
Chapter 3
Resonances and Threshold Behaviour

We consider in this chapter the theory of resonance reactions and the closely related
behaviour of cross sections near threshold. Our treatment will concentrate on theo-
retical methods that have found wide applicability in atomic and molecular collision
processes. For example, we will see in Chap. 5 that resonances play a crucial role
in low-energy electron collisions with multi-electron atoms and atomic ions, where
effective collision strengths can be increased by an order of magnitude or more at
low temperatures by resonance processes. We will also see in later chapters that
resonances are important in electron impact ionization, in single- and multiphoton
ionization processes, in photorecombination and in electron–molecule collisions.
Hence, understanding and interpreting resonances in collision processes are impor-
tant goals for theory and their detailed and accurate prediction provides a challenge
for computational methods.

A fundamental approach to the study of resonances and threshold behaviour is
through an analysis of the analytic properties of the S-matrix or collision matrix
introduced by Wheeler [961] and Heisenberg [452]. We have already defined the S-
matrix in Chaps. 1 and 2 in terms of the asymptotic form of the radial wave function
describing electron collisions with atoms and atomic ions. We have also considered
in Sect. 1.3 the analytic properties of the single-channel S-matrix which arises in
potential scattering. We found in that section that bound states and resonances are
closely related to poles in the S-matrix in the complex momentum plane. In this
chapter we extend our discussion of S-matrix theory to multichannel resonances
and threshold behaviour.

We commence in Sect. 3.1 by generalizing our discussion of the analytic prop-
erties of the S-matrix in Sect. 1.3 by defining multichannel Jost functions in terms
of the solutions of coupled second-order integrodifferential equations (2.63) which
describe electron collisions with multi-electron atoms and atomic ions. By express-
ing the S-matrix in terms of Jost functions we can then relate the analytic properties
of the S-matrix in the multi-Riemann-sheeted complex energy plane to the sim-
pler analytic properties of the Jost functions. This provides the basis for discussing
the distribution of bound-state and resonance poles in the S-matrix in the complex
energy plane.

In Sect. 3.2 we derive explicit expressions for the K -matrix and S-matrix in
the neighbourhood of an isolated resonance pole using a theoretical approach
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102 3 Resonances and Threshold Behaviour

introduced by Brenig and Haag [137] and Fano [301]. In this approach, a zero-
order Hamiltonian is defined which can be solved exactly in terms of discrete and
continuum states. The full Hamiltonian then mixes these states giving rise to res-
onances in the S-matrix and we obtain expressions for the individual eigenphases
and the eigenphase sum in the neighbourhood of a resonance. We also discuss the
time-delay matrix, first introduced by Smith [881], and we relate the trace of this
matrix to the derivative of the eigenphase sum with respect to energy. We then show
that this quantity can often provide an accurate procedure for analysing overlapping
resonances. We also consider in this section, the projection operator approach of
Feshbach [320, 321], which provides a powerful framework for describing reso-
nance phenomena in a wide range of atomic, molecular and nuclear collision pro-
cesses. Finally, we discuss the hyperspherical system of coordinates which has been
important in the analysis of resonances and threshold behaviour of three-body sys-
tems, such as two electrons in a Coulomb field and three-nucleon molecules such as
H+3 , as well as in the general description of the three-body problem.

In Sect. 3.3, we consider the threshold behaviour of excitation and ioniza-
tion cross sections. This behaviour was investigated in a fundamental paper by
Wigner [970] who showed that the analytic behaviour of cross sections near thresh-
old depends, apart from a constant, on the form of the long-range interaction
between the particles. We consider first two-body collision processes where we
use the analytic properties of the multichannel R-matrix, discussed in Chap. 5, to
derive a multichannel effective range theory for short-range potentials, following
the work of Ross and Shaw [798]. We then extend this theory to treat long-range
dipole potentials considered by Gailitis and Damburg [359] and a Coulomb poten-
tial considered by Gailitis [357]. We also discuss multichannel quantum defect
theory (MQDT) introduced, developed and reviewed by Seaton [859], and we
summarize the extension of MQDT to molecular collision processes first consid-
ered by Fano [303]. Finally, we consider the threshold law of electron impact
ionization of atoms and positive ions first derived by Wannier [954, 955]. In
this analysis we adopt the hyperspherical system of coordinates, introduced in
Sect. 3.2.6.

3.1 Analytic Properties of the S-Matrix

In this section we generalize our discussion of the analytic properties of the S-matrix
in potential scattering given in Sect. 1.3 to multichannel collisions. As in Chap. 2
we illustrate this discussion by considering low-energy elastic and inelastic electron
collisions with multi-electron atoms and atomic ions described by

e− + Ai → A j + e−, (3.1)

where Ai and A j are the initial and final bound states of the target. We consider the
solution of the n coupled second-order integrodifferential equations (2.63), which
describe these collisions for a given set of conserved quantum numbers. We rewrite



3.1 Analytic Properties of the S-Matrix 103

these equations using matrix notation as follows:
(

d2

dr2
− �(�+ I)

r2
+ 2(Z − N )

r
− U(r)+ k2

)
F(r) = 0, (3.2)

where Z is the nuclear charge number, N is the number of target electrons, U is
an n × n-dimensional matrix representing the sum of the local direct, non-local
exchange and non-local correlation potentials 2(V + W + X) in (2.63), I is the
n × n-dimensional unit matrix and � and k2 are n × n-dimensional diagonal matri-
ces representing the channel orbital angular momenta and wave numbers squared,
respectively. We note that in (3.2) we have not imposed the orthogonality constraints
defined by (2.62). Hence the Lagrange multiplier terms in (2.63) and the additional
quadratically integrable functions included in the original expansion (2.57) for com-
pleteness are not required. However, as pointed out following (2.87), the relaxation
of these constraints does not affect the K -matrix, S-matrix and scattering amplitudes
and hence the analytic properties of the S-matrix considered here.

We find it convenient, as in Sect. 2.4, to order the target eigenstates and pseu-
dostates retained in expansion (2.57) so that their energies defined by (2.5) are in
increasing order. It follows that the corresponding channel wave numbers squared
k2

i , defined by (2.7), satisfy (2.78) when the total energy E is real. Initially we limit
our discussion to neutral atomic targets where the nuclear charge number Z equals
the number of target electrons N . It then follows from (2.73) that the leading term
in the long-range potential experienced by the scattered electron is ∼ r−2. Later in
this chapter we will consider electron collisions with atomic ions where a long-range
Coulomb potential is also present.

In analogy with our consideration of the analytic properties of the S-matrix in
potential scattering, discussed in Sect. 1.3, we define, following Jost [515], two
linearly independent matrix solutions f(±k, r) of (3.2) by the asymptotic boundary
conditions

lim
r→∞ exp(±ikr)f(±k, r) = I, (3.3)

where the diagonal elements of k are defined by (2.7) and where the total energy
E can now be complex. Also f(±k, r) are diagonal n × n-dimensional matrices
in the limit r → ∞ but, as shown below, are in general non-diagonal for finite
values of r . For potentials which occur in electron–atom collisions, the boundary
conditions (3.3) define f(k, r) uniquely for Im ki < 0 and f(−k, r) uniquely for
Im ki > 0 for i = 1, . . . , n. If we can impose stronger conditions on the potentials
Vi j , Wi j and Xi j in (2.63) then the functions f(±k, r) can be analytically con-
tinued outside of these regions, as discussed in Sect. 1.3 in the case of potential
scattering.

The physical solutions of (3.2) which vanish at the origin can be expressed as
linear combinations of the functions f(±k, r). Let us normalize these physical solu-
tions so that they satisfy the following boundary condition at the origin:

lim
r→0

r−�−IF(k, r) = I, (3.4)
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where � is the n × n-dimensional diagonal matrix whose diagonal elements are
	i , i = 1, . . . , n and where we have introduced the n × n-dimensional solution
matrix F(k, r) which is diagonal in the limit r → 0 but is in general non-diagonal
for non-zero values of r. The second subscript k on this solution matrix Fik runs
from 1 to n and denotes the n linearly independent solutions of (3.2) which are
defined by the boundary conditions (3.4). These solutions form a complete set of
solutions which vanish at the origin. The boundary condition (3.4), which does
not depend on k, then ensures that, as in potential scattering, F(k, r) is an entire
function of k. We then define the multichannel Jost function matrices f̃(±k) by the
Wronskian

f̃(±k) = W [f(±k, r),F(k, r)], (3.5)

where f̃(±k) are n × n-dimensional matrices. Also in (3.5) we have defined the
Wronskian of any two solution vectors u and v by

W [u, v] = uTv′ − u′T v, (3.6)

where uT is the transpose of u and the prime denotes the derivative with respect to
r . It is straightforward to show that the Wronskian is independent of r .

We now use the relations

W [f(±k, r), f(∓k, r)] = ±2ik (3.7)

and

W [f(±k, r), f(±k, r)] = 0, (3.8)

which follow from (3.3), to write F(k, r) in the form

F(k, r) = (2i)−1[f(−k, r)k−1 f̃(k)− f(k, r)k−1 f̃(−k)]. (3.9)

If we compare this equation with the asymptotic form (2.110), we find that the
S-matrix can be defined in terms of the Jost functions by

Sn(k) = exp
(

1
2 iπ�

)
k−1/2 f̃(k)f̃

−1
(−k)k1/2 exp

(
1
2 iπ�

)
, (3.10)

where the subscript n on Sn refers to the dimension of the S-matrix and where in
the following discussion we assume that all channels are open so that the num-
ber of open channels na = n in (2.110). This equation enables the analytic prop-
erties of the S-matrix to be related to the simpler analytic properties of the Jost
functions.

In order to study the analytic properties of the Jost functions we return to (3.2)
satisfied by f(±k, r). We assume that f(−k, r) satisfies the equation

(
d2

dr2
− �(�+ I)

r2
+ 2(Z − N )

r
− U(r)+ k2

)
f(−k, r) = 0. (3.11)
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We then take the complex conjugate of this equation yielding
(

d2

dr2
− �(�+ I)

r2
+ 2(Z − N )

r
− U(r)+ k∗2

)
f ∗(−k, r) = 0, (3.12)

where we assume that r , �, Z , N and U are real but k, which is defined in terms of
the total energy E by (2.7), can be complex. In addition it follows, by replacing −k
by k∗ in (3.11), that f(k∗, r) is a solution of

(
d2

dr2
− �(�+ I)

r2
+ 2(Z − N )

r
− U(r)+ k∗2

)
f(k∗, r) = 0. (3.13)

Hence f ∗(−k, r) and f(k∗, r) satisfy the same differential equation and from (3.3)
they satisfy the same boundary condition. Hence

f ∗(−k, r) = f(k∗, r) (3.14)

is satisfied for all points in the upper half k-plane with Im ki > 0, i = 1, . . . , n, and
for all other points in the complex k-plane for which the potential admits an analytic
continuation from the upper half k-plane.

In a similar way, we can show from (3.11) and the boundary condition (3.4)
satisfied by F(k, r) that

F∗(k, r) = F(k∗, r) (3.15)

and

F(k, r) = F(−k, r). (3.16)

Using (3.14), (3.15) and (3.16), we find from (3.5) that the Jost functions satisfy

f̃
∗
(−k) = f̃(k∗). (3.17)

Hence we obtain from (3.10)

S∗n(k∗) = exp(− 1
2 iπ�)k−1/2 f̃(−k)f̃

−1
(k)k1/2 exp(− 1

2 iπ�). (3.18)

Combining this equation with (3.10) gives

Sn(k)S∗n(k∗) = I. (3.19)

Also, as we have shown in Sect. 2.4, the K -matrix is symmetric and hence from
(2.112) the S-matrix is also symmetric so that

Sn(k) = ST
n (k), (3.20)
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where ST
n denotes the transpose of Sn . Hence it follows from (3.19) and (3.20) that

Sn(k)S†
n(k
∗) = I, (3.21)

where S†
n denotes the hermitian conjugate of Sn . This is the generalization of the

unitarity relation given by (1.97) for potential scattering.
A further analytic property of the S-matrix can be obtained by considering

S∗n(−k∗). From (3.10) and (3.17) we obtain

S∗n(−k∗) = exp
(
− 1

2 iπ�
)

k−1/2 f̃(k)f̃−1(−k)k1/2 exp
(
− 1

2 iπ�
)
. (3.22)

Combining this equation with (3.10) and (3.20) yields

Sn(k) = exp(iπ�)S†
n(−k∗) exp(iπ�), (3.23)

which is the generalization of the reflection relation given by (1.98) in potential
scattering.

It is useful at this point to discuss the continuation paths in the complex energy
plane implied by relations (3.21) and (3.23). Since the ki occur in the definition
of the Jost functions given by (3.3) and (3.5) and hence in the S-matrix given by
(3.10), the value of Sn(k) is only defined uniquely in terms of the total energy E of
the electron–atom system if the sign ambiguities

ki = ±[2(E − ei )]1/2, i = 1, . . . , n, (3.24)

which follow from (2.7), are resolved. These signs can be chosen in 2n differ-
ent ways and consequently the S-matrix can only be made single valued, or uni-
formized, by introducing 2n Riemann sheets in the complex E-plane. We define
these sheets in Fig. 3.1, by introducing n branch points ei , i = 1, . . . , n, with their
associated branch cuts chosen to run in each case from E = ei along the real energy
axis to E = +∞. The physical sheet, which we denote by P , is defined by the
condition

Im ki > 0, i = 1, . . . , n, (3.25)

and the physical scattering region, which is illustrated in Fig. 3.1 by arrows, lies on
the real energy axis, along the upper edge of the n branch cuts.

Following Eden and Taylor [283], we let Um denote the unphysical sheet reached
from the physical sheet by crossing the branch cuts in Fig. 3.1 which originate from
the branch points ei , i = 1, . . . ,m, where 1 ≤ m ≤ n. We then find using (3.24)
that on Um

Im ki < 0, i = 1, . . . ,m,

Im ki > 0, i = m + 1, . . . , n. (3.26)
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•e1 •e2 •en−1 •en
Re E

BRANCH CUTS

P H Y S I C A L S H E E T P

Fig. 3.1 The analytic properties of the multichannel S-matrix in the complex energy plane E ,
showing the branch points ei , i = 1, . . . , n, and the associated branch cuts starting from the branch
points ei (where the branch cuts are displaced from the real energy axis for clarity). Also shown
is the physical sheet P and the paths, denoted by (arrows), from this sheet to reach the physical
scattering region on the real energy axis

Furthermore, on the real energy axis between em and em+1 ki is real for i =
1, . . . ,m and positive imaginary for i = m + 1, . . . , n. Other unphysical sheets
can be reached by following more complicated paths from the physical sheet so that
all combinations of the signs of Im ki can be achieved on these sheets.

As an example, when n = 2 there are 2n = 4 Riemann sheets, or three unphysical
sheets in addition to the physical sheet. We show in Fig. 3.2 four continuation paths
which enable E∗ on the unphysical sheets and on the physical sheet to be reached
from E on the physical sheet, where E∗ denotes the complex conjugate of E . The
path labelled (1) goes from E on P to E∗ on U1, the path labelled (2) goes from E
on P to E∗ on U2, the path labelled (1,2) goes from E on P to E∗ on U1,2 and the
path labelled (0) goes from E to E∗ on the physical sheet P . It is clear from Fig. 3.2
that on U1,2, Im k1 > 0 and Im k2 < 0. The signs of Im k1 and Im k2 for E∗ on U1
and U2 are given by (3.26), while Im k1 > 0 and Im k2 > 0 on P .

Returning to the general case illustrated in Fig. 3.3 where there are n channels,
we see that if the point represented by k in (3.21) and (3.23) lies on the physical
sheet defined by (3.25) then the point represented by k∗ lies on Un defined by (3.26)
with m = n. In addition, the point represented by −k∗ lies on the physical sheet.
Hence the unitarity relation (3.21) can be rewritten as

Sn(E on P)S†
n(E

∗ on Un) = I, (3.27)

Re E

E on P

E∗

e1 e2••
(2)(1)(1,2)

(0)

Fig. 3.2 The four continuation paths in the complex energy plane when n = 2 which enable E∗
on the three unphysical sheets and on the physical sheet to be reached from E on the physical sheet
denoted by P . The branch points are denoted by e1 and e2
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(a) E on P

E∗ on Un

E∗ on P

•
e1 •

e2 •
en−1 •

en
Re E

(b) E on P

E∗ on Um

E∗ on P

•
e1 •

em •
em+1 •

en
Re E

Fig. 3.3 Continuation paths in the complex energy plane when there are n non-degenerate chan-
nels, where P denotes the physical sheet and Un and Um denote unphysical sheets as explained in
the text. The branch points are denoted by ei , i = 1, . . . , n

where E∗ on Un is reached by the path indicated in Fig. 3.3a. In a similar way, the
reflection relation (3.23) can be rewritten as

Sn(E on P) = exp(iπ�)S†
n(E

∗ on P) exp(iπ�), (3.28)

where E∗ on P is reached by the path also indicated in Fig. 3.3a.
The above discussion can be generalized to determine the analytic properties of

the S-matrix under the continuation paths indicated in Fig. 3.3b. Under the con-
tinuation from E on P to E∗ on Um we see from (3.26) that the ki transform
according to

ki → k∗i , i = 1, . . . ,m,

ki →−k∗i , i = m + 1, . . . , n. (3.29)

Hence (3.17) and (3.18) are no longer valid under this continuation and the unitarity
relation (3.27) is not satisfied if Un is replaced by Um with m < n. However, we can
show that the m × m-dimensional leading submatrix of Sn which we call Sm does
satisfy a generalized unitarity relation analogous to (3.27).

To prove this, we introduce an n × m-dimensional solution matrix G(k, r) of
(3.11) by the equation

G(k, r) = F(k, r)A(k), (3.30)

where F is the n × n-dimensional solution matrix defined by (3.4) and A is an
n × m-dimensional matrix which is chosen so that G is real on the real energy axis
in the range between em and em+1 and so that in this energy range the exponentially
increasing components in the last n−m channels of F(k, r) are eliminated. G(k, r)
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thus corresponds to the physical solutions in the energy range em ≤ ReE < em+1,
where m channels are open and n−m channels are closed. It is then straightforward
to show that (3.15), which can be rewritten as

F(E on P) = F∗(E∗ on Un), (3.31)

is replaced by

G(E on P) = G∗(E∗ on Um). (3.32)

We now introduce an m × m-dimensional Jost function matrix by the equation

f̃m(±k) = W [fm(±k, r),G(k, r)], (3.33)

where fm(±k, r) are the first m columns of the solutions defined by (3.3). Hence, in
analogy with (3.9) we can write

G(k, r) = (2i)−1[fm(−k, r)k−1
m f̃m(k)− fm(k, r)k−1

m f̃m(−k)], (3.34)

where km is an m × m diagonal matrix with diagonal elements ki , i = 1, . . . ,m.
Comparing this equation with the asymptotic form (2.110) where na = m gives
immediately

Sm(k) = exp
(

1
2 iπ�m

)
k−1/2

m f̃m(k)f̃
−1
m (−k)k1/2

m exp
(

1
2 iπ�m

)
, (3.35)

where �m is the m × m diagonal matrix with diagonal elements 	i , i = 1, . . . ,m.
We can then show from the analytic properties of fm(±k, r) and G(±k, r) that

Sm(E on P)S†
m(E

∗ on Um) = I. (3.36)

This is the generalization of the unitarity relation given by (3.27). Equation
(3.36), together with the generalization of the reflection relation (3.28), which can
be written as

Sm(E on P) = exp(iπ�m)S†
m(E

∗ on P) exp(iπ�m), (3.37)

defines the analytic properties of the m × m-dimensional submatrix Sm .

3.2 Bound States and Resonances

In this section we commence our discussion of bound-state and resonance
poles in the S-matrix for multichannel collisions by considering their distribution
in the multi-Riemann-sheeted complex energy plane. We then derive an explicit
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expression for the multichannel K -matrix and S-matrix in the neighbourhood of
an isolated resonance pole using a theoretical approach introduced by Brenig and
Haag [137] and Fano [301]. We also derive an expression for the behaviour of the
eigenphases near this resonance. We then introduce the projection operator approach
of Feshbach [320, 321], used initially to describe nuclear resonance reactions, which
has provided a powerful framework for describing resonance phenomena in atomic
and molecular collision processes. Finally, we mention that early applications of
these theories in electron and photon collisions with atoms and molecules were
reviewed by Burke [151, 153].

3.2.1 Bound-State and Resonance Poles in the S-Matrix

In order to discuss the distribution of bound-state and resonance poles in the com-
plex energy plane we consider (3.9) and (3.10) which express, respectively, the
physical solution and the S-matrix in terms of the Jost function matrices f(±k, r)
and f̃(±k). We first diagonalize the n×n-dimensional matrix f̃(−k) by the similarity
transformation

X−1 f̃(−k)X = D, (3.38)

where D is a diagonal n × n-dimensional matrix. Let us assume that one of the
diagonal elements of D, say the first d1(E), has a simple zero at some energy E p.
It follows that f̃−1(−k) and, hence from (3.10), Sn(k) are both singular with simple
poles at E = E p. We substitute (3.38) into (3.9) and postmultiply by X yielding

FX = (2i)−1[f(−k, r)k−1 f̃(k)X− f(k, r)k−1XD]. (3.39)

Since d1(E p) = 0, the first column of f(k, r)k−1XD vanishes when E = E p. Hence
the corresponding solution can be written as

Fx1 = (2i)−1f(−k, r)k−1 f̃(k)x1, E = E p, (3.40)

where the vector x1 is the first column of X. It follows from (3.3) that at a pole in
the S-matrix

Fx1 ∼
r→∞eikr N, E = E p, (3.41)

where the normalization vector N = (2ik)−1 f̃(k)x1. This equation is the multichan-
nel generalization of (1.100).

If the energy E p lies on the physical sheet of the complex energy plane then
conditions (3.25) are satisfied. Consequently, the physical solution (3.41) vanishes
asymptotically and hence is normalizable. Since the Hamiltonian is Hermitian, all
normalizable wave functions must belong to real energy eigenvalues. Hence poles in
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the S-matrix on the physical sheet must lie on the real energy axis. If this real energy
lies below the first threshold E < e1, then it follows from (3.24) and (3.25) that

ki = +iκi = +i[2(ei − E)]1/2, i = 1, . . . , n, (3.42)

where the κi are real and positive. Hence the solution defined by (3.41) has the
asymptotic form

Fx1 ∼
r→∞e−κr N, E = E p, (3.43)

where κ is an n × n-dimensional diagonal matrix with diagonal elements κi , i =
1, . . . , n. Since the solution corresponding to (3.43) is normalizable it clearly cor-
responds to a bound state. We illustrate the position of such bound-state poles by
crosses in Fig. 3.4.

In certain circumstances poles in the S-matrix can lie on the real energy axis
with E > e1. Consider, for example, real energies in the range em < E < em+1.
Poles can lie in this range of energies if the channels with threshold energies
ei , i = 1, . . . ,m, are not coupled to the channels with threshold energies ei , i =
m+ 1, . . . , n. This occurs, for example, if these two sets of channels have a dif-
ferent conserved quantum number such as parity and hence are not coupled by the
Hamiltonian. In this case the n× n-dimensional S-matrix Sn can be partitioned into
disconnected sub-matrices as follows:

Sn =
[

Sm 0
0 Sn−m

]
, (3.44)

where Sm has dimension m×m and Sn−m has dimension (n−m)× (n−m). From
the generalized unitarity relation (3.36), Sm must be unitary and hence non-singular
in this range of energies. However, a pole can occur in Sn−m . A pole of this type
corresponds to a bound state lying in the continuum and is denoted by an open circle
in Fig. 3.4.

•
e1 •

em •
em+1 •

em+2 •
en

Re E

P H Y S I C A L S H E E T P

∗
∗

× ×

Fig. 3.4 Distribution of S-matrix poles in the complex energy plane. ×, bound-state poles lying
on the physical sheet; ◦, bound-state pole lying in the continuum on the real energy axis; ∗,
resonance poles lying on unphysical sheets Um and Um+1. The arrows denote the continuation
paths from the physical sheet P to the resonance poles. The branch points are denoted by ei , i =
1, . . . , n
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In the general case, when all n channels are coupled by the Hamiltonian, poles
cannot occur in the S-matrix for real energies with E > e1 corresponding to the
physical scattering region, except in very exceptional circumstances. This is because
the unitarity equation (3.36) would then be violated. However poles can occur on
any of the unphysical sheets Um since the sign of at least one Im ki , i = 1, . . . , n,
is then negative and hence from (3.41) the corresponding wave function is then
not normalizable. If such poles lie close to the physical scattering region they give
rise to observable effects and are called resonance poles and the corresponding wave
functions, which satisfy outgoing wave boundary conditions, are often called Siegert
states [876]. We define the real and imaginary parts of the energy of such a pole by

E p = Er − 1

2
iΓ, on Um, (3.45)

where Er and Γ are both real and Γ is small and positive. Poles of this type are
denoted by an asterisk in Fig. 3.4. We also denote by arrows in this figure the con-
tinuation paths from the physical sheet to these resonance poles. The generalized
unitarity relation (3.36) shows that at the corresponding energies

E∗p = Er + 1

2
iΓ, on P, (3.46)

one of the eigenvalues of Sm has a simple zero, that is the rank of Sm is m− 1. Eden
and Taylor [283] have shown that the presence of a resonance pole on Um usually
also implies the presence of “shadow poles” on other Riemann sheets of the complex
energy plane which are further removed from the physical scattering region. These
shadow poles can play a role in a number of applications such as dissociative attach-
ment and multiphoton ionization discussed in later chapters in this monograph.

Finally, we note that the preceding discussion was based on the assumption that
bound-state and resonance poles in the S-matrix are simple. Although there is no
general principle that guarantees that all such poles are simple, in practice this is
usually the case. However, in atomic multiphoton processes, discussed in Chap. 9,
laser induced degenerate states, or LIDS, corresponding to double poles in the S-
matrix have been found in detailed calculations (see Sect. 9.2.3). If the S-matrix
does contain a double pole in the complex energy plane then the main effects will
be to distort the shape of the associated resonance profile from that considered in
the next section and to produce a decay which deviates from the usual exponential
behaviour. These effects have been considered by Goldberger and Watson [387],
Newton [683] and Kylstra and Joachain [557].

3.2.2 Behaviour of the S-Matrix Near a Resonance

In this section we derive explicit expressions for the behaviour of the multichannel
K -matrix and S-matrix in the physical scattering region near an isolated resonance
pole lying on an adjacent unphysical sheet of the complex energy plane. We also
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derive expressions for the behaviour of the eigenphases in the neighbourhood of a
resonance. This was originally discussed by Brenig and Haag [137] and by Fano
[301] and we consider here the configuration interaction theory of Fano.

Following Sect. 3.1, we consider low-energy elastic and inelastic electron col-
lisions with multi-electron atoms and atomic ions containing N electrons and we
analyse the interaction of one discrete state with n continuum states. We sub-divide
configuration space into a zero-order discrete state, represented by a quadratically
integrable function χ0

0(XN+1), which gives rise to the resonance, and n zero-order
continuum states ψ0

j E (XN+1), j = 1, . . . , n, which do not have resonances or
thresholds in the energy range of interest. We can expand these zero-order contin-
uum states as

ψ0
j E (XN+1) = A

n∑
i=1

Φ i (XN ; r̂N+1σN+1)r
−1
N+1 F0

i j (rN+1)

+
m∑

i=1

χ0
i (XN+1)b

0
i j , j = 1, . . . , n, (3.47)

where we have adopted a notation analogous to expansion (2.57) and where the
superscript Γ , which denotes the conserved quantum numbers, has been omitted for
notational convenience. It is convenient in the following analysis to include only
the n open channels in the first expansion in (3.47). The χ0

i , i = 1, . . . ,m, in
the second expansion are then zero-order quadratically integrable functions, which
represent the effect of the closed channels whose thresholds lie above the energy
range of interest.

We can now assume, without approximation, that these zero-order states satisfy
the orthonormality relations

〈χ0
0|χ0

0〉 = 1,

〈χ0
0|ψ0

j E 〉 = 0, j = 1, . . . , n, (3.48)

〈ψ0
j E |ψ0

j ′E ′ 〉 = δ j j ′δ(E − E ′), j, j ′ = 1, . . . , n.

We also define the matrix elements of the (N + 1)-electron Hamiltonian HN+1 in
this zero-order basis by the equations

〈χ0
0|HN+1|χ0

0〉 = E0,

〈χ0
0|HN+1|ψ0

j E 〉 = Vj (E), j = 1, . . . , n, (3.49)

〈ψ0
j E |HN+1|ψ0

j ′E ′ 〉 = Eδ j j ′δ(E − E ′), j, j ′ = 1, . . . , n,

where we choose real asymptotic boundary conditions for the radial functions F0
i j (r)

in (3.47) so that the Vj (E) are real. The assumption made in the last of Eqs. (3.49),
that the Hamiltonian is prediagonalized in the subspace spanned by the zero-order
continuum states, is inessential and has been relaxed by Fano and Prats [309].
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We introduce n new continuum basis states θ j E , j = 1, . . . , n, which are linear
combinations of the basis ψ0

j E , chosen so that only the first, θ1E , interacts through

the Hamiltonian with the discrete state χ0
0. We define

θi E =
n∑

j=1

ψ0
j EU ji (E), i = 1, . . . , n, (3.50)

where U is an orthogonal matrix whose first column is defined by

U j1(E) = Vj (E)

[
n∑

i=1

Vi (E)
2

]−1/2

, j = 1, . . . , n, (3.51)

while the remaining n − 1 columns are orthonormal and are orthogonal to the
first column but are otherwise arbitrary. In terms of this new basis, Eqs.(3.49) are
replaced by

〈χ0
0|HN+1|χ0

0〉 = E0,

〈χ0
0|HN+1|θ j E 〉 = V (E)δ j1, j = 1, . . . , n, (3.52)

〈θ j E |HN+1|θ j ′E ′ 〉 = Eδ j j ′δ(E − E ′), j, j ′ = 1, . . . , n,

where we have introduced the real quantity

V (E) =
[

n∑
i=1

Vi (E)
2

]1/2

, (3.53)

which is a measure of the strength of the interaction of the discrete state with the
continuum.

The eigensolutions of the Schrödinger equation which diagonalize the Hamilto-
nian can now be expanded in terms of these new zero-order states as follows:

Ψ1E =
∫
θ1E ′a(E, E ′)dE ′ + χ0

0b(E),

Ψ j E = θ j E , j = 2, . . . , n, (3.54)

where the coefficients a(E, E ′) and b(E) are determined by projecting the
Schrödinger equation

(HN+1 − E)Ψ1E = 0 (3.55)

onto the zero-order basis states θ1E and χ0
0. We obtain

〈θ1E ′ |HN+1 − E |Ψ1E 〉 = 0,

〈χ0
0|HN+1 − E |Ψ1E 〉 = 0. (3.56)

Substituting for Ψ1E from (3.54) into (3.56) and using (3.48) and (3.52), then gives
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E ′a(E, E ′)+ V (E ′)b(E) = Ea(E, E ′),∫
V (E ′)a(E, E ′)dE ′ + E0b(E) = Eb(E). (3.57)

The first equation in (3.57) can be formally solved for a(E, E ′) yielding

a(E, E ′) =
[ P

E − E ′
+ z(E)δ(E − E ′)

]
V (E ′)b(E), (3.58)

where P is the principal value integral and z(E) is then obtained by substituting
(3.58) for a(E, E ′) into the second equation in (3.57). We obtain

z(E) = E − E0 −Δ(E)
V (E)2

, (3.59)

where we have introduced the quantity

Δ(E) = P
∫

V (E ′)2

E − E ′
dE ′, (3.60)

which is called the resonance shift.
In order to determine the K -matrix and S-matrix for the interacting system, we

assume that the zero-order reduced radial wave function matrix F0 in (3.47) satisfies
the real K -matrix asymptotic boundary conditions

F0(r) ∼
r→∞

(
2

πk

)1/2

(sin θ + cos θK0)(I+K2
0)
−1/2. (3.61)

In this equation F0 is an n × n-dimensional matrix, k and θ are diagonal matrices,
where the diagonal elements of θ are defined by (2.82), (2.83) and(2.84), and K0 is
the multichannel zero-order n × n-dimensional K -matrix obtained in the absence
of the interaction between the zero-order discrete state and the continuum states. In
analogy with our discussion in Sect. 1.1, see (1.21), the coefficient (2/πk)1/2 and
the factor (1+K2

0)
−1/2 in (3.61) are included so that the δ-function orthonormality

relation in the last equation in (3.48) is satisfied. It follows from (3.47), (3.50) and
(3.54) that Ψ j E can be expanded as follows:

Ψ j E (x1, . . . , xN+1) = A
n∑

i=1

Φ i (x1, . . . , xN ; r̂N+1σN+1)r
−1
N+1Gi j (rN+1)

+
m∑

i=0

χ i (x1, . . . , xN )ci j , j = 1, . . . , n, (3.62)

where the reduced radial wave function matrix G in this equation is obtained by
substituting (3.58) into (3.54), using (3.61) and carrying out the integration over E ′.
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We find that G satisfies the asymptotic boundary conditions

G1(r) ∼
r→∞

(
2

πk

)1/2

{sin θ [z(E)+ πK0] + cos θ [−π + z(E)K0]}
× (1+K2

0)
−1/2U1,

G j (r) ∼
r→∞

(
2

πk

)1/2

(sin θ + cos θK0)(1+K2
0)
−1/2U j ,

j = 2, . . . , n, (3.63)

where G j and U j are the j th columns of the n × n-dimensional matrices G and U,
respectively. Also the quadratically integrable functions χ i , i = 0, . . . ,m, in (3.62)
are linear combinations of the zero-order discrete state represented by the quadrat-
ically integrable function χ0

0 and the zero-order quadratically integrable functions
χ0

i , i = 1, . . . ,m, in (3.47).
Equations (3.63) can be written in a more convenient form by post-multiplying

by U−1 and substituting for z(E) from (3.59). This gives

G(r)U−1 ∼
r→∞

(
2

πk

)1/2 [
sin θ

(
(1+K2

0)
−1/2 +K0(1+K2

0)
−1/2 1

2
Γ
γ × γ
E − Er

)

+ cos θ

(
K0(1+K2

0)
−1/2 − (1+K2

0)
−1/2 1

2
Γ
γ × γ
E − Er

)]
, (3.64)

where the partial width amplitudes γi are defined by

γi = Vi V−1, i = 1, . . . , n, (3.65)

and the resonance energy Er and total width Γ are defined by

Er = E0 +Δ,
Γ = 2πV 2. (3.66)

The quantity γ × γ in (3.64) is a real symmetric n × n-dimensional matrix with
matrix elements γiγ j where we note that the real K -matrix boundary condition
(3.61) implies that Vj (E), j = 1, . . . , n, defined by (3.49), are real and hence
the partial width amplitudes γi are real.

By taking linear combinations of the solutions defined by (3.64), we can choose
the reduced radial wave functions to have the following asymptotic form analogous
to that given by (3.61)

F(r) ∼
r→∞

(
2

πk

)1/2

(sin θ + cos θK)(I+K2)−1/2, (3.67)

where the K -matrix is defined by
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K = K0 − 1

2
Γ
(1+K2

0)
1/2γ × γ (1+K2

0)
1/2

E − Er + 1
2Γ γ

TK0γ
. (3.68)

The S-matrix, which is related to the K -matrix by (2.112), can then be written as

S = S0 − iΓ
S1/2

0 γ × γS1/2
0

E − Er + 1
2 iΓ

, (3.69)

where the zero-order S-matrix S0 is defined by

S0 = I+ iK0

I− iK0
. (3.70)

Equations (3.68) and (3.69) are the basic expressions which describe the behaviour
of the K -matrix and S-matrix in the neighbourhood of an isolated resonance. We see
that all elements of the S-matrix are singular at the complex energy E = Er − 1

2 iΓ
while the K -matrix elements are singular at the shifted real energy E = Er −
1
2Γ γ

TK0γ . Equation (3.68), which is discussed further by Burke [153], forms the
basis of a computer program written by Bartschat and Burke [64] which enables the
resonance position and its total and partial widths to be determined from K -matrix
elements calculated at a few energy values in the neighbourhood of an isolated
resonance.

Finally, using the definition of Vj (E) given by (3.49) together with the definitions
of γ j and Γ given by (3.65) and (3.66), we find that

γ jΓ
1/2 = (2π)1/2〈χ0

0|HN+1|ψ0
j E 〉, (3.71)

where the reduced radial wave functions F0
i j (r) in ψ0

j E satisfy the real K-matrix
boundary conditions (3.61). Squaring (3.71), summing over j and using (3.53) and
(3.65) then yields

Γ = 2π
n∑

j=1

[
〈χ0

0|HN+1|ψ0
j E 〉
]2
. (3.72)

This expression has often been used to calculate an approximate value for the total
resonance width Γ given approximate representations for the zero-order discrete
state χ0

0 and the zero-order continuum states ψ0
j E , j = 1, . . . , n.

3.2.3 Behaviour of Eigenphases Near a Resonance

We have shown in Sect. 1.3 that in the case of potential scattering the phase shift
increases by approximately π radians as the energy increases through the resonance



118 3 Resonances and Threshold Behaviour

energy, as described by (1.105) and (1.106). In this section we show that the
eigenphase sum

δsum =
n∑

i=1

δi , (3.73)

where the eigenphases δi are defined by (2.113) and (2.114), satisfies a general-
ization of these equations. In addition, we will derive an equation satisfied by the
individual eigenphases near a resonance. As in Sect. 3.2.2, we assume that n chan-
nels are open.

Following (2.113), we diagonalize the S-matrix defined by (3.69) giving

S = A exp(2iΔ)AT

= A0 exp(iΔ0)AT
0

[
1− iΓ

γ × γ
E − Er + 1

2 iΓ

]
A0 exp(iΔ0)AT

0 , (3.74)

where A and A0 are the real orthogonal matrices which diagonalize S and S0,
respectively, and Δ and Δ0 are diagonal matrices whose diagonal elements are
the eigenphases δi , i = 1, . . . , n and the zero-order non-resonant eigenphases
δ0

i , i = 1, . . . , n, respectively. We now take the determinant of both sides of (3.74)
yielding

exp (2iδsum) = exp(2iδ0
sum) det

[
1− iΓ

γ × γ
E − Er + 1

2 iΓ

]
, (3.75)

where in analogy with (3.73) we have defined

δ0
sum =

n∑
i=1

δ0
i . (3.76)

We now observe from (3.53) and (3.65) that γ Tγ = 1. Hence by diagonalizing the
matrix in square brackets in (3.75) we find that

det

[
1− iΓ

γ × γ
E − Er + 1

2 iΓ

]
= exp

[
2i tan−1

1
2Γ

Er − E

]
. (3.77)

Combining (3.75) and (3.77) then yields the equation

δsum = δ0
sum + tan−1

1
2Γ

Er − E
. (3.78)

This equation, obtained by Hazi [446], is the multichannel generalization of (1.105)
and (1.106) describing the behaviour of the phase shift near a resonance in potential
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scattering. We see that the resonant part of δsum, given by the second term on the
right-hand side of (3.78), increases by π radians as the energy increases through
the resonance, while the non-resonant term δ0

sum is smoothly varying with energy.
Equation (3.78) is often used to determine the position and width of a multichannel
resonance from the calculated S-matrix (e.g. [918]). Also, Quigley et al. [761, 762]
combined this equation with the analytic properties of the R-matrix to obtain an
accurate “QB” procedure for analysing resonances.

In order to determine the behaviour of the individual eigenphases in the neigh-
bourhood of a resonance we follow Macek [620] by diagonalizing the S-matrix
defined by (3.69) in two stages. We first transform S by the real orthogonal matrix
A0 which diagonalizes S0 giving

S′ = AT
0 SA0 = exp(2iΔ)− iΓ

exp(iΔ0)y× y exp(iΔ0)

E − Er + 1
2 iΓ

, (3.79)

where y = AT
0γ is a vector whose elements give the amplitudes for the decay of the

resonance into the eigenchannels of S0. We then substitute (3.79) into the eigenvalue
equation

S′b j = exp(2iδ j )b j , j = 1, . . . , n, (3.80)

where δ j is the j th eigenphase of S. We obtain

exp(2iδ j )b j = exp(2iΔ0)b j − iΓ
exp(iΔ0)y

E − Er + 1
2 iΓ

a j , (3.81)

where a j is defined by

a j = yT exp(iΔ0)b j . (3.82)

Equation (3.81) defines the vector b j in terms of the quantity a j . Substituting this
expression for b j into (3.82) then yields the consistency relation

a j = − iΓ

E − Er + 1
2 iΓ

n∑
i=1

y2
i

exp(2iδ0
i )

exp(2iδ j )− exp(2iδ0
i )

a j , j = 1, . . . , n. (3.83)

In order for (3.83) to have a non-trivial solution, the coefficients of a j on both sides
must be equal. Using the condition yTy = γ Tγ = 1 we obtain the required relation

E − Er = 1

2
Γ

n∑
i=1

y2
i cot(δ0

i − δ j ), j = 1, . . . , n. (3.84)

When n = 1 this equation reduces to
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δ = δ0 + tan−1
1
2Γ

Er − E
, (3.85)

which corresponds to (3.78) obtained earlier.
Equations (3.84) define the behaviour of the eigenphases δ j as a function of E .

For any given energy this equation has n solutions, each solution δ j lying between
adjacent values of the non-resonant eigenphases δ0

i . As the energy increases from a
value well below the resonance energy Er to a value well above Er , the correspond-
ing eigenphases increase from close to and just above each non-resonant eigenphase
δ0

i to close to and just below the next higher non-resonant eigenphase δ0
i+1. Taking

the derivative of (3.84) with respect to the energy E and assuming that the δ0
i are

independent of energy we obtain

1 = 1

2
Γ

dδ j

dE

n∑
i=1

y2
i cosec2(δ0

i − δ j ), j = 1, . . . , n, (3.86)

which shows that each eigenphase δ j increases monotonically with energy. It also
follows from this equation that the eigenphases δ j increase most rapidly near Er .

As an illustration of (3.84), we show in Fig. 3.5 the calculated eigenphase sum
δsum and the three eigenphases δ1, δ2 and δ3 in radians for e−–H collisions, plotted
as a function of the incident electron energy in Rydbergs in the neighbourhood of the
1Se resonance lying between the n = 2 and 3 thresholds at ∼ 0.862 Rydbergs. The
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Fig. 3.5 The behaviour of the eigenphase sum δsum and the eigenphases δ1, δ2 and δ3, labelled
(1), (2) and (3), respectively, for e−–H collisions in the neighbourhood of the 1Se resonance lying
below the n = 3 thresholds at an incident electron energy ∼ 0.862 Rydbergs
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calculation, carried out using the R-matrix method discussed in Chap. 5, retained
the six atomic hydrogen target states 1s, 2s, 2p, 3s, 3p and 3d in the close coupling
expansion (2.57) for the conserved quantum numbers L = 0, S = 0 and π = even.
This results in six coupled channels in (2.63), where three channels, corresponding
to the 1s, 2s and 2p states, are open and the three remaining channels, corresponding
to the 3s, 3p and 3d states, are closed. Hence n = 6, na = 3 and nb = 3 in (2.79)
and the corresponding K - and S-matrices have dimensions 3 × 3. The eigenphase
sum and the three eigenphases are seen to be continuous functions of energy through
the resonance which was achieved by adding or subtracting the appropriate multiple
of π radians at each calculated energy. As expected δsum, which is given by (3.78),
increases by approximately π radians as the energy increases through the resonance.
Also the individual eigenphases behave as described in the preceding paragraph.
Further details of e−–H collision calculations and the resonances that occur are
given in Sect. 5.6.1 where we discuss the results of solving (2.63) using the R-matrix
method.

3.2.4 Time-Delay Matrix

In the previous sections we have shown that the presence of poles in the S-matrix,
lying on unphysical sheets of the complex energy plane close to the physical scat-
tering region, gives rise to resonance effects in the corresponding eigenphases and
scattering amplitudes. It was shown by Wigner [971] that a resonance not only gives
a sharp peak or dip in the cross section but also gives rise to a time delay in the
collision. In this section we consider the time delay caused by these resonances and,
following the work of Smith [881], we introduce the time-delay matrix Q(E)1 on
the real energy axis. We also relate the trace of this matrix to the derivative of the
eigenphase sum with respect to energy and we show that this quantity often provides
an accurate procedure for analysing overlapping resonances.

It was shown in early work by Eisenbud [288], Bohm [121] and Wigner [971],
using wave-packet analyses, that the time delay�t which arises in a single-channel
collision can be described in terms of the derivative of the phase shift δ with respect
to energy E by

�t = 2
dδ

dE
, (3.87)

in atomic units. Remembering that the single-channel S-matrix is related to the
phase shift δ by S = exp(2iδ) we find that

�t = iS
dS∗

dE
= −i

dS

dE
S∗, (3.88)

where S∗ is the complex conjugate of S.

1 In the original work of Smith [881] Q(E) was called the lifetime matrix.
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In the analysis of Smith [881], which was considered further by Celenza and
Tobocman [206], the time delay was analysed using a steady-state wave function
describing the collision. In this analysis, the lifetime is determined by considering
the excess number of particles in an interaction region, after subtracting the number
of particles that would have been present in the absence of the interaction. This
excess number will remain finite even if the integration is taken to infinity, provided
that the interaction vanishes rapidly enough at large distances. This excess, divided
by the total flux in (or out) through a closed surface at large distances from the
centre of the interaction region, gives the required lifetime. Using this independent
analysis of the time delay yields the same results as the wave-packet analysis which
leads to (3.88).

Smith [881] also generalized (3.88) to multichannel collisions by introducing a
time-delay matrix Q. In this analysis (3.88) becomes

Q = iS
dS†

dE
= −i

dS
dE

S†, (3.89)

where Q = Q† is hermitian and, like the S-matrix S, has dimension n × n, where
n is the number of open channels at the energy E . Following Igarashi and Shima-
mura [486] we can relate the trace of the time-delay matrix Q to the eigenphase
sum δsum, defined by (3.78). We first diagonalize the S-matrix by a real orthogonal
transformation A. Following (2.113) we write

ATSA = exp(2iΔ) = Λ, (3.90)

where the diagonal elements of Λ can be expressed in terms of the eigenphases δi ,
as follows:

Λi i = exp(2iδi ), i = 1, . . . , n. (3.91)

We find using (3.90) that

2
dΔ

dE
= iΛ

dΛ†

dE
, (3.92)

and

dΛ†

dE
= AT dS†

dE
A+ dAT

dE
S†A+ ATS† dA

dE
. (3.93)

Substituting (3.93) into (3.92) and using (3.90) gives

2
dΔ

dE
= i

(
ATS

dS†

dE
A+ ATSA

dAT

dE
S†A+ AT dA

dE

)
. (3.94)

Taking the trace of this equation then gives
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Tr

(
2

dΔ

dE

)
= iTr

(
S

dS†

dE

)
+ iTr

(
A

dAT

dE
+ AT dA

dE

)
, (3.95)

since the trace of a matrix is unaltered by an orthogonal transformation. It follows
from (3.89) that the first term on the right-hand-side of (3.95) is Tr(Q) and the
second term can be written as

iTr

(
A

dAT

dE
+ AT dA

dE

)
= iTr

(
d
(
ATA

)
dE

)
= 0. (3.96)

Hence it follows from (3.95) that

TrQ = 2Tr

(
dΔ

dE

)
. (3.97)

Finally, we see from (3.90) and (3.91) that the diagonal elements ofΔ are the eigen-
phases δi and, therefore, using (3.73) we obtain

TrQ = 2
dδsum

dE
. (3.98)

This result generalizes the single-channel result given by (3.87) to multichannel
collisions.

So far we have not made any assumption concerning the functional form of the
S-matrix or the eigenphase sum. If we assume that δsum in (3.98) satisfies (3.78),
then we find that (3.98) can be rewritten as

TrQ = 2
dδsum

dE
= Γ

(E − Er )2 +
(

1
2Γ
)2
+ 2

dδ0
sum

dE
. (3.99)

In the case of N resonances, which may be overlapping, it follows immediately from
(3.99) that

dδsum

dE
=

N∑
i=1

1
2Γi

(E − Ei )2 +
(

1
2Γi

)2
+ dδ0

sum

dE
, (3.100)

where in this equation Ei are the resonance positions and Γi are the resonance
widths.

Equation (3.100) has been used by a number of workers to determine the posi-
tions and widths of resonances. For example, this approach has been used by
Stibbe and Tennyson [889] to analyse R-matrix calculations of resonances in e−–H2
and e−–H+2 collisions, by Igarashi and Shimamura [486, 487] to analyse hyper-
spherical coordinate calculations of resonances in e+–He+ collisions, by Igarashi
and Shimamura [488] and Shimamura et al. [873] to analyse hyperspherical coor-
dinate calculations of resonances in e−–Ps collisions and by Aiba et al. [5] to
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analyse hyperspherical coordinate calculations of resonances in e−–He and e−–Ps
collisions.

As an example of these calculations we consider results obtained by Aiba et al.
[5] for overlapping resonances in electron–positronium atom collisions at energies
below the n = 5 Ps threshold. In this case the scattered electron moves in a long-
range dipole potential, discussed in Sect. 3.3.2, which gives rise to infinite series
of overlapping resonances converging to the n = 5 and 6 thresholds. We show in
Fig. 3.6 the results of calculations in a small energy region just below the n = 5
Ps threshold. We see in Fig. 3.6a that the 1Po eigenphase sum δsum(E) increases
by about 3π in this energy region, suggesting that there may be three resonances.
However, an appreciable change of slope in δsum(E) occurs only twice. Also, we
see in Fig. 3.6b that TrQ(E) exhibits only two peaks. However, by examining
the individual eigenvalues qi (E) of the time-delay matrix in Fig. 3.6b we see that
there is a strongly avoided crossing between the two largest eigenvalues and we
observe a broad resonance peak corresponding to the third eigenvalue. This third

Fig. 3.6 A small energy region just below the Ps n = 5 threshold in electron–positronium atom
collisions showing Ps− (1Po) overlapping resonances. (a) The eigenphase sum δsum(E). (b) The
eigenvalues qi (E) of the time-delay matrix and their sum TrQ(E). (c) The three Lorentzians Li (E)
representing the three resonances, the background dδ0

sum/dE (BG) and their sum (Fig. 5 from [5])
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resonance would be very difficult to find and analyse using a resonance analysis
of the eigenphase sum δsum(E) based on (3.78). Finally, in Fig. 3.6c we show the
result of fitting the calculated result for dδsum/dE on the left-hand side of (3.100) to
three Lorentzians, defined by the first summation on the right-hand side of (3.100),
together with a smoothly varying background term δ0

sum/dE . We see that this pro-
cedure clearly shows the existence of three resonances in the energy region with an
almost negligible background and enables accurate positions and widths for these
resonances to be determined.

In conclusion, resonance analyses based on the time-delay matrix provide an
accurate procedure for resolving overlapping resonances in atomic, molecular and
nuclear physics.

3.2.5 Feshbach Projection Operator Theory

In this section we discuss the widely used theory of resonance reactions introduced
by Feshbach [320, 321]. This theory is based on a projection operator formalism
in which Hilbert space spanned by the eigensolutions of the Schrödinger equation
describing the collision process is sub-divided into two mutually orthogonal spaces
by two projection operators P and Q. In this application bound states in Q-space,
in the absence of coupling between P- and Q-spaces, evolve into resonances when
the interaction with the open channels in P-space is included. This theory, which
was first used to describe nuclear resonance reactions, has provided a powerful
framework for describing resonance phenomena in atomic and molecular collision
processes.

In Feshbach theory, the projection operators P and Q are chosen to satisfy the
equations

P + Q = 1,

P2 = P, Q2 = Q, (3.101)

P Q = Q P = 0.

Using these definitions, the Schrödinger equation (2.2), describing multichannel
collisions, can be formally rewritten as

P(HN+1 − E)(P + Q)Ψ = 0 (3.102)

and

Q(HN+1 − E)(P + Q)Ψ = 0. (3.103)

We can solve (3.103) for QΨ yielding
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QΨ = Q
1

Q(E − HN+1)Q
Q HN+1 PΨ. (3.104)

Substituting this result for QΨ into (3.102) then gives

P(HN+1 + Vopt − E)PΨ = 0, (3.105)

where Vopt, referred to as the “optical potential”, is defined here as

Vopt = P HN+1 Q
1

Q(E − HN+1)Q
Q HN+1 P. (3.106)

We see that the optical potential describes collisions through the Hamiltonian HN+1
out of P-space into Q-space, propagation in Q-space and then collisions through
the Hamiltonian back from Q-space into P-space. The optical potential contains
all the complexity resulting from coupling Q-space to P-space. It is clear from
the above derivation that the solution of (3.105) for PΨ yields identical results to
that obtained by solving the original Schrödinger equation (2.2) for Ψ and then
projecting this solution onto P-space.

Equations (3.105) and (3.106) hold for any projection operators P and Q satis-
fying (3.101). We now consider an explicit realization of these operators which has
been particularly useful in studies of resonances in atomic and molecular collision
processes. We choose P to project onto all the open channels at a particular value
of the total energy E and Q to project onto the remaining closed channels at this
energy. That is we assume that the wave function Ψ can be expanded in the form
given by (2.45) where PΨ includes all the open channels in this expansion with
the corresponding k2

i satisfying k2
i ≥ 0, i = 1, . . . , n. We now introduce the

eigenfunctions ξs of the operator Q HN+1 Q by the equation

Q HN+1 Q ξs = εs ξs, (3.107)

where, since Q = 1−P , this operator has a discrete spectrum in the energy range of
interest below the lowest threshold in Q-space, plus a continuum spectrum starting
from this threshold. The optical potential Vopt defined by (3.106) can be written as

Vopt =
∑

s

∫
P HN+1 Q|ξs〉〈ξs |Q HN+1 P

E − εs
dεs, (3.108)

where the summation in this equation goes over the discrete spectrum and the inte-
gral over the continuum spectrum of Q HN+1 Q. It is the discrete spectrum, which
corresponds physically to an electron bound in the field of an excited atom or ion in
Q-space, that gives rise to closed-channel resonance solutions of (3.105).

We now consider the solution of (3.105) for a given set of conserved quantum
numbers, when the total energy E lies in the neighbourhood of an isolated eigen-
value εs of Q HN+1 Q. We can then rewrite (3.105) as
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P

⎡
⎣HN+1 +

∑
j �=s

∫
P HN+1 Q|ξ j 〉〈ξ j |Q HN+1 P

E − ε j
dε j − E

⎤
⎦ PΨ

= − P HN+1 Q|ξs〉〈ξs |Q HN+1 P

E − εs
PΨ, (3.109)

where we have separated out on the right-hand side of this equation the rapidly
varying pole term in the optical potential, corresponding to the isolated eigenvalue
εs . In order to solve (3.109) we rewrite it as

(H ′ − E)PΨ = −HP Qξs〉〈ξsHQ P

E − εs
PΨ, (3.110)

where

HP Q = P HN+1 Q and HQ P = Q HN+1 P. (3.111)

We also introduce a quantity Λs defined by

Λs = 〈ξsHQ PΨ 〉
E − εs

. (3.112)

Hence (3.110) can be rewritten as

(H ′ − E)PΨ = −Λs HP Q ξs . (3.113)

The solution of (3.113) can be obtained by introducing outgoing and ingoing
wave solutions, Ψ+i E and Ψ−i E , of the equation

(H ′ − E)P Ψ±i E = 0, (3.114)

where the reduced radial wave functions corresponding to Ψ+i E and Ψ−i E satisfy the
outgoing wave

F+(r) ∼
r→∞

2√
k

(
sin θ + 1

2i
eiθT0

)
(3.115)

and ingoing wave

F−(r) ∼
r→∞

2√
k

(
sin θ − 1

2i
e−iθT†

0

)
, (3.116)

boundary conditions, respectively. In analogy with our discussion in Sect. 1.1, see
(1.21), Ψ±i E in (3.114) then satisfy the δ-function orthonormality relation
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〈Ψ±i E |Ψ±i ′E ′ 〉 = δi i ′ δ(E − E ′), (3.117)

where we remember from Sect. 2.5 that the T -matrix in (3.115) and (3.116) is
related to the S-matrix by

T0 = S0 − I. (3.118)

We can then formally solve (3.113) yielding

PΨ = Ψ+i E +Λs
1

E + iη − H ′
HP Q ξs, (3.119)

where η is a positive infinitesimal quantity. Substituting (3.119) into (3.112) and
collecting terms in Λs then gives

Λs = 〈ξsHQ PΨ
+
i E 〉

E − εs − 〈ξsHQ P (E + iη − H ′)−1HP Qξs〉 . (3.120)

Using this result for Λs , (3.119) becomes

PΨ = Ψ+i E+
1

E + iη − H ′
HP Qξs〈ξsHQ PΨ

+
i E 〉

E − εs − 〈ξsHQ P (E + iη − H ′)−1HP Qξs〉 . (3.121)

In order to simplify (3.121) we consider the term appearing in the denominator
on the right-hand side of this equation. We can write

〈
ξsHQ P

1

E + iη − H ′
HP Qξs

〉
=
∑

j

∫ |〈ξsHQ PΨ
+
j E ′ 〉|2

E − E ′ + iη
dE ′, (3.122)

where we have expanded the inverse operator (E + iη − H ′)−1 in terms of the
complete set of outgoing wave solutions of (3.114). The right-hand side of (3.122)
can be written as a sum of its real and imaginary parts. The real part corresponds to
the resonance shift Δs which is given by

Δs =
∑

j

P
∫ |〈ξsHQ PΨ

+
j E ′ 〉|2

E − E ′
dE ′, (3.123)

where P denotes the principal value integral. The imaginary part of (3.122) arises
from the pole at E = E ′ and is related to the resonance width Γs by the equation

1

2
iΓs = iπ

∑
j

|〈ξsHQ PΨ
+
j E 〉|2, (3.124)
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which gives

Γs = 2π
∑

j

|〈ξsHQ PΨ
+
j E 〉|2, (3.125)

where the summation is taken over all final states. We see that this result for the
resonance width has the same form as that given by (3.72) derived in Sect. 3.2.2.

Finally, we operate on the left-hand side of (3.121) by (E + iη − H ′), project
onto the ingoing wave solution Ψ−f E of (3.114) and use the results for the resonance
shift and width given by (3.123) and (3.125). The transition amplitude T f i from an
initial state i to a final state f is then given by

T f i = T0 f i +
〈Ψ−f EHP Qξs〉〈ξsHQ PΨ

+
i E 〉

E − εs −Δs + 1
2 iΓs

, (3.126)

where T0 f i is the transition amplitude describing non-resonant scattering in P-space
in the absence of the isolated eigenfunction ξs of Q HN+1 Q. We see that (3.126) has
the same general form as (3.69) describing the S-matrix in the neighbourhood of an
isolated resonance.

The above theory has been extended by Feshbach [320, 321] to treat overlap-
ping resonances. In this case T0 f i in (3.126) varies rapidly over the width of one
of the resonances and the separation of the transition amplitude into two parts,
given by (3.126), is no longer appropriate. If only a few closely spaced resonances
are involved, such that the remaining background transition amplitude omitting
these resonances is slowly varying, then the above theory can be straightforwardly
extended to include these resonances. Equation (3.110) then becomes

(H ′ − E)PΨ = −
∑

s

HP Qξs〉〈ξsHQ P

E − εs
PΨ, (3.127)

where H ′ is the Hamiltonian omitting these closely spaced resonances, and the sub-
sequent equations are modified accordingly.

However, we also have to consider the situation in electron collisions with posi-
tive ions, where infinite series of resonances converging to each excited state thresh-
old occur. In this case resonance series may overlap and it is then necessary to
include the interaction between resonance series in the theory. This is achieved using
multichannel effective range theory or multichannel quantum defect theory which
we discuss in Sect. 3.3.

3.2.6 Hyperspherical Coordinates

We conclude this section by discussing the hyperspherical system of coordinates
which has been important in the analysis of resonances and threshold behaviour
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of three-body systems. For example, Fock [326] and Demkov and Ermolaev [260]
used these coordinates in variational calculations of bound states of helium, Delves
[257, 258] used them to describe the nuclear three-body problem and Smith
[882, 883] has given a general discussion of the three-body problem in terms of
these coordinates. They have also played an important role in the analysis of dou-
bly excited resonance states of helium and other two-electron atoms, for example,
by Macek [618, 619], Lin [598, 599], Greene [416] and Fano [307] as well as in
positron collisions calculations, for example, by Igarashi et al. [485–487]. These
coordinates have also been used in the calculation of weakly bound levels of tri-
atomic molecules such as the helium trimer 4He3 and isotopomers of the He+3 ion
discussed by Kokoouline and Masnou-Seeuws [546]. Finally, we will use these
coordinates in our derivation of the Wannier [954] threshold law of ionization in
Sect. 3.3.5

Hyperspherical coordinates for two electrons moving in the field of an infinitely
heavy nucleus at the origin of coordinates are defined in terms of the electronic
spherical polar coordinates (r1, θ1, φ1) and (r2, θ2, φ2) by

R = (r2
1 + r2

2 )
1/2, α = tan−1 r2

r1
, 0 ≤ α ≤ π

2
, (3.128)

while the four remaining coordinates are usually chosen to be (θ1, φ1, θ2, φ2). The
Schrödinger equation, defined by (2.2) and (2.3) with N = 1 and nuclear charge
number Z can be expressed in terms of these coordinates as (e.g. [664])

(
d2

dR2
+ 5

R

d

dR
− Λ

2

R2
+ C

R
+ 2E

)
Ψ = 0. (3.129)

In this equation the potential function C is given in terms of the electron–electron
and electron–nuclear potentials by

C(α, θ12) = R

(
2Z

r1
+ 2Z

r2
− 2

r12

)

= 2Z

cosα
+ 2Z

sinα
− 2

(1− sin 2α cos θ12)1/2
, (3.130)

where θ12 is the angle between the radial vectors r1 and r2. Also the operator Λ2 in
(3.129) is defined by

Λ2 = − 1

sin2 α cos2 α

d

dα

(
sin2 α cos2 α

d

dα

)
+ �2

1

cos2 α
+ �2

2

sin2 α
, (3.131)

where �2
1 and �2

2 are the squared orbital angular momentum operators for elec-
trons 1 and 2, defined in Appendix B.3, with eigenfunctions Y	1m1(θ1, φ1) and
Y	2m2(θ2, φ2) belonging to the eigenvalues 	1(	1 + 1) and 	2(	2 + 1), respectively.
Λ2 is thus the square of the grand angular momentum operator in six dimensions
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and is the Casimir operator for the O(6) group. Its eigenvalues are λ(λ + 4) where
λ is a non-negative integer. It commutes with L2, S2 and the parity as well as with
�2

1 and �2
2 but it does not commute with C .

Returning to (3.129), we transform this equation to a more familiar form which
removes the first derivative with respect to R by the transformation

Ψ = R−5/2ψ. (3.132)

Equation (3.129) then becomes

(
d2

dR2
− Λ

2 + 15
4

R2
+ C

R
+ 2E

)
ψ = 0, (3.133)

which resembles the Schrödinger equation for the motion of a particle mov-
ing in the reduced potential −C/R with centrifugal potential energy given by
(Λ2 + 15/4)/R2. However, unlike the similar equation for the hydrogen atom C ,
which depends on the angular coordinates α and θ12, does not commute with Λ2.
It follows from (3.133) that at large R the dynamics of the motion of two electrons
moving in the field of the nucleus depends on the form of C as a function of α
and θ12. In Fig. 3.7 we give a three-dimensional plot of −C(α, θ12) in the range
0 ≤ α ≤ π/2 and 0 ≤ θ12 ≤ π for the case where the nuclear charge Z = 1 which
was determined by Lin [598]. At α = 0 and π/2 the potential surface tends to −∞
corresponding to the electron–nuclear attraction singularity, while at α = π/4 and

Fig. 3.7 Potential function−C(α, θ12) as a function of α and cos θ12 in Rydbergs for two electrons
moving in the field of an H+ ion (Fig. 1 from [598])
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θ12 = 0 there is a singularity corresponding to the electron–electron repulsion. The
saddle point in the potential energy surface at α = π/4 and θ12 = π corresponds
to the situation where the two electrons are equidistant from and on opposite sides
of the nucleus. We will see in Sect. 3.3.5 that it is this configuration of the outgoing
electrons that Wannier [954] showed leads to the threshold behaviour of the electron
impact ionization cross section.

In order to solve (3.133) it is convenient to introduce the eigenfunctions UΓ
K (Ω)

of the operator Λ2. These hyperspherical harmonics, or K-harmonics, satisfy the
equation

[Λ2 − K (K + 4)]UΓ
K (Ω) = 0, (3.134)

where K is a non-negative integer which can be written as

K = 	1 + 	2 + 2m, (3.135)

	1 and 	2 being the usual orbital angular momentum quantum numbers and m a
new non-negative integer quantum number associated with the motion in α. Also in
(3.134), Ω specifies the angular variables

Ω ≡ α θ1 φ1 θ2 φ2, (3.136)

and Γ represents the conserved quantum numbers defined by (2.58).
We can eliminate the first derivative term inΛ2 defined by (3.131) by introducing

the eigenfunctions

φΓ	1	2m(Ω) = sinα cosα UΓ
K (Ω), (3.137)

which satisfy the equation

[
− ∂

2

∂α2
+ �2

1

cos2 α
+ �2

2

sin2 α
− (K + 2)2

]
φΓ	1	2m(Ω) = 0. (3.138)

These eigenfunctions are given by

φΓ	1	2m(Ω) =
1√
2

[
f	1	2m(α)Y	1	2 L ML (r̂1, r̂2)+ (−1)	1+	2−L+S+m

× f	2	1m(α)Y	2	1 L ML (r̂1, r̂2)
]
, 	1 �= 	2 (3.139)

and

φΓ	1	2m(Ω) =
1√
2

[
1+ (−1)−L+S+m

]
f		m(α)Y		L ML (r̂1, r̂2),

	1 = 	2 = 	, (3.140)



3.2 Bound States and Resonances 133

where the functions f	1	2m(α) are defined in terms of Jacobi polynomials [618] and
the functions Y	1	2 L ML (r̂1, r̂2) are defined by (B.57).

The wave function ψ in (3.133) can now be expanded for each set of conserved
quantum numbers Γ as

ψΓ (R;Ω) =
n∑

i=1

φΓi (Ω)F
Γ
i (R), (3.141)

where the subscript i represents the quantum numbers 	1	2m and where the func-
tions FΓi (R) depend only on R. Substituting this expansion into (3.133) and pro-
jecting onto the channel functions φΓi (Ω) then gives after using (3.138)

(
d2

dR2
− (Ki + 2)2 − 1

4

R2
+ k2

)
FΓi (R) = −

1

R

n∑
j=1

V Γi j FΓj (R), i = 1, . . . , n,

(3.142)
where k2 = 2E . Also in (3.142) the potential matrix

V Γi j = 〈φΓi (Ω)|C(α, θ12)|φΓj (Ω)〉, i, j = 1, . . . , n, (3.143)

where the integration which is over all angles Ω does not depend on R. We see
that (3.142), unlike (2.63) which they replace for two electrons moving in the field
of a nucleus, are a set of n coupled second-order differential equations rather than
coupled second-order integrodifferential equations, where n is the number of terms
retained in expansion (3.141). The Pauli exclusion principle is now represented by
the form of the matrix V Γi j , defined by (3.143), where the function C , defined by
(3.130), satisfies the symmetry relation

C(α, θ12) = C
(π

2
− α, θ12

)
, 0 ≤ α ≤ π

2
, (3.144)

as illustrated in Fig. 3.7. Equations (3.142) therefore partition into symmetric and
antisymmetric sets corresponding to S = 0 and 1, respectively.

In spite of their formal simplicity, (3.142) are in principle still members of an
infinite set of coupled second-order differential equations which have to be approxi-
mated in some way in practical applications. What makes the hyperspherical coordi-
nate representation particularly useful is that in describing doubly excited resonance
states of atoms, the motion in the variable R is approximately separable from the
motion in other variables in a way which is analogous to the Born–Oppenheimer
separation of the electronic and nuclear motion in the theory of molecular structure.
This follows by examining the power series expansion of the solution FΓi (R) of
(3.142) about R = 0, where we find that the leading term in the expansion does not
depend on the coupling matrix V Γi j on the right-hand side of (3.142) as discussed by
Fano [307]. This leads us to introduce the adiabatic expansion
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ψΓ (R;Ω) =
n∑

i=1

ΦΓi (R;Ω)GΓi (R), (3.145)

rather than expansion (3.141), where the functions ΦΓi (R;Ω) are chosen to diago-
nalize all the terms in (3.142) except d2/dR2 arising from the kinetic energy opera-
tor.

In order to determine the equations satisfied by GΓi (R) we introduce the sym-
metric matrix

XΓi j (R) =
(Ki + 2)2 − 1

4

R2
δi j − 1

R
V Γi j , i, j = 1, . . . , n, (3.146)

which we diagonalize by an R-dependent orthogonal transformation as follows:

(
AΓ
)T

XΓAΓ = DΓ , (3.147)

where AΓ is an orthogonal matrix and DΓ is a diagonal matrix, both of which are
functions of R. Equations (3.142) can then be rewritten as

(
d2

dR2
− DΓi (R)+ k2

)
GΓi (R) =

n∑
j=1

WΓ
i j (R)G

Γ
j (R), i = 1, . . . , n, (3.148)

where the functions ΦΓi and GΓi in (3.145) are defined in terms of the functions φΓi
and FΓi in (3.141) by the matrix equations

ΦΓ (R;Ω) = [AΓ (R)]T φΓ (Ω) (3.149)

and

GΓ (R) = [AΓ (R)]T FΓ (R). (3.150)

Also the coupling potential matrix WΓ on the right-hand side of (3.148) is defined
by

WΓ (R)GΓ (R) = −2
[
AΓ (R)

]T dAΓ

dR

dGΓ

dR
− [AΓ (R)]T d2AΓ

dR2
GΓ (R). (3.151)

The extreme adiabatic approximation is obtained by neglecting all coupling terms
on the right-hand side of (3.148), while the adiabatic approximation is obtained
by retaining in addition the diagonal terms WΓ

i i (R). If we retain all the terms in
the coupling potential WΓ

i j (R) on the right-hand side of (3.148) then (3.142) and
(3.148) give identical results.
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3.3 Threshold Behaviour of Cross Sections

In this section we consider the behaviour of excitation and ionization cross sections
in the neighbourhood of threshold. It was shown in a fundamental paper by Wigner
[970] that the behaviour of cross sections near the threshold of a new reaction does
not depend on the collision dynamics in the “reaction zone” where all the parti-
cles are close together and strongly interacting. Instead, Wigner showed that the
threshold behaviour depends, apart from a constant multiple, only on the form of the
potential between the reacting particles at large distances. This fundamental result is
the basis of our treatment of both excitation and ionization scattering amplitudes and
cross sections in the neighbourhood of threshold. We note that a review of collisions
near threshold has been written by Sadeghpour et al. [804].

We commence our discussion of threshold behaviour by generalizing our treat-
ment of effective range theory in potential scattering, to treat excitation processes
involving many coupled two-body channels. In Sect. 3.3.1 we derive a multichannel
effective range theory for the K -matrix and T -matrix for short-range potentials,
following the work of Ross and Shaw [798], where in this derivation we make use
of the analytic properties of the multichannel R-matrix introduced and discussed
in Chap. 5 and later chapters. Then in Sect. 3.3.2, we extend this theory to treat
excitation processes, where long-range dipole potentials are present, which was first
considered by Gailitis and Damburg [359]. We conclude our treatment of thresh-
old behaviour of excitation by considering in Sects. 3.3.3 and 3.3.4 the situation
which arises in electron collisions with positive and negative ions where long-range
Coulomb potentials between the interacting particles are present. We consider first
in Sect. 3.3.3 an extension of multichannel effective range theory developed by
Gailitis [357] using the analytic properties of the R-matrix. Then in Sect. 3.3.4 we
discuss multichannel quantum defect theory (MQDT), introduced, developed and
reviewed by Seaton [859] which has been widely used in the analysis of electron
collisions with positive ions and photoionization processes in the neighbourhood of
threshold. Also in this section we summarize extensions of MQDT to treat molec-
ular collision processes. Finally, in Sect. 3.3.5 we consider the threshold behaviour
of ionization with emphasis on single ionization of atoms and positive ions by elec-
trons. The foundations of this subject were laid by Wannier [954, 955] and, in an
introduction to this section, we summarize the threshold law of single ionization
and the main theoretical and experimental developments that have been made since
Wannier’s fundamental analysis. We then derive the threshold law of single ion-
ization adopting a classical analysis analogous to that used by Wannier, based on
hyperspherical coordinates discussed in Sect. 3.2.6. Finally we mention some recent
ab initio calculations of threshold behaviour of ionization which satisfy Wannier’s
threshold law.

3.3.1 Excitation: Short-Range Potentials

We commence our discussion of threshold behaviour by generalizing our treatment
of effective range theory in potential scattering given in Sect. 1.4 to treat excitation
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processes involving many coupled channels where the potential interactions are
short range. In this way we derive a multichannel generalization of (1.120) which
was first obtained by Ross and Shaw [798].

We consider the solution of n coupled second-order integrodifferential equations
corresponding to electron collisions with neutral atoms, obtained by setting N = Z
in (3.2), which then becomes

(
d2

dr2
− �(�+ I)

r2
− U(r)+ k2

)
F(r) = 0, (3.152)

where initially we assume that the potential U is short range satisfying

U(r) = 0, r ≥ a, (3.153)

for some finite radius r = a. This enables us to develop a multichannel effective
range theory which forms the basis for later developments when long-range dipole
and Coulomb potentials are present. In all of this work we assume that the target
states are ordered so that (2.78) is satisfied.

In the energy region where all the channels are open, we showed in Sect. 2.4
that the matrix solution of (3.152), which vanishes at the origin, has the following
asymptotic form:

F(r) = k−1/2[s�(kr)+ c�(kr)K], r ≥ a, (3.154)

where K is the n × n-dimensional K -matrix. Also in (3.154), s�(kr) and c�(kr) are
diagonal matrices which satisfy the following asymptotic boundary conditions

s�(kr) = kr j�(kr) =
(
πkr

2

)1/2

J
�+ 1

2
(kr) ∼

r→∞ sin
(

kr − 1
2�π

)
(3.155)

and

c�(kr) = −krn�(kr) = (−1)�
(
πkr

2

)1/2

J−�− 1
2
(kr) ∼

r→∞ cos
(

kr − 1
2�π

)
,

(3.156)
where the diagonal elements are expressed in terms of spherical Bessel functions of
half-odd integer order defined in Appendix C.2. We previously encountered these
functions in Sect. 1.1 where we observed that c�(kr) can also be expressed in terms
of spherical Neumann functions.

In order to determine the analytic properties of the K -matrix we relate it to
the analytic properties of the n × n-dimensional R-matrix R(E), introduced in
Sect. 5.1.2. In that section we show that the R-matrix, defined by (5.19), is a real
meromorphic function of energy with simple poles only on the real energy axis.
Hence the R-matrix does not contain threshold branch cuts, discussed in Sect. 3.1,
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which arise from the solution of the coupled second-order integrodifferential equa-
tions (3.152) in the external and asymptotic regions.

The solution of (3.152) which vanishes at the origin r = 0 satisfies the following
equation:

F(a) = R(E)
(

a
dF
dr
− bF

)
r=a

, (3.157)

where b is an arbitrary constant and where we have chosen the boundary of the
internal R-matrix region to be the range r = a of the potential U(r). We then
substitute the solution F(r), defined by (3.154), into (3.157) yielding

k−1/2(s� + c�K) = R(E)k−1/2[ρ(s′� + c′�K)− b(s� + c�K)], (3.158)

where the diagonal matrix ρ = ka and where the diagonal matrices s�, c�, s′� and c′�
are defined by

s� = s�(ka), c� = c�(ka), s′� =
1

k
ds�(kr)

dr

∣∣∣∣
r=a

, c′� =
1

k
dc�(kr)

dr

∣∣∣∣
r=a

.

(3.159)
Setting the arbitrary constant b = 0 in (3.157) and (3.158), using the Wronskian
relation s′�c� − c′�s� = I and re-arranging the terms in (3.158), we obtain the follow-
ing expression for the K -matrix in terms of the R-matrix evaluated at r = a:

K−1 = −c�
s�
+ I

s′�s�
+ ρ−1/2s′�

−1
(

R(E)− ρ−1 s�
s′�

)−1

s′−1
� ρ−1/2. (3.160)

The analytic behaviour of the K -matrix in the complex energy plane is therefore
given in terms of the analytic properties of the matrices s�, s′� and c� together with
that of the R-matrix R(E). We find, following our discussion in potential scattering
which led to (1.117), that k−�−1s�, k−�s′� and k�c� are diagonal matrices whose
elements are analytic functions of energy which do not contain threshold branch
cuts. Hence, after substituting these results into (3.160) we find that K−1 can be
written in the following form:

K−1 = k−�−
1
2 M(E)k−�−

1
2 , (3.161)

where the n × n-dimensional M-matrix M(E) is a real symmetric analytic function
of energy E which does not contain threshold branch cuts.

We can also obtain an analogous expression for the T -matrix, introduced in
Sect. 2.5, which is defined in terms of the K -matrix by

T = 2iK
I− iK

. (3.162)
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We find, after substituting (3.161) into (3.162), that

T = k�+
1
2

2i

M(E)− ik2�+1
k�+

1
2 . (3.163)

Equations (3.161) and (3.163) were first obtained by Ross and Shaw [798].
It follows from the above discussion that the M-matrix M(E) can be expanded

as a power series in energy

M(E) =M0 +M1 E +M2 E2 + · · · , (3.164)

where M0, M1, M2, . . . are real symmetric energy-independent matrices. This
expansion is valid through thresholds although the radius of convergence of the
expansion will in general be finite. We see that (3.161), (3.163) and (3.164) reduce,
when the number of channels n = 1, to (1.118), (1.119) and (1.120) which we
obtained for potential scattering in Sect. 1.4.1.

The above effective range theory enables theoretical calculations or experimen-
tal measurements above and below thresholds to be related. For example, we have
shown in Sect. 3.2.1 that bound states and resonances correspond to poles in the
S-matrix and hence in the T -matrix. It follows from (3.163) that these poles occur
when the denominator of this equation satisfies

det
[
M(E)− ik2�+1

]
= 0. (3.165)

Hence (3.161), (3.163) and (3.164) relate the scattering amplitudes and cross sec-
tions above threshold to the bound states and resonances below threshold through
the analytic properties of the M-matrix.

We consider briefly an application of the above theory to two coupled channels.
In this case we can relate the parameters of a resonance lying below the upper thresh-
old to the two elastic scattering amplitudes, the inelastic scattering amplitude and
the corresponding cross sections above this threshold. We see this most clearly if
the elements of the M-matrix are slowly varying over this energy range so that we
need to only consider the three independent elements of M0 in (3.164). These ele-
ments can be fitted to give the resonance position, resonance width and background
phase shift which then enables the three scattering amplitudes and hence the cross
sections to be determined over a limited energy range above this threshold. This
relationship between resonances below threshold and cross sections above thresh-
old in two-channel models has been considered by several workers. For example,
Damburg and Peterkop [244] explored this relationship in a 1s–2s model e−–H
collision calculation, and Burke [151, 152] related the resonance parameters of the
2S resonance at 19.37 eV, which lies below the 2 3S threshold in e−–He collisions,
to the 1 1S–2 3S excitation cross section in the 2S state just above this threshold.
Further discussions of resonances which arise in e−–He collisions are given in
Sect. 5.6.2.
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Finally, we remark that, as in potential scattering, although the effective range
expansion, defined by (3.161), (3.162), (3.163) and(3.164), has been derived for a
finite range potential satisfying (3.153), it is also valid for potentials that fall off
asymptotically as fast as or faster than an exponential, provided that the radius a is
chosen so that these potentials are negligibly small for r ≥ a.

3.3.2 Excitation: Dipole Potentials

In this section we extend our discussion of threshold behaviour of excitation to treat
many coupled two-body channels where long-range dipole potentials are present.
We obtain a multichannel effective range expression first derived by Gailitis and
Damburg [358, 359] and we consider an application to electron–hydrogen atom
collisions near the n = 2 threshold.

As in Sect. 3.3.1, we consider the solution of the n coupled second-order integro-
differential equations (3.2) where we set N = Z corresponding to electron collisions
with neutral atoms. We have shown in Sect. 2.3.2 that we can choose a radius r = a
such that the local direct potential included in U(r) in (3.2) is represented by a sum
of terms behaving as inverse powers of the radius r , while the non-local exchange
and correlation potentials are negligibly small beyond this radius. It follows that for
neutral atoms the leading term in the long-range potential has the form

U(r) = α

r2
, r ≥ a, (3.166)

where α is a real symmetric matrix. Hence the coupled integrodifferential equations
(3.2) corresponding to electron collisions with neutral atoms reduce to

(
d2

dr2
− �(�+ I)+ α

r2
+ k2

)
F(r) = 0, r ≥ a, (3.167)

where we have neglected higher order terms in the long-range potential. However,
these terms can be included in the internal region, r < a, together with the non-local
exchange and correlation potentials.

We now describe the modified multichannel effective range theory, developed by
Gailitis and Damburg [358, 359], which is applicable to scattering by long-range
potentials defined by (3.166). We will see that this theory describes the situation
where the off-diagonal dipole terms retained in the calculation couple degenerate
or almost degenerate channels. This includes the most important long-range poten-
tial terms in electron collisions with hydrogen atoms, where the degeneracy of the
non-relativistic target states corresponding to principal quantum numbers n ≥ 2
results in the target atom acquiring a non-zero dipole moment in the field of the
scattered electron. This theory is also applicable to electron collisions with atoms in
highly excited states which are almost degenerate and with polar molecules when
the rotational splitting of the levels can be neglected.
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We commence by introducing an r - and energy-independent orthogonal matrix
A which diagonalizes the matrix coefficient of the r−2 term �(�+ I)+ α in (3.167)
giving

A−1[�(�+ I)+ α]A = λ(λ+ I). (3.168)

In accord with the above discussion, we only retain terms in α which couple degen-
erate or almost degenerate channels. Hence �(� + I) + α has block diagonal form,
where each block corresponds to a set of degenerate channels. It follows that A has
the same block diagonal form and consequently commutes with the diagonal matrix
k2 in (3.167). We can therefore transform (3.167) to diagonal form by multiplying
on the left by A−1 yielding

(
d2

dr2
− λ(λ+ I)

r2
+ k2

)
A−1F(r) = 0, r ≥ a. (3.169)

We observe that while the elements of the diagonal matrix λ(λ + I) are real the
corresponding effective angular momentum components λi are non-integral and can
become complex for sufficiently strong long-range dipole interactions represented
by the matrix α. We will see below that this leads to new and anomalous threshold
behaviour.

In order to determine the threshold behaviour we introduce a transformed
K -matrix K in analogy with (3.154) by the asymptotic form

A−1F(r) = k−1/2[sλ(kr)+ cλ(kr)K], r ≥ a, (3.170)

where sλ(kr) and cλ(kr) are diagonal matrices which satisfy the following asymp-
totic boundary conditions

sλ(kr) = kr jλ(kr) =
(
πkr

2

)1/2

J
λ+ 1

2
(kr) ∼

r→∞ sin
(

kr − 1
2λπ

)
(3.171)

and

cλ(kr) = −krnλ(kr) =
(
πkr

2

)1/2 J−λ− 1
2
(kr)

cosλπ
∼

r→∞
cos

(
kr + 1

2λπ
)

cosλπ
. (3.172)

These equations reduce to Eqs. (3.155) and (3.156) when the dipole potential matrix
α is zero and hence the diagonal elements of λ reduce to integer values given by
�. Also, as discussed in Appendix C.2, the spherical Bessel functions, defined by
(3.171) and (3.172), have simple analytic properties in the complex energy plane
for non-integral and complex values of λ which enables the development of the
multichannel effective range theory described below.
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The analytic properties of the transformed K -matrix K can be determined by
relating it to the analytic properties of the transformed R-matrix R(E) correspond-
ing to (3.169). In analogy with (3.157) the R-matrix is defined by

A−1F(a) =R(E)
(

aA−1 dF
dr
− bA−1F

)
r=a

. (3.173)

It follows from this definition that R(E) is related to the R-matrix R(E), corre-
sponding to the original coupled integrodifferential equations, defined by (3.152)
and (3.167), by the transformation

R(E) = A−1R(E)A. (3.174)

Since R(E) is an analytic function of energy with simple poles only on the real
energy axis and since A does not depend on the energy, then R(E) is also an
analytic function of energy with poles only on the real energy axis. We set the arbi-
trary constant b = 0 in (3.173) and substitute the expression for A−1F(a) given by
(3.170) into (3.173). After re-arranging the terms and using the Wronskian relation
s′λcλ − c′λsλ = I, we obtain

K−1 = −cλ
sλ
+ I

s′λsλ
+ ρ−1/2s′λ

−1
(

R(E)− ρ−1 sλ
s′λ

)−1

s′λ
−1
ρ−1/2, (3.175)

where ρ = ka and sλ, s′λ, cλ and c′λ are defined by (3.159) with � replaced by λ. We
see that (3.175) has the same form as (3.160) where the diagonal elements of λ are
replaced by integer values given by �. The analytic behaviour of the K -matrix K in
the complex energy plane is then given in terms of the analytic properties of sλ, s′λ
and cλ together with those of the R-matrix R(E).

Following our discussion which led to (3.161), we find that K−1 can be written
in the form

K−1 = k−λ−
1
2 M(E)k−λ−

1
2 , (3.176)

where the M-matrix M(E) is an analytic function of energy which does not con-
tain threshold branch cuts. Also, it follows from (3.175) and (3.176) that M(E) is
symmetric and when all the elements of λ are real then M(E) is also real. However,
if some of the elements of λ are complex then M(E) will also be complex. Hence
M(E) can be expanded as a power series in the energy

M(E) =M0 +M1 E +M2 E2 + · · · , (3.177)

where the coefficients M0, M1, M2, . . . are in general complex symmetric
energy-independent matrices.
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In order to determine the corresponding multichannel effective range theory
expressions for the S- and T -matrices we recombine the columns of (3.170) by
multiplying on the right by a matrix B to give

A−1F(r)B = k−1/2
{

exp
[
−i
(

kr − 1
2λπ

)]
− exp

[
i
(

kr − 1
2λπ

)]
S
}
, r ≥ a,

(3.178)
where the transformed S-matrix S is defined by

S = [I+ i(I+ i tanλπ)K] [I− i(I− i tanλπ)K]−1 (3.179)

and B is defined by

B−1 = − 1

2i
[I− i(I− i tanλπ)K] . (3.180)

We then transform (3.178) by multiplying this equation on the left by A and on the
right by

C = exp
(
− 1

2 iλπ
)

A−1 exp
(

1
2 i�π

)
, (3.181)

which yields

F(r)BC = k−1/2
{

exp
[
−i
(

kr − 1
2�π

)]
− exp

[
i
(

kr − 1
2�π

)]
S
}
, r ≥ a,

(3.182)
where the S-matrix S is defined by

S = exp
(

1
2 i�π

)
A exp

(
− 1

2 iλπ
)

S exp
(
− 1

2 iλπ
)

A−1 exp
(

1
2 i�π

)
. (3.183)

Finally, we substitute for S given by (3.179) into (3.183), where K is written in
terms of M(E) using (3.176). We find that

T = exp
(

1
2 i�π

)
A exp

(
− 1

2 iλπ
)

kλ+
1
2

2i

M(E)− i(I− i tanλπ)k2λ+1

× kλ+
1
2 exp

(
− 1

2 iλπ
)

A−1 exp
(

1
2 i�π

)

+ exp
(

1
2 i�π

)
A exp(−iλπ)A−1 exp

(
1
2 i�π

)
− I, (3.184)

which is the effective range expression for the T -matrix in the presence of long-
range dipole potentials, where we remember that T = S − I. We see that when the
dipole potential matrix α is zero then λ = � and A = I so that tan λπ = 0. Equa-
tion (3.184) then reduces to (3.163) valid for short-range potentials. It follows from
(3.184) that the well-known symmetry of the S-matrix, and hence the T -matrix,
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corresponds to the symmetry of the M-matrix M(E) discussed above. In addition
it should be noted that the unitarity of the S-matrix imposes further restrictions on
M(E).

We observe that, as in potential scattering discussed in Sect. 1.4.2, for a suffi-
ciently strong long-range dipole potential U(r), defined by (3.166), individual com-
ponents λi of the diagonal matrix λ defined by (3.168) can be complex and can be
written as

λi = −1

2
+ i Im λi , (3.185)

where Im λi can be positive or negative. It follows that the corresponding compo-

nents of the factor kλ+
1
2 in the T -matrix defined by (3.184) can be written as

k
λi+ 1

2
i = ki Imλi

i = exp(i Im λi ln ki ), (3.186)

which gives rise to an infinite number of oscillations in the cross section as the
energy tends to threshold from above. Also, an infinite number of bound states or
resonances converge to this threshold from below.

As an example of the above analysis we consider electron collisions with atomic
hydrogen for total orbital angular momentum L = 0 near the n = 2 threshold. The
coupled second-order integrodifferential equations coupling the 2s and 2p states
then have the following form for r ≥ a:

(
d2

dr2
+ k2

2

)
F2s(r)− 6

r2
F2p(r) = 0,

(
d2

dr2
− 2

r2
+ k2

2

)
F2p(r)− 6

r2
F2s(r) = 0, (3.187)

where a is chosen such that non-local exchange and correlation potentials vanish for
r ≥ a so that the following analysis applies for both singlet S = 0 and triplet S = 1
total spin states. Also in (3.187) we have neglected the diagonal r−3 potential in
the 2p channel, since its presence does not significantly alter the following analysis.
Comparing (3.187) with (3.167) we see that the coefficient of the r−2 term in (3.167)
has the following matrix form

�(�+ I)+ α =
[

0 6
6 2

]
, (3.188)

which can be diagonalized, as in (3.168), to yield the matrix

λ(λ+ I) =
[

1+√37 0
0 1−√37

]
. (3.189)
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The corresponding diagonal elements of λ are then

λ1 = −1

2
±
[√

37+ 5

4

]1/2

,

λ2 = −1

2
± i

[√
37− 5

4

]1/2

, (3.190)

and the diagonalized form of (3.187) can be written as

(
d2

dr2
− λ(λ+ I)

r2
+ k2

2

)
A−1F(r) = 0, r ≥ a, (3.191)

where the orthogonal matrix A is defined by (3.168).
We now consider the zero-energy solution of (3.191) corresponding to the com-

plex second eigenvalue λ2, defined by (3.190). Writing G = A−1F we see that the
general solution of (3.191) corresponding to this eigenvalue can be written as

G2(r) = d1rλ2+1 + d2r−λ2, r ≥ a. (3.192)

After substituting for λ2 from (3.190) we can re-write (3.192) in the general form

G2(r) = br1/2 sin(Im λ2 ln r + δ), r ≥ a. (3.193)

where

Im λ2 =
[√

37− 5

4

]1/2

= 2.19835 . . . , (3.194)

and where the coefficients b and δ in (3.193) are determined by fitting to the internal
region solution of the coupled integrodifferential equations at r = a. We see that
the solution G2(r), defined by (3.193), has an infinite number of oscillations in r
in the range a ≤ r ≤ ∞, which corresponds to an infinite number of bound states
supported by the angular momentum term in (3.191), which can be written in this
case as

− λ2(λ2 + 1)

r2
= 0.25+ (Im λ2)

2

r2
, (3.195)

which is clearly attractive.
We next consider the solution of (3.191) for negative k2

2. We first observe that
an increase in the argument of the zero-energy solution (3.193) by π radians, corre-
sponding to an additional node in the oscillation, occurs when the radius r increases
by the ratio

r2

r1
= exp

(
π

Im λ2

)
. (3.196)
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When k2
2 is negative these oscillations are cut off for large r when the k2

2 term in
(3.191) dominates the angular momentum term. As the magnitude of k2

2 decreases
towards zero, additional oscillations are supported by the angular momentum term,
each corresponding to an additional bound state. We then see from (3.191) and
(3.196) that the ratio of the magnitudes of k2

2 before and after the additional oscilla-
tion is supported is

R = (k
2
2)r=r1

(k2
2)r=r2

= r2
2

r2
1

= exp

(
2π

Im λ2

)
. (3.197)

In the present example we find, using (3.194), that the resonance spacing ratio

R = 17.429 . . . . (3.198)

We note that (3.197) can be obtained directly from the multichannel effective range
theory expansion for the T -matrix, given by (3.184), assuming the constancy of the
M-matrix.

The infinite series of bound states predicted by this theory is reduced in practice
to a finite number due to relativistic splitting of the n = 2 levels of atomic hydro-
gen, which removes the degeneracy of the levels with the same principal quantum
number assumed in the above derivation. In addition, inclusion of coupling with the
open 1s channel shifts the energies of the bound states into the complex energy plane
where they give rise to a series of resonances, where the ratio of the widths of the
neighbouring resonances also satisfies (3.197) and (3.198). The first resonance in
this series with 1Se symmetry was found by Burke and Schey [160] at∼9.6 eV inci-
dent electron energy in a close coupling calculation including the 1s, 2s and 2p target
states in expansion (2.57) and was first observed experimentally by Schulz [836].

The above analysis can be carried out for electron–hydrogen atom collisions for
all total orbital angular momentum L and at all thresholds corresponding to prin-
cipal quantum numbers n ≥ 2, as discussed by Burke [151, 152] and Pathak et al.
[720, 721]. We find that complex λ values leading to anomalous threshold behaviour
are found at all thresholds with n ≥ 2 for small L . We summarize the resonance
spacing ratio R defined by (3.197) for L ≤ 6 and for n ≤ 5 in Table 3.1, where
relativistic fine-structure splitting of the levels is neglected. We see that for some
(L , n) values more than one resonance series occur. Also, as the principal quantum
number n increases we find that resonance series occur for an increasing number of
L values. We also find that for a given L , however large, resonance series will occur
for sufficiently high n.

3.3.3 Excitation: Coulomb Potential

In this and the next section we extend our discussion of the threshold behaviour
of excitation cross sections to treat many coupled two-body channels interacting
through a Coulomb potential, corresponding to electron collisions with positive and
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Table 3.1 Level spacing ratios R for electron–hydrogen atom resonances at thresholds corre-
sponding to total orbital angular momentum L ≤ 6 and principal quantum number n ≤ 5 for
both total spin angular momenta S = 0 and 1

n L = 0 L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

2 17.429 29.334 4422.18 – – – –

3 4.823 5.164 6.134 9.323 62.416 – –
– 16.752 80.552 – – – –

4 2.982 3.047 3.197 3.485 4.070 5.608 16.698
16.210 4.360 4.940 6.494 14.492 – –

– 27.299 18.777 8.5168 – – –
– – 3226.6 – – – –

5 2.312 2.334 2.382 2.463 2.594 2.812 3.213
4.107 2.792 2.901 3.103 3.484 4.326 7.354

– 4.224 4.091 4.892 7.396 59.907 –
– 32.955 4.766 6.184 12.838 – –
– – 9.5775 25.479 – – –

The superscripts 5 and 8 are abbreviations for ×105 and ×108, respectively.

negative ions. In this section we obtain an effective range expression, first derived
by Gailitis [357] using the analytic properties of the R-matrix, and we discuss the
behaviour of the cross sections near threshold for an attractive Coulomb poten-
tial. Then in Sect. 3.3.4 we consider multichannel quantum defect theory (MQDT)
introduced, developed and reviewed by Seaton [859], which is widely used in the
analysis and calculation of electron collisions with positive ions and corresponding
photoionization processes in the neighbourhood of threshold. Also, we summarize
some of the most important extensions of MQDT to molecular collision processes.

3.3.3.1 Effective Range Theory

We consider the solution of n coupled second-order integrodifferential equations
(3.2) describing the scattering of electrons by multi-electron positive or nega-
tive ions. We assume that the potential matrix U(r) in this equation, representing
the local direct, non-local exchange and non-local correlation potentials, can be
neglected for r greater than some radius a. Hence (3.2) then reduces to

(
d2

dr2
− �(�+ I)

r2
+ 2(Z − N )

r
+ k2

)
F(r) = 0, r ≥ a, (3.199)

The general solution of (3.199) which vanishes at the origin has the following
asymptotic form:

F(r) = k−1/2 [F�(η,kr)+G�(η,kr)K] , r ≥ a, (3.200)
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where F�(η,kr) and G�(η,kr) are diagonal matrices whose diagonal elements are
the regular and irregular Coulomb wave functions, defined, respectively, by (1.58)
and (1.59), where η = −(Z − N )/k and K is the n × n-dimensional K -matrix.

In order to determine the analytic properties of the K -matrix we proceed, as in
our discussion of short-range potentials in Sect. 3.3.1, by relating the K -matrix to
the analytic properties of the n × n-dimensional R-matrix R(E), defined on the
boundary r = a by

F(a) = R(E)
(

a
dF
dr
− bF

)
r=a

, (3.201)

We then set the arbitrary constant b = 0 in (3.201) and substitute the expression for
F(a) given by (3.200) into (3.201). After re-arranging terms and using the Wron-
skian relation F′�G� −G′�F� = I we obtain

K−1 = −G�

F�
+ I

F′�F�
+ ρ−1/2F′�

−1
(

R(E)− ρ−1 F�
F′�

)−1

F′�
−1
ρ−1/2, (3.202)

where the diagonal matrix ρ = ka and the diagonal matrices F�, F′�, G� and G′� are
defined by

F� = F�(η,ka), G� = G�(η,ka), F′� =
1

k
dF�
dr

∣∣∣∣
r=a
, G′� =

1

k
dG�

dr

∣∣∣∣
r=a
.

(3.203)

We see that (3.202) has the same form as (3.160) obtained for short-range potentials
and (3.175) obtained for dipole potentials. Hence, as in those cases, the analytic
properties of the K -matrix in the complex energy plane can be obtained in terms
of the analytic properties of the matrices F�, F′� and G� together with those of the
R-matrix R(E).

The analytic properties of the Coulomb wave functions have been described
in our development of an effective range expansion for potential scattering by a
Coulomb potential in Sect. 1.4.3 and are given by (1.175) and the following equa-
tions. Using these results, we find that (3.202) yields the following multichannel
effective range expression for the T -matrix:

T = k�+
1
2 (2�+ I)!!C�(η)

2i

M(E)− k2�+1[(2�+ I)!!]2p�(η)τ (2�+ I)−1

× C�(η)(2�+ I)!! k�+ 1
2 , (3.204)

where C�(η), p�(η) and τ are diagonal matrices whose diagonal elements are
defined by (1.60), (1.179) and (1.185), respectively. We can then show that the
M-matrix in (3.204) is given by
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M(E) = (2�+ I)!!
a�+

1
2

{
− ��

(2�+ I)Φ�

− k2�+1p�(η)a2�+1

(2�+ I)

×
[

ln 2a + q�(η)
p�(η)

− f (η)

]
+ 1

Φ�Φ�

− 1

Φ�

[
Φ�

Φ�

− R(E)
]

1

Φ�

}

× (2�+ I)!!
a�+

1
2

, (3.205)

where

Φ� = (�+ I)Φ� + a
dΦ�

dr

∣∣∣∣
r=a

. (3.206)

Also in (3.205) we have written Φ� ≡ Φ�(η,ka), �� ≡ ��(η,ka) and Φ� ≡
Φ�(η,ka), which are diagonal matrices whose diagonal elements Φ	, Ψ	 and Φ	
are entire functions of the energy. It follows from (3.205) that the M-matrix M(E)
is a symmetric matrix which is real on the real energy axis and which is an analytic
function of energy without threshold branch cuts. Hence M(E) can be expanded as
a power series in energy

M(E) =M0 +M1 E +M2 E2 + · · · , (3.207)

where M0,M1,M2, . . . are real symmetric energy-independent matrices.
The multichannel effective range equation (3.204) was first derived by Gailitis

[357]. We can show that it reduces to (1.187) for single-channel scattering by a
Coulomb potential and to (3.163), obtained by Ross and Shaw [798], for multichan-
nel scattering by short-range potentials. It follows that (3.204) enables the T -matrix
to be extrapolated through thresholds, relating the cross sections above and below
thresholds.

3.3.3.2 Cross Sections Near Threshold

We now obtain an equation relating the T -matrix and the cross sections above
and below threshold for scattering by an attractive long-range Coulomb potential.
We consider processes involving n coupled channels, corresponding to a given set
of conserved quantum numbers, where the target states included are ordered in
increasing energy so that (2.78) is satisfied. We determine the behaviour of the cross
sections in the neighbourhood of the nth or highest threshold which we assume is
non-degenerate.

We commence by observing that the M-matrix M(E) and the quantity
k2�+1p�(η) in (3.204) are analytic through the thresholds. We then obtain the fol-
lowing relation by evaluating (3.204) just above and just below the nth threshold

[
τ + iC0(η)η

−1/2T−1η−1/2C0(η)
]a =

[
τ + iC0(η)η

−1/2T−1η−1/2C0(η)
]b
.

(3.208)
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The superscript a in (3.208) and later equations means that the quantity is evaluated
in the limit k2

n → 0 from above the nth threshold and the superscript b in this and
later equations means that the quantity is evaluated in the limit k2

n → 0 from below
the nth threshold.

In order to relate Ta and Tb using (3.208) we consider the behaviour of the diago-
nal matrices C0(η)η

−1/2 and τ in the neighbourhood of the nth threshold. It follows
from (1.61) that the first (n − 1) diagonal elements of C0(η)η

−1/2 are continuous
at the nth threshold. However, while the nth diagonal element is smoothly varying
above this threshold, where the limit at threshold is

(
C2

0(η)η
−1/2

)a = −2π, (3.209)

it is rapidly oscillating and discontinuous below this threshold. Also, it follows from
(1.190) and (1.191) that while the first (n − 1) diagonal elements of the matrix τ
are continuous at the nth threshold, the nth diagonal element is discontinuous at this
threshold. We find that

τ a
j j − τ b

j j = 0, j = 1, . . . , n − 1 (3.210)

and

τ a
nn − τ b

nn = −iπ − π cot
π z

κn
. (3.211)

Substituting these results into (3.208) and solving for the matrix Tb, we find that the
elements of the first (n − 1) × (n − 1) sub-matrix of Tb are given in terms of the
n × n matrix Ta by

T b
jk =

[(
Ta)−1 −Δ

]−1

jk
, j, k = 1, . . . , n − 1, (3.212)

where the only non-zero element of Δ is

Δnn = 1

2
i

(
cot
π z

κn
+ i

)
≡ 1

2
i(y + i), (3.213)

which defines y. On the right-hand side of (3.212), the inverse of the full n × n
matrix

[
(Ta)−1 −Δ] is first determined, and then the (n − 1)× (n − 1) sub-matrix

elements of this inverse matrix are equated to the (n− 1)× (n− 1) matrix elements
on the left-hand side of (3.212). Owing to the special form of the matrix Δ, defined
by (3.213), we can determine the inverse of

[
(Ta)−1 −Δ] explicitly in terms of the

matrix elements of Ta and Δ. We find that (3.212) can be rewritten as

T b
jk = T a

jk−
T a

jn T a
kn

T a
nn
+ T a

jn T a
kn

T a
nn

2i

(y + i) T a
nn + 2i

, j, k = 1, . . . , n−1. (3.214)
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This equation expresses the T -matrix elements T b
jk below threshold in terms of the

slowly varying T -matrix elements T a
jk above threshold, which can be taken to have

their threshold values. We can see that the T -matrix elements below threshold are
rapidly varying because of the factor y = cot(π z/κn), which has the same value at
energies for which z/κn differs by an integer. By comparing (3.214) with (3.126)
we see that the last term in (3.214) gives rise to a Rydberg series of resonances as
k2

n = −κ2
n → 0 from below the nth threshold. We can also show that the corre-

sponding resonance widths Γ are related to the distances D between resonances by
the expression

Γ

D
= 1

2π

(
2Re T a

nn − |T a
nn|2

)
= 1

2π

n−1∑
j=1

|T a
jn|2, (3.215)

which is constant for all resonances in the series.
We can also obtain a relation between the cross sections above and below

the nth threshold. We observe that the resonances become very close together as
we approach the nth threshold from below. Hence the quantity of interest just
below the threshold is the partial wave cross section averaged over resonances,
defined by

σ( j → k) = 1

D

∫ E+D/2

E−D/2
σ( j → k)dE = 1

π

∫ ∞
−∞
σ( j → k)

dy

1+ y2
, (3.216)

where the cross section is defined in terms of the T -matrix by (2.132) for
non-relativistic collisions and by (5.129) for heavy ionic targets where relativis-
tic effects become important. Using (3.214) and (3.216) we obtain the follow-
ing expression relating the partial wave cross sections above and below the nth
threshold:

σ b( j → k) = σ a( j → k)+ σ
a( j → n) σ a(n → k)∑n−1

k′=1 σ
a(n → k′)

, j, k = 1, . . . , n − 1.

(3.217)
We see from this expression that the averaged cross sections below the nth threshold
decrease abruptly at the threshold as the energy increases through this threshold. We
also see that the total cross section, obtained by summing (3.217) over k, the open
channels below the nth threshold, gives

n−1∑
k=1

σ b( j → k) =
n−1∑
k=1

σ a( j → k)+ σ a( j → n), j, k = 1, . . . , n− 1. (3.218)

Hence, the total partial wave cross section is continuous across the nth threshold
for all initial states. Also, the total cross section, obtained by summing over all
conserved quantum numbers, is continuous across thresholds. The continuity of the
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total cross section across a new threshold was first proved by Baz [83] and by Fonda
and Newton [336, 337] by averaging the imaginary part of the scattering amplitude,
which is related to the total cross section through the optical theorem.

The above theory has been generalized by Gailitis [357] to the situation where
several degenerate channels open at the highest threshold. This occurs, for exam-
ple, when several degenerate channels are coupled to a target state with non-
zero angular momentum. When the cross sections for excitation of target states
belonging to the highest threshold are small, corresponding to narrow reso-
nances below this threshold, then the generalization of (3.217) can be written as
follows:

σ b( j → k) = σ a( j → k)+
∑

l

σ a( j → l) σ a(l → k)∑
k′ σ

a(l → k′)
. (3.219)

In this equation, j and k correspond to the channels which are open below the high-
est degenerate threshold, k′ is summed over the open channels below this threshold
and l is summed over the degenerate channels corresponding to the highest thresh-
old. Hence, as in the case of one threshold channel, the averaged cross sections
below the highest degenerate threshold decreases abruptly as the energy increases
through this threshold. Also, we find by summing (3.219) over k, corresponding to
the open channels below the highest degenerate threshold, that as in (3.218) the total
cross section is continuous across this threshold. Again, this result can be obtained
by averaging the imaginary part of the scattering amplitude.

Finally, the application of R-matrix theory in the analysis of the behaviour of
electron–ion collision cross sections in the neighbourhood of thresholds has also
been considered by Lane [565]. In this work the relationship with multichannel
quantum defect theory, reviewed in the next section, was discussed.

3.3.4 Multichannel Quantum Defect Theory

In this section we conclude our discussion of the threshold behaviour of excitation
cross sections by considering electron collisions with multi-electron positive ions
using multichannel quantum defect theory (MQDT) introduced and developed by
Seaton [851, 852, 854–856, 858] who also comprehensively reviewed this theory
[859]. We then summarize some of the most important developments in the appli-
cation of MQDT to molecular collision processes.

In our discussion of atomic MQDT it is convenient to introduce z-scaled radial
and energy variables defined by

ρ = zr, ε = 2E

z2
, (3.220)

where z = Z − N is the ionic charge, Z being the nuclear charge number and N the
number of target electrons. Also, in (3.220), E is the energy of the colliding electron
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in atomic units. It is also convenient to define the z-scaled wave number k and the
quantity ν2 by the equations

k2 = ε, ε ≥ 0 ; ε = − 1

ν2
, ε < 0. (3.221)

The radial Schrödinger equation describing single-channel electron–ion collisions
in the external region r ≥ a, when the local direct, non-local exchange and non-local
correlation potentials are negligible, then becomes

(
d2

dρ2
− 	(	+ 1)

ρ2
+ 2

ρ
+ ε

)
G(ρ) = 0, ρ ≥ za. (3.222)

It is clear that (3.199) reduces to (3.222) when only one channel is coupled, where
we have written F(r) ≡ G(ρ).

Functions f , g and h which are solutions of (3.222) have been defined by Ham
[440] and Seaton [859]. The functions f and g are analytic functions of energy
through threshold such that

f (ε, 	; ρ) =
∞∑

n=0

εn fn(	; ρ), g(ε, 	; ρ) =
∞∑

n=0

εngn(	; ρ). (3.223)

Also the function h can be written as

h = −(g + G f ), (3.224)

where G is defined by the asymptotic expansion

G(ε, 	) = εA(ε, 	)

π

⎡
⎣ 	∑

p=0

p

1+ p2ε
+ 1

12

(
1+ ε

10
+ ε

2

21
+ ε

3

20
+ · · ·

)⎤⎦ ,
(3.225)

with

A(ε, 	) =
	∏

p=0

(1+ p2ε). (3.226)

For small ε, a good approximation for G is obtained by retaining a finite number
of terms in the expansion in powers of ε. Hence G and thus h are “nearly analytic
functions” of ε. The asymptotic forms of the functions f and h when ε ≥ 0 are
given by

f (ε, 	; ρ) ∼
ρ→∞

(
2

πk

)1/2 (1− exp(−2π/k)

A(k2, 	)

)1/2

sin θ (3.227)
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and

h(ε, 	; ρ) ∼
ρ→∞

(
2

πk

)1/2 ( A(k2, 	)

1− exp(−2π/k)

)1/2

cos θ, (3.228)

where

θ = kρ − 1

2
	π + 1

k
ln(2kρ)+ argΓ (	+ 1− i/k). (3.229)

The asymptotic forms of the functions f and h when ε < 0 are given by

f (ε, 	; ρ) ∼
ρ→∞(−1)	ν	+1

(
sin(πν)Γ (ν − 	)

π
ξ − cos(πν)

Γ (ν + 	+ 1)
θ

)
(3.230)

and

h(ε, 	; ρ) ∼
ρ→∞(−1)	ν	+1 A(ε, 	)

(
cos(πν)Γ (ν − 	)

π
ξ + sin(πν)

Γ (ν + 	+ 1)
θ

)
,

(3.231)
where

ξ(ε, ρ) ∼
ρ→∞

(
2ρ

ν

)−ν
exp

(ρ
ν

)
, θ(ε, ρ) ∼

ρ→∞

(
2ρ

ν

)ν
exp

(
−ρ
ν

)
. (3.232)

We now use the analytic properties of the functions f and h to derive MQDT
equations relating the K -matrix and the S-matrix above and below thresholds. We
first observe that the n coupled second-order integrodifferential equations (3.2)
reduce to (3.199) when r ≥ a. Also, we adopt the normalization defined by (3.200)
for the solutions which vanish at the origin. When all the channels are open the
general solution of (3.2), which defines the n × n-dimensional K -matrix, can then
be written as follows:

F(r) =
(
π

2z

)1/2

[f+ hK], r ≥ a, (3.233)

where f and h are diagonal n × n-dimensional matrices, whose diagonal elements
have the asymptotic forms defined by (3.227) and (3.228).

We now consider the solution of (3.2) when na channels are open and nb channels
are closed, where n = na + nb. We can analytically continue the solution defined
by (3.233) to this energy region yielding the solution

F(r) =
(
π

2z

)1/2

[f+ hK], r ≥ a, (3.234)
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where, in the nb closed channels, the corresponding diagonal elements of f and h
now have the asymptotic forms defined by (3.230) and (3.231), respectively. Also
the n × n-dimensional K -matrix K in (3.234) is the analytic continuation of the
physical K -matrix, defined by (3.233). However, because the functions f and h in
(3.234) now diverge exponentially in the closed channels, because of the ξ terms
in (3.230) and (3.231), the corresponding solution, and hence the K -matrix K, is
non-physical.

In order to obtain physical solutions when na channels are open, we take linear
combinations of the n solutions defined by (3.234), which eliminate the exponen-
tially diverging terms in the closed channels. Hence we write

F(r)C =
(
π

2z

)1/2

[f+ hK]C, r ≥ a, (3.235)

where C is an n × na-dimensional matrix and where the matrices F , K and C are
partitioned into open- and closed-channel sub-matrices as follows:

F ≡
[Foo Foc

F co F cc

]
, K ≡

[Koo Koc

Kco Kcc

]
, C ≡

[
Coo

Cco

]
. (3.236)

The na × na-dimensional open-channel sub-matrix of F(r)C is then

[F(r)C]oo ≡
(
π

2z

)1/2

[(fo + hoKoo)Coo + hoKocCco] , (3.237)

and the nb × na-dimensional closed-channel sub-matrix of F(r)C is

[F(r)C]co ≡
(
π

2z

)1/2

[hcKcoCoo + (fc + hcKcc)Cco] , (3.238)

where in these equations fo and ho are the diagonal open-channel components of
f and h, and fc and hc are the diagonal closed-channel components of f and h,
respectively. We then choose Coo = Ioo, where Ioo is the na × na-dimensional unit
matrix, so that the matrix multiplying fo in [F(r)C]oo is diagonal and we choose
the Cco so that the divergent terms in [F(r)C]co involving ξ , which arise in fc and
hc defined by (3.230) and (3.231), are eliminated. This last condition yields

A cos(πνc)KcoCoo + [sin(πνc)+ A cos(πνc)Kcc] Cco = 0. (3.239)

After setting A = I, which we see from (3.226) is valid in the neighbourhood of
threshold, we find that

Cco = − 1

Kcc + tan(πνc)
Kco, (3.240)
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where νc is an nb × nb-dimensional diagonal matrix in the closed channels, whose
diagonal elements are defined by (3.221). It follows that we can write

[F(r)C]oo =
(
π

2z

)1/2

[fo + hoKoo] , r ≥ a, (3.241)

where

Koo = Koo −Koc
1

Kcc + tan(πνc)
Kco. (3.242)

The na×na-dimensional K -matrix Koo defined by (3.242) is the physical K -matrix
in the open channels, which can be used to determine the S-matrix, T -matrix and
cross sections, as described in Sect. 2.5. We see that it is expressed in terms of the
elements of the n × n-dimensional non-physical K -matrix K which can be analyti-
cally continued through thresholds.

We can obtain a similar expression for the na × na-dimensional S-matrix Soo.
When all channels are open the n × n-dimensional physical S-matrix is defined in
analogy with (3.233) by

G(r) =
(
π

2z

)1/2

[(h− if)− (h+ if)S] , r ≥ a, (3.243)

where it follows from (3.227) and (3.228) that (h− if) and (h+ if) are ingoing and
outgoing waves, respectively. We now analytically continue the solution, defined by
(3.243) to an energy region where na channels are open and nb channels are closed,
yielding in analogy with (3.234) the solution

G(r) =
(
π

2z

)1/2

[(h− if)− (h+ if)χ] , r ≥ a, (3.244)

where the n × n-dimensional unphysical S-matrix χ is the analytic continuation of
the physical S-matrix defined by (3.243). In order to obtain the physical solution
when na channels are open, we take linear combinations of the n solutions defined
by (3.244) which eliminate the exponentially diverging terms in the closed channels.
Hence we write

G(r)D =
(
π

2z

)1/2

[(h− if)− (h+ if)χ] D, r ≥ a, (3.245)

where D is an n × na-dimensional matrix. We then partition G, χ and D into open-
and closed-channel sub-matrices as follows:

G ≡
[Goo Goc

Gco Gcc

]
, χ ≡

[
χoo χoc
χco χcc

]
, D ≡

[
Doo

Dco

]
. (3.246)
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The na × na-dimensional open-channel sub-matrix of G(r)D is then

[G(r)D]oo ≡
(
π

2z

)1/2 {[
(ho − ifo)− (ho + ifo)χoo

]
Doo

− [
(ho + ifo)χoc

]
Dco

}
, (3.247)

and the nb × na-dimensional closed-channel sub-matrix of G(r)D is

[G(r)D]co ≡
(
π

2z

)1/2 {− [(hc + ifc)χco
]

Doo + [(hc − ifc)

− (hc + ifc)χcc
]

Dco
}
. (3.248)

We then choose Doo = Ioo so that the matrix multiplying (ho − ifo) in [G(r)D]oo is
diagonal, and we choose Dco so that the divergent terms in [G(r)D]co involving ξ ,
defined by (3.232), are eliminated. This yields

Dco = − 1

χcc − exp(−2π iνc)
χco. (3.249)

It follows that we can write

[G(r)D]oo =
(
π

2z

)1/2

[(h− if)− (h+ if)Soo] , r ≥ a, (3.250)

where

Soo = χoo − χoc
1

χcc − exp(−2π iνc)
χco. (3.251)

The na × na-dimensional matrix Soo defined by (3.251) is the physical S-matrix in
the open channels, which enables the cross sections to be determined, as described
in Sect. 2.5. We see that it is expressed in terms of the elements of the non-physical
S-matrix χ , which can be analytically continued through the thresholds.

Equation (3.251) can be obtained directly from the n × n-dimensional non-
physical K -matrix K, defined by (3.234). In the energy region where na channels
are open we define an n × n-dimensional matrix S by the equation

S = iI−K
t+K , (3.252)

where t is an n × n-dimensional diagonal matrix with diagonal elements

t j j = i, open channels j = 1, . . . , na,

t j j = tanπν j , closed channels j = na + 1, . . . , n. (3.253)
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We then express the non-physical n×n-dimensional K -matrix K in (3.252) in terms
of the non-physical n × n-dimensional S-matrix χ using the equation

χ = I+ iK
I− iK , (3.254)

which is the analytic continuation of the usual expression relating the K -matrix
to the S-matrix when all channels are open, discussed in Sect. 2.5. Substituting the
expression for K in terms of χ obtained from (3.254) into the right-hand side of
(3.252) and separating out the na × na-dimensional open-channel component of
this equation yields

Soo = χoo − χoc
1

χcc − exp(−2π iνc)
χco. (3.255)

We see that the right-hand sides of (3.251) and (3.255) are identical and hence
the open-channel component of S, defined by (3.252) and (3.253), corresponds to
the physical S-matrix when na channels are open. It follows from this analysis that
the open-channel K -matrix and S-matrix can be expressed in terms of matrices K
and χ which can be analytically continued through thresholds.

In concluding our discussion of atomic MQDT we observe that there have been
many applications of this theory following its introduction and development by
Seaton. These include a series of early applications to the following atomic collision
processes: scattering of electrons by He+ by Bely [89]; absorption of radiation by Ca
atoms by Moores [657]; autoionizing and bound states of neutral beryllium atoms
by Moores [658]; extrapolation along isoelectronic sequences by Doughty et al.
[268]; resonances in the collision strengths for O+ by Martins and Seaton [638];
complex quantum defects for the e−–Be+ system by Norcross and Seaton [695];
photoionization by Dubau and Wells [273] and complex quantum defects for the
e−–He+ system by Dubau [272]. This series of papers together with many later
papers have established MQDT as an essential component of the analysis of atomic
resonance and threshold behaviour.

3.3.4.1 Molecular MQDT

Multichannel quantum defect theory has also been extended to describe resonance
and threshold behaviour of electron collisions with positive molecular ions as well
as near-threshold molecular photoionization and photoabsorption processes. In the
remainder of this section we summarize some of the most important developments
in this area.

In the pioneering work on molecular collision processes, Fano [303] extended
and applied MQDT to the analysis of high-resolution photoabsorption spectra of
H2 near threshold reported by Herzberg [458] and in two Comments [305, 306]
discussed the evolution of quantum defect methods. The work on H2 was later
extended by Jungen and Atabek [517], who developed and applied MQDT to ro-
vibronic interactions in the photoabsorption spectrum of H2 and D2, and by Jungen
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and Dill [518], who studied rotational and vibrational preionization channels of H2
obtaining good agreement with photoionization data of Dehmer and Chupka [255].
Also, Giusti [376] extended molecular MQDT to describe dissociation into two
atoms in electron collisions with molecular ions, and Giusti-Suzor and Jungen [377]
adapted molecular MQDT to treat the simultaneous vibrational preionization and
electronic predissociation in NO observed in the photoabsorption and photoioniza-
tion spectra. Jungen [516] also developed a unified MQDT treatment of dissocia-
tion and ionization processes which was applied to preionized and predissociated
resonances in the H2 spectrum and Stephans and Greene [887] presented an MQDT
procedure to calculate the broadening of preionization resonances due to competing
predissociation in the ionization continuum of H2. A review of the earlier devel-
opments and applications of molecular MQDT was written by Greene and Jun-
gen [421]. In more recent work, a non-iterative eigenchannel R-matrix approach
combined with MQDT was developed by Gao et al. [360] and applied to predis-
sociation of H2 and a unified MQDT treatment of both molecular ionization and
dissociation was developed by Jungen and Ross [519].

We conclude this section by mentioning a major series of dissociative recombina-
tion studies of the triatomic ion H+3 which has been carried out by Kokoouline and
Greene [543, 544] and by dos Santos et al. [267], and which has been extended
by Kokoouline and Greene [544, 545] to dissociative recombination of the tri-
atomic ions D+3 , H2D+ and D2H+. We will also consider in Sect. 11.1.7.4 inter-
mediate energy electron–H+3 collision calculations carried out using R-matrix the-
ory. Dissociative recombination of H+3 ion is a fundamental process in diffuse
interstellar clouds and, as the simplest triatomic ion, detailed theoretical stud-
ies can be seen as a prototype for the study of electron collisions with more
complex polyatomic molecules and molecular ions. Also, in contrast to dissocia-
tive attachment/recombination in diatomic molecules and ions there is an addi-
tional three-body dissociative pathway for H+3 where the molecule dissociates
into three hydrogen atoms. The theoretical approach developed by Kokoouline
and Greene [543, 544] for treating this process combined MQDT to represent the
closed channels, the hyperspherical coordinate approach, discussed in Sect. 3.2.6, to
represent the motion of the nuclei and inclusion of outgoing wave Siegert [876]
pseudostates to represent the vibrational continuum. These pseudostates, which are
analogous to the pseudostates introduced in intermediate-energy collisions in Sects.
6.1 and 6.2, are included to let dissociative flux escape if it reaches the hyper-radial
boundary. In the later work by dos Santos et al. [267], accurate vibrational wave
functions were used and a large number of rotational states of the H+3 ground vibra-
tional state were included in the calculation. This resulted in good agreement with
dissociative recombination measurements using the Stockholm (CRYRING) and the
Heidelberg (TSR) ion storage rings [734], showing the importance of Jahn–Teller
coupling between the electronic and vibrational motion. In conclusion, this work has
shown that recent state-of-the-art ab initio calculations on dissociative recombina-
tion of simple polyatomic molecules using MQDT and a hyperspherical coordinate
representation of the collision process are now capable of accurately describing this
complex process.
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3.3.5 Threshold Behaviour of Ionization

In this section we consider the threshold behaviour of the single ionization
process

e− + A→ A+ + e− + e−, (3.256)

where an electron is incident on a neutral atom or positive ion target which we
denote by A and an electron is ejected from the target. The foundations of this
subject were laid by Wannier [954] who, using an elegant classical analysis, showed
that the ionization cross section σion satisfies the threshold law

σion = aEm . (3.257)

In this equation a is a constant, E is the sum of the kinetic energies of the two
outgoing electrons in (3.256) which is zero at threshold and m is defined by

m = 1

4

[(
100Z − 9

4Z − 1

)1/2

− 1

]
, (3.258)

where in this case Z is the residual charge number of the ion denoted by A+
in (3.256). When Z = 1, corresponding to ionization of a neutral atomic target,
m ≈ 1.127 and as the charge number of the ion Z → ∞ we see from (3.258) that
m → 1. We note that in a later paper Wannier [955] extended the analysis to discuss
the threshold law for multiple ionization.

Further developments in the classical theory of single ionization were made by
Vinkalns and Gailitis [940], who investigated the dependence of the distribution of
the ionization cross section on the angle θ12 between the final directions of the two
outgoing electrons and found that this distribution has a sharp maximum at θ12 = π
with a width which tends to zero as E1/4 as the energy E tends to zero. The classical
analysis was extended by Read [780] to small negative values of E and to study the
energy partitioning of the two outgoing electrons in the ionization process using
accurate trajectory calculations. Wannier’s threshold law of ionization has also been
derived using semiclassical theory by Peterkop [728–730] and Crothers [236, 237]
and was shown by Rau [776] to follow from the two-electron Schrödinger equation.
There have been many other important theoretical and computational investigations
including studies by Fano [304], Rau [777], Klar and Schlecht [538], Klar [537],
Greene and Rau [419, 420], Feagin [315], Altick [15], Kazansky and Ostrovsky
[526], Macek and Ovchinnikov [622], Kato and Watanabe [522–524] and Bartlett
and Stelbovics [59]. Experimentally, the validity of Wannier’s threshold law was
first clearly verified by Cvejanović and Read [239] and other early experiments
confirming this law were carried out by Spence [884] and by Pichou et al. [735].
Finally, we mention earlier reviews of threshold behaviour of ionization written by
Rau [778] and by Read [781] and a more recent review of collisions near threshold
written by Sadeghpour et al. [804].



160 3 Resonances and Threshold Behaviour
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Coulomb
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Free
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0 R0 R1

Fig. 3.8 Partitioning of configuration space into three regions in the Wannier theory of threshold
ionization

Following Wannier [954], we now derive the threshold law of ionization using a
classical analysis. We consider the process represented by (3.256), where the motion
of the two electrons in the final state is described using hyperspherical coordinates
discussed in Sect. 3.2.6 and defined by (3.128). In Wannier’s analysis, configuration
space is partitioned into three regions or zones, as illustrated in Fig. 3.8. These are
an inner reaction region (0 ≤ R ≤ R0), an intermediate Coulomb region (R0 ≤ R ≤
R1) and an outer free region (R ≥ R1). Following the fundamental paper by Wigner
[970] on the behaviour of cross sections near threshold, Wannier observed that it is
not necessary to know the detailed behaviour of the two electrons taking part in the
ionization process in the reaction region. Instead, he assumed that the distribution
in phase space of the two electrons is approximately uniform (i.e. quasi-ergodic)
when they enter the Coulomb region. Wannier also assumed that for large enough
R0, the Coulomb potential varies sufficiently slowly for classical mechanics to be
applicable in the Coulomb region, even when the total energy E of the two outgoing
electrons in (3.256) tends to zero. This assumption can be seen to be valid since for
a Coulomb potential the local de Broglie wavelength

λ(R) =
(

2E + 2Z

R

)−1/2

(3.259)

is slowly varying for large R and the derivative dλ/dR tends to zero as R tends to
infinity. Finally, at very large R, where R > R1, the magnitude of the Coulomb
potential energy is less than the combined kinetic energies of the two outgoing elec-
trons, so that these electrons move essentially freely. As E → 0, then the radius
R1 → ∞ and hence the Coulomb region extends to infinity. Hence the threshold
behaviour of the ionization cross section is determined by the motion of the two
electrons in the Coulomb region.

In order to determine the threshold behaviour of the ionization cross section, we
consider the potential function−C(α, θ12) defined by (3.130) and shown in Fig. 3.7.
We have already observed that the valleys which occur at α = 0 and π/2 correspond
to the electron–nuclear attraction singularities. As a result, when E ≈ 0 nearly all
the classical trajectories end up in one or other of these valleys corresponding to
single-electron escape. In order to consider the threshold behaviour of ionization
we must consider the behaviour of the trajectories in the neighbourhood of the
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saddle point at α = π/4 and θ12 = π . Near the saddle point the effective charge
ζ(α, θ12) = C(α, θ12)/2 can be expanded as

ζ(α, θ12) = ζ0 + 1

2
ζ1

(
α − π

4

)2 + 1

8
ζ2(θ12 − π)2 + · · · , (3.260)

where

ζ0 = 4Z − 1√
2
, ζ1 = 12Z − 1√

2
, ζ2 = − 1√

2
. (3.261)

It follows that the motion is stable in θ12 but unstable in α at constant R. Clearly,
classical trajectories with α = π/4 and θ12 = π lead to double-electron escape
since as R →∞ both r1 and r2 tend to infinity.

Following Wannier, we consider the case where the total orbital angular momen-
tum L of the two electrons is equal to zero which dominates the ionization cross
section close to threshold. The motion of the electrons can then be described by
three variables R, α and θ12. The classical equations of motion then take the form

d2 R

dt2
= R

(
dα

dt

)2

+ 1

4
R sin2 2α

(
dθ12

dt

)2

− ζ

R2
, (3.262)

d

dt

(
R2 dα

dt

)
= 1

2
R2 sin 2α cos 2α

(
dθ12

dt

)2

+ 1

R

∂ζ

∂α
, (3.263)

d

dt

(
R2 sin2 2α

dθ12

dt

)
= 4

R

∂ζ

∂θ12
, (3.264)

and the energy of the system is given by

E = 1

2

(
dR

dt

)2

+ 1

2
R2
(

dα

dt

)2

+ 1

8
R2 sin2 2α

(
dθ12

dt

)2

− ζ
R
. (3.265)

We then write

�α = α − π
4
= u1, �θ12 = θ12 − π = u2, (3.266)

and we assume that �α and �θ12 are small quantities. Retaining terms of the same
order enables us to write (3.262)–(3.264) in the form

d2 R

dt2
= −ζ0

R
(3.267)
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and

d

dt

(
R2 dui

dt

)
= ζi ui

R
, i = 1, 2, (3.268)

where we note that (3.268) are linear uncoupled equations for u1 and u2. It follows
from (3.265) and (3.267) that the first integral for the velocity is given by

dR

dt
=
(

2E + 2
ζ0

R

)1/2

. (3.269)

If we introduce the dimensionless variables

ρ = E R

ζ0
, τ = E3/2t

ζ0
, (3.270)

then (3.268) and (3.269) can be written as

d

dτ

(
ρ2 dui

dτ

)
= ζi/ζ0

ρ
ui , i = 1, 2 (3.271)

and

dρ

dτ
= √2

(
1+ 1

ρ

)1/2

. (3.272)

We remark that (3.270), (3.271) and (3.272) imply that the classical orbits are invari-
ant under the transformation

R → a R, E → a−1 E, t → a3/2t, ui → ui , (3.273)

which is sometimes referred to as the “similarity principle” [729, 954]. In particular
we see that the quantities u1 and u2 depend on E only through the dimension-
less variables ρ and τ . We note that the exact classical equations given by (3.262),
(3.263) and (3.264) also satisfy this similarity principle.

Equation (3.272) can now be used to rewrite (3.271) in a form such that the
independent variable is ρ instead of τ . We find that

2ρ(1− ρ)d
2ui

dρ2
+ (3− 4ρ)

dui

dρ
= ζi/ζ0

ρ
ui , i = 1, 2. (3.274)

Since we are interested in the threshold behaviour E → 0, the situation where
E R � ζ0 (i.e. where ρ � 1) is of particular interest. Equations (3.274) then reduce
to
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d2ui

dρ2
+ 3

2ρ

dui

dρ
= ζi/ζ0

2ρ2
ui , i = 1, 2, (3.275)

which have solutions of the form

u1 = c11 Rm11 + c12 Rm12 (3.276)

and

u2 = c21 Rm21 + c22 Rm22 , (3.277)

where we have reverted to the variable R and where ci j are integration constants.
The exponents mi j in (3.276) and (3.277) are given by

mi1 = −1

4
− 1

2
μi , mi2 = −1

4
+ 1

2
μi , i = 1, 2, (3.278)

where

μ1 = 1

2

(
100Z − 9

4Z − 1

)1/2

, μ2 = i

2

(
9− 4Z

4Z − 1

)1/2

. (3.279)

Since Z ≥ 1 then μ1 is real and ≥5/2 and μ2 is imaginary when 1 ≤ Z < 9/4 and
is real and less than 1/2 when Z ≥ 9/4.

We consider first the dependence of u2, defined by (3.277), on R and E , where
we remember from (3.266) that u2 = �θ12. For sufficiently small values of E ,
(3.276) and (3.277) are valid at the inner boundary of the Coulomb region. Now
from (3.278) and (3.279) we see that Re m2i < 0 when 1/4 < Z < 9/4 and m2i

is real and < 0 when Z ≥ 9/4, for i = 1, 2. Hence when R increases, �θ12 either
oscillates with decreasing amplitude or falls off monotonically. This confirms that
near threshold the two electrons escape in opposite directions where θ12 ≈ π .

The key equation that enables us to determine the threshold behaviour of ioniza-
tion is (3.276), where we remember from (3.266) that u1 = �α. We first observe
that since μ1 is real and ≥ 5/2 when Z > 1/4, then m11 is real and < 0. Hence as
R increases the term c11 Rm11 in (3.276) will tend to zero. On the other hand, m12 is
always positive and ≥ 1 and hence the term c12 Rm12 will increase as R increases.
Therefore, unless restrictions are placed on c12 this term will cause u1 to increase
and thus α to move away from the vicinity of π/4 and to fall into one of the potential
wells at α = 0 and π/2 in Fig. 3.7, corresponding to single-electron escape. Hence
for ionizing trajectories the coefficient c12 must lie in a small interval, namely

|c12| ≤ cmax, (3.280)

where cmax → 0 as E → 0. Moreover, according to the “similarity principle”
defined by (3.273), u1 can only depend on E through E R. We must therefore write
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c12 = d12 Em12 , (3.281)

where d12 is a constant. Hence (3.276) becomes

u1 = c11 Rm11 + d12 Em12 Rm12 . (3.282)

Since, in the neighbourhood of the boundary between the reaction region and the
Coulomb region in Fig. 3.8 we have E � Z/R we see that for variations of d12 of
order unity, u1 will remain small as R increases from R0.

Wannier calculated the flux of phase space points which corresponds to double-
electron escape for constant energy E and a given hyper-radius R. Making use
of the quasi-ergodic hypothesis, he showed that this flux does not depend on the
hyper-radius and that it varies with energy in the same way as cmax. Since this flux
is proportional to the total ionization cross section σion it follows, using (3.280)
and (3.281), that the Wannier threshold law of ionization is given by (3.257) where
m = m12 is defined by (3.278) and (3.279). Hence we find that m is given by
(3.258).

As we pointed out in the introduction to this section, the Wannier threshold
law of ionization has been confirmed using both semiclassical and quantum the-
ory derivations. In addition, a number of detailed ab initio quantum theory cal-
culations have been carried out which have provided strong support both for the
threshold energy dependence of the ionization cross section and for its angular dis-
tribution predicted by Vinkalns and Gailitis [940]. These calculations include (i)
an angle–Sturmian basis expansion of the wave function in hyperspherical coordi-
nates by Macek and Ovchinnikov [622], (ii) the representation of hyperspherical
channel functions using a smooth-variable-discretization method combined with an
R-matrix propagator method by Kato and Watanabe [522–524], (iii) the application
of the time-dependent close-coupling method by Colgan et al. [221, 225] and (iv) the
use of a propagating exterior complex scaling (PECS) method by Bartlett and Stel-
bovics [59]. In this last calculation on electron–hydrogen atom ionizing collisions,
Bartlett and Stelbovics found that for L = 0 singlet scattering σion ∝ E1.122±0.015

and (π − θ12)FWHM ≈ 3.0E1/4, and for L = 1 triplet scattering σion ∝ E3.36±0.02,
in excellent agreement with classical and semiclassical predictions. Further details
of the PECS approach to electron–hydrogen atom collisions have been given by
Bartlett [57, 58]. We will return to a discussion of electron impact ionization of
atoms and atomic ions, including R-matrix calculations near threshold, when we
consider intermediate-energy collisions in Chap. 6.
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