
Appendix D
Applications of Angular Momentum Algebra

In this appendix we consider four applications of the angular momentum algebra
theory described in Appendices A and B. In these applications we obtain explicit
expressions for quantities that occur in the main body of this monograph. We first
derive expressions for the long-range multipole potential coefficients, which arise in
our discussion of both non-relativistic and relativistic electron–atom and electron–
ion collisions. We then derive expressions for the long-range multipole potentials
which arise in R-matrix–Floquet theory and in time-dependent R-matrix theory of
multiphoton processes. Finally, we obtain an expression for the atomic differential
photoionization cross section.

In these applications it is important to adopt a consistent phase convention
throughout the analysis, although the final physical observables will not depend
on the phase convention chosen. We have pointed out in Appendix B.4 that two
phase conventions for spherical harmonics have been used in applications, referred
to as the Condon–Shortley and the Fano–Racah phase conventions. In this appendix
we adopt the Fano–Racah phase convention which has been used in many applica-
tions of R-matrix theory. However, in order to illustrate the importance of adopting
a consistent phase convention in the analysis, we also derive explicit expressions
in Appendix D.1.1 for the long-range multipole potential coefficients in non-
relativistic electron collisions with atoms and ions when the Condon–Shortley phase
convention is adopted.

D.1 Long-Range Electron–Atom Potential Coefficients

D.1.1 Non-relativistic Collisions

In this section we derive explicit expressions for the long-range multipole potential
coefficients in non-relativistic electron collisions with atoms and ions using both
the Fano–Racah and the Condon–Shortley phase conventions. We consider first the
expression obtained using the Fano–Racah phase convention.
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648 Appendix D Applications of Angular Momentum Algebra

We have shown in Sect. 5.1.3 that the long-range local potential completely
describes the electron–target interaction beyond some radius a0 where the non-local
exchange and correlation potentials are negligible. This enables R-matrix propaga-
tor methods to be used to solve the resultant coupled differential equations (5.29) in
this external region. We also note that the long-range potential coefficients are used
in the development of asymptotic expansion methods for solving these equations,
described in Appendix F.1.

In the absence of relativistic effects, the long-range potential coefficients αΓi i ′λ in
(2.73) and (5.30) are defined by the equation

αΓi i ′λ = 〈r−1
N+1Φ

Γ

i (XN ; r̂N+1σN+1)

∣∣∣∣∣
N∑

k=1

rλk Pλ(cos θk N+1)

∣∣∣∣∣
× r−1

N+1Φ
Γ

i ′ (XN ; r̂N+1σN+1)〉′, (D.1)

where the integration in this equation is carried out over all the (N + 1)-electron
space and spin coordinates except the radial coordinate of the (N + 1)th or scat-
tered electron. We expand Pλ(cos θk N+1) in (D.1) in terms of spherical harmonics
satisfying the Fano–Racah phase convention, using (B.77) which we rewrite here as

Pλ(cos θk N+1) = 4π

2λ+ 1

+λ∑
m=−λ

Yλm(θk, φk)Y∗λm(θN+1, φN+1), (D.2)

and we define the channel functions Φ
Γ

i in (D.1) as follows

Φ
Γ

i (XN ; r̂N+1σN+1) =
∑

MLi m	i

∑
MSi mi

(Li MLi 	i m	i |L ML)

× (Si MSi
1
2 mi |SMS)Φ

FR
i (XN )

× Y	i m	i
(θN+1, φN+1)χ 1

2 mi
(σN+1) (D.3)

and an analogous expression for Φ
Γ

i ′ . We also introduce the tensor operators

MFR
λm =

(
4π

2λ+ 1

)1/2 N∑
k=1

rλk Yλm(θk, φk) (D.4)

and

CFR
λm =

(
4π

2λ+ 1

)1/2

Yλm(θN+1, φN+1). (D.5)
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Substituting these results into (D.1) and carrying out the summations over the spin
magnetic quantum numbers, which yield δSi Si ′ , then gives

(
αΓi i ′λ

)FR =
∑

m

∑
MLi m	i

∑
MLi ′m	i ′

〈ΦFR
i (XN )|MFR

λm |ΦFR
i ′ (XN )〉

× 〈Y	i m	i
(θN+1, φN+1)|CFR

λm
∗|Y	i ′m	i ′ (θN+1, φN+1)〉

× (Li MLi 	i m	i |L ML)(Li ′MLi ′ 	i ′m	i ′ |L ML)δSi Si ′ . (D.6)

The integration over the scattered electron angular coordinates r̂N+1 in (D.6) can be
carried out using (B.71) yielding

〈Y	i m	i
(θN+1, φN+1)|CFR

λm
∗|Y	i ′m	i ′ (θN+1, φN+1)〉

= i	i ′−	i−λ(−1)m
[

2	i ′ + 1

2	i + 1

]1/2

(λ−m	i ′m	i ′ |	i m	i )(λ0	i ′0|	i 0). (D.7)

In order to carry out the summation over the orbital magnetic quantum num-
bers, we introduce the reduced multipole moments of the target expressed as
〈αi Li Siπi ||MFR

λ ||αi ′Li ′ Si ′πi ′ 〉 which are defined by the equation

〈ΦFR
i (XN )|MFR

λm |ΦFR
i ′ (XN )〉 = (2Li + 1)−1/2(Li ′MLi ′λm|Li MLi )

×〈αi Li Siπi ||MFR
λ ||αi ′Li ′ Si ′πi ′ 〉. (D.8)

This result follows from the Wigner–Eckart theorem (Wigner [965], Eckart [282])
which states that the dependence of the matrix element 〈Φi |Mλm |Φi ′ 〉 on the mag-
netic quantum numbers MLi , MLi ′ and m is entirely contained in the Clebsch–
Gordan coefficient (Li ′MLi ′λm|Li MLi ). The reduced multipole moments of the
target thus depend on the detailed atomic structure of the target states but not on
their magnetic quantum numbers.

We now collect together the terms involving the orbital magnetic quantum num-
bers from (D.6), (D.7) and (D.8). We define the summation

S =
∑

m

∑
MLi m	i

∑
MLi ′m	i ′

(−1)m(Li MLi 	i m	i |L ML)(Li ′MLi ′ 	i ′m	i ′ |L ML)

× (λ−m	i ′m	i ′ |	i m	i )(Li ′MLi ′λm|Li MLi ). (D.9)

This summation can be evaluated using the symmetry property of the Clebsch–
Gordan coefficient

(λ−m	i ′m	i ′ |	i m	i ) = (−1)	i−	i ′+m
[

2	i + 1

2	i ′ + 1

]1/2

(λm	i m	i |	i ′m	i ′ ), (D.10)
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which follows from (A.21) and (A.23) and the definition of the Racah coefficient
given by (A.46). We then obtain

S = (−1)	i−λ−L+Li [(2	i + 1)(2Li + 1)]1/2 W (Li Li ′	i	i ′ ; λL), (D.11)

where we have also used the symmetry properties of the Racah coefficients given
by (A.48) and (A.49). Using this result, we find that the expression given by (D.6)
for the long-range potential coefficients reduces to

(
αΓi i ′λ

)FR = i	i+	i ′−λ(−1)Li−L(2	i + 1)1/2(	i 0λ0|	i ′0)W (Li Li ′	i	i ′ ; λL)

×〈αi Li Siπi ||MFR
λ ||αi ′Li ′ Si ′πi ′ 〉δSi Si ′ , (D.12)

where we note that the term i	i+	i ′−λ = ±1, since it follows from (A.27) that
(	i 0λ0|	i ′0) = 0 unless 	i + 	i ′ − λ is even. It also follows from (D.12) that αΓi i ′λ is
real and from (D.1) that αΓi i ′λ is symmetric so that αΓi i ′λ = αΓi ′iλ.

We next derive an explicit expression for the long-range potential coefficients
when we adopt the Condon–Shortley phase convention. We again commence from
(D.1), but we now expand Pλ(cos θk N+1) in terms of spherical harmonics using
(B.48) which we rewrite here as

Pλ(cos θk N+1) = 4π

2λ+ 1

+λ∑
m=−λ

Yλm(θk, φk)Y
∗
λm(θN+1, φN+1), (D.13)

and we define the channel function Φ
Γ

i in (D.1) as follows

Φ
Γ

i (XN ; r̂N+1σN+1) =
∑

MLi m	i

∑
MSi mi

(Li MLi 	i m	i |L ML)

× (Si MSi
1
2 mi |SMS)Φ

CS
i (XN )

× Y	i m	i
(θN+1, φN+1)χ 1

2 mi
(σN+1), (D.14)

and an analogous equation for Φ
Γ

i ′ . We also introduce the tensor operators

MCS
λm =

(
4π

2λ+ 1

)1/2 N∑
k=1

rλk Yλm(θk, φk) (D.15)

and

CCS
λm =

(
4π

2λ+ 1

)1/2

Yλm(θN+1, φN+1). (D.16)
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Substituting these results into (D.1) and carrying out the summations over the spin
magnetic quantum numbers then give

(
αΓi i ′λ

)CS =
∑

m

∑
MLi m	i

∑
MLi ′m	i ′

〈ΦCS
i (XN )|MCS

λm |ΦCS
i ′ (XN )〉

× 〈Y	i m	i
(θN+1, φN+1)|CCS

λm
∗|Y	i ′m	i ′ (θN+1, φN+1)〉

× (Li MLi 	i m	i |L ML)(Li ′MLi ′ 	i ′m	i ′ |L ML)δSi Si ′ . (D.17)

The integration over the scattered electron angular coordinates r̂N+1 in (D.17) can
be carried out using (B.45) yielding

〈Y	i m	i
(θN+1, φN+1)|CCS

λm
∗|Y	i ′m	i ′ (θN+1, φN+1)〉

= (−1)m
[

2	i ′ + 1

2	i + 1

]1/2

(λ−m	i ′m	i ′ |	i m	i )(λ0	i ′0|	i 0), (D.18)

and we introduce the reduced multipole moments of the target by the equation

〈ΦCS
i (XN )|MCS

λm |ΦCS
i ′ (XN )〉 = (2Li + 1)−1/2(Li ′MLi ′λm|Li MLi )

×〈αi Li Siπi ||MCS
λ ||αi ′Li ′ Si ′πi ′ 〉. (D.19)

Substituting (D.18) and (D.19) into (D.17) and collecting terms involving the orbital
magnetic quantum numbers then yield the following summation

S =
∑

m

∑
MLi m	i

∑
MLi ′m	i ′

(−1)m(Li MLi 	i m	i |L ML)(Li ′MLi ′ 	i ′m	i ′ |L ML)

×(λ−m	i ′m	i ′ |	i m	i )(Li ′MLi ′λm|Li MLi ), (D.20)

which is the same as (D.9) and can thus be evaluated yielding (D.11). Substitut-
ing this result into (D.17) then gives the following expression for the long-range
potential coefficients using the Condon–Shortley phase convention

(
αΓi i ′λ

)CS = (−1)Li+	i−L(2	i + 1)1/2(	i 0λ0|	i ′0)W (Li Li ′	i	i ′ ; λL)

×〈αi Li Siπi ||MCS
λ ||αi ′Li ′ Si ′πi ′ 〉δSi Si ′ . (D.21)

Comparing this result with (D.12) we see that the Condon–Shortley reduced mul-
tipole matrix element is replaced by the equivalent Fano–Racah matrix element
and the overall phase factor is modified, although in both cases αΓi i ′λ is real and
symmetric. Hence, as pointed out in the introduction to this appendix, a consistent
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phase convention must be adopted throughout the analysis in order to obtain correct
results for the physical observables.

D.1.2 Inclusion of Relativistic Effects

The above analysis has to be extended as the nuclear charge number Z increases and
relativistic effects start to play an important role in low- and intermediate-energy
electron collisions with atoms and atomic ions. In this section we derive explicit
expressions for the long-range potential coefficients, using the Fano–Racah phase
convention, when relativistic effects can be accurately described by the Breit–Pauli
Hamiltonian discussed in Sect. 5.4.2.

We commence by deriving an expression for the long-range potential coefficients
when relativistic effects in the target can be neglected. Adopting the pair-coupling
scheme, defined by (5.116), we obtain the following expression for the long-range
potential coefficients α Jπ

i i ′λ in terms of the long-range potential coefficients, αΓi i ′λ
defined by (D.1) in the absence of relativistic effects,

α Jπ
i i ′λ =

∑
L S

〈[(Li Si )Ji , 	i ]Ki
1
2 ; J MJ |(Li	i )L , (Si

1
2 )S; J MJ 〉

×αΓi i ′λ〈(Li ′	i ′)L , (Si ′
1
2 )S; J MJ |[(Li ′Si ′)Ji ′ , 	i ′ ]Ki ′

1
2 ; J MJ 〉. (D.22)

We see that the transformation in this equation has the same form as the transfor-
mation of the K -matrix defined by (5.119). We can carry out the summation over
L and S in (D.22) using the expression for the recoupling coefficients in terms of
Racah coefficients given by (5.118) and for the long-range potential coefficient αΓi i ′λ
given by (D.12). After using the orthogonality relation and the sum rule satisfied by
the Racah coefficients, given by (A.50) and (A.52), we find that (D.22) reduces to

α Jπ
i i ′λ = i	i+	i ′−λ(−1)Li ′+Si−Ki−λ [(2	i + 1)(2Ji + 1)(2Ji ′ + 1)]1/2

× (	i 0λ0|	i ′0)W (	i Ji	i ′ Ji ′ ; Kiλ)W (Li Ji Li ′ Ji ′ ; Siλ)

× 〈αi Li Siπi ||MFR
λ ||αi ′Li ′ Si ′πi ′ 〉δSi Si ′ δKi Ki ′ . (D.23)

This equation can be further simplified by introducing the following reduced multi-
pole moments corresponding to the fine-structure levels of the target

〈αi Li Si Jiπi ||MFR
λ ||αi ′Li ′ Si ′ Ji ′πi ′ 〉

= (−1)Li ′+Si−λ [(2Ji + 1)(2Ji ′ + 1)]1/2 W (Li Ji Li ′ Ji ′ ; Siλ)

× 〈αi Li Siπi ||MFR
λ ||αi ′Li ′ Si ′πi ′ 〉δSi Si ′ , (D.24)
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where the reduced multipole moment on the right-hand side of this equation is
defined by (D.8). The expression (D.23) for the long-range potential coefficients
then becomes

α Jπ
i i ′λ = i	i+	i ′−λ(−1)−K i (2	i + 1)1/2(	i 0λ0|	i ′0)W (	i Ji	i ′ Ji ′ ; Kiλ)

× 〈αi Li Si Jiπi ||MFR
λ ||αi ′Li ′ Si ′ Ji ′πi ′ 〉δKi Ki ′ . (D.25)

In (D.24) and (D.25) we have introduced the quantities Si and K i which are
the integral parts of Si and Ki , respectively, so that Si − K i = Si − Ki .
This ensures that the transformed reduced multipole moments of the target
〈αi Li Si Jiπi ||MFR

λ ||αi ′Li ′ Si ′ Ji ′πi ′ 〉 defined by (D.24) are real. It follows from
(D.24) and (D.25) that the long-range potential coefficients are diagonal in the quan-
tum numbers Si and Ki .

When relativistic effects in the target are important then the long-range
potential coefficients must be transformed using the term-coupling coefficients
f (Δi Jiπi ;αi Li Siπi ) defined by (5.122). The transformed long-range potential
coefficients are then given by

α Jπ
μμ′λ =

∑
αi Li Si

∑
αi ′ Li ′ Si ′

f (Δi Jiπi ;αi Li Siπi )α
Jπ
i i ′λ f (Δi ′ Ji ′πi ′ ;αi ′Li ′ Si ′πi ′),

(D.26)
where the channel subscripts μ and μ′ on the coefficients α Jπ

μμ′λ are defined by

μ ≡ Δi Ji 	i Ki
1
2 , μ′ ≡ Δi ′ Ji ′ 	i ′ Ki ′

1
2 . (D.27)

The summation over Si and Si ′ in (D.26) means that the transformed long-range
potential coefficients are no longer diagonal in the spin quantum number Si . How-
ever, it follows from (D.25) and (D.26) that these coefficients are still diagonal in
the quantum number Ki . This conservation rule follows from the definition of the
pair-coupling scheme given by (5.116). Since the total angular momentum quan-
tum number J is conserved, and since the spin si of the scattered electron is also
conserved in the external region, where electron exchange effects are zero, then the
quantum number Ki is also conserved. As discussed in Sect. 5.4.2, conservation of
Ki results in the coupled second-order differential equations, describing the radial
motion of the scattered electron in the external and asymptotic regions, sub-dividing
into two uncoupled sets of equations with considerable saving in computational
effort.

In conclusion, we see from (D.12), (D.25) and (D.26) that the problem of calcu-
lating the long-range potential coefficients has been separated into two distinct parts:
first, the calculation of the Clebsch–Gordan and Racah coefficients which depend on
the target orbital angular momenta, the total angular momentum and λ and second,
the calculation of the reduced multipole moments of the target which involves the
detailed atomic structure of the target states.
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D.2 R-Matrix–Floquet Multiphoton Potential

As our second application of angular momentum algebra theory, we derive explicit
expressions for the long-range potential which arises in R-matrix–Floquet theory of
atomic multiphoton processes, discussed in Sect. 9.1, where in this analysis and in
later examples discussed in this appendix we adopt the Fano–Racah phase conven-
tion discussed in Appendix B.4. We have shown in Sect. 9.1.3 that this potential is
defined by (9.41) as follows

WVγ = VEγ + VDγ + VPγ . (D.28)

We consider these three terms successively below.
First, VEγ arises from the electron–electron and electron–nuclear potential terms

in the Hamiltonian HN+1 defined by (5.3). Its matrix elements are defined by (9.42)
as follows

V Eγ
nLin′L ′i ′ = 〈r−1

N+1Φ
γ

nLi (XN ; r̂N+1σN+1)

∣∣∣∣∣∣
N∑

j=1

1

r j N+1
− N

rN+1

∣∣∣∣∣∣
× r−1

N+1Φ
γ

n′L ′i ′(XN ; r̂N+1σN+1)〉′δnn′, (D.29)

where the integration in this equation is carried out over all the (N + 1)-electron
space and spin coordinates except the radial coordinate of the (N + 1)th electron.
Also the term −N/rN+1 is included so that the long-range Coulomb interaction
experienced by the ejected or scattered electron is completely included on the left-
hand side of (9.38). Using expansion (B.49) for the 1/r j N+1 terms in (D.29) we
obtain

V Eγ
nLin′L ′i ′(r) =

λmax∑
λ=1

α
γ

i i ′λr
−λ−1δnn′δL L ′ , r ≥ a0, (D.30)

which is the same as the long-range potential arising in electron collisions with
atoms and atomic ions defined by (2.73) and (2.74). An explicit expression for the
real coefficients αγi i ′λ has been derived in Appendix D.1.1 and is given by (D.12)
using the Fano–Racah phase convention, where we observe that in these expressions
the total orbital angular momentum L = L ′ is conserved. The potential V(r) in
(9.61) is then given in terms of VEγ by

V(r) = −�(�+ I)
r2

+ 2(Z − N )

r
I− 2VEγ (r), (D.31)

where the first two terms on the right-hand side of this equation are diagonal
matrices.
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Next, the VDγ term in (D.28) arises from the dipole length operator DN in (9.34)
which we write here using the Fano–Racah phase convention as

DN = 1

2
E0

N∑
i=1

zi = −iDN = − i

2

(
4π

3

)1/2

E0

N∑
i=1

riY10(θi , φi ), (D.32)

where we have taken the z-axis to lie along the laser polarization direction ε̂. The
matrix elements of DN , defined by (9.43), are then given by

V Dγ
nLin′L ′i ′ = 〈r−1

N+1Φ
γ

nLi (XN ; r̂N+1σN+1) |DN | r−1
N+1

× Φγn′L ′i ′(XN ; r̂N+1σN+1)〉′
(
δnn′−1 + δnn′+1

)
. (D.33)

We expand the channel functions Φ
γ

nLi and Φ
γ

n′L ′i ′ in terms of the residual atom or
ion states Φi and Φi ′ by an equation analogous to (D.3). The summation over the
orbital magnetic quantum numbers in (D.33) can then be carried out by introducing
the reduced dipole matrix elements of the target 〈αi Li Siπi ||DN ||αi ′Li ′ Si ′πi ′ 〉, in
analogy with (D.8). That is, we write

〈Φi (XN )|DN |Φi ′(XN )〉 = (2Li + 1)−1/2(Li ′MLi ′10|Li MLi )

× 〈αi Li Siπi ||DN ||αi ′Li ′ Si ′πi ′ 〉. (D.34)

Following the angular momentum algebra procedure adopted in the simplification
of αγi i ′λ defined by (D.6) we find that (D.33) reduces to

V Dγ
nLin′L ′i ′ = −i(−1)Li ′+	i+L+L ′+ML+1(δnn′ − 1 + δnn′ + 1)

×
[
(2L + 1)(2L ′ + 1)

3

]1/2

(L ML L ′ −ML ′ |10)W (L Li L ′Li ′ ; 	i 1)

× 〈αi Li Siπi ||DN ||αi ′Li ′ Si ′πi ′ 〉δ	i 	i ′ δm	i m	i ′ δML ML′ δMLi MLi ′

× δSi Si ′ δMSi MSi ′ δSS′δMS MS′ δmi mi ′ . (D.35)

We see that the VDγ term is independent of the radial coordinate r of the ejected or
scattered electron and connects channels where

n = n′ ± 1, Li = Li ′ , Li ′ ± 1, 	i = 	i ′ , L = L ′, L ′ ± 1, ML = ML ′ (D.36)

and also where the spin quantum numbers are conserved.
The symmetry properties of VDγ follow immediately from the symmetry

relations satisfied by the Clebsch–Gordan and Racah coefficients in (D.35)
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and the following symmetry property of the reduced matrix element in this
equation

〈αi Li Siπi ||DN ||αi ′Li ′ Si ′πi ′ 〉 = 〈αi ′Li ′ Si ′πi ′ ||DN ||αi Li Siπi 〉. (D.37)

Also, this reduced matrix element can be shown to be real. Hence it follows that

(
VDγ

)T = −VDγ and
(

VDγ
)† = VDγ (D.38)

so that VDγ is pure imaginary, antisymmetric, hermitian and independent of r . We
also note that the potential D in (9.61) is given in terms of VDγ by

D = −2VDγ . (D.39)

We observe that if instead of using the Fano–Racah phase convention for the spheri-
cal harmonics we had used the Condon–Shortley phase convention then VDγ would
have been real, symmetric and hermitian.

Finally, the VPγ term in (D.28) arises from the dipole velocity operator PN+1
defined by (9.35). Its matrix elements are defined by (9.44) as follows:

V Pγ
nLin′L ′i ′ = 〈r−1

N+1Φ
γ

nLi (XN ; r̂N+1σN+1)

∣∣∣∣i A0

2c
ε̂ · pN+1

∣∣∣∣ r−1
N+1

× Φγn′L ′i ′(XN ; r̂N+1σN+1)〉′
(
δnn′+1 − δnn′−1

)
. (D.40)

In order to evaluate this expression we again take the z-axis to lie along the laser
polarization direction ε̂ so that ε̂ · p is defined by (B.72). Also, we remember
that the channel functions Φ

γ

i are defined by (D.3) using the Fano–Racah phase
convention and the matrix elements of ε̂ · p in a spherical harmonic basis are
given by (B.73). We then find after some angular momentum algebra that (D.40)
reduces to

V Pγ
nLin′L ′i ′ =

A0

2c
(δnn′+1 − δnn′−1)i

	i ′−	i (−1)	i+L−Li [(2	i + 1)(2L + 1)]1/2

× (	i 010|	i ′0)(L ML10|L ′ML)W (L	i L ′	i ′ ; Li 1)

×
(

d

dr
− f (	i ′ , 	i )

r
− 1

r

)
δSS′δMS MS′ δML ML′ δLi Li ′ δMLi MLi ′

× δSi Si ′ δMSi MSi ′ δm	i m	i ′ δmi mi ′ , (D.41)

where f (	i ′ , 	i ) is defined by (B.70) with the primed and unprimed quantities inter-
changed. In addition, following our analysis of (B.74), we observe that the 1/r term
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in the brackets in (D.41) arises from the operation of ε̂ · pN+1 in (D.40) on the
radial wave function r−1 FVγ

nLi j (r), where the reduced radial wave function FVγ
nLi j (r)

satisfies (9.38). Hence we find that V Eγ
nLin′L ′i ′ defined by (9.42), operates, as required,

on the reduced radial wave function FVγ
nLi j (r) in (9.38).

The symmetry properties of VPγ follow immediately from (D.41) and (B.70).
Since 	i = 	i ′ ± 1 in (D.41) then i	i ′−	i = ∓i, and since all other terms in this
equation are real then VPγ is pure imaginary. The potentials P and Q in (9.61) are
defined in terms of VPγ by

P
d

dr
+Q

1

r
= −2VPγ . (D.42)

It then follows from (D.41) and (D.42) that P and Q are pure imaginary and inde-
pendent of the radial coordinate r . It follows from the symmetry properties of the
Clebsch–Gordan and Racah coefficients, given in Appendix A, and the symmetry
of the function f (	i ′ , 	i ), defined by (B.70), that

PT = P and QT = −Q, (D.43)

where PT and QT are the transposes of P and Q. Hence it follows that

P† = −P and Q† = Q, (D.44)

where P† and Q† are the hermitian conjugates of P and Q, respectively, so that P is
antihermitian and Q is hermitian.

If instead of using the Fano–Racah phase convention for the spherical harmonics
we had used the Condon–Shortley phase convention then both P and Q would have
been real but (D.44) would still have been satisfied. In both cases it follows from
(D.41) and (D.42) that the diagonal elements of P and Q are zero.

D.3 Time-Dependent Multiphoton Potential

As our third application of angular momentum algebra theory we derive explicit
expressions for the long-range potential that arises in time-dependent R-matrix
theory of atomic multiphoton processes, discussed in Sect. 10.1, using the Fano–
Racah phase convention. We have shown in Sect. 10.1.3 that this potential is defined
by (10.53) as follows:

Wγ = VEγ + VDγ + VPγ , (D.45)

where in the following analysis we will assume that the dipole velocity gauge is
adopted. We now consider the three terms in (D.45) successively below.
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First, VEγ arises from the electron–electron and electron–nuclear potential terms
in the Hamiltonian HN+1 defined by (5.3). Its matrix elements are given, in analogy
with (D.29), by

V Eγ
i i ′ = 〈r−1

N+1Φ
γ

i (XN ; r̂N+1σN+1)

∣∣∣∣∣∣
N∑

j=1

1

r j N+1
− N

rN+1

∣∣∣∣∣∣
× r−1

N+1Φ
γ

i ′(XN ; r̂N+1σN+1)〉′, (D.46)

where the integration in this equation is carried out over all the (N + 1)-electron
space and spin coordinates except the radial coordinate of the (N + 1)th electron.
Following our analysis in Appendix D.2, see (D.30), we obtain the following expres-
sion for this potential:

V Eγ
i i ′ (r) =

λmax∑
λ=1

α
γ

i i ′λr
−λ−1, r ≥ a0, (D.47)

which is the same as the long-range potential arising in electron collisions with
atoms and atomic ions defined by (2.73) and (2.74). The potential V(r) in (10.55) is
then given in terms of VEγ by

V(r) = −�(�+ I)
r2

+ 2(Z − N )

r
I− 2VEγ (r), (D.48)

where the first two terms on the right-hand side of this equation are diagonal
matrices.

The VDγ and VPγ terms in (D.45) arise from the dipole velocity operator term
c−1A(t) · PN+1, which when t = tm+ 1

2
, can be written as

P = 1

c

N+1∑
i=1

A(tm+ 1
2
) · pi = PN + PN+1, (D.49)

where PN arises from the laser interaction with the residual ion containing N elec-
trons, defined by

PN = 1

c

N∑
i=1

A(tm+ 1
2
) · pi , (D.50)

and PN+1 arises from the laser interaction with the ejected or scattered electron,
defined by

PN+1 = 1

c
A(tm+ 1

2
) · pN+1. (D.51)

We now consider the contribution to the potential from PN and PN+1 in turn.
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The matrix elements of the potential VDγ in (D.45), which corresponds to the
interaction of the laser with the residual ion, are given by

V Dγ
i i ′ = 〈r−1

N+1Φ
γ

i (XN ; r̂N+1σN+1) |PN | r−1
N+1Φ

γ

i ′ (XN ; r̂N+1σN+1)〉′, (D.52)

where, taking the z-axis to lie along the laser polarization direction ε̂, we can write

PN = − i

c
A(tm+ 1

2
)

N∑
j=1

(
cos θ j

∂

∂r j
− sin θ j

r j

∂

∂θ j

)
, (D.53)

which follows from (B.72). Hence we can write

V Dγ
i i ′ = V D1γ

i i ′ + V D2γ

i i ′ , (D.54)

where

V D1γ

i i ′ = − i

c
A(tm+ 1

2
)〈r−1

N+1Φ
γ

i (XN ; r̂N+1σN+1)

∣∣∣∣∣∣
N∑

j=1

cos θ j
∂

∂r j

∣∣∣∣∣∣
× r−1

N+1Φ
γ

i ′(XN ; r̂N+1σN+1)〉′ (D.55)

and

V D2γ

i i ′ = i

c
A(tm+ 1

2
)〈r−1

N+1Φ
γ

i (XN ; r̂N+1σN+1)

∣∣∣∣∣∣
N∑

j=1

sin θ j

r j

∂

∂θ j

∣∣∣∣∣∣
× r−1

N+1Φ
γ

i ′(XN ; r̂N+1σN+1)〉′. (D.56)

In order to evaluate V D1γ

i i ′ , defined by (D.55), we expand the channel functions

Φ
γ

i and Φ
γ

i ′ in terms of the residual atom or ion states Φi and Φi ′ using (D.3) with
Γ replaced by γ . Also, it follows from (B.54) and (B.64) that

cos θ = −i

(
4π

3

)1/2

Y10(θ, φ), (D.57)

and we define the reduced matrix element 〈αi Li Siπi ||P(1)N ||αi ′Li ′ Si ′πi ′ 〉, in analogy
with (D.34), as

〈Φi (XN )

∣∣∣∣∣∣
N∑

j=1

Y10(θ j , φ j )
∂

∂r j

∣∣∣∣∣∣Φi ′(XN )〉

= (2Li + 1)−1/2(Li ′MLi ′10|Li MLi )〈αi Li Siπi ||P(1)N ||αi ′Li ′ Si ′πi ′ 〉. (D.58)
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In order to evaluate V D2γ

i i ′ , defined by (D.56), we again expand the channel func-

tions Φ
γ

i and Φ
γ

i ′ in terms of the residual atom or ion states Φi and Φi ′ using (D.3)
with Γ replaced by γ . Also, it follows from (B.40) and (B.64) that

sin θ
∂

∂θ
Y	m(θ, φ) = −ia(	,m)Y	+1m(θ, φ)− ib(	,m)Y	−1m(θ, φ), (D.59)

where

a(	,m) = 	
[
(	+ m + 1)(	− m + 1)

(2	+ 1)(2	+ 3)

]1/2

(D.60)

and

b(	,m) = (	+ 1)

[
(	+ m)(	− m)

(2	− 1)(2	+ 1)

]1/2

, (D.61)

and where we have included the operation of sin θ∂/∂θ in (D.56) on the angular
function Y	m(θ, φ) in Φ

γ

i ′ . Hence we see that the operation of sin θ∂/∂θ in (D.56)
modifies the orbital angular momenta of the residual ion by ±1 while leaving the
magnetic quantum numbers unaltered. It follows that we can define the reduced
matrix element 〈αi Li Siπi ||P(2)N ||αi ′Li ′ Si ′πi ′ 〉 by

〈Φi (XN )

∣∣∣∣∣∣−
N∑

j=1

sin θ j

r j

∂

∂θ j

∣∣∣∣∣∣Φi ′(XN )〉

= −i

(
4π

3

)1/2

(2Li + 1)−1/2
∑
Li ′′
(Li ′′MLi ′10|Li MLi )

×〈αi Li Siπi ||P(2)N ||αi ′Li ′′ Si ′πi ′ 〉, (D.62)

where, by comparing this result with (D.58), we see that there is an additional sum-
mation over Li ′′ , corresponding to the terms on the right-hand side of (D.59). Also,
we have included the factor −i(4π/3)1/2 in (D.62) which corresponds to the factor
in (D.57) used to transform (D.55). We then obtain after some angular momentum
algebra that the matrix elements of V Dγ

i i ′ , defined by (D.54), (D.55) and (D.56), can
be written in terms of the reduced matrix elements, defined by (D.58) and (D.62),
as follows:
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V Dγ
i i ′ =

1

c

(
4π

3

)1/2

A(tm+ 1
2
)(−1)L

′+	i (2L + 1)1/2(L ML10|L ′ML)

×
∑
Li ′′

[
W (L Li L ′Li ′′ ; 	i 1)〈αi Li Siπi ||P(1)N ||αi ′Li ′′ Si ′πi ′ 〉(−1)Li ′′ δLi ′ Li ′′

+ W (L Li L ′Li ′′ ; 	i 1)〈αi Li Siπi ||P(2)N ||αi ′Li ′′ Si ′πi ′ 〉(−1)Li ′′
]

× δML ML′ δMLi MLi ′ δSS′δMS MS′ δSi Si ′ δMSi MSi ′ δ	i 	i ′ δm	i m	i ′ δmi mi ′ . (D.63)

We see that V Dγ
i i ′ is independent of the radial coordinate of the ejected or scattered

electron and connects channels where

L = L ′, L ′ ± 1, ML = ML ′ , (D.64)

and where the spin quantum numbers are conserved. The reduced matrix elements
in (D.63) can be shown to be antisymmetric and hence VDγ is real, symmetric,
hermitian and independent of r . We also note that the potential D in (10.55) is given
in terms of VDγ by

D = −2VDγ . (D.65)

Finally, we consider the matrix elements of VPγ in (D.45), corresponding to the
interaction of the laser with the ejected or scattered electron. In this case the matrix
elements are given by

V Pγ
i i ′ = 〈r−1

N+1Φ
γ

i (XN ; r̂N+1σN+1) |PN+1| r−1
N+1Φ

γ

i ′(XN ; r̂N+1σN+1)〉′, (D.66)

where PN+1 is defined by (D.51). After taking the z-axis to lie along the laser polar-
ization direction ε̂, we can write

PN+1 = − i

c
A(tm+ 1

2
)

(
cos θN+1

∂

∂rN+1
− sin θN+1

rN+1

∂

∂θN+1

)
. (D.67)

We then expand the channel functions Φ
γ

i and Φ
γ

i ′ in (D.66) in terms of the residual
atom or ion states Φi and Φi ′ using (D.3) with Γ replaced by γ , and we use (B.72)
and (B.73) to write

〈Y	m(θ, φ)|PN+1|Y	′m′(θ, φ)〉

= 1

c
A(tm+ 1

2
)i	
′−	−1

[
2	′ + 1

2	+ 1

]
(10	′m|	m)(10	′0|	0)

(
d

drN+1
− f (	′, 	)

rN+1

)

× δmm′ , (D.68)
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where f (	′, 	) is defined by (B.70) with the primed and unprimed quantities inter-
changed. Using these results we then obtain after some angular momentum algebra
that (D.66) reduces to

V Pγ
i i ′ = −

i

c
A(tm+ 1

2
)i	
′
i−	i (−1)	i+L−Li [(2	i + 1)(2L + 1)]1/2

× (	i 010|	i ′0)(L ML10|L ′ML)W (L	i L ′	i ′ ; Li 1)

(
d

dr
− f (	i ′ , 	i )

r
− 1

r

)

× δSS′δMS MS′ δML ML′ δLi L ′i δMLi MLi ′ δSi Si ′ δMSi MSi ′ δmi mi ′ δm	i m	i ′ .

(D.69)

We see that (D.69) has a similar form to (D.41), which arises in R-matrix–Floquet
theory in Chap. 9. Also, it follows from the Clebsch–Gordan coefficients that the
potential V Pγ

i i ′ connects channels where

	i = 	i ′ ± 1, L = L ′, L ′ ± 1. (D.70)

By comparing VPγ with the potentials in (10.55) we find that

P
d

dr
+Q

1

r
= −2VPγ . (D.71)

Also both P and Q are real since the factor i	
′
i−	i+1 in (D.69) is real. In addition, it

can be shown from (D.69) that P is antisymmetric, and hence antihermitian and Q
is symmetric and hence hermitian so that

PT = −P and QT = Q. (D.72)

D.4 Atomic Photoionization Cross Section

In our final application of angular momentum algebra theory we derive an explicit
expression for the differential photoionization cross section given in Sect. 8.1.1 by
(8.43) and (8.44). In that section we obtained the following result for the differen-
tial cross section for photoionization of an unpolarized atom or ion by a polarized
photon beam, see (8.41),

dσ V,L
i j

dΩ
= AV,L

(2L + 1)(2S + 1)

∑
ML MS

∑
ML′MS′

∑
m′j

|〈Ψ−j E |Dμ|Ψi B〉|2, (D.73)

where AV,L is a constant defined by (8.42) and where we write 〈Ψ−j E |Dμ|Ψi B〉 in
terms of the reduced matrix element 〈α′j L ′j S′j	′j L ′S′||D||αi L S〉, defined by (8.38)
as follows, see (8.40),
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〈Ψ−j E |Dμ|Ψi B〉 =
∑
	′j m	′j

∑
L ′S′
(L ′j ML ′j 	

′
j m	′j |L ′ML ′)(S

′
j MS′j

1
2 m′j |S′MS′)

× (L ML1μ|L ′ML ′)(2L ′ + 1)−1/2(−i)	
′
j exp(iσ	′j )Y	′j m	′j

(θk, φk)

×〈α′j L ′j S′j	′j L ′S′||D||αi L S〉δSS′δMS MS′ . (D.74)

We now substitute (D.74) into (D.73) yielding

dσ V,L
i j

dΩ
= AV,L

(2L + 1)(2S + 1)

×
∑

ML MS

∑
ML′MS′

∑
	′j m	′j L ′

∑
	′′j m	′′j L ′′

∑
m′j

[(2L ′ + 1)(2L ′′ + 1)]−1/2

× i	
′
j−	′′j exp(−iσ	′j + iσ	′′j )Y

∗
	′j m	′j

(θk, φk)Y	′′j m	′′j
(θk, φk)

× (L ′j ML ′j 	
′
j m	′j |L ′ML ′)(L

′
j ML ′j 	

′′
j m	′′j |L ′′ML ′′)(S

′
j MS′j

1
2 m′j |SMS)

× (S′j MS′j
1
2 m′j |SMS)(L ML1μ|L ′ML ′)(L ML1μ|L ′′ML ′′)

×〈α′j L ′j S′j	′j L ′S||D||αi L S〉∗〈α′j L ′j S′j	′′j L ′′S||D||αi L S〉. (D.75)

In order to simplify (D.75) we first observe from (A.16), satisfied by the Clebsch–
Gordan coefficients, that

ML ′ = ML ′′ and m	′j = m	′′j . (D.76)

Also, the summation over the spin magnetic quantum numbers MS , MS′ and m′j in
(D.75) can be carried out using (A.18) yielding a factor (2S + 1). We then use the
following result satisfied by the Fano–Racah spherical harmonics:

Y∗
	′j m	′j

(θk, φk)Y	′′j m	′′j
(θk, φk)

= i−	
′
j+	′′j (−1)

m	′j
∑
	

(4π)−1[(2	′j + 1)(2	′′j + 1)]1/2(	′j − m	′j 	
′′
j m	′′j |	0)

× (	′j 0	′′j 0|	0)P	(cos θk), (D.77)

which follows from (B.33), (B.38), (B.47) and (B.64). We also use (A.45) and the
symmetry relations given by (A.21), (A.22), (A.23), (A.24), (A.25), and (A.26) to
carry out the following summations over Clebsch–Gordan coefficients in (D.75):
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∑
m	′j

(−1)
m	′j (L ′j ML ′j 	

′
j m	′j |L ′ML ′)(L

′
j ML ′j 	

′′
j m	′j |L ′′ML ′′)(	

′
j −m	′j 	

′′
j m	′j |	0)

= (−1)L
′
j+ML′ [(2L ′ + 1)(2L ′′ + 1)]1/2(L ′ML ′L

′′ −ML ′ |	0)
×W (L ′	′j L ′′	′′j ; L ′j	) (D.78)

and

∑
ML ML′

(−1)ML′ (L ML1μ|L ′ML ′)(L ML1μ|L ′′ML ′)(L
′ML ′L

′′ −ML ′ |	0)

= (−1)L+μ[(2L ′ + 1)(2L ′′ + 1)]1/2(1−μ1μ|	0)W (1L ′1L ′′; L	). (D.79)

Using (D.76), (D.77) and (D.78) we find that (D.75) can be rewritten in the form

dσ V,L
i j

dΩ
= AV,L

4π(2L + 1)

∑
	

A	(μ)P	(cos θk), (D.80)

where

A	(μ) =
∑

L ′L ′′	′j 	′′j

(−1)L+L ′j+μ exp(−iσ	′j + iσ	′′j )
[
(2	′j + 1)(2	′′j + 1)

]1/2

× [
(2L ′ + 1)(2L ′′ + 1)

]1/2
(1−μ1μ|	0)(	′j 0	′′j 0|	0)

× W (L ′	′j L ′′	′′j ; L ′j	)W (1L ′1L ′′; L	)

× 〈α′j L ′j S′j	′j L ′S||D||αi L S〉∗〈α′j L ′j S′j	′′j L ′′S||D||αi L S〉. (D.81)

This result for the differential photoionization cross section was used in Sect. 8.1.1
to obtain expressions for the integrated photoionization cross section and the asym-
metry parameter.
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