tb]. tf(sj , [ta, tb]) is an
averaged term frequency of sj in all time partitions within [ta, tb], tf(sj , [ta, tb]) =∑

ti∈[ta,tb]
tf(sj ,pti

)

pf(sj ,[ta,tb])
. μ underlines the importance of a temporal feature and a frequency

feature, and μ=0.5 gave the best performance in our experiments.

3 Online Demo

The time-based synonyms extracted using our approach can be applied to any news
archive collection. In this demo, we use the New York Times Annotated Corpus as an
illustrative example of such a news archive. This collection contains over 1.8 million ar-
ticles from January 1987 to June 2007. We use the enterprise search platform Solr from
Apache Lucene. The system screenshots are shown in Fig. 2, and the online demo is
publicly available at http://research.idi.ntnu.no/wislab/quest/. In
this demo, we find over 2.5 million named entities and 3 million entity-synonym rela-
tionships. Given a query q and temporal criteria [ta, tb], the system has to verify whether
q is a named entity. We do this by searching Wikipedia with q, and the first page in the
result list will be used as the associated named entity for q. Subsequently, the system
determines synonyms for the associated named entity, and the user can select synonyms
to expand the original q in order to improve the retrieval effectiveness. In addition, the
user can choose whether to show time periods and scores associated to synonyms. In
the following, we will give two search scenario as examples.

First scenario: A student studying the history of the Roman Catholic Church wants
to know about the Pope Benedict XVI during the years before he became the Pope
(i.e. before 2005). The student searches using the query “Pope Benedict XVI” and the
publication dates “01/1987” and “04/2005”. The system retrieves documents for the

http://research.idi.ntnu.no/wislab/quest/
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Fig. 2. QUEST online demo at http://research.idi.ntnu.no/wislab/quest/

query “Pope Benedict XVI”, and also determines synonyms for the query wrt. time cri-
teria. The student then selects the synonyms “Cardinal Joseph Ratzinger” to expand the
query. The new query becomes “Pope Benedict XVI OR Cardinal Joseph Ratzinger”.
He performs search again, and the system retrieves documents which are relevant to
both “Pope Benedict XVI” and “Cardinal Joseph Ratzinger”.

Second scenario: A marketing journalist wants to search for past information about
Kmart, or a chain of discount department stores in the United States. She enters the
query “Kmart” and the publication dates “01/1987” and “01/2000”. The system re-
trieves documents for the query “Kmart”, and also determines synonyms for the query
wrt. time criteria. She selects the synonyms “Kresge” to expand the query (Kmart was
founded as the S. S. Kresge Company in 1899, and it was named to Kmart in 1962.).
The new query becomes “Kmart OR Kresge”. She performs search again, and the sys-
tem retrieves documents which are relevant to both “Kmart OR Kresge”.
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Abstract. We present an automated tool with a web interface for track-

ing the prevalence of Influenza-like Illness (ILI) in several regions of the

United Kingdom using the contents of Twitter’s microblogging service.

Our data is comprised by a daily average of approximately 200,000 ge-

olocated tweets collected by targeting 49 urban centres in the UK for a

time period of 40 weeks. Official ILI rates from the Health Protection

Agency (HPA) form our ground truth. Bolasso, the bootstrapped ver-

sion of LASSO, is applied in order to extract a consistent set of features,

which are then used for learning a regression model.

1 Introduction

Monitoring the diffusion of an epidemic disease such as seasonal influenza is a
very important task. Various methods are deployed by the health sector in order
to detect and constrain epidemics, such as counting the consultation rates of
general practitioners (GPs) [1], school or workforce absenteeism figures [2], etc.
The need of a proper infrastructure and the time delays due to the necessary
data processing are the main drawbacks of those methodologies.

We argue that information available on the web can provide an additional
means for tackling this problem. In ([3,4]) it has been demonstrated that user
queries on web search engines can be used to provide an early warning for an
epidemic. Furthermore, recent work ([5,8]) has shown that the social web media
have a predictive power on different domains. In particular, article [5] presents
a method for inferring ILI rates for several regions in the UK by using data
from Twitter1. The core of the method performed feature selection and regres-
sion with L1 regularisation by applying the LASSO [7]. This paper extends our
previous methodology and presents a complete pipelined application of it: the
“Flu detector” (http://geopatterns.enm.bris.ac.uk/epidemics/).

Short and geolocated messages from users on Twitter, commonly known as
‘tweets’ on the one side, and weekly ILI reports from the HPA on the other for
3 UK regions, namely Central England & Wales (r1), South England (r2) and
North England (r3), are the sources of our information. For the experimental
part of this work, we use 40 weeks of the Twitter corpus and the respective
ground truth, from 22/06/2009 to 28/03/2010. We apply Bolasso, the boot-
strapped version of LASSO [6], for performing feature selection on the vector

1 Twitter micro-blogging social network, http://twitter.com/

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part III, LNAI 6323, pp. 599–602, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://geopatterns.enm.bris.ac.uk/epidemics/
http://twitter.com/


600 V. Lampos, T. De Bie, and N. Cristianini

space representation of the Twitter corpus, i.e. for extracting a consistent set of
keywords that can be used for inferring HPA’s ILI rates optimally. The selected
features are then used in a regression model; evaluating the performance of our
model on unseen data yields inferences which are very well correlated with the
ground truth.

2 Methodology

Our aim is to compute a flu-score from Twitter corpus on a daily basis. For this
purpose, we learn a set of weighted keywords (we refer to them as markers or
features) via an automated process. Given a set of markers M = {mi}, i ∈ [1, n],
their respective weights W = {wi}, i ∈ [1, n], and a set of tweets T = {tj}, j ∈
[1, k], Twitter’s flu-score fS is defined as fS(T ,W ,M) =

∑
j

∑
i wi×g(tj ,mi)/k,

where g(tj ,mi) = 1, if a tweet tj contains a marker mi, otherwise g(tj ,mi) = 0.
We start by creating a pool of candidate features by using encyclopedic and

informal references related to influenza as well as some flu-related word clus-
ters created by Google Sets. After the necessary preprocessing (tokenisation,
stemming, stop-word and name removal), we end up with a set of θ = 2675
candidate features, denoted by C = {cu}, u ∈ [1, θ].2 Given a set T of k tweets,
each candidate feature cu ∈ C has its own normalised and unweighted flu score
fC(T , cu) =

∑
j g(tj , cu)/k (denoted also as fcu for keeping the notation short).

For a time period of h days, the flu-score time series of each candidate feature
(denoted by f (h)

cu ) forms an h× θ array, X(h) = [f (h)
c1 ... f

(h)
cθ ]. HPA ILI rates for

the same time period are denoted by y(h). We use Bolasso method for extracting
a consistent set of markers with respect to the ground truth. Internally, Bolasso
uses the LASSO method for performing regression with L1-regularisation which
provides a sparse solution [7]. In our case, LASSO is formulated as the following
optimisation problem:

min
w

‖X(h)w − y(h)‖2
2 s.t. ‖w‖1 ≤ t,

where vector w is guaranteed to be a sparse solution and t is the regularisation
parameter. Bolasso decides automatically the optimal value for t. A soft version
of Bolasso is used, i.e. we select the markers that have non zero weights in s =
65% to 75% of the bootstraps. Then, we perform linear least squares regression
for learning the weights of the selected markers. During testing, each inferred
daily flu score is smoothed (averaged) with the flu scores of the past 6 days to
infer a weekly trend.

The performance of the described method is evaluated by computing the
mean absolute error (MAE) between the inferred and the target values. When
the ground truth signal is clearly present, we additionally compute its linear
correlation with the inferences. The predictability of the selected markers is
assessed by testing on the last 3 weeks (training is performed on the preceding
weeks); this gives out MAEs equal to 5.27, 4.26 and 2.18 for regions r1, r2
2 More information on the candidate features is available at http://goo.gl/7TZA
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and r3 respectively. Based on the fact that the actual flu rates are high in the
beginning of the investigated time period (when the epidemic was emerging), we
also test our method’s inferences for the first 3 weeks (training is performed on
the succeeding weeks); for regions r1, r2 and r3, the MAEs are equal to 18.34,
9.38 and 27.29, and the corresponding linear correlations are equal to 0.94, 0.84
and 0.87 (with p-values < 10−5). As an overall performance quantification, 10-
fold cross validation is performed, where each fold is formed by 4 contiguous
weeks; the MAE is on average equal to 11.1 with a standard deviation of 10.04.3

3 Data Collection and Back-End Operations

We focus our data collection on tweets geolocated within a 10 Km radius from
the 49 most populated urban centres in regions r1, r2 and r3. Twitter’s Search
API is used for querying the social network periodically in order to get the
most recent tweets per urban centre. The posts are retrieved in Really Simple
Syndication (RSS) format and are being parsed using the ROME Java API.
Data collection is a non-stop process which is performed automatically by our
crawling software; the retrieved data are stored in a MySQL database.

For the experimental part of this work we are using approximately 50 million
tweets, i.e. 200K tweets per day. Vector space representations from the corpus are
produced on demand using our Java libraries; tokenisation, stop word removal,
and stemming by applying Porter’s algorithm [9] are embedded in the whole
process. Our ground truth is formed by weekly epidemiological reports from the
HPA for several regions in the UK4. The reports are based on data gathered
by the Royal College of General Practitioners (RCGP) and express the number
of GP consultations per 105 citizens, where the the diagnosis result was ILI.
In order to retrieve an equal representation between the weekly HPA rates and
the daily Twitter flu-scores, firstly, we expand each value of the former over
a 7-day period, and then we smooth the expanded ground truth time series
with a 7-point moving average. Feature selection and learning of the weights are
performed offline; we use an implementation of Bolasso made available in the
Probabilistic Modeling Toolkit (PMTK)5.

4 Web Interface

The Flu detector website presents the outcomes of our method (see Figure 1). An
automated procedure updates the flu-score inferences on a daily basis. Visitors
are able to view the inferred regional flu scores (with corresponding error bounds)
in comparison with the actual HPA’s ILI rates (which become available with a
7 to 10 day time lag). Apart from the aforementioned regions, we display a flu-
score inference for the merged region of England & Wales as well as for the entire
3 A detailed reference on evaluation procedures is available at http://goo.gl/yZkG
4 HPA epidemiological reports, http://goo.gl/wJex
5 Probabilistic Modeling Toolkit v.3, http://code.google.com/p/pmtk3/
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Fig. 1. Flu detector’s regional predictions as they appear on the website

UK - for each regional plot, the exact locations which contributed to the score
are listed. The periods of training are denoted with distinct colours in every time
line and the MAE between the inferred and the actual flu scores is computed
and displayed.
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Abstract. Due to the vast amount and pace of high-dimensional data

production, dimensionality reduction emerges as an important require-

ment in many application areas. In this paper, we introduce X-SDR,

a prototype designed specifically for the deployment and assessment of

dimensionality reduction techniques. X-SDR is an integrated environ-

ment for dimensionality reduction and knowledge discovery that can be

effectively used in the data mining process. In the current version, it

supports communication with different database management systems

and integrates a wealth of dimensionality reduction algorithms both dis-

tributed and centralized. Additionally, it interacts with Weka thus en-

abling the exploitation of the data mining algorithms therein. Finally,

X-SDR provides an API that enables the integration and evaluation of

any dimensionality reduction algorithm.

Keywords: dimensionality reduction, data mining, knowledge discovery.

1 Introduction

Data pre-processing is a crucial step of data mining that enables the abduction
of irrelevant values from a dataset. An important aspect of data pre-processing
is dimensionality reduction (DR). DR methods address challenges that rise from
the large number of variables describing each observation. In high dimensional
spaces typical knowledge discovery tasks, such as clustering or classification be-
come ineffective [1]. DR algorithms apply transformations on the original dataset
and embed it from the original space Rn to a new, low dimensional space Rk

(k << n). The objective of the methodology is to retain the distances between
points or other statistical properties (i.e. variance) in the new space. Recently,
due to the advent of large distributed applications, distributed dimensionality
reduction (DDR) has also emerged as a decentralized pre-processing step.

Despite the large number of centralized ([4]) and distributed ([8] and references
therein) approaches we lack a software tool that integrates them towards experi-
menting with them in a user friendly manner. The latter, has inspired the design
and implementation of X-SDR 1, a prototype that enables the integration and eval-
uation of any DR algorithm. X-SDR is open source and supports the evaluation of
1 X-SDR is an acronym for eXtensible Suite for Dimensionality Reduction.
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DR methods through experimentation on artificial and real world datasets. Its key
features are its extensibility and user friendliness. From a user’s perspective it is
easy to use while from a developer’s point of view, it is straightforward to extend.
X-SDR supports numerous experimentation scenarios, all aligned with the evalua-
tion methodology of applying a linear or non-linear DR method in a centralized or
network environment and then assessing its quality through visualization or fur-
ther experimentation with well known data mining techniques ([6]).

2 Related Work

The aim of this section is to present a brief outline of the various DR software
packages. Due to space limitations we focus only on prototypes that primarily
target on the evaluation and assessment of DR algorithms.

XGvis ([2],[3]) was the first attempt to offer a toolkit for experimenting with
DR methods as well as visualizing their results. Unfortunately, XGvis has been
confined to a number of variations of MDS ( [4]). The application utilized XGobi
( [9]) as a visualization frontend. XGvis evolved to GGobi ( [5]), a powerful, open
source suite that provides a large number of data visualization and knowledge
extraction techniques specifically designed for high dimensional data. The most
prominent software package in the area is the Matlab Toolbox for Dimensionality
Reduction(MTDR [7]). The latter contains a vast amount of DR techniques
implemented in MATLAB. Additionally, the toolbox provides implementations
of methods for intrinsic dimensionality estimation, as well as functions for out-
of-sample extension, prewhitening of data, and the generation of toy datasets.

Unfortunately, none of the afore described efforts assesses DR algorithms in
the context of knowledge discovery. Although GGobi incorporates a large number
of data mining techniques, it utilizes only a small number of DR methods. On
the other hand, MTDR focuses on the algorithms rather than the evaluation
of their results. Consequently, the ideal software package should combine the
salient features of these two efforts and provide a user friendly frontend enabling
the deployment and experimental driven assessment of any DR technique.

3 The X-SDR Suite

In this section we present the extensible experimentation Suite for Dimension-
ality Reduction (X-SDR). We commence by outlining its software architecture
followed by various implementation details. Furthermore we analyze its key as-
pects and highlight its novel features. Finally we provide a small experimentation
scenario that highlights the merits of X-SDR.

X-SDR is structured in three layers. The first comprises the data input layer
that enables interaction with various data sources ranging from simple text files
to database management systems (i.e. MySQL, MS SQL Server). Its main purpose
is to transform the underlying data into n-dimensional vectors. These vectors are
provided as input to the DR layer which incorporates a large number of DR tech-
niques as well as the whole MTDR suite. Additionally, it supports experimenta-
tion with distributed DR algorithms, a feature that to the best of our knowledge
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(a) Dimensionality reduction form (b) Assessment through classification

Fig. 1. Dimensionality Reduction and Data Mining forms

uniquely characterizes our framework. In order to simulate the decentralization
procedure, a network profile, in the form of an adjacency matrix, should also be
provided. The latter is used for the definition of a star overlay network where the
central node undertakes all tasks that need to be computed centrally.

The DR layer provides two outputs. The first is a set of assessment metrics
directly related to the effectiveness and efficiency of the evaluated algorithm
while the second is the low dimensional embedding of the initial dataset in vec-
tor format. The assessment metrics are related to the time requirements and
stress value [4] that the algorithm exhibits on a particular dataset. Moreover,
for distributed algorithms, an estimation of the communication cost is also pro-
vided. The third layer aims at the assessment of the algorithms, which is accom-
plished either through visualization of the low dimensional dataset or further
experimentation. Towards the latter we have integrated X-SDR with numerous
algorithms provided by Weka 2 through proper exploitation of the OS service
calls. Consequently the results of each DR algorithm are evaluated with respect
to the performance of prominent clustering and classification approaches. More-
over the combination of a large number of DR methods with data mining tools
promotes it as an ideal candidate for teaching as well as research activities.

The key feature of X-SDR is its extensibility which is achieved by a simple
programming interface that enables any researcher to design his own algorithm
and experiment through X-SDR. All required parameters are defined in XML
format and incorporated as comments in the header of each MATLAB source
file. Each input parameter is identified by the triplet {name, type, value}; after-
wards the header of the file is parsed and the input form is dynamically created.
During execution, the overarching application formulates the required calls to
the MATLAB server which in turn executes the identified algorithm.

In order to provide a short demonstration scenario we use the 35-dimensional
ionosphere dataset from the UCI repository3. The dataset is stored in a comma

2 Weka http://www.cs.waikato.ac.nz/ml/weka/
3 http://archive.ics.uci.edu/ml/
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separated file and is loaded by the corresponding X-SDR module. We use the
PCA [4] implementation available from MTDR and embed the dataset in a 5-
dimensional space (Fig. 1(a)). The produced dataset can be visualized and even
compared against the initial one. We finally evaluate the embedded dataset with
the use of Naive Bayes (Fig. 1(b)) and derive a classification accuracy of 89%. The
obtained value is marginally equal to the one exhibited by the same algorithm
in the original space, thus concluding that PCA has successfully retained data
properties while projection.

X-SDR (available through http://www.db-net.aueb.gr/panagis/X-SDR) is
implemented in C$ while all algorithms are implemented in MATLAB. The in-
terfacing of these technologies is accomplished via the COM Automation Server.
X-SDR’s deployment requires MATLAB and .NET framework (version 3.5 SP1)
together with Microsoft Chart Controls library.

4 Conclusion

We have presented X-SDR, an extensible experimentation suite for dimension-
ality reduction algorithms. X-SDR is an open source tool, integrating a large
number of DR algorithms and well known knowledge discovery tool. Moreover,
X-SDR enables the simulated execution of distributed DR approaches. These
features promote it as an ideal candidate platform for research and teaching in
academia. Future enhancements will primarily focus on incorporating distributed
data mining techniques in the package thus providing an open source application
for distributed knowledge discovery experimentation.
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Abstract. Outlier mining is an important data analysis task to distin-

guish exceptional outliers from regular objects. In recent research novel

outlier ranking methods propose to focus on outliers hidden in subspace

projections of the data. However, focusing only on the detection of out-

liers these approaches miss to provide reasons why an object should be

considered as an outlier.

In this work, we propose a novel toolkit for exploration of subspace

outlier rankings. To enable exploration of subspace outliers and to com-

plete knowledge extraction we provide further descriptive information in

addition to the pure detection of outliers. As wittinesses for the outlier-

ness of an object, we provide information about the relevant projections

describing the reasons for outlier properties. We provided SOREX as

open source framework on our website1 it is easily extensible and suitable

for research and educational purposes in this emerging research area.

1 Challenges in Outlier Exploration

In general, the task of knowledge discovery in databases is twofold. On the
one side data mining methods try to detect meaningful patterns, while on the
other side knowledge is extracted out of the data by providing descriptions of
these patterns. Especially, for the unsupervised outlier mining task, knowledge
discovery does not end with the detection of the highly deviating objects. In
applications like fraud detection, health surveillance, customer segmentation or
sensor monitoring, one is interested in additional descriptions about the reasons
why an object seems outlying. For example in health surveillance, a young patient
might be considered as outlier due to high risk of dehydration (cf. o1 in Figure 1).
While dehydration is quite normal for elderly people, it is quite rare for young
persons. By looking at a subset of measured attributes (subspace projection),
one might detect this outlying patient showing high deviation from the residual
patients in the attributes “age” and “skin humidity”. While traditional outlier
methods measure deviation using all attributes (full data space), subspace outlier
ranking focuses on object deviation in subspaces.
1 http://dme.rwth-aachen.de/OpenSubspace/SOREX
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However, not only the detection of such a high risk patient but also the un-
derlying outlier properties are important. Providing information about the high
deviation in age and skin humidity while showing normal measurements in all
other attributes assists health professionals in verifying this automatically de-
tected outlier. Thus, an obvious aim for outlier detection methods is to provide
additional information about outlier properties such as the relevant attributes
and to which extend a deviation from the regular objects can be observed. In
Figure 1, we depict two outliers in three possible subspace projections for our toy
example. As illustrated the hidden outliers show up only in specific projections
while are hidden in other projections. For each outlier these specific projections
can be seen as witnesses for its outlier properties.
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Fig. 1. Toy example (health surveillance): outliers hidden in subspaces

2 SOREX

Our novel SOREX toolkit provides such additional descriptions for each object.
With SOREX we provide a repository of subspace outlier ranking algorithms
[1–4], extending the popular WEKA framework. In addition, descriptive compo-
nents provide the reasons why an object seems to be outlying. Overall, the main
contributions of SOREX are:

– Enhancing subspace outlier ranking by descriptive components.
– Open source toolkit for outlier exploration based on the WEKA framework

For our algorithm repository we include also some traditional outlier mining
methods [5, 6]. In contrast to these full space methods, outlier detection in
subspaces was first specified by [1], but without considering any additional outlier
descriptions. Recent approaches have focused on outlier detection by considering
projections of the data [2–4]. Their key idea is that outliers show high deviation
from clustered objects in some subspaces. All of the proposed outlier ranking
approaches have their focus on outlier detection, they provide only the ranking
values as descriptive components. Thus, they are limited to providing a sorted
list of most probable outliers, without giving explanations why an object seems
to be an outlier. SOREX solves this drawback by additional descriptions.

Considering both mentioned contributions, SOREX is the first data mining
framework for outlier mining that provides witnesses for the object’s outlier
properties. It enables the exploration of outliers and assists in reasoning of their
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outlier properties. In contrast to existing data mining toolkits such as WEKA,
RapidMiner, KNIME and RATTLE our toolkit focuses on the emerging research
area of subspace outlier ranking not included in these frameworks. As part of
our open source initiative “OpenSubspace” for subspace mining covering cluster
detection, evaluation and visualization in our previous work [7–9], SOREX is a
key component for exploration of outliers hidden in subspace projections.

Exploration based on descriptive components
In addition to the ranking values provided by the implemented outlier ranking
algorithms SOREX provides descriptive components about relevant subspaces
and the deviation in local neighborhoods. As post-processing to any subspace
outlier ranking method SOREX can be used also for future algorithm enhance-
ments in this emerging research area. In the following we describe the descriptive
information in SOREX, illustrated also for an example in Figure 2.

FullspaceOutlier Ranking

SubspaceOutlier Ranking

(a) Outlier Ranking (b) Outlier Descriptor

Fig. 2. Descriptive outlier ranking on Pendigits data set from UCI ML repository

In general, the ranking value has to provide a clear distinction between out-
liers and regular objects. As depicted in Figure 2(a), subspace outlier rankings
achieve high ranking values for the few objects supposed to be outliers. Thus,
they can be clearly distinguished by the rapid decrease to the regular objects
showing low ranking values. Using the full space or all possible subspaces for
ranking results in the depicted bad ranking [2, 5, 6], where no clear distinction
is possible. Their uniform decrease in this ranking lacks a clear support for the
outlier detection. State-of-the-art ranking plots with additional visualization of
ranked objects form the first descriptive components in SOREX. However, they
do not yet provide reasons about ranking values, especially not about the rele-
vant subspaces.

The relevant subspaces provide knowledge about the reasons why an object
should be considered outlying. As depicted in Figure 2(b) for an outlying “four”
in the pendigits database we derive a histogram describing the relative contri-
bution of each attribute to the overall ranking value. One can observe which are
the most deviating attributes for the considered object. This additional knowl-
edge can be used to verify each outlier or even to provide its outlying properties.
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In addition, one is not only interested in knowledge about the responsible at-
tributes but also about the local neighborhoods of each outlier. Objects in these
local neighborhoods appear as witnesses for the outlier properties as the outlier
is highly deviating from this specific set of objects. By comparing the detected
outlier with these objects one can extract the differences between a set of regular
objects and one rare outlier as depicted for two version of the digit “four”.

Demonstration of SOREX
The demo will illustrate the exploration of outlier ranking results for several
data sets. It will allow conference attendees to explore the diverse subspace
outlier ranking approaches implemented in the SOREX system, thus raising
research interest in the area. Furthermore, the interfaces of our open source
toolkit will facilitate the extension with further outlier mining algorithms and
visual exploration paradigms by other researchers.

Our demonstration will raise interest for future work where the extracted
knowledge about reasons for outlier properties could be used for interactive sub-
space outlier mining. Users may interact with the resulting descriptive outlier
ranking by providing specific attributes which are supposed to be the reasons for
outliers or focusing on specific sets of suspicious objects. This leads to in-depth
analysis of the detected outliers.
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subspaces of high dimensional data. In: PAKDD, pp. 831–838 (2009)

5. Breunig, M., Kriegel, H.P., Ng, R., Sander, J.: LOF: identifying density-based local

outliers. In: SIGMOD, pp. 93–104 (2000)

6. Kriegel, H.P., Schubert, M., Zimek, A.: Angle-based outlier detection in high-

dimensional data. In: KDD, pp. 444–452 (2008)

7. Müller, E., Assent, I., Krieger, R., Jansen, T., Seidl, T.: Morpheus: Interactive

exploration of subspace clustering. In: KDD, pp. 1089–1092 (2008)
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Abstract. In this paper we demonstrate a system that automatically annotates
text documents with a given domain ontology’s concepts. The annotation process
utilizes lexical and Web resources to analyze the semantic similarity of text com-
ponents with any of the ontology concepts, and outputs a list with the proposed
annotations, accompanied with appropriate confidence values. The demonstrated
system is available online and free to use, and it constitutes one of the main com-
ponents of the KDTA (Knowledge-Driven Text Analysis) module of the CASAM
European research project1.

1 Introduction

Reasoning about the content of text documents constitutes a key challenge to every
semantics-aware document management system. One step towards this direction is the
design and development of new methods that enable the automated annotation of plain
text with ontology concepts. Such techniques enable the transfer of useful information
from text documents to ontology structures, and vice versa. Motivated by this effort, the
CASAM research project introduces the concept of computer-aided semantic annotation
to accelerate the adoption of semi-automated multimedia annotation by the industry. In
previous work, we presented part of the KDTA (Knowledge-driven Text Analysis) mod-
ule of the overall project architecture [5], that is responsible for the automated annota-
tion of text documents. In this work we demonstrate the component that automatically
annotates text documents with ontology concepts.

The contributions of this work lie in the following: (a) a prototype implementation of
a system that automatically annotates plain text with domain ontology concepts, using
thesauri (e.g., WordNet) and Web resources (e.g., Wikipedia), and (b) a Web demo that
is, publicly accessible. The rest of the paper is organized as follows: Section 2 summa-
rizes the methodology of the text annotation with ontology concepts, while Section 3
presents the on-line demo that is publicly available. Finally, Section 4 concludes and
provides pointers to future work.

� The author conducted part of this work while in the Bioinformatics Group, Biotechnological
Center, Technische Universität Dresden.

1 Computer-Aided Semantic Annotation of Multimedia -
http://www.casam-project.eu
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(a) KDTA Architecture

(b) Annotation Process

Fig. 1. The KDTA overall architecture (a), and the details of the annotation process (b)

2 Automated Annotation of Text with Domain Ontology Concepts

Text annotation with ontology concepts constitutes a fundamental technology for intel-
ligent Web applications, e.g., Semantic Web, and for this reason, there has been a large
focus in this research direction over the past few years, e.g., [1,2]. However, most of
the previous approaches required a lot of human intervention, or were able to annotate
only specific parts of text, like named entities. In our recent work [5], we presented
a new method for the automated annotation of plain text with concepts residing in a
given domain ontology. The method combines a pre-processing and a semantic anno-
tation phases (Fig. 1). In the pre-processing phase the text is processed syntactically
and semantically by generic tools. The semantic annotation phase, which is the core of
the method, utilizes the WordNet thesaurus2 and the Wikipedia electronic encyclope-
dia3. The proposed method combines measures of semantic relatedness and word sense
disambiguation (WSD) algorithms to annotate text words with ontology concepts.

In Fig. 1 the architecture of the KDTA component of CASAM, as well as the details
of the semantic annotation process are shown (Fig. 1(a) and 1(b) respectively). The
latter is the core of the proposed method and utilizes WordNet, and Wikipedia as knowl-
edge bases, as well as two respective measures of semantic relatedness: a dictionary-
based measure, namely Omiotis [4], which is based on WordNet, and a Wikipedia-based

2 http://wordnet.princeton.edu/
3 http://www.wikipedia.org/

http://wordnet.princeton.edu/
http://www.wikipedia.org/
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Fig. 2. Loading text in the KDTA annotation demo

Fig. 3. Ontology-based annotation suggestions in the provided text document

measure [3]. Both measures have been shown to achieve state-of-the-art performance in
measuring word-to-word semantic relatedness [4]. Both methods are also very efficient.

3 System Demonstration

A Web application that implements KDTA is publicly available online4. Firstly, the user
may upload an ontology in OWL format or may select an already existing ontology by
leaving the corresponding browsing path empty. This will load the default ontology of
the environmental domain. Next, the user may select the text to be annotated. As Fig. 2
shows, there is already a list of text documents in the server that can be used, pertaining
to environmental news. Alternatively, the user may write the text to be annotated in the
provided text area. Finally, in Fig. 3 the results of the suggested annotations are shown.
Column 1 is the id of the annotation, columns 2 and 3 are the start and end offsets of
the annotation measured in characters, column 4 is the ontology concept that matches
the respective part of the text, column 5 is a confidence value from 0 to 1, and column

4 http://phoebe.iit.demokritos.gr:8480/KDTA/

http://phoebe.iit.demokritos.gr:8480/KDTA/
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6 is the source term from the given text, that led to the choice of the annotation. The
method was experimentally evaluated in two domains, environmental and biomedical.
For the environmental domain two datasets were examined provided by LUSA5 and
Deutche Welle6, while for the biomedical domain MEDLINE abstracts were used. The
performance was measured in terms of Macro Average Precision, Recall and F-measure
with the aid of a manually created gold standards for each dataset. The results show that
the method can achieve high F-measures, up to 73% in some cases. Analytical results
and a detailed description of the evaluation process have been presented in [5].

4 Conclusions and Future Work

In this paper we have presented briefly an on-line web application of a system that an-
notates automatically text documents with concepts from a given domain ontology. The
annotation system has already been embedded in the CASAM prototype successfully,
and evaluation results have shown that provides accurate text annotation with ontology
concepts. In the future, we plan to investigate the usage of more measures of semantic
relatedness, and attempt to ensemble their confidence.
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Abstract. We present a demonstration of a newly developed text stream

event detection method on over a million articles from the New York

Times corpus. The event detection is designed to operate in a predomi-

nantly on-line fashion, reporting new events within a specified timeframe.

The event detection is achieved by detecting significant changes in the

statistical properties of the text where those properties are efficiently

stored and updated in a suffix tree.

This particular demonstration shows how our method is effective at

discovering both short- and long-term events (which are often denoted

topics), and how it automatically copes with topic drift on a corpus of

1 035 263 articles.

Keywords: event detection, suffix tree, New York Times.

1 Introduction

In recent years we have witnessed an explosion of information through the ever-
growing presence of the internet, the World Wide Web and more recently blogs
and microblogs (e.g., Twitter, Facebook statuses). There is a clear and present
need for computational methods for processing the overwhelming amount of data
which may be of interest to any of us.

Event detection and document summarisation methods can prove invaluable
to people from all walks of life: journalists need to report the latest developments
in current events, many of which are first reported online; investors need to
very quickly assess the potential effect of breaking news on the values of their
investments; companies need to monitor complaints and abuses of their products
and services and many more uses.

One of the potential difficulties in identifying effective computational methods
is in finding a dataset which is realistic in both content and scale. To the authors’
knowledge the largest public test dataset for event detection is the TDT2 dataset
with under 50 000 documents. To put this in perspective we have a system which
indexes over 10 000 documents from the WWW every day.

Recently the New York Times released an annotated corpus of their articles
from 1987 to 2007 with over 1.8 million documents [1]. This corpus is potentially
an excellent testbed for computational methods as it is many orders of magnitude
larger than existing corpuses and will truly test the ability of methods to scale.

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part III, LNAI 6323, pp. 615–618, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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2 Our Method

Our method is described in [2], so we summarise our method here. As articles
from a text stream are observed they are added to a generalised suffix tree, a data
structure which efficiently indexes the substrings of a set of texts. We annotate
the suffix tree at its nodes with sufficient statistical information to perform an
hypothesis test for every node (and due to the suffix tree structure for every
n-gram in the text). Each hypothesis test gives the extent to which the observed
frequency of an n-gram has increased from its expected frequency (calculated
as a weighted average of its observed frequency in the past) in the form of a p-
value. n-grams with a lower p-value have undergone a more significant increase
in frequency. By ranking n-grams in order of ascending p-value we see the most
significant n-grams which are indicators of events.

The suffix tree of a text of length n (or a set of texts with a combined length of
n) can be stored in O (n) space. The suffix tree can be built in O (n log |Σ|) time,
where Σ is the alphabet (the set of symbols from which documents are drawn).
In many applications of suffix trees |Σ| is very small and O (n) construction time
is often given, e.g., for DNA, ΣDNA = {a, c, g, t}. In our method |Σ| is very large
as it is the set of all words and punctuation symbols observed in the text as the
text is tokenized at word boundaries and punctuation symbols. Our construction
is a modification of Ukkonen’s method [3] designed to be more efficient when the
suffix tree is stored in external memory (i.e., on a hard disk).

3 The Dataset

We considered articles from the New York Times annotated corpus from 1st

January 1996 to 18th June 2007. We used only the Body attribute of each article
(i.e., we did not include the headlines or any tags). There are 1 035 263 articles
in this time period with a total size of 3 401 MB and a length of 793 500 772
symbols after tokenization with an alphabet containing 1 422 974 symbols (stored
in 12 MB).

4 Results

The suffix tree constructed from the corpus was 36 216 MB in size, a 10.6−fold
increase in size over the original corpus text. Table 1 gives further details of the
suffix tree.

We computed the p-value for each n-gram by comparing different weighted
averages of the frequency of the n-gram. The weighted averages used were ex-
ponentially weighted averages,

x̂i = αx̂i−1 + (1 − α) xi,

where α is a weighting parameter. We used six different exponential weighting
parameters: α = {0, 0.215, 0.518, 0.720, 0.858, 0.950}; these correspond to 99%
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Table 1. The suffix tree created from the New York Times corpus

Sequences 1 035 263

Suffixes 793 500 772

Alphabet size 1 422 974 (12.1 MB)

Nodes

Internal 206 163 152

Leaf 777 468 706

Size on hard disk 36 216 MB

decay after 0 (i.e., memoryless), 3, 7, 14, 30 and 90 timeframes respectively. For
each value of α we stored a weighted average of the number of articles containing
each n-gram, and the total number of articles in the timeframe. In addition we
stored a timestamp for each n-gram recording the last timeframe it was observed
in, allowing for just-in-time updates of the weighted averages. These weighted
averages allowed for efficient computation of a p-value for each n-gram for each
pairing of α values.

The statistics were stored in C++ floats for real values and in C++ ints
for integer values. The total space requirement for each node in the suffix tree
for the statistics was therefore

[4nα + 8] bytes = 32 bytes.

We chose not to compute p-values for leaf nodes as their frequencies are almost
always 0 or 1. The total space requirement for the statistics is then 6.14 GB and
the total space requirement of our method was 41.5 GB.

We considered three time periods, 1996–2000, 2000–2004 and 1996–2004. For
each of these time periods and for each pairing of α values we calculated the
forty most significant n-grams. We show a selected subset of these in Table 2.1

We also show the timelines of these n-grams for the entire duration in Figure 1.
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Fig. 1. Timelines of the most significant n-grams

1 We believe it will be possible to automate this selection based on linguistic properties.
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Table 2. The top five events detected in the three time periods using different com-

parison methods

Short term comparison method (α1 = 0, α2 = 0.215)

1996–2000 2000–2004 1996-2004

New York City Marathon Afghanistan Afghanistan

Starr Marathon New York City Marathon

elections terrorist terrorist

Democrats World Trade [Center] World Trade [Center]

impeachment Iraq Iraq

Medium term comparison method (α1 = 0.518, α2 = 0.720)

1996–2000 2000–2004 1996-2004

elections World Trade [Center] World Trade [Center]

Lewinsky blackout blackout

Iraq elections elections

acquittal terrorist terrorist

New York City Marathon shuttle Lewinsky

Long term comparison method (α1 = 0.858, α2 = 0.950)

1996–2000 2000–2004 1996-2004

elections World Trade Center World Trade Center

impeachment Sept. 11 Sept. 11

Kosovo elections elections

Yugoslavia blackout blackout

Princess [Diana] anthrax anthrax

5 Discussion

We have demonstrated our method for event detection on a large publicly avail-
able corpus of text. The method draws from areas of hypothesis testing and
combinatorial pattern matching to solve a text stream mining problem.

Further results will be shown on the website for the project.2
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Abstract. Using data collections available on the Internet has for many

people become the main medium for staying informed about the world.

Many of these collections are dynamic by nature, evolving as the subjects

they describe change. We present the STORIES system for (a) learning

an abstracted story representation from a collection of time-indexed doc-

uments; (b) visualizing it in a way that encourages users to interact and

explore in order to discover temporal “story stages” depending on their

interests; and (c) supporting the search for documents and facts that

pertain to the user-constructed story stages.

1 Introduction

Search engines, RSS feeds, micro-blogging tools, and many other services support
Internet users in story tracking: following the developments of topics over time.
This is usually done by manually or automatically issuing a series of same queries
about an event (“Haiti Earthquake”), a person (“Britney Spears”), or a scientific
area (“text mining”). This creates a challenge for information seekers because
large numbers of new documents from different sources keep arriving at a fast
rate. There is clearly a need for different search interfaces and search experience,
which provide a concise abstracted representation of information from all the
pertinent parts of a source or source set. Users will be able to profit most from
summarising services that provide convenient interfaces to both the abstracted
summary and the underlying documents, and that allow for and encourage a
flexible, (inter)active exploration of the space of the abstracted “stories” and at
the same time searches of the space of documents.

To enhance the story tracking search experience, we pursue two goals: (a)
give users a more active role in the search process, and (b) break away from
traditional “top-10”ranked document search interfaces. As a part of this we
present the STORIES system for news-stories tracking, which instantiates these
ideas. It consists of story learning (done by the system) and graphical support for
story understanding and story search (provided to the user). The paper builds
on the detailed explanation in [1]; it describes a re-implementation with new
interface features and examples from a new corpus.

2 Related Work

Apart from “classical” news search engines like Google News or Yahoo! News, re-
cently many alternative ways of tracking and browsing news collections have been

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part III, LNAI 6323, pp. 619–623, 2010.
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developed. Google News Timeline (http://newstimeline.googlelabs.com/)
provides a pre-set time period (day, week, month, year) overview of news using
a timeline interface. It allows for the tracking of news sources, arbitrary queries
or entities such as movies, books, music... Another Google system, named Fast
Flip (http://fastflip.googlelabs.com/), provides an interface for brows-
ing news articles resembling hard-copy newspaper reading. The Yahoo! Correla-
tor(http://correlator.sandbox.yahoo.net/) associates a search term with
all its related “events”. EMM NewsExplorer(http://emm.newsexplorer.eu)
and EMM NewsBrief (http://emm.newsbrief.eu) are news search and sum-
marization services tracking news from a number of multi-lingual sources. The
SearchPoint(http://searchpoint.ijs.si/) system allows users to focus on a
specific sub-topic of search results. MemeTracker (http://www.memetracker.
.org/) tracks quotes from news and visualises their “burstiness” using interac-
tive charts. These deployed systems rest on a growing body of work on topic
detection and tracking, temporal text mining, and visual web search surveyed
in [1].

In contrasts to these other tools, our system combines visual search, summa-
rization, and burst-pattern detection into a single interface which provides an
interactive inspection of temporal changes in a corpus.

3 Method

First, a corpus of text-only documents is transformed into a sequence-of-terms
representation. Subsequently, basic term statistics are calculated to identify can-
didates for story basics. We applied different measures to obtain the story basics
including the top ranked words based on term frequency, TF.IDF weight, com-
bining “regular”terms with terms referencing some named entities, and all terms
form a corpus.

For story understanding, we analyse a text corpus and its (user-definable)
time-indexed subsets. For each time-indexed subset of the whole corpus ci, the
frequeny of the co-occurrence of all pairs of content-bearing terms bj in docu-
ments is calculated as the number of occurrences of both terms in a window of
w terms, divided by the number of all documents in ci. This measure of fre-
quency and therefore relevance is normalised by its counterpart in the whole
corpus C to yield time relevance as the measure of burstiness: TRi(b1, b2) =
(freqi(b1, b2))/(freqC(b1, b2)). Thresholds are applied to avoid singular asso-
ciations in small sub-corpora and to concentrate on those associations that
are most characteristic of the period and most distinctive relative to others:
This gives rise to the story graphs Gi = 〈Vi, Ei〉 for time periods i. The edges
Ei of Gi are the story elements: all pairs (b1, b2) with absolute frequencies
and TR above the respective thresholds. The nodes Vi of Gi are the story ba-
sics, the terms involved in at least one association in this symmetric graph:
{bj|∃bk : (bj , bk) ∈ Ei}. From each document, we extract sentences contain-
ing “facts”, short statements with semantic role labelling, as returned by Open
Calais (http://www.opencalais.com/). The full set of these sentences for each

(http://newstimeline.googlelabs.com/)
(http://fastflip.googlelabs.com/)
(http://correlator.sandbox.yahoo.net/)
(http://emm.newsexplorer.eu)
(http://emm .newsbrief.eu)
(http://searchpoint.ijs.si/)
(http://www.memetracker.org/)
(http://www.memetracker.org/)
http://www.opencalais.com/
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Fig. 1. Web interface: A story graph (left) is built based on articles about the disap-

pearance of a person. By marking the edges connecting the person’s name (top node

of the subgraph marked in red) with another name (middle node) as a “suspect” (left

node), the user obtains a list of pertinent documents (centre), whose text can be in-

spected (right). The timeline (bottom) shows the important “facts” from a selected

time period. The overlaid tracking story graph shows how the search can be focused on

the chosen node over different time periods.

time period is indexed using Lucene (http://lucene.apache.org). We then
use story graphs to filter the most important facts: for each of the graph’s edges,
we query the index, using node names of the edge as query terms, and select the
top sentences as defined by Lucene. We treat the resulting set of short textual
statements as a summary of the story.

Story search can be constrained by the nodes of a subgraph of the story
graph. Retrieval is then restricted to documents relevant to these subgraphs.
The selection of documents of the starting corpus C corresponds to a top-level
query; this query is expanded by the information from the subgraph and the
time restriction. STORIES then uses all the nodes n as a query (restriction) for
the documents inside ci to obtain the pertinent document subset, as identified
by a search over a Lucene index.

4 Tool

Figure 1 shows a screenshot of our STORIES front-end. We apply the method
to news articles obtained from different sources on the Web. Corpora can be
compiled either on a continuing basis (e.g., subscribed-to feeds) or in response
to a top-level query to a search engine. Our indexing service crawls a number

http://lucene.apache.org
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of news aggregators and retrieves documents for a given top-level query. The
top-level query describes the whole story (e.g., “Haiti Earthquake” or “person
name” for crime cases or celebrity reporting). Data cleaning and other data
preparation steps are then applied, in particular HTML wrapper induction and
removal, tokenisation, cross-document named-entity recognition, lemmatisation,
and stopword removal. Finally, document and term measures as described in the
previous section are computed. The system backend is developed in Java and
the front-end using GUESS (http://graphexploration.cond.org/) library for
the stand-alone version, and a JavaScript implementation of the spring-layout
algorithm for the web version of the tool.

The primary representations are visualisations of story graphs. They provide
functionalities to: (1) scan over time to track the global story evolution, (2)
zoom in and out by time, by adapting the period-window size, (3) zoom in and
out by detail, uncovering more details about the story by setting the TR values
(a configurable colour coding schema of edges points to the different values of
time relevance), (3) tracking certain terms or entities in time, by selecting the
corresponding node. This outputs a graph of bursty co-occurrences including
this “tracking node”as its central node.

By clicking on a single edge, the user can select documents associated with
the term pair. For easier and more flexible search, users may also select an edge
and then highlight a subgraph which contains the selection’s adjoining edges
and neighbouring nodes. Each selected edge expands the query and restricts the
document set based on it. In this way, the user incrementally builds the query
and at the same time can discover and learn about the story. Search provides
a list of documents, and a set of sentences visualized along the time-line using
one day as an atomic period. This allows users to interact with the story using
different views: patterns, sentences (“facts”), and documents.

5 Evaluation

Evaluations of search quality demonstrated that STORIES finds coherent subsets
of documents, that its quality is comparable to or better than state-of-the-art
clustering, and that the tool enables people to answer questions on ground-
truth events accurately and quickly [1]. We also compared our method with other
“bursty-pattern discovery” methods, with a framework that leverages sentence
retrieval and internal pattern structure and evaluates the sentences against a
ground truth. Our experiments showed that different methods perform at similar
levels overall, but provide distinctive advantages in some settings [2]. In a third,
ongoing round of evaluations we perform a user study evaluating how users can
discover information using our and other search interfaces.

6 Outlook

In future work, we will investigate more advanced language processing (linguis-
tic parsing, semantic role labelling for story graphs, etc.), the use of lexical

http://graphexploration.cond.org/
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resources and other background knowledge, as well as different sources of media
bias/viewpoints. We also plan to explore aggregation and analysis dimensions
other than time, such as multilinguality. Further quantitative and qualitative
evaluations will be carried out.
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Exploring Real Mobility Data with M-Atlas
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1 Introduction

Research on moving-object data analysis has been recently fostered by the widespread
diffusion of new techniques and systems for monitoring, collecting and storing loca-
tion aware data, generated by a wealth of technological infrastructures, such as GPS
positioning and wireless networks. These have made available massive repositories of
spatio-temporal data recording human mobile activities, that call for suitable analytical
methods, capable of enabling the development of innovative, location-aware applica-
tions [3]. The M-Atlas is the evolution of the system presented in [5] allows to handle
the whole knowledge discovery process from mobility data. The analysis capabilities of
M-Atlas system have been applied onto a massive real life GPS dataset, obtained from
17,000 vehicles with on-board GPS receivers under a specific car insurance contract,
tracked during one week of ordinary mobile activity in the urban area of the city of
Milan; the dataset contains more than 2 million observations leading to a set of more
than 200,000 trajectories (see Fig.1).

2 The M-Atlas System

A system able to master the complexity of the knowledge discovery process over mo-
bility data needs to support at least four functionalities: (i) trajectory data need to be
created, stored and queried through spatio temporal primitives; (ii) trajectory models
and patterns representing collective behavior have to be extracted using trajectory min-
ing algorithms; (iii) such patterns and models have to be represented and stored in order
to be re-used or combined; (iv) new mining algorithms may be added. The M-Atlas
system allows the user to combine all these aspects through an innovative Data Mining
Query Language (DMQL). This language can be used to express the whole knowledge
discovery process as a sequence of queries to be submitted to the system. The GUI in-
terface gives the user the possibility to use pre-defined analysis (i.e. O/D Matrix) or to
use the console to write down his/her own DMQL queries.

In the next sections we will give a short example of the capabilities of the system on
the real dataset of Milan described above.

3 Understanding Mobility

To grasp a general vision on the dataset we performed a series of statistical analysis on
the dataset (the charts representing the results are shown in Figure 2):
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The Movements Distribution analysis estimates the active movements in each hour
of the week. From the figure it is evident the drop in the movements during the
night hours, clearly separating the different days, hence the seven groups represent
the seven days from Sunday to Saturday. The shapes of the days are very similar
especially during the week-days: each day contains two peeks, one in the morning
and one in the late afternoon. This analysis validates the dataset comparing it with
a survey obtained from the Mobility agency of Milan in 2005.

The Cumulative Lengths Distribution represents the cumulative number of trajecto-
ries having the same length. From this analysis it is clear that in the city there are
many short movements and few long movements obtaining a distribution which
follows a power law.

The Density of Length over Speed represents in cold colors a low density and the
warm colors an high density. In this way we can see the variance of lengths for
each speed value, looking at the existence of points and the common value looking
for the warmer ones. For Example the trajectories with speed around 20 km/h have
length from 1 to 190 km with a very high density zone between 1 and 30 km.

Fig. 1. The Trajectory Dataset of Milan

In the next section we show some analytical tools used in combination with data mining
algorithms in order to answer to a specific request of the mobility manager.

4 Discovering Mobility Behaviors

The M-Atlas system integrates a set of analytical and data mining tools such as the
construction of Origins-Destinations Matrix, the construction of georeferenced density
maps according to different measures, extracting of T-Patterns [2], T-Clustering [6], T-
Itineraries [1] and T-Prediction [4]. In this section we present an example of these tools
as basic bricks to build a discovery process. The presented analysis answers to a specific
requirements of the mobility manager: How the people leave the city center during the
day?.

Computation of O/D Matrix: The common exits of the city has been discovered build-
ing an O/D Matrix between the zones of the city represented in a big scale by a 3×3
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Fig. 2. Statistical Analysis of the dataset: Movements Distribution (top), Cumulative Lengths
Distribution (left) and Density of Length over Speed (right)

Fig. 3. The O/D Matrix between zones of the city

matrix. Each zone in the border corresponds to an exit and the zone in the middle
corresponds to the city center. In Fig.3 in the bottom right corner we can see a con-
ceptual representation of the flows between the zones (in gray) and a particular flow
from the zone n.4 (the city center, in orange) to the zone n.2 (the north-west exit, in
violet) highlighted as the most dense flow starting from the city center (according
to the size of the arrow). Hence the set of trajectories which is part of the selected
flow can be extracted (see Fig.3) which can used for further analysis.

T-Clustering: Given the trajectories leaving the city center toward the north-west exit,
we want to group together similar trajectories in order to discover common behav-
iors. Therefore a data mining tools called T-Clustering is used. M-Atlas provides
different methods to describe the similarity between two trajectories, one of them
is route similarity which perform a temporal alignment and then compares spatially
the two trajectories. The result of this computation is shown in Fig.4 where each
cluster is represented by a different color. There are three major clusters: (i) the red
one is the group of people which leaves the very center of the city via the north-west
city gate and then goes straight to the north-west exit, (ii) the purple one represents
the people leaving the center from a peripheral part of the city center and (iii) the
blue one is the group of people which prefers to avoid the crowd and opts for a
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Fig. 4. The result of T-Clustering tools and the distribution of movements during the day for the
red and blue clusters

longer way but probably faster. This last hypothesis is supported also by the analy-
sis of the temporal distribution of the two cluster (red and blue) which highlight the
simultaneity of the peaks of the movements distribution in the afternoon as shown
in Fig.4 (right).

The same analysis can be applied also for the other exit directions, presenting to the
mobility manager a complete view of behaviors.

5 Conclusion

The presented process of analysis is just a sketch of the power of the M-Atlas sys-
tem which allows the analyst to combine tools in order to build his/her own discovery
knowledge process in an iterative and interactive way.

Acknowledgments. The authors wish to acknowledge the Mobility Agency of Milano
and Octotelematics S.p.A. for providing the anonymized dataset of private cars with
on-board GPS receivers.
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Gonçalves, Marcos André II-402
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Munos, Rémi II-305

Nadif, Mohamed I-490

Nalbantov, Georgi III-277

Nanni, M. III-624

Natarajan, Sriraam II-434

Ng, Wee Keong I-24

Nie, Feiping II-451

Nijssen, Siegfried II-467

Nikolaev, Nikolay III-277

Ning, Xia II-128

Nørv̊ag, Kjetil III-595

Nürnberger, Andreas III-587

Ohara, Kouzou III-180

Ong, Cheng Soon III-83

Ong, Yew-Soon I-231
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