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Preface

Research on processes which occur when electrons, positrons and photons collide
with atoms, ions and molecules has seen a rapid increase in interest, both experi-
mentally and theoretically, in recent years. This is partly because these processes
provide an ideal means of investigating the dynamics of many-particle systems at
a fundamental level and partly because a detailed understanding of these processes
is required in many fields, particularly in the analysis of astronomical observations,
in plasma physics including controlled thermonuclear fusion, in the interaction of
super intense lasers with atoms and molecules, in atmospheric physics and chem-
istry including global warming, in isotope separation, in electrical discharges in
gases and in electron surface interaction processes.

In recent years a number of important advances have been made in both exper-
iment and theory. On the experimental side these advances include the absolute
measurement of cross sections, the development of coincidence techniques, the use
of polarized beams and targets, the development of very high resolution electron
beams, the application of new light sources, the development of femtosecond and
attosecond laser beams and a rapidly increasing number of studies using high-
resolution positron and positronium beams. On the theoretical side these advances
include the development of methods which allow highly accurate excitation and
ionization cross sections to be calculated at intermediate energies, the increasing
ability to determine accurate low-energy cross sections for electron and positron col-
lisions with complex atoms and molecules and the development of non-perturbative
approaches for studying multiphoton processes for many-electron targets. Many of
these theoretical advances have been made possible by the increasing availability
of high-performance parallel computers and the development of general computer
programs which can take advantage of these facilities.

This monograph describes a generalized R-matrix theory of atomic collisions
and its application to the ab initio study of atomic, molecular and optical collision
processes. R-matrix theory was first introduced by Wigner and Eisenbud in the
late 1940s in an analysis of nuclear resonance reactions. These resonances were
described in terms of temporary compound states formed by the colliding nuclei,
which were contained in an internal region of configuration space. The R-matrix,
which represents the complexity of the compound states, relates the radial com-
ponents of the wave function to their derivatives on the boundary of the internal
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region. In the external region it was assumed that the colliding nuclei were weakly
interacting and hence the complexity of the collision process was represented by the
R-matrix. In early work the R-matrix was represented by a few parameters used to
fit the experimental observations and in later work it was calculated directly using
nuclear model potentials. This theory has been widely used in nuclear physics and
developments have been reviewed by many authors.

The realization that R-matrix theory could be developed and applied as an ab
initio approach to study atomic, molecular and optical collision processes began
to emerge in the 1960s as a result of new resonance phenomena observed using
high-resolution electron spectrometers and synchrotron radiation sources. In the
analysis of these experiments it became clear that processes such as resonant elec-
tron — atom collisions and photoionization could be understood and predicted using
R-matrix theory. Following the ideas introduced by Wigner and Eisenbud, config-
uration space describing the collision process is partitioned into three regions by
spheres of radii ap and a,. In the internal region, where the colliding atomic or
molecular systems interact strongly, the resulting compound system behaves in a
similar way to a bound state. Consequently, configuration interaction approaches,
developed over many years to study bound-state problems, can often be extended to
provide an ab initio treatment of the compound system yielding the R-matrix on the
boundary of the internal region. In the the external and asymptotic regions, where
the colliding systems are weakly interacting, the solution of the coupled equations
describing their relative motion can be rapidly obtained using standard methods,
yielding the scattering amplitudes and cross sections.

The monograph commences by presenting an overview of collision theory in
Part I. As well as giving a self-contained summary of this theory it also provides an
introduction to the basic concepts and notation required in Part II. After an introduc-
tory chapter on potential scattering, Chap. 2 presents an overview of multichannel
collision theory with emphasis on electron collisions with atoms and atomic ions.
Chapter 3 then provides an overview of resonance theory and threshold behaviour.
In these chapters quantities such as the K-matrix, S-matrix, scattering amplitudes
and cross sections, as well as resonance and threshold behaviour, are introduced.

Part II then turns to a detailed discussion of R-matrix theory of atomic, molecular
and optical collisions and its applications. It commences in Chap. 4 with a review
of R-matrix theory in potential scattering which sets the scene for the later chapters
which develop and apply multichannel R-matrix theory to a wide range of collision
processes. One of the first detailed applications of R-matrix theory in atomic, molec-
ular and optical physics, in the early 1970s, was to electron collisions with atoms and
atomic ions, which is reviewed in Chap. 5. More general aspects of R-matrix theory
are also presented in this chapter including multichannel variational principles for
the R-matrix and the inclusion of relativistic effects. Then in subsequent chapters
the theory and application of R-matrix theory to a wide range of collision processes
are discussed including electron collisions at intermediate energies, positron colli-
sions with atoms and ions, photoionization, photorecombination and atoms in fields,
multiphoton processes using Floquet and time-dependent theory, electron, positron
and photon collisions with molecules and electron collisions with transition metal
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oxides and electron transport in semiconductor devices. For all of these applications
general computer programs have been developed and those that have been published
or are generally available are briefly reviewed.

The monograph concludes with six appendices which summarize basic mathe-
matical results and computational methods which are used in Parts I and II.

Finally, I wish to recognize my great indebtedness to Sir Harrie Massey and
Richard Buckingham who introduced me to collision theory and the crucial role
of scientific computing when I was a graduate student at University College Lon-
don in the 1950s. Also, this monograph could not have been written without the
inspiring atmosphere that Sir David Bates established in the Department of Applied
Mathematics and Theoretical Physics at the Queen’s University of Belfast where I
have been privileged to work for the last 43 years. I also wish to take this opportu-
nity to acknowledge two leading scientists and friends who made crucial contribu-
tions to the research discussed in this monograph. First, Ugo Fano for his incisive
comments and encouragement over many years, particularly in the 1960s when it
was clear there was a need for an ab initio theory which could accurately describe
and predict the wide range of atomic, molecular and optical resonance phenom-
ena being observed. Second, Mike Seaton for his support and encouragement over
many years and for showing that the R-matrix approach could be used to calcu-
late the vast amount of data required in the analysis of astronomical observations. I
would also like to acknowledge long-term collaborations with Cliff Noble, Jonathan
Tennyson, Klaus Bartschat and Charles Joachain. Throughout my years at Queen’s
University, in addition to many collaborators worldwide, I have been fortunate to
interact and to work with many outstanding members of staff and graduate stu-
dents. In particular it is a pleasure to mention Alan Hibbert, Derek Robb, Donald
Allison, John Mitchell, Keith Berrington, Ken Taylor, Arthur Kingston, Ken Bell,
Stan Scott, Penny Scott, Kevin Dunseath, James Walters, Robin Reid, Patrick Nor-
rington, Charles Gillan, Katrina Higgins, Hugo van der Hart, Cathy Ramsbottom,
David Glass and James Colgan who played a major role in the development of
the theory, computational methods and computer programs and in the calculations
discussed in this monograph.

Belfast, UK Philip G. Burke
March 2011
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Units

Atomic units (a.u.) will be used throughout this monograph. They are such that
h = m = e = 1, where h is Planck’s constant h divided by 27, m is the mass of
the electron and —e is the charge of the electron. Thus the atomic unit of length
ag = h? / me2 &~ 5.292 x 10~ cm, which is the radius of the first Bohr orbit of the
hydrogen atom with infinite nuclear mass. Using this unit of length, collision cross
sections, which have the dimension of an area, are then expressed, either in units
of a3 ~ 2.800 x 10~'7 cm? or in units of a3 ~ 8.797 x 10~!7 cm?. The atomic
unit of time is given by h*/me* = 2.419 x 10~!7 s, while the unit of velocity is
e?/h = 2.188 x 108 cms~!. The atomic unit of energy is e?/ag &~ 27.21 eV, which
is twice the ionization energy of the hydrogen atom in its ground state and twice
the Rydberg unit of energy. The fine-structure constant & = e*/hic ~ 1/137 is
dimensionless, where c is the velocity of light in a vacuum.
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Collision Theory



Chapter 1
Potential Scattering

In this chapter we introduce the basic concepts of atomic collision theory by consid-
ering potential scattering. While being of interest in its own right, this chapter also
provides a basis for our treatment of electron and positron collisions with atoms,
ions and molecules in later chapters in this monograph. We commence in Sect. 1.1
by considering the solution of the non-relativistic time-independent Schrédinger
equation for a short-range spherically symmetric potential. This enables us to define
the scattering amplitude and various cross sections and to obtain explicit expres-
sions for these quantities in terms of the partial wave phase shifts. We also intro-
duce and define the K-matrix, S-matrix and 7-matrix in terms of the partial wave
phase shifts and we obtain an integral expression for the K-matrix and the phase
shift. In Sect. 1.2 we extend this discussion to consider the situation where a long-
range Coulomb potential is present in addition to a short-range potential. We obtain
expressions for the scattering amplitude and the differential cross section for pure
Coulomb scattering and where both a Coulomb potential and a short-range poten-
tial are present. In Sect. 1.3 we turn our attention to the analytic properties of the
partial wave S-matrix in the complex momentum plane and we discuss the connec-
tion between poles in the S-matrix and bound states and resonances. In Sect. 1.4
we extend this discussion of analytic properties to consider the analytic behaviour
of the phase shift and the scattering amplitude in the neighbourhood of threshold
energy both for short-range potentials and for potentials behaving asymptotically as
r—% where s > 2. Also in this section, we consider the threshold behaviour when
a Coulomb potential is present in addition to a short-range potential, corresponding
to electron scattering by a positive or negative ion. Next in Sect. 1.5 we derive
variational principles first obtained by Kohn for the partial wave phase shift and
for the S-matrix. We conclude this chapter by considering in Sect. 1.6 relativistic
scattering of an electron by a spherically symmetric potential. This situation occurs
for relativistic electron scattering energies or when an electron is scattered by heavy
atoms or ions. In this case the time-independent Dirac equation, which takes into
account both the spin and the relativistic behaviour of the scattered electron must
be solved. Finally we note that some of these topics have been discussed in greater
detail in monographs devoted to potential scattering by Burke [158] and Burke and
Joachain [171].

P.G. Burke, R-Matrix Theory of Atomic Collisions, Springer Series on Atomic, Optical, 3
and Plasma Physics 61, DOI 10.1007/978-3-642-15931-2_1,
© Springer-Verlag Berlin Heidelberg 2011



4 1 Potential Scattering
1.1 Scattering by a Short-Range Potential

We initiate our discussion of potential scattering by considering the solution of the
non-relativistic time-independent Schrédinger equation describing the motion of a
particle of unit mass in a potential V (r). We write this equation in atomic units as

(—%v%vm) Y = E¥o). (L.1)
where E is the total energy and ¥ (r) is the wave function describing the motion
of the scattered particle. We assume in this section that the potential V (r) is short
range, vanishing faster than »~! at large distances. We also assume that the potential
is less singular than 2 at the origin.

The solution of (1.1), corresponding to the particle incident on the scattering
centre in the z-direction and scattered in the direction 2 = (0, ¢) defined by the
polar angles 6 and ¢, has the asymptotic form

e1kr

Y ~ 4 f6.9) (1.2)

P
where f (6, ¢) is the scattering amplitude and the wave number k of the scattered
particle is related to the total energy E by

K> =2E. (1.3)
If the potential behaves as r~! at large distances, corresponding to a long-range
Coulomb potential, then logarithmic phase factors must be included in the expo-
nentials in (1.2) to allow for the distortion caused by the Coulomb potential. We
consider this possibility in Sect. 1.2.
The differential cross section can be obtained from (1.2) by calculating the out-
ward flux of particles scattered through a spherical surface r2ds2 for large r divided
by the incident flux and by the element of solid angle d$2. This gives

d
é =1f 0.0 . (1.4)

in units of a% per steradian. The total cross section is then obtained by integrating
the differential cross section over all scattering angles giving

2 pw
Otot =f / | £(6. )I* sin0dodg , (1.5)
0 0

in units of a(z). A further cross section, of importance in the study of the motion of
electron swarms in gases, is the momentum transfer cross section defined by

2r  pm
J— / / £ 0. )P (1 — cos 0) sin0ddg (1.6)
0 0
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In order to determine the scattering amplitude it is necessary to solve (1.1) for
¥ (r) subject to the asymptotic boundary condition (1.2). For low and intermediate
energy scattering this is most conveniently achieved by making a partial wave anal-
ysis. This method was originally used in the treatment of scattering of sound waves
by Rayleigh [779] and was first applied to the problem of scattering of electrons by
atoms by Faxén and Holtsmark [314].

We consider the case of a spherically symmetric “reduced” potential U(r) =
2V (r). We can expand the wave function ¥ (r) as

Y(r) =Y Be(k)r~ ug(r) Pe(cos6), (1.7)

=0

where ¢ is the orbital angular momentum quantum number of the particle, P;(cos )
are Legendre polynomials defined in Appendix B and the coefficients By (k) are
determined below by requiring that the asymptotic boundary condition (1.2) is sat-
isfied. The equation satisfied by the reduced radial wave function u; (), which does
not include the r—! factor in (1.7), is determined by substituting (1.7) into (1.1),
premultiplying by Py(cos 6) and integrating with respect to cos 6. We find that u, (r)
satisfies the radial Schrodinger equation

2
(d— _teth —U(r)+k2> ue(r) =0. (1.8)
dr? 72

We note that the effective potential in this equation is the sum of the reduced poten-
tial U (r) and the repulsive centrifugal barrier term £(€+ 1)/ r2. We also remark that
since we are considering real potentials U (r), as well as real energies and angular
momenta, there is no loss of generality in assuming that u,(r) is real.

We look for a solution of (1.8) satisfying the boundary conditions

~ +1
ue(0) o +

ue(r) ey s¢(kr) + cg(kr) tan§p (k) , (1.9)

— 00

where 7 is a normalization factor and s¢(kr) and c¢(kr) are solutions of (1.8) in the
absence of the potential U (r), which are, respectively, regular and irregular at the
origin. We show in Appendix C.2 that they can be written for integral values of ¢ in
terms of spherical Bessel and Neumann functions j;(kr) and n,(kr) as follows:

wkr

se(kr) = krje(kr) = (—

1
2
5 ) Joy1(kr) ~ sin(kr — $em) (1.10)

and

co(kr) = —krng(kr) = (=1)° <”Tkr>2 J_, 1Gkr) ~ cos(kr —3tm). (L11)
—t=3 r—0o0



6 1 Potential Scattering

The remaining quantity in (1.9) is the partial wave phase shift 8, (k) which is a real
function of the wave number k when the reduced potential U(r), energy E and
angular momentum ¢ are real.

It is also convenient to introduce the S-matrix, whose matrix elements are defined
in terms of the phase shifts. We first note that (1.8) satisfied by u, (r) is homogeneous
so that ug(r) is only defined up to an arbitrary multiplicative complex normalization
factor N. Hence it follows from (1.9) that

up (r) ~ Nlse(kr) + ce(kr) tan 8y (k)] (1.12)

is also a solution of (1.8) for arbitrary N. If we choose N = —2icos 8¢ exp(id¢) then
we can rewrite (1.12) as

ug(r)r_':oo exp(—ify) — exp(ify) Se (k) , (1.13)

where 6, = kr — %Zn. The quantity S¢(k) in (1.13) is then a diagonal element of
the S-matrix defined by

1+iKe(k)

Se(k) = exp[2id¢ (k)] = ToiK0

(1.14)

where we have also introduced the K-matrix, whose diagonal elements are defined
by

Ky (k) = tandy (k) . (1.15)

We see from (1.9) that the phase shift, and hence the K-matrix, is a measure of the
departure of the radial wave function from the form it has when the potential U (r)
is zero.

We can obtain useful integral expressions for the K-matrix and the phase shift.
We consider the solution v¢(7) of the radial Schrodinger equation, obtained from
(1.8) by setting the potential U (r) = 0. Hence v, (r) satisfies the equation

(d2 e+

s s k2> v (r)=0. (1.16)

We choose vy (r) to be the regular solution of this equation, given by

ve(r) = s¢(r), (1.17)

where sy (7) is defined by (1.10). We then premultiply (1.8) by v (r), premultiply
(1.16) by ue(r) and then integrate the difference of these two equations from r = 0
to co. We obtain
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oo d2u£ dzUZ oo
/0 <vg(r)d7 — ug(r)dj) dr = /0 ve (MU (r)ug(r)dr . (1.18)

The left-hand side of this equation can be evaluated using Green’s formula and
the boundary conditions satisfied by uy(r) and ve(r), given by (1.9) and (1.10),
yielding the result —k tan 8, (k). We then substitute for vy (r) in terms of jy(kr) on
the right-hand side of (1.18) using (1.10) and (1.17). Combining these results we
find that (1.18) reduces to

K¢(k) =tande(k) = — /00 JeCkr)U (ryug(ryrdr, (1.19)
0

which is an exact integral expression for the K -matrix element and the phase shift.
If the potential U (r) is weak or the scattered particle is moving fast, the distortion
of ug(r) in (1.19) will be small. In this case u,(r) can be replaced by vy (r) and, after
using (1.10) and (1.17), we find that (1.19) reduces to

KB(k) = tan 88 (k) = —k / - U(r) j}kryridr . (1.20)
0

This is the first Born approximation for the K-matrix element and the phase shift
which we will use when we discuss effective range theory for long-range potentials,
in Sect. 1.4.2.

We will also need to consider solutions of (1.8) satisfying the following orthonor-
mality relation

/ [ (k.| ', e = 5B — B, (1.21)
0

where we have displayed explicitly the dependence of the solution uév (r) on the
wave number k and where [ufzv (k, r)]* is the complex conjugate of u 2’ (k,r). Also
in (1.21) we have introduced the Dirac §-function [263], which can be defined by
the relations
o0
§(x) =0forx #0, / S(x)dx =1. (1.22)
—0oQ
Of particular importance in applications are the following three solutions satisfying
(1.21), corresponding to different choices of the normalization factor N in (1.12).
Using (C.53) and (C.54) we define the real solution

ugk,r) ~ (%) * [sin6y + cos 6, Ko (O1[1 + K201} | (1.23)

the outgoing wave solution

+ 2\2r1. —1 .
u, (k, r)r_:«OO (g) [sm O¢ + (21)  exp(ifp) Ty (k)] (1.24)
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and the ingoing wave solution

1
2\2
uy (k.r) ~ (-) [sin 0, — (2) " exp(—if) T} (k)] , (1.25)
r—oo \ Tk
where in (1.24) and (1.25) we have introduced the T-matrix element Ty (k) which is
related to the K-matrix and the S-matrix elements by

Tk = 2KB g -1 1.26

(0= 1 =S — 1. (1.26)

It is clear that if the reduced potential U (r) is zero so that there is no scattering, then
the phase shift (k) = 0 and hence Sy(k) = 1 and Ty(k) = 0.

We are now in a position to determine an expression for the scattering amplitude
in terms of the phase shifts. To achieve this we expand the plane wave term in
(1.2) in partial waves and equate it with the asymptotic form of (1.7). The required
expansion of the plane wave term in terms of Legendre polynomials, discussed in
Appendix B.1, is

eke = Z(zz + it jy (kr) Pe(cos ) . (1.27)
=0

Since the second term in (1.2) contributes only to the outgoing spherical wave in
(1.7), we can determine the coefficients B (k) by equating the coefficients of the
ingoing wave e % in (1.7) and (1.27). Using (1.9), (1.10), and (1.11) we find that

By (k) = k=120 + 1)i¢ cos 8¢ (k) explide (k)] . (1.28)

Substituting this result into (1.7) and comparing with (1.2), then gives the following
expression for the scattering amplitude:

1 & .
£0.9) =7 g(ze + 1){exp[2id¢ (k)] — 1} Py(cos ) . (1.29)

We notice that the scattering amplitude does not depend on the azimuthal angle ¢
since we have restricted our consideration to an incident beam in the z-direction
scattering from a spherically symmetric potential. Also, for short-range potentials
considered in this section, 8¢ (k) tends rapidly to zero as £ tends to co and hence the
summation in (1.29) gives accurate results at low energies when only a few terms
are retained.

An expression for the total cross section is obtained by substituting (1.29) into
(1.5). We obtain

o0 477: o0
Crot = Zoz =7 Z(zz + 1) sin? 8¢ (k) , (1.30)
=0 =0
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where oy is called the partial wave cross section. Also substituting (1.29) into (1.6)
yields the following expression for the momentum transfer cross section:

4 o0
on =3 D€+ D sind[p41(0) — 8 (K] (1.31)

=0

Finally, we observe that the imaginary part of the scattering amplitude in the
forward direction can be related to the total cross section. Since Py(1) = 1 we
obtain from (1.29)

Im f(0 =0,¢) = % Y @+ 1)sin® 5, (k) . (1.32)
£=0

Comparing this result with (1.30) gives immediately
4
Otot = 71111 fO=0,¢), (1.33)

which is known as the optical theorem [316]. This result, which can be generalized
to multichannel collisions, can be shown to be a direct consequence of conservation
of probability.

We conclude our discussion of scattering by a short-range potential by observing
that the procedure of adopting a partial wave analysis of the wave function and the
scattering amplitude is appropriate at low and intermediate energies when only a
relatively small number of partial wave phase shifts are significantly different from
zero. This situation is relevant to our discussion of R-matrix theory of atomic colli-
sions in Part IT of this monograph. On the other hand, at high energies this procedure
breaks down because of the large number of partial waves which are required to
determine the cross section accurately. It is then necessary to obtain a solution of the
Schrodinger equation (1.1) which directly takes account of the boundary condition
of the problem. This is the basis of the procedure introduced by Lippmann and
Schwinger [600]. In this procedure the Schrodinger equation (1.1) is written in the
form

(E = Ho)y(r) = V(I)y(r). (1.34)

We can then solve this equation to yield a solution with the required asymptotic
form by introducing the Green’s function for the operator on the left-hand side. We
obtain the formal solution

yE=¢+ ;Vt/fi, (1.35)
E — Hy L ie

where the term +ie in the denominator defines the contour of integration past the
singularity £ = Hy and ¢ is the solution of the free-particle wave equation

(E — Hy)p =0. (1.36)



10 1 Potential Scattering

The Lippmann—Schwinger equation (1.35) is the basic integral equation of time-
independent scattering theory and an iterative solution of this equation yields the
Born series expansion. The solution of this equation is discussed in detail in the
monographs by Burke [158] and Burke and Joachain [171].

1.2 Scattering by a Coulomb Potential

The discussion in the previous section must be modified when a long-range
Coulomb potential is present in addition to the short-range potential V (r).

We consider first scattering by a pure Coulomb potential acting between a particle
of unit mass and charge number Z; and a particle of infinite mass and charge number
Z,. The time-independent Schrodinger equation is then

1
(—EVZ + Vc(r)> Ye(r) = Ee(r), (1.37)
where the Coulomb potential
VAV
V.(r) = , (1.38)
r

in atomic units. The solution of (1.37) was obtained by Gordon [403] and Temple
[913] by introducing parabolic coordinates

C=r—z, E=r+z, ¢=tan'2. (1.39)
X

In these coordinates the Laplacian becomes

ST
crelac b ot "9 )| Treagr '

The solution of (1.37), corresponding to an incident wave in the z-direction and an
outgoing scattered wave, can then be written as

Ve(r) = exp(—ymm I (L+ine’ 1 Fi(=in: 1 ik¢) | (1.41)
where
B _ZiZs
) 1.42
== Tk (1.42)
and I"(z) is the gamma function. Also the function ; F7 is defined by
a(a+1) 72
Fi(a;b;2) =1+ — —_—
Fiaibio) = 147 ARNTCESIE]
r re
Z (a+n)I"(b) 2" (1.43)

= I'(a)I'(b+n) n!
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and is related to the confluent hypergeometric function Mj ;,(z), defined by
Whittaker and Watson [964], by

My (z) = 2" 2 exp(=12) 1IFIA +m —k;2m + 15 2). (1.44)

The asymptotic form of | F} can be obtained by writing

1Fi(a; b; 2) = Wi(a; b; 2) + Wala; b 2) (1.45)
where
Wila; b;z) ™~ Lb)(— Y *v(a;a—b+1;—z7), —7m <arg(—z) <7
N s T —ay O T s
(1.46)
and
I'® :a-b
Wa(a; by z) ~ ——=e*z%v(l —a;b—a;z), -mw<arg(z)<m, (1.47)
lzl=>00 I (a)
where v has the asymptotic expansion
+1 +1
v(oz;ﬂ;z)=1+ﬁ+a(a )ﬂz(ﬂ )+~-~
Z 21z
o0
r r —n
:Z (n+a)"(n+p) (2) . (1.48)
= '(a)'(B) n!

The W) term corresponds to the Coulomb-modified incident wave and the W, term
to the outgoing scattered wave in . (r). Thus we can write

Ye(r) ~ T+ f(0)], (1.49)
|r—z|—>o00
where
772
I = explikz + inIn(k¢)] <1 + k_C + - ) (1.50)
i
and
o (1 +in)?
J =r" " explikr —inIn(2kr)] { 1 + k—§ + ). (1.51)
i
The Coulomb scattering amplitude is then given by
fu(0) = ——— 1 exp[—inInsin2(6,2) + 2ioo], (1.52)

2k sin(6/2)
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where

op =arg I'(1 +1n), (1.53)
and the differential cross section is given by

do, 2 0’ (Z12)*
=|fc(O)]" = T A = T4 .
ds2 4k?sin*(0/2)  16E?sin*(0/2)

(1.54)

This result was first obtained by Rutherford [802] using classical mechanics to
describe the scattering of «-particles by nuclei. Since the differential cross section
diverges like 9~* at small 6, the total Coulomb cross section obtained by inte-
grating over all scattering angles is infinite. A further difference from the result
obtained in Sect. 1.1 for scattering by short-range potentials is the distortion of
both the incident and scattered waves, defined by (1.50) and (1.51), by logarith-
mic phase factors. These phase factors are a direct consequence of the long-range
nature of the Coulomb potential. However, we see that they do not affect the form
of the differential cross section for scattering by a pure Coulomb potential given
by (1.54).

For electron—ion scattering problems of practical interest, the interaction poten-
tial experienced by the scattered electron is not pure Coulombic but is modified at
short distances by the interaction of the scattered electron with the target electrons.
In this case it is appropriate at low scattering energies to make a partial wave analysis
of the scattering wave function in spherical polar coordinates, as in Sect. 1.1 where
we considered short-range potentials.

We commence our discussion by making a partial wave analysis of the pure
Coulomb scattering problem. Following (1.7) we expand the wave function in (1.37)
in partial waves as

Ve (r) = Z BE(k)r ™ ul (r) Py(cos 6) (1.55)
=0

where uj,(r) satisfies the radial Schrodinger equation

2 e+ .
(@ - - U (r) +k2) uG(r)y =0, (1.56)

and where

PYAVA)
Uc(r) =2Ve(r) = —

(1.57)

is the reduced Coulomb potential. Equation (1.56) is the Coulomb wave equation
that has been discussed extensively in the literature (e.g. by Yost et al. [984], Hull
and Breit [479], Froberg [343] and Chap. 14 of Abramowitz and Stegun [1]). The
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solutions of this equation, which are regular and irregular at the origin, known as
Coulomb wave functions, are defined, respectively, by

Fe(n kr) = Co(m)e® (kr)t | Fi(€ + 1 +in; 20 + 2; —2ikr)
~ sin(kr — Y¢m —nn2kr + o) (1.58)
r—00

and

Ge(n, kr) = iCo(me* (kr) LWy (€ + 1 + in; 2€ + 2; —2ikr)
— Wl + 1 +in; 2€ + 2; —2ikr)]
~ cos(kr — 3ex — nIn2kr + oy), (1.59)
r—0o0 2

where 7 is defined by (1.42). Also in (1.58) and (1.59)

28 exp(—3 )| (€ + 1 +in)|

C =
e(m rQ2e+2)
2t A
= Co()) ———— 24 phHle, 1.60
O(n)”%H)sljl(s +1) (1.60)
with
cotm = (=21 )" 1.61
o(n) = m , (1.61)
and oy is the Coulomb phase shift
op=argl'(L+1+1in). (1.62)

In order to determine the coefficients By (k) in (1.55), we choose uj(r) to be
the regular Coulomb wave function Fy(n, kr) and require that ¥.(r) has the nor-
malization defined by (1.41). Using the orthogonality properties of the Legendre
polynomials and matching . (r), given by (1.41) and (1.55), in the neighbourhood
of r = 0 gives

B{(k) = k~'(2¢ + Di‘ exp(ioy) , (1.63)
so that
Ye(r) = Y 2L+ Di expliog) (kr) ™' Fo(n. kr) Py(cos6) . (1.64)
£=0

This equation reduces to the expansion of the plane wave given by (1.27) when
n=0.
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We now define the Coulomb S-matrix, in analogy with our discussion of scat-
tering by a short-range potential, by considering the asymptotic form of the ¢th
partial wave component of . (r). From (1.58) and (1.64) this component has the
asymptotic form

Fe(n.kr) ~ N [exp(—i6f) — exp(i6f) S (k)] . (1.65)

where the normalization factor N = —exp(—ioy)/2i, the phase factor 6 =
kr — %Zﬂ — nIn2kr and the Coulomb S-matrix S; (k) is given by

I+ 1+in)

S; (k) = exp(Riog) = Feri—in

(1.66)

It follows from the asymptotic properties of the Gamma function that the Coulomb
S-matrix is analytic in the entire complex k-plane except for poles where £+1+4in =

—nwithn =0,1,2,....Using (1.42) we see that the corresponding values of k are
given by
YAYA) _
i=—1i——, n=0,1,2,.... (1.67)
n+e+1

Thus for an attractive Coulomb potential (Z1Z, < 0) the poles of S; (k) lie on the
positive imaginary axis of the complex k-plane. At these poles it follows from (1.65)
that the wave function decays exponentially asymptotically and hence these poles
correspond to the familiar bound states with energies

272
_LZiz

S =Ll L2, (1.68)
n

n =

where we have introduced the principal quantum number n = n 4+ £ + 1. The
location of poles in the S-matrix in the complex k-plane, corresponding to bound
states and resonances, is discussed further in Sect. 1.3.

We now consider the situation where an additional short-range potential V (r),
which vanishes asymptotically faster than 7!, is added to the Coulomb potential.
Again, carrying out a partial wave analysis as in (1.7), we expand the total wave
function as follows:

Y@ =Y Bk~ uj(r)Py(cosh), (1.69)
£=0

where u; (r) satisfies the radial Schrodinger equation

<d2 L +1)

s Rl - U@ —Uc(r)+k2) uy(r) =0, (1.70)
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where U (r) = 2V (r) and, following (1.57), the reduced Coulomb potential U.(r) =
2V.(r) = 2Z1Z,/r. For large r, the potential U (r) can be neglected compared
with U.(r) and (1.70) then reduces to the Coulomb equation (1.56). The solution
of (1.70) that is regular at the origin can thus be written asymptotically as a linear
combination of the regular and irregular Coulomb wave functions Fy(n, kr) and
G(n, kr). Hence, in analogy with (1.9), we look for a solution satisfying the bound-
ary conditions

TN nrtth,

uz(r) e Fo(n, kr) + G¢(n, kr) tan &, (k) . (1.71)
The quantity §,(k) defined by these equations is the phase shift due to the short-
range potential V (r) in the presence of the Coulomb potential V,(r). We note that
8¢ (k) vanishes when the short-range potential is not present and contains all the
information necessary to describe the non-Coulombic part of the scattering.

The coefficients Bj (k) in (1.69) are determined by equating the coefficients of

the ingoing wave in (1.49) and (1.69). This gives

Bg(k) =k! 2¢+ l)iZ cos §¢ (k) exp {i[og + d¢(k)]} . (1.72)

Substituting this result into (1.69) then gives

Y (r) By Ve (r) 4+ (2kr)~! 2(26 + Dt exp(2iog){exp[2id, (k)] — l}HZ‘(n, kr)

—> 00
=0

X Py(cosB), (1.73)

where we have defined the function

H;M (n, p) = exp(ioe) [Fe(n, p) +iGe(n, p)] . (1.74)
We then find that

i —nln2
V), ~ explitks + ko) +[£e0) + f(0)] TR IREDL g 35

where f.(0) is the Coulomb scattering amplitude given by (1.52) and f;(0) is the
scattering amplitude arising from the additional short-range potential V (r). We find
that

1 & . .
fs(0) = T ;(2@ + 1) exp(2io¢){exp[2i¢ (k)] — 1} Py(cos 0) (1.76)

which is analogous to the result given by (1.29) when there is only a short-range
potential.
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The differential cross section can be obtained in the usual way from (1.75) by
calculating the outward flux of particles scattered through a spherical surface 2d 2
for large r per unit solid angle divided by the incident flux. This gives

d—“—| ©) + £
1g = @+ s
= 11O + /0> +2Re [ £10) £,)] . (1.77)

At small scattering angles the Coulomb scattering amplitude will dominate the dif-
ferential cross section giving a 6 ~* singularity in the forward direction. However, at
larger scattering angles f;(6) becomes relatively more important and information on
the phase of f;(0) can be obtained from intermediate angles when the interference
term in (1.77) involving both f,.(6) and f;(6) is important.

Finally we remark that, as is the case for pure Coulomb scattering, because of the
divergence in the forward direction the total cross section obtained by integrating
(1.77) over all scattering angles is infinite.

1.3 Analytic Properties of the S-Matrix

In this section we consider the analytic properties of the partial wave S-matrix,
defined by (1.14), in the complex momentum plane. We show that the poles in the
S-matrix lying on the positive imaginary k-axis correspond to bound states while
poles lying in the lower half k-plane close to the positive real k-axis correspond to
resonances. We also derive an expression for the behaviour of the phase shift and
the cross section when the energy of the scattered particle is in the neighbourhood
of these poles.

We consider the solution u, () of the radial Schrodinger equation (1.8) describ-
ing the scattering of a particle by a spherically symmetric reduced potential U (r)

which we assume is less singular than »~2 at the origin and vanishes faster than r—>
at infinity. Hence we assume
o
f r|U(r)ldr < oo (1.78)
0
and
o
/ r2|U(r)|dr < oo, (1.79)
0

so that the solution uy () satisfies the boundary conditions (1.9).
Following Jost [515], we introduce two solutions f;(%k, r) of (1.8) defined by
the relations

lim eF% fp(xk,r)=1. (1.80)
r—00
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These boundary conditions define f;(k, r) uniquely only in the lower half k-plane
and fy(—k, r) uniquely only in the upper half k-plane. If the potential satisfies
inequalities (1.78) and (1.79) then f;(k,r) is an analytic function of k when
Im k < O for all r, while fy(—k, r) is correspondingly an analytic function of k
when Im k£ > 0 [52]. These regions of analyticity can be extended if we impose
stronger conditions on the potential. Thus if

o0
I(u)=/ e U @r)|dr < oo, preal >0, (1.81)
0

then fy(k, r) is analytic for Im k < /2 while f;(—k, r) is analytic for Im k > —u /2.
Further, if the potential can be written as a superposition of Yukawa potentials

[ e Mr
Ur) = / p () du, (1.82)
I

0 r

where p(u) is a weight function and wg > 0, then fy(k,r) will be analytic in
the complex k-plane apart from a branch cut on the positive imaginary k-axis from
k =1ipp/2 toico while fy(—k, r) will be analytic in the complex k-plane apart from
a branch cut from k = —iug/2 to —ioco. These branch cuts are called Yukawa cuts.
Finally, if the potential vanishes identically beyond a certain distance ag then 7 (1)
defined by (1.81) is finite for all u so that f;(%k, r) are analytic functions of k in
the open k-plane for all fixed values of r, that is, they are entire functions of k.

We can express the physical solution of (1.8), defined by the boundary conditions
(1.9), as a linear combination of fy(+k, r). Let us normalize this solution so that it
satisfies

lim r ' luer) = 1. (1.83)
r—0

From a theorem proved by Poincaré [749], the absence of a k-dependence in this
boundary condition implies that this solution is an entire function of k. The Jost
functions [515] are then defined by

fe(Ek) = WLfe(Ek, ), ue(r)], (1.84)

where the Wronskian W[ f, g] = fg’' — f’g and where the primes denote the deriva-
tives with respect to r. It is straightforward to show from the differential equation
(1.8) satisfied by fy(%k, r) and u,(r) that the Wronskian is independent of r. It is
also convenient to introduce other Jost functions by the equation

k' exp(E3ilm) -

Je(Ek) = 20+ Dl Je(£k) . (1.85)

The functions fy(+k) and f;(—k) are continuous at k = 0 and approach unity at
large |k| for Im & < 0 and > 0, respectively.
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‘We now use the relations

W[fz(:l:kv r)? fe(:Fk’ r)] = +2ik )
Wl fe(Ek,r), fe(£k,r)] =0, (1.86)

which follow from (1.80) and the definition of the Wronskian, to write uy(r) in the
form

| R ~
ue(r) = 2Tk[fz(k)fz(—k, r) — fe(=k) fe(k, r)]. (1.87)

Comparing this equation with the asymptotic form (1.13) and using (1.80) then
yields the following expression for the S-matrix elements:

e k) folk)
fe(—=k)  fe(=k)~

Se(k) =e (1.88)

This equation relates the analytic properties of the S-matrix with the simpler analytic
properties of the Jost functions.

In order to study the analytic properties of the Jost functions further we return to
(1.8) satisfied by the functions f;(%k, r). In particular we consider

<d2 L+ 1)

- U+ k2) fo(—k.r) =0. (1.89)

We now take the complex conjugate of this equation, which gives

& e+ 2\ px
(ﬁ — =5 U +k 2) fi(=k,r)=0, (1.90)

where we have assumed that r, £ and U (r) are real but k can take complex values.
In addition, it follows from (1.89) that f;(k*, r) is a solution of

2
CI——&JFI)—UU)H*2 fok*,r)=0. (1.91)
dr2 r2
Now from (1.80)
i (—k, r)r:Oo exp(—ik*r) (1.92)

and

Sfe(k*, r)r;voo exp(—ik*r), (1.93)
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so that f"(—k,r) and fy(k*,r) satisfy the same boundary conditions. Since these
functions also satisfy the same differential equation, namely (1.90) and (1.91),
respectively, they are equal for all r, for all points in the upper half k-plane and for
all other points which admit an analytic continuation from the upper half k-plane.
Hence in this region

fi(=k,r) = fe(k*,r) (1.94)
and thus from (1.84) the Jost functions satisfy
FE (k) = fe®) . (1.95)

Combining this result with (1.88) we find that the S-matrix satisfies the following
symmetry relation

sine o) foe(=k) _ Q2int

Se(k)Se(—k) =e o b (1.96)
and the unitarity relation
Se(k)Sy (k™) = ﬁ&ﬁ*(—k*) = (1.97)
fe(=k) f(=k*)
Also, from (1.96) and (1.97) we obtain the reflection relation
Se(k) = e*7ESF(—k*) . (1.98)

From (1.97), it follows that if k is real then the S-matrix has unit modulus and can
thus be expressed in terms of a real phase shift §; (k) as

Se(k) = expl2id¢ (k)] (1.99)

in agreement with (1.14). In addition it follows from (1.98) that if the S-matrix has
a pole at the point &, then it also has a pole at the point —k* and from (1.96) and
(1.97) it has zeros at the points —k and k*. Thus the poles and zeros of the S-matrix
are symmetrically situated with respect to the imaginary k-axis.

In order to determine the physical significance of poles in the S-matrix we note
from (1.84) that the Jost functions fg(:l:k) are finite for all finite k. Hence it follows
from (1.88) that a pole in the S-matrix must correspond to a zero in f((—k) rather
than a pole in ﬁ(k). Substituting this result into (1.87) and using (1.80) shows
that the physical solution of (1.8) corresponding to a pole in the S-matrix has the
following asymptotic form:

ue(r) ~ Nel”, (1.100)
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where N is a normalization factor. When £ is in the upper half k-plane, it follows
from (1.100) that the corresponding wave function vanishes exponentially and hence
is normalizable. Since the Hamiltonian is hermitian, all normalizable wave functions
must correspond to real energy eigenvalues and hence the corresponding value of
k? must be real. This shows that if a pole in the S-matrix occurs in the upper half
k-plane in the region of analyticity connected to the physical real k-axis it must lie
on the positive imaginary axis. If we write k = ik, where « is real and positive, then
(1.100) becomes

ug(r) ~ Ne™, (1.101)

which clearly corresponds to a bound state with binding energy —«2/2. In the lower
half k-plane the wave function defined by (1.100) diverges exponentially and thus
cannot be normalized. The above arguments based on the hermiticity of the Hamil-
tonian then break down and the corresponding poles are then no longer confined to
the imaginary k-axis.

We present in Fig. 1.1 a possible distribution of S-matrix poles in the complex
k-plane. For potentials satisfying (1.78) and (1.79), only a finite number of bound
states can be supported and these give rise to the poles lying on the positive imagi-
nary axis in this figure. However, an infinite number of poles can occur in the lower
half k-plane. If they do not lie on the negative imaginary k-axis, they occur in pairs
symmetric with respect to this axis, as discussed above. If they lie on the negative
imaginary k-axis, they are often referred to as virtual state poles. Poles lying in the
lower half k-plane and close to the real positive k-axis give rise to resonance effects
in the cross section which will be discussed below. The corresponding resonance
states, defined by the outgoing wave boundary condition (1.100), are often called
Siegert states [876]. Poles lying in the lower half k-plane and far away from the real
positive k-axis contribute to the smooth “background” or “non-resonant” scattering.
The distribution of poles in the complex k-plane has been discussed in detail in a few
cases, most notably by Nussenzveig [700] for scattering by a square well potential.

We now consider an isolated pole in the S-matrix which lies in the lower half
k-plane close to the positive real k-axis. We show that this pole gives rise to

Im &

'

Fig. 1.1 Distribution
of S-matrix poles in the l
complex k-plane. x, poles
corresponding to bound
states; o, poles corresponding
to resonances; ¢, poles * . o
corresponding to background e
scattering; *, conjugate poles
required by the symmetry * <
and unitarity relations;
e, poles corresponding
to virtual states

=~ Re k
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resonance scattering at the nearby real energy. We assume that the pole occurs at
the complex energy

E =E, - }iIl', (1.102)

where E,, the resonance position, and I”, the resonance width, are both real positive
numbers and where from (1.3) we remember that E = %kz. Now from the unitarity
relation (1.97) we see that corresponding to this pole there is a zero in the S-matrix
at a complex energy in the upper half k-plane given by

E =E,+ %il'. (1.103)
For energies E on the real axis in the neighbourhood of this pole, the S-matrix can
be written in the following form which is both unitary and explicitly contains the
pole and zero:

E—E, — i’

Se(k) = exp [2152(k)] i (1.104)
“E 1+

The quantity Sg(k) in this equation is called the “background” or “non-resonant”

phase shift. Provided that the energy E; is not close to threshold, £ = 0, nor to
another resonance then the background phase shift is slowly varying with energy.
Comparing (1.99) and (1.104) we obtain the following expression for the phase
shift:

So(k) = 8 (k) + 85 (k) , (1.105)

where we have written

1
8} (k) = tan™! E2 (1.106)

The quantity 8; (k) is called the “resonant” phase shift which we see from (1.106)
increases through 7 radians as the energy E increases from well below to well
above the resonance position E,. It is also clear from (1.106) that the rapidity of this
increase is inversely proportional to I”, the resonance width.

If the background phase shift 5? (k) is zero then we obtain from (1.30) and (1.106)
the following expression for the partial wave cross section:

152
i

4
op = k—f(zz 1) (1.107)

(E—E)?+ir?’

This expression is called the Breit—Wigner one-level resonance formula first derived
to describe nuclear resonance reactions [135]. We see that at the energy £ = E, the
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partial wave cross section oy reaches its maximum value 47 (2¢ + 1)/ k> allowed by
unitarity and decreases to zero well below and well above this energy.
If the background phase shift 82 (k) is non-zero then the partial wave cross section
can be written as
e+9)* .
1+

4 . 4
o = k—z(zz + 1) sin? 8¢ (k) = k—z(ze +1) o sin 80 (k) , (1.108)

where € is the reduced energy

E—E,
€= —7- (1.109)
I
and ¢ is the resonance shape parameter or line profile index
q = —cotdy(k). (1.110)

The line profile index was introduced by Fano [301] to describe resonant atomic
photoionization processes. It follows from (1.108) that the partial wave cross section
is zero when € = —g and achieves its unitarity limit 47 (2¢ + 1)/k* when € = g~ .
In Fig. 1.2 we illustrate the total phase shift §; (k) and the partial wave cross section
oy for s-wave scattering for four different values of the background phase shift,

2n

In - - +

Phase Shift

Cross Section

12 08 1
Energy (Rydbergs)

Fig. 1.2 The total phase shift §;(k) and the partial wave cross section o, for s-wave resonance
scattering with k,2 = 2E, = 1.0 and I = 0.05 for four different values of the background phase
shift. Case (a), Sg(k) = 0 giving ¢ = o0; case (b), 88(k) = m/4 giving ¢ = —1; case (c),
58(1() = /2 giving g = 0; case (d), 68(1() = 37 /4 giving ¢ = 1. The cross section is given in
na(z) units and the dashed lines are the s-wave unitarity limit 4k >
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which we assume is energy independent. Case (a) with ¢ = oo corresponds to a stan-
dard Breit—Wigner resonance given by (1.107), where the non-resonant background
scattering is zero. Case (c) with ¢ = 0 corresponds to a window resonance where
the background scattering has its maximum value allowed by unitarity. Finally, cases
(b) and (d) are intermediate cases where the resonance shapes are asymmetric.

When several resonance poles lie in the lower half k-plane and close to the pos-
itive real k-axis their effects on the cross section may overlap. In the case of n
resonances we must replace (1.104) by

. " E—E; - M\r;
S = exp [280 0| [ 227,
j=1 E = Ej+ 31l

(1.111)

where the position of the jthpoleis E = E; — %il“j. The total phase shift is then
given by

n 1
_F.
0 -1 25
MMZQ®+§fm E-E
]=

(1.112)

In this case the total phase shift increases through nr radians as the energy increases
from below all the resonances to above all the resonances, provided that the non-
resonant phase shift 82(1{) is slowly varying over this range. The corresponding
cross section will achieve its unitarity limit » times where the total phase shift goes
through an half odd integral multiple of 7 radians and will have n zeros where it
goes through an integral multiple of 7 radians.

1.4 Effective Range Theory

In this section we consider the analytic behaviour of the phase shift and the scat-
tering amplitude in the neighbourhood of threshold energy. We show that there is
a close relationship between the low-energy scattering amplitude and the bound-
state spectrum at negative energies. We consider first the analytic properties for
short-range potentials, where the potential vanishes faster than any inverse power
of the distance. We then extend our discussion to the situation where the poten-
tial behaves asymptotically as r—° where s > 2, which is relevant for low-energy
electron scattering by neutral atoms. Finally, we consider scattering by a Coulomb
potential which is relevant to electron—ion scattering.

1.4.1 Short-Range Potentials

We commence by considering the solution of the radial Schrodinger equation (1.8)
where we assume that the potential U (r) satisfies the condition

Ur)=0, r>a, (1.113)



24 1 Potential Scattering

for some finite radius a. It follows from (1.9) and (1.15) that the solution which is
regular at the origin satisfies the asymptotic boundary condition

ue(r)y = sp(kr) + co(kr)Ke(k), r >a. (1.114)

In order to determine the analytic properties of the K-matrix K (k) we relate it to
the R-matrix R,(E) which we introduce in Sect. 4.1 and which is defined on the
boundary r = a by

ue(a) = Ry(E) (a% — bug> , (1.115)

where b is an arbitrary constant. Substituting (1.114) for uy(r) into (1.115) then
yields

ce(ka) — Re(E)[kacy(ka) — bcy(ka)]
—s¢(ka) + Ry(E)[kas)(ka) — bs¢(ka)]’

[Ke(o)]™" = (1.116)

where s, (kr) and ¢, (kr) are the derivatives of s¢(kr) and c¢ (kr) with respect to the
argument kr.

The analytic properties of the R-matrix are discussed in Sect. 4.1, where we
show that it is a real meromorphic function of the energy with simple poles only on
the real energy axis. The analytic properties of the functions s¢(kr) and c,(kr) and
their derivatives are related to those of the spherical Bessel and Neumann functions
Jje(kr) and ny(kr) defined by (1.10) and (1.11). These functions are discussed in
Appendix C.2, where we show that they can be expanded about z = 0 as follows:

je@) = [2C+ DIt + 0Dy,
ne(x) = —[2C— DN+ 0. (1.117)

Hence k¢~ Ls;(kr), k’esz, (kr), ktcg(kr) and k¢! c,(kr) are entire functions of k2,
that is they are analytic functions of k> for fixed r. It follows from (1.116) that the
M -matrix, which is defined by the equation

M) = P K (o1 (1.118)

is a real analytic function of k> which can be expanded in a power series in k> about
k* = 0. It is also useful to express the 7-matrix element defined by (1.26) in terms
of My (k%). We find using (1.118) that

21k2€+1

Ty(kh) = —————.
Z( ) Mg(kz) — k2¢+1

(1.119)
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We will see in Chap. 3 that this result generalizes in a straightforward way to
multichannel scattering. Also, remembering from (1.15) that Ky(k) = tandg(k),
it follows that we can expand K2+ cot 8 (k) about zero energy in the form

11
K cotdp(k) = —— + Eregkz +O0kY, (1.120)
ag

where ay is called the “scattering length” and r, is called the “effective range”. This
“effective range expansion” or “Blatt—Jackson expansion” was first derived by Blatt
and Jackson [115] and by Bethe [104].

We can obtain a simple physical picture of the s-wave scattering length ag in
terms of the zero-energy wave function. If we adopt the following normalization of
the s-wave reduced radial wave function

uog(r) ~ sinkr + coskrtanég(k), r >a, (1.121)
r—00
then in the limit as the energy tends to zero, we find using (1.120) that

lim ug(r) =k(r —ag), r>a. (1.122)
k—0

It follows that the s-wave scattering length ag is the intercept of the extrapolation
of the asymptote of the zero-energy s-wave reduced radial wave function with the
r-axis.

As an example of the relationship between the s-wave scattering length and the
zero-energy wave function we consider the solution of (1.8) for a square-well poten-
tial. We consider the solution of the equation

d2
<—2 —U(r)+k2> u(r) =0, (1.123)
dr

where the range r = a of the potential U () is taken to equal 1 so that

U(r)=-4A, r<l,
Ur)y=0, r=>1, (1.124)

and the energy E = %kz = 0. Also the sign of the potential strength A is chosen so
that it is positive for attractive potentials and negative for repulsive potentials.

We show in Fig. 1.3, three examples of the solution u(r) of (1.123) and (1.124)
for three different potential strengths. The first example, shown in Fig. 1.3a, cor-
responds to a repulsive potential where the scattering length ag = 0.5, the second
example, shown in Fig. 1.3b, corresponds to a weak attractive potential which does
not support a bound state where ap = —1 and the third example, shown in Fig. 1.3c,
corresponds to a stronger attractive potential which supports one bound state where
ap = 2.
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Fig. 1.3 The s-wave zero-energy reduced radial wave function u(r), represented by the full lines,
showing the scattering length ag for three square-well potentials with unit radius: (a) a repulsive
potential with potential strength A = —3.667, giving ap = 0.5; (b) a weak attractive potential with
potential strength A = 1.359, giving ap = —1; (c) a stronger attractive potential with potential
strength A = 4.116, giving ap = 2. Also, represented by the dashed lines in (a) and (b) are the
extrapolations of u(r) for » > 1 back to its intercept r = ag with the r-axis

The relationship between the s-wave scattering length ag and the potential
strength A is obtained by solving (1.123) and (1.124) subject to the condition that
the solution u(r) and its derivative are continuous on the boundary » = 1. We can
show that the relationship for repulsive potentials A < 0 is

apg=1-— o ! tanho, where o = —A, (1.125)
and the relationship for attractive potentials A > 0 is
ap =1 —a! tan o, where o> = A . (1.126)

The dependence of the scattering length ag on the potential strength A, given
by (1.125) and (1.126), is shown in Fig. 1.4 for A in the range —30 < A < 30,
where we have indicated by crosses on this figure the (A, ag) values corresponding
to the three solutions shown in Fig. 1.3. For an infinitely strong repulsive potential,
or hard-core potential, where A = —o0, the scattering length equals the range of
the potential, which is unity in this example. As the potential strength increases
towards attractive values, the scattering length decreases and passes through zero
when A = 0, becoming infinitely negative when the asymptote of the solution u (r)
is parallel to the r-axis. We see from (1.126) that this occurs when A = (7r/ 2)2. A
further increase in the potential strength leads to a large positive scattering length,
resulting in the support of a bound state. The scattering length again decreases with
increasing attraction, becoming infinitely negative again when A = (377/2)%. We see
from (1.126) that this process is repeated with each new branch, corresponding to a
new state becoming bound, occurring when A = [(2n + 1)71/2]2, n=20,1,2,....
Finally we observe that the same general picture occurs for square-well potentials of
arbitrary range a, the strength of the potential where the asymptotes of the solution
u(r) are parallel to the r-axis then being given by A = [(2n + Dr/Qa)?, n =
0,1,2,....

We now discuss the relationship between the scattering length and effective range
and the low-energy behaviour of the S-matrix, 7-matrix and cross section. Provided
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Fig. 1.4 The dependence of the scattering length ag on the potential strength A for a square-well
potential with unit range. The scattering length and potential strength corresponding to Fig. 1.3a—c
is marked by crosses on this figure

that the p-wave scattering length a; is non-singular then the s-wave partial wave
cross section dominates low-energy scattering. It follows from (1.30) and (1.120)
that the low-energy s-wave cross section

i 47 1 477(1(2)
L B i _ .(1127
o0 k2 N ()( ) k2 1—|—COt2 50(k) k2a8 + (1 _ %Veokzdo)z ( )

The zero-energy cross section is thus 47ra8. Also, when an s-wave bound state
occurs at zero energy then the scattering length and hence the cross section is infi-
nite. We now determine the behaviour of the cross section when an s-wave bound
state occurs close to zero energy. It follows from (1.15) and (1.26) that

2i

Hence a pole in the S- and T-matrices occurs when cot §; (k) = i. However, we saw
in Sect. 1.3, see Fig. 1.1, that a bound-state pole in the S-matrix and hence in the
T -matrix must lie on the imaginary k-axis, so that

kp = ikp , (1.129)
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where kp, is real and positive. Combining (1.128) and (1.129) we obtain the follow-
ing condition

kp cot 8o (kp) = —kp (1.130)

for an s-wave bound state. By comparing this equation with the effective range
expansion (1.120) we find that the scattering length is related to the position of
the pole in the S- and T -matrices by

Kp=ay ', (1.131)

where we have retained only the first term on the right-hand side of (1.120). Sub-
stituting this result into (1.127) gives the following expression for the low-energy
s-wave cross section:

4

= ——7. 1.132
k2 + «} ( )

00

As we have already remarked, the s-wave cross section is infinite at zero energy
when the bound-state pole occurs at zero energy. Also, since this cross section is
independent of the sign of «p, it is not possible to distinguish by measuring the
cross section alone, whether the pole in Fig. 1.1 corresponds to a bound state with
positive «j, or a virtual state with negative kp.

In the case of non-zero partial waves we obtain the following expression for the
T-matrix by combining (1.120) and (1.128)

2'k2€+1
Tok) = ——— , (1.133)
—a, + yreck® —ik2t+!
which can be written in the form
Ty (k) i (1.134)
e = —. 3 .
E.—E-Ar
where the resonance position is given by
1
E, = o (1.135)
e
and the resonance width by
2 241
I = _Ek . (1.136)
e

It follows that the effective range r,¢, corresponding to a low-energy resonance with
! > 1, must be negative and its width energy dependent. This type of resonance is
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caused by the repulsive angular momentum barrier £(¢ + 1)~ which inhibits its
decay.

Finally, we can show that although we have derived the effective range expansion
(1.120) for a finite range potential satisfying (1.120), it is valid if the potential falls
off as fast as, or faster than, an exponential.

1.4.2 Long-Range Potentials

We now consider modifications that have to be made to the effective range expansion
(1.120) when the potential U (r) in the radial Schrodinger equation (1.8) behaves
asymptotically as follows:

A
Ury=—, rza, s>2. (1.137)
"

We can determine the required modifications by considering the first Born approxi-
mation for the phase shift given by (1.20), that is by

tan 82 (k) = —k/OO U(r)j2 (kryr¥dr (1.138)
0

which is applicable here since the coefficients in the effective range expansion arise
from the long-range tail of the potential where it is weak. In the limit as k — 0 we
can use the power series expansion (C.33) for the spherical Bessel function j,(kr) in
(1.138). It follows that the first term in the expansion of the integral in (1.138) only
converges for large r if s > 2¢ 4 3, which gives rise to the first term in the effective
range expansion (1.120). If s < 2¢ + 3 the integral diverges and the first term in the
effective range expansion is no longer defined. In a similar way, the second term in
the expansion of the integral in (1.138) only converges for large r if s > 2¢ + 5 and
consequently if s < 2¢ + 5 the second term in the effective range expansion is not
defined. Summarizing these results for the terms in the effective range expansion
(1.120) we obtain

scattering length a, defined if s > 2¢ + 3 (1.139)
effective range r.¢ defined if s > 2045, '
and so on for higher terms in the effective range expansion.

An important example of long-range potentials occurs in elastic electron scatter-
ing by an atom in a non-degenerate s-wave ground state such as atomic hydrogen
or the inert gases. We discuss this polarization potential in detail in Sect. 2.2.2, see
(2.19), where we show that U () has the asymptotic form

[07
U =2Vp() ~ = . (1.140)
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where « is the dipole polarizability. The radial Schrodinger equation (1.8) then
becomes

2 e+ o«
(m_r—2+r—4+k2)ug(r)=0, rza, (114D

where a is the radius beyond which the potential achieves its asymptotic form. In
order to obtain the threshold behaviour of the phase shift we use the Born approx-
imation (1.138), where we consider the contribution to this integral arising from
r > a. Calling this contribution /; we obtain, after writing x = kr,

L R 34 1.142
e A (1.142)

where for £ > 1, the contribution to the integral from r < a behaves as k24t for
small k and can therefore be neglected compared with 7, as k — 0. Also, for £ > 1
the integral in (1.142) converges at its lower limit for all & > 0. Carrying out this
integral we find that

8(L+ )+ HE—1)
To

k2 cot 8¢ (k) =

+ higher order terms, ¢ > 1. (1.143)

It follows in accord with (1.139) that the scattering length is not defined in the
presence of a long-range polarization potential when £ > 1.

For s-wave scattering in a long-range polarization potential, the contribution to
the integral from r < a dominates (1.142) and hence (1.143) is no longer applicable.
In this case O’Malley et al. [704] transformed (1.141) into a modified form of Math-
ieu’s equation. Replacing s, (kr) and ¢, (kr) in (1.114) by the appropriate regular and
irregular solutions of this equation and using the known analytic behaviour of the
Mathieu functions they obtained

1 2 k?
kcot8o(k) = —— + ——k + —K’In (“—) FOU3), £=0. (1.144)
ap 3a0 3ag 16

This equation differs from (1.120) due to the presence of terms containing k and
k*In k. Hence the scattering length ag is defined but the effective range is not, in
accord with (1.139).

The low-energy behaviour of the total cross section in the presence of a long-
range polarization potential can be obtained by substituting the above result into
(1.30). We obtain

oot (k) = 4w (ag + z—ak-}-...)z’ (1.145)
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where we have omitted higher order terms in k and higher partial wave contributions.
It follows that the derivative of the total cross section with respect to energy is
infinite at threshold, whereas in the absence of the polarization potential it is finite.
Also, if the scattering length ay is negative, then the total cross section will decrease
from threshold and in the absence of significant contributions from higher terms in
the expansion (1.145) will become zero when k = ko where
koz—ﬂ. (1.146)
o

This leads to the Ramsauer minimum which occurs, for example, in the total cross
section for low-energy electron scattering from the heavier inert gases Ar, Kr and
Xe where the scattering length ag is negative. On the other hand, if ag is positive, as
is the case for electron scattering by He and Ne, there is no low-energy minimum in
the cross section.

Levy and Keller [588] have considered the general case of potentials whose
behaviour at large distances is given by (1.137). They found that
250 (s = DI+ 3 — 1s)

tan 8y (k) = L Ak ™2
’ rrgs)re++ s

, 2<s<?2043 (1.147)

and

Ak Ink
[2¢ + D2’

By considering the contribution from higher angular momenta we find that the total
threshold cross section is finite if s > 2 while the differential cross section is finite
if s > 3.

Another long-range potential of interest is a dipole potential which falls off
asymptotically as »~2 and is less singular than r~2 at the origin. This occurs in
many applications, for example, in the scattering of electrons by polar molecules
or by hydrogen atoms in degenerate excited states. The radial Schrédinger equation
then has the asymptotic form

tan 8, (k) = — s=20+3. (1.148)

& e+ A
(m_%_r_ﬁkz)wm:o, r>a. (1.149)

This equation has analytic solutions which we can obtain by combining the r—2
terms as follows:

AG+ D) =L+ 1)+ A, (1.150)

which has the solution

12
x:-%ﬂ:%[(2£+1)2+4A] . (1.151)
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Using this definition, (1.149) reduces to the standard form

<d2 A+ D

ar? 2 +k2>uz(r)=0, r>a. (1.152)

where A is in general a non-integral quantity. In analogy with (1.10) and (1.11) we
can define two linearly independent solutions of (1.152) by

sy.(kr) = krj(kr) ~ sin(kr — $am) (1.153)
r—00
and
cr(kr) = —krny. (kr) ~ cos(kr — FAT) (1.154)

where it is convenient to choose the upper positive sign in (1.151) so that A — £ in
the limit A — 0.

The solution of the radial Schrodinger equation, corresponding to a dipole poten-
tial U (r), which is regular at the origin can be written in analogy with (1.114) by

ue(r) = sy (kr) + e, (kr)K, (k), r>a, (1.155)
which defines the K-matrix K, (k). We can relate the physical K-matrix Ky (k),
defined by (1.9) and (1.15), to K, (k), defined by (1.155). We find that

sint + cos T K, (k)

Ko(k) = ,
e®) cost —sint K (k)

(1.156)

where
=1 —1). (1.157)

It follows that when A = O then £ = X and K, (k) = K, (k).

In order to determine the analytic behaviour of K, (k) in the neighbourhood of
threshold energy, we proceed as in the derivation of (1.118) by relating K (k) to the
R-matrix on the boundary r = a. We substitute u¢ (), given by (1.155), into (1.115)
which yields (1.116) with £ replaced everywhere by A. We then use the analytic
properties of the functions s, (kr) and c; (kr) and their derivatives, which are related
to those of the spherical Bessel and Neumann functions jj (kr) and n) (kr) through
(1.10) and (1.11). In this way we can show that the M-matrix, which is defined by
the equation

M; (k%) = kKUK (017! (1.158)

is an analytic function of k2 in the neighbourhood of threshold which is a real ana-
Iytic function when A is real. We can also express the T-matrix Ty(k) defined by
(1.26) in terms of the M-matrix, using (1.156) and (1.158). We find that

2162ir k2)“+1

2%
W‘Fen—l, (1.159)

Ty(k) =

which reduces to (1.119) in the limit A — 0 so that t — 0.
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An important feature of scattering by a dipole potential occurs for strong attrac-
tive potentials where

A<—1Q0+1)%. (1.160)

In this case, the argument of the square root in (1.151) becomes negative and A,
which then becomes complex, can be written as

A=—2+ilma, (1.161)

where Im A can be positive or negative. The factor k***! in (1.159) can then be
written as

kP = g2 — exp(2i Im A Ink) . (1.162)

We see immediately that this gives rise to an infinite number of oscillations in the
partial wave cross section as the collision energy tends to zero. Also, if we consider
complex values of k defined by

k = |kle', (1.163)
then the denominator Dj (k) = M, (k?) — ik***1 in (1.159) can be written as

Dy (k) = My, (k?) — exp(—2pIm 1) exp [21 <Imun k| + %)] L (1.164)

It follows that D, (k) has zeros along lines in the complex k-plane given by

|M;,. (k)| = exp(—2¢ImA) (1.165)
which gives
In | M, (k2
_ _In[M; &I} (1.166)
2ImA

Also as |k| — 0 then the quantity
0 =Imiln|k| + }r (1.167)

in (1.164) will increase or decrease through 7 radians an infinite number of times.
Hence the T-matrix has an infinite number of poles converging to the origin along
two lines in the now infinite sheeted complex k-plane, where these two lines cor-
respond to the positive and negative values of Im A in (1.167). These lines of poles
correspond to bound states, resonances or virtual states depending on the value of ¢
and whether they lie on the physical sheet of the complex k-plane.
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We will see when we discuss multichannel effective range theory in Sect. 3.3 that
the oscillatory behaviour of the cross section above threshold and the infinite series
of bound states below threshold apply in certain circumstances both to electron scat-
tering by polar molecules and by atomic hydrogen in degenerate excited states. The
above discussion provides an introduction to these more complicated and realistic
situations.

We conclude this section by considering the properties of the total and momen-
tum transfer cross sections at finite energies in the presence of a long-range r 2
potential. For high angular momentum £ the radial wave function in (1.155) is accu-
rately represented by the first term s; (kr). Hence the corresponding phase shift is
given by

8¢ =Am(l—2). (1.168)

For large ¢ we find by expanding the square root in (1.151) and choosing the upper
sign in this equation that

5~ — A L ou, (1.169)
=0 2020+ 1)

The total cross section, defined by (1.30), then becomes

Otot = 01 + 02, (1.170)
where
47 L
o1 =27 > 20+ Dsin’ 5 (1.171)
£=0
and
4 & x3A2 & 1
= 20+ 1)sin® 8y ~ . 1.172
=3 > @+ 1sin® s P > GiD (1.172)
{=L+1 {=L+1

In (1.171) and (1.172) L is the value of £ where the phase shift §; can be accurately
represented by the first term on the right-hand side of (1.169). It follows that o7, and
hence the total cross section oy, diverges logarithmically with €. Also the scatter-
ing amplitude, defined by (1.29), and hence the differential cross section, defined
by (1.4), diverge in the forward direction. Since the contribution to the differential
cross section in the forward direction arising from the short-range component of
the potential U (r) is negligible compared with that arising from the long-range r 2
component, the corresponding angular distribution is energy independent. In prac-
tice, the divergence in the forward direction is cut off either because of the Debye
screening of the dipole potential at large distances if the scattering process occurs
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in a plasma or because of the molecular rotational splitting or the fine-structure
splitting of the target levels.

Finally, we remark that the momentum transfer cross section defined by (1.6)
remains finite in the forward direction. This follows immediately by substituting the
asymptotic expansion for the phase shift given by (1.169) into (1.31). This result can
also be seen to follow from (1.6), where the factor (1 — cos #) cuts off the divergence
in the scattering amplitude in the forward direction.

1.4.3 Coulomb Potential

Finally in this section we consider electron or positron scattering by a positive or
negative ion. In this case we consider the solution of the radial Schrodinger equation
(1.70), where we assume that the short-range part of the potential U (r) vanishes for
r > a. Hence the total potential reduces in this region to the Coulomb potential
alone given by

277>
Uc(r) = , r=za, (1.173)
r

where Z; and Z, are the charge numbers corresponding to the incident particle
and the ion, respectively, and where we assume that the ion has infinite mass. The
solution of (1.70) which is regular at the origin can be written as follows:

ue(r) = Fe(n, kr) + Ge(n, kr)Ke(k), r=a, (1.174)

where Fy(n, kr) and G¢(n, kr) are the regular and irregular Coulomb wave func-
tions, defined by (1.58) and (1.59), respectively, 7 is defined by (1.42) and K, (k) is
the K-matrix.

In order to derive an effective range expansion we commence from (1.115) which
defines the R-matrix Ry (E) in terms of the radial wave function u, () and its deriva-
tive dug(r)/dr on the boundary » = a of the internal region. We then substitute
u¢(r), defined by (1.174), into (1.115) and set the arbitrary constant b = 0. After
re-arranging terms and using the Wronskian relation F,G; — G}, F; = 1 we obtain

o1 =Sy L L TRy o 2 (1.175)
TR TERR T BRI T RIR
where p = ka and Fy, G and F; and G, are defined by
Fy = Fy(n, ka), G¢ = Ge(n, ka),
1 dF;(n, k 1 dGe(n, k
B =1 e(n, kr) LGy =1 e(n, kr) (1.176)
k dr r—a k dr r—a
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It follows from (1.175) that the analytic behaviour of K, (k) in the complex energy
plane can be obtained in terms of the analytic properties of Fy, G¢, F, and R(E),
where we remember that Ry(FE) is a real meromorphic function of the energy with
simple poles only on the real energy axis.

The Coulomb wave functions, which were introduced and discussed in Sect. 1.2,
can be written as follows:

Fo(n, kr) = Co(n) (k) @y (n, kr) (1.177)

and

(kr)~*
(2¢+1Ce()

[wm kr) + (kr)*H p(an) <1n<2kr> + qe((:g) o0(n, kr)} ,
(1.178)

Ge(n, kr) =

where @, (1, kr) and W, (1, kr) are entire functions of k% and Cy() is defined by
(1.60) and (1.61). Also in (1.178)

Ci(m)
pe(n) =212+ 1) (1.179)
o(n)
and
qe(n)
= fan), (1.180)
pe(n)
is a rational function of 52 which tends to a constant as |n%| — oco. Finally
f) = 1/f(ln)+1ﬁ( in], (1.181)

where ¥ (z) is the Psi (digamma) function which is defined in terms of the gamma
function I"(z) by

dr (z)

Y(z) = (1.182)

Using these properties of the Coulomb wave functions, it then follows from
(1.175) that the M-matrix, defined by

Mo(k*) = K2+ DIPCI K ()T + he(n) (1.183)

is a real analytic function of k2, where

20+1 2 iy .,
he(n) =k [2¢ 4+ D7 | 2nt > —1iC;(n) (1.184)
Co(m
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and

T

‘C:lnk-ﬁ-f(ﬂ)‘l‘m.

(1.185)

Hence M (k?) can be expanded in a power series in k> giving the following effective
range expansion for a Coulomb potential

11
K22 + DI C2 () cot 8¢ (k) + he(n) = ——+ Erdk2 + 0%, (1.186)
£

where we have expressed K¢ (k) in (1.183) in terms of the phase shift §¢(k) using
(1.15) and where ay is the scattering length and 7., is the effective range. Equa-
tion (1.186) was first derived for s-wave scattering by Bethe [104]. It is also conve-
nient to rewrite this effective range expansion for the 7-matrix, defined by (1.26),
in terms of the M-matrix. We find that

s 2121 [2¢ + DIPCE ()
Mk = P DIPpe(mT2e+ D7

(1.187)

In the limit  — 0, corresponding to short-range potentials, we can show that
[2C+ DPCZ0) — 1, QR+ DUPpetpt — i, he(n) — 0. (1.188)

Hence (1.186) reduces to the effective range expansion (1.120) and (1.187) reduces
to (1.119). We will consider the generalization of (1.187) to multichannel scattering
by a Coulomb potential in Sect. 3.3.3.

When the Coulomb potential is attractive, corresponding to electron scattering
by positive ions or positron scattering by negative ions, we can relate the energies
of the bound states to the positive energy scattering phase shift. We have shown in
Sect. 1.3 that the poles of the S-matrix, and hence the 7-matrix, which lie on the
imaginary axis in the complex k-plane, correspond to bound states. It follows from
(1.187) that these poles occur when

Mo(k®) = K e+ DI pepr2e + 7. (1.189)

The branches of the function 7 in (1.189) for negative energies, corresponding to
positive imaginary k, give rise to an infinite number of solutions of (1.189) converg-
ing onto zero energy. These solutions correspond to the Rydberg series of bound
states. The relationship between positive and negative energies is obtained using
Stirling’s series for the Psi functions in the definition of f(n) given by (1.181). We
find that

in

_ 2 2
t_lnz—l——ezjm_l—i—x(k ), k>0 (1.190)
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and

TZ 2 2
r:lnz+nc0t<—)+x(k ), K2 <o0, (1.191)
K

where k = ik below threshold and 7z = —Z;Z>. Also in (1.190) and (1.191) X(k2)
is a real analytic function of k> which has the following representation in the neigh-
bourhood of k% = 0:

[e¢]

x(k2)=zL £ (1.192)
2r2r — 12 \z) '

r=1

where B, are Bernoulli numbers. Hence, using (1.191), we see from (1.189) that the
bound-state energies are given by the solutions of

2
Me(k?) = K220 + D2y Cg(") [lnz + 7 cot <E> + x(kz)] ., (1.193)
Cy(m) Kp

where we have substituted for pg(n) in (1.189) using (1.179). Since My k%),
K220 + DN220nCE(n)/C3(n) and x (k) in (1.193) are analytic functions of

energy then cot(z/kp), where k> = —Kg are the bound-state energy solutions of
(1.193), can be fitted by an analytic function of energy and extrapolated to positive
energies.

At positive energies it follows from (1.183) that

M (k*) — he(n)

cotdg(k) = K220 + DI2C2 () ’

(1.194)

where we have rewritten [K(k)]~! in (1.183) as cot 8, (k). We then substitute for
My (k?), defined by (1.193), and A, (n), defined by (1.184), in (1.194) yielding

Inz + 7 cot (%) + x(k2)] — szﬁ(;)
0

cot 8 (k) = +i. (1.195)

2n [
C5(m
Finally, we substitute for t, defined by (1.190), in (1.195) yielding the final result

M—cot<5> . (1.196)

e2mn — 1 Kp

We interpret this equation by extrapolating cot(;rz/kp) on the right-hand side, which
is defined at the bound-state energies k> = —sz, to positive energies, where it is
defined in terms of the phase shift §,(k), given by the expression on the left-hand
side.
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We can rewrite (1.196) in a more convenient form by introducing effective quan-
tum numbers v, and associated quantum defects p, of the bound states by the
equation

22 _ 22

- p=041, 042, ..., (1.197)
V2 (n — pn)?

where p, is a slowly varying function of energy which is zero when the non-
Coulombic part of the potential vanishes. Substituting (1.197) into (1.196) gives

i’oi‘s—éz(fz = cot[m k)], (1.198)

where /1(k?) is an analytic function of energy which assumes the values i, at the
bound-state energies. For small positive energies the factor exp(27n) is negligibly
small and (1.198) then reduces to

Se(k) = T (k?). (1.199)

This result enables bound-state energies, which are often accurately known from
spectroscopic observations, to be extrapolated to positive energies to yield electron—
ion scattering phase shifts and hence the corresponding partial wave cross sections.

Equations (1.198) and (1.199) were first derived by Seaton [851, 852] and are the
basis of single-channel quantum defect theory. The foundations of modern quantum
defect theory were laid by Hartree [443], who considered bound-state solutions of
the Schrodinger equation (1.8). Further interest in this theory was stimulated by
the work of Bates and Damgaard [75], whose Coulomb approximation provided
a powerful method for the computation of bound-bound oscillator strengths for
simple atomic systems. An interest in quantum defect theory also arose in solid
state physics discussed by Kuhn and van Vleck [551], which led to developments
in the mathematical theory described in a review article by Ham [440]. In recent
years quantum defect theory has been extended to multichannel scattering by Seaton
[854] and co-workers, and a comprehensive review of the theory and applications
has been written by Seaton [859]. We review multichannel quantum defect theory
in Sect. 3.3.4.

We show in Fig. 1.5 an application of single-channel quantum defect theory to
e —Het 1S®and 3S° scattering carried out by Seaton [855]. In this work

Y(k*) = A~k 0) tan[m pn(K2)], (1.200)

rather than cot[7 (k2)], was used in the extrapolation of the quantum defects, where
A(k?, ) is an analytic function of energy defined by

¢ 212
| <1 + %) , (1.201)

s=0
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Fig. 1.5 Phase shifts § in radians versus energy ¢ in Rydbergs for e —He™ 'S¢ and 3S¢ scatter-
ing. Full lines, extrapolations using single-channel quantum defect theory; broken lines, polarized
orbital calculations by Sloan [880]. The points at negative energies correspond to the experimental
bound-state energies of He (Fig. 1 from [855])

which in the present application equals unity, since the angular momentum ¢ of the
scattered electron is zero. A least-squares fit was then made to the bound-state data
and the positive energy phase shifts determined using a re-arrangement of (1.198)
for tan §, (k). We see in Fig. 1.5 that the phase shifts obtained by extrapolation from
the experimental bound-state energies are in excellent agreement with polarized
orbital phase shift calculations by Sloan [880] close to threshold and remain good
up to quite high energies. This agreement provides experimental confirmation of the
accuracy of the theoretical phase shift calculations at low energies.

An important feature of the phase shift for electron scattering from positive ions,
which is apparent from Fig. 1.5, is that it does not tend to nz radians at threshold
energy. This is in contrast to the phase shift for scattering by neutral targets which
tends to a multiple of 7 radians as the scattering energy tends to zero. This is because
the attractive Coulomb potential U.(r) pulls the scattered electron into a region
where the short-range part of the potential U (r) in (1.70) is effective, even for non-
zero angular momenta. This effect is the same as that which causes the quantum
defect w, in (1.197) to be non-zero at threshold.

When the Coulomb potential U.(r) is repulsive, which is the situation when elec-
trons scatter from negative ions or positrons scatter from positive ions, the scattered
electron or positron is kept away from the target at low energies and the phase shift
vanishes rapidly as the energy tends to zero. In this case n = Z{Z»/k is positive
and large. It follows from (1.61) that the quantity [Co(n)]?, which in this context is
called the Coulomb penetration factor, is given to a good approximation by

[Co(m1* ~ 2mnexp(—2mn) . (1.202)

The factor exp(—2mn) in (1.202) is called the Gamow factor [361]. It then follows
from (1.186) and (1.202) that
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N VAVA)

X ) Z1Z> > 0, (1.203)

Se(k), = exp (—

which applies for all angular momenta. It is clear that the Gamow factor strongly
inhibits scattering at low energies when the Coulomb potential is repulsive.

The case when the potential U(r) in (1.70) has a long-range component, falling
off asymptotically as r — where s > 1, in addition to the Coulomb potential U.(r),
has been considered by Berger and Spruch [91]. When the Coulomb potential is
attractive the threshold behaviour of the phase shift is left unmodified, since the
electron is pulled into the region where the short-range component of U (r) is dom-
inant. However, when the Coulomb potential is repulsive, the tail of U (7) is impor-
tant at low energies since this is the only part of the potential seen by the scattered
electron. An important example of this situation is when the leading non-Coulombic
component of the potential is due to the polarization of the ion so that s = 4. In this
case we find that

1
tan 8¢ (k) = Easz , (1.204)
where « is the dipole polarizability. Clearly this contribution to the phase shift will
dominate the contribution arising from (1.203) at sufficiently low energies.

1.5 Variational Principles

Variational principles were introduced in scattering theory by Hulthén [480, 481],
Tamm [909-911], Schwinger [841] and Kohn [542]. In this section we derive Kohn
variational principles for the partial wave phase shift and for the S-matrix which
have been widely used in electron scattering. This section thus provides an introduc-
tion to multichannel variational principles discussed in Sects. 2.4 and 5.2. For spe-
cialized treatments of variational principles in scattering see, for example, Demkov
[259], Moiseiwitsch [656] and Nesbet [678].

We commence by considering the radial Schrédinger equation (1.8) or (1.70),
which we rewrite as

Loug(r)y =0, (1.205)

which defines the operator L,. We consider a solution u,(r) of (1.205) satisfying
the boundary conditions

~ L+1
ue(0) e nrtth

ue(ry ~ sin(@y + ) + cos(6y + ) tan(éy — 1), (1.206)

—> 00

where n is a normalization factor and where in the case of a long-range Coulomb
potential

0p = kr — 2ex — nIn2kr + oy, (1.207)
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with 7 defined by (1.42) and o, defined by (1.62). Alsoin (1.71) 7 is a fixed constant
chosen so that 0 < 7 < 7. We note that the solution defined by the boundary
conditions (1.206) differs only by a normalization factor cos ¢/ cos(§; — ) from
the solution defined by the boundary conditions given by (1.71).

We now consider the functional

L[u})] = /0 wly(r)Louy (r)dr, (1.208)

where u),(r) is a trial function satisfying the same boundary conditions (1.206) as
u¢ (r) with the phase shift §; replaced by a trial phase shift 82. It is clear from (1.205)
and (1.208) that Iy[u,] = 0. We then find using Green’s theorem that

t

[Oo[u (r)Lou',(r) — ul,(r)Loue(r)]1dr = |u dﬂ —utdﬂ b (1.209)
0 4 Uy e Luy = V4 dr ¢ dr o . .

It follows using the boundary conditions satisfied by u, and u/, that
Io[ul)] — Ie[Aug] = k[tan(8; — 7) — tan(8), — 7)], (1.210)
where we have written
Aug(r) = uf(r) — up(r). (1.211)

Relation (1.210) was first obtained by Kato [525] and is referred to as the Kato
identity. If the trial function u@ (r) is sufficiently close to the exact solution u(r)
then the functional I;[Au,], which is second order of smallness, can be neglected.
Equation (1.210) can then be written as

8[Iy + ktan(ép — 7)] =0, (1.212)
where
81¢ = Ip[uy] — Ieluel = Ieluj) (1.213)
is the change in 7, under the variation Sul,(r) = u},(r) — u(r) and
S[tan(éy — 7)] = tan(Sé —17)—tan(d¢ — 7). (1.214)

Equation (1.212) is known as the Kohn variational principle [542].

The Kohn variational principle (1.212) is clearly satisfied by the exact solution
of the differential equation (1.205). It can also be used as the basis for obtaining
approximate solutions of (1.205). Thus if we start from a trial function ’42 (r) which
depends on n parameters c1, ¢2, .. ., ¢, as well as the phase shift through the quan-
tity A, defined by

A = tan(8) — 1), (1.215)
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then taking the variation in (1.212) with respect to these n 4 1 parameters yields the
equations

81y
— =k (1.216)
SAy
and
31y .
— =0, i=1,...,n. (1.217)
(SC,'
If the trial function u@(r) depends linearly on the parameters cy, ¢2, ..., ¢, and Aﬁz

then (1.216) and (1.217) are a set of n + 1 linear simultaneous equations which
can be solved to yield these parameters. We can then use the variational principle
(1.212) to obtain an improved estimate for A, which is correct up to terms of second
order in the error in the trial function. It is given by

1
[Ae] =)»Z+%16[M2], (1.218)
where the symbol [A¢] means that this quantity is the variational estimate of A,. The
corresponding phase shift, correct up to terms of second order, is then obtained from
the variational estimate using the equation

[A¢] =tan(§, — 7). (1.219)
It follows from the above discussion that different choices of 7 in the range 0 <
v < m will yield different variational estimates for the phase shift. Kohn chose

7 = 0 so that the trial function satisfied the asymptotic boundary condition

uz (r) ~ sin6fy 4+ cosH, tan 62 (k). (1.220)
rF— 00

Equation (1.218) then becomes
1 1 t
[tand¢] = tan g, + %Ig[ue], (1.221)

which gives the Kohn variational estimate for tan 8, and hence, from (1.15), for the
K -matrix. On the other hand Rubinow [800] took T = /2 so that the trial function
satisfied the asymptotic boundary condition

ul) (r) ~ cosf+ sin 6y cot 8 (k) . (1.222)

In this case (1.218) yields

1
[cot8¢] = cot s — zlg[ufg]. (1.223)
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This approach is often called the Rubinow or inverse Kohn variational principle
since it gives a variational estimate for cot§, = (tan 8oL

Itis also often useful to adopt the S-matrix form of the Kohn variational principle.
In this case, the solution of (1.205) is chosen to satisfy the asymptotic boundary
condition

ue(r) ~ exp(=ify) — exp(ifp)Se (k) , (1.224)

where the S-matrix S¢(k) is defined in terms of the phase shift &;(k) by (1.14). We
also introduce a trial function u/, (r) satisfying the asymptotic boundary condition

uz(r)r_?oo exp(—if) — exp(i6) Sy (k) . (1.225)

As before we consider the variation
81 = Ioluf] — Ieluel, (1.226)
which can be simplified using the boundary conditions satisfied by u,(r) and uz(r).

Neglecting terms of second order in Auy(r) = “2 (r)—ue(r) we obtain the S-matrix
form of the Kohn variational principle

81y + 2ikS] =0, (1.227)

where we have written
8S¢ =S, — S (1.228)
Again if the trial function uﬁz(r) depends linearly on n parameters cy, ¢2, ..., ¢, as

well as on the S-matrix Sé, then taking the variation in (1.227) with respect to these
n + 1 parameters yields the n + 1 coupled linear simultaneous equations

31y .
— = —2ik (1.229)
bAY
and
31y .
— =0, i=1,...,n. (1.230)
86,‘

Equations (1.229) and (1.230) can be solved to yield these n + 1 parameters. The
variational principle (1.227) can then be used to obtain an improved estimate for A,
which is correct up to terms of second order in the error in the trial function. We
find that

1
[Sel=S; + ﬂh[ufg], (1.231)
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which can be used instead of the Kohn variational estimate for tand, given by
(1.221) or the inverse Kohn variational estimate for cot §, given by (1.223).

In concluding this discussion of variational principles in potential scattering
we stress that they are not extremum principles but are only stationary principles.
Consequently the variational estimate can lead to misleading results if poor trial
functions are used. Indeed, it was shown by Schwartz [838, 839] that anomalous
singularities can arise in [tan §;] and in [cot §;] which can invalidate the variational
estimate in these cases if care is not taken, even if the number » of trial functions
is large. A detailed discussion of these anomalous singularities and methods for
avoiding them has been given, for example by Nesbet [675, 676, 678], Burke and
Joachain [171] and Cooper et al. [229] and will not be considered further here.
However, we remark that the R-matrix method, discussed in Chap. 4 and in later
chapters, provides a variational procedure for solving (1.205) which enables phase
shifts and S-matrices to be obtained which do not have these singularities.

1.6 Relativistic Scattering: The Dirac Equation

We conclude this chapter on potential scattering by considering relativistic scatter-
ing of an electron by a spherically symmetric potential. This situation occurs for
relativistic electron scattering energies or for electron collisions with heavy atoms
and ions. The wave equation which must then be solved is the time-independent
Dirac equation, which takes into account both the spin and the relativistic behaviour
of the scattered electron. We consider first the separation of the Dirac equation in
spherical polar coordinates which yields two coupled first-order differential equa-
tions satisfied by the radial functions describing the motion of the scattered electron.
We then derive expressions for the phase shifts, scattering matrix and cross sections
in terms of the asymptotic solution of these coupled equations.

The time-independent Dirac equation describing the motion of an electron in a
potential V (r) is (see [110, 171, 263, 411]),

[ca - p+ B+ VIOIY(x) = EY(x), (1.232)
in atomic units, where c is the velocity of light in vacuum, x = (r, o) represents the
space and spin coordinates of the scattered electron and p = —iV is the electron
momentum operator. Also in (1.232), 8/ = 8 — I and & and B are the 4 x 4 Dirac

matrices defined by

oc=<2 g) ,B=<102_012>, (1.233)

where the components of o, oy, 0y and o, are 2 x 2 Pauli spin matrices [723]
defined by

0 1 0 —i 1 0
Ox = (1 O) ’ Gy = <1 01> ’ O—Z = (0 _1) ’ (1234)
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and I and I are 2 x 2 and 4 x 4 unit matrices, respectively. Finally, the choice of g’
in (1.232) is made so that the energy FE in this equation does not include the electron
rest mass and hence reduces in the non-relativistic limit to the energy E in (1.1).

We consider the solution of (1.232) for the case where the potential V (r) is
spherically symmetric and hence depends only on the radial variable r and not on
the angular variables. We then separate the angular variables in (1.232) from the
radial variable using the identity

a-p=apr+ir e (T -L+1L)
=a,p, +ir e, K, (1.235)

where the radial momentum operator p, and the radial velocity operator «, are
defined by

10
pr=—i——r, o = rla r, (1.236)
ror

and where the operator K is defined by

K=8(X L+1L), (1.237)

o 0 £ 0
E:(O a)’ L:(O l)‘ (1.238)

The operator K can be shown to commute with the Dirac Hamiltonian and hence its
eigenvalues are constants of the motion. Furthermore, since

with

3
):'L=2S'L=J2—L2—SZ=J2—L2—114, (1.239)

then we may rewrite the operator K as
2 2, |
K=g(J"—L +4—1]4 . (1.240)
Also it follows from (1.237) that

1.\ 1
K2=<L+§):> +ZI4. (1.241)

Since (L + %2)2 is the square of the total angular momentum operator, which has

the eigenvalues j(j + 1), then the eigenvalues of K Zare (j + %)2 = 12 where « is
given by

k=1, £2, £3, ... . (1.242)
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Using the above equations, the Dirac equation (1.232) can be written as
HY (x) = [ca, py +icr ™ a, K + B/ + V(NP (x) = EY(x). (1.243)

The solution of (1.243) can be written as a four-component spinor in the form

U(x) = l < PK(V)U/cm(f‘, o) ) ’ (1.244)

r \ g ()N —km (T, 0)

where p, (r) and ¢, (r) are radial functions which depend on « as described below,
and the factor i is introduced so that the radial equations satisfied by p, (r) and g, (r),
derived below, are real, and hence these functions can be chosen to be real. The
spin—angle functions 7, (£, o) in (1.244) are two-component spinors defined by

Mem(F,0) = V1, (B 0) = Y Emedmg|jm)Yeon, 0, @)1y, (@), (1.245)

nyems

where (Emg%ms| jm) are Clebsch—Gordan coefficients defined in Appendix A.1,
Y¢m, (0, ¢) are spherical harmonics defined in Appendix B.3 and x L, (o) are the

usual two-component Pauli spin functions given by

X11(0) = (é) X1_1(0) = (?) . (1.246)
22 2 2

It then follows from Appendices A and B that the functions ye Ljm (r, o) defined by

(1.245) are simultaneous eigenfunctions of J> and L? belonging to the eigenvalues
j(j + 1) and €(¢ + 1), respectively. Hence

<ﬁ-4}+%h)%5m@a)={KJ+D—€@+D+&]%EM&U)
=[G+ e+ D] ¥, 0. (1247

Using this result and the definition of K given by (1.240) and v (x) given by (1.244),
we find that

K (x) = -k (x), (1.248)
where the eigenvalue « is then defined by
K=L+1) =+ (1.249)

Hence the eigenvalue « is related to the orbital and total angular momentum
quantum numbers £ and j by the equations

k=( when j=¢—1
k=—C—1 when j=¢+73. (1.250)
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Table 1.1 Relationship of « to the usual spectroscopic notations £ and j

K negative K positive

Kk =—1 S1/2 k=41 P12
k==2 P32 k=42 d3)n
K =

-3 d5/2 Kk =43 f5/2

This relationship is given explicitly in Table 1.1.

Using the above results for the eigenvalues of the K operator, we can now sim-
plify the Dirac equation defined by (1.243). Substituting (1.244) into (1.243) and
using (1.233) and (1.248) we obtain the following coupled equations

cor(pr +ir )i g Mn—em (®, 0) + [V () — Elr ™ pe () em (8, 0) = 0,
(1.251)
and

cor(pe—ir™ ) pe(r) e (, 0) + =262+ V (1) = EJir ™ g (1) 1—sem (. 0) = 0.
(1.252)
These equations can be simplified using the identity

O Niem (F, 0) = —Ngem (F, 0) (1.253)

which follows since o, = o - T is a pseudo-scalar operator and hence it changes
the sign of the parity but leaves the total angular momentum and its z-component
unaltered. Projecting (1.251) onto the function 7, (¥, o) and (1.252) onto the func-
tion 7, (¥, o) and using (1.236) we find that the time-independent Dirac equation
reduces to the following coupled first-order differential equations satisfied by the
functions p, (r) and g, (r)

d K 1,
(— + —> Pe(r) — =[2¢"+ E = V(r)lgc(r) =0 (1.254)
dr r C
and
d K 1
(d_ - —) g (r)+—-[E—=V(@r)]pc(r)=0, (1.255)
ror C

which must be solved for each «. The coupled Eqs. (1.254) and (1.255) take the
place of the radial Schrodinger equation (1.8) in non-relativistic theory. We thus see
that the Dirac equation for a spherically symmetric potential can be separated with-
out approximation in spherical polar coordinates. We also note from these equations
that for scattering energies E < c2, the ratio p, /q. ~ c. Hence p, is often referred
to as the “large component” and g, as the “small component” of the Dirac wave
function.
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It is instructive at this point to consider the non-relativistic limit of the coupled
differential equations (1.254) and (1.255). In this limit

|E - V(r)| < 2¢%, (1.256)
and hence (1.254) can be rewritten as
d K
— 4+ =) pe(r) —2¢q (r) = 0. (1.257)
dr r

Substituting for g, (r) from (1.257) into (1.255) then gives

1/d K d K
l=—= )=+ )P +[E-V{@P)]pc(r)=0, (1.258)
2\dr r dr r
which can be rewritten as
2 k@k+1
— — ————= =2V(r)+2E | p(r)=0. (1.259)
dr? r2

It follows from (1.250) that k = £ or —¢ — 1, so that in both cases
kk+1)=LL+1). (1.260)

Also we remember from Sect. 1.1 that k2 = 2E and the reduced potential U (r) =
2V (r). Hence (1.259) can be written as

2
(d__w_U(r)+k2> pe(r) =0, (1.261)
dr? r2

which is the usual form of the radial Schrédinger equation given by (1.8).

The coupled equations (1.254) and (1.255) can be reduced to Schrodinger form
even when (1.256) is not satisfied. This occurs for relativistic electron scattering
energies or when the potential V (r) corresponds to electron collisions with heavy
target atoms or ions with large nuclear charge number Z. Taking the derivative of
(1.254), substituting for dg, /dr from (1.255) and eliminating g, (r) then yields

d>pe  A'(r)dps
dr? A(r) dr

+ (A(r)B(r) - i((:))g - K(Krj 1)) pe =0, (1.262)

where we have written
12
Alr) = E[ZC +E—-V(r)],
A(r) = T (1.263)
1
B(r) = - [E—-V()].
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We then make the substitution

Pe(r) = [A)IY2 pe(r) (1.264)

in (1.262), which gives the following equation for p, (r):

& k(k+1) _
(m -T2 —UK(V)+/<3> Pe(r) =0, (1.265)
where
2 1 2
ki = 5 E(E 4 2¢%) (1.266)
C
and
2 2 / / 2 Vi
Ue(r) = 2E+cHVE) VD  kA'()  3[A(MF  1A"() (267

2 2 r A | A[AME 2 A()

After substituting for « (¢ + 1) from (1.260), we see that (1.265) has the same form
as the non-relativistic Schrodinger equation (1.8). Also, for low-energy electron
collisions with light atoms or ions, the terms involving [V (r)]>, A’(r) and A”(r)
in (1.267) can be neglected and we obtain

A(r)y=2c, k*=2E, Ur)=U(). (1.268)

Hence (1.265) reduces to the non-relativistic Schrodinger equation (1.261) or (1.8)
as expected.

However, for relativistic electron scattering energies or for electron collisions
with heavy atoms or ions all the terms in the potential U, (r) given by (1.267) are
appreciable. Hence the Dirac equations (1.254) and (1.255) or the equivalent rela-
tivistic Schrodinger equation (1.265) gives different results from the non-relativistic
Schrodinger equation (1.8) or (1.261) for the same potential U(r) = 2V (r). In
particular, the term containing « in U, (r) corresponds to a spin—orbit interaction,
since from (1.250), k = £ when j = ¢ —1/2andk = —¢ — 1 when j = £ 4 1/2.
We will see later in this section that this spin—orbit term in U, (r) gives rise to spin
polarization effects in electron collisions with heavy atoms or ions even for low
electron scattering energies.

We conclude our discussion of the equivalent relativistic Schrodinger equa-
tion (1.265) by noting that although it has the same form as the non-relativistic
Schrodinger equation, there are two other fundamental differences. First, the k,2
term, defined by (1.266), depends on E? as well as upon E and second the rel-
ativistic potential U, (r), defined by (1.267), depends on the energy E as well as
upon the radius r. However, for low-energy electron collisions with heavy atoms
or ions, where the electron scattering energy E < ¢, these differences become
insignificant and we obtain in this limit

k? — k* =2F (1.269)
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and

V)P  kA(r) 3[AMP 1A"()

Uelr) = o) =2V ) == 5 iy YA AP~ 2 A

. (1.270)

The corresponding relativistic Schrodinger equation (1.265) then reduces to the
standard non-relativistic Schrodinger equation form, as shown in our discussion
leading to (1.261), where k> = 2E and the potential does not depend on energy.
We will see in Sects. 4.6 and 5.5 that this result has important implications for
the R-matrix method of solving the Dirac equation describing low-energy electron
collisions with heavy atoms or ions.

We now derive expressions for the scattering amplitudes and cross sections by
considering the asymptotic form of the solution of the Dirac equation. We com-
mence by noting that it is only necessary to know the “large components” of the
Dirac four-component spinor in order to determine the scattering matrix (see, for
example, [171]). Thus if the Dirac four-component spinor, given by (1.244), is writ-
ten in terms of two-component spinors as follows

[ Va
v = (W) , (1.271)

then we need to only consider the two-component spinor ¥4 containing the “large
component” p, (7). In analogy with (1.2), we write the asymptotic form of 4 cor-
responding to a plane wave and outgoing spherical wave as

eikr

VA®), > X1 @ DT Ky @M, (0.9)——, my =3, (1.272)

_11
my=+5

where we have assumed that the potential V (r) is short range, vanishing faster
than r—! at large distances. Equation (1.272) then defines the scattering matrix
My m, 0, ¢), where the wave number k of the scattered electron is related to the
incident electron energy E by (1.266).

In order to determine the scattering matrix, we expand ¥4 (X) in terms of the
spin—angle functions 7, (F, o) = J), Lim (t, o) defined by (1.245). We write

N
Yam =3 > Bk p ()Y, E0). (1273)
Z:Oj:(_%

where the radial functions pg;(r) can be identified with the radial functions p, (r)
which satisfy (1.262). Also from (1.264) and (1.265), and the result that A(r) tends
to a constant as r — 00, it follows that the radial functions p, (r) and hence the
radial functions pg;(r) can be chosen to vanish at the origin and to satisfy the
asymptotic boundary conditions

pe(r) ~_sin [kr — Low 45y (k)] . j=txl (1.274)
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In this equation we have introduced the phase shifts ¢ (k) which depend on j as
well as on £ because of the k dependence of Uy (r) in (1.265).

The scattering amplitudes and cross sections can be obtained, as in Sect. 1.1, by
equating (1.272) with the asymptotic form of (1.273). We first express the incident
plane wave term in (1.272) in terms of the spin-angle function ), Lim: To achieve

this we note from (1.27) that
) o0
X, (0)elke = Xm, (o) Z(ZE + l)iej[(kr)Pe(COS 0). (1.275)
=0

Using (B.47) and the inverse of (1.245), which from Appendix A.1 is

t+3
Yon©. )x1,, @) = Y (tmedmgljme +m) Yyt i F0), (1276)
j=t-

D=

enables us to rewrite (1.275) as

o 41

X1, @ =303 e+ DIV i lkr) (03l jmy) V1, ()
=0;_p_1
J*l_z

(1.277)
The coefficient Byj(k) in (1.273) is then determined by equating the ingoing wave
terms in (1.273) and (1.277). We find using (1.274) that

Buj () = k™' 4 L + D' i explise; (0] (€0%my | jm, ) (1.278)

The second term on the right-hand side of (1.272) can now be obtained by subtract-
ing (1.277) from the asymptotic form of (1.273). Calling this term ¥, (x) we find
that

o+
1 - : 1/2 : 1 .
Vie®) =3 D e+ DI expl2ioy ()] — 1) (€03myjm, )
Z:Oj:[_%
ikr
X yK%jms(r, o) pal (1.279)

The scattering matrix My, (6, ¢) is determined by substituting for the spin-angle
function Y, 1 im (t, o) from (1.245) and comparing with (1.272). We obtain
2 5
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o bt}
My, 0.9) = 523 Y Tt + 11" {exp [2isy; (0] — 1} (£03m | jm, )
Z:Oj:g_%
x (g = m{ dm{|jmg) Yo, ;6. ®) (1.280)

We can write this result as a 2 x 2 matrix in spin space using the explicit forms for
the Clebsch—Gordan coefficients and for the spherical harmonics defined in Appen-
dices A and B, respectively. We find that

_ f©) h®)e?
M(9,¢)—(_h(0)ei¢ £0) ) (1.281)

where the direct scattering amplitude f(0) is given by

0]

1 . .
F(O) = 3 3 [(€+ Dlexpl2id,, (0] — 1) + Elexpl2i8,,_y ()] — 11

x Py(cos0), (1.282)

and the spin-flip scattering amplitude /4 (0) is given by

o
h(0) = ﬁ 3 {exp[Zi(SgH%(k)] — exp[ZiSM_%(k)]} Plcosf).  (1.283)
=1
We note that if the spin—orbit coupling term in the potential is negligible so that
the interaction potential is the same for j = £ + % and j = ¢ — %, then
oot 1 (k) = 8,_ ! (k). The spin-flip amplitude /(0) then vanishes and the direct
scattering amplitude f(6) reduces to the familiar form given by (1.29) where
Se(k) = ‘Se£+%(k) = 5257%(10.

We can rewrite the scattering matrix (1.281) in terms of the 2 x 2 unit matrix /I,

and the Pauli spin matrices given in (1.234) as

M@®, ¢) = f(0), —ih(0)sin¢ o, +ih(f)cos¢p oy . (1.284)
This expression can be further simplified if we define the (x, z) plane to be the plane
of scattering, with the z-axis being the incident beam direction and the y-axis being
normal to this plane. Then ¢ = 0 and we obtain

M = f(0) ], +ih(0)o, . (1.285)

If we introduce a unit vector i normal to the scattering plane defined by the incident
and scattered electron vectors K; and Ky, respectively, so that
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N k,‘ X kf
n=_———, (1.286)
ki x Kkl
then the scattering matrix can be written as
M= f(0), +ih(0)o - 1. (1.287)

We note that the scattering matrix M is a scalar and hence is independent of the
particular coordinate system which we have used to obtain it. In fact the expression
given by (1.287) is the most general scalar which can be formed in the case of spin
% particles scattered from a spin zero target under the assumptions of rotational
invariance, time-reversal invariance and parity conservation.

Having determined the scattering matrix, we can now calculate the cross sections.
The differential cross section for a transition from a state denoted by (k, m;) to a
state denoted by (k', m}) is

dUmg,mS

ds2

= (X1 M1, )1 = [ M, (0, $)° . (1.288)
27 27s

If the spin orientation of the final state is not measured, then the differential cross
section for scattering from a pure initial spin state x 1 m, is
Lmy

doy,,
o = 2y IMixy, )P
mQ::I:%
= D O, My, ), Mixy,,)
m§=i%
= (X1, M"MIxy,, ). (1.289)

where M is the hermitian conjugate of M. Using (1.287) and the identity
(0 -Vi)(0- V)=V -Va+io - (Vi x V), (1.290)

where V| and V; are any two vectors, then we find that

doy, i £* *
% = £ OF + hO)] +iLf*(0)h©) — fO)h*(©)]

X At o DXL, ) - (1.291)

This result can be rewritten as

doy,, . 2 ’ .
2= [IF@F + 1@ [+ SO -] | (1.292)
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where the real function

JH(O)h (@) — f(BIR*(0)

S@) =i (1.293)
| O +1h(0)?
is called the Sherman function [871] and
P, = (X%mxldlx%mx) (1.294)

is the initial electron spin polarization vector. Since we are considering a pure initial
spin state we have |P;| = 1. However, (1.292) remains valid for any degree of
polarization of the incident electron beam where 0 < |P;| < 1. Spin and relativistic
effects in potential scattering are discussed further by Burke and Joachain [171] and
a discussion of polarization phenomena in atomic collisions using a density matrix
approach has been given by Blum [119]. We refer to these texts for a more detailed
presentation of these phenomena.



Chapter 2
Multichannel Collision Theory

In this chapter we introduce the basic concepts of multichannel collision theory and
we apply this theory for illustrative purposes to non-relativistic electron collisions
with multi-electron atoms and atomic ions. This chapter thus provides an introduc-
tion to our discussion of resonances and threshold behaviour presented in Chap. 3
and to R-matrix theory and applications, presented in Chap. 4 and later chapters
in this monograph. We will be mainly concerned in this chapter with low-energy
elastic scattering and excitation processes. However, we will show in Chap. 6 that
the theory and methods developed in this chapter are the basis of R-matrix meth-
ods which enable accurate excitation and ionization processes to be calculated at
intermediate energies.

We commence our discussion of multichannel collision theory in Sect. 2.1 by
considering the solution of the time-independent Schrodinger equation describing
low-energy electron collisions with multi-electron atoms and atomic ions which
contain N electrons and have nuclear charge number Z. We define the scatter-
ing amplitude in terms of the asymptotic form of the solution of the Schrédinger
equation. The differential and total cross sections are then defined in terms of this
scattering amplitude. In Sect. 2.2 we consider the atomic or ionic target eigenstates
which take part in the collision process. In order to obtain accurate scattering ampli-
tudes and cross sections it is necessary to represent the target by accurate wave
functions. We therefore give a brief overview in this section of representations of
the target eigenstates, used in most practical applications, where electron exchange
and correlation effects are both accurately represented. We also introduce the con-
cept of pseudostates, which enable long-range polarization effects to be accurately
included in low-energy electron—atom collisions. A discussion of the further role of
pseudostates in representing inelastic effects due to excitation of high-lying bound
states and continuum states at incident electron energies close to and above the
ionization threshold is reserved for Chap. 6.

In Sect. 2.3 we turn our attention to the derivation of the close coupling equa-
tions that can yield accurate low- and intermediate-energy solutions of the time-
independent Schrodinger equation describing electron—atom and electron—ion colli-
sions. We commence by showing that the wave function can be expanded in terms
of an antisymmetrized sum over target eigenstates and pseudostates multiplied by
functions representing the motion of the scattered electron. This close coupling

P.G. Burke, R-Matrix Theory of Atomic Collisions, Springer Series on Atomic, Optical, 57
and Plasma Physics 61, DOI 10.1007/978-3-642-15931-2_2,
© Springer-Verlag Berlin Heidelberg 2011
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expansion is then substituted into the Schrodinger equation leading to the close
coupling equations which are a set of coupled second-order integrodifferential equa-
tions satisfied by functions representing the radial motion of the scattered electron.
Finally in this section we examine the form of the local and non-local potentials
that occur in these close coupling equations. In Sect. 2.4 we examine the asymptotic
form of the solution of the close coupling equations which enables us to define the
K-matrix which is a generalization of the expression for this quantity in potential
scattering given in Chap. 1. We show that the solution of the close coupling equa-
tions satisfies the Kohn variational principle, and hence the corresponding K -matrix
is correct to second order in the error in the collision wave function. We also show
from general considerations that the K-matrix is real and symmetric. Finally, in
Sect. 2.5 we define the multichannel S- and T-matrices in terms of the K-matrix,
which in turn leads to the derivation of expressions for the differential and total cross
sections. In this section we also summarize the angular momentum transfer formal-
ism, which enables several qualitative features of angular distributions to be simply
understood, and we define the collision strength and the effective collision strength
which have been widely used in plasma physics and astrophysics applications.

2.1 Wave Equation and Cross Section

We illustrate multichannel collision theory in this chapter by considering non-
relativistic low-energy elastic and inelastic electron collisions with multi-electron
atoms and atomic ions represented by the equation

e+ A —>Aj+e, 2.1)

where A; and A; are the initial and final bound states of the target. The time-
independent Schrddinger equation satisfied by the wave function ¥ describing pro-
cess (2.1) s

Hy¥ = EV, 2.2)

where Hy 1 is the non-relativistic Hamiltonian defined in atomic units by

N+1 1 7 N+1 1
PO ST T S A

- o
i=1 ! i>j=1""

and E is the total energy. It then follows that (2.2) and (2.3) describe the collision
of an electron with an atom or atomic ion containing N electrons and with nuclear
charge number Z, where we limit ourselves in this chapter to low Z atomic targets
so that relativistic effects are negligible. In (2.3) we have taken the origin of coor-
dinates to be the target nucleus, which we assume has infinite mass. Also Vf is the
Laplacian operator defined in spherical polar coordinates in Appendix B.3 and we
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have written r;; = |r,~ — rj| where r; and r; are the vector coordinates of the ith
and jth electrons.

In order to define the scattering amplitude and cross sections we first rewrite
Hpy 41 in terms of the target Hamiltonian Hy as follows:

H H 1v2 z + ! (2.4)
N+1 = N — 3 - ) .
i 2 M v —; TiN+1

where Hy is defined by (2.3) with N + 1 replaced by N. We next introduce a set of
target eigenstates, and possibly pseudostates, @;, and their corresponding energies
e; which satisfy the equation

(®; |[HN| Dj) = e;dij, (2.5)

where the integration in this equation is carried out over the space and spin coordi-
nates of the N target electrons. We then look for the solution of (2.2) corresponding
to the process represented by (2.1), where an electron in spin state X Ly collides
with a target atom or ion in state @; and is scattered into spin state X % , leaving

the atom or ion in state ¢; allowed by the conservation relations, where the Z-axis
is chosen to lie along the incident beam direction. The asymptotic form of the wave
function in the case of a neutral target where N = Z is then

exp(l ir )

Wi~ PiXy,, explikic) + ) @iX 1, [ii@.9) =S (2.0)

J

where r, 0 and ¢ are the radial and spherical polar coordinates of the scattered

electron and where f; (6, ¢) is the scattering amplitude for a transition from state

®; X, tostate @;X 1, corresponding to the scattering angles 6, ¢. The direction
27 ; 270

of spin quantization is usually taken to be the incident beam direction and the wave
numbers k; and k;, for the incident and scattered electrons, are related to the total
energy E of the system and to the target eigenenergies ¢; and e¢; by the equation

1 1
E:ei+§ki2=ej+2k? (2.7)
The outgoing wave term in (2.6) contains contributions from all target states that
are energetically allowed, that is for which ka. > (. The remaining states, for which

k]z < 0, can only occur virtually during the collision process. These virtual states
play an important role when the scattered electron lies within the target charge cloud
and we will see that they can give rise to resonances in the collision process.

If the incident electron energy is high enough then continuum states of the target
can be excited and contribute to the asymptotic form in (2.6). These terms corre-
spond to ionizing collisions. We will consider this possibility in Sect. 3.3.5 when
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we discuss the threshold behaviour of ionization and in Chap. 6 when we discuss
intermediate-energy electron—atom collisions.

We also note that when the target is an atomic ion, logarithmic phase factors
must be included in the exponentials in (2.6) to allow for the long-range distortion
caused by the Coulomb potential. This introduces no essential complications so we
will not consider these factors further here, but will return to consider their effect on
the cross section in Sect. 2.5.

The differential cross section for a transition from an initial atomic state @; to
a final atomic state &, with the scattered electron spin magnetic quantum num-
ber changing from m; to m; and its wave number changing from k; to k;, can be
obtained by calculating the incident and scattered fluxes in (2.6). We obtain

doj;i  kj 2
Ji J

— == |f;i0, 2.8
i =5 i@ (2.8)
in units of a%/steradian, where ag is the Bohr radius of the hydrogen atom in its
ground state. The total cross section is then obtained by averaging over the initial
spin states, summing over the final spin states and integrating over all scattering
angles.

2.2 Target Eigenstates and Pseudostates

In order to calculate the wave function ¥ in (2.2) describing the collision process
and hence the scattering amplitude and cross sections we must first consider how
the target eigenstates, and possibly pseudostates, @;, are represented in the theory.
In this section we give a brief overview of the representations that are adopted for
these target states in non-relativistic electron—atom and electron—ion collision cal-
culations.

2.2.1 Target Eigenstates

For multi-electron atoms and ions, the target eigenstates are not known exactly.
Hence in most electron collision calculations they are written as configuration inter-
action expansions in terms of sums over an orthonormal set of target basis configu-
rations ¢; in the form

P;(Xn) = Z di Xn)cij, (2.9)

as discussed by Hartree [445], Froese Fischer et al. [346, 349], Hibbert [465] and
Cowan [233]. In this equation Xy = Xy, ..., Xy, where x; =rjo;, i = 1,..., N,
represent the space and spin coordinates of the N target electrons and the expan-
sion coefficients ¢;; are obtained by diagonalizing the target Hamiltonian in (2.5) in
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this basis. These calculations can be carried out using one of a number of atomic
multiconfiguration atomic structure programs, which we refer to in Sect. 5.1.1. We
assume in the following discussion that the atomic orbitals for each orbital angular
momentum are constrained to be orthogonal, corresponding to most atomic struc-
ture and collision programs. However, we observe that non-orthogonal orbitals are
finding increasing use in atomic structure and collision calculations considered in
later chapters.

The basis configurations ¢; in (2.9) are constructed from N one-electron orbital
and spin functions which have the form

tntmgm; (¥, 0) = 17 Pag(r)Yom, (0, )X 1, (@), (2.10)

where the reduced radial orbitals P, (r) satisfy the orthonormality relations

o0
/ Poc(r) P (F)dr = Sy, @.11)
0

for each orbital angular momentum £. Also Y, (0, ¢) are spherical harmonics,
which are defined and discussed in Appendices B.3 and B.4, and X | m; (o) are elec-
tron spin eigenfunctions. In the absence of relativistic terms in the Hamiltonian, the
orbital and spin angular momenta of the one-electron functions are coupled together
to yield completely antisymmetrized configurations, which are eigenfunctions of the
square of the total N-electron target orbital and spin angular momentum operators
L2 and S? and their z-components L. and S, as well as the total target parity opera-
tor . We can write these basis configurations more explicitly as

¢i(Xn) = i (1sMi2sN22pNsi LS My, Mg, | Xwy), (2.12)

where the Nj; are the occupation numbers of the target shells, which satisfy

Y ONji=N, alli. (2.13)
j

Also in (2.12), B; denotes the coupling of the target shells, L; and S; are the total
target orbital and spin angular momentum quantum numbers, M, and My, are the
corresponding magnetic quantum numbers in some preferred direction and 7; is the
total target parity quantum number. Each target eigenstate @; involves a summation
over basis configurations ¢; that have the same total orbital, spin and parity quantum
numbers but differ in the occupation numbers or the coupling. We can thus write
these target eigenstates more explicitly as

Dj(ajL;jSiMp; Ms;j | Xn), (2.14)

where the quantity o ; serves to distinguish different target states with the same total
target orbital, spin and parity quantum numbers.
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The basis configurations in (2.9) usually include the Hartree—Fock configuration
of the target ground state or a low-lying excited state. Hence the reduced radial
orbitals P,¢(r) include the self-consistent field (SCF) orbitals. Additional “physical
orbitals” are then included to represent the other target states of interest in the cal-
culation and possibly further “pseudo-orbitals™ are included to represent additional
correlation and polarization effects. These orbitals are either expressed in analytical
form as a sum of Slater-type orbitals (STOs) defined by

2 kj+1/2
Poo(r) = Zb ( 5()2]{ o) rki exp(—§;r), (2.15)

where k; > €41 and the coefficients b}, k; and &; depend on n and ¢, or the orbitals
are tabulated at a grid of points.

As an example, we consider the target eigenstates that have been adopted in
several studies of low-energy electron collisions with Be-like ions C>* and O**.
In this case electron collisional excitation cross sections between the following six
target eigenstates are important in many applications (see, for example, [97])

1s22s% 18°; 1s2252p 3P°, 'P°; 1s22p? 3pP°, 'D°, !se. (2.16)

Accurate low-energy excitation cross sections can then be obtained using the follow-
ing physical orbitals and pseudo-orbitals in the representation of the target eigen-
states

Is, 2s, 2p, 3s, 3p, 3d, (2.17)

where we distinguish the 3s, 3p and 3d pseudo-orbitals from the s, 2s and 2p phys-
ical orbitals by placing a bar over the pseudo-orbitals.

The target eigenstates are constructed by diagonalizing the target Hamiltonian
matrix, defined in (2.5), in the basis of configurations defined by (2.9). These con-
figurations are constructed from the physical and pseudo-orbitals assuming that the
1s orbital remains doubly occupied. Configurations where one or two electrons are
excited out of the 1s orbital correspond to high-energy excitations which are not
important in low-energy electron collisions. A list of configurations that can be
constructed from the orbital basis defined by (2.17) for each target eigenstate is
given in Table 2.1, where we find it convenient to put these configurations into cat-
egories depending on whether zero, one or two electrons are excited from physical
to pseudo-orbitals.

The choice of the physical and pseudo-orbitals is not unique and care must be
taken in choosing them. One appropriate choice is to take the 1s and 2s orbitals to
be the Hartree—Fock orbitals from the 1s?2s> !S® ground state and the 2p orbital
to be the Hartree—Fock orbital from the 1s>2s2p 3P° first excited state. The 3s, 3p
and 3d pseudo-orbitals, which are orthogonal to the physical orbitals with the same
angular symmetry, can then be chosen to optimize the energies of the remaining
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Table 2.1 Configuration basis which represent the lowest six Be-like ion target eigenstates

Target state

Zero-electron

One-electron Two-electron

symmetry excitations excitations excitations
Ige 152252 1522535 15235°
1 322p2 1s2 ZpE 1 szﬁz
1523d°
3po lpo 1s22s2p 15%253p 15735 3p
1s22p3s 1s?3p 3d
1s22p3d
3pe 1522p? 1522p3p 1523p°
1 szﬁz
IDe 1s22p? 1s22s3d 15235 3d
1s22p3p 1 5252
1 szﬁz

four excited states in (2.16). If we assume that the target eigenstates @; in (2.9) are
expanded in terms of zero-electron and one-electron excitation configurations from
Table 2.1, then the six target eigenstates in (2.16) are expanded as follows:

D
2]
D3
Dy
D5

Dg

[0161s22p2 + ¢2615%25% + 361522535 + 0461s22p$] Ise,

[ c1a1522p% + cz4ls22p$] 3pe,

= -cll 152282 + ¢ ls22p2 + 311572835 + cuy 1s22p$] Ise,
c12152282p + ¢2215%253p + ¢301s22p3s + C421s22pﬁ] 3po,

_c131s2252p + C231s2233_p + ¢33 1822p§ + c43 ls22pﬁ] Ipo,

-C15 1522p2 + co5 1s2253d + c35 ISZZPE] 1De,

(2.18)

where the dominant configuration is the first configuration in the list in each case.
The coefficients defining the pseudo-orbitals in (2.15) can be determined by mini-
mizing the energies of the excited states defined by (2.18) using an atomic structure
program (e.g. [464], or an equivalent program). For example, the 3s pseudo-orbital
could be chosen to allow for the difference of the 2s orbital in the 1s22s> 'S¢ ground
state and in the 1s22s2p 3P° and 1s?2s2p 'P° excited states. Thus the 3s pseudo-
orbital coefficients could be optimized on a linear combination of the 1s>2s2p 3P°
and 1s22s2p PP excited state energies. Also the 3p pseudo-orbital could be chosen
to allow for the difference of the 2p orbital in the 1s?2s2p >P° first excited state
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and in the 1s22p? 3P° and 1s22p? 'S¢ excited states. Thus the 3p pseudo-orbital
coefficients could be optimized on a linear combination of the 1s?2p? 3P° and
1s22p? 'S¢ excited state energies. Finally, the 3d pseudo-orbital coefficients could
be optimized on the 1s22p? D¢ excited state energy.

We see from Table 2.1 that in addition to the zero-electron and one-electron exci-
tation configurations, which we included in expansions (2.18) of the target eigen-
states, we could also include two-electron excitation configurations. This would
improve the target eigenstates by including additional electron—electron correlation
effects. However, it is important to ensure that the correlation effects included in
the target states balance those included in the collision wave function in order to
obtain accurate collision results. We will see in Chap. 6, where we discuss elec-
tron collisions at intermediate energies, that the inclusion of two-electron excitation
configurations in the collision wave function can give rise to unphysical or pseudo-
resonances at these energies. We will therefore defer further discussion of this point
until that chapter.

2.2.2 Target Pseudostates

In certain circumstances determination of target states which are not eigenstates
of the target Hamiltonian is required to obtain accurate electron—atom collision
cross sections. These states, which are usually called pseudostates, are found to be
particularly useful in low-energy electron—atom and electron—molecule collisions,
where the long-range polarization potential gives an important contribution to the
cross section. We will see in Chaps. 6 and 11 that target pseudostates can also be
used to represent the ionization continuum in electron—atom and electron—molecule
collisions at intermediate energies.
For an atom in a non-degenerate S-state, the long-range polarization potential
has the asymptotic form
Vo(r) ~ — — (2.19)

r—oo  2p4’

where the quantity o which appears in this equation is the dipole polarizability. This
is defined by the expression (see [243])

(x—ZZ/ |<¢0|DN|(pk>| DEOTNTZRIT gk, (2.20)

€k — €0

where the summation and integration in this equation are taken over all target eigen-
states @y, including the continuum, which are coupled to the ground state @ by the
dipole operator

N
Dy =)z, (2.21)

i=1
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and where the eigenenergies ey are defined by
ey = (Dr|HN | Px)- (2.22)

It was shown by Castillejo et al. [205] that in the case of electron collisions with
atomic hydrogen in its ground state, 65.8% of the dipole polarizability comes from
including the 2p state in expansion (2.20) while 81.4% of the dipole polarizability
comes from the sum over all bound states, the remaining 18.6% coming from the
continuum terms in the expansion. In this case, Damburg and Karule [245] showed
that a p-wave pseudostate denoted by 2p enables expansion (2.20) to be replaced by
a single term. This polarized pseudostate has the same range as the 1s ground state
orbital and has the reduced radial form

8§\, .
Py (r) = <129> (Zr —i—r)e ) (2.23)

The corresponding pseudostate energy e¢”, defined by
P =(oP|Hy|®P), (2.24)

has the value —7/86 a.u., where @7 is the pseudostate wave function. Clearly this
energy is not an eigenenergy of the target Hamiltonian. However, if this polarized
pseudostate, as well as the ground target eigenstate, is included in the close coupling
expansion of the collision wave function, as discussed in Sect. 2.3 and Chaps. 5
and 6, then the full long-range part of the polarization potential given by (2.19) is
represented in the collision process. Elastic e™—H collision calculations including
this pseudostate were first carried out at energies below the 2s and 2p excitation
threshold by Burke et al. [177].

In the case of multi-electron atoms and atomic ions, the polarized pseudostates,
like the target eigenstates, cannot be written down exactly. In this case a variational
principle [166, 167, 941] can be used to calculate these pseudostates. We consider
the following inhomogeneous equation for the unnormalized pseudostate P

(Hy — eo)QDP Dn®y. (2.25)

This equation has the formal solution

(@4 Dy |Po)
|BP) = Z (PIDN o) | 5 . (2.26)
€k — €0

where the spectral representation of the Green’s function (Hy — e0)~! has been
used, which involves a summation over the discrete spectrum and an integration
over the continuum spectrum of Hy . Substituting (2.26) into (2.20) then gives

o = 2(Py|Dy|DP). (2.27)
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In order to write this equation in the form of (2.20) containing a single term we
normalize @7 by introducing the constant n,, defined by

ny, = (P|dF). (2.28)
The normalized pseudostate @7 is then given by

o7 =n,'*B", (2.29)
Substituting this result into (2.27) then gives

a = 2n)/* (Bo| Dy |®P). (2.30)
The final step is to eliminate n},/ ? from this equation. To do this we project (2.25)
onto @7 yielding

(7 |Hy — el B7) = (B” |Dy| o), (2.31)
which gives, after using (2.29)

nl/2(@F |Hy — eo| ®7) = (0P |Dy| dy). 2.32)

Substituting this result for n},/ % into (2.30) then gives

2
o = 2 PADNIPTIT (2.33)
el —eg

where the energy e” of the polarized pseudostate is given by (2.24). If we include
the ground state @ and the polarized pseudostate @7 in the close coupling expan-
sion of the wave function describing electron collisions with atomic hydrogen, as
discussed in Sect. 2.3 and Chaps. 5 and 6, then the full long-range part of the dipole
polarization potential given by (2.19) is represented in the collision process. In this
way we have replaced the summation and integration in the expression for the dipole
polarizability given by (2.20) by a single pole term given by (2.33).

The problem of calculating polarized pseudostates for complex targets reduces to
solving the inhomogeneous equation (2.25) to obtain @7 and then normalizing this
solution using (2.29) to give the required polarized pseudostate @7. We can solve
(2.25) by introducing a trial function (l~>tp and considering the variational functional

JI®1 = (D |Hy — el B)) — 2(® |Dy| ®y). (2.34)

The first-order variation §J of the functional J with respect to small variations 85{)
in the trial function @ is
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SI[@]] = 2(8®! |Hy — eo| D) — 2(6®] | Dy | D). (2.35)

which is zero when 5{’ is an exact solution of (2.25). We construct a trial function
in analogy with the target eigenstates given by (2.9), by expanding @/ in terms
of a sum of orthonormal basis configurations ¢; with the appropriate symmetry as
follows:

Sl (Xn) =Y j(Xn)b;. (2.36)

j=1

Substituting this expansion into (2.34) and varying the coefficients b; leads to the
system of m linear simultaneous equations

m
> (@i lHN|6)) — eodij) bj = (@i IDx| Do), i=1,....m, (237
Jj=l1

which can be solved to yield the coefficients b;, and hence 5{7 and the normalized
polarized pseudostate @7 can be constructed. ~
Also we see from (2.34) that the second-order variation §2.J [cD[p | satisfies

2 I[P = (60 |Hy — eol $&!") > 0, (2.38)

since e is the lowest eigenvalue of Hy so that Hy —e is a positive definite operator.
Hence the minimum value of J is obtained when (btp is the exact solution of (2.25).
Further at the minimum Jp,i, of J we have

Jmin = (PP |Hy — eo|l @) — 2(P? | Dn| Po)

—(@”|Dy| ®o) (2.39)

1

= ——«,

2
which follows from (2.25), (2.27) and (2.34). Hence in constructing the polarized
pseudostate it is possible to improve this state by varying the radial orbitals used in
the definition of the basis configurations in (2.36) to minimize J or to maximize «.
As an example of the above theory we consider the calculation of the polarized
pseudostate required to represent low-energy elastic electron collisions with neon.
In this case a reasonably good approximation for the elastic collision process is
obtained by representing the neon ground state by the Hartree—Fock 15%2s%2p® 'S¢
configuration and the polarized pseudostate, which has 'P° symmetry, by a linear

combination of the following basis configurations:

1s22s22p°js 'P°, j=1,...,n,
1s22s22p°jd 'P°, j=3,...,n
1s22s 2p%jp 'P°, j=2,...,n. (2.40)
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The additional polarized pseudo-orbitals js, jp and jd must satisfy the usual
orthonormality relations given by (2.11) but are not physical. Indeed, like the 2p
orbital representing the polarized pseudostate in atomic hydrogen given by (2.23),
their range is determined by the range of the ground state of the target atom whose
polarizability they are representing rather than by the range of the excited states.
In a study carried out by Burke and Mitchell [166], the Js, jp and jd polarized
pseudo-orbitals were expanded in terms of basis orbitals with the following reduced
radial form:

n
P(r) = Z aijerie™?". (2.41)
i=0+1

In this equation, 8 is a range parameter and the coefficients a;;¢ were chosen so that
these pseudo-orbitals were orthogonal to the 1s, 2s and 2p Hartree—Fock orbitals
of the same angular symmetry and orthonormal to each other. Equation (2.37) was
then solved for a series of values of this range parameter. Figure 2.1 shows the
variation of the dipole polarizability with the range parameter § for three expansions
including all configurations in (2.40) with n = 4, 5 and 6, respectively. For example,
when n = 4 six basis configurations corresponding to the pseudo-orbitals 3s, 4s,
3p, 4p, 3d and 4d are retained in expansion (2.36). Also shown in Fig. 2.1 is the
experimental value of the dipole polarizability determined from experimental data
by Dalgarno and Kingston [242]. As the number of terms in the basis increases the
curves become flatter and converge towards the experimental value. However, this
calculation does not give a rigorous lower bound on the exact dipole polarizability

2.8

2.7 ¢ Experiment

26
25}
24+

23}

Polarizability (au)

22¢

21 ¢

1 1.5 2 25 3
Range Parameter
Fig. 2.1 The variation of the dipole polarizability with the range parameter 8 in expansion (2.41)

compared with experiment for neon. The curves are labelled by the value of n defined by (2.40)
(modified from Fig. 2 in [166])
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since an exact target ground state was not used. Polarized pseudostates of this type
have been used in electron—neon elastic scattering calculations by Blum and Burke
[120] and Fon and Berrington [327].

The above theory can be modified in a straightforward way so that pseudostates
can be calculated which represent higher multipole polarizabilities of the target and
also which represent the dipole polarizabilities of excited states of the target. In
addition, pseudostates can be chosen which allow in an average way for the loss of
flux into the infinite number of high-lying Rydberg states and continuum states of
the target, thus representing ionization in electron—atom collisions. We will discuss
the construction and application of such pseudostates when we consider electron—
atom collisions at intermediate energies in Chap. 6.

2.3 Close Coupling Equations

In the previous section we showed how accurate wave functions can be obtained
for the target eigenstates and pseudostates which occur in electron collisions with
multi-electron atoms or atomic ions. We turn our attention in this section to the
determination of the electron—atom or electron—ion collision wave function ¥ that
satisfies the non-relativistic Schrodinger equation (2.2). In Sect. 2.3.1 we review the
foundations of the method which involves the solution of a set of “close coupling
equations” also known as “coupled ID equations” which enables accurate excitation
and ionization cross sections to be determined at low and intermediate energies.
Then in Sect. 2.3.2 we describe the explicit form of the close coupling equations
which must be solved in practical calculations.

2.3.1 Foundations of the Method

The foundations of methods for solving the Schrédinger equation (2.2) to obtain
accurate elastic scattering, excitation and ionization cross sections for low- and
intermediate-energy electron—atom and electron—ion collisions were laid by Massey
and Mohr [642, 643] and Mott and Massey [665]. They introduced the following
“close coupling” expansion of the total wave function describing electron collisions
with an N-electron atom or atomic ion

X = Y [ @ Fitw). (2.42)

where Xy4+1 = X1, ..., Xy+1 and where x; = r;jo;, i = 1,..., N + 1, represent
the space and spin coordinates of the N + 1 electrons. The summation in (2.42) goes
over the bound target eigenstates and the integration goes over the continuum target
eigenstates, which are described by @; (X ), and the functions F;(Xy+1) describe
the corresponding motion of the scattered electron. We now substitute expansion
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(2.42) into the Schrodinger equation (2.2) and project onto the target eigenstates

@; (Xy) to yield the following infinite set of coupled second-order partial differen-
tial equations satisfied by the functions F; (Xy+1)

(V2 + k) Fitwe) =2 3 [ Vi) o) (2.43)

Here kl.2 is defined by (2.5) and (2.7) and the potential matrix V;;j(Xy41) is
defined by

VijXn+1) = (@i (Xn) 2 (XN))s (2.44)

FiN+1 rN—H

x

where the integration in this matrix element goes over the space and spin coordinates
of the N target electrons.

Although the solution of Schrédinger’s equation (2.2) given by (2.42) and (2.43)
in principle gives an accurate description of the collision, one question which arises
is how can electron exchange, which is implicit in the theory, be calculated. The
importance of exchange is well known in many applications, for example in “for-
bidden transitions” between the 1s22s*2p2 3P¢, D¢ and 'S¢ terms of O IIT (O**)
which give rise to prominent lines in the spectra of many gaseous nebulae and active
galactic nuclei [709]. On examining expansion (2.42) we see that electron exchange
arises from the continuum terms in the expansion. In this case the incident electron
labelled N + 1 is captured into a bound eigenstate and one of the target electrons
labelled 1, ..., N is ejected into a continuum state. While this process can be cal-
culated using perturbation theory the resultant cross section can be significantly in
error (e.g. [77]). On the other hand, the corresponding solution of the coupled equa-
tions (2.43) gives rise to difficulties owing to singularities which occur in integration
over the continuum terms in the expansion corresponding to electron exchange. In
nuclear structure and collisions these singularities were avoided in early work by
Wheeler [960, 961], by expanding the total wave function in antisymmetric res-
onating groups of nucleons. We now discuss how these difficulties are resolved in
electron—atom multichannel collision theory.

In electron—atom collisions the difficulties owing to singularities arising in the
continuum due to electron exchange were overcome in a fundamental paper by
Seaton [848], who extended the Hartree—Fock equations for bound states, in which
electron exchange is treated using explicitly antisymmetric wave functions, to the
treatment of continuum states. In this paper expansion (2.42) is replaced by the close
coupling expansion

W (Xyi1) =AY & (Xy)Fi(xn 1), (2.45)

i
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where the summation in this equation is now restricted to a finite number of bound
antisymmetric target eigenstates @;(X) which satisfy (2.5). In addition A is the
antisymmetrization operator which ensures that each term in expansion (2.45) is
antisymmetric with respect to interchange of the space and spin coordinates of any
pair of the N + 1 electrons. We find that A4 is defined by

N
A= ((N+1"12 (1 —ZP,NH), (2.46)
i=1

where P;y41 is the operator which interchanges the space and spin coordinates of
electrons labelled i and N + 1. It follows that the total wave function ¥ (Xy41)
defined by (2.45) is antisymmetric with respect to interchange of the space and spin
coordinates of any pair of the N+ 1 electrons, in accordance with the Pauli exclusion
principle.

Following Burke and Seaton [164], we consider first the uniqueness of the solu-
tion defined by (2.45) and (2.46). In the case where N = 1, corresponding to elec-
tron collisions with hydrogenic targets, (2.45) becomes, after using (2.46),

1
V(x1,x2) = 7 Xl: [Pi(x1) Fi(x2) — ®i(x2) Fi (x1)] . (2.47)
We now write
F(x) =Fi(x)+ Y bjj®;(x), (2.48)
j

where the summation in this equation goes over the same set of bound target eigen-
states @; (x) which are retained in (2.47). In this way we have defined a new function
F;(x) for any given set of coefficients b, - Substituting (2.48) into the right-hand
side of (2.47) then gives

1 — —
V%) = — Y [@ix)Fi(x2) — ®i(x2) Fi (x1)]

b > B (x2) by — o) (249)
\/E 7 i\ &) ¥ j X2)(Dij ji)- .

We see that if
bij = bji, (2.50)

then the second summation on the right-hand side of (2.49) vanishes and hence
the wave function ¥ (x1, X») is unaltered by the transformation defined by (2.48).
It follows that the functions F;(x) defined by (2.48) are not unique and that
different functions defined by this equation will yield the same wave function
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¥ (x1, x2) provided that the coefficients b;; satisfy the symmetry relations given
by (2.50).

On the other hand, the asymptotic form of the functions F; (x) is unique since the

bound target eigenstates @;(x) retained in (2.47) vanish asymptotically. Hence the
scattering amplitudes and cross sections which are determined from the asymptotic
form of the functions F;(x) are not modified by transformation (2.48).

We now consider three different procedures for choosing the coefficients b;; in

(2.48):

i.

il.

ii.

We may use expansion (2.47) without introducing explicit conditions which suf-
fice to define F;(x) uniquely. This may lead to loss of accuracy in the numerical
solution of the coupled integrodifferential equations, which we will see below
are satisfied by the functions F;(x).

We may introduce conditions which are sufficient to define the functions F;(x)
uniquely, but which do not change the form of (2.47). Thus, for example, we
could impose the orthogonality conditions

(Di|Fj) =0, =], (2.51)

where we list the states in some definite order. This procedure has been widely
discussed [161, 164, 289, 848] and was shown by Norcross [692] to improve
the accuracy of the numerical integrations.

We may impose the orthogonality conditions

(@i|Fj) =0, alli, j, (2.52)

and replace (2.47) by

1
Voa %) == Y [Bi(x1) Fi(x2) — ®; (%2) Fi (x1)]

1
+—= D [®ix)P;(x2) — i (x)Pj(x1)] cij.  (2.53)
ﬁ i<j

We then have to solve for the functions F; (x) and for the coefficients ¢;;, subject
to the orthogonality conditions (2.52). This method has the advantage of being
easy to generalize to the case of electron collisions with atoms and ions contain-
ing many electrons and has been adopted in many recent theoretical develop-
ments, which we discuss in Sect. 2.3.2 and in Chap. 5.

Returning to (2.45), we now substitute this expansion into the Schrodinger

equation (2.2) and project onto the target eigenstates @; to yield the following set of
coupled second-order integrodifferential equations, satisfied by the functions F; (x)

V2 +IDFx =2) [wj<x>Fj<x>+ / Kij(x, x’)F,»(x’)dx’]. (2.54)

J
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In this equation the potential matrix elements V;; (x) coupling the target states are the
same as in (2.43) and the new exchange kernel K;;(x, x') arises from the operator
Pin41 in (2.46) and gives rise to electron exchange in the collision. The solution of
(2.54) now yields both the direct and exchange scattering amplitudes for transitions
between the target states @; retained in the original expansion (2.45).

However, we observe that an exact solution of these coupled equations will not
yield an exact solution of the original Schrodinger equation (2.2) because of the
truncation of expansion (2.45) to a finite number of bound target eigenstates. In
many cases of interest, involving transitions between strongly coupled low-energy
eigenstates, the resultant solution will be accurate. However, the omission from
the expansion of an infinite number of bound target eigenstates lying close to the
ionization threshold, as well as all the continuum target eigenstates can lead to sub-
stantial errors for some transitions, particularly for incident-electron energies close
to and above the ionization threshold, often referred to as “intermediate energies”.
In addition, since the continuum eigenstates are omitted from expansion (2.45), the
possibility of determining ionization resulting from the excitation of these contin-
uum eigenstates is not included in the calculation.

We now consider a straightforward extension of the close coupling expansion
(2.45) which has enabled accurate ionization cross sections as well as excitation
cross sections to be determined at intermediate energies. We observed in Sect. 2.2.2
that an effective way of representing the long-range polarization potential, where
a substantial contribution to this potential comes from intermediate target eigen-
states lying in the continuum, is to introduce a quadratically integrable polarized
pseudostate which has a substantial overlap with the continuum. This pseudostate
replaces the usual integral expression for the dipole polarizability, given by (2.20),
by a single pole term, given by (2.33). In an analogous way, including a finite num-
ber of discrete quadratically integrable target pseudostates in the expansion has been
found to be an effective way of representing the continuum in electron collisions.
In this approach the eigenstate close coupling expansion (2.45) is replaced by the
following “close coupling with pseudostates” expansion suggested by Burke and
Schey [160]

¥ (Xyi1) =AY O XNFixni1) +AY O Xy)Gi(xyg1). (255

1 1

The first summation in this equation goes over a finite number of bound target eigen-
states @; (X ), as in (2.45), and the second summation goes over a finite number of
suitably chosen quadratically integrable target pseudostates cbip (Xy) representing
the highly excited and continuum target eigenstates. The functions F;(x) and G;(x)
represent the corresponding motion of the scattered electron. The pseudostates are
chosen to be orthogonal to the bound target eigenstates retained in the first expansion
in (2.55) and to diagonalize the target Hamiltonian Hy as follows:

(@] |Hy| ®7) = €] 8ij, (2.56)
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where the pseudostate energies ef’ partially span the energy range, including the con-
tinuum, which is omitted from the first expansion. Substituting expansion (2.55) into
the Schrodinger equation (2.2) and projecting onto the target eigenstates @; (Xy)
and onto the target pseudostates dﬁip (X ) then yields a set of coupled second-order
integrodifferential equations satisfied by the functions F;(x) and G;(x) which have
the same form as (2.54).

We will consider in detail the choice and role of pseudostates in the close cou-
pling expansion when we discuss electron collisions at low and intermediate ener-
gies in Chaps. 5 and 6, respectively. We will see in these chapters that approaches
based on the close coupling with pseudostates expansion, including the R-Matrix
with PseudoStates (RMPS) method, introduced by Bartschat et al. [70, 71] and dis-
cussed in Sect. 6.2, and the convergent close coupling (CCC) method, introduced
by Bray and Stelbovics [126—128] and reviewed in Sect. 6.1, yield accurate cross
sections over a wide range of electron collision energies.

2.3.2 Derivation of the Close Coupling Equations

We now turn our attention to determine the explicit form of the close coupling equa-
tions which must be solved in practical calculations. We first observe that in order
to minimize the computational effort we must use the symmetry of the Hamiltonian
to separate these equations into uncoupled blocks, corresponding to the conserved
quantum numbers, which can be solved independently. In addition, in order to make
the solution of these coupled equations tractable for electron collisions with multi-
electron atoms and ions, a partial wave analysis must also be carried out. In this way
we obtain sets of coupled second-order integrodifferential equations which are sat-
isfied by the wave functions representing the radial motion of the scattered electron.
We will then examine the detailed form of these close coupling equations including
the local direct and the non-local exchange and correlation potentials that arise. In
this way we provide the basis of the R-matrix theory approach for solving these
equations which we will discuss in Chap. 5.

Following Burke [159] the required close coupling with pseudostates expansion,
which replaces (2.55), has the following form for each set of conserved quantum
numbers represented by I”

n
—r . -
WXy =AY @ Xnifyvpiovi)rys B ()
i=1

m
+ X Xy (2.57)
i=l1

where j labels the linearly independent solutions of the Schrodinger equation (2.2),
which we will discuss in detail in Sect. 2.4 when we consider the asymptotic bound-
ary conditions satisfied by the functions Fl-1; (rny+1)- The conserved quantum num-
bers represented by I in (2.57) correspond to the eigenvalues of the complete set of
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operators which commute with the Hamiltonian. In the case of the non-relativistic
Hamiltonian defined by (2.3) these conserved quantum numbers are given by

I'=a LS My Mg m, (2.58)

where L and S are the total orbital and spin angular momentum quantum numbers,
My and Mg are the corresponding magnetic quantum numbers in some preferred
direction z, 7 is the total parity quantum number and « represents any further
quantum numbers which are conserved in the collision. Also, the channel functions
5f (Xy; Ty+10N+1) in (2.57) are obtained by coupling the target eigenstates and
pseudostates retained in the expansion with the spin—angle functions of the scattered
electron to form eigenfunctions of the square of the total orbital and spin angular
momentum operators L and $? and their z-components as well as the parity oper-
ator 7. Hence the channel functions can be written as follows:

—r .
®; (XniBvrione) = Y Y (LiMp timg|LMy)

MLimgI. Msl.ml-
x (SiMs, ym;|SMs)®; (Xy)
X Yeimy, (ON+1, ¢N+1)X%mi (ON+1)s (2.59)

where @; (X ) are the antisymmetric target eigenstates and pseudostates, discussed

above, Yy, (OnN+1,Pn+1) are spherical harmonics, defined in Appendix B.3,

which describe the angular motion of the scattered electron, X 1, (on+1) are elec-
2 Mg

tron spin functions which describe the spin motion of the scattered electron and
(abcd|ef’) are Clebsch—Gordan coefficients defined in Appendix A.1. Returning to
(2.57), the reduced radial functions Fl.? (rny+1) describe the radial motion of the

scattered electron in the ith channel and the X lF (Xn41) are quadratically integrable
functions which vanish at large distances from the nucleus. These quadratically
integrable functions are usually constructed from the same set of physical and
pseudo-orbitals used to construct the target eigenstates and pseudostates @; (Xy)
and are antisymmetric with respect to interchange of the space and spin coordinates
of any pair of the N 4 1 electrons. We discuss the reasons for the inclusion of
these quadratically integrable functions in the expansion of the wave function below.
Finally, the antisymmetrization operator .A defined by (2.46) ensures that the total
wave function is explicitly antisymmetric with respect to interchange of the space
and spin coordinates of any pair of the N + 1 electrons, in accordance with the Pauli
exclusion principle.

We observe that in order to obtain accurate scattering amplitudes we must
include in the first expansion on the right-hand side of (2.57) all the target states of
physical interest. By this we mean that we must include both the initial and final
target eigenstates corresponding to the scattering amplitude of interest, as well as all
other target eigenstates that are expected to play an important role as intermediate
states in the transitions of interest. In particular, if one term of a target configuration
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is included in this expansion then all other terms corresponding to this configuration
are normally strongly coupled to this configuration and should also be included.
For example, if we are considering electron collisions with atomic oxygen in its
1522522p* 3P° ground state, then the other 1s?2s?2p* 'D® and 1s%2s2p* !S® terms
corresponding to this ground state configuration will be strongly coupled and must
also be included to obtain accurate results. We may also need to include pseudostates
in this expansion, either to accurately represent polarization effects at low energies,
as discussed in Sect. 2.2.2, or to represent the highly excited and continuum states
of the target in order to obtain accurate excitation and ionization cross sections at
intermediate energies, as discussed later in this section and in Chap. 6.

The second expansion on the right-hand side of (2.57), over the quadratically
integrable functions Xir (XnN+1), is included for two reasons. First, as discussed in
Sect. 2.3.1, the reduced radial functions Fil.“ (r) are in many calculations constrained
to be orthogonal to the physical orbitals and pseudo-orbitals with the same angular
symmetry which are used in the construction of the target states @; (X ). For exam-
ple, in electron collisions with atomic oxygen the p-wave reduced radial function is
constrained to be orthogonal to the 2p orbital in the target. However, this constraint
means that the 1s22s?2p> >P° configuration, which plays an important role as an
intermediate state in 2P° electron collisions with the 1522522p4 3pe, IDe and 'S¢
target states, is not represented in the first expansion. This configuration must there-
fore be included in the second expansion for completeness, to ensure that the 2P°
collision wave function represents this possibility. This example also re-emphasizes
the importance of including all three target state terms belonging to the 1s>2s22p*
configuration in the first expansion in (2.57), since they are strongly coupled through
the 1522s%2p> 2P° intermediate quadratically integrable function and their omission
would lead to inconsistencies, including the appearance of low-energy pseudoreso-
nances in the cross sections, as pointed out by Gorczyca et al. [398].

The second reason for including quadratically integrable functions in the sec-
ond expansion in (2.57) is to represent short-range electron—electron correlation
effects, which may be difficult to represent accurately by including a finite expan-
sion over target states and pseudostates in the first expansion in (2.57). In the
case of one-electron targets, such as H and He™, highly accurate electron collision
phase shifts and cross sections have been obtained at low energies by Schwartz
[838, 839], Burke and Taylor [162] and Armstead [24], by taking the terms in the
second expansion to be Hylleraas-type functions. In the case of multi-electron tar-
gets these correlation effects are usually included by the introduction of additional
contracted pseudo-orbitals with approximately the same range as the Hartree—Fock
orbitals used to construct the target wave functions, but with more nodes. Additional
(N + I)-electron quadratically integrable functions, constructed from the physical
orbitals and the pseudo-orbitals, must then be included in the second expansion in
(2.57) for consistency. Finally, we note that the inclusion of quadratically integrable
functions in the second expansion in (2.57), to represent short-range electron—
electron correlation effects, gives rise to unphysical pseudoresonances at intermedi-
ate energies. We discuss the role of these pseudoresonances later in this section and
in Chap. 6.
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We now derive coupled second-order integrodifferential equations satisfied by
the reduced radial functions Ft.? (ry+1) in (2.57). These equations are obtained by

substituting the representation for lI/jl;E (Xn+1) given by (2.57) into the Schrodinger
equation (2.2) and projecting onto the channel functions 5?, defined by (2.59) and

onto the quadratically integrable functions Xl.r (XnN+1). In this way we obtain the
following set of n + m coupled equations

-1 =r A .
(ry1 @i Xns Bvion s DI(Hy 1 — )W/ Xn4)) =0, i=1,...,n,
(2.60)
and
U XneDIHy = B)W e Xy)) =0, i=1,....m, (2.61)

subject to the orthogonality constraints
(F (") Page;(r)) =0, all ng. (2.62)

The prime on the Dirac bracket in (2.60) and later equations means that the inte-
gration is carried out over the space and spin coordinates of all N + 1 electrons
except the radial coordinate ry 4 of the scattered electron. In (2.61) the integration
is carried out over the space and spin coordinates of all N 4 1 electrons. Finally,
the orthogonality constraints (2.62) are required to ensure that the reduced radial
functions Fg (r) are orthogonal to all the physical and pseudo-orbitals P, ¢, () of
the same angular symmetry ¢;, which are used to construct the target states retained
in expansion (2.57), as discussed above.

We now eliminate the expansion coefficients c{; in (2.57) between (2.60) and
(2.61), by substituting the expression for these coefficients obtained from (2.61) into
(2.60). After writing the Hamiltonian Hy 1 in terms of Hy using (2.4), we find that
the reduced radial functions F;; (r) satisfy the following set of n coupled second-
order integrodifferential equations which are called the “close coupling equations”
or “coupled ID equations”

& G+l 2Z-N) L\ r
<@— 2 + p +ki>Fij(V)
n 00
=2 Z {Vif (r)Fi{“j (r) + /O (Wl 'y + X[ )] Ffj (r’)dr’}
i'=1

+ D dingj Pugei(r), i=1,....n. (2.63)

ns

In (2.63) ¢; is the orbital angular momentum of the scattered electron, ki2 is the wave
number squared of the scattered electron, Vlf, (r), Wl.? (r,r") and X 5, (r, ") are the
local direct, non-local exchange and non-local correlation potentials, respectively,
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Ain, j are Lagrange multipliers which are chosen so that the orthogonality constraints
defined by (2.62) are satisfied and j labels the linearly independent solutions of
these equations.

After writing Hy 41 in terms of Hy using (2.4), we find that the channel wave
numbers squared ki2 in (2.63) are given by

ki=2(E-2e), i=1,....n, (2.64)

L

r

where the channel energies e; are defined by

el = () @ Xy: Eve1on+D Hylryh @1 X Bniow1),
i=1,...,n, (2.65)

where the channel functions Ef are defined by (2.59). The local direct potential
Vlf, (r) in (2.63), which arises from the direct terms in the first expansion in (2.57),
has the explicit form

N
VErve) = (g} @) s Bys10w41) Z
= TkN+1 VN+1
Xyl @ Xy Evpiona))s i il =1,....n, (2.66)

where the term —N/ry41 is included in this definition so that the long-range
Coulomb potential in electron collisions with atomic ions is included on the left-
hand side of (2.63). The non-local exchange potential WiI;, (r,7") in (2.63), which
arises from the exchange terms in the first expansion in (2.57) has the explicit
form:

1

N N+1

r .
Wi (rN+1,TN) = N<VN+1¢ (X1, ..., XN EN1ON 1)

-1 =TI A
X rN+1®i/ (X19""XN717XN+1;I‘NO'N)>//3
i,i'=1,...,n, (2.67)

where the double prime on the Dirac bracket means that the integration is carried out
over the space and spin coordinates of all N 4 1 electrons except the radial coordi-
nates ry41 and ry of the incident and scattered electrons. Finally, the non-local
correlation potential X (r,r") in (2.63) arises from the quadratically integrable
functions XIF (Xn+1) in expansion (2.57). We can choose these functions without
approximation to diagonalize Hy 1 as follows:

XF XNt DI HN 11X X)) = Edues Kk, K =1,...,m. (2.68)



2.3 Close Coupling Equations 79

We then define the radial functions

1 =T N
Ul ryan) = (ryiy @7 X Bvgionen) [(Hyr — E) Xf Xyg1))s
i=1,....n, k=1,...,m. (2.69)

The elimination of expansion coefficients cil;. in (2.57) between (2.60) and (2.61)
then yields the following expression for the correlation potential:

m
1 . ./
X[orng1,ry) = _ZU,'IJZ(”N+1)—5]< — EUiI/;((rN), i,i'=1,....,n. (2.70)
k=1

Explicit forms for the potentials Vl{, (r), Wl.l; (r,r") and X l.I;, (r, r’) have been given
in a few simple cases, for example, for e~ — H collisions by Percival and Seaton
[726] and for electron collisions with atoms or ions with open 2p? and 3p? shells by
Henry et al. [455]. However, it is not feasible or necessary to write down the explicit
form of these potentials for electron collisions with general atoms and atomic ions.
Instead, they are constructed as part of R-matrix computer programs for solving the
close coupling equations (2.63) that we refer to in Sect. 5.1.1. Numerical methods
for solving (2.63) have been discussed by Burke and Seaton [164] and the R-matrix
approach for their solution will be presented in Chap. 5.

Nevertheless, certain general statements can be made about the form of potentials
Vf, (r), Wl.I;, (r,r’) and X Z.I;, (r, r") which are important in understanding the physical
properties of the solution of the close coupling equations (2.63). First, we observe
that the phases of the angular integrals in (2.66), (2.67) and (2.69) can be chosen so
that these potentials are real. Also, it follows from these equations that the potentials
satisfy the following symmetry relations:

Vi) = Vi (r), - Wiy = Wha',r, X5y = X[,07,n),
i,i'=1,...,n. (271

These reality and symmetry conditions follow from the time-reversal invariance and
hermiticity of the Hamiltonian which we will see in Sects. 2.4 and 2.5 lead to the
reality and symmetry of the K-matrix and to the unitarity and symmetry of the
S-matrix.

‘We also mention here some further properties of the potentials Vlf, (r), Will: (r,r")
and X 1'1;/ (r, r"). We will see when we discuss Feshbach projection operator the-
ory of resonances in Sect. 3.2.5 that we can divide Hilbert space spanned by the
eigensolutions of the Schrddinger equation into two mutually orthogonal spaces
by two projection operators P and Q, where the “optical potential” corresponding
to scattering in Q-space is represented by the sum of pole terms in the expression
defined by (3.108). We can relate Feshbach theory directly to the close coupling with
pseudostates expansion (2.57), where P-space corresponds to the space spanned by
those target states in this expansion which give rise to channels which are open at
the energy under consideration, while Q-space corresponds to the remaining target
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states and pseudostates in this expansion, together with the quadratically integrable
functions representing short-range electron—electron correlation effects included in
the second expansion in (2.57). It is important to emphasize that the quadratically
integrable functions included to remove the orthogonality constraints imposed on
the radial functions Filf (ry+1) in (2.57) must be regarded as part of P-space and
must therefore be caretully chosen for this purpose, as discussed by Gorczyca et al.
[398]. As a result of this choice of P- and Q-spaces, we will show in our discussion
of Feshbach projection operator theory that the poles in the optical potential give rise
to resonances. Also, since the resonances arise from pseudostates and quadratically
integrable functions representing the effect of physical states not explicitly included
in the first expansion, they are unphysical pseudoresonances and the corresponding
T -matrix must be averaged over energy to obtain physically meaningful results at
intermediate energies. We will consider this averaging procedure in the context of
intermediate energy collisions in Chap. 6.

We consider next the asymptotic form of the direct potential Vf, (r) defined by
(2.66). This potential can be simplified at large distances using (B.49) which can be
written as

A

1 s re
= —— Py (cos Oy y1), (2.72)
TkN+1 AX=:0 A+l *

where 0+ is the angle between the unit vectors fx and tny1, P (x) is a Legendre
polynomial and r~ and r- are the smaller and larger of the two scalar distances
rr and ry41. We now observe that the integral over ry, k = 1,..., N in (2.66)
involves the target states and pseudostates @;(Xy) and @;/(Xy), retained in the
original expansion (2.57) which vanish exponentially at large r;. Hence we can
choose a value of the radial distance, say ag, beyond which all the target states and
pseudostates are effectively zero. The corresponding contributions to the integrals
over ry > ag, k = 1,..., N in (2.66) are then zero. It follows that when the
scattered electron coordinate ry41 > ag, then ri / ri“ in (2.72) can be replaced by

r,? / rl)q,':ll. Hence (2.66) can be rewritten as

Atmax

r r -1 .
Vi (r) = Z“imr , r>ap, i,i'=1,...,n, (2.73)
=1

where the long-range potential coefficients o l.l;, , are defined by

N
= v @) i WY Pieos By 1)
®ijry, = Iy Pi (ANIIN4ION+] riy Py.(cos Oy 1
k=1
<yl @) (Xy: W, i il =1
Iy @y RNsENvpion4)), 1, 1 =1,...,n,
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We derive an explicit expression for these coefficients in Appendix D.1; see (D.12)
and (D.21).

The leading term in the expansion of the potential matrix Vl{; (r) in inverse pow-
ers of r behaves as 2 since we remember that we have included the Coulomb
potential (Z — N)/r between the scattered electron and the target on the left-hand
side of (2.63). The upper limit A, in the summation over A in (2.73) results from
the triangular relations satisfied by the angular momentum quantum numbers which
arise in the integral in (2.74). We will see in Chaps. 3 and 5 that the long-range
potentials given by (2.73) play a crucial role in many low-energy electron—atom
collision cross sections. In particular, the leading dipole potential terms behaving as
r~2, which from (2.74) can be seen to couple target states between which optically
allowed transitions occur, give rise in second order to the long-range polarization
potential defined by (2.19) and (2.20). Also, we will see in Sect. 3.3.2 that the
long-range dipole potential which couples degenerate or almost degenerate target
states of neutral atoms gives rise to resonances which lie below the thresholds for
exciting these degenerate states. It follows that these long-range potentials must
be accurately represented in any computational approach which is adopted in the
low-energy electron collision region.

Finally we consider the asymptotic forms of the non-local exchange and corre-
lation potentials Wf;, (r,r") and X l.I;, (r, ") in (2.63). We see from the definition of
Wl.l; (r, "), given by (2.67), that its behaviour as r — oo and r’ — oo is determined

. . . —I ~
by the asymptotic behaviour of the channel functions @; (X1, ..., Xy; Ey+10N+1)

and 51-17 (X1,...,XN_1,Xy41; Eyoy), respectively. It then follows from (2.59),
defining these functions in terms of the target states and pseudostates, that the first
channel function vanishes exponentially as ry — oo and the second as ry4+; — o0.
Hence Wl.l; (r, r’) vanishes exponentially as r — oo or as r’ — oo. In a similar way
we can see from the definition of X il;, (rn+1,7n), given by (2.70), that its behaviour
as ry — oo and ryy; — 00 is determined by the asymptotic behaviour of the
radial functions UZ.I,;{ (ry) and Ul.I,: (rn+1), respectively. It then follows from (2.69),
defining these radial functions, that the first radial function vanishes exponentially
asry — oo and the second as ry4+1 — 00. Hence X i’;, (r, ") vanishes exponentially
asr — oo orasr’ — oo. We then find that the radius ag where V[, (r) achieves its
asymptotic form given by (2.73) can also be chosen so that

whary~0, XL r)=~0, r>ap or r > ay. (2.75)

The close coupling equations (2.63) then reduce to coupled second-order differential
equations given by

Ui+ N 2(Z = N)
dr? r2 r
n Amax

=ZZZQ£,A;"_’\_1FI-I,;(;"), r>ap, i=1,...,n, (2.76)
i'=1 A=l

+ k?) Fl
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which can be solved in a straightforward way in the region r > aq to yield the
K -matrix, S-matrix and cross sections as discussed in Sects. 2.4 and 2.5. This result
is of crucial importance in the development of the R-matrix approach for solving
the coupled integrodifferential equations (2.63) which we discuss in Chap. 5.

We conclude this section by considering, as an example, the number of coupled
channels and quadratically integrable functions which arise in the close coupling
expansion (2.57) for electron collisions with Be-like ions. We consider the example
where the six target eigenstates given by (2.16) are retained in the close coupling
expansion (2.57), where these target eigenstates are represented by (2.18) in terms
of three physical orbitals and three pseudo-orbitals 1s, 2s, 2p, 3s, 3p and 3d.

We give in Table 2.2 the orbital angular momenta ¢; of the scattered electron
which are coupled to each of these six target states for total spin S = 1/2 and for
each L and 7 combination with L < 4. We also give the total number of channels
which are coupled to these target states for each L and 7w combination. We see that
the number of coupled channels for L > 2 equals 10 when 7 = (—1)% and equals
6 when 7 = (—1).*!. We also note that if the total spin S = 3/2, then only the
two triplet target states 1s22s2p 3P° and 1s22p? 3P° are coupled where the orbital
angular momenta /; of the coupled channels are given by the corresponding rows in
Table 2.2.

We next consider the quadratically integrable functions which must be included
in expansion (2.57) for electron collisions with Be-like ions. We give in Table 2.3
the number of quadratically integrable functions included for total spin § = 1/2
and for each L and 7 combination with L < 4, where we assume that the 1s orbital
remains doubly occupied and a maximum of one electron is excited to one of the

Table 2.2 Orbital angular momenta ¢; of the scattered electron coupled to each of the target eigen-
states defined by (2.16) for electron collisions with Be-like ions for S = 1/2 and for each L and
7 combination with L < 4. Also given in this table are the corresponding total number of coupled
channels

L 0 12 3 4 0o 1 2 3 4
7 (=DE (—1)L+

152252 1s¢ 0 12 3 4 - - - - -
1522s2p 3p° 1 02 13 24 35 -1 2 3 4
1s22s2p 'P° 1 02 13 24 35 -1 2 3 4
1s22p? 3p¢ - 12 3 4 1 02 13 24 35
1s22p? 'De 2 13 024 135 246 - 2 13 24 35
1s22p? IS¢ 0 12 3 4 - - - - =
No. coupled

channels 5 9 10 10 10 1 5 6 6 6
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Table 2.3 Number of quadratically integrable functions corresponding to configurations that can
be formed from the physical orbitals and pseudo-orbitals, given by (2.17), with a maximum of one
electron in a pseudo-orbital, for electron collisions with Be-like ions for S = 1/2 and for each L
and 7w combination with L < 4

L 0 1 2 3 4 0 1 2 3 4
T (—DE (—1)L+!

1s22s%2p — 1 - — — — — — — _
1s22s2p? 1 - 1 - - - 1 - - -
1 Sz2p3 _ 1 _ _ _ _ — 1 — —
15225235 1 - - - = - - - -
1s22s%3p — 1 — — — — — _ _ _
1s22523d — — 1 — — _ _ _ _ _
15>2s2p3s — 2 - — — — — — — _
1s22s2p3p 2 - 2 - - - 2 - -
1s22s2p3d — 2 — 2 — — — 2 _ _
1s22p%3s 1 - 1 - - - 1 -
15°2p*3p - 3 - 1 - 1 - 2 - -
1s22p?3d 1 - 3 - 1 - 2 - 2 -
Total no.

of functions 6 10 8 3 1 1 6 5 2 0

3s, 3p or 3d pseudo-orbitals. These quadratically integrable functions are those that
must be retained in expansion (2.57) to ensure that the orthogonality constraints
defined by (2.62), which we assume are applied, do not lead to incompleteness in
the target orbital basis. As an example of one entry in Table 2.3, we observe that
the 1s22p*3p configuration gives rise to the following three quadratically integrable
functions

1s22p% 3P° 3p 2P°,  1s22p? 'D® 3p 2P°,  1s22p® 'S°® 3p 2P°, (2.77)

which must be included in expansion (2.57)for L =1,S=1/2and 7 = —1.

In our discussion of the target eigenstates in Sect. 2.2.1, we observed that
in addition to zero-electron and one-electron excitation configurations we could
also include two-electron excitation configurations which would improve the target
eigenstates. However, in order to balance the correlation effects in the target and
the collision wave functions we would also have to include two-electron excitation
configurations in the collision wave function which would give rise to quadrati-
cally integrable functions with two electrons in pseudo-orbitals. While the inclusion
of these additional configurations usually give improved collision results at low
energies they will also give rise to unphysical pseudo-resonances at intermediate
energies, close to and above the ionization threshold, which have to be energy
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averaged to give reliable scattering amplitudes and cross sections. We will return
to this question in Chap. 6 when we discuss electron collisions with multi-electron
atoms and ions at intermediate energies.

Finally, we observe that the quadratically integrable configurations included in
Table 2.3 do not contribute to L, S and 7 combinations with L > 5. This is an
example of a general result that quadratically integrable configurations, which are
defined in terms of target physical and pseudo-orbitals, only contribute to low L
collisions. Hence the correlation potential X 1.1;, (r, ") in (2.63) does not contribute at
high L. Also, while the non-local exchange potential Wl.l;, (r,r’) in (2.63) is in prin-
ciple non-zero for all L, its contribution to the scattering amplitude and cross section
becomes negligible compared with the contribution from the local direct potential
Vlf, (r) for large L. This is because for large L the repulsive angular momentum
term —¢; (¢; + 1)/ r2 in (2.63) ensures that the scattered electron does not appre-
ciably penetrate the internal region, and hence it only experiences the long-range
contribution from the direct potential on the right-hand side of (2.76). This result
also has implications for methods of solution of the close coupling equations (2.63)
for large L, where the repulsive angular momentum term causes the contribution
from the direct potential to become small and hence the Born approximation for the
scattering amplitude and cross section becomes applicable, as discussed in Sect. 2.4.

2.4 K-Matrix and Kohn Variational Principle

In this section we consider the asymptotic form of the solution of the close coupling
equations (2.63) as r — oo. In this limit, we have seen that the local direct potential
Vlf () has the asymptotic form given by (2.73) and the non-local exchange and
correlation potentials WI.I; (r,7") and X ,.1;, (r, ") vanish exponentially so that (2.63)
reduces to (2.76). We first generalize the expression for the K-matrix given in
Sect. 1.1 for potential scattering to multichannel collisions considered in this and
later chapters. We then show that the exact solution of (2.63) satisfies the Kohn
variational principle [542] and we derive a Born series expansion for the K-matrix.
Finally, we show that the Kohn variational principle enables a corrected K -matrix to
be obtained from an approximate solution of (2.63) where this K-matrix is correct
to second order in the error in the collision wave function.

We commence our discussion by ordering the target eigenstates and pseudostates
retained in expansion (2.57), so that their energies e; defined by (2.5) are in increas-
ing order. It then follows from (2.64) and (2.65) that when the total energy E is real
the square of the channel wave numbers k; are real and satisfy

kK >k3 > >k (2.78)

The equalities in this expression arise either because some of the target states
included in expansion (2.57) are degenerate or because more than one channel
. =T . . . .
function @; in expansion (2.57) corresponds to a given target state, as is the
case when the target orbital angular momentum L; in (2.59) is non-zero (see, for
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example, Table 2.2). We now assume that at the total energy E of interest, the first
n, channels are open (i.e. have kl.2 > 0) so that the corresponding reduced radial
functions Fl.? (r) in (2.57) and (2.63) are oscillatory or linear as r — oo and the last

np channels are closed (i.e. have kl.2 < 0) so that the corresponding reduced radial
functions Fl]; (r) in (2.57) and (2.63) vanish as r — oo. Hence

ng +np = n, 2.79)

where the quantities n,, and n; depend on the total energy E. We see that when E is
greater than all the energies E,-F defined by (2.65), the channels are all open so that
ny = n and np = 0. On the other hand, when E is less than all the energies Zip , the
channels are all closed, so that n, = 0 and n;, = n, corresponding to a bound state
of the electron—atom or electron—ion system.

In order to define the asymptotic boundary conditions satisfied by the reduced
radial wave functions Flf (r) we must consider the second index j on these func-
tions. As we have already mentioned in Sect. 2.3.2, this second index labels the
linearly independent solutions of the n close coupling equations (2.63) satisfied by
the functions FI.F (r). It follows from the general theory of linear coupled second-
order differential equations that n coupled equations have in general 2n linearly
independent solutions. However, the requirement that the total wave function must
be normalizable near the origin implies that

Ffi(r) ~nyr™i=1 0, all (2.80)

where n;; are normalization factors. Hence the reduced radial functions vanish at the
origin. The n conditions (2.80) reduce the number of physical linearly independent
solutions from 2xn to n. We will see below that when some of the channels are closed,
so that n, > 0, the number of linearly independent solutions is further reduced
to n — np = ng. The second index j is thus required to label these n, linearly
independent solutions.

We consider first the situation where all channels are open, so that n, = n. The
asymptotic boundary conditions satisfied by the n linearly independent solutions of
(2.63), which reduce to (2.76) asymptotically, can be written in analogy with (1.71)
in potential scattering in the form

FEe) ~ k' [sin 0 (r)8:; + cos b; (r)KiI;] L i j=1,....n (280
The quantity 6;(r) in (2.81) is defined in analogy with (1.58) and (1.59) by
1
0;(r) =kijr — EE,‘T[ —niIn2kir +0¢,, i=1,...,n, (2.82)

where

,i=1,...,n (2.83)
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and
op, =arg"(¢; +1+1in;), i=1,...,n, (2.84)

for electron collisions with atoms or ions with N electrons and nuclear charge num-
ber Z. The factor k- Y2 in (2.81), normalizes the ingoing spherical wave to unit flux
which we will see below means that the n x n-dimensional K-matrix K l.l; , defined
by the asymptotic boundary conditions (2.81), is symmetric.

When n;, channels are closed then the corresponding terms sin6;(r) and
cosb;(r), i =n,+1,...,nin (2.81) diverge exponentially asymptotically. This
follows from (2.64) since ki2 <0, i =n4+1,...,n,andhence k; is pure imaginary.
Such divergent solutions are physically inadmissible since they are not normaliz-
able. Hence they must be eliminated by combining together the n linearly indepen-
dent solutions Fl.lj (r), j=1,...,nin (2.81). Since there are nj divergent terms to
be eliminated we are left with n, = n — n;, linearly independent physical solutions
which are finite at infinity. We choose these n, solutions of (2.63) to satisfy the
asymptotic boundary conditions

FEe) ~ &' [sin@i(r)Sij +cos9,~(r)K§], i i=1,...,na,

—00

Fi(r) ~ 0 i=na+1l....n j=1.. na. (2.85)

— 00

Equations (2.85) define a reduced n, x n,-dimensional K-matrix K i’; which con-
nects the n, open channels.

Also, since the potentials Vlf ), Wl.I;, (r,r")and X i’;, (r, r’) in the close coupling
equations (2.63) are real and the normalization factors n;; in (2.80) can be chosen
to be real, then the solutions Filj (r) are real. It follows that all the quantities in the
asymptotic boundary conditions (2.81) or (2.85) are real and hence the K-matrix
must be real. We will show below that the n, x n,-dimensional K-matrix is also
symmetric.

We now derive the multichannel Kohn variational principle for the K-matrix
satisfied by the solutions of (2.63). We consider the following integral taken over
the space and spin coordinates of all N + 1 electrons

HES / W X1 (Hy1 = E) [ Xy )X, (2.86)
where the solutions ';I/jl;E and lI/I.IT  are defined by (2.57). We find that

co 1 2
1(d G +1)  2Z—-N)
r _ r I e 2
1,-,-/—/0 ;ZFH(’){ 2<dr2 ot +ki>

X FL )8 + Vi (0 Fi ()

[e¢)
+f (W )+ X[ 1] F,F,,(r’)dr’}dr, JoJ =1 e, (2.87)
) .
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where we have used the same procedure that we adopted to reduce (2.60), (2.61),
(2.62) and (2.63). In (2.87) the subscripts j and j’ label the linearly independent
solutions, and in the following discussion we assume there are n, open channels so
that the K-matrix has dimensions n, x n,. Also in (2.87) the local direct poten-
tial Vf, (r) and the non-local exchange and correlation potentials Wl.I;, (r,r’) and
X 1.1;, (r,r’) are defined by (2.66), (2.67) and (2.70), respectively. In (2.87), and in
the following analysis, we find it convenient not to impose the orthogonality con-
straints, defined by (2.62). This means that the Lagrange multiplier terms in (2.63)
and the additional quadratically integrable functions, which would otherwise need
to be included in expansion (2.57) for completeness, are no longer required although
the K -matrix, which is defined by the asymptotic form of the wave function, will be
unaltered.

It is convenient to rewrite the integral, defined by (2.87), using Dirac bracket
notation as follows:

1" = (F" LT FD, (2.88)

so that the close coupling equations (2.63) can be written in the following matrix
form

L'FI(r) =0. (2.89)

Hence I'" = 0 when F/ () is an exact solution of (2.89). It follows that I’ is an
ng X ng-dimensional matrix, L! is an n x n-dimensional integrodifferential matrix
operator and F' (r) is an n x n,-dimensional solution matrix satisfying the boundary
conditions

Fi(r) ~ 0.
F'(r) e k12 [sin@(r) + cos0(r)KF] , (2.90)

corresponding to (2.80) and (2.85). Also in (2.90), we have only considered the
non-vanishing asymptotic components of F!'(r) so that k, 8 (r) and K are n, x n,-
dimensional matrices where both k and € (r) are diagonal.

We now consider variations in I/" due to arbitrary small variations SFL (r) about
the exact solution of (2.89) satisfying the boundary conditions (2.90) where the
variations satisfy the boundary conditions

SFI'(ry ~ 0,
r—0
SFT (r) o k2 cos0(r)sK”. (2.91)

— 00

The corresponding first-order variation in I’ is then

st = GFTILT[FDy + (FT LT |5FT), (2.92)
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which after using (2.89) becomes
st = (FILT|5FT) . (2.93)
We can evaluate the right-hand side of (2.93) by rewriting L’ in the form
L =p’ + 0", (2.94)

where D'’ is the second-order differential operator term — %Id 2/dr? in L' and OF
represents the remaining terms in L. It follows from the reality and symmetry
relations (2.71) satisfied by the potentials, that O’ is real and symmetric so that

(F 107 |sF"y = (O FI'|sFT) . (2.95)
Hence using (2.89), (2.94) and (2.95), we find that (2.93) reduces to
sI = (/7D 15Ky — (DTFI|SFT) . (2.96)

Integrating the terms on the right-hand side of (2.96) by parts then yields
r =00

T
s = _% [Ff(r)]T %wf(r) — [%Fp(r)} aFF(r)} , (2.97)
r=0

where the superscript T means transpose. The surface terms in (2.97) can be evalu-
ated using the boundary conditions (2.90) and (2.91) satisfied by F’ (r) and 8F' (r)
at 7 = 0 and oo giving

1
ST = E(SKF . (2.98)

Hence we obtain the Kohn variational principle for the K-matrix [542]
r_ler
S| — EK =0, (2.99)

which is satisfied by the exact solution of (2.89). This equation is the multichannel
generalization of the result obtained in potential scattering given by (1.212).

It follows from the above analysis that since the potential operator O!" in (2.94)
is real and symmetric then K" is a real symmetric n, x n,-dimensional matrix. The
K -matrix thus depends on n, (n, + 1)/2 real parameters, where n, is the number of
open channels.

We can extend this result to obtain an integral expression for the K-matrix. We
consider the variation of the solution 8F! (r) corresponding to a variation in the
operator SL”". Equation (2.89) then becomes

(L" +8L") [F" () + 8F " (r)] = 0. (2.100)
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After using (2.89), (2.100) formally reduces to

LsF! (r) = —sL'F' (r) — SLTSF' (1)

= —8sL'FI(r) + sL" SLUF (r)

LT 4+ sLT
=sM'F'(r), (2.101)

where SM”" is obtained by expanding (L + SL” )‘1 yielding
r r r 1 r r 1 r 1 r
SM' = —8L" + 8L 8L — SLT 8L oLl (2.102)
Hence we obtain from (2.101)
(FI L sFy = (FT | sMT|FT) . (2.103)
Substituting for the left-hand side of (2.103) from (2.93) and (2.98) we then obtain
SKI' = 2(F"|1sM |FT). (2.104)

It follows from (2.102) that (2.104) is an exact integral expression relating the
variation SK!" in the K-matrix K" to the variation SL" in the integrodifferential
operator L'

We can choose the variation SL! to correspond to the sum of the direct, exchange
and correlation potentials in (2.63), that is

SL =ul = vl 4wl 4 XTI, (2.105)
Equation (2.100) can then be rewritten as
Ly +U") [F{ () + 8F" (] =0, (2.106)

where L(I; is the diagonal differential operator on the left-hand side of (2.63) corre-
sponding to pure Coulomb scattering in the absence of the potential U, F(I; (r) is
the corresponding diagonal Coulomb solution defined by the boundary conditions
(2.90) with K" = 0 and 8F/ (r) is the variation in the solution caused by the poten-
tial U, It follows from (2.104) that the K-matrix corresponding to the operator
(L) +U")is

K" =2(F' M |F]y (2.107)
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where M is formally defined by the expression

1
r_ r r r r r r
M =-U" +U ﬁU -U QU L_FU 4+ (2.108)

Equations (2.107) and (2.108) correspond to the Born series expansion of the
K-matrix. This expansion converges if the incident electron is fast or if the poten-
tial interaction U’ is sufficiently weak, which occurs, for example, when the total
orbital angular momentum L becomes sufficiently large. In these cases, the first-
order Born term in the expansion of M/  often yields an accurate estimate for the
K-matrix. However, when these conditions do not apply, higher order terms in the
Born series must be included to obtain accurate results and, even if the Born series
converges, these higher order terms are difficult to evaluate for electron collisions
with multi-electron atoms and ions. It is then usually preferable to solve the close
coupling equations (2.89) directly to obtain the K -matrix. We will consider an accu-
rate solution of these equations using the R-matrix method in Chap. 5. We will
also consider how the Born series approach can be combined with the R-matrix
method to obtain accurate results at intermediate energies in Chap. 6. Further dis-
cussion of the convergence properties of the Born series expansion has been given by
Goldberger and Watson [387] and by Joachain [503].

The Kohn variational principle can also be used to improve an approximate solu-
tion of (2.89). Thus if F{"(r) is an approximate trial solution of (2.89) and K{" is the
corresponding approximate K-matrix, then it follows from (2.99) that an improved
K -matrix, correct to second order in the error in the collision wave function, is given
by the Kohn-corrected K -matrix

Kl = K =21l (2.109)

where ItF is calculated from (2.88) using the trial solution Ftr (r). We note that if an
accurate solution of (2.89) is obtained, for example, by using the R-matrix method,
then the correction I/ to the corresponding K -matrix, given by (2.109), vanishes.

The variational principle (2.99) clearly depends on the asymptotic boundary con-
dition, defined by (2.90), chosen for the reduced radial functions F! (r). However,
this asymptotic form is not unique and as we have already shown in Sect. 1.5
different asymptotic forms can lead to different variational principles in potential
scattering. In the present multichannel collision situation an infinity of different
variational principles can be constructed by taking different linear combinations of
the n, linearly independent solutions defined by (2.90). As an example, in Sect. 2.5
we will form n, solutions satisfying S-matrix asymptotic boundary conditions. The
corresponding Kohn variational principle for the S-matrix has been applied to reac-
tive scattering and electron—molecule collisions, for example, by Miller [651] and
by McCurdy and Rescigno [614] where it has been shown to have computational
advantages over the Kohn variational principle for the K-matrix. However, all of
these variational principles are satisfied by an accurate solution of the close coupling
equations (2.89).
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2.5 S-Matrix, T-Matrix and Cross Sections

In this section we define the S-matrix and 7-matrix in terms of the K-matrix and
hence obtain expressions for the total and differential cross sections for electron—
atom collisions. In order to determine the S-matrix it is necessary to express the
asymptotic solutions of the close coupling equations (2.63) in terms of ingoing and
outgoing waves rather than in terms of sine and cosine waves as in (2.85). When
n, channels are open the required solutions are defined by the asymptotic boundary
conditions

Ghory ~ k' {exp[—i@i(r)](sij—eXp[iQi(r)]Sl-I;}, i, j=1,...,na

—00
G ~ 0, i=ns+1,....n, j=1,..ng (2.110)
r—o00
which are linear combinations of the solutions defined by (2.85). The relationship
between these solutions is given by the matrix equation

Flor) = —%Gr(r) (1-iK"), (2.111)

where F! (r) satisfies the asymptotic boundary conditions (2.85) and G (r) satisfies
the asymptotic boundary conditions (2.110). The n, x n,-dimensional open channel
S-matrix ST, defined by (2.110), is related to the n, x n,-dimensional K-matrix
K!', defined by (2.85), by the matrix equation

_I+iK"

S =_——\+.
I-iK"

(2.112)

Since K’ is real and symmetric it follows from (2.112) that S’ is unitary and sym-
metric. Hence S”" can be diagonalized by the real orthogonal transformation which
also diagonalizes K. Hence we can write

ANTSTAT = exp(2iA), (2.113)

where A’" is a real orthogonal matrix and (A7)T is the transpose of A’". The diag-
onal matrix exp(2iA) can be written explicitly as

exp(2id) 0 ... 0
exp(2iA) = 9 eXP(_mz) : , (2.114)
6 0 . exp(2ié,,)
where 81, 82, ..., 6,, are n, real eigenphases. In the situation when only one chan-

nel is open (n, = 1), 61 can be identified with the potential scattering phase shift
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defined by (1.9) and (1.71). However, when n, > 1, a further n,(n, — 1) /2 real mix-
ing parameters are necessary to completely specify the S-matrix. These parameters
define the real orthogonal matrix AT in (2.113) and are related to the independent
rotations possible in n, dimensions (i.e. to the three Euler rotation angles discussed
in Appendix B.5, when n, = 3). Hence the S-matrix as well as the K-matrix corre-
sponding to n, open channels are specified by n,(n, + 1)/2 real parameters.

As an example, when n, = 2, exp(2iA) is represented by two eigenphases &1
and 8, and the corresponding orthogonal matrix A" can be expressed in terms of an
additional mixing parameter as follows:

r _ | cose sine
A _[—Sine cose]’ (2.115)

where € is called the mixing angle. The corresponding S-matrix defined by (2.113)
is then given by

gl — cosZe exp(2idy) + sin’e exp(2idy) cose sinelexp(2id1) — exp(2idy)]
" | cos e sine[exp(2i81) — exp(2i82)] sine exp(2i81) + cosZe exp(2isy) |
(2.116)

This equation expresses the S-matrix for two open channels explicitly in terms of
the three real parameters 1, 7 and €.

It is also useful to define solutions of (2.63) satisfying outgoing wave 7-matrix
asymptotic boundary conditions as follows

—1/2 | . N\ — . ..
Hi§+(r) e k; v [31n9,-(r)8,-j+(21) ]exp[19l-(r)]Ti§}, i, j=1,...,nq4,
HIP ) ~ 0, i=na+1,...0n, j=1,..n4 (2.117)
r

— 00

These solutions can be related to those satisfying S-matrix asymptotic boundary
conditions given by (2.110) by the matrix equation

H () = —2)'GT (). (2.118)

It follows that the n, x n,-dimensional T-matrix is related to the n, x ng-
dimensional S-matrix by the matrix equation

T =8 - L (2.119)

We will see that the T-matrix occurs in the expressions for the cross sections given
below. Finally, we can define solutions of (2.63) satisfying ingoing wave asymptotic
boundary conditions by

HE ()~ ki_l/z{sinéi(r)&j — i) exp[—iei(r)]Ti]F*}, i i=1,...,na

—

H=0) ~ 0, i=na+1,...,n, j=1,...,ng (2.120)
r

— 00
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where TJ " is the complex conjugate of Tlf . These solutions are related to those
satisfying outgoing wave boundary conditions by

Ht) =H"@t) (2.121)

and are required in the calculation of transition amplitudes, for example, the atomic
photoionization amplitude discussed in Sect. 8.1.

Having obtained expressions for the multichannel S-matrix and 7-matrix we
can now derive formulae for the total and differential cross sections for transitions
between the target states retained in expansion (2.57). We consider first electron
collisions with neutral atomic targets and we then generalize our results to electron
collisions with atomic ions.

Our basic problem is to relate the scattering amplitude f;;(6, ¢), defined by
(2.6), to the T-matrix TJ , defined by (2.117). In order to derive this relation we
first rewrite the wave function ¥; in (2.6) in terms of incident and scattered wave
functions as

lIIi — q/iinc + q/iscatt. (2122)

After introducing the space and spin coordinates of the N target electrons Xy and
the scattered electron x4 we can write the asymptotic forms of these wave func-
tions for neutral atomic targets as

inc

U e DI XWX L, (N 1) exp(ikizy-+1) (2.123)
and
WA~ N B X)X 1, (0N 1) £ On 1, O )Ty explkjry ).
NN Y AR Smj J ’ N+1 J
J
(2.124)

The scattering amplitude f}; (On+1, dn+1) in (2.124) thus describes a transition
from the target state and incident electron spin state denoted by the quantum num-
bers i = o;L;S; My, Ms;7;m; to the target state and scattered electron spin state
denoted by the quantum numbers j = «;L;S; M ;Ms,;7jm j, where we have used
the notation of (2.14) in describing the target states.

Following the procedure which we have used for potential scattering in Sect. 1.1,
we expand the plane wave term in llfl."“c in partial waves using (1.27). We also

introduce the channel functions 5? (Xy; Tyt10on+1) which are defined in terms
of the target states @; (X ) by (2.59). After inverting (2.59), using the orthogonality
conditions satisfied by the Clebsch—Gordan coefficients given in Appendix A.1, we
obtain
. i l/2
wie o~ N (LiMp,€;0|LML)(Si M, 5mi| SMg)i® (2¢; + 1)'/?
FN+1—>00 LSt k,'

—r . _
x @; (Xyi By r1on D)7y
x {exp[—ib; (ry+1)] — explib; (rn+ 1)1}, (2.125)
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where 0; (ry+1) = kirng1 — %Zin for neutral atomic targets. We now carry out a
partial wave decomposition of ¥; in (2.122) by writing

% (Xy) = Y %" Xy1) B (E), (2.126)
LSm

where the functions lI/iF (Xn+1) have the asymptotic form

n

—TI ~ —
U Xnen), D P5 X Bvion Dy G, (2127)
j=1

which follows from expansion (2.57) since the exchange terms and the quadratically
integrable functions vanish in this limit. Also in (2.127) the reduced radial wave
functions Gﬁ (r) are chosen to satisfy the S-matrix asymptotic boundary conditions
(2.110). The coefficients B,.F (E) in (2.126) are then chosen so that the ingoing wave
terms in ¥; and llfl.i“c are the same. This yields

i 1/2
K"

1

BI(E) = i%(20; + DV2(Li My, ¢0|LML)(Si Ms, Am;|SMg).  (2.128)

Substituting this result into (2.126) and using (2.122) and (2.124) then gives

172
. b
q,iscanr ~ - Z 1<ﬁ> (LiMp,€;0|LML)(S; Ms, Sm;|SMs)

N LSmtioL;Sje; N

.0 —I ~ —
x 12 + D@ Xy typion40ry)

x exp(if;) (SJC _ 5,,~) . (2.129)

The scattering amplitude is obtained by expanding the channel functions

5?(XN; Fyrions1) in (2.129) in terms of the target states @; (Xy) using (2.59)
and comparing with (2.124). This gives

12
. s e p
£ii0.¢) == > l(ﬁ) i 20 + D)2 (Li ML, 6:0|L M)
LSmeit; iy
x (SiMs, ymi| SMs)(Lj My, €jme; LML) (S Mg, sm j|SM)
X T Yo, (6.9, (2.130)

where the 7-matrix elements le; in this equation are defined in terms of the
S-matrix elements SJI.; by (2.119).

The differential cross section for a transition from a state represented by the quan-
tum numbers o; L; S;; to a state represented by the quantum numbers o ;L ;S;;
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is obtained by substituting (2.130) into (2.8) resulting in an expression for the dif-
ferential cross section, given, for example, by Blatt and Biedenharn [116]. The total
cross section is then obtained by averaging this expression for the differential cross
section over the initial quantum numbers of the target atomic state and incident elec-
tron, summing over their final quantum numbers and integrating over the scattering
angles of the outgoing electron. We obtain the following result for the total cross
section:

o — j) = ZGLS”(i - ), (2.131)
LSt

where the partial wave cross sections 057 (i — j) corresponding to the conserved
quantum numbers LS are given in units of na(% by

= 2.132
2k7(2L; + 1)(2S; + 1) ( )

6t

We note that the slow convergence of expansion (2.132) for optically allowed tran-
sitions can be overcome by using a method proposed by Burke and Seaton [190]
using the Burgess sum rule [149].

The expression for the differential cross section obtained by substituting (2.130)
into (2.8) can be simplified using the angular momentum transfer formalism intro-
duced by Fano and Dill [310]. We define the angular momentum transferred from
the scattered electron to the target during the collision by £, where

4 =4¢;—¢ =L; —L;j. (2.133)
The relationship between these vectors and the total orbital angular momentum vec-

tor L is illustrated in Fig. 2.2. We now introduce a transformed 7 -matrix T;Z.S by the
equation

TIS = SO (-DEQL + WLt Lj; LE)TY,

(2.134)
Ln

Fig. 2.2 Relationship

between the angular momentum
transfer vector £; and the
vectors L;, Lj, ¢;, £; and L
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where W (abcd; ef ) are Racah coefficients defined in Appendix A.2. We can then
show that (2.130) for the scattering amplitude can be rewritten as

1/2
fji(e, ¢) = — Z i <k7;{ ) il,’*(_,‘ 2¢; + 1)1/2(_l)Li+Lj+[i+£j—£;+MLj
0860 irj

x (S;Ms, smi|SMs)(Sj M, 5m j|SMs)

X (LiMp,Lj — Mp; |6 My, — M)

X (€00 me 16 ML, — ML)TSS Yeym,, (0. ). (2.135)
The differential cross section, obtained by averaging (2.8) over the initial magnetic

quantum numbers and summing over the final magnetic quantum numbers, can be
written as

d(fjl'

= = > " Ax(i — j)Pi(cos 6), (2.136)
A

where

. . (=D* 0O 1E,
Api — j) = I
8kZ(2L; + 1)(2S; + 1) M;K )
[ AS
x [+ D@t + 1DQ2E, + 1DH2e + D]

X (£;0€0[20)(€;00;:0(20) Y (= 1) (2€, + YW (€0 j7; £,1)
¢

x Z(zs + DT T;,f/. (2.137)
S

The subscripts i, j, i’ and j' on T.’is and T?,‘f, denote the channel quantum numbers
Oll'LiSiEiT[,', aijSjﬂjnj, OliLiSiﬂi/T[i/ and aijSij/njr, respectively.

The introduction of the angular momentum transfer ¢, in the expression for the
differential cross section given by (2.136) and (2.137) replaces the double summa-
tion over L and L' in the earlier expression for the differential cross section given,
for example, by Blatt and Biedenharn [116], by a single incoherent summation over
£;. The corresponding evaluation of the summation is very much more efficient and
has been incorporated into several computer programs (e.g. by Salvini [808]).

A second advantage of the angular momentum transfer formalism is that it
enables simple qualitative features of the angular distribution to be readily described
and understood. For example, it is useful to introduce the concept of parity-favoured
and parity-unfavoured transitions by the equations

Li + L€+ £ = even, parity favoured,
i +4€; + ¢ =odd, parity unfavoured. (2.138)
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An example of a parity-favoured transition is
e~ + He(1s”> 'S®) — e~ + He(1s2p 'P°). (2.139)

In this case L; = 0 and L; = 1 so from Fig. 2.2 we see that £, = 1. On the other
hand, from the conservation of total parity, £; — £; must be odd. An example of a
parity-unfavoured transition is

e” + N(1s22s%2p> #S°) — e~ + N(1s22s%2p> 2P°). (2.140)

In this case L; = O and L; = 1 so again ¢; = 1. However, from conservation of
total parity, £; — £; is even.

One of the most interesting features of parity-unfavoured transitions is that the
differential cross sections in the forward and backward directions vanish. This fol-
lows by considering the factor

(€0 jme; [€ecMr; — ML) Yeim,, (6, ¢) (2.141)

in expression (2.135) for the scattering amplitude. The spherical harmonic
ngmlj (0, ¢) contains a factor (sin@)™*/ which causes the angular distribution to
vanish at & = 0 and &= when my i # 0. However, when me;, = 0, the Clebsch—
Gordan coefficient in (2.141) reduces to (¢£;0£;0|¢,;0) which vanishes when ¢; +
L + £, is odd, which proves this result.

The preceding theory must be extended to describe electron collisions with ions.
As before, we rewrite the wave function ¥; in (2.6) in terms of incident and scattered
waves as in (2.122), which now has the following asymptotic form:

Vi oo Pikim, expli(kiz + ni Ink;¢)]

r—0o0

expli(kjr —n;In2k;r)]

(2.142)

r

+D @Ky, fi0.9)
J

The incident Coulomb-distorted plane wave term in lI/l.inC can be decomposed into
partial waves using (1.49) and (1.64). This gives

o0

explitkz +nnk¢)] ~ Y (20 + Di expliog) k)~ Fe(n, kr) Pe(cos 0)
=0
— fo(@)r " explitkr — n1n2kr)], (2.143)

where f.(0) is the Coulomb scattering amplitude defined by (1.52), and where we
note that (2.143) applies except when 6 = 0, since in this case r — oo does not
imply |r — z| — oo. After substituting (2.143) into (2.142) we then find that
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wine Z{inl/zki_l(LiMLiﬂiOMML)
VT e

x (8; Mg, smi|SMs)i (2¢; + 1)/ exp(ioy,)

—I A — . .
x B (Xi fy1on0ry Ly [exp(—i6) — exp(ion)]}
= @XM X 1y, ON+1) fe N1y

x expli(kiry+1 — ni In2kirn11)], (2.144)

where
1
0; = kirn+1 — E&‘TL’ —n; In2kjry41 + oy, (2.145)

We then carry out a partial wave decomposition of ¥; using (2.126), where the
coefficients BiF (E) are now chosen so that the ingoing wave terms in (2.126) and
(2.144) are the same. The scattered wave function lI/iSC"m is then

g seat e T Z {iﬂ'l/z(kikj)il/z(LiML,-KiO|LML)
LSmtia;L;S;¢;
X (S;Ms, Smi|SMs)i% (2¢; + 1)'/? exp(ioy,)
x B (Xyi EvsionDryy exp0)) (S5 = ;i) |
= @i (XWX 1, O+ feON 11Ty
x explitkiry+1 — ni In2k;ry41)]. (2.146)

The scattering amplitude for electron—ion collisions is obtained by expanding the

channel functions Ef (Xy; Ty+10N+1) in (2.146) and comparing with (2.142). We
obtain

1ii(0.6) = fe(0)8;i + f3,6, ), (2.147)

where, as in (1.75), f.(0) is the Coulomb scattering amplitude and f J.Sl. (0, @) is the
scattering amplitude arising from the additional short-range potential. We find that

0. ¢) == im Pk~ A5 20 + 1) expli(or, + o¢,)]

LSmeit
X (LiML;£i0|LML)(SiMS,'%mi|SMS)(LjML_i£jml_/|LML)
x (S;Ms;5m;|SMs)T; Yeym,, 0. 9) (2.148)

where, as in (2.119), the T-matrix is defined by TJ.I; = SJI.; — §;;. Equation
(2.148) describes a transition from a state defined by the quantum numbers
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i = o;LiSiMp,Mg,mrim; to a state defined by the quantum numbers j
OleijMLjMSjT[jmj'.

The differential cross section for a transition from a state denoted by the quantum
numbers «; L; S;; to a state represented by the quantum numbers o;L;S;m; is
obtained by substituting (2.147) into the expression for the differential cross section,
given by (2.8), averaging over the initial quantum numbers and summing over the
final quantum numbers of the target state and scattered electron. The total cross
section for inelastic collisions is then obtained by integrating over all scattering
angles of the outgoing electron and summing over all LSw values giving (2.131)
and (2.132).

Finally, in applications involving electron—ion collisions it is often necessary to
determine a quantity §2(i, j), first introduced by Hebb and Menzel [447] and subse-
quently called the collision strength by Seaton [849, 850, 857]. It is defined in terms
of the total cross section o ™°'(i — j) measured in units of na(z) by

20, j) = wikfa ™ — j), (2.149)

where w; = (2L; + 1)(2S; + 1) is the statistical weight of the initial state, denoted
by the quantum numbers «; L; S;. Since k; has the dimensions of a reciprocal length,
£2(i, j) is dimensionless. It is also symmetric so that £2(i, j) = £2(j,i). In an
ionized plasma, we also need to consider the electron—ion collision cross section
averaged over a Maxwell distribution of electron velocities. We introduce the colli-
sional transition probability ¢ (i — j)N, where

gi — j) = /ooon(i — v f(vi, T,)dv;. (2.150)
0

Here f(v;, T,) is the Maxwell velocity distribution function, normalized according
to

/‘X’ f i, T)dv; =1, (2.151)
0

v; is the velocity of the incident electron, N, is the electron density and 7, is the
electron temperature of the plasma. Expressing o (i — ;) in terms of the collision
strength we find that the probability of de-excitation is

o 8.63x107°°T(j, i)
q(j = i) = ; . oej>e, (2.152)
/2
w;T,

in cubic centimetres per second, where T, is in degrees Kelvin, w; is the statistical
weight of the jth target state and e; and e; are the target energies defined by (2.5).
The effective collision strength 7°(j, i) introduced in (2.152) is defined by

Tvd—fwﬂvd ~a| (2.153)
j,l = ) J,l eXp kTe kTe , .
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where € is the energy of the scattered electron in the jth state in Rydbergs and
k = 6.339 x 107® Rydbergs/°K is Boltzmann’s constant. Clearly if £2(j,i) is
independent of energy, then 7' (j,i) = £2(j,i). Also we find that the probability
of excitation is

. . w;j . . ej —¢
qi = j)=—q(j = exp| — . ej>e. (2.154)
wj kT,

We also note that in many applications in plasma physics and astrophysics it is
sufficient to know the effective collision strength 7 (j, i) rather than the collision
strength £2(j, i) for the transitions of interest. This can be important since we will
see when we discuss recent low-energy electron—ion collision calculations in Sect.
5.6 that in many cases of interest the collision strength is dominated by resonance
structure requiring a very large number of energy values to fully resolve. However,
the corresponding effective collision strength is usually a smoothly varying function
of temperature that can be accurately represented by a few well-chosen parameters.



Chapter 3
Resonances and Threshold Behaviour

We consider in this chapter the theory of resonance reactions and the closely related
behaviour of cross sections near threshold. Our treatment will concentrate on theo-
retical methods that have found wide applicability in atomic and molecular collision
processes. For example, we will see in Chap. 5 that resonances play a crucial role
in low-energy electron collisions with multi-electron atoms and atomic ions, where
effective collision strengths can be increased by an order of magnitude or more at
low temperatures by resonance processes. We will also see in later chapters that
resonances are important in electron impact ionization, in single- and multiphoton
ionization processes, in photorecombination and in electron—molecule collisions.
Hence, understanding and interpreting resonances in collision processes are impor-
tant goals for theory and their detailed and accurate prediction provides a challenge
for computational methods.

A fundamental approach to the study of resonances and threshold behaviour is
through an analysis of the analytic properties of the S-matrix or collision matrix
introduced by Wheeler [961] and Heisenberg [452]. We have already defined the S-
matrix in Chaps. 1 and 2 in terms of the asymptotic form of the radial wave function
describing electron collisions with atoms and atomic ions. We have also considered
in Sect. 1.3 the analytic properties of the single-channel S-matrix which arises in
potential scattering. We found in that section that bound states and resonances are
closely related to poles in the S-matrix in the complex momentum plane. In this
chapter we extend our discussion of S-matrix theory to multichannel resonances
and threshold behaviour.

We commence in Sect. 3.1 by generalizing our discussion of the analytic prop-
erties of the S-matrix in Sect. 1.3 by defining multichannel Jost functions in terms
of the solutions of coupled second-order integrodifferential equations (2.63) which
describe electron collisions with multi-electron atoms and atomic ions. By express-
ing the S-matrix in terms of Jost functions we can then relate the analytic properties
of the S-matrix in the multi-Riemann-sheeted complex energy plane to the sim-
pler analytic properties of the Jost functions. This provides the basis for discussing
the distribution of bound-state and resonance poles in the S-matrix in the complex
energy plane.

In Sect. 3.2 we derive explicit expressions for the K-matrix and S-matrix in
the neighbourhood of an isolated resonance pole using a theoretical approach

P.G. Burke, R-Matrix Theory of Atomic Collisions, Springer Series on Atomic, Optical, 101
and Plasma Physics 61, DOI 10.1007/978-3-642-15931-2_3,
© Springer-Verlag Berlin Heidelberg 2011
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introduced by Brenig and Haag [137] and Fano [301]. In this approach, a zero-
order Hamiltonian is defined which can be solved exactly in terms of discrete and
continuum states. The full Hamiltonian then mixes these states giving rise to res-
onances in the S-matrix and we obtain expressions for the individual eigenphases
and the eigenphase sum in the neighbourhood of a resonance. We also discuss the
time-delay matrix, first introduced by Smith [881], and we relate the trace of this
matrix to the derivative of the eigenphase sum with respect to energy. We then show
that this quantity can often provide an accurate procedure for analysing overlapping
resonances. We also consider in this section, the projection operator approach of
Feshbach [320, 321], which provides a powerful framework for describing reso-
nance phenomena in a wide range of atomic, molecular and nuclear collision pro-
cesses. Finally, we discuss the hyperspherical system of coordinates which has been
important in the analysis of resonances and threshold behaviour of three-body sys-
tems, such as two electrons in a Coulomb field and three-nucleon molecules such as
H;, as well as in the general description of the three-body problem.

In Sect. 3.3, we consider the threshold behaviour of excitation and ioniza-
tion cross sections. This behaviour was investigated in a fundamental paper by
Wigner [970] who showed that the analytic behaviour of cross sections near thresh-
old depends, apart from a constant, on the form of the long-range interaction
between the particles. We consider first two-body collision processes where we
use the analytic properties of the multichannel R-matrix, discussed in Chap. 5, to
derive a multichannel effective range theory for short-range potentials, following
the work of Ross and Shaw [798]. We then extend this theory to treat long-range
dipole potentials considered by Gailitis and Damburg [359] and a Coulomb poten-
tial considered by Gailitis [357]. We also discuss multichannel quantum defect
theory (MQDT) introduced, developed and reviewed by Seaton [859], and we
summarize the extension of MQDT to molecular collision processes first consid-
ered by Fano [303]. Finally, we consider the threshold law of electron impact
ionization of atoms and positive ions first derived by Wannier [954, 955]. In
this analysis we adopt the hyperspherical system of coordinates, introduced in
Sect. 3.2.6.

3.1 Analytic Properties of the S-Matrix

In this section we generalize our discussion of the analytic properties of the S-matrix
in potential scattering given in Sect. 1.3 to multichannel collisions. As in Chap. 2
we illustrate this discussion by considering low-energy elastic and inelastic electron
collisions with multi-electron atoms and atomic ions described by

e +A - Aj+e, (3.1)
where A; and A are the initial and final bound states of the target. We consider the

solution of the n coupled second-order integrodifferential equations (2.63), which
describe these collisions for a given set of conserved quantum numbers. We rewrite
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these equations using matrix notation as follows:

2 Le+0 N 2(Z—N)
dr? r2 r

—U®r) + k2> F(r) =0, (3.2)

where Z is the nuclear charge number, N is the number of target electrons, U is
an n x n-dimensional matrix representing the sum of the local direct, non-local
exchange and non-local correlation potentials 2(V + W + X) in (2.63), I is the
n x n-dimensional unit matrix and £ and k? are n x n-dimensional diagonal matri-
ces representing the channel orbital angular momenta and wave numbers squared,
respectively. We note that in (3.2) we have not imposed the orthogonality constraints
defined by (2.62). Hence the Lagrange multiplier terms in (2.63) and the additional
quadratically integrable functions included in the original expansion (2.57) for com-
pleteness are not required. However, as pointed out following (2.87), the relaxation
of these constraints does not affect the K -matrix, S-matrix and scattering amplitudes
and hence the analytic properties of the S-matrix considered here.

We find it convenient, as in Sect. 2.4, to order the target eigenstates and pseu-
dostates retained in expansion (2.57) so that their energies defined by (2.5) are in
increasing order. It follows that the corresponding channel wave numbers squared
kiz, defined by (2.7), satisfy (2.78) when the total energy E is real. Initially we limit
our discussion to neutral atomic targets where the nuclear charge number Z equals
the number of target electrons N. It then follows from (2.73) that the leading term
in the long-range potential experienced by the scattered electron is ~ r~2. Later in
this chapter we will consider electron collisions with atomic ions where a long-range
Coulomb potential is also present.

In analogy with our consideration of the analytic properties of the S-matrix in
potential scattering, discussed in Sect. 1.3, we define, following Jost [515], two
linearly independent matrix solutions f(£k, r) of (3.2) by the asymptotic boundary
conditions

lim exp(Likr)f(xk, r) = I, (3.3)
r—00

where the diagonal elements of k are defined by (2.7) and where the total energy
E can now be complex. Also f(Zk, r) are diagonal n x n-dimensional matrices
in the limit » — oo but, as shown below, are in general non-diagonal for finite
values of r. For potentials which occur in electron—atom collisions, the boundary
conditions (3.3) define f(k, ) uniquely for Imk; < O and f(—K, r) uniquely for
Imk; > Ofori =1,...,n. If we can impose stronger conditions on the potentials
Vij» Wij and X;; in (2.63) then the functions f(&k, r) can be analytically con-
tinued outside of these regions, as discussed in Sect. 1.3 in the case of potential
scattering.

The physical solutions of (3.2) which vanish at the origin can be expressed as
linear combinations of the functions f(+Kk, r). Let us normalize these physical solu-
tions so that they satisfy the following boundary condition at the origin:

lim r Rk, r) =1, (3.4)

r—0
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where £ is the n x n-dimensional diagonal matrix whose diagonal elements are
i, i = 1,...,n and where we have introduced the n x n-dimensional solution
matrix F(k, ) which is diagonal in the limit » — 0 but is in general non-diagonal
for non-zero values of r. The second subscript k on this solution matrix Fj; runs
from 1 to n and denotes the n linearly independent solutions of (3.2) which are
defined by the boundary conditions (3.4). These solutions form a complete set of
solutions which vanish at the origin. The boundary condition (3.4), which does
not depend on Kk, then ensures that, as in potential scattering, F(k, ) is an entire
function of k. We then define the multichannel Jost function matrices f(+k) by the
Wronskian

f(+k) = W[f(Zk, r), F(k, r)], (3.5)

where f(ik) are n x n-dimensional matrices. Also in (3.5) we have defined the
Wronskian of any two solution vectors u and v by

Wiu, vl =ulv — u’TV, (3.6)

where u' is the transpose of u and the prime denotes the derivative with respect to
r. It is straightforward to show that the Wronskian is independent of .
We now use the relations

WIf(£k, r), f(Fk, r)] = £2ik (3.7)
and
WIf(£K, r), f(£k, r)] = 0, (3.8)
which follow from (3.3), to write F(k, r) in the form
F(k, r) = (2i) " '[f(—k, k™ 'fk) — f(k, )k~ f(—k)]. (3.9)

If we compare this equation with the asymptotic form (2.110), we find that the
S-matrix can be defined in terms of the Jost functions by

S, (k) = exp (%in!) K2 a0f ! (—lk! 2 exp (%in() , (3.10)

where the subscript n on S, refers to the dimension of the S-matrix and where in
the following discussion we assume that all channels are open so that the num-
ber of open channels n, = n in (2.110). This equation enables the analytic prop-
erties of the S-matrix to be related to the simpler analytic properties of the Jost
functions.

In order to study the analytic properties of the Jost functions we return to (3.2)
satisfied by f(£k, r). We assume that f(—k, r) satisfies the equation

2 2e+0D N 2(Z = N)
dr? r2 r

—U(r) + k2) f(—k, r) = 0. (3.11)
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We then take the complex conjugate of this equation yielding

&  e+0 2Z-N

&£ )+ ( )—U(r)+k*2 f*(—k,r) =0, (3.12)
dr? r2 r

where we assume that r, £, Z, N and U are real but k, which is defined in terms of

the total energy E by (2.7), can be complex. In addition it follows, by replacing —k

by k* in (3.11), that f(k*, r) is a solution of

2 -
(d _£(£+I)+2(Zr N)

a2 2 =U@) + k*z) f(k*,r) =0. (3.13)

Hence f*(—k, r) and f(k*, r) satisfy the same differential equation and from (3.3)
they satisfy the same boundary condition. Hence

*(—=k, r) = f(k*, r) (3.14)
is satisfied for all points in the upper half k-plane with Imk; > 0, i = 1,...,n,and
for all other points in the complex k-plane for which the potential admits an analytic
continuation from the upper half k-plane.

In a similar way, we can show from (3.11) and the boundary condition (3.4)
satisfied by F(k, r) that

F*(k,r) = F(k",r) (3.15)
and

Fkk,r) =F(-k,r). (3.16)
Using (3.14), (3.15) and (3.16), we find from (3.5) that the Jost functions satisfy

f (k) = (k). (3.17)
Hence we obtain from (3.10)
S5 (k") = exp(—Lir Ok~ 2R(—1)f ' (k' exp(—1Lime). (3.18)
Combining this equation with (3.10) gives

S, (kK)S; (k") =1. (3.19)

Also, as we have shown in Sect. 2.4, the K-matrix is symmetric and hence from
(2.112) the S-matrix is also symmetric so that

S, (k) = ST (k), (3.20)
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where SE denotes the transpose of S,,. Hence it follows from (3.19) and (3.20) that
S, (K)S (") =1, 3.21)

where S:, denotes the hermitian conjugate of S,,. This is the generalization of the
unitarity relation given by (1.97) for potential scattering.

A further analytic property of the S-matrix can be obtained by considering
S;(—k*). From (3.10) and (3.17) we obtain

S*(—k*) = exp (—%inﬁ) kK~ 2F @0 f ! (—k)k!'/2 exp (—%inl) . (322
Combining this equation with (3.10) and (3.20) yields
S, (k) = exp(inZ)SZ (—=k*) exp(imd), (3.23)

which is the generalization of the reflection relation given by (1.98) in potential
scattering.

It is useful at this point to discuss the continuation paths in the complex energy
plane implied by relations (3.21) and (3.23). Since the k; occur in the definition
of the Jost functions given by (3.3) and (3.5) and hence in the S-matrix given by
(3.10), the value of S,, (k) is only defined uniquely in terms of the total energy E of
the electron—atom system if the sign ambiguities

ki = £[2(E —e)]Y?, i=1,...,n, (3.24)

which follow from (2.7), are resolved. These signs can be chosen in 2" differ-
ent ways and consequently the S-matrix can only be made single valued, or uni-
formized, by introducing 2" Riemann sheets in the complex E-plane. We define
these sheets in Fig. 3.1, by introducing n branch points ¢;,i = 1, ..., n, with their
associated branch cuts chosen to run in each case from E = ¢; along the real energy
axis to E = +oo. The physical sheet, which we denote by P, is defined by the
condition

Imk; >0, i=1,...,n, (3.25)

and the physical scattering region, which is illustrated in Fig. 3.1 by arrows, lies on
the real energy axis, along the upper edge of the n branch cuts.

Following Eden and Taylor [283], we let U,, denote the unphysical sheet reached
from the physical sheet by crossing the branch cuts in Fig. 3.1 which originate from
the branch points ¢;, i = 1,...,m, where | < m < n. We then find using (3.24)
that on U,,

Imk; <0, i=1,...,m,
Imk; >0, i=m+1,...,n. (3.26)
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Fig. 3.1 The analytic properties of the multichannel S-matrix in the complex energy plane E,
showing the branch points e;, i = 1, ..., n, and the associated branch cuts starting from the branch
points ¢; (where the branch cuts are displaced from the real energy axis for clarity). Also shown
is the physical sheet P and the paths, denoted by (arrows), from this sheet to reach the physical
scattering region on the real energy axis

Furthermore, on the real energy axis between e, and e, k; is real for i =
1,...,m and positive imaginary for i = m + 1, ..., n. Other unphysical sheets
can be reached by following more complicated paths from the physical sheet so that
all combinations of the signs of Im k; can be achieved on these sheets.

As an example, when n = 2 there are 2" = 4 Riemann sheets, or three unphysical
sheets in addition to the physical sheet. We show in Fig. 3.2 four continuation paths
which enable E* on the unphysical sheets and on the physical sheet to be reached
from E on the physical sheet, where E* denotes the complex conjugate of E. The
path labelled (1) goes from E on P to E* on Uy, the path labelled (2) goes from E
on P to E* on Uy, the path labelled (1,2) goes from E on P to E* on Uy 3 and the
path labelled (0) goes from E to E™* on the physical sheet P. It is clear from Fig. 3.2
that on Uy 2, Imk; > 0 and Imk, < 0. The signs of Imk; and Im k; for E* on U
and U are given by (3.26), while Imk; > 0 and Imk; > O on P.

Returning to the general case illustrated in Fig. 3.3 where there are n channels,
we see that if the point represented by k in (3.21) and (3.23) lies on the physical
sheet defined by (3.25) then the point represented by k* lies on U,, defined by (3.26)
with m = n. In addition, the point represented by —k™* lies on the physical sheet.
Hence the unitarity relation (3.21) can be rewritten as

S, (E on P)S}(E* on U,) =1, (3.27)

FEon P

" ( 2 I Re E
g g €

(12) M 1@
. O N o

Fig. 3.2 The four continuation paths in the complex energy plane when n = 2 which enable E*
on the three unphysical sheets and on the physical sheet to be reached from E on the physical sheet
denoted by P. The branch points are denoted by e and e
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(a) E on P

Y E*on U,
E*on P
(b) - Eon P
€1 €m Cm+1 €n
————— —e——1—e& ——— — - —-——-——-——e&———— Re F
E*on U,
E*on P

Fig. 3.3 Continuation paths in the complex energy plane when there are n non-degenerate chan-
nels, where P denotes the physical sheet and U,, and U,, denote unphysical sheets as explained in
the text. The branch points are denoted by e;, i =1,...,n

where E* on U, is reached by the path indicated in Fig. 3.3a. In a similar way, the
reflection relation (3.23) can be rewritten as

S,.(EonP) = exp(inZ)SZ(E* on P)exp(ird), (3.28)

where E* on P is reached by the path also indicated in Fig. 3.3a.

The above discussion can be generalized to determine the analytic properties of
the S-matrix under the continuation paths indicated in Fig. 3.3b. Under the con-
tinuation from E on P to E* on U, we see from (3.26) that the k; transform
according to

ki—kf,  i=1,....m,

ki— =k, i=m+1,...,n. (3.29)

Hence (3.17) and (3.18) are no longer valid under this continuation and the unitarity
relation (3.27) is not satisfied if U,, is replaced by U,, with m < n. However, we can
show that the m x m-dimensional leading submatrix of S,, which we call S,, does
satisfy a generalized unitarity relation analogous to (3.27).

To prove this, we introduce an n x m-dimensional solution matrix G(k, ) of
(3.11) by the equation

Gk, r) =F(k, r)Ak), (3.30)

where F is the n x n-dimensional solution matrix defined by (3.4) and A is an
n x m-dimensional matrix which is chosen so that G is real on the real energy axis
in the range between e, and ¢,,+1 and so that in this energy range the exponentially
increasing components in the last n — m channels of F(k, r) are eliminated. G(k, r)
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thus corresponds to the physical solutions in the energy range e, < ReE < e;41,
where m channels are open and n —m channels are closed. It is then straightforward
to show that (3.15), which can be rewritten as

F(E on P) =F*(E* on U,), (3.31)
is replaced by

G(E on P) = G*(E* on Up,). (3.32)
We now introduce an m x m-dimensional Jost function matrix by the equation

£, (£k) = WL, (2K, r), G(K, )], (3.33)

where f,,, (£Kk, r) are the first m columns of the solutions defined by (3.3). Hence, in
analogy with (3.9) we can write

Gk, r) = Qi) [ (=k, 1k, T () — £, (k, Pk, ' (=K1, (3.34)
where K, is an m x m diagonal matrix with diagonal elements k;, i = 1,...,m.

Comparing this equation with the asymptotic form (2.110) where n, = m gives
immediately

S, (K) = exp (%in£m> k' E, (0F ' (—kkL exp (%iném) , (3.35)
where £, is the m x m diagonal matrix with diagonal elements ¢;,i = 1,...,m.

We can then show from the analytic properties of f,, (£k, r) and G(xKk, r) that
S (E on P)S' (E*onUy,) =1L (3.36)
This is the generalization of the unitarity relation given by (3.27). Equation
(3.36), together with the generalization of the reflection relation (3.28), which can
be written as

S,.(EonP) = exp(inlm)S,Tn(E’k on P)exp(in¥,,), (3.37)

defines the analytic properties of the m x m-dimensional submatrix S,,.

3.2 Bound States and Resonances

In this section we commence our discussion of bound-state and resonance
poles in the S-matrix for multichannel collisions by considering their distribution
in the multi-Riemann-sheeted complex energy plane. We then derive an explicit
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expression for the multichannel K-matrix and S-matrix in the neighbourhood of
an isolated resonance pole using a theoretical approach introduced by Brenig and
Haag [137] and Fano [301]. We also derive an expression for the behaviour of the
eigenphases near this resonance. We then introduce the projection operator approach
of Feshbach [320, 321], used initially to describe nuclear resonance reactions, which
has provided a powerful framework for describing resonance phenomena in atomic
and molecular collision processes. Finally, we mention that early applications of
these theories in electron and photon collisions with atoms and molecules were
reviewed by Burke [151, 153].

3.2.1 Bound-State and Resonance Poles in the S-Matrix

In order to discuss the distribution of bound-state and resonance poles in the com-
plex energy plane we consider (3.9) and (3.10) which express, respectively, the
physical solution and the S-matrix in terms of the Jost function matrices f(£k, r)
and f(£K). We first diagonalize the n x n-dimensional matrix f(—k) by the similarity
transformation

X 'f(—k)X = D, (3.38)

where D is a diagonal n x n-dimensional matrix. Let us assume that one of the
diagonal elements of D, say the first di(E), has a simple zero at some energy E,.
It follows that f~! (—Kk) and, hence from (3.10), S,, (k) are both singular with simple
poles at E = E,,. We substitute (3.38) into (3.9) and postmultiply by X yielding

FX = (2) " '[f(—=k, Hk~'f(k)X — f(k, )k~ 'XD]. (3.39)

Since d1 (E ) = 0, the first column of f(k, r)k_lXD vanishes when E = E,. Hence
the corresponding solution can be written as

Fx; = i) 'f(—k, Nk 'fK)x;, E=E,, (3.40)

where the vector x; is the first column of X. It follows from (3.3) that at a pole in
the S-matrix

Fx; ~ e¥N, E=E,, (3.41)

r—>0o0

where the normalization vector N = (2ik)_1f'(k)xl. This equation is the multichan-
nel generalization of (1.100).

If the energy E, lies on the physical sheet of the complex energy plane then
conditions (3.25) are satisfied. Consequently, the physical solution (3.41) vanishes
asymptotically and hence is normalizable. Since the Hamiltonian is Hermitian, all
normalizable wave functions must belong to real energy eigenvalues. Hence poles in
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the S-matrix on the physical sheet must lie on the real energy axis. If this real energy
lies below the first threshold E < ey, then it follows from (3.24) and (3.25) that

ki = +ik; = +i[2(e; — E)1'V%, i=1,...,n, (3.42)

where the k; are real and positive. Hence the solution defined by (3.41) has the
asymptotic form

Fxlr:we_”rN, E=Ep, (3.43)
where k is an n x n-dimensional diagonal matrix with diagonal elements «;,i =
1, ..., n. Since the solution corresponding to (3.43) is normalizable it clearly cor-
responds to a bound state. We illustrate the position of such bound-state poles by
crosses in Fig. 3.4.

In certain circumstances poles in the S-matrix can lie on the real energy axis
with E > ej. Consider, for example, real energies in the range ¢, < E < ep+1-
Poles can lie in this range of energies if the channels with threshold energies
ei, i = 1,...,m, are not coupled to the channels with threshold energies e;,i =
m+ 1, ..., n. This occurs, for example, if these two sets of channels have a dif-
ferent conserved quantum number such as parity and hence are not coupled by the
Hamiltonian. In this case the n x n-dimensional S-matrix S,, can be partitioned into
disconnected sub-matrices as follows:

Sm O
S = [ 0 Snm:| , (3.44)

where S, has dimension m x m and S, _,, has dimension (n —m) x (n —m). From
the generalized unitarity relation (3.36), S,, must be unitary and hence non-singular
in this range of energies. However, a pole can occur in S,,_,,. A pole of this type
corresponds to a bound state lying in the continuum and is denoted by an open circle
in Fig. 3.4.

PHYSICAL SHEET P

Fig. 3.4 Distribution of S-matrix poles in the complex energy plane. X, bound-state poles lying
on the physical sheet; O, bound-state pole lying in the continuum on the real energy axis; 3,
resonance poles lying on unphysical sheets U, and Uy,1. The arrows denote the continuation
paths from the physical sheet P to the resonance poles. The branch points are denoted by ¢;, i =
1,....n
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In the general case, when all n channels are coupled by the Hamiltonian, poles
cannot occur in the S-matrix for real energies with E > e corresponding to the
physical scattering region, except in very exceptional circumstances. This is because
the unitarity equation (3.36) would then be violated. However poles can occur on
any of the unphysical sheets Uy, since the sign of at least one Imk;, i = 1,...,n,
is then negative and hence from (3.41) the corresponding wave function is then
not normalizable. If such poles lie close to the physical scattering region they give
rise to observable effects and are called resonance poles and the corresponding wave
functions, which satisfy outgoing wave boundary conditions, are often called Siegert
states [876]. We define the real and imaginary parts of the energy of such a pole by

1
E,=E — EiF, on Uy, (3.45)

where E, and I are both real and I" is small and positive. Poles of this type are
denoted by an asterisk in Fig. 3.4. We also denote by arrows in this figure the con-
tinuation paths from the physical sheet to these resonance poles. The generalized
unitarity relation (3.36) shows that at the corresponding energies

E,=E, + %i[’, on P, (3.46)
one of the eigenvalues of S, has a simple zero, that is the rank of S,,, is m — 1. Eden
and Taylor [283] have shown that the presence of a resonance pole on U, usually
also implies the presence of “shadow poles” on other Riemann sheets of the complex
energy plane which are further removed from the physical scattering region. These
shadow poles can play a role in a number of applications such as dissociative attach-
ment and multiphoton ionization discussed in later chapters in this monograph.

Finally, we note that the preceding discussion was based on the assumption that
bound-state and resonance poles in the S-matrix are simple. Although there is no
general principle that guarantees that all such poles are simple, in practice this is
usually the case. However, in atomic multiphoton processes, discussed in Chap. 9,
laser induced degenerate states, or LIDS, corresponding to double poles in the S-
matrix have been found in detailed calculations (see Sect. 9.2.3). If the S-matrix
does contain a double pole in the complex energy plane then the main effects will
be to distort the shape of the associated resonance profile from that considered in
the next section and to produce a decay which deviates from the usual exponential
behaviour. These effects have been considered by Goldberger and Watson [387],
Newton [683] and Kylstra and Joachain [557].

3.2.2 Behaviour of the S-Matrix Near a Resonance
In this section we derive explicit expressions for the behaviour of the multichannel

K-matrix and S-matrix in the physical scattering region near an isolated resonance
pole lying on an adjacent unphysical sheet of the complex energy plane. We also
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derive expressions for the behaviour of the eigenphases in the neighbourhood of a
resonance. This was originally discussed by Brenig and Haag [137] and by Fano
[301] and we consider here the configuration interaction theory of Fano.

Following Sect. 3.1, we consider low-energy elastic and inelastic electron col-
lisions with multi-electron atoms and atomic ions containing N electrons and we
analyse the interaction of one discrete state with n continuum states. We sub-divide
configuration space into a zero-order discrete state, represented by a quadratically
integrable function X8(XN+1), which gives rise to the resonance, and n zero-order
continuum states ¢?E Xn+1), j = 1,...,n, which do not have resonances or
thresholds in the energy range of interest. We can expand these zero-order contin-
uum states as

n
YlrXn) =AY Di(Xy: Bxpion )y F(rve)
i=1

m
+ ) X Xy0bf, j=1.n, (3:47)

i=1

where we have adopted a notation analogous to expansion (2.57) and where the
superscript I", which denotes the conserved quantum numbers, has been omitted for
notational convenience. It is convenient in the following analysis to include only
the n open channels in the first expansion in (3.47). The X ?, i =1,...,m,in
the second expansion are then zero-order quadratically integrable functions, which
represent the effect of the closed channels whose thresholds lie above the energy
range of interest.

We can now assume, without approximation, that these zero-order states satisfy
the orthonormality relations

(xQlxg) = 1,
Qo) =0, j=1,....n, (3.48)
W)y =8;8(E—E), j,j'=1,....n.

We also define the matrix elements of the (N + 1)-electron Hamiltonian Hy 4 in
this zero-order basis by the equations
(X0l Hn+11Xg) = Eo,

XQIHN 1Y) = Vi(E), j=1,....n, (3.49)

W;‘)E|HN+1W?'E'> =E§;)8(E—E"), j, j/=1,...,n,
where we choose real asymptotic boundary conditions for the radial functions F l.(J). r)
in (3.47) so that the V;(E) are real. The assumption made in the last of Egs. (3.49),

that the Hamiltonian is prediagonalized in the subspace spanned by the zero-order
continuum states, is inessential and has been relaxed by Fano and Prats [309].
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We introduce n new continuum basis states 8¢, j = 1, ..., n, which are linear
combinations of the basis w?E, chosen so that only the first, 61, interacts through

the Hamiltonian with the discrete state X 8. We define

n
0 = lej?EUﬁ(E), i=1,...,n, (3.50)
j=1

where U is an orthogonal matrix whose first column is defined by

n —-1/2
Ujl(E)=Vj(E)|:ZV,~(E)2:| . J=1...n, (3.51)

i=1

while the remaining n — 1 columns are orthonormal and are orthogonal to the
first column but are otherwise arbitrary. In terms of this new basis, Eqs.(3.49) are
replaced by

(X Hn111X3) = Eo,
(X0 Hy4110j8) = V(E)Sj1, j=1,...,n, (3.52)
(0je|HN 1107y = E8jj8(E—E, j,j ' =1,...,n,

where we have introduced the real quantity

n 12
V(E) = [Z v,-<E)2] , (3.53)
i=1

which is a measure of the strength of the interaction of the discrete state with the
continuum.

The eigensolutions of the Schrodinger equation which diagonalize the Hamilto-
nian can now be expanded in terms of these new zero-order states as follows:

Wi = [ OrpalE. EVE + XEh(E).
Vg =0jg, j=2,...,n, (3.54)

where the coefficients a(E, E’) and b(E) are determined by projecting the
Schrodinger equation

(Hyy1 — E)YYg =0 (3.55)
onto the zero-order basis states 6 g and Xg. We obtain

(015'|Hn+1 — ElWE) = 0,
(X3 Hy41 — E|W1Eg) = 0. (3.56)

Substituting for ¥ g from (3.54) into (3.56) and using (3.48) and (3.52), then gives
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E'a(E,E"Y+ V(E"b(E) = Ea(E, E,
/ V(ENa(E, E"YdE' + Eob(E) = Eb(E). (3.57)

The first equation in (3.57) can be formally solved for a(E, E’) yielding

a(E,E') = [ + Z(E)S(E — E’)} V(Eb(E), (3.58)

E—-F

where P is the principal value integral and z(E) is then obtained by substituting
(3.58) for a(E, E’) into the second equation in (3.57). We obtain

(E) = E—Ey— A(E) (3.59)
ETVErT '
where we have introduced the quantity
V(E/)Z
A(E) = dE’, 3.60
(E)="P / e (3.60)

which is called the resonance shift.

In order to determine the K-matrix and S-matrix for the interacting system, we
assume that the zero-order reduced radial wave function matrix FO in (3.47) satisfies
the real K-matrix asymptotic boundary conditions

1/2
Fo(r) ~ (i> (sin@ + cos OKo) (1 + K3)~1/2, (3.61)
r—oo \ Tk

In this equation FO is an n x n-dimensional matrix, k and @ are diagonal matrices,
where the diagonal elements of @ are defined by (2.82), (2.83) and(2.84), and Ko is
the multichannel zero-order n x n-dimensional K-matrix obtained in the absence
of the interaction between the zero-order discrete state and the continuum states. In
analogy with our discussion in Sect. 1.1, see (1.21), the coefficient (Z/nk)l/ 2 and
the factor (1 + K(%)_l/ 2 in (3.61) are included so that the §-function orthonormality
relation in the last equation in (3.48) is satisfied. It follows from (3.47), (3.50) and
(3.54) that ¥ g can be expanded as follows:

n
Vip(X1, ..., XN41) = Azai(xl, Co XN f'N+10N+1)r1;_1,_1Gij(”N+l)
i=1
m
+ D XXy, j=1n, (3.62)
i=0

where the reduced radial wave function matrix G in this equation is obtained by
substituting (3.58) into (3.54), using (3.61) and carrying out the integration over E’.
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We find that G satisfies the asymptotic boundary conditions

172
Gi(r) e (%) {sin@[z(E) + 7Kg] + cosO[—m + z(E)Kol}

x (1+ K}~ ?uy,

1/2
Gjr) ~ (i) / (sin @ + cos 0Ko) (1 + K3)~/?U;
! wk 0 0 J

r—0o0

j=2,....n, (3.63)

where G; and U; are the jth columns of the n x n-dimensional matrices G and U,
respectively. Also the quadratically integrable functions X;, i =0, ..., m,in (3.62)
are linear combinations of the zero-order discrete state represented by the quadrat-
ically integrable function X 8 and the zero-order quadratically integrable functions
XV i=1,...,m,in (3.47).

Equations (3.63) can be written in a more convenient form by post-multiplying
by U~ ! and substituting for z(E) from (3.59). This gives

2\!/? 1 yxvy
-1 . 2\—1/2 2\—1/2 2 -~
G(r)U r»oo<_nk> [smO ((l + Kp) + Ko(1 + Kp) ZFE — Er)

1
+ cos® <K0(1 FKHT2 (14 Kg)—l/zzr%ﬂ . (.64
- Ly

where the partial width amplitudes y; are defined by
vi=Vival i=1,...,n, (3.65)
and the resonance energy E, and total width I" are defined by

Er = EO + A,
I =2nV2 (3.66)

The quantity y x y in (3.64) is a real symmetric n x n-dimensional matrix with
matrix elements y;y; where we note that the real K-matrix boundary condition
(3.61) implies that V;(E), j = 1,...,n, defined by (3.49), are real and hence
the partial width amplitudes y; are real.

By taking linear combinations of the solutions defined by (3.64), we can choose
the reduced radial wave functions to have the following asymptotic form analogous
to that given by (3.61)

2\ 1/2
F(r) ~ (E) (sin@ + cos OK)(I + K2)~1/2, (3.67)

where the K -matrix is defined by
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1 1+K2 1/2 % 1+K2 1/2
KZK()——F( )y xp( o) .

1 (3.68)
2" E-E +1I'y™Koy

The S-matrix, which is related to the K-matrix by (2.112), can then be written as

1/2 1/2
S X yS
§=8—ir0 Y=Y (3.69)
E — E, +$iI’
where the zero-order S-matrix Sy is defined by
I+ iKy
So = . 3.70
T I-iK, (3.70)

Equations (3.68) and (3.69) are the basic expressions which describe the behaviour
of the K -matrix and S-matrix in the neighbourhood of an isolated resonance. We see
that all elements of the S-matrix are singular at the complex energy £ = E, — %iF
while the K-matrix elements are singular at the shifted real energy £ = E, —
%F yTKoy. Equation (3.68), which is discussed further by Burke [153], forms the
basis of a computer program written by Bartschat and Burke [64] which enables the
resonance position and its total and partial widths to be determined from K-matrix
elements calculated at a few energy values in the neighbourhood of an isolated
resonance.

Finally, using the definition of V;(E) given by (3.49) together with the definitions
of y; and I" given by (3.65) and (3.66), we find that

il = @m) 2 (G Hy 1 19 0), (3.71)

where the reduced radial wave functions Fl(j) (r) in 1/f;.)E satisfy the real K-matrix
boundary conditions (3.61). Squaring (3.71), summing over j and using (3.53) and
(3.65) then yields

n

r=2x Y [iHxalvlp)] (3.72)
j=1

This expression has often been used to calculate an approximate value for the total
resonance width I" given approximate representations for the zero-order discrete
state X8 and the zero-order continuum states 1/f§-) ,j=1,...,n.

3.2.3 Behaviour of Eigenphases Near a Resonance

We have shown in Sect. 1.3 that in the case of potential scattering the phase shift
increases by approximately  radians as the energy increases through the resonance
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energy, as described by (1.105) and (1.106). In this section we show that the
eigenphase sum

n
SSum = Z 51' s (373)
i=1

where the eigenphases §; are defined by (2.113) and (2.114), satisfies a general-
ization of these equations. In addition, we will derive an equation satisfied by the
individual eigenphases near a resonance. As in Sect. 3.2.2, we assume that n chan-
nels are open.

Following (2.113), we diagonalize the S-matrix defined by (3.69) giving

S = Aexp(2iA)AT

yxv

= Agexp(idg)Ad |1 —ir———2
praeRo E—E, +%ir

] Aoexp(idp)AL,  (3.74)

where A and A are the real orthogonal matrices which diagonalize S and So,
respectively, and A and A( are diagonal matrices whose diagonal elements are
the eigenphases §;,i = 1,...,n and the zero-order non-resonant eigenphases
8?, i =1,...,n, respectively. We now take the determinant of both sides of (3.74)
yielding

Yy xvy
E—E, +3il’

sum

exp (2iSeum) = exp(2i8”, ) det [1 —ir } , (3.75)

where in analogy with (3.73) we have defined
n
Soum = ) 8- (3.76)
i=1

We now observe from (3.53) and (3.65) that y Ty = 1. Hence by diagonalizing the
matrix in square brackets in (3.75) we find that

1

ir
det [ 1—ir—2ZY | —exp|2itan~! —2 . (3.77)
E — Er + §1F Er - E

Combining (3.75) and (3.77) then yields the equation

N[ —

0 -1 r
Ssum = Ogym + tan E L

(3.78)

This equation, obtained by Hazi [446], is the multichannel generalization of (1.105)
and (1.106) describing the behaviour of the phase shift near a resonance in potential
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scattering. We see that the resonant part of §gm, given by the second term on the
right-hand side of (3.78), increases by 7 radians as the energy increases through
the resonance, while the non-resonant term Sgum is smoothly varying with energy.
Equation (3.78) is often used to determine the position and width of a multichannel
resonance from the calculated S-matrix (e.g. [918]). Also, Quigley et al. [761, 762]
combined this equation with the analytic properties of the R-matrix to obtain an
accurate “QB” procedure for analysing resonances.

In order to determine the behaviour of the individual eigenphases in the neigh-
bourhood of a resonance we follow Macek [620] by diagonalizing the S-matrix
defined by (3.69) in two stages. We first transform S by the real orthogonal matrix
Ao which diagonalizes Sg giving

exp(ido)y X y exp(ido)
E - E, + 3iIr

S' = AJSA¢ = exp(2iA) —il" , (3.79)

wherey = A(T)y is a vector whose elements give the amplitudes for the decay of the
resonance into the eigenchannels of So. We then substitute (3.79) into the eigenvalue
equation

S'b; =exp2i§;)b;, j=1,...,n, (3.80)
where §; is the jth eigenphase of S. We obtain

exp(ido)y

exp(2i§;)b; = exp(2iAg)b; —i[ ————
pl210)bj p 0)D; E—Er~|—%iF

aj, (3.81)

where a; is defined by
aj =y exp(idg)b;. (3.82)

Equation (3.81) defines the vector b; in terms of the quantity a;. Substituting this
expression for b; into (3.82) then yields the consistency relation

ir - exp(2i8?
aj = — T E in ] e l) ONIE
E—-FE, + §1F P exp(2i8;) — exp(218i)

j=1,...,n. (3.83)

In order for (3.83) to have a non-trivial solution, the coefficients of a; on both sides
must be equal. Using the condition yTy = Ty = 1 we obtain the required relation

R ,
E—E,=§FZyizcot(8?—8j), ji=1,...,n. (3.84)

i=1

When n = 1 this equation reduces to
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§=38"+tan! (3.85)

E, —E’
which corresponds to (3.78) obtained earlier.
Equations (3.84) define the behaviour of the eigenphases §; as a function of E.
For any given energy this equation has n solutions, each solution §; lying between
adjacent values of the non-resonant eigenphases 8?. As the energy increases from a
value well below the resonance energy E; to a value well above E,, the correspond-
ing eigenphases increase from close to and just above each non-resonant eigenphase
8? to close to and just below the next higher non-resonant eigenphase 8? 1~ Taking

the derivative of (3.84) with respect to the energy E and assuming that the 8? are
independent of energy we obtain

1 ds; «
1=§Fd—éZyl-2cosec2(8?—8j), j=1,....n, (3.86)
i=1

which shows that each eigenphase §; increases monotonically with energy. It also
follows from this equation that the eigenphases §; increase most rapidly near E,.
As an illustration of (3.84), we show in Fig. 3.5 the calculated eigenphase sum
dsum and the three eigenphases &1, §2 and 83 in radians for e™—H collisions, plotted
as a function of the incident electron energy in Rydbergs in the neighbourhood of the
IS¢ resonance lying between the n = 2 and 3 thresholds at ~ 0.862 Rydbergs. The

eigenphase sum

radians
N

-1 I I
0.85 0.86 0.87

Rydbergs

Fig. 3.5 The behaviour of the eigenphase sum &g, and the eigenphases §1, d» and §3, labelled
(1), (2) and (3), respectively, for e"—H collisions in the neighbourhood of the 1S¢ resonance lying
below the n = 3 thresholds at an incident electron energy ~ 0.862 Rydbergs
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calculation, carried out using the R-matrix method discussed in Chap. 5, retained
the six atomic hydrogen target states 1s, 2s, 2p, 3s, 3p and 3d in the close coupling
expansion (2.57) for the conserved quantum numbers L = 0, § = 0 and 7 = even.
This results in six coupled channels in (2.63), where three channels, corresponding
to the 1s, 2s and 2p states, are open and the three remaining channels, corresponding
to the 3s, 3p and 3d states, are closed. Hence n = 6, n, = 3 and n, = 3 in (2.79)
and the corresponding K- and S-matrices have dimensions 3 x 3. The eigenphase
sum and the three eigenphases are seen to be continuous functions of energy through
the resonance which was achieved by adding or subtracting the appropriate multiple
of 7 radians at each calculated energy. As expected Ssym, Which is given by (3.78),
increases by approximately 7 radians as the energy increases through the resonance.
Also the individual eigenphases behave as described in the preceding paragraph.
Further details of e”—H collision calculations and the resonances that occur are
given in Sect. 5.6.1 where we discuss the results of solving (2.63) using the R-matrix
method.

3.2.4 Time-Delay Matrix

In the previous sections we have shown that the presence of poles in the S-matrix,
lying on unphysical sheets of the complex energy plane close to the physical scat-
tering region, gives rise to resonance effects in the corresponding eigenphases and
scattering amplitudes. It was shown by Wigner [971] that a resonance not only gives
a sharp peak or dip in the cross section but also gives rise to a time delay in the
collision. In this section we consider the time delay caused by these resonances and,
following the work of Smith [881], we introduce the time-delay matrix Q(E ) on
the real energy axis. We also relate the trace of this matrix to the derivative of the
eigenphase sum with respect to energy and we show that this quantity often provides
an accurate procedure for analysing overlapping resonances.

It was shown in early work by Eisenbud [288], Bohm [121] and Wigner [971],
using wave-packet analyses, that the time delay At which arises in a single-channel
collision can be described in terms of the derivative of the phase shift § with respect
to energy E by

dé
At =2—, (3.87)
dE
in atomic units. Remembering that the single-channel S-matrix is related to the
phase shift § by S = exp(2i§) we find that
ds* ds

At =1iS =—i—S8%, (3.88)
dE dE

where S* is the complex conjugate of S.

Un the original work of Smith [881] Q(E) was called the lifetime matrix.
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In the analysis of Smith [881], which was considered further by Celenza and
Tobocman [206], the time delay was analysed using a steady-state wave function
describing the collision. In this analysis, the lifetime is determined by considering
the excess number of particles in an interaction region, after subtracting the number
of particles that would have been present in the absence of the interaction. This
excess number will remain finite even if the integration is taken to infinity, provided
that the interaction vanishes rapidly enough at large distances. This excess, divided
by the total flux in (or out) through a closed surface at large distances from the
centre of the interaction region, gives the required lifetime. Using this independent
analysis of the time delay yields the same results as the wave-packet analysis which
leads to (3.88).

Smith [881] also generalized (3.88) to multichannel collisions by introducing a
time-delay matrix Q. In this analysis (3.88) becomes

Q=iS— =-i—S§T, (3.89)

where Q = QF is hermitian and, like the S-matrix S, has dimension n x n, where
n is the number of open channels at the energy E. Following Igarashi and Shima-
mura [486] we can relate the trace of the time-delay matrix Q to the eigenphase
sum gy, defined by (3.78). We first diagonalize the S-matrix by a real orthogonal
transformation A. Following (2.113) we write

ATSA = exp(2iA) = A4, (3.90)

where the diagonal elements of A can be expressed in terms of the eigenphases §;,
as follows:

Aji = exp(2i), i=1,...,n. (3.91)
We find using (3.90) that
ZdA 'AdAT (3.92)
E— 1 _’ .
dE dE
and
dAT —ATdSTA+dA STA + ATST— dA (3.93)
dE dE dE’ ’

Substituting (3.93) into (3.92) and using (3.90) gives

dA ds dAT dA
2= = <ATS—A +ATSA—STA + AT — )

(3.94)
dE dE dE dE

Taking the trace of this equation then gives
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dA dst dAT dA
Tr(2—= ) =iTr(S— ) +iTr (A— + AT— ), 3.95
r( dE) ”( dE>+lr( aE T dE) (3.99)

since the trace of a matrix is unaltered by an orthogonal transformation. It follows
from (3.89) that the first term on the right-hand-side of (3.95) is Tr(Q) and the
second term can be written as

dAT dA d(ATA)
iTr(A— +AT— | =iTr [ ——2 ] =0. 3.96
”( aE + dE) ”( dE (3.96)
Hence it follows from (3.95) that
dA
TrQ = 2Tr [ — ). 3.97
Q=21 ( ) 397

Finally, we see from (3.90) and (3.91) that the diagonal elements of A are the eigen-
phases §; and, therefore, using (3.73) we obtain

dsum
dE °

Q=2 (3.98)
This result generalizes the single-channel result given by (3.87) to multichannel
collisions.

So far we have not made any assumption concerning the functional form of the
S-matrix or the eigenphase sum. If we assume that dg,m in (3.98) satisfies (3.78),
then we find that (3.98) can be rewritten as

ds r ds?
Q =2—2 = 4 p——sum, (3.99)

2
dE E_Ey+ (sr) dE

In the case of N resonances, which may be overlapping, it follows immediately from
(3.99) that

N 1 0
in ds
=> 2! 4 —sum (3.100)

i=1 (E — E;)? + (%Fl)z dE

ddsum
dE

where in this equation E; are the resonance positions and [ are the resonance
widths.

Equation (3.100) has been used by a number of workers to determine the posi-
tions and widths of resonances. For example, this approach has been used by
Stibbe and Tennyson [889] to analyse R-matrix calculations of resonances in e”—Hj
and e’—Hzr collisions, by Igarashi and Shimamura [486, 487] to analyse hyper-
spherical coordinate calculations of resonances in et—He™ collisions, by Igarashi
and Shimamura [488] and Shimamura et al. [873] to analyse hyperspherical coor-
dinate calculations of resonances in e”—Ps collisions and by Aiba et al. [5] to
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analyse hyperspherical coordinate calculations of resonances in e”—He and e™—Ps
collisions.

As an example of these calculations we consider results obtained by Aiba et al.
[5] for overlapping resonances in electron—positronium atom collisions at energies
below the n = 5 Ps threshold. In this case the scattered electron moves in a long-
range dipole potential, discussed in Sect. 3.3.2, which gives rise to infinite series
of overlapping resonances converging to the n = 5 and 6 thresholds. We show in
Fig. 3.6 the results of calculations in a small energy region just below the n = 5
Ps threshold. We see in Fig. 3.6a that the Ipo eigenphase sum dgum (E) increases
by about 37 in this energy region, suggesting that there may be three resonances.
However, an appreciable change of slope in §gum (E) occurs only twice. Also, we
see in Fig. 3.6b that TrQ(E) exhibits only two peaks. However, by examining
the individual eigenvalues g; (E) of the time-delay matrix in Fig. 3.6b we see that
there is a strongly avoided crossing between the two largest eigenvalues and we
observe a broad resonance peak corresponding to the third eigenvalue. This third

g (10%au)

0.8

- = =BG
====total

0.4

L, (10%u)

0.0
-1.008 -1.007 -1.006 —=1.005
Total Energy (10%au)

Fig. 3.6 A small energy region just below the Ps n = 5 threshold in electron—positronium atom
collisions showing Ps™ (p°) overlapping resonances. (a) The eigenphase sum dgym (E). (b) The
eigenvalues g; (E) of the time-delay matrix and their sum TrQ(E). (c) The three Lorentzians L; (E)
representing the three resonances, the background ds? /dE (BG) and their sum (Fig. 5 from [5])

sum
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resonance would be very difficult to find and analyse using a resonance analysis
of the eigenphase sum 8s,;, (E) based on (3.78). Finally, in Fig. 3.6¢c we show the
result of fitting the calculated result for ddgym/dE on the left-hand side of (3.100) to
three Lorentzians, defined by the first summation on the right-hand side of (3.100),
together with a smoothly varying background term SSum /dE. We see that this pro-
cedure clearly shows the existence of three resonances in the energy region with an
almost negligible background and enables accurate positions and widths for these
resonances to be determined.

In conclusion, resonance analyses based on the time-delay matrix provide an
accurate procedure for resolving overlapping resonances in atomic, molecular and
nuclear physics.

3.2.5 Feshbach Projection Operator Theory

In this section we discuss the widely used theory of resonance reactions introduced
by Feshbach [320, 321]. This theory is based on a projection operator formalism
in which Hilbert space spanned by the eigensolutions of the Schrodinger equation
describing the collision process is sub-divided into two mutually orthogonal spaces
by two projection operators P and Q. In this application bound states in Q-space,
in the absence of coupling between P- and Q-spaces, evolve into resonances when
the interaction with the open channels in P-space is included. This theory, which
was first used to describe nuclear resonance reactions, has provided a powerful
framework for describing resonance phenomena in atomic and molecular collision
processes.

In Feshbach theory, the projection operators P and Q are chosen to satisfy the
equations

P+0=1,
Pl="P, 0*=0, (3.101)
PQ = QP =0.

Using these definitions, the Schrédinger equation (2.2), describing multichannel
collisions, can be formally rewritten as

P(Hy41 — E)(P+Q)Y¥ =0 (3.102)

and

O(Hy41 — E)(P + Q)W = 0. (3.103)

We can solve (3.103) for Q¥ yielding
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1
Y=0Q0— QHyN 1 PV. 3.104
Q QQ(E—HN+1)QQ N+1 ( )

Substituting this result for Q¥ into (3.102) then gives
P(Hyy1+ Vopt — E)PY =0, (3.105)
where Vop, referred to as the “optical potential”, is defined here as

1
Voot = PH, —0OH P. (3.106)
opt N+1QQ(E — HN+1)QQ N+1

We see that the optical potential describes collisions through the Hamiltonian Hy 1
out of P-space into Q-space, propagation in Q-space and then collisions through
the Hamiltonian back from Q-space into P-space. The optical potential contains
all the complexity resulting from coupling Q-space to P-space. It is clear from
the above derivation that the solution of (3.105) for P¥ yields identical results to
that obtained by solving the original Schrodinger equation (2.2) for ¥ and then
projecting this solution onto P-space.

Equations (3.105) and (3.106) hold for any projection operators P and Q satis-
fying (3.101). We now consider an explicit realization of these operators which has
been particularly useful in studies of resonances in atomic and molecular collision
processes. We choose P to project onto all the open channels at a particular value
of the total energy E and Q to project onto the remaining closed channels at this
energy. That is we assume that the wave function ¥ can be expanded in the form
given by (2.45) where PY includes all the open channels in this expansion with
the corresponding kl.2 satisfying kl.2 >0, i = 1,...,n. We now introduce the
eigenfunctions & of the operator Q Hy 1 Q by the equation

OHn110 & =€ &, (3.107)

where, since Q = 1 — P, this operator has a discrete spectrum in the energy range of
interest below the lowest threshold in Q-space, plus a continuum spectrum starting
from this threshold. The optical potential Vop defined by (3.106) can be written as

Ve = Z/ PHN+1Q|§s (&s|OHN 1 P de,. (3.108)

_63

where the summation in this equation goes over the discrete spectrum and the inte-
gral over the continuum spectrum of Q Hy1 Q. It is the discrete spectrum, which
corresponds physically to an electron bound in the field of an excited atom or ion in
Q-space, that gives rise to closed-channel resonance solutions of (3.105).

We now consider the solution of (3.105) for a given set of conserved quantum
numbers, when the total energy E lies in the neighbourhood of an isolated eigen-
value €; of Q Hy+1 Q. We can then rewrite (3.105) as
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PH H P
P HN+1 +Z/ N+1Q|€j_(gj|Q N+1 dej—E Pw
J#s €
PHy41018)(6s|QHN 41 P

= — PV, (3.109)
E —¢

where we have separated out on the right-hand side of this equation the rapidly
varying pole term in the optical potential, corresponding to the isolated eigenvalue
€. In order to solve (3.109) we rewrite it as

Hpoés)(EHop

(H — E)PY = —
E — ¢

Py, (3.110)

where
HPQZPHN-HQ and HQPZQHN—HP- (3.111)
We also introduce a quantity Ay defined by

@SHQPW)'

A = 3.112

=l (3.112)
Hence (3.110) can be rewritten as

(H — E)PY = —A; Hpg &. (3.113)

The solution of (3.113) can be obtained by introducing outgoing and ingoing
wave solutions, l1/+ and ¥, ., of the equation

(H —E)P ¥% =0, (3.114)

where the reduced radial wave functions corresponding to lIIi‘E and ¥, satisfy the
outgoing wave

2 1
F+(r)r_';ooﬁ (sin0 + ZeloT()) (3.115)
and ingoing wave
- 2 (. I g
P, (s1n0 - 5e lng) : (3.116)

boundary conditions, respectively. In analogy with our discussion in Sect. 1.1, see
(1.21), lllijg in (3.114) then satisfy the §-function orthonormality relation
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(WE|wrE,) =8 8(E — EN, (3.117)

where we remember from Sect. 2.5 that the T-matrix in (3.115) and (3.116) is
related to the S-matrix by

Ty =S — L (3.118)

We can then formally solve (3.113) yielding

PY =Wl + A, Hpo &. (3.119)

"E+in—H'

where 7 is a positive infinitesimal quantity. Substituting (3.119) into (3.112) and
collecting terms in Ay then gives

HopWh
A, = €Hor _’E> - . (3.120)
E —e; — (&Hop(E +in— H') " Hppés)
Using this result for Ay, (3.119) becomes
1 H Hor¥/:
PU =wt 4 Poss 8 Ttor¥ip) (3.121)

E+in—H' E —¢ — (§Hop(E +in— H)"Hpo&)

In order to simplify (3.121) we consider the term appearing in the denominator
on the right-hand side of this equation. We can write

(EHopW )P
<§sHQP HPQ§s> Z / N QEP, L GE, (3122)

where we have expanded the inverse operator (E + in — H’)™! in terms of the
complete set of outgoing wave solutions of (3.114). The right-hand side of (3.122)
can be written as a sum of its real and imaginary parts. The real part corresponds to
the resonance shift A; which is given by

(&HorW )P

Ay = — = __dFE/, 3.123
Z/ 2 (3.123)

where P denotes the principal value integral. The imaginary part of (3.122) arises
from the pole at E = E’ and is related to the resonance width I'y by the equation

Lo
Silv =im ) &Hor )P, (3.124)
J
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which gives

Iy=2m ) |&Hor¥) P, (3.125)
J

where the summation is taken over all final states. We see that this result for the
resonance width has the same form as that given by (3.72) derived in Sect. 3.2.2.

Finally, we operate on the left-hand side of (3.121) by (E + in — H’), project
onto the ingoing wave solution ¥ ., of (3.114) and use the results for the resonance
shift and width given by (3.123) and (3.125). The transition amplitude 7¢; from an
initial state i to a final state f is then given by

(W eHPo) EHor YL

P (3.126)
E—e — As + 5115

Tri =Tofi +

where 7y f; is the transition amplitude describing non-resonant scattering in P-space
in the absence of the isolated eigenfunction & of Q Hy1 Q. We see that (3.126) has
the same general form as (3.69) describing the S-matrix in the neighbourhood of an
isolated resonance.

The above theory has been extended by Feshbach [320, 321] to treat overlap-
ping resonances. In this case Zz; in (3.126) varies rapidly over the width of one
of the resonances and the separation of the transition amplitude into two parts,
given by (3.126), is no longer appropriate. If only a few closely spaced resonances
are involved, such that the remaining background transition amplitude omitting
these resonances is slowly varying, then the above theory can be straightforwardly
extended to include these resonances. Equation (3.110) then becomes

Hpoés)(&EHor

(H’—E)PW:—Z -

N

Py, (3.127)

where H' is the Hamiltonian omitting these closely spaced resonances, and the sub-
sequent equations are modified accordingly.

However, we also have to consider the situation in electron collisions with posi-
tive ions, where infinite series of resonances converging to each excited state thresh-
old occur. In this case resonance series may overlap and it is then necessary to
include the interaction between resonance series in the theory. This is achieved using
multichannel effective range theory or multichannel quantum defect theory which
we discuss in Sect. 3.3.

3.2.6 Hyperspherical Coordinates

We conclude this section by discussing the hyperspherical system of coordinates
which has been important in the analysis of resonances and threshold behaviour
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of three-body systems. For example, Fock [326] and Demkov and Ermolaev [260]
used these coordinates in variational calculations of bound states of helium, Delves
[257, 258] used them to describe the nuclear three-body problem and Smith
[882, 883] has given a general discussion of the three-body problem in terms of
these coordinates. They have also played an important role in the analysis of dou-
bly excited resonance states of helium and other two-electron atoms, for example,
by Macek [618, 619], Lin [598, 599], Greene [416] and Fano [307] as well as in
positron collisions calculations, for example, by Igarashi et al. [485—487]. These
coordinates have also been used in the calculation of weakly bound levels of tri-
atomic molecules such as the helium trimer “Hes and isotopomers of the He;' ion
discussed by Kokoouline and Masnou-Seeuws [546]. Finally, we will use these
coordinates in our derivation of the Wannier [954] threshold law of ionization in
Sect. 3.3.5

Hyperspherical coordinates for two electrons moving in the field of an infinitely
heavy nucleus at the origin of coordinates are defined in terms of the electronic
spherical polar coordinates (r1, 01, ¢1) and (r2, 62, ¢2) by

1"
R:(r12+r22)1/2, a=tan"' =, 0<a<
r

o]

, (3.128)

while the four remaining coordinates are usually chosen to be (61, ¢1, 62, ¢2). The
Schrodinger equation, defined by (2.2) and (2.3) with N = 1 and nuclear charge
number Z can be expressed in terms of these coordinates as (e.g. [664])

d2+5d A2+C+2E v =0 (3.129)
dR? " RdR R?2 R e '

In this equation the potential function C is given in terms of the electron—electron
and electron—nuclear potentials by

27 27 2
Cla.bp)=R[=+=Z -2
r r r2

- 22, 22 - (3.130)
" cosa  sine (1 —sin2acos@n)!/2’ '

where 65 is the angle between the radial vectors ry and r,. Also the operator A? in
(3.129) is defined by

1 d d o 5

A= — (sinzoecosza—> +——+——, (13D
sin” & cos? o do o cos“a  sin“a

where ﬁ and 2% are the squared orbital angular momentum operators for elec-

trons 1 and 2, defined in Appendix B.3, with eigenfunctions Y, (61, ¢1) and

Yi,m, (62, ¢2) belonging to the eigenvalues £1(£; + 1) and £, (£, + 1), respectively.

A? is thus the square of the grand angular momentum operator in six dimensions
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and is the Casimir operator for the O(6) group. Its eigenvalues are A(A + 4) where
A is a non-negative integer. It commutes with L2, S? and the parity as well as with
€% and £3 but it does not commute with C.

Returning to (3.129), we transform this equation to a more familiar form which
removes the first derivative with respect to R by the transformation

W = R/ %y, (3.132)
Equation (3.129) then becomes
@ A+ c
— — ——— + — +2E =0, 3.133
(dR2 R rT v ( )

which resembles the Schrodinger equation for the motion of a particle mov-
ing in the reduced potential —C/R with centrifugal potential energy given by
(A% 4 15/4)/R?. However, unlike the similar equation for the hydrogen atom C,
which depends on the angular coordinates « and 017, does not commute with A2,
It follows from (3.133) that at large R the dynamics of the motion of two electrons
moving in the field of the nucleus depends on the form of C as a function of «
and 61,. In Fig. 3.7 we give a three-dimensional plot of —C(«, 612) in the range
0<a <m/2and 0 < 01> < & for the case where the nuclear charge Z = 1 which
was determined by Lin [598]. At « = 0 and /2 the potential surface tends to —oo
corresponding to the electron—nuclear attraction singularity, while at « = 7 /4 and

- w @ £ w e ¢
Cos6, + {40
0, = -Cla,6,) 430
L 120
50! B 110
- ~ 0 -C
- {-10
v +-20
| 130
o A4-40
it
=301 [ig1i o
A ~ cos,

L =]

60 a5 30 B 0
a

Fig. 3.7 Potential function —C (e, 612) as a function of @ and cos 0}, in Rydbergs for two electrons
moving in the field of an HT ion (Fig. 1 from [598])
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012 = 0 there is a singularity corresponding to the electron—electron repulsion. The
saddle point in the potential energy surface at « = m/4 and 612 = 7 corresponds
to the situation where the two electrons are equidistant from and on opposite sides
of the nucleus. We will see in Sect. 3.3.5 that it is this configuration of the outgoing
electrons that Wannier [954] showed leads to the threshold behaviour of the electron
impact ionization cross section.

In order to solve (3.133) it is convenient to introduce the eigenfunctions U I’; (£2)
of the operator A%. These hyperspherical harmonics, or K-harmonics, satisfy the
equation

[A2 — K(K + UL (2) =0, (3.134)
where K is a non-negative integer which can be written as
K =4¢1+ €+ 2m, (3.135)
£1 and ¢> being the usual orbital angular momentum quantum numbers and m a
new non-negative integer quantum number associated with the motion in . Also in
(3.134), £2 specifies the angular variables
2= ab ¢ 6 P, (3.136)
and I" represents the conserved quantum numbers defined by (2.58).
We can eliminate the first derivative term in A” defined by (3.131) by introducing
the eigenfunctions

Bl 0,m(2) = sine cose Ug (£2), (3.137)

which satisfy the equation

9* g G 2|, r
 9a2 + cosZ o * sinfa (K +2)7 | ¢¢,0,m(£2) = 0. (3.138)

These eigenfunctions are given by

1 A _
Ot = —= [ fram @ Yeitom, (B, ) + (— LSt

NG
X fzzzlm(a)YzzzlLML(f'l,f‘z)], 0 # 0 (3.139)
and
1 A A
Bhrean( D = = [ 14 DT | feon (@0 Venan, G o).

0 =0 =20(3.140)
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where the functions fy, ¢, (o) are defined in terms of Jacobi polynomials [618] and
the functions Yy, ¢,1um, (F1, T2) are defined by (B.57).

The wave function v in (3.133) can now be expanded for each set of conserved
quantum numbers I” as

YR 2) =)ol (DF(R), (3.141)

i=1

where the subscript i represents the quantum numbers £1¢om and where the func-
tions Fir (R) depend only on R. Substituting this expansion into (3.133) and pro-
jecting onto the channel functions ¢i1‘ (£2) then gives after using (3.138)

@ (Ki+2?—; 1 & ,
( R N Ff(R):—EZViJFFf(R), i=1,....n,
j=1

dR? R2
(3.142)
where k> = 2E. Also in (3.142) the potential matrix
Vi = (9] (D)IC(a, 012)|¢p] (2)), i, j=1,....n, (3.143)

where the integration which is over all angles §2 does not depend on R. We see
that (3.142), unlike (2.63) which they replace for two electrons moving in the field
of a nucleus, are a set of n coupled second-order differential equations rather than
coupled second-order integrodifferential equations, where n is the number of terms
retained in expansion (3.141). The Pauli exclusion principle is now represented by
the form of the matrix V.f , defined by (3.143), where the function C, defined by

1

(3.130), satisfies the symmetry relation

Cla,01)) =C (% —a 912) 0<a< % (3.144)

as illustrated in Fig. 3.7. Equations (3.142) therefore partition into symmetric and
antisymmetric sets corresponding to S = 0 and 1, respectively.

In spite of their formal simplicity, (3.142) are in principle still members of an
infinite set of coupled second-order differential equations which have to be approxi-
mated in some way in practical applications. What makes the hyperspherical coordi-
nate representation particularly useful is that in describing doubly excited resonance
states of atoms, the motion in the variable R is approximately separable from the
motion in other variables in a way which is analogous to the Born—Oppenheimer
separation of the electronic and nuclear motion in the theory of molecular structure.
This follows by examining the power series expansion of the solution Fl.r (R) of
(3.142) about R = 0, where we find that the leading term in the expansion does not
depend on the coupling matrix Vlf on the right-hand side of (3.142) as discussed by
Fano [307]. This leads us to introduce the adiabatic expansion



134 3 Resonances and Threshold Behaviour
n

V(R Q)= Zcbf(R; 2GR, (3.145)
i=1

rather than expansion (3.141), where the functions @iF (R; §2) are chosen to diago-
nalize all the terms in (3.142) except d?>/dR? arising from the kinetic energy opera-
tor.

In order to determine the equations satisfied by GiF (R) we introduce the sym-
metric matrix

xRy =

r ..
ij —Vi, i, j=1,...,n, (3.146)

which we diagonalize by an R-dependent orthogonal transformation as follows:
(AT)' X"A" =D’ (3.147)

where AT is an orthogonal matrix and D’" is a diagonal matrix, both of which are
functions of R. Equations (3.142) can then be rewritten as

d2 r 2 r - r r .
(dRZ - Di (R) +k )Gi (R) = X;Wij (R)Gj (R), i=1,...,n, (3.148)
j=

where the functions <1>l.F and Gf in (3.145) are defined in terms of the functions qﬁir
and FiF in (3.141) by the matrix equations

oI (R: 2) = [AF(R)]T¢F(.Q) (3.149)
and
G"(R) = [AT(®)] F (R). (3.150)

Also the coupling potential matrix W’ on the right-hand side of (3.148) is defined
by

d’A”
dRr?

r r
W (R)G (R) = —2[A"(®)]" dA” 4G~ [AT(R)]

r
TR G (R). (3.151)

The extreme adiabatic approximation is obtained by neglecting all coupling terms
on the right-hand side of (3.148), while the adiabatic approximation is obtained
by retaining in addition the diagonal terms Wif (R). If we retain all the terms in
the coupling potential Wl.I; (R) on the right-hand side of (3.148) then (3.142) and
(3.148) give identical results.
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3.3 Threshold Behaviour of Cross Sections

In this section we consider the behaviour of excitation and ionization cross sections
in the neighbourhood of threshold. It was shown in a fundamental paper by Wigner
[970] that the behaviour of cross sections near the threshold of a new reaction does
not depend on the collision dynamics in the “reaction zone” where all the parti-
cles are close together and strongly interacting. Instead, Wigner showed that the
threshold behaviour depends, apart from a constant multiple, only on the form of the
potential between the reacting particles at large distances. This fundamental result is
the basis of our treatment of both excitation and ionization scattering amplitudes and
cross sections in the neighbourhood of threshold. We note that a review of collisions
near threshold has been written by Sadeghpour et al. [804].

We commence our discussion of threshold behaviour by generalizing our treat-
ment of effective range theory in potential scattering, to treat excitation processes
involving many coupled two-body channels. In Sect. 3.3.1 we derive a multichannel
effective range theory for the K-matrix and 7-matrix for short-range potentials,
following the work of Ross and Shaw [798], where in this derivation we make use
of the analytic properties of the multichannel R-matrix introduced and discussed
in Chap. 5 and later chapters. Then in Sect. 3.3.2, we extend this theory to treat
excitation processes, where long-range dipole potentials are present, which was first
considered by Gailitis and Damburg [359]. We conclude our treatment of thresh-
old behaviour of excitation by considering in Sects. 3.3.3 and 3.3.4 the situation
which arises in electron collisions with positive and negative ions where long-range
Coulomb potentials between the interacting particles are present. We consider first
in Sect. 3.3.3 an extension of multichannel effective range theory developed by
Gailitis [357] using the analytic properties of the R-matrix. Then in Sect. 3.3.4 we
discuss multichannel quantum defect theory (MQDT), introduced, developed and
reviewed by Seaton [859] which has been widely used in the analysis of electron
collisions with positive ions and photoionization processes in the neighbourhood of
threshold. Also in this section we summarize extensions of MQDT to treat molec-
ular collision processes. Finally, in Sect. 3.3.5 we consider the threshold behaviour
of ionization with emphasis on single ionization of atoms and positive ions by elec-
trons. The foundations of this subject were laid by Wannier [954, 955] and, in an
introduction to this section, we summarize the threshold law of single ionization
and the main theoretical and experimental developments that have been made since
Wannier’s fundamental analysis. We then derive the threshold law of single ion-
ization adopting a classical analysis analogous to that used by Wannier, based on
hyperspherical coordinates discussed in Sect. 3.2.6. Finally we mention some recent
ab initio calculations of threshold behaviour of ionization which satisfy Wannier’s
threshold law.

3.3.1 Excitation: Short-Range Potentials

We commence our discussion of threshold behaviour by generalizing our treatment
of effective range theory in potential scattering given in Sect. 1.4 to treat excitation
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processes involving many coupled channels where the potential interactions are
short range. In this way we derive a multichannel generalization of (1.120) which
was first obtained by Ross and Shaw [798].

We consider the solution of n coupled second-order integrodifferential equations
corresponding to electron collisions with neutral atoms, obtained by setting N = Z
in (3.2), which then becomes

2
(d_ Rt Y TR k2> F(r) =0, (3.152)
dr? r?

where initially we assume that the potential U is short range satisfying
Ur)=0, r=>a, (3.153)

for some finite radius r = a. This enables us to develop a multichannel effective
range theory which forms the basis for later developments when long-range dipole
and Coulomb potentials are present. In all of this work we assume that the target
states are ordered so that (2.78) is satisfied.

In the energy region where all the channels are open, we showed in Sect. 2.4
that the matrix solution of (3.152), which vanishes at the origin, has the following
asymptotic form:

F(r) = k Y2[si(kr) + c(kr)K], r>a, (3.154)

where K is the n x n-dimensional K -matrix. Also in (3.154), s,(kr) and ¢, (kr) are
diagonal matrices which satisfy the following asymptotic boundary conditions

. kr\ /2 . 1
se(kr) = krjo(kr) = (T) oy 1 o), sin (kr — Efzn) (3.155)
and
kr) = —k k—1‘”kr1/2J kr) ~ kr— Lo
calhr) = —krnglh) = (=D (57 ) 1 r)Hoocos( r—4 71),

(3.156)
where the diagonal elements are expressed in terms of spherical Bessel functions of
half-odd integer order defined in Appendix C.2. We previously encountered these
functions in Sect. 1.1 where we observed that ¢, (kr) can also be expressed in terms
of spherical Neumann functions.

In order to determine the analytic properties of the K-matrix we relate it to
the analytic properties of the n x n-dimensional R-matrix R(E), introduced in
Sect. 5.1.2. In that section we show that the R-matrix, defined by (5.19), is a real
meromorphic function of energy with simple poles only on the real energy axis.
Hence the R-matrix does not contain threshold branch cuts, discussed in Sect. 3.1,
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which arise from the solution of the coupled second-order integrodifferential equa-
tions (3.152) in the external and asymptotic regions.

The solution of (3.152) which vanishes at the origin » = 0 satisfies the following
equation:

dF
F(a) = R(E) (aa — bF) , (3.157)

r=a

where b is an arbitrary constant and where we have chosen the boundary of the
internal R-matrix region to be the range r = a of the potential U(r). We then
substitute the solution F(r), defined by (3.154), into (3.157) yielding

k=2 (s + ¢, K) = R(E)k™ 2 [p(s, + ¢;K) — b(s¢ + ¢K)], (3.158)

where the diagonal matrix p = ka and where the diagonal matrices s, ¢, sQ and ci,
are defined by

dS@ (kr)

1 1 deg(kr)
kK dr -

k dr

/

s¢ = s¢(ka), ¢, =co(ka), s, = f

Ce

r

(3.159)
Setting the arbitrary constant » = 0 in (3.157) and (3.158), using the Wronskian
relation séce — cész = I and re-arranging the terms in (3.158), we obtain the follow-
ing expression for the K-matrix in terms of the R-matrix evaluated at r = a:

c I _ s\ 7!
K'=—Z 4+ —+4p %" (R(E) - p—l—f) s7le”12 (3.160)
S¢ S,S¢ Sy

The analytic behaviour of the K-matrix in the complex energy plane is therefore
given in terms of the analytic properties of the matrices s,, s, and ¢, together with
that of the R-matrix R(E). We find, following our discussion in potential scattering
which led to (1.117), that k=¢"'s,, k~*s} and k'c, are diagonal matrices whose
elements are analytic functions of energy which do not contain threshold branch
cuts. Hence, after substituting these results into (3.160) we find that K—! can be
written in the following form:

K!= k*‘*%M(E)k*‘*% (3.161)

where the n x n-dimensional M-matrix M(E) is a real symmetric analytic function
of energy E which does not contain threshold branch cuts.

We can also obtain an analogous expression for the T-matrix, introduced in
Sect. 2.5, which is defined in terms of the K-matrix by

_ 2K
T I-iK

(3.162)
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We find, after substituting (3.161) into (3.162), that

2i z+%

1
T=k"2——— Kk
M(E) — ik2¢e+1

(3.163)

Equations (3.161) and (3.163) were first obtained by Ross and Shaw [798].
It follows from the above discussion that the M-matrix M(E) can be expanded
as a power series in energy

M(E) = Mo+ M E + MyE? + - -, (3.164)

where Mgy, M, My, ... are real symmetric energy-independent matrices. This
expansion is valid through thresholds although the radius of convergence of the
expansion will in general be finite. We see that (3.161), (3.163) and (3.164) reduce,
when the number of channels n = 1, to (1.118), (1.119) and (1.120) which we
obtained for potential scattering in Sect. 1.4.1.

The above effective range theory enables theoretical calculations or experimen-
tal measurements above and below thresholds to be related. For example, we have
shown in Sect. 3.2.1 that bound states and resonances correspond to poles in the
S-matrix and hence in the 7'-matrix. It follows from (3.163) that these poles occur
when the denominator of this equation satisfies

det [M(E) - ikz”l] =0 (3.165)

Hence (3.161), (3.163) and (3.164) relate the scattering amplitudes and cross sec-
tions above threshold to the bound states and resonances below threshold through
the analytic properties of the M-matrix.

We consider briefly an application of the above theory to two coupled channels.
In this case we can relate the parameters of a resonance lying below the upper thresh-
old to the two elastic scattering amplitudes, the inelastic scattering amplitude and
the corresponding cross sections above this threshold. We see this most clearly if
the elements of the M-matrix are slowly varying over this energy range so that we
need to only consider the three independent elements of My in (3.164). These ele-
ments can be fitted to give the resonance position, resonance width and background
phase shift which then enables the three scattering amplitudes and hence the cross
sections to be determined over a limited energy range above this threshold. This
relationship between resonances below threshold and cross sections above thresh-
old in two-channel models has been considered by several workers. For example,
Damburg and Peterkop [244] explored this relationship in a 1s—2s model e™-H
collision calculation, and Burke [151, 152] related the resonance parameters of the
28 resonance at 19.37 eV, which lies below the 23S threshold in e~ —He collisions,
to the 11S—23S excitation cross section in the %S state just above this threshold.
Further discussions of resonances which arise in e”—He collisions are given in
Sect. 5.6.2.
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Finally, we remark that, as in potential scattering, although the effective range
expansion, defined by (3.161), (3.162), (3.163) and(3.164), has been derived for a
finite range potential satisfying (3.153), it is also valid for potentials that fall off
asymptotically as fast as or faster than an exponential, provided that the radius a is
chosen so that these potentials are negligibly small for r > a.

3.3.2 Excitation: Dipole Potentials

In this section we extend our discussion of threshold behaviour of excitation to treat
many coupled two-body channels where long-range dipole potentials are present.
We obtain a multichannel effective range expression first derived by Gailitis and
Damburg [358, 359] and we consider an application to electron—hydrogen atom
collisions near the n = 2 threshold.

Asin Sect. 3.3.1, we consider the solution of the n coupled second-order integro-
differential equations (3.2) where we set N = Z corresponding to electron collisions
with neutral atoms. We have shown in Sect. 2.3.2 that we can choose a radius r = a
such that the local direct potential included in U(r) in (3.2) is represented by a sum
of terms behaving as inverse powers of the radius r, while the non-local exchange
and correlation potentials are negligibly small beyond this radius. It follows that for
neutral atoms the leading term in the long-range potential has the form

[
Ur)=—, r=za, (3.166)
r
where « is a real symmetric matrix. Hence the coupled integrodifferential equations
(3.2) corresponding to electron collisions with neutral atoms reduce to

& +D+a
d,.2 72

+k2> Fr)=0, r>a, (3.167)

where we have neglected higher order terms in the long-range potential. However,
these terms can be included in the internal region, r < a, together with the non-local
exchange and correlation potentials.

We now describe the modified multichannel effective range theory, developed by
Gailitis and Damburg [358, 359], which is applicable to scattering by long-range
potentials defined by (3.166). We will see that this theory describes the situation
where the off-diagonal dipole terms retained in the calculation couple degenerate
or almost degenerate channels. This includes the most important long-range poten-
tial terms in electron collisions with hydrogen atoms, where the degeneracy of the
non-relativistic target states corresponding to principal quantum numbers n > 2
results in the target atom acquiring a non-zero dipole moment in the field of the
scattered electron. This theory is also applicable to electron collisions with atoms in
highly excited states which are almost degenerate and with polar molecules when
the rotational splitting of the levels can be neglected.
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We commence by introducing an r- and energy-independent orthogonal matrix
A which diagonalizes the matrix coefficient of the r~2 term £(£ + I) + a in (3.167)

giving
AT'eE+D +a]A=rA(A + D). (3.168)

In accord with the above discussion, we only retain terms in & which couple degen-
erate or almost degenerate channels. Hence £(£ + I) 4+ « has block diagonal form,
where each block corresponds to a set of degenerate channels. It follows that A has
the same block diagonal form and consequently commutes with the diagonal matrix
k? in (3.167). We can therefore transform (3.167) to diagonal form by multiplying
on the left by A~! yielding

2
<d— _ro+D + k2> A7'F(r) =0, r>a. (3.169)
dr? 72

We observe that while the elements of the diagonal matrix A(A + I) are real the
corresponding effective angular momentum components A; are non-integral and can
become complex for sufficiently strong long-range dipole interactions represented
by the matrix a. We will see below that this leads to new and anomalous threshold
behaviour.

In order to determine the threshold behaviour we introduce a transformed
K-matrix K in analogy with (3.154) by the asymptotic form

AT'F(r) = kK Vs (kr) + (kK] r>a, (3.170)

where s, (kr) and ¢, (kr) are diagonal matrices which satisfy the following asymp-
totic boundary conditions

xkr\/?
sy (kr) = krjy (kr) = (T) I, 1), sin (kr - %xn) (.171)

and

nkr)l/z J_k_%(kr) cos (kr + %XTL’)

~ . (3.172)
2 COSAT r—00 COS AT

cy(kr) = —krny(kr) = (
These equations reduce to Egs. (3.155) and (3.156) when the dipole potential matrix
a is zero and hence the diagonal elements of A reduce to integer values given by
£. Also, as discussed in Appendix C.2, the spherical Bessel functions, defined by
(3.171) and (3.172), have simple analytic properties in the complex energy plane
for non-integral and complex values of A which enables the development of the
multichannel effective range theory described below.
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The analytic properties of the transformed K-matrix C can be determined by
relating it to the analytic properties of the transformed R-matrix R(E) correspond-
ing to (3.169). In analogy with (3.157) the R-matrix is defined by

A~ 'F(a) = R(E) (mﬁ% — bA—1F> ) (3.173)

r=a

It follows from this definition that R(E) is related to the R-matrix R(E), corre-
sponding to the original coupled integrodifferential equations, defined by (3.152)
and (3.167), by the transformation

R(E) = A"'R(E)A. (3.174)

Since R(E) is an analytic function of energy with simple poles only on the real
energy axis and since A does not depend on the energy, then R(E) is also an
analytic function of energy with poles only on the real energy axis. We set the arbi-
trary constant b = 0 in (3.173) and substitute the expression for A~'F(«a) given by
(3.170) into (3.173). After re-arranging the terms and using the Wronskian relation
syex — ¢,y = I, we obtain

c I _ -1 s\,
* + 0 % <’R(E)—p ls—,*) s, 712 (3.175)

s

S» o SiSy

where p = ka and sy, s, ¢, and ¢} are defined by (3.159) with £ replaced by L. We
see that (3.175) has the same form as (3.160) where the diagonal elements of A are
replaced by integer values given by £. The analytic behaviour of the K -matrix /C in
the complex energy plane is then given in terms of the analytic properties of s,, s}
and ¢, together with those of the R-matrix R(E).

Following our discussion which led to (3.161), we find that 1C~! can be written
in the form

1t -1
K =k " 2M(EX 2, (3.176)

where the M-matrix M (E) is an analytic function of energy which does not con-
tain threshold branch cuts. Also, it follows from (3.175) and (3.176) that M(E) is
symmetric and when all the elements of A are real then M (E) is also real. However,
if some of the elements of A are complex then M (E) will also be complex. Hence
M(E) can be expanded as a power series in the energy

M(E) = Mo+ ME + MyE* + -+ (3.177)

where the coefficients M, M|, M, ... are in general complex symmetric
energy-independent matrices.



142 3 Resonances and Threshold Behaviour
In order to determine the corresponding multichannel effective range theory

expressions for the S- and 7-matrices we recombine the columns of (3.170) by
multiplying on the right by a matrix B to give

A'F(B = k™2 {exp [—i (kr - %xn)] —exp [i (kr - %xn)] s} , r>a,

(3.178)
where the transformed S-matrix S is defined by
S =[I+i(Il+itanAm)KC][I —i(I —itan Am)IC] ! (3.179)
and B is defined by
1 1 . .
B = —E[I—l(l—ltanln)IC]. (3.180)
i

We then transform (3.178) by multiplying this equation on the left by A and on the
right by

C =exp <—%i)m> A lexp (%i@n) , (3.181)
which yields
F(r)BC = k12 {exp [—i (kr — %Zn)] — exp [i (kr — %271)] S} , r>a,

(3.182)
where the S-matrix S is defined by

S =exp (%iln) Aexp (—%ikn) Sexp (—%ikn) Al exp (%i(ﬂ) . (3.183)

Finally, we substitute for S given by (3.179) into (3.183), where IC is written in
terms of M(E) using (3.176). We find that

2i
M(E) —i(I —itan Am)k2 1

T = exp (%iln) Aexp (—%iln) kH%
X kH% exp (—%ikn) A lexp (%iln)
+ exp (%MJ‘[) Aexp(—i)uy'r)A_1 exp (%iln) —1, (3.184)

which is the effective range expression for the 7-matrix in the presence of long-
range dipole potentials, where we remember that T = S — I. We see that when the
dipole potential matrix e is zero then A = £ and A = I so that tanAn = 0. Equa-
tion (3.184) then reduces to (3.163) valid for short-range potentials. It follows from
(3.184) that the well-known symmetry of the S-matrix, and hence the 7-matrix,
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corresponds to the symmetry of the M-matrix M(E) discussed above. In addition
it should be noted that the unitarity of the S-matrix imposes further restrictions on
M(E).

We observe that, as in potential scattering discussed in Sect. 1.4.2, for a suffi-
ciently strong long-range dipole potential U(r), defined by (3.166), individual com-
ponents A; of the diagonal matrix A defined by (3.168) can be complex and can be
written as

1
ki = =5 +ilmi;, (3.185)

where Im A; can be positive or negative. It follows that the corresponding compo-

1
nents of the factor k**2 in the T-matrix defined by (3.184) can be written as

1
K2 = N exp(iim g Inky), (3.186)
which gives rise to an infinite number of oscillations in the cross section as the
energy tends to threshold from above. Also, an infinite number of bound states or
resonances converge to this threshold from below.

As an example of the above analysis we consider electron collisions with atomic
hydrogen for total orbital angular momentum L = 0 near the n = 2 threshold. The
coupled second-order integrodifferential equations coupling the 2s and 2p states
then have the following form for r > a:

e, 6
d?+k2 F2s(”)_r_2F2p(r)=Q

e o2, 6
32 "2tk ) Pp() — () =0, (3.187)

where a is chosen such that non-local exchange and correlation potentials vanish for
r > a so that the following analysis applies for both singlet S = 0 and triplet S = 1
total spin states. Also in (3.187) we have neglected the diagonal »~3 potential in
the 2p channel, since its presence does not significantly alter the following analysis.
Comparing (3.187) with (3.167) we see that the coefficient of the r~2termin (3.167)
has the following matrix form

0 6
LE+D +a= [6 2], (3.188)

which can be diagonalized, as in (3.168), to yield the matrix

1+/37 0 ] (3.189)

X()»+I)=|: 0 | — 37
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The corresponding diagonal elements of A are then

1 \/_ 5 1/2
M=—-£|VBTHZ]
1 > [ +4}
1 517"2
Azz—zii[ﬁ—z] , (3.190)

and the diagonalized form of (3.187) can be written as

2 A+
<m_%+k§)A‘lF(r)=O, r>a, (3.191)

where the orthogonal matrix A is defined by (3.168).

We now consider the zero-energy solution of (3.191) corresponding to the com-
plex second eigenvalue A, defined by (3.190). Writing G = A~'F we see that the
general solution of (3.191) corresponding to this eigenvalue can be written as

Ga(r) =dir™ ™ + dyr™, r>a. (3.192)

After substituting for A, from (3.190) we can re-write (3.192) in the general form

Go(r) = br'?sinlmry Inr 4+8), r > a. (3.193)
where
5712
Imi, = [«/3 - Z} =2.19835..., (3.194)

and where the coefficients b and § in (3.193) are determined by fitting to the internal
region solution of the coupled integrodifferential equations at r = a. We see that
the solution G,(r), defined by (3.193), has an infinite number of oscillations in r
in the range a < r < oo, which corresponds to an infinite number of bound states
supported by the angular momentum term in (3.191), which can be written in this
case as

M2+ 1 025+ (Imiy)?
B r2 - r2 ’

(3.195)

which is clearly attractive.

We next consider the solution of (3.191) for negative k%. We first observe that
an increase in the argument of the zero-energy solution (3.193) by & radians, corre-
sponding to an additional node in the oscillation, occurs when the radius r increases
by the ratio

’_2=exp( u ) (3.196)
r1 Im A,
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When k% is negative these oscillations are cut off for large r when the k% term in
(3.191) dominates the angular momentum term. As the magnitude of k% decreases
towards zero, additional oscillations are supported by the angular momentum term,
each corresponding to an additional bound state. We then see from (3.191) and
(3.196) that the ratio of the magnitudes of k% before and after the additional oscilla-
tion is supported is

k2),— 2 2
R:(?Jz%ze,q,( ”). (3.197)
(kz)r:rz 1 Im A

In the present example we find, using (3.194), that the resonance spacing ratio
R=17429.... (3.198)

We note that (3.197) can be obtained directly from the multichannel effective range
theory expansion for the 7-matrix, given by (3.184), assuming the constancy of the
M -matrix.

The infinite series of bound states predicted by this theory is reduced in practice
to a finite number due to relativistic splitting of the n = 2 levels of atomic hydro-
gen, which removes the degeneracy of the levels with the same principal quantum
number assumed in the above derivation. In addition, inclusion of coupling with the
open 1s channel shifts the energies of the bound states into the complex energy plane
where they give rise to a series of resonances, where the ratio of the widths of the
neighbouring resonances also satisfies (3.197) and (3.198). The first resonance in
this series with ! S® symmetry was found by Burke and Schey [160] at ~9.6 eV inci-
dent electron energy in a close coupling calculation including the 1s, 2s and 2p target
states in expansion (2.57) and was first observed experimentally by Schulz [836].

The above analysis can be carried out for electron—hydrogen atom collisions for
all total orbital angular momentum L and at all thresholds corresponding to prin-
cipal quantum numbers n > 2, as discussed by Burke [151, 152] and Pathak et al.
[720, 721]. We find that complex X values leading to anomalous threshold behaviour
are found at all thresholds with n > 2 for small L. We summarize the resonance
spacing ratio R defined by (3.197) for L < 6 and for n < 5 in Table 3.1, where
relativistic fine-structure splitting of the levels is neglected. We see that for some
(L, n) values more than one resonance series occur. Also, as the principal quantum
number n increases we find that resonance series occur for an increasing number of
L values. We also find that for a given L, however large, resonance series will occur
for sufficiently high n.

3.3.3 Excitation: Coulomb Potential

In this and the next section we extend our discussion of the threshold behaviour
of excitation cross sections to treat many coupled two-body channels interacting
through a Coulomb potential, corresponding to electron collisions with positive and
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Table 3.1 Level spacing ratios R for electron-hydrogen atom resonances at thresholds corre-
sponding to total orbital angular momentum L < 6 and principal quantum number n < 5 for
both total spin angular momenta S = 0 and 1

n L=0 L=1 L=2 L=3 L=4 L=5 L=6
2 17.429 29.334 4422.18 - -

3 4.823 5.164 6.134 9.323 62.416 - -
- 16.752 80.552 - - - -
4 2.982 3.047 3.197 3.485 4.070 5.608 16.698
16.210 4.360 4.940 6.494 14.492 - -
- 27.299 18.777 8.5168 - - -
- - 3226.6 - - - -
5 2312 2.334 2.382 2.463 2.594 2.812 3.213
4.107 2.792 2.901 3.103 3.484 4.326 7.354
- 4.224 4.091 4.892 7.396 59.907 -
- 32.955 4.766 6.184 12.838 - -
- - 9.577% 25.479 - - -

The superscripts 5 and 8 are abbreviations for x 107 and x 108, respectively.

negative ions. In this section we obtain an effective range expression, first derived
by Gailitis [357] using the analytic properties of the R-matrix, and we discuss the
behaviour of the cross sections near threshold for an attractive Coulomb poten-
tial. Then in Sect. 3.3.4 we consider multichannel quantum defect theory (MQDT)
introduced, developed and reviewed by Seaton [859], which is widely used in the
analysis and calculation of electron collisions with positive ions and corresponding
photoionization processes in the neighbourhood of threshold. Also, we summarize
some of the most important extensions of MQDT to molecular collision processes.

3.3.3.1 Effective Range Theory

We consider the solution of n coupled second-order integrodifferential equations
(3.2) describing the scattering of electrons by multi-electron positive or nega-
tive ions. We assume that the potential matrix U(r) in this equation, representing
the local direct, non-local exchange and non-local correlation potentials, can be
neglected for » greater than some radius a. Hence (3.2) then reduces to

2 —
(d Z(€+I)+2(Z N)

- 2 _
ar2 2 — Tk )F(r) =0, rza, (3.199)

The general solution of (3.199) which vanishes at the origin has the following
asymptotic form:

F(r) =k 2 [Fo(p,kr) + Go(n, kr)K], r>a, (3.200)
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where F, (5, kr) and G, (n, kr) are diagonal matrices whose diagonal elements are
the regular and irregular Coulomb wave functions, defined, respectively, by (1.58)
and (1.59), where n = —(Z — N)/k and K is the n x n-dimensional K-matrix.

In order to determine the analytic properties of the K-matrix we proceed, as in
our discussion of short-range potentials in Sect. 3.3.1, by relating the K-matrix to
the analytic properties of the n x n-dimensional R-matrix R(E), defined on the
boundary r = a by

dF
F(a) = R(E) (aa - bF) , (3.201)

r=a

We then set the arbitrary constant » = 0 in (3.201) and substitute the expression for
F(a) given by (3.200) into (3.201). After re-arranging terms and using the Wron-
skian relation F,G, — G;F, = I we obtain

G I _ F\'
K™ = _F_l Ter T p~2F,! (R(E) - P_IF_f) F, o2, (3.202)
£ re [4

where the diagonal matrix p = ka and the diagonal matrices F,, F}, G, and G| are
defined by

1 dF,
k dr

1 dG,

/
t7k dr

F,=F,(n,ka), G¢=G(n,ka), F,=

rz; r=a
(3.203)
We see that (3.202) has the same form as (3.160) obtained for short-range potentials
and (3.175) obtained for dipole potentials. Hence, as in those cases, the analytic
properties of the K-matrix in the complex energy plane can be obtained in terms
of the analytic properties of the matrices F,, F, and G, together with those of the
R-matrix R(E).

The analytic properties of the Coulomb wave functions have been described
in our development of an effective range expansion for potential scattering by a
Coulomb potential in Sect. 1.4.3 and are given by (1.175) and the following equa-
tions. Using these results, we find that (3.202) yields the following multichannel
effective range expression for the 7 -matrix:

2i

1
_ oty
T=k"20t+ I)”C‘(")M(E) — K224 + DI P2pe()T (24 + D!

1
x Ce) 2L+ DI K2, (3.204)

where Cq(n), pe(n) and T are diagonal matrices whose diagonal elements are
defined by (1.60), (1.179) and (1.185), respectively. We can then show that the
M -matrix in (3.204) is given by
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2 D! ] k2£+1 20+1
M(E)=( +1) {_ ¢ Pe(n)a
b L eerne, 2¢+1)
1 1 [@ 1
pl(") ¢[¢[_ ¢[ ¢[ ¢[_
2¢+ D!
x # (3.205)
a2
where
_ do
S =UL+DP+ a—r (3.206)
dr r=a

Also in (3.205) we have written @, = ®,(y, ka), ¥, = ¥,(», ka) and P, =
31(77, ka), which are diagonal matrices whose diagonal elements @, ¥, and D,
are entire functions of the energy. It follows from (3.205) that the M-matrix M(E)
is a symmetric matrix which is real on the real energy axis and which is an analytic
function of energy without threshold branch cuts. Hence M(E) can be expanded as
a power series in energy

M(E) =My + M E + MpE> + - -, (3.207)

where Mg, M, M, ... are real symmetric energy-independent matrices.

The multichannel effective range equation (3.204) was first derived by Gailitis
[357]. We can show that it reduces to (1.187) for single-channel scattering by a
Coulomb potential and to (3.163), obtained by Ross and Shaw [798], for multichan-
nel scattering by short-range potentials. It follows that (3.204) enables the 7-matrix
to be extrapolated through thresholds, relating the cross sections above and below
thresholds.

3.3.3.2 Cross Sections Near Threshold

We now obtain an equation relating the 7-matrix and the cross sections above
and below threshold for scattering by an attractive long-range Coulomb potential.
We consider processes involving n coupled channels, corresponding to a given set
of conserved quantum numbers, where the target states included are ordered in
increasing energy so that (2.78) is satisfied. We determine the behaviour of the cross
sections in the neighbourhood of the nth or highest threshold which we assume is
non-degenerate.

We commence by observing that the M-matrix M(E) and the quantity
K>**t1p,(y) in (3.204) are analytic through the thresholds. We then obtain the fol-
lowing relation by evaluating (3.204) just above and just below the nth threshold

a b
[ +iComn™ 2T~ 2Com) | = [z +iComn™ P17 2Coan ]|
(3.208)
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The superscript a in (3.208) and later equations means that the quantity is evaluated
in the limit k,zl — 0 from above the nth threshold and the superscript b in this and
later equations means that the quantity is evaluated in the limit k,% — 0 from below
the nth threshold.

In order to relate T and T? using (3.208) we consider the behaviour of the diago-
nal matrices Co ()7~ '/? and 7 in the neighbourhood of the nth threshold. It follows
from (1.61) that the first (n — 1) diagonal elements of Co(p)n~"/? are continuous
at the nth threshold. However, while the nth diagonal element is smoothly varying
above this threshold, where the limit at threshold is

(C%(n)n’l/z)a = —2r, (3.209)

it is rapidly oscillating and discontinuous below this threshold. Also, it follows from
(1.190) and (1.191) that while the first (n — 1) diagonal elements of the matrix
are continuous at the nth threshold, the nth diagonal element is discontinuous at this
threshold. We find that

a b __ s _
tjj—rjj—O, j=1,...,n—1 (3.210)
and
0 b = i — ot . 3.211)
Kn

Substituting these results into (3.208) and solving for the matrix T?, we find that the
elements of the first (n — 1) x (n — 1) sub-matrix of T? are given in terms of the
n x n matrix T¢ by

1

T} = [(T")_l —A];k, jok=1,...,n—1, (3.212)
where the only non-zero element of A is
1. Tz . 1, .
App = zifcot— 41 ) = <i(y +1), (3.213)
2 Kn 2

which defines y. On the right-hand side of (3.212), the inverse of the full n x n
matrix [(T*)~! — A] is first determined, and then the (n — 1) x (n — 1) sub-matrix
elements of this inverse matrix are equated to the (n — 1) x (n — 1) matrix elements
on the left-hand side of (3.212). Owing to the special form of the matrix A, defined
by (3.213), we can determine the inverse of [(T")_1 — A] explicitly in terms of the
matrix elements of T and A. We find that (3.212) can be rewritten as

Tbk = Tflk — Tja” Tin Tfn T 2i
J J Te, Té  (y+1) T4 +2i

Jok=1,...,n—1. (3.214)
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This equation expresses the 7-matrix elements T;’k below threshold in terms of the
slowly varying 7-matrix elements T, above threshold, which can be taken to have
their threshold values. We can see that the 7-matrix elements below threshold are
rapidly varying because of the factor y = cot(;rz/«,), which has the same value at
energies for which z/«, differs by an integer. By comparing (3.214) with (3.126)
we see that the last term in (3.214) gives rise to a Rydberg series of resonances as
k2 = —«2 — 0 from below the nth threshold. We can also show that the corre-
sponding resonance widths I" are related to the distances D between resonances by
the expression

g - % (2Re TS — T | ) - 2]71 Z| a2, (3.215)

which is constant for all resonances in the series.

We can also obtain a relation between the cross sections above and below
the nth threshold. We observe that the resonances become very close together as
we approach the nth threshold from below. Hence the quantity of interest just
below the threshold is the partial wave cross section averaged over resonances,
defined by

o(j k) /E+D/2 (j = kdE ! foo (j k) dy (3.216)
o(j > k) =— o =— o(j — k)——, )
/ D Jp_pp / T Joo / 1+ y?

where the cross section is defined in terms of the 7-matrix by (2.132) for
non-relativistic collisions and by (5.129) for heavy ionic targets where relativis-
tic effects become important. Using (3.214) and (3.216) we obtain the follow-
ing expression relating the partial wave cross sections above and below the nth
threshold:

c®(j > n)o*(n — k)

(> k) =0 — k) + . jok=1,....n—1.
Z;ll o4(n — k')

(3.217)

We see from this expression that the averaged cross sections below the nth threshold
decrease abruptly at the threshold as the energy increases through this threshold. We
also see that the total cross section, obtained by summing (3.217) over k, the open

channels below the nth threshold, gives

n—1 n—1

Zﬁb(j—>k)=Za“(j—>k)+oa(j—>n), j,k=1,....,n—1. (3.218)
k=1 k=1

Hence, the total partial wave cross section is continuous across the nth threshold
for all initial states. Also, the total cross section, obtained by summing over all
conserved quantum numbers, is continuous across thresholds. The continuity of the



3.3 Threshold Behaviour of Cross Sections 151

total cross section across a new threshold was first proved by Baz [83] and by Fonda
and Newton [336, 337] by averaging the imaginary part of the scattering amplitude,
which is related to the total cross section through the optical theorem.

The above theory has been generalized by Gailitis [357] to the situation where
several degenerate channels open at the highest threshold. This occurs, for exam-
ple, when several degenerate channels are coupled to a target state with non-
zero angular momentum. When the cross sections for excitation of target states
belonging to the highest threshold are small, corresponding to narrow reso-
nances below this threshold, then the generalization of (3.217) can be written as
follows:

c(j = 1) o — k)
Ypodld — k)

'k =0 >R+ (3.219)

l

In this equation, j and k correspond to the channels which are open below the high-
est degenerate threshold, k’ is summed over the open channels below this threshold
and / is summed over the degenerate channels corresponding to the highest thresh-
old. Hence, as in the case of one threshold channel, the averaged cross sections
below the highest degenerate threshold decreases abruptly as the energy increases
through this threshold. Also, we find by summing (3.219) over k, corresponding to
the open channels below the highest degenerate threshold, that as in (3.218) the total
cross section is continuous across this threshold. Again, this result can be obtained
by averaging the imaginary part of the scattering amplitude.

Finally, the application of R-matrix theory in the analysis of the behaviour of
electron—ion collision cross sections in the neighbourhood of thresholds has also
been considered by Lane [565]. In this work the relationship with multichannel
quantum defect theory, reviewed in the next section, was discussed.

3.3.4 Multichannel Quantum Defect Theory

In this section we conclude our discussion of the threshold behaviour of excitation
cross sections by considering electron collisions with multi-electron positive ions
using multichannel quantum defect theory (MQDT) introduced and developed by
Seaton [851, 852, 854-856, 858] who also comprehensively reviewed this theory
[859]. We then summarize some of the most important developments in the appli-
cation of MQDT to molecular collision processes.

In our discussion of atomic MQDT it is convenient to introduce z-scaled radial
and energy variables defined by

p=zr, €= — (3.220)

where z = Z — N is the ionic charge, Z being the nuclear charge number and N the
number of target electrons. Also, in (3.220), E is the energy of the colliding electron
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in atomic units. It is also convenient to define the z-scaled wave number k and the
quantity v? by the equations

=€, €>0; e=——, <. (3.221)

The radial Schrodinger equation describing single-channel electron—ion collisions
in the external region r > a, when the local direct, non-local exchange and non-local
correlation potentials are negligible, then becomes

a2 e+ 2
— - +Z24€)Gp)=0, p>za. (3.222)
dp? p? P

It is clear that (3.199) reduces to (3.222) when only one channel is coupled, where
we have written F(r) = G(p).

Functions f, g and 4 which are solutions of (3.222) have been defined by Ham
[440] and Seaton [859]. The functions f and g are analytic functions of energy
through threshold such that

o0 o0

fletip) =) € fullip), gle tip) =7 €"gult; p). (3.223)
n=0 n=0

Also the function /& can be written as

h=—(@g+3G/)), (3.224)

where G is defined by the asymptotic expansion

4 2 3

€Ae, b) p 1 € € €
) = E — 1+ 4. ) .
dle=— 01+p26+12<+10+21+20+ )

(3.225)
with

4
Ae.0) =[]+ pe). (3.226)
p=0

For small €, a good approximation for G is obtained by retaining a finite number
of terms in the expansion in powers of €. Hence G and thus % are “nearly analytic
functions” of €. The asymptotic forms of the functions f and 4 when € > 0 are
given by

b (2 (1N 3.227
e ’p)p_)oo (g) (W) sin (3.227)
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and
2\!/2 A2, 0) 172
he, t;p) ~ | — S cosd, (3.228)
p—oo \ Tk 1 —exp(—2m/k)
where
1 1 .
0 =kp— Eﬁn + X In(2kp) +arg '€ + 1 —i/k). (3.229)

The asymptotic forms of the functions f and 4 when € < 0 are given by

DN e (Sin@V) (v —£) - cos(wv) )
fle & P)p_)oo( Dv ( - Toret 1)0 (3.230)
and
I A A | cos(v) (v — £) sin(rv) )
et p)p_)oo( DA D ( T v+ + 1)0 '

(3.231)
where

fep) = <27p> exp (g) L 0en) (%p)v exp (—g) . (3.232)

We now use the analytic properties of the functions f and & to derive MQDT
equations relating the K-matrix and the S-matrix above and below thresholds. We
first observe that the n coupled second-order integrodifferential equations (3.2)
reduce to (3.199) when r > a. Also, we adopt the normalization defined by (3.200)
for the solutions which vanish at the origin. When all the channels are open the
general solution of (3.2), which defines the n x n-dimensional K-matrix, can then
be written as follows:

12
F(r) = (2%) [f+hK], r>a, (3.233)

where f and h are diagonal n x n-dimensional matrices, whose diagonal elements
have the asymptotic forms defined by (3.227) and (3.228).

We now consider the solution of (3.2) when n, channels are open and 7, channels
are closed, where n = n, + np. We can analytically continue the solution defined
by (3.233) to this energy region yielding the solution

1/2
Fr) = (;) [f+hK], r>a, (3.234)
Z
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where, in the n; closed channels, the corresponding diagonal elements of f and h
now have the asymptotic forms defined by (3.230) and (3.231), respectively. Also
the n x n-dimensional K-matrix /C in (3.234) is the analytic continuation of the
physical K-matrix, defined by (3.233). However, because the functions f and h in
(3.234) now diverge exponentially in the closed channels, because of the & terms
in (3.230) and (3.231), the corresponding solution, and hence the K-matrix IC, is
non-physical.

In order to obtain physical solutions when n, channels are open, we take linear
combinations of the n solutions defined by (3.234), which eliminate the exponen-
tially diverging terms in the closed channels. Hence we write

172
F(r)C = (25) [f+hKIC. r>a, (3.235)
Z

where C is an n x n,-dimensional matrix and where the matrices F, IC and C are
partitioned into open- and closed-channel sub-matrices as follows:

Foo Foc Koo Koc ¢
F= 0o v oc K= 0o MNoc , C= oo | 3.236
[FCO Fcc} [’CCO KCC} [CCO} ( )

The n, x n,-dimensional open-channel sub-matrix of  (r)C is then

1/2
[‘F(r)C]OO = (21) [(fO + hO’COD)COO + hO’COCCCO] ’ (3'237)
b4

and the nj; x n,-dimensional closed-channel sub-matrix of F(r)C is

12
[F(V)C]co = (22) [he/CeoCoo + (fe +hIC)Cool (3.238)
Z

where in these equations f, and h, are the diagonal open-channel components of
f and h, and f. and h, are the diagonal closed-channel components of f and h,
respectively. We then choose C,, = I,,,, where 1, is the n, x n,-dimensional unit
matrix, so that the matrix multiplying f, in [F (r)C],, is diagonal and we choose
the C,, so that the divergent terms in [F (r)C],, involving &, which arise in f, and
h, defined by (3.230) and (3.231), are elimi