
Appendix B
Legendre Polynomials and Related Functions

In this appendix we first summarize formulae for Legendre polynomials, associ-
ated Legendre functions and spherical harmonics, which are required in defining
the eigenfunctions of the orbital angular momentum operator. We then consider the
phase of the spherical harmonics and its relation to the time-reversal operation, and
we review two phase conventions that have been used in applications, referred to
as the Condon–Shortley and the Fano–Racah phase conventions. Finally, we con-
sider the transformation properties of wave functions under rotations of the axis
of quantization in which we introduce and define Euler angles and Wigner rotation
matrices. For a detailed discussion of spherical harmonics reference should be made
to Hobson [474].

B.1 Legendre Polynomials

Let x be a real variable such that −1 ≤ x ≤ 1. In physical problems the variable
x is usually the cosine of an angle θ so that x = cos θ . Legendre polynomials of
degree 	 are then defined by Rodrigue’s formula

P	(x) = 1

2		!
d	

dx	
(x2 − 1)	, 	 = 0, 1, 2, . . . . (B.1)

An equivalent definition of P	(x) is given in terms of a generating function, namely

F(x, y) = (1− 2xy + y2)−1/2 =
∞∑
	= 0

P	(x)y
	, (B.2)

where this relation has a meaning only when the summation converges, which
occurs when |x | ≤ 1 and |y| < 1. By differentiating (B.2) with respect to x we
obtain the following useful relation

(1− 2xy + y2)−3/2 =
∞∑
	=1

P ′	(x)y	−1, (B.3)
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620 Appendix B Legendre Polynomials and Related Functions

where P ′	(x) = dP	(x)/dx .
The Legendre polynomials satisfy the following differential equation

[
(1− x2)

d2

dx2
− 2x

d

dx
+ 	(	+ 1)

]
P	(x) = 0 (B.4)

and recurrence relations

(	+ 1)P	+1 − (2	+ 1)x P	 + 	P	−1 = 0, (B.5)

P ′	+1 − x P ′	 = (	+ 1)P	, (B.6)

P ′	+1 − P ′	−1 = (2	+ 1)P	, (B.7)

(x2 − 1)P ′	 = 	x P	 − 	P	−1. (B.8)

These recurrence relations are valid for the case 	 = 0 if we define P−1(x) = 0.
The Legendre polynomials also satisfy the orthogonality relation

∫ +1

−1
P	(x)P	′(x)dx = 2

2	+ 1
δ		′ (B.9)

and the closure relation

1

2

∞∑
	= 0

(2	+ 1)P	(x)P	(x
′) = δ(x − x ′). (B.10)

They have parity (−1)	 so that

P	(−x) = (−1)	P	(x) (B.11)

and satisfy the boundary conditions

P	(1) = 1, P	(−1) = (−1)	, (B.12)

with 	 zeros in the interval −1 < x < 1. Explicit expressions for the first few
Legendre polynomials are

P0(x) = 1,

P1(x) = x,

P2(x) = 1

2
(3x2 − 1),

P3(x) = 1

2
(5x3 − 3x),
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P4(x) = 1

8
(35x4 − 30x2 + 3),

P5(x) = 1

8
(63x5 − 70x3 + 15x),

P6(x) = 1

16
(231x6 − 315x4 + 105x2 − 5),

P7(x) = 1

16
(429x7 − 693x5 + 315x3 − 35x). (B.13)

Explicit values for the higher order polynomials are usually calculated using the
recurrence relation (B.5).

B.2 Associated Legendre Functions

The associated Legendre functions Pm
	 (x) are defined over the interval−1 ≤ x ≤ 1

by the relation

Pm
	 (x) = (1− x2)m/2

dm

dxm
P	(x), 0 ≤ m ≤ 	. (B.14)

They are seen to be the product of the function (1 − x2)m/2 and a polynomial of
degree (	−m) and parity (−1)	−m , having 	− m zeros in the interval−1 ≤ x ≤ 1.
As with the Legendre polynomials, a generating function can be defined for the
associated Legendre functions. It is given by

(2m)!(1− x2)m/2

2mm!(1− 2xy + y2)m+ 1/2
=
∞∑
	= 0

Pm
	+m(x)y

	. (B.15)

The associated Legendre functions satisfy the differential equation

[
(1− x2)

d2

dx2
− 2x

d

dx
+ 	(	+ 1)− m2

1− x2

]
Pm
	 (x) = 0 (B.16)

and the recurrence relations

(	− m + 1)Pm
	+1 − (2	+ 1)x Pm

	 + (	+ m)Pm
	−1 = 0, 0 ≤ m ≤ 	− 1, (B.17)

Pm+1
	 − 2mx

(1− x2)1/2
Pm
	 + (	+m)(	−m+1)Pm−1

	 = 0, 0 ≤ m ≤ 	−1, (B.18)

(2	+ 1)(1− x2)1/2 Pm
	 = Pm+1

	+1 − Pm+1
	−1 , 0 ≤ m ≤ 	− 2, (B.19)
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(2	+ 1)(1− x2)1/2 Pm
	 = (	+ m)(	+ m − 1)Pm−1

	−1 − (	− m + 1)

× (	− m + 2)Pm−1
	+1 , 0 ≤ m ≤ 	, (B.20)

(1− x2)
dPm
	

dx
= (	+ 1)x Pm

	 − (	− m + 1)Pm
	+1, 0 ≤ m ≤ 	, (B.21)

= −	x Pm
	 + (	+ m)Pm

	−1, 0 ≤ m ≤ 	− 1. (B.22)

The associated Legendre functions also satisfy the orthogonality relations

∫ +1

−1
Pm
	 (x)P

m
	′ (x)dx = 2(	+ m)!

(2	+ 1)(	− m)!δ		′ (B.23)

and have the values

Pm
	 (1) = Pm

	 (−1) = 0, m �= 0, (B.24)

and

Pm
	 (0) = (−1)s

(2s + 2m)!
2	s!(s + m)! , 	− m = 2s,

= 0, 	− m = 2s + 1. (B.25)

Explicit expressions for the first few associated Legendre functions are

P1
1 (x) = (1− x2)1/2,

P1
2 (x) = 3x(1− x2)1/2,

P2
2 (x) = 3(1− x2),

P1
3 (x) =

3

2
(5x2 − 1)(1− x2)1/2,

P2
3 (x) = 15x(1− x2),

P3
3 (x) = 15(1− x2)3/2,

P1
4 (x) =

5

2
(7x3 − 3x)(1− x2)1/2,

P2
4 (x) =

15

2
(7x2 − 1)(1− x2),

P3
4 (x) = 105x(1− x2)3/2,

P4
4 (x) = 105(1− x2)2. (B.26)



B.3 Spherical Harmonics 623

B.3 Spherical Harmonics

The spherical harmonics Y	m(θ, φ) are simultaneous eigenfunctions of �2 and 	z ,
where in quantum theory � = −i(r×∇) (with h̄ = 1) is the orbital angular momen-
tum operator of a particle and 	z is its z-component. Thus

�2Y	m(θ, φ) = 	(	+ 1)Y	m(θ, φ), 	 = 0, 1, 2, . . . , (B.27)

	zY	m(θ, φ) = mY	m(θ, φ), m = −	,−	+ 1, . . . , 	, (B.28)

where, using spherical polar coordinates θ and φ,

�2 = −
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
(B.29)

and

	z = −i
∂

∂φ
. (B.30)

The Laplacian ∇2 can be written in terms of �2 as follows

∇2 = 1

r2

∂

∂r
r2 ∂

∂r
− 1

r2
�2, (B.31)

where the kinetic energy of a particle of unit mass is − 1
2∇2.

The spherical harmonics are defined in terms of the associated Legendre func-
tions by

Y	m(θ, φ) = (−1)m
[
(2	+ 1)(	− m)!

4π(	+ m)!
]1/2

Pm
	 (cos θ) exp(imφ), m ≥ 0,

(B.32)
where those with m < 0 can be obtained from the following important property

Y ∗	m(θ, φ) = (−1)mY	−m(θ, φ). (B.33)

In these and later equations ∗ corresponds to complex conjugation, and we have
adopted the phase convention of Condon and Shortley [227] here and in the rest
of this section. It follows from (B.32) and (B.33) that the spherical harmonics
Y	m(θ, φ) have parity (−1)	, so that under a reflection in the origin, such that
(θ, φ)→ (π − θ, φ + π), we have

Y	m(π − θ, φ + π) = (−1)	Y	m(θ, φ). (B.34)
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The spherical harmonics satisfy the orthonormality relation

∫ 2π

0

∫ π

0
Y ∗	′m′(θ, φ)Y	m(θ, φ) sin θdθdφ = δ		′δmm′ (B.35)

and the closure relation

∞∑
	= 0

+	∑
m=−	

Y ∗	m(θ, φ)Y	m(θ ′, φ′) = δ(Ω −Ω ′), (B.36)

where

δ(Ω −Ω ′) = δ(θ − θ
′)δ(φ − φ′)
sin θ

. (B.37)

They also satisfy the following product relation

Y	1m1(θ, φ)Y	2m2(θ, φ) =
	1+ 	2∑
	=|	1−	2|

[
(2	1 + 1)(2	2 + 1)

4π(2	+ 1)

]1/2

(	1m1	2m2|	m1 + m2)

× (	10	20|	0)Y	m1+m2(θ, φ), (B.38)

where (	1m1	2m2|	m1+m2) are Clebsch–Gordan coefficients defined in
Appendix A. Using the result that Y10(θ, φ) = (3/4π)1/2 cos θ , (B.38) yields the
recurrence relation

cos θ Y	m(θ, φ) =
[
(	+ m + 1)(	− m + 1)

(2	+ 1)(2	+ 3)

]1/2

Y	+1m(θ, φ)

+
[
(	+ m)(	− m)

(2	− 1)(2	+ 1)

]1/2

Y	−1m(θ, φ). (B.39)

Another useful relation which follows from (B.21) and (B.22) is

sin θ
∂

∂θ
Y	m(θ, φ) = 	

[
(	+ m + 1)(	− m + 1)

(2	+ 1)(2	+ 3)

]1/2

Y	+1m(θ, φ)

− (	+ 1)

[
(	+ m)(	− m)

(2	− 1)(2	+ 1)

]1/2

Y	−1m(θ, φ). (B.40)

Other recurrence relations can be obtained by introducing the shift operators

	± = 	x ± i	y = exp(±iφ)

(
± ∂
∂θ
+ i cot θ

∂

∂φ

)
. (B.41)
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We find that

	±Y	m(θ, φ) = [(	∓ m)(	± m + 1)]1/2Y	m±1(θ, φ), (B.42)

	+Y		(θ, φ) = 0, (B.43)

	−Y	−	(θ, φ) = 0. (B.44)

The orthonormality relation (B.35) and the product relation (B.38) enable the fol-
lowing integral over three spherical harmonics to be evaluated

∫ 2π

0

∫ π

0
Y ∗	3m3

(θ, φ)Y	1m1(θ, φ)Y	2m2(θ, φ) sin θdθdφ

=
[
(2	1 + 1)(2	2 + 1)

4π(2	3 + 1)

]1/2

(	1m1	2m2|	3m3)(	10	20|	30). (B.45)

Another important relation is the spherical harmonic addition theorem

Y	0(θ, 0) =
(

4π

2	+ 1

)1/2 +	∑
m=−	

Y ∗	m(θ1, φ1)Y	m(θ2, φ2), (B.46)

where (θ1, φ1) and (θ2, φ2) are the spherical polar angles of two vectors r1 and r2
and θ is the angle between these vectors. Using the result that

Y	0(θ, φ) =
(

2	+ 1

4π

)1/2

P	(cos θ), (B.47)

the addition theorem can be written as

P	(cos θ) = 4π

2	+ 1

+	∑
m=−	

Y ∗	m(θ1, φ1)Y	m(θ2, φ2). (B.48)

A further useful formula can be derived from the generating function satisfied by
the Legendre polynomials, (B.2), which we write here as

1

|r1 − r2| =
∞∑
	= 0

r	<
r	+1
>

P	(cos θ), (B.49)

where θ is the angle between the vectors r1 and r2 and r< is the smaller and r> is
the larger of r1 and r2. Using (B.48) we can write (B.49) as

1

|r1 − r2| =
∞∑
	= 0

+	∑
m=−	

4π

2	+ 1

r	<
r	+1
>

Y ∗	m(θ1, φ1)Y	m(θ2, φ2). (B.50)
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Also we have

exp(ik|r1 − r2|)
|r1 − r2| = ik

∞∑
	= 0

(2	+ 1) j	(kr<)h
(1)
	 (kr>)P	(cos θ), (B.51)

where j	 and h(1)	 are, respectively, spherical Bessel and spherical Hankel func-
tions of the first kind (see Appendix C). Finally, the plane wave exp(ik · r) can be
expanded in spherical harmonics as

exp(ik · r) = 4π
∞∑
	= 0

+	∑
m=−	

i	 j	(kr)Y ∗	m(θk, φk)Y	m(θ, φ), (B.52)

where (θk, φk) and (θ, φ) are the spherical polar angles of the two vectors k and r,
respectively. If we use the addition theorem (B.48) and choose the z-axis to coincide
with the direction of k then (B.52) reduces to the partial wave expansion

exp(ik · r) =
∞∑
	= 0

(2	+ 1)i	 j	(kr)P	(cos θ). (B.53)

Explicit expressions for the first few spherical harmonics are

Y00(θ, φ) =
(

1

4π

)1/2

,

Y10(θ, φ) =
(

3

4π

)1/2

cos θ,

Y1±1(θ, φ) = ∓
(

3

8π

)1/2

sin θ exp(±iφ),

Y20(θ, φ) =
(

5

16π

)1/2

(3 cos2 θ − 1),

Y2± 1(θ, φ) = ∓
(

15

8π

)1/2

sin θ cos θ exp(±iφ),

Y2± 2(θ, φ) =
(

15

32π

)1/2

sin2 θ exp(±2iφ),

Y30(θ, φ) =
(

7

16π

)1/2

(5 cos3 θ − 3 cos θ),

Y3±1(θ, φ) = ∓
(

21

64π

)1/2

sin θ(5 cos2 θ − 1) exp(±iφ),
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Y3±2(θ, φ) =
(

105

32π

)1/2

sin2 θ cos θ exp(±2iφ),

Y3±3(θ, φ) = ∓
(

35

64π

)1/2

sin3 θ exp(±3iφ). (B.54)

It follows that we can write the first-order (	 = 1) spherical harmonics in terms of
the Cartesian coordinates x , y and z as

Y1m(θ, φ) =
(

3

4π

)1/2 1

r

⎧⎪⎨
⎪⎩
− 1√

2 (x + iy), m = 1,

z, m = 0,
− 1√

2 (x − iy), m = −1.
(B.55)

Finally, we find it convenient to define two-particle angular functions
Y	1	2 L ML (r̂1, r̂2) which are simultaneous eigenfunctions of the square of the total
orbital angular momentum operator L2 and its z-component Lz of two particles
labelled 1 and 2, where

L = �1 + �2 and Lz = 	1z + 	2z . (B.56)

It follows from (A.15) that these eigenfunctions are defined by

Y	1	2 L ML (r̂1, r̂2) =
∑

m1m2

(	1m1	2m2|L ML)Y	1m1(θ1, φ1)Y	2m2(θ2, φ2), (B.57)

which can be inverted using (A.19) giving

Y	1m1(θ1, φ1)Y	2m2(θ2, φ2) =
∑

L

(	1m1	2m2|L ML)Y	1	2 L ML (r̂1, r̂2). (B.58)

Also, it follows from the symmetry relation (A.22) satisfied by the Clebsch–Gordan
coefficient in (B.57) that these eigenfunctions satisfy

Y	1	2 L ML (r̂1, r̂2) = (−1)	1+ 	2− L Y	2	1 L ML (r̂2, r̂1). (B.59)

In addition, it follows from the orthonormality relation (B.35) satisfied by the spher-
ical harmonics that

∫ ∫
Y ∗	1	2 L ML

(r̂1, r̂2)Y	′1	′2 L ′ML′ (r̂1, r̂2)dr̂1dr̂2 = δ	1	
′
1
δ	2	

′
2
δL L ′δML ML′ , (B.60)

where in this and the above equations we have written r̂1 ≡ (θ1, φ1) and r̂2 ≡
(θ2, φ2) for notational simplicity. These two-particle angular functions are important
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in the quantum theory of two-electron systems, such as electron collisions with
atomic hydrogen or with atoms containing one active electron as in the alkali metal
atoms.

B.4 Phase of Spherical Harmonics

The phase of the spherical harmonics Y	m(θ, φ), defined by (B.32) and (B.33), cor-
responds to that adopted by Condon and Shortley [227] and is referred to in this
monograph as the “Condon–Shortley phase convention”. However, it was pointed
out by Huby [477] that a careful choice of this phase has to be made in proving the
equality of a matrix element to its complex conjugate by means of the time-reversal
operation. In particular, the functions used in the vector addition of angular momenta
must be defined in such a way that the operation of time reversal gives the same form
of the result before and after vector addition. Although the principles involved are
well known, an inconsistency in the choice of phase has led to discrepancies in some
results. This was discussed by Breit [134] in the context of the Wigner and Eisenbud
[972] R-matrix theory of nuclear reactions.

Let us consider the application of the time-reversal operator K (Wigner [966])
on an angular momentum eigenstate ψ jm . We have

Kψ jm = α( j)i2mψ j −m, (B.61)

where α( j) can be varied by multiplying the eigenstates by an arbitrary phase factor
which is independent of m. It is desirable to choose α( j) so that the form of (B.61) is
invariant under the vector addition of angular momenta defined by (A.15). Hence we
require that ifψ j1m1(1) andψ j2m2(2) in (A.15) conform to (B.61) thenψ j1 j2 jm(1, 2)
should do likewise. It is found that when we use the conventional real representation
of the Clebsch–Gordan coefficients ( j1m1 j2m2| jm), this requirement is satisfied by
taking

α( j) = i−2 j (B.62)

so that (B.61) becomes

Kψ jm = (−1) j−mψ j −m . (B.63)

In the case when ψ jm represents a spherical harmonic, we must adopt a new defini-
tion for the phase of this quantity defined by

Y	m(θ, φ) = i	Y	m(θ, φ), (B.64)

where Y	m(θ, φ) is the spherical harmonic defined by (B.32) and (B.33). It then
follows from (B.33) and (B.64) that

Y∗	m(θ, φ) = (−1)	+mY	−m(θ, φ). (B.65)
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This modified phase convention for the spherical harmonics Y	m(θ, φ) was
adopted by Fano and Racah [308], and it was used by Fano [302] in his analysis
of the interaction between configurations with several open shells. Following this
work, this convention was adopted by Hibbert [462, 464] in a general computer
program for atomic structure calculations and by Burke et al. [178], Berrington
et al. [95, 98, 102] and Scott and Taylor [844] in their general computer program for
atomic continuum calculations using the R-matrix method. In this monograph this
phase convention will be referred to as the “Fano–Racah phase convention”.

In practice, the modifications which have to be made to the formulae given in
Appendix B.3 due to the adoption of the Fano–Racah phase convention are small.
However, care has to be taken to ensure that the same phase convention is used
consistently throughout the analysis and calculation of any given process. As an
example, we derive in Appendix D.1 explicit expressions for the long-range mul-
tipole potential coefficients in non-relativistic electron collisions with atoms and
ions using both the Fano–Racah and the Condon–Shortley phase conventions. We
give below formulae obtained using spherical harmonics satisfying the Fano–Racah
phase convention.

We observe first that the spherical harmonics defined by (B.64) satisfy the usual
orthonormality relation given by (B.35), which can be written as

∫ 2π

0

∫ π

0
Y∗	′m′(θ, φ)Y	m(θ, φ) sin θdθdφ = δ		′δmm′ . (B.66)

However, the expression for the product of two spherical harmonics given by (B.38)
now becomes

Y	1m1(θ, φ)Y	2m2(θ, φ) =
∑
	

i	1+ 	2− 	
[
(2	1 + 1)(2	2 + 1)

4π(2	+ 1)

]1/2

× (	1m1	2m2|	m1 + m2)

× (	10	20|	0)Y	m1+m2(θ, φ). (B.67)

Using the result that Y10(θ, φ) = i(3/4π)1/2 cos θ , (B.67) then reduces to

cos θY	m(θ, φ) =
∑
	′

i	− 	′
[

2	+ 1

2	′ + 1

]1/2

(10	m|	′m)(10	0|	′0)Y	′m(θ, φ).
(B.68)

In addition it follows from (B.40), by comparing with (B.39) and after using
(B.68), that

sin θ
∂

∂θ
Y	m(θ, φ) =

∑
	′

i	− 	′ f (	, 	′)
[

2	+ 1

2	′ + 1

]1/2

(10	m|	′m)

× (10	0|	′0)Y	′m(θ, φ), (B.69)
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where

f (	, 	′) =
{
	, 	′ = 	+ 1
−	− 1, 	′ = 	− 1.

(B.70)

Also we find that the integral over three spherical harmonics given by (B.45)
reduces to

∫ 2π

0

∫ π

0
Y∗	3m3

(θ, φ)Y	1m1(θ, φ)Y	2m2(θ, φ) sin θdθdφ

= i	1+	2−	3

[
(2	1 + 1)(2	2 + 1)

4π(2	3 + 1)

]1/2

(	1m1	2m2|	3m3)(	10	20|	30),(B.71)

where the factor i	1+	2−	3 is real since, from (A.27), the Clebsch–Gordan coefficient
(	10	20|	30) vanishes unless 	1 + 	2 − 	3 is even.

The matrix element of the momentum operator ε̂ · p, which occurs in our dis-
cussion of multiphoton processes in intense laser fields in Chaps. 9 and 10, can
be obtained from (B.68) and (B.69). If we take the z-axis to lie along the laser
polarization direction ε̂ then

ε̂ · p = −i
∂

∂z
= −i

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
. (B.72)

Using (B.68) and (B.69) we then obtain the following expression for the matrix
elements

〈Y	m(θ, φ)|ε̂ · p|Y	′m′(θ, φ)〉 = i	
′−	−1

[
2	′ + 1

2	+ 1

]1/2

(10	′m′|	m)

× (10	′0|	0)
(

d

dr
− f (	′, 	)

r

)
δmm′ , (B.73)

where f (	′, 	) is defined by (B.70), with 	 and 	′ interchanged. Also, in our eval-
uation of the matrix elements which occur in multiphoton processes, discussed in
Chaps. 9 and 10 and Appendix D, see, for example, (9.44) and (D.40), it is necessary
to determine the angular integrals which arise in the following matrix element

M = 〈r−1 f (r)Y	m(θ, φ)|ε̂ · p|r−1g(r)Y	′m′(θ, φ)〉. (B.74)

After separating the radial and angular integrals in (B.74) we can rewrite this equa-
tion as

M = 〈r−2 f (r)|Mang|g(r)〉, (B.75)
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where the angular matrix element Mang is defined by

Mang = i	
′−	−1

[
2	′ + 1

2	+ 1

]1/2

(10	′m′|	m)(10	′0|	0)

×
(

d

dr
− f (	′, 	)

r
− 1

r

)
δmm′ . (B.76)

Comparing (B.76) with the angular matrix element defined by (B.73), we see that
the additional factor−1/r , which occurs in (B.76), arises from the operation of ε̂ ·p
on the radial wave function r−1g(r) in (B.74). The angular matrix element Mang
then operates on the reduced radial wave function g(r) in (B.75).

Finally, we note that the expansions of the Legendre polynomial and the plane
wave, given by (B.48) and (B.52), respectively, can be rewritten in terms of spherical
harmonics, defined using the Fano–Racah phase convention as

P	(cos θ) = 4π

2	+ 1

+	∑
m=−	

Y∗	m(θ1, φ1)Y	m(θ2, φ2) (B.77)

and

exp(ik · r) = 4π
∞∑
	=0

+	∑
m=−	

i	 j	(kr)Y∗	m(θk, φk)Y	m(θ, φ). (B.78)

Also, the simultaneous eigenfunctions of the square of the total orbital angular
momentum operator L2 and its z-component Lz of two particles labelled 1 and 2,
defined earlier by (B.57), are now given by

Y	1	2 L ML (r̂1, r̂2) =
∑

m1m2

(	1m1	2m2|L ML)Y	1m1(θ1, φ1)Y	2m2(θ2, φ2), (B.79)

where, as before, these eigenfunctions satisfy the symmetry relation

Y	1	2 L ML (r̂1, r̂2) = (−1)	1+	2−LY	2	1 L ML (r̂2, r̂1) (B.80)

and the orthogonality relation

∫ ∫
Y∗	1	2 L ML

(r̂1, r̂2)Y	′1	′2 L ′ML′ (r̂1, r̂2)dr̂1dr̂2 = δ	1	
′
1
δ	2	

′
2
δL L ′δML ML′ . (B.81)
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B.5 Transformation Under Rotations

In Appendix A.1 we considered a quantum system described by a set of wave func-
tions ψ jm which were simultaneous eigenfunctions of the total angular momentum
operator squared J2 and its z-component Jz belonging to the eigenvalues j ( j + 1)
and m, respectively. In this appendix we consider how these functions transform
under rotations of the axis of quantization with the physical system fixed in space.
An important example of the need for this development arises in electron–molecule
collisions, which we consider in Chap. 11, where the transformation of the collision
wave function from the molecular to the laboratory frame of reference is required in
the calculation of the scattering amplitudes and cross sections.

We specify a general rotation by three Euler angles α, β and γ . We adopt a right-
handed coordinate system, as used by Rose [797], Edmonds [284] and Fano and
Racah [308]. The Euler angles are defined by the following three rotations which
are performed successively, as illustrated in Fig. B.1:

i. A rotation about the z-axis through an angle α (0 ≤ α < 2π ) giving the new
coordinate axes x ′, y′, z′, as illustrated in Fig. B.1 (i).

ii. A rotation about the new y′-axis through an angle β (0 ≤ β < π ) giving the
new coordinate axes x ′′, y′′, z′′, as illustrated in Fig. B.1 (ii).

iii. A rotation about the new z′′-axis through an angle γ (0 ≤ γ < 2π ) giving the
final coordinate axes x ′′′, y′′′, z′′′, as illustrated in Fig. B.1 (iii).

The Euler angles α, β, γ are each defined by a positive or zero right-hand screw
rotation.

We now consider the effect on the wave function of a particle due to a rota-
tion of the coordinate system through the Euler angles α, β, γ . The wave func-
tion ψ(x, y, z) in the original coordinate system is related to the wave function

Fig. B.1 Right-handed
coordinate system showing
the Euler angles α, β, γ

(i) zz

x

x
y

yα

(ii) zz

x

x

y , y

β

(iii) z z

x
x

y

y

γ
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ψ ′(x ′, y′, z′) in the rotated coordinate system by the product of three unitary opera-
tors as follows:

ψ ′ = R(α, β, γ )ψ = Rγ Rβ Rαψ, (B.82)

where the operators Rα , Rβ and Rγ correspond to successive rotations about the z-,
y′- and z′′-axes, respectively. For an infinitesimal rotation dθ about the z-axis we
find that

Rψ(x, y, z) = (1− idθ Jz)ψ(x, y, z), (B.83)

where the angular momentum operator Jz , introduced in this equation, and the
corresponding angular momentum operators Jx and Jy , obtained by infinitesimal
rotations about the x- and y-axes, respectively, are defined by

Jx = −i

(
y
∂

∂z
− z

∂

∂y

)
, (B.84)

Jy = −i

(
z
∂

∂x
− x

∂

∂z

)
, (B.85)

Jz = −i

(
x
∂

∂y
− y

∂

∂x

)
. (B.86)

It follows from (B.83) that a finite rotation about the z-axis can be written as

Rψ = exp(−iθ Jz)ψ. (B.87)

Hence, the sequence of rotations defined by the Euler angles α, β, γ in (B.82) are
represented by the operator

R(α, β, γ ) = exp(−iγ Jz′′) exp(−iβ Jy′) exp(−iα Jz), (B.88)

where Jz , Jy′ and Jz′′ are the components of J along the z-, y′- and z′′-axes, respec-
tively, in Fig. B.1. We can also show that the operator R(α, β, γ ) in (B.88) can
be expressed in terms of rotations made in the original coordinate system by the
equation

R(α, β, γ ) = exp(−iα Jz) exp(−iβ Jy) exp(−iγ Jz), (B.89)

which correspond to a rotation γ about the z-axis, followed by a rotation β about
the y-axis and finally a rotation α about the z-axis. We observe that since the
above equations have been obtained using the commutation relations satisfied by
the orbital angular momentum operators, defined by (B.84), (B.85) and (B.86), they
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are valid for general angular momentum operators satisfying these commutation
relations.

The matrix elements of the rotation operator R(α, β, γ ) in (B.82) are defined by
the equation

D j
m′m(α, β, γ ) = 〈ψ jm′ |R(α, β, γ )|ψ jm〉, (B.90)

where j is a conserved quantum number since J2 commutes with each term in the
expression for R(α, β, γ ) defined by (B.89). Also when ψ in (B.82) is taken to be
ψ jm we obtain

R(α, β, γ )ψ jm =
∑
m′

D j
m′m(α, β, γ )ψ jm′ . (B.91)

The quantities D j
m′m(α, β, γ ) in (B.90) and (B.91) are known as Wigner rotation

matrices.
In order to obtain an explicit expression for D j

m′m(α, β, γ ) we substitute (B.89)
into (B.90) giving

D j
m′m(α, β, γ ) = 〈ψ jm′ | exp(−iα Jz) exp(−iβ Jy) exp(−iγ Jz)|ψ jm〉. (B.92)

It follows from (A.6) that Jzψ jm = mψ jm , and hence (B.92) can be written as

D j
m′m(α, β, γ ) = exp(−im′α) d j

m′m(β) exp(−imγ ), (B.93)

where the reduced rotation matrix d j
m′m(β) is defined by

d j
m′m(β) = 〈ψ jm′ | exp(−iβ Jy)|ψ jm〉. (B.94)

Using the Condon–Shortley phase convention, discussed in Appendix B.4, the
reduced rotation matrices are real and are defined by

d j
m′m(β) =

∑
t

(−1)t+m′−m [( j + m)!( j − m)!( j + m′)!( j − m′)!]1/2
( j − m′ − t)!( j + m − t)!(t + m′ − m)!t !

×
(

cos 1
2β
)2 j+m−m′−2t (

sin 1
2β
)m′−m+2t

, (B.95)

where the summation is over all integer values of t such that the arguments of the
factorials are greater than or equal to zero.
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We can show that the reduced rotation matrix satisfies the following symmetry
relations:

d j
m′m(β) = d j

mm′(−β), (B.96)

d j
m′m(β) = (−1)m

′−md j
mm′(β), (B.97)

d j
m′m(β) = (−1)m

′−md j
−m′ −m(β). (B.98)

We can also show that the rotation matrices satisfy the following symmetry
relations:

D j
m′m(−γ,−β,−α) = D j∗

mm′(α, β, γ ), (B.99)

D j
m′m(α, β, γ ) = (−1)m

′−m D j∗
−m′ −m(α, β, γ ). (B.100)

They also satisfy the orthonormality relations

∑
m

D j∗
m′m(α, β, γ )D

j
m′′m(α, β, γ ) = δm′m′′ , (B.101)

∑
m

D j
mm′(α, β, γ )D

j
mm′′(α, β, γ ) = δm′m′′ . (B.102)

These equations follow from (B.91), which corresponds to a unitary transformation
from one set of orthogonal eigenfunctions ψjm to another set of orthogonal eigen-
functions R(α, β, γ )ψ jm , obtained by rotating the coordinate axes. Explicit values

for the reduced rotation matrices d j
m′m are given in Tables B.1, B.2 and B.3 for

j = 1/2, 1 and 3/2, respectively.

Table B.1 Reduced rotation matrices d j
m′m for j = 1

2

m′ m = 1
2 m = − 1

2

1
2 cos 1

2β − sin 1
2β

− 1
2 sin 1

2β cos 1
2β

Table B.2 Reduced rotation matrices d j
m′m for j = 1

m′ m = 1 m = 0 m = −1

1 cos2 1
2β − 1√

2
sinβ sin2 1

2β

0 1√
2

sinβ cosβ − 1√
2

sinβ

−1 sin2 1
2β

1√
2

sinβ cos2 1
2β
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Table B.3 Reduced rotation matrices d j
m′m for j = 3

2 where p = 3 sin2( 1
2β) − 2 and q =

3 cos2( 1
2β)− 2

m′ m = 3
2 m = 1

2 m = − 1
2 m = − 3

2

3
2 cos3 1

2β −√3 cos2 1
2β sin 1

2β
√

3 cos 1
2β sin2 1

2β − sin3 1
2β

1
2

√
3 cos2 1

2β sin 1
2β q cos 1

2β p sin 1
2β

√
3 cos 1

2β sin2 1
2β

− 1
2

√
3 cos 1

2β sin2 1
2β −p sin 1

2β q cos 1
2β −√3 cos2 1

2β sin 1
2β

− 3
2 sin3 1

2β
√

3 cos 1
2β sin2 1

2β
√

3 cos2 1
2β sin 1

2β cos3 1
2β

The spherical harmonics discussed in Appendix B.3 correspond to a particular
example of functions satisfying (B.91). We can write (B.91) in this case as

Y	m(θ
′, φ′) =

∑
m′

D	m′m(α, β, γ )Y	m′(θ, φ). (B.103)

If m = 0 we find, using (B.47) and the spherical harmonic addition theorem (B.48),
that

D	m0(α, β, 0) =
(

4π

2	+ 1

)1/2

Y ∗	m(β, α). (B.104)

The rotation matrices also satisfy the following orthogonality relation

∫ 2π

0

∫ π

0

∫ 2π

0
D j ′∗

m′n′(α, β, γ )D
j
mn(α, β, γ )dα sinβdβdγ

= 8π2

2 j + 1
δ j j ′δmm′δnn′, (B.105)

which reduces to (B.35) satisfied by the spherical harmonics when n = n′ = 0.
We conclude this appendix by observing that the Wigner rotation matrices are

eigenfunctions of the total angular momentum operator of a rigid body whose ori-
entation is specified by the Euler angles (α, β, γ ) and which has two of its principal
moments of inertia equal. The rotational kinetic operator of this body, which corre-
sponds to a symmetric top molecule, is given by

TR = 1

2I1
(	2

1 + 	2
2)+

1

2I2
	2

3, (B.106)

where 	2
1, 	2

2 and 	2
3 are the squares of the components of the angular momentum

operator along the principal axes of inertia which are fixed in the body. The normal-
ized eigenfunctions belonging to this operator are
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φL K M (α, β, γ ) =
(

2L + 1

8π2

)1/2

DL∗
K M (α, β, γ ), (B.107)

where both K and M can assume integral values which go over the range −L to L .
The corresponding eigenenergies E(L , K ) of the rotational kinetic energy operator
can be obtained by writing (B.106) as

TR = 1

2I1
�2 + 1

2

(
1

I2
− 1

I1

)
	2

3, (B.108)

where �2 = 	2
1 + 	2

2 + 	2
3. Hence the eigenenergies are given by

E(L , K ) = 1

2I1
L(L + 1)+ 1

2

(
1

I2
− 1

I1

)
K 2. (B.109)

The rotational eigenfunctions of a general polyatomic molecule are described by the
asymmetric top wave function

ψL Kλ(α, β, γ ) =
(

2L + 1

8π2

)1/2∑
M

aL MλDL∗
K M (α, β, γ ), (B.110)

where the coefficients aL Mλ can be obtained by diagonalizing the rotational kinetic
energy operator

TR = 	2
1

2I1
+ 	2

2

2I2
+ 	2

3

2I3
(B.111)

in the basis of the symmetric top eigenfunctions φL K M (α, β, γ ) defined by (B.107).
These coefficients have been given by King et al. [535, 536] and the rotational
eigenfunctions and eigenfunctions of polyatomic molecules have been discussed
by Herzberg [457].
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