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Preface

The Semantic Web aims at allowing knowledge to be freely accessed and ex-
changed by software. It is now widely recognized that if the Semantic Web is
to contain deep knowledge, the need for new representation and reasoning tech-
niques is critical. These techniques need to find the right trade-off between ex-
pressiveness, scalability, and robustness to deal with the inherently incomplete,
contradictory, and uncertain nature of knowledge on the Web.

The annual International Conference on Web Reasoning and Rule Systems
(RR) addresses these needs and has grown into a major international forum
for the discussion and dissemination of new results concerning Web Reasoning
and Rule Systems. The first three International Conferences on Web Reasoning
and Rule Systems (see http://www.rr-conference.org), held in Innsbruck, Aus-
tria (2007), Karlsruhe, Germany (2008), and Chantilly, Virginia, USA (2009),
received enthusiastic support from the Web Reasoning community.

This volume contains the papers presented at the Fourth International Con-
ference on Web Reasoning and Rule Systems (RR 2010), which was held in
Bressanone/Brixen, Italy, September 22-24, 2010, and which continued the ex-
cellence of the RR series. It contains nine full papers, six short papers, four
poster/position papers, one PhD paper, and two system descriptions, which
were selected out of 31 submissions following a rigorous reviewing process, where
each submission was reviewed by at least three program committee members.
The volume also contains extended abstracts of the three invited talks/tutorials.

We wish to thank all authors who submitted papers and all conference par-
ticipants for fruitful discussions. We are grateful to Georg Gottlob and Evren
Sirin for their invited talks and Axel Polleres for his tutorial at the conference.
We would like to thank the program committee members and additional re-
viewers for their timely expertise in carefully reviewing the submissions. Special
thanks to Diego Calvanese and Mariano Rodŕıguez-Muro from the Free Uni-
versity of Bozen-Bolzano for the organization of the conference and wonderful
days in Bressanone/Brixen. We would like to thank José Júlio Alferes for acting
as general chair, Krzysztof Janowicz for his work as sponsorship chair, and all
sponsors for their financial support. Many thanks also to the developers of the
EasyChair conference system, which we used for the reviewing process and the
preparation of this volume.

September 2010 Pascal Hitzler
Thomas Lukasiewicz
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José Júlio Alferes Universidade Nova de Lisboa, Portugal

Program Chairs

Pascal Hitzler Wright State University, USA
Thomas Lukasiewicz Oxford University, UK

Local Arrangements

Diego Calvanese Free University of Bozen-Bolzano, Italy
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Query Answering under Non-guarded Rules
in Datalog+/-

Andrea Cal̀ı3,2, Georg Gottlob1,2, and Andreas Pieris1

1 Computing Laboratory, University of Oxford, UK
2 Oxford-Man Institute of Quantitative Finance, University of Oxford, UK

3 Department of Information Systems and Computing, Brunel University, UK
firstname.lastname@comlab.ox.ac.uk

Abstract. In ontology-based data access, an extensional database is
enhanced by an ontology that generates new intensional knowledge which
has to be considered when answering queries. In this setting, tractable
data complexity (i.e., complexity w.r.t. the data only) of query answering
is crucial, given the need to deal with large data sets. A well-known class
of tractable ontology languages is the DL-lite family; however, in DL-
lite it is impossible to express simple and useful integrity constraints
that involve joins. To overcome this limitation, the Datalog+/- class of
decidable languages uses tuple-generating dependencies (TGDs) as rules,
thus allowing for conjunctions of atoms in the rule bodies, with suitable
limitations to ensure decidability. In particular, sticky sets of TGDs allow
for joins and variable repetition in rule bodies under certain conditions.
In this paper we extend the notion of stickiness by introducing weakly-
sticky sets of TGDs, which also generalize the well-known weakly-acyclic
sets of TGDs. We investigate the complexity of query answering under
such language, and in addition we provide novel complexity results on
weakly-acyclic sets of TGDs. Moreover, we present the novel class of
sticky-join sets of TGDs, which generalizes both sticky sets of TGDs
and so-called linear TGDs, an extension of inclusion dependencies.

1 Introduction

Due to the complex knowledge representation needs in today’s information sys-
tems, traditional database systems are being enhanced with advanced reasoning
and query processing features. In the business world, enterprise data reside usu-
ally at relational databases, and complex constraints have to be enforced. Both
the knowledge representation and the database communities agree upon the need
for ontological features on top of the raw data.

In ontology-enhanced database systems, an extensional relational database
D (also referred-to as ABox in the description logic community) is combined
with an ontological theory Σ (also called TBox) describing rules and constraints
which derive new intensional data from the extensional data. Queries are then
to be answered on the whole theory D ∪ Σ rather than on D alone: given a
Boolean conjunctive query q, we check whether D ∪ Σ |= q. Similarly, if q(X) =

P. Hitzler and T. Lukasiewicz (Eds.): RR 2010, LNCS 6333, pp. 1–17, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 A. Cal̀ı, G. Gottlob, and A. Pieris

∃Ybody(X,Y) is a conjunctive query with output variables X, then its answer in
the ontological database consists of all tuples t of constants such that D ∪ Σ |=
∃u body(t,u). Interestingly, the well-known notion of chase [17,11,16,14] of a
database D according to an ontology Σ, denoted chase(D, Σ), is a useful tool
for query answering. It can be shown that the answers to a query q against D∪Σ
coincide with the answers to q evaluated over chase(D, Σ) [17,11,16,14].

A crucial issue is that the chase expansion does not terminate in general,
and this happens in a large number of real-world cases, even when the ontol-
ogy consists of inclusion dependencies only. A milestone work that deals with
non-terminating chase is the one by Johnson and Klug [17], where it is shown
that, under inclusion dependencies (plus a certain class of key dependencies),
an initial, finite portion of the chase is sufficient for query answering. However,
inclusion dependencies alone, or with the addition of key dependencies, are not
sufficiently expressive to capture the most common ontological constraints. The
goal is therefore to achieve good expressive power while retaining efficiency of
query answering in terms of data complexity, i.e., the complexity calculated hav-
ing D only as input, while q and Σ are considered to be fixed.

A significant contribution in this direction was the introduction of the DL-lite
family of description logics [12,24]. DL-lite languages enjoy the desirable property
of being first-order rewritable, henceforth abbreviated as FO-rewritable, i.e., for
every query q against D ∪ Σ, it is possible to compute a first-order query qΣ

based on Σ, such that evaluating q against D ∪ Σ returns the same answers as
evaluating qΣ directly against D. The latter evaluation can be done in the low
complexity class ac0 in data complexity; moreover, since every first-order query
can be encoded in SQL, it can be passed to a relational DBMS and therefore
being executed efficiently and with all the DBMS’s optimizations.

A more expressive class of languages is the Datalog± family, whose rules
are tuple-generating dependencies (TGDs), with suitable restrictions that ensure
decidability of query answering. TGDs are analogous to Datalog rules with value
invention (see, e.g., [21,4]); this extension of the well-known Datalog language [1]
allows us to overcome the limitations of Datalog for ontology modeling that are
pointed out, for instance, in [23]. More specifically, linear Datalog± [7] (linear
TGDs) properly generalizes the DL-lite family with the addition (which does
not increase the complexity of query answering) of negative constraints and key
dependencies. In linear Datalog± rules are TGDs with exactly one atom in the
body. Linear Datalog± is a sub-formalism of guarded Datalog± [7,5] (guarded
TGDs), which is in turn generalized by weakly-guarded Datalog± [5] (weakly-
guarded sets of TGDs). We refer the reader to the above cited literature for more
details on such Datalog± languages. Unfortunately, none of the above formalisms
is expressive enough to be able to model simple real-life cases such as the one in
the following example, taken from [8].

Example 1. Consider the following relational schema, which shall be used as our
running example.

dept(Dept Id, Mgr Id),
emp(Emp Id, Dept Id, Area, Project Id),
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runs(Dept Id, Project Id),
in area(Project Id, Area),
project mgr(Emp Id, Project Id),
external(Ext Id, Area, Project Id).

The fact that each department has an employee as manager can be expressed
by the TGD

dept(V, W ) → ∃X∃Y ∃Z emp(W, X, Y, Z).

The following TGD expresses the fact that each employee works on some project
that falls into his/her area of specialization ran by his/her department.

emp(V, W, X, Y ) → ∃Z dept(W, Z), runs(W, Y ), in area(Y, X).

The TGD below states that for each project run by some department there exists
an external controller, specialized on the area of the project, that works on it.

runs(W, X), in area(X, Y ) → ∃Z external(Z, Y, X).

Notice first that the above TGDs do not guarantee the termination of the chase
for every initial database. Moreover, the third TGD contains a join (over vari-
able X) which is precisely of the kind that cannot be represented in guarded
Datalog±, let alone in DL-lite.

While query answering under TGDs is undecidable [3,5], we observed that such
undecidability is due to awkward cases that rarely occur in practice. This led
us to introducing a novel paradigm called stickiness. We introduced in [8] the
tractable class of sticky sets of TGDs, which allows for (a slightly restricted
form of) joins in rule bodies while being at the same time FO-rewritable. The
formal definition of sticky sets of TGDs is given in Subsection 2.3. Sticky sets of
TGDs impose a mild limitation on multiple occurrences of variables in the body
of TGDs, and they are useful in practice. However, it is important to notice
that they do not generalize the well-known class of weakly-acyclic TGDs [16],
which is at the basis of the data exchange framework, and which ensures chase
termination for every instance. There are indeed cases of weakly-acyclic sets of
TGDs that are not sticky, while they are of course decidable (though not FO-
rewritable in general). In this paper we go beyond stickiness in order to capture
also the expressive power of weakly-acyclic sets of TGDs, and more.

Summary of contributions. In Section 3 we first consider weakly-acyclic sets
of TGDs. We show that query answering under weakly-acyclic sets of TGDs
is 2exptime-hard in combined complexity (i.e., the complexity considering the
database, the ontology and the query as input). Then, we consider the existence-
of-solution problem in data exchange [16,19], in the presence of weakly-acyclic
sets of TGDs and also of equality-generating dependencies (EGDs). EGDs, for
which we refer the reader to [16,8], are assertions of the form ∀Xϕ(X) → Xi =
Xj , where Xi and Xj are variables of X. We prove that the existence-of-solution
problem is 2exptime-hard in combined complexity. In Section 4 we introduce
the novel class of weakly-sticky sets of TGDs. We establish precise complexity
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Data Complexity Combined Complexity

STGDs FO-rewritable exptime-complete
BCQ answering [8] LB: [8], UB: [8]

WATGDs ptime-complete 2exptime-complete
BCQ answering LB: [13], UB: [16] LB: Thm. 1, UB: [16,22]

WATGDs + EGDs ptime-complete 2exptime-complete
existence-of-solution LB: [19], UB: [19] LB: Thm. 2,[18], UB: [16,22]

WSTGDs ptime-complete 2exptime-complete
BCQ answering LB: [13], UB: Thm. 4 LB: Thm. 1, UB: Thm. 3

SJTGDs FO-rewritable exptime-complete
BCQ answering Thm. 5 LB: [8], UB: Thm. 5

WSJTGDs ptime-complete 2exptime-complete
BCQ answering LB: [13], UB: Thm. 6 LB: Thm. 1, UB: Thm. 6

Fig. 1. Summary of complexity results

bounds for the problem of query answering under weakly-sticky sets of TGDs,
both in combined and data complexity. Finally, in Section 5 we present several
extensions of sticky sets of TGDs. In particular, we present the novel language of
sticky-join Datalog± (sticky-join sets of TGDs) that extends both sticky sets of
TGDs and linear TGDs, while keeping FO-rewritability. The extension of sticky
Datalog± to capture linear Datalog± is natural, as there exist simple sets of
linear TGDs which are non-sticky1: we investigated why the variable repetitions
in such sets do not cause undecidability of query answering, and this led us to
discover sticky-join Datalog± and to prove the related complexity results. Also,
we introduce the novel class of weakly-sticky-join sets of TGDs that extends both
weakly-acyclic and sticky-join sets of TGDs.

Figure 1 summarizes our complexity results. STGDs, WATGDs, WSTGDs,
SJTGDs and WSJTGDs are abbreviations for sticky, weakly-acyclic, weakly-
sticky, sticky-join and weakly-sticky-join sets of TGDs, respectively. UB and LB
stand for upper and lower bound, respectively. Notice that all our complexity
results, derived for Boolean conjunctive queries, carry over, as usual, to the (de-
cision) query answering problem for general (non-Boolean) conjunctive queries
(see, e.g., [5]), as well as to the conjunctive query containment problem. For
most proofs of results in this paper, additional details, and possible corrections,
we refer the reader to a report available online [9]. For details on sticky-sets of
TGDs see [8] (which is preliminary to the present paper). For an overview on
some relevant Datalog± languages, we invite the reader to consult our work [10].

2 Background

2.1 Technical Definitions

In this subsection we recall some basics on databases, queries, TGDs, and the
TGD chase procedure.
1 Notice that, on the contrary, sets of inclusion dependencies are always sticky.
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General. We define the following pairwise disjoint (infinite) sets of symbols: a
set Γ of constants (constitute the “normal” domain of a database), and a set
ΓN of labeled nulls (used as placeholders for unknown values, and thus can be also
seen as variables). Different constants represent different values (unique name
assumption), while different nulls may represent the same value. A lexicographic
order is defined on Γ ∪ ΓN , such that every value in ΓN follows all those in Γ .

A relational schema R (or simply schema) is a set of relational symbols (or
predicates), each with its associated arity. We write r/n to denote that the
predicate r has arity n. A position r[i] (in a schema R) is identified by a predicate
r ∈ R and its i-th argument (or attribute). A term t is a constant, null, or
variable. An atomic formula (or simply atom) has the form r(t1, . . . , tn), where
r/n is a relation, and t1, . . . , tn are terms. For an atom a, we denote as dom(a)
and var (a) the set of its terms and the set of its variables, respectively. These
notations naturally extends to sets and conjunctions of atoms. Conjunctions of
atoms are often identified with the sets of their atoms.

A substitution from one set of symbols S1 to another set of symbols S2 is a
function h : S1 → S2 defined as follows: (i) ∅ is a substitution (empty substi-
tution), (ii) if h is a substitution, then h ∪ {X → Y } is a substitution, where
X ∈ S1 and Y ∈ S2, and h does not already contain some X → Z with Y �= Z.
If X → Y ∈ h, then we write h(X) = Y . A homomorphism from a set of
atoms A1 to a set of atoms A2, both over the same schema R, is a substitu-
tion h : dom(A1) → dom(A2) such that: (i) if t ∈ Γ , then h(t) = t, and (ii)
if r(t1, . . . , tn) is in A1, then h(r(t1, . . . , tn)) = r(h(t1), . . . , h(tn)) is in A2. The
notion of homomorphism naturally extends to conjunctions of atoms.

Databases and Queries. A database (instance) D for a schema R is a (possibly
infinite) set of atoms of the form r(t) (a.k.a. facts), where r/n ∈ R and t ∈
(Γ ∪ΓN )n. We denote as r(D) the set {t | r(t) ∈ D}. A conjunctive query (CQ)
q of arity n over a schema R, written as q/n, has the form q(X) = ∃Yϕ(X,Y),
where ϕ(X,Y) is a conjunction of atoms over R, X and Y are sequences of
variables or constants in Γ , and the length of X is n. ϕ(X,Y) is called the
body of q, denoted as body(q). A Boolean CQ (BCQ) is a CQ of zero arity. The
answer to a CQ q/n over a database D, denoted as q(D), is the set of all n-tuples
t ∈ Γ n for which there exists a homomorphism h : X ∪ Y → Γ ∪ ΓN such that
h(ϕ(X,Y)) ⊆ D and h(X) = t. A BCQ has only the empty tuple 〈〉 as possible
answer, in which case it is said that has positive answer. Formally, a BCQ has
positive answer over D, denoted as D |= q, iff 〈〉 ∈ q(D).

Tuple-Generating Dependencies. A tuple-generating dependency (TGD) σ
over a schema R is a first-order formula ∀X∀Y ϕ(X,Y) → ∃Zψ(X,Z), where
ϕ(X,Y) and ψ(X,Z) are conjunctions of atoms over R, called the body and the
head of σ, denoted as body(σ) and head(σ), respectively. Henceforth, to avoid
notational clutter, we will omit the universal quantifiers in TGDs. Such σ is
satisfied by a database D for R iff, whenever there exists a homomorphism h
such that h(ϕ(X,Y)) ⊆ D, there exists an extension h′ of h (i.e., h′ ⊇ h) such
that h′(ψ(X,Z)) ⊆ D.
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We now define the notion of query answering under TGDs. Given a database
D for R, and a set Σ of TGDs over R, the models of D w.r.t. Σ, denoted as
mods(D, Σ), is the set of all databases B such that B |= D ∪ Σ, which means
that B ⊇ D and B satisfies Σ. The answer to a CQ q w.r.t. D and Σ, denoted as
ans(q, D, Σ), is the set {t | t ∈ q(B) for each B ∈ mods(D, Σ)}. The answer to
a BCQ q w.r.t. D and Σ is positive, denoted as D∪Σ |= q, iff ans(q, D, Σ) �= ∅.
Note that query answering under general TGDs is undecidable [3], even when
the schema and the set of TGDs are fixed [5].

We recall that the two problems of CQ and BCQ evaluation under TGDs are
logspace-equivalent. Moreover, it is easy to see that the query output tuple
problem (as a decision version of CQ evaluation) and BCQ evaluation are ac0-
reducible to each other. Henceforth, we thus focus only on the BCQ evaluation
problem. All complexity results carry over to the other problems.

The TGD Chase. The chase procedure (or simply chase) is a fundamental
algorithmic tool introduced for checking implication of dependencies [20], and
later for checking query containment [17]. Informally, the chase is a process of
repairing a database w.r.t. a set of dependencies so that the resulted database
satisfies the dependencies. We shall use the term chase interchangeably for both
the procedure and its result. The chase works on an instance through the so-
called TGD chase rule. The TGD chase rule comes in two equivalent fashions:
oblivious and restricted [5], where the restricted one repairs TGDs only when
they are not satisfied. In the sequel, we focus on the oblivious one for technical
clarity. The TGD chase rule defined below is the building block of the chase.

TGD Chase Rule: Consider a database D for a schema R, and a TGD
σ = ϕ(X,Y) → ∃Zψ(X,Z) over R. If σ is applicable to D, i.e., there exists
a homomorphism h such that h(ϕ(X,Y)) ⊆ D then: (i) define h′ ⊇ h such
that h′(Zi) = zi, for each Zi ∈ Z, where zi ∈ ΓN is a “fresh” labeled null not
introduced before, and following lexicographically all those introduced so far,
and (ii) add to D the set of atoms in h′(ψ(X,Z)) if not already in D.

Given a database D and a set of TGDs Σ, the chase algorithm for D and Σ
consists of an exhaustive application of the TGD chase rule in a breadth-first
fashion, which leads as result to a (possibly infinite) chase for D and Σ, denoted
as chase(D, Σ). For the formal definition of the chase algorithm we refer the
reader to [6]. The (possibly infinite) chase for D and Σ is a universal model of D
w.r.t. Σ, i.e., for each database B ∈ mods(D, Σ), there exists a homomorphism
from chase(D, Σ) to B [16,14]. Using this fact it can be shown that for a BCQ
q, D ∪ Σ |= q iff chase(D, Σ) |= q.

2.2 Weakly-Acyclic Sets of TGDs: Preliminaries

In this subsection we present the class of weakly-acyclic sets of TGDs [15,16].
We first recall the notion of the dependency graph as defined in [16].

Definition 1. Given a set Σ of TGDs over a schema R, the dependency graph
of Σ is the directed graph constructed as follows. There exists a node for each
position r[i] in R, where r/n ∈ R and i ∈ {1, . . . , n}. For each TGD σ ∈ Σ, for
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each ∀–variable V in head(σ), and for each occurrence of V in body(σ) at position
r[i], apply the following two steps: (i) for each occurrence of V in head(σ) at
position s[j], add an arc from r[i] to s[j] (if it does not already exist), and (ii)
for each ∃–variable W , and for each occurrence of W in head(σ) at position t[k],
add a special arc from r[i] to t[k] (if it does not already exist). The rank of a
position r[i] is the maximum number of special arcs over all (finite or infinite)
paths ending at r[i] in the dependency graph of Σ.

Given a set Σ of TGDs over a schema R, the set of positions in R can be parti-
tioned into sets of positions with finite and infinite rank, denoted as ΠF (R, Σ)
and Π∞(R, Σ), respectively. When R and Σ are obvious from the context, we
shall denote the above sets with ΠF and Π∞, respectively. Intuitively, ΠF (resp.,
Π∞) is the set of position where a finite (resp., infinite) number of distinct values
can appear during the construction of the chase. We are now ready to give the
definition of weakly-acyclic sets of TGDs [15,16].

Definition 2. Consider a set Σ of TGDs over a schema R. Σ is weakly-acyclic
iff ΠF = R and Π∞ = ∅.

Example 2. Let R be the relational schema given in Example 1. Consider the
set Σ of TGDs over R constituted by the following TGDs:

emp(V, W, X, Y ) → ∃Z dept(W, Z), runs(W, Y ),
runs(W, X), dept(W, Y ) → project mgr(Y, X).

It is not difficult to verify that ΠF = R and Π∞ = ∅, which implies that Σ is
weakly-acyclic.

BCQ answering under weakly-acyclic sets of TGDs is in 2exptime in combined
complexity. This is implied from results in [16,22]. In particular, given a weakly-
acyclic set Σ of TGDs over a schema R, during the construction of the chase only
double-exponentially many distinct values can appear in any position of R, and
thus only double-exponentially many tuples can occur in the chase. Therefore,
given a database D for R, and a BCQ q over R, we just evaluate q over the finite
chase of D and Σ, which can be constructed in 2exptime. The lower bound is
studied in Section 3.

2.3 Sticky Sets of TGDs: Preliminaries

We now recall the class of sticky sets of TGDs introduced in [8]. Stickiness,
formally defined below by an efficiently testable condition involving variable-
marking, is a sufficient syntactic condition than ensures the so-called sticky
property of the chase, which is as follows. For every instance D, assume that
during the chase of D under a set Σ of TGDs, we apply a TGD σ that has
a variable V appearing more than once in its body; assume also that V maps
(via homomorphism) on the symbol z, and that by virtue of this application the
atom a is introduced. In this case, for each atom b in body(σ), we say that a is
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derived from b. Then, we have that z appears in a, and in all atoms resulting
from some chase derivation sequence starting from a, “sticking” to them (hence
the name “sticky sets of TGDs”).

In [8], for technical reasons, are considered constant-free TGDs, where each
head-variable occurs just once in a certain head-atom. In that case stickiness is
also a necessary condition for the sticky property of the chase. In the present
paper we consider arbitrary TGDs without the assumptions of [8]. We now come
to the formal definition of sticky sets of TGDs.

Definition 3. Consider a set Σ of TGDs over a schema R. We mark the vari-
ables that occur in the body of the TGDs of Σ according to the following marking
procedure. First, for each TGD σ ∈ Σ and for each variable V in body(σ), if
there exists an atom a in head(σ) such that V does not appear in a, then we
mark each occurrence of V in body(σ). Now, we apply exhaustively (i.e., until a
fixpoint is reached) the following step: for each TGD σ ∈ Σ, if a marked variable
in body(σ) appears at position π, then for every TGD σ′ ∈ Σ (including the case
σ′ = σ), we mark each occurrence of the variables in body(σ′) that appear in
head(σ′) at the same position π. We say that Σ is sticky iff there is no TGD
σ ∈ Σ such that a marked variable occurs in body(σ) more than once.

Example 3. Let Σ be the set of TGDs given in Example 1. According to the
marking procedure in Definition 3, we mark the variables as follows (we mark
variables with a cap, e.g., X̂):

dept(V̂ , Ŵ ) → ∃X∃Y ∃Zemp(W, X, Y, Z),
emp(V̂ , Ŵ , X̂, Ŷ ) → ∃Z dept(W, Z), runs(W, Y ), in area(Y, X),

runs(Ŵ , X), in area(X, Y ) → ∃Z external(Z, Y, X).

Clearly, for each TGD σ ∈ Σ, there is no marked variable that occurs in body(σ)
more than once. Therefore, Σ is a sticky set of TGDs. It is easy to verify that
Σ is not weakly-acyclic. In fact, the classes of weakly-acyclic and sticky sets of
TGDs, presented in this section, are incomparable.

Interestingly, stickiness is a sufficient property that ensures that the TGDs are a
so-called finite unification set, an abstract decidability paradigm defined in [2].
BCQ answering under sticky sets of TGDs is exptime-complete in combined
complexity [8]. Also, sticky sets are FO-rewritable, which implies that query
answering is in ac0 in data complexity [8]. The lower bound for the combined
complexity is proved by showing the exptime-hardness of the fact inference
problem for lossless Datalog, whose rules are a special case of sticky sets of
TGDs. Lossless Datalog programs are a special case of Datalog programs, where
each rule enjoys the following property: all variables appearing in the rule body
also appear in the rule head. The upper bounds for both the combined and the
data complexity are established by exhibiting an alternating algorithm, called
Sticky-QAns. In what follows we give a rough description of this algorithm.

Recall that query answering under sticky sets of TGDs is equivalent to query
answering under sticky sets of TGDs with just one atom in their heads. This is
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established by using the logspace transformation of [5] from sets of TGDs to
sets of TGDs with a single head-atom, and observing that such transformation
does not alter the stickiness property. In the rest of the paper, unless otherwise
stated, we assume w.l.o.g. that every TGD has just one atom in its head.

Algorithm Sticky-QAns. The algorithm takes as input a database D for a
schema R, a sticky set Σ of TGDs over R, and a BCQ q over R, and outputs
accept iff chase(D, Σ) |= q. The algorithm works as follows:

1. Non-deterministically guess the following: two disjoint sets S1 ⊆ var(q) and
S2 ⊂ var(q), and a substitution h : S1 → S2 ∪ dom(D); let S = var (q) \ S1.

2. For each variable V ∈ S, non-deterministically guess an atom aV such that:
dom(aV ) ⊆ dom(D) ∪ S ∪ {	1, . . . , 	w}, where w is the maximum arity over
all predicates in R; let G = {〈V, aV 〉}V ∈S .

3. If Proof(h(body(q)), D, Σ, S, G) accepts, then accept ; otherwise, reject .

Intuitively, in stage 1 we guess which of the variables in the body of q are mapped
onto a constant of dom(D), and which constant, during the evaluation of q over
chase(D, Σ). Moreover, we guess which of the variables in the body of q are
mapped onto the same null of ΓN . In stage 2, roughly speaking, we guess, for
each variable V ∈ S, an atom that represents the equality type of the atom
in which zV is invented during the chase, where zV is the null onto which V
is mapped. The special star variables 	1, . . . , 	w represent placeholders for any
term in dom(D) ∪ ΓN . Finally, in stage 3, by calling the recursive alternating
procedure Proof, we verify that the given query is entailed by chase(D, Σ). The
procedure Proof(P, D, Σ, S, G) works as follows:

1. If P ⊆ D, then accept .
2. Universally select all the atoms a in P that do not occur in D; let G(a) =

{〈V, aV 〉 | 〈V, aV 〉 ∈ G and V ∈ dom(a)}.
3. Existentially guess a TGD σ ∈ Σ such that head(σ) and a unify; if there is

no such a TGD, then reject . Let S = θ(S) and G(a) = θ(G(a)), where θ is
the MGU for head(σ) and a. To avoid undesirable clutter between variables,
we replace the variables of σ with new ones that do not occur in Σ, and not
introduced so far.

4. If at position π in a the variable V ∈ S occurs, and at the same position π
in head(σ) an ∃-variable of σ occurs, then: if aV cannot be obtained from
a by replacing the variables that do not occur in G(a) (if any) with other
terms, then reject .

5. If a subset of D can be obtained from θ(body(σ)) by replacing the variables
that do not occur in G(a) (if any) with constants, then accept .

6. Let A be the set of atoms in θ(body(σ)) from which cannot be obtained
an atom in D by replacing the variables that do not occur in G(a) with
constants. If Proof(A, D, Σ, S, G) accepts, then accept .

The above alternating algorithm constructs a so-called resolution proof-tree. In
fact, a resolution proof-tree describes the non-deterministic choices performed
during the execution of the algorithm. The leaf nodes are the atoms in the body
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of the given query. If the algorithm accepts, which implies that the given query
is entailed by the chase, then the root nodes are atoms in the given database.
From a resolution proof-tree, by simply renaming variables, we can obtain the
part of the chase due to which the given query is entailed. The key fact that
allows us to establish soundness and completeness of the algorithm, and also to
obtain the desired upper bounds, is that only the variables in the body of the
given query, and thus only polynomially many symbols, can appear in different
branches of a resolution proof-tree. This holds since the TGDs that we consider
are sticky.

As we shall see in Section 4, the algorithm Sticky-QAns can be extended in
order to tackle BCQ answering under our generalized version of sticky sets of
TGDs, the so-called weakly-sticky, that captures both sticky and weakly-acyclic
sets of TGDs. Moreover, as discussed in Section 5, the algorithm Sticky-QAns
can be employed for BCQ answering under sticky-join sets of TGDs, a class that
captures both sticky sets of TGDs and linear TGDs.

3 Weakly-Acyclic Sets of TGDs

3.1 Combined Complexity: Lower Bound

In this subsection we establish that the lower bound for the combined complexity
of BCQ answering under weakly-acyclic sets of TGDs is 2exptime by simulat-
ing a 2exptime Turing machine. As already mentioned (see Subsection 2.2),
membership in 2exptime is implied from results in [16,22].

Theorem 1. BCQ answering under weakly-acyclic sets of TGDs is 2exptime-
hard, even in the case of fixed arity.

Proof (sketch). Consider a 2exptime Turing Machine (TM) M . We are going to
simulate the computation of M on an input string I by constructing a database
D, and a weakly-acyclic set Σ of TGDs such that D∪Σ |= accept iff M accepts I,
where accept is a propositional predicate. Let D be the database constituted by
the atoms: r0(0), r0(1), succ0(0, 1), min0(0), max 0(1). For each i ∈ {0, . . . , n−1},
where n is the length of the input string I, we add to Σ the following TGDs:

ri(X), ri(Y ) → ∃Z si(X, Y, Z),
si(X, Y, Z) → ri+1(Z),
si(X, Y, Z), si(X, Y ′, Z ′), succi(Y, Y ′) → succi+1(Z, Z ′),
si(X, Y, Z), si(X ′, Y ′, Z ′),max i(Y ),min i(Y ′), succi(X, X ′) → succi+1(Z, Z ′),
mini(X), si(X, X, Y ) → mini+1(Y ),
max i(X), si(X, X, Y ) → max i+1(Y ).

It is not difficult to show, by induction on i, that in the chase of D and Σ the
relation rn contains 22n

elements, which are linearly ordered by succn. Now that
we have a double-exponential number of symbols at hand, we can use them to
simulate the double-exponential number of time instants of M ; since 2exptime

⊆ 2expspace (in k steps, a TM cannot write more than k cells), we can use the
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same symbols to simulate the tape cells of M . From this point on, the reduction
(which is omitted due to space reasons) becomes sort of standard, and can be
done in the same fashion as in [13]. All the rules encoding the actual behavior
of the TM are Datalog rules, which on top of a weakly-acyclic set of TGDs form
again a set which is weakly-acyclic. Note that the arity of predicates in the above
construction is fixed.

The following corollary follows immediately from Theorem 1, and the fact that
BCQ answering under weakly-acyclic sets of TGDs is in 2exptime [16,22].

Corollary 1. BCQ answering under weakly-acyclic sets of TGDs in 2exptime-
complete, even in the case of fixed arity.

3.2 The Complexity of Data Exchange

Data exchange is the problem of transforming data structured under a schema,
called the source schema, to data structured under a different schema, called the
target schema [16]. Data exchange has been formalized using the concept of a
schema mapping. Formally, a schema mapping is a 4-tuple M = 〈S, T , Σst, Σt〉,
where S is a source schema, T is a target schema, Σst is a set of source-to-target
(s-t) TGDs, i.e., TGDs where the body is a conjunction over S, and the head is a
conjunction over T , and Σt is a set of target TGDs and target EGDs, i.e., TGDs
and EGDs over T . The existence-of-solution problem for M is the following:
given an instance I for S, does a solution for I, that is, a (finite) instance J for
T such that I ∪ J |= Σst ∪ Σt, exist? [16,19].

By exploiting Theorem 1, we can easily show that, given a schema mapping
M = 〈S, T , Σst, Σt〉, where Σt is the union of a weakly-acyclic set of TGDs and
a set of EGDs, the existence-of-solution problem for M is 2exptime-hard. The
same result has been established independently by Kolaitis and Panttaja [18] by
a reduction from an alternating expspace Turing machine; however, this result
does not imply Theorem 1.

Theorem 2. Consider a schema mapping M = 〈S, T , Σst, Σt〉, where Σst is a
set of s-t TGDs, and Σt is the union of a weakly-acyclic set of target TGDs and a
set of target EGDs. The existence-of-solution problem for M is 2exptime-hard,
even in the case of fixed arity.

Proof (sketch). The proof is by reduction from the BCQ answering problem un-
der weakly-acyclic sets of TGDs. Consider a database D for a schema R, a
weakly-acyclic set Σ of TGDs over R, and a BCQ q = ∃Xϕ(X) over R. We
construct the schema mapping M = 〈S, T , Σst, Σt〉 as follows. Let S = {r� | r ∈
R} ∪ {p�} and T = R ∪ {p, s}, where p/1 and s/2 are auxiliary predicates
that do not belong in R. The s-t TGDs in Σst copy the initial instance from
S to T , i.e., for each predicate r� ∈ S of arity n, we have in Σst the s-t TGD
r�(X1, . . . , Xn) → r(X1, . . . , Xn). Let Σt = Σ ∪ {σ, η} with σ be the TGD
ϕ(X), p(U), p(V ) → s(U, V ), where U and V are variables that do not occur in
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X, and η be the EGD s(X, Y ), s(X, Z) → Y = Z. Clearly, Σ ∪ {σ} is weakly-
acyclic since there are no ∃-variables in σ. Finally, let I = {r�(t) | r ∈ R and t ∈
r(D)} ∪ {p�(a), p�(b)}, where a, b ∈ Γ , be the initial instance for S. It is easy to
see that D ∪ Σ |= q iff the answer to the existence-of-solution problem for M,
given instance I, is negative. This completes the proof.

In [19], the existence-of-solution problem for a schema mapping M, where the
target dependencies is the union of a weakly-acyclic set of TGDs and a set of
EGDs, is stated to be exptime-complete. This bug was fixed in the conference
talk of the paper, where membership in 2exptime was showed, while the lower
bound was left as an open problem; see also [22]. The next result follows.

Corollary 2. The existence-of-solution problem for a schema mapping M,
where the target dependencies is the union of a weakly-acyclic set of TGDs and
a set of EGDs is 2exptime-complete, even in the case of fixed arity.

4 Weakly-Sticky Sets of TGDs

In this section we present a class, called weakly-sticky sets of TGDs, that gener-
alizes both weakly-acyclic (and thus Datalog) and sticky sets of TGDs. Roughly,
in a weakly-sticky set of TGDs, the variables that occur more than once in the
body of a TGD are either non-marked2, or they occur at positions where a finite
number of distinct values can appear during the chase.

Definition 4. Consider a set Σ of TGDs over a schema R. We say that Σ is
weakly-sticky iff for each σ ∈ Σ and for each variable V that occurs more than
once in the body of σ, the following condition holds: V is a non-marked variable,
or at least one occurrence of V in body(σ) occurs at some position in ΠF .

Recall that a set Σ of TGDs over a schema R is weakly-acyclic iff all positions
of R are in ΠF . This immediately implies that every weakly-acyclic set of TGDs
is also weakly-sticky. On the other hand, in a sticky set of TGDs, there is no
TGD where a marked variable occurs in its body more than once. Thus, every
sticky set of TGDs is trivially weakly-sticky.

Example 4. Let R be the relational schema given in Example 1. Consider the
set Σ of TGDs over R constituted by the following TGDs:

dept(V, W ) → ∃X∃Y emp(W, V, X, Y ),
emp(V, W, X, Y ) → ∃Z dept(W, Z), runs(W, Y ),

runs(W, X), dept(W, Y ) → project mgr(Y, X).

It is an easy task to verify that ΠF = R\{dept [2], emp[4]}. Clearly, the variable
W that occurs in the body of the third TGD at positions runs[1] and dept [1] is
marked. Since both positions are in ΠF , we get that Σ is weakly-sticky. However,
due to the existence of W , Σ is not sticky.

We continue to study the combined complexity of BCQ answering under weakly-
sticky sets of TGDs.
2 Marked variables are defined as in the Definition 3.
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Theorem 3. BCQ answering under weakly-sticky sets of TGDs is 2exptime-
complete in combined complexity.

Proof (sketch). 2exptime-hardness descends immediately from Theorem 1, be-
ing weakly-acyclic sets of TGDs a special case of weakly-sticky sets of TGDs.
To establish membership in 2exptime in combined complexity, we obtain a
2exptime algorithm for BCQ answering by extending the alternating algorithm
Sticky-QAns for sticky sets of TGDs, discussed in Subsection 2.3. The extended
algorithm, except the nulls at which the variables in the body of the given query
are mapped onto (during the evaluation of the query over the chase), needs also
to take into account the nulls appearing at positions in ΠF , i.e., positions with
finite rank in the underlying dependency graph. Let NF be the set of nulls that
can appear at positions in ΠF during the chase. Recall that in NF we can have
double-exponentially many nulls. However, each one of these nulls can be rep-
resented, using Skolem functions, in exponential space. During the execution of
the extended algorithm we need to guess, for each null z ∈ NF , a Skolem term
that represents z. For each null z′ at which a variable in the body of the given
query is mapped onto, we guess an atom az′ which represents the atom in which
z′ is invented during the chase, as in the algorithm Sticky-QAns, except that az′

may contain also Skolem terms that represent nulls of NF . At each step of the
computation of the extended algorithm, we need to keep in memory polynomi-
ally many atoms, where each one of these atoms is exponentially large, and thus
we need exponential space. This implies that the extended algorithm runs in
alternating expspace, which coincides with 2exptime.

We conclude this section by establishing ptime-completeness of BCQ answering
under weakly-sticky sets of TGDs in data complexity.

Theorem 4. Boolean CQ answering under weakly-sticky sets of TGDs is ptime-
complete in data complexity.

Proof (sketch). ptime-hardness of data complexity immediately follows from
ptime-hardness of fact inference in Datalog programs. Membership in ptime

is established by observing that the nulls appearing at positions in ΠF can be
represented, using Skolem functions, in logarithmic space, and thus the extended
algorithm discussed in the proof of Theorem 3 runs in alternating logspace,
which coincides with ptime.

5 Other Generalizations

Sticky sets of TGDs are arguably a very relevant and applicable modeling tool.
Several convincing arguments for the usefulness of sticky sets of TGDs are given
in [8]. However, they are not expressive enough for being able to model sim-
ple cases such as the TGD r(X, Y, X) → ∃Z s(Y, Z); clearly, the variable X is
marked, and thus the stickiness condition is violated. Note that the above rule
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falls in the FO-rewritable class of linear TGDs [7]. The question that comes up
is whether we can extend sticky sets of TGDs in order to capture also linear
TGDs, without losing the desirable property of FO-rewritability. At the first
glance it may seen that it could be sufficient to allow a marked variable V to
occur more than once in the body of a TGD, as long as V appears only in one
body-atom. The obtained class, which for the moment we call atom-sticky sets
of TGDs, captures linear TGDs. However, as shown by the following example,
FO-rewritability is not preserved.

Example 5. Consider the TGD σ = r(X, Y ), r(Y, Z) → r(X, Z). Observe that
this rule captures the transitive closure of the relation r, which in general cannot
be done using a finite number of first-order queries. Thus, σ is not FO-rewritable.
Now, we transform σ into the following set Σ of TGDs:

r(X, Y ), r(Y ′, Z) → s(X, Y, Y ′, Z),
s(X, Y, Y, Z) → r(X, Z).

Clearly, Σ is not sticky since in the body of the second rule the marked variable Y
occurs more than once. However, Y occurs in one atom only, and thus Σ is atom-
sticky. Notice that, given a database D, r(chase(D, {σ})) and r(chase(D, Σ))
coincide. This implies that if atom-sticky sets of TGDs are FO-rewritable, then
transitivity is also FO-rewritable which is a contradiction.

It turns out that the class of atom-sticky sets of TGDs proposed above is not only
non-FO-rewritable, but is actually undecidable. This can be shown by employing
the same principle as in Example 5 to transform an arbitrary set of TGDs into
an atom-sticky set. Notice that such transformation was used in [8] to show
that the class of joinless TGDs, i.e., TGDs where every variable in the body
occurs in at most one atom, which is a special case of the proposed class, is
undecidable. In the following, we propose a condition somewhat more restrictive
than atom-stickiness, which guarantees decidability as well as FO-rewritability.

5.1 Sticky-Join Sets of TGDs

We now introduce the class of sticky-join sets of TGDs. Similarly to sticky sets
of TGDs, sticky-join sets are defined by a testable condition based on variable-
marking. However, the variable-marking for this new class is more sophisticated
than the one used for sticky sets. First, we give some auxiliary notions.

Definition 5. Consider a pair of TGDs σ and σ′. We say that σ is applicable
to σ′ iff the following conditions are satisfied: (i) there exist atoms a ∈ head(σ)
and b ∈ body(σ′) such that a and b unify, (ii) if the term at position π in b is a
constant, then at position π in a we have a ∀-variable, and (iii) if at positions
π1, . . . , πm, for m � 2, in b the same variable occurs, then at positions π1, . . . , πm

in a we have either (possibly different) ∀-variables, or the same ∃-variable.

The procedure TGD-Expansion accepts as input a set of TGDs Σ, and returns
as output a set of TGDs Σ�. TGD-Expansion(Σ) works as follows. Initially, for
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each σ ∈ Σ, the TGD σ labeled by ∅ is added to Σ�. Now, the following step
is applied exhaustively (i.e., until a fixpoint is reached): for each pair of TGDs
〈σ, σ′〉 ∈ Σ × Σ� (including the case where σ = σ′), if σ is applicable to σ′

due to the atoms a ∈ head(σ) and b ∈ body(σ′), then let σ+ be the TGD
θ(body(σ)) → θ(a), where θ is the MGU for a and b. If Σ� already contains a
labeled TGD σ′′ isomorphic to σ+, then the pair 〈σ′, b〉 is added to the label
set of σ′′; otherwise, the TGD σ+ labeled by {〈σ′, b〉} is added to Σ�. Each
time the above step is applied by considering a pair of TGDs 〈σ, σ′〉, to avoid
undesirable clutter between variables, the two TGDs σ and σ′ are assumed to
be standardized apart.

Definition 6. Consider a set Σ of TGDs over a schema R. The set of TGDs
TGD-Expansion(Σ) over R is called the expanded set of Σ.

We now define the procedure SJ-Marking which has as input a set of TGDs Σ,
and marks the variables that occur in the body of the TGDs of the expanded
set of Σ. SJ-Marking(Σ) works as follows. Let Σ� be the expanded set of Σ. For
each σ ∈ Σ� and for each variable V in body(σ), if there exists an atom a in
head(σ) such that V does not appear in a, then each occurrence of V in body(σ)
is marked. Now, the following step is applied exhaustively (i.e., until a fixpoint
is reached): for each TGD σ ∈ Σ� and for each pair 〈σ′, a〉 in the label set of
σ, if a ∀-variable V occurs in head(σ) at positions π1, . . . , πm, for m � 1, and
at each position π1, . . . , πm in a ∈ body(σ′) a marked variable occurs, then each
occurrence of V in body(σ) is marked.

We are now ready, by utilizing the procedure SJ-Marking, to give the formal
definition of sticky-join sets of TGDs.

Definition 7. Consider a set Σ of TGDs over a schema R, and suppose that
the expanded set Σ� of Σ is marked according to SJ-Marking. We say that Σ is
sticky-join iff for each TGD σ ∈ Σ�, there is no marked variable in body(σ) that
is in a join, i.e., occurs in (at least) two different atoms.

Given a sticky set of TGDs Σ (see Definition 3), it can be shown, by induction
on the number of the added TGDs to the expansion set Σ�, that each marked
variable in the body of a TGD σ ∈ Σ� occurs just once. This implies that Σ is
trivially sticky-join, and thus sticky-join sets of TGDs capture sticky sets. More-
over, given a set Σ of linear TGDs, it is straightforward to see, by construction,
that Σ� is also a set of linear TGDs. Thus, the sticky-join condition is satisfied
trivially, which implies that Σ is sticky-join. Note that the sticky-join condition,
just like stickiness, ensures that the TGDs are a finite unification set [2].

Example 6. Consider the following set Σ of TGDs:

σ1 : r(X1, Y1), p(Z1, W1) → s(X1, Y1, Z1, W1),
σ2 : s(X2, Y2, Z2, Z2) → ∃W2 r(W2, Y2), r(X2, W2).
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The expanded set Σ� is as follows:

σ1 : r(X1, Y1), p(Z1, W1) → s(X1, Y1, Z1, W1) ∅,
σ2 : s(X2, Y2, Z2, Z2) → ∃W2 r(W2, Y2), r(X2, W2) ∅,
σ3 : s(X3, Y3, Z3, Z3) → ∃W3 r(W3, Y3) {〈σ1, 1〉, 〈σ5, 1〉},
σ4 : s(X4, Y4, Z4, Z4) → ∃W4 r(X4, W4) {〈σ1, 1〉, 〈σ5, 1〉},
σ5 : r(X5, Y5), p(Z5, Z5) → s(X5, Y5, Z5, Z5) {〈σ2, 1〉, 〈σ3, 1〉, 〈σ4, 1〉}.

It is straightforward to verify that for each σ ∈ Σ�, there is no marked variable in
body(σ) that occurs in more than one atoms. Therefore, Σ is sticky-join. Observe
that Π∞ = {r[1], r[2], s[1], s[2]}, and hence Σ is not weakly-acyclic. Also, due
to the existence of variable Z2 in body(σ2), Σ is not sticky. Finally, since both
occurrences of Z2 are at positions of Π∞, Σ is not weakly-sticky.

Interestingly, the algorithm Sticky-QAns, proposed for BCQ answering under
sticky sets of TGDs (see Subsection 2.3), can be also used for query answering
under sticky-join sets of TGDs. The crucial fact is that any new symbols (except
the variables in the body of the given query) that may occur in a resolution proof-
tree, due to the sticky-join condition, can appear only on a single branch. This
observation allows us to establish soundness and completeness of the algorithm,
in the case of sticky-join sets of TGDs, and also get the desired upper bounds
for data and combined complexity. The lower bound for combined complexity
follows immediately from the exptime-hardness of BCQ answering under sticky
sets of TGDs. Our main result regarding sticky-join sets of TGDs follows.

Theorem 5. Sticky-join sets of TGDs are FO-rewritable. Also, BCQ answering
under sticky-join sets of TGDs is exptime-complete in combined complexity.

Analogously to weakly-sticky sets of TGDs, we can define the class of weakly-
sticky-join sets of TGDs, that generalizes both weakly-acyclic and sticky-joins
sets of TGDs. The same algorithm employed for BCQ answering under weakly-
sticky sets of TGDs, can be also used for query answering under weakly-sticky-
join sets. The next result follows immediately.

Theorem 6. BCQ answering under weakly-sticky-join sets of TGDs is ptime-
complete and 2exptime-complete in data and combined complexity, respectively.

It is not difficult to show that we can incorporate non-recursive Datalog rules in
our framework, without affecting data and combined complexity, since they can
be “chased” separately. In particular, on the top of the non-recursive Datalog
program, we can apply our techniques for (weakly-)sticky-join sets of TGDs.
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Data Validation with OWL Integrity
Constraints�

(Extended Abstract)
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evren@clarkparsia.com

Abstract. Data validation is an important part of data integration and
analysis tasks. The consequences of having invalid data ranges from
rather harmless application failures to serious errors in decision mak-
ing process. Web Ontology Language (OWL) provides an expressive lan-
guage that facilitates data integration and analysis tasks. However, the
Open World Assumption (OWA) adopted by standard OWL semantics,
combined with the absence of the Unique Name Assumption (UNA),
makes it difficult to use OWL for data validation. What triggers con-
straint violations in closed world systems leads to new inferences in stan-
dard OWL systems. In this paper, we present an Integrity Constraint
(IC) semantics for OWL axioms to address this issue. Ontology model-
ers can choose which axioms will be interpreted with IC semantics and
combine open world reasoning with closed world constraint validation in
a flexible way. We also show that IC validation can be reduced to query
answering under certain conditions.

1 Introduction

Data integration and analysis are important tasks in many domains and ap-
plications. As IT systems are moving towards a more distributed pattern of
implementation and deployment, applications need data to be enriched with
more semantics. Richer data semantics enables us to build a unified model over
distributed data sources and to perform analysis and reasoning tasks over the
unified model. Web Ontology Language (OWL) provides a solution to this prob-
lem by allowing the representation of data semantics in a formal logic-based
language that is amenable to automated reasoning.

The semantics of OWL addresses distributed knowledge representation sce-
narios where complete knowledge about the domain cannot be assumed. OWL
adopts Open World Assumption (OWA) so a statement cannot be inferred to be
false on the basis of failure to prove it. Furthermore, OWL does not adopt Unique
Name Assumption (UNA) which means two resources with different identifiers
might be treated as same objects.

� This paper is a summary of earlier publications [8,9].
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The above characteristics of OWL make it difficult to use OWL for data
validation in applications where complete knowledge can be assumed for some
or all parts of the domain. In such data-centric applications, we would like to
use OWL as an expressive schema language to specify the constraints that must
be satisfied by instance data.

In the literature, OWA has been identified as “the biggest single hurdle to
understanding OWL” [7]. It is a common misconception for newcomers to think
that axioms in OWL are similar to constraints in relational databases. However,
the axioms in an ontology are meant to infer new knowledge rather than trigger
an inconsistency.

In many use cases, we need the ability to combine open world reasoning with
closed world constraint validation in a flexible way. It should be possible to
use OWA for the parts of the domain where complete knowledge cannot be
assumed and use CWA for the other parts of the domain where we have complete
knowledge.

In our previous work [9], we presented an alternative semantics for OWL
axioms to enable closed world data validation. The ontology developers can
choose which axioms will be interpreted with regular OWL semantics and which
axioms will be interpreted with IC semantics.

In the rest of this paper, we provide a simple example to illustrate the difficul-
ties in using OWL for data validation, briefly describe our IC semantics proposal
and present an IC validation algorithm we developed for this semantics. Most of
the technical details are omitted in this paper and can be found in [9].

2 IC Example

There are various types of ICs identified in the literature. Some examples are
subsumption constraints, typing constraints, participation constraints and
uniqueness constraints. We will use participation constraints as one example
to illustrate the difficulties in using OWL for data validation.

A mandatory participation constraint states that instances of the constrained
class should participate in a relation. If we would like to express that every
Product instance should be related by the madeBy property to a there is a
Manufacturer, we can write the following OWL axiom:

Product � ∃madeBy.Manufacturer (1)

However, this participation constraint is expressing a general truth about the
world. It does not constrain what should exist in a specific ontology or knowledge
base. For example, suppose we have an ontology where there is an instance of
the Product class is defined:

Product(product1) (2)

This ontology is not inconsistent according to the semantics of OWL since with
OWA we can conclude that product2 has a manufacturer but no knowledge
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about that manufacturer exists in this ontology. For data validation purposes, we
might want to detect or even prevent cases when the manufacturer of a product
is not known. However, it is not possible to do so with the above axiom.

It is possible to “close” the onotlogy by augmenting it with additional asser-
tions to state that all the relevant information is known. In a preprocessing step,
we can check the explicit and the implicit property values for each individual
and add explicit cardinality restrictions to assert that there are no more property
values. For the above example, we can add the following type assertion:

(≤ 0 madeBy)(product1) (3)

The combination of (1), (2), and (3) would result in an inconsistency with regular
OWL semantics.

However, there are couple of problems with the preprocessing approach. First,
the preprocessing step can be computationally expensive especially because we
need to take the entailments of a KB into consideration. This problem becomes
more significant if the data assertions are changing frequently. Second, even if we
ignore the efficiency considerations, preprocessing solution cannot address other
kind of constraints such as typing constraints (see examples discussed in [9]).

3 IC Semantics for OWL

It is apparent, even from the simple example presented above, that OWL on-
tologies cannot be used in a straight-forward way for data validation purposes.
In order to overcome this problem, we started investigating possible solutions.
Our goal was to enable using OWL to express ICs without needing a different
representation language.

The approach formalized in [4] describes one such solution where the axioms
in an OWL ontology is partitioned into two sets. The axioms in one set is inter-
preted with regular OWL axioms to do inference and the axioms in the second
set is interpreted with a closed-world semantics based on minimal Herbrand
models to do validation. Even tough this approach satisfies many of the condi-
tions mentioned so far we have identified several issues with the semantics that
would yield undesirable results in practice [9].

In order to overcome the problems we have identified in existing solutions, we
defined a new IC semantics [9] for interpreting OWL axioms. The IC semantics
we define extends the model theory of OWL 2 or more correctly the model theory
of the Description Logic SROIQ [2] which is the basis of OWL 2 semantics [5].

The semantics extension we propose has many similarities to epistemic DLs
such as ALCK[1] but there are also some differences. First, unlike ALCK we do
not require the epistemic operator K to be explicitly used. The semantics for
ICs is defined as if the K operator exists in front of every class and property.
Second, the IC semantics we define is applicable to any SROIQ ontology and
not restricted to ALC expressivity.

Third and most importantly, ALCK semantics adopt strict UNA which ex-
cludes the possibility of stating two names identify the same individual. Even
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though we want to prohibit ICs to infer equality between individuals, we still
would like to allow OWL ontologies to include explicit equality between individ-
ual names to assist data integration scenarios. In our formalization, we adopt
a weak form of UNA where two different individual names are assumed to be
different unless their equality is required to satisfy the axioms in an ontology.

4 Data Validation Algorithm

We show in [9] that given a regular OWL ontology and an IC expressed as an OWL
axiom, checking if the IC is violated by the OWL ontology can be reduced to con-
junctive query answering under certain conditions. These conditions require, intu-
itively, that either the ontology does not contain disjunctive (in)equality between
individuals or the IC does include cardinality restrictions. In OWL, only nominals
or cardinality restrictions can result in disjunctive (in)equality so if neither exists
in an ontology then we can use the query reduction technique as explained next.

The ICs can be translated to queries using an approach very similar to the
well-known Lloyd-Topor transformation [3].The queries that are produced as the
result of this transformation contains only distinguished variables and may also
include the negation-as-failure operator. The translation algorithm transforms an
IC into a query such that the IC is violated w.r.t. the proposed IC semantics by
an ontology if and only if the ontology entails the query. In other words, whenever
the answer set of the query is not empty w.r.t. an ontology, we conclude that
the IC is violated by that ontology.

There are some nice practical benefits of the query translation approach. It
is possible to express the generated queries using the SPARQL [6] query lan-
guage which is the most commonly used Semantic Web query language. Even
tough the standard SPARQL semantics is not compatible with OWL seman-
tics, it allows extended entailment regimes to be used and a precise definition of
OWL-compatible SPARQL semantics is being developed by the W3C’s SPARQL
Working Group as part of SPARQL 1.1.1 Most existing OWL reasoners support
answering SPARQL queries so the SPARQL queries generated by this translation
can be evaluated using off-the-shelf OWL reasoners.

5 Conclusions

The IC semantics we propose addresses many IC use cases like such as participa-
tion, typing and uniqueness constraints. By adopting weak form of UNA, the IC
semantics allows explicit equality assertions to be asserted while avoiding undesir-
able equality inferences due to uniqueness constraints. We have shown in [9] with
several examples that our IC semantics proposal provides more intuitive results
compared to other proposals such as [4]. Our approach allows ontology develop-
ers use OWL both to express axioms for inferencing and ICs for data validation

1 http://www.w3.org/TR/sparql11-entailment/

http://www.w3.org/TR/sparql11-entailment/
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providing a flexible way to combine open world reasoning with closed world data
validation. Validation of ICs can be reduced to query answering where a straight-
forward translation algorithm transforms ICs to SPARQL queries. This transla-
tion allows us to use existing OWL reasoners for IC validation.
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Abstract. In this tutorial we will give an overview of new features in SPARQL
1.1, which the W3C is currently working on, as well as on the interplay with its
”neighbour standards”, OWL2 and RIF. We will also give a rough overview of
existing implementations to play around with.

1 Research on and Experiences with SPARQL1.0

The availability of a standard query language for RDF, namely SPARQL [22], which
is a W3C standard recommendation since early 2008, has proven to be a crucial factor
for the recent wide uptake of Semantic Web technologies at large. In informal terms,
SPARQL plays the same role for the Semantic Web as SQL does for relational data.
SPARQL’s syntax is roughly inspired by Turtle [3] and SQL [26], providing basic means
to query RDF, such as unions of conjunctive queries, value filtering, optional query
parts, as well as slicing and sorting results.

The formal semantics of SPARQL is very much inspired by academic results, such as
by the seminal papers of Pérez et al. [17,19]. Their work further lead to refined results
on equivalences within SPARQL [23] and on the relation of SPARQL to Datalog [20].
Angles and Gutierrez [2] later showed that SPARQL has exactly the expressive power
of non-recursive safe Datalog with negation. However, there are also subtle differences
between these theoretical works and the semantics as defined in the official W3C spec-
ification, such as the treatment of FILTER expressions in OPTIONAL, discussed in [2]
or SPARQL’s multi-set semantics, as opposed to the set-based algebra presented in [17].

Now, two years after recommendation as a standard by W3C, a wide range of vendors
and implementations support SPARQL in its original specification.1

2 New Features to Come in SPARQL1.1

Many of the existing SPARQL implementations and various proposals in the academic
literature include extensions, to fit customer needs or specific use cases, such as ag-
gregates, sub-queries, negation, path expressions, and many more. The recently re-
chartered SPARQL W3C working group2 has picked several of these features to be

� The author’s work is funded by the Science Foundation Ireland (SFI) project Lion-2
(SFI/08/CE/I1380). We particularly thank all the members of the SPARQL1.1 working group.

1 The W3C wiki at http://esw.w3.org/SparqlImplementations gives a good en-
try point to existing SPARQL implementations.

2 http://www.w3.org/2009/sparql/wiki
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included in the next version of the standard, SPARQL1.1, listed in the working group
charter.3

The new features we will focus on in this tutorial are:

Aggregate functions. Aggregate functions will allow operations on the query engine
side such as counting, numerical min/max/average and so on, by operating over
columns of results. This feature is commonly known from other query languages
such as SQL, but also well investigated in terms of extensions of Datalog, cf. for
instance [8]. A proposal to extend SPARQL with aggregates following these ideas
for Datalog has been made in [21], whereas most major implementations and also
the current design discussed in the SPARQL1.1 working group rather follow the
SQL design.

Subqueries. This feature will allow nesting the results of a query within another query.
Negation. In the current SPARQL Recommendation “Negation As Failure” is pos-

sible by a non-intuitive combination of OPTIONAL patterns and FILTERs. In
SPARQL1.1 a dedicated language construct for expressing negation shall be
introduced.

Project expressions. This feature will allow one to return the values of expressions
over result bindings, rather than just RDF terms bound in the queried graph. Most
common implementations support this feature in one or the other way.

Property paths. Many classes of queries over RDF graphs require searching hierarchi-
cal data structures and involve arbitrary-length paths through the graphs. Examples
include retrieving all the elements of an RDF collection, searching for the direct and
indirect superclasses of a class, etc. It is not possible to express such queries using
the original SPARQL recommendation. Again, different implementations provide
different mechanisms to enable such path expressions in one form or the other, as
well as some respective proposals have been made in the literature [1,18].

Entailment regimes. SPARQL1.0 has in only been defined as a query language over
RDF graphs, not taking into account RDF Schema, OWL ontologies, or custom
rule-based inference regimes, as implemented by existing engines. Although the
original specification defines frame conditions for extending SPARQL by higher
entailment regimes [22, Section 12.6], few works (e.g. [13]) have actually instanti-
ated this mechanism and defined how SPARQL should handle ontologies and rule
sets. SPARQL1.1 aims to close this gap. Note that this issue is closely related to
ongoing research on conjunctive query answering over expressive description log-
ics in the Description Logics community [7,10,9,15], none of which yet having
covered the Description Logics underlying OWL and OWL2, i.e. SHOIN (D) and
SROIQ(D). Answering full SPARQL queries on top of OWL has only prelimi-
narily been addressed in the scientific community [25,14] so far. As we will see,
SPARQL1.1 thus needs to make some pragmatic choices – essentially, disallowing
non-distinguished variables.

In the tutorial we will exemplify these features and discuss the current design choices
within the SPARQL1.1 working group, particularly the relationship of SPARQL1.1 to

3 http://www.w3.org/2009/05/sparql-phase-II-charter.html

http://www.w3.org/2009/05/sparql-phase-II-charter.html
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its very recent “neighbour standards” in the Semantic Web architecture, the Rule In-
terchange Format (RIF) [4,5,6] and the latest version of the Web Ontology Language
(OWL2) [12,16]. We will also try to sketch how some of the theoretical results for
SPARQL1.0 discussed in the previous Section may carry over to SPARQL1.1. The rel-
evant current working drafts of the SPARQL working group include:

– SPARQL 1.1 Query Language [24],
– SPARQL 1.1 Entailment Regimes [11]
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Abstract. The development and use of ontologies may require users
with no training in formal logic to handle complex concept descriptions.
To aid such users, we propose a new visualization framework called
“model outlines”, where more emphasis is placed on the semantics of
concept descriptions than on their syntax. We have conducted a usability
study comparing model outlines and Manchester OWL, with results that
indicate the potential benefits of our visual language for understanding
concept descriptions.

1 Introduction

When working with formal ontologies, one often needs to formally represent
conditions for membership in the defined classes. In this paper, we will call such
conditions concept descriptions, following the description logic (DL) tradition [1].

Concept descriptions are important in many scenarios related to ontology
development and use. For example, DL reasoners perform logical inferences by
manipulating concept descriptions according to a specific deductive calculus. In
many cases, users may be interested not only in the answers provided by such
reasoners, but also in the chains of reasoning that led to those answers. In order
to understand such chains of reasoning, users must be able to understand the
meaning of the concept descriptions involved. This area of study is referred to
as proof explanation [2].

Another situation where concept descriptions play an important role is in
the definition and use of ontology query languages [3]; here, building a query
may include writing modified concept descriptions that contain free variables
(representing individuals that must be returned by the query).

Because many users of formal ontologies have no specific training in logic,
the problem of representing concept descriptions in a user-friendly fashion is an
important one, and many researchers have proposed different ways of solving
it: replacing logical symbols with keywords in DL languages [4], automatically
generating natural language paraphrases of concept descriptions [5], or using
diagrams [6,7].
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As an example to make this discussion more concrete, consider the following
concept description in DL syntax (to be formally introduced in Sect. 2 below),
which appears in [8], a paper about proof explanation:

∃hasChild.� � ∀hasChild.¬((∃hasChild.¬Doctor) � (∃hasChild.Lawyer)) (1)

Diagrammatic representations of concept descriptions have given rise to imple-
mentations of “visual” ontology browsers. One such example is the visualization
tool GrOWL [9], which produces the diagram in Fig. 1 for the concept descrip-
tion in (1). As can be seen, the diagram is essentially an abstract syntax tree,
which offers nonspecialist users little help in understanding the semantics of the
description, especially if those users are not familiar with the DL symbols “∃”,
“∀”, “¬” and “�”. In fact, we have found this to be a common phenomenon: many
visualization frameworks for concept descriptions are too faithful to the syntax
of the representation languages (e.g., DL, OWL), a feature which may prevent
users from grasping the semantics of the concept descriptions.

Fig. 1. Diagram produced for (1) by GrOWL [9] (manually laid out)

This paper discusses model outlines, which depart from the syntax-based tra-
dition in that they consist of diagrams characterizing the class of models of a
given concept description. (Here, we use the term “model” in the logical sense.)
The model outline for (1), produced after applying a carefully defined set of
simplification rules to the original concept description, is presented in Fig. 2. By
adhering to some simple graphical conventions, a user can understand that the
concept description represents a set of individuals having at least one child and
having as grandchildren (if any) only doctors and non-lawyers.

Our previous papers [10,11] introduced the first version of model outlines and
compared them to natural language paraphrases of concept descriptions. Since
then, we have reformulated the visual language so as to make it more intuitive
(e.g., including optional labeled clusters, rendering cardinality restrictions as
text and fine-tuning the placement of inner boxes). We have also altered the
conversion algorithms to conform to the new visual language.

Most importantly, we have conducted a first usability test of model out-
lines, with promising results. Users from different backgrounds were shown con-
cept descriptions in two formalisms: our model outlines and Manchester OWL
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Fig. 2. Model outline for description (1)

(a textual notation for DL which uses keywords for logical symbols, infix no-
tation for restrictions, syntax highlighting and indentation in order to make
descriptions more readable for nonspecialists — see [4]). We then tested ease
of understanding for each formalism by asking the users questions about the
concept descriptions shown.

This paper is structured as follows: Sect. 2 presents the syntax of model out-
lines for the description logic ALCN , at the concrete (token) and at the abstract
(type) levels, as is suitable for diagrammatic systems [12]; Sect. 3 defines the pre-
cise semantics of model outlines, in the form of algorithms that translate from
model outlines to ALCN concept descriptions; Sect. 4 discusses the translation
of ALCN concept descriptions to model outlines; Sect. 5 reports and analyzes
the results of the usability test; Sect. 6 contains our concluding remarks.

2 Syntax of Model Outlines

We consider the description logic ALCN , whose language of concept descrip-
tions1 is specified in Fig. 3, both in the DL syntax and in Manchester OWL.
There, A stands for a class name (i.e., an atomic concept term), R stands for a
property name (i.e., an atomic role term), and n represents a natural number.
The (set-theoretical) meaning of these descriptions is given by a nonempty set Δ
(the universe or domain) along with an interpretation I mapping each concept
description C to a set I(C) ⊆ Δ, and each role term R to a binary relation
I(R) ⊆ Δ × Δ. An interpretation I must map each description in the first two
columns to the set in the third column. #S denotes the cardinality of a set S.
A literal is a description of the form A or of the form ¬A, where A is an atomic
concept term.

The concrete syntax of model outlines defines their physical representation.
What follows is an informal definition: a model outline contains clusters (solid
or dashed), arrows (solid or dashed) and boxes. The root of the model outline is
a solid cluster. A cluster may have an optional class label below it, consisting of a
disjunction or of a conjunction of literals. So may a box. A box may also have an
optional cardinality label below it, which may be of the form “(from m thru n)”,
“(m or more)”, or “(exactly m)”, with m, n natural numbers, m < n. The source of
an arrow may be a cluster or a box. The target of an arrow is always a box. Each

1 Work is under way to define model outlines for more expressive languages, such as
the concept language underlying OWL 2 [13].
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DL Manchester Meaning
C,D → A A I(A)

| � THING Δ
| ⊥ NOTHING ∅
| ¬C NOT C Δ− I(C)
| C �D C AND D I(C) ∩ I(D)
| C �D C OR D I(C) ∪ I(D)
| ∀R.C R ONLY C {a ∈ Δ | ∀b.[(a, b) ∈ I(R)⇒ b ∈ I(C)]}
| ∃R.C R SOME C {a ∈ Δ | ∃b.[(a, b) ∈ I(R) ∧ b ∈ I(C)]}
| ≤ n.R R MAX n {a ∈ Δ | #{b | (a, b) ∈ I(R)} ≤ n}
| ≥ n.R R MIN n {a ∈ Δ | #{b | (a, b) ∈ I(R)} ≥ n}
| = n.R R EXACTLY n {a ∈ Δ | #{b | (a, b) ∈ I(R)} = n}

Fig. 3. ALCN concept descriptions and their meaning

box is the target of exactly one arrow. An arrow must have a role label above
it, consisting of a role name. A box contains one or more clusters, according to
constraints that we do not include in this informal description, but which will
be made explicit in the abstract syntax below. A box may also contain at most
one “among-which” inner box, which in turn contains one or more clusters, all of
them solid. Inner boxes are never the source of arrows. A box or a cluster may
have a case widget above it.

Fig. 4 shows an example model outline. The target box of the arrow labeled
“hasAttendance” has both a class label (“Enrolled ”) and a cardinality label (“from
10 to 50”). The target box of the arrow labeled “hasAttendance” also has an
“among-which” inner box. This model outline does not have case widgets.

At this point, the reader should test the appropriateness of the choice of visual
presentation of the components of model outlines. We suggest that the reader
(without any further knowledge of the meaning of these components) formulate
a natural language description of the constraints imposed upon the individuals of
class GraduateCourse at the root of the outline. If the reader is knowledgeable
in DL syntax, the reader should also produce an ALCN concept description.
In Sect. 3 below, we explain the precise meaning of this model outline, and in
Sect. 4 we show the steps involved in its construction.

Case widgets indicate alternatives (i.e., disjunction). If a cluster or a box has
a case widget above it, the user may browse the different cases interactively, one
case at a time, by clicking on the triangles on either side of the case widget.

In Fig. 5, for example, there are 4 cases altogether, specifying objects that are
either (a) Books having all extras (if any) translated to Portuguese (and possibly
other languages), or (b) Books having all extras (if any) in Audio format (and
possibly other formats), or (c) ClassNotes having at least one Free copy in PDF
format (and possibly other formats, and other copies), or (d) ClassNotes having
at least one Low -priced copy (and possibly other copies).
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Fig. 4. Example model outline

More formally, the model outline in Fig. 5 corresponds to the description

[Book � ∀hasExtras.(∃hasTranslation.Portuguese � ∃hasFormat.Audio)] �
{ClassNotes �

∃hasCopy.[(Free � ∃hasFormat.PDF) � (∃hasPrice.Low � ∀hasPrice.Low)]}

As for the abstract syntax, a model outline is formally defined as a LISP-style
list generated by the grammar in Fig. 6, in extended BNF notation. The list
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Fig. 5. Example model outline with case widgets

representation is not meant for human consumption, but rather for automatic
processing by algorithms such as the ones presented in the next section.

3 Semantics of Model Outlines

The appearance of the components of a model outline follows some (hopefully
intuitive) graphical conventions:

Individuals are represented by clusters of diamonds. The presence of a cluster
(as opposed to a single diamond) emphasizes the idea that one or more indi-
viduals may appear in a given situation. E.g., in Fig. 4, the graduate courses
in question may have as lecturers more than one tenured department professor
holding a CompSci or Math PhD degree and supervising at least one graduate
student from a total of 2 or more individuals.
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〈outline〉 → 〈solidClstrCases〉
〈solidClstrCases〉 → ( cases 〈solidCluster〉+ )
〈solidCluster〉 → ( cluster solid 〈classLabel〉 ( 〈arrow〉� ) )
〈classLabel〉 → ( ) | ( 〈literal〉 )

| ( and 〈literal〉 〈literal〉+ ) | ( or 〈literal〉 〈literal〉+ )
〈literal〉 → 〈conceptName〉 | ( not 〈conceptName〉 )
〈arrow〉 → ( arrow solid 〈roleName〉 ( 〈intrvl〉� ) 〈solidBoxCases〉 )

| ( arrow dashed 〈roleName〉 ( 〈intrvl〉� ) 〈dashedBoxCases〉 )
〈intrvl〉 → ( 〈number〉 〈number〉 ) | ( 〈number〉 infty )

〈solidBoxCases〉 → ( cases 〈solidBox〉+ )
〈solidBox〉 → ( box 〈classLabel〉 ( 〈solidClstrCases〉+ ) 〈opt〉 ( 〈arrow〉� ) )

〈opt〉 → ( 〈unlabeledCluster〉 ) | ( 〈innerBox〉? 〈dashedClstrCases〉? )
〈unlabeledCluster〉 → ( cluster dashed ( ) ( ) )

〈innerBox〉 → ( innerBox 〈solidClstrCases〉+ )
〈dashedBoxCases〉 → ( cases 〈dashedBox〉+ )

〈dashedBox〉 → ( box 〈classLabel〉 ( 〈snglDashedCluster〉 ) ( ) ( 〈arrow〉� ) )
〈snglDashedCluster〉 → ( cases ( cluster dashed 〈classLabel〉 ( ) ) )
〈dashedClstrCases〉 → ( cases 〈dashedCluster〉+ )
〈dashedCluster〉 → ( cluster dashed 〈classLabel〉 ( 〈arrow〉� ) )

Fig. 6. Abstract, formal syntax for ALCN model outlines

Clusters of solid diamonds represent individuals that must exist. In Fig. 4,
it is mandatory that the graduate courses in question have as lecturer at least
one tenured department professor holding a CompSci or Math PhD degree and
supervising at least one graduate student from a total of 2 or more individuals.
Likewise, the attendance must include students and graduate students.

Clusters of dashed diamonds represent optional individuals. If the cluster is
labeled or has outgoing arrows, the individuals must belong to the corresponding
class (e.g., “Guest ” in Fig. 4). If the cluster is unlabeled, the individuals may
belong to any class, subject to the constraints stipulated by the label and the
outgoing arrows of the outer box where the cluster is located (e.g., in Fig. 4, the
unlabeled cluster in the “hasLecturer ” box represents lecturers that do not have
to be tenured department professors, but that must hold a CompSci or Math
PhD degree).

As indicated in the previous remark, box labels and arrows originating from
boxes represent constraints that must be satisfied by all individuals correspond-
ing to clusters in the box. In Fig. 4, all individuals attending the graduate courses
in question must belong to class “Enrolled ”.

The absence of a dashed cluster in a box means that all the individuals repre-
sented in the box must belong to the classes specified by their respective labels
and to the class specified by the box label and arrows (if present). This is evi-
dent in Fig. 4, where it is required that the lecturers hold a PhD degree only in
CompSci or Math (a rather exclusivist and unfair requirement, but this is only
an example).
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Dashed boxes, always the target of dashed arrows, always contain a dashed
cluster, representing optional individuals. In Fig. 4, the graduate courses in ques-
tion may or may not involve the use of (up to 2) department labs.

“Among which” inner boxes contain clusters representing individuals that be-
long to subclasses of one or more classes specified in the outer box. In Fig. 4,
the attendance of the graduate courses in question consists of students, some of
which are required to be graduate students. Optionally, guests may attend.

The above remarks are included here only for pedagogical purposes. In fact,
we define the precise semantics of model outlines by means of algorithm Descr,
which, when given a model outline C (in abstract syntax), yields the ALCN con-
cept description taken as the meaning of C. Algorithm Descr calls BoxDescr
to build the concept description denoted by a box. Fig. 7 shows both algorithms.

The reader should refer to the grammar in Fig. 6 for the structure of the lists
that the algorithms manipulate. These algorithms can be modified to produce
more legible output; here, their only purpose is to serve as the precise semantics
of model outlines. When given as input the model outline in Fig. 2, e.g., algorithm
Descr returns the following description, which is equivalent to (1):

⊥ � {� � ∀hasChild.(⊥ � ⊥ � �) � � � ∃hasChild.(⊥ � �)
� ∀hasChild.[� � (⊥ � ∀hasChild.(⊥ � ⊥ � (Doctor � ¬Lawyer)))]}

4 Constructing Model Outlines

We have presented elsewhere [10] detailed algorithms for translating ALCN
concept descriptions into model outlines. Here, we incorporate some changes
to the algorithms (e.g., to account for labeled optional clusters) and give a more
informal explanation of the main steps involved in such a translation, using as
a working example the concept description that originated the model outline in
Fig. 4.

Given an ALCN concept description C, we start by converting C to modified
disjunctive normal form (mDNF), applying simplification rules in the process.
A concept description is in mDNF if it fits the pattern

D1 � . . . � Dn

where each disjunct Di is a conjunction of the form

C1 � · · · � Cp

where each conjunct Cj is either a literal, or a collection of “intervals” of natural
numbers (whose upper bound may be ∞) associated to a role R, or a description
of the form ∀R.C′ or of the form ∃R.C′, where C′ is itself in mDNF.

The modification is in the way number restrictions are represented: using
appropriate rewrite rules, any conjunction of cardinality restrictions over a role
Ri can be converted to a collection of “intervals” of natural numbers.2

2 For role R, the interval [m, n] represents the constraint (≥ m.R � ≤ n.R). Likewise,
[m, m] represents (= m.R), and [0, m] represents (≤ m.R), and [m,∞] represents
(≥ m.R).
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Descr(C) � C has the form ( cases C1 · · ·Cm )
1 Descr ← ⊥
2 for each Ci in C1, . . . , Cm � Ci has the form ( cluster S L ( A1 · · ·An ) )
3 do if L = ( )
4 then Case ← �
5 else Case ← L
6 for each Aj in A1, . . . , An

7 do Case ← Case �BoxDescr(Aj)
8 Descr ← Descr �Case
9 return Descr

BoxDescr(A) � A has the form ( arrow S RN ( I1 · · · In ) ( cases B1 · · ·Bm ) )
1 BDescr ← ⊥
2 if n = 0 � No cardinality restrictions
3 then Card ← �
4 else Card ← ⊥
5 for each Ij in I1, . . . , In � Ij is “interval” of the form ( X Y )
6 do if Y = infty
7 then Card ← (Card � ≥ X.RN )
8 else Card ← (Card � (≥ X.RN � ≤ Y.RN ))
9 for each Bi in B1 · · ·Bm

10 � Each box case Bi has the form ( box BL ( C1 · · ·Cp ) Opt ( A′
1 · · ·A′

q ) )
11 do Universal ← ⊥; Existentials ← �
12 for each Cj in C1, . . . , Cp � Cluster cases
13 do Universal ← Universal �Descr(Cj)
14 if Cj has the form ( cluster solid . . . )
15 then Existentials ← Existentials � ∃RN .Descr(Cj)
16 if Opt contains ( innerBox C′

1 · · ·C′
r )

17 then for each C′
j in C′

1, . . . , C
′
r

18 do Existentials ← Existentials � ∃RN .Descr(C′
j)

19 if Opt contains ( cluster dashed ( ) ( ) )
20 then Universal ← �
21 if Opt contains ( cases C′′

1 · · ·C′′
s ) � Optional clusters

22 then for each C′′
j in C′′

1 , . . . , C′′
s

23 do Universal ← Universal �Descr(C′′
j )

24 Universal ← ∀RN .(Universal )
25 if BL = ( )
26 then BCase ← Universal � Existentials
27 else BCase ← ∀RN .BL � Universal � Existentials
28 for each A′

j in A′
1, . . . , A

′
q � Box arrows

29 do BCase ← BCase � ∀RN .BoxDescr(A′
j)

30 BDescr ← BDescr �BCase
31 return Card �BDescr

Fig. 7. Algorithms to convert from model outlines to ALCN
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To each Di we then apply the simplification rule

∀R.C1 � . . . � ∀R.Cn � ∀R.(C1 � . . . � Cn)

As a result, we obtain C′, which is a disjunction D′
1 � . . . � D′

n, where each D′
i

can be written as
L1 � . . . � Lm � C1 � · · · � Cp

where each Li is a literal, and each Cj can be written as

∀R.F � ∃R.G1 � . . . � ∃R.Gq � K

where F and all the Gi are in mDNF and K is a collection of intervals of natural
numbers representing cardinality restrictions over role R. Any (or all) of these
elements may be absent. Note that we have grouped the conjuncts according to
the role R they refer to. Later, when the model outline is built, each of these
groups will originate an arrow labeled by R.

Following these guidelines, the simplified mDNF of the concept description
corresponding to the example model outline in Fig. 4 is found to be

GraduateCourse (2a)
� ∀hasLecturer. (2b)

[∀holdsPhDIn.(CompSci � Math) (2c)
� ∃holdsPhDIn.(CompSci � Math)] (2d)

� ∃hasLecturer.(DeptProfessor � Tenured � ∃supervises.GradStudent (2e)
� {[2,∞]}.supervises) (2f)

� {[2, 2]}.hasLecturer (2g)
� ∀hasAttendance.[(Student � Enrolled) � (Guest � Enrolled)] (2h)
� ∃hasAttendance.Student (2i)
� ∃hasAttendance.GradStudent (2j)
� {[10, 50]}.hasAttendance (2k)
� ∀usesLab.(DeptLab � ¬Closed) (2l)
� {[0, 2]}.usesLab (2m)

Note how the constraints have been grouped by the roles they act upon. Note
also how the cardinality constraints in lines (2f), (2g), (2k) and (2m) have been
written with (singleton) collections of intervals of natural numbers.

Two transformations must be effected before the model outline can be built.
The first one concerns lines (2b)–(2d), where the set of objects related to the

lecturers through holdsPhDIn is closed : i.e., the lecturers must hold some PhD
degree in CompSci or Math and only PhD degrees in CompSci or Math.

The algorithm detects such a closure whenever it finds conjuncts of the form

∀R(C1 � · · · � Cn) � ∃R.C1 � · · · � ∃R.Cn
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Here, we have n = 1 and C1 = CompSci � Math. Then, to indicate the closure,
the algorithm refrains from adding a dashed, unlabeled cluster to the target box
of the holdsPhDIn arrow (see Fig. 4).

The second transformation is similar: in lines (2h)–(2j), we can see there
is some sort of closure related to the role hasAttendance, but the situation is
more complicated. In fact, this is the general case, which also includes the first
transformation. Whenever the conjuncts for role R are of the form

∀R[(C1 � D) � · · · � (Cn � D) � (Cn+1 � D) � · · · � (Cn+p � D)]
� ∃R.C1 � · · · � ∃R.Cn � ∃R.F1 � · · · � ∃R.Fq

where D is a conjunction (with D = � as the trivial case) it proceeds as follows:

– Solid clusters for C1, . . . , Cn are created in the main target box for the R-
arrow.

– The main target box for the R-arrow gets D as a label. If D = �, this label
is not shown.

– The main target box for the R-arrow gets an “among which” inner box con-
taining solid clusters for F1, . . . , Fq.

– Dashed clusters for Cn+1, . . . , Cp are created in the main target box for the
R-arrow.

In our example description, in lines (2h)–(2j), we have that n = 1, and C1 =
Student, and D = Enrolled, and p = 1, and C2 = Guest, and q = 1, and
F1 = GradStudent.

5 Evaluation

We have conducted a usability study in order to evaluate our proposed diagram-
matic notation. The main aim was to test the usefulness of model outlines for
the understanding of complex concept descriptions.

Note that it is the model outline notation itself that is being evaluated, not
a specific graphical user interface (GUI) implementing the notation. Thus, the
focus of the study is on understanding, not on interaction. We find this to be an
advantage, as changes can be made to the notation before we are committed to
a specific GUI, and problems can be identified in relation to specific features of
the notation, so that special attention can be given to these problems in order
to solve or mitigate them through the use of appropriate human interaction
techniques. From a practical point of view, this potentially reduces the need for
radical, costly changes after implementation.

Likewise, we have chosen model outlines for the simpler ALCN language so
we could find out early if something needs to be changed in our most basic
assumptions. The result of this test will help us design the extensions of model
outlines to deal with more expressive concept languages.

Following [14], we defined our main goal as: Model outlines can help users with
little or no training in Logic to understand complex concept descriptions. In partic-
ular, model outlines are more effective than Manchester OWL for this task.
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Manchester OWL (see Fig. 3 and also [4]) is a textual notation for DL
which uses keywords for logical symbols (e.g., “SOME” for “∃”), infix nota-
tion for restrictions (e.g., “hasChild SOME Man” for “∃hasChild.Man”), syntax
highlighting and indentation in order to make descriptions more readable for
nonspecialists. So, we are comparing our diagrammatic notation with a textual
notation designed for the same target audience. (As the test participants were all
Brazilians, we used Portuguese translations of the Manchester OWL keywords.)

Next, we defined a set of concerns, in the form of questions like: Can users
understand the meaning of X?, where X is one of the elements present in model
outlines (solid clusters, dashed clusters, arrows, boxes, inner boxes, case widgets,
etc.). Specific concerns were also formulated (e.g., “Can users understand that
individuals in “among which” inner boxes are mandatory?”).

We selected 10 participants for our study ([14] recommends 6 to 12). These
participants come from several backgrounds and occupations, as detailed be-
low. All received detailed information on the procedures and on their rights as
participants. All signed terms of informed consent.

One session of the study consisted of the following activities: a pre-test ques-
tionnaire, a tutorial on notation A, a specification on domain X using notation
A, 15 questions, a post-task questionnaire, a tutorial on notation B, a specifica-
tion on domain Y using notation B, 15 questions, a post-task questionnaire, and
a post-test questionnaire. Notations A and B alternated between model outlines
and Manchester OWL. Domains X and Y alternated between graduate courses
(which included Fig. 4 of this paper) and family relations. Each participant an-
swered 15 questions for each domain. The questions for each domain were fixed,
regardless of the notation used. For each domain, half the participants answered
questions on model outlines, and half answered questions on Manchester OWL
specifications. Half the participants saw model outlines before Manchester OWL,
and half saw Manchester OWL before model outlines.

The number of correct answers and the time to answer were measured. Addi-
tional information was obtained in the form of comments collected through the
“thinking out loud” protocol [14] and through questionnaires. Table 1 shows the
occupation and the number of correct answers for each participant:

For the graduate courses domain, we note the following highlights:
Question 8 was related to Fig. 4 of this paper, and elicited 5 errors using

Manchester OWL, and no errors using model outlines. The question was: “If
a course is attended only by students that are not graduate students, does the
course meet the specification?” The error was probably induced by the abbrevia-
tion recommended in [4]: “hasAttendance SOME [Student,GradStudent]”, which
seems to have evoked the idea that the bracketed list consisted of a set of al-
ternatives. This question was answered correctly by all participants using model
outlines, which indicates that users understood the meaning of “among which”
inner boxes.

Question 14 elicited 4 errors using Manchester OWL, and 3 errors using
model outlines. This question was about a specification consisting of 4 cases.
The situation proposed in the question satisfied exactly one of the 4 cases. With
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Table 1. Occupation and number of correct answers for each participant

Occupation
Correct answers
(model outlines)

Correct answers
(Manchester OWL)

Logician 15 14
Theoretical physicist 15 12
Software engineer 15 12
Secretary 15 10
Nurse 13 12
Graphics designer 13 12
Social worker 13 11
Comp. Science undergrad 13 10
Production engineer 13 9
Mathematician 12 14
Totals: 137 116
Percentages: 91.3% 77.3%

Manchester OWL, the participants had difficulty in finding their way among
multiple parentheses and complex disjunctions. With model outlines, they ap-
parently thought that the proposed situation had to satisfy all cases.

For the family relations domain, we note the following highlights:
Question 6 elicited 4 errors using Manchester OWL, and no errors using

model outlines. This question asked if a person satisfying the given specification
could have jobless children. The specification in Manchester OWL included the
sentence “hasChild SOME (Man AND worksAt ONLY Hospital)”. Apparently,
the users forgot that “ONLY” (which stands for “∀”) does not imply the existence
of objects. In the model outline, the presence of a dashed cluster, a dashed box
and a dashed arrow made it clear that existence was not required.

Question 8 elicited 3 errors using Manchester OWL, and 1 error using model
outlines. This question asked if a person satisfying the given specification had
to have a grandchild working as a surgeon. Some users found it confusing to
follow the composition of roles (hasChild–hasChild), and were again, as in ques-
tion 8 about graduate courses, confused by the Manchester OWL abbreviation
“SOME [· · · ]”. In the model outline, the presence of a solid cluster labeled
Surgeon inside an “among which” inner box made the correct answer more
clear.

One trend was clearly observed in both domains: specifications that involve
cases (i.e., complex disjunctions), such as the one in Fig. 5 of this paper, are
more difficult to understand than those that do not, as Table 2 indicates.

Among the comments offered by the participants, many indicated confusion
due to the way cases were presented in model outlines (like in Fig. 5 of this paper,
the layout consisted of 4 diagrams on a single page). Some users thought that
all 4 diagrams had to be satisfied. This is clearly one weakness of model outlines
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Table 2. Number of correct answers per domain and type of question

Domain and
type of question

Correct answers
(model outlines)

Correct answers
(Manchester OWL)

Family, no cases 94% 72%
Courses, no cases 96% 84%
Family, with cases 84% 72%
Courses, with cases 84% 80%

(on paper) that we must try to eliminate in the GUI implementation. We predict
that such confusion will not arise if the user interacts with the model outline
(e.g., dynamically expanding and collapsing cases). The GUI should also make
clear when clusters in different cases actually correspond to the same cluster, by
showing one single cluster which can be expanded in different ways.

As for time: in the courses domain, each user took in average 28 seconds per
question, regardless of the notation. In the family relations domain, each user
took in average 26 seconds per question with model outlines, but 40 seconds per
question with Manchester OWL.

Of the 10 participants, 5 said they preferred model outlines, 4 said they liked
both notations equally well, and 1 said both notations were equally bad.

6 Conclusions

The main achievements of the work related here are the reformulation of our
model outline notation and the results of our first usability test, comparing
model outlines to Manchester OWL.

Ontology visualization is a very active field of study. The survey [6] discusses
over 40 ontology visualization tools, all of them developed in the past 10 years.
All of those tools are general, in the sense that they use one single visualiza-
tion framework to show several types of information about the ontology: the
subsumption hierarchy, roles, etc. In particular, those tools show concept de-
scriptions either textually (e.g., Protégé) or in the form of abstract syntax trees
(as in Fig. 1 of this paper).

Model outlines, on the other hand, are specialized, having been designed specif-
ically to show concept descriptions. Although the notation used is new, our us-
ability test indicates it is intuitive enough to be understood by nonspecialists.
The specialized nature of model outlines suggests that they can be integrated
with a more general tool, so that users can easily switch views, e.g., from the
subsumption hierarchy as a tree to the definition of a class as a model outline.

We are currently implementing a concept description browser based on model
outlines, as a Protégé plugin. We are taking special care to rely on graphical con-
ventions and interaction techniques that profit from the vast body of knowledge
related to visual perception and cognitive principles, as described, e.g., in [15].

Work is also under way to extend model outlines to the concept language
associated to OWL 2 [13].
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Abstract. Complex Event Processing (CEP) is concerned with timely detection
of complex events within multiple streams of atomic occurrences. It has useful
applications in areas including financial services, mobile and sensor devices, click
stream analysis etc. Numerous approaches in CEP have already been proposed in
the literature. Event processing systems with a logic-based representation have
attracted considerable attention as (among others reasons) they feature formal se-
mantics and offer reasoning service. However logic-based approaches are not op-
timized for run-time event recognition (as they are mainly query-driven systems).
In this paper, we present an expressive logic-based language for specifying and
combining complex events. For this language we provide both a syntax as well
as a formal declarative semantics. The language enables efficient run time event
recognition and supports deductive reasoning. Execution model of the language
is based on a compilation strategy into Prolog. We provide an implementation of
the language, and present the performance results showing the competitiveness
of our approach.

1 Introduction

Recently there has been made a significant paradigm shift toward real-time computing
in the research, as well as, in industry. Databases and data warehouses are about looking
what happened in the past. On the other hand, Complex Event Processing (CEP) is
about processing real-time events, i.e., about detecting what has just happened or what
is about to happen.

An event represents something that occurs, happens or changes the current state of
affairs. For example, an event may signify a problem or an impending problem, a thresh-
old, an opportunity, an information becoming available, a deviation etc. The general task
of CEP can be described as follows. Within some dynamic setting, events take place.
Those atomic events are instantaneous, i.e., they happen at one specific point in time
and have a duration of zero. Notifications about these occurred events together with
their timestamps and possibly further associated data (such as involved entities, numer-
ical parameters of the event, or provenance data) enter the CEP system in the order of
their occurrence.

The CEP system further features a set of complex event descriptions, by means of
which complex events can be specified as temporal constellations of atomic events. The
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complex events thus defined can in turn be used to compose even more complex events
and so forth. As opposed to atomic events, those complex events are not considered
instantaneous but are endowed with a time interval denoting when the event started and
when it ended.

The purpose of the CEP system is now to detect complex events within this input
stream of atomic events. That is, the system is supposed to notify that the occurrence
of a certain complex event has been detected, as soon as the system is notified of an
atomic event that completes a sequence which makes up the complex event due to the
complex event description. This notification may be accompanied by additional infor-
mation composed from the atomic events’ data. As a consequence of this detection (and
depending on the associated data), responding actions can be taken, yet this is outside
the scope of this paper.

Our approach for CEP is based on declarative (logic) rules. It has been shown else-
where [13,16,15,2,7,12,17] that logic-based approaches for event processing have var-
ious advantages. First, they are expressive enough and convenient to represent diverse
complex event patterns. They come with a formal declarative semantics. Moreover
declarative rules are free of side-effects (e.g. confluence problem). Second, integra-
tion of query processing with event processing is easy and natural (e.g. processing of
recursive queries). Third, our experience with use of logic rules in implementation of
the main constructs in CEP as well as in providing extensibility of a CEP system is very
positive and encouraging (e.g. number of code lines in logic programming is signifi-
cantly smaller than in procedural programming). Ultimately, a logic-based event model
allows for reasoning over events, their relationships, entire state, and possible contex-
tual knowledge available for a particular domain. Reasoning about temporal knowledge
(i.e., events) and static or evolving knowledge (i.e., facts, rules and ontologies) is a
feature beyond of the state-of-the-art in CEP [1,6,14].

Apart from the above mentioned strengths, event processing systems [13,16,15,12,17]
based on various logic formalism have some shortcomings too. One significant short-
coming is data or event-driven computation. Deductive systems are rather suited for
a request-response computation. That is, for given a request, an inference engine will
evaluate available knowledge (i.e. rules and facts) and respond with an answer. This
means that the event inference engine needs to check if this pattern can be deduced
or not. The check is performed at the time when such a request is posed. If satisfied
by the time when the request is processed, a complex event will be reported. If not, the
pattern is not detected until the next time the same request is processed (though it can be-
come satisfied in-between the two checks). Contrary to this, event processing demands
data-driven computation (as handled by various approaches such as non-deterministic
finite automata (NFA) [1], Petri Nets [11], RETE algorithm [10] etc.). Unfortunately
approaches grounded on NFA and Petri Nets do not feature reasoning capabilities; and
RETE based approaches may be integrated with deductive rules [4] but have difficulties
to handle aggregates over event streams, and to implement different event consumption
policies [8].

[17] follows the mentioned request-response (or so called query-driven1) approach.
It proposes to define queries that are processed repetitively at given intervals, e.g. every

1 If a request is represented as a query (what is a usual case).
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10 seconds, trying to discover new events. However, generally events are not periodic or
if so might have differing periods and nevertheless complex events should be detected
as soon as they occur (not in a predefined time window). To overcome this issue, in [7],
an incremental evaluation was proposed. The approach is aimed at avoiding redundant
computations (particularly re-computation of joins) every time a new event arrives. The
authors suggest to utilize relational algebra evaluation techniques such as incremental
maintenance of materialized views.

Our language for CEP, ETALIS, is developed to close the gap between event-driven
and logic-based systems. We present a rule-based language with a clear syntax and a
declarative formal semantics. The language is powerful enough to effectively express
and evaluate all thirteen Allen’s temporal relationships [3]. Unlike other non-logic-
based CEP languages [1,11], our language features inference capabilities; and unlike
other logic-based approaches, it has a different execution model that compiles complex
event patterns into logic rules and enables timely, event-driven detection of complex
events. Finally unlike RETE-based approaches, recursive rules of our language enable
processing of unbound event streams and applying aggregation functions on them; yet
recursive rules are out of scope of this paper. The contribution also includes an imple-
mentation of the language, and experimental results of our evaluation.

2 Rule-Based Language for Event Processing and Reasoning

2.1 Syntax

In this section we present the formal syntax of the our language for event processing,
while in the remaining sections of the paper, we will gradually introduce other aspects
of the language (i.e. the declarative semantics and run-time detection of complex events
as well as the performance of a prototype based on the language2).

The syntax of the our language allows for the description of time and events. We
represent time instants as well as durations as nonnegative rational numbers q ∈ Q+.
Events can be atomic or complex. An atomic event refers to an instantaneous occurrence
of interest. Atomic events are expressed as ground atoms (i.e. predicates followed by
arguments which are terms not containing variables). Intuitively, the arguments of a
ground atom describing an atomic event denote information items (i.e. event data) that
provide additional information about that event.

Atomic events can be composed to form complex events via event patterns. We use
event patterns to describe how events can (or have to) be temporally situated to other
events or absolute time points. The language P of event patterns is formally defined by

P ::= pr(t1, . . . , tn) | P WHERE t | q | (P ).q
| P BIN P | NOT(P ).[P, P ]

Thereby, pr is a predicate name with arity n, ti denote terms, t is a term of type boolean,
q is a nonnegative rational number, and BIN is one of the binary operators SEQ, AND,

2 Our prototype, ETALIS, is an open source project, available at:
http://code.google.com/p/etalis

http://code.google.com/p/etalis
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PAR, OR, EQUALS, MEETS, DURING, STARTS, or FINISHES. As a side condition, in
every expression p WHERE t, all variables occurring in t must also occur in pattern p.

Finally, an event rule is defined as a formula of the shape

pr(t1, . . . , tn) ← p

where p is an event pattern containing all variables occurring in pr(t1, . . . , tn).
After introducing the formal syntax of our formalism, we will give some exam-

ples to provide some intuitive understanding before proceeding with the formal se-
mantics in the next section. Adhering to a stock market scenario, one instantaneous
event (not requiring further specification) might be market closes(). Other events
with additional information associated via arguments would be bankrupt(lehman) or
buys(citigroup, wachovia). Within patterns, variables instead of constants may occur
as arguments, whence we can write bankrupt(X) as a pattern matching all bankruptcy
events irrespective of the victim. “Artificial” time-point events can be defined by just
providing the according timestamp.

Figure 1 demonstrates the various ways of constructing complex event descriptions
from simpler ones in our language for event processing. Moreover, the figure informally
introduces the semantics of the language, which will further be defined in Section 2.2.

Fig. 1. Language for Event Processing - Composition Operators

Let us assume that instances of three complex events, P1, P2, P3, are occurring in
time intervals as shown in Figure 1. Vertical dashed lines depict different time units,
while the horizontal bars represent detected complex events for the given patterns. In
the following, we give the intuitive meaning for all patterns from the figure:



46 D. Anicic et al.

– (P1).3 detects an occurrence of P1 if it happens within an interval of length 3.
– P1 SEQ P3 represents a sequence of two events, i.e. an occurrence of P1 is followed by an

occurrence of P3; thereby P1 must end before P3 starts.
– P2 AND P3 is a pattern that is detected when instances of both P2 and P3 occur no matter in

which order.
– P1 PAR P2 occurs when instances of both P2 and P3 happen, provided that their intervals

have a non-zero overlap.
– P2 OR P3 is triggered for every instance of P2 or P3.
– P1 DURING (0 SEQ 6) happens when an instance of P1 occurs during an interval; in this

case, the interval is built using a sequence of two atomic time-point events (one with q = 0
and another with q = 6, see the syntax above).

– P1 EQUALS P3 is triggered when the two events occur exactly at the same time interval.
– NOT(P3).[P1, P1] represents a negated pattern. It is defined by a sequence of events (de-

limiting events) in the square brackets where there is no occurrence of P3 in the interval.
In order to invalidate an occurrence of the pattern, an instance of P3 must happen in the
interval formed by the end time of the first delimiting event and the start time of the second
delimiting event. In this example delimiting events are just two instances of the same event,
i.e. P1. Different treatments of negation are also possible, however we adopt one from [8].

– P3 STARTS P1 is detected when an instance of P3 starts at the same time as an instance of
P1 but ends earlier.

– P3 FINISHES P2 is detected when an instance of P3 ends at the same time as an instance of
P1 but starts later.

– P2 MEETS P3 happens when the interval of an occurrence of P2 ends exactly when the
interval of an occurrence of P3 starts.

It is worth noting that the defined pattern language captures the set of all possible 13
relations on two temporal intervals as defined in [3]. The set can also be used for rich
temporal reasoning.

2.2 Declarative Semantics

We define the declarative formal semantics of our language for event processing in a
model-theoretic way.

Note that we assume a fixed interpretation of the occurring function symbols, i.e. for
every function symbol f of arity n, we presume a predefined function f∗ : Conn →
Con. That is, in our setting, functions are treated as built-in utilities.

As usual, a variable assignment is a mapping μ : V ar → Con assigning a value to
every variable. We let μ∗ denote the extension of μ to terms defined in the usual way:

μ∗ :

⎧⎨
⎩

v �→ μ(v) if v ∈ V ar,
c �→ c if c ∈ Con,

f(t1, . . . , tn) �→ f∗(μ∗(t1), . . . , μ∗(tn)) otherwise.

In addition to the set of rules R, we fix an event stream. The event stream is formalized
as a mapping ε : Ground → 2Q+

from ground predicates into sets of nonnegative
rational numbers. It thereby indicates at what time instants what elementary events
occur. As a side condition, we require ε to be free of accumulation points, i.e. for every
q ∈ Q+, the set {q′ ∈ Q+ | q′ < q and q′ ∈ ε(g) for some g ∈ Ground} is finite.
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pattern Iμ(pattern)
pr(t1, . . . , tn) I(pr(μ∗(t1), . . . , μ∗(tn)))

p WHERE t Iμ(p) if μ∗(t) = true
∅ otherwise.

q {〈q, q〉} for all q∈Q+

(p).q Iμ(p) ∩ {〈q1, q2〉 | q2 − q1 = q}
p1 SEQ p2 {〈q1, q4〉 | 〈q1, q2〉∈Iμ(p1) and 〈q3, q4〉∈Iμ(p2) and q2<q3}
p1 AND p2 {〈min(q1, q3), max(q2, q4)〉 | 〈q1, q2〉∈Iμ(p1) and 〈q3, q4〉∈Iμ(p2)}
p1 PAR p2 {〈min(q1, q3), max(q2, q4)〉 | 〈q1, q2〉∈Iμ(p1)

and 〈q3, q4〉∈Iμ(p2) and max(q1, q3)<min(q2, q4)}
p1 OR p2 Iμ(p1) ∪ Iμ(p2)

p1 EQUALS p2 Iμ(p1) ∩ Iμ(p2)

p1 MEETS p2 {〈q1, q3〉 | 〈q1, q2〉∈Iμ(p1) and 〈q2, q3〉∈Iμ(p2)}
p1 DURING p2 {〈q3, q4〉 | 〈q1, q2〉∈Iμ(p1) and 〈q3, q4〉∈Iμ(p2) and q3<q1<q2<q4}
p1 STARTS p2 {〈q1, q3〉 | 〈q1, q2〉∈Iμ(p1) and 〈q1, q3〉∈Iμ(p2) and q2<q3}
p1 FINISHES p2 {〈q1, q3〉 | 〈q2, q3〉∈Iμ(p1) and 〈q1, q3〉∈Iμ(p2) and q1<q2}
NOT(p1).[p2, p3] Iμ(p2 SEQ p3) \ Iμ(p2 SEQ p1 SEQ p3)

Fig. 2. Definition of extensional interpretation of event patterns. We use p(x) for patterns, q(x) for
rational numbers, t(x) for terms and pr for event predicates.

Now, we define an interpretation I : Ground → 2Q+×Q+
as a mapping from the

ground atoms to sets of pairs of nonnegative rationals, such that q1 ≤ q2 for every
〈q1, q2〉 ∈ I(g) for all g ∈ Ground.

Given an event stream ε, an interpretation I is called a model for a rule set R –
written as I |=ε R – if the following conditions are satisfied:

C1 〈q, q〉 ∈ I(g) for every q ∈ Q+ and g ∈ Ground with q ∈ ε(g)
C2 for every rule atom ← pattern and every variable assignment μ we have Iμ(atom)

⊆ Iμ(pattern) where Iμ is inductively defined as displayed in Fig. 2.

Given an interpretation I and some q ∈ Q+, we let I|q denote the interpretation defined
via I|q(g) = I(g) ∩ {〈q1, q2〉 | q2 − q1 ≤ q}.

Given two interpretations I and J , we say that I is preferred to J if there exists a
q ∈ Q+ with I|q ⊂ J |q.

A model I is called minimal if there is no other model preferred to I. It is easy to
show that for every event stream ε and rule set R there is a unique minimal model Iε,R.

Finally, given an atom a and two rational numbers q1, q2, we say that the event a[q1,q2]

is a consequence of the event stream ε and the rule base R (written ε, R |= a[q1,q2]), if
〈q1, q2〉 ∈ Iε,R

μ (a) for some variable assignment μ.
It can be easily verified that the behavior of the event stream ε beyond the time point

q2 is irrelevant for determining whether ε, R |= a[q1,q2] is the case.3 This justifies to

3 More formally, for any two event streams ε1 and ε2 with ε1(g) ∩ {〈q, q′〉 | q′ ≤ q2} =
ε2(g) ∩ {〈q, q′〉 | q′ ≤ q2} we have that ε1,R |= a[q1,q2] exactly if ε2,R |= a[q1,q2].
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take the perspective of ε being only partially known (and continuously unveiled along a
time line) while the task is to detect event-consequences as soon as possible.

3 A Deductive Rule-Based Approach for Complex Event
Processing

In Section 1 we have numbered few advantages of CEP approaches based on logic.
The majority of state-of-the-art in CEP is however not based on logic rules [1,6,14];
hence these advantages can be seen as features going beyond the state-of-the-art. In
this section we review the features once again, justifying the design principles of our
proposed language.

Expressive, formal, and declarative semantics. In the previous section we have de-
fined formal and declarative semantics of an event processing language. CEP is a real-
time processing, involving very often multi-threading and distributed processing. In
such an environment, declarative semantics guarantees predictability and repeatability
of results produced by an event processing system. This is not case in procedural CEP
languages where, e.g., for the same input stream and the same set of event patterns, the
system may produce two different results. Our proposed semantics is also expressive
enough to capture all thirteen Allen’s temporal relationships [3].

To evaluate expressivity of our language in practice, we have implemented Fast
Flower Delivery use case4 from [9]. The use case describes distribution of flowers from
multiple stores (in a large city). The distribution is handled by a group of drivers who
need to accomplish their assignments in a timely fashion. In the remaining part of this
section we will use some of the use case patterns to demonstrate capabilities of our
language.

Database and rule queries. Database information may serve in enriching an event with
additional data. For instance, whenever a customer purchases flowers an event request
is triggered. A delivery request event (dlv req) consists of the initial event request,
enriched by additional information. This information is taken from a database relation
store info, and can be pulled by a matching store ID (StrID). The relation contains,
e.g., information about the store location, minimum accepted driver’s rank, and the bid-
ding preferences (see [9]).

dlv req(ReqID, Loc1, Loc2, T ime, MinRank, Pref) ←
req(ReqID, Loc1, T ime, StrID) WHERE store info(StrID, Loc2, MinRank, Pref).

In the above rule pattern, relation store info contains explicit data. With no restriction,
it could also contain a changing (updatable) data; or implicit knowledge derived by
rules, possibly spanning over multiple relations, involving recursions and so forth.

Easy of programming. SQL-based syntax is predominant in today’s CEP systems
[1,6,14]. It is considered to be easy to understand, as many programmers today are

4 Complete running implementation of the use case is published under name ETALIS on the
Event Processing Technical Society web site:
http://www.ep-ts.com/content/view/79/

http://www.ep-ts.com/content/view/79/
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familiar with database concepts. We propose a rule-based syntax and argue that it is
convenient for CEP. We base our opinion gained on experience in implementation of
Fast Flower Delivery use case, as well as, on the implementation of our language. For
example, let us consider the following simple pattern rules.

ce1(Result) ← e(Name, Result) SEQ e(Name, Result) WHERE (Name =′ a′, Result = 1).
ce2(Result) ← ce1(Result) AND ce1(Result) WHERE (Result = 1).

Their representation in an SQL-like language of Esper5 based on [6] is shown below. As
we see, complex events detect by the first pattern need to be re-inserted in a temporal
stream of events tmpE (using insert in the first Esper statement). If complex event ce2
was further used in building a more complex event, we would to insert instances of
ce2 event in another temporal stream too. Consequently, very complex (nested) events
in such a language can become easily unreadable. On the other hand, with a rule-based
syntax it is easy to nest (complex) events. Also it is easy to pass data within events via
variable binding which in total gives a more compact and clear syntax of the language.

<Query name= "ce1" text="
insert into tmpE(ceName, Result)
select ’ce1’ as ceName, e1.Result as Result
from pattern [every ( +

e1=e(e1.Name=’a’ and e1.Result=1) ->
e2=e(e2.Name=’a’ and e2.Result=1) )]"/>

<Query name= "ce2" text="
select ’ce2’ as Name, e1.Result as Result
from pattern [every ( +

e1=tmpE(e1.ceName=’ce1’ and e1.Result=1) and
e2=tmpE(e2.ceName=’ce1’ and e2.Result=1) )]"/>

Also it is worth mentioning that our prototype implementation consist of about 2500
lines of Prolog code (see Section 5), while Esper 3.3.0 has approx. 150000 lines of
code. Hence rule-based declarative programming results in drastic reduction in code
size.

Knowledge-based complex event processing. Events and event pattern rules represent
temporal knowledge, based on which it is possible to derivate more complex dynamic
matters. Apart from this knowledge, there may exists static (or evolving) knowledge
(i.e., facts, rules and ontologies, constituting the domain knowledge). We have already
seen how static data can be used for event enrichment. More importantly, to detect
complex events we can also consult additional (contextual) knowledge, e.g., to prove
semantic relations among matched events (not only temporal relations). While detecting
complex events incrementally (at run time), our formalism may additionally evaluate
the static knowledge (expressed as Prolog rules and facts) to enhance the detection. In
this section we give an example where combining events with static knowledge may be
beneficial in practice.

The following rule detects a route event, i.e., a sequence of a delivery assignment
event (dlv assgn) followed by a driver’s location event (gpsToRegion).

route() ← dlv assgn(DrvID, Loc1) SEQ gpsToRegion(DrvID, Loc2) WHERE reachable(Loc1, Loc2).

5 Esper is a CEP system: http://esper.codehaus.org/

http://esper.codehaus.org/
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To check whether the route is possible, rules defining reachability between two location
are evaluated.

reachable(X, Y ) ← linked(X, Y ).
reachable(X, Z) ← linked(X, Y ), reachable(Y, Z).

Information about current connections (w.r.t traffic conditions, roads closed due to
maintenance etc.) are encoded through the following links.

linked(L1, L2)
...
linked(Ln−1, Ln)

We see that in order to detect event route, an occurrence of event gpsToRegion needs
to follow an occurrence of dlv assgn. Additionally, the pattern will be matched only if
the two events carry reachable locations (i.e., there exist a semantic relation, approved
through the background knowledge).

Another example demonstrates use of rules for event translation and classification.
Periodically sent drivers’ gps events are translated to city region events (for conve-
nience of store dispatchers).

gpsToRegion(DrvID, Rg) ← gps(DrvID, coord(SNH, Lat, EWH, Long))
WHERE trsf rule(coord(SNH, Lat, EWH, Long), Rg).

Prolog rules are used as background knowledge to classify gps coordinates into city
regions.

trsf rule(coord(′N ′, X,′ W ′, Y ),′ Manhattan′) : −4042 < X, X < 4049, 7358 < Y, Y < 7370, !.
...
trsf rule(coord(′N ′, X,′ W ′, Y ),′ StatenIsland′) : −4034 < X, X < 4040, 7368 < Y, Y < 7399, !.

In this section we arguable demonstrated powerful features of our formalism that go
beyond (non-logic-based) state-of-the-art CEP systems [1,6,14]. In the following, we
explain how complex events are detected using event-driven incremental computation,
a feature that is the main difference of our work in comparison to other (logic-based)
state-of-the-art CEP approaches [13,16,15,7,17].

4 Run-Time Detection of Complex Events

This section describes how complex events, defined in Section 2.2, are computed at
run-time. We explain the pattern matching procedure for a sequence of events. In prin-
ciple the mechanism is similar for other operators too, which we omit due to space
restrictions. For details about all operators, an interested reader is referred to [5].

Let us consider a sequence of events represented by rule (1) (e is detected when an
event a6 is followed by b, and followed by c). We can always represent the pattern (1) as
e ← ((a SEQ b) SEQ c). In general, rules (2) represent two equivalent rules.7 We refer to
this kind of “events coupling” as binarization of events. Effectively, in binarization we

6 More precisely, by “an event a” is meant an instance of the event a.
7 If no parentheses are given, we assume all operators to be left-associative. While in some cases

(e.g., SEQ ) this is irrelevant, other operators such as PAR are not associative.
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introduce two-input intermediate events (goals). For example, now we can rewrite rule
(1) as ie1 ← a SEQ b, and the e ← ie1 SEQ c. Every monitored event (either atomic
or complex), including intermediate events, will be assigned with one or more logic
rules, fired whenever that event occurs. Using the binarization, it is more convenient to
construct event-driven rules for three reasons. First, it is easier to implement an event
operator when events are considered on “two by two” basis. Second, the binarization
increases the possibility for sharing among events and intermediate events, when the
granularity of intermediate patterns is reduced. Third, the binarization eases the man-
agement of rules. Each new use of an event (in a pattern) amounts to appending one or
more rules to the existing rule set. However what is important for the management of
rules, we don’t need to modify existing rules when adding new ones (even when patterns
with negations are added).

e ← a SEQ b SEQ c. (1)

e ← p1 BIN p2 BIN p3... BIN pn.
e ← (((p1 BIN p2) BIN p3)... BIN pn). (2)

In the following, we give more details about assigning rules to each monitored event.
We also sketch an algorithm (using Prolog syntax) for detecting a sequence of events.

Algorithm 4.1 accepts as input a rule referring to a binary sequence ei ← a SEQ b,
and produces event-driven backward chaining rules (i.e. executable rules) for the se-
quence pattern. The binarization step must precede the rule transformation. Rules, pro-
duced by Algorithm 4.1, belong to one of two different classes of rules. We refer to the
first class as to goal inserting rules. The second class corresponds to checking rules.
For example, rule (4) belonging to the first class inserts goal(b( , ), a(T1, T2), e1( , ).
The rule will fire when a occurs, and the meaning of the goal it inserts is as follows:
“an event a has occurred at [T1, T2],8 and we are waiting for b to happen in order to
detect ie1”. Obviously, the goal does not carry information about times for b and ie1,
as we don’t know when they will occur. In general, the second event in a goal always
denotes the event that has just occurred. The role of the first event is to specify what we
are waiting for to detect an event that is on the third position.

Rule (5) belongs to the second class being a checking rule. It checks whether cer-
tain prerequisite goals already exist in the database, in which case it triggers the more
complex event. For example, rule (5) will fire whenever b occurs. The rule checks
whether goal(b(T3, T4), a(T1, T2), ie1) already exists (i.e. a has previously happened),
in which case the rule triggers ie1 by calling ie1(T1, T4). The time occurrence of ie1
(i.e. T1, T4) is defined based on the occurrence of constituting events (i.e. a(T1, T2),
and b(T3, T4), see Section 2.2). Calling ie1(T1, T4), this event is effectively propa-
gated either upward (if it is an intermediate event) or triggered as a finished complex
event.

We see that our backward chaining rules compute goals in a forward chaining man-
ner. The goals are crucial for computation of complex events. They show the current
state of progress toward matching an event pattern. Moreover, they allow for determining

8 Apart from the timestamp, an event may carry other data parameters. They are omitted here
for the sake of readability.
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Algorithm 4.1. Sequence.
Input: event binary goal ie1 ← a SEQ b.

Output: event-driven backward chaining rules for SEQ operator.
Each event binary goal ie1 ← a SEQ b. is converted into: {
a(T1, T2) : −for each(a, 1, [T1, T2]).
a(1, T1, T2) : −assert(goal(b( , ), a(T1, T2), e1( , ))).
b(T3, T4) : −for each(b, 1, [T3, T4]).
b(1, T3, T4) : −goal(b(T3, T4), a(T1, T2), ie1), T2 < T3,

retract(goal(b(T3, T4), a(T1, T2), ie1( , ))), ie1(T1, T4).
}

the “completion state” of any complex event, at any time. For instance, we can query
the current state and get information how much of a certain pattern is currently ful-
filled (e.g. notify me if an event is about to happen; for example it is 90% completed).
Further, goals can enable reasoning over events (e.g. answering which event occurred
before some other event, although we do not know a priori what are explicit relation-
ships between these two; correlating complex events to each other; establishing more
complex constraints between them etc.).

Goals can persist over a period of time. It is worth noting that checking rules can also
delete goals. Once a goal is “consumed”, it is removed from the database9. In this way,
goals are kept persistent as long as (but not longer) than needed.

for each(Pred, N, L) : −((FullPred = ..[Pred, N, L]),
event trigger(FullPred), (N1isN + 1),
for each(Pred, N1, L)) ∨ true.

(3)

a(1, T1, T2) : −assert(goal(b( , ), a(T1, T2), e1( , ))). (4)

b(1, T3, T4) : −goal(b(T3, T4), a(T1, T2), ie1), T2 < T3,
retract(goal(b(T3, T4), a(T1, T2), ie1( , ))), ie1(T1, T4).

(5)

Finally, we see that for each different event type (i.e. a and b in our case) we have one
rule with a for each predicate. It is defined by rule (3). Effectively, it implements a
loop, which for any occurrence of an event goes through each rule specified for that
event (predicate) and fires it. For example, when a occurs, the first rule in the set of
rules from Algorithm 4.1 will fire. This first rule will then loop, invoking all other
rules specified for a (those having a in the rule head). In our case, there is only one
such a rule, namely rule (4). In general case, there may be as many of these rules as
usages of a particular event may be manifold in an event program (i.e. set of all event
patterns).

Memory management. It is worth mentioning that we have implemented two memory
management techniques to prune outdated events, and hence free up memory in our
running implementation (see Section 5). The first technique modifies the binarization

9 Removing “consumed” goals is often needed for space reasons but might be omitted if events
are required in a log for further processing or analyzing.
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step by pushing the time constraints (set by pattern’s time window information; users
are always encouraged to write patterns with certain time constraints). The technique
ensures that time window constraints are checked during the incremental event detec-
tion. Therefore unnecessary intermediary sub-complex events will not be generated if
the time constraints are violated (i.e., time expired). Our second solution for garbage
collection is to prune expired events (goals) by using periodic events, generated by the
system. Similarly to the first technique, rules are defined with time window constraints
and the binarization pushes the constraints to sub-components. This technique how-
ever does not check the constraints at each step during the incremental event detection.
Instead, events (goals) are pruned periodically as system events are triggered10.

5 Implementation and Experimental Results

As a proof of concept, we have provided a prototype implementation of the language.
In this section, we present experimental results of our prototype in comparison to Esper
3.3.011, i.e., we compare a declarative implementation (written in Prolog) versus a pro-
cedural one (written in Java). Esper is an engine primarily relying on state machines,
i.e. a different paradigm that is widely used in CEP systems.

The test cases presented here were carried out on a workstation with Intel Core Quad
CPU Q9400 2,66GHz, 8GB of RAM, running Windows Vista x64. Since our proto-
type automatically compiles the user-defined complex event descriptions into Prolog
rules, we used SWI Prolog version 5.6.6412 and YAP Prolog version 5.1.313. All tested
engines ran in a single dedicated CPU core.

To run tests, we have implemented an event stream generator, which creates time
series data with probabilistic values. Event streams are generated so that every event in
a stream is used for detection of one or more complex events (except the test defined by
rule (7)). The whole output generated from all tests is validated, so we have made sure
that all tested systems produce the same, correct, results.

Figure 3 shows experimental results we obtained for the sequence operator ( SEQ ).
In particular, Figure 3(a) shows the throughput measurements for a pattern that exhibits
a sequence of three events and the join operation on their Id attribute, see rule (1). The
X-axis shows the event throughput achieved by the three different CEP systems: Esper
3.3.0, and our prototype (P) running on SWI and YAP Prolog, denoted as P-SWI and P-
YAP respectively). The Y-axis shows different sizes of event streams, used for detection
of complex events, defined by rule (6). In this test, our system clearly outperforms Esper.
The throughput achieved by YAP engine is more than twice as big as the one produced
by Esper. In Figure 3(b) we have evaluated the sequence which (apart from the join
operation) also contain a selection parameter K (see rule (7)). K varies selectivity of Y
attribute, ranging from 10% till 100%. When 10%-50% of the input events are selected,
Esper shows significant advantage over our system. Hence in the future we need to

10 Frequency of system events can be programmatically scheduled, depending on available sys-
tem memory.

11 Esper: http://esper.codehaus.org
12 SWI Prolog http://www.swi-prolog.org/
13 YAP Prolog: http://www.dcc.fc.up.pt/˜vsc/Yap/.

http://esper.codehaus.org
http://www.swi-prolog.org/
http://www.dcc.fc.up.pt/~vsc/Yap/
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review our implementation so to select events as early as possible. When all events are
taken into account (100% selectivity), our system running on YAP is slightly better than
Esper. We did this test on a stream of 25K events. In Figure 3(c) we extended the tests
(for 100%) to check out whether the system throughput will remain constant for bigger
streams (e.g., 50K-100K).

d(Id, X, Y, Z) : −a(Id, X) SEQ b(Id, Y ) SEQ c(Id, Z). (6)

Figure 4 presents experimental results for negation (NOT) and conjunction ( AND ).
Figure 4(a) shows results obtained by evaluating a negated pattern from rule (8). The
pattern is detected when an instance of a is followed by an occurrence of b with no c
in between the two events. We have generated input event streams with different per-
centage of occurrences of events of type c (i.e., 10%-100%). We see that our prototype
(either run by SWI or YAP) dominates over Esper. The test is computed on a stream
of 25K. Figure 4(b) shows that the throughput does not go down even though we in-
creased the stream size (e.g., 50K-100K). We have tested conjunction operator too. The
pattern is specified by rule (9), and results are presented in Figure 4(c). Esper was faster
in this test. Our algorithm for handling conjunction (see [5]) contains twice as many
rules as the algorithm for sequence (i.e., two events in a conjunct may occur in any
order). As a future work, we will try to improve the implementation of conjunction by
corresponding rules in that algorithm.
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c(Id, X, Y ) : −a(Id, X) SEQ b(Id, Y ) WHERE (Y < K). (7)

d(Id, X, Y ) : −a(Id, X) SEQ b(Id, Y )NOTc(Id, Z). (8)

d(Id, X, Y ) : −a(Id, X) AND b(Id, Y ) AND c(Id, Z). (9)

d(Id, X, Y ) : −a(Id, X) SEQ (b(Id, Y ) OR c(Id, Y )). (10)

tc(X, Y ) : −a(X, Y ).
tc(X, Y ) : −tc(X, Z) SEQ a(Z, Y ). (11)

Figure 5(a) shows results for disjunction, and evaluation of rule (10). In this test our
system running on YAP was the most effective. The throughput for this test is similar
to results for sequence (Figure 3(a)); this means that the presence of a disjunct does not
ruin the performance of the sequence. We have also tested computation of the transi-
tive closure (see rule (11)). The throughput change for different sizes of event streams
are presented in Figure 5(b). Evaluation results were obtained under chronological con-
sumption policy, see [5]. Our system on YAP was the fastest, however the difference
between evaluations running on YAP and SWI was huge. Finally, Figure 5(c) compares
the tested systems w.r.t event plan sharing. We have run an event program containing
the same pattern (similar to rule (6)) multiplying the pattern 1, 8, and 16 times. The
focus was on examining how well the systems can exhibit computation sharing among
patterns. Our system run by YAP was not resistant on increase of pattern rules. However
our prototype executed on SWI was still faster than Esper, see Figure 5(c).

At the end, let us mention that the cost of compilation of an event program (written
in the proposed language) into Prolog rules is minor (typically few micro seconds).

In this section, we have provided measurement results of our running CEP engine.
Even though there is a lot of room for improvements, preliminary results show that
logic-based event processing has the capability to achieve significant performance.
Working 15 months on this project, we have managed to develop a CEP language and a
corresponding system that is competitive to a mature CEP engines such as Esper 3.3.0.
Taking inference capability into account, logic-based CEP goes beyond the state-of-the
art providing a powerful combination of deductive capabilities and temporal features,
while at the same time exhibiting competitive run-time characteristics.

Throughput vs. Workload Change (Disjunction)

0

5

10

15

20

25

30

25K 50K 75K 100K

Event stream size

Th
ro
ug
hp
ut
(1
00
0
x
Ev
en
ts
/S
ec
) Esper 3.3.0 P-SWI P-Yap

Throughput for Transitive Closure

0
10
20
30
40
50
60
70
80
90
100

2500 5000 7500 10000
Event stream size

Th
ro
ug
hp
ut
(1
00
x

Ev
en
ts
/S
ec
)

Esper 3.3.0 P-SWI P-Yap

Computation Sharing (Sequence)

0

5

10

15

20

25

30

1 8 16
Number of queries

Th
ro
ug
hp
ut
(1
00
0
x

Ev
en
ts
/S
ec
)

Esper 3.3.0 P-SWI P-Yap

Fig. 5. (a) Disjunction-Throughput (b) Transitive Closure (c) Plan Sharing
.



56 D. Anicic et al.

6 Conclusions and Future Work

We propose a language for Complex Event Processing based on deductive rules. The
language comes with a clear declarative, formal semantics for complex event patterns.
We have also provided a prototype implementation of the language, which allows for
specification of complex events and their detection at occurrence time. Our approach
clearly substantiates existing event-driven systems with declarative semantics and the
power of knowledge-based event processing.
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Abstract. The Accountability In RDF (AIR) language is an N3-based,
Semantic Web production rule language that supports nested activation
of rules, negation, closed world reasoning, scoped contextualized reason-
ing, and explanation of inferred facts. Each AIR rule has unique identifier
(typically an HTTP URI) that supports reuse of rule. In this paper we
analyze the semantics of AIR language by: i) giving the declarative se-
mantics that support the reasoning algorithm, ii) providing complexity
of AIR inference; and iii) evaluating the expressiveness of language by
encoding Logic Programs of different expressivities in AIR.

1 Introduction

AIR was developed as an extension to N3Logic [4] to support accountable pri-
vacy protection in Web-based information systems [11]. While N3Logic supports
scoped contextualized reasoning (SCR), nested graphs, and built-in functions,
AIR additionally supports rule reuse, rule nesting and explanation of rule-based
inference. AIR rules are encoded in N31, which extends the expressiveness of
RDF with (i) the ability to use graphs as literal values, (ii) universal or ex-
istential quantification of variables in a graph and (iii) built-in functions and
operators represented as RDF properties.

AIR is designed to provide detailed explanations for actions performed by AIR
reasoner. AIR permits natural language descriptions to be added to actions, so
that when an action is performed the description is included in the justification,
by the reasoner. Since justifications can potentially reveal sensitive information
from the knowledge base or expose bias in the rules, AIR also provides ways to
customize explanations, e.g. hiding actions of certain rules.
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AIR rules have unique IDs (IRIs), which enables the rules to be part of the
linked data cloud and reused by other rule definitions. Furthermore, AIR rules
can be nested. These features are natural to model real-world rules and laws
where conditions are often split into sequentially-activated rules, and rules are
frequently reused.

AIR supports rule definitions in which Web resources, such as triple stores
with SPARQL [18] end-points, can be objectively checked for patterns. Some-
times the data has an associated intensional component, defined through rules.
For complete access to the data, AIR supports inclusion of certain inferences
without allowing the rules in the intensional component to be applied to the en-
tire input data. SCR is important for a Web rule languages because information
on the Web is often assumed to be incomplete, and its correctness is subject to
the trustworthiness of the source.

There are many rule languages and rule systems; some are more advanced
while others are at prototypical levels. Liang et. al. give a nice overview of
popular, and often advanced, rule systems in [15]. Examples of rule languages
include N3Logic, NG [20], SILK [8], and SWRL [10], while some rule engines
include Jess2, Jena3, and XSB4. These languages and systems have different
levels of expressiveness and features.

Networked Graphs (NGs) supports the well-founded (WF) negation, XSB sup-
ports Negation as Failure (NAF), and Jess, a production rule system, supports
non-logical negation. SILK supports WF negation, as well as classical negation.
SWRL and Jena do not support negation. In comparison, N3Logic supports
monotonic negation, and AIR supports non-monotonic negation, which is differ-
ent from negation accepted by the systems above.

Rule Interchange Format (RIF) [14] has two major dialects – the Framework
for Logic Dialects (FLD) and the Production Rule Dialect (PRD). Unlike PRD,
actions in AIR cannot modify or remove facts, but they can add new production
rules. FLD is an extensible framework for rule-based languages, and includes the
Basic Logic Dialect (BLD), which corresponds to the definite Horn rules with
equality and standard first-order logic semantics. AIR is neither more nor less
expressive than BLD. Unlike BLD, function symbols are not supported in AIR,
whereas AIR supports negation. SWRL is a function-free rule language limited
to binary and unary predicates, and all its features, barring different-from, are
covered by BLD. AIR is as expressive as SWRL, and also supports negation.

OPS/YES [21] extends the OPS5 [7] production rule system with many fea-
tures including incremental rule addition, which allows matching in the actions.
AIR has a similar notion of rule nesting. Other than AIR, of the systems men-
tioned above, only Jena supports (partially) nesting of rules.

In SPARQL, query patterns can be restricted to selective named graphs, and
as a result NGs naturally supports SCR. Other than N3Logic, AIR, and NGs,
SILK also supports SCR.

2 http://www.jessrules.com/
3 http://jena.sourceforge.net/
4 http://xsb.sourceforge.net/

http://www.jessrules.com/
http://jena.sourceforge.net/
http://xsb.sourceforge.net/
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The Ontonova system [1] provides natural language explanation of proof trees
for conclusions by the Ontobroker5 through meta-inferencing. A similar mech-
anism for generating proofs for defeasible reasoning system DR-DEVICE is de-
scribed in [3]. In contrast, the explanations for conclusions in AIR are generated
by the reasoner itself, and the justification can be declaratively modified by
changing rule definitions.

AIR’s focus on explanation generation for Web reasoning makes it unique.
Other distinguishing features include AIR’s ability to treat AIR rules as part of
linked data and the ability to match patterns against remote triple stores.

While AIR has a production rule syntax, it is limited to assertions of facts,
and addition of rules. Neither can facts be removed from the current state of the
world nor any procedural attachments may be called. Therefore, we can define
its declarative semantics. In this work we define the model-theoretic semantics
of AIR-programs, by defining the translation of an arbitrary AIR-program to a
semantically equivalent stratified Logic Program (LP).

There has been an earlier work on translating Jess to and from Situated
Ordinary LP (SOLP)6and Situated Courteous LP (SCLP) [9], showing interop-
erability of the two rule languages. However, Jess and AIR are very different rule
languages. Jess, unlike AIR, supports procedural attachments and with certain
restrictions on its features has been shown to support (stratified) NAF [9]. Not
only is the notion of nesting of rules absent from Jess, AIR’s negation is different
from NAF. The authors are not aware of any other related works.

The remainder of the paper is organized as follows. Section 2 provides an
overview of the AIR language and reasoning. In section 3, we define a new class
of stratified LP - Positively Stratified Negatively Hierarchical LP (PSNHLP). In
section 4, we define the declarative semantics, and provide the data and program
complexities of AIR programs. In section 5, we show how LP rules and fairly
expressive LPs, such as PSNHLP, can be encoded in AIR. We conclude in section
6 with a summary and discussion on future work.

There is a longer version of the paper [13]7, that includes review of standard
terminologies used in Logic Programming, proofs of all the claims, and detailed
comparison of AIR with other rule systems.

2 AIR Overview

The AIR production rule system has two components- the rule language and
the rule engine (reasoner). The reasoner computes the closure, AIR-closure,
for given facts, in N3, with respect to given AIR-program. An AIR-program
contains one or more AIR-rules. The closure contains the initial facts and all the
facts that can be deduced from it using the given rules. We will review the AIR
language, and introduce the algorithm for computing the closure in sections 2.1
and 2.2. The details about AIR justification are available at [12].
5 http://ontobroker.semanticweb.org/
6 http://sweetrules.projects.semwebcentral.org/sweetrules-overview-

presentation-2005-04-24-v3.pdf
7 http://tw.rpi.edu/proj/tami/AIR_Language_Formalization

http://ontobroker.semanticweb.org/
http://sweetrules.projects.semwebcentral.org/sweetrules-overview-presentation-2005-04-24-v3.pdf
http://sweetrules.projects.semwebcentral.org/sweetrules-overview-presentation-2005-04-24-v3.pdf
http://tw.rpi.edu/proj/tami/AIR_Language_Formalization


Analyzing the AIR Language: A Semantic Web (Production) Rule Language 61

A. RULE SET
# m1 ≥ 0, m2 > 0
@forAll < u var1 >, . . . , < u varm1 > .

<setid> a air:RuleSet ;
air:rule < ruleid1 >, . . . , < ruleidm2 > .

B. RULE
# n1, n2, n3, n4 ≥ 0, n3 + n4 > 0
<ruleid> a air:BeliefRule ; # alternatively air:HiddenRule, air:EllipsedRule

air:if { @forSome < e var1 >, . . . , < e varn1 > .
s1 < p1 > o1 .
. . .
sn2 < pn2 > on2 . } ;

air:then < t action1 >, . . . , < t actionn3 > ;
air:else < e action1 >, . . . , < e actionn4 > .

C. ACTIVATING NEW RULE
<action> air:description (list of var and str) ;

air:rule < ruleid > .

D. ASSERTING A GRAPH PATTERN
# n > 0
<action> air:description (list of var and str) ;

air:assert {s1 < p1 > o1 .
. . .
sn < pn > on . } .

Fig. 1. Template for defining AIR-program

2.1 AIR Language

AIR rules are defined using following properties: air:if, air:then, air:else,
air:description, air:rule and air:assert, according to the AIR abstract
syntax8. A template for declaring an AIR-program is shown in Figure 1. This
template will be used in the later sections. When we refer to s and o related by
p1.p2 we mean that s p1 [ p2 o ] holds.

The rules are of the form air:if condition; air:then then-actions;
air:else else-actions. The condition is specified as a graph pattern, similar
to the Basic Graph Pattern of SPARQL queries, which may be pattern matched
against N3 graphs. Whenever the condition matches the current state of the
world, i.e. the facts known or inferred so far, variables may acquire bindings and
all the then-actions are fired. Otherwise all the else-actions are fired.

The rules are grouped under rule-sets. The rules nested directly under the
RuleSet are referred to as the top rules of the rule-set. A rule (child rule)
nested under another rule (parent rule) via air:then.air:rule is said to be
positively nested and a rule nested via air:else.air:rule is said to be nega-
tively nested. A chain of rules is defined as a sequence of rules such that every
rule barring the first in the chain is nested under the preceding rule. t actionis
and e actionis, in Figure 1, are the then-actions and else-actions, respec-
tively. Together they are referred to as actions. The actions can be annotated
with natural language description through the air:description property. Note
that the description can be defined using variables.
8 http://tw.rpi.edu/proj/tami/AIR_Abstract_Syntax

http://tw.rpi.edu/proj/tami/AIR_Abstract_Syntax
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@prefix air:<http://dig.csail.mit.edu/TAMI/2007/amord/air#>.
@prefix conf:<http://www.conf.org/ontology#>.
@prefix pol:<http://www.conf.org/policies/publication#>.
@prefix:<http://www.conf.org/policies/publication#>.

pol:PubInProcPolicy a air:RuleSet ;
air:rule pol:CheckPub .

@forAll :PUBL .
pol:CheckPub a air:BeliefRule ;

air:if { @forSome :PROC . <http://www.conf.org> conf:hasProceedings :PROC .
:PROC conf:hasPaper :PUBL . } ;

air:then [ air:description (:PUBL " published in this conference") ;
air:rule pol:ChkNonCompl ],

[air:rule pol:CheckAuth], [air:rule pol:CheckExempt].

pol:ChkNonCompl a air:BeliefRule ;
air:if { :PUBL air:compliant-with pol:PubInProcPolicy . } ;
air:else [ air:description ("the publication of " :PUBL " is questionable as

it did not meet any of the two criteria") ;
air:assert { :PUBL air:non-compliant-with pol:PubInProcPolicy } ] .

@forAll :AUTH .
pol:CheckAuth a air:BeliefRule ;

air:if {:PUBL conf:hasAuthor :AUTH.<http://www.conf.org> conf:registeredBy :AUTH.};
air:then [ air:description ("Author," :AUTH " registered for the conference");

air:assert { :PUBL air:compliant-with pol:PubInProcPolicy } ] .

@forAll :REASON .
pol:CheckExempt a air:BeliefRule ;

air:if { @forSome :COCHAIR, :EXEMPTION .
:COCHAIR a conf:Co-Chair . :PUBL conf:hasFirstAuthor :AUTH .
:EXEMPTION a conf:PublicationExemption ; conf:exemptedBy :COCHAIR ;

conf:exemptee :AUTH ; conf:reason :REASON . } ;
air:then [ air:description ("the first author " :AUTH " was exempted by one of the

cochairs, because " :REASON);
air:assert { :PUBL air:compliant-with pol:PubInProcPolicy } ] .

Fig. 2. Example AIR-program, describing the publication policy

The existentially quantified variables may be declared within the condition.
The universally quantified variables are declared outside of the rule. The scope
of existentially quantified variable is the condition where it’s declared, and of
universally quantified variable is any rule chain with the first rule as a top
rule.

The graph pattern asserted in the action is declared using air:assert, and
the nested rule is declared using air:rule property. The asserted graph patterns
cannot contain blank nodes or existentially quantified variables. When the nested
rule is activated, an instance of the rule with known variable bindings substituted
is created. When a rule with an air:else property is activated, its condition
cannot contain unbounded universally quantified variables.

Traditionally, rule languages have been designed assuming that all rules will ap-
ply on all input data. However, this is not desirable for a web rule language [4,17],
and therefore AIR supports SCR. The matching of a condition pattern can be
scoped to web documents, RDF-stores with SPARQL end-points, or to the AIR-
closure of some facts andAIR-programsusing the log:semantics.log:includes,
sparql:queryEndPoints.log:semantics.log:includes and air:justifies
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A. Data Structures
rule = (ruleid, condition, success, then-actions,
else-actions)
then(else)-actions = list of child rules to be
activated and graphs to be asserted
RB = set of active rules
FB = set of facts
SRF = queue of (rule, bindings) tuples
FRF = queue of rules

B. COMP-CLOSURE
INPUT : AIR-program, facts
OUTPUT : Closure of facts w.r.t. the AIR-
program in FB
1. Initialize the data-structures
1.1. FB = facts
1.2. RB = φ
1.3. SRF = empty queue
1.4. FRF = empty queue
1.5. FRF’ = empty queue
2. For each top rule, of all RuleSets in AIR-
program
2.1. add-to-rulebase(R)
3. while SRF and FRF is non empty
3.1. while SRF is non empty
3.1.1. f = SRF.dequeue(), i.e. remove first queue
element and assign it to f
3.1.2. rule-fire(f.rule.then-actions, f.bindings)
3.2. while FRF is non empty
3.2.1. f = FRF.dequeue()
3.2.2. if f.rule.success is false
3.2.2.1. FRF’.enqueue(f)
3.3. while FRF’ is non empty
3.3.1. f = FRF’.dequeue()
3.3.2. rule-fire(f.rule.else-action, {})

C. RULE-FIRE
INPUT : actions, bindings bndgs
OUTPUT : updated RB and FB
1. for action in actions :
1.1. substitute all variables in action which have
bindings with bound values from bndgs
1.2. if action is a rule
1.2.1. add-to-rulebase(action)
1.3. if action is a graph
1.3.1. add-to-factbase(action)

D. ADD-TO-RULEBASE
INPUT : rule
OUTPUT : updated RB and (SRF or FRF)
1. if rule not in RB
1.1. add rule to RB
1.2. R.success = False
1.3. pattern match rule.condition against FB
1.4. If rule.condition matched a sub-graph
1.4.1. R.success = True
1.4.2. for each sub-graph that matched
rule.condition
1.4.2.1. SRF.enqueue((rule, bindings))
1.5. If rule.condition did not match any sub-
graph
1.5.1. FRF.enqueue(rule)

E. ADD-TO-FACTBASE
INPUT : graph (grounded graph pattern)
OUTPUT : updated FB, RB and SRF
1. let graph’ = graph \ FB
2. if graph′ 
= φ
2.1. add triples in graph’ to FB
2.2. for each rule in RB
2.2.1. pattern match rule.condition against FB
2.2.2. If rule.condition matched a sub-graph g
s.t. that g ∩ graph’ 
= φ
2.2.2.1. rule.success = True
2.2.2.2. for each sub-graph g that matches the
rule.condition and g ∩ graph’ 
= φ
2.2.2.2.1. SRF.enqueue((rule, bindings))

Fig. 3.TheCOMP-CLOSURE algorithm, and related data-structures and algorithms

built-ins respectively. Note that by using air:justifies, a subset of rules can
be applied to a subset of data, if desired, without risking the application of those
rules to the entire input data. In addition to the built-ins for scoped reasoning,
AIR supports most of the N3Logic built-ins9 for cryptographic, math, string, list
and time functions.

Figure 2 shows an example AIR-program. It expresses the conference policy:
any paper accepted in the conference should be published in the proceedings only if
one of the authors has presented it in the conference (pol:CheckAuth), or the first
author has received an exemption from one of the co-chairs (pol:CheckExempt).
The former condition is interpreted in practice by checking to see if one of
the co-authors has registered for the conference. It is assumed that the con-
ference activities are logged using the same vocabulary as that used in the

9 http://www.w3.org/2000/10/swap/doc/CwmBuiltins

http://www.w3.org/2000/10/swap/doc/CwmBuiltins
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@prefix colog:<http://www.conf.org/log#>. @prefix conf:<http://www.conf.org/ontology#>.
<http://www.conf.org> conf:hasProceedings colog:proc .
colog:proc conf:hasPaper colog:pub1 .
colog:pub1 conf:hasAuthor colog:auth1 .
<http://www.conf.org> conf:registeredBy colog:auth1 .

Fig. 4. Example of input facts: sub-graph from log of conference activities

rules. pol:CheckPub is the only top rule, and the three rules, pol:ChkNonCompl,
pol:CheckAuth, and pol:CheckExempt are its child rules.

2.2 AIR Reasoning (The Procedural Semantics)

The AIR reasoner employs a RETE [6] based forward-chaining approach to com-
pute the AIR-closure. Figure 3 describes the COMP-CLOSURE algorithm used
for computing the AIR-closure. The data structures and algorithms described here
are abstractions of the actual implementation [12]. For instance FB (Fact Base),
which is shown to be a set of facts, is actually an efficiently indexed triple store, and
RB (RulesBase), the set of active rules, is compiled into theRETE framework. The
abstraction is sufficient for analyzing the language.

One cycle of step 3 of COMP-CLOSURE is referred to as a stage, i.e. steps 3.1
to 3.3 (3.3.1 and 3.3.2 included) constitute one stage of the algorithm. Furthermore,
step 3.1 is referred to as a positive stage, denoted by stage+ and steps 3.2 and 3.3
constitute a negative stage, denoted by stage−. We will be using stagei, stage+

i

and stage−i to refer to ith stage, stage+ and stage−, respectively.
In any given stage, successful rules are given priority over failed rules, and their

then-actions are effected in stage+ before failed rules fire. When all successful
rules have fired, the world is temporarily closed and the else-actions of all the
failed rules are fired in stage− with the belief that the conditions of all the failed
rules are false. AIR reasoning enters the next stage once the failed rules have all
fired. The COMP-CLOSURE algorithm computes the next stage until the fix-
point is reached, i.e. when both the SRF and FRF are empty.

Consider the input facts in Figure 4 and the example AIR-program
from Figure 2. The AIR-closure contains one additional triple colog:pub1
air:compliant-with pol:PubInProcPolicy. In order to compute the clo-
sure, FB is initialized by triples in the input and pol:CheckPub is added
to the RB. When the rule is added, its condition matches and it is added
to the SRF with pol:PUBL bound to colog:pub1. When it fires, the three
child rules are added to the RB. Only pol:CheckAuth succeeds and other
rules are added to the FRF. The pol:CheckAuth is added to the SRF with
:AUTH bound to colog:auth1. It fires next, and asserts the triple colog:publ1
air:compliant-with pol:PubInProcPolicy. When that triple is added, it
satisfies the pol:ChkNonCompl’s condition and the rule’s success attribute is
set to true. SRF is now empty and pol:ChkNonCompl is removed from FRF.
pol:CheckExempt is then added to FRF. However, it doesn’t have an air:else
property. The fixpoint is reached at the end of first stage.
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3 Positively Stratified Negatively Hierarchical Logic
Programs

We will review definitions of Ground(R), the TP operator and the perfect model
semantics for stratified LPs, before defining PSNHLPs. Ground(R) refers to the
set of all possible ground instances of R, with respect to given universe of constant
symbols U , where R is a rule or an LP. TP is the one-step induction operator [2]
associated with an LP P , defined by :

TP (I) = { A0 | P contains a rule whose instantiation is A0 ← A1, . . . , An

such that {A1, . . . , An} ⊆ I holds }

where I is the given set of atoms that are true. T ω
P is the fix-point operator, i.e. TP

is applied repeatedly until the fix-point is reached.
The semantics of a (locally) stratified LP, P , is defined in terms of its perfect

model, which we refer to by PM(P ). P entails a ground atom A iff A belongs to
PM(P ). Let P1 ∪ . . . ∪ Pn be the (local) stratification of P (Ground(P )). We can
choose a stratification and assignment of levels to predicates such that the rule
A ← L1, . . . , Lm in P is in Pi iff the level assigned to A is i, and we will assume
that to be the case in rest of the paper. PM(P ) = Mn [19], which is defined by :

M1 = T ω
P1

(φ), M2 = T ω
P2

(M1), . . ., Mn = T ω
Pn

(Mn−1)

When a rule contains a negative literal in the body, we will refer it as negative
rule. All other rules are thus positive rules. An LP P is PSNHLP if there is an
assignment of ordinal levels to predicates such that whenever a predicate appears
in the body (negatively or positively) of a negative rule, the predicate in the head
of that rule is of strictly higher level, and whenever a predicate appears in the body
of a positive rule, the predicate in the head has at least that level. Similarly, an LP
P is locally PSNHLP if such an assignment of ordinal levels is possible over ground
atoms for Ground(P ). Every hierarchical LP is PSNHLP, and every PSNHLP is
stratified LP. This doesn’t hold in opposite direction.

Let P1 ∪ . . . ∪ Pn be the stratification of a PSNHLP P , and let P+
i ∪ P−

i is the
partition of Pi such that a rule from Pi is in P+

i if it is positive and in P−
i otherwise.

Then, the PSNH-stratification of P is defined as P = P+
1 ∪P−

1 ∪ . . .∪P+
n ∪P−

n .
The predicates in the body of a rule in P−

i have levels strictly smaller than i. The
PM(P) = Mn, where Mn is defined by:

M1 = T ω
P1

(φ),
M ′

2 = TP−
2

(M1), M2 = T ω
P+

2
(M ′

2),
. . .
M ′

n = TP−
n

(Mn−1), Mn = T ω
P+

n
(M ′

n)

such that M1 = T ω
P1

(φ), and Mi = T ω
Pi

(Mi−1) for i > 1. The former holds because
P1 = P+

1 (i.e. P−
1 = φ). The latter follows from following claim.

Claim 1: T ω
Pi

(Mi−1) = T ω
P+

i

(TP−
i

(Mi−1))
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4 Declarative Semantics

The declarative semantics of AIR-program can be defined in terms of a semanti-
cally equivalent PSNHLP. We will first define τ , that translates AIR-program Δ
to LP ℘. We will then show that ℘ is PSNHLP and that the AIR-closure of Δ and
input facts κ, mapped as ground facts in ℘, is same as PM(℘). ℘ contains rules for
predicates t, ts, active rule and cond, with following meanings :

– t(s, p, o) represents N3 triple {s p o}.
– ts(s, p, o, c, n) represents trueN3 triple {s p o}, in the nth stage of reasoning,

in context c.
– active rule(ruleid, ?v1, . . ., ?vm, c, n) represents active AIR-rule,

ruleid, in the nth stage, in context c. The exact instance of the rule is de-
termined by the partial bindings of ?vi’s. ?vi’s are the universally quantified
variables used in the chain of rules to which ruleid belongs. For example, the
rule pol:CheckAuth has two variables ?PUBL and ?AUTH.
If, for example, active rule(pol:CheckAuth, colog:pub1, ?AUTH, c, 1)
atom is true, then an instance of the rule pol:CheckAuth is active at the 1st

stage with ?PUBL bound to colog:pub1 in the context c. Here ?AUTH is un-
bound and can be bound by any constant from U.

– cond(ruleid, ?cv1, . . ., ?cvm, c, n) represents a satisfied condition of
the AIR-rule, ruleid, in the nth stage, in context c. The ?cvi’s are univer-
sally or existentially quantified variables occurring in the rule’s condition. The
VAR IN COND function returns all these variables for given rule. If, for example,
cond(pol:CheckAuth, colog:pub1, colog:auth1, c, 1) atom is true then
the condition of pol:CheckAuth rule is true in 1st stage, in context c, when
?PUBL and ?AUTH are bound to colog:pub1 and colog:auth1 respectively.

– succ (successor) and = predicates are used with their usual meanings.

The context may be defined by a collection of N3 and/or AIR-program sources,
and is identified with an ID. We must use unique predicate symbols to distinguish
active rule and cond predicates for same rule in different rule chains.

τ(Δ) is defined by conjunction of the rules returned from TRANS(setid) and
TRANS(ruleid), for every rule set and production rule in Δ, respectively. Figure 5
gives the definition of TRANS(ele, ?n) function, for ele’s in a built-in-free AIR-
program. The eles are described as per the template in Figure 1, and ?n is optional
argument.

The MAP(val) function maps val to ?val or val depending on whether val is
declared as a variable or not. UB is the upper bound on number of stages required
for computing the fix-point for given AIR-program and initial facts. UB is finite
because assertions can use only fixed IRIs (i.e. no blank nodes are allowed in the
asserted graph), and every fact and rule instance is asserted at most once. UB is
polynomial in the size of input facts and the maximum depth of nesting in input
AIR-program [13]. ?n≤ UB ensures that the closure for ℘ is finite. Additional rules
that hold in every ℘ are shown in Figure 6.

The triples in κ are translated as facts into ℘, in translation step (TS) 8. The
triples asserted and the rules activated when the rule condition is satisfied are
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A. TRANS(setid), where setid is a RULE-SET
1. ruleset(setid, c) .
2. for i in 1 to m2

active rule(ruleidi, ?u var1, . . ., ?u varm1 , ?c, 1)← ruleset(setid, ?c) .
B. TRANS(ruleid), where ruleid is a RULE
3. cond(ruleid, VAR IN COND(ruleid), ?c, ?n)← ts(MAP(s1), MAP(p1), MAP(o1),

?c, ?n), . . ., ts(MAP(sn2 ), MAP(pn2), MAP(on2), ?c, ?n), ?n ≤ UB .
4. for i in 1 to n3

TRANS(t actioni, ?n)← active rule(ruleid, ?u var1, . . ., ?u varm1 , ?c, ?n),
cond(ruleid, VAR IN COND(ruleid), ?c, ?n), ?n ≤ UB .

5. for i in 1 to n4

TRANS(e actioni, ?m)← active rule(ruleid, ?u var1, . . ., ?u varm1 , ?c, ?n),
not(cond(ruleid, VAR IN COND(ruleid), ?c, ?n)), succ(?m, ?n), ?n≤UB.

C. TRANS(action, ?n), where action is ACTIVATING NEW RULE
6. active rule(ruleid, ?u var1, . . ., ?u varm1 , ?c, ?n)

D. TRANS(action, ?n), where action is ASSERTING A GRAPH PATTERN
7. ts(MAP(s1),MAP(p1),MAP(o1), ?c, ?n), . . ., ts(MAP(sn),MAP(pn),MAP(on),?c,?n)

E. TRANS({s p o}), where {s p o} is INPUT FACT
8. ts(s, p, o, c, 1) .

Fig. 5. TRANS(ele, ?n) definition, where ele is defined according to the template in
Figure 1

true from the same stage (TS-4), whereas they are true only from next stage
when the rule condition failed (TS-5). The definition in Figure 5 can be extended
to handle the built-ins for SCR, namely air:justifies, log:includes, and
log:notIncludes [13].

For example, TRANS(pol:ChkNonCompl) yields following rules :

– ts(?PUBL , air:non-compliant-with, pol:PubInProcPolicy, ?c, ?m)←
active rule(pol:ChkNonCompl, ?PUBL, ?c, ?m), succ(?n, ?m), ?n ≤ UB,
not(cond(pol:ChkNonCompl, ?PUBL, ?c, ?n)) .

– cond(pol:ChkNonCompl, ?PUBL, ?c, ?n)←
ts(?PUBL,air:compliant-with, pol:PubInProcPolicy, ?c, ?n) .

Claim 2: ℘ is locally PSNHLP.
Proof. Let the assignment of levels to ground atoms for all predicates except t,
succ, and = be equal to the value of their last term. For example ts(s, p, o, c,
n) is assigned level n. Let predicates t, succ, and = be assigned levels UB, 1, and 1,
respectively. This assignment gives a local PSNH-stratification of ℘. ��
We can replace the atom ts(s, p, o, c, n) by tsn(s, p, o, c). We can do so
for other atoms with ts, active rule and cond predicate symbols, by introducing
tsn , active rulen and condn predicate symbols, for all n ≤ UB. Although the
TS-9, TS-10 and TS-11 rules will expand O(UB2) times and the rest O(UB) times,
changes to TSs in Figures 5 and 6 are straightforward. Then the resulting ℘, say
℘′, is a PSNHLP as against being just locally PSNHLP.



68 A. Khandelwal et al.

9. active rule(?x1,. . .,?xm, ?c, ?n)←active rule(?x1,. . .,?xm, ?c,?m), ?m≤?n, ?n≤UB.
10. ts(?s, ?p, ?o, ?c, ?n)← ts(?s, ?p, ?o, ?c, ?m), ?m ≤ ?n, ?n ≤ UB .
11. t(?s, ?p, ?o)← ts(?s, ?p, ?o, c, ?n), ?n ≤ UB .

Fig. 6. Additional rules that hold in every ℘

Let, Ground(℘) = ℘+
1 ∪ ℘−

1 ∪ . . . ∪℘+
UB ∪℘−

UB, be the local PSNH-stratification
of ℘. We can show semantic equivalence, denoted by ∼, between the steps for
computation of PM(℘) and the AIR-closure of Δ and κ. T ∼ s is used to denote
the direct correspondence between extensions of predicates active rule and ts,
inferred after the application of T operator during the computation of PM(℘),
and the rules activated and triples asserted after completion of stage s of COMP-

CLOSURE execution.

Claim 3: T ω
℘+

1
∼ stage+

1 . For i > 1, T℘−
i

∼ stage−i−1 and T ω
℘+

i

∼ stage+
i .

Let ℵ be the N3 graph obtained by taking the N3 representation of extensions of
the predicate t in PM(℘).

Claim 4: The AIR-closure of Δ and κ is same as ℵ.

Proof. From claim 3 it follows that for all i ≥ 1, Mi ∩ ℵ and the triples in FB after
the completion of stage+

i are the same. Since the fix-point is reached by the end of
UBth stage, MUB ∩ ℵ and the triples in the AIR-closure of Δ and κ are the same.
However, PM(℘) = MUB . ��
The above results (claims 3 and 4) hold for ℘′ as well [13]. We have seen that ℘
can be viewed as a stratified LP (PSNHLP), and we have shown above the direct
correspondence between the steps for computing PM(℘) (equivalently PM(℘′))
and those for computing AIR-closure of Δ and κ. Therefore, complexity results
for AIR follow from those for stratified programs [5]. The data complexity is the
complexity of computing the model when the rules-base is fixed and the fact-base
is an input. The program complexity is the complexity of computing the model
when the fact-base is fixed but the rules-base is an input.

Claim 5: AIR-closure computation is PTime-complete in data-complexity
and ExpTime-complete in program-complexity.

5 AIR and Logic Programming

Logic programming is a very popular declarative method of knowledge represen-
tation and programming. Like LPs, we define rules in AIR. However, AIR rules
have different semantics from the LP rules, and they can be nested under one an-
other. Different nesting of the same rules may yield (semantically) different AIR
programs. In this section we investigate logic programming through AIR.

An LP rule is said to be safe if every variable occurring in the head of the rule
or in a negative literal in the body also occurs in a positive literal in the body. We
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@forAll :X, :Y .
:r a air:BeliefRule ;

air:if { :X :conn :Y .} ;
air:then [ air:rule :b1 ], [air:rule :b2 ] ;
air:then [ air:rule :rAux ] .

:rAux a air:BeliefRule ;
air:if { :X :aux :Y } ;
air:else [ air:assert { :X :good-conn :Y . } ] .

:b1 a air:BeliefRule ;
air:if { :X a :Infected . } ;
air:then [ air:assert { :X :aux :Y } ] .

:b2 a air:BeliefRule ;
air:if { :Y a :Infected . } ;
air:then [ air:assert { :X :aux :Y } ] .

Fig. 7. Rewriting an example LP rule, in AIR : Connection between X and Y is
good if both X and Y are not infected

can encode any safe LP rule A ← A1, . . . , An, not(B1), . . ., not(Bm) in AIR
by rewriting it as:

A ← A1, . . . , An, not(Aux) .
Aux ← B1 .
. . .
Aux ← Bm .

Aux is a new predicate and its arguments are all the variable terms that appear in
the literals of the rule’s body. For example following rule : good-conn(?X, ?Y)←
conn(?X, ?Y), not(infected(?X)), not(infected(?Y))., can be expressed as
AIR rule as shown in Figure 7. Note that the predicate symbol S is translated to :S,
and variable symbol ?S is translated to :S, as quantified by an @forAll directive.
We have translated binary predicates to property assertions, and the unary pred-
icate to type assertion. Higher arity N-ary predicate p(t1, . . . , tn) can be encoded
in N3 as {( t1 . . . tn) p true}.

The nesting of rules impacts the order in which the rules are fired, and they may
be nested properly to get the desired semantics. Since for Positive LPs (PLPs) the
order in which the rules fire does not matter, the rules in PLP can be translated
into AIR and included as top rules in an AIR program to get a semantically equiv-
alent AIR program. When a logic language (e.g., LP) can be encoded in AIR with
unchanged semantics, we will say that it can be losslessly rewritten into AIR.

We have seen that PLPs can be losslessly rewritten into AIR. OWL 2 RL10

inference rules are all positive, and therefore they can be encoded in AIR and used
concurrently with other AIR rules. Next we show that PSNHLPs can be losslessly
rewritten into AIR.

Claim 6: PSNHLPs can be losslessly rewritten into AIR.
Proof.LetP = P+

1 ∪P−
1 ∪. . .∪P+

n ∪P−
n be the PSNH-stratification of the PSNHLP

P , and each P−
i has n−

i rules and P+
i has n+

i rules. Let the kth rule in stratums P+
i

and P−
i be encoded in AIR with IDs :r+

ik
and :r−ik

respectively. Then the nesting
of rules shown in Figure 8 yields a lossless translation of P . This nesting can be
generated programmatically for any PSNHLP P . owl:Thing rdfs:subClassOf
owl:Nothing is a tautologically false statement.

10 http://www.w3.org/TR/owl2-profiles/#OWL_2_RL

http://www.w3.org/TR/owl2-profiles/#OWL_2_RL
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:rs a air:RuleSet ;
air:rule : r+

11
, . . . , : r+

1n1
;

air:rule : r−
21

, . . . , : r−
2

n
−
2

;

GET RULE PROPERTY(2) .

GET RULE PROPERTY(j) function is defined recursively as:
when j < n:

air:rule [
air:if { owl:Thing rdfs:subClassOf owl:Nothing . } ;
air:else [ air:rule : r+

j1
], . . ., [ air:rule : r+

j
n
+
j

] ;

air:else [ air:rule : r−
j+11

], . . ., [ air:rule : r−
j+1

n
−
j+1

] ;

air:else [ GET RULE PROPERTY(j + 1) ] ]
when j = n :

air:rule [
air:if { owl:Thing rdfs:subClassOf owl:Nothing . } ;
air:else [ air:rule : r+

j1
], . . ., [ air:rule : r+

j
n
+
j

] ]

Fig. 8. Rewriting PSNHLP in AIR

The rules in P−
i+1 and P+

i are activated after stagei−1. Since all the ground facts
for predicates of level less than i + 1 in PM(P ) are inferred before stage−i , rules in
P−

i+1 do not fire incorrectly in stage−i . ��
Since non-recursive datalogs are PSNHLPs, they can be losslessly rewritten into
AIR. The same can be said about SPARQL queries.

Claim 7: SPARQL SELECT and CONSTRUCT queries, without the query
modifiers like ORDER BY and LIMIT, can be losslessly rewritten into AIR, and
executed by the AIR reasoner.

Proof sketch.SPARQL SELECT and CONSTRUCTqueries, without the querymod-
ifiers, can be translated to a non-recursive Datalog, ΠQ, with NAF under the an-
swer set semantics [16].Using claim 6we can say thatΠQ canbe losslessly rewritten
into AIR. ��
We have seen that PSNHLPs can be losslessly rewritten into AIR. However, more
general stratified LPs cannot be translated into AIR. For example, the following
rules cannot be losslessly rewritten into AIR for arbitrary facts of predicates P, Q,
and S:

P(x, z) ← P(x, y), P(y, z), not(Q(x, z)) .
R(x, y) ← S(x, y), not(P(x, y)) .

However, that can be resolved through a simple extension of AIR, whereby
RuleSets can be nested – :rs1 air:hasHigherPriority :rs2 – with the fol-
lowing meaning: the rules nested under RuleSet :rs2 are activated only after
the fixpoint is reached for the rules under :rs1. Note that the rules under :rs1



Analyzing the AIR Language: A Semantic Web (Production) Rule Language 71

remain active. The corresponding change in reasoning algorithm is straightfor-
ward. This extension has some similarity with salience in Jess.

Claim 8: Stratified LPs can be losslessly rewritten into AIR extended with the
nesting of RuleSets.

6 Conclusions and Future Work

In this paper we have analyzed AIR, a rule language for the Semantic Web. AIR
supports non-monotonic negation, and we have provided a declarative semantics
that supports this negation by translating AIR programs to a specialized class of
(locally) stratified LPs – PSNHLPs. While AIR does not support well-founded
negation and is less expressive than other rule systems, its ability to construct ex-
planations, declaratively manipulate them, and its support for scoped contextual-
ized reasoning (SCR) make it sufficiently unique and useful for Web reasoning. As
AIR is a language for the Web, SCR is especially relevant. AIR also allows for the
nesting of rules; this allows for the segmentation of the conditions of a rule so that
only part of them are revealed in the justifications. We have shown that nesting can
also be leveraged to order rules and therefore encode fairly expressive LPs such as
PSNHLP. Stratified LPs can be encoded in AIR with an incremental modification
to AIR. Finally, we have shown that SPARQL queries may be executed by the AIR
reasoner.

We plan to investigate ways to increase the expressiveness of AIR in the future.
This is a twofold task. We have shown that PSNHLP can be encoded in AIR, but
do not think that this is the most expressive LP that can be expressed in AIR. It
may alsobepossible to investigate an alternativeAIRreasoning algorithm inwhich
actions that fire under the assumption of a failed condition are retracted when the
rule’s conditions match later on. Furthermore, with a well-defined LP translation
of AIR program, it is possible to develop goal-based query answering mechanisms
for these programs. We are also interested in investigating contextualization more
closely.
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Abstract. Role-based access control is a standard mechanism in information
systems. Based on the role a user has, certain information is kept from the user
even if requested. For ontologies representing knowledge, deciding what can be
told to a user without revealing secrets is more difficult as the user might be able
to infer secret knowledge using logical reasoning. In this paper, we present two
approaches to solving this problem: query rewriting vs. axiom filtering, and show
that while both approaches prevent the unveiling of secret knowledge, axiom fil-
tering is more complete in the sense that it does not suppress knowledge the user
is allowed to see while this happens frequently in query rewriting. Axiom filtering
requires that each axiom carries a label representing its access level. We present
methods to find an optimal axiom labeling to enforce query-based access restric-
tions and report experiments on real world data showing that a significant number
of results are retained using the axiom filtering method.

1 Motivation

Access control is an essential operation in standard information systems to prevent
unauthorized access and use of information from the system. In a traditional infor-
mation system, where all the available information is stored explicitly, it is possible
to simply label information items with the roles, a user must have, to be allowed to
receive this particular information. With knowledge represented in ontologies, this ap-
proach does not work anymore, because new knowledge can be derived, leading to
the ’inference problem’ [5]: avoiding a situation where a user can infer knowledge he
should not have access to using knowledge he is allowed to access. To make the problem
well defined, we assume that the user has the same ability to derive knowledge as the
system.

In this paper, we compare two existing proposals for solving the inference problem:
query rewriting vs. axiom filtering. For both, we start from an access restriction given in
the form of a query, whose result is a set of axioms that shall be protected. Such a query
could, for example, address knowledge about a concept and all subconcepts in order to
restrict knowledge along the subsumption hierarchy comparable to information systems
restricting access to files in a directory and all subdirectories. Conflict resolution mech-
anism might be necessary then since a concept might have multiple superconcepts. The
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query rewriting approach proposed in [4] is based on the idea of rewriting user queries
based on the role a user has in such a way that the result to the rewritten query only
returns knowledge the user is allowed to see. The axiom filtering approach proposed in
[1] assumes an a priori labeling of axioms in the ontology to consistently derive labels
for implicit consequences. Axioms and consequences are delivered based on a compar-
ison of user label and axiom label. Our assessment of the two approaches concludes
that axiom filtering is independent of the ontology language and more complete in the
sense that it does not suppress knowledge the user is allowed to see.

However axiom filtering requires an a priori labeling of axioms and it is not clear
from previous work how to create an access labeling from query-based access restric-
tions. Our main contributions are (1) algorithms to repair a given axiom labeling in an
optimal way so that a query-based access restriction is enforced to explicit and implicit
knowledge, (2) conflict resolution strategies for cases where query-based access restric-
tions contain conflicts, (3) empirical results for our algorithms with practical ontologies.
Our main result is that axiom filtering provides higher availability of knowledge com-
pared to query rewriting.

2 Preliminaries

2.1 Ontologies

Ontologies are formal descriptions of the terminology used in an application domain.
A number of logical languages have been proposed for representing ontologies. In this
paper, we only consider sublanguages of the Web Ontology Language (OWL) that can
be translated to Description Logics (DL).

Formally, an ontology O is a finite set, whose elements are called axioms, such that
every subset of an ontology is itself an ontology. If O′ ⊆ O and O is an ontology,
then O′ is called a sub-ontology of O. One can distinguish ABox axioms A and TBox
axioms T and let O = T ∪ A. An ontology language specifies which sets of axioms
are admitted as ontologies. For instance, given a Description Logic L (e.g., the DL
SHOIN (D) underlying OWL DL), an ontology is a finite set of general concept in-
clusion axioms (GCIs) of the form C � D, concept assertion axioms of the form C(a)
and role assertion axioms of the form R(a, b) for L-concept descriptions C, D, role R
and individuals a, b. In order not to mix user roles and DL roles, we stick to the OWL
lingo and call DL roles from now on properties. The signature sig(O) of an ontology
is the set of all concept and role names occurring in its axioms. Given an ontology lan-
guage, a monotone consequence relation |= is a binary relation between ontologies O
and consequences c such that if O |= c, then for every ontology O′ ⊇ O it holds that
O′ |= c. If O |= c, we say that c follows from O or that O entails c. Often, a conse-
quence c already follows from a subset S ⊆ O of the axioms in the ontology. We call
such a subset an explanation for O |= c if there is no subset S′ ⊂ S such that S′ |= c.
Note that for one consequence there might be multiple explanations.

A query to an ontology is a conjunction Q = A1, · · · , An of OWL axioms over
sig(O), but not necessarily from O, containing variables. For a concrete definition of
the form of axioms see [12]. The set of variables occurring in Q is denoted as var(Q).
Let ind(O) be the set of individuals in O, then the result of a query is the set of all
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mappings μ : var(Q) → ind(O) assigning individuals from O to variables in Q.
An answer μ(Q) to a query Q is an instantiation of all variables in the query, so that
O |= μ(Q) [12]. Note that there might be several possible μ for one query.

2.2 Access Control

Access control systems enable the regulation of access to protected resources (i.e. ob-
jects) in distributed systems by subjects such as users or system processes. They can be
categorized in discretionary access control (DAC), mandatory access control (MAC),
and role-based access control (RBAC) models. In DAC-based systems, the permissions
to access an object are defined by its owner. In MAC models, the system determines the
access to objects either by utilizing access rules or lattices for assigning permissions
to subjects. It thus removes the ability of the users to control access to their resources.
RBAC systems finally remove the explicit use of subjects within access rules or lattices
and replace them with roles, which form a logical group of a number of subjects. In
fact, permissions are assigned to roles and the subjects are assigned members of a num-
ber of roles. Thus changes of single subjects do not necessarily have consequences in
the actual access control policies. On the most fine-grained level, permissions can be
defined on the level of axioms, or on the level of query responses.

2.3 Access Restrictions as Queries

Assume we want customers and employees to query knowledge from a product ontol-
ogy. From Example 1, employees have full access and we do not want customers to
see if any product gets an increased price soon. This restriction could be defined by
enumerating all query responses except the price increase as permissions and assigning
them to the respective user role. There are two problems with this approach. First of
all, the price increase can still be inferred if the axioms of O can be queried. Further,
enumerating all query responses, however, is not feasible in practice and asks for more
efficient ways of specifying these restrictions, e.g. by means of a query.

Example 1. Let O be an ontology from a marketplace in the Semantic Web with the
following axioms

a1 : EUecoService � HighperformanceService(ecoCalculatorV1 )
a2 : HighperformanceService

� ServiceWithLowCustomerNr � LowProfitService
a3 : EUecoService � ServiceWithLowCustomerNr � LowProfitService
a4 : ServiceWithLowCustomerNr � ServiceWithComingPriceIncrease
a5 : LowProfitService � ServiceWithComingPriceIncrease

The consequence c1 : ServiceWithComingPriceIncrease(ecoCalculatorV1 ) follows
from each of the explanations {a1, a2, a4}, {a1, a2, a5}, {a1, a3, a4}, {a1, a3, a5}. The
consequence c2 : LowProfitService(ecoCalculatorV1 ) follows from each of the
explanations {a1, a2}, {a1, a3}. Three more instance assertions of individual
ecoCalculatorV1 to the concept names EUecoService,HighperformanceService,
ServiceWithLowCustomerNr are consequences of O.
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A way is to define permissions intentionally in terms of queries over the signature
of the ontology. More specifically, we can describe facts that should not be accessible
by a certain role in terms of a set of axioms - the same kinds of axioms used in queries
- whose instantiations should not be derivable from query results. In the case of the
example above, we could formulate the following access restriction for customers:

ServiceWithComingPriceIncrease(x )

stating that for no instantiation of the variable x it should be possible to infer that it is
an instance of ServiceWithComingPriceIncrease .

3 Enforcing Access Restrictions

There are different ways for implementing access control for ontological knowledge.
While query rewriting extends a user’s query to include all access restrictions, axiom
filtering only allows a subset of the ontology to be used to answer the unchanged query.

3.1 Access Control by Query Rewriting

One option for enforcing access restrictions is by means of query rewriting. This ap-
proach has been proposed in [4] as a suitable way for enforcing access restrictions in
the context of SPARQL queries, while the TBox is assumed to be completely public.
Similar approaches are also allowing to hide TBox parts [7], or to define not the re-
strictions but the permissions by a query [3]. The idea in [4] is to automatically add
filter conditions to the query that suppress such answers the user is not supposed to see.
Given a Query Q and a set of access restrictions {AR1, · · · , ARn} that apply to the
current user, the query can be rewritten to a new query that is defined as:

Q ∧ ¬AR1 ∧ · · · ∧ ¬ARn

Where the junction of two queries Q1∧Q2 is the junction of all contained query axioms∧
q∈Q1

q ∧
∧

q∈Q2
q [12]. This way of rewriting the query based on the access restric-

tions of the individual users effectively prevents the system from giving away restricted
knowledge. In particular, using query rewriting, the effective answer to a query is

{μ(Q)|O |= μ(Q ∧ ¬AR1 ∧ · · · ∧ ¬ARn)}

It however comes with a problem: it hides more knowledge than necessary. In par-
ticular, in the example above where we want to hide from customers that some
product is increased in price, the query rewriting approach hides too much knowl-
edge. If a customer for instance asks the system for all high performance ser-
vices, thus Q = HighperformanceService(x ), this query will be rewritten to
HighperformanceService(x ) ∧ ¬ServiceWithComingPriceIncrease(x ). This query
will only return high performance services which will not be increased in price. This is
unfortunate, because the knowledge that ecoCalculatorV1 is a high performance ser-
vice was not supposed to be hidden. Similarly querying for instances of the remaining
four concept names in sig(O) are filtered, resulting in five queries without an answer.
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3.2 Access Control by Axiom Filtering

A framework to control access to an ontology’s axioms is introduced in [1]. In contrast
to the query rewriting approach above, the TBox is not assumed to be completely public.
The idea is to label each axiom with a certain access restriction. Users are labeled with
the restrictions they are allowed to see. The approach is to use a labeling lattice (L, ≤);
i. e. a set L of labels together with a partial order ≤ such that every finite set of labels
has a join (⊕, supremum, least upper bound) and a meet (⊗, infimum, greatest lower
bound) w.r.t. ≤. Every axiom a in the ontology O is assumed to have a label lab(a) ∈ L,
and each user receives also a label � ∈ L. The sub-ontology to which a user with label
� has access is defined as

O≥� := {a ∈ O | lab(a) ≥ �}.

The sub-ontologies O
≥�, O
≤� etc. can be defined analogously. Applied to our sce-
nario with the user roles customer (�C) and employee (�E), let the labeling lattice
be (L, ≤) with L = {�C , �E} and ≤= {(�E , �C)}. Let the labeling function lab
assign label �C to axioms a1, a2, a3 and �E to axioms a4, a5. Employees can see
O≥�E = {a1, a2, a3, a4, a5}, i.e. the complete ontology. Customers can see O≥�C =
{a1, a2, a3}. Intuitively, the access restriction to a consequence, called boundary, should
be based on the access restriction of its implying axioms. The access restriction for a
consequence with multiple explanations should be the least restrictive of all explana-
tions and within one explanation the most restrictive of all axioms. Formally, a con-
sequence c with n explanations S1, . . . , Sn has boundary

⊕n
i=1

⊗
a∈Si

lab(a). In our
example, each of the four explanations for c1 has label (�C ⊗ �C ⊗ �E) = �E , thus
the boundary is �E , i.e. employees can see it but customers not. Consequence c2 has
boundary �C , i.e. employees and customers can see it. Apart from c1, c2, instance rela-
tionships to the three remaining concepts in sig(O) have boundary �C as can be verified
easily. A customer querying for instances of the five concept names in the ontology will
get no answer for Q = ServiceWithComingPriceIncrease(x ) but will get an answer
for the four remaining queries. So axiom filtering provides 4/5 answers, while query
rewriting provides 0/5 answers.

3.3 Discussion

As we have seen, query rewriting and axiom filtering are approaches of ensuring that
no classified knowledge is given to users that do not have the permission to see it. Both
approaches do neither require to track the history of queries nor disallow query askers
of the same user role to share any knowledge. We have seen that query rewriting is
suboptimal with respect to availability in the sense of preserving maximal access to
non-restricted knowledge. Axiom filtering provides a higher availability and is more
general since it is independent of the concrete ontology language which makes the ap-
proach preferable in many situations. However it requires an a priori axiom labeling,
and it is not clear how to enforce query-based access restrictions. Previous work on
labeled ontologies focused on computing a consequence’s label based on axiom labels
[1] and on repairing the axiom labeling in order to determine one consequence’s la-
bel [9,10]. However, access restrictions in the form of queries might require changing
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Fig. 1. Lattice (L,≤) with 4 user labels and an assignment of 5 axioms to labels

labels of multiple consequences simultaneously. Such a mechanism will be presented
in the next section. Our main quality criterion for the algorithms is availability. In the
empirical evaluation we measure how many knowledge is additionally accessible with
axiom filtering compared to query rewriting.

4 Optimal Axiom Labeling for Implementing Access Control

In the last section we have only shown that there is an axiom labeling to enforce access
restrictions for a selected example. Now we will elaborate how to compute it in general.
We are starting from an arbitrary label assignment, and change it in a minimal way so
that a given access restriction is enforced.

Example 2. We continue Example 1. Let (L, ≤) be the lattice shown in Figure 1, where
valid user labels are �0, �2, �3, �5 which represent user roles as illustrated. The condition
for a valid user label is the join prime property discussed in [1]. Let O of Example 1
be a labeled ontology where the function lab assigns to each axiom ai the label �i as
shown in Figure 1. The computed boundary is �3 for c1, since = (�1 ⊗ �2 ⊗ �4)⊕ (�1 ⊗
�2 ⊗ �5)⊕ (�1 ⊗ �3 ⊗ �4)⊕ (�1 ⊗ �3 ⊗ �5). It is �2 for c2, since = (�1 ⊗ �2)⊕ (�1 ⊕ �3).
For users �0 and �3, consequences c1 and c2 are visible. For user �2, only c2 is visible.

We now define a notion for changing an axiom label assignment. Beforehand, we define
the function lbl in order to address computed boundaries of consequences in a conve-
nient way.

Definition 1 (Consequence Labeling Function). Let O be a labeled ontology, (L, ≤)
a labeling lattice, lab : O → L a labeling function. The consequence labeling function
lbl : {c | O |= c} → L assigns labels to consequences and is defined as lbl(c) =
computed boundary of c.

Definition 2 (MCS). Let O be an ontology, c any consequence of O, (L, ≤) a lattice,
lab a labeling function, G a set of goals of the form (c, �g) with goal label �g for conse-
quence c, M a set of assignments (a, �) of label � to axiom a. The modified assignment
labM is defined to be

labM (a) =

{
�, if (a, �) ∈ M,

lab(a), otherwise.



Query-Based Access Control for Ontologies 79

The respective consequence labeling function lblM is given by Definition 1. The set M
is called multiple change set (MCS) iff for any c, (c, �g) ∈ G : lblM (c) = �g and there
is no M ′ ⊂ M with lblM ′(c) = �g .

Whether we can find a labM fulfilling a given goal set is independent of the label assign-
ment lab we start from. For default deny-all behavior, we start with all axioms assigned
to the bottom lattice element. For default allow-all behavior, we start with all axioms
assigned to the top lattice element. We will now introduce the computation of a change
set for one goal and building on that introduce the computation of a MCS.

4.1 Computing a Change Set for One Goal Label

If G is the singleton set of only one tuple (c, �), computing a multiple change set boils
down to computing a change set (CS) which has been introduced in our prior work in
[10,9]. For every CS S ⊆ O there is a MCS M := {(a, �g) | a ∈ S} and lblM (c) = �g

holds. The computation of a CS exploited main ideas from axiom-pinpointing [8,2] and
we presented a black-box approach that yields the desired set. Intuitively, a consequence
c needs to be made more public if �g > lbl(c) or less public if �g < lbl(c). From the
perspective of the target users who see O≥�g , the former is achieved by including an
axiom set IAS to their ontology and the latter by removing an axiom set RAS from other
user’s ontologies. The definition of an IAS (RAS) is a generalization of the definition
of a MinA (diagnosis) [10].

Definition 3 (IAS,RAS). A minimal inserted axiom set (IAS) for �g is a subset I ⊆
O
≥�g such that O≥�g ∪ I |= c and for every I ′ ⊂ I : O≥�g ∪ I ′ �|= c. A minimal
removed axiom set (RAS) for �g is a subset R ⊆ O
≤�g such that O
≤�g \ R �|= c and for
every R′ ⊂ R : O
≤�g \ R′ |= c.

A CS is either an IAS, a RAS, or union of both. As elaborated in [10], computing
IAS and RAS is tightly related to computing explanations (also called MinA) and di-
agnoses. The computation by a Hitting Set Tree (HST) algorithm [11] is repeated here
only briefly. The HST algorithm makes repeated calls to an auxiliary procedure that
computes one CS. A tree is built, where each node is labeled with a CS and each edge
with an axiom. If the CS labeling a node has n axioms (S := {a1, . . . , an}), then this
node is expanded with n children: the edge to the i-th child labeled with ai, the child
labeled with a CS that is not allowed to contain neither ai nor any ancestor’s edge label.
This ensures that each node is labeled with a CS distinct from those of its predecessors.

HST optimizations such as early termination and node reuse avoid redundant com-
putations and are included in current implementations. Another optimization is putting
a cardinality limit, applicable when not all, but only the CS of minimal cardinality |S|
is of interest. Then nodes might contain partial solutions, called partial CS, in the sense
that some axioms are missing, but still the smallest CS is proven to be found [10,9].

Example 3. We continue Example 2. Assume we want to make c1 as private as possible,
i.e. G = {(c1, �0)}. All RAS are {a1}, {a2, a3}, {a4, a5}, so the smallest MCS is M1 =
{(a1, �0)} and we get lblM1(c1) = �0. As second example assume we want to make c2
as public as possible, i.e. G = {(c2, �1)}. All IAS are {a2}, {a3}, so one of the smallest
MCS is M2 = {(a3, �1)} and we get lblM2(c2) = �1.
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Algorithm 1. Extract cMCS with optimizations CS reuse (switch off: remove Line 11)
and cardinality limit (switch off: in Line 7 replace “n − |M |” by “∞”)
Procedure init-cMCS-extraction(O, lab, (L,≤), G)
Input: O, lab: labeled ontology; (L,≤): lattice; G: goal set

1: Global: O, lab, G′ := {(c, �g, isI , isR, CS) | (c, �g) ∈ G,
isI := �g �< lbl(c) ∧ O≥�g �|= c, (decision to compute IAS)
isR := �g �> lbl(c) ∧ O�≤�g |= c, (decision to compute RAS)
CS := ∅} (reuse set for CS)

Procedure extract-partial-cMCS(K,n)
Input: K: prohibited label changes; n: cardinality limit
Output: first n elements of a cMCS

1: M := ∅
2: for each goal (c, �g, isI , isR, CS) ∈ G′ do
3: H := {a | (a, �g) ∈ K} (set of axioms not allowed to be labelled with �g)
4: if ∃S′ ∈ CS : ∅ = S′ ∩H then
5: S := S′ (CS reuse)
6: else
7: S :=extract-partial-CS(O, lab, c, �g, isI , isR, H, n− |M |) (defined by [9])
8: if ∅ = S then
9: return ∅ (HST normal termination for one goal fires for complete goal set)

10: if |S| �= n− |M | then
11: CS := CS ∪ {S} (remember only non-partial CS)
12: M := M ∪ {(a, �g) | a ∈ S}
13: return M

4.2 Computing a Multiple Change Set for Multiple Goal Labels

An MCS for several goals consists of CS for each of the individual goals. However, it
is no solution to compute single CS and combine them since this might not yield the
smallest MCS or they might even conflict.

Example 4. We combine both goals of Example 3 simultaneously, i.e. we want to make
c1 as private as possible and c2 as public as possible, G = {(c1, �0), (c2, �1)}. Just
concatenating the above mentioned MCS to M = M1 ∪ M2 = {(a1, �0), (a3, �1)} is
no MCS since lblM (c2) = �0 �= �1. However, M = {(a4, �0), (a5, �0), (a2, �1)} is an
MCS.

For this reason we call any combination of CS a candidate MCS (cMCS). To compute
the shortest MCS, we introduce Algorithm 2 which is similar to the HST algorithm for
computing the shortest CS in [9]. The only difference is that each call to the auxiliary
procedure computes a (partial) cMCS instead of a (partial) CS which is assigned to a
node in the search tree, and edges are not labeled with an axiom but with a tuple (a, �)
which is not allowed in the child node’s (partial) cMCS.

A (partial) cMCS is computed by a call extract-partial-cMCS(K, n) to the auxiliary
procedure in Algorithm 1, where K is the set of prohibited label changes, i.e. all tuples
at edges to ancestors in the HST, and n is the size of the currently known shortest
MCS. The procedure comes with 2 optimizations: CS reuse and cardinality limit. As any
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Algorithm 2. HST algorithm to find smallest MCS for G

Procedure hst-extract-smallest-MCS(O, lab, (L,≤), G, K)
Input: O, lab: labeled ontology; (L,≤): lattice; G: goal set; K: prohibited label changes
Output: MCS of minimum cardinality

1: Global Mmin := ∅, n :=∞, G
2: init-cMCS-extraction(O, lab, (L,≤), G)
3: expand-hst-MCS(K)
4: return Mmin

Procedure expand-hst-MCS(K)
Input: K: prohibited label changes
Side effects: modifications to Mmin and n

1: M := extract-partial-cMCS(K, n)
2: if M = ∅ then
3: return (HST normal termination)
4: if |M | < n then
5: if (a, �1), (a, �2) ∈M =⇒ �1 = �2 then
6: if ∀(c, �g) ∈ G : lblM (c) = �g then
7: Mmin := M
8: n := |Mmin|
9: else

10: . . . (semantic conflict resolution)
11: else
12: . . . (syntactic conflict resolution)
13: for the first (n− 1) label changes (a, �) ∈M do
14: expand-hst-MCS(K ∪ {(a, �)})

cMCS is a combination of CS, one CS might be contained in several cMCS. Instead of
computing it anew for every cMCS, the first optimization reuses it. Putting a cardinality
limit is a second optimization which computes a cMCS or stops once this has reached a
size n and returns a potentially partial cMCS. Computing partial CS for one goal turned
out to reduce execution time [9]. In a partial cMCS, the last contained CS is partial.
Partial CS are not reused.

Turning to Algorithm 2, whenever a cMCS M is found with |M | < n, it is shorter
than our currently known shortest MCS and we can be sure that it is not partial. The
question remains if it is a MCS or only a cMCS, which is checked in Line 6: neither is an
axiom allowed to have multiple labels assigned (syntactic conflict) nor might a change
set for one goal influence any other goal which is the case if any computed boundary
does not equal the goal label (semantic conflict). Only after passing both checks, we
update our globally known shortest known MCS Mmin in Line 7. Loosening the con-
straints of a goal set, the semantic conflicts can be resolved in Line 10 or syntactic
conflicts can be resolved in Line 12 which is explained in the next section.

We now show correctness of both optimizations, CS reuse and cardinality limit.
Reuse of CS is correct, since the only non-constant parameter to extract a CS in Line 7
is the set of prohibited axioms H and Line 4 ensures H and the reused CS are disjoint.
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Theorem 1 (Cardinality Limit Optimization). Let O,lab be a labeled ontology and
G a goal set. If m is the minimum cardinality of all MCS for G, the HST Algorithm 2
outputs a MCS M such that |M | = m.

Proof. The described algorithm outputs a MCS since the globally stored and finally
returned Mmin is only modified when the output of extract-partial-cMCS has size
strictly smaller than the limit n, has neither any syntactic nor any semantic conflict
and hence only when this is indeed a MCS itself. Suppose now that the output MCS
Mmin is such that m < |Mmin|, and let M0 be a MCS such that |M0| = m, which
exists by assumption. Then, every MCS, i.e. every cMCS free of syntactic and se-
mantic conflicts, obtained by calls to extract-partial-cMCS has size strictly greater
than m, since otherwise, Mmin and n would be updated. Consider now an arbitrary
MCS M ′ found during the execution through a call to extract-partial-cMCS, and let
M ′

n := {(a1, �1), . . . , (an, �n)} be the first n assignments of M ′. Since M ′ is a (partial)
MCS, it must be the case that M0 �⊆ M ′

n since every returned MCS is minimal in the
sense that no label change might be removed to obtain another MCS. Then, there must
be an i, 1 ≤ i ≤ n such that (ai, �i) �∈ M0. But then, M0 will still be a MCS (and a
cMCS anyway) after label change {(ai, �i)} has been removed. Since this argument is
true for all nodes, it is in particular true for all leaf nodes, but then they should not be
leaf nodes, since a new cMCS, namely M0 can still be found by expanding the HST,
which contradicts the fact that Mmin is the output of the algorithm. ��

4.3 Conflict Resolution

We already elaborated on syntactic and semantic conflicts which might prevent a cMCS
from being a MCS. It might be the case that for a goal set, no MCS can be found.

Example 5. We continue Example 2. Assume G = {(c1, �4), (c2, �3)}. For the goal
(c1, �4) all IAS are {a2}, {a3}. For the goal (c2, �3) all RAS are {a1}, {a2}. The cMCS
M1 = {(a2, �4), (a2, �3)} is obviously no MCS due to a syntactic conflict. But also
the remaining cMCS M2 = {(a2, �4), (a1, �3)}, M3 = {(a3, �4), (a1, �3)}, M4 =
{(a3, �4), (a2, �3)} are no MCS due to semantic conflicts, since lblM2(c1) =
lblM3(c1) = �3 �= �4 and lblM4(c2) = �4 �= �3.

For these cases we introduce a generalization of an MCS called Relaxed MCS (RMCS)
where the goal set is only partially satisfied according to a defined strategy. For the
special case of no conflict, the RMCS equals the MCS. We identified 4 strategies to
resolve conflicts, where we focus on syntactic conflict resolution only:

1. Overrestrictive: accept lower labels for a minimal number of consequences than
specified by the goal label. Formally, ∀(c, �g) ∈ G : lblM (c) �= �g =⇒ lblM (c) <
�g and cardinality |{(c, �g) ∈ G | lblM (c) �= �g}| is minimal. Applied to the above
example, {(a2, �3)} is a RMCS.

2. Overpermissive: accept higher labels for a minimal number of consequences than
specified by the goal label. Formally, ∀(c, �g) ∈ G : lblM (c) �= �g =⇒ lblM (c) >
�g and cardinality |{(c, �g) ∈ G | lblM (c) �= �g}| is minimal. Applied to the above
example, {(a2, �4)} is a RMCS.
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Algorithm 3. Computing a RMCS, overpermissive strategy (for overrestrictive strategy:
replace “⊕” with “⊗” in Line 3, “≥” with “≤” in Line 4, “>” with “<” in Line 5)
Basis is the Algorithm 2. In Procedure hst-extract-smallest-MCS, add global variables N :=
∅, r :=∞, and add before Line 4:

1: if ∅ = Mmin then
2: return N

In Procedure expand-hst-MCS, replace Line 12 for syntactic conflict resolution with:

1: N ′ := M
2: for each a : (a, �1), (a, �2) ∈ N ′ ∧ �1 �= �2 do
3: N ′ := N ′ \ {(a, �1), (a, �2)} ∪ {(a, �1 ⊕ �2)}
4: if ∀(c, �g) ∈ G : lblN′(c) ≥ �g then (fulfills overpermissive strategy)
5: r′ := |{(c, �g) ∈ G | lblN′(c) > �g}|
6: if r′ < r then
7: N := N ′

8: r := r′

3. Override strategy: The goal G set is split up into fragments Gi so that G =
G1 ∪ . . . ∪ Gn for which individual MCS Mi can be computed. The changed label
assignment ((labM1) . . .)Mn is obtained by sequentially applying each MCS Mi,
where the order can be chosen based on some prioritization. This implies that labels
changed by one MCS might be changed again by any subsequent MCS. Applied to
the above example, splitting up G into G1 and G2, G1 = {(c1, �4)} yields MCS
M5 = {(a2, �4)}, subsequently G2 = {(c2, �3)} yields MCS M6 = {(a2, �3)}.

Strategy 3 although easy to implement has an unacceptable drawback, conflicting our
RMCS definition: even if there is a MCS for the union of all goal subsets, a sequentially
applied MCS for one goal subset might override a previous for another goal subset since
they are computed independently of each other. For this reason we focus on strategies
1 and 2 for resolution of syntactic conflicts.

Algorithm 3 describes the resolution of syntactic conflicts. It is an adapted version
of Algorithm 2, where additionally the global variable r stores the minimal number
of overpermissive (overrestrictive) consequence labels and N stores the RMCS with
minimal r. Again this Algorithm relies on the cMCS extraction Algorithm 1 and the
optimization of reusing CS can be applied. The cardinality limit optimization is of no
use here since if no MCS is found, then no cardinality limit is set and the HST is fully
expanded.

There are goal sets yielding semantic conflicts but no syntactic conflicts in cMCS.
These are not solved by syntactic conflict resolution. For these cases not only IAS and
RAS, but complete explanations and diagnoses need to be taken into account, as the
following example shows.

Example 6. We continue Example 2. Assume G = {(c1, �2), (c2, �5)}. For the goal
(c1, �2) all IAS are {a4}, {a5}. For the goal (c2, �5) all IAS are {a2}, {a3}, all
RAS are {a1}, {a2, a3}. Obviously no combination of CS for both goals yields
a syntactic conflict. Nevertheless there is no MCS since every combination of
CS has a semantic conflict. After conflict resolution, an overpermissive RMCS is
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NOP = {(a4, �2), (a2, �2⊕�5 = �1), (a3, �5}, yielding lblNOP (c1) = �1, lblNOP (c2) =
�1. An overrestrictive RMCS is NOR = {(a4, �2), (a2, �2⊗�5 = �0), (a3, �5)}, yielding
lblNOR(c1) = �5, lblNOR(c2) = �5.

5 Experiments

We implemented and evaluated our algorithms empirically with large practical ontolo-
gies. The following sections describe our test setting and the results.

5.1 Test Procedure and Test Data

We test on a PC with 2GB RAM and Intel Core Duo CPU 3.16GHz. We implemented
all approaches with Java 1.6, Pellet 2.0 and OWL API trunk revision 1150. As labeling
lattice (L, ≤) we use the one introduced in Figure 1. We use the top lattice element �1
for public knowledge, �2 for intermediate knowledge and �3 for top secret knowledge.

Our test ontologies OGEOM 1, OMGED 2, OPROCESS 3 are selected ontologies from the
TONES Ontology Repository4 with a high number of individuals. At time of their
download on March 25th 2010, they had the characteristics given in Table 1. The test
ontology OFUNCT is an OWL ontology for functional description of mechanical engi-
neering solutions presented in [6].

In a first experimental setting we tested the availability of access control by query
rewriting vs. access control by axiom filtering. Initially each ontology axiom is labeled
�1 so that the complete ontology is public. This reflects default allow-all behavior of a
security policy. Then for each concept C in the ontology, we apply access restriction
AR = C(x) by including each query result c = μ(AR) with goal label �3 in the goal
set. The computed MCS is used to create a newly labeled ontology, on which we per-
form the following queries. We count for every C-instance the instance relationships to
concepts other than C which are available for public users (�1). With query rewriting
their count is 0. With axiom filtering their count is the availability gain of axiom filter-
ing vs. query rewriting. For cMCS extraction defined by Algorithm 1, we tested both
optimizations CS reuse and cardinality limit separately and their combination. In this
setting every cMCS is automatically an MCS since there are no conflicting goals. Al-
though not included in Algorithm 2 for transparency reasons, the mentioned usual HST
optimizations early termination and node reuse are included in our implementation.

In a second experimental setting we tested conflict resolution strategies in cases
where multiple goals conflict each other so that no MCS can be computed without
relaxing one of the goals. We test the overrestrictive conflict resolution approach vs. the
overpermissive conflict resolution approach of Algorithm 3 with the same ontologies.
Only the CS reuse optimization of the auxiliary procedure in Algorithm 1 to extract
cMCS is used, cardinality limit is not used for reasons explained in Section 4.3. First
all axioms are labeled with intermediate security level, i.e. �2. A goal set is created for

1 http://i2geo.net/ontologies/dev/ontology.owl
2 http://mged.sourceforge.net/ontologies/MGEDOntology.owl
3 http://sweet.jpl.nasa.gov/ontology/process.owl
4 owl.cs.manchester.ac.uk/repository/

http://i2geo.net/ontologies/dev/ontology.owl
http://mged.sourceforge.net/ontologies/MGEDOntology.owl
http://sweet.jpl.nasa.gov/ontology/process.owl
owl.cs.manchester.ac.uk/repository/
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Table 1. Test sets consisting of ontologies and goal sets

Ontology DL expressivity �logical
axioms

�concepts �individuals �goal sets �goals per
goal set

OFUNCT ALCOIN (D) 3189 115 545 102 12.2
OGEOM ALCHOIN (D) 8803 589 2010 571 14.1
OPROCESS ALCHOF(D) 2578 1537 150 40 20.9
OMGED ALEOF(D) 1387 234 681 125 28.8

Table 2. Gained assertions compared to query rewriting, performance of optimizations

Test set optimization Results (averages per goal set)
�CS �reused CS �cMCS

= �MCS
|MCS| runtime

(minutes)
�gained

assertions
OFUNCT card. limit 131.8 0.0 3.9 23.9 3.6 28.5

CS reuse 135.2 118.4 3.9 24.0 0.7 28.6
both 132.6 115.7 3.9 24.1 0.6 28.4

OGEOM card. limit 146.9 0.0 2.6 9.2 24.0 43.4
CS reuse 148.9 132.9 2.5 9.3 4.2 43.3

both 147.3 131.1 2.6 9.3 4.2 43.3

OPROCESS card. limit 199.3 0.0 6.9 12.0 2.3 92.6
CS reuse 250.9 217.8 6.7 12.2 0.6 91.8

both 197.9 165.0 6.8 12.2 0.6 91.9

OMGED card. limit n/a n/a n/a n/a n/a n/a
CS reuse 286.4 253.4 2.9 15.1 115.9 53.9

both 265.1 232.4 3.0 15.1 114.3 54.1

each concept C containing the same consequences described above, but now one half
of this set has goal label �1 and the other half �3. Some of the resulting goal sets are
contradictory. We test Algorithm 3 to compute a RMCS with overpermissive vs. over-
restrictive conflict resolution strategy for the same goal set and we count the number of
overpermissive/overrestrictive consequence labels.

For both experiments the test data characteristics are given in Table 1. The number of
goal sets and of goals per goal set are the same for both experiments since they contain
the assertions to each of the ontology’s concepts, only with different goal labels. In
order to limit runtime we compute in maximum 10 cMCS before the HST Algorithms 2
and 3 return, so there might be MCS or RMCS of lower cardinality.

5.2 Empirical Results

The experimental results for the first experiment are given in Table 2. It compares avail-
ability of access control by query rewriting vs. access control by axiom filtering and it
compares performance of both optimizations cardinality limit vs. CS reuse. The given
total number of CS includes reused CS. The number of cMCS is equal to the number
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Table 3. Conflict resolution with overrestrictive (OR) strategy vs. overpermissive (OP) strategy

Test set �goal �goals strat- Results (averages per conflicting goal set)
sets

confl.
per

confl.
goal set

egy �cMCS �RMCS |RMCS| runtime
(min-
utes)

�OR/OP
cons.
labs

% of
enforced

goals
OFUNCT 19 50.3 OR 10.0 10.0 101.4 2.2 19.5 61%

OP 10.0 10.0 110.0 2.0 20.3 60%
OGEOM 39 150.7 OR 10.0 10.0 139.4 45.4 63.3 58%

OP 10.0 10.0 140.4 37.0 52.1 65%
OPROCESS 23 31.0 OR 10.0 10.0 32.3 0.9 12.7 59%

OP 10.0 10.0 32.6 0.8 11.0 64%
OMGED 16 165.8 OR 10.0 10.0 140.4 814.6 75.6 54%

OP 10.0 10.0 141.6 780.8 51.9 69%

of MCS since the goals contain no conflicts with the first experiment. The number of
gained assertions confirms that our ideas improve availability of knowledge when us-
ing axiom filtering instead of query rewriting. While the number of gained assertions
is comparable between the optimizations applied, their runtime differs significantly. CS
reuse alone, and also in combination with cardinality limit runs significantly faster com-
pared to using cardinality limit optimization only. Testing OMGED with cardinality limit
optimization did not terminate after 4 days, so no results are provided.

The experimental results for the second experiment comparing conflict resolution
with overrestrictive strategy vs. overpermissive strategy are given in Table 3. Only some
of the goal sets constructed as described above are conflicting, and results are only
given for those. Only the given percentage of the goals in one goal set are enforced,
the remaining consequences have overpermissive/overrestrictive labels making them
more public/private than intended by the goal set. The runtime limit of 10 cMCS was
hit in every case, making the HST algorithm stop so there might be RMCS with less
overpermissive/overrestrictive consequence labels when relaxing this runtime limit.

6 Conclusions

We considered scenarios where different parts of a given ontology should be visible
for different users. We introduced access restrictions intentionally defined by means
of a query. The answer to that query is the set of those axioms and consequences of
the ontology, which have to be access restricted. We compared two basic approaches
to enforce those access restrictions: query rewriting vs. axiom filtering. Compared to
query rewriting, axiom filtering allows higher availability in the sense of more answers
delivered to a user without unveiling any secret and is independent of any ontology
language.

Axiom filtering relies on an axiom labeling. The problem solved by this paper is
to find an optimal axiom labeling to enforce given access restrictions. Given a query-
generated goal set containing consequences and intended labels, our algorithms com-
pute a minimal change set defining a new axiom labeling. We show that a change set
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does not always exist since a goal set might contain conflicts, and we provide 2 conflict
resolution strategies to relax the goal set so that a change set can be computed. Our
experimental results show that our algorithms behave well in practical scenarios.

As future work we will look at other criteria for the minimality of change sets for
example not counting the amount of changed axiom labels but the distance of the new
from the old label in the lattice, the amount of other consequence’s labels changed,
or the amount of affected users. We will also look at resolution of semantic conflicts
and study a more expressive goal language to define for each single goal of a goal set
whether it may be lowered or lifted in case of conflicts.
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Abstract. Translations to (first-order) datalog have been used in a number of
inferencing techniques for description logics (DLs), yet the relationship between
the semantic expressivities of function-free Horn logic and DL is understood only
poorly. Although Description Logic Programs (DLP) have been described as DLs
in the “expressive intersection” of DL and datalog, it is unclear what an intersec-
tion of two syntactically incomparable logics is, even if both have a first-order
logic semantics. In this work, we offer a characterisation for DL fragments that
can be expressed, in a concrete sense, in datalog. We then determine the largest
such fragment for the DL ALC, and provide an outlook on the extension of our
methods to more expressive DLs.

1 Introduction

Ontologies and rules are two fundamental concepts in knowledge representation. Taking
ontologies as the basic modelling paradigm has led to the development of Description
Logics (DLs) with a wide range of successful knowledge representations languages. On
the other hand rules are the central notion in Logic Programming building on first-order
Horn logic. Both have been very prolific research areas and have recently received a
boost in the context of the Semantic Web. As references for the purposes of this paper
we point to [2] and [4]. Since decidability is an important concern for DL, function-free
first-order Horn logic “datalog” is of particular interest.

Since the semantic frameworks for DL and datalog are very close it is natural that
the research community started investigating the relationship between them. One direc-
tion explores how either formalism could be extended with features of the other. This
line of research is represented by approaches such asAL-log [8], CARIN [23], SWRL
[13,14], DL+log [28], DL-safe rules [27], DL Rules [21,11], but also Datalog± [5],
and ∀∃-rules [3]. Another direction aims at pin-pointing how both formalisms overlap.
This has led to the study of Horn description logics [15,20] and Description Logic Pro-
grams (DLP) [12,29]. The latter is a family of DLs that can be faithfully expressed in
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first-order Horn-logic, and in particular in datalog, and the generalisation of this ap-
proach is the main topic of this paper.1

It is known that fragments of various DLs can be translated into equivalent or equi-
satisfiable datalog programs, and this has also been exploited to solve reasoning tasks.
This has been demonstrated, e.g., for the description logics Horn-SHIQ and EL++
[15,22,17,18]. In this paper we address the question whether there is a maximal frag-
ment that can be mapped into datalog. This would give a precise meaning to the slogan
of the “expressive intersection” of DL and datalog. The failure of naive attempts to de-
fine maximal fragments eventually led to the definition of a DLP fragment for a given
DL in Section 3 below. In Section 4 we define the DLP fragment DLPALC of ALC
and prove its maximality. This result can be extended to SROIQ but the necessary
canonical syntactic descriptions are too complex to be included in this paper. We thus
rather provide a summary of the relevant results and methods in Section 5 and refer for
details and omitted proofs to the technical report [19].

2 Preliminaries

We assume the reader to be familiar with DLs (see [19,2] for details and references),
and restrict to notational remarks here. The largest DL we encounter is SROIQfree, the
well-known DL SROIQ without any restrictions on simplicity and regularity of roles,
though only the simpler DL ALC will be considered in detail within this paper. DL
knowledge bases are defined over finite sets of individual names (constants) I, concept
names A, and roles R. We call S = 〈I,A,R〉 a signature. A signature S ′ = 〈I′,A′,R′〉
is called an extension of S , in symbols S ⊆ S ′, if I ⊆ I′ and A ⊆ A′ and R ⊆ R′.

We use FOL= to refer to standard first-order logic with equality. It is well known
in the folklore of DL and easy to see that there exists a translation π of SROIQ and
thus also of ALC into FOL= that preserves logical inference, i.e. KB1 |= KB2 implies
π(KB1) |= π(KB2). A definition of π may e.g., be found in [19, Figure 3.4].

We use the term “datalog” to refer to the function-free Horn logic fragment of FOL=.
A datalog program is a first-order theory which contains only formulae of the form
∀x.A1 ∧ . . . ∧ An → B where Ai, B are atoms without function symbols of arity greater
than 0, and universal quantifies over all variables occurring in the implications. We
generally omit the quantifier, we simply write B if n = 0, and we use ⊥ to denote the
empty head.

It will not be sufficient for our work to consider knowledge bases KB such that π(KB)
is equivalent to a datalog program. Semantic equivalence turns out to be too restrictive,
it does e.g., not allow the use of new constant symbols denoting individuals whose
existence is required by ABox axioms. Equisatisfiability on the other hand is too weak
– it does not preserve relevant logical entailments. The following notion turns out to be
a more appropriate middle-ground:

Definition 1. Given FOL= theories T and T ′ with signatures S ⊆ S ′, then T ′ seman-
tically emulates T if

1 Besides these two strands on integrating first-order rules with DLs, there are numerous works
on extending DLs with non-monotonic features from logic programming [10,9,28,25,26]
which are interesting in their own right but not closely related to this work.
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(1) every model of T ′ becomes a model of T when restricted to the interpretations of
symbols from S , and

(2) for every model J of T there is a model I of T ′ that has the same domain as J ,
and that agrees with J on S .

It is usually not necessary to mention the signatures of T and T ′ explicitly, since it is
always possible to find minimal signatures for T and T ′ that satisfy condition (1) of
Definition 1. The concept of semantic emulation is also known by the name semantic
conservative extension, see e.g. [24, Def.11.29]. We will prefer semantic emulation for
its brevity.

Definition 2. Given FOL= theories T and T ′ with signatures S ⊆ S ′, then T ′ syn-
tactically emulates T if for every first-order formula ϕ over S : T |= ϕ iff T ′ |= ϕ.

It is easy to see that semantic emulation implies syntactic emulation. This illustrates the
strength and significance of semantic emulation for knowledge representation: when-
ever a theory T ′ semantically emulates a theory T , we find that T ′ and T encode the
same information about the symbols in T , and in particular that T ′ cannot be distin-
guished from T when restricting to those symbols.

Note, syntactic emulation of T by T ′ can equivalently be characterized by the require-
ment that for every formula ϕ over S the sets T ∪ {ϕ} and T ′ ∪ {ϕ} be equisatisfiable.

We will later make use of the following lemma, which generalises the well-known
least model property of datalog. The proof of this is straightforward by unravelling of
the definitions.

Lemma 1. Let I1, I2 be interpretations over the same domain which agree on the
interpretation of constant and function symbols, and let T be a first-order theory that is
satisfied by I1 and I2.

1. If T is a datalog program then also the intersection I1 ∩ I2 satisfies T .
2. If T can be semantically emulated by a datalog program then also the intersection
I1 ∩ I2 satisfies T .

The intersection of interpretations is defined in the obvious way based on the intersec-
tion of predicate extensions.

3 Considerations for Defining DLP

In this section, we discuss and motivate a generic definition for DLP fragments of a
description logic. A powerful tool for obtaining this definition is the construction of
variants of logical expressions which preserve only the logical structure but may modify
concrete signature symbols:

Definition 3. Let F be a FOL= formula, a DL axiom, or a DL concept expression,
and let S be a signature. An expression F′ is a variant of F in S if F′ can be ob-
tained from F by replacing each occurrence of a role/concept/individual name with
some role/concept/individual name in S . Multiple occurrences of the same entity name
in F need not be replaced by the same entity name of S in this process.

A knowledge base KB′ is a variant of a knowledge base KB if it is obtained from KB
by replacing each axiom with a variant.
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Note that we do not require all occurrences of an entity name to be renamed together,
so it is indeed possible to obtain A � ¬B from A � ¬A. Considering all variants of a
formula or axiom allows us to study the semantics and expressivity of formulae based
on their syntactic structure, disregarding any possible interactions between signature
symbols. We therefore call a FOL= formula, DL axiom, or DL concept expression F
name-separated if no signature symbol occurs more than once in F.

Definition 4. Given description logics L andD, we callD a DLP fragment of L if

(1) every axiom ofD is an axiom of L,
(2) there is a transformation function datalog that maps a D axiom α to a datalog

program datalog(α) such that datalog(α) semantically emulates α,
(3) D is closed under variants, i.e. given any axiom α and an arbitrary variant α′ of α,

we find α is inD iff α′ is.

Item (1) of this definition fixes the syntactic framework for DLP fragments. Item (2)
states the property that motivates the study of DLP languages: every axiom of a DLP
fragment can be expressed in datalog. DLP languages as discussed in the literature may
require the use of auxiliary symbols for the translation to datalog [29], and the datalog
program can no longer be semantically equivalent to the original knowledge base in this
case, even if all consequences with respect to the original predicates are still the same.
This motivates the use of semantic emulation as introduced in Definition 1.

Item (3) of Definition 4 reflects our desire to obtain fragments that correspond to
well-behaved logical languages as opposed to being arbitrary collections of axioms.
An obvious way to implement this would be to require DLP fragments to be described
by a context-free grammar. A typical feature of grammars for logical languages is that
they are parametrised by a logical signature that can be modified without changing the
essential structural features of the language. This effect is mirrored by the requirement
of item (3) without introducing detailed requirements on a suitable logical grammar.
We will find grammatical descriptions in the cases we consider, though item (3) as such
does not imply that this is possible.

Let us discuss for a moment an alternative to item (3) in Definition 4. It seems natural
to require that membership in a fragment can be decided efficiently, say in polynomial
time. Proposition 1 shows that in this case no maximal fragment can exist. Definition 4
allows fragments without any restriction on the complexity of the membership relation,
but the maximal DLP fragment of ALC in Section 4 is described by a context-free
language, and thus efficiently recognisable.

Proposition 1. Given description logics L and D, we call D a P-DLP fragment of L
if items (1) and (2) of Definition 4 are satisfied, and in addition there is a polynomial
procedure for deciding α ∈ D for any DL axiom α.

Unless the complexity classes P and PSpace coincide, there is no maximal P-DLP
fragment of ALC: given any P-DLP fragment D of ALC, there is a P-DLP fragment
D′ ofALC that covers more axioms, i.e.D ⊂ D′.
Proof. We start with an auxiliary construction: if the concept expression C is satisfiable
and does not contain the symbols R, A1, A2, and c, then no datalog program semantically
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emulates the expression αC � (C � ∃R.(A1 � A2))(c). For a contradiction, suppose that
αC is semantically emulated by a datalog theory datalog(αC). By construction, αC is
satisfiable, and so is {αC , Ai � ⊥} for each i = 1, 2. By Definition 2, we find that
datalog(αC) ∪ {Ai � ⊥} is satisfiable, too. Thus, there are models Ii of datalog(αC)
such that AIi

i = ∅. By the least model property of datalog, there is also a model I of
datalog(αC) such that AI1 = AI2 = ∅. But then datalog(αC)∪ {A1 � A2 � ⊥} is satisfiable
although {α, A1 � A2 � ⊥} is not, contradicting the supposed semantic emulation.

Let us now assume for the sake of a contradiction that D contains all unsatisfiable
ALC axioms of the form of αC . This would give a polynomial decision procedure for
deciding satisfiability of ALC concept expressions C: construct αC from C (clearly
polynomial) decide αC ∈ D (was assumed to be of polynomial complexity). This con-
tradicts the fact that deciding (un)satisfiability of ALC concept expressions is PSpace
hard.

Therefore, there is an unsatisfiable expression α with α � D. Now letD′ be defined
as D ∪ {α}. The transformation is given by datalog′(α) = datalog(α) if α ∈ D, and
datalog′(α) = {� → A(x), A(x)→ ⊥} otherwise, where A is a new predicate symbol. It
is immediate thatD′ P-DLP fragment ofALC strictly greater thanD. ��
This proof exemplifies a general problem that occurs when trying to define DLP: the
question whether an axiom is expressible in datalog is typically computationally harder
than one would like to admit for a language definition. This result carries over to more
expressive DLs, and remains valid even if requirements such as closure under common
normal form transformations are added to the definition of fragments. The fact that this
problem is avoided by item (3) in Definition 4 confirms our intuition that this require-
ment closely relates to the possibility of representing DLP fragments syntactically, i.e.
without referring to complex semantic conditions.

Proposition 2. Consider a class K of knowledge bases that belong to a DLP fragment
of some description logic, and such that the maximal size of axioms in K is bounded.
Deciding satisfiability of knowledge bases in K is possible in polynomial time.

Proof. Let the maximal size of axioms be bounded by N. Let V be a vocabulary with
N concept, role and constant symbols. By assumption we know that for every of the
finitely many axioms α of size less than N there is a translation datalog(α). We use
this as a (finite) look-up table in the definition of datalogK(β) for axioms β in KB ∈ K:
Find a renaming α = σ(β) such that α is an expression in the vocabulary V . Here σ is a
usual 1-1 renaming of symbols, not a variant in the sense of Definition 3. Look up the
datalog program datalog(α) and set datalogKB(β) = σ(datalog(α)). It is easy to see that
datalogKB(β) still satisfies item (2) of Definition 4. Thus satisfiability of KB ∈ K can
be decided by checking satisfiability of

⋃
β∈KB datalogKB(β). The maximal number of

variables occurring within these datalog programs may also be bounded by N. Satisfi-
ability of datalog with at most N variables per rule can be decided in time polynomial
in 2N [7]. The renamings σ can likewise be found in time polynomial in 2N . Since N
is a constant, this yields a polynomial time upper bound for deciding satisfiability of
knowledge bases in K. ��
It is interesting that the previous result does not require any assumptions on the compu-
tational complexity of recognising or translating DLP axioms. Intuitively, Proposition 2
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Concepts necessarily equivalent to �: LA� � � | ∀R.LA� | LA� � LA� | LA� � C

Concepts necessarily equivalent to ⊥: LA⊥ � ⊥ | ∃R.LA⊥ | LA⊥ �C | LA⊥ � LA⊥

Body (C ∈ LAB iff ¬C � A inDLPALC): LAB � LA� | LA⊥ | ¬A | ∀R.LAB | LAB � LAB | LAB � LAB
Head (C ∈ LAH iff A � C inDLPALC): LAH � LAB | A | ∀R.LAH | LAH � LAH | LAH � LAB
Assertions (C ∈ LAa iff C(a) inDLPALC): LAa � LAH | ∃R.LAa | LAa � LAa | LAa � LAB

Fig. 1. DLPALC concepts in negation normal form

states that reasoning in any DLP language is necessarily “almost” tractable. Indeed,
many DLs allow complex axioms to be decomposed into a number of simpler normal
forms of bounded size, and in any such case tractability is obtained. Moreover, Propo-
sition 2 clarifies why Horn-SHIQ cannot be in DLP: ExpTime worst-case complexity
of reasoning can be proven for a class K of Horn-SHIQ knowledge bases as in the
above proposition (see [20], noting that remaining complex axioms can be decomposed
in Horn-SHIQ).

4 The DLP Fragment ofALC
Using Definition 4, it is now possible to investigate DLP fragments of relevant descrip-
tion logics. In this paper, we detail this approach forALC; some remarks on the more
complex case of SROIQ are given in Section 5 below. It turns out that the largest DLP
fragment of ALC exists, and can be defined as follows, where we use the negation
normal form NNF for simplifying our presentation.

Definition 5. We define the description logicDLPALC to contain all knowledge bases
consisting only ofALC axioms which are

– GCIs C � D such that NNF(¬C � D) is an LAH concept as defined in Fig. 1, or
– ABox axioms C(a) where NNF(C) is an LAa concept as defined in Fig. 1.

The headings in Fig. 1 give the basic intuition about the significance of the various con-
cept languages. The distinction of head and body concepts is typical for many works on
DLP and Horn DLs, while our use of additional assertional concepts takes into account
that emulation allows for some forms of Skolemisation. Typical example representa-
tives of the respective grammars are ¬A � ∀R.(¬B� ¬C) for LAB , ¬A � (B � ∀R.C) for
LAH , and ¬A � ∃R.B for LAa .

Though name separation prevents most forms of semantic interactions within con-
cepts, we still require grammars for LA� and LA⊥ to characterise concepts all variants of
which are equivalent to � and ⊥, respectively. This includes concept expressions such
as A � ∃R.⊥ and B � ∀R.�.

We start with an easy observation on Definition 5. This result will not explicitly be
used later on but might add to the understanding of this definition.

Lemma 2. Consider arbitrary ALC concept expressions C that do not contain quan-
tifiers ∀, ∃, and the symbols � and ⊥.
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1. If C ∈ LAB then C has a conjunctive normal form
�

i
⊔

j Ci, j with Ci, j a negated
atom for all i, j.

2. If C ∈ LAH or C ∈ LAa then C has a conjunctive normal form
�

i
⊔

j Ci, j with Ci, j

negated or unnegated atoms and for every i there is at most one j such that Ci, j is
an unnegated atom.
(Since the assumptions require that C does not contain quantifiers there is no dif-
ference here between C ∈ LAH and C ∈ LAa .)

Proof. Notice, that C � LA� and C � LA⊥ since neither � nor ⊥ occur in C. For item (1),
note that if C ∈ LAB then either C is a negated atom, or C = C1 � C2 or C = C1 � C2

with Ci ∈ LAB . The claim now follows easily from the induction hypothesis on C1,C2.
For item (2), by the assumptions on C we have C ∈ LAH if one of the following cases

holds true:

1. C ∈ LAB . Then the claim follows from part (1) of the lemma.
2. C is an atom. Then the claim is obviously true.
3. C = C1 � C2 with Ci ∈ LAH . If C′i is a conjunctive normal form of Ci satisfying the

claim then C′1 � C′2 is a conjunctive normal form of C satisfying the claim.
4. C = C1�C2 with Ci ∈ LAH and C1 ∈ LAB . Let

�
i
⊔

j C1
i, j and

�
m
⊔

n C2
m,n be the con-

junctive normal forms that exist by induction hypothesis satisfying the respective
claims. A conjunctive normal form of C = C1 � C2 is obtained as the conjunction
of all

⊔
j C1

i, j �
⊔

n C2
m,n for all combinations of i,m. Since

⊔
j C1

i, j contains at most

one positive atom and
⊔

n C2
m,n contains only negative atoms we are finished. ��

It is obvious thatDLPALC satisfies items (1) and (3) of Definition 4, so what remains to
show is thatDLPALC knowledge bases can indeed be expressed in datalog. Following
the grammatical structure of DLPALC, we specify three auxiliary functions for con-
structing datalog programs to semantically emulate a DLPALC knowledge base. The
following two lemmata can be proven by simple inductions, see [19] for further details.

Lemma 3. Given a concept name A, and a concept C ∈ LAH , Fig. 2 recursively defines
a datalog program dlgAH (A � C) that semantically emulates A � C.

For an example of this transformation, consider the LAH concept E = ¬B � (C � ∀R.D).
Then dlgAH (A � E) consists of the following rules:

A(x) ∧ X1(x) → X2(x)
B(x) → X1(x)

X2(x) → C(x)
X2(x) ∧ R(x, y) → X3(x)

X3(x) → D(x)

Clearly, this rule set could be further simplified to obtain the three rules A(x) ∧ B(x)→
X2(x), X2(x) → C(x), X2(x) ∧ R(x, y) → D(x) which are easily seen to semantically
emulate A � E.

Lemma 4. Given a constant a and a concept C ∈ LAa , Fig. 3 recursively defines a
datalog program dlgAH (C(a),⊥) that semantically emulates C(a).
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C dlgAH (A � C)

D ∈ LAB dlgAB (¬X �D)∪ {A(x)∧ X(x)→⊥}
B {A(x)→ B(x)}
∀R.D dlgAH (X � D)

∪ {A(x) ∧ R(x, y)→ X(y)}
D1 � D2 dlgAH (A � D1) ∪ dlgAH (A � D2)

D1 � D2 ∈ (LAH � LAB ) dlgAH (X2 � D1) ∪ dlgAB (¬X1 � D2) ∪ {A(x) ∧ X1(x)→ X2(x)}

C dlgAB (¬A � C)

D ∈ LA� {}
D ∈ LA⊥ {A(x)}
¬B {B(x)→ A(x)}
∀R.D dlgAB (¬X � D) ∪ {R(x, y) ∧ X(y)→ A(x)}
D1 � D2 ∈ (LAB � LAB ) dlgAB (¬A � D1) ∪ dlgAB (¬A � D2)

D1 � D2 ∈ (LAB � LAB ) dlgAB (¬X1 �D1)∪ dlgAB (¬X2 �D2) ∪ {X1(x) ∧ X2(x)→ A(x)}
A, B concept names, R a role, X(i) fresh concept names

Fig. 2. Transforming axioms A � LAH and ¬A � LAB to datalog

Again, this transformation is designed for a concise definition, not for optimised output.
For an example, consider the LAa concept E = ¬B� ∃R.C. Then dlgAH (E(a),⊥) consists
of the following rules (Xi and Y indicating fresh concept names as in the definition of
the transformation):

B(x) → X1(x) X2(a) → R(a, b)
X2(a) → Y(b) X3(x) ∧ X4(x) → X2(x)

→ X3(x) X1(x) → X4(x)
→ X5(b) X5(x) ∧ X6(x) → X7(x)

X7(x) → C(x) Y(x) → X6(x)

As before, this rule set can be simplified significantly by eliminating most of the intro-
duced auxiliary concept symbols. Doing this, we obtain the three rules B(x) → X2(x),
X2(a) → R(a, b), and X2(a) → C(b), which again are easily seen to semantically emu-
late E(a) as claimed. Here, the fresh constant symbol b acts as a Skolem constant that
represents the individual that the existential concept expression may require to exist.

Combining the previous lemmata, we obtain the emulation theorem forDLPALC.

Theorem 1. For everyDLPALC axiom α as in Definition 5, one can construct a data-
log program dlg(α) that emulates α.

Proof. If α = C � D is a TBox axiom, define datalog(α) � dlgAH (A � NNF(¬C �D))∪
{A(x)}. If α = C(a) is an ABox axiom, define datalog(α) � dlgAa (C(a),⊥). The result
follows by Lemma 3 and 4. ��
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C dlgAa (C(a), E)

D ∈ LAH dlgAH (X � D � E) ∪ {X(a)}
D1 � D2 dlgAa (D1(a), E) ∪ dlgAa (D2(a), E)

D1 � D2 ∈ (LAa � LAB ) dlgAB (¬X � D2) ∪ dlgAa (D1(a), E � ¬X)

∃R.D dlgAB (¬X � E) ∪ dlgAa (D(b),¬Y) ∪ {X(a)→ R(a, b), X(a)→ Y(b)}
E ∈ LAB , X,Y fresh concept names, b a fresh constant

Fig. 3. Transforming axioms C(a) with C ∈ LAa to datalog

We still need to show that DLPALC is indeed the largest DLP fragment of ALC. We
first introduce two transformations – etb and qe –, and make some basic observations
that allow us to use these transformations for showing maximality ofDLPALC.

Definition 6. Let C be an arbitrary ALC concept expression. The expression etb(C)
(eliminate top and bottom) is obtained from C by elimination of top and bottom sym-
bols, achieved by applying exhaustively the following rewrite rules:

� � D �→ D ⊥ � D �→ D � � D �→ � ⊥ � D �→ ⊥ ∀R.� �→ �
D � � �→ D D � ⊥ �→ D D � � �→ � D � ⊥ �→ ⊥ ∃R.⊥ �→ ⊥

Note, that etb(C) may still contain subexpressions of the form ∀R.⊥ and ∃R.�
The next lemma summarises some easy observations on etb.

Lemma 5. For anyALC concept expression C

1. etb(C) is logically equivalent to C, i.e., for any interpretation 〈ΔI,I〉 and any a ∈
ΔI, we have a ∈ CI iff a ∈ etb(C)I.

2. C ∈ LA� iff etb(C) ∈ LA� C ∈ LA⊥ iff etb(C) ∈ LA⊥ C ∈ LAa iff etb(C) ∈ LAa
C ∈ LAB iff etb(C) ∈ LAB C ∈ LAH iff etb(C) ∈ LAH

3. If C does not contain subexpressions of the form ∀R.⊥ or ∃R.� then etb(C) = ⊥,
or etb(C) = �, or etb(C) does neither contain ⊥ nor �.

Definition 7. Let C be an arbitraryALC concept expression. The expression qe(C) is
obtained from C by quantifier elimination:
qe(A) = A (concept name) qe(¬C1) = ¬ qe(C1)
qe(C1 �C2) = qe(C1) � qe(C2) qe(C1 � C2) = qe(C1) � qe(C2)
qe(∀R.C1) = qe(C1) qe(∃R.C1) = qe(C1)

Lemma 6. Let 〈I,A,R〉 be a signature and fix a domain Δ. There is an interpretation
I1 on Δ of the role symbols in R such that for any interpretationI0 on Δ of the signature
(I,A, ∅), and for any concept C of 〈I,A,R〉, we find CI = qe(C)I0 with I = I0 ∪ I1.

Proof. Setting I1(R) = {〈a, a〉 | a ∈ Δ} for all R ∈ R, we obtain:

(∀R.D)I = {a ∈ Δ | b ∈ DI0 for all 〈a, b〉 ∈ RI1 } = {a ∈ Δ | a ∈ DI0 } = DI0 ,
(∃R.D)I = {a ∈ Δ | there is 〈a, b〉 ∈ RI1 with b ∈ DI0 } = {a ∈ Δ | a ∈ DI0 } = DI0 . ��
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Note, that Lemma 6 is true for arbitrary ALC concept expressions, they need neither
belong toDLPALC nor be name-separated.

Lemma 7. Let C be an arbitraryALC concept expression. Then

C ∈ LAB iff qe(C) ∈ LAB ,
C ∈ LAH iff qe(C) ∈ LAH ,
C ∈ LAa iff qe(C) ∈ LAa .

Proof. Here is a sample from the inductive proof for the first equivalence. The goal in
this case is to show that (∀R.D) ∈ LAB iff D ∈ LAB .

The “if” direction is directly covered by a grammar rule. For the “only if” direction,
we observe that there are only two grammar rules that can produce a formula of the
form (∀R.D). The first is ∀R.LAB , for which we directly find that (∀R.D) ∈ LAB implies
D ∈ LAB . The second rule is ∀R.LA� . Thus (∀R.D) ∈ LAB implies D ∈ LA� , which suffices
since LA� ⊆ LAB . ��
Theorem 2. DLPALC is the largest DLP fragment ofALC.

Proof. For a contradiction, suppose that there is a DLP fragment F of ALC that
is strictly larger than DLPALC. Then there is some GCI C′ � D′ in F but not in
DLPALC. The other possibility that there is an ABox axiom C′(a) ∈ F with C′(a) � LAa
is completely analogous. By Definition 4, any name-separated variant C � D of C′ � D′
is still in F . Since DLPALC is closed under variants, C � D is not in DLPALC. By
Definition 5 this means that the negation normal form E of ¬C � D is not in LAH . By
Lemmas 5 and 7 also etb(qe(E)) is not in LAH . Let Ecnf be a conjunctive normal form of
etb(qe(E)). Thus Ecnf = Con1� . . .�Conk with Coni = Li,1� . . .�Li,ni where each Li, j is
a concept name or the negation of a concept name. Again, it can be verified that E ∈ LAH
iff Ecnf ∈ LAH . Furthermore, for one i, 1 ≤ i ≤ k there are two unnegated concept names
among {Li,1, . . . , Li,ni}. Otherwise, we could show Ecnf ∈ LAH . For this we need the ex-
tended grammar of LAH . Without loss of generality let i = 1 and L1,1 = A1, L1,2 = A2

positive. The name separation of E may have been lost by building the transformation
to conjunctive normal form Ecnf, but we still have the following:

1. For any atom A, if A occurs in Ecnf then ¬A does not occur in Ecnf, and vice versa.
2. For any two different conjuncts Coni and Con j of Ecnf, there is a literal l occurring

in Coni and not in Conj (and by symmetry also a literal l′ occurring in Conj and
not in Coni).

Claim 1 can be easily seen since the transformation from E to Ecnf is effected by re-
peated application of the rewriting rule (C1 �C2) � C3 �→ (C1 � C3) � (C2 � C3).

Claim 2 can be proven by induction on the structural complexity of E. In the simplest
case E already is a conjunctive normal from. Then name separation of E even implies
that different conjuncts Coni are disjoint. Next assume that E = E1 � . . . � En and by
induction hypothesis each Ei has a conjunctive normal form Ei = Coni,1 � . . .�Coni,mi ,
such that for j � k the conjunct Coni, j contains a literal, that does not occur in Coni,k.
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Furthermore, name separation of E tells us that different Ei1 , Ei2 do not share a literal.
By elementary computation we have

Ecnf =
�

1≤i1≤m1

. . .
�

1≤in≤mn

(Con1,i1 � . . . � Conn,in)

Let us look at two different conjuncts in Ecnf. Typically we may consider Con1,1 � Cr

and Con1,2 � Cr with Cr = Con2,i2 � . . . � Conn,in . By induction hypothesis there is a
literal l in Con1,1 that does not occur in Con1,2. Under the present assumptions l occurs
in Con1,1 � Cr and not in Con1,2 � Cr. This completes our proof of claim 2. Returning
to our main line of reasoning we define interpretations I1 and I2 on a universe Δ by

AI1

1 = Δ LI1

1, j = ∅ for all 2 ≤ j ≤ n1

AI2
2 = Δ LI2

1, j = ∅ for all 1 ≤ j ≤ n1, j � 2

Thus
ConI1

1 = ConI2
1 = Δ and ConI1∩I2

1 = ∅
By property 2 it is possible to extend the interpretations Ii such that ConIi

j = Δ for
i ∈ {i, 1} and 2 ≤ j ≤ k. In total we have

(Ecnf)I1 = (Ecnf)I2 = Δ and (Ecnf)I1∩I2 = ∅
Since the normal form and the etb transformation preserve logical equivalence, we also
have qe(E)Ii = Δ for i = 1, 2 and qe(E)I1∩I2 = ∅. By Lemma 6 there are expansions I∗i
of Ii such that EI∗i = qe(E)Ii = Δ for i ∈ {1, 2} and EI1

∗∩I2
∗
= E(I1∩I2)∗ = qe(E)I1∩I2 =

∅. By Lemma 1, this contradicts the possibility that π(E) can be emulated by a datalog
formula. ��

5 The Datalog Fragment of SROIQ
The previous section showed that syntactic descriptions tend to become rather complex
when maximising languages in a canonical way, but the situation is substantially more
intricate when considering SROIQfree instead ofALC as an underlying DL. Here, we
summarise the conclusions that have been obtained in [19] for this case. There, a maxi-
mal DLP fragment of SROIQfree has been developed under the additional requirement
of closure under disjunctive normal forms (DNF):

Theorem 3. The largest DL fragment of SROIQfree that is also closed under DNF
exists, and it can be characterised by a parametrised set of grammar productions. We
call this DLDLP.

Disjunctive normal forms here are mainly required to curtail the syntactic complexity of
the obtained fragment, and we conjecture that a maximal DLP fragment of SROIQfree

that does not have this property also exists. Rather than in the concrete description
of this fragment, we are interested here in the general insights that are obtained from
proofs of such results. The above result consists of three parts: (1) specifying an explicit
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syntactic characterisation, (2) showing that allDLP axioms can be FOL=-emulated in
datalog, (3) showing thatDLP is the largest such DL. Here we give an overview of the
main methods that are used in each step.

Syntactic Characterisation. The main challenge here is to reduce the presentational
complexity as far as possible. A DLP normal form is introduced that incorporates DNF
and an improved form of NNF, and which ignores concepts that, like LA� /L

A
⊥ above,

are always equivalent to �/⊥. The syntax ofDLP in normal form is still very complex
due to the interplay of number restrictions and nominals that is possible even in name-
separated axioms.

Datalog Emulation. A recursive datalog transformation as in the case of DLPALC
above is provided. The individual steps are substantially more involved, and even lead
to exponentially large datalog programs in various cases, although these programs are
very regular and can be constructed in a single pass without complex computations.
We conjecture that this blow-up is unavoidable but this issue has not been investigated
further.

Maximality. The least model property of datalog was used for showing maximality of
DLPALC, but no extension of this direct approach to DLP has been found. Instead,
additional model-theoretic properties of datalog were used that incorporate submodels
and product models [6]. Using various inductive arguments, it has then been shown that
any extension ofDLP leads to axioms that cannot be FOL=-emulated in datalog.

We provide some examples to illustrate the issues that occur in the general case
(datalog emulations are provided in parentheses). DLP expressions of the form A �
∃R.B � ∀S .C (A(x)∧R(x, y)∧ B(y)∧ S (x, z)→ C(z)) are well-known. The same is true
for A � ∃R.{c} (A(x) → R(x, c)) but hardly for A � �2 R.({c} � {d}) (A(x) → R(x, c),
A(x) → R(x, d), A(x) ∧ c ≈ d → ⊥). Another unusual form of DLP axioms arises
when Skolem constants (not functions) can be used as in the case {c} � �2 R.A (R(c, s),
R(c, s′), A(s), A(s′), s ≈ s′ → ⊥ with fresh s, s′) and A � ∃R.({c} � ∃S .�) (A(x) →
R(x, c), A(x)→ S (c, s) with fresh s). This is possible since semantic emulation is more
general than semantic equivalence.

For a more complex DLP axiom, consider the GCI {c} � �2 R.(¬{a} � A � B). It
is semantically emulated by {R(c, s1),R(c, s2), a ≈ s1 → A(s1), a ≈ s2 → A(s2)} where
si are fresh constants. Note how equalities of fresh constants are used to simulate finite
amounts of disjunctive behaviour. In contrast, {c} � �2 R.(¬{a} � A � B � C) is not in
DLP.

Another complex example is {c} � �4 R.(A � {a} � ({b} � �1 S .({c} � {d}))) which is
semantically emulated by a datalog program that contains about 30 rules. Interestingly,
the axiom {c} � �3 R.(A � {a} � ({b} � �1 S .({c} � {d}))) which only differs by using 3
instead of 4 cannot be FOL=-emulated by any datalog program.

6 Conclusions and Outlook

DLP provides an interesting example of a general type of problem: given two KR for-
malisms that can be translated to first-order logic, how can we syntactically characterise
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all theories of the source formalism that can faithfully be represented in the target for-
malism? In this work, we proposed to interpret “faithful representation” by means of
semantic emulation (a weaker notion of semantic equivalence), while “syntactic” has
been realised by requiring closure under variants (non-uniform renamings of signature
symbols). These two simple principles allowed us to show the existence of a largest
DLP fragment for the DLALC. In this sense, we argue that our approach introduces a
workable definition for the vague notion of the “intersection” of two KR formalisms.

Our rigorous definition of DLP fragments also clarifies the differences between DLP
and the DLs EL and Horn-SHIQ which can both be expressed in terms of datalog as
well. Neither EL nor Horn-SHIQ can be semantically emulated in datalog but both
satisfy a weaker version of syntactic emulation that is obtained by restricting to variable-
free formulae ϕ in Definition 2. Under such weaker requirements, a larger space of
possible DL fragments is allowed, but it is unknown whether (finitely many) maximal
languages exist in this case. There is clearly no largest such language, since both EL
and DLP abide by the weakened principles whereas their (intractable) union does not
(contradicting Proposition 2).

Even when weakening the requirements of DLP fragments like this, Horn-SHIQ
is still excluded by Proposition 2, which explains why Horn-SHIQ cannot be trans-
lated to datalog axiom-by-axiom. In the presence of transitivity, Horn-SHIQ also is
not really closed under variants, but this problem could be overcome by using distinct
signature sets for simple and non-simple roles. Again, it is open which results can be
established for Horn-SHIQ-like DLs based on the remaining weakened principles.

This work also explicitly introduces a notion of emulation which appears to be novel,
though loosely related to conservative extensions. In essence, it requires that a theory
can take the place of another theory in all logical contexts, based on a given syntactic
interface. Examples given in this paper illustrate that this can be very different from
semantic equivalence. Yet, emulation can be argued to define minimal requirements for
preserving a theory’s semantics even in combination with additional information, so it
appears to be a natural tool for enabling information exchange in distributed knowledge
systems. We think that the articulation of this notion is useful for studying the semantic
interplay of heterogeneous logical formalisms in general.

Finally, the approach of this paper – seeking a logical fragment that is provably max-
imal under certain conditions – immediately leads to a number of further research ques-
tions. For example, what is the maximal fragment of SWRL (“datalog ∪ SROIQ,” see
[14]) that can be expressed in SROIQ? Clearly, this fragment would contain DL Rules
[21] and maybe some form of DL-safe rules [27]. But also the maximal FOL= frag-
ment that can be expressed in a well-known subset such as the Guarded Fragment [1] or
the two-variable fragment might be of general interest. We argue that ultimate answers
to such questions can indeed be obtained based on similar definitions of fragments as
used for DLP in this work. At the same time, our study of SROIQ indicates that the re-
quired definitions and arguments can become surprisingly complex when dealing with a
syntactically rich formalism like description logic. The main reason for this is that con-
structs that are usually considered “syntactic sugar” have non-trivial semantic effects
when considering logical fragments that are closed under variants.
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Abstract. We address the problem of dealing with inconsistencies in Description
Logic (DL) knowledge bases. Our general goal is both to study DL semantical
frameworks which are inconsistency-tolerant, and to devise techniques for an-
swering unions of conjunctive queries posed to DL knowledge bases under such
inconsistency-tolerant semantics. Our work is inspired by the approaches to con-
sistent query answering in databases, which are based on the idea of living with
inconsistencies in the database, but trying to obtain only consistent information
during query answering, by relying on the notion of database repair. We show
that, if we use the notion of repair studied in databases, inconsistency-tolerant
query answering is intractable, even for the simplest form of queries. Therefore,
we study different variants of the repair-based semantics, with the goal of reach-
ing a good compromise between expressive power of the semantics and compu-
tational complexity of inconsistency-tolerant query answering.

1 Introduction

It is well-known that inconsistency causes severe problems in classical logic. In particu-
lar, since an inconsistent logical theory has no model, it logically implies every formula,
and, therefore, query answering on an inconsistent knowledge base becomes meaning-
less. In this paper, we address the problem of dealing with inconsistencies in Description
Logic (DL) knowledge bases. Our general goal is both to study DL semantical frame-
works which are inconsistency-tolerant, and to devise techniques for answering unions
of conjunctive queries posed to DL knowledge bases under such inconsistency-tolerant
semantics.

A DL knowledge base is constituted by two components, called the TBox and the
ABox, respectively [1]. Intuitively, the TBox includes axioms sanctioning general prop-
erties of concepts and relations (such as Dog isa Animal), whereas the ABox contains
axioms asserting properties of instances of concepts and relations (such as Bob is an
instance of Dog). The various DLs differ in the language (set of constructs) used to
express such axioms. We are particularly interested in using DLs for the so-called
“ontology-based data access” [13] (ODBA), where a DL TBox acts as an ontology
used to access a set of data sources. Since it is often the case that, in this setting, the
size of the data at the sources largely exceeds the size of the ontology, DLs where query
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answering is tractable with respect to the size of the ABox have been studied recently. In
this paper, we will consider DLs specifically tailored towards ODBA, in particular DLs
of the DL-Lite family [4], where query answering can be done efficiently with respect
to the size of the ABox.

Depending on the expressive power of the underlying language, the TBox alone
might be inconsistent, or the TBox might be consistent, but the axioms in the ABox
might contradict the axioms in the TBox. Since in ODBA the ontology is usually repre-
sented as a consistent TBox, whereas the data at the sources do not necessarily conform
to the ontology, the latter situation is the one commonly occurring in practice. There-
fore, our study is carried out under the assumption that the TBox is consistent, and
inconsistency may arise between the ABox and the TBox (inconsistencies in the TBox
are considered, e.g., in [12,9,8,14,11]).

There are many approaches for devising inconsistency-tolerant inference sys-
tems [2], originated in different areas, including Logic, Artificial Intelligence, and
Databases. Our work is especially inspired by the approaches to consistent query an-
swering in databases [5], which are based on the idea of living with inconsistencies (i.e.,
data that do not satisfy the integrity constraints) in the database, but trying to obtain
only consistent information during query answering. But how can one obtain consis-
tent information from an inconsistent database? The main tool used for this purpose
is the notion of database repair: a repair of a database contradicting a set of integrity
constraints is a database obtained by applying a minimal set of changes which restore
consistency. In general, there are many possible repairs for a database D, and, there-
fore, the approach sanctions that what is consistently true in D is simply what is true
in all possible repairs of D. Thus, inconsistency-tolerant query answering amounts to
compute the tuples that are answers to the query in all possible repairs.

In [10], a semantics for inconsistent knowledge bases expressed in DL-Lite has been
proposed, based on the notion of repair. More specifically, an ABox A′ is a repair of the
knowledge base K = 〈T , A〉, where T is the TBox and A is the ABox, if it is consistent
with T , and there exists no ABox consistent with T that is “closer” to A, where an
ABox A′′ is closer to A than A′ if A∩A′′ is a proper superset of A∩A′. In this paper,
we call such semantics the ABox Repair (AR) semantics, and we show that for the DLs
of the DL-Lite family, inconsistency-tolerant query answering under such a semantics
is coNP-complete even for ground atomic queries, thus showing that inconsistency-
tolerant instance checking is already intractable. For this reason, we propose a variant
of the AR-semantics, based on the idea that inconsistency-tolerant query answering
should be done by evaluating the query over the intersection of all AR-repairs. The new
semantics, called the Intersection ABox Repair (IAR) semantics, is an approximation of
the AR-semantics, and it enjoys a desirable property, namely that inconsistency-tolerant
query answering is polynomially tractable.

Both the AR-semantics and the IAR-semantics suffer from a drawback. Suppose
that K′ = 〈T , A′〉 differs from the inconsistent knowledge base K = 〈T , A〉, sim-
ply because A′ includes assertions that logically follow, using T , from a consistent
subset of A. This implies that K′ is also inconsistent, and one would expect that the re-
pairs of K′ and the repairs of K coincide. On the contrary, since the AR-semantics
is not independent from the form of the knowledge base, one can show that, in
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general, inconsistency-tolerant query answering in the two knowledge bases yields
different results. To overcome this drawback, we propose a new variant of the AR-
semantics, called the Closed ABox Repair (CAR) semantics, that essentially considers
only repairs that are “closed” with respect to the knowledge represented by the TBox.
We show that, while inconsistency-tolerant instance checking is tractable under this
new semantics, query answering is coNP-complete for unions of conjunctive queries.
For this reason, we also study the “intersection-based” version of the CAR-semantics,
called the Intersection Closed ABox Repair (ICAR) semantics, showing that it is an
approximation of the CAR-semantics, and that inconsistency-tolerant query answering
under this new semantics is again polynomially tractable.

The paper is organized as follows. In Section 2 we briefly describe the DL we use
in our work. In Section 3 we present the various inconsistency-tolerant semantics we
have studied in our investigation. In Section 4 we present the complexity results about
such semantics, in terms of both lower bounds and upper bounds. Finally, Section 5
concludes the paper.

2 Preliminaries

Description Logics (DLs) [1] are logics that represent the domain of interest in terms of
concepts, denoting sets of objects, value-domains, denoting sets of values, attributes,
denoting binary relations between objects and values, and roles, denoting binary rela-
tions over objects. DL expressions are built starting from an alphabet Γ of symbols
for atomic concepts, atomic value-domains, atomic attributes, atomic roles, and object
and value constants. We denote by ΓO the set of object constants, and by ΓV the set of
value constants. Complex expressions are constructed starting from atomic elements,
and applying suitable constructs. Different DLs allow for different constructs.

A DL knowledge base (KB) is constituted by two main components: a TBox
(i.e.,“Terminological Box”), which contains a set of universally quantified assertions
stating general properties of concepts and roles, thus representing intensional knowl-
edge of the domain, and an ABox (i.e.,“Assertional Box”), which is constituted by as-
sertions on individual objects, thus specifying extensional knowledge. Again, different
DLs allow for different kinds of TBox and/or ABox assertions.

Formally, if L is a DL, then an L-knowledge base K is a pair 〈T , A〉, where T is a
TBox expressed in L and A is a ABox. In this paper we assume that the ABox assertions
are atomic, i.e., they involve only atomic concepts, attributes and roles. The alphabet of
K, denoted by ΓK, is the set of symbols from Γ occurring in T and A. The semantics
of a DL knowledge base is given in terms of first-order (FOL) interpretations (cf. [1]).
We denote with Mod(K) the set of models of K, i.e., the set of FOL interpretations
that satisfy all the assertions in T and A, where the definition of satisfaction depends
on the kind of expressions and assertions in the specific DL language in which K is
specified. As usual, a KB K is said to be satisfiable if it admits at least one model, i.e.,
if Mod(K) �= ∅, and K is said to entail a First-Order Logic (FOL) sentence φ, denoted
K |= φ, if φI = true for all I ∈ Mod(K).

We now provide some details about the DL DL-LiteA, a member of the DL-Lite
family [4]. This is a family of tractable DLs particularly suited for dealing with
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KBs with very large ABoxes, and is at the basis of OWL 2 QL, one of the profiles of
OWL 2, the official ontology language of the World Wide Web Consortium (W3C).
In DL-LiteA, the alphabet Γ is partitioned into 6 subsets, for object constants, value
constants, and atomic concept, value-domain, attribute, role symbols, respectively.
Concept, role, attribute, and value-domain expressions are formed according to the fol-
lowing syntax:

B −→ A | ∃Q | δ(U) E −→ ρ(U)
C −→ B | ¬B F −→ �D | T1 | · · · | Tn

Q −→ P | P− V −→ U | ¬U
R −→ Q | ¬Q

where A, P , and U are symbols in Γ denoting an atomic concept, an atomic role and
an atomic attribute respectively, �D is the universal value-domain, and T1, . . . , Tn are
symbols in Γ for atomic value-domains. The expression P− denotes the inverse of an
atomic role, δ(U) denotes the domain of U , i.e., the set of objects that U relates to
values, ρ(U) denotes the range of U , i.e., the set of values that U relates to objects.

A DL-LiteA KB is a pair K = 〈T , A〉, where T is the TBox and A the ABox. The
TBox T is a finite set of assertions of the form

B � C Q � R E � F U � V (funct Q) (funct U)

From left to right, the first four assertions denote inclusions between concepts, roles,
value-domains, and attributes, respectively. The last two assertions denote functionality
on roles and on attributes. DL-LiteA TBoxes are subject to the restriction that roles and
attributes occurring in functionality assertions cannot be specialized (i.e., they cannot
occur in the right-hand side of inclusions).

A DL-LiteA ABox A is a finite set of assertions of the form A(a), P (a, b), and
U(a, v), where A, P , and U are as above, a and b are object constants from ΓO , and v
is a value constant from ΓV .

Example 1. We consider a simple DL-LiteA knowledge base K = 〈T , A〉 describing
the “Formula One Teams” domain, where the TBox T is constituted by the following
assertions:

Mechanic � TeamMember Driver � TeamMember Driver � ¬Mechanic

∃drives � Driver ∃drives− � Car (funct drives)

In words, T specifies that drivers and mechanics are team members, but drivers are not
mechanics (note that Driver � ¬Mechanic is called a disjointness assertion, because it
states that the two concepts Driver and Mechanic are dosjoint). Moreover,
the role drives has Driver as domain and Car as range, and it is also functional,
i.e., every driver can drive at most one car. The ABox A = {Driver(felipe),
TeamMember(felipe), drives(felipe, ferrari)} asserts that felipe is both a driver
and a team member, and that he drives the car ferrari.

The semantics of a DL-LiteA KB is given in terms of FOL interpretations I = (ΔI , ·I)
where ΔI is the interpretation domain and ·I is the interpretation function. In particular,



Inconsistency-Tolerant Semantics for Description Logics 107

ΔI is a non-empty set partitioned into ΔV and ΔI
O, where ΔI

O is the subset of Δ used
to interpret object constants in ΓO , and ΔV is the subset of Δ used to interpret data
values. In other words, for every c ∈ ΓO, cI ∈ ΔO and for every f ∈ ΓV , fI ∈ ΔV .
The interpretation function ·I is defined as follows.

– For every c ∈ ΓO , cI ∈ ΔO , and for every f ∈ ΓV , fI ∈ ΔV .
– For all d1, d2 ∈ ΓO ∪ ΓV , dI1 �= dI2 (i.e., interpretations for DL-Lite follow the

unique name assumption).
– For all 1 ≤ i ≤ n, Ti is an unbound set of values.
– The following equations are satisfied by ·I :

AI ⊆ ΔI
O P I ⊆ ΔI

O ×ΔI
O

(δ(U))I = { o | ∃v. (o, v) ∈ UI } (P−)I = { (o, o′) | (o′, o) ∈ P I }
(∃Q)I = { o | ∃o′. (o, o′) ∈ QI } (¬Q)I = (ΔI

O ×ΔI
O) \QI

(¬B)I = ΔI
O \ BI UI ⊆ ΔI

O ×ΔV

(ρ(U))I = { v | ∃o. (o, v) ∈ UI } (¬U)I = (ΔI
O ×ΔV ) \ UI

T I
i ⊆ �ID = ΔV (1 ≤ i ≤ n) Ti ∩ Tj = ∅ (1 ≤ i, j ≤ n)

An interpretation I satisfies a concept (resp., role) inclusion assertion B � C (resp.,
Q � R) if BI ⊆ CI (resp., QI ⊆ RI), and satisfies a role functionality assertion
(funct Q) if, for each o, o′, o′′ ∈ ΔI

O, we have that (o, o′) ∈ QI and (o, o′′) ∈ QI

implies o′ = o′′. The semantics for attribute and value-domain inclusion assertions,
and for functionality assertions over attributes can be defined analogously. Finally, I
satisfies ABox assertions A(a), P (a, b) and U(a, v) if aI ∈ AI , (aI , bI) ∈ P I and
(aI , vI) ∈ UI respectively.

In the following, we are interested in particular in the problem of answering queries
posed to a DL-LiteA-KB. More specifically, we deal with the problem of establish-
ing whether a DL-LiteA KB entails a boolean union of conjunctive queries (UCQ),
i.e., a first order sentence of the form ∃y1.conj 1(y1) ∨ · · · ∨ ∃yn.conj n(yn), where
y1, . . . , yn are terms (i.e., constants or variables), and each conj i(yi) is a conjunction
of atoms of the form A(z), P (z, z′) and U(z, z′) where A is an atomic concept, P is
an atomic role and U is an attribute name, and z, z′ are terms. Notice that all the results
we achieve about this reasoning task can be easily extended in the standard way to the
presence of free variables in queries (see e.g. [7]).

In the rest of this paper we will focus on the data complexity of query answering,
i.e., we will measure the computational complexity only with respect to the size of the
ABox (which is usually much larger than the TBox and the queries). It follows from
the results in [4,13] that query answering in DL-LiteA is in ACo, which is a complexity
class contained in PTIME, and therefore is tractable in data complexity.

3 Inconsistency-Tolerant Semantics

In this section we present our inconsistency-tolerant semantics for DL knowledge bases.
As we said in the introduction, we assume that for a knowledge base K = 〈T , A〉,
T is satisfiable, whereas A may be inconsistent with T , i.e., the set of models of K
may be empty. The challenge is to provide semantic characterizations for K, which
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are inconsistency-tolerant, i.e., they allow K to be interpreted with a non-empty set of
models even in the case where it is unsatisfiable under the classical first-order semantics.

The inconsistency-tolerant semantics we give below are based on the notion of re-
pair. Intuitively, given a DL KB K = 〈T , A〉, a repair AR for K is an ABox such that
the KB 〈T , AR〉 is satisfiable under the first-order semantics, and AR “minimally” dif-
fers from A. Notice that in general not a single, but several repairs may exist, depend-
ing on the particular minimality criteria adopted. We consider here different notions
of “minimality”, which give rise to different inconsistency-tolerant semantics. In all
cases, such semantics coincide with the classical first-order semantics when inconsis-
tency does not come into play, i.e., when the KB is satisfiable under standard first-order
semantics.

The first notion of repair that we consider can be phrased as follows: a repair AR of
a KB K = 〈T , A〉 is a maximal subset of A such that 〈T , AR〉 is satisfiable under the
first-order semantics, i.e., there does not exist another subset of A that strictly contains
AR and that is consistent with T . Intuitively, each such repair is obtained by throwing
away from A a minimal set of assertions to make it consistent with T . In other words,
adding to AR another assertion of A would make the repair inconsistent with T . The
formal definition is given below.

Definition 1. Let K = 〈T , A〉 be a DL KB. An ABox Repair (AR) of K is a set A′of
membership assertions such that:

1. A′ ⊆ A,
2. Mod(〈T , A′〉) �= ∅,
3. there exist no A′′ such that A′ ⊂ A′′ ⊆ A and Mod(〈T , A′′〉) �= ∅.

The set of AR-repairs for K is denoted by AR-Rep(K).

Based on the above notion of repair, we can now give the definition of ABox repair
model.

Definition 2. Let K = 〈T , A〉 be a DL KB. An interpretation I is an ABox repair
model, or simply an AR-model, of K if there exists A′ ∈ AR-Rep(K) such that I |=
〈T , A′〉. The set of ABox repair models of K is denoted by AR-Mod(K).

The following notion of consistent entailment is the natural generalization of classical
entailment to the ABox repair semantics.

Definition 3. Let K be a DL KB, and let φ be a first-order sentence. We say that φ is
AR-consistently entailed, or simply AR-entailed, by K, written K |=AR φ, if I |= φ
for every I ∈ AR-Mod(K).

Example 2. Consider the DL-LiteA knowledge base K′ = 〈T , A′〉, where T is the
TBox of the KB presented in the Example 1, and A′ is the ABox constituted by the set
of assertions:

A′ = {Driver(felipe),Mechanic(felipe), TeamMember(felipe),
drives(felipe, ferrari)}.
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This ABox states that felipe is a team member and that he is both a driver and a
mechanic. Notice that this implies that felipe drives ferrari and that ferrari is a car.
It is easy to see that K is unsatisfiable, since felipe violates the disjointness between
driver and mechanic.

The set AR-Rep(K′) is constituted by the set of T -consistent ABoxes:

AR-rep1= {Driver(felipe), drives(felipe, ferrari), TeamMember(felipe)};
AR-rep2= {Mechanic(felipe), TeamMember(felipe)}.

Note that to obtain AR-rep1 it is sufficient to remove Mechanic(felipe) from A,
whereas to obtain AR-rep2, we need to remove from A both Driver(felipe), which
is obvious, and Driver(felipe, ferrari), which, together with the TBox assertion
∃drives � Driver, implies Driver(felipe).

The AR-semantics given above in fact coincides with the inconsistency-tolerant se-
mantics for DL KBs presented in [10], and with the loosely-sound semantics studied
in [3] in the context of inconsistent databases. Although this semantics can be consid-
ered to some extent the natural choice for the setting we are considering, since each
ABox repair stays as close as possible to the original ABox, it has the characteristic to
be dependent from the form of the knowledge base. Suppose that K′′ = 〈T , A′′〉 dif-
fers from the inconsistent knowledge base K′ = 〈T , A′〉, simply because A′′ includes
assertions that logically follow, using T , from a consistent subset of A (implying that
K′′ is also inconsistent). One could argue that the repairs of K′′ and the repairs of K′

should coincide. Conversely, the next example shows that, in the AR-semantics the two
sets of repairs are generally different.

Example 3. Consider the KB K′′ = 〈T , A′′〉, where T is the same as in K′ = 〈T , A′〉
of Example 2, and the ABox A′′ is as follows:

A′′ ={Driver(felipe),Mechanic(felipe), TeamMember(felipe), Car(ferrari),
drives(felipe, ferrari)}.

Notice that A′′ can be obtained by adding Car(ferrari) to A′. Since Car(ferrari) is
entailed by the KB 〈T , {drives(felipe, ferrari)}〉, i.e., a KB constituted by the TBox
T of K′ and a subset of A′ that is consistent with T , one intuitively would expect that
K′ and K′′ have the same repairs under the AR-semantics. This is however not the case,
since we have that AR-Rep(K′′) is formed by:

AR-rep3= {Driver(felipe), drives(felipe, ferrari), TeamMember(felipe),
Car(ferrari)};

AR-rep4= {Mechanic(felipe), TeamMember(felipe), Car(ferrari)}.

Let us finally consider the ground sentence Car(ferrari). It is easy to see that
Car(ferrari) is AR-entailed by the KB K′′ but it is not AR-entailed by the KB K′.

Depending on the particular scenario, and the specific application at hand, the above
behavior might be considered incorrect. This motivates the definition of a new semantics
that does not present such a characteristic. According to this new semantics, that we
call Closed ABox Repair, the repairs take into account not only the assertions explicitly
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included in the ABox, but also those that are implied, through the TBox, by at least one
subset of the ABox that is consistent with the TBox.

To formalize the above idea, we need some preliminary definitions. Given a DL KB
K = 〈T , A〉, we denote with HB(K) the Herbrand Base of K, i.e. the set of ABox
assertions that can be built over the alphabet of ΓK. Then we define the consistent
logical consequences of K as the set clc(K) = {α | α ∈ HB(K) and there exists S ⊆
A such that Mod(〈T , S〉) �= ∅ and 〈T , S〉 |= α}. With the above notions in place we
can now give the definition of Closed ABox Repair.

Definition 4. Let K = 〈T , A〉 be a DL KB. A Closed ABox Repair (CAR) for K is a
set A′ of membership assertions such that:

1. A′ ⊆ clc(K),
2. Mod(〈T , A′〉) �= ∅,
3. there exist no A′′ ⊆ clc(K) such that

(a) Mod(〈T , A′′〉) �= ∅, and
(b) it is either A′′ ∩ A ⊃ A′ ∩ A or A′′ ∩ A = A′ ∩ A and A′′ ⊃ A′.

The set of CAR-repairs for K is denoted by CAR-Rep(T , A).

Intuitively, a CAR-repair is a subset of clc(K) consistent with T that “maximally pre-
serves” the ABox A. In particular, condition 3 states that we prefer A′ to any other
AR ⊆ clc(K) consistent with T such that AR ∩ A ⊂ A′ ∩ A (i.e., AR maintains
a smaller subset of A with respect to A′). Then, among those AR having the same
intersection with A, we prefer the ones that contain as much assertions of clc(K) as
possible.

The set of CAR-models of a KB K, denoted CAR-Mod(K), is defined analogously
to AR-models (cf. Definition 2). Also, CAR-entailment, denoted |=CAR, is analogous
to AR-entailment (cf. Definition 3).

Example 4. Consider the two KBs K′ and K′′ presented in the Example 2 and Exam-
ple 3. It is easy to see that both CAR-Rep(K′) and CAR-Rep(K′′) are constituted by the
two sets below:

CAR-rep1={Driver(felipe), drives(felipe, ferrari), TeamMember(felipe),
Car(ferrari)};

CAR-rep2={Mechanic(felipe), TeamMember(felipe), Car(ferrari)}.

It follows that both K′ and K′′ CAR-entail the ground sentence Car(ferrari), differ-
ently from what happen under the AR-semantics, as showed in Example 3.

The above example shows also that there are sentences entailed by a KB under the
CAR-semantics that are not entailed under the AR-semantics. Conversely, we can show
that the AR-semantics is a sound approximation of the CAR-semantics, i.e., for any KB
K CAR-Mod(K) ⊆ AR-Mod(K), implying that the logical consequences of K under
the AR-semantics are contained in the logical consequences of K under the CAR-
semantics, as stated by the following theorem.

Theorem 1. Let K be a DL KB, and φ a first-order sentence. Then, K |=AR φ implies
K |=CAR φ.
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IAR

AR

CAR

ICAR

Fig. 1. Partial order over the inconsistency tolerant semantics

As we will see in the next section, entailment of a union of conjunctive queries from
a KB K is intractable both under the AR-semantics and the CAR-semantics. Since
this can be an obstacle in the practical use of such semantics, we introduce here ap-
proximations of the two semantics, under which we will show in the next section that
entailment of unions of conjunctive queries is polynomial. In both cases, the approx-
imation consists in taking as unique repair the intersection of the AR-repairs and of
the CAR-repairs, respectively. This actually corresponds to follow the WIDTIO (When
you are in doubt throw it out) approach, proposed in the area of belief revision and
update [15,6].

Definition 5. Let K = 〈T , A〉 be a DL KB. An Intersection ABox Repair (IAR) for K is
the set A′ of membership assertions such that A′ =

⋂
Ai∈AR-Rep(K) Ai}. The (singleton)

set of IAR-repairs for K is denoted by IAR-Rep(K).

Analogously, we give below the definition of Intersection Closed ABox Repair.

Definition 6. Let K = 〈T , A〉 be a DL KB. An Intersection Closed ABox Re-
pair (ICAR) for K is the set A′ of membership assertions such that A′ =⋂

Ai∈CAR-Rep(K) Ai}. The (singleton) set of ICAR-repairs for K is denoted by
ICAR-Rep(K).

The sets IAR-Mod(K) and ICAR-Mod(K) of IAR-models and ICAR-models, respec-
tively, and the notions of IAR-entailment and ICAR-entailment are defined as usual
(cf. Definition 2 and Definition 3).

Example 5. Consider the KB K′ = 〈T , A′〉 presented in Example 2. Then
IAR-Rep(K′) is the singleton formed by the ABox IAR-rep = AR-rep1 ∩ AR-
rep2 = {TeamMember(felipe)}. In turn, referring to Example 4, ICAR-Rep(K′)
is the singleton formed by the ABox ICAR-rep1 = CAR-rep1 ∩ CAR-rep2 =
{TeamMember(felipe),Car(ferrari)}.

It is not difficult to show that the IAR-semantics is a sound approxima-
tion of the AR-semantics, and that the ICAR-semantics is a sound approxi-
mation of the CAR-semantics. It is also easy to see that the converse is not
true in general. For instance, the sentence Driver(felipe) is entailed by K =
〈T , {drives(felipe, ferrari), drives(felipe, mcLaren)}〉, where T is the TBox of
Example 1, under the AR-semantics, but it is not entailed under the IAR-semantics.

Furthermore, an analogous of Theorem 1 holds also for the “intersection” semantics.
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Theorem 2. Let K be a DL KB, and φ a first-order sentence. Then, K |=IAR α implies
K |=ICAR α.

Also in this case one can easily see that the converse implication does not hold. It is
sufficient to look again at Example 5, where Car(ferrari) is entailed by K′ under the
ICAR-semantics, but it is not entailed under the IAR-semantics.

From all the above results it follows that the AR-, CAR-, IAR-, and ICAR-
semantics form a partial order, where the CAR-semantics is the upper bound, the IAR-
semantics is the lower bound, whereas the ICAR-semantics and the AR-semantics are
incomparable (see Figure 1). In other words, the IAR-semantics is a sound approxima-
tion of all the semantics, while the CAR-semantics is the one which is able to derive the
largest set of conclusions from a KB. It can also easily be shown that the AR-semantics
and the ICAR-semantics are incomparable.

4 Reasoning

In this section we study reasoning in the inconsistency-tolerant semantics introduced in
the previous section. In particular, we analyze the problem of UCQ entailment under
such semantics. We will also consider instance checking, which is a restricted form of
UCQ entailment. As we said before, in our analysis we will focus on data complexity.

We start by considering the AR-semantics. It is known that UCQ entailment is in-
tractable under this semantics [10]. Here, we strengthen this result, and show that in-
stance checking under the AR-semantics is already coNP-hard in data complexity even
if the KB is expressed in DL-Litecore . We recall that DL-Litecore is the least expres-
sive logic in the DL-Lite family, as it only allows for concept expressions of the form
C ::= A|∃R|∃R−, and for TBox assertions of the form C1 � C2, C1 � ¬C2 (for more
details, see [4]).

Theorem 3. Let K be a DL-Litecore KB and let α be an ABox assertion. Deciding
whether K |=AR α is coNP-complete with respect to data complexity.

Proof. Membership in coNP follows from coNP-completeness of UCQ entailment un-
der AR-semantics [10, Theorem 1].

We prove hardness with respect to coNP by reducing satisfiability of a 3-CNF for-
mula to the complement of instance checking.

Let φ be a 3-CNF, i.e., a formula of the form φ = c1∧ . . .∧ck where ci = �i
1∨�i

2∨�i
3

for every i such that 1 ≤ i ≤ k (every �i
j is a propositional literal). Let a1, . . . , an be

the propositional variable symbols occurring in φ.
We define the following TBox T (which does not depend on φ):

∃R− � ¬∃LT−
1

∃R− � ¬∃LF−
1

∃R− � ¬∃LT−
2

∃R− � ¬∃LF−
2

∃R− � ¬∃LT−
3

∃R− � ¬∃LF−
3

∃R � Unsat
∃LT 1 � ¬∃LF 1
∃LT 1 � ¬∃LF 2
∃LT 1 � ¬∃LF 3
∃LF 1 � ¬∃LT 2
∃LF 1 � ¬∃LT 3

∃LT 2 � ¬∃LF 2
∃LT 2 � ¬∃LF 3
∃LF 2 � ¬∃LT 3
∃LT 3 � ¬∃LF 3
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Then, we define the following ABox Aφ (which depends on φ):

{R(a, c1), . . . , R(a, ck)} ∪
⋃k

i=1
⋃3

j=1{Polarity(�i
j)(Atom(�i

j), ci)}

where: (i) Polarity(�i
j) = LT j if �i

j is a positive literal, while Polarity(�i
j) = LF j if �i

j

is a negative literal; (ii) Atom(�i
j) denotes the propositional variable symbol occurring

in literal �i
j . For instance, if φ = (a1 ∨ ¬a2 ∨ a3) ∧ (¬a3 ∨ a4 ∨ ¬a1), the ABox Aφ is

the following:

{R(a, c1), R(a, c2)} ∪
{LT 1(a1, c1),LF 2(a2, c1),LT 3(a3, c1),LF 1(a3, c2), LT2(a4, c2),LF 3(a1, c2)}

We now prove that 〈T , Aφ〉 �|=AR Unsat(a) iff φ is satisfiable.
First, suppose φ is satisfiable, and let I be a model for φ. Then, let A′ be the follow-

ing subset of Aφ:

{LT j(ai, ch) | LT j(ai, ch) ∈ Aφ and I |= ai}∪
{LF j(ai, ch) | LF j(ai, ch) ∈ Aφ and I �|= ai}

It is immediate to verify that A′ is a maximal T -consistent subset of Aφ: in particular,
since I |= φ, if we add any R(a, ci) to A′, the resulting ABox is inconsistent. Therefore,
A′ is an AR-repair of 〈T , Aφ〉. Moreover, since no R(a, ci) belongs to A′, it follows
that 〈T , A′〉 �|= Unsat(a), which implies that 〈T , Aφ〉 �|=AR Unsat(a).

Conversely, suppose 〈T , Aφ〉 �|=AR Unsat(a). Then, there exists an AR-repair A′

of 〈T , Aφ〉 such that 〈T , A′〉 �|= Unsat(a). Of course, no R(a, ci) belongs to A′. Now,
let I be the propositional interpretation defined as follows: for every ai, if there exists
a fact of the form LT j(ai, ch) ∈ A′, then I |= ai, otherwise I �|= ai. It is easy to see
that, since no R(a, ch) belongs to A′, for every ch either there exists a fact of the form
LT j(ai, ch) in A′ or there exists a fact of the form LF j(ai, ch) in A′. In both cases, we
get I |= ch. Consequently, I |= φ.

Theorem 3 corrects a wrong result presented in [10, Theorem 6], which asserts tractabil-
ity of AR-entailment of ABox assertions from KBs specified in DL-LiteF , a superset
of DL-Litecore . It turns out that, while the algorithm presented in [10] (on which the
above cited Theorem 6 was based) is actually unable to deal with general TBoxes, such
a technique can be adapted to prove that AR-entailment of ABox assertions is tractable
for DL-LiteA KBs without TBox disjointness assertions.

Next, we focus on the CAR-semantics, and show that UCQ entailment under this
semantics is coNP-hard even if the TBox language is restricted to DL-Litecore .

Theorem 4. Let K be a DL-Litecore KB and let Q be a UCQ. Deciding whether
K |=CAR Q is coNP-complete with respect to data complexity.

Proof. The proof of coNP-hardness is obtained by a slight modification of the reduction
from 3-CNF satisfiability in the proof of Theorem 3. To prove membership in coNP, we
first prove that, when K is a DL-LiteA KB, clc(K) can be computed in polynomial time,
which is an immediate consequence of the fact that
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clc(K) = {α | α ∈ HB(K) and αi ∈ A and 〈T , {αi}〉 |= α and 〈T , {αi}〉 satisfiable}

Now, membership in coNP follows from the following facts: (i) 〈T , A〉 |=CAR q
iff 〈T , clc(T , A)〉 |=AR q; (ii) clc(T , A) can be computed in polynomial time; (iii)
Theorem 3.

Notice that, differently from the AR-semantics, the above intractability result for the
CAR-semantics does not hold already for the instance checking problem: we will show
later in this section that instance checking is indeed tractable under the CAR-semantics.

We now turn our attention to the IAR-semantics, and define the following algorithm
Compute-IAR-Repair for computing the IAR-repair of a DL-LiteA KB K.

Algorithm Compute-IAR-Repair(K)
input: DL-LiteA KB K = 〈T , A〉
output: DL-LiteA ABox A′

begin
let D = ∅;
for each fact α ∈ A do

if 〈T , {α}〉 unsatisfiable
then let D = D ∪ {α};

for each pair of facts α1, α2 ∈ A − D do
if 〈T , {α1, α2}〉 unsatisfiable
then let D = D ∪ {α1, α2};

return A − D
end

The algorithm is very simple: it computes a set D of ABox assertions in A which
must be eliminated from the IAR-repair of K.

Lemma 1. Let K be a DL-LiteA KB. Then, IAR-Rep(K) =
{Compute-IAR-Repair(K)}.

Proof. (sketch) The proof is based on the following property, not difficult to verify,
which is due to the form of the TBox assertions allowed in DL-LiteA: every ABox
assertion α that does not belong to at least one AR-repair of K satisfies one of the fol-
lowing conditions: (i) α is such that the KB 〈T , {α}〉 is unsatisfiable; (ii) α is such that
there exists another ABox assertion α′ such that the KB 〈T , {α, α′}〉 is unsatisfiable
and α′ does not satisfy the previous condition (i). Therefore, at the end of the execution
of the algorithm, the set D contains every ABox assertion α that does not belong any
AR-repair of K. Hence A − D is the IAR-repair of K.

The following property, based on the correctness of the previous algorithm, establishes
tractability of UCQ entailment under IAR-semantics.

Theorem 5. Let K be a DL-LiteA KB, and let Q be a UCQ. Deciding whether K |=IAR

Q is in PTIME with respect to data complexity.
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Proof. By Lemma 1, the ABox returned by Compute-IAR-Repair(K) is the IAR-
repair of K. Then, by definition of IAR-semantics, we have that, for every UCQ Q,
K |=IAR Q iff 〈T , A′〉 |= Q where A′ is the IAR-repair of K. From the fact that the
algorithm Compute-IAR-Repair(K) runs in polynomial time and from tractability of
UCQ entailment in DL-LiteA [13], the claim follows.

We now turn our attention to the ICAR-semantics and present the algorithm
Compute-ICAR-Repair for computing the ICAR-repair of a DL-LiteA KB K.

Algorithm Compute-ICAR-Repair(K)
input: DL-LiteA KB K = 〈T , A〉
output: DL-LiteA ABox A′

begin
Compute clc(K);
let D = ∅;
for each pair of facts α1, α2 ∈ clc(K) do

if 〈T , {α1, α2}〉 unsatisfiable
then let D = D ∪ {α1, α2};

return clc(K) − D
end

The algorithm is analogous to the previous algorithm Compute-IAR-Repair. The
main differences are the following: (i) the algorithm Compute-ICAR-Repair returns
(and operates on) a subset of clc(K), while the algorithm Compute-IAR-Repair returns a
subset of the original ABox A; (ii) differently from the algorithm Compute-IAR-Repair,
the algorithm Compute-ICAR-Repair does not need to eliminate ABox assertions α
such that 〈T , {α}〉 is unsatisfiable, since such facts cannot occur in clc(K).

Again, through the algorithm Compute-ICAR-Repair it is possible to establish the
tractability of UCQ entailment under ICAR-semantics.

Theorem 6. Let K = 〈T , A〉 be a DL-LiteA KB and let Q be a UCQ. Deciding whether
K |=ICAR Q is in PTIME with respect to data complexity.

Proof. First, we prove that the ABox returned by Compute-ICAR-Repair(K) is the
ICAR-repair of K. This follows from the following property: let α1, α2 ∈ clc(〈T , A〉)
and let 〈T , {α1, α2}〉 be unsatisfiable. Then, let β1 ∈ A be such that 〈T , {β1}〉 |= α1,
and let β2 ∈ A be such 〈T , {β2}〉 |= α2 (such facts β1, β2 always exist). Now, it
is immediate to verify that 〈T , {β1, β2}〉 is unsatisfiable. Moreover, by definition of
clc(〈T , A〉) we have that (i) 〈T , {β1}〉 is satisfiable, and (ii) 〈T , {β2}〉 is satisfiable.
Now, (i) immediately implies that there exists a CAR-repair A′ of K that contains β1,
and hence α1 since A′ is deductively closed. Consequently, α2 cannot belong to the A′

(since 〈T , A′〉 must be satisfiable, and hence α2 does not belong to the intersection of
all the CAR-repairs of K. In the same way, from (ii) we derive that α1 does not belong
to the intersection of all the CAR-repairs of K.

Now, as shown in the proof of Theorem 4, clc(K) can be computed in polynomial
time, which implies that the algorithm Compute-ICAR-Repair(K) runs in polynomial
time. Moreover, by definition of ICAR-semantics, we have that, for every UCQ Q,
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AR semantics CAR semantics IAR semantics ICAR semantics

instance checking coNP-complete in PTIME in PTIME in PTIME
UCQ entailment coNP-complete [10] coNP-complete in PTIME in PTIME

Fig. 2. Data complexity of UCQ entailment over DL-LiteA KBs under inconsistency-tolerant
semantics

K |=ICAR Q iff 〈T , A′〉 |= Q where A′ is the ICAR-repair of K. Hence, from tractabil-
ity of UCQ entailment in DL-LiteA, the thesis follows.

Finally, we consider the instance checking problem under CAR-semantics, and show
that instance checking under CAR-semantics coincides with instance checking under
the ICAR-semantics.

Lemma 2. Let K be a DL-LiteA KB, and let α be an ABox assertion. Then, K |=CAR α
iff K |=ICAR α.

Proof. K |=CAR α if K |=ICAR α follows from the fact that the ICAR-semantics is
a sound approximation of the CAR-semantics. As for the converse, since every CAR-
repair is deductively closed, it follows that K |=CAR α iff α belongs to the intersection
of all the CAR-repairs of 〈T , A〉, i.e., to the ICAR-repair of K.

The above property and Theorem 6 allow us to establish tractability of instance check-
ing under the CAR-semantics.

Theorem 7. Let K be a DL-LiteA KB, and let α be an ABox assertion. Deciding
whether K |=CAR α is in PTIME with respect to data complexity.

We remark that the analogous of Lemma 2 does not hold for AR, because AR-
repairs are not deductively closed. This is the reason why instance checking under AR-
semantics is harder, as stated by Theorem 3. In Figure 2 we summarize the complexity
results presented in this section.

5 Conclusions

We have presented an investigation on inconsistency-tolerant reasoning in DLs, with
special attention to the DL-Lite family. The techniques we have illustrated assume that
the TBox is consistent, and therefore consider the case of inconsistencies arising be-
tween the TBox and the ABox.

Our approach to inconsistency-tolerance is inspired by the work done on consistent
query answering in databases. Indeed, the AR-semantics presented in Section 3 is the
direct application of the notion of repair to DL knowledge bases. Motivated by the in-
tractability of inconsistency-tolerant query answering under such semantics, we have
investigated several variants of the AR-semantics, with the goal of finding a good com-
promise between expressive power and complexity of query answering.
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Our work can proceed along different directions. One notable problem we aim at
addressing is the design of new algorithms for inconsistency-tolerant query answering
both under the IAR-semantics and the ICAR-semantics, based on the idea of rewriting
the query into a FOL query to be evaluated directly over the inconsistent ABox. We
would also like to study reasoning under inconsistency-tolerant semantics in Descrip-
tion Logics outside the DL-lite family.
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Extending Paraconsistent SROIQ

Frederick Maier�
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Abstract. The four-valued paraconsistent logic SROIQ4, originally
presented by Ma and Hitzler, is extended to incorporate additional ele-
ments of SROIQ. It is shown that the modified logic is classically sound
and that its embedding into classical SROIQ is consequence preserving.
Furthermore, inserting special axioms into a SROIQ4 knowledge base
allows additional nontrivial conclusions to be drawn, without affecting
paraconsistency. It is also shown that the interaction of nominals and
cardinality restrictions prevents some SROIQ4 knowledge bases from
having models. For such knowledge bases, the logic remains explosive.

1 Introduction

Standard description logics (DLs) are essentially classical in nature. In each
interpretation, every proposition is either true or false but never both, a model
of a set K of propositions is an interpretation making each member true, and K
entails a proposition P (K |= P) iff every model of K is a model of P .

As a result, standard description logics obey the principle of explosion.

If K |= P and K |= ¬P , then K |= Q for all Q.

If both a proposition P and its negation ¬P are entailed by a set of premises K,
then all propositions Q are also entailed. K is inconsistent if it has no models,
and if K has no models, then trivially all of them are models of all propositions.
Furthermore, given the semantics of negation, it is impossible for both P and ¬P
to be simultaneously true. And so the following are all equivalent in a classical
logic: K is inconsistent; K |= P and K |= ¬P ; K |= Q for all Q.

The unfortunate effect of this is that classical logic cannot be used as a guide to
reasoning over inconsistent knowledge bases, since if everything can be inferred
from an inconsistency, nothing useful can be. This is a significant problem, as
inconsistencies are commonplace in real-world systems, and it is well known that
determining consistency in expressive formal systems is quite difficult (sometimes
impossible). And even if one can find inconsistencies, restoring consistency by
deleting some subset of statements necessarily removes valuable information.

An alternative solution to the problem is to reject the principle of explosion
itself, employing a paraconsistent logic. This is the approach taken by Yue Ma,
� This work was performed in part while the author was a postdoctoral fellow at the

Florida Institute for Human and Machine Cognition, and later with support from
the Wright State University Research Council.
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Pascal Hitzler, Zuoquan Lin, and others in a collection of papers [9,10,11,12].
They present 4-valued paraconsistent semantics for selected DLs and show how
knowledge bases under the new semantics can be translated into corresponding
knowledge bases under classical DL semantics. The approach’s great virtue is
that it permits classical reasoners to draw inferences under the new semantics.

The present paper continues this work. We present a variation of the para-
consistent logic SROIQ4 [9], adding further characteristic elements of classical
SROIQ. Specifically, we add (ir)reflexive and disjoint roles, a universal role,
negative role assertions, role chains, and R.Self concept descriptions. We show
that the embedding of the extended logic into classical SROIQ is consequence
preserving, and that inserting special axioms into a SROIQ4 knowledge base
can selectively enforce the law of the excluded middle (LEM) and the law of
non-contradiction (LNC). This allows one to draw additional classically correct
conclusions. Importantly, we also point out a limitation, hitherto unnoticed, of
the paraconsistent framework of which SROIQ4 forms a part. Namely, while
many DL constructs do not affect paraconsistency, the interaction of nominals
and cardinality restrictions prevents some SROIQ4 knowledge bases from hav-
ing four-valued models. For these, the principle of explosion still applies.

Section 2 below reviews multivalued logics and presents the operators forming
the basis for concept inclusion in paraconsistent DLs. SROIQ4 is defined in
Section 3 and it is proved sound wrt classical SROIQ. Section 4 shows how to
eliminate truth-value gaps and gluts. The consequence preserving embedding of
SROIQ4 into SROIQ is given in Section 5. Section 6 shows how the interaction
of nominals and cardinality restrictions causes paraconsistency to break down.
A brief concluding section discusses related work.

2 Multivalued Paraconsistent Logics

A logic is paraconsistent if the principle of explosion fails in at least one case. In
the 4-valued logics upon which SROIQ4 is based, paraconsistency is achieved
essentially by redefining what “model” means, so that classically inconsistent
sets can have them. The use of four truth values {n, 0, 1, b} can be traced to
Belnap [4,5], with the values indicating what a computer has been told about
P : nothing (n), that P is false (0), that P is true (1), that P is true and that P
is false (b). The value b is a truth value glut, while n is a truth value gap. The
semantics for ¬ (not), ∧ (and), ∨ (or) are defined using the below truth tables.
Material implication P �→Q is taken as shorthand for ¬P ∨ Q.

¬
n n
0 1
1 0
b b

∧ n 0 1 b
n n 0 n 0
0 0 0 0 0
1 n 0 1 b
b 0 0 b b

∨ n 0 1 b
n n n 1 1
0 n 0 1 b
1 1 1 1 1
b 1 b 1 b

�→ n 0 1 b
n n n 1 1
0 1 1 1 1
1 n 0 1 b
b 1 b 1 b

An interpretation I is a 4-model of a set K of formulas if each formula is
assigned one of the designated values 1 or b. K entails P iff each 4-model of K
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is a 4-model of P . This straightforward extension of classical entailment causes
several rules of inference and theorems to fail in the 4-valued context.

– Disjunctive Syllogism (DS): If K |= ¬P and K |= P ∨ Q, then K |= Q.
– Modus Ponens (MP): If K |= P �→Q and K |= P , then K |= Q.
– Modus Tollens (MT): If K |= P �→Q and K |= ¬Q, then K |= ¬P .
– Deduction Theorem (DT): If K ∪ {P} |= Q, then K |= P �→Q.

The combined failures of MP and the DT have led to the development of alter-
native implication operators, and SROIQ4 uses operators defined in the logics
of Arieli and Avron [2,3]. The operator (⊃) is called internal implication, and it
forms the basis for strong implication (→) and equivalence (↔). For any truth-
value assignment v, the semantics for the three are given below.

– v(P ⊃ Q)=1 if v(P) /∈ {1, b}; otherwise v(P ⊃ Q)=v(Q).
– v(P → Q)=v((P ⊃ Q) ∧ (¬Q ⊃ ¬P))
– v(P ↔ Q) = v((P → Q) ∧ (Q → P))

Internal implication satisfies MP and DT, but not MT. Strong implication sat-
isfies MP and MT but not DT. With equivalence, P ↔ Q is designated iff the
values of P and Q coincide. The analogous claim does not hold if equivalence is
spelled out as (P ⊃ Q) ∧ (Q ⊃ P).

3 SROIQ and SROIQ4

SROIQ4 was first presented in [9], but we have modified it here by adding
the features mentioned in the introduction. Well-formed formulas are created
from the disjoint sets NC , NR, and NI of atomic concept names, atomic role
names, and individual names, together with a set No of nominals {a1, . . . , an}
(each ai ∈ NI), connectives ¬, �, �, etc., and punctuation marks. A knowledge
base is a union of a TBox, RBox, and ABox, where a TBox is a set of concept
inclusion axioms (GCIs), an RBox is a set of role inclusion axioms (RIAs) and
role assertions, and an ABox is a set of individual concept and role assertions.
A more detailed description of SROIQ can be found in [8].

SROIQ4 allows GCIs based on the operators of Arieli and Avron: (C1 �→ C2),
material inclusion; (C1 � C2), internal inclusion; and (C1 → C2), strong inclu-
sion. The new axioms are not formally defined in classical SROIQ. Nevertheless,
we choose to allow them in SROIQ, stipulating that they have the same se-
mantics as �. We also allow (C � D) in SROIQ4, reading it as (C � D). This
allows a common language L for both SROIQ and SROIQ4.

The semantics of SROIQ4 assigns to each concept description both a posi-
tive extension P and a negative extension N . C(a) can thereby take on one of
Belnap’s four values in an interpretation I: 1 (aI ∈ P , aI /∈ N); 0 (aI /∈ P ,
aI ∈ N); n (aI /∈ P , aI /∈ N); b (aI ∈ P , aI ∈ N). We also give roles a 4-valued
semantics:1 RI is 〈P, N〉, where P and N are subsets of ΔI ×ΔI . This maintains
paraconsistency in the presence of, e.g., negative role assertions.
1 In the earlier paper by Ma and Hitzler [9], roles are treated classically.
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Table 1. Syntax and semantics of SROIQ4 concept descriptions

Syntax SROIQ4 Semantics

C (C ∈ NC) CI = 〈P, N〉, where P, N ⊆ ΔI

{a1, . . . , an} (ai ∈ NI) 〈{aI
1 , . . . , aI

n}, N〉, where N ⊆ ΔI

R (R ∈ NR) RI = 〈P, N〉, where P, N ⊆ ΔI × ΔI

R− R−I = 〈P−, N−〉, where RI = 〈P, N〉,
P− = {(b, a)|(a, b) ∈ P}, N− = {(b, a)|(a, b) ∈ N}

U (Top Role) UI = 〈ΔI × ΔI , ∅〉

R1 ◦ . . . ◦ Rn
〈{(x,z)|(∃y1...n)[(x,y1) ∈ p+(RI

1 ) ∧ . . . ∧ (yn,z) ∈ p+(RI
n ]})

{(x, z)|(∀y1...n)[(x, y1) ∈ p−(RI
1 ) ∨ . . . ∨ (yn, z) ∈ p−(RI

n ]})〉
� �I = 〈ΔI , ∅〉
⊥ ⊥I = 〈∅, ΔI〉
¬C (¬C)I = 〈N, P 〉, where CI = 〈P, N〉

C1 � C2 (C1 � C2)I = 〈P1 ∩ P2, N1 ∪ N2〉, where CI
i = 〈Pi, Ni〉

C1 � C2 (C1 � C2)I = 〈P1 ∪ P2, N1 ∩ N2〉, where CI
i = 〈Pi, Ni〉

∃R.C
〈{x|(∃y)[(x,y) ∈ p+(RI ) ∧ y ∈ p+(CI)]},
{x|(∀y)[(x,y) ∈ p+(RI ) �→y ∈ p−(CI)]}〉

∀R.C
〈{x|(∀y)([(x,y) ∈ p+(RI ) �→y ∈ p+(CI)]},
{x|(∃y)[(x,y) ∈ p+(RI ) ∧ y ∈ p−(CI)]}〉

∃R.Self 〈{x|(x, x) ∈ p+(RI )}, N〉, N ⊆ ΔI

≤ nR.C
〈{x|�{y|(x,y) ∈ p+(RI ) ∧ y /∈ p−(CI)} ≤ n},
{x|�{y|(x, y) ∈ p+(RI ) ∧ y ∈ p+(CI)} > n}〉

≥ nR.C
〈{x|�{y|(x,y) ∈ p+(RI ) ∧ y ∈ p+(CI)} ≥ n},
{x|�{y|(x,y) ∈ p+(RI ) ∧ y /∈ p−(CI)} < n}〉

Table 2. Syntax and semantics of SROIQ4 axioms and assertions

Syntax SROIQ4 Semantics

C1 �→ C2 (ΔI − p−(CI
1 )) ⊆ p+(CI

2 )

C1 � C2 p+(CI
1 ) ⊆ p+(CI

2 )

C1 → C2 p+(CI
1 ) ⊆ p+(CI

2 ) and p−(CI
2 ) ⊆ p−(CI

1 )

R1 ◦ . . . ◦ Rn � Rn+1 p+((R1 ◦ . . . ◦ Rn)I ) ⊆ p+(RI
n+1)

Ref(R) {(x, x)|x ∈ ΔI} ⊆ p+(RI )
Irr(R) {(x, x)|x ∈ ΔI} ⊆ p−(RI )

Dis(R, S) p+(RI ) ⊆ p−(SI) and p+(SI ) ⊆ p−(RI)
C(a) aI ∈ p+(CI)
a 
= b aI 
= bI

R(a, b) (aI , bI) ∈ p+(RI )
¬R(a, b) (aI , bI) ∈ p−(RI )

A 4-valued interpretation (4-interpretation) is a tuple 〈ΔI , ·I〉, where ΔI is
nonempty and ·I is a valuation function defined inductively as shown in Tables
1 and 2. If C is a concept and I is a 4-interpretation such that CI = 〈P, N〉,
then p+(CI) =def P and p−(CI) =def N . I 4-satisfies (is a 4-model of ) axiom
A if the corresponding condition of SROIQ4 in Table 2 is met. I 4-satisfies
a knowledge base KB iff it 4-satisfies each axiom in KB. KB is 4-satisfiable
(4-unsatisfiable) iff it has (does not have) a 4-model. KB entails an axiom A
wrt SROIQ4 (KB |=SROIQ4 A) iff every 4-model of KB is a 4-model of A.
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Every 2-interpretation I2 of a knowledge base corresponds to a 4-interpre-
tation I4 (the 4-counterpart of I2): ΔI4 =def ΔI2 ; for each a ∈ NI , aI4 =def aI2 ;
for each R ∈ NR, RI4 =def 〈RI2 , (ΔI2 × ΔI2) − RI2〉; for each C ∈ NC ∪ No,
or C = ∃R.Self , CI4 =def 〈CI2 , ΔI2 −CI2〉. Since I4 and I2 share a domain of
discourse, we will simply write Δ (omitting the superscripts).

The following propositions show that SROIQ4 is sound wrt SROIQ.

Proposition 1. If I2 is a 2-interpretation and I4 its 4-counterpart, then for
any concept description C, CI4 = 〈CI2 , Δ − CI2〉.

Proof. We induct on the degree of C. If C ∈ NC ∪ No or C = ∃R.Self , the
claim holds by definition. For �, p+(�I4) = Δ = �I2 and p−(�I4) = ∅ = Δ
− Δ = Δ − �I2. For bottom, p+(⊥I4) = ∅ = ⊥I2 and p−(⊥I4) = Δ = Δ − ∅
= Δ − ⊥I2. For the inductive cases, suppose the claim holds for all concepts of
degree < n and that C has degree n. We consider the cases where C is one of
¬D, (D � E), (∃R.D), or (≥ nR.D). The remaining cases are similar.
– (¬D)I4 = 〈p−(DI4), p+(DI4)〉 = 〈Δ−DI2 , DI2)〉 = 〈(¬D)I2 , Δ− (¬D)I2)〉.
– (D � E)I4 = 〈(p+(DI4) ∩ p+(EI4)), (p−(DI4) ∪ p−(EI4))〉 = 〈(DI2 ∩

EI2), ((Δ − DI2) ∪ (Δ − EI2))〉 = 〈(DI2 ∩ EI2), (Δ − (DI2 ∩ EI2))〉.
– (∃R.D)I4 = 〈P, N〉, where P = {x|(∃y)[(x, y) ∈ p+(RI4) ∧ y ∈ p+(DI4)]}

= {x|(∃y)[(x, y) ∈ RI2 ∧ y ∈ DI2 ]} = (∃R.D)I2 ; and N = {x|(∀y)[(x, y) ∈
p+(RI4)�→y ∈ p−(DI4)]} = {x|(∀y)[(x, y) ∈ RI2 �→y ∈ (Δ − DI2)]} =
{x|(∀y)[(x, y) ∈ RI2 �→y /∈ DI2 ]} = {x|¬¬(∀y)[(x, y) ∈ RI2 �→y /∈ DI2 ]}
= {x|¬(∃y)[(x, y) ∈ RI2 ∧ y ∈ DI2 ]} = Δ − (∃R.D)I2 .

– (≥ nR.D)I4 = 〈P, N〉, where P = {x|�{y|(x, y) ∈ p+(RI4)∧y ∈ p+(DI4)} ≥
n} = {x|�{y|(x, y) ∈ RI2 ∧ y ∈ DI2} ≥ n} = DI2 ; and N = {x|�{y|(x, y) ∈
p+(RI4) ∧ y /∈ p−(DI4)} < n} = {x|�{y|(x, y) ∈ p+(RI4) ∧ y ∈ p+(DI4)} <
n} = {x|�{y|(x, y) ∈ RI2 ∧ y ∈ DI2} < n} = Δ − (≥ nR.D)I2 .

The below two lemmas are needed to prove Proposition 2, which relates the
2-models of an axiom A to its 4-models.

Lemma 1. Let I2 be a 2-interpretation and I4 its 4-counterpart. If R ∈ NR,
then R−I4 = 〈R−I2 , Δ2 − R−I2〉.

Proof. By definition of I4, RI4 = 〈RI2 , Δ2 − RI2〉. From this, R−I4 = 〈R−I2 ,
(Δ2 −RI2)−〉. Observe that (Δ2 −RI2)− = (Δ2)− − (RI2)− = Δ2 −R−I2. And
so R−I4 = 〈R−I2 , Δ2 − R−I2)〉.

Lemma 2. If I2 is a 2-interpretation and I4 its 4-counterpart, then for roles
R1, . . . , Rn, (R1 ◦ . . . ◦ Rn)I4 = 〈(R1 ◦ . . . ◦ Rn)I2 , Δ2 − (R1 ◦ . . . ◦ Rn)I2〉.

Proof. That p+((R1 ◦ . . . ◦ Rn)I4) = (R1 ◦ . . . ◦ Rn)I2 and p−((R1 ◦ . . . ◦ Rn)I4)
= Δ2 − (R1 ◦ . . . ◦ Rn)I2 follows by definition of I4 for roles and Lemma 1.

Proposition 2. If I2 is a 2-interpretation and I4 its 4-counterpart, then for
any axiom A, I4 is a 4-model of A iff I2 is a 2-model of A.

Proof. (By cases):
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– A = C(a): I4 is a 4-model of C(a) iff aI4 ∈ p+(CI4) iff aI2 ∈ CI2 iff I2 is
a 2-model of C(a).

– A = R(a,b): I4 is a 4-model of R(a, b) iff (aI4 , bI4) ∈ p+(RI4) iff
(aI2 , bI2) ∈ RI2 iff I2 is a 2-model of R(a, b).

– A = ¬R(a,b): I4 is a 4-model of ¬R(a, b) iff (aI4 , bI4) ∈ p−(RI4) iff
(aI2 , bI2) /∈ RI2 iff I2 is a 2-model of ¬R(a, b).

– A = C � D: I4 is a 4-model of (C � D) iff p+(CI4) ⊆ p+(DI4) iff CI2 ⊆
DI2 iff I2 is a 2-model of C � D.

– A = C �→ D: I4 is a 4-model of (C �→ D) iff Δ − p−(CI4) ⊆ p+(DI4) iff
p+(CI4) ⊆ p+(DI4) iff CI2 ⊆ DI2 iff I2 is a 2-model of C �→ D.

– A = C → D: I4 is a 4-model of (C → D) iff (p+(CI4) ⊆ p+(DI4) and
p−(DI4) ⊆ p−(CI4)) iff (CI2 ⊆ DI2 and Δ − p−(CI4) ⊆ Δ − p−(DI4)) iff
(CI2 ⊆ DI2 and CI2 ⊆ DI2) iff I2 is a 2-model of C → D.

– A = R1 ◦ . . . ◦ Rn � Rn+1: I4 is a 4-model of R1 ◦ . . . ◦ Rn � Rn+1iff
p+((R1 ◦ . . . ◦ Rn)I4) ⊆ p+(RI4

n+1) iff (R1 ◦ . . . ◦ Rn)I2 ⊆ RI2
n+1 iff I2 is

a 2-model of R1 ◦ . . . ◦ Rn � Rn+1.
– A = Ref(R): I4 is a 4-model of Ref(R) iff {(x, x)|x ∈ Δ} ⊆ p+(RI4) iff

{(x, x)|x ∈ Δ} ⊆ RI2 iff I2 is a 2-model of Ref(R).
– A = Irr(R): I4 is a 4-model of Irr(R) iff {(x, x)|x ∈ Δ} ⊆ p−(RI4) iff

{(x, x)|x ∈ Δ} ⊆ (Δ × Δ) − RI2 iff {(x, x)|x ∈ Δ} ∩ RI2 = ∅ iff I2 is a
2-model of Irr(R).

– A = Dis(R,S): I4 is a 4-model of Dis(R, S) iff (p+(RI4) ⊆ p−(SI4) and
p+(SI4) ⊆ p−(RI4))iff (RI2 ⊆ Δ2−SI2 and SI2 ⊆ Δ2−RI2) iff RI2∩SI2 =
∅ iff I2 is a 2-model of Dis(R, S).

Since (in)equality assertions have the same semantics in both 2 -interpretations
and 4–interpretations, we need show nothing for them.

Proposition 3 (Soundness of SROIQ4). Let KB be a SROIQ4 knowledge
base, A a SROIQ4 axiom, and KB′ and A′ the knowledge base and axiom
obtained by replacing each occurrence of �, �→, and → with �.

If KB |=SROIQ4 A, then KB′ |=SROIQ A′

Proof. If KB |=SROIQ4 A and I2 2-models KB′, then by Prop. 2, the 4-counter-
part I4 of I2 4-models KB′. Again by Prop. 2, I4 4-models KB and so A. By
Prop. 2, I2 2-models A. If A �= A′, then A is a SROIQ4 axiom, which has the
same semantics in SROIQ as A′. And so I2 2-models A′.

4 Removing Gaps and Gluts

A paraconsistent logic typically rejects one or both of the law of noncontradiction
(LNC) ¬(P ∧¬P) and the law of the excluded middle (LEM) P ∨¬P . SROIQ4
rejects both. Nevertheless, adding further axioms to a knowledge base KB se-
lectively enforces the laws, making KB “more classical.” If LEM is enforced but
not LNC, then additional classical consequences can be drawn while maintaining
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paraconsistency. Following Arieli [1], we define EM(KB) (“excluded middle”)
and EFQ(KB) (“ex falso quodlibet”) in order to achieve this:

– EM(KB) =def {� � (A � ¬A) : A = ∃R.Self or A ∈ NC ∪ No}.
– EFQ(KB) =def {(A � ¬A) � ⊥ : A = ∃R.Self or A ∈ NC ∪ No}.

Proposition 4. I 4-models EM(KB) iff for each concept C of KB,

p+(CI) ∪ p−(CI) = ΔI .

Proof. (LR) Let I 4-model EM(KB). We induct on the degree of the concept C.
For C = � and C = ⊥, the claim holds by definition of � and ⊥. If C ∈ NC ∪No

or has the form ∃R.Self , since I 4-models EM(KB), ΔI ⊆ p+(CI)∪p+((¬C)I).
Since p+(CI) ∪ p+((¬C)I) ⊆ ΔI , the claim must hold. For the inductive cases,
suppose the claim holds for concepts of degree < n and that C has degree n. We
consider selective cases. Proofs for the cases left out are analogous.
1. C = (D � E): If d /∈ p+(CI), then d /∈ p+(D) or d /∈ p+(E). By ind. hyp.,

d ∈ p−(D) or d ∈ p−(E), and so d ∈ p−(D � E). I.e., d ∈ p−(CI).
2. C = (∀R.D): If d /∈ p+(CI), then there exists a d′ such that (d, d′) ∈ p+(RI)

and d′ /∈ p+(DI). But then by ind. hyp., d′ ∈ p−(DI), and so d ∈ p−(CI).
3. C = (≤ nR.D): If d /∈ p+(CI), then �{y|(d, y) ∈ p+(RI) ∧ y /∈ p−(DI4)} >

n}. But then by ind. hyp., �{y|(d, y) ∈ p+(RI) ∧ y ∈ p+(DI4)} > n}, and so
d ∈ p−(CI).

(RL) Suppose for each concept C, p+(CI) ∪ p−(CI) = ΔI . Then p+(CI) ∪
p+((¬C)I) = ΔI , Δ ⊆ p+(CI) ∪ p+((¬C)I), and so p+(�I) ⊆ p+((C � ¬C)I).
I is a 4-model of � � (C �¬C). Generalizing on C, I is a 4-model of EM(KB).

Proposition 5. I 4-models EFQ(KB) iff for each concept C of KB,

p+(CI) ∩ p−(CI) = ∅.

Proof. (LR) Suppose I 4-models EFQ(KB). We induct on the degree of C. For
C = � and C = ⊥, the claim holds by definition. If C ∈ NC ∪No or has the form
∃R.Self , (C � ¬C) � ⊥ is satisfied, and so p+(CI) ∩ p+(¬C)I) ⊆ ∅. However,
∅ ⊆ p+(CI)∩p+(¬C)I), and so p+(CI)∩p−(CI) = ∅. For the inductive cases,
suppose the claim holds for concepts of degree < n and that C has degree n. We
again consider selected cases.
1. If d ∈ p+((D � E)I), then d ∈ p+(DI) or d ∈ p+(EI). By ind. hyp., d /∈

p−(DI) or d /∈ p−(EI), and so d /∈ p−((D � E)I).
2. If d ∈ p+((∃R.D)I), then there is a d′ such that (d, d′) ∈ p+(RI) and

d′ ∈ p+(DI). However, by ind. hyp., d′ /∈ p−(DI). And so d /∈ p−((∃R.D)I).
3. If d ∈ p−((≤ nR.D)I), then �{y|(d, y) ∈ p+(RI)∧y ∈ p+(DI)} > n. By ind.

hyp., �{y|(d, y) ∈ p+(RI) ∧ y /∈ p−(DI)} > n, and so d /∈ p+((≤ nR.D)I).
(RL) If p+(CI)∩p−(CI) = ∅, then p+(CI)∩p+((¬C)I) = ∅, p+((C�¬C)I ) =
∅, and so (C � ¬C) � ⊥ is satisfied by I. Generalizing, I 4-models EFQ(KB).

Adding EM(KB) to KB brings SROIQ4 closer to SROIQ without affecting
paraconsistency. Furthermore, adding both EM(KB) and EFQ(KB) allows
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one to simulate—to a point—SROIQ reasoning in SROIQ4. Let I4 be a 4-
interpretation of KB. We define a corresponding 2-interpretation I2 as follows:
ΔI2 =def ΔI4 ; for each individual a ∈ NI , aI2 =def aI4 ; for each role R ∈ NR,
RI2 =def p+(RI4); and for each C ∈ NC , CI2 =def p+(CI4).

Proposition 6. I4 is a 4-model of EM(KB) ∪ EFQ(KB) iff for each concept
C, CI4 = 〈CI2 , Δ − CI2〉.
Proof. (LR) Suppose I4 4-models EM(KB) ∪ EFQ(KB). Let C be a concept
of KB. In virtue of Props. 4 and 5, Δ − p+(CI4) = p−(CI4). Inducting on the
degree of C, we show that CI4 = 〈CI2 , Δ − CI2〉. We consider two cases below,
both requiring that Δ − p+(CI4) = p−(CI4). Other cases are similar.
1. p+((¬C)I4) = p−(CI4) = Δ−CI2 = (¬C)I2 . So, Δ−(¬C)I2 = p−((¬C)I4).
2. p+((≤ nR.C)I4) = {x|�{y|(x, y) ∈ p+(RI4) ∧ y /∈ p−(CI4)} ≤ n} =

{x|�{y|(x, y) ∈ RI2 ∧y ∈ p+(CI4)} ≤ n} = {x|�{y|(x, y) ∈ RI2 ∧y ∈ CI2} ≤
n} = (≤ nR.C)I2 . And so Δ − (≤ nR.C)I2 = p−((≤ nR.C)I4).

(RL) If CI4 = 〈CI2 , Δ−CI2〉, then Δ ⊆ (p+(CI4)∪p+(¬CI4)) and (p+(CI4)∩
p+((¬C)I4)) ⊆ ∅. As such, I4 4-models � � (C � ¬C) and (C � ¬C) � ⊥.

Proposition 7. Let I4 4-model EM(KB) ∪ EFQ(KB). For any axiom A ∈
KB not of form ¬R(a, b), Irr(R), or Dis(R, S), I2 2-models A iff I4 4-models
A.

Proof. We treat each case:
– I4 4-models (C � D) (or C � D) iff p+(CI4) ⊆ p+(DI4) iff CI2 ⊆ DI2 .
– I4 4-models (C �→ D) iff Δ − p−(CI4) ⊆ p+(DI4) iff p+(CI4) ⊆ p+(DI4)

iff CI2 ⊆ DI2 .
– I4 4-models (C → D) iff (p+(CI4) ⊆ p+(DI4) and p−(DI4) ⊆ p−(CI4)) iff

(CI2 ⊆ DI2 and Δ − DI2 ⊆ Δ − CI2) iff CI2 ⊆ DI2 .
– I4 4-models R1 ◦ . . . ◦ Rn � Rn+1 iff

p+((R1 ◦ . . . ◦ Rn)I4) ⊆ p+(RI4
n+1) iff (R1 ◦ . . . ◦ Rn)I2 ⊆ RI2

n+1.
– I4 4-models Ref(R) iff {(x, x)|x ∈ Δ} ⊆ p+(RI4) iff {(x, x)|x ∈ Δ} ⊆ RI2 .
– I4 4-models C(a) iff aI4 ∈ p+(CI4) iff aI2 ∈ CI2 .
– I4 4-models R(a,b) iff (aI4 , bI4) ∈ RI4 iff (aI2 , bI2) ∈ RI2 .

Since (in)equalities are treated the same in the logics, we need not consider them.

Proposition 8. If KB is a SROIQ4 knowledge base lacking axioms of the
form ¬R(a, b), Irr(R), or Dis(R, S), then KB ∪ EM(KB) ∪ EFQ(KB) has a
4-model iff KB has a 2-model.

Proof. (LR) Let I4 4-model KB ∪EM(KB)∪EFQ(KB). Prop. 7 applies, and
so I2 (as described above) 2-models KB. (RL) Let I2 be any 2-model of KB.
We may define a 4-counterpart I4 as in Section 3. By Proposition 2, for any
axiom A of KB, I2 2-models A iff I4 4-models A. And so I4 4-models KB.
Clearly, in any 2-interpretation, every axiom of EM(KB) and EFQ(KB) is
satisfied. Again by Proposition 2, I4 4-models EM(KB) and EFQ(KB).

The mentioned role assertions are banned in Propositions 7 and 8 because coun-
terparts to EM(KB) and EFQ(KB) for roles are not allowed in SROIQ or
SROIQ4. This ban can be lifted if roles are interpreted classically.
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Table 3. Embedding SROIQ4 axioms into SROIQ

π(C) = C, where C ∈ NC π(¬C) = C′, where C′ new
π(o) = o, where o ∈ No π(¬o) = Co, o ∈ No and Co new

π(¬¬C) = π(C)
π(�) = � π(¬�) = ⊥
π(⊥) = ⊥ π(¬⊥) = �
π(E �D) = π(E) � π(D) π(¬(E �D)) = π(¬E) � π(¬D)
π(E �D) = π(E) � π(D) π(¬(E �D)) = π(¬E) � π(¬D)
π(∀R.C) = ∀R.π(C) π(¬(∀R.C)) = ∃R.π(¬C)
π(∃R.C) = ∃R.π(C) π(¬(∃R.C)) = ∀R.π(¬C)
π(∃R.Self) = ∃R.Self π(¬∃R.Self) = CR.Self

π(≤ nR.C) =≤ nR.¬π(¬C) π(¬≤nR.C)=≥ (n + 1)R.π(C)
π(≥ nR.C) =≥ nR.π(C) π(¬≥nR.C)=≤ (n−1)R.¬π(¬C)
π(C(a)) = π(C)(a) π(a �= b) = (a �= b)
π(R(a, b)) = R(a, b) π(¬R(a, b)) = R′(a, b)
π(Ref(R)) = Ref(R) π(Irr(R)) = Ref(R′)
π(Dis(R,S)) = {R � S′, S � R′}
π(C �→ D) = ¬π(¬C) � π(D) material inclusion
π(C � D) = π(C) � π(D) internal inclusion
π(C → D) = {π(C � D), π(¬D � ¬C)} strong inclusion
π(w � Rn+1) = w � Rn+1, with w = R1 ◦ . . . ◦ Rn role inclusion

5 Embedding SROIQ4 into SROIQ

To allow the use of classical DL reasoners with SROIQ4, Ma et al. provide
a translation function π (Table 3) from SROIQ4 into SROIQ. We modify it
here. Each C ∈ NC is unaffected, but ¬C becomes a new concept C′. In this
way the 4-satisfiable C � ¬C becomes the 2-satisfiable C � C′. Below, L refers
to the language of SROIQ4, and L′ to the language created by adding primed
counterparts to all atomic roles and concepts of L. We also add new atomic
concepts CR.Self for each role R in L, and Co for each nominal o ∈ No. These
will be used to stand for the negations of R.Self and nominals, respectively.

In general, if KB is a SROIQ4 knowledge base, then π(KB) is a SROIQ
knowledge base. Observe that the usual relationship between K |= P and the
unsatisfiability of K ∪ {¬P} does not hold in SROIQ4. Nevertheless, if KB
entails P in SROIQ4, then π(KB) entails π(P) in SROIQ (Proposition 11).
From this, it follows that π(KB) ∪ {¬π(P)} is classically inconsistent.

If I is a 4-interpretation of L, then define the 2-interpretation I′ (the primed-
counterpart of I) over L′ as follows:
– ΔI′

=def ΔI .
– For each individual a ∈ NI , aI′

=def aI .
– For each role R ∈ NR ∪ N−

R , RI′
=def p+(RI) and R′I′

=def p−(RI).
– For each atomic concept C ∈ NC , CI′

=def p+(CI) and C′I′
=def p−(CI).

– For each nominal o ∈ No, oI
′
=def p+(oI), and C

I′
o =def p−(oI).
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– For each role R ∈ NR ∪ N−
R , (∃R.Self)I

′
=def p+((∃R.Self)I), and

– For each role R ∈ NR ∪ N−
R , C

I′

R.Self =def p−((∃R.Self)I).
It is clear that there is a 1–1 correspondence between the 4-interpretations of L
and the 2-interpretations of L′.

Proposition 9. For any 4-interpretation I, primed-counterpart I ′, and
SROIQ4 concept C, p+(CI) = π(C)I

′
and p−(CI) = π(¬C)I

′
hold.

Proof. We induct on the degree of C. If C is atomic, then π(C) = C, and
by definition p+(CI) = CI′

= π(C)I
′

and p−(CI) = C′I′
= π(¬C)I

′
. If

C = ∃R.Self , then π(∃R.Self) = ∃R.Self , and by definition (∃R.Self)I
′

= p+((∃R.Self)I). Furthermore, π(¬∃R.Self) = CR.Self , and by definition
(CR.Self )I

′
= p−((∃R.Self)I). If o ∈ No, then π(o) = o, and by definition

oI
′
= p+(oI). Furthermore, π(¬o) = Co, and by definition (Co)I

′
= p−(oI).

For the induction, we consider selected cases (the others are similar).
1. p+((D � E)I) = p+(D) ∪ p+(E) = π(D)I

′ ∪ π(E)I
′

= (π(D) � π(E))I
′

=
π(D � E)I

′
.

p−((D � E)I) = p−(D)∩p−(E) = π(¬D)I
′ ∩ π(¬E)I

′
= (π(¬D) � π(¬E))I

′

= (π(¬(D � E))I
′
.

2. p+((∃R.D)I) = {x|(∃y)[(x, y) ∈ p+(RI) ∧ y ∈ p+(DI)]} = {x|(∃y)[(x, y) ∈
RI′ ∧ y ∈ (π(D))I

′
]} = (∃R.π(D))I

′
= (π(∃R.D))I

′
.

p−((∃R.D)I) = {x|(∀y)[(x, y) ∈ p+(RI)�→y ∈ p−(DI)]} = {x|(∀y)[(x, y) ∈
RI′ �→y ∈ (π(¬D))I

′
]} = (∀R.π(¬D))I

′
= (π(¬∃R.D))I

′
.

3. p+((≤ nR.D)I) = {x|�{y|(x, y) ∈ p+(RI) ∧ y /∈ p−(DI)} ≤ n} =
{x|�{y|(x, y) ∈ RI′ ∧ y /∈ π(¬D)I

′} ≤ n} = {x|�{y|(x, y) ∈ RI′ ∧ y ∈
(Δ − π(¬D)I

′
)} ≤ n} = {x|�{y|(x, y) ∈ RI′ ∧ y ∈ (¬π(¬D))I

′} ≤ n} =
(≤ nR.¬π(¬D))I

′
= (π(≤ nR.D))I

′
.

p−((≤ nR.D)I) = {x|�{y|(x, y) ∈ p+(RI) ∧ y ∈ p+(DI)} ≥ (n + 1)} =
{x|�{y|(x, y) ∈ RI′ ∧ y ∈ π(D)I

′} ≥ (n + 1)} = (≥ (n + 1)R.π(D))I
′

=
(π(¬ ≤ nR.D))I

′
.

The remaining cases, involving negation, all have the same form:
4. p+((¬D)I) = p−(DI) = π((¬D))I

′
.

p−((¬D)I) = p+(DI) = π(D)I
′
= π(¬¬D)I

′
.

Lemma 3. For any 4-interpretation I and primed-counterpart I′, if S is the
inverse of R ∈ NR, then p+(SI) = SI′

.

Proof. If (a, b) ∈ p+(SI), then (b, a) ∈ p+(RI). As such, (b, a) ∈ RI′
, and so

(a, b) ∈ SI′
. If (a, b) ∈ SI′

, then (b, a) ∈ RI′
, and so both (b, a) ∈ p+(RI) and

(a, b) ∈ p+(SI).

Lemma 4. For any 4-interpretation I and primed-counterpart I′,

p+((R1 ◦ . . . ◦ Rn)I) = (R1 ◦ . . . ◦ Rn)I
′
.

Proof. (LR) Suppose (x, z) ∈ p+((R1 ◦ . . . ◦ Rn)I). Then there exist elements
y1, . . . , yn−1 such that (x, y1) ∈ p+(RI

1 ), (y1, y2) ∈ p+(RI
2 ), . . ., (yn−1, z) ∈



128 F. Maier

p+(RI
n). Observe that for each Ri, p+(RI

i ) = R
I′

i by definition of I ′. And so
(x, y1) ∈ R

I′

1 , (y1, y2) ∈ R
I′

2 , . . ., (yn−1, z) ∈ R
I′
n . As such, (x, z) ∈ (R1 ◦ . . . ◦

Rn)I
′
. (RL) Suppose (x, z) ∈ (R1 ◦ . . . ◦ Rn)I

′
. Then there exist y1, . . . , yn−1

such that (x, y1) ∈ R
I′

1 , (y1, y2) ∈ R
I′

2 , . . ., (yn−1, z) ∈ R
I′
n . For each Ri,

p+(RI
i ) = R

I′

i by definition of I ′. And so (x, y1) ∈ p+(RI
1 ), (y1, y2) ∈ p+(RI

2 ),
. . ., (yn−1, z) ∈ p+(RI

n). As such, (x, z) ∈ p+((R1 ◦ . . . ◦ Rn)I).

Proposition 10. For any 4-interpretation I, I is a 4-model of SROIQ4 axiom
A iff its primed-counterpart I ′ is a 2-model of π(A).

Proof. (By cases):
1. C(a): π(C(a)) = π(C)(a). By Prop. 9, aI ∈ p+(CI) iff aI′ ∈ π(C)I

′
.

2. A = R(a,b). π(R(a, b)) = R(a, b). Since p+(RI) = RI′
and (aI , bI) =

(aI′
, bI

′
), (aI , bI) ∈ p+(RI) iff (aI′

, bI
′
) ∈ RI′

.
3. A = ¬R(a,b). π(¬R(a, b)) = R′(a, b). Since p−(RI) = R′I′

and (aI , bI) =
(aI′

, bI
′
), (aI , bI) ∈ p+((¬R)I) iff (aI′

, bI
′
) ∈ R′I′

.
4. A = (C � D): p+(CI) ⊆ p+(DI) iff π(C)I

′ ⊆ π(D)I
′

iff I ′ 2-models
(π(C) � π(D)) iff I ′ 2-models π(C � D).

5. A = (C → D):
(p+(CI) ⊆ p+(DI) and p−(DI) ⊆ p−(CI)) iff (π(C)I

′ ⊆ π(D)I
′

and
π(¬D)I

′ ⊆ π(¬C)I
′
) iff (I ′ 2-models {π(C) � π(D), π(¬D) � π(¬C)}

iff I ′ 2-models π(C → D).
6. A = (C �→ D): (Δ − p−(CI)) ⊆ p+(DI) iff (Δ − π(¬C)I

′
) ⊆ π(D)I

′
iff

(¬π(¬C))I
′ ⊆ π(D)I

′
iff I ′ 2-models (¬π(¬C) � π(D)) iff I ′ 2-models

π(C �→ D).
7. R1 ◦ . . . ◦ Rn � Rn+1: I 4-models R1 ◦ . . . ◦ Rn � Rn+1 iff

p+((R1 ◦ . . . ◦ Rn)I) ⊆ p+(RI
n+1) iff (R1◦ . . .◦Rn)I

′ ⊆ R
I′

n+1 iff I ′ 2-models
R1 ◦ . . . ◦ Rn � Rn+1 iff I ′ 2-models π(R1 ◦ . . . ◦ Rn � Rn+1).

8. A = Ref(R): I 4-models Ref(R) iff {(x, x)|x ∈ Δ} ⊆ p+(RI) iff
{(x, x)|x ∈ Δ} ⊆ RI′

iff I ′ 2-models Ref(R) iff I ′ 2-models π(Ref(R)).
9. A = Irr(R): I 4-models Irr(R) iff {(x, x)|x ∈ Δ} ⊆ p−(RI) iff {(x, x)|x ∈

Δ} ⊆ R′I′
iff I ′ 2-models Ref(R′) iff I ′ 2-models π(Irr(R)).

10. A = Dis(R,S): I 4-models Dis(R, S) iff (p+(RI) ⊆ p−(SI) and p+(SI) ⊆
p−(RI)) iff (RI′ ⊆ S′I′

and SI′ ⊆ R′I′
) iff I ′ 2-models R � S′ and S � R′

iff I ′ 2-models π(Dis(R, S)).

Proposition 11. For any SROIQ4 knowledge base KB and axiom A,
KB |=SROIQ4 A iff π(KB) |=SROIQ π(A).

Proof. (LR) Suppose KB |=SROIQ4 A and let I ′ 2-model π(KB). Assume wlog
that I ′ is the primed-counterpart of 4-interpretation I of KB. Since I′ 2-models
π(KB), by Prop. 10 I 4-models KB and hence A. By Prop. 10, I′ 2-models π(A).
Generalizing on I ′, π(KB) |=SROIQ π(A). (RL) Suppose π(KB) |=SROIQ
π(A) and that I 4-models KB. Then there is a 2-interpretation I ′ that is the
primed-counterpart of I. By Prop. 10, since I 4-models KB, I ′ 2-models π(KB)
and so π(A). By Prop 10, I 4-models A. Generalizing on I, KB |=SROIQ4 A.
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6 Partial Paraconsistency

SROIQ4 is intended to avoid the explosions caused by inconsistencies. Unfortu-
nately, some SROIQ4 knowledge bases—e.g., {(��⊥)(a)}—have no 4-models,
and so SROIQ4 is only partially paraconsistent. In some cases, inconsistent
knowledge bases can be re-written into a classically equivalent form that avoids
explosion. However, this is not the case in general. This was a point overlooked
in the earlier work on SROIQ4 [9], and we discuss it here.

Ma et al. report [12] that consistency can be maintained in SHIQ4 by replac-
ing � and ⊥ with classically equivalent formulas. Specifically, let SF (KB) be
the knowledge base obtained by replacing each � with A � ¬A and each ⊥ with
A � ¬A (where A is a new atomic concept). SF (KB) is guaranteed to possess a
4-model. However, nominals can conflict with cardinality restrictions, and so the
analogous claim does not hold for SROIQ4. If |p+({a1, . . . , am}I)| = n, then
≥ n + 1R.{a1, . . . , am}(b) is not satisfiable.2 And so, to maintain satisfiability,
either cardinality restrictions or nominals must go.

Definition 12. If C is a SROIQ4 concept description and KB a SROIQ4
knowledge base, then C is 4-satisfiable iff there is a 4-valued model I of KB
such that p+(CI) �= ∅.

Proposition 13. If C is a concept description in which nominals, �, and ⊥ do
not appear, then C is 4-satisfiable.

Proof. Let n be the largest integer used in an ≥ nR.C restriction. Let CI =
〈Δ, Δ〉 for each C ∈ NC , where |Δ| = n+1. For each R ∈ NR, let RI = 〈Δ2, Δ2〉
and (∃R.Self)I = 〈Δ, Δ〉. We induct on a the degree of C. If C ∈ NC , the claim
clearly holds. Examining the SROIQ4 semantics shows that where C is ¬D,
D � E, D � E, ∀R.D, ∃R.D, ≥ nR.D, or ≤ nR.D, CI = 〈Δ, Δ〉.

Proposition 14. If KB is a SROIQ4 knowledge base in which inequality as-
sertions and nominals do not appear, then SF (KB) has a 4-model.

Proof. We use the interpretation I above. For simple assertions C(a) and R(a, b),
the claim obviously holds. Since the anti-extension of each role R is Δ2, ¬R(a, b)
also holds (we here reasonably assume that R �= U), as do Ref(R), Irr(R), and
Dis(R, S). Since for all concepts C and D, CI = DI = 〈Δ, Δ〉, it follows that
C � D and C → D hold. For C �→ D, observe that ΔI − p−(CI) = ∅, and so
C �→ D must be true in I. The cases for RIAs are similar to C � D.

Proposition 15. If C is a SROIQ4 concept description in which ≤, ≥, �,
and ⊥ do not appear, then C is 4-satisfiable.

Proof. Let ΔI = {d}, CI = 〈{d}, {d}〉 for each C ∈ NC ∪ No, and aI = d for
each a ∈ NI . For each R ∈ NR, let RI = 〈{(d, d)}, {(d, d)}〉 and (∃R.Self)I =
〈{d}, {d}〉. Inducting on the degree of C, if C ∈ NC ∪ No or C = ∃R.Self , then
the claim holds. Examining the semantics of the concept description operators
shows that the claim holds for ¬C, C � D, C � D, ∃R.C, and ∀R.C.
2 This is so regardless of whether nominals are interpreted classically or as done here.
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Proposition 16. If KB is a SROIQ4 knowledge base in which inequality as-
sertions, ≤, and ≥, do not appear, then SF (KB) has a 4-model.

Proof. Using I above, consider each type of axiom. For C(a) and R(a, b), the
claim obviously holds. Since p−(RI) = {(d, d)}, ¬R(a, b) also holds (we assume
that R �= U). It is clear that Ref(R), Irr(R), and Dis(R, S) also hold. Since
for all concepts C and D, CI = DI = 〈{d}, {d}〉, C � D and C → D hold.
For C �→ D, ΔI − p−(CI) = ∅, and so I 4-models C �→ D. The cases for RIAs
proceed similarly.

One solution to the conflict between cardinality restrictions and nominals is to
use pseudo-nominals—e.g., Monday instead of {monday}. In practice, this is
sometimes done. However, an ontology obtained via such a substitution is not
classically equivalent to the original, and the use of pseudo-nominals sometimes
leads to intuitively incorrect results. The same holds in the 4-valued context.
Nevertheless, paraconsistency must come at some price, and for many applica-
tions the loss of nominals might be an acceptable price to pay.

7 Conclusions, Related Work

This work is a direct extension of earlier research by Ma et al. [9,10,11,12]. The
framework described here is closely related to earlier 4-valued description logics
developed by Patel-Schneider [16,15], and also Straccia and Meghini [13,14,18].
SROIQ4 is similar to these, but the earlier logics are syntactically closer to ALC
and SHIQ, and to our knowledge nothing similar to the embedding developed
by Ma et al. was defined for the older logics. In our opinion, the embedding is the
most important contribution. In [12], Ma et al. present SHIQ4 and paraconsis-
tent versions of EL++, Horn-DLs, and DL-Lite logics. An embedding of SHIQ4
into SHIQ is presented in [12], and it is asserted that it preserves satisfiability.
SROIQ4 was first presented in [9] (though lacking role chains, role assertions,
and ∃R.Self descriptions; furthermore, roles are treated classically). It’s asserted
in [9] that embedding SROIQ4 into SROIQ is consequence preserving, though
we believe the proof here is the first full proof given in the literature.3

More recently, Zhang, Qi, Ma, and Lin present a paraconsistent variation
of SHIQ based on quasi-classical logic [6,19]. It is stated that the logic (QC-
SHIQ) remedies problems inherent to the 4-valued approach described here.
Specifically, for it, MP, MT, and DS all hold. We point out, however, that while
DS fails in SROIQ4 regardless of which inclusion operator used, MP is satisfied
by both � and →, and MT is satisfied by →.

While the failure of DS is indeed a substantial drawback, the primary virtue
of the paraconsistent framework extended here is that the embedding into clas-
sical logics allows traditional tools to be used. Indeed, we have developed a Java
library implementing the translation scheme for SROIQ4. Using the latest ver-
sion of the OWL API (v3.0) [7], the library allows OWL 2 ontologies–taken as

3 A full proof for the embedding of ALC4 into ALC appears in [10].
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SROIQ4 knowledge bases—to be transformed according to π. Afterwards, stan-
dard OWL reasoners can be used to draw inferences from potentially inconsistent
ontologies. Earlier systems in the same vein are ParOWL [10,11], developed for
the ALC fragment of OWL, and a plug-in for the NEON toolkit [17]. To our
knowledge, no similar translation scheme or tools exist for QC-SHIQ.

The utility of a paraconsistent reasoner for OWL is perhaps greater than
one might initially suspect. While paraconsistent logics are in general weaker
than their classical counterparts, we have shown that classical reasoning can be
simulated to a point by adding additional axioms to knowledge bases. As this is
so, paraconsistency can be enforced in a selective manner. We cite this fact as a
response to researchers who are inclined to think paraconsistent logics too weak
to be of use.

The incompatibility between cardinality restrictions and nominals, noted
above, is perhaps the greatest open problem related to the paraconsistent frame-
work described here. An ideal solution would allow the use of both nominals and
cardinality restrictions, and it would also simultaneously ensure both paraconsis-
tency and embeddability into a classical logic. Having three of the four features
is possible, of course, but so far having all four has proved to be elusive.
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Abstract. Based on practical observations on rule-based inference on
RDF data, we study the problem of redundancy elimination on RDF
graphs in the presence of rules (in the form of Datalog rules) and con-
straints (in the form of so-called tuple-generating dependencies), as well
as with respect to queries (ranging from conjunctive queries up to more
complex ones, particularly covering features of SPARQL, such as union,
negation, or filters). To this end, we investigate the influence of several
problem parameters (like restrictions on the size of the rules, the con-
straints, and/or the queries) on the complexity of detecting redundancy.
The main result of this paper is a fine-grained complexity analysis of
both graph and rule minimisation in various settings.

1 Introduction

The Semantic Web promises to enable computers to gather machine readable
meta-data in the form of RDF statements published on the Web and make in-
ferences about these statements by means of accompanying standards such as
RDFS and OWL2. While complete OWL2 reasoning is hard – and in many cases
even inappropriate for Web data [1] – (incomplete) rule-based inference is be-
coming quite popular and supported by many RDF Stores and query engines:
frameworks like GiaBATA [2], Jena, Sesame, OWLIM,1 etc. allow for custom in-
ference on top of RDF Stores, supporting different rule-based fragments of RDFS
and OWL. Several such fragments have been defined in the literature, such as
ρDF [3], DLP [4], OWL− [5], ter Horst’s pD* [6], or SAOR [7], and – more
recently – the W3C standardised OWL2RL, a fragment of OWL implementable
purely in terms of rule-based inference [8]. All these fragments have in common
that they are implementable by simple Datalog-like rules over RDF. As an exam-
ple, let us take (1) the sub-property rule from RDFS [9, Section 7.3, rule rdfs7],

� Preliminary results have been presented at the Alberto Mendelzon Workshop 2010.
R. Pichler, S. Skritek and S. Woltran were supported by the Vienna Science and
Technology Fund (WWTF), project ICT08-032. A. Polleres was supported by Sci-
ence Foundation Ireland under Grant No. SFI/08/CE/I1380 (Lion-2).

1 cf. http://jena.sourceforge.net/, http://openrdf.org/, and
http://ontotext.com/owlim/

P. Hitzler and T. Lukasiewicz (Eds.): RR 2010, LNCS 6333, pp. 133–148, 2010.
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rules (2)–(5) from OWL2RL [9, Section 4.3, rules prp-inv1,prp-symp,prp-spo2]
representing inverse properties, symmetric properties, and property chains:2

(1) { S P O . P subPropertyOf Q . uri(Q) } ⇒ { S Q O }
(2) { S P O . P inverseOf Q . uri(O) ∧ uri(Q) } ⇒ { O Q S }
(3) { S P O . P inverseOf Q . blank(O) ∧ uri(Q) } ⇒ { O Q S }
(4) { S P O . P type SymmetricProperty . uri(O) } ⇒ { O P S }
(5) { S P O . P type SymmetricProperty . blank(O) }⇒ { O P S }
(6) { S P0 O1. ... On Pn O. P propertyChainAxiom (P0 ...Pn) } ⇒ { S P O }
Let GD be an RDF graph talking about authors and their publications:

(7) GD = { <http://semanticweb.org/wiki/Pat Hayes> made
<http://www.w3.org/TR/rdf-mt/>.

(8) <http://semanticweb.org/wiki/Pat Hayes> name "Patrick J. Hayes".

(9) <http://www.w3.org/TR/rdf-mt/> creator "Patrick J. Hayes".}
Moreover, let graph GO be part of the ontology defining the terms used in GD:

(10) GO = { name subPropertyOf label.
(11) inverseOf type SymmetricProperty.
(12) made inverseOf maker.
(13) maker inverseOf made.
(14) creator propertyChainAxiom (maker label). }

When storing the graph G = GD∪GO in an RDF Store that supports inference
over rules (1)–(6), different questions of redundancy arise like if some statements
may be deleted since they can be inferred by the rules. In our example, e.g.
statement (9) as well as statement (13) may be deleted, since they could be
reproduced by inference. Similarly, suppose that we transfer the graph G = GD∪
GO to a “weaker” RDF Store that only supports rules (1)–(3). Then the question
is if we thus loose any inferences. In fact, the answer is no. Interestingly enough,
standard rule sets, such as OWL2RL are even known to be non-minimal [8,
Section 4.3].

We thus want to be able to answer the general question about redundancy of
both triples and rules. However, it is often important to limit the minimisation of
RDF graphs in such a way that certain consistency conditions must be preserved.
These consistency conditions can be expressed by means of constraints [10]. We
shall restrict ourselves here to constraints in the form of so-called tuple-generating
dependency (tgd) constraints, which are a generalisation of the familiar foreign-
key dependencies in the relational database world. Roughly speaking, a tgd may
be viewed as a generalised rule “read” as constraint. So, for instance, if we
read rules (4)-(5) as constraints, we could say that graph G alone without rules
satisfies these constraints, and likewise the closure of G with respect to rules (1)-
(3) does. Tgd constraints can be more general than (Horn) rules in that they also
2 We disregard full URIs for common RDF terms, i.e., we just write e.g. inverseOf ,

for <http://www.w3.org/2002/07/owl#inverseOf>, name for
<http://xmlns.com/foaf/0.1/name>, or creator for
<http://purl.org/dc/elements/1.1/>, etc. Further, (P1 . . . Pn) in RDF is short for
a fresh variable X plus additional triples X first P1 . X1 rest X2. ...Xn first
Pn . Xn rest nil . using reserved terms first , rest , nil .

http://www.w3.org/2002/07/owl#inverseOf
http://xmlns.com/foaf/0.1/name
http://purl.org/dc/elements/1.1/
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allow otherwise unbound, existential variables in the head, possibly occurring in
a larger conjunct. That is, tgds are – rather than rules – constraining queries (in
the head) “triggered” by bindings coming from a query in the body; for instance,
a constraint

(15) { A made D } ⇒ { A label N . D creator N}

would hold only on graphs where everybody who made something also has a
declared label and that label is also used to denote the creator. Note that con-
straint (15) holds on the closure of G with respect to rule (1) but – as opposed
to the constraint reading of (4)-(5) – not on G alone.

Next, we are interested in redundancy with respect to queries. This might
be particularly relevant for RDF stores that expose a narrow SPARQL query
interface. For instance, suppose that, in our example, we are interested only in
completeness with respect to the query “SELECT ?D ?L { ?D maker ?M . ?M label

?L }” which is the SPARQL way of writing a conjunctive query:

(16) { D maker M . M label L } → ans(D ,L)

In such setting, both rules (3)–(6) as well as triples (9), (11), (13), and (14) can
be dropped. Such redundancy elimination is not unique; for instance, keeping
triples (11), (13), and rule (4) we could drop (12), still preserving completeness.

The primary goal of our work is a systematic complexity analysis of both
graph and rule minimisation under constraints, as well as with respect to queries.
To this end, we investigate the influence of several problem parameters (like
restrictions on the size of the rules, constraints, and queries) on the complexity
of detecting redundancy. A first important step in this investigation has been
recently made by Meier [11]. He studied the following problem: Given a graph
G, a set R of rules and a set C of tgds, can G be reduced to a proper subgraph
G′ ⊂ G, such that G′ still satisfies C and the closure of G′ under R coincides with
the closure of G under R? For the special case that both the rules in R and the
constraints in C have bounded size (referred to as b-boundedness), this problem
was shown to be NP-complete in [11]. In this paper, we want to extend the work
initiated in [11] and provide a much more fine-grained analysis of the complexity,
e.g., by weakening or strengthening restrictions such as b-boundedness and by
considering redundancy elimination that only preserves RDF entailment (rather
than keeping the closure of the original graph under the original rules unchanged)
and additionally considering redundancy with respect to queries.

We shall come up with a collection of complexity results, ranging from tractabil-
ity to ΣP

3 -completeness. Additionally, we address the orthogonal problems of rule
minimisation and the problem of reducing rules or triples without preserving com-
pleteness of the entire closure,but only ensuring that the answers to certain queries
are preserved.

We shall also discuss further variations of the graph and rule minimisation
problem. For instance, the rules and tgds in [11] do not allow variables in predi-
cate positions, which is a severe restriction in the sense that many of the common
RDF inferences rules are not covered (e.g., all except rules (4) and (5) above).
We will not make this restriction, since it can be dropped without significant
change of the complexity results.
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Organisation of the paper and summary of results. In Section 2, we recall
some basic notions and results. A conclusion and an outlook to future work are
given in Section 7. Sections 3–6 contain the main results of the paper, namely:
• Graph Minimisation. In Section 3, we provide a comprehensive complexity
analysis of the RDF graph minimisation problem, both when full reconstruction
of the graph or only RDF entailment is required. We study various settings which
result from different restrictions on the rules and/or tgds like restricting their
size, considering them as fixed, omitting them, or imposing no restrictions at all.
Our complexity results range from tractability to ΣP

3 -completeness.
• Rule Minimisation. In Section 4, we consider the problem of minimising the
set of rules. We show that the problem of finding redundant rules with respect to
a given RDF graph is NP-complete for b-bounded rules and not harder than ΔP

2
for arbitrary rules. Note that rule minimisation is closely related to the field of
Datalog equivalence and optimisation. We therefore discuss how the large body
of results in this area can be fruitfully applied to the problems studied here.
• Graph Minimisation w.r.t. Queries. In Section 5, we study how guarantee-
ing completeness only w.r.t. a given set of conjunctive queries (CQs) or unions
of conjunctive queries (UCQs) influences the complexity for each of the above
settings. Considering different restrictions on the size of the queries, hardness
never exeeds ΣP

3 , but for some settings raises by two levels in the polynomial
hierarchy compared to Section 3. Finally we extend our findings to the problem
of rule minimisation. We shall also briefly touch on full SPARQL queries beyond
unions of conjunctive queries.
• Problem Variations. In Section 6, we analyse the complexity of further prob-
lems which are either variations of or strongly related to the graph and rule
minimisation problems mentioned above. For instance, rather than asking if an
RDF graph contains redundant tuples, we consider the problem whether an
RDF graph can be reduced below a certain size. We show that this problem
is NP-complete also in those settings where the graph minimisation problem is
tractable. We also discuss the effect of allowing blank nodes in predicate positions
in the Datalog rules.
Due to lack of space, proofs are only sketched. While for most of the hardness
proofs we only describe the idea of the reduction, membership proofs are either
also informal or even omitted. All proofs are worked out in detail in [12].

2 Preliminaries

Let U , B, and L denote pairwise disjoint alphabets for URI references, Blank
nodes (or variables) and Literals, respectively. We denote unions of these sets
simply by concatenating their names.3 An RDF statement (or triple) is a state-
ment of the form (s, p, o) ∈ UB ×U ×UBL, and an RDF graph is a set of triples.
In this paper, we do not distinguish between variables and blank nodes, but just
note that blank nodes/variables appearing in the data are understood to be ex-
istentially quantified within the scope of the whole RDF graph they appear in.
3 In this paper, we use a slightly simplified notion of RDF compared to [9], e.g. not

considering typed literals separately.



Redundancy Elimination on RDF Graphs 137

We write elements from B (U) as alphanumeric strings starting with an upper
case letter (lower case letter or number), elements from L as quoted strings, and
– inspired by the common Turtle [13] syntax – RDF statements as white-space
separated triples and RDF graphs as ’.’ separated lists of triples in curly braces.

It is convenient to define the notion of entailment between two RDF graphs
via the interpolation lemma from [9, Section 2] rather than in a model-theoretic
way: an RDF graph G1 entails G2, written G1 |= G2 if a subgraph of G1 is an
instance of G2, that is, if there exists a graph homomorphism, i.e., a blank node
mapping μ : B → UBL such that μ(G2) ⊆ G1, where μ(G) denotes the graph
obtained by replacing every variable B ∈ B with μ(B). A homomorphism h′ is an
extension of a homomorphism h if h′(B) = h(B) for all B on which h is defined.
Given G1, G2, deciding whether there exists a homomorphism G2 → G1 (thus
also G1 |= G2) is well known to be NP-complete.

We define a basic graph pattern (BGP) as a set of generalised triples (s′, p′, o′)
∈ UBL × UBL × UBL, a filter condition as a conjunct of the unary predicates
uri(·), blank(·), literal(·) (denoting the unary relations U , B, and L, respec-
tively). A filtered basic graph pattern (FBGP) is a BGP conjoined with a filter
condition, the latter containing only variables already appearing in the BGP.
Given an FBGP P , we write BGP (P ) and F (P ) to denote its components, i.e.
its BGP and its filter condition, respectively.

We define an RDF tuple-generating dependency (tgd) constraint (or simply
constraint) r as Ante ⇒ Con, where the antecedent Ante is an FBGP and the
consequent Con is a BGP. A constraint Ante ⇒ Con is a short-hand notation
for the first-order formula ∀x

(
Ante(x) → (∃y)Con(x, y)

)
(where y denotes the

blank nodes occurring in Con only, while x are the remaining blank nodes)
Hence, a constraint Ante ⇒ Con is satisfied over an RDF graph G if for each
homomorphism on x mapping BGP(Ante) to G, there exists an extension h′ of
h to y s.t. h′(Con) ⊆ G. To increase the readability, we will sometimes explicitly
write out the quantifiers and variable vectors. RDF rules (or simply rules), are
syntactically restricted constraints, where all variables appearing in Con also
appear in Ante (akin to the common notion of safety [14] in Datalog). In the
following, we will call RDF rules with an empty filter condition Datalog rules.4
We define the closure of a graph G with respect to a set R of rules, written
ClR(G) as usual by the least fix-point of the immediate consequence operator.
For a given graph G or a given set R of rules, we use XG,XR (X ∈ {U, B, L})
to denote the subset of U (resp. B, L) used in G, or R, respectively.

A conjunctive query (CQ) over an RDF graph G is of the form Gq → ans(X),
where Gq is an FBGP, ans is a distinguished predicate, and X is a vector of
blank nodes. We refer to Gq as the body of q (body(q)), and to ans(X) as the head
of q (head(q)). A union of conjunctive queries (UCQs) is a set of CQs, all having
the same head. The result of a CQ q over some RDF graph G is defined as the set
q(G) = {(x) | for all xi ∈ x : xi ∈ UGBGLGUqLq, there exists a homomorphism
τ : Bq → UGBGLG s.t. τ(body(q)) ⊆ G and x = τ(X)}. The result of a UCQ
is the union of the results of its CQs.

4 In fact, we will for most parts of the paper only consider Datalog rules, but will
revisit the extension to arbitrary RDF rules in the end of Section 6, concluding that
this extension does not change any of our results.
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We say that a rule or constraint is b-bounded if both antecedent and conse-
quent contain at most b triples. We say a conjunctive query q is body-b-bounded
if body(q) is b-bounded, and we denote q as head-b-bounded if |X| ≤ b for some
constant b (however, body(q) may be arbitrary). A set Q of (U)CQs is body-b-
bounded (resp. head-b-bounded) if every q ∈ Q is body-b-bounded (resp. head
b-bounded). Finally, we write [n] to denote the set {1, . . . , n}.

3 RDF Graph Minimisation

In this section, we study the complexity of RDF graph minimisation. For different
restrictions on the input parameters, the complexity varies between tractability
and ΣP

3 -completeness. Formally, we consider the following two basic problems:

Definition 1. Let MINI-RDF|=(G, R, C) be the following decision problem:
INPUT: RDF graph G, set R of RDF rules, set C of tgds (G satisfies C).
QUESTION: Is there a G′ ⊂ G s.t. ClR(G′) |= ClR(G) and G′ satisfies C?

Definition 2. Let MINI-RDF⊆(G, R, C) be the following decision problem [11]:
INPUT: RDF graph G, set R of RDF rules, set C of tgds (G satisfies C).
QUESTION: Is there a G′ ⊂ G s.t. ClR(G) = ClR(G′) and G′ satisfies C?

The MINI-RDF⊆ problem and the minimisation of RDF graphs via entailment
aim at two kinds of redundancy elimination: In MINI-RDF⊆, triples which can
be restored via the rules are considered as redundant while minimisation via
entailment allows us to replace a graph G by Ḡ ⊂ G if Ḡ |= G holds, i.e. checks
if G is lean (see [15]). The MINI-RDF|=(G, R, C) problem combines these two
approaches and thus yields the strongest redundancy criterion. Nevertheless, in
most cases, its complexity is not higher than for MINI-RDF⊆ (see Theorem 1).

Table 1. The complexity of MINI-RDF|= and MINI-RDF⊆ w.r.t. input parameters
(“bb” indicates the set to be b-bounded, and “arb.” allows for arbitrary sets.)

MINI-RDF|= MINI-RDF⊆

(1) R arb., C arb. ΣP
3 -complete ΣP

3 -complete
(2) R arb., C bb NP-complete NP-complete
(3) R arb., C fixed NP-complete NP-complete
(4) R arb., C = ∅ NP-complete NP-complete
(5) R bb., C arb. ΣP

3 -complete ΣP
3 -complete

(6) R bb, C bb NP-complete NP-complete [11]
(7) R bb, C fixed NP-complete NP-complete
(8) R bb, C = ∅ NP-complete in P
(9) R fixed, C arb. ΣP

3 -complete ΣP
3 -complete

(10) R fixed, C bb NP-complete NP-complete
(11) R fixed, C fixed NP-complete NP-complete
(12) R fixed, C = ∅ NP-complete in P



Redundancy Elimination on RDF Graphs 139

1 5 9 2 3 4 6 7 8 10 11 12

Fig. 1. Dependency graph: Numbers refer to lines in Table 1. An arrow from A to B
means that B is a special case of A.

It is easy to see that the condition ClR(G) = ClR(G′) in Definition 2 is
equivalent to G ⊆ ClR(G′). The following lemma shows that similarly, for MINI-
RDF|=, it is enough to show ClR(G′) |= G rather than ClR(G′) |= ClR(G).

Lemma 1. Let G1, G2 be RDF graphs and R a set of rules. Then the following
equivalence holds: ClR(G2) |= ClR(G1) ⇔ ClR(G2) |= G1.

Theorem 1. For MINI-RDF|= and MINI-RDF⊆, the complexity w.r.t. different
assumptions on the input (arbitrary, b-bounded, or fixed rule set; arbitrary, b-
bounded, fixed, or no constraints) is as depicted in Table 1.

The following lemma justifies that we do not have to give an explicit completeness
proof for each entry in Table 1, and points out a proof plan for Theorem 1.

Lemma 2. The graph in Figure 1 correctly describes the dependencies between
the problems (identified by their line number) in Table 1, i.e.: If there is an arrow
from A to B, then B is a special case of A.

Hence an arrow from A to B means that membership results for A hold also
for B, and that hardness results for B apply also to A. Therefore, to prove
Theorem 1, it suffices to show the membership for (1),(2),(8) and the hardness
for (4),(9),(11),(12). Due to lack of space, we only work out the hardness results
for (9) and (11) (the latter only for MINI-RDF⊆). Before, we shortly discuss the
membership results and give an intuition of why they are correct. All proofs are
worked out in detail in the full paper [12].

The most general case, (1), can be solved by a guess and check algorithm
that is allowed to use a ΠP

2 oracle for the checks. One has to guess: a subgraph
G′ of G, a sequence of rule applications on G′, and for each rule application
a homomorphism justifying that the rule is applicable. Note that ClR(G′) ⊆
AD3 (with AD = UGURBGBRLGLR). Hence if considering all possible rule
applications of length |AD|3, one of them has to return ClR(G′). The most
expensive check is to test if G′ satisfies C. However, it obviously fits into ΠP

2 .
The following properties lead to the cases of lower complexity: If R is a b-

bounded set, then ClR(G′) can be computed in polynomial time [11, Proposi-
tion 9] and if C is a b-bounded set, then testing if G′ satisfies C is in PTIME [11,
Proposition 3]. For the tractable cases, note that if C = ∅, then not all subgraphs
of G have to be checked, but only those missing exactly one triple from G.

Lemma 3. The problems MINI-RDF|=(G, R, C) and MINI-RDF⊆(G, R, C),
for fixed R and arbitrary C, are ΣP

3 -hard.
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Proof. ΣP
3 -hardness is shown by reduction from the well-known ΣP

3 -complete
problem QSAT3, of which we only give an informal description here. Let an
instance of QSAT3 be given by F = ∃x1∀y1∃x2

∧n
i=1 Ci, with Ci = (li,1 ∨

li,2 ∨ li,3) (clearly, the restriction to 3-CNF is w.l.o.g.). The graph G created
contains on the one hand triples encoding truth assignments on clauses (e.g.
{0 h1 a001 . 0 h2 a001 . 1 h3 a001} for the assignment (false , false, true)), and on
the other hand triples encoding the two possible truth assignments for variables
(e.g. {vi q1 a01 . vi q1 a10} for xi ∈ x1 where vi is a new URI for each xi and the
URI a01 (resp. a10) denotes that xi evaluates to false, hence ¬xi evaluates to
true (resp. xi to true and ¬xi to false), together with further triples that allow
us to actually refer to the truth value of xi (resp. ¬xi)) under a selected truth
assignment. The rules and constraints are chosen in such a way that (1) the
triples encoding the truth assignment (false , false, false) for clauses must not be
present in any valid subgraph G′ ⊂ G, (2) for every xi ∈ x1 exactly one of the two
triples encoding a truth assignment must be present in G′ and (3) for all other
variables, both triples have to remain in G′. The restrictions imposed by

∧n
i=1 Ci

are encoded in one big tgd, where every homomorphism from its antecedent to
G′ defines a truth assignment for x1 and y1. Thereby for every valid G′ all such
homomorphisms define the same truth assignment on x1, hence the values for
x1 are determined by the selection of G′. But every homomorphism defines a
different truth assignment on y1, and there exists exactly one homomorphism
for each of the 2|y1| truth assignments on y1. The consequent of the tgd contains
a representation of the literals in each clause Ci and has the following property:
for every homomorphism h from the antecedent to G′, there exists an extension
of h to a homomorphism h′ from the consequent to G′ iff this extension defines
a truth assignment on x2 such that the assignment on x1, y1 and x2 maps the
representations of the clauses onto the possible truth assignments for clauses
present in G′. As all triples encoding these truth assignments must be in G′,
except the ones for (false , false, false) which must not, such an extension for
every homomorphism from the antecedent to G′ implies that F is valid. ��

Lemma 4. The problems MINI-RDF⊆(G, R, C) and MINI-RDF|=(G, R, C),
where both R and C are considered to be fixed, are NP-hard.

Proof. As NP-hardness of MINI-RDF|= follows easily from the co-NP-hardness
of testing if G is lean [15], we concentrate on MINI-RDF⊆ and prove its NP-
hardness by reduction from the 3-SAT problem. We fix the rules and tgds as

R =
{

{X ′ in I . X active I} ⇒ {X ′ active I}
}

C =
{

{X active I . X in J} ⇒ {X active J}
{X clash X ′ . X active I . X ′ active I ′ . Y in J} ⇒ {Y active J}

}
.

Now let an instance of 3-SAT be given by the formula F = C1 ∧ · · · ∧ Cn, where
Ci = (li,1 ∨ li,2 ∨ li,3) and the li,j are literals. W.l.o.g., we assume that every
variable appears negated and unnegated in F . Then we construct an RDF graph
G = {l∗i,j in ci | i ∈ [n], j ∈ [3]} ∪ {l∗i,j active ci | i ∈ [n], j ∈ [3]} ∪ {xj clash x̄j |
xj in F}, where we introduce new URIs ci (for every clause Ci) and xj , x̄j (for
every variable xj in F ), and l∗i,j = xj (resp. x̄j) if li,j = xj (resp. ¬xj).
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Intuitively, the triples in G with predicate in encode the literals in F . If a triple
with predicate active remains in the selected subgraph G′ then the corresponding
literal in F is set to true. The triples with clash keep track of dual literals. ��

4 Rule Minimisation

In this section, we study the rule minimisation problem of RDF graphs. Al-
though there is a huge amount of literature in the Datalog world addressing
related problems (as query containment), the particular nature of the prob-
lems we study requires a distinguished complexity analysis. Note that rules for
RDF, when written as Datalog rules, have a fixed predicate arity of three, which
makes problems computationally easier than in the general Datalog setting (see,
e.g. [16]). Depending on whether we consider the Datalog rules as b-bounded
or not, we obtain complexity results from NP-completeness to ΔP

2 -membership.
The rule minimisation problem is formally defined as follows. As the RDF graph
remains unchanged, constraints are irrelevant here.

Definition 3. Let RDF-RULEMIN|=(G, R) be the following decision problem:
INPUT: An RDF graph G and a set R of RDF rules.
QUESTION: Does there exist R′ ⊂ R s.t. ClR′(G) |= ClR(G)?

Definition 4. Let RDF-RULEMIN⊆(G, R) be the following decision problem:
INPUT: An RDF graph G and a set R of RDF rules.
QUESTION: Does there exist R′ ⊂ R s.t. ClR′(G) = ClR(G)?

For the case that the set of rules is b-bounded, we can pinpoint the complexity
of the problem to NP.

Theorem 2. For a set R of b-bounded rules (for fixed b), the problem RDF-
RULEMIN|=(G, R) is NP-complete while RDF-RULEMIN⊆(G, R) is in PTIME.

Proof. The hardness is shown by reduction from the 3-Colorability problem.
The RDF graph G is built over the URIs U = {0, 1, 2} in subject and object
positions. G contains triples of the form i e j for all value combinations i, j ∈ U
with i �= j. R contains a single rule which generates an encoding Xα e Xβ (with
blank nodes Xα, Xβ) for each edge (vα, vβ) of the graph to be 3-colored. This
rule is redundant iff a valid 3-coloring exists, i.e., iff the triples Xα e Xβ can be
mapped into {i e j | i �= j}.

For the membership, note that it suffices to compare the closure of G under
R with the closure of G under every subset of R missing exactly one rule. In the
b-bounded case, the closure can be computed efficiently. Hence, we get PTIME-
membership for RDF-RULEMIN⊆ and NP-membership for RDF-RULEMIN|=

(the NP-computation is needed only for the entailment check). ��

Theorem 3. For arbitrary rules, RDF-RULEMIN⊆(G, R) is co-NP-hard and
in ΔP

2 while RDF-RULEMIN|=(G, R) is NP-hard, co-NP-hard, and in ΔP
2 .
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Proof. The ΔP
2 upper bound is due to the fact that computing the closure under

a set of arbitrary rules requires an NP-oracle (to check if a rule is applicable).
The NP-hardness of RDF-RULEMIN|=(G, R) carries over from Theorem 2. The
co-NP-hardness of both problems is shown by a straightforward reduction from
the co-problem of 3-Colorability: R contains a single rule whose body encodes
the graph to be 3-colored. This rule is redundant iff no 3-coloring exists. �

In order to reduce the complexity of the problems RDF-RULEMIN⊆(G, R) and
RDF-RULEMIN|=(G, R), one could seek for approximations of those problems.
In fact, one option is to check for redundant rules in the set R of given Datalog
rules; or whether some rule is subsumed by another rule from R. The first
problem is known to be tractable while the test for rule subsumption is NP-
complete (see [17]). The latter result can be shown to hold also for rules of
bounded arity (which we deal with here); but becomes tractable in the case of
b-bounded rules. Further methods (e.g., folding and unfolding of rules) are well
understood for logic programs (see [18]), and could also apply to our domain. An
in-depth analysis how to use those results in our setting is left for future work.

5 Minimisation w.r.t. Queries

Another variant of the RDF graph and rule minimisation problems is to guar-
antee completeness only w.r.t. a given set of queries. We restrict ourselves here
to (unions of) conjunctive queries (CQs resp. UCQs). Such a minimisation is
of high interest, e.g. when importing data into an RDF Store that provides a
narrow query interface only. Formally, we get the following problems:

Definition 5. MINI-RDF⊆,CQ (G, R, C, Q) is the following decision problem:
INPUT: An RDF graph G, a set R of RDF rules, a set C of tgds (G satisfies
C), and a set Q of CQs.
QUESTION: Is there a G′ ⊂ G s.t. (1) for every q ∈ Q, the answers to q over
ClR(G) coincide with the answers to q over ClR(G′) and (2) G′ satisfies C?

Definition 6. RDF-RULEMIN⊆,CQ (G, R, Q) is the following decision problem:
INPUT: An RDF graph G, a set R of RDF rules, and a set Q of CQs.
QUESTION: Is there a R′ ⊂ R s.t. for every q ∈ Q, the answers to q over
ClR(G) coincide with the answers to q over ClR′(G)?

Note that, in the above problem definitions, Q is some set of CQs. If we choose Q
to be the set of all CQs, then MINI-RDF⊆,CQ coincides with MINI-RDF⊆ and
MINI-RDF⊆,CQ coincides with RDF-RULEMIN⊆. Actually, this is the case for
any set Q containing the CQ {S P O} → ans(S ,P ,O). It follows immediately
that all hardness results from Sections 3 and 4 carry over to the CQ-variants.

Analogously to the settings studied in the previous sections resulting from
different restrictions on C and R, we also study three settings of the CQ-variants
of these problems by considering Q to be body-b-bounded, head-b-bounded, or
unrestricted, respectively. We thus get the following complexity results.

Theorem 4. For MINI-RDF⊆,CQ , the complexity w.r.t. different assumptions
on the input (arbitrary, b-bounded or fixed rule set; arbitrary, b-bounded, fixed, or
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Table 2. The complexity of MINI-RDF⊆,CQ (1-12) and RDF-RULEMIN⊆,CQ (I. - II.)
w.r.t. input parameters (“bb” stands for “b-bounded”, and “arb.” for “arbitrary”)

Q body-bb (a) Q head-bb (b) Q arb. (c)
(1) R arb., C arb. ΣP

3 -complete ΣP
3 -complete ΣP

3 -complete
(2) R arb., C bb NP/ ΔP

2 NP/ ΔP
2 ΣP

3 -complete
(3) R arb., C fixed NP/ ΔP

2 NP/ ΔP
2 ΣP

3 -complete
(4) R arb., C = ∅ NP/ ΔP

2 NP/ ΔP
2 ΠP

2 -complete
(5) R bb., C arb. ΣP

3 -complete ΣP
3 -complete ΣP

3 -complete
(6) R bb, C bb NP-complete NP/ ΔP

2 ΣP
3 -complete

(7) R bb, C fixed NP-complete NP/ ΔP
2 ΣP

3 -complete
(8) R bb, C = ∅ in P NP/ ΔP

2 ΠP
2 -complete

(9) R fixed, C arb. ΣP
3 -complete ΣP

3 -complete ΣP
3 -complete

(10) R fixed, C bb NP-complete NP/ ΔP
2 ΣP

3 -complete
(11) R fixed, C fixed NP-complete NP/ ΔP

2 ΣP
3 -complete

(12) R fixed, C = ∅ in P NP/ ΔP
2 ΠP

2 -complete

(I.) R arb. co-NP/ ΔP
2 co-NP+ NP/ ΔP

2 ΠP
2 -complete

(II.) R bb. in P NP/ ΔP
2 ΠP

2 -complete

no constraints; body-b-bounded, head b-bounded, or arbitrary CQs) is as depicted
in Table 2, rows (1) – (12). Likewise, the complexity of RDF-RULEMIN⊆,CQ is
depicted in Table 2, rows (I) – (II).

Thereby (co-)NP / ΔP
2 denotes the lower bound / upper bound for the com-

plexity. We write co-NP+ NP/ ΔP
2 if both, co-NP- and NP- hardness hold. All

lower bounds hold even if Q consists of a single CQ. Likewise, all upper bounds
hold even if Q is a set of UCQs.

Obviously,body-b-bounded (U)CQs are a special case of head-b-bounded (U)CQs,
which in turn are a special case of arbitrary (U)CQs. By combining this observa-
tion with Lemma 2, to prove Theorem 4, it suffices to show membership for the
entries (6a), (8a), (2b), (1c), (4c) as well as (Ia), (IIb), and (IIc) in Table 2, and
hardness for (11a), (12b), (11c), (12c) as well as (IIa), (Ib), and (Ic). Due to space
restrictions, we only give a rough sketch of the intuition of these results. All proofs
are worked out in detail in the full version [12].

Membership of the most general case (1c) is shown by considering the following
algorithm: guess a subset G′ ⊂ G and check with ΠP

2 -oracles if G′ satisfies C
and if q(Ĝ) = q(Ĝ′), where Ĝ = ClR(G), resp. Ĝ′ = ClR(G′). Moreover, the
closures Ĝ and Ĝ′ can be computed in ΔP

2 , since they are subsets of AD3.
The other columns contain potentially easier settings because of the restric-

tions on the queries, while the other rows are potentially easier because of restric-
tions on R and C. In particular, if no constraints are present, it suffices to check
the “direct” subsets G′ = G \ {t} for each t ∈ G. Thus the non-deterministic
guess of G′ ⊂ G is no longer needed. By the same token, rule minimisation is not
harder than ΠP

2 , since we only need to check the direct subsets R′ = R \ {r}.
If the queries are head-b-bounded, then there are at most polynomially many
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candidates for answer-tuples. Hence, to answer a query q over two different RDF
graphs is feasible in ΔP

2 (rather than ΠP
2 ). For body-b-bounded queries, the

answers to a query q over an RDF graph can even be computed in PTIME.
Turning to the lower bounds, the NP-hardness for (11a) follows immediately

from the above remark that the hardness results of MINI-RDF⊆ carry over.
(12b) differs from the previous setting by allowing more expressive queries, but
no constraints (which, for MINI-RDF⊆, leads to tractability). However, the NP-
hardness of this case follows immediately from the co-NP-hardness of checking
if an RDF graph is lean [15] and defining Q = {G → ans()}. The hardness for
(11c) is shown by reduction from QSAT3. Its main idea is, given a formula F =
∃x1∀y1∃x2φ, to define a CQ q and a graph G such that every homomorphism
τ : body(q) → G defines a truth assignment on the variables in F . (The proof
allows even R = ∅.) Thereby q outputs the values of this truth assignment on
y1. G is further chosen in such a way that q(G) contains an encoding of all
possible truth assignments on y1. The constraints in C are such that over every
proper subgraph G′ ⊂ G that satisfies C, every homomorphism from body(q) to
G′ now encodes truth assignments that actually satisfy φ. At the same time,
the assignment on x1 is already defined by the choice of G′. Hence, if q(G′) also
contains encodings for all possible truth assignments on y1, this means that F
is indeed satisfied. For C = ∅, we only get ΠP

2 -hardness since we can no longer
express that valid choices for G′ encode a truth assignment on x1.

For the rule minimisation, the ΠP
2 -hardness is shown similarly to the ΠP

2 -
hardness in case (12c). In case of (head-/body-)b-bounded queries, the answers
to the queries can no longer produce all possible truth assignments on y1. Hence,
we can only prove NP- and co-NP-hardness, respectively, in cases (Ia) and (IIa).

5.1 Beyond Conjunctive Queries – SPARQL

RDF minimisation w.r.t. (unions of) conjunctive queries could be extended to
more expressive query languages. Actually, it can be checked that all upper
bounds proved in this Section are still valid if the CQs are allowed to contain
negation in the body. In particular, the complexity of the problems considered
here does not go beyond ΣP

3 for this kind of extension, cf. [12]. In contrast, if we
allow arbitrary non-recursive datalog queries with negation (a query language
which – as well known – covers all of SPARQL [19]), then the complexity of
the problems considered here will be dominated by the complexity of query
evaluation, which is PSPACE-complete in this case, see [20]. We leave a more
fine-grained analysis of different fragments of SPARQL to future work.

6 Problem Variations

In this section, we discuss some further problems which are variations of or
strongly related to the problems studied in the previous sections. We start by
a variation of the graph minimisation problem. But now we ask if G can be
replaced by a subgraph G′ whose size is bounded by some given bound k (rather
than an arbitrary subgraph G′ ⊂ G). Formally, we study the following problem.
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Definition 7. Let MINI-RDFcard(G, R, C, k) be the following decision problem:
INPUT: An RDF graph G, a set R of RDF rules, a set C of tgds and integer k.
QUESTION: Does there exist a subgraph G′ ⊂ G with |G′| ≤ k, s.t. G′ satisfies
C and G ⊆ ClR(G′)?

It can be easily verified that for all cases in Table 1 that are at least NP-hard,
the complexity for MINI-RDFcard does not change. Intuitively, this is because
the nondeterministic algorithms for solving these problems all start with “guess
a subgraph G′ ⊂ G”, which can be easily changed to “guess a subgraph with at
most k triples”. Therefore, the only two interesting cases are MINI-RDF⊆ with a
b-bounded or fixed set R and no constraints, as they can be decided in PTIME.
We show that for MINI-RDFcard, the complexity goes up to NP-completeness.

Theorem 5. The problem MINI-RDFcard(G, R, C, k) is NP-complete if C = ∅
and R is either considered as fixed or a set of b-bounded rules (for fixed b).

Proof. The hardness proof is by reduction from the Vertex Cover problem. We
give the basic ideas of this reduction. Given some graph G = (V, E), the RDF
graph Grdf contains one distinct triple for every v ∈ V . The intuition is that
the subset of those triples contained in a valid subgraph G′ ⊂ Grdf describes
a vertex cover. We further have three rules, one that (given G′ ⊂ G) adds all
edges covered by the remaining vertices in G′, one that (by repeated application)
checks whether all edges are covered, and finally one rule that, if indeed all
edges are covered, allows to restore the vertices from Grdf \ G′. To allow to
express according rules, Grdf contains triples encoding further information (like
e.g. neighbourhood of vertices and edges). But as they cannot be derived by any
rule, they must remain unchanged in any valid G′ ⊂ Grdf . Further, their number
(say K) only depends on G, such that there exists a vertex cover of size k iff
there exists a valid G′ ⊂ Grdf of size K + k. ��

Next we want to identify the sources of the complexity of MINI-RDF|= and MINI-
RDF⊆ for the cases where C is allowed to contain arbitrary tgds. We show that
the complexity is independent of the rules, but arises mainly from the question
whether there exists some non-empty subgraph that satisfies all constraints.

Theorem 6. Let G be a RDF graph and C a set of tgds. Deciding whether there
exists some ∅ �= G′ ⊂ G s.t. G′ satisfies C is ΣP

3 -complete.

Proof. Membership follows from Theorem 1. Hardness is shown by a modification
of the reduction given in the proof of Lemma 3. We give the intuition of these
modifications. In the aforementioned proof, the intuitive meaning of the rules,
together with the requirement G ⊆ ClR(G′), was that for each vi ∈ x1, either
{vi q1 a01} or {vi q1 a10} has to remain in the subgraph G′. However, this can
be also formulated as a constraint. By introducing an additional triple for every
vi ∈ x1 (e.g. {vi opt vi}) that is enforced to be contained in any non-empty
subgraph, the tgd {V opt V } ⇒ {V q1 A} does the job. �

From the (full) proof of Lemma 4, it follows that for MINI-RDF|=, one source of
the NP-hardness is just to decide the entailment. However, similarly to the last
theorem, we can show that for b-bounded tgds, just testing for the existence of
a valid subgraph already contains the full hardness too.
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Theorem 7. Let G be an RDF graph and C a set of b-bounded tgds. Deciding
whether there exists some ∅ �= G′ ⊂ G s.t. G′ satisfies C is NP-complete.

Proof. Membership follows from Theorem 1. Hardness is shown by reduction
from the SAT problem. The reduction is very similar to the one of Lemma 4,
only that all the implicit information about which triples must not be removed
from G (expressed by not providing rules to derive them) now have to be made
explicit as tgds. This however no longer allows for a fixed set of tgds, but makes
the number of tgds dependent on F . ��

Recall that tgds generalise (safe) datalog rules by allowing existential quantifica-
tion and conjunctions in the head. In other words, datalog rules are an important
special case of tgds – referred to as full tgds in the information integration lit-
erature. Below, we show that restricting the constraints to full tgds pushes the
ΣP

3 -completeness results from Theorems 1 and 6 down to ΣP
2 .

Theorem 8. The problems MINI-RDF|=(G, R, C) and MINI-RDF⊆(G, R, C) are
ΣP

2 -complete if C is a set of full tgds. ΣP
2 -completeness even holds for fixed R.

Likewise, let G be an RDF graph and C a set of full tgds. Deciding whether there
exists some ∅ �= G′ ⊂ G s.t. G′ satisfies C is ΣP

2 -complete.

Proof. The ΣP
2 -membership is established by the same algorithm as the ΣP

3 -
membership in case of unrestricted tgds according to Theorem 1. However, by
the restriction to full tgds, we now only need a co-NP-oracle (rather than ΠP

2 )
for checking that the tgds are satisfied. The ΣP

2 -hardness is shown via reduction
from QSAT2 by using similar ideas as in the ΣP

3 -hardness proof in Lemma 3. ��

So far, we have not commented on the impact of allowing general RDF rules as
defined in Section 2, i.e., rules containing additional predicates uri(.), blank (.),
lit(.) in the bodies. In the full version of this paper [12], we give a very simple
argument that a polynomial time preprocessing suffices to support these predi-
cates naturally in RDF. The same argument allows us to overcome the problem
that the closure w.r.t. a rule set R may contain invalid RDF triples (e.g. due to a
blank node in a predicate position). This result holds independently of whether
intermediate results are allowed to contain invalid triples or not.

7 Conclusion

We proved a collection of complexity results for minimisation problems over
RDF graphs where we considered various restrictions on the rules and tgds.
One such restriction was b-boundedness [11]. We note that this restriction can
be relaxed by bounding not necessarily the size of the rules (or tgds) but only
the maximal number of blank nodes occurring in the rules (or tgds) — in the
Datalog world, Vardi [21] showed that such a restriction decreases complexity.
We further discussed how the complexity of the problem increases if one requires
completeness only with respect to a given set of conjunctive queries (CQs).
Notably, if the CQs are restricted to have bounded head arity, while providing
additional minimisation potential, the problem becomes only mildly harder.
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The minimisation problems considered here are driven by practical needs to
represent RDF data compactly or tailor them to engines supporting different
rule sets. Our results also provide a basis for eliminating redundancies in existing
practically relevant rule sets, such as OWL2RL [8]. We believe that our results
will gain even more relevance with the advent of novel standards such as the
W3C rule interchange format (RIF) which will allow one to enrich RDFS and
OWL with Web-publishable custom rule sets [22].

As future work, our investigations should be further extended in several
directions such as a more fine-grained analysis of SPARQL fragments when
redundancy w.r.t. queries is considered, for instance well-designed SPARQL
queries [20]. Moreover, we plan to cast the obtained results into practical al-
gorithms to “compress” RDF graphs and rule sets, investigate related relevant
problems such as “trading” triples for rules, or vice versa, and experimentally
evaluating effects of such transformations on query answering with dynamic in-
ference such as sketched in [2].

Finally, the high complexities identified in this paper call for a systematic
search for fragments with lower complexity. One step in this direction has already
been the restriction to b-boundedness studied in this paper. It is motivated by the
assumption that rules, constraints, and queries are usually significantly smaller
than the size of the RDF data. Further restrictions (like restrictions on graph
parameters like treewidth) and their effect on the complexity of our minimisation
problems are left for future work.
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Abstract. Defeasible reasoning has been studied extensively in the last
two decades and many different and dissimilar approaches are currently
on the table. This multitude of ideas has made the field hard to navi-
gate and the different techniques hard to compare. Our earlier work on
Logic Programming with Defaults and Argumentation Theories (LPDA)
introduced a degree of unification into the approaches that rely on the
well-founded semantics. The present work takes this idea further and in-
troduces ASPDA—a unifying framework for defeasibility of disjunctive
logic programs under the Answer Set Programming (ASP). Since the
well-founded and the answer set semantics underlie almost all existing
approaches to defeasible reasoning in Logic Programming, LPDA and
ASPDA together capture most of those approaches. In addition to AS-
PDA, we obtained a number of interesting and non-trivial results. First,
we show that ASPDA is reducible to ordinary ASP programs, albeit
at the cost of exponential blowup in the number of rules. Second, we
study reducibility of ASPDA to the non-disjunctive case and show that
head-cycle-free ASPDA programs reduce to the non-disjunctive case—
similarly to head-cycle-free ASP programs, but through a more complex
transformation. The blowup in the program size is linear in this case.

1 Introduction

Defeasible reasoning is a form of non-monotonic reasoning where logical axioms
are true “by default” but their truth status may be undercut or even negated by
other, conflicting axioms. This type of reasoning has been an important applica-
tion of logic programming. It was successfully used to model policies, regulations,
and law; actions, change, and process causality; Web services; aspects of induc-
tive/scientific learning and natural language understanding. However, there is a
bewildering multitude of dissimilar and incompatible approaches to defeasibility
based on a wide variety of intuitions and techniques. The difficulties in relat-
ing and comparing the different approaches have been discussed in [13,3] and
other works. Combining the various theories of defeasible reasoning with other
advances in logic-based knowledge representation, such as HiLog [4] and F-logic
[16], has also been a problem.
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Our earlier work [20] addressed some of these issues by introducing a general
framework for defeasible reasoning, called LPDA, which abstracts the intuitions
about defeasibility into what we call argumentation theories. This enabled a uni-
form syntax and semantics for a wide variety of defeasible theories, which could
be used in harmony and simultaneously in the same knowledge base. LPDA, as
defined in [20], was developed on the basis of the well-founded models [9] and
was able to unify a number of approaches to defeasible reasoning that are based
on the well-founded semantics. However, a large number of works on defeasible
reasoning are based on the stable model semantics [11], which has very different
properties and is not capturable by well-founded models. Furthermore, defea-
sible reasoning in the presence of disjunctive information, which to the best of
our knowledge has not been considered hitherto, appears to require even more
general semantics, the answer set semantics [10].

The present work takes the idea of LPDA further and introduces ASPDA—an
analogous framework for defeasibility of disjunctive logic rules through argumen-
tation theories based on Answer Set Programming (ASP). In this way, LPDA
and ASPDA together unify and extend most of the existing theories of defeasible
reasoning in Logic Programming.

Extension of the semantics of LPDA to ASP with head-disjunctions turned
out to be elegant but not straightforward. The relationship between ASPDA and
the regular ASP also proved to be non-obvious. First, we show that ASPDA can
be expressed by regular ASP programs, albeit at the cost of exponential blowup
in the number of rules. Then we study the class of head-cycle-free programs with
disjunctive heads and show that a related notion exists for ASPDA. By analogy
with the classical case, such programs can be reduced to non-disjunctive pro-
grams under the defeasible stable model semantics, although the transformation
is more complicated than in the case of the regular ASP. The blowup in the
program size is still linear, however.

The rest of this paper is organized as follows. Section 2 illustrates defeasible
reasoning under the answer-set semantics using the well-known Turkey Shoot
example [19]. Section 3 defines the syntax and semantics of defeasible disjunctive
logic programs and presents a number of interesting results about reducibility to
the regular logic programming and to the non-disjunctive case. Section 4 gives
two examples of argumentation theories for ASPDA. One is an adaptation of
GCLP [14,20] to ASPDA, a theory that is used in all examples throughout this
paper. Another is an argumentation theory that captures Defeasible Logic [1].
Although Defeasible Logic (as all other theories of defeasible reasoning up until
now) does not support head-disjuncts in the rules, it is an apt illustration of
ASPDA as a unifying framework that is capable of capturing much of the prior
work. Sections 5 and 6 discuss related work and conclude the paper.

2 Motivating Example

The following example is adapted from the Texas Turkey Shoot game example
in [19]. We use the usual syntax of logic programming with the only difference
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that rules are tagged with @tag symbols and disjunctions are allowed. Variables
are prefixed with the symbol ?. Initially one of the guns is known to be loaded,
but it is not known which. The objective is to find a plan to kill the turkey
by shooting one or both guns assuming that the shooter can observe the effects
of his actions. Let g1 and g2 be the constants representing the guns. Numerals
are used in the example to represent time points, and the initial time point is
assumed to be 1. For instance, shoot(g1,1) and shoot(g1,2) represent the
actions of shooting the gun g1 at time points 1 and 2.

@kpld loaded(?Gun,?Time+1) :- loaded(?Gun,?Time). // Frame axiom 1.

@kpunld neg loaded(?Gun,?T+1) :- neg loaded(?Gun,?T). // Frame axiom 2.

@dd neg alive(?Time+1) :- neg alive(?Time). // Frame axiom 3.

@liv alive(?Time+1) :- alive(?Time). // Frame axiom 4.

// A gun becomes unloaded after being fired

@sht1 neg loaded(?Gun,?Time+1) :- shoot(?Gun,?Time).

// The turkey becomes dead after a loaded gun is fired at it

@sht2 neg alive(?Time+1) :- shoot(?Gun,?Time), loaded(?Gun,?Time).

// Axioms for the initial state

alive(1). // The turkey is alive initially

@unld neg loaded(g1,1) ∨ neg loaded(g2,1). // One gun is unloaded initially

@ld loaded(g1,1) ∨ loaded(g2,1). // One gun is loaded initially

shoot(g1,1). // Fire g1 at time 1

// If g1 is unloaded at time 1, fire g2 at time 2.

shoot(g2,2) :- not loaded(g1,1).

// axioms for contradiction and rule priorities

#opposes(alive(?Time), neg alive(?Time)).

#overrides(sht1, kpld).

#overrides(sht2, liv).

In the above specification, some of the rules have tags, e.g., kpld and sht1,
and the predicate #overrides specifies priorities among some of these tagged
rules. We distinguish between the classical-logic-like explicit negation neg and the
default negation not (which in this paper will have the answer-set semantics).
Literals L and negL are assumed to be incompatible and cannot both appear in
a consistent model. The predicate #opposes specifies additional contradictions,
such as the inability for the turkey to be both dead and alive at the same time.

We can now explain how defeasible reasoning works in the above game. The
rule labeled kpld is a frame persistence axiom stating that a loaded gun stays
loaded unless some other action explicitly changes this state of affairs. The rule
sht1 states that if a gun is fired then it becomes unloaded in the next state.
This rule has a higher priority than the frame axiom kpld due to the axiom
#overrides(sht1,kpld). The rule labeled liv is another frame axiom stating
that a live turkey remains alive by default. This rule is defeated by the higher-
priority rule labeled sht2, which says that if a loaded gun is fired at the turkey,
then the turkey is dead in the next state. Note that our program has disjunctions
in the heads of the rules labeled unld and ld), so the initial state of the game is
uncertain. The problem is to infer that by firing one or both guns in succession
the shooter can kill the turkey despite the uncertainty in the initial state. Note
that due to the disjunctions, the other existing logic programming approaches
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to defeasible reasoning cannot handle the above situation, and this is precisely
the motivation for our current work. We will return to this example at the end
of Section 4.1 after the necessary theory is developed.

3 Defeasible Reasoning with Argumentation Theories

In this section we introduce the syntax and semantics of disjunctive logic pro-
gramming where defeasibility is controlled by argumentation theories. The main
syntactic difference is that rules now have tags, and the main semantic difference
is that these rules can be defeated.

Let L be a logic language with the usual connectives ∧ for conjunction, ∨
for disjunction, and :- for rule implication; and two negation operators: neg
for explicit negation and not for default negation. The alphabet of the language
consists of: an infinite set of variables, which are shown in the examples as
alphanumeric symbols prefixed with the question mark ?; and a set of constant
symbols, which can appear as individuals, function symbols, and predicates.
Constants will be shown as alphanumeric symbols that are not prefixed with a
“?”. We assume that the language includes two special propositional constants, t
and f , which stand for true and false, respectively. We also assume the following
order on these propositions: f < t.

We use the standard notion of terms in logic programming. Atomic formu-
las, also called atoms, can be quite general in form: they can be the usual atoms
used in ordinary logic programming; or the higher-order expressions of HiLog
[4]; or the frames of F-logic [16]. A literal has one of the following forms:

– An atomic formula.
– negA and notA, where A is an atomic formula.
– not negA, where A is an atomic formula.
– not notL and negnegL, where L is a literal; these are identified with L.

For convenience, the literals not notL and negnegL will be identified with L.
Let A denote an atom. Literals of the form A or negA (or literals that reduce to
these forms after elimination of double negation) are called not -free literals;
literals that reduce to the form notA are called not -literals.

Definition 1 (Tagged rule). A tagged rule in a logic language L is an ex-
pression of the form

@r L1 ∨ ... ∨ Lk :-Body (1)

where r is a term, called the tag of the rule; L1, ..., Lk (k ≥ 0) are literals in L,
called the head literals of the rule; and Body, called the body of the rule, is a
conjunction of literals in L.1 As is common in logic programming, we will often
write A, B to represent the conjunction A∧B. A rule tag is not a rule identifier:
several rules can have the same tag.

A constraint is a special form of rule where f is a single head literal. We
will usually omit f in such rules.
1 This is easy to generalize to allow Lloyd-Topor extensions [18].
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A formula is a literal, a Boolean combination of literals using conjunction
and disjunction, or a rule. �

We will often omit showing rule tags when they are immaterial.

Definition 2 (Rule handle). Given a rule of the form (1), the terms of the
form

handle(r, Li), where i = 1, ..., k

are called the handles for that rule. Here handle is a binary function symbol
specifically reserved for representing rule handles. However, we do not make
further assumptions about this symbol. �

Definition 3 (Ground terms and rules). A ground term is a term that
contains no variables, a ground literal is a variable-free literal, and a ground
rule is a rule that has no variables. �

Definition 4 (ASPDA). An answer-set program with defaults and ar-
gumentation theories (an aspda , for short) in a logic language L is a set of
tagged rules in L, which can be strict or defeasible. Sets or rules that do not
have disjunctions in the head will be called non-disjunctive aspdas. �

Strict rules are used as definite statements about the world. In contrast, defea-
sible rules represent defeasible defaults whose instances can be “defeated” by
other rules. Inferences produced by the defeated rules are “overridden.”

We assume that the distinction between strict and defeasible rules is specified
in some way: either syntactically or by means of a predicate. For instance, in
Section 4, we use the predicate #strict for that purpose.

Aspda s are used in conjunction with argumentation theories, which are sets
of rules that defines conditions under which some rule instances may be defeated
by other rules.

Definition 5 (Argumentation theory). Let L be a logic language. An argu-
mentation theory is a set, AT, of strict rules in L of the form (1). We also
assume that the language L includes a unary predicate, $defeatedAT, which
may appear in the heads of some rules in AT.2 When confusion does not arise,
we will omit the subscript AT.
An aspda P is said to be compatible with AT if $defeatedAT does not appear
in the rule heads in P. �

In argumentation theory all rules are strict, by definition.3 The rules in AT will
normally contain other predicates, besides $defeatedAT, that are used to specify
how the rules in P get defeated.

2 If $defeated does not occur in the head of any rule then the semantics of aspda s
reduce to ordinary logic programming.

3 In principle, we could allow argumentation theories to be defeasible, but we will not
do so in this paper.
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Usually argumentation theories employ the concepts of rule priority and con-
tradictions among facts. Priorities are often specified via a predicate, such as
#overrides, which tell that some rules (or rule instances) have higher prior-
ities than other rules (e.g., #overrides(rule tag1, rule tag2)). Contradictions
are commonly expressed via predicates such as #opposes, which tell that certain
facts cannot be true together (e.g., #opposes(price(ball1, 20), price(ball1, 30)).
The $defeated predicate is then defined in terms of these and other predicates.
In this paper, we adopt the convention that the predicates defined only by argu-
mentation theories will be prefixed with the $-sign, the predicates used and/or
defined both by the argumentation theories and user programs will be prefixed
with the #-sign, and the predicates defined only by user programs will not be
marked in any special way: they will be denoted by alphanumeric symbols.

In defining the semantics, we assume that the argumentation theories are
ground. A grounded version of AT with respect to a compatible aspda P is
obtained by appropriately instantiating the variables and meta-predicates.

Note that the theory developed here permits different subsets of the overall
aspda to have different argumentation theories AT with different $defeatedAT

predicates. For instance, our implementation of the logic programming frame-
work with argumentation theories for the well-founded semantics in an extended
version of FLORA-2 [15] supports multiple argumentation theories.

3.1 Interpretations and Models

Definition 6 (Herbrand universe). Let P be an aspda and AT an argumen-
tation theory over language L.

– The Herbrand universe of P, denoted UL, is the set of all ground terms
built using the constants and function symbols that appear in L. When con-
fusion does not arise, we will simply write U .

– The Herbrand base of P, denoted BL (or simply B, when no ambiguity
arises), is the set of all ground not -free literals that can be constructed using
the predicates in L. �

Definition 7 (Herbrand interpretation). A Herbrand interpretation, I,
is a subset of B. It is simply a set of ground not -free literals. In addition, I
must contain t and it must not contain f .
An interpretation is inconsistent relative to an atom A if both A and negA
are in I. Otherwise, I is consistent relative to A. An interpretation is con-
sistent if it is consistent relative to every atom and inconsistent if it is incon-
sistent relative to some atom. �
Note that all interpretations considered in this paper are Herbrand, so we will
often neglect to mention Herbrandness explicitly.

Next we introduce the notion of satisfaction of defeasible rules and strict rules
by interpretations.

Definition 8 (Truth valuation). Let I be a Herbrand interpretation, L a
ground not -free literal, and let F , G be ground formulas. We define truth val-
uations that map formulas to {t,f} as follows:
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– I(L) = t iff L ∈ I, I(L) = f iff otherwise.
– I(notL) = ∼ I(L), where ∼ t = f and ∼ f = t.
– I(F ∧ G) = min(I(F ), I(G)). Recall that f < t.
– I(F ∨ G) = max(I(F ), I(G)).
– For a strict rule @r F :-G, we define I(F :-G) = t if and only if I(F ) ≥

I(G).
– For a defeasible rule @r F :-G, we define I(@r F :-G) = t if and only if

I(F ) ≥ min(I(G), I(not $defeated(handle(r, F )))).
Here handle(r, F ) is the handle for the rule @r F :-G (Definition 2). �

Definition 9 (Model of formula). If F is a ground formula, I an interpre-
tation, and I(F ) = t, then we write I |= F and say that I is a model of F or
that F is satisfied in I. An interpretation I is a model of an aspda P if all the
rules in P are satisfied in I, i.e., if I |= R for every R ∈ P. �

Definition 10 (Model of ASPDA). Given an aspda P, an argumentation
theory AT, and an interpretation M, we say that M is a model of P with respect
to the argumentation theory AT (or a model of (P ,AT), for short), written as
M |= (P ,AT), if M |= P and M |= AT. �

Definition 11 (Minimal model). An interpretation M is a minimal model
of (P ,AT) iff M is a model of (P ,AT) and no proper subset of M is a model of
(P ,AT). �

3.2 Stable Model and Answer-Set Semantics

In this section, we extend the stable model semantics [11] and the answer-
set semantics [10] to ASPDA. We start with non-disjunctive aspda s and stable
models.

Definition 12 (ASPDA quotient, non-disjunctive case). Let Q be a non-
disjunctive aspda, and let J be a Herbrand interpretation for Q. The ASPDA

quotient of Q by J, written as
Q
J

, is defined by the following sequence of steps:

1. Delete every rule R ∈ Q such that there is a not -literal of the form notA
in R’s body and A ∈ J;

2. Delete every defeasible rule of the form @r L :-Body in Q such that
$defeated(handle(r, L)) ∈ J.

3. Remove all not -literals from the remaining rules.
4. Remove all tags from the remaining tagged rules. �

When dealing with stable models, it is often assumed that interpretations are
consistent [10]. All the definitions and results in this section extend to this case
straightforwardly.

Recall that the minimality of Herbrand models is defined in Definition 11.

Definition 13 (Stable model). A Herbrand interpretation M is a stable
model of a non-disjunctive aspda P with respect to the argumentation theory
AT, if M is a minimal Herbrand model of P∪AT

M . �



156 H. Wan, M. Kifer, and B. Grosof

The next theorem shows that non-disjunctive aspda s can be implemented using
ordinary logic programming systems that support the stable model semantics
(e.g., DLV [17]).

Theorem 1 (Reduction for the stable model semantics). Let P be a non-
disjunctive aspda and AT an argumentation theory. Then the following two sets
coincide:

– The set of stable models of P with respect to AT.
– The set of stable models of the ordinary logic program P ′ ∪ AT′, where P ′

is obtained from P by converting every defeasible rule (@r L :- Body) ∈ P
into the plain rule of the form L :- Body, not $defeated(handle(r, L)) and
removing all the remaining tags; and AT′ is obtained from AT by simply
removing all the tags. �

For disjunctive rules, stable models are called answer sets and we will now gen-
eralize the above semantics to such rules. In generalizing aspda s to disjunctive
rules, the main problem is to define handles for disjunctive rules, to define quo-
tients, and to find an analog of the reduction theorem.

Example 1. Consider a disjunctive program

@r1 a ∨ b ∨ c.
@r2 d ∨ e.

The ordinary stable models of this program are {a, d}, {a, e}, {b, d}, {b, e},
{c, d}, and {c, e}. Suppose now that a cannot be true when either d or e holds,
and that b, e are also incompatible. We express this with the following facts:

#opposes(a,d). #opposes(a,e). #opposes(b,e).

Suppose, in addition, that rule r1 has a higher priority than r2, i.e.,

#overrides(r1,r2).

Intuitively, {a, d}, {a, e}, and {b, e} can no longer be models due to the incom-
patibility statements above, while the models {b, d}, {c, d}, and {c, e} are still
intuitively fine. At the same time, one might feel that {a} should be viewed as a
suitable model because r1 overrides r2, a makes r1 true, and a is incompatible
with both heads of the rule r2.

As it turns out, {a} may or may not be a defeasible stable model—it all
depends on the associated argumentation theory. It would be a stable model of
our aspda if the argumentation theory had the following rule instances:

$defeated(handle(r2, d)) :- #overrides(r1, r2), #opposes(a, d), a.
$defeated(handle(r2, e)) :- #overrides(r1, r2), #opposes(a, e), a. �

The following definitions generalize Definition 12 to disjunctive aspda s and make
the intuition behind Example 1 precise.
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Definition 14 (ASPDA quotient, disjunctive case). Let Q be a disjunctive
aspda, and let J be a Herbrand interpretation for Q. We define the ASPDA

quotient of Q by J, written as
Q
J

, by the following sequence of steps:

1. Delete every rule R ∈ Q such that there is a not -literal of the form notA
in R’s body and A ∈ J;

2. For every defeasible rule of the form @r L1 ∨ ... ∨ Ln :- Body in Q, delete
every Li such that $defeated(handle(r, Li)) ∈ J. If all the Li’s are deleted,
delete the entire rule.

3. Remove all not -literals from the remaining rules.
4. Remove all tags from the remaining tagged rules. �

Definition 13 carries over in a natural way:

Definition 15 (Answer set). A Herbrand interpretation M is an answer set
of a disjunctive aspda P with respect to the argumentation theory AT, if M is
a minimal Herbrand model of P∪AT

M . �
The analog of Theorem 1 is as follows.

Theorem 2 (Reduction for the answer-set semantics). Let P be a (dis-
junctive) aspda and AT an argumentation theory. Then the following two sets
coincide:
– The set of answer sets for the aspda P with respect to AT.
– The set of answer sets for the ordinary logic program P ′ ∪ AT′, where P ′ is

obtained from P by converting every defeasible rule (@r L1∨...∨Ln :- Body) ∈
P into a collection of plain rules of the form

∨i∈KLi :- Body ∧ ∧i∈K not $defeated(handle(r, Li))
∧ ∧j∈N−K $defeated(handle(r, Lj)).

for each subset K ⊆ N = {1, ..., n} and removing all the remaining tags;
and AT′ is obtained from AT by simply removing all the tags. �

With the above definitions, it can now be verified that the answer sets for the
aspda in Example 1 are precisely as described there.

3.3 Reduction to the Non-disjunctive Case

In ordinary answer-set programming, certain disjunctive rules can be reduced to
the non-disjunctive case via the so-called shifting transformation. For example,
this transformation would replace the rule p ∨ q ∨ s :- body with the rules

p :- body, not q, not s.
q :- body, not p, not s.
s :- body, not q, not p.

Ben-Eliyahu and Dechter [2] have shown that this is an equivalence transforma-
tion for so called head-cycle free programs.4 We reproduce that definition below
adjusting it for disjunctive aspda s.
4 The works [7,12] developed similar shifting techniques.
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Definition 16. [2] The dependency graph GP , of an aspda P, is a directed
graph where nodes are literals. An edge from L to L′ goes iff there is a rule in
which L appears positive in the body and L′ is a head literal. An aspda is head-
cycle free (HCF) iff its dependency graph does not contain directed cycles that
connect literals that belong to the head of the same rule. �

An interesting question is whether an analogous shifting transformation and an
equivalence result holds for disjunctive aspda s.

Definition 17. Let P be a disjunctive aspda. The (ordinary) shifting of P,
written as shift(P), is a non-disjunctive aspda obtained from P by replacing
each defeasible rule of the form (@r L1∨...∨Ln :- Body) ∈ P with n new defeasible
rules

@r L1 :- Body ∧ notL2 ∧ ... ∧ not Ln
. . . . . . . . .
@r Ln :- Body ∧ notL1 ∧ ... ∧ not Ln−1 �

Surprisingly, it turns out that shift(P) is not equivalent to P even for HCF
aspda s. To see this, consider the following rule set, which we will denote P1

@r1 a ∨ b ∨ c. @r2 d. @r3 c.

Suppose that the associated argumentation theory implies $defeated(handle(r1,
c)) and does not imply any other $defeated facts that involve the above rules.
Then P1 would have the following answer sets: {a, d, c} and {b, d, c}. In contrast,
the ordinary shifting transformation yields the non-disjunctive aspda shift(P1)

@r1 a :- not b ∧ not c. @r2 d.
@r1 b :- not a ∧ not c. @r3 c.
@r1 c :- not a ∧ not b.

which has only one answer set: {d, c} with respect to the argumentation theory.
It turns out, however, that a result similar to Ben-Eliyahu and Dechter’s holds

for disjunctive aspda s, but for a slightly different shifting transformation.

Definition 18. The ASPDA shifting of an aspda P, written as aspda
shift(P), is a non-disjunctive aspda obtained from P by replacing each de-
feasible rule of the form (@r L1∨ ...∨Ln :- Body) ∈ P with n new defeasible rules
of the form

@r L1 :- Body ∧
(
not L2 ∨ $defeated(handle(r, L2))

)
∧ ...
∧
(
not Ln ∨ $defeated(handle(r, L2))

)
. . . . . . . . .

@r Ln :- Body ∧
(
not L1 ∨ $defeated(handle(r, L1))

)
∧ ...
∧
(
not Ln−1 ∨ $defeated(handle(r, Ln−1))

)
(2)
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Theorem 3. Let P be an HCF aspda and let AT be an argumentation theory.
Then S is an answer set of P with respect to AT iff S is an answer set of
aspda shift(P) with respect to AT. �
Corollary 1. Let P be an HCF aspda. Let AT be an argumentation theory
such that, for each literal L, whenever $defeated(handle(r, L)) is true for some
rule tag r, $defeated(handle(r′, L)) is true for every tag r′ such that there
is a rule with the tag r′ and L as a head-literal. Then S is an answer set of
aspda shift(P) with respect to AT iff S is an answer set of shift(P). In other
words, aspda shift(P) is equivalent to shift(P) with respect to AT.

4 Examples of Argumentation Theories

4.1 A-GCLP [14,20]

Our first example is an ASPDA counterpart for the argumentation theory pro-
posed in [20], which captures generalized courteous logic programs [14] (under
the well-founded semantics). We will call this theory A-GCLP and will denote
it by ATAGCLP . It is this argumentation theory that was used in all the earlier
examples in this paper.

In ATAGCLP , the predicate $defeated, which plays a key role in the semantics
of aspdas, is defined in terms of the predicates #opposes and #overrides. These
predicates are defined by the knowledge engineer within the knowledge base via
sets of facts and rules. The argumentation theory only imposes some constraints
on #opposes.

The $defeated predicate is now defined as follows. A rule handle is defeated
if it is refuted by some other not defeated rule or if it transitively defeats itself.

$defeated(?R) :- $defeats(?S, ?R).
$defeated(?R) :- $trans defeats(?R, ?R).

The auxiliary predicates used above are defined as follows:

$defeats(?R, ?S) :- $refutes(?R, ?S), not $defeated(?R), not #strict(?S).
$trans defeats(?X, ?Y ) :- $defeats(?X, ?Y ).
$trans defeats(?X, ?Y ) :- $defeats(?X, ?Z), $trans defeats(?Z, ?Y ).

The predicate #strict is used here to distinguish strict rules from the defeasible
ones. The predicate $refutes indicates when one rule handle refutes another.
Refutation of a rule handle, r, means that a higher-priority rule implies a con-
clusion that is incompatible with the conclusion implied by the rule with the
handle r. This is defined as follows:

$refutes(?R, ?S) :-
$conflict(?R, ?S), #overrides(?R, ?S), ?R = handle(?T, ?L), ?L.

The definition of the concept of a conflict between two rules, represented by
the predicate $conflict above, relies in turn on the notion of a candidate. A
candidate rule-instance is one whose body is true in the knowledge base:

$candidate(?R) :- body(?R, ?B), ?B.
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Here the meta-predicates body binds ?B to the body of a rule with handle ?R.
Conflicting rules are now defined as follows: two rule handles are in conflict

if they are both candidates and the literals in them are incompatible:

$conflict(?R1, ?R2):-
?R1 = handle(?T 1, L1), ?R2 = handle(?T 2, L2),
$candidate(?R1), $candidate(?R2), #opposes(?L1, ?L2).

(3)

Finally, the argumentation theory provides the following self-explanatory back-
ground axioms for #opposes, and the axiom of preference for strict rules:

#opposes(?L1, ?L2) :- #opposes(?L2, ?L1).
#opposes(?L, neg ?L).
:- ?L1, ?L2, #opposes(?L1, ?L2).
#overrides(?R, ?S) :- #strict(?R), not#strict(?S).

With this argumentation theory, we can now come back to the turkey-shoot exam-
ple in Section 2 and to Example 1. It can be verified that the turkey-shoot example
has two answer sets. In one, {neg loaded(g1, 1), loaded(g2, 1), negalive(3)}
is true and in another {loaded(g1, 1), neg loaded(g2, 1), neg alive(3)}. This
shows that the sequence of actions in the example produces the expected result
and AT AGCLP allows us to reason by cases.

As to Example 1, one can verify that this aspda has four answer sets: {a},
{b, d}, {c, d}, {c, f}, as claimed.

4.2 Defeasible Logic [1]

As yet another example, this section develops an argumentation theory that
captures the reasoning in Defeasible Logic of [1].

Defeasible Logic partitions all rules into strict, defeasible, and defeaters. The
defeater rules are used only to defeat other rules, but they themselves do not
produce any inferences. In our terms, this means that defeater rules are defeated
defeasible rules whose only purpose is to block inferences produced by other rules.
Strict and defeater rules are specified via the predicates #strict and #defeater.
Other key restrictions in that logic are that it does not support disjunctions in
the rule heads; opposition among literals is limited to p and negp, for each p;
does not use default negation, i.e., all literals in that logic are not -free; and the
rule tags are also rule identifiers. This implies that each tag uniquely determines
the rule head and body and this restriction lets us simplify the argumentation
theory by omitting handle from most literals.

With this, we can now formulate the argumentation theory for Defeasible
Logic, denoted AT DL, as follows.

$defeated(handle(?T, ?L)) :- #defeated aux(?T ). // no handles in AT DL

#defeated aux(?T ) :- $conflict(?T, ?S), head(?S, ?L), $definitely(?L).
#defeated aux(?T ) :- #defeater(?T ). // defeaters make no inferences
#defeated aux(?T ) :- $overruled(?T ).
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Here head is a meta-predicate that binds ?L to the head of a rule with Id ?S.
The predicate $definitely is defined as follows:

$definitely(?L) :-
#strict(?T ), head(?T, ?L), body(?T, ?B), each definite(?B).

As before, body is a meta-predicate that binds ?B to the body of a rule with tag
?T ; each definite(?B) is a meta predicate that is true when $definitely(?B)
is true or when ?B is bound to a conjunction, conj, and $definitely(c) is true
for every conjunct c ∈ conj.

It remains to define $overruled, which relies on the notion of candidacy and
conflict, like in AT AGCLP . The predicate $candidate is defined as in (3) except
that the handles are dropped and only the rule tags are retained.

$overruled(?T ) :- $conflict(?T, ?S), $candidate(?S), not $refuted(?S).
$refuted(?S) :- $conflict(?T, ?S), $candidate(?T ),

#overrides(?T, ?S), not #defeater(?T ).
$conflict(?T, ?S) :- head(?T, ?L), head(?S, neg ?L),

$candidate(?T ), $candidate(?S).

5 Comparison with Other Work

Although a great deal of work has been devoted to various theories of defeasible
reasoning, only a few dealt with unifying frameworks for such reasoning. The
notable exceptions are the works [13,5,8], which had goals similar to ours. Due
to the large volume of literature on defeasible reasoning, we will focus on the
above works, which are related to our work most closely. We refer the reader to a
recent survey [6] for a discussion of the various individual theories of defeasibility.

The logic of prioritized defaults [13] does not use the notion of argumentation
theories, but it allows for multiple theories of defaults for different application
domains. This is analogous to allowing argumentation theories to vary. How-
ever, defaults are defined via meta-theories and the semantics in [13] is given
by meta-interpretation. What we call an “argumentation theory” is implicit in
the meta-interpreters, and no independent model theory is given. In contrast,
our approach abstracts all the differences between the different theories for de-
faults to the notion of an argumentation theory with a simple interface to the
user-provided domain description, the predicate $defeated. Our approach is
model-theoretic and it covers both the well-founded semantics [20] and answer
sets (this work). It unifies the theories of Courteous Logic Programming, Defea-
sible Logic, Prioritized Defaults, and more.

Delgrande et. al. [5] propose a framework of ordered logic programming, which
can use a variety of preference handling strategies. For each strategy, this ap-
proach devises a transformation from ordered logic programs to ordinary logic
programs. Each transformation is custom-made for the particular preference-
handling strategy, and the approach was illustrated by showing transformations
for several strategies, including two described in earlier works [21,8].



162 H. Wan, M. Kifer, and B. Grosof

Unlike ASPDA, Delgrande’s framework does not come with a unifying model-
theoretic semantics. Instead, the definition of preferred answer sets differs from
one preference-handling strategy to another. One of the more important con-
ceptual differences between our work and [5] has to do with the nature of the
variable parts of the two approaches. In our case, the variable part is the argu-
mentation theory, which is a set of definitions for concepts that a human reasoner
might use to argue why certain conclusions are to be defeated. In case of [5], the
variable part is the transformation, which encodes a fairly low-level mechanism:
the order of rule applications required to generate the preferred answer set.5 It is
also important to note that each program transformation in [5] needs a compiler
that contains hundreds of lines of Prolog code, while our approach requires no
new software, and each argumentation theory typically contains 20-30 rules.

Leone et. al. [8] set out to unify approaches to defeasible reasoning. Specifi-
cally, they present an adaptable meta-interpreter, which can be made to simulate
the approaches described in [3,21] among others. However, this framework lacks
a model theoretic semantics and is not as flexible as ASPDA.

Finally, to the best of our knowledge, the present paper is the only work that
studies the semantics of defeasibility for disjunctive logic programs.

6 Conclusions

This paper developed a novel theory of defeasible disjunctive logic programming
under the answer-set semantics. It is a companion to our earlier work which
developed a general theory of defaults and defeasibility through argumentation
theories and was based on the well-founded semantics. Apart from the model
theoretic semantics, we have shown that head-cycle free disjunctive defeasible
programs can be reduced to non-disjunctive ones, which mirrors an analogous
result for non-defeasible disjunctive rules with default negation. To illustrate the
power of the proposed framework, we have given two examples of argumentation
theories. One is an adaptation for stable models of the generalized courteous
argumentation theory, which was presented in [20] for well-founded models. This
theory was used in all the examples in this paper. The other argumentation
theory was intended to show how ASPDA can capture other approaches to
defeasible reasoning; in this case the defeasible logic of [1].
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Abstract. We illustrate the potential of conditional hedge transforma-
tions in Web-related applications on the example of PρLog: an extension
of logic programming with advanced rule-based programming features
for hedge transformations, strategies, and regular constraints.

1 Introduction

The rule-based approach has been used extensively in many fields, such as expert
systems, theorem proving, tree automata, software building and configuration,
banking systems, just to name a few. In recent years, the rule-based approach has
been experiencing growing popularity in Web applications. One could mention
document processing and Web reasoning as prominent examples. The REW-
ERSE project [23] provides an extensive reference material on those topics.

The goal of this paper is to illustrate the potential of strategy-based condi-
tional hedge transformations in Web-related applications. To achieve this goal,
first, we present a practical tool: an extension of logic programming with ad-
vanced rule-based programming features for hedge transformations, strategies,
and regular constraints. Second, we show how it can be used it XML querying,
validation, and some basic Web reasoning.

The tool we describe here is PρLog [13] (pronounced Pē-rō-log). It is a Prolog
implementation of the ρLog calculus [19], which extends the host language with
strategic conditional transformation rules. These rules (basic strategies) define
transformation steps on hedges. (A hedge is a sequence of unranked terms.)
Strategy combinators help to combine strategies into more complex ones in a
declaratively clear way. Transformations are nondeterministic and may yield sev-
eral results, which fits very well into the logic programming paradigm. Strategic
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rewriting separates term traversal control from transformation rules. The sepa-
ration of strategies and rules makes rules reusable in different transformations.

PρLog programs consist of clauses. The clauses either define user-constructed
strategies by (conditional) transformation rules or are ordinary Prolog clauses.
Prolog code can be used freely within PρLog programs, which is especially con-
venient when arithmetic calculations or input-output features are needed.

PρLog uses four different kinds of variables, which permits to traverse hedges
in single/arbitrary width (with individual and sequence variables) and terms in
single/arbitrary depth (with functional and context variables). It provides a pos-
sibility to extract an arbitrary subhedge from a hedge, or to extract subterms at
arbitrary depth. In addition, PρLog permits regular constraints to restrict pos-
sible values of sequence and context variables by regular hedge expressions and
regular tree (context) expressions, respectively. These constraints are very useful,
for instance, in validation of an XML document with respect to a given DTD.

PρLog has not been implemented specifically for Web-related applications. Its
main purpose is to bring strategy-based conditional hedge transformations in the
logic programming framework for general programming. The role of PρLog in
this paper is to provide a practical platform to illustrate suitability of the calculus
behind it in XML querying, validation, and Web reasoning.

In the context of XML processing, the approach PρLog is based on can be clas-
sified as positional or pattern-based, where programmer specifies patterns includ-
ing variables. Examples of such languages are Xcerpt [7], UnQL [8], XDuce [15],
and CDuce [4]. Usually, in this approach, variables in patterns specify the nodes
to be selected. With PρLog, we can select not only nodes but also sequences of
nodes, node labels, and the context around a node that is at arbitrary depth.
Moreover, it can naturally express incomplete query patterns.

Approaches to XML, based on the logic programming paradigm, have been
quite popular. Besides the already mentioned Xcerpt, the languages like Elog [3],
XPathLog [21], and XCentric [11,12] belong to this category. The latter one, like
PρLog, represents XML data as an unranked Prolog term and uses sequence
matching with regular types for querying. In fact, for our experiments we used
XCentric’s XML-to-unranked-term translator.

From the general programming point of view, we should mention a number
of calculi and languages for rule- and strategy-based programming related to
our work, such as rewriting logic [20], ρ-calculus [9], ASF-SDF [25], CHR [14],
ELAN [6], Maude [10], the OBJ family of languages [22], Stratego [26], and
TOM [2]. ρLog, the calculus behind PρLog, has been influenced by the ρ-calculus.
However, there are specific features in ρLog that makes it significantly different
from the ρ-calculus: logic programming semantics, top-position matching, hedge
transformations, different kinds of variables, and regular constraints.

2 PρLog

In this section we give a brief overview of basic features of PρLog, explaining
them mostly on examples instead of giving formal definitions.
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Terms and hedges (sequences of terms) in PρLog are built over unranked
function symbols and four kinds of variables: individual, sequence, function, and
context variables. These sets are disjoint. In this paper we follow the PρLog
notation for this language, writing its constructs in typewriter font. PρLog
uses the following conventions for the variables names: Individual variables start
with i_ (like, e.g., i_Var for a named variable or i_ for the anonymous vari-
able), sequence variables start with s_, function variables start with f_, and con-
text variables start with c_. The function symbols, except the special constant
hole, have flexible arity. To denote function symbols, PρLog basically follows
the Prolog conventions for naming functors, operators, and numbers. Terms t
and hedges h are constructed by the grammars:

t ::= i_X | f(h) | f_X(h) | c_X(t) h ::= t | s_X | eps | (h_1, h_2)

where eps stands for the empty hedge and is omitted whenever it appears as
a subhedge of another hedge. a(eps) and f_X(eps) are often abbreviated as a
and f_X. A Context is a term with a single occurrence of hole. A context C can
be applied to a term t, written C[t], replacing the hole in C by t.

A substitution is a mapping from individual variables to hole-free terms, from
sequence variables to hole-free hedges, from function variables to function vari-
ables/symbols, and from context variables to contexts, such that all but finitely
many individual, sequence, and function variables are mapped to themselves,
and all but finitely many context variables are mapped to themselves applied to
the hole. This mapping is extended to terms/hedges in the standard way.

Matching problems are pairs of hedges, one of which is ground (i.e., does
not contain variables). Such matching problems may have zero, one, or more
(finitely many) solutions, called matching substitutions or matchers. For in-
stance, the hedge (s_1,f(i_X),s_2) matches (f(a),f(b),c) in two different
ways: one by the matcher {s_1 �→eps,i_X �→a,s_2 �→(f(b),c)}, the other one
by the matcher {s_1 �→f(a),i_X �→b,s_2 �→c}. Similarly, the term c_X(f_Y(a))
matches the term f(a,g(a)) with the matchers {c_X �→f(hole,g(a)),f_Y �→f}
and {c_X �→f(a,g(hole)),f_Y�→g}. An algorithm to solve matching problems
in the described language has been introduced in [17].

Instantiations of sequence and context variables can be restricted by regular
hedge and regular context languages, respectively, specified by the corresponding
regular expressions. We do not go into the details of the regular constraints here,
just mention that they can be added to matching problems to restrict the set of
computed matchers, e.g., matching c_X(f_Y(a)) to f(a,g(a)) under the con-
straint c_X in f(a,g(hole)�) gives one matcher {c_X �→f(a,g(hole)),f_Y �→g}
instead of two for the unconstrained case.

A ρLog atom (ρ-atom) is a quadruple consisting of a hole-free term st (a strat-
egy), two hole-free hedges h1 and h2, and a set of regular constraints R where each
variable is constrained only once, written as st :: h1 ==> h2 where R. Intuitively,
it means that the strategy st transforms h1 to h2 when the variables satisfy the
constraint R. When R is empty, we omit it and write st :: h1 ==> h2. The negated
atom is written as st :: h1 =\=> h2 where R. A ρLog literal (ρ-literal) is a ρ-atom
or its negation. A PρLog clause is either a Prolog clause, or a clause of the form
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st :: h1 ==> h2 where R :- body (in the sequel called a ρ-clause) where body is a
(possibly empty) conjunction of ρ- and Prolog literals.

A PρLog program is a sequence of PρLog clauses. A query is a conjunction
of ρ- and Prolog literals. ρ-clauses and queries can contain only ρLog variables.
Prolog clauses and queries can contain only Prolog variables. If a Prolog literal
occurs in a ρ-clause or query, it may contain only ρLog individual variables that
internally get translated into Prolog variables.

PρLog inference mechanism is based essentially on SLDNF-resolution [1]
adapted to ρ-clauses. If the selected literal in the query is a ρ-atom of the form
st :: h1 ==> h2 where R, then PρLog finds a (renamed copy of a) ρ-clause
st’ :: h1’ ==> h2’ where R’ :- body such that st’ matches st and h1’
matches h1 with a substitution σ and the constraint R’ is satisfied. Then, it
replaces the selected literal in the query with the conjunction of bodyσ and a
literal id :: h2’σ ==> h2 where R, applies σ to the rest of the query and con-
tinues. id is a built-in strategy that forces h2 to match h2’σ under R. To make
sure that in this process we have matching and not unification, we impose well-
modedness restrictions on ρ-clauses and queries. This is a quite technical notion,
whose exact definition can be found in [19]. It guarantees that h1 and h2’σ are
ground. Negative ρ-literals are processed by the negation-as-failure rule.

3 XML Processing and Web Reasoning in PρLog

In this section, we illustrate how PρLog can be used in XML querying, validation,
and reasoning. PρLog uses the unranked tree model, represented as a Prolog
term. Below we assume that the XML input is provided in the translated form.

Querying. In [18], a list of query operations desirable for an XML query lan-
guage is given: selection, extraction, reduction, restructuring, and combination.
They all should be expressible in a single language. A comparison of five query
languages on the basis of these queries can be found in [5]. Here we demon-
strate, on an example, how selection, extraction, and reduction can be expressed
in PρLog. The space limit does not allow us to illustrate the other queries.

Example 1. A car dealer office contains documents from different car dealers and
brokers. There are two kinds of documents. The manufacturer documents list
the manufacturer’s name, year, and models with their names, front rating, side
rating, and rank. The vehicle documents list the vendor, make, model, year,
color and price. They are presented by XML data of the following form:

<manufacturer> <vehicle>

<mn-name>Mercury</mn-name> <vendor>

<year>1998</year> Scott Thomason

<model> </vendor>

<mo-name>Sable LT</mo-name> <make>Mercury</make>

<front-rating>3.84 <model>Sable LT</model>

</front-rating> <year>1999</year>

<side-rating>2.14 <color>
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</side-rating> metallic blue

<rank>9</rank> </color>

</model> ... <price>26800</price>

</manufacturer> </vehicle>

We assume that sequences of these elements are wrapped respectively by
<list-manuf> and <list-vehicle> tags. To save space, in the queries below
we use metavariable M to refer to the document with the root tag <list-manuf>
and V to the document with the root tag <list-vehicle>.

Selection and Extraction: We want to select and extract <manufacturer> ele-
ments where some <model> has <rank> less or equal to 10.

select_and_extract :: list_manuf(s_,c_Manuf(rank(i_Rank)),s_) ==>

c_Manuf(rank(i_Rank)) :-

i_Rank =< 10.

Given the goal select_and_extract :: M ==> i_M, this code generates all
solutions, one after the other, via backtracking. The alternatives are generated
according how list_manuf(s_,c_Manuf(rank(i_Rank)), s_) matches M .

Reduction: From the <manufacturer> elements, we want to drop the <model>
subelements whose <rank> is greater than 10. Besides that, we also want to elide
the <front_rating> and <side_rating> elements from the remaining models.
It can be done in various ways in PρLog. One of such implementations is given be-
low. reduction is defined as the normal form of transforming each manufacturer
element inside list_manuf. A single manufacturer element is transformed by
reduction_step depending whether it contains a model with the rank ≤ 10:

reduction :: list_manuf(s_1) ==> list_manuf(s_2) :-

map1(nf(reduction_step)) :: s_1 ==> s_2,

!.

reduction_step :: manufacturer(s_1,model(s_,rank(i_R)),s_2) ==>

manufacturer(s_1,s_2) :-

i_R > 10.

reduction_step :: manufacturer(s_1,model(i_Name,i_,s_,rank(i_R)),s_2) ==>

manufacturer(s_1,model(i_Name,rank(i_R)),s_2) :-

i_R =< 10.

Here nf is the built-in strategy for a normal form computation. Another built-
in strategy, map1, maps its argument strategy to each single term of the input
hedge. The query reduction :: M ==> i_List produces the list of reduced
manufacturer elements.

Incomplete Queries. Often, the structure of a document to be queried is
unknown to a query author, or she is interested not in the entire document
but only in its relevant parts. A pattern-based Web querying language should
be able to express such incomplete queries. Schaffert in [24] classifies incomplete
queries (four kinds of incompleteness: in breadth, in depth, with respect to order
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and with respect to optional elements) and explains how they are dealt with in
Xcerpt. Here we show how they can be expressed in PρLog. As we will see, it can
be done pretty naturally, without introducing additional constructs for them.

Incompleteness in breadth. In languages that have wildcards only for single
terms, expressing incompleteness in breadth requires a special construct that
allows to omit those wildcards for neighboring nodes in the data tree. In PρLog,
we do not need any extra construct because of sequence variables. Anonymous
sequence variables can be used as wildcards for arbitrary sequence of nodes.
Furthermore, if needed, we can use named sequence variables to extract arbi-
trary sequence of nodes without knowing the exact structure. These are very
convenient features, as one can see from the examples in the previous section.

Incompleteness in depth. It allows to select data items that are located at arbi-
trary, unknown depth and skip all structure in between. For this, in PρLog we
just have to place the corresponding query subterm under an anonymous context
variable. Moreover, if needed, we can extract the entire context above the query
subterm without knowing the structure of the context, by putting there a named
context variable. This has been done in the select_and_extract clause in the
previous section with the c_Manuf variable. In fact, that clause also demonstrates
how PρLog can combine incompleteness in breadth and depth in a single rule.

Incompleteness with respect to order. It allows to specify neighboring nodes in a
different order than the one in that they occur in the data tree. Since PρLog does
not permit matching in orderless theories,1 we need a bit of more coding here.
Assume that we do not know in which order the front_rating and side_rating
elements occur in the model in Example 1 and write the clause that extract them:

extract_ratings :: c_(model(s_X)) ==> (i_Front,i_Side) :-

id :: model(s_X) ==> model(s_1,front_rating(i_Front),s_2),

id :: model(s_1,s_2) ==> model(s_,side_rating(i_Side),s_).

In the first subgoal of the body of this rule, the id strategy forces the term
model(s_1,front_rating(i_Front),s_2) to match model(s_X), extracting
the value for front rating i_Front. Next, to find the side rating, we force match-
ing model(s_,side_rating(i_Side),s_) to model(s_1,s_2) that is obtained
from model(s_X) by deleting front_rating(i_Front). This deletion comes for
free from the previous match and we can take an advantage of it, since there is no
need to keep front_rating in the structure where side_rating is looked for.

Incompleteness with respect to optional elements. Since seq. variables can be in-
stantiated with the empty hedge, such queries are trivially expressed in PρLog.

Validation. PρLog regular constraints can be used to check whether an XML
document conforms to certain DTD that can be expressed by means of regular
hedge expressions. We demonstrate it in the following example:

Example 2. Let the DTD below define the structure of the document containing
manufacturer elements:
1 The orderless property is a generalization of commutativity for unranked function

symbols. For orderless matching over unranked terms, see [16].
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<!ELEMENT list-manuf (manufacturer*)>

<!ELEMENT manufacturer (mn-name, year, model*)>

<!ELEMENT model (mo-name, front-rating, side-rating, rank)>

<!ELEMENT mn-name (#PCDATA)>

<!ELEMENT year (#PCDATA)>

<!ELEMENT front-rating (#PCDATA)>

<!ELEMENT side-rating (#PCDATA)>

<!ELEMENT rank (#PCDATA)>

Then the validation task becomes a PρLog clause where DTD is encoded in a
regular constraint:

validate :: s_X ==> true

where [s_X in list_manuf(manufacturer(mn_name(i_),year(i_),

model(mo_name(i_),front_rating(i_),

side_rating(i_),rank(i_))*)*)]

(With i_ in the constraint we abbreviate the set of all ground terms with respect
to the given finite alphabet.) To check whether a certain document conforms this
DTD, we take a PρLog term T that represents that document and write the query
validate :: T ==> true. The matching algorithm will try to match s_X to T and
check whether the constraints are satisfied. If the document conforms the DTD,
the query will succeed, otherwise it will fail.

Basic Web Reasoning. Semantic Web adds metadata to Web resources, which
can be used to make retrieval “semantic”. To query both data and metadata, lan-
guages need to have certain reasoning capabilities.

Example 3 (Clique of Friends, [24]). This example illustrates some basic reasoning
(mainly the transitive closure of a relation) for the Semantic Web. It does not use
any particular Semantic Web language itself.

Consider a collection of address books where each address book has an owner
and a set of entries, some of which are marked as friend to indicate that the person
associated with this entry is considered a friend by the owner of the address book.
In XML, this collection of address books can be represented in a straightforward
manner as follows:

<address-books>

<address-book> <address-book>

<owner>Donald Duck</owner> <owner>Daisy Duck</owner>

<entry> <entry>

<name>Daisy Duck</name> <name>Gladstone Duck</name>

<friend/> <friend/>

</entry> </entry>

<entry> <entry>

<name>Scrooge McDuck</name> <name>Ratchet Gearloose</name>

<friend/>

</entry> </entry>

</address-book> </address-book>

</address-books>
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The collection contains two address books, the first owned by Donald Duck and
the second by Daisy Duck. Donalds address book has two entries, one for Scrooge,
the other for Daisy, and only Daisy is marked as friend. Daisys address book
again has two entries, both marked as friend.

The clique-of-friends of Donald is the set of all persons that are either direct
friends of Donald (i.e. in the example above only Daisy) or friends of a friend
(i.e. Gladstone and Ratchet), or friends of friends of friends (none in the example
above), and so on. To retrieve these friends, we have to define the relation “being
a friend of” and its transitive closure.

Transitive closure of a relation can be easily defined in PρLog. It can be even
written in a generic way, parameterized by the strategy that defines the relation:

transitive_closure(i_Strategy) :: s_X ==> s_Y :-

i_Strategy :: s_X ==> s_Y.

transitive_closure(i_Strategy) :: s_X ==> s_Z :-

i_Strategy :: s_X ==> s_Y,

transitive_closure(i_Strategy) :: s_Y ==> s_Z.

The relation of “being a friend of” with respect to the address books document
is defined as follows:

friend_of(address_books(s_,

address_book(owner(i_X),s_,entry(name(i_Y),friend),s_),

s_)) :: i_X ==> i_Y.

The query transitive_closure(friend_of(T)) :: Donald_Duck ==> i_Y,
where T is the PρLog term corresponding to the address book XML document
above, will return one after the other the friend and the friends of the friend of
Donald_Duck: Daisy_Duck, Gladstone_Duck, and Ratchet_Gearloose.
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14. Frühwirth, T.: Theory and practice of Constraint Handling Rules. J. Logic Program-
ming 37(1-3), 95–138 (1998)

15. Hosoya, H., Pierce, B.C.: XDuce: A statically typed XML processing language. ACM
Trans. Internet Techn. 3(2), 117–148 (2003)

16. Kutsia, T.: Solving and Proving in Equational Theories with Sequence Variables and
Flexible Arity Symbols. PhD thesis, Johannes Kepler University, Linz (2002)

17. Kutsia, T., Marin, M.: Matching with regular constraints. In: Sutcliffe, G.,
Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 215–229. Springer,
Heidelberg (2005)

18. Maier, D.: Database desiderata for and XML query language (1998),
http://www.w3.org/TandS/QL/QL98/pp/maier.html

19. Marin, M., Kutsia, T.: Foundations of the rule-based system RhoLog. Journal of
Applied Non-Classical Logics 16(1-2), 151–168 (2006)

20. Mart́ı-Oliet, N., Meseguer, J.: Rewriting logic: Roadmap and bibliography. Theo-
retical Computer Science 285(2), 121–154 (2002)

21. May, W.: XPath-Logic and XPathLog: a logic-programming-style XML data ma-
nipulation language. TPLP 4(3), 239–287 (2004)

22. The OBJ Family, http://cseweb.ucsd.edu/~goguen/sys/obj.html
23. REWERSE. Reasoning on the web, http://rewerse.net/
24. Schaffert, S.: Xcerpt: a rule-based query and transformation language for the Web.

PhD thesis, University of Munich (2004)
25. van den Brand, M.G.J., van Deursen, A., Heering, J., de Jong, H.A., de Jonge,

M., Kuipers, T., Klint, P., Moonen, L., Olivier, P.A., Scheerder, J., Vinju, J.J.,
Visser, E., Visser, J.: The ASF+SDF meta-environment: A component-based lan-
guage development environment. In: Wilhelm, R. (ed.) CC 2001. LNCS, vol. 2027,
pp. 365–370. Springer, Heidelberg (2001)

26. Visser, E.: Stratego: A language for program transformation based on rewriting
strategies. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 357–362.
Springer, Heidelberg (2001)

http://www.risc.uni-linz.ac.at/people/tkutsia/software.html
http://www.w3.org/TandS/QL/QL98/pp/maier.html
http://cseweb.ucsd.edu/~goguen/sys/obj.html
http://rewerse.net/


Learning to Rank Individuals in Description Logics
Using Kernel Perceptrons�

Nicola Fanizzi, Claudia d’Amato, and Floriana Esposito

Dipartimento di Informatica, Università degli studi di Bari “Aldo Moro”
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Abstract. We describe a method for learning functions that can predict the rank-
ing of resources in knowledge bases expressed in Description Logics. The method
relies on a kernelized version of the PERCEPTRON RANKING algorithm which is
suitable for batch but also online problems settings. The usage of specific kernel
functions that encode the similarity between individuals in the context of knowl-
edge bases allows the application of the method to ontologies in the standard
representations for the Semantic Web. An extensive experimentation reported in
this paper proves the effectiveness of the method at the task of ranking the an-
swers to queries, expressed by class descriptions when applied to real ontologies
describing simple and complex domains.

1 Introduction

Ranking a set of individual objects, as the result of relations sought between them and
their relative relevance, is a fundamental task with a plenty of applications. Typically,
ranked resources (e.g. documents, web services) may be returned as a result of retrieval
process (from a corpus, a database, a directory, etc.). When the relevance of the out-
comes depends exclusively on the query specification, this task is quite well-understood
and many effective solutions exist, even for approximate cases. However, the problem
likely turns out to be much harder when a general and precise measure of the relevance
of the results is too complex or unavailable (e.g. multiple relevance orders, subjective
user-dependent preferences, etc.).

Essentially, based on a request (a query) and, possibly, on some previous partial
indications of an intended relevance (e.g. some feedback from the user), the set of re-
trieved resources must be ordered according to such indications. It may be possible to
(partially) elicit the required information exploiting imprecise criteria that can often be
expressed by means of examples rather than in a general and formal way. A related pro-
cess of result ranking based on relevance-feedback mechanisms is represented by the
task known as collaborative filtering which aims at detecting the relevance of informa-
tion items for new users based on rankings previously acquired from others. All such
problems can be cast in the framework of inductive learning from examples [9]. Given
previously rated instances (e.g. movies, songs, etc.), the aim is to induce a hypothesis
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(e.g. learn a function) which can be then used to assign a meaningful ranking to new
incoming instances of uncertain (unknown) ranking.

Even more difficult it is to adapt such problem settings and solutions to work with
semantic knowledge bases. Their logic-oriented nature and inherent incompleteness re-
quires ad hoc formalizations and suitable methods. On one hand, related works tackle
the structure of the underlying relations (e.g. see [1, 7]) which cannot fully exploit
the richness of the underlying logic representation. On the other hand, purely logical
methodologies investigated in recent works may fall short in terms of scalability. For
example, the related problem of semantic matchmaking is tackled by means of non-
monotonic inferences in Description Logics (henceforth DLs) such as concept abduc-
tion and contraction [3]. Although elegant and well-founded, these approaches suffer
from some drawbacks: the language-dependence of some of the required operations and
the consequent complexity of the inference services with the growing expressiveness of
the considered representation. Other frameworks tackle the problem by explicitly repre-
senting the preferences in the knowledge bases with conditional statements for ranking
objects in ontologies [10]. Other approaches recur to fuzzy extensions of the standard
DL languages to offer alternate ways for finding the best (top k) answers to queries [12].

In this work we tackle the problem of learning rank in DLs when relevance can
be expressed only through instances labeled with their intended ranking. Although, as
mentioned, this could be cast as a classification or regression problem (depending on
the nature of the rankings), an off-the-shelf learning method adapted to DLs would not
fully profit by the ordering relationships among the ranks. Non-parametric statistical
learning has been shown to provide valid techniques to produce alternative models that
enable forms of inductive reasoning in DLs [5]. Also the related task of ranking can
be performed inductively, casting it as the problem of learning a suitable function from
a training set of ranked instances. Specifically, we will resort to the kernel perceptron
model [11] which exploits the relative ordering between instances and has also the
advantage of being used in a batch or an online mode.. Ideally, even the number of
ranks need not be specified, though typically the training data comes with a relative
ordering, specified by the assignment to one of an ordered sequence of labels.

2 Ranking Problems

In general learning to rank can be described as follows. Given a set of ranked examples
(x, y), where each individual object x in some input space X is assigned with a label y
from an ordered set Y , the goal is to predict the rank for new unlabeled instances (x, ·).
This could be tackled as a regression or classification problem [9] by treating the ranks
as real-values or the assignment to a particular rank value as a classification. Formally:

Definition 2.1 (ranking problem). Let X be a set of individual objects and Y be a set
of ranks, endowed with a total order relation ≤Y , such that one of the following holds:

– |Y | = r < ∞ or (discrete case)
– ∃ bijection β : Y �→ IR+ (continuous case)

A ranking problem is specified as follows:
given: a sample set S = {(x1, y1), . . . , (xN , yN)} ⊆ X × Y ,
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where yi ∈ Y is the rank of xi ∈ X
find: a ranking function ρ : X �→ Y inducing a relation �ρ over X that is a partial
(resp. total) order.

Subscripts will be omitted when the context makes them obvious. The simplest way
to define the set of ranks in the continuous case is Y = IR+ or, in the other case,
Y = {1, . . . , r}.

In this setting xi is preferred over xj , denoted xi �ρ xj , iff ρ(xi) ≤Y ρ(xj). The
objects xi and xj cannot be ordered (not comparable) when yi =ρ yj , i.e. ρ(xi) ≤Y

ρ(xj) and ρ(xj) ≤Y ρ(xi). In the categorical (discrete) case, one may consider that the
(partial) ordering partitions the input space into r equivalence classes.

A reduction to a classification problem in the discrete case, would not make use of
all of the available information; on the other hand the flexibility inherent in the ordering
requirement is the price for the reduction to regression. on the other hand, in a regression
setting a specific metric is required to convert the ranks into real values. This may be
difficult in general and makes regression more sensitive to the rank representation rather
than to their ordering [8]. It is therefore preferable to treat ranking as a problem in its
own right and design specific algorithms able to take advantage of the specific nature
of that problem [11]. Of course ranking functions are not bound to be based on linear
components. This can be a by-product of the adoption of specific kernels and the related
embedding.

The discrete case setting can be transposed into the problem of predicting the rela-
tive ordering of all possible pairs of examples, hence obtaining two-class classification
problems. The drawback of this approach would be the extra computational effort re-
quired since the sample size for the algorithm grows quadratically with the number of
examples. If, on the other hand, the training data is given in the form of all relative
orderings, a set of ranks can generated as equivalence classes of the equality relation
with the induced ordering.

3 Learning with DL-Kernels

A learning task requires finding an inductive model (i.e. a hypothesis function h) which
can be adopted by a decision procedure to predict, given an input instance, the correct
value for the function to be approximated efficiently (evaluating a simple model, such
as a linear function) and effectively (close approximation). Kernel methods [9, 11] are
particularly well suited from an engineering viewpoint because the learning algorithm
(inductive bias) and the choices of the kernel function (language bias) are almost com-
pletely independent.

Discovering linear relations has a long tradition of research, with algorithms that
are both efficient and well understood. A computational shortcut makes it possible to
represent linear models efficiently in high-dimensional spaces to ensure adequate rep-
resentational power: a kernel function. Different kernel functions may be related to
different hypothesis spaces. Hence, the same kernel machine can be applied to different
representations, provided that suitable kernel functions are available. Kernel methods
are characterized by two aspects:
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– data items are embedded (implicitly) into a vector space, the feature (embedding)
space; this depends on the specific data types and domain knowledge expected for
the particular data source;

– linear models are sought among the images of the data items in the feature space;
the algorithms are implemented in such a way that only the inner products of the
embedded points are needed and the products can be computed efficiently directly
from the original data items using a kernel function.

The learning component is general-purpose, robust and also efficient, requiring an
amount of computational resources that is polynomial in the size and number of data
items even when the dimension of the embedding space grows exponentially. An algo-
rithm may be adapted to structured spaces (e.g. trees, graphs [11]) by merely replacing
the kernel function with a suitable one. Examples of the target concepts are to be pro-
vided to the learning algorithm to produce a definition for the target function in the form
of a linear decision function depending on a tuple of weights.

Many learning problems can be reduced to the approximation of linear functions. In
a simplified setting, consider an input space X of training instances represented by (bi-
nary or real) tuples (X = {0, 1}d or X = IRd) extended with an additional categorical
feature y ∈ Y (e.g. Y = {−1, +1}) indicating the membership w.r.t. an implicit target
class: (x, y) ∈ X × Y (these are named examples). We will consider learning from a
sample S ⊆ (X × Y ) of N examples.

A prototypical algorithm is the PERCEPTRON, a well-known procedure for learning
the coefficients of linear classifiers [9]. For each incoming training example (xi, yi),
the algorithm predicts a value according to the decision function determined by the
current choice of weights w. It can be written as depending on a dot product sgn(w ·
x) = sgn(

∑
j wjxj · x) = sgn(

∑
j αj(xi · x)) which is a common characteristic

of these methods. The algorithm compares the outcome with the correct label which is
known for the examples considered during the training phase. On erroneous predictions,
the weights w are revised depending on the set of examples that provoked a mistake:
w = w + η(yi − w · xi)xi.

The choice of kernel functions is very important as their computation should be
efficient enough for controlling the complexity of the overall learning process. Although
some kernels have been proposed for instances expressed in FOL fragments, only a few
kernel functions for individuals have been proposed in the literature [5].

In this work, we resort to a set of general kernels for individuals in DL knowledge
bases [5], that exploit a notion of similarity in the context of a set of concepts:

Definition 3.1 (DL kernel functions). Given a knowledge base K = 〈T , A〉 and a
set of concept descriptions F = {F1, F2, . . . , Fm} defined in T , the kernel function
based on F and p ∈ IR+, is a mapping kF

p : Ind(A) × Ind(A) �→ [0, 1] defined:

∀a, b ∈ Ind(A) kF
p(a, b) = p

√∑m
i=1(κi(a, b))p, where the simple kernel function κi is

defined ∀i ∈ {1, . . . , m}:

κi(a, b) =

⎧⎨
⎩

1 K |= Fi(a) ∧ K |= Fi(b) ∨ K |= ¬Fi(a) ∧ K |= ¬Fi(b)
0 K |= ¬Fi(a) ∧ K |= Fi(b) ∨ K |= Fi(a) ∧ K |= ¬Fi(b)
ui otherwise
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The rationale for these kernels is that similarity between individuals is determined by
their similarity w.r.t. each concept in a given committee of features. Two individuals
are maximally similar w.r.t. a given concept Fi if they exhibit the same behavior, i.e.
both are instances of the concept or of its negation. Conversely, the minimal similarity
holds when they belong to opposite concepts. Because of the OWA, sometimes a rea-
soner cannot ascertain the concept-membership of some individuals, hence, since both
possibilities are open, an intermediate value ui is assigned to reflect such uncertainty.
This value (normally a .5 value is considered in case of total uncertainty) should esti-
mate the probability that two instances may belong (not belong) to the extension of Fi

based on the sizes of the retrieval sets of Fi and its complement w.r.t. the current ABox.
In previous works the Fi’s have been chosen randomly among the named concepts of
the KB, although ad hoc methods for a choice of optimized sets of features have also
been proposed [4]. The parameter p was borrowed from the form of the Minkowski’s
measures. Once the feature set is fixed, the possible values for the kernel function are
determined, hence p has an impact on the granularity of the measure. As mentioned,
instance-checking is to be employed for assessing the value of the simple similarity
functions. Yet this is known to be computationally expensive (also depending on the
specific DL language of choice). Alternatively, especially for ontologies that are rich of
explicit class-membership information (assertions), a simple look-up may be sufficient,
as suggested by the first definition of the κi functions.

4 Kernel-Based Ranking for DL Spaces

Preliminarily, we will assume an implicit kernel-defined feature space with the corre-
sponding feature mapping φ so that φ(xi) is in IRn for some n, 1 ≤ n ≤ ∞.

A linear ranking rule function embeds the input data into the real axis by means of
a linear function in the feature space f(x) = (w · φ(x)). The real-value can be then
converted to a rank by means of an r-dimensional vector of thresholds θ with the θy’s
ordered according to the underlying relation on Y , i.e. y ≤ y′ implies θy ≤ θy′ .

Definition 4.1 (ranking rule). Given a kernel function κ : X �→ IR, the ranking of
an instance x is defined1 by: ρ(x; w, θ) = min{y ∈ Y | f(x) < θy}, or, in a dual
representation, where w =

∑N
i=1 αiφ(xi):

ρ(x; α, θ) = min

{
y ∈ Y | f(x) =

N∑
i=1

αiκ(x, xi) < θy

}

Such a ranking rule partitions X into r+1 equivalence classes corresponding to parallel
bands orthogonal w.r.t. w and delimited by the thresholds θi (to be learned). Depending
on the kernel function adopted κ one may obtain linear or even non linear intervals.
Note that the classes need not be equally spaced. Moreover, the objects within each
class can further be ordered also by the value of the function f(x).

In order to learn the parameters, we devised DL-KPRANK, a kernelized version of
the PERCEPTRON RANKING algorithm PRANK [2]. The DL-KPRANK algorithm is
defined by rounds (iterations) of the KPRANKUPDATE function shown as Algorithm 1.

1 It is assumed that the largest label r is assigned with a large θr so that the minimum exists.
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Algorithm 1. The core updating function of the DL-KPRANK algorithm.

function KPRANKUPDATE(xt, yt, αt, θt): (αt+1, θt+1)
(xt, yt): ranked training example at round t
αt, αt+1: weights at rounds t, t + 1
θt, θt+1: thresholds at rounds t, t + 1
1: ut ← 0, �t ← 0 {initialization}
2: ŷ ← ρ(xt; αt, θt) {prediction}
3: if ŷ �= yt then
4: for j = 1 to r − 1 do
5: if j ≥ yt then �t

j ← −1 else �t
j ← +1 endif

6: end for
7: for j = 1 to r − 1 do
8: if (

∑N
i=1 αt

iκ(xt, xi)− θt
j)�

t
j ≤ 0 then ut

j ← �t
j endif

9: end for
10: αt+1 ← αt + yt

∑r−1
j=1 ut

j {weights update}
11: θt+1 ← θt − ut {thresholds update}
12: else
13: αt+1 ← αt

14: θt+1 ← θt

15: end if
16: return (αt+1, θt+1)

The objective of the algorithm is to find a PERCEPTRON weight vector α which suc-
cessfully projects all the instances in X into the r subintervals defined by the thresholds
θ, i.e. for the rank of j the subinterval is θj−1 < f(x) < θj .

At round t the first step is to predict the rank ŷt (line 2) for a given instance xt by
selecting the smallest rank y such that f(x) < θy . If the prediction ŷt is not the correct
rank then a label of �t

j = +1 is allocated to those subintervals above the target rank
yt and �t

j = −1 to those below (lines 3, 4 and 5). For each subinterval, if the ranking
rule based on αt and θt misclassifies the label �t

j then the label is subtracted from
the threshold θt

j , and the PERCEPTRON weights vector is updated. The rationale is that
updating αt and θt in this way has the effect of moving the threshold of the desired rank
θt+1

j and the updated predicted rank f(xt) closer together. This procedure is repeated
for all the subintervals j = 1, . . . , r − 1 for round t.

The call to the update routine is inserted in an outer loop which repeats the weight
and threshold optimization until a satisfactory rate of training examples is correctly
ranked by the resulting function (low or null average loss).

In order to use the ranking algorithm with objects described in a DL knowledge base
K, let us will consider a training set of TSet ⊆ Ind(A). Then the related Gram matrix
K of the kernel values w.r.t. the couples of individuals can be obtained by choosing κ
as one of the kernels in the family defined in Def. 3.1, κ = kF

p , based on a context F
of concepts (for example, the leaf concepts of the subsumption hierarchy in T ) and a
choice of p (e.g. 2).
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Table 1. Facts concerning the ontologies employed in the experiments

ontology DL language #concepts #object props. #data props. #individuals
MDM0.37 ALCROF(D) 196 22 3 103

WINE SHOIN (D) 140 21 1 206
BIOPAX ALCHF(D) 28 19 30 323

LUBM ALR+HI(D) 43 7 25 555
HD ALCIN (D) 1449 10 10 639

NTN SHIF(D) 47 27 8 676
SWSD ALCH 258 25 0 732

FINANCIAL ALCIF 60 17 0 1000

5 Experimental Evaluation

The DL-RANK system implements the training method and ranking procedure ex-
plained in the previous sections, borrowing the square kernels of the family (i.e. those
with p = 2). Its performance has been tested in a large number of ranking problems with
ontological knowledge bases. In the following, we present the experimental setting and
discuss the outcomes.

A number of OWL ontologies describing different domains have been selected,
namely: MDM0.37, WINE, NEWTESTAMENTNAMES (NTN) from the Protégé library2,
the Semantic Web Service Discovery dataset3 (SWSD), an ontology generated by the
Lehigh University Benchmark4 (LUBM), the BioPax glycolysis ontology5(BioPax),
HUMANDISEASE6 (HD) that has been developed for the Open Biomedical Ontologies
project7, and the FINANCIAL ontology8. Tab. 1 summarizes salient details regarding
these ontologies. For each ontology, 100 satisfiable query concepts were randomly gen-
erated by composition (conjunction and/or disjunction) of 2 through 8 concepts: named
concepts and also (universal and existential) role restrictions. Since, differently from
other ranking contexts, no specific DL dataset with a known baseline to be compared is
available, the reference ranking yt for each individual xt was derived by recurring to an
approximated classification procedure based on the k-nearest neighbor principle [9] that
returned the likelihood measure: Pr(hQ(xt) = +1 | xt) = π+1D̂+1(xt)/

∑
v πvD̂v(xt),

where hQ is the induced classification function, π’s are priors of getting the respective
classification and the D̂’s are estimates of the density function, for the given classifica-
tion value, around the input individual. The likelihood of the class-membership mapped
each individual to the uniformly-sized bin of the unit interval, corresponding to one of
the possible rank values (r = |Y | was set to 5).

2 http://protege.stanford.edu/plugins/owl/owl-library
3 https://www.uni-koblenz.de/FB4/Institutes/IFI/AGStaab/Projects/

xmedia/dl-tree.htm
4 http://swat.cse.lehigh.edu/projects/lubm
5 http://www.biopax.org/Downloads/Level1v1.4/biopax-example-

ecocyc-glycolysis.owl
6 http://www.jalojavier.es/humandisease.owl
7 http://www.obofoundry.org
8 http://www.cs.put.poznan.pl/alawrynowicz/financial.owl

http://protege.stanford.edu/plugins/owl/owl-library
https://www.uni-koblenz.de/FB4/Institutes/IFI/AGStaab/Projects/xmedia/dl-tree.htm
https://www.uni-koblenz.de/FB4/Institutes/IFI/AGStaab/Projects/xmedia/dl-tree.htm
http://swat.cse.lehigh.edu/projects/lubm
http://www.biopax.org/Downloads/Level1v1.4/biopax-example-ecocyc-glycolysis.owl
http://www.biopax.org/Downloads/Level1v1.4/biopax-example-ecocyc-glycolysis.owl
http://www.jalojavier.es/humandisease.owl
http://www.obofoundry.org
http://www.cs.put.poznan.pl/alawrynowicz/financial.owl
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Table 2. Experimental results: average rank loss values ± average standard deviations

ontology avg. loss ± std. deviation ontology avg. loss ± std. deviation
MDM0.37 0.06 ± 0.03 WINE 0.25 ± 0.03

BIOPAX 0.27 ± 0.01 LUBM 0.29 ± 0.04
NTN 0.13 ± 0.04 HD 0.03 ± 0.02

SWSD 0.13 ± 0.08 FINANCIAL 0.16 ± 0.03

Experimentally, it was observed that large training sets make the kernel functions
more accurate. The squared kernels (kF

2 ) was employed from the family, using all the
named concepts in the knowledge base for determining the committee of features F with
no further optimization. A standard OWL reasoner (PELLET v. 2.0.1) was employed for
computing the instance checks that are required by the kernel functions.

In order to determine a good estimate of the accuracy of the inductive ranking, re-
ducing the variance due to the composition of the specific training/test sets during the
various runs, the experiments have been replicated selecting training and test sets ac-
cording to the standard .632+ bootstrap procedure [9]. This procedure requires creat-
ing random sets of training examples a repeated sampling (with replacement) from the
population of examples; this produces sets which roughly amount to 63.2% of the total
set of examples, while the complement sets are used as respective tests sets. The re-
sulting measure, which may give a too optimistic estimate of the real performance, is
adjusted to take into account both the training and the test errors properly weighted. The
adopted performance index was an average measure of rank loss [2, 8], simply defined
as: avg loss(TestSet) = 1

T

∑T
i=1 |ŷi − yi|/r, where the yi and ŷi stand, resp., for the

correct rank and the predicted one for test instances (and T = |TestSet|).
Tab. 2 reports the outcomes in terms of the average rank loss and its variance. These

outcomes show that the method is sufficiently accurate even for the cases of small on-
tologies (where the size is intended in the number of individuals). Indeed, as with other
inductive methods the performance of the produced model tends to improve with the
availability of more training instances. A noteworthy exception is represented by the
experiment with the MDM0.37 ontology which produced a good ranker with small
training sets as testified by the extremely limited average loss (6%).

As regards the largest ontologies (NTN, HD, SWSD, and FINANCIAL) the results
show that the ranking functions produced were, on average, more accurate (average
losses below 20%) and, in one case (HD) below 10% (namely 3%). The large num-
ber of queries (100) used in the experiments on the various ontologies and the random
selection of the training sets in each repetition of the experiments guarantees the sig-
nificance of these outcomes. This is also testified by the low standard deviation of the
loss in all of the performed experiments. An exception is represented by the case of
the SWSD ontology, for which the highest variability was found. This can be explained
by the particular sparseness of the population of this ontology, which was originally
designed for the purpose of semantic Web service discovery (transposing another stan-
dard ontology in to OWL). Indeed, in spite of the many classes therein (see Tab. 1), very
few individuals are available as instance of each class, that makes the similarity values
computed by the kernel function a less significant.
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6 Conclusions and Future Work

We have presented some solutions to the problem of ranking individuals in DL knowl-
edge bases. Since it is difficult to define a ranking of (retrieved) resources can be
hardly with a general (logical) encoding of preferences performed, a novel statistical
method for learning ranking functions from examples was introduced. The advantages
of method based on kernels is that complex (non-linear) ordinal relations can be dis-
covered in the space of individuals, while working on linear models (in the embedding
space) with the consequent efficiency. Even more so, the method is suitable for an on-
line utilization, improving its performance as new ranked instances are available. Since
no testbeds for these specific representation seem to exist so far, we crafted a method
for producing training sets of ranked individuals w.r.t. query concepts expressed in DLs,
which allowed an extensive experimentation with a number of various real ontologies.

Extensions will concern the investigation of alternative algorithms derived from sup-
port vector regression and the enhancement of the presented one by averaging the mod-
els obtained in the various update loops according to standard methods, such as bagging
or Bayes point estimation [9]. Moreover, new datasets shall be derived from the standard
testbeds employed for related tasks (e.g. collaborative filtering).
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Abstract. We propose an abduction-based formalism that uses descrip-
tion logics for the ontology and Horn rules for defining the space of
hypotheses for explanations, and we use Markov logic to define the mo-
tivation for the agent to generate explanations on the one hand, and for
ranking different explanations on the other. The formalism is applied to
media interpretation problems in a agent-oriented scenario.1

1 Introduction

For multimedia interpretation in the context of an agent-based scenario, and
for the combined interpretation of information coming from different modalities
in particular, a semantically well-founded formalization is required. Low-level
percepts, which are represented symbolically, define the observations of an agent
w.r.t. some content, and interpretations of the content are defined as explana-
tions for the observations. In [1] we have proposed an abduction-based formalism
that uses description logics for the ontology and Horn rules for defining the space
of hypotheses for explanations (i.e., the space of possible interpretations of media
content). An evaluation of the abduction approach based on description logics
and rules is presented in [3]. A discussion of related work can be found in [4].

In this paper, we propose the use of a probabilistic logic to define the motivation
for the agent to generate explanations on the one hand, and for ranking different
explanations on the other. Furthermore, we discuss how the interpretation pro-
cess is performed, possibly with uncertainty and inconsistency in the input data.
We also introduce a new approach for ranking interpretation Aboxes. The expla-
nationranking process is performed based on a probabilistic scoring function (as
opposed to the proof-theoretic scoring function used in [3]). A termination condi-
tion is also defined which determines how long the interpretation process should
be performed. The approach is evaluation using a detailed example.

Due to space restrictions, not all preliminaries could be specified in this paper.
For an introduction to description logics, grounded conjunctive queries, and rules
we refer to [3]. For specifying the ontology used to describe low-level analysis

1 This work has been funded by the European Community with the project CASAM
(Contract FP7-217061 CASAM) and by the German Science Foundation with the
project PRESINT (DFG MO 801/1-1).
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results as well as high-level interpretation results, a less expressive description
logic is applied to facilitate fast computations. We decided to represent the
domain knowledge with the DL ALHf

− (restricted attributive concept language
with role hierarchies, functional roles and concrete domains). The motivation
to only allow a restricted use of existential restrictions is to support a well-
founded integration of the description logic part of the knowledge base with the
probabilistic part, based on Markov logics.

The Markov logic formalism [2] provides a means to combine the expressiv-
ity of first-order logic augmented with the formalism of Markov networks [6].
The Markov logic formalism uses first-order logic to define “templates” for con-
structing Markov networks. The basic notion for this is called a Markov logic
network [2].

A Markov logic network MLN = (FMLN , WMLN ) consists of a sequence of
first-order formulas FMLN = 〈F1, ..., Fm〉 and a sequence of real number weights
WMLN = 〈w1, ..., wm〉. The association of a formula to its weight is by position
in the sequence. For a formula F ∈ FMLN with associated weight w ∈ WMLN

we also write w F (weighted formula). Weights are used to specify probability
distributions. For a more detailed introduction to description logics and their
combination with Markov logic networks, we refer to [5].

The central idea is to use abduction to compute possible explanations for ob-
servations of an agent, which are seen as high-level interpretations. The space
of abducibles is defined in terms of Horn rules in combination with ontologies
(see [3] for details). Compared to other approaches (e.g., [7]) also the ontology
is used for checking whether something must be abduced. In addition, a moti-
vation for computing explanations (or interpretations) using abduction is given
by assuming that the agent would like to increase increase the probability that
the observations are true. If there is no significant increase (due to a threshold
ε), possible interpretations are considered as irrelevant for the agent.2 Another
important idea is that, given a “current” interpretation, the agent should be
able to compute what must be added due to new percepts and what must be
retracted (for this purpose, an Abox difference operator is used).

The abduction and interpretation procedures are discussed in detail in Sec-
tion 2. In Section 3, a complete example is given showing the main approach
using intermediate steps. Section 4 summarizes this paper.

2 Probabilistic Interpretation Engine

At the beginning of this section, the most important preliminaries to the abduc-
tion process are specified. Afterwards, functions are introduced for the abduction
procedure, interpretation procedure, and the media interpretation agent.

2.1 Computing Explanations

In general, abduction is formalized as Σ ∪ Δ |=R Γ where background knowl-
edge (Σ), rules (R), and observations (Γ ) are given, and explanations (Δ) are
2 Obviously, there is a horizon problem, which we neglect for the time being.
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to be computed. In terms of DLs, Δ and Γ are Aboxes and Σ is a pair of Tbox
and Abox. Abox abduction is implemented as a non-standard retrieval inference
service in DLs. In contrast to standard retrieval inference services where answers
are found by exploiting the ontology, Abox abduction has the task of acquiring
what should be added to the knowledge base in order to answer a query. There-
fore, the result of Abox abduction is a set of hypothesized Abox assertions. To
achieve this, the space of abducibles has to be defined. We do this in terms of
rules. We assume that a set of rules R as defined in [3] are specified, and use a
function explanation step, see [3] or [5] for details.

2.2 The Abduction Procedure

In the following, we devise an abstract computational engine for “explaining”
Abox assertions in terms of a given set of rules. Explanation of Abox assertions
w.r.t. a set of rules is meant in the sense that using the rules some high-level
explanations are constructed such that the Abox assertions are entailed. The
explanation of an Abox is again an Abox. For instance, the output Abox rep-
resents results of the content interpretation process. Let the agenda A be a set
of Aboxes Γ and let Γ be an Abox of observations whose assertions are to be
explained. The goal of the explanation process is to use a set of rules R to derive
“explanations” for elements in Γ . The explanation algorithm implemented in
the Conceptual Abduction Engine (CAE) works on a set of Aboxes I.

The complete explanation process is implemented by the CAE function:

Function CAE(Ω, Ξ, Σ, R, S, A):
Input: a strategy function Ω, a termination function Ξ, a knowledge
base Σ, a set of rules R, a scoring function S, and an agenda A
Output: a set of interpretation Aboxes I′

I′ := {assign level(l, A)};
repeat

I := I′;
(A, α) := Ω(I);
l = l + 1;
I′ := (A \ {A}) ∪ assign level(l, explanation step(Σ, R, S, A, α));

until Ξ(I) or no A and α can be selected such that I′ �= I ;
return I′

where assign level(l, A) is defined as follows:

assign level(l, A) = map(λ(A) • assign level(l, A), A) (1)

assign level(l, A) takes as input a superscript l and an agenda A. In the fol-
lowing, assign level(l, A) is defined which superscripts each assertion α of the
Abox A with l if the assertion α does not already have a superscript:

assign level(l, A) =
{
αl | α ∈ A, α �= βi, i ∈ N

}
(2)
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The motivation for adding levels to assertions is to support different strategies
Ω. Note that l is a global variable, its starting value is zero, and it is incremented
in the CAE function. The map3 function is defined as follows:

map(f, X) =
⋃

x∈X

{f(x)} (3)

It takes as parameters a function f and a set X and returns a set consisting
of the values of f applied to every element x of X . The CAE function applies
the strategy function Ω in order to decide which assertions to explain, uses a
termination function Ξ in order to check whether to terminate due to resource
constraints and a scoring function S to valuate an explanation. The function Ω
for the explanation strategy and Ξ for the termination condition are used as an
oracle and must be defined in an application-specific way.

In the next Section we explain how probabilistic knowledge is used to (i) for-
malize the effect of the “explanation”, and (ii) formalize the scoring function S
used in the CAE algorithm explained above. In addition, it is shown how the ter-
mination condition (represented with the parameter Ξ in the above procedure)
can be defined based on the probabilistic conditions.

2.3 The Interpretation Procedure

The interpretation procedure is completely discussed in this section by explain-
ing the interpretation problem and presenting a solution to this problem. The
solution is presented by a probabilistic interpretation algorithm which calls the
CAE function described in the previous section. In the given algorithm, a ter-
mination function, and a scoring function are defined. The termination function
determines if the interpretation process can be stopped since at some point dur-
ing the interpretation process it makes no sense to continue the process. The
reason for stopping the interpretation process is that no significant changes can
be seen in the results. The defined scoring function in this section assigns prob-
abilistic scores to the interpretation Aboxes.

Problem. The objective of the interpretation component is the generation of
interpretations for the observations. An interpretation is an Abox which contains
high level concept assertions. Since in this paper we adopt the view that agents
are used for solving the problems while acquiring information, in the following
the same problem is formalized in the perspective of an agent: Consider an agent
given some percepts in an environment where the percepts are the analysis results
of the multimedia documents.4 The objective of this agent is finding explanations
for the existence of percepts. The question is how the interpretation Aboxes are
3 Please note that in this report, the expression map is used in two different contexts.

The first one MAP denotes the Maximum A Posteriori approach which is a sampling
method whereas the second one map is a function used in the assign level(l, A)
function.

4 The analysis might also be carried out by the agent.
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determined and how long the interpretation process must be performed by the
agent. The functionality of this Media Interpretation Agent is presented in the
MI Agent algorithm in Section 2.4.

Solution. In the following, an application for a probabilistic interpretation algo-
rithm is presented which gives a solution to the mentioned problem. This solution
illustrates a new perspective to the interpretation process and the reason why it
is performed. In this approach, we define a probabilistic scoring function which
assigns probabilities to the interpretation Aboxes. Additionally, we define a ter-
mination function which determines whether the interpretation process can be
terminated. The central idea is to check whether interpretation results computed
by a call to CAE substantially increase the probability the the observations are
true. If there is no significant increase (due to a threshold ε, possible interpreta-
tions are considered as irrelevant for the agent.5 Another important idea is that,
given a “current” interpretation, the agent should be able to compute what must
be added due to new percepts and what must be retracted (for this purpose, an
Abox difference operator is used).

We are now ready to define the algorithm. Assume that the media inter-
pretation component receives a weighted Abox A which contains observations.
In the following, the applied operation P (A, A′, R, WR, T ) in the algorithm is
explained:

The P (A, A′, R, WR, T ) function determines the probability of the Abox A
with respect to the Abox A′, a set of rules R, a set of weighted rules WR,
and the Tbox T where A ⊆ A′. Note that R is a set of forward and backward
chaining rules. The probability determination is performed based on the Markov
logic formalism as follows:

P (A, A′, R, WR, T ) = PMLN(A,A′,R,WR,T )( �Q(A) | �e(A′)) (4)

�Q(A) denotes an event composed of the conjunction of all assertions which ap-
pear in the Abox A. Assume that the Abox A contains n assertions α1, . . . , αn.
Consequently, the event for the Abox A is defined as follows:

�Q(A) = 〈α1 = true ∧ . . . ∧ αn = true〉 (5)

Consider Abox A contains m assertions α1, . . . , αm. Then, the evidence vector
�e(A) is defined by:

�e(A) = 〈α1 = true, . . . , αm = true〉 (6)

Note that α1, . . . , αn denote the boolean random variables of the MLN . In or-
der to answer the query PMLN(A,A′,R,WR,T )( �Q(A) | �e(A′)) the function MLN
(A, A′, R, WR, T ) is called. This function returns aMarkov logicnetworkMLN =
(FMLN , WMLN ) where FMLN and WMLN are ordered sets initialized as follows:

5 Obviously, there is a horizon problem, which we neglect for the time being.
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FMLN = ∅ and WMLN = ∅. In the following, it is described how the MLN is built
based on the Aboxes A and A′, the rules R and WR and the Tbox T :6

MLN(A,A′,R,WR, T )=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FMLN =FMLN ∪ {α}; WMLN =WMLN ∪ {w} if w α∈A
FMLN =FMLN ∪ {α}; WMLN =WMLN ∪ {∞} if α∈A
FMLN =FMLN ∪ {α}; WMLN =WMLN ∪ {w} if w α∈A′

FMLN =FMLN ∪ {α}; WMLN =WMLN ∪ {∞} if α∈A′

FMLN =FMLN ∪ {α}; WMLN =WMLN ∪ {∞} if α∈R
FMLN =FMLN ∪ {α}; WMLN =WMLN ∪ {w} if w α∈WR
FMLN =FMLN ∪ {FOL(α)}; WMLN =WMLN ∪ {∞} if α∈T

where w and α denote a weight and an assertion, respectively. In the following,
the interpretation algorithm Interpret is presented:

Function Interpret(A, CurrentI, Γ , T , FR, BR, WR, ε)
Input: an agenda A, a current interpretation Abox CurrentI, an Abox of
observations Γ , a Tbox T , a set of forward chaining rules FR, a set of
backward chaining rules BR, a set of weighted rules WR, and the desired
explanation significance threshold ε
Output: an agenda A′, a new interpretation Abox NewI, and Abox
differences for additions Δ1 and omissions Δ2
i := 0 ;
R := FR ∪ BR;
p0 := P (Γ, Γ, R, WR, T ) ;
Ξ := λ(A) •{
i := i + 1; pi := maxA∈A P (Γ, A ∪ A0, R, WR, T ); return | pi−pi−1 |< ε

i

}
;

Σ := (T , ∅);
S := λ((T , A0)), R, A, Δ) • P (Γ, A ∪ A0 ∪ Δ, R, WR, T );
A′ := CAE(Ω, Ξ, Σ, R, S, A);
NewI = argmaxA∈A′ (P (Γ, A, R, WR, T ));
Δ+ = AboxDiff (NewI, CurrentI); // additions
Δ− = AboxDiff (CurrentI, NewI); // omissions
return (A′, NewI, Δ+, Δ−);

In the above algorithm, the termination function Ξ and the scoring function
S are defined by lambda calculus terms. The termination condition Ξ of the
algorithm is that no significant changes can be seen in the successive probabilities
pi and pi−1 (scores) of the two successive generated interpretation Aboxes in
two successive levels i − 1 and i. In this case, the current interpretation Abox
CurrentI is preferred to the new interpretation Abox NewI. The CAE function
is called which returns the agenda A′. Afterwards, the interpretation Abox NewI
with the maximum score among the Aboxes A of A′ is selected. Additionally, the
Abox differences Δ+ and Δ−, respectively, for additions and omissions among
the interpretation Aboxes CurrentI and NewI are computed. In this paper, we
formalize AboxDiff as set difference, knowing that a semantic approach would
be desirable (see [5] for a semantics-based definition of AboxDiff ).

6 FOL(φ) represents the GCI φ in first-order notation.
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In the following, the strategy condition Ω is defined which is one of the pa-
rameters of the CAE function:

Function Ω(I)
Input: a set of interpretation Aboxes I
Output: an Abox A and a fiat assertion α

A :=
{
A ∈ I | ¬∃A′ ∈ I, A′ �= A : ∃α′l′ ∈ A′ : ∀αl ∈ A : l′ < l

}
;

A := random select(A);
min αs =

{
αl ∈ A | ¬∃α′l′ ∈ A′, α′l′ �= αl, l′ < l

}
;

return (A, random select(min αs));

In the above strategy function Ω, the agenda A is a set of Aboxes A such that
the assigned superscripts to their assertions are minimum. In the next step, an
Abox A from A is randomly selected. Afterwards, the min αs set is determined
which contains the assertions α from A whose superscripts are minimal. These
are the assertions which require explanations. The strategy function returns as
output an Abox A and an assertion α which requires explanation.

2.4 The Media Interpretation Agent

In the following, the MI Agent function is presented which calls the Interpret
function:

Function MI Agent(Q, Partners, Die, (T , A0), FR, BR, WR, ε)
Input: a queue of percept results Q, a set of partners Partners, a
function Die, a background knowledge base (T , A0), a set of forward
chaining rules FR, a set of backward chaining rules BR, a set of weighted
rules WR, and the desired precision of the results ε
Output: –
CurrentI = ∅;
A′′ = {∅};
repeat

Γ := extractObservations(Q);
W := MAP (Γ, WR, T ) ;
Γ ′ := select(W, Γ );
A′ := filter(λ(A) • consistentΣ(A),

map(λ(A)•Γ ′∪A∪A0∪forward chain(Σ, FR, Γ ′∪A∪A0),
{select(MAP (Γ ′ ∪ A ∪ A0, WR, T ), Γ ′ ∪ A ∪ A0) |

A ∈ A′′}));
(A′′, NewI, Δ+, Δ−) :=
Interpret(A′, CurrentI, Γ ′, T , FR, BR, WR ∪ Γ, ε);
CurrentI := NewI;
Communicate(Δ+, Δ−, Partners);
A′′ := manage agenda(A′′);

until Die() ;
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The body of MI Agent uses a set of auxiliary functions, which are defined as
follows.

filter(f, X) =
⋃

x∈X

{
{x} if f(x) = true

∅ else
(7)

The function filter takes as parameters a function f and a set X and returns a set
consisting of the values of f applied to every element x of X . In the MI Agent
function, the current interpretation CurrentI is initialized to the empty set and
the agenda A′′ to a set containing the empty set. Since the agent performs an
incremental process, it is defined by a repeat-loop. The percept results Γ are
sent to the queue Q. In order to take the observations Γ from the queue Q, the
MI Agent calls the extractObservations function.

In the following we assume that Γ represents an ordered set. MAP (Γ, WR, T )
determines the most probable world of observations Γ with respect to a set
of weighted rules WR and the Tbox T . This function solves the maximum
aposterior MAP inference problem defined in detail in [5]. It returns a vector W
which consists of zeros and ones assigned to indicate whether the ground atoms
of the considered world are true (positive) and false (negative), respectively. The
function select(W, Γ ) then selects the positive assertions in the input Abox Γ
using the bit vector W . The selected positive assertions are the assertions which
require explanations. The select operation returns as output an Abox Γ ′ which
has the following characteristic: Γ ′ ⊆ Γ . The determination of the most probable
world by the MAP function and the selection of the positive assertions is also
carried out on Γ ′ ∪ A ∪ A0.

In the next step, a set of forward chaining rules FR is applied to Γ ′ ∪A∪A0 .
The generated assertions in this process are added to the to Γ ′ ∪ A ∪ A0. In the
next step, only the consistent Aboxes are selected and the inconsistent Aboxes
are removed. Afterwards, the Interpret function is called to determine the new
agenda A′′, the new interpretation Abox NewI and the Abox differences Δ1
and Δ2 for additions and omissions among CurrentI and NewI. Afterwards,
the CurrentI is set to the NewI and the MI Agent function communicates the
Abox differences Δ1 and Δ2 to the Partners. The manage agenda function is
also called. This function is explained in [5]. The termination condition of the
MI Agent function is that the Die() function is true. Note that the MI Agent
waits in the function call extractObservations(Q) if Q = ∅.

The manage agenda(A) function is called in the MI Agent function to im-
prove its performance. The agent can eliminate, shrink, or combine Aboxes.

After presenting the above algorithms, the mentioned unanswered questions
can be discussed. A reason for performing the interpretation process and ex-
plaining the fiat assertions is that the probability of P (A, A′, R, WR, T ) will
increase through the interpretation process. In other words, by explaining the
observations the agent’s belief to the percepts will increase. This shows a new
perspective for performing the interpretation process. The answer to the ques-
tion whether there is any measure for stopping the interpretation process, is
indeed positive. This is expressed by | pi − pi−1 |< ε

i which is the termination
condition Ξ of the algorithm. The reason for selecting ε

i and not ε as the upper
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limit for the termination condition is to terminate the oscillation behaviour of
the results. In other words, the precision interval is tightened step by step during
the interpretation process. In Section 3, we discuss an example for interpreting
a single video shot.

3 Preference-Based Video Shot Interpretation

One of the main innovations introduced in the previous section, namely the
introduction of a probabilistic preference measure to control the space of possible
interpretations, is demonstrated here using examples from an environmental
domain.

We have to mention that this example is not constructed to show the possi-
ble branchings through the interpretation process. The purpose of this example
is to show how the probabilities of the most probable world of observations
P (A0, A, R, WR, T ) behave during the interpretation process.

At the beginning of this example, the signature of the knowledge base is
presented. The set of all concept names CN is divided into two disjoint sets
Events and PhysicalThings such that

CN = Events∪PhysicalThings where these two sets are defined as follows:
Events = {CarEntry,EnvConference , EnvProt, HealthProt}
PhysicalThings = {Car, DoorSlam, Building, Environment, Agency}

EnvConference, EnvProt and HealthProt denote respectively environmental
conference, environmental protection and health protection. The set of role
names RN is defined as follows:

RN = {Causes, OccursAt, HasAgency, HasTopic, HasSubject, HasObject, HasEffect,

HasSubEvent, HasLocation}
The set of individual names IN is defined as follows:

IN = {C1, DS1, ES1, Ind42, Ind43, Ind44, Ind45, Ind46, Ind47, Ind48}
In the following, the set of the forward chaining rules FR is defined:

FR = {∀x CarEntry(x) → ∃y Building(y), OccursAt(x, y),
∀x EnvConference(x) → ∃y Environment(y), HasTopic(x, y),
∀x EnvProt(x) → ∃y Agency(y), HasAgency(x, y)}

Similarly, the set of backward chaining rules BR is given as follows:

BR = {Causes(x, y)← CarEntry(z), HasObject(z, x),HasEffect(z, y), Car(x), DoorSlam(y),
OccursAt(x, y)← EnvConference(z), HasSubEvent(z, x), HasLocation(z, y), CarEntry(x), Building(y),
HasTopic(x, y)← EnvProt(z), HasSubEvent(z, x), HasObject(z, y),EnvConference(x), Environment(y),
HasAgency(x, y)← HealthProt(z), HasObject(z, x), HasSubject(z, y), EnvProt(x), Agency(y)}

In the following, a set of weighted rules WR is defined where the weight of
each rule is 5:
WR = {5 ∀x, y, z CarEntry(z) ∧ HasObject(z, x) ∧ HasEffect(z, y) → Car(x) ∧
DoorSlam(y) ∧ Causes(x, y),

5 ∀x, y, z EnvConference(z) ∧HasSubEvent(z, x) ∧HasLocation(z, y)→
CarEntry(x)∧Building(y) ∧OccursAt(x, y),

5 ∀x, y, z EnvProt(z) ∧HasSubEvent(z, x) ∧HasObject(z, y)→
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EnvConference(x) ∧Environment(y) ∧HasTopic(x, y),
5 ∀x, y, z HealthProt(z)∧HasObject(z, x) ∧HasSubject(z, y)→

EnvProt(x) ∧Agency(y)∧HasAgency(x,y)}
The selected value for ε in this example is 0.05. In the following, Δ1 and

Δ2 denote respectively the set of assertions hypothesized by a forward chaining
rule and the set of assertions generated by a backward chaining rule at each
interpretation level. Let us assume that the media interpretation agent receives
the following weighted Abox A:

A = {1.3 Car(C1), 1.2 DoorSlam(DS1),−0.3 EngineSound(ES1), Causes(C1, DS1)}

The first applied operation to A is the MAP function which returns the bit
vector W = 〈1, 1, 0, 1〉. By applying the select function to W and the input
Abox A, the assertions from the input Abox A are selected that correspond
to the positive events in W . Additionally, the assigned weights to the positive
assertions are also taken from the input Abox A. In the following, Abox A0 is
depicted which contains the positive assertions:

A0 = {1.3 Car(C1), 1.2 DoorSlam(DS1), Causes(C1, DS1)}
At this step, p0 = P (A0, A0, R, WR, T ) = 0.755. Since no appropriate forward
chaining rule from FR is applicable to Abox A0, Δ1 = ∅ and as a result A0 :=
A0 ∪ ∅. The next step is the execution of the backward chain function where
the next backward chaining rule from BR can be applied to Abox A0:

Causes(x, y)← CarEntry(z),HasObject(z, x),HasEffect(z, y), Car(x),DoorSlam(y)

Consequently, by applying the above rule the next set of assertions is hypothe-
sized:

Δ2 = {CarEntry(Ind42), HasObject(Ind42, C1),HasEffect(Ind42, DS1)}
which are considered as strict assertions. Consequently, A1 is defined as fol-

lows: A1 := A0 ∪ Δ2.
In the above Abox, p1 = P (A0, A1, R, WR, T ) = 0.993. As it can be seen,
p1 > p0 i.e. P (A0, Ai, R, WR, T ) used in Ξ increases by adding the new hypoth-
esized assertions. This shows that the new assertions are considered as additional
support. The termination condition of the algorithm is not fulfilled therefore the
algorithm continues processing. At this level, it is still not known whether Abox
A1 can be considered as the final interpretation Abox. Thus, this process is
continued with another level. Consider the next forward chaining rule:

∀x CarEntry(x) → ∃y Building(y), OccursAt(x, y)

By applying the above rule, the next set of assertions is generated, namely:

Δ1 = {Building(Ind43), OccursAt(Ind42, Ind43)}
The generated assertions are also considered as strict assertions. In the fol-

lowing, the expanded Abox A1 is defined as follows: A1 := A1 ∪ Δ1.
Let us assume the next backward chaining rule from BR:
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OccursAt(x, y)← EnvConference(z), HasSubEvent(z, x), HasLocation(z, y), CarEntry(x), Building(y)

Consequently, by applying the above abduction rule the next set of assertions is
hypothesized:

Δ2 = {EnvConference(Ind44), HasSubEvent(Ind44 , Ind42), HasLocation(Ind44, Ind43)}
which are considered as strict assertions. Consequently, A2 := A1 ∪ Δ2.
In the above Abox, p2 = P (A0, A2, R, WR, T ) = 0.988. As it can be seen,

p2 < p1 i.e.
P (A0, Ai, R, WR, T ) decreases slightly by adding the new hypothesized asser-
tions. Since the termination condition of the algorithm is fulfilled, Abox A1 can
be considered as the final interpretation Abox. To realize how the further be-
haviour of the probabilities is, this process is continued for the sake of illustration.
Consider the next forward chaining rule from FR:

∀x EnvConference(x) → ∃y Environment(y), HasTopic(x, y)

By applying the above rule, new assertions are generated.

Δ1 = {Environment(Ind45), HasTopic(Ind44, Ind45)}
In the following, the expanded Abox A2 is defined: A2 := A2 ∪ Δ1.
Consider the next backward chaining rule from BR:

g
HasTopic(x, y)← EnvProt(z), HasSubEvent(z, x), HasObject(z, y),EnvConference(x), Environment(y)

By applying the above abduction rule, the following set of assertions is hy-
pothesized:

Δ2 = {EnvProt(Ind46), HasSubEvent(Ind46, Ind44), HasObject(Ind46, Ind45)}
which are considered as strict assertions. In the following, A3 is defined as

follows A3 := A2 ∪ Δ2.
In the above Abox A3, p3 = P (A0, A3, R, WR, T ) = 0.99. As it can be seen,
p3 > p2, i.e.

P (A0, Ai, R, WR, T ) increases slightly by adding the new hypothesized as-
sertions.

Consider the next forward chaining rule:

∀x EnvProt(x) → ∃y Agency(y), HasAgency(x, y)

By applying the above rule, the next assertions are generated:

Δ1 = {Agency(Ind47), HasAgency(Ind46, Ind47)}
As a result, the expanded Abox A3 is presented as follows: A3 := A3 ∪ Δ1.
Let us consider the next backward chaining rule from BR:

HasAgency(x, y) ← HealthProt(z), HasObject(z, x), HasSubject(z, y), EnvProt(x), Agency(y)

Consequently, new assertions are hypothesized by applying the above abduc-
tion rule, namely:
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Δ2 = {HealthProt(Ind48), HasObject(Ind48, Ind46), HasSubject(Ind48, Ind47)}
which are considered as strict assertions. Consequently, A4 is defined as fol-

lows: A4 := A3 ∪ Δ2.
In the above Abox, p4 = P (A0, A4, R, WR, T ) = 0.985. As it can be seen,

p4 < p3, i.e.
P (A0, Ai, R, WR, T ) decreases slightly by adding the new hypothesized as-

sertions.

Discussion of the Results

The determined probability values P (A0, Ai, R, WR, T ) of this example are
summarized in the next table which shows clearly the behaviour of the probabil-
ities stepwise after performing the interpretation process. In this table, variable i
denotes the successive levels of the interpretation process.

i Abox Ai pi = P (A0, Ai, R, WR, T )
0 A0 p0 = 0.755
1 A1 p1 = 0.993
2 A2 p2 = 0.988
3 A3 p3 = 0.99
4 A4 p4 = 0.985

In this example, the interpretation
process is consecutively performed
four times. As it can be seen, through
the first interpretation level the
probability p1 increases strongly in
comparison to p0. By performing the
second, third and the forth interpreta-
tion levels, the probability values de-
crease slightly in comparison to p1.

This means no significant changes can be seen in the results. In other words,
the determination of A3 and A4 were not required at all. But the determination
of A2 was required to realize the slight difference |p2 − p1| < ε

2 . Consequently,
Abox A1 is considered as the final interpretation Abox.

4 Summary

For multimedia interpretation, a semantically well-founded formalization is
required. In accordance with previous work, a well-founded abduction-based
approach is pursued. Extending previous work, abduction is controlled by prob-
abilistic knowledge, and it is done in terms of first-order logic. Rather than
merely using abduction for computing explanations with which observations are
entailed, the approach presented in this paper, uses a probabilistic logic to mo-
tivate the explanation endeavor by increasing the belief in the observations.
Hence, there exists a certain utility for an agent for the computational resources
it spends for generating explanations. Thus, we have presented a first attempt to
more appropriately model a media interpretation agent and evaluated it using a
detailed example.
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3. Espinosa-Peraldi, S., Kaya, A., Möller, R.: Formalizing multimedia interpretation
based on abduction over description logic aboxes. In: Cuenca-Grau, B., Horrocks,
I., Motik, B. (eds.) Proc. of the 22nd International Workshop on Description Logics,
DL 2009 (2010)
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Secrecy-Preserving Query Answering for
Instance Checking in EL

Jia Tao, Giora Slutzki, and Vasant Honavar
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Abstract. We consider the problem of answering queries against an
EL knowledge base (KB) using secrets, whenever it is possible to do so
without compromising secrets. We provide a polynomial time algorithm
that, given an EL KB Σ, a set S of secrets to be protected and a query
q, outputs “Yes” whenever Σ � q and the answer to q, together with the
answers to any previous queries answered by the KB, does not allow the
querying agent to deduce any of the secrets in S. This approach allows
more flexible information sharing than is possible with traditional access
control mechanisms.

1 Introduction

The rapid expansion of the World Wide Web and the widespread use of dis-
tributed databases and networked information systems offer unprecedented op-
portunities for productive interaction and collaboration among individuals and
organizations in virtually every area of human endeavor. However, the need to
share information has to be balanced against the need to protect secrets. Such
scenarios call for algorithms that can, given a knowledge base Σ and a set S of
secrets (perhaps specified using some secrecy policy), answer queries against Σ,
using secrets if necessary, whenever it is possible to do so without compromis-
ing secrets (See Example 1 in Sect. 2). Most existing approaches to information
protection simply forbid the use of secret information in answering queries (See
Sect. 4). The privacy-preserving reasoning framework introduced in [1] was mo-
tivated by the need to alleviate, at least in part, this limitation in the simple
setting of hierarchical knowledge bases (KBs) under the open world assumption
(OWA)1. Such KBs may contain scientific, medical, economic information, or
military intelligence, etc. Our secrecy-preserving reasoning framework builds on,
and substantially extends, the framework introduced by Bao et al. [1].

In general, the answer to a query q of the form C(a) or r(a, b) against a KB
Σ can be “Yes” (i.e., q can be inferred from Σ), “No” (¬q can be inferred from
Σ) or “Unknown” (e.g., because of the incompleteness of Σ). We assume coop-
erative as opposed to adversarial scenarios where the KB does not lie. However,

1 Under the closed world assumption a statement that cannot be inferred from the KB
to be true, is presumed to be false. Under the OWA, the truth of such a statement
is presumed to be unknown, and not necessarily false.

P. Hitzler and T. Lukasiewicz (Eds.): RR 2010, LNCS 6333, pp. 195–203, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



196 J. Tao, G. Slutzki, and V. Honavar

whenever truthfully answering a query risks compromising secrets in S, the rea-
soner associated with the KB is allowed to feign ignorance, i.e., answer the query
as “Unknown”. Given a set of secrets S (which need not be a subset of Σ), it is
clear that, to protect S, answers to queries in S will be “Unknown”. However,
in general, it is not sufficient to protect only S since truthful answers to certain
queries (not in S) may reveal information in S. Therefore, we must protect a
superset of S, which we call an envelope of S, such that the querying agent who
has no access to the envelope will not be able to deduce any information in S.

In this paper, we investigate secrecy-preserving query answering with EL [2],
which is one of the simplest DLs that is both computationally tractable [3,4]
and practically useful [2]. For example, the medical ontology Snomed ct [5]
and large parts of the medical ontology Galen [6] can be expressed in EL.
We provide algorithms to answer queries against an EL KB that use, but not
reveal, the information that is designated as secret. Because of the open world
assumption and the fact that the language of EL does not include negation, the
answer to a query can only be “Yes” or “Unknown”.

To answer queries posed to the KB, we construct a secrecy maintenance system
that consists of: a finite set of consequences of the KB Σ, denoted by A∗, and
a secrecy envelope S ⊆ ES ⊆ A∗. The answer to a query q is censored by the
reasoner if q ∈ ES. It is easy to see that a secrecy envelope always exists. For
instance, A∗ constitutes an envelope for any secrecy set S ⊆ A∗. A key challenge
is to develop strategies that can be used by the KB to respond to queries as
informatively as possible (i.e., using an envelope that is as small as possible)
without compromising secrets that the KB is obliged to protect. Unfortunately,
computing a minimum envelope is NP-hard [7]. We compute A∗ using the (usual)
tableau expansion rules. To compute ES, we introduce the following idea. From
each original expansion rule, we construct a corresponding inverse expansion
rule. We show that the inverted system of expansion rules generates an envelope
of S. To the best of our knowledge, the idea of constructing a secrecy envelope
by inverting the tableau expansion rules is novel. Furthermore, we introduce a
couple of useful optimizations that help reduce the size of an envelope.

2 Preliminaries

The non-logical signature of the EL description language includes three mutually
disjoint sets: concept names NC , role names NR and individual names NO. The
syntax of EL is defined by specifying expressions and formulae. EL expressions
consist of NR and the set of concepts C recursively defined as follows:

C, D −→ A | � | C � D | ∃r.C

where A ∈ NC, � is the top symbol, C, D ∈ C and r ∈ NR. In this paper
we consider three kinds of EL formulae: assertions of the form C(a) or r(a, b),
definitions of the form A

.= D and general concept inclusions (GCI) of the form
C � D where a, b ∈ NO, C, D ∈ C, r ∈ NR and A ∈ NC .
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The semantics of EL is specified by means of an interpretation I = 〈Δ, ·I〉
where Δ is a non-empty domain and ·I is a function that maps each individual
name to an element in Δ, each concept name to a subset of Δ and each role
name to a subset of Δ×Δ. The interpretation of concept expressions is extended
recursively: for r ∈ NR and C, D ∈ C: (C � D)I = CI ∩ DI and (∃r.C)I = {a ∈
Δ | ∃b ∈ Δ : (a, b) ∈ rI ∧ b ∈ CI}.

A finite non-empty set of assertions is called an ABox. A finite set of definitions
and GCIs is called a TBox. An ABox A and a TBox T whose concepts and
roles belong to the language EL form an EL-knowledge base Σ = 〈A, T 〉. A
TBox T is normalized [3] if T contains only GCIs all of which are of one of
the following forms: A � B, A1 � A2 � B, A � ∃r.B or ∃r.A � B where
A, A1, A2, B ∈ NC ∪ {�}. It was shown that transforming a TBox into such
a normal form can be accomplished in polynomial time [3]. From now on, we
will assume that all the TBoxes are in normal form. By NΣ (resp. OΣ) we
denote the set of all symbols (resp. individual names) occurring in Σ. Note that
OΣ ⊂ NO ∩ NΣ and NΣ \ OΣ ⊂ NC ∪ NR.

Definition 1. Let Σ = 〈A, T 〉 be a knowledge base, I = 〈Δ, ·I〉 an interpre-
tation, C, D ∈ C, r ∈ NR and a, b ∈ NO. I satisfies C(a), r(a, b), or C � D
if, respectively, aI ∈ CI , (aI , bI) ∈ rI , or CI ⊆ DI. I is a model of Σ if it
satisfies all the assertions in A and all the GCIs in T . Let α be an assertion or
a GCI. We say that Σ entails α, written as Σ � α, if all models of Σ satisfy α.

Example 1. (a simplified version adapted from [8]) Given a KB Σ1 = 〈A1, T1〉
that contains information on the patients, their health history, the prescriptions
that they get from the physicians and their insurance information. Suppose that
Jane’s mother Jill had breast cancer and that Jane tests positive for BRCA1
mutation which is linked to an increased risk of breast cancer. To reduce the
breast cancer risk, Jane was prescribed a certain drug. Jane purchases the med-
ications from her pharmacy and wants to get reimbursed for the cost of her
prescription by her insurance company. If her insurance company finds out that
she has tested positive for BRCA1 mutation or that she has been prescribed
certain drug(s) for breast cancer, Jane risks losing her health insurance. The
scenario can be formally specified in the DL EL as follows:

1. ∃is child.A � CancerRisk 7. A � HasCancer
2. HasMutBRCA1 � ∃has pres.CancerDrug 8. Woman � HasCancer � A
3. ∃has pres.CancerDrug � CancerRisk 9. Woman(Jill)
4. ∃has pres.CoveredDrug � Reimburse 10. HasCancer(Jill)
5. CancerDrug � CoveredDrug 11. is child(Jane, Jill)
6. A � Woman 12. HasMutBRCA1(Jane)

The GCIs 1-8 form a subset of T1 (in normal form) and the assertions 9-12
form a subset of A1. In order for Jane to get reimbursed, when the query Re-
imburse(Jane) is posed to the KB, the answer should be “Yes”. However, in
order to protect Jane’s privacy, the query CancerRisk(Jane) should be answered
“Unknown”. �
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3 The Secrecy-Preserving Query Answering

Problem Statement: Given a knowledge base Σ and a finite secrecy set S, the
basic goal is to answer queries while preserving secrecy. As shown in Example
1, to protect Jane’s privacy, the query CancerRisk(Jane) should be answered
“Unknown”. However, by only keeping CancerRisk(Jane) secret, the fact that
Jane has cancer risk can still be inferred by statements 12, 2 and 3. Therefore,
the secrecy-preserving query answering problem is to find a superset of S, which
we call the secrecy envelope of S, denoted by ES, so that by protecting ES, the
querying agent cannot conclude anything in S. Because of the OWA, when the
answer to a query is “Unknown”, the querying agent is not able to distinguish
between (a) the answer to the query is truly unknown, or (b) the answer is being
protected for reasons of secrecy.

The framework contains following components. We assume a KB Σ = 〈A, T 〉,
a reasoner R that is complete, and a secrecy set S consisting of a finite set
of assertions that contain only symbols from NΣ . R is used to answer queries
by checking whether the query can be inferred from Σ and if it can, whether
answering “Yes” will reveal secrets from S. The specific tasks are:

– To compute the set SubC of sub-expressions of all concepts and roles appear-
ing in Σ or S.

– To compute the set of all assertional consequences of Σ restricted to SubC.
This set is called the assertional closure of Σ and it is denoted by A∗. We
assume that S ⊆ A∗.

– To compute the secrecy envelope S ⊆ ES ⊆ A∗, a set of assertions which if
truthfully answered, may reveal some secret(s) in S.

– To answer queries. If a query cannot be inferred from Σ, the answer is simply
“Unknown”. If it can be inferred and it is not in ES, the answer is “Yes”;
otherwise, the answer is “Unknown”.

We also assume that the querying agent (i) asks queries of the form C(a) or
r(a, b); (ii) has computational access only to the signature of the knowledge
base, i.e., its queries are over NΣ; and (iii) has the same reasoning capacity as
R (Since we assume that R is complete, this is not a restriction.); (iv) may log
the history of all the answers to its queries and draw conclusions from it; and
(v) has access to the TBox T .

A∗ and ES form a secrecy maintenance system. Note that the both are re-
stricted to SubC. Once A∗ and ES have been computed, if C ∈ SubC, R can
answer the query C(a) in linear time depending on its membership of A∗ and
ES. Otherwise, we need to expand SubC by adding sub-expressions of C that are
not in SubC and update the consequences A∗ as well as ES accordingly.

3.1 Initializing Secrecy Maintenance System

Computing SubC: The set of certain sub-expressions of all the concepts and
roles appearing in Σ or S, is defined as follows:
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if C(a) ∈ A ∪ S, then C ∈ SubC; if C � D ∈ T , then {C, D} ⊆ SubC;
if r(a, b) ∈ A ∪ S, then r ∈ SubC; if ∃r.C ∈ SubC, then {r, C} ⊆ SubC;
if C1 � · · · � Ck ∈ SubC(Ci ∈ NC or Ci = ∃r.C), then Ci ∈ SubC(1 ≤ i ≤ k);
if ∃r.C ∈ SubC and C � D ∈ T or D � C ∈ T , then ∃r.D ∈ SubC.

Note that SubC does not contain all the sub-expressions of concepts appearing
in Σ or S. If a query C(a) comes along where C /∈ SubC, it will be added into
SubC. As such, the secrecy maintenance system is built up gradually depending
on the history of queries. Also note that the initial size of SubC is linear in the
size of the knowledge base Σ plus the size of the secrecy set S.

Computing A∗: The ABox A∗ is initialized as A and expanded by recursively
applying assertion expansion rules listed in Fig. 1. We say that A∗ is assertionally
closed or that it is an assertional closure of Σ if no assertion expansion rule is
applicable. The set of all the individual names appearing in A∗ is denoted by
O∗. It is initialized as OΣ and is expanded with applications of the ∃A

2 -rule.
An individual a is said to be fresh (at a particular time during the expansion
process) if a ∈ NO \ O∗ (at that time). An individual a ∈ O∗ is blocked by an
individual b ∈ O∗ if a ∈ O∗ \ OΣ , b is either in OΣ or b was picked earlier than
a (during the expansion process), and {C | C(a) ∈ A∗} ⊆ {C′ | C′(b) ∈ A∗}.
Recall that we have assumed that the querying agent has computational access
only to the signature of the knowledge base. In particular, the querying agent
cannot ask any queries that involve individual names in O∗\OΣ. This is referred
to as Hidden Names Assumption (HNA).

�A
1 -rule: if C1 � · · · � Ck(a) ∈ A∗ and Ci(a) /∈ A∗,

then A∗ := A∗ ∪ {Ci(a)} where 1 ≤ i ≤ k;
�A

2 -rule: if {C1(a), ..., Ck(a)} ⊆ A∗, C1 � · · · � Ck ∈ SubC
and C1 � · · · � Ck(a) /∈ A∗, then A∗ := A∗ ∪ {C1 � · · · � Ck(a)};

∃A1 -rule: if {r(a, b), C(b)} ⊆ A∗,∃r.C ∈ SubC and ∃r.C(a) /∈ A∗,
then A∗ := A∗ ∪ {∃r.C(a)};

∃A2 -rule: if ∃r.C(a) ∈ A∗, a is not blocked and ∀b ∈ O∗, {r(a, b), C(b)} � A∗,
then A∗ := A∗ ∪ {r(a, c), C(c)} where c is fresh, and O∗ := O∗ ∪ {c};


T -rule: if C(a) ∈ A∗, C 
 D ∈ T and D(a) /∈ A∗, then A∗ := A∗ ∪ {D(a)};

Fig. 1. Assertion Expansion Rules

We denote by Λ the tableau algorithm which nondeterministically applies
assertion expansion rules until no further applications are possible. Since each
expansion rule can be applied polynomially many times (in the size of SubC),
the computation of A∗ can be done in polynomial time. When an execution
of Λ terminates, we have an assertionally closed ABox A∗. The soundness and
completeness of the Λ-tableau algorithm are proved in [7].

Ignoring the issue of secrecy, we point out a difference between the reasoning
of the KB reasoner R and that of the querying agent. Consider the assertion
∃r.C(a) ∈ A∗ when a is not blocked and there does not exist b ∈ OΣ for which
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{r(a, b), C(b)} ⊆ A∗. In this case R picks a fresh individual name c /∈ OΣ as
a witness for the inclusion ∃r.C(a) ∈ A∗. The querying agent only knows the
existence of the witness individual and not the individual name itself. Of course,
for its own reasoning process, the querying agent may pick any individual name in
NO\OΣ , say d, and then force r(a, d) and C(d) to be consequences of Σ. Clearly,
the reasoner R and the querying agent are not aware of each other’s “fresh”
individual names. To differentiate the assertional closure of the KB reasoner R
from the reasoning of the querying agent, we will use ·+ to denote the latter.

Computing the Secrecy Envelopes: We define the secrecy envelope ES such
that if the reasoner R answers every query in ES with “Unknown” and every
query in A∗ \ ES with “Yes”, the querying agent will not be able to deduce any
assertions in S.

Definition 2. Given a knowledge base Σ = 〈A, T 〉 and a finite secrecy set S ⊆
A∗, a secrecy envelope of S, denoted by ES, is a superset S ⊆ ES ⊆ A∗ such that
(A∗ \ ES)+ ∩ S = ∅ where (A∗ \ ES)+ is the assertional closure of the knowledge
base 〈A∗ \ ES, T 〉 for the querying agent.

To answer queries as informatively as possible, we aim to make ES as small as
possible. Unfortunately, to compute a minimum envelope is hard. Specifically,
the decision version of the problem of computing minimum envelopes is NP-
complete [7]. In what follows, we provide an algorithm that computes envelopes.
Utilizing the HNA, we further optimize the algorithm to result a smaller enve-
lope. To compute an envelope, we introduce the novel idea of inverting assertion
expansion rules. For EL with TBox, we have five assertion expansion rules as
listed in Fig. 1. For each assertion expansion rule, the resulting inverse rule is
named by changing the superscript in the name of the original rule to S. These
inversion rules are called R-secrecy closure rules and are listed in Fig. 2. In Fig.
2, A∗ is assumed to have been computed previously; E is initialized to S, and
expanded by using R-secrecy closure rules.

�S
1 -rule: if C1 � · · · � Ck(a) ∈ A∗ \ E and {C1(a), ..., Ck(a)} ∩ E �= ∅,

then E := E ∪ {C1 � · · · � Ck(a)};
�S

2 -rule: if C1 � · · · � Ck(a) ∈ E and {C1(a), ..., Ck(a)} ∩ E = ∅,
then E := E ∪ {Ci(a)} where 1 ≤ i ≤ k;

∃S
1 -rule: if ∃r.C(a) ∈ E and {r(a, b), C(b)} ⊆ A∗ \ E with b ∈ O∗,

then E := E ∪ {r(a, b)} or E := E ∪ {C(b)};
∃S

2 -rule: if ∃r.C(a) ∈ A∗ \ E, and for every b ∈ O∗ with {r(a, b), C(b)} ⊆ A∗,
we have {r(a, b), C(b)} ∩ E �= ∅, then E := E ∪ {∃r.C(a)};


S -rule: if D(a) ∈ E, C 
 D ∈ T and C(a) ∈ A∗ \ E, then E := E ∪ {C(a)}.

Fig. 2. R-secrecy closure rules obtained by inverting rules in Fig. 1

We denote by ΛR
S the tableau algorithm which nondeterministically applies

the R-secrecy closure rules until no further rules are applicable. When no R-
secrecy closure rule is applicable, we say that E is R-closed. It is easy to see that
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ΛR
S terminates in polynomial time in the size of its input. The following lemma

and corollary show that ΛR
S results an envelope. The proofs are available in [7].

Lemma 1. Let Σ = 〈A, T 〉 be a KB, S ⊆ E ⊆ A∗ where S is the secrecy set and
E is R-closed. Then (a) A∗ \ E is assertionally closed w.r.t. assertion expansion
rules listed in Fig. 1, (b) E is a secrecy envelope of S.

It turns out that the ΛR
S algorithm, although certainly producing an envelope,

may actually result an envelope that is unnecessarily large. Specifically, even if
∃A

2 -rule is applicable to (A∗ \ ES)+, due to OWA, the querying agent can only
conclude that there exists an individual d that is the witness for ∃r.C(a) and that
d /∈ OΣ . However, by HNA, the querying agent has no computational access to
individual names in O∗\OΣ. This provides a cue that when computing a secrecy
envelope, the ∃S

2-rule, which inverts the ∃A
2 -rule, is dispensable. The new set of

secrecy closure rules, called Q-Secrecy Closure Rules, includes only the �S
1-rule,

the �S
2-rule, the �S-rule and the ∃S

1-rule is replaced by an “optimized” version
the ∃S-rule.

∃S -rule: if ∃r.C(a) ∈ E and {r(a, b), C(b)} ⊆ A∗ \ E with b ∈ OΣ ,
then E := E ∪ {r(a, b)} or E := E ∪ {C(b)}

We denote by ΛQ
S the tableau algorithm which nondeterministically and exhaus-

tively applies the Q-secrecy closure rules. The resulting E is said to be Q-closed.
It is clear that all executions of ΛQ

S terminate in polynomial time. Theorem 1
shows that ΛQ

S also results an envelope. Proofs can be found in [7].

Theorem 1. Let Σ = 〈A, T 〉 be a KB, S ⊆ E ⊆ A∗ where S is the secrecy set
and E is Q-closed. Then E is a secrecy envelope of S.

Note that the whole initialization of the secrecy maintenance system (including
computation of SubC, A∗ and ES) is easily seen to be doable in polynomial time
in the size of the KB Σ plus the size of the given secrecy set S.

3.2 Query Answering

In this section we assume that the three sets SubC, A∗ and ES (the latter two,
restricted to SubC) have been precomputed in the pre-query stage as described
in Sect. 3.1. The computation of the answer to a query of the form C(a) is given
in Fig. 3. The input of the secrecy-preserving query answering procedure SPQA
contains the TBox T in normal form, precomputed assertional closure A∗, the
query C(a) and the precomputed secrecy envelope ES. Since sub-expressions of
C, denoted by sub(C), need not be in SubC, Line 2 in the SPQA procedure
expands SubC by adding expressions in sub(C) \ SubC. The expanded SubC will
be used to update A∗ by applying assertion expansion rules (Fig. 1) until none
of them is applicable, as indicated in Line 2. As a consequence, there may be
applicable Q-secrecy closure rules, implying that ES may no longer be a secrecy
envelope for S. Therefore, we apply necessary secrecy closure rules exhaustively
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SPQA(T ,A∗, C(a),ES):
1. if (C /∈ SubC) {
2. compute sub(C); SubC = SubC ∪ sub(C); expand A∗ to SubC;
3. expand the secrecy envelope ES to SubC; }
4. if (C(a) ∈ A∗ and C(a) /∈ ES) return “Yes”;
5. else return “Unknown”;

Fig. 3. Secrecy-preserving Query-answering Procedure

(Line 3). Clearly, a single invocation of the procedure SPQA takes polynomial
time (in the sum of the sizes of its arguments).

For queries of the form r(a, b), the procedure is much simpler: if r(a, b) ∈
A \ ES, then the answer is “Yes”; otherwise, the answer is “Unknown”. Here ES

is the current secrecy envelope.

Example 2. (Example 1, continued) Recall that we have a KB Σ1 = 〈A1, T1〉
and the secrecy set S1 = {CancerRisk(Jane)}. The assertional closure of Σ1,
denoted by A∗

1, and one possible envelope ES1 are listed below:
A∗

1 = A1 ∪ { A(Jill), ∃is child.A(Jane), CancerRisk(Jane), has pres(Jane, a),
∃has pres.CancerDrug(Jane), CancerDrug(a), CoveredDrug(a),
∃has pres.CoveredDrug(Jane), Reimburse(Jane)}.

ES1 = {CancerRisk(Jane), is child(Jane, Jill), HasMutBRCA1(Jane),
∃is child.A(Jane), ∃has pres.CancerDrug(Jane)}.

If the querying agent asks the query Reimburse(Jane), Reimburse(Jane)∈
A∗

1 \ ES1, the answer to the query is “Yes”. If the querying agent asks the query
CancerRisk(Jane), since CancerRisk(Jane)∈ A∗

1 ∩ ES1, the answer to the query
is “Unknown”. �

4 Summary and Discussion

Summary: In this paper, we have introduced a logic-based framework for se-
crecy preserving query answering in EL knowledge bases. We have provided a
polynomial time algorithm that, given an EL KB Σ, a set S of secrets to be pro-
tected and a query q, truthfully answers the query whenever: (i) Σ � q and (ii)
the answer to q, together with the answers to any previous queries answered by
the KB does not allow the querying agent to deduce any of the secrets in S. Our
approach exploits the open world semantics under which it is impossible for the
querying agent to distinguish between an answer “Unknown” resulting because
of incomplete knowledge of the KB or because of selective censoring of answers
by the KB. Our secrecy-preserving reasoning framework builds on, and substan-
tially extends, the privacy-preserving reasoning framework introduced by Bao
et al. [1] which considered protecting class-subclass relationships in hierarchical
ontologies.

Related Work: Most of the work in this area falls into four broad categories
of access control mechanisms, information confinement, preventing disclosure of
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information of specific individuals and controlled query evaluation. In contrast,
our approach permits the use of secrets in answering queries for a given KB
when it is possible to do so without compromising secrets under the OWA. A
detailed comparison can be found in [7].

Future Work: Some natural directions for future work include: (i) design of
an efficient algorithm for computing a “tight” envelope for EL KBs, i.e., an
envelope from which no statement can be dropped without risking the possibility
of secrets being compromised (such an algorithm is of interest in light of the fact
that our current algorithm is not guaranteed to produce a tight envelope and
the fact that computing the minimum envelope is NP-hard); (ii) exploration
of secrecy-preserving query answering algorithms in the case of more expressive
e.g., ALC, DL-Lite, and RDF KBs; (iii) investigation of secrecy-preserving query
answering in settings with multiple querying agents, under various restrictions
on communication among agents.
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Abstract. The Extended Resource Description Framework has been proposed to
equip RDF graphs with weak and strong negation, as well as derivation rules, in-
creasing the expressiveness of ordinary RDF graphs. In parallel, the Modular Web
framework enables collaborative and controlled reasoning in the Semantic Web.
In this paper we exploit the use of the Modular Web framework to specify the
modular semantics for Extended Resource Description Framework ontologies.

1 Introduction

The Extended Resource Description Framework [5] (ERDF) provides a model theo-
retical semantics for RDF graphs allowing negative triples, and ontologies defined by
first-order rules including the two forms of negation, weak and strong. However, no
means of combining different ontologies is specified. The necessity of mechanisms to
encapsulate and organize knowledge in the Semantic Web is essential [13,6,8,10], and
the ERDF framework has been extended to allow the specification of import and export
declarations of classes and properties, resulting in the Modular ERDF framework [3].
The semantics of the modular ERDF framework has also been defined model theoreti-
cally, but it was lacking a declarative rule-based semantics for implementing the system.

In parallel, the Modular Web Framework (MWeb) is a proposal to address the issues
of programming-in-the-wide faced by the new Semantic Web rule-engines [2,4]. MWeb
defines general constructs to allow sharing of knowledge in the Semantic Web provided
by logic based knowledge bases, including scoped open and closed world assumptions
with contextualized and global interpretation of predicates. The MWeb framework is
constructed, compatible and based on Rule Interchange Format (RIF) guidelines fos-
tering immediate integration with RDF [12]. MWeb provides two semantics designated
MWebWFS and MWebAS with a solid theory based on the two major semantics of
extended logic programming, respectively, Well-Founded Semantics with Explicit
Negation [1] and Answer Sets [9]. A compiler of MWeb into XSB Prolog is avail-
able1 making use of the tabling features to guarantee termination of recursive rules with
negation. It provides separate interface and implementation of rulebases with modular
and independent compilation.

1 The system can be downloaded at http://centria.di.fct.unl.pt/˜cd/mweb/

P. Hitzler and T. Lukasiewicz (Eds.): RR 2010, LNCS 6333, pp. 204–212, 2010.
© Springer-Verlag Berlin Heidelberg 2010

http://centria.di.fct.unl.pt/~cd/mweb/
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The major contribution of the paper is the specification of the semantics of ERDF
reasoning entirely in the MWeb framework, including alignment with RIF, support of
RDF and RDFS entailment, as well extensions to the original ERDF semantics for deal-
ing with closed classes and properties. These results complement the mapping of simple
modular ERDF ontologies into MWeb rulebases defined in [7]. Thus reasoning on sim-
ple modular ERDF ontologies can be achieved through our MWeb implementation2,
and in particular supporting modular reasoning over RDF(S) ontologies.

The paper is organized as follows. In Section 2 we illustrate how simple modular
ERDF ontologies are mapped into MWeb rulebases. Next Section 3, specifies the sup-
port of ERDF reasoning by MWeb logic rules instead of the formal model-theoretical
presentation of [3]. The paper finishes with some conclusions.

2 The MWeb Embedding of ERDF Ontologies

Simple modular ERDF ontologies [3] allow the combination of knowledge in different
ontologies. Specifically, a simple modular ERDF ontology (SMEO) is a set of sim-
ple r-ERDF ontologies. The language of simple r-ERDF ontologies allows the use of
ordinary triples s.[p ->> o] and negated triples neg s.[p ->> o] in the ERDF
graph, where s, p and o are respectively the subject, predicate and object of the state-
ment. Additionally, it allows to construct programs using deductive rules to derive new
(extended) triples by rules having bodies formed by combining the connectives naf
(weak negation), neg (strong negation), and conjunction. Moreover, provides mecha-
nisms to define modules of knowledge, which are described by an interface and formed
by an ERDF graph and a program. Finally, it provides a means to query other rulebases
via qualified literals of the form Lit@URI in rules. Details can be found in [3,7].

The MWeb framework requires for each rulebase (module of knowledge) the defi-
nition of an interface document and of the corresponding rulebase (logic) document.
The MWeb interface is formed by a sequence of declarations. First, the name of the
rulebase is stated via a rulebase declaration followed by an IRI. Optional base IRI
and prefixes can be declared for simplifying writing of classes and property names,
via a base and prefix declarations. Other interfaces may be recursively included via
a special import declaration. This mechanism will be used to import the interfaces
declaring the classes and properties defined by RIF, RDF, RDFS and ERDF. An op-
tional vocabulary declaration can be used to list the vocabulary of the rulebase. Next,
follow two blocks of declarations. The first block defines the predicates being defined
in the MWeb rulebase, and correspond to a generalization of export declarations found
in logic programming based languages. The second block correspond to generalization
of import declarations. The interesting feature of the MWeb framework is that besides
scope (i.e. internal, local, or global), different reasoning modes can be associated to
predicates (i.e. definite, open, closed, or normal). This allows control of monotonicity
of reasoning by the producer and consumer of the knowledge. In this work, all proper-
ties and classes are defined global (meaning that it can be defined in multiple rulebases)
and normal (meaning that weak negation can be used). The semantics of all MWeb
constructs can be found in [4] as well as additional motivation. In [7] it is defined the

2 The MWeb system is available at http://centria.di.fct.unl.pt/˜cd/mweb

http://centria.di.fct.unl.pt/~cd/mweb
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:- rulebase 'NamO'.
:- import('erdf.mw',interface).
:- vocabulary rdf:'_1',. . ., rdf:'_n'.
:- defines global normal class(mw:Vocabulary).
% For each class c exported to r1, . . . rn

:- defines global normal class(c) visible to 'r1',. . .,'rn'.
% For each property p exported to r1, . . . rn

:- defines global normal property(p) visible to 'r1',. . .,'rn'.
% For each class c imported from s1, . . . sm

:- uses normal class(c)from 's1',. . .,'sm'.
% For each property p imported from s1, . . . sm

:- uses normal property(p)from 's1',. . .,'sm'.
% Let u1, . . . , ud be the r-ERDF ontologies on which O depends
:- uses normal class(mw:Vocabulary)from'u1',. . .,'ud'.

Fig. 1. Simple Modular ERDF Ontologies Interface in MWeb

translation of simple modular ERDF ontologies into the MWeb framework, whose gen-
eral interface document is illustrated in Figure 1.

The first declaration in Figure 1 identifies the rulebase, while the import direc-
tive includes in the interface the necessary declarations for supporting ERDF reason-
ing, namely the vocabularies of RDF, RDFS and ERDF. The erdf.mw interface and
corresponding rulebase will be presented later on, and implements in MWeb itself the
underlying semantics of modular ERDF ontologies, including RIF, RDFS and RDF
combination. The next declaration lists a limited number of container membership
properties to be included in the vocabulary, in the case that at least one occurs in the
graph or in the program. However, the property rdf:_1 is always declared by the
erdf ontology. The vocabulary of the rulebase is collected in the pre-defined class
mw:Vocabulary of the MWeb framework and made visible to the allowed poten-
tial importing rulebases. The rulebase vocabulary is used for providing the domain for
(scoped) negation as failure, open and closed world assumptions.

The next group declares the exported classes and properties, via the defines dec-
laration of MWeb. The important point is that all classes and properties are defined
normal and global. This means that all classes and properties exported can be used
and redefined (global), and that rules can use weak negation (normal) and thus are
non-monotonic. The visibility list states where the class or property can be used.

The subsequent uses declarations correspond to the import part of the interface,
and are used in normal mode (weak negation allowed). The meaning of the importing
list is obvious. The last use declaration extends the vocabulary of the rulebase with the
vocabulary of the rulebases in the dependencies (directly or indirectly used modules).
Notice that the vocabulary used in the current interface and corresponding program
documents is automatically included, and need not to be declared.

The translation of the logic document of an r-ERDF ontology is immediate since
the syntax used to represent rules in ERDF and MWeb is almost identical. In general,
the MWeb logic document can start with an optional import declaration which allows
textual inclusion of the rules found in the imported document. Afterwards, the fact and
rules can be stated. The exact translation of simple modular ERDF programs can be
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found in [7], which is not presented for lack of space. Several examples of concrete and
full MWeb logic documents will appear in the rest of the paper.

3 Semantics of Modular ERDF Ontologies in MWeb

In this section we specify the semantics of ERDF entailment through MWeb rulebases.
This will be achieved incrementally and hierarchically, by providing first the definition
of the used RIF primitive predicates. Afterwards, the semantics of RDF will be defined
and made compatible with RIF as prescribed in [12], and subsequently a rulebase will
define RDFS. Finally, we take care of the features of ERDF entailment.

3.1 RIF Support

The supported Rule Interchange Format dialect implements fully the semantics of mem-
bership and subclass, frames, and equality (partially). Regarding connectives, the usual
binary conjunction, as well as strong and weak negations are supported. In order to
maintain compatibility with RIF and generality, all properties and classes are assumed
to be global and normal, allowing for the use of weak negation in the bodies, and thus
monotonicity cannot be guaranteed. The MWeb syntax recognizes frames of the form
?O.[?A1->>?V1,...,?An->>?Vn]which internally are translated into a conjunction
'->'(?A1,?O,?V1),...,'->'(?An,?O,?Vn) of the ternary predicate '->'/3.
The other binary RIF predicates '=' (equality), '#' (member), and '##' (subclass) have
the exact syntax of RIF, and for ease of presentation are infix operators. The semantics
of these predicates are provided by the rulebase of Figure 2.

RIF interface (rif.mw)

:- rulebase 'http://www.w3.org/2007/rif'.
:- prefix rif='http://www.w3.org/2007/rif#'.
:- defines internal normal name:'='/2, name:'#'/2, name:'##'/2, name:'->'/3.

RIF rulebase (rif.rb)

% RIF member relation
?O # ?CL :- ?O # ?SCL, ?SCL ## ?CL.
neg ?O # ?SCL :- neg ?O # ?CL, ?SCL ## ?CL.
% RIF subclass relation
?C1 ## ?C3 :- ?C1 ## ?C2, ?C2 ## ?C3.
% RIF equality theory.
?T = ?T :- ?T # mw:Vocabulary.
?T1 = ?T2 :- ?T2 = ?T1.
?T1 = ?T3 :- ?T1 = ?T2, ?T2 = ?T3.
neg ?T1 = ?T2 :- neg ?T2 = ?T1.
neg ?T1 = ?T3 :- ?T1 = ?T2, neg ?T2 = ?T3.
% RIF frames obtained by equality reasoning.
?O.[?P ->> ?V] :- ?O1.[?P ->> ?V], ?O = ?O1.
?O.[?P ->> ?V] :- ?O.[?P1 ->> ?V], ?P = ?P1.
?O.[?P ->> ?V] :- ?O.[?P ->> ?V1], ?V = ?V1.

Fig. 2. MWeb Rulebase Implementing RIF Relations

The interface document just defines the RIF primitive predicates being implemented
using predicate indicators (name/arity), and these are hidden with the internal keyword.
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RDF interface (rdf.mw)

:- rulebase 'http://www.w3.org/1999/02/22-rdf-syntax-ns'.
:- prefix rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'.
:- import( 'rif.mw', interface ).

:- vocabulary rdf:nil, rdf:' 1'.
:- defines internal normal class(rdf:Property), . . .
:- defines internal normal property(rdf:type), . . .

RDF rulebase (rdf.rb)

:- import( 'rif.rb', rulebase ).
% RDF compatibility with RIF makes # and rdf:type equivalent
?X # ?Y :- ?X.[ rdf:type ->> ?Y].
?X.[ rdf:type ->> ?Y] :- ?X # ?Y.
% RDF Entailment rule
?Z.[ rdf:type ->> rdf:Property] :- ? .[?Z ->> ? ].

% RDF Axiomatic triples
rdf:type.[rdf:type->>rdf:Property]. rdf:subject.[rdf:type->>rdf:Property].
rdf:predicate.[rdf:type->>rdf:Property]. rdf:object.[rdf:type ->> rdf:Property].
rdf:first.[rdf:type ->> rdf:Property]. rdf:rest.[rdf:type ->> rdf:Property].
rdf:value.[rdf:type ->> rdf:Property]. rdf:nil.[rdf:type ->> rdf:List].

% Infinitely many membership properties. Uses side-effects to restrict.
?X.[rdf:type ->> rdf:Property] :-
External(name:atom(?X),prolog), External(name:atom concat(rdf:' ',?N,?X ),prolog),
External(name:is number atom(?N),prolog).

Fig. 3. MWeb Rulebase Implementing RDF Entailment

Notice the use of the special prefix name which is associated with the empty string.
Class inheritance is captured by the first rule in document 'rif.rb'. Mark the need to
have a rule for taking care of the case where it is known that something does not belong
to the extension of some class (second rule). For subclass relation it is only required
transitivity, which does not have a dual negative rule.

Equality rules implement reflexivity, commutativity and transitivity. Reflexivity is
applied to the declared vocabulary collected in the pre-defined class mw:Vocabulary.
The equality rules are restricted to frames, and cannot handle complex terms3. Notice
that this is very similar to the rules of owl:sameAs in the OWL2 RL profile [11].

3.2 RDF Semantics

The semantics of the combination of RDF with rules is the one adopted by RIF and
specified in [12]. An ordinary triple s p o is syntactically represented by the RIF
frame s.[p ->> o]. RIF lists are not supported because would require introducing
complex terms in the language.

The support of RDF entailment is immediate and can be found in Figure 3. All
the classes and properties of the RDF vocabulary are declared in the interface docu-
ment 'rdf.mw'. Notice also the declaration of the prefix rdf to simplify writing of
URIs using Compact URI notation (CURIEs). A class declaration class(CURIE)
is short for ? # CURIE, while the property(CURIE) is syntactic sugar for

3 Full equality is not necessary for ERDF, whose terms are just URIs and literals.
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RDFS interface (rdfs.mw)

:- rulebase 'http://www.w3.org/2000/01/rdf-schema'.
:- prefix rdfs='http://www.w3.org/2000/01/rdf-schema#'.
:- import( 'rdf.mw', interface ).

:- defines internal normal class(rdfs:Resource), class(rdfs:Literal),
class(rdfs:Datatype), class(rdfs:Class), ...

:- defines internal normal property(rdfs:domain), property(rdfs:range),
property(rdfs:subClassOf), property(rdfs:subPropertyOf), ...

RDFS rulebase (rdfs.rb)

:- import( 'rdf.rb', rulebase ).

% RDFS compatibility into RIF requires including ## into rdfs:subClassOf
?X.[rdfs:subClassOf ->> ?Y] :- ?X ## ?Y.

% Some of RDFS entailment rules
?Z.[ rdf:type ->> ?Y] :- ?X.[rdfs:domain ->> ?Y], ?Z.[?X ->> ?W].
?W.[ rdf:type ->> ?Y] :- ?X.[rdfs:range ->> ?Y], ?Z.[?X ->> ?W].
?Z.[ rdf:type ->> ?Y] :- ?X.[rdfs:subClassOf ->> ?Y], ?Z.[rdf:type ->> ?X].

?X.[rdfs:subClassOf ->> ?X] :- ?X.[rdf:type ->> rdfs:Class] .
?X.[rdfs:subClassOf ->> ?Z] :-

?X.[rdfs:subClassOf ->> ?Y], ?Y.[rdfs:subClassOf ->> ?Z].
.
.
.

% other entailment and RDFS axiomatic triples follow

Fig. 4. MWeb Rulebase Implementing RDFS Entailment

the RIF frame? .[CURIE->>? ] resulting in better looking interface documents. The
? occurrences represent anonymous variables.

By the recommendation governing RIF-RDF compatibility, the predicates '#'/2 and
rdf:type should be made equivalent; this is achieved by the first rules in document
'rif.rb'. The only rule necessary for RDF entailment states that any predicate of a
triple must have type rdf:Property. Then, the axiomatic RDF triples are listed,
concluding with the special treatment of RDF container membership properties.

The RDF container membership properties are handled by external calls to Prolog
underlying system, since they are infinitely many (rdf:_1, rdf:_2, etc. . . ), and their
full inclusion would result in the generation of an infinite number of answers for some
non-ground queries. The rule only fires if the subject of the triple is bound at query time
with a ground atom.

3.3 RDFS Semantics

RDF Schema entailment is more complex to specify, but immediate. According to
RIF-RDF compatibility every RIF subclass instance is also an rdfs:subClassOf
instance (but not vice-versa). Afterwards, all the RDF schema inference rules and ax-
iomatic triples are encoded; container membership properties are treated as in the im-
plementation of RDF. Besides XML and plain literals, no other datatypes are handled.

A snippet of the MWeb implementation of RDFS entailment is present in Figure 4,
and adopts the complete RDFS entailment rules of [14]. The interface is very similar to
the one of RDF, adapted to the corresponding vocabulary.
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3.4 ERDF Semantics

The Extended Resource Description Framework vocabulary introduces the notions of
total and closed class, as well as total and closed property, and a mechanism to express
complementary properties, whose interface file 'erdf.mw' is depicted below:

:- rulebase 'http://erdf.org'.
:- prefix erdf='http://erdf.org#'.
:- import( 'rdfs.mw', interface ).

:- defines internal normal class(erdf:TotalClass),
class(erdf:PositivelyClosedClass), class(erdf:NegativelyClosedClass).

:- defines internal normal class(erdf:TotalProperty),
class(erdf:PositivelyClosedProperty), class(erdf:NegativelyClosedProperty).

:- defines internal normal property(erdf:complementOf).

Totalness is enforced by declaring the class and property having erdf:TotalClass
and erdf:TotalProperty type, respectively, corresponding to open world assump-
tions with respect to the declared vocabulary. Closed classes can be declared using type
erdf:PositivelyClosedClass or erdf:NegativelyClosedClass, similarly
erdf:PositivelyClosedProperty, and erdf:NegativelyClosedProperty

can be used to declare closed properties. These correspond to closed world assump-
tions with respect to the declared vocabulary.

The semantics of the ERDF constructs is specified in the rulebase 'erdf.rb'. Ob-
viously, the document 'erdf.rb' starts by importing the defining rules of RDFS, RDF
and RIF rulebases with the initial declaration :- import('rdfs.rb', rulebase).
The relationship to RIF primitive predicates is extended to negative extensions of the
predicates by the following rules:

neg ?X # ?Y :- neg ?X.[ rdf:type ->> ?Y].
neg ?X.[rdf:type ->> ?Y] :- neg ?X # ?Y.
neg ?X.[rdfs:subClassOf ->> ?Y] :- neg ?X ## ?Y.

The next rule extends RDF entailment by assigning the type rdf:Property to prop-
erties which are used in negative triples:

?Z.[rdf:type->>rdf:Property] :- neg ? .[?Z->>? ].

ERDF extends RDFS with rules for propagating “downwards” in the hierarchy neg-
ative class and negative property extensions:

neg ?Z.[rdf:type ->> ?X] :- ?X.[rdfs:subClassOf->>?Y], neg ?Z.[rdf:type->>?Y].
neg ?Z1.[?X ->> ?Z2] :- ?X.[rdfs:subPropertyOf->>?Y], neg ?Z1.[?Y->>?Z2].

The remaining rules take care of specificities of ERDF entailment itself. The seman-
tics of total classes and properties are captured by the next rules encoding open-world
assumptions. Since these rules require the use of negation as failure, we have to guar-
antee grounding of the free variables in order to avoid unsoundness of reasoning. The
grounding of variables is made with respect to the rulebase declared vocabulary, and
therefore is a scoped negation as failure:

neg ?Z.[rdf:type->>?X] :- ?X.[rdf:type ->> erdf:TotalClass],
?Z#mw:Vocabulary, naf ?Z.[rdf:type->>?X].

?Z.[rdf:type->>?X] :- ?X.[rdf:type ->> erdf:TotalClass],
?Z#mw:Vocabulary, naf neg ?Z.[rdf:type->>?X].
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neg ?Z1.[?X->>?Z2] :- ?X.[rdf:type ->> erdf:TotalProperty],
?Z1#mw:Vocabulary, ?Z2#mw:Vocabulary, naf ?Z1.[?X->>?Z2].

?Z1.[?X->>?Z2] :- ?X.[rdf:type ->> erdf:TotalProperty],
?Z1#mw:Vocabulary, ?Z2#mw:Vocabulary, naf neg ?Z1.[?X->>?Z2].

The semantics of closed classes and properties are captured by using one of the rules
in the definition for total ones. For instance, a positively closed class means that its pos-
itive instances are exhaustive, therefore all the remaining individuals in the vocabulary
are known to not belonging to the class (this is captured in the first rule below). Nega-
tively closed classes have a dual interpretation. The notion of positively and negatively
closed properties are similar.

neg ?Z.[rdf:type->>?X] :- ?X.[rdf:type->>erdf:PositivelyClosedClass],
?Z#mw:Vocabulary, naf ?Z.[rdf:type->>?X].

?Z.[rdf:type->>?X] :- ?X.[rdf:type->>erdf:NegativelyClosedClass],
?Z#mw:Vocabulary, naf neg ?Z.[rdf:type->>?X].

neg ?Z1.[?X->>?Z2] :- ?X.[rdf:type->>erdf:PositivelyClosedProperty],
?Z1#mw:Vocabulary, ?Z2#mw:Vocabulary, naf ?Z1.[?X->>?Z2].

?Z1.[?X->>?Z2] :- ?X.[rdf:type->>erdf:NegativelyClosedProperty],
?Z1#mw:Vocabulary, ?Z2#mw:Vocabulary, naf neg ?Z1.[?X->>?Z2].

For legacy applications to be able to express negative triples in ordinary RDF graphs,
the ERDF vocabulary includes a mechanism to state that properties are complementary
with the property erdf:complementOf. The net effect is the exchange of the positive
and negative instances of the complementary properties:

neg ?S.[?P->>?O] :- ?P.[erdf:complementOf->>?Q], ?S.[?Q->>?O].
neg ?S.[?P->>?O] :- ?Q.[erdf:complementOf->>?P], ?S.[?Q->>?O].
?S.[?P->>?O] :- ?P.[erdf:complementOf->>?Q], neg ?S.[?Q->>?O].
?S.[?P->>?O] :- ?Q.[erdf:complementOf->>?P], neg ?S.[?Q->>?O].

Finally, the axiomatic triples of ERDF are included which basically state that all
classes in the ERDF vocabulary are subclasses of rdfs:Class and that the special
property erdf:complementOf has domain and range rdf:Property. For lack of
space these are not included here, but are trivial to state.

A direct translation into extended logic programming of the MWeb rulebases has
been defined in [7], which uses a quad representation '->'('m',p,s,o) predicate to
state that triple s p o is true at MWeb rulebase m. Briefly, a uses class(C) decla-
ration in the interface of m generates, for each rulebase 'ri ' in its from list, the rule
'#'('m',?X,C) :- '#'('ri',?X,C). A uses property(P) generates, for each
rulebase 'ri ' in its from list, the rule '->'('m',P,?S,?O):-'->'('ri',P,?S,?O).
Program rules are translated by introducing an extra first argument 'm' to all literals in
the rule, except for qualified literals L@o whose new (first) argument is 'o'. This trans-
lation has been shown sound and complete with respect to the simple modular ERDF
ontologies semantics [3], and can be used for query answering of simple modular ERDF
ontologies.

4 Discussion and Conclusions

This work provides a rule-based declarative specification of ERDF entailment in simple
modular ERDF ontologies, via the embedding of simple modular ERDF ontologies into
the MWeb framework filling in the details in [7]. The specification is based on a novel
program transformation. It reports, to the best of our knowledge, the first complete
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approach combining for the first time RIF and RDFS semantics, and extends it to the
case of graphs capable of expressing negative information and ontologies with open,
closed world assumptions, and scoped negation as failure. The representation power is
complemented with features for combining modularly ontologies in the Semantic Web.

A complete working system resorting to the MWeb implementation in XSB Pro-
log 3.2 has been developed, and is available for download with promising results. We
performed a first comparison using the W3C’s Wine ontology, determing CPU times
for RDFS inference without equality reasoning (discarding loading and compile times).
Briefly, Jena’s (2.6.2) inbuilt RDFSReasoner was 2 times slower than our MWeb imple-
mentation, while Jena’s Generic reasoner was 100 times slower. Euler Yap (Eye 3414)
shown to be 4 times slower and CWM-1.2.1 was 100 times slower.
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Abstract. Semantic wikis and other modern knowledge management
systems deviate from traditional knowledge bases in that information
ranges from unstructured (wiki pages) over semi-formal (tags) to formal
(RDF or OWL) and is produced by users with varying levels of expertise.
KWQL is a query language for semantic wikis that scales with a user’s
level of expertise by combining ideas from keyword query languages with
aspects of formal query languages such as SPARQL. In this paper, we
discuss KWQL’s implementation KWilt: It uses, for each data format
and query type, technology tailored to that setting and combines, in a
patchwork fashion, information retrieval, structure matching and con-
straint evaluation tools with only lightweight “glue”. We show that it
is possible to efficiently recognize KWQL queries that can be evaluated
using only information retrieval or information retrieval and structure
matching. This allows KWilt to evaluate basic queries at almost the
speed of the underlying search engine, yet also provides all the power of
full first-order queries, where needed. Moreover, adding new data formats
or abilities is easier than in a monolithic system.

1 Introduction

To accommodate all users, modern knowledge management systems such as se-
mantic wikis must deal with both unstructured (textual or multi-modal) informa-
tion as well as structured data carrying varying degrees of semantics: hierarchical
data for document and simple classification structures, social classifications in
form of tag networks, formal ontologies in RDF or OWL. Expert users in such
systems can define semantically rich, automated analysis or derivation tasks.
However, the vast number of users has little understanding of formal knowledge
representation, produces unstructured information with lightweight semantic an-
notations such as free-form tags, and interacts with the system through simple
but imprecise keyword queries.

From these observations, we derive two properties that characterize successful
modern knowledge management systems:
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(1) “Interfaces must be adaptable and flexible”: Interfaces should scale
with user experience: For novice users, simple, but imprecise queries are useful
for satisfying their information needs; for expert users precise, but necessarily
fairly complex queries that enable automated action and derivation are required.
Interfaces should also be able to adapt to different types of knowledge in a
system, providing a consistent interface.

(2) “Patchwork knowledge management”: Due to the growth in data
size and formats, knowledge management systems face a dual challenge: Users
expect high performance for (at least basic) queries regardless of the data scale,
as in Web search engines. On the other hand, knowledge management systems
must be able to adapt quickly to additional knowledge sources, providing scalable
yet sufficiently expressive interfaces to query and process such data.

In this paper, we present a patchwork approach to knowledge management
using the query language KWQL and its implementation, KWilt. We choose
the setting of a semantic wiki, KiWi, as it exemplifies many of the challenges
outlined above.
KWQL: Scale with User Experience. To illustrate how KWQL provides a
consistent interface that easily adapts to different levels of user experience, con-
sider the following scenario: “In a wiki describing KiWi, we would like to find all
wiki pages that describe (knowledge management) systems that have influenced
the development of KiWi.”

In a conventional knowledge management system, we would expect a formal
relation (e.g., wk:influences) that represents the very intent of our query.
Indeed, given an RDF representation of such a query we can query such a relation
in KWQL as (assuming wk:KiWi represents the KiWi system):

ci(rdf(predicate:’wk:influences’ object:’wk:KiWi’))

However, in most cases this relation is not present explicitly. Even if it is,
users are often not able to express their intent in such a formal manner.

Accustomed to Web search engines, novice users might start with a keyword
query that returns all resources (or content items) containing “KiWi”: KiWi

Obviously, such a query is too unspecific to capture the above query intent
and, in fact, may omit a number of systems, that are described without reference
to KiWi, but that are referenced from the description of KiWi.

Thus, we might refine the query to return such referenced resources, i.e.,
resources that are the target of a link originating from a wiki page containing
“KiWi”: $u @ ci(KiWi link(target:ci(URI:$u))

The $u @ of the query ensures, that not the content item that points to the
page, but rather the page that is pointed at, is returned by the query. However,
that query is not specific enough, as it returns also, e.g., technologies used in
KiWi. We know that KiWi is a semantic wiki and might be tempted to amend
that query to return only resources that are also semantic wikis:

$u @ ci(KiWi link(target:ci(URI:$u tag(name:’semantic wiki’)))
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But there might well be other systems that have a significant influence on
KiWi. To also capture them, we choose the query:

$u @ ci(KiWi tag(name:$t) link(target:ci(URI:$u tag(name:$t)))

It returns all resources that are tagged the same as a wiki page containing “KiWi”
that also links to the returned resource. This way we likely capture resources
with similar characteristics as KiWi that are also mentioned in its description.

To summarize, KWQL’s main contributions over existing query languages and
similar interfaces for knowledge management systems are:

1. KWQL provides a consistent interface for access to the wide range of
knowledge present in the semantic wiki KiWi.

2. KWQL is designed to scale with the user experience: Queries can take
the form of bags of keywords, but also be extended with increasingly more precise
constraints on the structure, tags, and formal annotations of wiki pages.

3. KWQL is well integrated into KiWi, it covers all aspects of its data
model and is used in KiWi’s rule language.
KWilt: Patchwork Knowledge Management. Previous approaches have
often tried to engineer a knowledge information systems for such diverse infor-
mation and user needs from the start. In constrast, KWilt, KWQL’s implemen-
tation in KiWi, uses a “patchwork” approach, combining performant and mature
technologies where available. For example, KWilt uses a scalable and well estab-
lished information retrieval engine (Solr) to evaluate keyword queries. In fact,
KWilt tries to evaluate as large a fragment of any KWQL query in the informa-
tion retrieval engine as possible. If necessary, the results are further refined by
(1) checking any structural constraints of the query and (2) finally enforcing all
remaining first-order constraints, e.g., from multiple variable occurrences.

KWilt’s patchwork approach has three main advantages:

1. Many queries can be evaluated at the speed of search engines, yet all the
power of first-order logic is available if needed, as detailed in Section 4: The three
steps use increasingly more expressive, but also less scalable technologies.
Thus even for queries that involve full first-order constraints, we can, in most
cases, substantially reduce the number of candidates in the information retrieval
engine and by enforcing structural constraints before evaluating the first-order
constraints.

2. Each part is implemented using proven technologies and algorithms with
minimal “glue” between the employed tools, see Section 2.

3. The separation makes it easy to adapt each of the parts, e.g., to
reflect additional data sources. E.g., if KiWi would introduce data with different
structural properties, e.g., strictly hierarchical taxonomies in addition to RDF
ontologies only the part of KWilt that evaluates structural constraints needs to
be modified. Similarly, if KWQL would introduce other content primitives other
than keywords (e.g., for image retrieval), only the first (retrieval) part of KWilt
would be affected.
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2 KWilt: Architecture and Evaluation Phases

Evaluating KWQL queries is a challenging task that cannot be accomplished by
existing query engines for (semantic) wikis. For instance, the query

ci(KiWi tag(name:$t) link(target:ci(tag(name:$t))))

combines content and structural elements with variables to find content items
that a wiki page containing “KiWi” links to and that have at least one tag in
common with their linking page.

Despite the unique combination of features found in KWQL, KWilt does
not try to “reinvent the wheel”. In particular, we have chosen not to build a
new index structure capable of combining all these aspects in a single index
access, as this approach has several drawbacks. First and foremost, the rich
data model would require a fairly complex index structure that can support
content and structure queries, fast access to hierarchical data and link graphs,
RDF graph navigation as well as navigation over (simpler, but less regular)
containment and link relations. Moreover, it is quite likely that the data model
evolves over time with new kinds of data or different representation formats
introduced, in particular in the field of social semantic media. Using a complex
index structure which is carefully adapted for a certain data model makes it
hard or even infeasible to react to these potential changes.

Instead, we used an patchwork, or integration, approach to combine off-the-
shelf state-of-the-art tools in a single framework. For that, the evaluation is split
into three different evaluation phases which are dedicated to certain aspects
of the query. Each step makes use of a tool which is particularly suitable for
evaluating the query constraints covered by that aspect of the entire evaluation,
e.g., for keyword queries we use a traditional search engine. Thus, efficient and
mature algorithms form the basis of our framework while the framework itself
remains flexible with lightweight “glue” to combine the evaluation phases.

Evaluating keyword queries: Most KWQL queries, in particular by novice
users, mostly or only regard the content of the pages. Therefore, the first evalua-
tion phase regards the keyword parts of a query in order to evaluate them in an
early phase of the evaluation with as little overhead as possible. In particular, if
all constraints of the query can be validated in this phase, the two subsequent
phases can be skipped.

The information retrieval engine Solr provides a highly optimized inverted list
index structure to carry out keyword queries on a set of documents. Each docu-
ment consists of an arbitrary number of named fields which are most commonly
used to store the text of a document and its meta data. In order to benefit from
Solr, the content of the wiki needs to be stored in this index, i.e., all resources
including their dependencies need to be translated to flat Solr documents.

In order to use Solr for the evaluation of KWQL queries, the meta data of
wiki pages and further the meta data of its tags, fragments and links are stored
in a Solr document. The main principle of the translation is to materialize joins
between content items and the directly connected resources (tags, fragments,
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links) that are commonly queried together in the same query. These materialized
joins are then stored in the fields of the document representing the content item.
Thus, queries regarding the meta data of content items and even the meta data
of its tags, fragments and links can be directly answered with Solr. However, the
transformation of the resources connected to a content item to fields in the Solr
index is lossy, since the value of multiple resources is stored in a single field.
Thus, if multiple properties of a resource are queried, it cannot be guaranteed
that hits in the index belong to the same resource. Therefore is necessary for
certain kinds of queries to validate the generated result set of Solr.

To keep the index small only dependencies to flat resources (that can not be
further nested) are materialized, which omits in particular nesting and linking
of content items. Therefore, only queries that access content items together with
their content, meta-data and directly related flat resources can be evaluated
entirely in Solr. As soon as nesting and linking of content items comes into play,
however, we use Solr only to generate a set of candidates which match those
parts of the query for which all necessary information stored in the Solr index.

In order to evaluate a KWQL query through Solr, a portion of the KWQL
query (that can be evaluated by Solr) is converted to the query language of Solr.
Information which is not covered by the materialized joins and variables are
either disregarded or at least converted to an existential quantification in order
to reduce the number of false positives.

Evaluating structural constraints: The second phase takes the structural
parts of a query into account. All resources are represented as common objects
in the KiWi system and their dependencies are modeled by references between
the interrelated objects. The objects are persisted using a common relational
database in combination with an object relational mapping.

In the current prototype, we validate the structural properties of a query for
each candidate item individually. That means, nested resources (tags, fragments,
links and contained content items) which are specified in the query are considered
by traversing the references of the currently investigated object.

We choose this approach, as structural constraints are often validated fairly
quickly and far less selective than the keyword portions of KWQL queries. How-
ever, for future work we envision an extension of KWilt that improves on the
current implementation in two aspects: (a) It estimates whether the structural
part is selective enough to warrant its execution without considering the candi-
dates from the previous phase, followed by a join between the candidate sets from
the two phases. (b) If structural constraints become more complex, specialized
evaluation engines for hierarchical (XML-style) data, e.g, a high-performance
XPath engine, for link data, e.g., various graph reachability indices, and for
RDF data might be advantages.

In addition to the verification of the structural constrains, the structural de-
pendencies of the contributing resources and the required values of their quali-
fiers are stored in relations which are needed during the last evaluation phase.
For instance the titles of content items are stored in the relation Rtitle which is
therefore a set of tuples of identifiers and strings.
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Evaluating first-order constraints over wiki resources: In the final evalu-
ation phase, first-order constraints over wiki resources are considered, as induced
by the KWQL variables (and some advanced features of KWQL such as injec-
tivity, that are not further discussed here).

Following constraint programming notation, we consider a first-order con-
straint a formula over logical relation on several variables. In order to use these
constraints to express a KWQL query, every expression of a query that is in-
volved in constraints not yet fully validated is represented by some variables.
These variables are then connected using relations which reflect the structural
constraints between the resources from the query and their meta data. These
relations are constructed during the prior evaluation phase since all required
values and dependencies of the resources are regarded in this phase anyhow.

For instance, to express that a content item has a certain title, the relation
Rtitle is used: (C,KiWi) ∈ Rtitle. This constraint causes the variable C to be
bound only to identifiers of content items with the title “KiWi”. Likewise, the
relation Rtag is used to specify that a content item has a tag: (C, T ) ∈ Rtag.

For each KWQL variable of the query, a new first-order variable is generated
that can be used in the structural constraints. For instance, the query

ci(title:$t tag(name:$t))

can be represented as: (C, $t) ∈ Rtitle ∧ (C, T ) ∈ Rtag ∧ (T, $t) ∈ Rname.
Thus the relations are used to connect the formal representation of the query

and the candidate matches. In case of the example, the constraints ensure that
the content item’s title is equal to the name of one of its tags. The first-order
constraints are evaluated using the constraint solver choco.

Any content item that fulfills the constraints validated in all three phases is
a match for the entire query. In fact, since we only feed candidate matches from
the prior phase to each subsequent phase, the content item (identifiers) returned
by choco immediately give us the KWQL answers.

3 Skipping Evaluation Phases: KWQL’s Sublanguages

The evaluation of a general KWQL query in KWilt is performed in three phases
as described in the previous section. However, not all evaluation phases are
required for every KWQL query. In the following, we give a characterization of
KWQL queries that can be evaluated using only the first phase (and skipping
the remaining ones), or only the first and second.

Keyword KWQL or KWQLK is the restriction of KWQL to mostly flat
queries where resource terms may not occur nested inside other resource terms
and structure terms are not allowed at all.

Since tags and fragments itself can not be nested more than one level, we
can also materialize all tags and fragments for each content item. However, in
contrast to (string-valued) qualifiers a content item can have multiple tags or
fragments. To allow evaluation with a information retrieval engine such as Solr,
we have to ensure that multiple tag or fragment expressions always match with
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different tags or fragments of the surrounding content item. This avoids that we
have to enforce the injectivity of these items in a later evaluation phase.

To ensure this, we allow tag and fragment queries but disallow 1. two keyword
queries as siblings expressions in tag or fragment queries and 2. two tag or
fragment queries as sibling expressions

KWQLK expressions can be evaluated entirely by the information retrieval
engine (here: Solr). This is obvious for keywords. String-valued properties, tags,
and fragments and qualifiers are materialized in Solr together with their resources
(as specific fields) and thus can be queried through Solr as well.

Tree-shaped KWQL or KWQLT allows only queries corresponding to tree-
shaped constraints. Thus, no multiple occurrences of the same variable, and no
potentially overlapping expression siblings.

Intuitively, two expressions are called overlapping if there is a KWQL node in
any document that is matched by both expressions. E.g., ci(tag(Java)) and
Java are overlapping since both match content items. Unfortunately, this defini-
tion of overlapping does not lead to an efficient syntactic condition, as it is easy
to see that containment of KWQL queries is special case of overlapping. Fur-
ther, containment of KWQL queries is NP-hard by reduction from containment
of conjunctive queries.

Therefore, we define an equivalence relation on expressions, called potential
overlap, as a conservative approximation of overlapping. It holds between two
expressions if they have the same return type in the KWQL semantics or if the
return type of one is a subset of that of the other one. E.g., desc:ci(Lucene)
and child:ci(Java) potentially overlapping, but target:ci(Java) does not
overlap with either. This is only an approximation. For instance, child:ci(
URI:a) and child:ci(URI:b) potentially overlap, though each content-item
has a unique URI and thus the two expressions never actually overlap.

KWQLT expressions can be evaluated by using only Solr and checking the
remaining structural conditions in the second evaluation phase. Full first-order
constraints are not needed and the third (choco) phase can be skipped.

Proposition 1. Given an arbitrary KWQL query, we can decide in linear time
and space in the size of the query if that query is a KWQLK query and in
quadratic time if it is a KWQLT query.

Proof. From the definitions of KWQLK and KWQLT it is easy to see that testing
membership of a general KWQL expression can be done by a single traversal
of the expression tree. In the case of KWQLT we also have to test each (of the
potentially quadratic) pairs of siblings for overlap and storing already visited
variables.

4 Evaluating a KWQL Query in KWilt

Experiments were performed to analyze the evaluation times for queries of all
three types of queries in a prototype implementation of KWilt. The KiWi sys-
tem was run on a 2.66GHz Quad-Core iMac and filled with a data set of 431
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Table 1. Evaluation times for various KWQL queries

Query evaluation time

KiWi 34 ms
KiWi tag(name:$t) 36 ms
ci(text:KWQL title:KiWi) 29 ms

ci(KiWi tag(name:KiWi)
link(target:ci(URI:$u tag(name:KiWi)))) 416 ms

ci(KiWi tag(name:$t)
link(target:ci(URI:$u tag(name:$t)))) 580 ms

ci(tag(name:$t)
link(target:ci(URI:$u tag(name:$t)))) 796 ms

content items describing the KiWi project and KWQL. The reasoning and in-
formation retrieval modules of KiWi were deactivated to constrict the amount
of background activity in the system. Every query was evaluated fifty times and
the average was taken. The resulting evaluation times are given in table 1.

During evaluation, all queries are first parsed and then (partially) translated
to the query language of Solr. For example, the query from the introduction

$u @ ci(KiWi tag(name:$t) link(target:ci(URI:$u tag(name:$t)))

is translated to the following Solr query:

type:ci AND (title:KiWi OR text:KiWi OR . . .) AND tags:[* TO *]

Here, not only the keyword KiWi is included in the query but also the query
for the tag, but since Solr does not support variables, the query for the tag is an
existence constraint (indicated by [* TO *] as value of the tags qualifier).

The first three queries in the table can be fully captured with Solr and no
further steps are needed. This is reflected in their low evaluation times. The
other three queries contain constraints for validation in the subsequent phases.

In the next evaluation phase, the structural properties of the content items
are validated against the query constraints. In order to gain full access to all
properties of the content item, not just the simplified version stored in the Solr
index, but the full representation is retrieved from the KiWi database.

This step is required to evaluate the “target” qualifiers in the remaining three
queries. After the second evaluation phase, the fourth query has been fully eval-
uated. Its evaluation time is higher than that of the queries without structural
constraints, but lower than the evaluation times of the remaining two queries
which are further evaluated in the third evaluation phase1.

In the last evaluation phase, all valid variable bindings are determined. There-
fore, the query, or rather the still unverified parts of the query, are expressedin

1 The current prototype always performs preparation for phase three in phase two.
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a way suitable for the constraint solver choco. To this end, the relations con-
taining the information about the resources are connected by variables.

(C1, T1) ∈ Rtag ∧ (T1, $t) ∈ Rname ∧ (C1, L) ∈ Rlink ∧ (L, C2) ∈ Rtarget

∧ (C2, $u) ∈ RURI ∧ (C2, T2) ∈ Rtag ∧ (T2, $t) ∈ Rname

The constraint solver then tries to determine bindings for all variables which
satisfy the given constraint. The variable $t ensures that both tags of the query
have the same name, whereas $u is used to obtain the URI of the content item
that is pointed at, which will be returned as an answer to the query.

If the constraint solver does not succeed in finding a valid binding for the
variables the content item is dropped from the candidate set, since it does not
fulfill the constraints and therefore does not match the query.

5 Conclusion

To summarize, KWQL and KWilt together address two of the main challenges
raised by the “democratization” of knowledge management driven by social tech-
nologies such as semantic wikis. KWQL provides a consistent interface for access-
ing knowledge in the semantic wiki KiWi. It addresses both the needs of novice
users accustomed to simple, yet imprecise keyword interfaces, and of expert users
that aim to write precise queries for automated processing.

KWilt implements KWQL by combining existing, proven technologies. This
patchwork query engine allows us to quickly adapt to changes in the data formats
and querying capabilities required by KiWi and its users. On the other hand, it
also provides a stable, performant platform for search in a Wiki. Basic, keyword
queries can be evaluated nearly at the speed of the underlying search engine and
more complex queries can benefit from the fast filter phase.

The prototype of KWilt is already integrated in the current KiWi pre-release.
First results illustrating KWilt’s performance on the different types of queries
were presented in this paper, demonstrating the effectiveness of our approach.
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Abstract. We formalize the problem of service composition in the frame-
work of a constructive description logic. We propose a declarative service
specification language and a calculus for service composition.

1 Introduction

Semantic Web services are descriptions of the capabilities and the structure
of services in the languages of the semantic Web. The current proposals for the
representation of semantic Web services, as OWL-S [5], view services as processes
with pre- and post- conditions and effects. The representation by pre- and post-
conditions describe the requirements and output of a service that is useful to
retrieve the service; the representation of the process associated with a service
describe the interaction with other given services.

One of the main problems in the context of Web services is their composition.
The problem can be stated as follows: given a composition goal, represented
as a service with pre- and post- conditions, compose the available services so
to satisfy the goal. Obviously in this context the challenge is to provide tools
to support the definition of the composite service or, at best, to automatize
the entire composition process. In this paper we discuss the problem of service
composition in the context of the constructive description logic BCDL [4].

The main goal of this paper is to show how constructive DLs provide a natural
framework for studying the problem of services composition. A detailed discus-
sion and exemplification of the result of this paper is given in [2]. In this paper
we simply detail manual composition of services, but by implementing our com-
position calculus we would obtain a method for automatic composition. Towards
this, we need an implementation of BCDL0 and mappings from standard specifi-
cation languages. For automatic composition, we plan to study the properties of
our calculus and BCDL0, also comparing with BCDL and KALC, a constructive
DL for which a terminating tableaux procedure has been presented in [3], and
with software synthesis and action formalisms.

2 Service Composition in BCDL0

The underlying logic. The language L of BCDL0 is same of ALC starting from the
sets NR of role names, NC of concept names and N of individual names. Concepts

P. Hitzler and T. Lukasiewicz (Eds.): RR 2010, LNCS 6333, pp. 223–226, 2010.
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are defined as in ALC from the constructors �, �, ¬, ∀ and ∃. A formula K over
L is either ⊥, a role formula (c, d) : R, a concept formula c : C or a subsumption
A � C, where c, d ∈ N , R ∈ NR, A ∈ NC and C is any concept. A theory T
consists of a TBox and an ABox. A TBox is an acyclic finite set of formulas of
the form A�C. An ABox is a finite set of concept and role assertions.

Models M = (DM, .M) for L coincide with the usual ALC models [1]. A
formula K holds in M, and we write M |= K if: K �= ⊥; K = (c, d) : R and
(cM, dM) ∈ RM; K = c : C and cM ∈ CM; K = A�C and AM ⊆ CM.

In BCDL0 a formula K is interpreted w.r.t an information term [4], that is
a structured object α that provides a justification for the validity of K in M.
Given a formula K and a model M for L, the set of information terms it(K)
and the realizability relation M � 〈α〉K are defined as follows:1

– For K simple formula2, it(K) = {tt} and M � 〈tt〉K iff M |= K.
– it(c : C1 � C2) = it(c : C1) × it(c : C2) and M � 〈(α, β)〉 c : C1 � C2 iff

M � 〈α〉 c : C1 and M � 〈β〉 c : C2.
– it(c : C1 � C2) = it(c : C1) � it(c : C2) and M � 〈(k, α)〉 c : C1 � C2 iff

M � 〈α〉 c : Ck.
– it(c : ∃R.C) = N ×

⋃
d∈N it(d : C) and M� 〈(d, α)〉 c : ∃R.C iff M |= (c, d) :

R and M � 〈α〉 d : C.
– it(c : ∀R.C) = (

⋃
d∈N it(d : C))N and M � 〈φ〉 c : ∀R.C iff M |= c : ∀R.C

and, for every d ∈ N , if M |= (c, d) : R then M � 〈φ(d)〉 d : C
– it(A�C) = (

⋃
d∈N it(d : C))N and M � 〈φ〉A�C iff, M |= A�C and, for

every d ∈ N , if M |= d : A then M � 〈φ(d)〉 d : C

An information term for a set Γ of formulas is a function η mapping every K ∈ Γ
in an element of it(K). M � 〈η〉Γ iff M � 〈η(K)〉K for every K ∈ Γ .

BCDL0 is a subsystem of BCDL [4]. A sound and complete natural deduction
calculus ND for BCDL is presented in [4], where it is also shown how ND supports
the proofs-as-programs paradigms. In particular, given a proof π of a formula
K from a set of formulas Γ we can extract from π an operator Φπ associating
with every η ∈ it(Γ ) a α ∈ it(K) such that M� 〈η〉Γ implies M� 〈α〉K. This
result also holds for BCDL0 and it is the main result needed in the following.

Service definition. A service specification has the form s(x) :: P ⇒ Q where: s is
a label identifying the service; x is the input parameter of the service (ranging
over N ); P and Q are concepts. P is called the service pre-condition, denoted
with Pre(s), and Q the service post-condition, denoted with Post(s). A service
implementation is a function Φs :

⋃
t∈N it(t : P ) →

⋃
t∈N it(t : Q). We call

service definition the pair S = (s(x) :: P ⇒ Q, Φs). Given a model M, Φs

uniformly solves s(x) :: P ⇒ Q in M iff, for every c ∈ N and every α ∈ it(c : P )
if M � 〈α〉 c : P then M � 〈Φs(α)〉 c : Q.

1 Given two sets A and B, A�B denotes their disjoint union and BA denotes the set
of functions from A to B.

2 Simple formulas are ⊥, role formulas and concept formulas c : C with C either an
atomic or a negated concept.



Composition of Semantic Web Services in a Constructive Description Logic 225

s(x) :: A⇒ B

s1(x) :: A1 ⇒ B1

· · ·
sn(x) :: An ⇒ Bn

AND AC

{
(ak) T, x : A � x : Ak, k = 1, . . . , n

(b) T, x : B1 � . . . �Bn � x : B

CI Φs(α) = Φb(Φs1(Φa1(α)), . . . , Φsn(Φan(α)))

s(x) :: A⇒ B

s1(x) :: A1 ⇒ B1

· · ·
sn(x) :: An ⇒ Bn

CASE AC

{
(a) T, x : A � x : A1 � . . . �An

(bk) T, x : Bk � x : B, k = 1, . . . , n

CI Φs(α) = Φbk
(Φsk (αk)) with (k, αk) = Φa(α)

s(x) :: A⇒ B

s1(x) :: A1 ⇒ B1

· · ·
sn(x) :: An ⇒ Bn

SEQ AC

⎧⎪⎨
⎪⎩

(b1) T, x : A � x : A1

(bk) T, x : Bk−1 � x : Ak, k = 2, . . . , n

(c) T, x : Bn � x : B

CI Φs(α) = Φc( Φsn · Φbn · . . . · Φs1 · Φb1 (α) )

s(x) :: A⇒ B AX AC (a) T, x : A � x : B CI Φs(α) = Φa(α)

s(x) :: A⇒ B ENV with (s, Φs) a service defined in E

Fig. 1. The rules of calculus SC

Essentially, a service definition corresponds to an effective Web service. The
service specification provides the formal description of the behavior of the ser-
vice in terms of pre- and post- conditions. The function Φs represents a formal
description of service implementation.

Composition of services. The problem of services composition amounts to build
a new service from a family of implemented services. We formalize this problem
in the context of an environment, that is a structure E = 〈L,T, η, S1, . . . , Sn〉
where T is a theory over the language L, η ∈ it(T), for every i ∈ {1, . . . , n},
Si = (si, Φi) is a service definition in L. M is a model for E iff M � 〈η〉T and
for every i ∈ {1, . . . , n}, Φi uniformly solves si in M. A service specification s′

is solvable in E if there exists an implementation Φ′ of s′ such that, for every
model M of L, if M is a model for E then Φ′ uniformly solves s′ in M.

Now, the main point of service composition is to effectively build the imple-
mentation of the service specification starting from the environment. There are
two ways to approach the problem: the first one consists in the definition of a
composition language which allows the user to build up a new service starting
from the environment. The second is given by providing a method to auto-
matically build up the new service implementation. The formalization of the
composition problem in the framework of a constructive logic allows to use the
proof-theoretical properties of the logical system to support the composition
problem. In this paper we concentrate on the definition of a composition lan-
guage, as for the problem of automatic service composition, it can be seen as a
reformulation of the program-synthesis problem, which can be solved in BCDL [4].
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The composition calculus SC. The composition calculus we describe in this sec-
tion is inspired by PAP [6], a calculus which support program synthesis from
proofs of a constructive logical system. Our calculus allows to manually compose
services guaranteeing the correctness of the composed service.

A composition over an environment E = 〈L,T, η, S1, . . . , Sn〉 is defined as:

s(x) :: P ⇒ Q

Π1 : s1(x) :: P1 ⇒ Q1

· · ·
Πn : sn(x) :: Pn ⇒ Qn

r – s(x) :: P ⇒ Q is a service specification over E;
– r is one of the rules of the composition calculus SC;
– Πi : si(x) :: Pi ⇒ Qi is a service composition over

E that meets the applicability conditions of r.

The rules of the composition calculus SC and their computational interpretation
(CI) are given in Figure 1. In the rules, the service specification s(x) :: P ⇒ Q
is called the main sequent of the rule and represents the specification of the
service to be composed. The service specifications si(x) :: Pi ⇒ Qi are called
subsequents of the rule and represent the services involved in the composition.
The sequents must satisfy the applicability conditions (AC) of the rule, which
describe the role the subsequents play in the composition: in the formulation of
applicability conditions, � represent derivability in the calculus ND of [4].

The computational interpretation (CI) of the rules allow to associate with the
service composition Π the service implementation Φs which is inductively defined
on the last rule r applied in Π . In the (CI) rules, given the applicability condition
(a) Γ � x : A of the rule r, we denote with Φa the operator corresponding to the
proof π of Γ � x : A as defined in [4].

To conclude this section we state the result asserting the soundness of the
rules with respect to uniform solvability.

Theorem 1. Let E = 〈L,T, η, S1, . . . , Sn〉 be an environment and let s(x) ::
P ⇒ Q be the main sequent of a composition Π over E. For every model M for
L, if M is a model for E then Φs extracted from Π uniformly solves s in M. ��
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Abstract. Integrating distinct reasoning styles such as the ones ex-
ploited by description logics, rule-based systems and fuzzy logic is still
an open challenge because of the differences among them. Three com-
plementary approaches suggest possible models of integration: loose in-
tegration, tight integration and embedded integration. Loose integration
couples existing tools into a hybrid system, handling their mutual inter-
actions and keeping their knowledge aligned. Tight integration, instead,
is based on a unique theory and framework supporting both reasoning
styles. Embedded integration is a mixed approach aimed to the simplic-
ity of the former and the efficiency of the latter. In this paper we present
our experiences on the implementation of a basic loosely-coupled system
and a more advanced embedded solution.

Keywords: Rule-based Systems, Description Logics, Tableau Reason-
ing, Fuzzy Systems.

1 Introduction and Motivations

Recently, the possibility of combining the descriptive capacity of Description
Logics with the operational semantics of rule-based systems within the same
application domain has been investigated with growing interest. The Descrip-
tion Logics and Semantic Web’s tools provide formal languages to represent
knowledge and algorithms to detect inconsistencies, to classify concepts and to
recognize individuals with respect to the given knowledge. Similarly rule-based
systems, and production rule systems in particular, have been widely used to
express the application logic on a domain with rules that produce the expected
outcomes by triggering on external stimuli.

Although those technologies individually are relatively mature, the need for
a comprehensive and unifying approach is emerging. In fact some domains that
would greatly benefit from such an approach, have been already identified in
literature [1,6,8]. In the context of eTourism, for example, tour operators are
used to write rules to handle offers. They also tend to define new offers as
specializations (subclasses) of the existing ones. In this way, existing rules cannot
trigger on such subclasses unless a suitable rules refactoring takes place. An
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hybrid system, on the other hand, could exploit ontological reasoning to make
the rules trigger without further changes.

Moreover, the need to represent real-life domains with an appropriate level
of expressiveness is also emerging. At the moment, in fact, the Semantic Web
proposals can only support crisp concepts and formulas while many domains
require to express concepts in terms of shaded degrees of truth, according to the
Fuzzy Logic’s semantics. Consider for example that learning vacations should be
only recommended to the parents of young customers. Determining how young
is a customer is not a trivial task because the degree of truth of this property
gradually changes with her age. Therefore, a system which natively handles such
kind of fuzzy concepts is preferable.

At the moment, the technological integration of production rule and Descrip-
tion Logics systems has been attempted within frameworks such as Jena1, Alger-
non2 and Sweet-Rules3. The integration of fuzzy logics within rule-based systems
has been investigated with FuzzyClips4 and FuzzyJess5. Finally, extensions of
Description Logics with fuzzy constructs and semantics has been applied in De-
Lorean [2] and in FuzzyDL [3]. To the best of our knowledge, however, no tool
supporting ontological reasoning, rule-based reasoning, and fuzzy reasoning at
the same time is currently available.

2 Integration Issues

In general, the integration of different reasoning styles is usually a rather difficult
problem. When combining Description Logics-based and rule-based reasoning, for
example, the primary problem concerns to their different contextual hypothesis
[9].

Rule-systems, in fact, typically embrace to the Closed World Assumption
(CWA) which basically allows to consider false anything not explicitly asserted
as true. This kind of inference is non-monotonic, meaning that each new con-
clusion may invalidate part of the knowledge base if the available information is
not relatively complete. Description Logics usually adhere to Open World As-
sumption (OWA) which allows to consider true (or false) only the conclusions
that may be safely derived from current knowledge. This approach is more cau-
tious: it never contradicts previous knowledge but may lead to non-determinism.
Problems arise when the integrated system has to combine nondeterministic and
deterministic results.

In the context of Semantic web, the integration with fuzzy reasoning has only
to cope with the family of truth functional many-valued logics rather than with
the broader context of definitions expressed using vague linguistic terms. Any-
way, the integration of multi-valued logics in boolean, forward-chaining rule-based
1 http://jena.sourceforge.net/
2 http://algernon-j.sourceforge.net/
3 http://sweetrules.semwebcentral.org
4 http://www.nrc-cnrc.gc.ca/eng/projects/iit/fuzzy-reasoning.html
5 http://www.csie.ntu.edu.tw/~sylee/courses/FuzzyJ/FuzzyJess.htm

http://jena.sourceforge.net/
http://algernon-j.sourceforge.net/
http://sweetrules.semwebcentral.org
http://www.nrc-cnrc.gc.ca/eng/projects/iit/fuzzy-reasoning.html
http://www.csie.ntu.edu.tw/~sylee/courses/FuzzyJ/FuzzyJess.htm
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systems usually complicates the conflict resolution strategies. The propagation
of computed truth values, in fact, may impose precedence relations between rules
which should be independent instead. Similarly the integration of fuzzy defini-
tions with Description Logics may increase the complexity of the satisfiability
check algorithms, making some domains difficult to be treated.

3 Practical Implementations

From the implementation viewpoint, integration may be achieved by two com-
plementary approaches: loose integration vs. tight integration. Loosely integrated
systems bring together an appropriate mix of existing tools for the desired reason-
ing styles within a common interface. Despite each single tool may work to its full
potential, consistency issues among them may reduce the overall expressiveness of
the whole system. Tightly integrated system, instead, implement a new coherent
theory which is complex enough to provide a language and algorithms to support
the planned reasoning tasks. In this case, less design constraints should allow more
expressiveness but often the overall complexity is likely to reduce it. There is also
a third approach, namely embedded integration, which is tries to implant one or
more reasoning modules within another [7]. Depending on their embedding de-
gree, they can be considered as a mediation between the other two approaches.

As a first attempt, we decided to implement a hybrid prototype based on a
loose integration approach [4]. This prototype featured Drools6 (a popular open-
source production rule system with capabilities similar to RIF’s Production Rule
Dialect), Pellet7 and FuzzyDL8. It also exploited Jena and JenaBean9 APIs to
dispatch reasoning request among modules, granting the coherence of their mod-
els. Despite its simplicity, the solution required the distinct kinds of knowledge
to be stated separately, asking the user to be consistent each time. Moreover,
dealing with such separate models makes the system inefficient in terms of both
memory usage and entailment.

Those considerations led us to consider a tighter approach: due the operational
nature of its definition, we decided to implement a tableau algorithm (typically
used to perform reasoning in Description Logics) by means of Drools rules [5].
The introduction of fuzzy logic expressiveness required the inclusion of an external
MILP-solver to compute fuzziness and this allowed us to generate a tableau whose
expansion is deterministic. In general, in fact, tableaux may be non-deterministic:
a behaviour which is difficult to emulate in a production rule system. Thanks to
that solution, we were able to use a single model for the whole system. Such a
model contains facts annotated with fuzzy truth intervals which are used by the
tableau to answer queries with results that are fuzzy intervals themselves. Notably,
we can cast back the intervals to “traditional” fuzzy values (both in an OWA and
a CWA sense) or even to boolean values using dedicated operators.

6 http://www.jboss.org/drools
7 http://clarkparsia.com/pellet
8 http://gaia.isti.cnr.it/~straccia/software/fuzzyDL/fuzzyDL.html
9 http://code.google.com/p/jenabean/

http://www.jboss.org/drools
http://clarkparsia.com/pellet
http://gaia.isti.cnr.it/~straccia/software/fuzzyDL/fuzzyDL.html
http://code.google.com/p/jenabean/
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Architectural details were not provided here for lack of space. More details on
prototypes can be found at http://ai.unibo.it/projects.

4 Conclusions

We believe that the Semantic Web will change many aspects of every-day life in
the years to come, as the Web already did. We also think that semantic tools
which can handle the application logic of real-life domains with fuzzy expres-
siveness, like the proposed ones, will help make the change.

At the moment, our embedded approach can only treat the fuzzy ALC frag-
ment of Description Logics, but we plan to possibly extend it to OWL-DL.
In effect, more advanced constructors could complicate the tableau, eventually
leading to much harder problems than MILP. These problems, however, can be
easily solved with a more powerful solver. We are also predisposing a common
dataset, suitable for both versions, on which to conduct experiments to evaluate
their performances. Nevertheless we feel that the unique features of our proposal
could contribute to the Semantic Web revolution.
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Abstract. A new system for spam e-mail annotation by end-users is presented.
It is based on the recursive application of hand-written annotation rules by means
of an inferential engine based on Logic Programming. Annotation rules allow
the user to express nuanced considerations that depend on deobfuscation, word
(non-)occurrence and structure of the message in a straightforward, human-
readable syntax. We show that a sample collection of annotation rules are ef-
fective on a relevant corpus that we have assembled by collecting e-mails that
have escaped detection by the industry-standard SpamAssassin filter. The system
presented here is intended as a personal tool enforcing personalized annotation
rules that would not be suitable for the general e-mail traffic.

1 Introduction

This article describes a rule-based personal e-mail annotator that works as a spam sen-
tinel. The annotator applies given set of annotation rules (called annotation policy) by
means of a Prolog inferential engine. Our annotator is called RuBaST , for Rule-Based
Spam Terminator and is intended as a filtering layer between a typical, site-wide spam
filter, e.g., SpamAssassin [1] and the user’s mailbox.

The RuBaST e-mail annotator works as follows. First, it reads the e-mail file and
applies ad-hoc regular expressions that de-obfuscate suspicious words, e.g., Ciaa11is is
rendered as Cialis. Next, the whole e-mail is converted into a set of Prolog facts. Then
Prolog rules representing the user’s annotation policy are combined with those facts.
Annotation rules describe, essentially, a scoring system. The annotation rules in Prolog
syntax are applied by means of the The SWI-Prolog inferential engine is invoked to
attempt, recursively, to apply each rule to each e-mail representation. The overall score
is obtained as the sum of all scores given by the rules; if it exceeds a user-defined
threshold the e-mail is flagged as spam in the subject.

RuBaST annotation rules reflect a user’s personal, if idiosyncratic, view of the rel-
evance of a mail. For instance, these authors are receiving, even after SpamAssassin
filtering, several messages posing as coming from the Web site of the Italian Postal sys-
tem. As we have no account there, it remained easy to issue a RuBaST rule giving high
spam likeliness to such messages. Such rule would not be appropriate for a site-wide
spam filter, for obvious reasons. An example that would prove hard to encode (for any

� A companion Web site to this article, with software, results and the corpus described herewith
is at http://informatica.unime.it/rubast/
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system) is that of e-mails carrying call for papers that are sent outside the usual distri-
bution lists and relative to conferences that are unknown, out of scope or in a foreign
language.

2 The Implementation

The implementation of RuBaST consists mainly of a Java application with a Prolog-
based automated reasoning core. The interface between the two modules is performed
by the JPL package provided by SWI-Prolog. Figure 1 summarizes the architecture of
our implementation. Such architecture addresses two main concerns that have emerged
during our project. First, the current solutions for integrating inferential engines into a
Java program (e.g., tuProlog [2]) were considered not viable for this project or harder
to use vis-à-vis SWI Prolog. Second, we would like to retain the ability to experiment
with different inferential engines in the future.

Fig. 1. The overall architecture

JPL [3] is a library that uses the SWI-Prolog1 foreign interface and the Java JNI

interface2to interleave Prolog and Java executions. The rôle of the Java module, then,
is to prepare the message information for the Prolog engine. We call this preparation
phase normalization. The main task of normalization is the so-called de-obfuscation
of the mail body, i.e., spotting (and replacing) terms that have been disguised by the
spammer in order to hide them from the anti-spam filters.

2.1 The Prolog Module

The Prolog module represents the core of our anti-spam filter. It applies two filters:

1 http://www.swi-prolog.org/
2 http://java.sun.com/j2se/1.4.2/docs/guide/jni/



Rule-Based Spam E-mail Annotation 233

WORDS FILTER, which operates on the Subject and Body of the message, and
RULES FILTER, which operates on envelope informations such as sender and ad-

dressee (From: and To:).
The final score consists of the combination of the scores recommended by each filter.

Rules for analyzing the content. A set of Prolog rules have been defined to find the
occurrence of black words in e-mails (presented as simple lists of normalized words)
and to give a score based on co-occurrences of blackwords and their distance (defined
simply as the number of words that occur in between).

Currently, 11 annotation rules capture more sofisticated forms of reasoning about
the content. As a way of illustration, let us see in some detail the rule that reasons
about contextual occurrence or co-occurrence of specialized terms normally associated
to legitimate messages. Indeed, in several cases, deobfuscation may lead to undesired
results, whereas considering the context of the occurrence may lead to a correct classi-
fication, as illustrated in the following example.

The address used for collecting our corpus regularly receives legitimate e-mails that
mention the so-called Laurea specialistica, an Italian degree roughly equivalent to a
MSc/MEng. Unfortunately, the words specialistica contains the word cialis properly,
hence deobfuscation renders it as cialis, which in turns triggers blackword-based anno-
tation rules to give it a very high score. An exception has been issued; the syntax is as
follows:

spam_word(’cialis’, 85).
contextual_exception(’cialis’,[’laurea’, ...]).

3 Experimental Validation

We have tested the first implementation of RuBaST against a corpus of e-mails that
have been collected, to this purpose, by just one e-mail address over a several months
period. Upon reception, the user gave an exact classification w.r.t. to the fine-grained
categorizazion of spam (and ham, i.e., legitimate e-mails) proposed by Cormack et al.
[4] to facilitate spam filter evalutaion. In separate sessions, the recipient also wrote the
annotation rules that were passed to RuBaST during the experimental validation. We
submit that:

– our corpus, as apposed to existing public corpora (e.g. TREC3) has been collected at
a single e-mail address, so it arguably more adequate for evaluating a personalized
spam filter, and

– by having escaped Spamassassin filtering with low threshold at the site-level, mes-
sages in our corpus are deemed challenging. They arguably fall in the 98th per-
centile of spam detection hardness, according to the recent evaluation by [4].

To validate the effectiveness of RuBaST in weeding out spam messages, we have tested
it in terms of Information Retrieval (IR) [5], i.e., as a challenge for RuBaST to select

3 The TREC Public Spam corpus is at http://trec.nist.gov/
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all and only the messages in the corpus that were deemed spam. Then, we have com-
pared each annotation to the exact classification given by the recipient and computed
the overall score according to the Cormack et al. metrics [4], which are now standard
for spam filtering evaluation.

4 Discussion and Related Work

RuBaST is a novel application of rule-based reasoning. Our experimental assessment
shows that it can be effective in weeding out spam e-mails on a user-by-user basis.
With our work we believe to have shown that -rather than replacing the main spam ML-
based filters— Prolog-based spam annotation can be effective when annotation policies
need to be explicit, transferable and (de)composable. With the exception of SpamPIG4,
an unpublished graduate project, we are not aware of similar efforts in the Logic Pro-
gramming and AI domain. In our work on setting up the personalized annotator, we
have deliberately refrained from adopting a uniform methodology in the creation of
rules. The rationale was to leave room for unexpected combinations of conditions, mix-
ing e.g., word occurrence with the suffix of the e-mail address, that would not be easily
discovered had we adopted some methodical approach to writing rules.

The assessment was done on a coherent (same recipient for all messages), medium-
sized corpus (as opposed to large but very diversified corpora, e.g., TREC [6] and Spa-
mAssassin.). Yet, our corpus is relevant precisely because it has been collected at a sole
e-mail address, which is the intended use case: RuBaST enforces personalised annota-
tion policies against the particular spam attack one recipient is under. We will release
our corpus as a service to the community in the same context of this article.

To summarize the information retrieval validation: RuBaST can halve the amount
of spam received, while only few (around 1%) regular e-mails might be misclassified.
From the point of view of the core annotation operations, a future improvement con-
cerns the introduction of a word whitelist to reduce the possibility of false positives;
e.g., the keyword CEAS (acronym of the international conference on fighting spam)
might counterbalance the occurrences of spam in the same message.
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Abstract. The sparse application of the Semantic Web Rule Language
is partly caused by a lack of intuitive rule editors. This applies both from
a human user’s, as well as from a software interoperability perspective, as
creating and modifying rules is currently hard in distributed Web appli-
cations. We introduce a Representational State Transfer-based approach
that enables online rule editing to overcome these problems.

1 Introduction and Motivation

Rule-based reasoning still plays a minor role on the Semantic Web, despite the
gain in expressivity1 offered by the Semantic Web Rule Language (SWRL) [2].
While rules provide powerful solutions for problems that cannot be solved with
standard Description Logic-based reasoning [3], the verbose syntax and a lack
of intuitive user interfaces for rule editing hamper their application. Moreover,
proprietary application programming interfaces complicate the integration into
standards-based systems. We propose a wrapper for rule engines based on the
Representational State Transfer (REST) approach [4] to overcome these prob-
lems. REST offers standardized, straight-forward access to resources without un-
necessary overhead. Masking the complexity of rule editing as a RESTful service
makes rule-based reasoning available for a wide range of services. At the same
time, rule functionality is made more accessible for human users, as developers
can reduce the editing options to the subset of SWRL’s expressivity required for
a specific application. Changes to single atoms can be completed without con-
fronting users with the (potentially lengthy) complete rule, and adapted results
can be directly returned in the server response. Besides the mapping approach
from REST URIs to rules, we discuss the architecture of this RESTful wrap-
per. Moreover, we demonstrate its application in a mobile tool for personalized
information retrieval that uses rules to represent user preferences.

2 Mapping REST to SWRL

Rule editing comprises creating, updating and deleting, in addition to simple
access to the rules. These activities apply both for complete rules as well as for
single atoms in the rules’ bodies or heads. REST makes use of the HTTP request
methods GET, POST, DELETE and PUT to represent these activities. Resources are
represented by descriptive URIs and can be queried and modified using these
methods. Table 1 shows the required URIs for a complete rule editor.
1 For OWL 2, the additional expressivity is partly covered in the RL profile [1].

P. Hitzler and T. Lukasiewicz (Eds.): RR 2010, LNCS 6333, pp. 235–238, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



236 C. Keßler

Table 1. URIs for rule editing. The last five URIs also apply for head atoms.

Resource URI HTTP Method Description

/rules GET Lists all rule IDs
/rules POST Creates empty rule, returns ID
/rules/{id} GET Returns the rule with this ID
/rules/{id} DELETE Deletes the specified rule
/rules/{id}/body GET Lists IDs of all atoms in this rule’s body
/rules/{id}/body POST Adds new atom to body, returns ID
/rules/{id}/body/{id} GET Returns a specific atom
/rules/{id}/body/{id} PUT Overwrites a specific atom
/rules/{id}/body/{id} DELETE Deletes a specific atom

Figure 1 gives an overview of the wrapper architecture. It creates a transparent
access point for the KnowledgeBaseManager, providing access to the ontology
repositories building the application knowledge base, and the RuleEngine. In
case of the prototype implementation, Protégé Core has been used for knowl-
edge base management, and Jess for rule execution2. The rule engine maintains
the connection to the ontology and exposes its concepts and relations to the
wrapper, which maps them to their respective URIs. Clients can modify rules
via these URIs (see Table 1). When existing rules are modified, the (application-
dependent) server response contains the knowledge inferred after rule execution.
The rule engine also checks rules for validity before execution; if errors occur due
to faulty client input, these must be passed on to the wrapper and forwarded to
the client with the respective HTTP status codes.

Client
machine
(e.g., Web browser)

Ontology
Repository

1..*       1           1        1..*

Application Server

<<component>>
RuleEngine

<<component>>
KnowledgeBaseManager

Protégé Core

Jess rule engine

REST Wrapping
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so

ur
ce

 M
ap

pi
ng

Fig. 1. Deployment diagram for the RESTful wrapper; adapted from [5]

3 Prototype: The Surf Spot Finder

The RESTful approach for SWRL rule editing described in Section 2 has been
tested in the Surf Spot Finder [6], a mobile Web application for personalized
recommendations for surf spots at California’s central coast. The Web interface

2 See http://protege.stanford.edu and http://jessrules.com

http://protege.stanford.edu
http://jessrules.com
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(see Figure 2) allows users to set their preferences for different aspects, each of
which is mapped to one atom in the rule representing the user’s profile. Upon
rule execution, all surf spots instances in the knowledge base that match the user
preferences are reclassified as appropriate for this user. In order to maintain the
link of a user to her specific rule, the user’s ID is stored in a cookie on the client
side. On the server side, a new resource is created for every user, based on her
ID (see Table 2). This maintains the stateless nature of REST, as no session
data are stored, yet it allows users to preserve their setting between uses.

Fig. 2. Screen shots of the prototype user interface [5]

Table 2. Resources offered by the Surf Spot Finder prototype. The three operations
for bottom are also available for all other aspects of the user profiles.

Resource URI Method Description

/users GET Returns a list of all users’ rules
/users POST Creates new user, returns ID
/users/{id} GET Returns a user’s SWRL rule
/users/{id} DELETE Deletes the specified user profile
/users/{id}/spots GET Returns matching spots
/users/{id}/bottom GET Returns the user’s preferred bottom type
/users/{id}/bottom PUT Updates user’s preferred bottom type, returns spots
/users/{id}/bottom DELETE Deletes user’s preferred bottom type, returns spots

Imagine the following rule represents user 42’s preferences: SurfSpot(?spot)
∧ hasBottom(?spot, ‘rock’) → Match(?spot). A PUT request to http://
somedomain.com/users/42/bottom with sand as contents overwrites the corre-
sponding atom, changing the rule to SurfSpot(?spot) ∧ hasBottom(?spot,
‘sand’) → Match(?spot). Execution of the rule reclassifies all matching
SurfSpot instances as a Match, which are then returned to the client by the
wrapper. Communication with the server component is asynchronous, allowing

http://somedomain.com/users/42/bottom
http://somedomain.com/users/42/bottom
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the application to update the map without reloading the whole application.
When the user changes one of the parameters in her profile, this change is sent
to the server and the updated set of matching spots is returned and shown on
the map.

4 Conclusions and Future Work

We have proposed a RESTful Web service that enables online editing of SWRL
rules. The general approach has been introduced and demonstrated in the Surf
Spot Finder application that uses SWRL-based user profiles. The next steps in
this research are the implementation of a complete mapping for rule editing as
outlined in Section 2. Two aspects of this implementation are especially challeng-
ing. First, the automatic mapping of any built-ins, especially custom built-ins
[7]. Second, an integrity checking for rule modifications that wraps potential
error messages with the appropriate HTTP status codes.
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Abstract. In my PhD thesis I study the termination problem of the chase algo-
rithm, a central tool in various database problems such as the constraint implica-
tion problem, conjunctive query optimization, rewriting queries using views, data
exchange, and data integration.

1 Introduction

The chase procedure is a fundamental algorithm that has been successfully applied in
a variety of database applications [5,12,3,11,6,8,9,1]. The basic idea of the chase is,
given a database instance and a set of constraints as input, to fix constraint violations in
the database instance. It is well-known that for an arbitrary set of constraints the chase
does not necessarily terminate. In general, it is undecidable whether the chase termi-
nates, given a set of TGDs as input, on the empty database [7]. Addressing this issue,
we review the limitations of existing sufficient termination conditions for the chase and
develop new techniques that allow us to establish weaker sufficient conditions. For the
first time in the literature, we develop methods that allow us to ensure the termination of
at least one chase sequence and not necessarily of all. We then study the interrelations
of our termination conditions with previous conditions and the complexity of checking
them. As another contribution, we study the problem of data-dependent chase termina-
tion and present sufficient termination conditions with respect to fixed instances. They
might guarantee termination when our data-independent techniques cannot. As appli-
cation of our techniques beyond those already mentioned, we transfer our results into
the field of semantic query optimization in the presence of types.

2 Chase Termination

We divide the problem of chase termination into two branches. The first one studies data-
independent methods. As the term data-independent suggests, these chase termination
conditions work for every database instance. In contrast the second branch studies meth-
ods that depend on a given database instance,which is why they are called data-dependent.
Both branches are divided again into two subbranches, namely sequence-independent and
sequence-dependent methods. Sequence-independent chase termination conditions can
guarantee chase termination no matter what chase sequence has been taken during the
execution of the chase, in difference to that sequence-dependent conditions give termi-
nation guarantees only for (at least) one chase sequence. So far, the only branch that
has been considered in the literature are the data- and sequence-independent methods.

P. Hitzler and T. Lukasiewicz (Eds.): RR 2010, LNCS 6333, pp. 239–243, 2010.
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We want to point out that my thesis is the first study of sequence-dependent methods
and data-dependent termination conditions at all. In the following we summarize the
key concepts and ideas of our analysis and survey the main results.

2.1 Sequence-Dependent Termination: CT∀∃

CT∀∃ is the class of TGDs and EGDs that ensures the existence of at least one termi-
nating chase sequence for every database instance. The literature on the chase lacks a
systematic study of CT∀∃ and concentrates solely on sequence-independent termina-
tion. We fill this gap by identifying decidable fragments of it in [16,14]. To the best of
our knowledge, these papers are the first study of sufficient termination conditions for
the chase that do not ensure the termination of all chase sequences but of at least one.

But how can we safely apply the chase and be sure that the chase sequence we
follow terminates? How can such a terminating sequence be found if we know that it
exists? A general solution seems to be quite simple. We apply the chase in a breadth-first
manner.1 Using this technique, we can guarantee termination. However, this method is
quite inefficient because it needs a lot of runtime to follow all chase sequences and it
also uses a lot of memory.

The results of our study on sequence-dependent chase termination have an important
additional property. We cannot only ensure that there is a terminating chase sequence,
but we can statically determine it, while checking our termination conditions. This has
an important implication. We do not have to apply the chase in the breadth-first, but in
the usual depth-first manner, thus saving much time and space.

We show that stratification introduced in [7] does not generally ensure termination of
every chase sequence, as stated by the authors of [7], but of at least one chase sequence.
Besides, we show that such a sequence can be statically determined independently of
the input instance. Furthermore, we propose a possible correction of the stratification
condition which ensures sequence-independent chase termination, as intended by the
authors of [7], using the oblivious chase [4,13]. This correction forms the basis for
nearly all further results on sequence-independent chase termination.

2.2 Summary of Results on CT∀∀

CT∀∀ is the class of TGDs and EGDs such that the chase terminates for every possi-
ble input database instance and every chase sequence. The main idea of almost all of
our termination conditions is as follows. The reason for infinite chase sequences is an
infinite cascading of labeled nulls. Therefore our idea is, given a constraint violation
I �|= α(a) during the application of the chase algorithm, we try to estimate what values
in a are null values that were newly introduced by the chase algorithm and have not
been in the input instance. We provide different kinds of approximation which are used
by our termination conditions.

Figure 1 surveys our main results on CT∀∀ from [14] and relates them to the previ-
ous termination condition weak acyclicity and to c-stratification, the corrected version

1 Applying the chase breadth-first means that for all n = 1, 2, 3, ... we generate all possible
chase sequences of length bounded by n and we abort this process when we have found a
terminating sequence.
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Fig. 1. Data- and sequence-independent chase termination conditions

of stratification. Please note that our paper [14] contains a corrected version of our re-
sults from [15] that we published due to an error that we made in [15]. All inclusion
relationships in Figure 1 are strict. As it can be seen, safety generalizes weak acyclic-
ity and is further generalized by inductive restriction. On top of inductively restricted
constraints we ultimately define a hierarchy of sufficient termination conditions called
T-hierarchy. To give an intuition for a fixed class in this hierarchy, say T[k], we study
the flow and creation of fresh null values in detail for chains of up to k constraints that
might cause to fire each other in sequence.

We also want to mention that there other authors working in the field of chase ter-
mination especially CT∀∀, e.g. [13] develops the notion of super-weak acyclicity that
guarantees membership in CT∀∀ and termination of the oblivious skolem chase. In [10]
the authors rewrite the given constraint set such that termination for the original set can
be guaranteed if the rewritten constraint set satisfies a termination condition. Further-
more, in [4,2] the authors consider the problem of deciding query containment under
constraints for cases when the chase does not necessarily terminate.

2.3 Data-Dependent Termination

So far, we have discussed conditions that guarantee chase termination for every database
instance. In [15,14] we study the problem of data-dependent termination, i.e. given the
constraint set Σ and a fixed instance I , does the chase with Σ terminate on I?

Reasonable applications should not risk non-termination, so for some constraint sets
chase termination is in question for all queries, although there might be queries for
which the chase terminates.2 Tackling this problem, we propose to investigate data-
dependent chase termination, i.e. to study sufficient termination guarantees for a fixed
instance when no general termination guarantees apply.

2 Note that query optimization can be done with a bounded portion of a chase result but in
general we do not find minimal rewritings of the input query in the style of [1]. Therefore, it
is desirable to guarantee chase termination.
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Given a fixed database instance, our first idea is to exclude constraints from our con-
straint set that may never fire during chase application. We can test our data-independent
methods on the remaining constraint set and if this test succeeds we can ensure chase
termination for our fixed database instance.

If the previous data-dependent termination conditions do not apply, we propose to
monitor the chase run and abort if tuples that may potentially lead to non-termination
are created. We introduce a data structure called monitor graph that allows us to track
the chase run. We abort chase application if two many potentially bad tuples are created.

3 Semantic Query Optimization in the Presence of Types

Both semantic and type-based query optimization rely on the idea that queries often
exhibit non-trivial rewritings if the state space of the database is restricted. Despite their
close connection, these two problems to date have always been studied separately. We
present a unifying, logic-based framework for query optimization in the presence of data
dependencies and type information [16]. It builds upon the classical chase algorithm and
extends existing query minimization techniques to considerably larger classes of queries
and dependencies. As a technical challenge, our setting involves chasing of conjunctive
queries in the presence of constraints containing negation and disjunction.

In response to the central role of chase termination in our setting, we develop novel
chase termination conditions for constraint sets involving disjunction and negation.
Rather than developing these termination conditions from scratch, our approach is to
carry over existing termination conditions for standard TGDs and EGDs, i.e. we show
how to rewrite our constraint set to TGDs and EGDs such that if the chase terminates
for the rewritten constraint set, then it must also terminate for the original one.
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with existential variables. In: IJCAI, pp. 677–682 (2009)

3. Beeri, C., Vardi, M.Y.: A Proof Procedure for Data Dependencies. J. ACM 31(4), 718–741
(1984)

4. Calı̀, A., Gottlob, G., Kifer, M.: Taming the Infinite Chase: Query Answering under Expres-
sive Relational Constraints. In: KR (2008)

5. Maier, D., Mendelzon, A., Sagiv, Y.: Testing Implications of Data Dependencies. In: SIG-
MOD, pp. 152–152 (1979)
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Abstract. We present an extension of the DLVHEX system to support RIF-Core,
a dialect of W3C’s Rule Interchange Format (RIF), as well as combinations of
RIF-Core and OWL2RL ontologies. DLVHEX is a plugin system on top of DLV,
a disjunctive Datalog engine which enables higher-order and external atoms, as
well as input rewriting capabilities, which are provided as plugins and enable
DLVHEX to bidirectionally exchange data with external knowledge bases and
consuming input in different Semantic Web languages. In fact, there already ex-
ist plugins for languages such as RDF and SPARQL. Our new plugin facilitates
consumption and processing of RIF rule sets, as well as OWL2RL reasoning by
a 2-step-reduction to DLVHEX via embedding in RIF-Core. The current version
implements the translation from OWL2RL to RIF by a static rule set [12] and
supports the RIF built-ins mandatory for this reduction trough external atoms
in DLVHEX. For the future we plan to switch to a dynamic approach for RIF
embedding of OWL2RL [2] and extend the RIF reasoning capabilities to more
features of RIF-BLD. We provide a description of our current system, its current
development status as well as an illustrative example, and conclude future plans
to complete the Semantic Web library of plugins for DLVHEX.

1 Introduction

The W3C is currently developing RIF (Rule Interchange Format) [6], a universal layer
designed for exchanging rules between different and possibly heterogeneous systems
over the Semantic Web. It is focused on the exchange more than on the development of a
single system to fit all needs of all the already available rule systems, because it appears
clear that a system which fits all needs is very difficult, if not impossible to build, due
to the large syntactic and semantic differences between different systems or even in
different modules of the same system. The RIF working group divided the language
into dialects which are meant to be used in different situations, while maintaining the
largest subset of rules in common. They are called RIF profiles: Core, BLD and PRD.
While Core is formed by the base constructs of the language, BLD (Basic Logic Dialect)
is focused on logic, while PRD (Production Rules Dialect) is based on the concept of
production rules. Among other features, by treating F-Logic like frames equivalently
to RDF triples, particularly the RIF Core and RIF BLD fragments, promise a standard
format for publishing and exchanging rules on top of RDF.

� This work is partly funded by Science Foundation Ireland (SFI) project Lion-2
(SFI/08/CE/I1380) and an IRCSET postgraduate scholarship.
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Likewise, ontologies in OWL2RL[10], a rule-based sublanguage of the Web ontology
language OWL2 [7], enables the support of inference over ontologies directly in rule-
based system. This is achieved by giving a partial axiomatisation of the RDF OWL2
semantics in terms of first-order implications that can be encoded as rules.

At the moment few implementations of OWL2RL and RIF-Core exist since both
languages are quite new. Moreover, we are not aware of any implementations – as of
yet – that implement the combinations of RIF and OWL as standardised [2].

To fill this gap we propose and implemented a reduction of those languages to
DLVHEX [4], a powerful disjunctive logic reasoner based on the Answer Set Program-
ming paradigm. DLVHEX has it roots in DLV, a disjunctive Datalog system, but adds
several features to the base language. The most interesting of them is the possibility
to use natively higher order atoms and external atoms, which are added to the core
language by means of a plug-in architecture. Through external atoms it is possible to
inject procedural code in the otherwise purely declarative semantics of the language.
This concept is very similar to libraries for other reasoners which enable interaction
with external data sources, such as, e.g., the integration of RDF support in SWI-Prolog
[13]. There already exist a rich collection of DLVHEX plugins for Semantic Web lan-
guages, such as SPARQL [11], RDF and OWL DL [5]. Our new plugin for RIF-Core
and OWL2RL not only expands the interoperability of DLVHEX with these two new
standards, but also enables the combination of both with the other data models and
extensions, already accessible by plugins, for an evaluation, experiments and new ap-
plications by combining these languages with the expressive features of Answer Set
Programming [1,3].

Our plugin allows DLVHEX to load and process RIF rule sets as well as OWL2RL
ontologies. These are transformed to DLVHEX programs in a two-step translation: we
first rewrite from OWL2RL to RIF-Core, and then perform a translation into DLVHEX.
To this end there exist two different OWL2RL-to-RIF reduction methods, though, a
static RIF rule set [12, Appendix 8.1] or dynamic a translation function from OWL2RL
ontologies to RIF documents which yields RIF rules specifically to the input ontology
[12, Appendix 8.2]. In comparison, the former approach bears some limitations in rela-
tion to interoperability with other RIF rule sets, and the combination of RIF with OWL
ontologies as specified in [2] is rather based on the latter. Despite these restrictions,
our current version of the OWL2RL reasoner transforms OWL2RL ontologies into RIF
rules by the static rule set for the sake of a rapid first implementation. We will explain
the limitations of this approach when doing it naively, and approximate the full dynamic
combination of [2] by some extensions of the naive first translation.

In the following we give a description of our system, its current development status
as well as accompanying examples in Section 2, and conclude with a report on our
future plans in Section 3.

2 System Description

Our plugin consists of three parts: the OWL2RL to RIF-Core translation following [12],
a RIF-Core to DLVHEX translator component, and the DLVHEX reasoner. In sequel we
will provide more details to these components while we describe the system’s workflow
partitioned into its three essential stages:
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Phase I - Translation from OWL2RL to RIF-Core. An OWL2RL ontology, given in
RDF/XML, as input is forwarded to the OW2RL to RIF-Core translator which translates
RDF triples of the input ontology to RIF frames and merges them with the static rule
set from [12] to a RIF-Core document. The application of the static rule set to the
RIF frames gained from the input will be performed during the evaluation of this RIF
document later on.
Phase II - Reduction of RIF-Core to DLVHEX. The previously obtained RIF-Core
document is preliminary reduced to a DLVHEX program. For that, the document is
first parsed into an abstract syntax tree that is translated into a HEX program by a tree
walking algorithm which gradually generates, adherent to a predefined set of translation
rules, the corresponding HEX expressions from the visited tree nodes. This transforma-
tion includes reduction of features from RIF not directly expressible in our system to
the processable input language of DLVHEX, e.g. Lloyd-Topor [8] transformation of
rule bodies with discjunction, static type checking, or unnesting of external predicates,
i.e. built-ins. Eventually, the generated program is forwarded to DLVHEX which returns
a collection of answer sets.
Phase III - Answer Construction from DLVHEX to OWL2RL. Eventually, the an-
swer sets, which are basically sets of ground facts, are simply transformed into a set of
RIF ground atomic formulas.

Example – RIF to DLVHEX

The OW2RL to RIF-Core translation, executed in Phase I is straightforward. We give
here only a small example for the RIF-Core to DLVHEX translation, occurring in Phase
II. We apply it here to a test case from the RIF development group,http://www.w3.
org/2005/rules/wiki/Factorial_Forward_Chaining:

Document( Prefix(pred
<http://www.w3.org/2007/rif-builtin-predicate#>) Prefix(func
<http://www.w3.org/2007/rif-builtin-function#>) Prefix(ex
<http://example.org/example#>) Group

(
ex:factorial(0 1)

Forall ?N ?F? ?N1 ?F1 (
ex:factorial(?N ?F) :-

And(External(pred:numeric-greater-than-or-equal(?N1 0))
?N = External(func:numeric-add(?N1 1))

ex:factorial(?N1 ?F1)
?F = External(func:numeric-multiply(?N ?F1)) )

) ) )

This document describes the computation of the factorial for a positive integer n. Our
DLVHEX plugin rewrites the above RIF document into the following two DLVHEX
rules:

"ex:factorial"("0", "1") :- . "ex:factorial"(VAR_N, VAR_F) :-
&pred_numeric_geq[VAR_N1, "0"](),

equal(VAR_N, VAR_extOutput_1),
&func_numeric_add[VAR_N1, "1"](VAR_extOutput_1),
"ex:factorial"(VAR_N1, VAR_F1),
equal(VAR_F,VAR_extOutput_2),
&func_numeric_multiply[VAR_N,VAR_F1](VAR_extOutput_2) .

The translation generates two rules, a fact and a proper rule, corresponding to the
two input RIF rules. The universal quantifier of the second RIF rule is omitted
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here since DLVHEX rules are per se universal. RIF constants (CURIes, typed lit-
erals, quoted unicode strings, etc.), such as ex:factorial or 1, are embraced
by double quotes. Prefix names in curies will generally be expanded, but for better
readability we didn’t resolve them here. RIF built-in predicates and functions, such
as pred:numeric-greaterthan-or-equal and func:numeric-add, are
rewritten to an corresponding external DLVHEX atoms1. So far we support all RIF
built-ins which may appear in a RIF document yielded by the OWL2RIF to RIF-Core
translation. Beyond that, we also support all numeric predicates and functions imple-
mentable via calls to an XPath/XQuery Functions&Operators library. Besides, the lack
of higher-order atoms in the resulting HEX program is no coincidence. In fact, those
are not needed for a pure RIF-Core implementation. Our planned support for RIF-BLD
as well as future RIF extensions similar to [5] will potentially demand higher-order
features though.

Handling RIF-OWL2RL Combinations

The choice of a translation via the static rule set, applied in Phase I, seemed more
convenient to implement at first view. since it supports a fast implementation. How-
ever, several limitations arise when translating OWL2RL into RIF via the static
rules. Firstly, this method is rather inefficient compared to Reynolds’s dynamic, pat-
tern based approach [12, Appendix8.2], which creates more efficient RIF rules con-
taining fewer free variables thus smaller grounding. Further and more problematic,
the static rules as such are not suitable for RIF-OWL2RL combinations [2], i.e, a
blend of OWL2RL rules with arbitrary RIF-Core rules. As pointed out in [2] the
static rules create problems w.r.t. equality if applied to a RIF-OWL2RL combination,
even if the RIF component is of RIF-Core. The reason lies in the possible introduc-
tion of equality through OWL2RL (via [Object|Data]MaxCardinality and
{Universe}FunctionalObjectProperty) that can also affect the predicates
existing in the RIF-Core component. In RIF-Core equality is only allowed in rule bod-
ies and, thus, implications of equalities are not natively expressible. Likewise, our base
system, DLVHEX, does not support equality natively, so we represent equality (which
may only appear in rule bodies in RIF-Core) using owl:sameAs. This works out
perfectly for the equality resembled by owl:sameAs on the level of RDF triples
in the OWL2RL component [10, rules eq-ref, eq-sym, eq-trans, eq-rep-s,

eq-rep-p, eq-rep-o], by axiomatisation in the OWL2RL rule set, but it is not com-
prehensively applicable in an analogous way to terms in RIF-Core, since arbitrary
predicates or deeply nested external functions might occur in RIF rule sets which are
unaffected by this axiomatisation.

Since we use the static rule set for the OWL2RL to RIF translation, at least for the
time being, we developed a approximative rewriting for RIF rule sets for RIF-OWL2RL
combination that allows us to catch these effects of equality. For a given RIF-OWL2RL
combination < R, G >, where R is a RIF rule set and G is an RDF Graph, potentially

1 Actually, for this particular example, we could have also exploited the built-in predicates of
DLVHEX, which supports natively simple arithmetic functions such as sum, multiply and
comparisons between variables. For the sake of the example, though, we decided to show how
the systems can handle such external predicates and functions, in a simple way.
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encoding an OWL2RL ontology, our algorithm runs through the following steps and
outputs a rewritten RIF-Core program S:

1. Initialise S with R. Flatten all nestings of external predicates and functions in S by
recursive substitution of nested terms with variables. For that, we need to express
various equalities between arbitrary function terms. However, owl:sameAs is only
applicable to express equality between simple terms. Thus, we need to introduce a
new equality symbol ‘

.=’ which expresses equality between arbitrary terms. Since
the value of each function term, by definition, belongs to an XML datatype we can
think of

.= as equality as evaluated by XPath.2

2. Add the static RIF-Core rule set of Reynolds to S.
3. Add G in form of frame facts to S.
4. For any constant c that appears in R but not in G add the fact

c[owl:sameAs->c] . to S.
5. For each rule of R in S rewrite any occurring atom p(t1, ..., tn) where p is a con-

stant and ti is a simple RIF term (1 ≤ i ≤ n) to an atom p(X1, ..., Xn) where
Xi = ti if ti is a variable, else (i.e., ti is a constant) Xi is a fresh variable.

6. Apply Lloyd-Topr rewriting for non-conjunctive rule bodies in S.
7. Optimisation by removing unnecessary owl:sameAs and

.= statements from the
rule bodies in S.

Let us illustrate the effects of this algorithm by an example. Say R3 contains

p(?x) :- Or( q(?x) r(?x,b) ) . r(c(2 * 2 + 2)). q(a). q(d) :- s(
1.3 + 0.7 ). s(1+1).

and G = {(a,owl:sameAs,b)}. Then we get the following intermediate results for
S:

After step 1:
p(?x) :- Or (q(?x) r(?x,b) ) . r(c,?Y1) :- And( (?Y2

.= 2
* 2) (?Y1

.= ?Y2 + 2) ). q(a). q(d) :- And( s( ?Y1 )
(?Y1

.= 1.3 + 0.7) ). s(?Y1) :- (?Y1
.= 1 + 1).

After step 2: S := S ∪ "Static Rule Set"

After step 3: S := S ∪ {a[owl:sameAs->b]}

After step 4: S := S ∪ {c[owl:sameAs->c], 2[owl:sameAs->2]}

After step 5:
p(?x) :- And ( Or (q(?x) r(?x,?X1) ) ?X1[owl:sameAs->b] ) .
r(?X1,?Y1) :- And( ?X1[owl:samAs->c] (?Y2

.= 2 * 2) (?Y1
.= ?Y2 + 2) ). q(a). q(?X1) :- And( ?X1[owl:samAs->d] s(
?Y1 ) (?Y1

.= 1.3 + 0.7) ). s(?Y1) :- (?Y1
.= 1 +

1).

After step 7:
2 In fact, on the stage of DLVHEX ‘

.=’ is evaluated by an external equality predicate imple-
mented through XPath equality checks.

3 Please note, that R deviates from the formal RIF syntax as we use here ‘+’ and ‘∗’ for the built-
in functions func:numeric-add and func:numeric-multiply in infix-notation for
better readability.
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p(?x) :- q(?x) . p(?x) :- And ( r(?x,?X1) ?X1[owl:sameAs->b] ) .
r(?X1,?Y1) :- And( ?X1[owl:samAs->c] (?Y2

.= 2 * 2) (?Y1
.= ?Y2 + 2) ). q(a). q(?X1) :- And( ?X1[owl:samAs->d] s(
?Y1 ) (?Y1

.= 1.3 + 0.7) ). s(?Y1) :- (?Y1
.= 1 +

1).

Our translation is realised as a plugin4 to the DLVHEX system5. Furthermore, RIF-
Core contains many built-ins in form of external predicates and functions. These exter-
nal functions are computed by use of a standard XML Library that implements most of
the common XPath/XQuery Functions& Operators [9]. At present, we support a sub-
set of those, as we focused our attention on the built-ins which are mandatory for the
reduction of OWL2RL reasoning to DLVHEX via RIF.

3 Conclusion and Future Work

We presented a DLVHEX plugin for OWL2RL and RIF-Core reasoning. The former
is based on a 2-step reduction to DLVHEX via RIF-Core. This is, to our knowledge,
the first attempt to implement RIF-OWL combinations a la [2], At our current stage
of development we facilitate the translation to RIF by the static rule set of [12] which,
as we have explained earlier, imposes restrictions on reasoning in combination with
other RIF-Core documents. For the future we, therefore, will consider to modify the
implementation of the first phase, switching from the static rule set to the dynamic
rewriting by [12, Appendix8.2] similarly used in [2] which is based on RIF-BLD.
Consequently, we will also try to extend the RIF-Core to DLVHEX translation in Phase
II to more features of RIF-BLD. Moreover we plan to implement the remaining RIF
built-ins to have a more complete translation from RIF-BLD to DLVHEX.
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Abstract. RPL (pronounced “ripple”) is the most expressive path lan-
guage for navigating in RDF graphs proposed to date that can still be
evaluated with polynomial combined complexity. RPL is a lean language
well-suited for integration into RDF rule languages. This integration en-
ables a limited form of recursion for traversing RDF paths of unknown
length at almost no additional cost over conjunctive triple patterns.

We demonstrate the power, ease, and efficiency of RPL with two appli-
cations on top of the RPL Web interface. The demonstrator implements
RPL by transformation to extended nested regular expressions (NREs).
For these extended NREs we have implemented an evaluation algorithm
with polynomial data complexity. To the best of our knowledge, this
demo is the first implementation of NREs (or similarly expressive RDF
path languages) with this complexity.

1 Motivation

With the promise of exciting “new kinds of usage scenarios”, you finally got
your boss at company C to embrace linked data and connect your community
forum and contact database to other online communities and FOAF profiles of
your contacts. Your boss now wants to put that technology to use: “I want to
cooperate with X on topic Y ! Can you get me the name of any person that works
at X and that’s connected to us via people that are also interested in Y (so that
they have an interest in connecting us). Oh, and none of the intermediates should
be our competitor Z.”

Though the linked data movement and related initiatives like FOAF or SIOC
provide specifically for this kind of scenario, most current analysis and query
tools for RDF are not up to this task: SPARQL can only compute persons
connected via fixed length paths due to the lack of any form of recursion. Un-
der an (e.g., OWL-based) entailment regime that treats foaf:knows (the FOAF
property used to build social networks) as a transitive property, SPARQL can
compute all connected persons, but can not ensure that all intermediate persons
share the same interest. The recent extension of SPARQL with property paths
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(to be incorporated into SPARQL 1.1) also fails at this task, as it only allows
local restrictions on the traversed edges, but not on the traversed nodes, and no
repetition (*) over paths with restrictions on nodes and edges.

Not only SPARQL fails at such analysis tasks on social networks or similarly
interlinked data: Among the many RDF query and rule languages surveyed in [5],
there is no language that can solve this analysis task and is not either impractical
for large datasets (as NP- or Turing-complete languages such as SPARQLeR and
TRIPLE) or only informally specified and now abandoned (as Versa). The more
recent nSPARQL [8], an extension of SPARQL with nested regular expressions,
can only solve parts of the above analysis task (but not the last sentence) and
is not implemented in any publicly available tool.

In this demonstration, we show how to solve this and similar analysis tasks
with a novel RDF path language, called RPL. The following RPL path expression
solves our analysis problem (f being the FOAF namespace):
PATH [ PATH _ <f:member C]

(>f:knows [! PATH _ <f:member Z][ PATH _ >f: interest _ >f:topic Y ])*
>f:knows [ PATH _ <f:member X]

It returns all pairs of nodes such that the first node is an f:member of C and
is connected to the second node via the specified path: It first traverses outgoing
(indicated by >) f:knows edges and nodes that (1) are not members (employees)
of Z and (2) have an f:interest edge that leads to some node that has Y as f:topic.
It traverses arbitrarily many such edge-node pairs (indicated by *). The last node
must also have an incoming (indicated by <) f:member edge from X .

Solving this analysis task in RPL is also efficient even on large RDF graphs:
The demonstrated RPL implementation is, to the best of our knowledge, the
first implementation of the bottom-up labeling algorithm for nested regular ex-
pressions from [8] on RDF data. It extends both nested regular expressions and
the labeling algorithm with several important analysis features such as negation
and regular expressions on literals and URIs. The extended labeling algorithm
has been shown in [3] to have polynomial combined and data complexity.

With the analysis task solved, your job is save, your boss is impressed, and
the Semantic Web vision is closer to reality.

2 A RPL through RDF Graphs

RPL is inspired by XPath, the dominant XML path language, in that it allows
nested predicates on paths. Predicates allow a RPL user to express, in addition
to local conditions on the path between two nodes, also non-local conditions
on branches starting at a node on the path. Like XPath, RPL does not allow
variables in path expressions and thus, all RPL queries are tree queries. RPL
adapts XPath style path navigation to RDF and goes beyond XPath by replacing
XPath’s fixed closure axis with closure operators ?, *, and + (as in [1] and [7]).
RPL is set apart by three properties:

(1) RPL is designed from start off to be easily integrated into RDF rule and
query languages such as XcerptRDF [4] by allowing RPL expressions to appear
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in place of RDF predicates. Thus, a RPL expression e evaluates to a set of node
pairs such that, between each pair of nodes, there is a path that matches e.

Together with the omission of variables, this ensures polynomial time and
space data complexity (and polynomial combined) for RPL. This contrasts to
most RDF path languages that either (a) allow the extraction of entire paths
from RDF graphs (like SPARQLeR [6]) and have therefore exponential data
complexity, or (b) allow variables to bind with nodes on the path (like PSPARQL
[2]) again at the price of exponential combined complexity.

(2) RPL’s rich syntax scales with the needs and abilities of the user: Beginners
can describe paths only through the traversed edges (edge-flavored RPL) or
only through the traversed nodes (node-flavored RPL), advanced users can place
restrictions on both nodes and edges (path-flavored RPL). Together with RPL’s
predicates this is the main difference to the SPARQL property path extension
that only allows restrictions on the edges traversed by a path.

(3) Expressive label tests with regular expressions and predicates with nega-
tion push RPL to the limits of RDF path languages with polynomial data com-
plexity. E.g., the edge-flavored expression EDGES >/.*train.*/* traverses an
arbitrary path whose forward-directed edges contain the keyword “train”.

Predicates allow non-local restrictions and are arbitrary RPL expressions in
square brackets. They can have either positive or negative sign (denoted by !).

3 System Description
Syntax and Semantics of RPL: To give a solid foundation for the discussion
of the RPL implementation, we first briefly sketch its syntax:

〈rpl-expr〉 ::= 〈flavor〉 〈adorned〉+
〈flavor〉 ::= ‘EDGES’ | ‘NODES’ | ‘NODES<’ | ‘NODES>’ | ‘PATH’
〈adorned〉 ::= ( 〈directed〉 | ‘(’ 〈disjunctive〉 ‘)’ ) (‘?’ | ‘*’ | ‘+’)?
〈directed〉 ::= (‘<’ | ‘>’)? (〈labeltest〉 | 〈predicates〉)
〈disjunctive〉 ::= 〈adorned〉+ (‘|’ 〈adorned〉+ )*
〈predicates〉 ::= ‘[’ ‘!’? 〈rpl-expr〉 ( ‘][’ ‘!’? 〈rpl-expr〉 )* ‘]’
〈labeltest〉 ::= ‘_’ | 〈LITERAL〉 | 〈IRI_REF〉 | 〈REGEXP〉

| 〈PN_PREFIX〉? ‘:’ (〈PN_LOCAL〉 | 〈REGEXP〉)?
〈adorned〉 expressions form expression sequences and can be adorned by multi-

plicities, 〈directed〉 expressions correspond to XPath node tests. We borrow most
of the token classes from SPARQL (e.g. 〈PN_PREFIX〉 and 〈PN_LOCAL〉),
but also allow regular expressions (enclosed in slashes) via 〈REGEXP〉.

The semantics of RPL is specified by translation into ENREs, an extended
version of nSPARQL’s nested regular expressions (NREs) [8]. We have chosen
this semantics to closely reflect our implementation that also translates RPL
expressions into ENREs and gives the, to the best of our knowledge, first imple-
mentation of (E)NREs on RDF data.

Consider, e.g., the RPL expression PATH p (>t _)+ that returns pairs of p
together with any node reached from p over one or more intermediate nodes via
t edges. This expression is translated into the ENRE
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self_node::p/(next ::t/ self_node)+

ENREs have been tailored to fit the peculiarities of RPL and extend NREs
from [8] by regular expressions for label tests, the negation of nested expressions
(indicated by !), and three new navigation axes: self_node and self_edge act
like self but only on nodes and edges, respectively; next_or_next−1 is used for
edges, where no direction is specified. Negation of nested expressions is realized
as complement relation (i.e. [[[!exp]]]G := [[[exp]]]G) and thus does not affect
the polynomial complexity bounds.
Implementation: In the course of the demonstration, we demonstrate both
RPL and how RPL queries are transformed into ENREs.

RPL is implemented in Java and uses Sesame 2.2.4 for accessing RDF data.
We use the event based RDFHandler interface for fast and space efficient parsing
of RDF triples into an in-memory graph representation (we choose this as it is
an open question whether the bottom-up labeling algorithm used for evaluating
ENREs and thus RPL can be implemented on a stream of RDF triples).

Through a number of normalization and verification steps, RPL queries are
transformed into an equivalent ENRE. This ENRE is evaluated by an extended
version of the bottom-up graph labeling algorithm from [8]. The algorithm recur-
sively labels every node and edge v of the RDF graph with all nested expressions
that v satisfies (i.e., there is a path beginning at v which satisfies the nested ex-
pression). The result is a product automaton P := G × A, where G is the RDF
graph seen as an NFA (each node and each edge of the RDF graph is both an
initial and final state, and the transitions are given by its triples), and A is
the NFA that is induced by the ENRE seen as regular expression (Thompson’s
construction). P is used in a second phase to compute all node pairs (a, b), such
that (a, ·) is an initial state from which a final state (b, ·) is reached in P .

4 Riding RPL (Demo Description)

We demonstrate RPL using a Web-based, interactive interface: it provides a set
of predefined application scenarios for a quick take-up of RPL. The application
scenarios include the queried RDF graph, a visualization of that data, as well as
a number of predefined queries that illustrate the strengths of RPL for analysing
the respective data. The interface also allows users to enter their own RDF data
(in any of the common RDF serializations Turtle, RDF/XML, N-Triples and
N3) and their own RPL queries.

Furthermore, RPL queries can be comfortably authored in two separate Eclipse
plugins: visRPL allows users to graphically compose RPL queries (see Figure 1)
for new users, and another textual editor offers syntax highlighting and comple-
tion for more experienced users of RPL.

Application Scenario: Transportation Services. This application scenario
is based on the nSPARQL [8] transportation services example. Both the data
and the queries discussed here are available to the user as part of the Web-
based interface. Figure 2 gives an impression of the data used in this scenario
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Fig. 1. Visual Eclipse editor visRPL for RPL

(we abbreviate rdfs:subPropertyOf by rdfs:sp). The left hand of the graph shows
a simple ontology for various connection types between cities, the right hand
shows connections between a few European cities.

Imagine you are in Paris and want to find out which cities can be directly
reached via any transportation service. You might start with a RPL query like
NODES> :Paris _ (or equivalent PATH :Paris >_ _), which will return all nodes
that :Paris has an outgoing edge to. Hence, the pair (:Paris, :France) will also be
part of the result set (due to the :country edge between them). To ensure that only
transport edges are followed, we might be tempted to enumerate all types (train,
bus, ferry) of transport edges in our data. Not only is such a solution clumsy,
it also forces us to change our query whenever new types of transport edges are
introduced. Thus, we use instead the RPL predicate that is shown in Figure 1.
The query PATH :Paris >[PATH (_ >rdfs:subPropertyOf)* :transport] _ speci-
fies that we only follow edges from :Paris that are labeled as :transport or any of
its sub-properties.

Once we submit this query, an AJAX request is sent to the RPL Web service
which evaluates the RPL query and returns (a) a simplified and normalized,
i.e. path-flavored RPL query, (b) an equivalent ENRE, and (c) the result of the

:TGV :NExpress :Seafrance

:train :bus :ferry

:transport

rdfs:sp
rdfs:sp

:cityrdfs:range
rdfs:domain

rdfs:sp rdfs:sp rdfs:sp

rdfs:sp

:Paris

:Calais :Dijon

:Dover

:Hastings :London

:TGV
:TGV

:Seafrance

:NExpress :NExpress

:France

:country

Fig. 2. Transportation services RDF graph
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Fig. 3. Result dialog: RPL query, ENRE, result

evaluation (or an error message). The Web interface displays this information
together with timing information in a dialog as shown in Figure 3.

It turns out that none of the directly reachable cities interests us today. Thus,
we decide that intermediate stops are acceptable and want to adapt our query
accordingly. We simply have to add a closure multiplicity (+) to get to any place
that is reachable by one or more transport edges from :Paris, see Figure 3.

Unfortunately, we get really sick when traveling with a ferry and thus would
like to exclude connections that use a ferry. Again, the modification is straight-
forward: we add another predicate (! indicates negation) that does not allow
:ferry edges (and their sub-properties) to be traversed. The adapted query is

PATH : Paris (>[PATH (_ > rdfs : subPropertyOf )* : transport ][
!PATH (_ > rdfs : subPropertyOf )* : ferry] _)+

It evaluates to the set {(:Paris, :Calais), (:Paris, :Dijon)}. The cities :Dover, as
well as :London and :Hastings (which are only reachable over :Dover), are excluded
now as the only transport link from Calais to Dover is a kind of ferry.

Finally, RPL is also able to express a relevant part of the RDFS entailment
rules: the following query retrieves all nodes that “are” cities according to RDFS
(i.e. all nodes that have an rdf:type edge to :city in the RDFS closure of Fig. 2).

NODES ( [PATH _ >rdf: type (_ >rdfs :sc)* :city]
| [ EDGES >[PATH (_ >rdfs :sp)* _ >rdfs : domain (_

>rdfs :sc)* :city ]]
| [ EDGES <[PATH (_ >rdfs :sp)* _ >rdfs : range (_

>rdfs :sc)* :city ]])
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