
Chapter 7
Positron Collisions with Atoms and Ions

In this chapter we extend our discussion of multichannel R-matrix theory of elec-
tron collisions with atoms and atomic ions given in Chaps. 5 and 6 to consider
positron collisions with these targets. Since the positron is distinguishable from
the target electrons, we no longer have to antisymmetrize the total wave function
with respect to interchange of the positron coordinates with those of the target
electrons. However, this simplification is balanced by the additional channels that
have to be included where the incident positron combines with one of the target
electrons to form a bound state of the positron–electron system, called positronium
(Ps). In this respect, positron collisions with atoms and ions have similarities to
electron–molecule collisions which we will consider in Chap. 11 where rearrange-
ment processes corresponding to dissociation and dissociative attachment can occur.
A further process that can occur in positron collisions with atoms and ions is where
the incident positron annihilates with one of the target electrons with the emission of
γ -rays providing a further important test of collision theory. Also processes where
positronium atoms are incident on atomic targets are of increasing interest both
experimentally and theoretically.

The processes involved in positron and positronium collisions with atoms and
ions clearly provide new challenges for both experiment and theory. This has stim-
ulated new developments in the measurement of positron and positronium collision
cross sections and in the theory and calculation of positron– and positronium–atom
collision cross sections, where applications of R-matrix theory by Walters et al.
[949–953] have been particularly successful. Reviews of these developments and
applications have been written by Armour and Humbertson [23], Laricchia [576]
and Surko et al. [898]. They have also been discussed in the proceedings of confer-
ences edited by Surko and Gianturco [897] and by Gribakin and Walters [423].

We commence in Sect. 7.1 with a general discussion of the processes that can
occur in positron and positronium collisions with atoms and atomic ions. We then
consider the new extensions to multichannel R-matrix theory of electron collisions
with atoms and ions, considered in Chaps. 5 and 6, to enable the channels corre-
sponding to positronium collisions to be included in the theory. Finally, in Sect. 7.2
we present the results of some recent positron and positronium collision calculations
using R-matrix theory.
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356 7 Positron Collisions with Atoms and Ions

7.1 Multichannel R-Matrix Theory

In this section we introduce R-matrix theory of positron and positronium collisions
with atoms and atomic ions by summarizing in Sect. 7.1.1 the various processes
that can occur and we compare and contrast these processes with those that occur in
electron collisions with atoms and atomic ions discussed in Chap. 5. We also con-
sider the form of the Schrödinger equation which describes positron or positronium
collisions with an atom or atomic ion and we discuss the partitioning of configura-
tion space into internal, external and asymptotic regions. We then consider in turn
the solution in the internal region in Sect. 7.1.2, in the external region in Sect. 7.1.3
and in the asymptotic region in Sect. 7.1.4 yielding the K -matrix, S-matrix and cross
sections for positron and positronium collisions with atoms and ions.

7.1.1 Introduction

In collisions of positrons with atoms and atomic ions the following processes can
occur:

e+ + Ai → Ai + e+ elastic scattering,

→ A j + e+ excitation,

→ A+j + e− + e+ ionization,

→ A+j + Ps Ps formation,

→ A2+
j + Ps− Ps− formation,

→ A2+
j + Ps+ e− transfer ionization with Ps formation,

→ A3+
j + Ps− + e− transfer ionization with Ps− formation,

→ A+j + γ rays annihilation.

(7.1)

The positronium atom (Ps) in (7.1), which can be formed in an excited state, consists
of a bound state of the positron and a target electron and is formally the same as the
hydrogen atom but with a reduced mass of 0.5 a.u. rather than 1 a.u. Consequently,
Ps bound states are classified in the same way as those of atomic hydrogen but with
half the energy of the corresponding states, i.e. En	m = −0.25 n−2 a.u., where
n is the principal quantum number. Positronium can be formed in two spin states,
referred to as “ortho” where the positron and electron spins are in the triplet state
and as “para” where the two spins are in the singlet state. An interesting discussion
of the electron–positron system has been given by Jauch and Rohrlich [499] and
recent detailed quantum electrodynamic calculations of Ps lifetimes have been dis-
cussed by Kniehl and Penin [539]. In the work of Kniehl and Penin it was shown
that the para-positronium 1s state decays predominantly into two photons with a
lifetime of 0.125 ns and the ortho-positronium 1s state decays predominantly into
three photons with a lifetime of 142 ns. As a result of the relatively long lifetime
of ortho-positronium, monoenergetic energy-tunable beams of ortho-positronium
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have been developed and the following elastic, inelastic and positronium ionization
(fragmentation) collision processes have been studied:

Ps+ Ai → Ai + Ps elastic scattering,

→ A j + Ps atomic excitation,

→ A+j + e− + Ps atomic ionization,

→ Ai + Ps∗ positronium excitation,

→ Ai + e− + e+ positronium ionization.

(7.2)

Returning to (7.1), we have also included the process where a positronium negative
ion Ps− is formed which can also occur in positronium collisions. Wheeler [962]
showed that Ps could bind an electron to form a negative ion Ps−, which is the
analogue of H−, and recent values of its binding energy and lifetime are 0.3267 eV
and 0.477 ns, respectively [351]. Finally, we observe that the last process listed in
(7.1), where the incident positron is annihilated with the emission of γ -rays, is suf-
ficiently weak that it can be ignored in calculating cross sections for the previous
positron collision processes listed in (7.1). However, the annihilation rate, which
is proportional to the probability of finding the positron and an atomic electron at
the same position in space, provides a further important test of the validity of the
approximations made in collision theory and calculations.

We observe that the essential distinction between electron and positron colli-
sions with atoms and ions is that in the former case the Pauli exclusion principle
means that the wave function must be antisymmetrized with respect to the collid-
ing electron and the target electrons, whereas in the latter case the strong attractive
interaction between the positron and the target electrons causes the target atom to
be strongly distorted at low incident energies. It follows that short-range correlation
effects are more important in low-energy positron collisions than in low-energy elec-
tron collisions. As a result the additional complexity of using antisymmetrized wave
functions in electron collisions is replaced by the greater importance of correlation
effects in positron collisions. While these effects can be represented by including
additional terms in the expansion of the collision wave function at energies below
the positronium formation threshold, they are most appropriately represented by
including positronium formation channels in the expansion of the collision wave
function, even if results are only required for positron–atom collision channels.

We consider next the form of the Schrödinger equation which describes positron
or positronium collisions with an atom or atomic ion with nuclear charge number Z .
For light atomic targets, where relativistic effects can be neglected, we must solve
the time-independent Schrödinger equation

HN+pΨ = EΨ, (7.3)

where HN+p is the non-relativistic Hamiltonian corresponding to a positron moving
in the field of an N -electron atom or a positronium atom moving in the field of an
(N − 1)-electron ion. In order to determine explicit expressions for HN+p and Ψ
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Fig. 7.1 Jacobi coordinates
for positron–atom and
positronium–ion collisions,
where the i th target atom
electron is captured to form
positronium

A ith electronri

Ri

positron

rp

ρi

in (7.3) we introduce a Jacobi system of coordinates illustrated in Fig. 7.1, where in
this figure rp and ri are the vector coordinates of the positron and the i th electron
in the atom with respect to the atomic nucleus labelled A which is assumed to be
infinitely heavy and which is chosen as the origin of coordinates. Also, ρi and Ri in
Fig. 7.1 are defined by

ρi = rp − ri , Ri = 1

2
(rp + ri ). (7.4)

We can write HN+p in two distinct forms, the first corresponding to positron–
atom collisions and the second corresponding to positronium–ion collisions. In the
first form

HN+p = HN − 1

2
∇2

p +
Z

rp
−

N∑
i=1

1

ρi
, (7.5)

where HN is the non-relativistic atomic Hamiltonian defined by (5.3) with N + 1
replaced by N , − 1

2∇2
p is the positron kinetic energy operator and the remaining

two terms on the right-hand side of (7.5) are the potential interaction of the positron
with the atomic nucleus, with charge number Z , and with the N target electrons,
respectively.

In the second form corresponding to positronium–ion collisions, one of the N
target atom electrons is captured to form positronium. When the i th electron is
captured, the Hamiltonian can be written as

HN + p = HN − i + Hpi − 1

4
∇2

Ri
+ VN− i pi . (7.6)

In this equation, HN − i is the residual (N − 1)-electron ion Hamiltonian which is
defined by
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HN− i =
N∑

j=1
j �=i

(
−1

2
∇2

j −
Z

r j

)
+

N∑
j> j ′=1
j, j ′ �=i

1

|r j − r j ′ | , (7.7)

Hpi is the positronium atom Hamiltonium, formed by the positron and the i th
captured electron, which is defined by

Hpi = ∇2
ρi
− 1

ρi
, (7.8)

− 1
4∇2

Ri
is the positronium atom kinetic energy operator defined relative to the

atomic nucleus and VN−i pi is the potential interaction between the residual (N−1)-
electron ion and the positronium atom, which is defined by

VN−i pi = − Z

ri
+ Z

rp
+

N∑
j=1
j �=i

1

|r j − ri | −
N∑

j=1
j �=i

1

ρ j
, (7.9)

where in the above equations p refers to the positron and i to the i th electron
captured by the positron to form the positronium atom. It follows from the indis-
tinguishability of the N atomic electrons that the Hamiltonian defined by (7.6) is
invariant with respect to interchange of any pair of the N electrons.

In order to solve (7.3) using multichannel R-matrix theory we partition con-
figuration space into internal, external and asymptotic regions, as illustrated in
Fig. 7.2, which we will see is analogous to the partitioning of configuration space in
non-adiabatic electron–molecule collision theory shown in Fig. 11.4. The positron–
atom complex in the internal region where all the particles are strongly interact-
ing, defined by 0 ≤ rp ≤ a0 and 0 ≤ Ri ≤ A0, i = 1, . . . , N , can dissociate
into both positron–atom collision channels and positronium–ion collision channels.
The radius a0 is chosen so that the amplitudes of the target atom states of interest
are negligible for rp ≥ a0 and the radius A0 is chosen so that the amplitudes of
the positronium atom and the target ion states of interest have negligible overlap
for Ri ≥ A0, i = 1, . . . , N . We discuss the solution in the internal region in
Sect. 7.1.2. In the external region, corresponding to positron–atom collisions where
a0 ≤ rp ≤ ap and positronium–ion collisions where A0 ≤ RN ≤ Aq , the scattered
positron and positronium atom move in the long-range multipole potentials of the
residual atom or ion, where from symmetry we need to only consider the motion of
the positronium atom formed by the positron and the N th target atom electron. In
this region the potential interaction between the scattered particles and the residual
atom or ion is strong and must be treated by solving the resultant differential equa-
tions using accurate numerical propagation methods, as discussed in Sect. 7.1.3.
Finally, in the asymptotic region where for positron–atom collisions rp ≥ ap and for
positronium–ion collisions RN ≥ Aq , the solutions can be obtained using asymp-
totic expansions in each of these regions which enable the K -matrix and S-matrix
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Fig. 7.2 Partitioning of configuration space in R-matrix theory of positron–atom and positronium–
ion collisions, where the N th target atom electron is captured to form positronium

to be determined, as discussed in Sect. 7.1.4. We now consider the solution in the
internal, external and asymptotic regions in turn.

7.1.2 Internal Region Solution

We consider first the solution of the non-relativistic Schrödinger equation (7.3) in
the internal region in Fig. 7.2 for each set of conserved quantum numbersΛ defined
below. In analogy with expansions (5.5) and (5.6) adopted in electron–atom colli-
sions we expand the positron–atom collision wave function as follows:

ΨΛj E (XN ; xp) =
∑

k

ψΛk (XN ; xp)A
Λ
k j (E) . (7.10)

In this equation

XN ≡ x1, x2, . . . , xN , (7.11)

where xi ≡ riσi represents the space and spin coordinates of the i th electron,
xp ≡ rpσp represents the space and spin coordinates of the positron, j labels the lin-
early independent solutions of (7.3),ψΛk are energy-independent basis functions and
AΛk j (E) are energy-dependent expansion coefficients which depend on the asymp-

totic boundary conditions satisfied by the wave function ΨΛj E at the energy E . Also
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in (7.10), Λ represents the conserved quantum numbers in the collision defined by

Λ ≡ α L S ML MS mp π, (7.12)

where L and ML are the total orbital angular momentum quantum numbers of the
positron–atom and positronium–ion collision processes, S and MS are the total
electron spin angular momentum quantum numbers of the target atom and mp is
the spin magnetic quantum number of the positron, which are separately conserved,
π is the total parity and α represents any further quantum numbers which are con-
served in the collision. Unlike the conserved quantum numbers Γ in electron–atom
collisions, defined by (2.58), we have not coupled the spin of the positron to that
of the target atom since the positron is distinguishable from the target electrons and
hence, in the absence of relativistic spin–orbit interactions, MS and mp are sepa-
rately conserved in the positron–atom collision. It follows that the collision wave
function ΨΛj E and the basis functions ψΛk in (7.10) are antisymmetric with respect to
interchange of any pair of the space and spin coordinates xi ≡ riσi , i = 1, . . . , N ,
of the target electrons, but are not antisymmetrized with respect to interchange of
the space and spin coordinates xp ≡ rpσp of the positron with those of the target
electrons.

We now expand the basis functions ψΛk in (7.10) in the form

ψΛk (XN ; xp) =
n∑

i=1

nc∑
j=1

Φ
Λ

i (XN ; r̂pσp)r
−1u0

i j (rp)a
Λ
i jk

+ AN

m∑
i=1

mc∑
j=1

Θ
Λ

i (XN−1; ρNσNσp; R̂N )

× R−1
N v

0
i j (RN )b

Λ
i jk

+
b∑

i=1

χΛ
i (XN ; xp)c

Λ
ik, k = 1, . . . , nt , (7.13)

where nt = nnc + mmc + b is the number of linearly independent basis func-
tions included in these expansions. The first expansion on the right-hand side of
(7.13) corresponds to positron–atom collisions, the second expansion corresponds to
positronium–ion collisions, where the N th electron is captured to form positronium
leaving the remaining N − 1 electrons in the residual ion and the third expansion
is over quadratically integrable functions which are included for completeness and

to represent correlation effects. Also in (7.13), Φ
Λ

i and u0
i j are the channel func-

tions and radial continuum basis orbitals corresponding to positron–atom collisions

and Θ
Λ

i and v0
i j are the channel functions and radial continuum basis orbitals cor-

responding to positronium–ion collisions, which are discussed below. Finally, in
(7.13) AN is the antisymmetrization operator which ensures that each term in the
second expansion is antisymmetric with respect to interchange of the space and spin
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coordinates of any pair of the N electrons taking part in the collision. In analogy
with (2.46) AN is defined by

AN = N−1/2

(
1−

N−1∑
i=1

Pi N

)
, (7.14)

where Pi N is the operator which interchanges the space and spin coordinates of
electrons labelled i and N .

We observe that the expansions over the channel functions Φ
Λ

i and Θ
Λ

i in (7.13)
may both include pseudostates representing the continuum in positron–atom col-
lisions and positronium–ion collisions, respectively. We have seen in Chaps. 2, 5
and 6 that the inclusion of pseudostates is required both to accurately represent the
polarizability of the target by the incident particle at low energies and to allow for
ionization at intermediate energies. As a result, in principle, the two expansions span
the same configuration space, which could lead to instability in the solution if close
to complete sets of target basis functions are included in each expansion. However,
in practical calculations both expansions are truncated to a finite number of basis
functions and hence any difficulty due to over completeness usually does not arise.
Retaining both expansions together with the expansion over quadratically integrable
functions χΛi in (7.13) then gives faster convergence and enables positron collision
and positronium formation cross sections to be defined and accurately calculated at
low and intermediate energies.

The channel functions Φ
Λ

i in (7.13) corresponding to positron–atom collisions
are constructed by coupling the orbital angular momentum of the antisymmetrized
N -electron target atom wave functions ΦN

i with the orbital angular momentum of
the scattered positron as follows:

Φ
Λ

i (XN ; r̂pσp) =
∑
Mi mi

(Li Mi	i mi |L ML)Φ
N
i (XN )Y	i mi (θp, φp)χ 1

2 mp
(σp),

i = 1, . . . , n, (7.15)

where the boundary radius a0 of the internal region in Fig. 7.2 is chosen so that the
target atom wave functions ΦN

i (XN ) are negligible for ri ≥ a0, i = 1, . . . , N .

The channel functionsΘ
Λ

i in (7.13) corresponding to positronium–ion collisions
are constructed by coupling the orbital and spin angular momenta of the antisym-
metrized residual atomic ion wave function ΦN−1

i (XN−1) with the orbital and spin
angular momenta of the positronium atom wave function, where we assume that
the N th atomic electron and the positron form the positronium atom. We now
introduce the following wave function describing the positron and the N th atomic
electron:

ξi (ρN ; σNσp) = φi (ρN )χ 1
2 m N

(σN )χ 1
2 m p
(σp), (7.16)
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where φi (ρN ) is the space part of the positronium atom wave function, χ 1
2 m N

(σN )

is the N th atomic electron spin function and χ 1
2 m p
(σp) is the positron spin function.

Using (A.20), we can rewrite (7.16) as a linear combination of singlet and triplet
positronium atom spin functions χ si ms (σNσp) as follows:

ξi (ρN ; σNσp) =
∑

si

(
1
2 m N

1
2 m p|si ms

)
φi (ρN )χ si ms (σNσp), (7.17)

where the Clebsch–Gordan coefficients in this equation are defined in Sect. A.1. The

channel functions Θ
Λ

i in (7.13) are then defined by

Θ
Λ

i (XN−1; ρNσNσp; R̂N )

=
∑

M ′L m′	

∑
MK m j

∑
M ′SmS

(L ′i M ′L	′i m′	|Ki MK )(Ki MK ji m j |L ML)

× (S′i M ′Ssi ms |SMS)Φ
N−1
i (XN−1)φi (ρN )

× χ si ms (σNσp)Y ji m j (θN , φN ), i = 1, . . . ,m, (7.18)

where the boundary radius A0 of the internal region in Fig. 7.2 is chosen so that the
overlap of the residual atomic ion wave functionsΦN−1

i (XN−1) and the positronium
wave function φi (ρN ) is negligible for RN ≥ A0.

The angular momentum coupling scheme that we have adopted in (7.18), in

defining the channel functions Θ
Λ

i in (7.13), is summarized in Fig. 7.3. The orbital
and spin angular momentum quantum numbers of the residual atomic ion are L ′i ,
M ′L , S′i , M ′S , the orbital angular momentum quantum numbers of the positron-
ium atom are 	′i , m′	 and the spin magnetic quantum numbers of the captured
N th electron and the positron are m N and mp, respectively. Then Ki and MK are
intermediate angular momentum quantum numbers obtained by coupling the orbital
angular momenta of the residual ion denoted by L ′i and M ′L with the orbital angular

Fig. 7.3 Positronium–ion
orbital and spin angular
momentum coupling scheme
defining the positronium
wave function ξi in (7.17)

and the channel functions Θ
Λ

i
in (7.18)

Li ML
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i m
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Atom

1
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momenta of the positronium atom denoted by 	′i and m′	, ji and m j are the orbital
angular momentum quantum numbers describing the orbital motion of the positro-
nium atom relative to the residual ion and L and ML are the total conserved orbital
angular momentum quantum numbers of the positronium atom and the residual ion.
Also S and MS are the total conserved electron spin angular momentum quantum
numbers of the positronium atom and the residual ion obtained by coupling the
electron spin angular momentum of the residual ion denoted by S′i and M ′S with the
spin angular momentum of the positronium atom denoted by si and ms . We also
remember from (7.16) and (7.17) that electron and positron spins are coupled to
yield the positronium atom spin quantum numbers si and ms . Finally, we observe
that the total parity π in (7.12), defined by

π = πi (−1)	i = π ′i (−1)	
′
i+ ji , (7.19)

is conserved in the collision where πi is the parity of the N -electron target atom and
π ′i is the parity of the residual atomic ion.

The zero-order radial continuum basis orbitals u0
i j (rp) and v0

i j (RN ) in (7.13) are
defined over the ranges 0 ≤ rp ≤ a0 and 0 ≤ RN ≤ A0, respectively, in the internal
region defined in Fig. 7.2. In practice the continuum basis orbitals can be calcu-
lated using a homogeneous boundary condition method similar to that described in
Sect. 5.3.1 for electron–atom collisions (e.g. [531]). However, since the positron is
distinguishable from the electrons in the target atom or residual ion, the Lagrange
orthogonalization procedure adopted for electron–atom collisions is not required.
Hence, the continuum basis orbitals in (7.13) can be obtained by solving equations
analogous to (5.75) with the right-hand side set zero. In the case of u0

i j (rp), cor-
responding to the positron–atom collision channels, the potential U0(r) in (5.75)
can be taken to be the repulsive static potential of the target atom ground state.
In the case of v0

i j (RN ), corresponding to the positronium–ion collision channels,
the potential U0(r) in (5.75) can be taken to be zero. This is justified for positron
collisions with alkali metal atoms since the diagonal elements of the potential cor-
responding to positronium collisions with the resultant closed-shell ion are zero.

The final step in the definition of the quantities in (7.13) is to determine the
coefficients aΛi jk , bΛi jk and cΛik . This is achieved by diagonalizing the operator HN+p+
Lr + LR in the basis ψΛk defined by (7.13) where the integral is taken over the
internal region in Fig. 7.2 as follows:

〈ψΛk |HN+p + Lr + LR |ψΛk′ 〉int = EΛk δkk′ , k, k′ = 1, . . . , nt . (7.20)

In this equation we have introduced the Bloch operator for positron–atom collision
channels in (7.13) defined by

Lr = 1

2
δ(rp − a0)

(
d

drp
− b0 − 1

rp

)
, (7.21)
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which corresponds to the form of the Hamiltonian defined by (7.5), and the Bloch
operator for positronium–ion collision channels in (7.13) defined by

LR = 1

4

N∑
i=1

δ(Ri − A0)

(
d

dRi
− B0 − 1

Ri

)
, (7.22)

which corresponds to the form of the Hamiltonian defined by (7.6), where b0 in
(7.21) and B0 in (7.22) are arbitrary constants. It follows that HN+p + Lr + LR is
hermitian in the basis of quadratically integrable functions (7.13), satisfying arbi-
trary boundary conditions on the surface of the internal region in Fig. 7.2 where
rp = a0 and Ri = A0, i = 1, . . . , N .

The solution of (7.3) in the internal region for each set of conserved quantum
numbers Λ defined by (7.12) can be obtained by rewriting (7.3) as follows:

(HN+p + Lr + LR − E)Ψ Λ = (Lr + LR)Ψ
Λ, (7.23)

which has the formal solution

ΨΛ = (HN+p + Lr + LR − E)−1(Lr + LR)Ψ
Λ. (7.24)

The spectral representation of the Green’s function in this equation can be written
in terms of the basis functions ψΛk defined by (7.13) and (7.20). We obtain

|ΨΛ〉 =
nt∑

k=1

|ψΛk 〉
1

EΛk − E
〈ψΛk |Lr + LR |ΨΛ〉. (7.25)

We then project (7.25) onto the n channel functions Φ
Λ

i , i = 1, . . . , n, defined
by (7.15) and evaluate it on the boundary rp = a0 and project (7.25) onto the m

channel functions Θ
Λ

i , i = 1, . . . ,m, defined by (7.18) and evaluate it on the
boundary RN = A0. We obtain, after using (7.21) and (7.22)

FΛi (a0) =
n∑

j=1

RΛi j (E)

(
a0

dFΛj
drp
− b0 FΛj

)
rp= a0

+
m∑

j=1

RΛi j+n(E)

(
A0

dGΛj
dRN

− B0GΛj

)
RN=A0

, i = 1, . . . , n (7.26)
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and

GΛi (A0) =
n∑

j=1

RΛi+n j (E)

(
a0

dFΛj
drp
− b0 FΛj

)
rp= a0

+
m∑

j=1

RΛi+n j+n(E)

(
A0

dGΛj
dRN

− B0GΛj

)
RN=A0

, i = 1, . . . ,m . (7.27)

In (7.26) and (7.27), the reduced radial functions FΛi (rp), which correspond to
positron–atom collisions, are obtained by projecting the total wave function ΨΛ

onto the channel functions Φ
Λ

i defined by (7.15) as follows:

FΛi (rp) = 〈r−1
p Φ

Λ

i |ΨΛ〉′, i = 1, . . . , n, (7.28)

and the reduced radial functions GΛi (RN ), which correspond to positronium–ion
collisions, are obtained by projecting the total wave function ΨΛ onto the channel

functions Θ
Λ

i defined by (7.18) as follows:

GΛi (RN ) = 〈R−1
N Θ

Λ

i |ΨΛ〉′, i = 1, . . . ,m. (7.29)

The R-matrices in (7.26) and (7.27) are then combined into a generalized R-matrix
defined by

RΛi j (E) =
1

2a0

nt∑
k=1

wΛikw
Λ
jk

EΛk − E
, i = 1, . . . , n + m, j = 1, . . . , n (7.30)

and

RΛi j (E) =
1

4A0

nt∑
k=1

wΛikw
Λ
jk

EΛk − E
, i = 1, . . . , n+m, j = n+1, . . . , n+m , (7.31)

where the surface amplitudes in these equations are defined by

wΛik = 〈r−1
p Φ

Λ

i |ψΛk 〉′rp= a0

=
nt∑

j=1

u0
i j (a0)a

Λ
i jk, i = 1, . . . , n, k = 1, . . . , nt (7.32)
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and

wΛi + n k = 〈R−1
N Θ

Λ

i |ψΛk 〉′RN=A0

=
mc∑
j=1

v0
i j (A0)b

Λ
i jk, i = 1, . . . ,m, k = 1, . . . , nt , (7.33)

which follow from (7.13). The primes on the Dirac brackets in the above equations
mean that the integrations are carried out over all coordinates except the radial
coordinate rp in (7.28) and (7.32) and except the radial coordinate RN in (7.29)
and (7.33).

Equations (7.26) and (7.27) are the basic equations which result from the solu-
tion of the Schrödinger equation (7.3) describing positron–atom collisions and
positronium–ion collisions in the internal region. The R-matrix defined by (7.30)
and (7.31) is determined at all energies by diagonalizing HN+p + Lr + LR in
the basis defined by (7.13) to yield the eigenenergies EΛk in (7.20) for each set of
conserved quantum numbers Λ. If the zero-order radial continuum basis orbitals
u0

i j (rp) and v0
i j (RN ) in (7.13) are calculated using the homogeneous boundary con-

dition method then a Buttle correction to the diagonal elements of the R-matrix must
be applied as described in Sect. 5.3.2. Having determined the R-matrix, (7.26) and
(7.27) then provide the boundary conditions satisfied by the solution of the equations
describing positron–atom collisions and positronium–ion collisions in the external
region described in the next section.

7.1.3 External Region Solution

The external region, defined in Fig. 7.2, is divided into two sub-regions
corresponding to positron–atom collision channels and positronium–ion collision
channels. We assume that the corresponding radii a0 and A0 are chosen large enough
so that for the channels of interest the corresponding wave functions in these two
external sub-regions have negligible overlap and can therefore be treated indepen-
dently.

In the external sub-region corresponding to positron–atom collisions, we expand

the total wave function in terms of channel functions Φ
Λ

i defined by (7.15) as
follows:

ΨΛj E (XN ; rpσp) =
n∑

i=1

Φ
Λ

i (XN ; r̂pσp)r
−1
p FΛi j (rp) , (7.34)

where j labels the linearly independent solutions. We then substitute this expansion
into the Schrödinger equation (7.3), where the Hamiltonian HN+p is defined by

(7.5), and project this equation onto the channel functions Φ
Λ

i . We then find that
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the reduced radial functions FΛi j (rp) in (7.34) satisfy the following set of coupled
second-order differential equations:

(
d2

dr2
p
− 	i (	i + 1)

r2
p

− 2(Z − N )

rp
+ k2

i

)
FΛi j (rp) = 2

n∑
i ′=1

VΛi i ′ (rp)F
Λ
i ′ j (rp) ,

i = 1, . . . , n, rp ≥ a0 , (7.35)

where 	i is the orbital angular momentum of the scattered positron, Z is the nuclear
charge number, N is the number of target electrons and k2

i is the square of the wave
number of the scattered positron defined by

k2
i = 2

(
E − eΛi

)
, i = 1, . . . , n , (7.36)

where

eΛi = 〈r−1
p Φ

Λ

i (XN ; r̂pσp)|HN |r−1
p Φ

Λ

i (XN ; r̂pσp)〉, i = 1, . . . , n. (7.37)

Finally in (7.35), VΛi i ′ (rp) is the potential matrix defined in analogy with (2.66) by

VΛi i ′ (rp) = 〈r−1
p Φ

Λ

i (XN ; r̂pσp)

∣∣∣∣∣−
N∑

k=1

1

ρk
+ N

rp

∣∣∣∣∣ r−1
p Φ

Λ

i ′ (XN ; r̂pσp)〉′,

i, i ′ = 1, . . . , n. (7.38)

We see that (7.35) has the same general form as the coupled second-order dif-
ferential equations (5.29) describing electron–atom collisions in the external region.
This is because the electron exchange terms in electron–atom collisions are confined
to the internal region and hence the potential in (5.29) only describes the long-range
interaction between the electron and the atom. The differences between (7.35) and
(5.29) then arise because the positron has positive charge and the electron nega-
tive charge. This results in the change in sign in the long-range Coulomb potential
−2(Z − N )/rp and in the sign of the potential matrix VΛi i ′ (rp). It follows that

VΛi i ′ (rp) = −V Γi i ′ (r), rp = r, i, i ′ = 1, . . . , n, (7.39)

where in the external region the conserved quantum numbers in positron–atom
collisions represented by Λ are the same as the conserved quantum numbers in
electron–atom collisions represented by Γ . Hence we find that the potential matrix
VΛi i ′ (rp) in (7.35) can be written as a summation over inverse powers of rp where the
coefficients in the expansion have the opposite sign to those given in (5.30).

In the external sub-region in Fig. 7.2 corresponding to positronium–ion colli-

sions, we expand the total wave function in terms of channel functions Θ
Λ

i defined
by (7.18) as follows:
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ΨΛj E (XN−1; ρNσNσp;RN ) =
m∑

i=1

Θ
Λ

i (XN−1; ρNσNσp; R̂N )R
−1
N GΛi j (RN ),

(7.40)

where j , which has the same meaning as in (7.34), labels the linearly independent
solutions. We then substitute this expansion into the Schrödinger equation (7.3),
where the Hamiltonian HN+p is now defined by (7.6) and where, as in Fig. 7.2,
we assume that the N th target atom electron has been captured to form positro-

nium. After projecting (7.3) onto the channel functions Θ
Λ

i we then find that the
reduced radial functions GΛi j (RN ) in (7.40) satisfy the following coupled second-
order differential equations:

(
d2

dR2
N

− ji ( ji + 1)

R2
N

+ K 2
i

)
GΛi j (RN ) = 4

m∑
i ′=1

UΛ
i i ′(RN )G

Λ
i ′ j (RN ),

i = 1, . . . ,m, RN ≥ A0 . (7.41)

In this equation ji , defined in Fig. 7.3, is the angular momentum quantum number in
the i th channel corresponding to the orbital motion of the positronium atom relative
to the residual ion. Also in (7.41) K 2

i is the square of the wave number Ki of the
positronium atom in the i th channel defined by

K 2
i = 4

[
E − (EN−1)i − (EpN )i

]
, (7.42)

where (EN−1)i is the energy of the residual (N − 1)-electron ion in the i th channel
defined by

(EN−1)i = 〈ΦN−1
i (XN−1)|HN−1|ΦN−1

i (XN−1)〉, i = 1, . . . ,m , (7.43)

and (EpN )i is the energy of the positronium atom in the i th channel defined by

(EpN )i = 〈φi (ρN )χ si ms (σNσp)|HpN |φi (ρN )χ si ms (σNσp)〉, i = 1, . . . ,m ,
(7.44)

where HN−1 and HpN are defined by (7.7) and (7.8), respectively, with i replaced
by N . Finally in (7.41), UΛ

i i ′(RN ) is the potential matrix defined by

UΛ
i i ′(RN ) = 〈R−1

N Θ
Λ

i (XN−1; ρNσNσp; R̂N )|VN−1 pN |
× R−1

N Θ
Λ

i ′ (XN−1; ρNσNσp; R̂N )〉, i, i ′ = 1, . . . ,m, (7.45)

where VN−1 pN is the potential interaction between the residual ion and the positro-
nium atom defined by (7.9), with i replaced by N .
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Having determined the coupled second-order differential equations (7.35) and
(7.41), satisfied by the functions FΛi j (rp) and GΛi j (RN ), respectively, the generalized

(n+m)× (n+m)-dimensional R-matrix RΛ defined by (7.30) and (7.31) can then
be propagated outwards from the boundaries rp = a0 and RN = A0 to the outer
boundaries rp = ap and RN = Aq in Fig. 7.2 using the procedure described in
Appendix E.6. The R-matrix at the outer boundaries then provides the boundary
condition for the solution in the asymptotic region, discussed in Sect. 7.1.4.

7.1.4 Asymptotic Region Solution

The solution of (7.3) in the asymptotic region, where rp ≥ ap and RN ≥ Aq in
Fig. 7.2, proceeds using an extension of the method adopted in the asymptotic region
in electron–atom collisions, discussed in Sect. 5.1.4. First, we assume that we have
chosen the radii ap and Aq in Fig. 7.2 large enough that the asymptotic expansion
methods discussed in Appendix F.1 can be used to obtain accurate linearly inde-
pendent solutions of (7.35) when rp ≥ ap and of (7.41) when RN ≥ Aq . Follow-
ing our discussion in Sect. 5.1.4, we then assume that the n positron–atom colli-
sion channels corresponding to (7.35), which we distinguish by a bar, are ordered
so that

k
2
1 ≥ k

2
2 ≥ · · · ≥ k

2
n, (7.46)

where at the energy E of interest the first na channels are open with k
2
i ≥ 0 and the

last nb channels are closed with k
2
i < 0, where na + nb = n. We then determine

n + na linearly independent asymptotic solutions of (7.35), which are regular as
rp →∞ and which satisfy the following asymptotic boundary conditions:

si j (rp) ∼
rp→∞ k

−1/2
i sin θ iδi j , i = 1, . . . , n, j = 1, . . . , na,

ci j (rp) ∼
rp→∞ k

−1/2
i cos θ iδi j , i = 1, . . . , n, j = 1, . . . , na,

ci j (rp) ∼
rp→∞ exp(−φi )δi j , i = 1, . . . , n, j = na + 1, . . . , n, (7.47)

where θ i and φi are defined by equations analogous to (5.38), (5.39), (5.40) and
(5.41). Also, we assume that the m positronium–ion collision channels correspond-
ing to (7.41), which we distinguish by a tilde, are ordered so that

k̃ 2
1 ≥ k̃ 2

2 ≥ · · · ≥ k̃ 2
m, (7.48)

where at the energy E of interest the first ma channels are open with k̃2
i ≥ 0 and the

last mb channels are closed with k̃2
i < 0, where ma + mb = m. We then determine
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m + ma linearly independent asymptotic solutions of (7.41), which are regular as
RN →∞ and which satisfy the following asymptotic boundary conditions:

s̃i j (RN ) ∼
RN→∞ k̃ −1/2

i sin θ̃iδi j , i = 1, . . . ,m, j = 1, . . . ,ma,

c̃i j (RN ) ∼
RN→∞ k̃ −1/2

i cos θ̃iδi j , i = 1, . . . ,m, j = 1, . . . ,ma,

c̃i j (RN ) ∼
RN→∞ exp(−φ̃i )δi j , i = 1, . . . ,m, j = ma + 1, . . . ,m , (7.49)

where θ̃i and φ̃i are also defined by equations analogous to (5.38), (5.39), (5.40)
and (5.41).

We observe that at an energy E where na channels of (7.35) and ma channels of
(7.41) are open, we can determine na + ma linearly independent physical solutions
of the combined internal and external region equations which vanish at the origin
and which are finite at infinity. In analogy with (5.42), these solutions can be written
in terms of the n + na asymptotic solutions defined by (7.47) and the m + ma

asymptotic solutions defined by (7.49) as follows

FΛ(ρ) = s(ρ)+ c(ρ)NΛ, rp ≥ ap, RN ≥ Aq , (7.50)

where we have written s(ρ) to represent s(r) or s̃(RN ) and c(ρ) to represent c(r)
or c̃(RN ) and where the variable ρ represents rp in the channels corresponding to
(7.35) and RN in the channels corresponding to (7.41). It follows that in (7.50)

FΛ(ρ) has dimension (n + m)× (na + ma),

s(ρ) has dimension (n + m)× (na + ma),

c(ρ) has dimension (n + m)× (n + m),

NΛ has dimension (n + m)× (na + ma). (7.51)

Also, so that the ordering of open and closed channels in (7.50) is the same as in
(5.42), we have re-ordered the channels in (7.50) so that the first na + ma channels
are open and the last nb + mb channels are closed. Hence the ordering of open and
closed channels in (7.50) is as follows:

channels 1 to na ≡ na open channels in (7.35),

channels na + 1 to na + ma ≡ ma open channels in (7.41),

channels na + ma + 1 to n + ma ≡ nb closed channels in (7.35),

channels n + ma + 1 to n + m ≡ mb closed channels in (7.41). (7.52)

In analogy with (5.43), the matrix NΛ in (7.50) can then be rewritten in the form

NΛ =
[

KΛ

LΛ

]
, (7.53)
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where KΛ is the (na + ma) × (na + ma)-dimensional K -matrix which cou-
ples the na + ma open channels in (7.35) and (7.41) and LΛ is a subsidiary
(nb+mb)×(na+ma)-dimensional matrix which couples the solutions in (7.47) and
(7.49) which vanish asymptotically. We see that KΛ postmultiplies the first na+ma

columns in the matrix c(ρ) in (7.50) and LΛ postmultiplies the last nb+mb columns
of c(ρ).

Following our discussion in Sect. 5.1.4, we now express the (na + ma)× (na +
ma)-dimensional K -matrix coupling the open channels in (7.35) and (7.41) in terms
of the (n + m)× (n + m)-dimensional R-matrix RΛ, defined on the outer bound-
aries of the external region rp = ap and RN = Aq in Fig. 7.2, obtained using
the propagator method described in Appendix E.6, or an equivalent procedure. The
R-matrix on the boundary rp = ap and RN = Aq is then defined in analogy with
(E.116) and (E.117) as follows:

FΛ(ap, Aq) = RΛ11(ap, Aq)apFΛ
′
(ap, Aq)+ RΛ12(ap, Aq)AqGΛ

′
(ap, Aq),

GΛ(ap, Aq) = RΛ21(ap, Aq)apFΛ
′
(ap, Aq)+ RΛ22(ap, Aq)AqFΛ

′
(ap, Aq), (7.54)

where FΛ′ and GΛ′ are the derivatives dFΛ/drp and dGΛ/dRN , respectively.
We now observe that the components of the asymptotic solution FΛ, defined by

(7.50), and their derivatives, defined by

FΛ′(ρ) = s′(ρ)+ c′(ρ)NΛ, rp ≥ ap, RN ≥ Aq , (7.55)

correspond on the boundary rp = ap and RN = Aq to solutions (7.54), after
appropriate re-ordering corresponding to (7.52). Hence, following our analysis in
Sect. 5.1.4, we can substitute the appropriate re-ordered asymptotic solutions FΛ

and FΛ′ defined by (7.50) and (7.55) on the boundary rp = ap and RN = Aq

of the external region for the functions FΛ and GΛ and the derivatives FΛ′ and
GΛ′ in (7.54). This yields a set of n+m linear simultaneous equations with na+nb

right-hand sides, which are analogous to (5.46). The solution of these equations then
yields the elements of the (n + m)× (na + ma)-dimensional matrix NΛ and hence
from (7.53) the (na + ma)× (na + ma)-dimensional K -matrix KΛ.

It follows from (7.50) that the required physical solution matrix FΛ(ρ) satisfies
the asymptotic boundary condition

FΛ(ρ) ∼
rp→∞
RN→∞

s(ρ)+ c(ρ)KΛ, (7.56)

where we remember from (7.52) that the first na channels in (7.56) correspond
to open positron–atom channels, and the next ma channels in (7.56) correspond
to open positronium–ion channels. Hence the K -matrix KΛ couples the na open
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positron–atom channels and the ma open positronium–ion channels. The (na +
ma)× (na +ma)-dimensional S-matrix SΛ is then defined in terms of the K -matrix
KΛ in the usual way by the matrix equation

SΛ = I+ iKΛ

I− iKΛ
. (7.57)

The corresponding T -matrix and cross sections describing transitions between the
open positron–atom channels and the open positronium–ion channels can then be
determined using the procedure described in Sect. 2.5. The solutions in the inter-
nal, external and asymptotic regions in Fig. 7.2 can be determined in a similar
way for all relevant conserved quantum numbers Λ defined by (7.12) enabling the
corresponding cross sections for transitions between the open positron–atom and
positronium–ion channels to be determined.

7.2 Positron and Positronium Collision Calculations

In recent years detailed positron– and positronium–atom collision calculations have
been carried out using R-matrix computer programs, where a major motivation for
these theoretical and computational advances has been new developments in exper-
iments. In addition to R-matrix calculations for positron collisions with atomic
hydrogen carried out by Higgins et al. [467, 468, 470] and Kernoghan et al.
[531, 532] detailed R-matrix calculations have been carried out for positron col-
lisions with “one-electron” alkali metal atoms Li, Na, K, Rb and Cs by McAlin-
den et al. [607–611], Campbell et al. [202] and Walters et al. [950, 951] and
with “two-electron” atoms He, Mg, Ca and Zn by Campbell et al. [202]. Also
in recent years there has been a rapid increase in the experimental capability to
produce monoenergetic, energy-tunable beams of the longer life ortho-positronium
which are used in collision experiments, for example, by Laricchia et al. [574,
575, 577–580], Charlton et al. [215, 216], Zafar et al. [988–990], Garner et al.
[362–364], Gilbert et al. [372], Armitage et al. [20] and Brawley et al. [124]. These
developments have stimulated considerable interest in the calculation of positron-
ium collisions with atoms and detailed R-matrix calculations have been carried out
for positronium collisions with H by Campbell et al. [201] and Blackwood et al.
[112–114] and with He, Na, Ar, Kr and Xe by Blackwood et al. [111, 113]. We will
discuss examples of these collision calculations in the following sections.

7.2.1 Positron Collisions with H

As our first example we consider R-matrix calculations of positron collisions with
atomic hydrogen at low and intermediate energies carried out by Kernoghan et al.
[531, 532]. In this work they considered the following processes:
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e+ + H(1s)→ H(1s)+ e+ elastic scattering,

→ H(2s, 2p)+ e+ excitation,

→ H+ + e− + e+ ionization,

→ H+ + Ps(1s, 2s, 2p) Ps formation,

(7.58)

where they compared their results with experimental measurements by Jones et al.
[508] and Zhou et al. [1010].

The R-matrix calculations were carried out in the energy range 0–110 eV using a
33-state approximation which included in expansion (7.13) the 1s, 2s and 2p eigen-
states of both positronium and atomic hydrogen with 27 atomic hydrogen pseu-
dostates, which represented the hydrogen atom ionization continuum. The results
presented in Fig. 7.4 show excellent agreement between the calculations and exper-
iment for the total positronium formation cross section, the ionization cross section
and the total cross section over the full range of energies considered, showing that
the 33-state calculation can accurately describe the main features of the cross section
for positron collisions with the ground state of atomic hydrogen. In particular, the
inclusion of pseudostates in this calculation gives an accurate representation of the
ionization continuum at intermediate energies.

Fig. 7.4 Positron collisions with atomic hydrogen: (a) total positronium formation cross section,
(b) ionization cross section, (c) total cross section. Solid curve: 33-state calculation [532]; points:
experimental data from [508, 1010] (Fig. 1 from [953])
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7.2.2 Positronium Collisions with He

We consider next R-matrix calculations of positronium collisions with helium
atoms where initially the target helium atom is restricted to its 1Se ground state.
This “frozen-target” approximation has been successfully applied by Blackwood
et al. [111] to describe elastic scattering, positronium excitation and positronium
ionization in the energy range 0–40 eV. However, this work also highlighted sig-
nificant discrepancies between theory and experiment for low-energy positronium–
helium atom collisions. Hence in Sect. 7.2.3 we consider calculations for positron-
ium collisions with helium and hydrogen atoms by Walters et al. [952] which, by
including virtual transitions in the target, show the importance of target polarization
in low-energy collisions.

7.2.2.1 Frozen-Target Approximation

We consider first R-matrix calculations for positronium collisions with helium
atoms carried out by Blackwood et al. [111] who studied the following collision
processes:

Ps+ He→ He+ Ps elastic scattering,

→ He+ Ps(n = 2) positronium excitation,

→ He+ e− + e+ positronium ionization.

(7.59)

In this work results from three levels of approximation were reported, where in each
case the frozen-target approximation is adopted where only the 1Se ground state
of He was retained in the second expansion in (7.13). In the first static exchange
approximation, only the Ps(1s) state and the He(1Se) state were retained in (7.13).
In the second nine-state approximation (9ST), the 1s, 2s and 2p eigenstates of Ps
together with 3s, 3p, 3d, 4s, 4p, 4d pseudostates were retained in (7.13). Finally, in
the third 22-state approximation (22ST), the 1s, 2s and 2p eigenstates of Ps as well
as 3s–7s, 3p–7p, 3d–7d and 4f–7f pseudostates were retained in (7.13). In all of these
calculations we note that since the target helium atom is restricted to the 1Se ground
state, an ortho-positronium projectile cannot be converted into a para-positronium
projectile or vice versa. Hence in this approximation the collision cross sections for
ortho-positronium and para-positronium collisions are the same.

We show in Fig. 7.5 the total cross section for the 22ST approximation and its
principal components, i.e. the elastic cross section, the positronium ionization (frag-
mentation) cross section and the positronium excitation cross section to the 2s and
2p states, calculated by Blackwood et al. [111]. The ionization cross section was
extracted from the calculation [532, 611] by taking

σion(Ps) =
∑

j

f jσ j (Ps), (7.60)
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Fig. 7.5 Cross sections for positronium collisions with helium atoms calculated in the 22ST
R-matrix approximation by Blackwood et al. [111]. Solid curve: total cross section; short dashed
curve: elastic scattering cross section; dash-dot curve: Ps ionization (fragmentation) cross section;
long-dashed curve: Ps(n = 2) excitation cross section; solid circles: total cross section measure-
ments by Garner et al. [362, 363] (Fig. 2 from [111])

where σ j (Ps) is the cross section for exciting the j th positronium pseudostate and
f j is the fraction of this state overlapping the positronium continuum. We see from
this figure that the calculated total cross section is in good agreement with the mea-
surements of Garner et al. [362, 363].

We also compare the calculated positronium ionization cross section with later
measurements by Armitage et al. [20] and with Born approximation calculations by
Biswas and Adhikari [109] in Fig. 7.6. We see from this figure that including pseu-
dostates in the R-matrix calculation gives a good representation of the ionization

Fig. 7.6 Positronium
ionization cross section
for positronium collisions
with helium atoms. Solid
curve: R-matrix calculation
by Blackwood et al. [111];
dashed curve: Born
approximation calculation
by Biswas and Adhikari
[109]; solid circles:
experimental measurements
by Armitage et al. [20]
(Fig. 2. from [20])
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cross section in this energy range. However, it is also clear from this figure that the
Born approximation is, as expected, not accurate at these relatively low energies.

7.2.3 Target Polarization in Positronium Collisions

In order to study the effect of target polarization on low-energy collision cross
sections, Walters et al. [952] carried out a series of calculations for positronium
collisions with helium and atomic hydrogen targets including excited states and
pseudostates in both the expansions of the positronium and target states.

In the case of S-wave positronium collisions with helium, 1s, 2s and 2p eigen-
states and 3s, 3p, 3d, 4s, 4p, 4d pseudostates of Ps together with 1 1Se, 2 1Se, 2 1Po

eigenstates and 3 1Se, 3 1Po, 3 1De, 4 1Se, 4 1Po, 4 1De pseudostates of helium were
retained in expansion (7.13) giving a 9Ps9He calculation. In the case of P-wave
positronium collisions with helium some numerical instabilities were encountered

Fig. 7.7 S-wave and P-wave cross sections for Ps(1s) elastic scattering by He(1 1Se) and H(1s).
The Ps–H cross sections are for collisions in the electron spin triplet state. For He: solid curve,
9Ps9He approximation for S-wave and 7Ps7He approximation for P-wave; dashed curve, 9Ps1He
approximation for S-wave and 7Ps1He approximation for P-wave. For H: solid curves, 9Ps9H
approximation; dashed curves, 9Ps1H approximation for S-wave and for P-wave (Fig. 5 from
[952])
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so a reduced 7Ps7He calculation was adopted in which the positronium and helium
D-wave pseudostates were omitted. We compare in Fig. 7.7 the corresponding S-
and P-wave Ps–He elastic scattering cross sections with results obtained using
frozen He target approximations corresponding to 9Ps1He for S-wave and 7Ps1He
for P-wave scattering. Also shown in Fig. 7.7 are corresponding results for positro-
nium collisions with atomic hydrogen in the triplet electronic spin state. We see
from this figure that the results for both atomic hydrogen and helium targets are
similar with a significant reduction in the cross section occurring at low energies
when virtual transitions in the target are included in the calculation. Also we observe
that the reduction is more significant for atomic hydrogen, probably because of the
higher excitation energies for the He target.

In conclusion, these calculations show that target polarization plays an important
role in low-energy positronium–atom collisions and that virtual transitions of the
target must be included to obtain accurate low-energy collision cross sections.
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