
Chapter 5
Electron Collisions with Atoms and Ions

In this chapter we commence our discussion of multichannel R-matrix theory by
considering its application in the study of low-energy electron collisions with atoms
and atomic ions. As well as describing an important application of the theory, this
chapter provides an introduction to the basic concepts of multichannel R-matrix the-
ory which will be applied in later chapters to a wide range of other atomic, molecular
and optical collision processes. We restrict our consideration in this chapter to low-
energy electron collisions, where only elastic scattering and excitation processes are
energetically allowed or play a significant role in the collision process. We consider
electron collisions with atoms and atomic ions at intermediate energies, which range
from close to the ionization threshold to several times this threshold, in Chap. 6.

We introduce multichannel R-matrix theory in Sect. 5.1 by considering first
electron collisions with light multi-electron atoms and atomic ions where an accu-
rate representation of the collision process can be obtained by solving the time-
independent non-relativistic Schrödinger equation. We commence in Sect. 5.1.1
with a general introduction to R-matrix theory describing the partitioning of config-
uration space adopted in this theory. We then give a brief overview of the computer
programs that have been developed to implement this theory, where we mention
further developments of these programs to include relativistic effects which can be
described using the Breit–Pauli Hamiltonian. In the rest of this section we describe
in detail the solution of the Schrödinger equation, first in an internal region in Sect.
5.1.2, then in an external region in Sect. 5.1.3 and finally in an asymptotic region
in Sect. 5.1.4, yielding the K -matrix and S-matrix from which the collision cross
sections can be determined.

In Sect. 5.2, we derive a variational principle for the R-matrix defined on the
boundary of the internal region. We consider explicitly low-energy electron colli-
sions with atoms and atomic ions although the variational principle that we obtain
will be applicable for any multichannel collision process which can be described
in the internal region by coupled second-order integrodifferential equations. In
Sect. 5.3 we consider methods for determining zero-order radial continuum basis
orbitals which represent the scattered electron in the expansion of the total wave
function in the internal region. We also discuss methods for calculating corrections
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to the R-matrix and wave function. We consider first in Sect. 5.3.1 an approach
using basis orbitals which satisfy homogeneous boundary conditions on the surface
of the internal region. We then show in Sect. 5.3.2 that when the radial contin-
uum basis orbitals satisfy homogeneous boundary conditions a Buttle correction to
the R-matrix must be included to obtain accurate results. We also discuss how a
Buttle-type correction to the wave function near the boundary of the internal region
can be calculated, which may be required in some applications. In Sect. 5.3.3, we
summarize methods for determining analytic continuum basis orbitals which sat-
isfy arbitrary boundary conditions on the surface of the internal region, where these
methods have been reviewed in Sect. 4.4. In recent years these basis orbitals have
found increasing use in many applications of R-matrix theory, ranging from electron
collisions with atoms and molecules to photoionization and multiphoton ionization
processes. Then, in Sect. 5.3.4 we describe a partitioned R-matrix method where the
calculation of the R-matrix is sub-divided into two parts: a low-energy part which is
accurately determined and a high-energy part for which an approximation is derived
which enables much larger problems to be treated.

Next, in Sect. 5.4 we consider electron collisions with atoms and ions with higher
nuclear charge number Z where relativistic effects must be included in the calcu-
lation. Initially as Z increases these effects are small and in this case the colli-
sion calculation can first be carried out in L Sπ -coupling, using the non-relativistic
Hamiltonian. The K -matrices, obtained from this calculation, are then recoupled to
give K -matrices, cross sections and collision strengths including relativistic effects.
We consider this approach in Sect. 5.4.1. Then as the nuclear charge number Z
increases further, relativistic effects must be included in both the target wave func-
tion and the collision wave function. Provided Z is not too large, this can be achieved
by replacing the non-relativistic Hamiltonian in these calculations by the Breit–
Pauli Hamiltonian. We consider this approach in Sect. 5.4.2. Next, in Sect. 5.4.3,
we consider a frame-transformation theory approach where relativistic effects are
omitted, or only partly included, in the internal region with considerable saving in
computational effort. However, for the heaviest atomic targets it is necessary to treat
both the target and the collision wave functions using the Dirac Hamiltonian. We
consider this approach in Sect. 5.5 where we follow our analysis of non-relativistic
collisions, in Sect. 5.1, by considering the solution in internal, external and asymp-
totic regions in turn, enabling the K -matrix, S-matrix and cross sections to be
determined.

Finally, in Sect. 5.6 we describe the results of some representative low-energy
electron–atom and electron–ion collision calculations.

5.1 Multichannel R-Matrix Theory

In this section we introduce R-matrix theory by considering low-energy electron
collisions with multi-electron atoms and ions which are accurately described by the
non-relativistic Schrödinger equation.
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5.1.1 Introduction and Computer Programs

We consider the following low-energy electron collision process:

e− + Ai → A j + e−, (5.1)

where Ai and A j are the initial and final bound states of the target atom or ion
which we assume contains N electrons and has nuclear charge number Z . For light
atoms and ions this process can be accurately described by the time-independent
Schrödinger equation

HN+1Ψ = EΨ, (5.2)

whereΨ is the collision wave function and HN+1 is the non-relativistic Hamiltonian
defined in atomic units by

HN+1 =
N+1∑
i=1

(
−1

2
∇2

i −
Z

ri

)
+

N+1∑
i> j=1

1

ri j
. (5.3)

In this equation we have taken the origin of coordinates to be the target nucleus,
which we assume has infinite mass, and we have written ri j =

∣∣ri − r j
∣∣ where ri

and r j are the vector coordinates of the i th and j th electrons.
In order to solve (5.2), and the corresponding equations in relativistic R-matrix

theory discussed in Sects. 5.4 and 5.5, the theory commences, as briefly discussed
in our introduction to Chap. 4, by partitioning configuration space into an internal
region, an external region and an asymptotic region as shown in Fig. 5.1. The three
regions are separated, as shown in this figure, by spheres of radius r = a0 and
ap which are centered on the target nucleus where r is the radial coordinate of the
scattered electron. We now consider the calculation of the solutions in each of these
regions in turn.

In the internal region 0 ≤ r ≤ a0, where r is the radial coordinate of the scat-
tered electron relative to the target nucleus, electron exchange and electron–electron
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Fig. 5.1 Partitioning of configuration space in R-matrix theory of electron–atom and electron–ion
collisions
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correlation effects between the scattered electron and the N electrons in the target
are important and the (N+1)-electron collision complex behaves in a similar way to
a bound state. Consequently, a configuration interaction expansion of this complex,
similar to that used in Sect. 2.2 for target eigenstates and pseudostates, is adopted.
We discuss the solution in this region in Sect. 5.1.2 and we consider the continuum
basis orbitals which are used to represent the scattered electron in this region in
Sect. 5.3.

In the external region a0 ≤ r ≤ ap, electron exchange and correlation effects
between the scattered electron and the target are negligible if the radius a0 of the
sphere is chosen, as discussed in Sect. 2.3.2, so that the charge distributions of the
target eigenstates and pseudostates retained in the configuration interaction expan-
sion in the internal region are negligible for r ≥ a0. This is achieved if we choose
the radius a0 so that

Pn	(r) ≈ 0, r ≥ a0, (5.4)

where the Pn	(r) are the reduced radial physical and pseudo-orbitals used to con-
struct the target eigenstates and pseudostates. With this definition, the scattered
electron then moves in the external region in the long-range multipole potential
of the target, defined by (2.73) and (2.74), and the corresponding reduced radial
wave functions describing the motion of this electron satisfy the coupled second-
order differential equations (2.76). The solution in this region can be obtained by
sub-dividing it into p sub-regions, as illustrated in Fig. 5.1, and using a standard
method for solving ordinary coupled second-order differential equations. We dis-
cuss the solution in the external region in Sect. 5.1.3 and we consider R-matrix and
log-derivative methods for propagating the solution of these equations across the p
sub-regions in Appendix E.

Finally, in the asymptotic region r ≥ ap, the solution is represented by an asymp-
totic expansion where ap is chosen large enough that the expansion yields accurate
results on this boundary. We show how the solution can be fitted to this expansion
at r = ap in Sect. 5.1.4, yielding the K -matrix, S-matrix and cross sections and we
consider asymptotic expansion methods in Appendix F.1.

Hence we see that by a suitable choice of radii a0 and ap, the wave function in the
internal, external and asymptotic regions have very different properties and thus it is
appropriate both from a physical and from a computational point of view to obtain
the solutions in these regions independently and then to link these solutions by the
R-matrix on their common boundaries. It is also important to appreciate that this
sub-division of configuration space is appropriate even in the presence of long-range
Coulomb potentials, since electron exchange and correlation effects are confined to
a volume defined by the range of the target states and pseudostates included in the
calculation which decay exponentially at large distances.

To conclude this introductory section we briefly summarize in Fig. 5.2 the
computer programs developed to obtain accurate target states and electron–atom
and electron–ion phase shifts and collision cross sections, when relativistic effects
are either not important or can be accurately described using the Breit–Pauli
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Target

CIV3 or SUPERSTRUCTURE or AUTOSTRUCTURE or MCHF

Internal Region

RMATRXI or RMATRXII or BSR

External and Asymptotic Regions

FARM or STGF

Fig. 5.2 Computer programs which have been developed and used in R-matrix electron–atom
and electron–ion collision calculations classified into three stages corresponding to (i) target state
calculations; (ii) internal region calculations yielding the R-matrix on the boundary r = a0; (iii)
external and asymptotic region calculations yielding the K -matrix, S-matrix and collision cross
sections

Hamiltonian, discussed in Sect. 5.4.2. We will briefly summarize the corresponding
computer programs used when the solution of the Dirac equation is appropriate in
Sect. 5.5.1.

In the first stage of the calculation shown in Fig. 5.2 we mention four programs
that have been written to obtain accurate target state energies and wave functions,
which are used in the following stages of the R-matrix calculations. These are

i. CIV3 written by Hibbert [464] and extended by Glass and Hibbert [381, 383]
ii. SUPERSTRUCTURE written by Eissner et al. [290]

iii. AUTOSTRUCTURE written by Badnell [30, 31], which incorporates
SUPERSTRUCTURE

iv. MCHF written by Froese Fischer et al. [344–350].

An important component of these atomic structure calculations are general
programs to calculate angular integrals written by Hibbert and Froese Fischer
[463, 466].

In the second stage of the calculation shown in Fig. 5.2 we mention three pro-
grams written to solve the electron–atom collision problem in the R-matrix internal
region shown in Fig. 5.1. These are

i. RMATRXI written by Berrington et al. [95, 98] and extended to include rel-
ativistic effects using the Breit–Pauli Hamiltonian by Scott and Burke [843],
Scott and Taylor [844] and Berrington et al. [102]. A parallel version of
RMATRXI has been developed by Mitnik et al. [654, 655] which is summarized
by Ballance and Griffin [43], and a no-exchange program RMATRX NX has
been developed by V.M. Burke et al. [192], which enables R-matrix calculations
at higher energies and for higher angular momenta to be carried out efficiently.

ii. RMATRXII written by Burke et al. [185], which extended the procedure
adopted in RMATRXI for evaluating the angular integrals. Relativistic effects



232 5 Electron Collisions with Atoms and Ions

are not included in RMATRXII. Instead, an extra stage FINE, transforms the
non-relativistic R-matrix surface amplitudes calculated on the internal region
boundary r = a0 to include relativistic fine-structure effects, ready for the
inclusion of these effects in the external region calculation.

iii. BSR written by Zatsarinny [992], which includes relativistic effects using the
Breit–Pauli Hamiltonian. It describes the target states using non-orthogonal
term-dependent orbitals and represents the bound and continuum orbitals by
expansions in B-splines, discussed in Sect. 4.4.7.

In the third stage of the calculation shown in Fig. 5.2 we mention two programs
that have been written to solve the electron–atom collision problem in the R-matrix
external and asymptotic regions shown in Fig. 5.1. These are

i. FARM, written by V.M. Burke and Noble [191], which uses R-matrix propagator
methods, discussed in Appendices E.1 and E.3. A parallel version of FARM
(PFARM) has been developed by Sunderland et al. [896] as part of the electron–
atom and electron–ion collision program PRMAT which combines PFARM with
the internal region program RMATRXII.

ii. STGF, written by Seaton [860], which calculates solutions which are correct to
second order in the long-range potentials. A parallel version PSTGF which runs
on massively parallel computers has been developed by Mitnik et al. [654].

These programs enable the K -matrix, S-matrix and hence collision cross sections
to be determined.

5.1.2 Internal Region Solution

We consider first the solution of the non-relativistic Schrödinger equation (5.2) in
the internal region defined in Fig. 5.1 for each set of conserved quantum numbers Γ
defined by (2.58). The R-matrix expansion of the collision wave function Ψ in this
region at a total energy E takes the form

ΨΓj E (XN+1) =
nt∑

k=1

ψΓk (XN+1)A
Γ
k j (E), (5.5)

where j labels the linearly independent solutions of (5.2), ψΓk are energy-indepen-
dent basis functions and AΓk j (E) are energy-dependent expansion coefficients,
which depend on the asymptotic boundary conditions satisfied by the wave function
ΨΓj E at the energy E . Following our discussion in Sect. 2.3, we expand the basis

functions ψΓk in an R-matrix expansion, which has the same general form as the
close coupling with pseudostates expansion (2.57), which we write here as



5.1 Multichannel R-Matrix Theory 233

ψΓk (XN+1) = A
n∑

i=1

nc∑
j=1

Φ
Γ

i (XN ; r̂N+1σN+1)r
−1
N+1u0

i j (rN+1)a
Γ
i jk

+
m∑

i=1

χΓi (XN+1)b
Γ
ik, k = 1, . . . , nt , (5.6)

where n is the number of channels retained in the expansion, nc is the number
of radial continuum basis orbitals retained in each channel, m is the number of
quadratically integrable functions and nt = nnc + m is the total number of linearly

independent basis functions in this expansion. The channel functions Φ
Γ

i and the
quadratically integrable functions χΓi in (5.6) are defined following (2.57) and do
not need to be discussed further here except to note that condition (5.4) satisfied by
the physical and pseudo-orbitals implies that these functions are negligible by the
boundary r = a0 of the internal region. However, the radial continuum basis orbitals
u0

i j (r), j = 1, . . . , nc in (5.6), which replace the reduced radial functions FΓi j (r) in
(2.57), are now defined only over the range 0 ≤ r ≤ a0. They represent the radial
motion of the scattered electron in the internal region and are chosen to vanish at
the origin and are in general non-zero on the boundary r = a0 of the internal region,
thus providing a link between the solutions in the internal and external regions. We
will consider their explicit form in Sect. 5.3. Also we note that the coefficients bΓik
multiplying the quadratically integrable functions in (5.6) are related to the corre-
sponding coefficients in (2.57) through the expansion of the collision wave function
ΨΓj E in terms of the basis functions ψΓk given by (5.5). Finally we determine the

coefficients aΓi jk and bΓik in (5.6) by diagonalizing HN+1 + LN+1 in this basis as
follows:

〈ψΓk |HN+1 + LN+1|ψΓk′ 〉int = EΓk δkk′ , k, k′ = 1, . . . , nt , (5.7)

where LN+1 is a Bloch operator [118], discussed below, and where the integration in
this equation is carried out over the space and spin coordinates of all N+1 electrons
and where the radial integrals are confined to the internal region.

The Bloch operator LN+1 in (5.7) has been introduced, following our discussion
in potential scattering in Sect. 4.2, since the kinetic energy operators − 1

2∇2
i , i =

1, . . . , N + 1, in HN+1 are not hermitian over the internal region in the space of
functions satisfying arbitrary boundary conditions on the surface of the sphere of
radius r = a0 enveloping this region. The appropriate Bloch operator which ensures
that HN+1 + LN+1 is hermitian is defined by the equation

LN+1 = 1

2

N+1∑
i=1

δ(ri − a0)

(
d

dri
− b0 − 1

ri

)
, (5.8)

where, as in potential scattering, b0 is an arbitrary constant which can depend on
the channel of the scattered electron and which is set zero in most applications. We
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can prove that HN+1+LN+1 is hermitian in the internal region by showing that the
following integral is zero:

〈ψ(1)|HN+1 + LN+1|ψ(2)〉int − 〈ψ(2)|HN+1 + LN+1|ψ(1)〉int = 0, (5.9)

where ψ(1) and ψ(2), which are defined over the internal region, are arbitrary
quadratically integrable functions of the space and spin coordinates x1, . . . , xN+1
of the N + 1 interacting electrons which vanish at the origin and satisfy arbitrary
boundary conditions on the surface r = a0 of the internal region. Also in (5.9) the
integrations are carried out over all N + 1 electronic space and spin coordinates,
where the integration over radial coordinates ri of the electrons is restricted to the
internal region so that

0 ≤ ri ≤ a0, i = 1, . . . , N + 1. (5.10)

In the evaluation of (5.9) we have to consider radial integrals of the form

I =
∫ a0

0

{
r−1v(r)

[
− 1

2r2

d

dr
r2 d

dr
+ 1

2
δ(r − a0)

(
d

dr
− b0 − 1

r

)]
r−1w(r)

}

× r2dr, (5.11)

where v(r) and w(r) are arbitrary differentiable functions of r , which are quadrat-
ically integrable over the internal region and which vanish at the origin and satisfy
arbitrary boundary conditions at r = a0. Also the first term in the square brackets
in (5.11) is the radial part of the kinetic energy operator − 1

2∇2. It is straightforward
to show that (5.11) reduces to

I =
∫ a0

0
v(r)

[
−1

2

d2

dr2
+ 1

2
δ(r − a0)

(
d

dr
− b0

r

)]
w(r)dr. (5.12)

It then follows that, as in potential scattering, see (4.32), the operator in square
brackets in (5.12) is hermitian over the internal region for arbitrary b0 and hence the
integral I in (5.11) can be rewritten as

I =
∫ a0

0

{
r−1w(r)

[
− 1

2r2

d

dr
r2 d

dr
+ 1

2
δ(r − a0)

(
d

dr
− b0 − 1

r

)]
r−1v(r)

}

× r2dr. (5.13)

This shows that the operator in the square brackets in (5.11) and (5.13) is hermitian
over the internal region and hence, from (5.9), that the operator

HN+1 + LN+1 (5.14)

is hermitian over the internal region.
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We can now solve (5.2) in the internal region, for each set of conserved quantum
numbers Γ and for each linearly independent solution labelled by j , by including
the Bloch operator term LN+1Ψ on both sides of this equation giving

(HN+1 + LN+1 − E) Ψ Γj E = LN+1Ψ
Γ
j E , (5.15)

where the solution ΨΓj E corresponds to (5.5), (5.6) and (5.7). Equation (5.15) then
has the formal solution in the internal region

ΨΓj E = (HN+1 + LN+1 − E)−1 LN+1Ψ
Γ
j E . (5.16)

The spectral representation of the Green’s function (HN+1 + LN+1 − E)−1 in
(5.16) can be obtained in terms of the R-matrix basis functions ψΓk defined by (5.6)
and (5.7). Equation (5.16) then becomes

|ΨΓj E 〉 =
nt∑

k=1

|ψΓk 〉
1

EΓk − E
〈ψΓk |LN+1|ΨΓj E 〉. (5.17)

We then project (5.17) onto the n channel functions Φ
Γ

i (XN ; r̂N+1σN+1) and eval-
uate it on the boundary rN+1 = a0 of the internal region. We find using (5.5) and
(5.6) that the reduced radial wave functions FΓi j (r) describing the motion of the
scattered electron in the i th channel at the energy E satisfy the equation

FΓi j (a0) =
n∑

i ′=1

RΓi i ′(E)

(
a0

dFΓi ′ j
dr
− b0 FΓi ′ j

)
r = a0

, i = 1, . . . , n, (5.18)

where the elements of the R-matrix RΓi i ′(E) are defined by

RΓi i ′(E) =
1

2a0

nt∑
k=1

wΓikw
Γ
i ′k

EΓk − E
, i, i ′ = 1, . . . , n, (5.19)

the functions FΓi j (r) are defined by

FΓi j (rN+1) = 〈r−1
N+1Φ

Γ

i |ΨΓj E 〉′, i = 1, . . . , n (5.20)

and the surface amplitudes wΓik are defined by

wΓik = 〈r−1
N+1Φ

Γ

i |ψΓk 〉′rN+1 = a0

=
nc∑

j=1

u0
i j (a0)a

Γ
i jk, i = 1, . . . , n, k = 1, . . . , nt . (5.21)
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We can also write down an alternative expression for the reduced radial wave func-
tions FΓi j (r) in the internal region by substituting for ΨΓj E from (5.5) into (5.20)
giving

FΓi j (rN+1) =
nt∑

k=1

〈r−1
N+1Φ

Γ

i |ψΓk 〉′AΓk j (E), i = 1, . . . , n. (5.22)

The primes on the Dirac brackets in (5.20), (5.21) and (5.22) mean that the inte-
grations are carried out over the space and spin coordinates of all N + 1 electrons
in the internal region, except the radial coordinate rN+1 of the scattered electron,
where the r−1

N+1 factors in these and later integrands correspond to the r−1
N+1 factor

on the right-hand side of (5.6). Also the number of linearly independent solutions,
denoted by the subscript j in (5.18), (5.20) and (5.22), is discussed below.

Equations (5.18) and (5.19) are the basic equations describing electron collisions
with atoms and atomic ions in the internal region. The R-matrix, defined by (5.19),
is determined at all energies by a single diagonalization of HN+1 + LN+1 in (5.7)
in the basis defined by (5.6) for each set of conserved quantum numbers Γ , which
yields the surface amplitudes wΓik and the corresponding eigenenergies EΓk . The
logarithmic derivatives of the reduced radial wave functions FΓi j (r) on the boundary
of the internal region are then given by (5.18). This equation provides the boundary
condition for the solution of the electron–atom collision problem in the external
region considered in the next section.

We consider next the determination of the reduced radial wave functions FΓi j (r),
defined in the internal region by (5.20) and (5.22), and the full collision wave func-
tion ΨΓj E (XN+1), defined in the internal region by (5.5), which we will see are

required in many applications. We first observe that while (5.20) defines FΓi j (r)
for all r , it is only when the exchange and quadratically integrable functions in
(5.6) are negligible, that FΓi j (r) has a simple form. This occurs in the external and
asymptotic regions, discussed in Sects. 5.1.3 and 5.1.4, respectively, and near the
boundary r = a0 in the internal region. It follows from (5.5), (5.6) and (5.22) that
near the boundary r = a0 in the internal region, the expression for FΓi j (r) reduces
to the following simple form:

FΓi j (r) =
nt∑

k= 1

wΓik(r)A
Γ
k j (E), i = 1, . . . , n, r <∼ a0, (5.23)

where the functionswΓik(r) can be expanded in terms of the continuum basis orbitals
u0

ik(r) in (5.6) by

wΓik(r) =
nc∑

j = 1

u0
i j (r)a

Γ
i jk, i = 1, . . . , n, k = 1, . . . , nt . (5.24)



5.1 Multichannel R-Matrix Theory 237

Comparing this result with (5.21) we see that wΓik = wΓik(a0). It follows that in order
to determine FΓi j (r) near the boundary r = a0 in the internal region and the full

collision wave function ΨΓj E (XN+1) in the internal region, we have to determine the

expansion coefficients AΓk j (E) in (5.5). This can be achieved by comparing (5.17)
with (5.5) giving

AΓk j (E) =
1

EΓk − E
〈ψΓk |LN+1|ΨΓj E 〉,

k = 1, . . . , nt . (5.25)

We then substitute in this equation for ψΓk from (5.6) and for the Bloch operator
LN+1 from (5.8). We also use the result

ΨΓj E (XN+1) =
n∑

i = 1

Φ
Γ

i (XN ; r̂N+1σN+1)r
−1
N+1 FΓi j (rN+1), rN+1 = a0, (5.26)

which follows from (5.20). Equation (5.25) then reduces to

AΓk j (E) =
1

2a0(EΓk − E)

n∑
i=1

wΓik

(
a0

dFΓi j

dr
− b0 FΓi j

)
r = a0

, k = 1, . . . , nt .

(5.27)

We see from this equation that in order to determine the expansion coefficients
AΓk j (E) we have to determine dFΓi j /dr and FΓi j (r) on the boundary r = a0 of the
internal region. This is achieved by solving the relevant coupled second-order differ-
ential equations in the external and asymptotic regions, as discussed in Sects. 5.1.3
and 5.1.4, respectively, subject to the R-matrix boundary condition at r = a0 defined
by (5.18) and (5.19). These solutions can be combined to yield the relevant asymp-
totic boundary conditions, enabling AΓk j (E) to be determined. We will see that the
number of linearly independent solutions labelled by j depends on these asymptotic
boundary conditions and will usually correspond to the number of open channels na

at the energy E considered. In this way we can determine the reduced radial wave
functions FΓi j (r) in the external and asymptotic regions. We also show in Sect. 5.3.2

that when the radial continuum basis orbitals u0
i j (r), retained in expansion (5.6),

satisfy homogeneous boundary conditions a Buttle correction to the reduced radial
wave function is required near the boundary r = a0 in the internal region. Hence
we can determine the full collision wave function ΨΓj E (XN+1), defined by (5.5)
in the internal region, which is important in applications such as photoionization,
discussed in Chap. 8, where the collision wave function in the internal region as
well as the R-matrix is required.

We conclude this section by remarking that the R-matrix, defined by (5.18) and
(5.19), together with the basis functions ψΓk , defined by (5.6), and the expansion
coefficients AΓk j (E), defined by (5.27), provide a complete description of the col-
lision process in the internal region. Furthermore, it follows from (5.19) that the
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R-matrix is a real symmetric analytic function of energy with simple poles only
on the real energy axis. This property has been used as the basis of the develop-
ment of multichannel effective range theories in Sect. 3.3 which enable the analytic
properties of the K -matrix and T -matrix to be determined in the neighbourhood of
thresholds.

5.1.3 External Region Solution

We now consider the solution of the Schrödinger equation (5.2) in the external
region, corresponding to a0 ≤ r ≤ ap in Fig. 5.1, for each required energy E .
We have seen that a0 is chosen so that electron exchange and correlation effects
between the scattered electron and the target atom or atomic ion can be neglected in
this region. The close coupling expansion (2.57) of the total wave function at energy
E for each set of conserved quantum numbers Γ then reduces to

ΨΓj E (XN+1) =
n∑

i=1

Φ
Γ

i (XN ; r̂N+1σN+1)r
−1
N+1 FΓi j (rN+1), rN+1 ≥ a0, (5.28)

where j labels the linearly independent solutions. Also the channel functions Φ
Γ

i
retained in this expansion are the same as those retained in the internal region expan-
sion (5.6) and FΓi j (r) are energy-dependent reduced radial wave functions, defined
by (5.20). In comparing (5.28) with (5.5) and (5.6), we see that we no longer include
the antisymmetrization operator A in (5.28), since the scattered and target elec-
trons occupy different regions of space and hence exchange effects are negligible,
enabling more efficient algorithms to be used in solving the coupled equations in this
region, as discussed in Appendix E. In addition, the quadratically integrable func-
tions χΓi , which are included in expansion (5.6), vanish in the external region since
the boundary a0 is chosen so that the target physical and pseudo-orbitals Pn	(r),
used to construct these functions, satisfy (5.4).

The coupled second-order differential equations, satisfied by the reduced radial
wave functions FΓi j (r) in (5.28), are obtained by substituting (5.28) into the

Schrödinger equation (5.2) and projecting onto the channel functions Φ
Γ

i . We then
find that the functions FΓi j (r) satisfy the following set of coupled equations:

(
d2

dr2
− 	i (	i + 1)

r2
+ 2(Z − N )

r
+ k2

i

)
FΓi j (r) = 2

n∑
i ′=1

V Γi i ′ (r)F
Γ
i ′ j (r),

i = 1, . . . , n, r ≥ a0, (5.29)

where 	i is the orbital angular momentum of the scattered electron, Z is the nuclear
charge number, N is the number of target electrons and k2

i is the square of the wave
number of the scattered electron defined by (2.64) and (2.65). Also the potential
matrix V Γi i ′ (r), which is defined by (2.66), can be written as a summation over
inverse powers of r given by (2.73), that is by
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V Γi i ′ (r) =
λmax∑
λ=1

αΓi i ′λr
−λ−1, r ≥ a0, i, i ′ = 1, . . . , n. (5.30)

The long-range potential coefficients αΓi i ′λ in (5.30) are defined by (2.74) and a
general expression for them is derived in Appendix D.1. We see that the coupled
second-order differential equations (5.29) can be obtained from (2.63) by setting the
non-local exchange potential WΓ

i i ′ and the non-local correlation potential XΓi i ′ zero,
and omitting the Lagrange multiplier terms which vanish in the external region.

The solution of (5.29) in the external region for each required energy E can be
obtained by sub-dividing this region into p sub-regions, as illustrated in Fig. 5.1. In
Appendices E.1, E.2 and E.3 we describe methods for propagating the R-matrix, or
the log-derivative matrix, and the reduced radial wave functions across this region,
where the R-matrix at r = a0 is usually defined by setting the arbitrary constant
b0 = 0 in (5.18) which, as pointed out following (5.8), is the value adopted in most
applications.

However, if b0 is not set equal to zero in the internal region calculation, we can
relate the corresponding R-matrix to that obtained by setting b0 = 0. To obtain this
relation we rewrite (5.18), where b0 is non-zero, in matrix form as follows:

F(a0) = Rb0(E)

(
a0

dF
dr
− b0F

)
r = a0

, (5.31)

where we have shown explicitly in this equation the dependence of the R-matrix
Rb0(E) on the value of b0. The boundary condition corresponding to setting b0 = 0
in (5.31) is then

F(a0) = R0(E) a0
dF
dr

∣∣∣∣
r = a0

. (5.32)

Eliminating F(a0)/(dF/dr)r = a0 between (5.31) and (5.32) then yields the following
relation between the R-matrices

R0(E) = Rb0(E)

I+ b0Rb0(E)
, (5.33)

which can be inverted giving

Rb0(E) =
R0(E)

I− b0R0(E)
. (5.34)

Equations (5.33) and (5.34) are the required relations between the R-matrix Rb0(E),
defined when b0 is non-zero, and the R-matrix R0(E), defined when b0 is zero. It is
interesting to note that this transformation shifts the pole positions in the R-matrix,
where the poles of Rb0(E) now occur where

det [I− b0R0(E)] = 0. (5.35)
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This can be useful in situations where calculations close to a pole in the R-matrix
lead to inaccuracies. In the present context we set the arbitrary constant b0 = 0 in
the rest of Sect. 5.1, as well as in Appendix E.

Finally, we observe that since the expression for the long-range potential coeffi-
cients αΓi i ′λ, derived in Appendix D.1, is diagonal in the target spin quantum number
Si for non-relativistic collisions and the non-local exchange and correlation poten-
tials vanish in the external region, it follows that the coupled second-order differen-
tial equations (5.29) sub-divide into two uncoupled sets of equations depending on
whether the target spin Si = S − 1/2 or Si = S + 1/2. This enables more efficient
R-matrix propagator methods to be used, as discussed in Appendix E.6. Using one
of these methods, the R-matrix at r = a0 can be propagated from r = a0 to ap to
yield the R-matrix at r = ap, thus providing the boundary condition satisfied by the
solution in the asymptotic region r ≥ ap.

5.1.4 Asymptotic Region Solution

The final step in solving the Schrödinger equation (5.2) is to determine the solution
in the asymptotic region, corresponding to r ≥ ap in Fig. 5.1, and hence to calculate
the K -matrix, S-matrix and cross sections for each required energy E . In this region
the close coupling expansion again reduces to (5.28) where the reduced radial wave
functions FΓi j (r) satisfy the coupled second-order differential equations (5.29). We
will assume that the radius ap is chosen large enough that one of the asymptotic
expansion methods discussed in Appendix F.1 gives an accurate solution of (5.29)
for r satisfying ap ≤ r ≤ ∞.

Following our discussion in Appendix F.1 we assume that the channels are
ordered so that

k2
1 ≥ k2

2 ≥ · · · ≥ k2
n, (5.36)

where, at the energy E of interest, the first na channels are open with k2
i ≥ 0

and the last nb channels are closed with k2
i < 0, where na + nb = n. We show

in Appendix F.1 that we can determine n + na linearly independent asymptotic
solutions of (5.29) which are regular as r → ∞. In this section we find it conve-
nient to define these n + na solutions to satisfy the following asymptotic boundary
conditions:

si j (r) ∼
r→∞ k−1/2

i sin θiδi j , i = 1, . . . , n, j = 1, . . . , na,

ci j (r) ∼
r→∞ k−1/2

i cos θiδi j , i = 1, . . . , n, j = 1, . . . , na, (5.37)

ci j (r) ∼
r→∞ exp(−φi )δi j , i = 1, . . . , n, j = na + 1, . . . , n,

where

θi = kir − 1

2
	iπ − ηi ln 2kir + σ	i , i = 1, . . . , na, (5.38)
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with

ηi = − Z − N

ki
, i = 1, . . . , na (5.39)

and

σ	i = arg(	i + 1+ iηi ), i = 1, . . . , na, (5.40)

and where

φi = |ki |r − Z − N

|ki | ln(2|ki |r), i = na + 1, . . . , n. (5.41)

When na channels are open we showed in Sect. 2.4 that there are na linearly
independent physical solutions which vanish at the origin and are finite at infinity.
These physical solutions, defined by (2.85), can be written in terms of the n + na

asymptotic solutions defined by (5.37) as follows:

FΓ (r) = s(r)+ c(r)NΓ , r ≥ ap, (5.42)

where FΓ (r) has dimension n× na , s(r) has dimension n× na , c(r) has dimension
n × n and NΓ has dimension n × na . The matrix NΓ can be written in the form

NΓ =
[

KΓ

LΓ

]
, (5.43)

where KΓ is the usual na × na-dimensional K -matrix defined by (2.85) and LΓ is a
subsidiary nb×na-dimensional matrix which multiplies the decaying solutions c(r)
defined by the last equation in (5.37). We see from (5.42) that KΓ postmultiplies the
first na columns of the matrix c(r) while LΓ postmultiplies the last nb columns of
the matrix c(r).

We can now express the na×na-dimensional K -matrix KΓ in terms of the n×n-
dimensional R-matrix RΓp (E) at r = ap. Since we have set the arbitrary constant
b0 = 0 then these matrices are related by the equation

FΓ (ap) = RΓp (E)apḞΓ (ap), (5.44)

where ḞΓ (r) is the derivative of FΓ (r), which from (5.42) can be written as

ḞΓ (r) = dFΓ

dr
= ṡ(r)+ ċ(r)NΓ , r ≥ ap. (5.45)

We then substitute the expressions for FΓ (ap) and ḞΓ (ap), given respectively by
(5.42) and (5.45), into (5.44). After rearranging the terms we obtain
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[
c(ap)− apRΓp (E)ċ(ap)

]
NΓ = −s(ap)+ apRΓp (E)ṡ(ap), (5.46)

which is a set of n linear simultaneous equations with na right-hand sides. The solu-
tion of these equations for each required energy E yields the n × na-dimensional
matrix NΓ , from which the na × na-dimensional K -matrix KΓ can be determined
from (5.43). It follows from (5.37) and (5.42) that the required physical solution
matrix FΓ (r) satisfies the asymptotic boundary conditions

FΓ (r) ∼
r→∞k−1/2 [sin θ + cos θKΓ

]
(5.47)

in the open channels, since the decaying solutions in (5.37) vanish asymptotically.
We also find it convenient to define a solution matrix satisfying the asymptotic

boundary conditions

GΓ (r) ∼
r→∞k−1/2 [exp(−iθ)− exp(iθ)SΓ

]
, (5.48)

which is obtained by taking linear combinations of the solutions defined by (5.47).
The na × na-dimensional S-matrix SΓ in (5.48) is defined in terms of the na × na-
dimensional K -matrix by the matrix equation

SΓ = I+ iKΓ

I− iKΓ
. (5.49)

The T -matrix and cross sections can then be determined using the procedure
described in Sect. 2.5. The solutions in the internal, external and asymptotic regions
can be determined in a similar way for all relevant L Sπ values enabling the corre-
sponding total cross sections, angular distributions and rate coefficients to be calcu-
lated, as described in Sect. 2.5.

5.2 Variational Principle for the R-Matrix

In this section we derive a variational principle for the multichannel R-matrix
defined on the boundary r = a0 of the internal region. We consider explicitly low-
energy electron collisions with atoms and atomic ions. However, the variational
principle that we obtain will be applicable for any multichannel collision process
which can be described in an internal region by coupled second-order integro-
differential equations with the form defined by (2.63). Variational principles for
the R-matrix have been considered by many workers, as discussed in Sect. 4.3. Our
approach is a generalization of the variational principles derived by Kohn [542] and
Jackson [495], which we considered in Sect. 4.3 in the special case of potential
scattering.

Following our treatment of multichannel collisions in Sects. 2.3 and 5.1.2, we
expand the wave function describing the collision of an electron with an N -electron
atom or atomic ion in the internal R-matrix region as follows:
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ΨΓj E (XN+1) = A
n∑

i=1

Φ
Γ

i (XN ; r̂N+1σN+1)r
−1
N+1 FΓi j (rN+1)

+
m∑

i=1

χΓi (XN+1)c
Γ
i j , j = 1, . . . , n. (5.50)

In this equation we have adopted the same notation for the channel functions Φ
Γ

i
and the quadratically integrable functions χΓi as in (2.57) and (5.6) and we observe
that the coefficients cΓi j in (5.50) can be written in terms of the coefficients bΓik in

(5.6) and the coefficients AΓk j (E) in (5.5) by the equation

cΓi j =
nt∑

k=1

bΓik AΓk j (E), i = 1, . . . ,m, j = 1, . . . , n. (5.51)

Also the subscript j in (5.50) labels the complete set of n linearly independent
solutions of the corresponding coupled second-order integrodifferential equations
(2.63), where the reduced radial functions FΓi j (r) vanish at the origin r = 0. Since
we are considering a variational principle for the n×n-dimensional R-matrix on the
surface r = a0 of the internal region, we are not restricted in this analysis to the na

solutions which are regular at infinity as in Sect. 5.1.4. We now derive a variational
principle for the solutions of (2.63) in the internal region 0 ≤ r ≤ a0, where a0 is
such that electron exchange and correlation effects between the scattered electron
and the target atom or ion can be neglected for r ≥ a0.

We commence by defining the integral

I j j ′ = 〈Ψ j |HN+1 + LN+1 − E |Ψ j ′ 〉int, j, j ′ = 1, . . . , n, (5.52)

where we have omitted the superscript Γ and the subscript E on the wave functions
ΨΓj E and ΨΓj ′E for notational convenience, where Γ represents the conserved quan-
tum numbers and E is the total energy being considered. The integrations in (5.52)
are carried out over the space and spin coordinates of all N + 1 electrons, where
the radial integrations are confined to the internal region. Also LN+1 is the Bloch
operator, defined by (5.8), which ensures that HN+1 + LN+1 is hermitian in the
internal region for functions satisfying arbitrary boundary conditions on the surface
r = a0 of the internal region. The first-order variations of δ I j j ′ in I j j ′ corresponding
to first-order variations δΨ j in Ψ j and δΨ j ′ in Ψ j ′ about the exact solutions of the
coupled second-order integrodifferential equations (2.63) in the internal region are
then given by

δ I j j ′ = 〈Ψ j |HN+1+LN+1−E |δΨ j ′ 〉int+〈δΨ j |HN+1+LN+1−E |Ψ j ′ 〉int. (5.53)

Using the hermiticity of HN+1 + LN+1, (5.53) can be written as
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δ I j j ′ = 〈δΨ j ′ |HN+1+LN+1−E |Ψ j 〉int+〈δΨ j |HN+1+LN+1−E |Ψ j ′ 〉int. (5.54)

On the boundary r = a0 of the internal region the exchange terms and the quadrati-
cally integrable functions in (5.50) vanish and hence this equation reduces to

Ψ j (XN+1) =
n∑

i=1

Φ i (XN ; r̂N+1σN+1)r
−1
N+1 Fi j (rN+1), j = 1, . . . , n. (5.55)

Substituting (5.55) into (5.54) and remembering that Fi j (r) and Fi j ′(r) are both
exact solutions of (2.63) in the internal region, we obtain

δ I j j ′ = 1

2

n∑
i=1

[
δFi j ′(a0)

(
dFi j

dr
− b0

a0
Fi j

)
r = a0

+ δFi j (a0)

(
dFi j ′

dr
− b0

a0
Fi j ′
)

r = a0

]
, (5.56)

where we have used definition (5.8) for the Bloch operator.
Following our discussion of the variational principle introduced by Jackson [495]

in Sect. 4.3, we now consider the variational functional

F
[
Ψ t

j , Ψ
t
j ′
]
= 〈 Ψ t

j |HN+1 + LN+1 − E |Ψ t
j ′ 〉int

− 1

2a0

[
Ft

j j ′(a0)+ Ft
j ′ j (a0)

]
, (5.57)

where Ψ t
j is a trial function and Ft

j ′ j (r) is the corresponding reduced radial wave
function. We consider first-order variations δΨ j in Ψ j and δΨ j ′ in Ψ j ′ about the
exact solutions of (2.63) in the internal region, subject to the boundary conditions

(
a0

dFt
i j

dr
− b0 Ft

i j

)
r = a0

= δi j , i, j = 1, . . . , n. (5.58)

It follows from (5.52) and (5.56) that this functional is stationary for first-order
variations about the exact solutions so that

δF
[
Ψ j , Ψ j ′

] = 0, (5.59)

where we note that the boundary condition (5.58) defines n particular linear
combinations of the n linearly independent solutions of (2.63) which vanish at the
origin. We see that (5.57), (5.58) and (5.59) are the multichannel generalization of
the variational principle for potential scattering given by (4.55), (4.56) and (4.59),
respectively.

When the exact solutions of (2.63) are substituted into (5.57) we find that
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F
[
Ψ j , Ψ j ′

] = 1

2

[〈Ψ j |LN+1|Ψ j ′ 〉 + 〈Ψ j ′ |LN+1|Ψ j 〉
]

− 1

2a0

[
Fj j ′(a0)+ Fj ′ j (a0)

]
. (5.60)

Substituting for the Bloch operator and using the boundary condition (5.58) then
yields

F
[
Ψ j , Ψ j ′

] = − 1

4a0

[
Fj j ′(a0)+ Fj ′ j (a0)

]
. (5.61)

However, the R-matrix on the boundary r = a0 of the internal region is defined by
(5.18) which, when combined with the boundary condition (5.58), reduces to

Fi j (a0) = Ri j (E). (5.62)

Hence, it follows from (5.61) and (5.62) and the symmetry of the R-matrix that

F
[
Ψ j , Ψ j ′

] = − 1

2a0
R j j ′(E). (5.63)

This shows that the R-matrix can be determined from the stationary value of the
functional F

[
Ψ j , Ψ j ′

]
.

We now demonstrate that this variational principle provides a variational pro-
cedure for calculating the R-matrix. Following (5.6), we introduce a basis in the
internal region defined by

ψk(XN+1) = A
n∑

i=1

nc∑
j=1

Φ i (XN ; r̂N+1σN+1)r
−1
N+1u0

i j (rN+1)ai jk

+
m∑

i=1

χi (XN+1)bik, k = 1, . . . , nt , (5.64)

where, as in (5.6), nt = nnc + m is the number of linearly independent basis
functions. Also in (5.64) u0

i j (r) are radial continuum basis orbitals defined over

the internal region 0 ≤ r ≤ a0 and the functions Φ i and χi are defined as in (2.57)
and (5.6). The coefficients ai jk and bik are obtained by diagonalizing HN+1+LN+1
in this basis as follows:

〈ψk |HN+1 + LN+1|ψk′ 〉int = Ekδkk′ , k, k′ = 1, . . . , nt , (5.65)

where, as in (5.52), the integration is carried out over the internal region. Following
(5.5) we now expand the wave functions Ψ t

j and Ψ t
j ′ in the functional F

[
Ψ t

j , Ψ
t
j ′
]

in this basis giving
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Ψ t
j (XN+1) =

nt∑
k= 1

ψk(XN+1)Akj (E), j = 1, . . . , n,

Ψ t
j ′(XN+1) =

nt∑
k= 1

ψk(XN+1)Akj ′(E), j ′ = 1, . . . , n, (5.66)

where Akj (E) and Akj ′(E) are variational coefficients which depend on the total
energy E of interest. Substituting these expansions into (5.57) then gives the fol-
lowing equation for this functional

F
[
Ψ t

j , Ψ
t
j ′
] =∑

kk′
(Ek − E)Akj (E)Ak′ j ′(E)δkk′

− 1

2a0

∑
k

[
w jk Ak j ′(E)+ w j ′k Ak j (E)

]
, (5.67)

where the surface amplitudes w jk are defined by

w jk =
nc∑

i=1

u0
j i (a0)a jik, j = 1, . . . , n, k = 1, . . . , nt . (5.68)

Writing F j j ′ ≡ F
[
Ψ t

j , Ψ
t
j ′
]
, for notational convenience, and using the stationary

property of this functional with respect to variations in the wave functions Ψ t
j and

Ψ t
j ′ we obtain

∂F j j ′

∂Akj
= (Ek − E)Akj ′(E)− 1

2a0
w j ′k = 0 (5.69)

and

∂F j j ′

∂Akj ′
= (Ek − E)Akj (E)− 1

2a0
w jk = 0. (5.70)

Both these equations give the following result:

Akj (E) = 1

2a0

w jk

Ek − E
, j = 1, . . . , n, k = 1, . . . , nt . (5.71)

The stationary value of the functional F j j ′ is obtained by substituting (5.71) into
(5.67) yielding
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F j j ′ = 1

4a2
0

nt∑
k=1

w jkw j ′k
Ek − E

− 1

2a2
0

nt∑
k= 1

w jkw j ′k
Ek − E

= − 1

4a2
0

nt∑
k= 1

w jkw j ′k
Ek − E

, j, j ′ = 1, . . . , n. (5.72)

We then combine this result with (5.63), which relates the stationary value of the
functional F j j ′ ≡ F

[
Ψ t

j , Ψ
t
j ′
]

to the R-matrix, to give the following variational
expression for the R-matrix:

R j j ′(E) = 1

2a0

nt∑
k= 1

w jkw j ′k
Ek − E

, j, j ′ = 1, . . . , n. (5.73)

We see that this equation for the R-matrix is identical to (5.19) showing that our
procedure for calculating the R-matrix described in Sect. 5.1.2 yields a variational
result.

We can also obtain a variational expression for the wave function Ψ j by substi-
tuting the expansion for Akj (E) given by (5.71) into (5.66). This gives

Ψ j (XN+1) = 1

2a0

nt∑
k= 1

ψk(XN+1)
w jk

Ek − E
, j = 1, . . . , n, (5.74)

where the reduced wave functions Fi j (r) in expansion (5.50) of Ψ j satisfy the
boundary condition (5.58) at r = a0. This result corresponds to the expression
for the full collision wave function given by (5.5) and (5.27) when we impose the
boundary conditions (5.58). As pointed out in Sect. 5.1.2, where we determined the
solution in the internal region, this result is important in applications such as pho-
toionization, discussed in Chap. 8, where the wave function as well as the R-matrix
is required.

5.3 Continuum Basis Orbitals and Correction Methods

In this section we consider methods for determining the zero-order radial contin-
uum basis orbitals u0

i j (r) in (5.6) which represent the radial motion of the scattered
electron in the expansion of the wave function in the internal region 0 ≤ r ≤ a0.
We also consider methods for calculating and correcting the R-matrix. In principle,
as discussed in the case of potential scattering in Sect. 4.4, members of any linearly
independent set of orbitals which vanish at the origin and are complete over the
range 0 ≤ r ≤ a0 can be used. However, a careful choice of basis orbitals will
enable the convergence of expansion (5.6) to be made more rapid. We consider
first in Sect. 5.3.1 an approach using radial continuum basis orbitals which satisfy
homogeneous boundary conditions on the surface of the internal region. We then
show in Sect. 5.3.2 that a Buttle correction to the R-matrix must be included to
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obtain accurate results. We also consider in this section how a Buttle-type correction
to the wave function can be determined. We will see later that this approach has been
widely used in calculations of electron collisions with atoms, ions and molecules.
Then in Sect. 5.3.3 we summarize methods where the radial continuum basis orbitals
satisfy arbitrary boundary conditions on the surface of the internal region. Some of
these methods have been reviewed in Sect. 4.4, where we showed that in general
they avoid the need for a Buttle correction to the R-matrix and to the wave function
and, as a consequence, the resultant solution can be derived from a variational prin-
ciple. However, it is found that for electron collisions with multi-electron atomic
targets the number of continuum orbitals required to obtain converged results can
often be larger than when homogeneous boundary conditions are used with a Buttle
correction. Finally, in Sect. 5.3.4 we consider a method for partitioning the R-matrix
into a part which can be accurately determined and a part which is approximated,
enabling accurate results to be efficiently obtained when the Hamiltonian matrix
becomes large.

5.3.1 Homogeneous Boundary Condition Method

We consider first a procedure for calculating the radial continuum basis orbitals
u0

i j (r) in (5.6) in the R-matrix internal region, which was described by Robb [791]
and adopted by Burke et al. [155, 178] in their study of low-energy electron colli-
sions with multi-electron atoms and atomic ions.

In this method, the radial continuum basis orbitals u0
i j (r) in (5.6) are chosen to

be solutions of the following zero-order differential equation for each continuum
orbital angular momentum 	i

(
d2

dr2
− 	i (	i + 1)

r2
−U0(r)+ k2

i j

)
u0

i j (r)

=
	i+n	i∑

nb = 	i+1

λi jnb Pnb	i (r), i = 1, . . . , n, j = 1, . . . , nc, (5.75)

satisfying the homogeneous boundary conditions

u0
i j (0) = 0, i = 1, . . . , n, j = 1, . . . , nc (5.76)

and

a0

u0
i j (a0)

du0
i j

dr

∣∣∣∣∣
r = a0

= b0, i = 1, . . . , n, j = 1, . . . , nc, (5.77)

where b0 is an arbitrary constant which can depend on the orbital angular momen-
tum 	i , although in most applications b0 is set equal to zero. Also in (5.75), the
summation nb goes over the n	i reduced radial physical bound orbitals Pnb	i (r),
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which are included in the representation of the atomic target states for each 	i . How-
ever, any pseudo-orbitals retained in the configuration interaction representation of
the target states are not included in this summation, since their inclusion would
slow the convergence of the expansion over the radial continuum basis orbitals,
as described below. Finally, the λi jnb in (5.75) are Lagrange multipliers which are
chosen so that the continuum basis orbitals are orthogonal to the physical bound
orbitals with the same orbital angular momentum symmetry, so that

∫ a0

0
u0

i j (r)Pnb	i (r)dr = 0, j = 1, . . . , nc, nb = 	i + 1, . . . , 	i + n	i (5.78)

are satisfied for each 	i . It follows that the continuum basis orbitals, generated in
this way for each 	i , are mutually orthogonal and in addition can be normalized so
that

∫ a0

0
u0

i j (r)u
0
i j ′(r)dr = δ j j ′, j, j ′ = 1, . . . , nc. (5.79)

It also follows that for each 	i the reduced radial orbitals

Pnb	i (r), nb = 	i + 1, . . . , 	i + n	i ; u0
i j (r), j = 1, . . . , nb (5.80)

form a complete set over the range 0 ≤ r < a0 in the limit nc →∞ for any b0 and
zero-order potential U0(r) in (5.75).

In order to obtain rapid convergence of the R-matrix expansion (5.19), includ-
ing the Buttle correction discussed below, the zero-order potential U0(r) in (5.75)
should provide a good representation of the charge distribution of the target atom or
ion. In many applications the simple form

U0(r) = −2N

r
exp(−Z1/3r)− 2(Z − N )

r
(5.81)

suggested by the Thomas–Fermi statistical model of the atom (see, for example,
[817]) has proved suitable, in that it has the correct form near the nucleus and
asymptotically and a reasonably accurate charge distribution radius. A more sophis-
ticated potential which also satisfies these criteria is the static potential of the target
atom or ion in its ground state with possibly the addition of a local polarization
potential. Such a form becomes increasingly appropriate for high Z atoms and ions.
It is important to note that in practical electron–atom and electron–ion collision
calculations, the solution of (5.75), (5.76), (5.77), (5.78) and (5.79) to generate the
radial continuum basis orbitals takes a very small part of the overall computer time.
Hence the use of a more sophisticated zero-order potential is fully justified if it
increases the rate of convergence of the R-matrix expansion.

The inclusion of Lagrange multiplier terms on the right-hand side of (5.75) is
related to the inclusion of Lagrange multiplier terms in (2.63) which ensure that the
orthogonality constraints (2.62) are satisfied. In the present situation the inclusion
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of these terms in (5.75) has the following further justification. It is well known
that in the static exchange approximation in electron–atom collisions, the difference
between the phase shift at zero energy and at infinite energy for each orbital angular
momentum satisfies the equation

δ(0)− δ(∞) = (nbs + n p)π, (5.82)

which is a generalization of Levinson’s theorem [587] first studied by Swan [899]. In
(5.82), nbs is the number of bound states of the electron–atom system and n p is the
number of states excluded by the Pauli principle corresponding to the orbital angular
momentum symmetry being considered. For example, in the case of electron colli-
sions with Ne which has the Hartree–Fock ground-state configuration 1s22s22p6 1Se

and where nbs = 0, we have n p = 2 for s-wave scattering, since the scattered
electron is excluded from the fully occupied 1s and 2s shells, and n p = 1 for
p-wave scattering, since the scattered electron is excluded from the fully occupied
2p shell. The effect of including the 1s and 2s orbitals on the right-hand side of (5.75)
for s-wave scattering, and the 2p orbital for p-wave scattering and using a suitable
zero-order potential U0(r) ensures that the zero-order solution also satisfies (5.82).
We see therefore that the inhomogeneous term on the right-hand side of (5.75) plays
the role of an exchange potential, while at the same time ensuring that the con-
tinuum basis orbitals are orthogonal to the physical orbitals. Hence the inclusion
of the Lagrange multiplier terms on the right-hand side of (5.75) in the generation
of the zero-order radial continuum basis orbitals usually means that the R-matrix
expansion over these orbitals will converge rapidly. We note that an inhomogeneous
term of this type was used by Lippmann and Schey [601] in their model study of
elastic e−–H collisions. Finally, as observed in our discussion following (2.57), the
imposition of orthogonality constraints on the radial continuum basis orbitals means
that additional quadratically integrable functions must be included in the second
expansion in (5.6) to ensure completeness of the collision wave function.

5.3.2 Buttle Correction to the R-Matrix and Wave Function

Since the radial continuum basis orbitals u0
i j (r), retained in expansion (5.6) in the

homogeneous boundary condition method, satisfy the zero-order differential equa-
tion (5.75) subject to homogeneous boundary conditions (5.76) and (5.77) it is
necessary to add a Buttle correction to the R-matrix to obtain accurate results. This
procedure, first introduced by Buttle [195] and discussed in the case of potential
scattering in Sect. 4.4.2, corrects for the omission of high-lying pole terms in expan-
sion (5.19) of the R-matrix RΓi j (E). In our discussion here, which is a straightfor-
ward generalization of potential scattering theory given in Sect. 4.4.2 to multichan-
nel collisions, we consider in turn the Buttle correction to the R-matrix and to the
wave function.
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5.3.2.1 Buttle Correction to the R-Matrix

An important simplification which arises in applying the Buttle correction to the
multichannel R-matrix expansion (5.19) is that usually only the diagonal elements
of the R-matrix need to be corrected. This can be seen by examining the elements
of the Hamiltonian matrix which is diagonalized to yield the basis functions ψΓk in
(5.7). If the zero-order differential equation (5.75) provides a good representation
of the electron–atom or electron–ion collision process at high energies, then the
Hamiltonian matrix corresponding to the high-lying zero-order radial continuum
basis orbitals u0

i j (r) will be dominated by the diagonal elements. In this case we

can augment the internal region expansion (5.6) of the basis functions ψΓk by the
following zero-order basis functions:

BΓk (XN+1) = AΦΓi (XN ; r̂N+1σN+1)r
−1
N+1u0

i j (rN+1), i = 1, . . . , n,

j = nc + 1, . . . ,∞, k = nt + 1, . . . ,∞, (5.83)

where the integers i , j and k are related by

k = nt + i + ( j − nc − 1)n. (5.84)

Hence, in each channel i = 1, . . . , n, an infinite number of zero-order basis func-
tions j = nc + 1, . . . ,∞ are included in the internal region expansion, where nc is
the number of radial continuum basis orbitals retained in expansion (5.6) for each
channel.

The Buttle correction to the diagonal elements of the R-matrix defined by (5.19)
corresponding to the inclusion of the additional zero-order basis functions (5.83) is
then given by

RΓ (BC)
i i (E) = 1

2a0

∞∑
j=nc+1

[u0
i j (a0)]2

E0
i j − E

, i = 1, . . . , n, (5.85)

where the summation over j goes over the zero-order continuum basis orbitals
included in (5.83) for each channel i , and the zero-order energies E0

i j are obtained

from the corresponding zero-order eigenvalues k2
i j in (5.75) which, using (2.7), gives

E0
i j = ei + 1

2
k2

i j . (5.86)

As in potential scattering, see (4.79), this correction can be rewritten as

RΓ (BC)
i i (E) = u0

i (a0)

(
a0

du0
i

dr
− b0u0

i

)−1

r = a0

− 1

2a0

nc∑
j=1

[u0
i j (a0)]2

E0
i j − E

,

i = 1, . . . , n, (5.87)
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where the first term on the right-hand side of this equation is obtained by solving
the zero-order equation (5.75), subject to the boundary condition (5.76) and the
orthogonality constraint (5.78) at the given energy E of interest, while the second
term is obtained from the zero-order continuum basis orbitals included in expansion
(5.6). Both terms can be rapidly calculated and the correction added to the diagonal
elements of the R-matrix given by (5.19). Indeed, since the Buttle correction is
smoothly varying without poles in the low-energy region of interest, it can usually
be calculated at a few energies in this region and interpolated to give the correction
at any required energy.

5.3.2.2 Buttle Correction to the Wave Function

We now discuss how a Buttle correction to the wave function near the boundary in
the internal region can be determined. We have already remarked in our discussion
of potential scattering that such a correction may be required to obtain accurate
results in, for example, atomic photoionization calculations where the accuracy of
the wave function near the boundary r = a0 of the internal region may be important.
In order to derive a correction to the wave function in multichannel collisions, we
commence from (5.17) which we rewrite here as

|ΨΓj E 〉 =
nt∑

k=1

|ψΓk 〉
1

EΓk − E
〈ψΓk |LN+1|ΨΓj E 〉, j = 1, . . . , n, (5.88)

where the subscript j on the functions ΨΓj E now labels the n linearly independent
solutions that can be formed in the internal region. We project this equation onto

the n channel functions Φ
Γ

i (x1, . . . , xN ; r̂N+1σN+1) yielding the following expres-
sion for the reduced radial wave functions FΓi j (r) near the boundary r = a0 of the
internal region

FΓi j (r) =
1

2a0

nt∑
k= 1

n∑
i ′=1

wΓik(r)w
Γ
i ′k(a0)

EΓk − E

(
a0

dFΓi ′ j
dr
− b0 FΓi ′ j

)
r = a0

,

i, j = 1, . . . , n, (5.89)

where the amplitudes wΓik(r) are defined by (5.24). It is convenient to choose these
n solutions to satisfy the boundary condition

(
a0

dFΓi j

dr
− b0 FΓi j

)
r = a0

= δi j , i, j = 1, . . . , n, (5.90)

where we note that any other linearly independent set of solutions in the internal
region can be expressed as a linear combination of these solutions. Substituting this
boundary condition into (5.89) then yields the following expression for the reduced
radial wave function near the boundary of the internal region:
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FΓi j (r) =
1

2a0

nt∑
k=1

wΓik(r)w
Γ
jk(a0)

EΓk − E
, i, j = 1, . . . , n. (5.91)

In determining the correction to the reduced radial wave function defined by
(5.91) we observe that the simplification adopted in our derivation of the Buttle
correction to the R-matrix, that only the diagonal elements need correcting, also
applies in the present case. Hence the correction to the wave function (5.91) can be
written, in analogy with the correction to the R-matrix (5.85), as

FΓ (BC)
i i (r) = 1

2a0

∞∑
j=nc+1

u0
i j (r)u

0
i j (a0)

E0
i j − E

, i = 1, . . . , n, (5.92)

where the summation j goes over the additional zero-order continuum basis orbitals
included in (5.83) and the zero-order energies E0

i j are again given by (5.86). Equa-
tion (5.92) can then be rewritten as

FΓ (BC)
i i (r) = 1

2a0

∞∑
j=1

u0
i j (r)u

0
i j (a0)

E0
i j − E

− 1

2a0

nc∑
j=1

u0
i j (r)u

0
i j (a0)

E0
i j − E

,

i = 1, . . . , n, (5.93)

where the first term on the right-hand side of this equation can be written in terms
of the solution of the zero-order equation (5.75) as

1

2a0

∞∑
j=1

u0
i j (r)u

0
i j (a0)

E0
i j − E

= u0
i (r)

(
a0

du0
i

dr
− b0u0

i

)−1

r = a0

, i = 1, . . . , n, (5.94)

which follows from (5.89) by replacing FΓi j (r) with the solution of the zero-order
equation (5.75) at the energy E . Hence the correction to the wave function near the
boundary of the internal region is given by

FΓ (BC)
i i (r) = u0

i (r)

(
a0

du0
i

dr
− b0u0

i

)−1

r = a0

− 1

2a0

nc∑
j=1

u0
i j (r)u

0
i j (a0)

E0
i j − E

,

i = 1, . . . , n. (5.95)

Both terms on the right-hand side of this equation can be rapidly calculated in terms
of the solutions of (5.75).

In the above derivation we have seen that with our special choice of boundary
condition defined by (5.90) only the diagonal elements of the reduced radial wave
function near the boundary r = a0 need correcting. However, the general solution of
the Schrödinger equation, defined by (5.89), is a linear combination of the solutions
satisfying (5.90). Hence each element of the general solution will be corrected.
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We conclude this section by remarking that including a Buttle correction to the
R-matrix and the wave function, obtained using the homogeneous boundary con-
dition method, means that these quantities are no longer derivable from the varia-
tional principle discussed in Sect. 5.2. However, this does not mean that the resultant
R-matrix and wave function are less accurate than the R-matrix and wave function
which are derived from a variational principle. Indeed in many practical situations
the inclusion of a Buttle correction enables accurate results to be obtained using
fewer terms in the R-matrix expansion.

5.3.3 Arbitrary Boundary Condition Methods

In this section we summarize methods where the radial continuum basis orbitals
u0

i j (r) in the R-matrix expansion (5.6) are represented by functions which satisfy
arbitrary boundary conditions at r = a0. The application of some of these methods
in potential scattering has been reviewed in Sect. 4.4.

In recent years R-matrix calculations using arbitrary boundary condition bases
have found increasing application in the study of electron collisions with atoms and
molecules as well as photoionization and multiphoton ionization processes. Non-
orthogonal continuum basis orbitals satisfying arbitrary boundary conditions have
also been found to give rapid convergence in studies of atomic vibrations in self-
consistent field models of condensed matter by Liberman and Bennett [593] and in
studies of electron transport in semiconductor devices discussed in Sect. 12.2.

The use of orbitals satisfying arbitrary boundary conditions removes the need
to include a Buttle correction to the R-matrix, as well as to the wave function,
as discussed in Sect. 5.3.2. In addition, the resultant solution can be derived from
the multichannel variational principle for the R-matrix, as discussed in Sect. 5.2.
Although homogeneous boundary condition methods with an appropriate choice
of the zero-order differential equation (5.75) can often give fast convergence, for
example, for electron collisions with atoms and atomic ions with many open and
closed channels at low and intermediate energies, the use of arbitrary boundary con-
dition basis orbitals is required to obtain accurate results in some applications. This
is particularly true for time-dependent R-matrix theory of multiphoton processes
discussed in Chap. 10, where the time evolution operator requires an accurate rep-
resentation of the wave function on and near the boundary of the internal region.

A wide variety of basis orbitals satisfying arbitrary boundary conditions have
been used in R-matrix calculations including Gaussian-type orbitals, Slater-type
orbitals, Legendre functions, Lagrange meshes and B-splines. In early work on elec-
tron collisions with diatomic molecules, discussed further in Sect. 11.1, Schneider
[821, 822] and Schneider and Hay [826] expanded the continuum orbitals in terms
of Gaussian orbitals, yielding low-energy static-exchange cross sections for electron
collisions with H2 and F2. Also, the convergence properties of Slater-type orbital
bases were explored by Noble et al. [690] for electron collisions with H2 and N2,
where it was found that accurate results can be efficiently obtained at low electron
impact energies, but because of linear dependence problems numerical continuum
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basis functions satisfying homogeneous boundary conditions were to be preferred at
higher energies. A procedure for generating these continuum orbitals for electron–
molecule collisions, analogous to that used in Sect. 5.3.1, was later developed by
Tennyson et al. [922]. More recently, a considerable body of work has been carried
out using Gaussian-type orbitals to represent both the bound and continuum orbitals
in electron collisions with polyatomic molecules, in particular by Nestmann and
Peyerimhoff [680], Pfingst et al. [732, 733], Nestmann et al. [682], Morgan et al.
[661, 662] and Faure et al. [313]. This work showed that Gaussian-type orbitals can
give accurate phase shifts and cross sections at low electron impact energies with
relatively small bases.

Legendre basis functions have also been used in R-matrix collision calculations.
For example, shifted Legendre polynomials have been used by Baluja et al. [47]
and Sunderland et al. [896] in their implementation of the BBM propagator method
for solving the coupled differential equations (5.29) in the external R-matrix region,
discussed in Appendix E.3. These basis functions were also used in time-dependent
R-matrix theory calculations of multiphoton processes in potential scattering by
Burke and Burke [172]. Lagrange mesh methods have also been used in R-matrix
calculations and work using these methods is reviewed in Sect. 4.4.6.

Recently, B-spline methods, which are reviewed in Sect. 4.4.7, have been increas-
ingly used in R-matrix calculations. For example, van der Hart [930] used B-spline
bases in R-matrix calculations for two-electron processes, obtaining accurate results
for low-energy electron collisions with atomic hydrogen. This work was later
extended by van der Hart [931] to electron impact excitation and ionization of He+,
by van der Hart and Feng [318, 319, 935] to study double-electron ionization of He
and by McKenna and van der Hart [623] to study single- and two-photon ionization
of Ca. B-spline bases have also been used in time-dependent multiphoton ionization
calculations by van der Hart et al. [937, 938] and by Lysaght et al. [603–606], which
are discussed in Chap. 10.

Also, Zatsarinny [991] and Zatsarinny and Froese Fischer [993] have developed
a general computer program for calculating matrix elements in atomic structure with
non-orthogonal orbitals, which has been extended by Zatsarinny and Froese Fischer
[994] to enable B-splines to be used in R-matrix calculations, with an application
to Li photoionization. This program, which has been further extended to enable a
wide range of atomic continuum processes to be calculated using non-orthogonal
orbitals represented by B-splines, has been published by Zatsarinny [992]. This has
enabled accurate calculations to be carried out for a number of collision processes
including investigations by Zatsarinny et al. on photodetachment of He− [1002], by
Zatsarinny and Tayal on low-energy electron collisions with atomic oxygen [995]
and sulphur [996, 997] and by Zatsarinny and Bartschat on electron collisions with
neon [998], argon [999], zinc [1000] and Fe+ [1001]. Finally we mention the use of
B-spline bases in time-dependent multiphoton ionization calculations by Guan et al.
[429, 431, 432] which are discussed in Chap. 10.

In conclusion, we will present results from R-matrix calculations using both
homogeneous and arbitrary boundary condition methods in Sect. 5.6 and in later
chapters.
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5.3.4 Partitioned R-Matrix Method

We have seen in Sect 5.1 that in order to calculate the R-matrix, defined by (5.19),
which determines the boundary condition (5.18) satisfied by the external region
solution at r = a0, it is necessary to diagonalize the Hamiltonian matrix HN+1
plus Bloch operator LN+1 in a set of basis functions ψΓk yielding the eigenener-
gies EΓk , defined by (5.7), and surface amplitudes wΓik defined by (5.21). We will
see when we discuss recent low-energy electron collision calculations in Sect. 5.6
that the dimension of the Hamiltonian matrix can become very large and hence the
time taken to diagonalize this matrix may dominate the total computation time. For
example, in our discussion of electron collisions with Fe II in Sect. 5.6.5, we will
see that the number of coupled channels can exceed many thousands and hence the
dimension of the corresponding Hamiltonian matrix will be many tens of thousands.
Also, in electron–molecule collisions the number of coupled channels can become
very large. In this section we consider a partitioned R-matrix method, introduced for
electron–atom and electron–ion collisions by Berrington and Ballance [94] which
alleviates this difficulty. In this method, the eigenvalues and eigenvectors of the
Hamiltonian matrix are partitioned into two groups, the first consisting of those with
low eigenvalues which are accurately determined and the remainder with higher
eigenvalues for which an approximation is derived. This enables accurate results to
be obtained more efficiently, particularly when the Hamiltonian becomes large.

The partitioned R-matrix method commences from (5.6), which we rewrite using
matrix notation as

ψ = φX, (5.96)

where we have defined the quantities in this equation as follows:

ψ – row vector with dimension nt , corresponding to ψΓk in (5.6);

φ – row vector with dimension nt , corresponding to Φ
Γ

i r−1
N+1u0

i j and
χΓi in (5.6);

X – matrix with dimensions nt × nt , corresponding to the coefficients
aΓi jk and bΓik in (5.6).

The coefficient matrix X is determined by diagonalizing the Hamiltonian matrix
HN+1 plus Bloch operator LN+1 in the basis φ where we define

Hi j = 〈φi |HN+1 + LN+1|φ j 〉int, i, j = 1, . . . , nt . (5.97)

It then follows from (5.96) that (5.7) can be rewritten as

XTHX = E, (5.98)



5.3 Continuum Basis Orbitals and Correction Methods 257

where E is a diagonal nt × nt -dimensional matrix with diagonal elements Ek, k =
1, . . . , nt . Also, since H defined by (5.97) is a real symmetric matrix, then X is a
real orthogonal matrix.

The partitioned R-matrix method assumes that we have accurately determined
only the l lowest eigenvalues E j and the corresponding eigenvectors of the matrix
H. It follows from (5.98) that

nt∑
k=1

Hik Xkj = Xi j E j , i = 1, . . . , nt , j = 1, . . . , l. (5.99)

The remaining eigenvalues are then approximated by a single degenerate energy E0
such that

nt∑
k=1

Hik Xkj ≈ Xi j E0, i = 1, . . . , nt , j = l + 1, . . . , nt , (5.100)

where the combined nt × nt -dimensional eigenvector matrix X is still real and
orthogonal satisfying

XTX = XXT = I. (5.101)

In order to determine E0 we minimize the following functional formed from (5.100)

X (E0) =
nt∑

i=1

nt∑
j = l+1

(
Xi j E0 −

nt∑
k=1

Hik Xkj

)2

, (5.102)

which gives

∂X
∂E0

= 2
nt∑

i=1

nt∑
j = l+1

Xi j

(
Xi j E0 −

nt∑
k=1

Hik Xkj

)
. (5.103)

After using (5.101) we obtain

∂X
∂E0

= 2

⎛
⎝ nt∑

j = l+1

E0 −
nt∑

i=1

nt∑
j = l+1

nt∑
k=1

Hik Xi j Xk j

⎞
⎠ . (5.104)

Then, setting ∂X /∂E0 = 0 and using (5.101) gives

E0 =
(

TrH−∑l
i=1 Ei

)
(nt − l)

, (5.105)
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where

TrH =
nt∑

i=1

Hii . (5.106)

The partitioned R-matrix which replaces RΓi j (E) in (5.19) is then given by

Rp
i j (E) =

l∑
k=1

wikw jk

Ek − E
+ 1

E0 − E

nt∑
k=l+1

wikw jk, i, j = 1, . . . , n, (5.107)

which can be rewritten as

Rp
i j (E) =

l∑
k=1

wikw jk

Ek − E
− 1

E0 − E

l∑
k=1

wikw jk + 1

E0 − E

nt∑
k=1

wikw jk,

i, j = 1, . . . , n. (5.108)

The first two terms on the right-hand side of (5.108) can be calculated since we
know the surface amplitudes wik, i = 1, . . . , nt , k ≤ l from the solution of (5.99).
The last term on the right-hand side of (5.108) can be calculated using expansion
(5.21) for the surface amplitudes wik . We obtain

nt∑
k=1

wikw jk =
nc∑

k′=1

nc∑
k′′=1

u0
ik′(a0)u

0
jk′′(a0)

nt∑
k=1

aik′ka jk′′k . (5.109)

It then follows from the orthogonality relation (5.101) that the following summation
in (5.109) is given by

nt∑
k=1

aik′ka jk′′k = δi jδk′k′′ , (5.110)

and hence

nt∑
k=1

wikw jk =
nc∑

k=1

[
u0

ik(a0)
]2
δi j = Siδi j , (5.111)

which defines Si . Substituting this result into (5.108) gives the following expression
for the partitioned R-matrix

Rp
i j (E) =

l∑
k=1

wik

(
ε−1

k − ε−1
0

)
w jk +

[
Siε
−1
0 + Rc

i (E)
]
δi j , (5.112)
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where we have written

εk = Ek − E, k = 0, . . . , l, (5.113)

and where Rc
i (E) is an estimate of the partitioning error. It follows from (5.19) and

(5.107) that this error is given by

Rc
i j (E) =

nt∑
k= l+1

wikw jk

(
1

Ek − E
− 1

E0 − E

)
. (5.114)

We can obtain an estimate for this error by replacing the surface amplitudes wik in
(5.114) by the corresponding zero-order radial continuum basis orbitals u0

i j (a0) in
(5.21) obtained by neglecting the off-diagonal terms in diagonalizing HN+1+LN+1
in the internal region. This is analogous to our choice of radial continuum basis
orbitals used in the Buttle correction described in Sect. 5.3.2. With this approxima-
tion (5.114) yields the following estimate of the partitioning error:

Rc
i (E) =

nc∑
j=Ni+1

[
u0

i j (a0)
]2
(

1

Ei j − E
− 1

E0 − E

)
, (5.115)

where Ei j is the energy of the radial continuum basis orbital and Ni is such that
the radial continuum basis orbitals in the i th channel above Ni lie above the highest
eigenvalue explicitly included in (5.108).

The above theory has been extended to electron–molecule collisions by
Tennyson [916]. In this case several modifications of the above theory were found
to be necessary, which also apply to a lesser extent in electron–atom collisions. The
first modification arises from the procedure used to generate the continuum orbitals
for the electron–molecule collision problem. The need to orthogonalize the contin-
uum orbitals to the bound orbitals used to represent the target [662, 922] means
that the energies of the resultant continuum orbitals are not well defined, which
requires a modification to the energies Ei j of the radial continuum basis orbitals
in (5.115). The second and more important modification concerns the definition of
E0 in (5.105). This definition averages over all diagonal elements of the Hamilto-
nian matrix regardless of whether the configuration involved makes any contribu-
tion to the boundary amplitude. This means that many high-lying L2 configurations
included in the second expansion on the right-hand side of (5.6), which make no
contribution to the boundary amplitude, contribute to the value of E0. As a result, a
systematic improvement in the configuration interaction representation of the target
and the consequent increase in the number of L2 configurations included in the
expansion leads to an undesirable increase in E0, even if all the other parameters of
the calculation remain the same. It is therefore preferable to define E0 using only
those configurations which contribute directly to the boundary amplitude and hence
to the R-matrix; a procedure for achieving this is given by Tennyson [916]. A final
problem arises from the error correction procedure leading to (5.115). The use of
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the entire boundary amplitude of the higher lying radial continuum basis orbitals[
u0

i j (a0)
]2 in the error correction will lead to an over correction if these orbitals con-

tribute to any significant extent to the lower l surface amplitudes retained explicitly
in the first summation in (5.112). It is straightforward to estimate the contribution
of these orbitals to the surface amplitudes not explicitly included in the summation
in (5.112) and to make a corresponding modification to the error correction formula
(5.114).

Finally, we observe that, if the radial continuum basis orbitals u0
i j (r) retained

in expansion (5.6) satisfy homogeneous boundary conditions (5.76) and (5.77), as
discussed in Sect. 5.3.1, then it is necessary to add a Buttle correction to the par-
titioned R-matrix defined by (5.112). However, if these orbitals satisfy arbitrary
boundary conditions, as discussed in Sect. 5.3.3, then this correction will usually
not be required although it will still be appropriate to include the partitioning error
correction defined by (5.115).

5.4 Inclusion of Relativistic Effects

As the charge number Z on the atomic nucleus increases, relativistic effects become
progressively more important in the collision process. In this section and in Sect. 5.5
we consider how these effects can be accurately represented in low-energy electron
collisions with heavy atoms and atomic ions. There are two main ways in which
relativistic effects play a role in low-energy electron collisions. First, there is a
direct effect which is due to the relativistic distortion of the wave function of the
scattered electron induced by the strong nuclear potential, when this electron is in
the neighbourhood of the nucleus. Second, there is an indirect effect caused by the
change in the charge distribution of the target electrons due to relativity which in
turn affects the motion of the scattered electron. Our objective in this section and
the next is to show how these two effects can be included in multichannel R-matrix
theory, in addition to electron exchange and electron–electron correlation effects
which we considered earlier in this chapter.

There are several procedures for including relativistic effects in low-energy elec-
tron collisions with atoms and atomic ions. For relatively light targets, these effects
are small so that the energy intervals between the fine-structure levels of the target
are small compared both with the energy intervals between the L Sπ -coupled energy
levels of the target and with the energy of the scattered electron. In this case the col-
lision calculation can first be carried out in L Sπ -coupling using the non-relativistic
Hamiltonian, as described earlier in this chapter. The K -matrices obtained from this
calculation are then recoupled to give the K -matrices, and hence the corresponding
cross sections, for transitions between the fine-structure levels of the target. This
approach was introduced by Saraph [810, 811] and extended by Griffin et al. [426]
and Badnell and Griffin [34] using multichannel quantum defect theory. We discuss
this approach in Sect. 5.4.1.

As the nuclear charge number Z increases, relativistic effects must be included
both in the calculation of the N -electron wave function describing the target and
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in the calculation of the (N + 1)-electron wave function describing the collision
process. Provided Z is not too large, this can be achieved by replacing the non-
relativistic Hamiltonian, defined by (5.3), by the Breit–Pauli Hamiltonian discussed,
for example, by Bethe and Salpeter [105], Akhiezer and Berestetsky [7] and Glass
and Hibbert [382]. The conserved quantum numbers are now J the total angular
momentum of the electron target atom collision wave function, MJ its z-component
and π the total parity rather than L , S, ML , MS and π defined following (2.58).
This leads to many more coupled channels which have to be included in the expan-
sion of the collision wave function and to many more coupled integrodifferential
equations which have to be solved. We consider in detail the extension of R-matrix
collision theory to include the relativistic Breit–Pauli terms in the Hamiltonian
in Sect. 5.4.2, having summarized the computer programs which implement this
approach in Sect. 5.1.1. Then in Sect. 5.4.3 we consider a frame-transformation
theory extension of this approach where the relativistic terms in the Breit–Pauli
Hamiltonian are omitted in the high-energy spectrum in the internal R-matrix region
but are included in the low-energy spectrum in the internal region and also in
the external and asymptotic regions, with considerable saving in computational
effort.

Finally, we observe that the above approaches for including relativistic effects
using the Breit–Pauli Hamiltonian have been used with considerable success to treat
electron collisions with a wide range of low and intermediate Z atoms and ions.
However, in order to obtain accurate results for electron collisions with the heaviest
atomic targets it is necessary to treat both the target and the collision wave function
using the Dirac Hamiltonian. We present a detailed discussion of Dirac R-matrix
theory of electron collisions with heavy atoms and ions in Sect. 5.5.

5.4.1 Transformation of the K- and S-Matrices

This approach is appropriate for light atomic or ionic targets where relativistic
effects are small and hence the energy intervals between the fine-structure levels of
the target are small compared with the energy intervals between the L Sπ -coupled
energy levels of the target and the energy of the scattered electron. K -matrices are
first calculated, omitting all relativistic terms in the Hamiltonian, as described in
Sect. 5.1. These K -matrices are then transformed to full intermediate coupling to
yield cross sections corresponding to transitions between fine-structure levels of
the target. This is the basis of a widely used computer program JAJOM, written
by Saraph [810, 811] for electron–ion collisions. We also consider an extension
of this approach using multichannel quantum defect theory by Griffin et al. [426]
and Badnell and Griffin [34], which yields accurate transformed K - and S-matrices
when some channels are closed.

For the situation where relativistic effects are not large, it is convenient to adopt
the pair-coupling scheme defined by the equations

Li + Si = Ji , Ji + �i = Ki , Ki + si = J, (5.116)
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where Li , Si and Ji are the orbital, spin and total angular momentum operators of
the target atom or ion, �i and si are the orbital and spin angular momentum operators
of the scattered electron, Ki is an intermediate angular momentum operator and J is
the total angular momentum operator of the electron plus target atom or ion system
which is conserved in the collision. This pair-coupling scheme can be related to the
L Sπ -coupling scheme adopted in Sect. 5.1 which is defined by the equations

Li + �i = L, Si + si = S, L+ S = J. (5.117)

The recoupling coefficient between these schemes can be simply expressed in terms
of Racah coefficients, defined in Appendix A.2, as follows:

〈[(Li Si )Ji , 	i ]Ki
1
2 ; J MJ |(Li	i )L , (Si

1
2 )S; J MJ 〉

= [(2L + 1)(2S + 1)(2Ji + 1)(2Ki + 1)]1/2W (L	i Si Ji ; Li Ki )

×W (L J Si
1
2 ; SKi ). (5.118)

We can then express the K -matrix K Jπ
αβ (E), defined in the pair-coupling scheme,

in terms of the K -matrix KΓi j (E), determined in the L Sπ -coupling scheme by the
equation

K Jπ
αβ (E) =

∑
L S

〈[(Li Si )Ji , 	i ]Ki
1
2 ; J MJ |(Li	i )L , (Si

1
2 )S; J MJ 〉KΓi j (E)

×〈(L j	 j )L , (S j
1
2 )S; J MJ |[(L j S j )J j , 	 j ]K j

1
2 ; J MJ 〉, (5.119)

where the summation goes over all L S values which contribute to the J value con-
sidered. Also the channel subscripts α and β on the K -matrix elements K Jπ

αβ (E) in
(5.119) represent the quantum numbers

α ≡ αi Li Si Ji 	i Ki
1
2 , β ≡ α j L j S j J j 	 j K j

1
2 . (5.120)

It follows that the K -matrix must first be determined in L Sπ -coupling for all signif-
icant L Sπ values when relativistic terms in the Hamiltonian are omitted. Equation
(5.119) is then used to transform the K -matrix from the L Sπ -coupling scheme to
the pair-coupling scheme for all relevant Jπ values.

For atoms and ions where the term splitting1 in the target due to relativistic effects
is small compared with the term separation, the transformation involving the angular
momentum variables given by (5.119) provides an accurate representation of the
collision. However, with increasing nuclear charge number Z , relativistic effects
increase in importance and the target Hamiltonian can no longer be treated as diag-
onal with respect to the target quantum numbers Li and Si . If relativistic effects are

1 In this discussion a term corresponds to a target state belonging to the quantum numbers αi Li Siπi
in the absence of relativistic effects (see, for example, [232]).
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not large, it is appropriate to represent these effects by expanding the resultant target
states in terms of the target states retained in the original L Sπ -coupled expansion
defined by (5.5) and (5.6) omitting relativistic effects. We first recouple the original
L Sπ -coupled target states as follows:

Φi (αi Li Si Ji MJiπi |XN ) =
∑

MLi MSi

(Li MLi Si MSi |Ji MJi )

× Φi (αi Li Si MLi MSiπi |XN ), (5.121)

where (Li MLi Si MSi |Ji MJi ) are Clebsch–Gordan coefficients defined in
Appendix A.1 and where we have explicitly denoted the dependence of the target
states on the angular momentum quantum numbers, as in (2.14). We then expand the
target states including relativistic effects in terms of these recoupled states accord-
ing to
Φi (Δi Ji MJiπi |XN ) =

∑
αi Li Si

f (Δi Jiπi ;αi Li Siπi )Φi (αi Li Si Ji MJiπi |XN ),

(5.122)

where the summation goes over all the target states retained in the original L Sπ -
coupled expansion defined by (5.6) which can couple to Ji MJiπi and where we
have introduced a parameter Δi which replaces αi and which serves to distinguish
different target states with the same total angular momentum and parity. The term-
coupling coefficients f (Δi Jiπi ;αi Li Siπi ), defined by (5.122) [509, 510], can be
obtained by diagonalizing the Breit–Pauli target Hamiltonian HBP

N , which includes
relativistic terms as described in Sect. 5.4.2, in this new basis for each Jiπi as
follows:

〈Φi (Δi Ji MJiπi |XN )|HBP
N |Φ j (Δ j J j MJjπ j |XN )〉 = eJiπi

i δi j , i, j = 1, . . . , ni ,

(5.123)

where ni is the number of target states with Jiπi symmetry represented by the
parameters Δi and Δ j . The K -matrix K Jπ

μν (E) in this “full intermediate coupling”

representation is then given in terms of the original K -matrix K Jπ
αβ (E), defined by

(5.119), by

K Jπ
μν (E) =

∑
αi Li Si

∑
α j L j S j

f (Δi Jiπi ;αi Li Siπi )K
Jπ
αβ (E) f (Δ j J jπ j ;α j L j S jπ j ),

(5.124)

where the channel subscripts μ and ν on the K -matrix elements K Jπ
μν (E) in this

equation represent the following quantum numbers:

μ ≡ Δi Ji 	i Ki
1
2 , ν ≡ Δ j J j 	 j K j

1
2 . (5.125)

The multichannel S-matrix and hence the T -matrix in the pair-coupling scheme
are then obtained in terms of the K -matrices defined by (5.119) and (5.124) using
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the procedure described in Sect. 2.5. The S-matrix is defined in terms of the
K -matrix, in analogy with (2.112), by the matrix equation

SJπ = I+ iKJπ

I− iKJπ
, (5.126)

and the corresponding T -matrix is defined in analogy with (2.119) by

TJπ = SJπ − I. (5.127)

The cross sections and collision strengths for transitions between the fine-structure
levels of the target can be obtained in this new coupling scheme, as described in
Sect. 2.5. We obtain the following result for the total cross section

σTot(i → j) =
∑
Jπ

σ Jπ (i → j), (5.128)

where the partial wave cross sections

σ Jπ (i → j) = (2J + 1)

2k2
i (2Ji + 1)

∑
	i 	 j Ki K j

|T Jπ
j i |2 (5.129)

are given in units of πa2
0.

The transformation procedure using (5.119) and (5.124) is appropriate when all
the channels included in (5.5) and (5.6) are open. However, a difficulty arises at low
electron impact energies where some of these channels are closed. In this energy
region, some of the terms included in the term coupling expansion (5.122) corre-
spond to open channels and others correspond to closed channels. Consequently,
the transformation of the K -matrix to full intermediate coupling, defined by (5.119)
and (5.124), breaks down since the K -matrix, which has dimension na × na , only
includes the na open channels. The procedure usually adopted for dealing with this
situation, using the Saraph computer program [810, 811], has been to set all the
energy levels corresponding to a given term equal and to include after renormal-
ization only those components of the term-coupling coefficients corresponding to
open channels in the calculation. However, this procedure can lead to poor threshold
energies, incorrect resonance structure and anomalous threshold effects in the cross
sections as new terms are included in the calculation when the energy increases
through the term thresholds.

In more recent electron–positive ion collision calculations by Griffin et al. [426]
and Badnell and Griffin [34], the inconsistencies discussed in the previous para-
graph have been removed using multichannel quantum defect theory (MQDT), dis-
cussed in Sect. 3.3.4. In this intermediate coupling frame transformation (ICFT)
method, the unphysical K -matrices (K) and S-matrices (χ), defined in Sect. 3.3.4,
are first calculated on a coarse mesh in L Sπ -coupling, neglecting relativistic effects.
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These unphysical matrices are analytic functions of energy, which do not contain
the threshold branch cuts, and have the dimension n × n at all energies, where n is
the number of coupled channels. Hence they can be interpolated onto a fine energy
mesh. The resultant unphysical matrices can then be transformed to full intermediate
coupling using (5.119) and (5.124) for all required energies both above and below
the thresholds. The physical K - and S-matrices in the open channels are then shown
in Sect. 3.3.4 to be related to the unphysical K - and S-matrices as follows:

KJπ
oo = KJπ

oo −KJπ
oc

1

KJπ
cc + tan(πνc)

KJπ
co (5.130)

and

SJπ
oo = χ Jπ

oo − χ Jπ
oc

1

χ Jπ
cc − exp(−2π iνc)

χ Jπ
co , (5.131)

where νc is a diagonal matrix in the closed channels whose diagonal elements are
defined by

ν2
i = −

(Z − N )2

k2
i

, i = na + 1, . . . , n, (5.132)

where na is the number of open channels at the energy under consideration.
The T -matrix and cross sections for transitions between the fine-structure levels

corresponding to the open channels are then given in terms of the open channel
physical S-matrix SJπ

oo by (5.127), (5.128) and (5.129). Since the unphysical K - and
S-matrices are smooth functions of energy, the fine-structure splitting of the energy
levels of the target can be accurately included in the calculation. Also resonance
structures which converge to all excited thresholds are included through the inverse
terms in (5.130) and (5.131). In conclusion, this application of MQDT enables
relativistic effects and resonance structures to be accurately included in electron–
positive ion collisions for relatively light targets, by solving the time-independent
Schrödinger equation in L Sπ -coupling on a coarse mesh of energies using the non-
relativistic R-matrix method, discussed in Sect. 5.1.

5.4.2 Breit–Pauli Hamiltonian

As the nuclear charge number Z increases relativistic effects must be included in
the Hamiltonian used to determine both the target atom or ion wave function and the
electron–target atom or ion collision wave function. This can be achieved, provided
Z is not too large, by using the Breit–Pauli Hamiltonian (e.g. [7, 105, 382]).

The (N + 1)-electron Breit–Pauli Hamiltonian can be written as

HBP
N+1 = HNR

N+1 + HREL
N+1, (5.133)
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where HNR
N+1, the non-relativistic Hamiltonian, is defined by (5.3) and HREL

N+1 con-
sists of one- and two-body relativistic terms resulting from the reduction of the Dirac
equation and the Breit interaction to Pauli form.

The one-body terms are defined by

HMC
N+1 = −

1

8
α2

N+1∑
i=1

∇4
i , relativistic mass-correction, (5.134)

HD1
N+1 = −

1

8
α2 Z

N+1∑
i=1

∇2
i

(
1

ri

)
, one-body Darwin, (5.135)

HSO
N+1 =

1

2
α2 Z

N+1∑
i=1

r−3
i (�i · si ), spin–orbit, (5.136)

and the two-body terms are defined by

HSOO
N+1 = −1

2
α2

N+1∑
i �= j=1

(
ri j

r3
i j

× pi

)
· (si + 2s j ), spin–other orbit, (5.137)

HOO
N+1 = −

1

2
α2

N+1∑
i< j=1

(
pi · p j

ri j
+ ri j (ri j · pi ) · p j

r3
i j

)
, orbit–orbit, (5.138)

HSS
N+1 = α2

N+1∑
i< j=1

1

r3
i j

(
si · s j − 3(si · ri j )(s j · ri j )

r2
i j

)
, spin–spin, (5.139)

HD2
N+1 =

1

4
α2

N+1∑
i< j=1

∇2
i

(
1

ri j

)
, two-body Darwin, (5.140)

HSSC
N+1 = −8πα2

3

N+1∑
i< j=1

(si · s j )δ(ri · r j ), spin–spin contact. (5.141)

The Breit–Pauli Hamiltonian can then be rewritten as

HBP
N+1 = HNR

N+1 + HFS
N+1 + HNFS

N+1, (5.142)

where HFS
N+1 are fine-structure terms defined by

HFS
N+1 = HSO

N+1 + HSOO
N+1 + HSS

N+1, (5.143)

while HNFS
N+1 are non-fine-structure terms defined by

HNFS
N+1 = HMC

N+1 + HD1
N+1 + HOO

N+1 + HD2
N+1 + HSSC

N+1. (5.144)
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The non-fine-structure terms commute with the operators L2, S2, Lz , Sz and π while
the fine-structure terms only commute with the operators J2, Jz and π . Thus it is
necessary to use a representation which is diagonal in J2, Jz and π . In practice, for
electron collision calculations, the one-body terms defined by (5.134), (5.135) and
(5.136) are found to be the most important and often only these terms in addition to
HNR

N+1 are retained in calculations using the Breit–Pauli Hamiltonian HBP
N+1. How-

ever, other terms, including in particular the spin–other orbit term (5.137), can also
play a significant role and have been included in some recent R-matrix calculations.

We now consider the solution of the time-independent Breit–Pauli equation

HBP
N+1Ψ = EΨ. (5.145)

As in non-relativistic R-matrix theory of electron collisions with atoms and atomic
ions, we partition configuration space into three regions as illustrated in Fig. 5.1. We
now discuss the solution in each of these regions in turn.

5.4.2.1 Internal Region Solution

In the internal region, corresponding to 0 ≤ r ≤ a0 in Fig. 5.1, the collision wave
function can be written in analogy with (5.5) as

Ψ
J MJπ
j E (XN+1) =

∑
k

ψ
J MJπ
k (XN+1)A

J MJπ
k j (E), (5.146)

for each set of conserved quantum numbers J , MJ and π , where J is the total
angular momentum quantum number, MJ is the corresponding magnetic quantum
number and π is the parity. Also in (5.146) j labels the linearly independent solu-
tions of (5.145), ψ J MJπ

k are energy-independent basis functions and AJ MJπ
k j (E) are

energy-dependent expansion coefficients which depend on the asymptotic boundary
conditions satisfied by the wave function Ψ J MJπ

j E at the energy E . In analogy with

(5.6) we expand the basis functions ψ J MJπ
k as follows:

ψ
J MJπ
k (XN+1) = A

n∑
i=1

nc∑
j=1

Φ
J MJπ

i (XN ; r̂N+1σN+1)r
−1
N+1u0

i j (rN+1)a
Jπ
i jk

+
m∑

i=1

χ
J MJπ
i (XN+1)b

Jπ
ik , k = 1, . . . , nt , (5.147)

where n is the number of channel functions, nc is the number of continuum orbitals
retained in each channel, m is the number of quadratically integrable functions and
nt = nnc + m is the total number of linearly independent basis functions retained
in this expansion. As noted earlier, the values of n, nc, m and nt are now con-
siderably larger than the values corresponding to equivalent calculations using the
non-relativistic expansion (5.6).
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In order to determine the channel functionsΦ
J MJπ

i in (5.147) we commence with
the target states Φi (αi Li Si MLi MSiπi |XN ) which diagonalize the non-relativistic
target Hamiltonian HNR

N as described in Sect. 2.2. We then recouple these states as
in (5.121) to yield target states Φi (αi Li Si Ji MJiπi |XN ) belonging to the quantum
numbers Li Si Ji MJiπi . If relativistic effects in the target are not important then the
channel functions are determined in the pair-coupling scheme defined by (5.116) as
follows:

Φ
J MJπ

i (XN ; r̂N+1σN+1)

=
∑

MJi m	i

∑
MKi mi

(Ji MJi 	i m	i |Ki MKi )(Ki MKi
1
2 mi |J MJ )

× Φi (αi Li Si Ji MJiπi |XN )Y	i m	i
(θN+1, φN+1)χ 1

2 mi
(σN+1). (5.148)

However, with increasing nuclear charge number Z the channel functions Φ
J MJπ

i
can no longer be accurately represented by eigenstates of the total orbital and spin
angular momentum operators L2

i and S2
i , as assumed in (5.121) and (5.148). If the

relativistic effects are not too large, then the target states can be represented by
an expansion over the target states defined by (5.121) for each Ji MJiπi symmetry.
Following our discussion in Sect. 5.4.1 we write

Φi (Δi Ji MJiπi |XN ) =
∑
αi Li Si

f (Δi Jiπi ;αi Li Siπi )Φi (αi Li Si Ji MJiπi |XN ),

(5.149)

where the summation in this equation goes over all target states retained in the
original R-matrix expansion in (5.147) with the given Jiπi symmetry, and where
we have introduced a level parameter Δi in this equation to distinguish differ-
ent target states with the same Ji MJiπi symmetry. The term-coupling coefficients
f (Δi Jiπi ;αi Li Siπi ) in (5.149) are determined by diagonalizing the target Breit–
Pauli Hamiltonian HBP

N in the basis Φi (αi Li Si Ji MJiπi |XN ) for each Jiπi symme-

try as in (5.123) yielding the target energies eJiπi
i . Equation (5.148), defining the

channel functions, is then replaced by

Φ
J MJπ

i (XN ; r̂N+1σN+1)

=
∑

MJi m	i

∑
MKi mi

(Ji MJi 	i m	i |Ki MKi )(Ki MKi
1
2 mi |J MJ )

× Φi (Δi Ji MJiπi |XN )Y	i m	i
(θN+1, φN+1)χ 1

2 mi
(σN+1). (5.150)

Next the quadratically integrable functions χ J MJπ
i in (5.147) can be obtained by

recoupling the quadratically integrable functions χΓi retained in (5.6) in the absence
of relativistic effects. In analogy with (5.121) we write
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χ
J MJπ
i (αL S J MJπ |XN+1) =

∑
ML MS

(L ML SMS|J MJ )χ
Γ
i (αL SML MSπ |XN+1).

(5.151)
Finally, the continuum basis orbitals u0

i j (r) in (5.147) can be determined using a
similar approach to that described in Sect. 5.3.

Having defined the channel functions, quadratically integrable functions and con-
tinuum basis orbitals in (5.147), we can determine the coefficients a Jπ

i jk and bJπ
ik by

diagonalizing HBP
N+1 + LN+1 in this basis as follows:

〈ψ J MJπ
k |HBP

N+1 + LN+1|ψ J MJπ

k′ 〉int = E Jπ
k δkk′ , k, k′ = 1, . . . , nt , (5.152)

where the Bloch operator LN+1 in this equation ensures that HBP
N+1 + LN+1 is

hermitian in the space of functions satisfying arbitrary boundary conditions on the
surface of the sphere of radius r = a0 enveloping the internal region. It is defined
by (5.8) since we will see that the relativistic terms in the Breit–Pauli Hamilto-
nian do not modify the form of the coupled second-order differential equations,
given by (5.159), which are satisfied by the scattered electron on the boundary
r = a0 of the internal region, for the intermediate values of Z of interest in this
section.

We then proceed using a straightforward extension of the approach adopted
in non-relativistic electron collisions with atoms and atomic ions, described in
Sect. 5.1.2. The reduced radial wave functions F Jπ

i j (r), describing the motion of
the scattered electron in the i th channel, satisfy the equation

F Jπ
i j (a0) =

n∑
i ′=1

R Jπ
i i ′ (E)

(
a0

dF Jπ
i ′ j

dr
− b0 F Jπ

i ′ j

)
r = a0

, i = 1, . . . , n, (5.153)

where the elements of the R-matrix R Jπ
i i ′ (E) are defined by

R Jπ
i i ′ (E) =

1

2a0

nt∑
k= 1

w Jπ
ik w

Jπ
i ′k

E Jπ
k − E

, i, i ′ = 1, . . . , n, (5.154)

the functions F Jπ
i j (r) are defined by

F Jπ
i j (rN+1) = 〈r−1

N+1Φ
J MJπ

i |Ψ J MJπ
j E 〉′, i = 1, . . . , n (5.155)

and the surface amplitudes wJπ
ik are defined by
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w Jπ
ik = 〈r−1

N+1Φ
J MJπ

i |ψ J MJπ
k 〉′rN+1= a0

=
nc∑

j=1

u0
i j (a0)a

Jπ
i jk , i = 1, . . . , n, k = 1, . . . , nt . (5.156)

A Buttle correction to the R-matrix and wave function can be included as discussed
for non-relativistic electron collisions in Sect. 5.3.2. We can also write down an
alternative expression for the reduced radial wave functions F Jπ

i j (r) by substituting

for Ψ J MJπ
j E from (5.146) into (5.155) giving

F Jπ
i j (rN+1) =

nt∑
k=1

〈r−1
N+1Φ

J MJπ

i |ψ J MJπ
k 〉′AJ MJπ

k j (E), i = 1, . . . , n. (5.157)

As in (5.20), (5.21) and (5.22), the primes on the Dirac brackets in (5.155), (5.156)
and (5.157) mean that the integrations are carried out over the space and spin coordi-
nates of all N + 1 electrons in the internal region, except the radial coordinate rN+1
of the scattered electron, where the resulting integral is independent of the magnetic
quantum number MJ . Finally, we note that (5.153) provides the boundary condition
for the solution of the electron–atom collision problem in the external region.

5.4.2.2 External Region Solution

In the external region, corresponding to a0 ≤ r ≤ ap in Fig. 5.1, electron exchange
and correlation effects between the scattered electron and the target atom or atomic
ion can be neglected and (5.147) reduces to

Ψ
J MJπ
j E (XN+1) =

n∑
i=1

Φ
J MJπ

i (XN ; r̂N+1σN+1)r
−1
N+1 F Jπ

i j (rN+1), rN+1 ≥ a0,

(5.158)

where j labels the linearly independent solutions. Also, the channel functions

Φ
J MJπ

i in (5.158) are defined by either (5.148) or (5.150), depending on the
importance of relativistic effects in the target, and F Jπ

i j (r) are energy-dependent
reduced radial wave functions, defined by (5.155). Following our discussion of non-
relativistic collisions given in Sect. 5.1.3, the coupled equations satisfied by the
reduced radial functions F Jπ

i j (r) in (5.158) are obtained by substituting (5.158) into

the Breit–Pauli equation (5.145) and projecting onto the channel functions Φ
J MJπ

i .
We find that the functions F Jπ

i j (r) satisfy the following set of coupled second-order
differential equations:

(
d2

dr2
− 	i (	i + 1)

r2
+ 2(Z − N )

r
+ k2

i

)
F Jπ

i j (r) = 2
n∑

i ′=1

V Jπ
i i ′ (r)F

Jπ
i ′ j (r),

i = 1, . . . , n, r ≥ a0, (5.159)
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where 	i is the orbital angular momentum of the scattered electron, k2
i is the square

of the wave number of the scattered electron defined by

k2
i = 2

(
E − eJiπi

i

)
, i = 1, . . . , n (5.160)

and the potential matrix V Jπ
i i ′ (r) is defined by

V Jπ
i i ′ (rN+1) = 〈r−1

N+1Φ
J MJπ

i (XN ; r̂N+1σN+1)

∣∣∣∣∣
N∑

k=1

1

rk N+1
− N

rN+1

∣∣∣∣∣
× r−1

N+1Φ
J MJπ

i ′ (XN ; r̂N+1σN+1)〉′, i, i ′ = 1, . . . , n, (5.161)

which replaces (2.66) when relativistic terms are retained in the Hamiltonian. Fol-
lowing our discussion in Sect. 2.3, this potential matrix can be written as a summa-
tion over inverse powers of r as follows:

V Jπ
i i ′ (r) =

λmax∑
λ=1

α Jπ
i i ′λr

−λ−1, r ≥ a0, i, i ′ = 1, . . . , n, (5.162)

where the long-range potential coefficients α Jπ
i i ′λ are defined, in analogy with (2.74),

by the equation

α Jπ
i i ′λ = 〈r−1

N+1Φ
J MJπ

i (XN ; r̂N+1σN+1)

∣∣∣∣∣
N∑

k=1

rλk Pλ(cos θk N+1)

∣∣∣∣∣
× r−1

N+1Φ
J MJπ

i ′ (XN ; r̂N+1σN+1)〉′, i, i ′ = 1, . . . , n,

λ = 1, . . . , λmax. (5.163)

We derive explicit expressions for these coefficients in Appendix D.1; see (D.25)
and (D.26).

The solution of (5.159) can be obtained by sub-dividing the external region into
p sub-regions, as illustrated in Fig. 5.1, and propagating the R-matrix for each
required energy from r = a0 to ap as described in Appendix E. Since the expression
for the long-range potential coefficients, defined by (D.25) and (D.26), is diagonal in
the quantum number Ki , defined following (5.116), then the set of second-order dif-
ferential equations (5.159) sub-divide into two uncoupled sets of equations depend-
ing on whether Ki = J − 1

2 or Ki = J + 1
2 . This enables more efficient R-matrix

propagator methods to be used with considerable saving in computational effort, as
discussed in Appendix E.6. This is analogous to the situation in non-relativistic col-
lisions of electrons with atoms and atomic ions, discussed in Sect. 5.1.3, where the
corresponding second-order differential equations sub-divide into two uncoupled
sets of equations depending on whether the target spin Si = S − 1

2 or Si = S + 1
2 .
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5.4.2.3 Asymptotic Region Solution

The solution of the time-independent Breit–Pauli equation (5.145) in the asymp-
totic region, corresponding to ap ≤ r ≤ ∞ proceeds as in non-relativistic electron
collisions described in Sect. 5.1.4. In this region (5.147) again reduces to (5.158),
where the reduced radial wave functions F Jπ

i j (r) satisfy the coupled second-order
differential equations (5.159). As in Sect. 5.1.4 we assume that the radius ap is
chosen large enough that one of the asymptotic expansion methods discussed in
Appendix F.1 gives an accurate solution of (5.159) in this region. We are then able
to use these solutions to relate the na × na-dimensional K -matrix KJπ (E) to the
n × n-dimensional R-matrix RJπ (E) at r = ap, where na is the number of open
channels at the energy under consideration. Finally, having determined the K -matrix
we can determine the S-matrix and hence the T -matrix, as described in Sect. 5.1.4.

The total and partial wave cross sections for transitions between fine-structure
levels of the target are then given by (5.128) and (5.129). We see that the definition
of the cross section is formally the same as that given in Sect. 5.4.1, where the
transformed K -matrices, defined by (5.119) and (5.124), are used to calculate the
S- and T -matrices. However, using the Breit–Pauli Hamiltonian correctly accounts
for the kinematics of the scattered electron and gives a consistent treatment of the
collision above and below thresholds.

5.4.3 Frame-Transformation Theory

One computational difficulty, which arises as a result of using the Breit–Pauli
Hamiltonian (5.133) rather than the non-relativistic Hamiltonian (5.3), is that the
number of coupled channels included in the internal region expansion (5.147) is
greatly increased for the same set of target states included in the non-relativistic
expansion (5.6). This results in a corresponding increase in the size of the Hamil-
tonian matrices in (5.152) that must be diagonalized. For example in e−–Fe II col-
lisions, considered in Sect. 5.6.5, if all L Sπ -coupled target states corresponding to
the five target configurations

3d64s, 3d7, 3d64p, 3d54s2, 3d54s4p (5.164)

are included in the expansion of the total wave function then, when relativistic
effects are omitted, a maximum of 818 coupled channels are obtained for total
spin state S = 1 and a maximum of 354 coupled channels are obtained for total
spin state S = 2. On the other hand, if relativistic Breit–Pauli terms are included
in the Hamiltonian then the calculation must be carried out in Jπ -coupling which
results in a maximum of 5,076 coupled channels. However, it is pointed out in Sect.
5.6.5 that converged results at low energies may require target states from additional
configurations to be included in the R-matrix expansion. For example, we see from
Table 5.2 that if target states from the 10 configurations, illustrated in Fig. 5.10, are
included in the expansion then the maximum number of coupled channels increases
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to 2,575 in L Sπ -coupling and to 15,576 in Jπ -coupling. In both the 5 and 10 target
configuration cases, including relativistic terms in the Hamiltonian increases the
time required to diagonalize the Hamiltonian matrices by more than two orders of
magnitude, making the calculations much more demanding.

In order to address this computational difficulty we observe that for many low-
energy electron–atom and electron–ion collision calculations, where relativistic
effects play an important role, it is often appropriate to omit or partly omit the
relativistic terms in the Hamiltonian in the internal region, although these terms
must still be included in the external and asymptotic regions in order to obtain accu-
rate threshold energies and hence accurate scattering amplitudes and cross sections.
Also, we will see in Chap. 6, where we consider electron collisions at intermediate
energies, that it is often necessary to include a large number of pseudostates to allow
for inelastic effects above the ionization threshold. In this case, it is not necessary
to include relativistic effects involving these pseudostates although these effects can
still be important for the physical states included in the R-matrix expansion. In a
similar way, it is not necessary to include relativistic effects in the higher continuum
basis orbitals represented by the expansion over j in (5.147) which are included to
give a converged R-matrix expansion.

In the frame-transformation theory (FTT) method, the relativistic Breit–Pauli
terms in the Hamiltonian are omitted in the internal region in the high-energy
spectrum, where they are dominated by the electron kinetic energy contribution to
the total energy. However, they can be included in the internal region in the low-
energy spectrum. These terms are then fully included in the external and asymptotic
regions, where they give rise to the relativistic term splitting of the channels which
plays an important role, particularly for low-energy electron collisions with atoms
and near neutral ions. The corresponding partitioning of configuration space is illus-
trated in Fig. 5.3, which can be compared with Fig. 5.1 applicable when the FTT
method is not used.

EBP

Total
Energy

Radial coordinate of scattered electron
a0 ap0

Internal Region

exchange and
correlation
important

B –P terms omitted

exchange and
correlation
important

B –P terms included

External and Asymptotic Regions

exchange and correlation

negligible

B –P terms included

Fig. 5.3 Partitioning of configuration space in the FTT method showing the procedure for
including relativistic Breit–Pauli (B–P) terms in the internal, external and asymptotic regions
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In the FTT method the calculation is carried out in the following four steps:

(i) The non-relativistic Hamiltonian HN+1 defined by (5.3) is first diagonalized
in the internal region in the basis (5.6) for all L Sπ values of importance. The
R-matrices RΓ (E) on the boundary r = a0 of the internal region defined by
(5.19) are calculated in the usual way, as described in Sect. 5.1.2. If required,
this step of the calculation can be made more efficient by using the partitioned
R-matrix method discussed in Sect. 5.3.4.

(ii) The R-matrices RΓ (E) at r=a0 calculated in step (i) are transformed from the
L Sπ -coupling scheme to the pair-coupling scheme by transformation (5.119).
Also, if relativistic effects in the target are important, a further transformation
(5.124) of the R-matrices to full intermediate coupling is made using term-
coupling coefficients, yielding the R-matrices RJπ (E) for each Jπ . This can
be achieved using the computer program FINE discussed in Sect. 5.1.1.

(iii) The R-matrices calculated in step (ii) are partitioned for each Jπ into two
sub-matrices RJπ

A (E) and RJπ
B (E) as follows:

RJπ (E) = RJπ
A (E)+ RJπ

B (E). (5.165)

The sub-matrix RJπ
A (E) corresponds to the terms in the R-matrix expansion

where the energies of the R-matrix poles EΓk satisfy EΓk > EBP and the
sub-matrix RJπ

B (E) corresponds to the remaining terms in the R-matrix expan-
sion where the energies of the R-matrix poles Ek satisfy EΓk ≤ EBP, where
the energy EBP shown in Fig. 5.3 separates the high-energy spectrum from
the low-energy spectrum in the internal region. The Breit–Pauli Hamiltonian
HBP

N+1, defined in (5.133), is then diagonalized in the internal region in the
basis defined by the sub-matrix RJπ

B (E) for each Jπ , and the corresponding
R-matrix RJπ

B (E) calculated. The R-matrix replacing (5.165) is then given by

RJπ
FTT(E) = RJπ

A (E)+RJπ
B (E). (5.166)

In some situations involving electron collisions with intermediate Z atoms and
ions it is appropriate to choose EBP so that EΓk > EBP for all k. Hence, in this
case step (iii) is omitted and

RJπ
FTT(E) = RJπ

A (E). (5.167)

This approach has been used by Cassidy et al. [204] who carried out low-
energy electron collision calculations for Ni II. In this calculation the non-
relativistic program RMATRXII was used to determine the surface amplitudes
for the R-matrix RΓ (E) on the boundary r = a0 of the internal region. The
program FINE, discussed in Sect. 5.1.1, was then used to transform these sur-
face amplitudes to full intermediate coupling yielding the R-matrix RJπ

FTT(E)
on the boundary r = a0.
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(iv) Finally, the R-matrix RJπ
FTT(E) at r = a0 provides the boundary condition at

r = a0 for determining the solution in the external and asymptotic regions
using the Breit–Pauli Hamiltonian, as discussed in Sect. 5.4.2. As shown in
Sect. 5.4.2 the corresponding coupled second-order differential equations sub-
divide into two uncoupled sets of equations depending on whether the quantum
number Ki = J− 1

2 or J+ 1
2 with considerable saving in computational effort.

Finally, the K -matrix, S-matrix and T -matrix are determined for each energy
E and Jπ , as described in Sect. 5.4.2, and the cross sections determined. We
see in this way that the FTT method correctly accounts for the kinematics of
the scattered electron giving a consistent treatment of the collision above and
below thresholds.

In conclusion, we observe that the ICFT method, discussed in Sect. 5.4.1, can
be regarded as a further approximation to the FTT method. In the ICFT method the
R-matrices RΓ (E) at r = a0 resulting from step (i) are propagated outwards across
the external region in L Sπ -coupling, neglecting the relativistic terms in the Hamil-
tonian in this region. The transformation to full intermediate coupling is then carried
out on the K -matrices in the asymptotic region, rather than on the R-matrices on the
internal region boundary in the FTT method. Hence the FTT method includes the
relativistic terms in the Hamiltonian fully in the external region. This can be impor-
tant for neutral targets where the ICFT method, which uses multichannel quantum
defect theory, is not applicable and for low-energy electron collisions with targets
where the relativistic term splitting is large. However, both methods reduce the size
of the very large Hamiltonian matrices which arise when relativistic terms in the
Breit–Pauli Hamiltonian are fully included in the internal region and are therefore
much less demanding computationally.

5.5 Dirac R-Matrix Theory

In this section we extend R-matrix theory to treat electron collisions with heavy
atoms and atomic ions where the nuclear charge number Z is large and as a result
relativistic effects must be included using the Dirac Hamiltonian. We commence in
Sect. 5.5.1 by introducing the Dirac Hamiltonian describing electron collisions with
an N -electron target atom or ion. We then summarize the historical background of
work in this area commencing with the first introduction of Dirac R-matrix the-
ory in nuclear physics and its first application in the study of electron–atom colli-
sions. We conclude this section by summarizing recent theoretical developments
and computer programs. Then in Sect. 5.5.2 we commence our detailed analy-
sis of Dirac R-matrix theory by considering the solution of the time-independent
Dirac equation in an internal region yielding the R-matrix on the boundary of this
region. This analysis takes advantage of our discussion of the solution of the Dirac
equation in potential scattering in Sect. 1.6 and our discussion of Dirac R-matrix
theory in potential scattering in Sect. 4.6. We also consider the convergence of the
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solution on the boundary of the internal region when radial continuum basis orbitals
satisfying homogeneous boundary conditions are used; a problem which we also
considered in non-relativistic potential scattering in Sect. 4.1. Having determined
the R-matrix on the boundary of the internal region, we then consider the solu-
tion of the Dirac equation, or the equivalent Schrödinger equation, in the external
region in Sect. 5.5.3 and in the asymptotic region in Sect. 5.5.4 which yields the
K -matrix, S-matrix and collision cross sections. Finally, in Sect. 5.5.5 we consider
the procedure usually adopted for calculating the radial continuum basis orbitals in
the expansion of the wave function in the internal region. Since in many applications
these orbitals satisfy homogeneous boundary conditions, similar to those adopted
in many non-relativistic calculations, we conclude our analysis in Sect. 5.5.6 by
describing the procedure for calculating a Buttle correction to the R-matrix which
is required in this case.

5.5.1 Introduction and Computer Programs

The Dirac Hamiltonian describing electron collisions with N -electron target atoms
or ions with nuclear charge number Z is given in atomic units by

HD
N+1 =

N+1∑
i=1

(
cα.pi + β ′c2 − Z

ri

)
+

N+1∑
i> j=1

1

ri j
, (5.168)

where, adopting the notation introduced in potential scattering in Sect. 1.6, α and
β ′ = β − I4 are 4 × 4-dimensional Dirac matrices defined by (1.233) and (1.234).
The solution of the time-independent Dirac equation

HD
N+1Ψ = EΨ (5.169)

is then required for each set of conserved quantum numbers J , MJ and π , where J
is the total angular momentum quantum number, MJ is the corresponding magnetic
quantum number in some preferred direction and π is the total parity.

Dirac R-matrix theory was first introduced by Goertzel [385] who extended
Wigner [968, 969] and Wigner and Eisenbud [972] R-matrix theory of nuclear
reactions using the Dirac equation and a theory of electron–hydrogen atom colli-
sions using the Dirac Hamiltonian was developed by Carse and Walker [203]. Dirac
R-matrix theory of atomic collisions was first formulated by Chang [211–213] who
wrote a computer program which he used to study electron collisions with Ne II and
Ne photoionization. Later, Thumm and Norcross [926, 927] carried out low-energy
electron–Cs collision calculations and Szmytkowski and Hinze [903–908] analysed
the application of Dirac R-matrix theory in electron–atom collisions with emphasis
on the convergence of the R-matrix expansion.

Recent work using Dirac R-matrix theory to study electron–atom collisions is
based on the development of the general-purpose relativistic atomic structure pro-
gram GRASP by Grant et al. [279, 408–410, 413–415, 514, 625, 718, 719]. As well
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as calculating the target states used in electron–atom collision calculations described
below, GRASP enables oscillator strengths and radiative decay rates for high Z
atoms and ions to be determined. It also includes the facility for calculating correc-
tions to the electron–electron interaction considered by Breit [131–133], as well as
other quantum electrodynamic (QED) corrections.

Following the development of the relativistic atomic structure program GRASP,
Norrrington and Grant [696, 697] initiated the development of a general electron–
atom Dirac atomic R-matrix collision program DARC which they used to study
electron collisions with Ne II, Fe VII and Fe XXIII. Later further calculations were
carried out by Wijesundera et al. [973–975], Ait-Tahar et al. [6] and other workers
to study electron collisions with a wide range of heavy atoms and atomic ions and
a detailed description of the program has been written by Norrington and Grant
[698]. The theory and the DARC program have been further developed by Badnell
[32] to treat electron collisions with atoms and atomic ions at intermediate energy,
extending the analysis presented in Chap. 6, and recent developments of the theory
have been discussed by Grant [411, 412].

5.5.2 Internal Region Solution

Following our discussion of non-relativistic R-matrix theory of electron–atom colli-
sions in Sect. 5.1 we partition configuration space into an internal region, an external
region and an asymptotic region, as shown in Fig. 5.1. We consider first the solution
of the Dirac equation (5.169) in the internal region 0 ≤ r ≤ a0 for each set of
conserved quantum numbers J , MJ and π . The first step is to determine the target
states and pseudostates included in the expansion of the collision wave function.
These states are defined in terms of four-component spinor basis functions φi (x)
which can be written following (1.244) as

φi (x) = 1

r

(
Pa

i (r)ηκi mi (r̂, σ )
iQa

i (r)η−κi mi (r̂, σ )

)
, (5.170)

where the two-component spinors ηκm(r̂, σ ) are defined by (1.245). Also in (5.170)
the reduced radial orbitals Pa

i (r) and Qa
i (r) are usually chosen to satisfy the

orthonormality relations

∫ ∞
0
[Pa

i (r)P
a
j (r)+ Qa

i (r)Q
a
j (r)]dr = δi j , all i and j, (5.171)

for each κ defined by (1.250) and Table 1.1. The radius a0 of the internal region in
Dirac R-matrix theory is then chosen so that the reduced radial orbitals Pa

i (r) and
Qa

i (r) satisfy

Pa
i (r) ≈ 0, Qa

i (r) ≈ 0, r ≥ a0, all i, (5.172)
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which ensures that electron exchange and correlation effects between the scattered
electron and the target atom are negligible in the external and asymptotic regions,

discussed below. The target states and pseudostates Φ
Ji MJi πi

i (XN ), which are con-
structed from these orbitals are then chosen to diagonalize the target Hamiltonian
HD

N as follows:

〈Φ Ji MJi πi

i |HD
N |Φ

J j MJ j π j

j 〉 = eJiπi
i δi j , (5.173)

for each Ji MJiπi , where Ji is the total target angular momentum quantum number,
MJi is the corresponding target magnetic quantum number, πi is the target parity
and eJiπi

i is the target energy.
Having determined the target states and pseudostates the collision wave function

Ψ
J MJπ
j E (XN+1) at a total energy E can be expanded in analogy with (5.5) as follows:

Ψ
J MJπ
j E (XN+1) =

∑
k

ψ
J MJπ
k (XN+1)A

Jπ
k j (E), (5.174)

where j labels the linearly independent solutions of (5.169), ψ J MJπ
k are energy-

independent basis functions and AJπ
k j (E) are energy-dependent expansion coeffi-

cients, which depend on the asymptotic boundary conditions satisfied by the wave
function Ψ J MJπ

j E at the energy E . We then expand the basis functions ψ J MJπ
k in

(5.174) for each J MJπ in analogy with (5.6) as follows:

ψ
J MJπ
k (XN+1) = A

n∑
i=1

nc∑
j=1

Φ
J MJπ

i (XN ; r̂N+1σN+1)r
−1
N+1u0

i j (rN+1)a
Jπ
i jk

+
m∑

i=1

χ J MJπ
i (XN+1)b

Jπ
ik , k = 1, . . . , nt , (5.175)

where n is the number of channels retained in the expansion, nc is the number of
continuum basis functions retained in each channel, m is the number of quadratically
integrable functions and nt = nnc + m is the total number of linearly independent

basis functions in this expansion. The channel functionsΦ
J MJπ

i are defined by cou-
pling the target states and pseudostatesΦ Ji Miπi

i (XN )with the relativistic spin–angle
functions describing the scattered electron, as follows:

Φ
J MJπ

i (XN ; r̂N+1σN+1)

=
∑
Mi mi

(Ji Mi ji mi |J MJ )Φ
Ji Miπi
i (XN )φ

ji mi
i (r̂N+1, σN+1), (5.176)

where the four-component spin–angle functions φ ji mi
i (r̂, σ ) describing the scattered

electron are defined by
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φ
ji mi
i (r̂, σ ) =

(
ηκi mi (r̂, σ )

iη−κi mi (r̂, σ )

)
. (5.177)

As in (5.170), the spin–angle functions ηκi mi (r̂, σ ) in this equation are two-
component spinors defined by (1.245), where the angular momentum quantum num-
ber ji is given in terms of the eigenvalue κi by (1.250). Finally, the radial motion
of the scattered electron in the internal region is described by the two-component
reduced radial continuum basis functions u0

i j (r) in (5.175) which are defined by

u0
i j (r) =

(
p0

i j (r)
q0

i j (r)

)
, i = 1, . . . , n, 0 ≤ r ≤ a0, (5.178)

where p0
i j (r) and q0

i j (r) are reduced radial continuum basis orbitals. Hence, in anal-
ogy with (1.244), we can rewrite (5.177) and (5.178) as a four-component spinor

r−1u0
i j (r)φ

ji mi
i (r̂, σ ) ≡ 1

r

(
p0

i j (r)ηκi mi (r̂, σ )
iq0

i j (r)η−κi mi (r̂, σ )

)
, i = 1, . . . , n, 0 ≤ r ≤ a0.

(5.179)

Following our discussion of Dirac R-matrix theory in potential scattering in
Sect. 4.6, the reduced radial continuum basis orbitals p0

i j (r) and q0
i j (r) in (5.178)

are chosen to vanish at the origin and to be non-zero on the boundary r = a0 of
the internal region. We describe a procedure in Sect. 5.5.5 which is often adopted
for calculating these orbitals when they satisfy homogeneous boundary conditions
at r = a0.

Returning to (5.175), A is the usual antisymmetrization operator defined by
(2.46) which ensures that each term in the first expansion is antisymmetric with
respect to interchange of the space and spin coordinates of any pair of the N + 1
electrons. Also, the functions χ J MJπ

i (XN+1) are quadratically integrable functions
which are constructed from the bound spinor basis functions φi (x) defined by
(5.170) which are negligible by the boundary r = a0 of the internal region. As
in the non-relativistic expansion (5.6), these quadratically integrable functions are
included in the expansion of the wave function for two reasons. First, for com-
putational convenience the radial continuum basis orbitals p0

i j (r) and q0
i j (r) are

usually constrained to be orthogonal to the physical orbitals used to construct the
target states included in (5.175). Appropriate quadratically integrable functions
constructed from these orbitals must therefore be included in the second expan-
sion for completeness. The second reason for including the quadratically integrable
functions is to represent short-range electron–electron correlation effects which are
difficult to accurately represent by including a finite number of target states and
pseudostates in the first expansion in (5.175).

We can determine the coefficients a Jπ
i jk and bJπ

ik in (5.175) by diagonalizing the

operator HD
N+1 + LD

N+1 as follows:
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〈ψ J MJπ
k |HD

N+1 + LD
N+1|ψ J MJπ

k′ 〉int = E Jπ
k δkk′ , k, k′ = 1, . . . , nt , (5.180)

where LD
N+1 is a matrix Bloch operator, discussed below, and where the integrations

in this equation are carried out over the space and spin coordinates of all N+1 elec-
trons, the radial integrals being confined to the internal region. It follows from the
rotational symmetry of the Hamiltonian and the Bloch operator that the coefficients
a Jπ

i jk and bJπ
ik and the energy E Jπ

k depend on J and π but are independent of the
magnetic quantum number MJ .

The matrix Bloch operator LD
N+1 in (5.180), which operates only on the two-

component space part of the scattered electron wave function, is introduced, as in
(5.7), so that HD

N+1 + LD
N+1 is hermitian in the space of quadratically integrable

functions ψ(1) and ψ(2) which vanish at the origin and satisfy arbitrary boundary
conditions on the surface r = a0 of the internal region. Hence, in analogy with
(5.9), it follows that

〈ψ(1)|HD
N+1 + LD

N+1|ψ(2)〉int − 〈ψ(2)|HD
N+1 + LD

N+1|ψ(1)〉int = 0, (5.181)

where the integration is carried out over all N + 1 electronic space and spin coor-
dinates which are confined to the internal region. Following our discussion of Dirac
R-matrix theory in potential scattering given in Sect. 4.6, the required matrix Bloch
operator, which is a generalization of (4.260), is given by

LD
N+1 =

1

2
c

N+1∑
i=1

(−b′ 1
−1 b′−1

)
δ(ri − a0), (5.182)

where b′ is an arbitrary constant. In the non-relativistic limit b′ and hence br, intro-
duced in Sect. 4.6, are related to the arbitrary constant b0 in (5.8) by (4.257) and
(4.258) which give

b′ = br

2a0c
= 1

2a0c
(b0 + κ), (5.183)

where κ is defined in terms of the orbital and total scattered electron angular momen-
tum quantum numbers 	 and j by (1.250) and Table 1.1. Hence b′ and br will depend
on the corresponding quantum numbers of the scattered electron in each channel.

We can now solve (5.169) in the internal region for each linearly indepen-
dent solution defined by (5.174). In analogy with the procedure adopted in non-
relativistic R-matrix theory in Sect. 5.1.2, we first include the Bloch operator term
LD

N+1Ψ on both sides of (5.169) giving

(
HD

N+1 + LD
N+1 − E

)
Ψ

J MJπ
j E = LD

N+1Ψ
J MJπ
j E . (5.184)

Equation (5.184) then has the formal solution in the internal region given by

Ψ
J MJπ
j E = (HD

N+1 + LD
N+1 − E

)−1 LD
N+1Ψ

J MJπ
j E . (5.185)
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The spectral representation of the Green’s function
(
HD

N+1 + LD
N+1 − E

)−1
in

(5.185) can be obtained in terms of the R-matrix basis functions ψ J MJπ
k defined

by (5.175) and (5.180) giving

|Ψ J MJπ
j E 〉 =

nt∑
k=1

|ψ J MJπ
k 〉 1

E Jπ
k − E

〈ψ J MJπ
k |LD

N+1|Ψ J MJπ
j E 〉. (5.186)

We then project (5.186) onto the n channel functions Φ
J MJπ

i (XN ; r̂N+1σN+1),
defined by (5.176), and substitute for the matrix Bloch operator LD

N+1 defined by
(5.182). We find using (5.174) and (5.175) that

F Jπ
i j (r) =

1

2a0

n∑
i ′=1

nt∑
k=1

v Jπ
ik (r) [v Jπ

i ′k (a0)]T
E Jπ

k − E
Bi ′ F Jπ

i ′ j (a0),

i = 1, . . . , n, 0 ≤ r < a0, (5.187)

where the two-component reduced radial wave functions F Jπ
i j (r) are defined by

F Jπ
i j (rN+1) = 〈r−1

N+1Φ
J MJπ

i |Ψ J MJπ
j E 〉′, i = 1, . . . , n, (5.188)

and where the two-component functions v Jπ
ik (r) are defined by

v Jπ
ik (rN+1) = 〈r−1

N+1Φ
J MJπ

i |ψ J MJπ
k 〉′, i = 1, . . . , n, k = 1, . . . , nt . (5.189)

As in (5.20) and (5.21), the primes on the Dirac brackets in (5.188) and (5.189) mean
that the integrations and summations are carried out over the space and spin coordi-
nates of all N + 1 electrons in the internal region, except the radial coordinate rN+1
of the scattered electron. Also, as in (5.20) and (5.21), the contributions from the
exchange terms and quadratically integrable functions in (5.175) to the integrals in
(5.188) and (5.189) become negligibly small near the boundary r = a0 of the inter-
nal region. Hence near the boundary r = a0 the expression for F Jπ

i j (r) reduces to

F Jπ
i j (r) =

nt∑
k=1

v Jπ
ik (r)A

Jπ
k j (E), i = 1, . . . , n, r <∼ a0, (5.190)

where the functions v Jπ
ik (r) can be expanded in terms of the radial continuum basis

functions u0
i j (r) in (5.178) as follows:

v Jπ
ik (r) =

nc∑
j=1

u0
i j (r)a

Jπ
i jk , i = 1, . . . , n, k = 1, . . . , nt , 0 ≤ r ≤ a0. (5.191)

Finally in (5.187), the Bi , which arise from the Bloch operator LD
N+1 defined by

(5.182), are 2× 2 matrices given by
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Bi = a0c

(−b′i 1
−1 b′i

−1

)
, i = 1, . . . , n, (5.192)

where the elements b′i in this matrix are defined in terms of the orbital and total scat-
tered electron angular momentum quantum numbers in the i th channel by (5.183)
and (1.250). Also in the above equations, F Jπ

i j (r), v
Jπ
ik (r) and u0

i j (r) are two-

component functions, where the radial continuum basis functions u0
i j (r) are defined

by (5.178). We observe that when the number of channels n = 1, (5.187) reduces to
(4.264) obtained in our discussion of Dirac R-matrix theory in potential scattering.

Following our discussion of Dirac R-matrix theory in potential scattering in Sect.
4.6, we now consider the convergence of expansion (5.187) as r → a0 from below
when the continuum basis orbitals p0

i j (r) and q0
i j (r) satisfy homogeneous boundary

conditions at r = a0. We first rewrite the reduced radial wave functions F Jπ
i j (r) and

the functions v Jπ
ik (r) in terms of their components as follows:

F Jπ
i j (r) =

(
P Jπ

i j (r)
Q Jπ

i j (r)

)
, i = 1, . . . , n (5.193)

and

v Jπ
ik (r) =

(
w Jπ

ik (r)
y Jπ

ik (r)

)
=

nc∑
i ′=1

(
p0

i i ′(r)
q0

i i ′(r)

)
a Jπ

i i ′k, i = 1, . . . , n, k = 1, . . . , nt .

(5.194)
Substituting these equations into (5.187) then yields the coupled equations

P Jπ
i j (r) =

1

2a0

n∑
i ′=1

nt∑
k=1

w Jπ
ik (r)

E Jπ
k − E

Ci ′k j , i = 1, . . . , n, 0 ≤ r < a0 (5.195)

and

Q Jπ
i j (r) =

1

2a0

n∑
i ′=1

nt∑
k=1

y Jπ
ik (r)

E Jπ
k − E

Ci ′k j , i = 1, . . . , n, 0 ≤ r < a0, (5.196)

where

Cik j = a0c
[
w Jπ

ik (a0) y Jπ
ik (a0)

] (−b′i 1
−1 b′i

−1

)(
P Jπ

i j (a0)

Q Jπ
i j (a0)

)
. (5.197)

We now assume that the radial continuum basis orbitals p0
i j (r) and q0

i j (r) satisfy
homogeneous boundary conditions at r = a0 defined by

q0
i j (a0) = b′i p0

i j (a0), i = 1, . . . , n, j = 1, . . . , nc, (5.198)
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which corresponds to the boundary condition procedure often adopted in calculating
these orbitals, described in Sect. 5.5.5. Hence it follows from (5.194) that

y Jπ
ik (a0) = b′iw Jπ

ik (a0), i = 1, . . . , n, k = 1, . . . , nt . (5.199)

Substituting this result into (5.197) we find that (5.195) and (5.196) become

P Jπ
i j (r) =

1

2a0

n∑
i ′=1

nt∑
k=1

w Jπ
ik (r)w

Jπ
i ′k (a0)

E Jπ
k − E

[
2a0cQ Jπ

i ′ j (a0)− bri ′ P
Jπ

i ′ j (a0)
]
,

i = 1, . . . , n, 0 ≤ r < a0 (5.200)

and

Q Jπ
i j (r) =

1

2a0

n∑
i ′=1

nt∑
k=1

y Jπ
ik (r)w

Jπ
i ′k (a0)

E Jπ
k − E

[
2a0cQ Jπ

i ′ j (a0)− bri ′ P
Jπ

i ′ j (a0)
]
,

i = 1, . . . , n, 0 ≤ r < a0, (5.201)

where using (5.183) we have written

bri = b0 + κi = 2a0cb′i , i = 1, . . . , n. (5.202)

We see that when the number of channels n = 1 then (5.200), (5.201) and (5.202)
reduce to (4.272), (4.273) and (4.258) which we obtained in Dirac R-matrix theory
in potential scattering, where we remember that nt in (5.200) and (5.201) is the total
number of basis functions retained in expansion (5.175), which corresponds to n in
(4.272) and (4.273).

The limit of (5.200) and (5.201) when r → a0 from below is then given by

P Jπ
i j (a0) =

n∑
i ′=1

RJπ
i i ′ (E)

[
2a0cQ Jπ

i ′ j (a0)− bri ′ P
Jπ

i ′ j (a0)
]
, i = 1, . . . , n

(5.203)
and

Q Jπ
i j (a0) = b′i

n∑
i ′=1

RJπ
i i ′ (E)

[
2a0cQ Jπ

i ′ j (a0)− bri ′ P
Jπ

i ′ j (a0)
]
, i = 1, . . . , n,

(5.204)
where the n × n-dimensional R-matrix RJπ

i j (E) is defined by

RJπ
i j (E) =

1

2a0

nt∑
k=1

w Jπ
ik (a0)w

Jπ
jk (a0)

E Jπ
k − E

, i, j = 1, . . . , n (5.205)

and where the surface amplitudes w Jπ
ik (a0) are defined by (5.194). As in Dirac

R-matrix theory in potential scattering considered in Sect. 4.6, see (4.274), (4.275),
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and (4.276) and the following discussion, we can only find a trivial solution of both
(5.203) and (5.204) given by

P Jπ
i j (a0) = Q Jπ

i j (a0) = 0, i = 1, . . . , n, (5.206)

when the R-matrix RJπ
i j (E) is non-singular. To see this we substitute for the sum-

mation on the right-hand side of (5.204) from (5.203) showing, after using (5.202),
that the terms [2a0cQ Jπ

i j (a0)−bri P Jπ
i j (a0)] in both (5.203) and (5.204) are zero.

However, at the poles of the R-matrix RJπ
i j (E) we obtain, after using (5.202), the

non-trivial solution of (5.203) and (5.204) given by

Q Jπ
i j (a0) = b′i P Jπ

i j (a0), i = 1, . . . , n, (5.207)

which corresponds to the homogeneous boundary condition (5.198) satisfied by the
radial continuum basis orbitals.

We can understand this result by considering the non-relativistic limit of (5.203)
and (5.204) as r → a0 from below. In analogy with our discussion of Dirac R-
matrix theory in potential scattering following (4.274), we see that (5.203) reduces
in the non-relativistic limit to the usual equation relating the reduced radial wave
function to its derivative on the boundary r = a0 of the internal region. On the
other hand, (5.204) reduces in this limit to an expansion of the derivative of the
wave function on the boundary of the internal region. However, when radial con-
tinuum basis orbitals satisfying homogeneous boundary conditions are adopted in
the analysis, this expansion only converges to the exact solution at the poles of the
R-matrix when (5.207) is satisfied. Hence, in this case, expansion (5.201) is not
uniformly convergent on the boundary r = a0 except at the poles of the R-matrix.
A detailed analysis of the structure of the two-point boundary value problem for the
Dirac operator by Grant [412] confirms that (5.203), where the R-matrix is defined
by (5.205), provides the boundary condition at r = a0 for integrating the coupled
differential equations in the external region outwards from r = a0, as discussed in
Sect. 5.5.3.

Finally, we note that, as in non-relativistic collisions, in order to obtain accu-
rate results when radial continuum basis orbitals satisfying homogeneous boundary
conditions are adopted, a Buttle correction to the R-matrix must be included. We
consider a procedure for calculating these continuum basis orbitals in Sect. 5.5.5
and for calculating a Buttle correction to the R-matrix in Sect. 5.5.6.

5.5.3 External Region Solution

We consider in this section the solution of the Dirac equation (5.169) in the external
region, corresponding to a0 ≤ r ≤ ap in Fig. 5.1. As in non-relativistic electron
collisions, the radius a0 is chosen so that the charge distribution of the target eigen-
states and pseudostates retained in expansion (5.175) are negligible for r ≥ a0 and
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hence electron exchange and correlation effects between the scattered electron and
the target atom or atomic ion are negligible in this region. The expansion of the total
wave function Ψ J MJπ

j E (XN+1) defined by (5.174) and (5.175) then reduces to

Ψ
J MJπ
j E (XN+1) =

n∑
i=1

Φ
J MJπ

i (XN ; r̂N+1σN+1)r
−1
N+1 F Jπ

i j (rN+1), (5.208)

where j labels the linearly independent solutions. Also, the channel functions

Φ
J MJπ

i retained in expansion (5.208) are the same as those retained in the inter-
nal region expansion (5.175) and defined by (5.176). Finally, the reduced radial
functions F Jπ

i j (r) in (5.208) can be written as energy-dependent two-component

functions defined in terms of the reduced radial continuum orbitals P Jπ
i j (r) and

Q Jπ
i j (r) by (5.193).
We obtain coupled first-order differential equations satisfied by the reduced

radial continuum orbitals P Jπ
i j (r) and Q Jπ

i j (r) in the external region by
substituting (5.208) into (5.169) and projecting onto the channel functions

Φ
J MJπ

i (XN ; r̂N+1σN+1). This gives the following coupled first-order differential
equations

(
d

dr
+ κi

r

)
P Jπ

i j (r)−
1

c

(
2c2 + εi + z

r

)
Q Jπ

i j (r) = −
1

c

n∑
i ′=1

V Jπ
i i ′ (r)Q

Jπ
i ′ j (r),

i = 1, . . . , n (5.209)

and

(
d

dr
− κi

r

)
Q Jπ

i j (r)+
1

c

(
εi + z

r

)
P Jπ

i j (r) =
1

c

n∑
i ′=1

V Jπ
i i ′ (r)P

Jπ
i ′ j (r),

i = 1, . . . , n, (5.210)

where r ≥ a0. Also in (5.209) and (5.210) z = Z − N , εi are the channel energies
in atomic units and the potential matrix V Jπ

i i ′ (r), which has a similar form to (2.66)
in non-relativistic electron collisions with atoms and atomic ions, is defined by

V Jπ
i i ′ (rN+1) = 〈r−1

N+1Φ
J MJπ

i (XN ; r̂N+1σN+1)

∣∣∣∣∣
N∑

k=1

1

rk N+1
− N

rN+1

∣∣∣∣∣
× r−1

N+1Φ
J MJπ

i ′ (XN ; r̂N+1σN+1)〉′, i, i ′ = 1, . . . , n, (5.211)

where the prime on the Dirac bracket in (5.211) and later equations means that the
integration is carried out over the space and spin coordinates of all N + 1 electrons
except the radial coordinate rN+1 of the scattered electron. Also, the inclusion of
the term −N/rN+1 in the definition of V Jπ

i i ′ (r) means that the long-range Coulomb
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potential experienced by the scattered electron is completely included on the left-
hand side of (5.209) and (5.210). Also, as in non-relativistic electron collisions, the
potential terms on the right-hand side of (5.209) and (5.210) can be simplified using
(2.72). We obtain

V Jπ
i i ′ (r) =

λmax∑
λ=1

α Jπ
i i ′λr

−λ−1, r ≥ a0, i, i ′ = 1, . . . , n, (5.212)

where the long-range potential coefficients αΓi i ′λ are defined, in analogy with (2.74)
in non-relativistic collisions, by

α Jπ
i i ′λ = 〈r−1

N+1Φ
J MJπ

i (XN ; r̂N+1σN+1)

∣∣∣∣∣
N∑

k=1

rλk Pλ(cos θk N+1)

∣∣∣∣∣
× r−1

N+1Φ
J MJπ

i ′ (XN ; r̂N+1σN+1)〉′, i, i ′ = 1, . . . , n,

λ = 1, . . . , λmax, (5.213)

and where the upper limit λmax in the summation over λ in (5.212) results from
the triangular relations satisfied by the angular momentum quantum numbers which
arise in the integral in (5.213).

For low-energy electron collisions with atoms and atomic ions, where the ionic
interaction potential (Z − N )/r in the external region and the channel energies are
both small compared with c2 then the coupled differential equations (5.209) and
(5.210) can be reduced to non-relativistic limiting form. Following our discussion
of the Dirac equation in potential scattering, given in Sect. 1.6, these equations can
be transformed to the non-relativistic limiting form given by

(
d2

dr2
− κi (κi + 1)

r2
+ 2(Z − N )

r
+ k2

i

)
P Jπ

i j (r) = 2
n∑

i ′=1

V Jπ
i i ′ (r)P

Jπ
i ′ j (r),

i = 1, . . . , n, r ≥ a0, (5.214)

where k2
i = 2εi . In addition in the non-relativistic limit (5.203) reduces to

P Jπ
i j (a0) =

n∑
i ′=1

RJπ
i i ′ (E)

(
a0

dP Jπ
i ′ j

dr
− b0 P Jπ

i ′ j

)
r = a0

, i = 1, . . . , n, (5.215)

where we have used (5.183) and (5.202) to relate bri in (5.203) to b0 in (5.215).
Equations (5.214) and (5.215) are in standard non-relativistic form as discussed
in Sect. 5.1.3. Hence, after the Buttle correction, discussed in Sect. 5.5.6, has been
added to the diagonal elements of the R-matrix RJπ

i j (E), defined by (5.205), (5.214)
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can be integrated outwards from r = a0, subject to the boundary condition at
r = a0, defined by (5.215), to r = ap and fitted to an asymptotic expansion
to yield the K -matrix and S-matrix, using the procedure discussed in Sects. 5.1.3
and 5.1.4.

However, for electron collisions with highly ionized ions, where Z−N and hence
the excitation energies are large, the use of (5.214) in the external and asymptotic
regions can lead to error. For example, for electron collisions with the He-like ion
Fe XXV, which has a residual charge of 24, an incident electron energy of ∼ 500
Rydbergs is required to excite the target from the ground state [985]. For these
incident electron energies the velocity v of the electron is approximately 0.16 c.
Hence for ionic targets with high values of the effective charge Z − N , one pos-
sibility is to transform the coupled first-order differential equations (5.209) and
(5.210) to coupled second-order differential equations with a first-order derivative
term, analogous to (4.289) in potential scattering. The R-matrix can then be prop-
agated outwards from r = a0 to ap, using the propagator method discussed in
Appendix E.5. Alternatively, the original coupled first-order differential equations
(5.209) and (5.210) can be integrated outwards from r = a0 to ap, using a standard
approach for solving these equations (see, for example, [573]). In both cases a Buttle
correction, discussed in Sect. 5.5.6, has to be added to the R-matrix RJπ

i j (E) defined
by (5.205) if continuum basis orbitals satisfying homogeneous boundary conditions
at r = a0 are used in the internal region.

5.5.4 Asymptotic Region Solution

We now consider the solution of (5.209) and (5.210) in the asymptotic region, cor-
responding to r ≥ ap in Fig. 5.1. We have seen in our discussion of the external
region solution in Sect. 5.5.3 that for low-energy collisions, when the interaction
potential (Z − N )/r and the channel energies are small compared with c2, (5.209)
and (5.210) can be reduced to non-relativistic form. In this case we can solve the
resultant equations in the asymptotic region as discussed in Sect. 5.1.4 yielding the
S-matrix, T -matrix and cross sections. However, for electron collisions with highly
ionized ions it is necessary to determine the asymptotic region solution of (5.209)
and (5.210) directly. In this analysis we assume that the channels are ordered so that
the channel energies εi in (5.209) and (5.210) satisfy

ε1 ≥ ε2 ≥ · · · ≥ εn, (5.216)

where the first na channels are open with εi ≥ 0 and the last nb channels are closed
with εi < 0, where na + nb = n. As in non-relativistic collisions, considered in
Sect. 5.1.4, we define, in analogy with (5.37), n+ na linearly independent solutions
of (5.209) and (5.210) satisfying the following asymptotic boundary conditions:
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pi j (r) ∼
r→∞ gi sin θiδi j , qi j (r) ∼

r→∞
εi

ki c
gi cos θiδi j ,

i = 1, . . . , n, j = 1, . . . , na,

pi j (r) ∼
r→∞ gi cos θiδi j , qi j (r) ∼

r→∞−
εi

ki c
gi sin θiδi j ,

i = 1, . . . , n, j = 1, . . . , na,

pi j (r) ∼
r→∞ gi exp(−φi )δi j , qi j (r) ∼

r→∞
εi

|ki |c gi exp(−φi )δi j ,

i = 1, . . . , n, j = na + 1, . . . , n, (5.217)

where

gi =
[

1

ki

(
1+ εi

2c2

)]1/2

, ki =
[εi

c

(εi
c
+ 2c

)]1/2
, gi =

[
1

|ki |
(

1+ εi

2c2

)]1/2

.

(5.218)

Also in (5.217),

θi = kir− 1

2
(γi−1)π+yi ln 2kir+ψi−argΓ (γi+iyi ), i = 1, . . . , na, (5.219)

where

γi =
(
κ2

i −
z2

c2

)1/2

, yi = z

ki

(
1+ εi

c2

)
, ψi = 1

2i
ln

(
iz/ki − κi

γi − iyi

)
(5.220)

and

φi = |ki |r − yi ln 2kir. (5.221)

These asymptotic boundary conditions are discussed by Young and Norrington
[985] who obtained asymptotic expansions for these solutions, analogous to the
non-relativistic asymptotic expansions considered in Appendix F.1 [160, 356].

Following our discussion in Sect. 5.1.4, we can find na linearly independent
solutions of the coupled differential equations (5.209) and (5.210) that vanish at the
origin and are finite at infinity. The na × na-dimensional K -matrix is then defined
in terms of the large components in the na open channels as follows:

PJπ (r) ∼
r→∞

[
1

k

(
I+ ε

2c2

)]1/2 [
sin θ + cos θKJπ

]
, (5.222)

where the corresponding components in the nb closed channels vanish asymptot-
ically. By taking linear combinations of these solutions we can define a solution
matrix GJπ (r) satisfying the asymptotic boundary conditions
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GJπ (r) ∼
r→∞

[
1

k

(
I+ ε

2c2

)]1/2

[exp(−iθ)− exp(iθ)SJπ ], (5.223)

where the S-matrix, defined by this equation, and the corresponding T -matrix can
be expressed in terms of the K -matrix by the usual matrix equations

SJπ = I+ iKJπ

I− iKJπ
, TJπ = SJπ − I. (5.224)

The cross sections can then be determined using the procedure described in
Sect. 2.5. The partial cross section for a transition from an initial state i ≡ αi Ji ji to
a final state f ≡ α f J f j f corresponding to the conserved quantum numbers Jπ is
given by

σ Jπ (i → f ) = 2J + 1

2k2
i (2Ji + 1)

∑
ji j f

|T Jπ
f i |2, (5.225)

where αi and α f distinguish target states with the same total angular momentum
Ji and J f , and where ji and j f are the initial and final angular momenta of the
scattered electron. The total cross section is then defined by

σTot(i → f ) =
∑
Jπ

σ Jπ (i → f ), (5.226)

in units of πa2
0.

5.5.5 Continuum Basis Orbitals

We now consider the procedure usually adopted for calculating the reduced radial
continuum basis orbitals p0

i j (r) and q0
i j (r) which are used in definition (5.178)

of u0
i j (r) in the internal region. In most applications these orbitals have been

chosen to satisfy homogeneous boundary conditions similar to those adopted in
non-relativistic electron collisions, described in Sect. 5.3.1 and, as a result, a Buttle
correction to the R-matrix, considered in Sect. 5.5.6, is required. However, as
in non-relativistic electron–atom collisions and multiphoton ionization, arbitrary
boundary condition methods, considered in Sect. 5.3.3, can also be used to deter-
mine the continuum basis orbitals.

In analogy with the coupled first-order differential equations (4.248), which arise
in Dirac R-matrix theory in potential scattering, we consider here orbitals p0

i j (r)

and q0
i j (r) which satisfy the following coupled first-order differential equations for

each κi
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(
d

dr
+ κi

r

)
p0

i j (r)−
1

c
[2c2 + εi − V0(r)]q0

i j (r) = −
1

c

∑
k

λi jk Qa
k (r),

i = 1, . . . , n, j = 1, . . . , nc (5.227)

and

(
d

dr
− κi

r

)
q0

i j (r)+
1

c
[εi − V0(r)]p0

i j (r) =
1

c

∑
k

λi jk Pa
k (r),

i = 1, . . . , n, j = 1, . . . , nc, (5.228)

subject to the homogeneous boundary conditions, defined in analogy with (4.249)
and (4.250), which can be written here as

(
p0

i j (0)
q0

i j (0)

)
= 0, i = 1, . . . , n, j = 1, . . . , nc (5.229)

and

q0
i j (a0) = b′i p0

i j (a0), i = 1, . . . , n, j = 1, . . . , nc. (5.230)

Also in (5.227), (5.228), (5.229) and (5.230), n is the number of channels retained in
the R-matrix expansion and nc is the number of continuum basis functions retained
in each channel. In the non-relativistic limit we have seen that b′i in (5.230) is related
to b0 and κi by (5.183). Also the summations over k on the right-hand sides of
(5.227) and (5.228) go over the reduced radial physical bound orbitals Pa

k (r) and
Qa

k (r) used to construct the target states retained in expansion (5.175) corresponding
to the κi under consideration and the λi jk are Lagrange multipliers which are chosen
so that the following orthogonality constraints

∫ a0

0
[p0

i j (r)P
a
k (r)+ q0

i j (r)Q
a
k (r)]dr = 0, i = 1, . . . , n (5.231)

are satisfied for all j and k, for each κi . It follows that the reduced radial continuum
basis orbitals p0

i j (r) and q0
i j (r) generated in this way are orthogonal and can be

normalized so that

∫ a0

0
[p0

i j (r)p
0
i j ′(r)+ q0

i j (r)q
0
i j ′(r)]dr = δ j j ′, i = 1, . . . , n (5.232)

for all j and j ′. For each κi , the reduced radial physical bound orbitals Pa
k (r) and

Qa
k (r), retained on the right-hand side of (5.227) and (5.228), together with the cor-

responding reduced radial continuum orbitals p0
i j (r) and q0

i j (r), generated by solv-
ing (5.227), (5.228), (5.229) and (5.230) subject to the orthonormality constraints
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given by (5.231) and (5.232), form a complete set over the range 0 ≤ r < a0 in the
limit nc →∞, for any value of br in (5.183) and zero-order potential V0(r).

In order to obtain rapid convergence of the R-matrix expansion (5.205), including
the Buttle correction discussed below, the zero-order potential V0(r) in (5.227) and
(5.228) should provide a good representation of the charge distribution of the target
atom or ion. In practice, the static potential of the target atom or ion in its ground
state is often adopted. Also, as in non-relativistic collisions, the inhomogeneous
terms on the right-hand sides of (5.227) and (5.228) play the role of an exchange
potential while at the same time ensuring that the continuum basis orbitals are
orthogonal to the physical orbitals used to construct the target states.

5.5.6 Buttle Correction

When the reduced radial continuum basis orbitals p0
i j (r) and q0

i j (r) in definition

(5.178) of u0
i j (r) satisfy the zero-order coupled differential equations (5.227) and

(5.228) subject to homogeneous boundary conditions (5.229) and (5.230), then it is
necessary to add a “Buttle correction” to the R-matrix to obtain accurate results.
Our procedure, which is analogous to that adopted in non-relativistic collisions
discussed in Sect. 5.3.2, corrects for the omission of the high-lying pole terms in
expansion (5.205) of the R-matrix RJπ

i j (E). Also, as in non-relativistic electron
collisions with atoms and ions, only the diagonal elements of the R-matrix usually
need to be corrected.

The diagonal elements of the R-matrix RJπ
i j (E) are determined in terms of the

solution of the coupled zero-order differential equations (5.227) and (5.228) used to
calculate the reduced radial continuum basis orbitals p0

i j (r) and q0
i j (r). The diagonal

elements of the zero-order R-matrix R0
i j (E) at an arbitrary energy E are given,

following (4.287), by

R0
i i (E) = p0

i (a0)
[
2a0cq0

i (a0)− bri p0
i (a0)

]−1
, i = 1, . . . , n, (5.233)

where p0
i (r) and q0

i (r) are solutions of (5.227) and (5.228) at the energy E , subject
to the boundary condition (5.229) at the origin and to the orthogonality constraints
(5.231). The diagonal elements of the zero-order R-matrix can also be written in
terms of the infinite set of eigensolutions p0

i j (r) of (5.227) and (5.228), subject to the
boundary conditions (5.229) and (5.230) and the orthogonality and normalization
constraints (5.231) and (5.232). We obtain

R0
i i (E) =

1

2a0

∞∑
k=1

[
p0

ik(a0)
]2

E0
k − E

, i = 1, . . . , n. (5.234)

Finally, the Buttle correction to the diagonal elements of the R-matrix RJπ
i j (E),

defined by (5.205), can be written as
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RJπ(BC)
i i (E) = 1

2a0

∞∑
k= nt+1

[
p0

ik(a0)
]2

E0
k − E

, i = 1, . . . , n. (5.235)

Using (5.233) and (5.234) we then find that

RJπ(BC)
i i (E) = p0

i (a0)
[
2a0cq0

i (a0)− bri p0
i (a0)

]−1

− 1

2a0

nt∑
k=1

[
p0

ik(a0)
]2

E0
k − E

, i = 1, . . . , n. (5.236)

The first term on the right-hand side of (5.236) is obtained by solving the coupled
differential equations (5.227) and (5.228) at the energy E of interest and the sec-
ond term is given in terms of the reduced radial continuum basis orbitals evaluated
on the boundary r = a0 of the internal region together with the corresponding
eigenenergies. As in non-relativistic collisions, both terms in (5.236) can be rapidly
calculated at a few energies and since the Buttle correction is smoothly varying in
the low-energy region of interest it can be interpolated to give the correction at the
required energies.

5.6 Low-Energy Electron Collision Calculations

Over the last 40 years a vast number of electron–atom and electron–ion collision
calculations have been carried out using R-matrix computer programs which have
implemented the theory reviewed in this chapter. These calculations have been
undertaken both in support of experiment and also to provide data required in the
analysis of applications, for example, in plasma physics, laser physics and astro-
physics. In this section we consider low-energy electron–atom and electron–ion
collision calculations where only elastic scattering and excitation processes are
energetically allowed or are important, reserving a discussion of electron collisions
at intermediate energies, where ionizing collisions are important, to Chap. 6. The
examples that we present illustrate both the criteria necessary to obtain reliable cross
sections and the accuracy now obtainable for low-energy electron collisions with
atoms and atomic ions. However, we will see that difficulties are still experienced
for heavier open d- and f-shell targets involving many coupled channels.

5.6.1 Electron Collisions with H

We begin by considering electron collisions with atomic hydrogen, the lightest
one-electron target atom. This simplifies the collision calculation since the non-
relativistic hydrogen atom wave functions are known exactly and hence we are
not concerned with electron–electron correlation effects among the target electrons
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which arise in more complex atomic targets. However, the Schrödinger equation for
the electron–hydrogen atom system describes a three-body problem and is there-
fore not solvable exactly. The importance of obtaining accurate numerical solutions
for this system is not only because of its intrinsic importance arising from the fact
that atomic hydrogen is the most abundant atom in the universe, but also because
these solutions illustrate features, such as resonances and threshold effects, which
are common to multi-electron atomic targets. Hence calculations carried out for
electron–hydrogen atom collisions provide a test of methods, such as the R-matrix
method, which are applicable to general multi-electron targets.

We have pointed out in Sects. 2.2 and 2.3 that in order to obtain accurate low-
energy electron–atom collision cross sections it is necessary to include target pseu-
dostates in the expansion of the collision wave function to represent the long-range
polarization of the target in the field of the scattered electron. In early calculations
by Burke et al. [177] and Fon et al. [328] full account of the long-range polarization
potential was taken by including the 2p pseudostate defined by (2.23) as well as
the 1s target eigenstate in the “close coupling with pseudostates” expansion (2.55).
Differential cross sections for elastic scattering were calculated from 1 to 200 eV by
Fon et al. [328] which compared well with absolute angular distribution measure-
ments by Williams [977–979]. However, the 2p state has an unphysical threshold
at ∼11.4 eV and the omission of physical excited states in the expansion meant
that resonance and threshold effects in the 9–13.6 eV range were not accurately
represented.

In order to obtain accurate elastic and inelastic e−–H collision cross sections at
low energies, including resonance and threshold effects, Bartschat et al. [72] carried
out benchmark calculations using two independent R-matrix methods and also using
the convergent close-coupling (CCC) method developed by Bray and Stelbovics
[126, 127] and reviewed by Bray et al. [129, 130]. The two R-matrix methods, the
R-matrix with pseudostates (RMPS) method and the intermediate energy R-matrix
(IERM) method, which are described in detail in Chap. 6, are designed to obtain
accurate collision cross sections close to and above the ionization threshold. How-
ever, both methods give convergent results at low energies. In the RMPS calcu-
lation eight S-states, eight P-states and three D-states were included in expansion
(5.6), where the lowest six states corresponded to the exact n = 1, 2 and 3 non-
relativistic H atom eigenstates, while the remaining 13 states were pseudostates,
allowing for long-range polarization and short-range correlation effects. The corre-
sponding IERM calculation also included the six n = 1, 2 and 3 H atom eigenstates
as well as orbitals representing long-range polarization and short-range correlation
effects. We show the results of these three calculations for the total elastic and 1s–2s
and 1s–2p excitation cross sections between the n = 2 and 3 thresholds compared
with the experimental data of Williams [980] in Fig. 5.4. We see that the agreement
between theory and experiment is excellent, with theory accurately reproducing the
resonance structure converging to the n = 3 threshold at 0.8889 Rydbergs and the
1Po resonance just above the n = 2 threshold, which had been analysed in detail by
Macek and Burke [621]. We note that the 1Se resonance at ∼0.862 Rydbergs has
been discussed in Sect. 3.2.3 (see Fig. 3.5).
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Fig. 5.4 Total electron–hydrogen atom 1s–1s elastic cross section and 1s–2s and 1s–2p excitation
cross sections for collision energies between the n = 2 and 3 thresholds. Full curve, RMPS; broken
curve, IERM; chain curve, CCC. The dots represent the experimental data of Williams [980] (Fig. 4
from [72])

In conclusion, low-energy scattering amplitudes and cross sections for e−–H
collisions can be accurately calculated using the R-matrix method for low n states.
However, there are still major computational problems remaining in order to obtain
accurate low-energy excitation cross sections for high n states of atomic hydrogen
which, for example, are of importance in some diffuse hydrogen clouds in the cold
interstellar medium. This computational difficulty is due to the many coupled chan-
nels involved and the large extent of the corresponding target atom wave functions.
We will return to this difficulty when we discuss electron collisions with hydrogen
atoms at intermediate energies in Chap. 6.

5.6.2 Electron Collisions with He

Results from electron–helium atom collision calculations have many applications.
Helium is relatively easy to study in the laboratory, so many experiments have been
performed providing stringent tests for theory. In astronomy, helium is the second
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most abundant element in the universe, after atomic hydrogen, and helium lines
associated with the excited n = 2, n = 3 and higher states are ubiquitous in spec-
tra from many types of astronomical objects (see [709]). Since most emission line
spectra observed in astronomy are produced by electron impact excitation or by
radiative capture, followed by radiative decay of excited states, it is clear that there
is a demand for high-quality atomic data to interpret these lines.

Also, helium is the simplest multi-electron atom and electron–helium collision
calculations exhibit many features of calculations for more complex atomic targets.
The most obvious difference from electron–hydrogen atom collisions is that the
helium target wave function cannot be represented exactly; the system of nucleus
plus two electrons being a three-body problem. Approximate target wave functions
have to be used, usually employing configuration interaction expansions. Another
difference is that the helium target can be in either a singlet or a triplet spin state
rather than in just a doublet state as in the case of atomic hydrogen, which doubles
the number of excited states for each principal quantum number n. Both of these
differences result in increasing complexity in the corresponding collision calcula-
tions.

5.6.2.1 Elastic Scattering

The first low-energy e−–He elastic scattering R-matrix calculations were carried
out by Robb [792] using a static-exchange approximation where the target was
represented by a configuration interaction expansion. These calculations were later
extended by O’Malley et al. [705] who used an R-matrix eigenchannel method, dis-
cussed in Sect. 4.4.5. In this latter work, O’Malley et al. adopted a multiconfigura-
tional helium ground-state wave function together with 1P and 1D pseudostates, con-
structed from the Hartree–Fock ground state 1s orbital and 2s–4f pseudo-orbitals.
These pseudo-orbitals were optimized to simultaneously minimize the ground-state
energy and maximize the dipole and quadrupole polarizabilities of the target, as
discussed by Vo Ky Lan et al. [941]. In this way they obtained 98% of the ground-
state correlation energy as well as 99.8% of the dipole polarizability and approxi-
mately the correct quadrupole polarizability. The estimated error in the calculated
total cross section below 8 eV was about 1% and this was born out by the excellent
agreement with experiments by Kennerly and Bonham [530]. Both the total and
momentum transfer cross sections were also in good agreement with variational
calculations by Nesbet [677].

5.6.2.2 Inelastic Collisions

A series of R-matrix calculations have been carried out to determine the con-
vergence of low-energy e−–He excitation cross sections and resonance structure.
In these calculations He target eigenstates were included in expansion (5.6) with
progressively higher principal quantum number n. These were 5-state calculations
by Berrington et al. [96] which included all eigenstates with n ≤ 2, 11-state
calculations by Freitus et al. [341] and Berrington et al. [99] which included all
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eigenstates with n ≤ 3, 19-state calculations by Berrington and Kingston [93] and
Fon et al. [332] which included all eigenstates with n ≤ 4, and 29-state calculations
by Sawey et al. [815] and Fon et al. [333–335] which included all eigenstates with
n ≤ 5. The main conclusion from these calculations was that as the number of
target eigenstates retained in the calculation increased, the cross sections converged
at the lowest energies. However, the calculated cross sections were in error above
the threshold of the highest eigenstate retained in the R-matrix expansion. That is
the 5-state calculation had not converged above the n = 2 thresholds, the 11-state
calculation had not converged above the n = 3 thresholds and so on. We will show
in Chap. 6, when we discuss intermediate-energy collisions, that it is necessary to
include pseudostates representing highly excited states and the ionization contin-
uum in the R-matrix expansion, in order to obtain converged results close to and
above the ionization threshold. We have also observed in Sect. 2.2.2 that, in order to
obtain highly accurate results at low energies, it is necessary to include pseudostates
in this expansion which represent long-range polarization effects and other virtual
transitions via high-lying excited states and the continuum.

Recently, close to converged inelastic e−–He R-matrix collision cross section
calculations have been carried out and compared with experiment by Stepanović
et al. [886] and by Lange et al. [570]. In the work of Stepanović et al. cross sections
for exciting the 33S and 31S states of helium near threshold were studied. In the
work of Lange et al. cross sections for exciting both the n = 2 and 3 states of helium
were studied and were also compared with accurate calculations by Fursa and Bray
[355] using the convergent close coupling method. We illustrate this work by show-
ing in Fig. 5.5 the angle-integrated cross sections for excitation of helium to the
33S and 31S states. The calculations were carried out using the B-spline R-matrix
(BSR) computer program written by Zatsarinny [992], discussed in Sect. 5.1.1. The
collision model adopted included 69 target states with S, P, D and F symmetries
consisting of all target eigenstates with these symmetries up to n = 5, together with
42 pseudostates representing higher bound and continuum states. The experimental
cross sections were obtained using a high-resolution electron impact spectrometer,
in a crossed beam geometry, described in detail by Cvejanović et al. [240]. The
experimental data were normalized to the theory, including a cascade contribution,
at 23.20 eV for both the 33S and 31S states since the cross sections exhibit a smooth
energy dependence in the neighbourhood of this energy and hence the experimental
energy resolution does not play a significant role. The cascade contribution was
found to be important only for the 33S excitation, whereas it was negligible for
the 31S state. Overall the experimental cross sections shown in Fig. 5.5 are in good
agreement with the optical excitation functions published by Heddle et al. [448]. The
convoluted theoretical cross sections also exhibit remarkably good agreement with
experiment although there are some discrepancies in the near-threshold region for
excitation of the 33S state where theory predicts somewhat higher values for the res-
onance structure than observed experimentally. This may be due to the higher model
sensitivity of the predicted resonance structure very close to threshold. A detailed
analysis of this resonance structure is given by Lange et al. [570].
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Fig. 5.5 Angle-integrated cross sections for electron impact excitation of the 33S and 31S states
of helium. The experimental results are represented by circles. The theoretical R-matrix results
without (dashed line) and with (solid line) cascade contributions were convoluted with a Gaussian
of 37 meV (FWHM). The vertical bars in the lower panel represent the thresholds for the helium
target states (Fig. 2 from [886])

Finally, we note that the results presented in both Figs. 5.4 and 5.5 show the
important role that resonances play in determining low-energy electron–atom col-
lision cross sections. In earlier work on He it was shown [175, 176] that two pro-
nounced peaks which dominate the 11S–23S collision strength close to threshold
were due to 2Po and 2De shape resonances, in agreement with angular distribution
measurements by Ehrhardt and William [285] and Ehrhardt et al. [287]. Detailed
elastic collision calculations below the 23S threshold also revealed the presence of
a 2Se resonance at ∼19.31 eV, which was first observed by Schulz [835] and which
has been discussed more recently by Hudson et al. [478]. We will see when we
discuss further examples in this section that resonances are a common feature of all
low-energy electron–atom and electron–ion collision cross sections.
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5.6.3 Electron Collisions with Ne

We consider next low-energy electron collisions with neon atoms which are impor-
tant both in fundamental studies and for their many applications. The latter include
modelling applications in the lighting and lasing industry, in plasma processing and
in the interpretation of astrophysical observations.

Elastic electron collisions with inert gases have been studied both experimentally
and theoretically for many years. In particular, elastic scattering R-matrix calcula-
tions have been carried out by Fon and co-workers on He [329], Ne [327], Ar [330]
and Kr [331], in which the ground state of the target together with a 1Po polarized
pseudostate, representing the full dipole polarizability of the target, were included
in the R-matrix expansion. In addition, elastic electron–neon collision calculations
have been carried out by many other workers including McEachran and Stauffer
[617], Dasgupta and Bhatia [250] and Saha [805], where in all these calculations
good agreement with experiment was obtained. However, until recently the situa-
tion for inelastic collisions has been less satisfactory where, as shown by Khakoo
et al. [533], none of the theoretical methods discussed in their paper were able to
consistently reproduce the experimental data for angle-differential cross sections for
excitation of the 2p53s states, or their ratios.

However, more recent calculations carried out by Zatsarinny and Bartschat [998],
using the B-spline R-matrix computer program BSR, have obtained very good
agreement with experiments by Buckman et al. [146], which measured the cross
section for exciting the 2p53s 3Po

0,2 states of neon from threshold to just above the

3p53p thresholds. The sum of these two excitation cross sections had been used
by Brunt et al. [141, 142] and Buckman et al. [146] to analyse the details of the
resonance structure seen in these cross sections, discussed in the review of atomic
negative ion resonances by Buckman and Clark [145].

Also, in later studies by Bömmels et al. [122] and Allan et al. [12], excellent
agreement was obtained between R-matrix calculations and experiment for excita-
tion of the 2p53s states from threshold to above the 3p53p thresholds. As an exam-
ple, we show in Fig. 5.6 a comparison of calculated and experimental cross sections
for excitation of the Ne 2p53s 3P2, 3P1, 3P0 and 1P1 states reported by Allan et al.
[12]. The experimental results were obtained using an electron scattering apparatus
involving two-stage hemispherical analysers with an energy resolution (FWHM) of
9 meV [11]. Absolute cross sections reliable to ±15% were obtained by normal-
ization to helium results. The R-matrix calculations were obtained including the
2p6 1S0 ground state of neon together with the 2p53s and 2p53p excited states in
the R-matrix internal region expansion. This figure illustrates prominent resonance
features just above the 2p53s thresholds and a Wigner cusp together with a group
of narrow resonances associated with the higher lying 2p53p thresholds. The lower
resonances can be assigned as core-excited shape resonances with the dominant
configuration 2p53s3p as discussed by Bömmels et al. [122], while further work is
required to fully identify the resonances at the higher thresholds. Overall the excel-
lent agreement between theory and experiment indicates that the main features of
this collision process are accurately reproduced by the R-matrix calculation. Finally,
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Fig. 5.6 Absolute cross sections (experiment in the left panels and R-matrix calculations in the
right panels) for electron impact excitation of the 2p53s states of Ne at a scattering angle θ = 135◦.
The vertical bars indicate the excitation thresholds including those of the 2p53p 3S1 and 1S0 states
of Ne (Fig. 2 from [12])

we note that the B-spline R-matrix computer program has been used to study a
number of other electron–atom collision processes including low-energy electron
collisions with argon [999], zinc [1000] and oxygen [1003].

5.6.4 Electron Collisions with Si III

As our next example we consider electron collisions with Si III (Si2+). There is
considerable demand for excitation rates for this ion, particularly in the study of lab-
oratory plamas and in the analysis of solar spectra where, for example, the intensity
ratio of Si III lines have been used to determine the electron densities of quiet and
active regions of the sun (e.g. [228]). Absorption lines of Si III have also been found
in quasi-stellar objects [41]. Of particular importance is the following excitation
process

e− + Si III (3s2 1S)→ Si III (3s3p 3Po)+ e−

↘ ↗
Si II (3s3p 1Po n	) (5.237)

which is dominated close to threshold by a Rydberg series of Feshbach resonances.
These resonances are caused by capture of the incident electron into a bound
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Rydberg state in the field of Si III in the excited 3s3p 1Po state, which decays
leaving the target ion in its 3s3p 3Po first excited state. R-matrix calculations for this
process have been carried out by Baluja et al. [46] and Griffin et al. [425], where the
latter authors also studied transitions in the isoelectronic ion Ar VII (Ar6+). In these
calculations the 12 lowest target eigenstates of Si III were included in expansion
(5.6), where each eigenstate was represented by a configuration interaction expan-
sion. We present in Fig. 5.7 the collision strength for the 3s2 1S→ 3s3p 3Po transi-
tion calculated by Baluja et al. [46], compared with distorted wave results calculated
by Blaha (quoted by Nicolas [684]). We see that at these low energies, the colli-
sion strength is dominated by resonance structure while the distorted wave results,
which omit the intermediate resonance states in the collision, represent the much
smaller non-resonant background. The importance of resonances for this transition
is demonstrated in Table 5.1 where we compare the effective collision strength,

Fig. 5.7 Collision strength for the transition 3s2 1S → 3s3p 3Po in Si III. Full line, R-matrix
calculation [46]; dashed line, distorted wave calculation [684] (Fig. 1 from [46])

Table 5.1 Effective collision strength for the transition 3s2 1S→ 3s3p 3Po in Si III as a function
of electron temperature for R-matrix and distorted wave calculations

Electron temp
104 K R-matrix Distorted wave

0.50 6.898 1.120
0.75 5.961 1.111
1.00 5.428 1.101
2.00 4.407 1.065
5.00 3.188 0.969

10.00 2.292 0.842
20.00 1.529 0.667
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Fig. 5.8 Cross section for 3s2 1S → 3s3p 3Po electron impact in Si III. Points represent average
experimental values and bars give relative uncertainties at 90% confidence level. Dashed curve,
R-matrix calculation [46]; solid curve, R-matrix calculation [425], both calculations convoluted
with a Gaussian width 0.24 eV (Fig. 3 from [946])

defined by (2.153), for these two calculations for a range of electron temperatures.
At 5,000 K the R-matrix result is larger by a factor of about 6 and even at 2× 105 K
it is still more than a factor of 2 higher.

More recently, absolute excitation cross sections for the 3s2 1S→ 3s3p 3Po and
1Po transitions in Si III were measured close to threshold by Wallbank et al. [946]
using a merged electron–ion beams energy-loss technique. We show in Fig. 5.8 the
measured cross section for the 3s2 1S → 3s3p 3Po transition compared with the
R-matrix calculation by Baluja et al. [46] and Griffin et al. [425]. The resonance
peak close to the threshold seen in the R-matrix calculations is confirmed by exper-
iment which is also in good agreement with its predicted magnitude. However, the
agreement between the R-matrix calculations and experiment is less good at ener-
gies more than 1 eV above threshold, which Wallbank et al. believe may be due to
the omission of backscatter electrons in the experiment.

In conclusion, the important experiment by Wallbank et al. [946] has shown
that R-matrix theory can accurately predict low-energy cross sections for relatively
light multi-electron ions. This work again demonstrates the crucial role that reso-
nances play in enhancing low-energy electron–atom and electron–ion collision cross
sections.

5.6.5 Electron Collisions with Fe II

Electron impact excitation cross sections and the related effective collision strengths
for all ionization stages of iron peak elements are of crucial importance in the
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quantitative analysis of many astronomical spectra, see, for example, [79]. As a
result, for nearly two decades there has been a major effort as part of the interna-
tional Iron Project [482] to calculate electron impact excitation data for all ionization
stages of iron peak elements using R-matrix computer programs, and around 70
papers describing the results have been published in Astronomy and Astrophysics.
Of particular importance is singly ionized iron where its high cosmic abundance,
its relatively low ionization potential and its complex open d-shell atomic structure
ensure that a very large number of electron impact excited lines are observed in
objects as diverse as gaseous nebulae, active galactic nuclei, quasars, Seyfert galax-
ies and supernovae remnants. In addition, collisional data are required in the analysis
of many laboratory plasmas which occur, for example, in laser plasma interactions
and controlled thermonuclear fusion devices.

In the absence at present of experimental data for electron impact excitation cross
sections for Fe II, this requirement for accurate collisional data can only be met by
detailed and accurate calculations. However, there are a number of reasons why
the calculation of collision cross sections for this and similar iron peak elements is
difficult. First, the complexity of the open d-shell target means that large configura-
tion interaction expansions, discussed in Sect. 2.2.1, are required to obtain accurate
target wave functions and energies. Second, a very large number of coupled channels
are required to accurately represent the collision wave function even for low-energy
electron collisions. Third, the complex resonance structure which dominates the
low-energy cross sections requires a very fine energy mesh to accurately resolve.

In order to illustrate the complexity of this problem we show in Fig. 5.9 the
energy level diagram of Fe II below 30,000 cm−1 (∼3.72 eV), taken from the tables
of Johansson [505] and Corliss and Sugar [232], with some forbidden infra-red and
optical transitions observed in gaseous nebulae indicated. In this low-energy region
there are 16 L S-coupled states of Fe II resulting in 46 fine-structure levels, where
particular interest in earlier work has focused on transitions between the four lowest
L S-coupled states, corresponding to the 3d64s a 6D ground state and the 3d7 a 4F,
3d64s a 4D and 3d7 a 4P excited states. In order to obtain accurate excitation cross
sections involving these states it is important to represent them by accurate configu-
ration interaction expansions, as discussed in Sect. 2.2.1, and to adequately represent
higher states that play an important role in the transitions as virtual states. In particu-
lar, these higher states give rise to resonances that lie in the energy range of interest
which we will see below dominate the low-energy cross sections. We present in
Fig. 5.10 an energy level diagram of Fe II which shows the range of energies of
the L S-coupled states which could play an important role in low-energy electron
collisions. As an indication of the size of the computation involved in including in
the R-matrix expansion (5.6) all target states corresponding to the 10 lowest lying
configurations 3d64s, 3d7, 3d54s2, 3d64p, 3d54s4p, 3d65s, 3d64d, 3d65p, 3d64f and
3d54p2, we give in Table 5.2 the maximum number of channels that can occur both
in L Sπ -coupling and in Jπ -coupling including relativistic effects as an increasing
number of these configurations are included in the calculation.

Over more than 25 years, a number of increasingly sophisticated e−–Fe II col-
lision calculations have been carried out. We summarize here some of the most
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Fig. 5.9 The 16 L S-coupled states of Fe II below 30,000 cm−1 showing the corresponding 46
fine-structure levels and some forbidden infra-red and optical transitions observed in gaseous
nebulae, with their wavelengths given in Angstrom (Fig. 2 from [188])
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Table 5.2 Maximum number of L S-coupled target states and coupled channels and the corre-
sponding maximum number of fine-structure target states and coupled channels in an R-matrix
expansion for e−–Fe II collisions, where the numbers correspond to retaining in the calculation an
increasing number of the target configurations illustrated in Fig. 5.10

L Sπ Jπ

No. of configs States Channels States Channels

1 24 73 63 420
2 32 98 82 540
3 48 148 119 792
4 116 366 299 2,052
5 261 818 716 5,076
6 285 891 779 5,496
7 389 1,254 1,055 7,596
8 457 1,472 1,235 8,856
9 585 1,980 1,581 11,796

10 770 2,575 2,094 15,576

significant studies. The first detailed calculations were made by Nussbaumer and
Storey [699], who included in their expansion of the collision wave function the
four lowest L S-coupled states of Fe II shown in Fig. 5.9. However, these calcu-
lations were only carried out for three energies above all thresholds and hence no
resonance structure was found. Later, Baluja et al. [48] extended this earlier work
by adopting configuration interaction wave functions for the target and carrying out
an R-matrix calculation including the four lowest L S-coupled states of Fe II using
a finer energy mesh, which also included the resonance region below the highest
threshold. It was found that even in the non-resonant region the excitation cross
sections differed by a factor of 2 from the earlier results [699]. This work was
further extended by Berrington et al. [101] who included relativistic terms from
the Breit–Pauli Hamiltonian, discussed in Sect. 5.4.2, in the calculation of both
the target and the collision wave functions, yielding effective collision strengths
for transitions between the 16 fine-structure levels corresponding to the 4 lowest
L S-coupled states of Fe II. The collision strengths obtained from this calculation
were subsequently used by Keenan et al. [527] to obtain electron density-sensitive
relative populations for the 3d64s a 6D fine-structure levels down to a temperature
of 100 K and densities Nc = 102–106 cm−3 applicable to astrophysical plasmas,
which were found to be a factor of 2 different from previous calculations.

With the rapid increase in computer power, Pradhan and Berrington [755] were
able to carry out more sophisticated R-matrix calculations, which included all 38
quartet and sextet L S-coupled target states belonging to the 3d64s, 3d7 and 3d64p
configurations. It was found that the additional states belonging to the 3d64p con-
figuration, omitted in previous calculations, played an important role due to strong
coupling with the 3d64s states. Later, Zhang and Pradhan [1007] and Bautista and
Pradhan [78] extended this L S-coupled calculation to yield collision strengths
and effective collision strengths between the corresponding fine-structure levels,
by recoupling the K -matrix elements using the pair-coupling scheme defined by
(5.119). The rate coefficients for the transitions among the lowest 16 fine-structure
levels were found to be substantially different from those predicted by Keenan
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et al. [527] and by Nussbaumer and Storey [699], indicating that further work was
required to obtain reliable rate coefficients.

In a series of more recent R-matrix calculations by Ramsbottom et al. [770–772]
and by Zatsarinny and Bartschat [1001] all 113 quartet and sextet L S-coupled target
states belonging to the lowest five configurations, 3d64s, 3d7, 3d54s2, 3d64p and
3d54s4p in Fig. 5.10, were included in the expansion of the total wave function.
This gave rise to a maximum of 354 channels for the total spin state S = 2 cou-
pling the quartet and sextet target states. These calculations, carried out using two
independent R-matrix computer programs RMATRXII and BSR, discussed in Sect.
5.1.1, were generally in good agreement although there were some differences in
the low-energy region dominated by resonances caused by different representations
of configuration interaction effects.

In order to calculate collision strengths and effective collision strengths for
low-lying fine-structure forbidden transitions required in many astrophysical appli-
cations, Ramsbottom et al. [769, 773] also carried out Breit–Pauli R-matrix calcu-
lations including all fine-structure levels corresponding to the 3d64s, 3d7 and 3d64p
target configurations. It follows from Table 5.2 that this calculation included 262
coupled target states and a maximum of 1,800 coupled channels. We note that the
target states and channels corresponding to the 3d54s2 and 3d54s4p configurations,
which we see from Fig. 5.10 lie in the same energy range as the 3d64p configuration,
were not included in this calculation since their effect on the low-energy transitions
of interest was expected to be small. We illustrate the results obtained in this calcula-
tion by showing in Fig. 5.11 the collision strength between the 3d64s a 6De

9/2 and the
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Fig. 5.11 Collision strengths for the 3d64s a 6De
9/2 → 3d7 a 4Fe

9/2 fine-structure transition in e−–
Fe II collisions. Solid line: Ramsbottom et al. 262-state calculation [773]; dashed line: Zhang and
Pradhan 142-state calculation [1007]; diamonds: Nussbaumer and Storey calculation [699] (Fig. 3
from [773])
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3d7 a 4Fe
9/2 fine-structure levels, which are compared with the earlier calculations

by Zhang and Pradhan [1007] and by Nussbaumer and Storey [699]. We see that
the collision strength is dominated by resonances, which required the evaluation
at 16,200 distinct energy values to accurately delineate, 16,000 being in the reso-
nance region and 200 above this region. We also note that the agreement between
the calculations by Ramsbottom et al. [773] and by Zhang and Pradhan [1007] is
quite good, although the non-resonant background collision strength of the latter
calculation appears lower at incident electron energies around 0.1 Rydbergs. The
corresponding effective collision strength for this transition is shown in Fig. 5.12
for the temperature range from 30 to 100,000 K, which incorporates temperatures
important in astrophysical and plasma applications. We see that the effective col-
lision strengths predicted by Zhang and Pradhan [1007] lie between 10 and 15%
higher than the Ramsbottom et al. [773] values. However, the single temperature
value of Bautista and Pradhan [78] lies a factor of 3 lower than the Ramsbottom
et al. [773] results. For this transition the early prediction of Berrington et al. [101] is
in reasonably good agreement with the most recent results but the results of Keenan
et al. [527] differ significantly from the most recent work [773]. It is thus clear from
this figure that more work needs to be carried out to confirm the result for even
this low-lying transition. Since there are no experimental measurements to compare
these calculations with, accurate results can only be confirmed by systematically
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increasing the number of configurations included in the target and in the collision
wave functions until convergence is obtained.

In conclusion, we see by examining Fig. 5.10 that, in addition to configurations
included in the recent calculations, target states belonging to higher and omitted
configurations are expected to play an important role, particularly for transitions
involving higher states of interest in applications. The role of the continuum, which
could be represented by pseudostates discussed in Chap. 6, may also be important.
We see from Table 5.2 that the inclusion of these additional target states greatly
increases the number of coupled channels, particularly when collision strengths for
transitions between fine-structure levels of the target are required. However, with
the development of parallel R-matrix collision programs and the implementation
of efficient methods for including relativistic terms in the calculation, discussed in
Sects. 5.4 and 5.5, these objectives, while presenting a computational grand chal-
lenge [188], should be achievable in the near future.

5.6.6 Electron Collisions with Fe XV

We have observed in our discussion of electron collisions with Fe II in Sect. 5.6.5
that accurate calculations of collision strengths for many transitions of importance in
the analysis of astronomical spectra will require the inclusion of relativistic effects
in the Hamiltonian. We have also seen in Sects. 5.4 and 5.5 that there are several pro-
cedures for including these effects, whose accuracy depends on the nuclear charge
number Z of the atomic nucleus, ranging from transforming the non-relativistic
K -matrix for relatively small Z targets to solving the Dirac equation for large Z
targets. An important question that arises is when can accurate results be obtained
using the Breit–Pauli Hamiltonian, discussed in Sect. 5.4.2, and when is it neces-
sary to use the Dirac Hamiltonian, discussed in Sect. 5.5. In this section we con-
sider detailed R-matrix collision strength calculations for Mg-like Fe XV which
addressed this question.

There have been a number of R-matrix calculations of electron impact excitation
of Fe XV. These include Breit–Pauli R-matrix calculations by Eissner et al. [291]
and Griffin et al. [427] and Dirac R-matrix calculations by Aggarwal et al. [3].
In this last work it was found that there were significant differences between the
Breit–Pauli and the Dirac calculations and it was therefore suggested that a fully
relativistic Dirac calculation is necessary in order to obtain accurate results for a 14
times ionized Z = 26 target.

In order to explain whether the differences in the calculations were due to the
different treatment of the relativistic effects or to the approximations made in solv-
ing the resultant equations, Berrington et al. [103] carried out detailed calculations
for electron collisions with Fe XV using both the Breit–Pauli computer program
RMATRXI, discussed in Sect. 5.1.1, and the Dirac computer program DARC,
discussed in Sect. 5.5.1, removing as far as possible any variation in algorithmic
features, such as the energy mesh and the target states included in the expansion. In
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both calculations 45 Jπ target states were retained in the R-matrix expansion cor-
responding to the 9 configurations 3s2, 3s3p, 3s3d, 3s4s, 3s4p, 3s4d, 3p2, 3p3d and
3d2. In addition, the configuration interaction representation of these target states
was expanded in terms of the same set of configurations. In this way the possibility
of pseudoresonances was avoided. Finally, in both calculations a fine energy mesh
was adopted in order to fully resolve the resonance structure. As an example of the
results obtained, the effective collision strengths for two double-electron transitions
are shown in Fig. 5.13. We see that the Breit–Pauli and Dirac R-matrix results are in
close agreement, with the variations between the calculations at lower temperatures
being primarily attributed to the differences in the resonance positions determined
by the Breit–Pauli and the Dirac target orbitals.

In conclusion, it was found that the average difference between the Breit–Pauli
and Dirac R-matrix effective collision strengths for the 990 transitions considered
between the 45 target states was only 6.14%. Furthermore, there is evidence from
this work that the small differences that persist between the two calculations are due
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primarily to variations in the target states rather than due to differences in collision
theories. Consequently, this work shows that the Breit–Pauli Hamiltonian can be
used with confidence in calculating transitions between the relatively low-Z iron
peak elements.

5.6.7 Electron Collisions with Xe XXVII

As our last example in this chapter we consider Dirac R-matrix calculations of
electron collisions with Ni-like Xe XXVII (Xe26+) ions by Badnell et al. [37].
The spectra arising from electron impact excitation of heavier ions, such as ions

Fig. 5.14 Electron collisions with Xe26+. Collision strength for the 129-state Dirac R-matrix J =
0–0 3d10 1S0–3d94d 1S0 transition (Fig. 2 from [37])

Fig. 5.15 Electron collisions with Xe26+. Effective collision strength for the 129-state Dirac
R-matrix J = 0–0 3d10 1S0–3d94d 1S0 transition. Solid curve: 129-state Dirac R-matrix calcu-
lation; dashed curve: plane wave Born approximation (Fig. 3 from [37])
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of Xe, are important in many applications such as found in ITER (International
Thermonuclear Experimental Reactor) and in the context of microlithographic light
sources required to provide the next generation of etching for the semiconductor
industry. In this work results for “feature photon emissivity coefficients”, which
are important in these applications, were obtained for Xe26+ from the calculated
collision strengths.

In order to obtain accurate results for this relatively heavy ion the Dirac R-matrix
program DARC, discussed in Sect. 5.5.1, was used in the internal R-matrix region
which was interfaced with an extended and parallelized version of the external
region program, originally developed for the Opacity Project [100, 860], discussed
in Sect. 8.3. The calculation included 129 states of Xe26+ arising from the con-
figurations 3d10 and 3d9n	 for n = 4 and 5 and 	 = 0 to n − 1, which yield a
maximum of 821 coupled channels. Also, 21 continuum basis orbitals were retained
in each channel for 2J = 1–43 and 16 continuum basis orbitals were retained for
2J = 44–71, resulting in Hamiltonian matrices of rank 17,356 and 13,136, respec-
tively. The contribution to the cross sections from 2J > 71 (“top-up”) was obtained
for dipole-allowed transitions using the sum rule proposed by Burgess [149] and for
non-dipole transitions by assuming a geometric series in energy.

As an example of this study we show in Fig. 5.14 the results of the 129-state cal-
culation of the strong J = 0–0 collision strength for the 3d10 1S0–3d94d 1S0 transi-
tion, which populates the upper level of the lasing transition 3d94d 1S0–3d94p 1P1
in Xe26+. We see that over most of this energy range the collision strength is dom-
inated by resonance structure which has to be included to obtain accurate results.
To see this we compare the Maxwellian-averaged effective collision strength for
this transition with plane wave Born approximation calculations in Fig. 5.15. We
see that the Dirac R-matrix calculation is ∼18% larger than the Born result at
log T (K ) = 6.8, which corresponds to the temperature of peak fractional abun-
dance for Xe26+ over a wide range of electron densities. We also see that at lower
temperatures this discrepancy becomes even larger.

In conclusion, these calculations show that the Dirac R-matrix calculations give
significantly different effective collision strengths from the Born approximation in
the temperature range of interest. In addition, the resonance enhancement of the
effective collision strength plays a crucial role in obtaining accurate results. In gen-
eral, the Dirac R-matrix method will play an essential role in obtaining accurate
electron collision strengths for the heaviest atomic targets at energies and tempera-
tures of importance in many applications.
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