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Abstract. Query logs of search engines record a huge amount of data
about the actions of the users who search for information on the Web.
Hence, they contain a wealth of valuable knowledge about the users’
interests and preferences, as well as the implicit feedback that Web
searchers provide when they click on the results obtained for their queries.

In this paper we propose a general and completely unsupervised
methodology for query-log analysis, which consists of aggregating multi-
ple graph representations of a query log, tailored to capturing different
semantic information. The combination is carried out by applying sim-
ple but efficient graph-mining techniques. We show that our approach
achieves very good performance for two different applications, which are
classifying query transitions and recognizing spam queries.

1 Introduction

The Web-search experience is nowadays part of the life of a continuously grow-
ing number of people. According to a recent study released by ComScore1, the
global Web-Search Market has increased by 41% in 2009, reaching more than 113
billion searches. Unique users and penetration2 have experienced an impressive
growth in the last decade. The most up-to-date estimations report the Internet
is currently used by more than one fourth of the whole world population. More-
over, the highest growth rates have been observed within those segments of the
world market where penetration is still very low.

The results of these studies provide clear evidence of the fact that, despite
the massive user adoption and the maturity of the services offered by the Web
industry, further efforts are still needed to conquer those fractions of the market
where the Web experience is newer and penetration less exhaustive.

Commercial search engines attempt to improve the appeal and the usability
of their services by offering tools like query recommendation, user profiling and
� Part of this work was done while visiting Yahoo! Research Labs, Barcelona.
1 http://www.comscore.com/
2 http://www.internetworldstats.com/stats.htm
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spam detection. They invest considerable amounts of resources in the develop-
ment of instruments for gathering novel knowledge about the users’ interests.

In this scenario, query-log analysis is broadly applied to obtain useful insights
about the way users refine their queries, and the search strategies they apply
to satisfy their information needs. Recent studies [7,17,20] have shown that the
wealth of information stored in search logs can be successfully used to build a
very accurate characterization of query reformulation types, which is a key step
towards improving the service provided by search engines and developing inno-
vative web-search paradigms. However, the most commonly adopted approaches
share a major limitation, which is to be found in the usage of supervised learning,
be it as a sole learning mechanism, or combined with classifiers and exact look-
up on dictionaries. These editorial resources are very costly, and thus difficult to
obtain for specific languages or cultures.

In this paper, we study the problem of developing effective approaches for
query-log analysis. We aim to develop methods that are simple and at the same
time able to deal with huge data volumes. The approach we propose is completely
unsupervised and based on the map/reduce paradigm.

We use graph structures to build compact and navigable representations of the
information extracted from query logs. The idea of inferring graphs from query
logs has been extensively explored by recent research [5,6,7,12,14,24]. The above
works focus on the analysis of a single graph, which tipically captures only some
particular aspects of the interactions between users and search engines. None
of these approaches is able to exploit exhaustively the huge amount of hidden
information available in the log.

In this work, we propose to analyze query-log data through the joint mining
of multiple graphs, as the combination of them is the ultimate wisdom-of-crowds
approach. More specifically, our main contributions are listed below.

– We present Coniunge et Impera, a general framework for query-log analysis,
designed to provide an effective support for the execution of many tasks that
are relevant from a search-engine point of view. The fundamental building
blocks of our framework consist of (i) a collection of graph projections ex-
tracted from a query log according to different semantic criteria, and (ii) a
set of operations to be used for mining and maintenance purposes.

– Concerning the choice of the graph representations, we build three graphs
that relate queries according to various types of information: common words,
common clicked results, session information. The definitions we use are in-
troduced by Baeza-Yates [2].

– The toolbox built for graph analysis includes set operations and more com-
plex graph operations, like extraction of subgraphs, connected components
and articulation points. The choice of the operations was driven by the ap-
plications we had in mind, which are extensively described in the paper.
Although interesting results can be obtained by applying operations as sim-
ple as set operations, we will show that more complex graph algorithms are
needed to exploit all the wealth of information enclosed in the graphs.
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– The operations are also used for the maintenance of the framework: for ex-
ample, the union of two graphs can be computed to merge the data extracted
from consecutive snapshots of a query log. The extraction of subgraphs can
be applied to restrict the analysis to a subset of queries satisfying some
particular conditions.

– To demonstrate the practical applicability and usefulness of our method, we
analyze a large query log provided by a commercial search engine and we
show how to customize our approach for two different applications, namely,
classifying query transitions and recognizing spam queries.

We remark the fact that our work aims at providing a general instrument that
can be useful for many different problems. For this reason, we impose no restric-
tions on the building blocks of our system, and we intentionally leave room for
extensions. For example, more complex graph definitions could be introduced to
analyze the semantics behind queries at a finer granularity.

It is also worth to observe that the approach we follow is completely unsuper-
vised: it does not require the usage of any knowledge bases or other expensive edi-
torial resources. This characteristic makes the method very general and applicable
to different data, without any kind of linguistic and culture-specific issues.

The remainder of the paper is organized as follows. Section 2 discusses previ-
ous work. In section 3, we present the definitions used to extract different graphs
from raw logs. Section 4 introduces the set of instruments that we included in
our framework for mining and maintenance purposes. Various examples of the
practical usefulness of the chosen operations are provided. Next, we show how to
customize the Coniunge et Impera methodology for classifying query transitions
(see Section 5) and for detecting spam queries (Section 6). Finally, Section 7
offers our concluding remarks.

2 Related Work

Inferring graphs from query logs. The idea of extracting a graph structure
from query-logs has been introduced in the last decade. The attention on the
possibilities offered by using graphs to mine different semantic information im-
plicitly contained in query-logs was formalized by the work of Baeza-Yates [2].
Here five different types of such graphs, relying on different criteria to connect
queries by edges (e.g. common words, common clicked URLs), are studied.

Click graphs [6,12,24] have been extensively used for various purposes. A click
graph is a query-document bipartite graph, where a query is connected to the
documents that were clicked in the associated result list.

Inspired by the works on click graphs, Baeza-Yates and Tiberi [5] propose a
novel way to represent queries in a vector space based on a graph derived from
the query-click bipartite graph. This graph is then used to find similar queries.

Starting from the click graph, Castillo et al. [10] define two alternative graphs,
the view graph and the anti-click graph. In the view graph the edge set of the
click graph is replaced with the one containing edges that relate a query to
the documents whose URL has been viewed in the answer list returned to the
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user, but not necessarily clicked. The view graph is a generalization of the click
graph since each click is also a view. The anti-click graph intends to capture the
negative feedback that users implicitly give to a top-ranked document when they
ignore it by clicking on documents ranked below. This graph contains one edge
between a query and any not-clicked documents ranked higher than one clicked
by the user.

Boldi et al. [7] introduce the query-flow graph, which models user behavioral
patterns and query dependencies. In this graph, a directed edge from one query
to another means that the two queries are likely to be part of the same search
mission. Any path over the query-flow graph may be seen as a searching behavior,
whose likelihood is given by the strength of the edges along the path.
Similarity or distance between queries. Projecting query-logs on graphs
is not the only way to infer semantic relations from implicit user feedback. The
most explored approach consists of defining a similarity function between queries.

Raghavan and Sever [21] propose to measure the similarity between two
queries through the mining of the differences in the ordering of the documents
retrieved. Due to a matter of scalability, this technique is not of practical use
when one has to deal with the whole Web.

Wen et al. [24] cluster similar queries to support recommendations for queries
frequently submitted to search engines. They use several notions of query dis-
tance, based either on the keywords composing the query text or on the set of
common clicked URLs.

Fonseca et al. [15] use association rules to discover related queries. Their
approach views the log as a set of transactions, thus failing in discovering the
most interesting related queries, which are the ones submitted by different users.
It also encounters problems in determining successive query sessions that belong
to the same search process.

Baeza-Yates et al. [3,4] introduce a term-weight vector model to represent
queries. In this model, a weight is assigned to each term occurring in the content
of the Web pages clicked after a query, depending on the number of occurrences
of the query within the log and on the number of clicks of the documents which
the term appears in.

3 Preliminaries

3.1 Query Graphs

We analyze query-log data by building different query graphs to capture the vari-
ous semantic aspects of the relations between queries. We use the term query graph
to refer to a graph G = (V, E, wV , wE) extracted from a snapshot of a search-
engine log, such that the set of nodes V comprises all the distinct queries appear-
ing in the log, whereas the edges in the set E denote the existence of a particular
semantic relation between queries, depending on a specific criterion considered in
the graph definition. The weighting functions WV : V → N and WE : E → R
are respectively used to associate nodes and edges with a weight whose meaning
changes depending on the information used to generate the graph.
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Table 1. Graph definitions: Summary

Graph feature Word graph Session graph Click graph

Edge Common words Consecutive appear-
ance in a session

Common clicked re-
sults

Node weight # Occurrences # Sessions # Occurrences

Edge weight # Common words in
the text of qi and qj

# Sessions in which qi

and qj appear sequen-
tially

Cosine similarity of
the vectors of URLs
clicked for qi and qj

(a) (b)

(c)

Fig. 1. Sample graphs for audrey hepburn: Word (a), Click (b) and Session (c) graph

In this paper, we generate three query graphs using the definitions of Word
Graph, Session Graph and Click Graph (called Url Cover Graph in the original
paper) formalized by Baeza-Yates [2]. We summarize the definitions in Table 1
and give an example of each graph in Figure 1.

Dataset. We studied a sample log of early 2008 from the Yahoo! UK search en-
gine. The raw data consisted of a sequence of annotated sessions, containing more
than 20 million distinct queries. Following [2] and [7], we removed the queries
containing non-English characters. Motivated by preliminary assessments, we
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Table 2. Basic statistics

Graph # Nodes # Edges # Isolated nodes # CC Size of largest CC

Word graph 801 876 565 095 123 121 423 135 942 649 298
Click graph 801 876 21 971 751 161 344 195 379 549 217
Session graph 801 876 6, 654 614 25 657 26 199 775 096

filtered out the queries with less than 5 occurrences in the log, and we retained
a common subset of queries to avoid the dishomogeneties caused by the different
definitions. Table 2 reports statistics about the three graphs we built.

4 A Software Framework for Query-Log Graphs

We now describe the algorithms included in our framework. We carefully studied
the operations that were necessary for the purposes of (i) data mining, and
(ii) manteinance of the framework. We selected a collection of initially minimal
and crucial mining tools that are listed below. The presentation is intentionally
informal and descriptive. The list should by no means be considered exhaustive.
Different operations might be needed for different applications.

A recent work [16] proposes a formal algebra that manipulates graphs as basic
units of information, maintaining the same basic characteristics and the same
expressive power as the relational algebra. We don’t follow a similar approach
because we aim at handling complex graph problems, which cannot be efficiently
represented and studied by means of relational algebra.

4.1 Operations

We use both binary operations and unary operations.
Binary operations. The binary operations are the fundamental set operations
that can be applied on graphs: union, intersection, difference.

– Union. Given two query graphs G and H , their union is represented by a graph
F = G ∪ H such that V (F ) = V (G) ∪ V (H) and E(F ) = E(G) ∪ E(H).
Example. The union of two graphs is a critical operation for the mainte-
nance of our framework: it is necessary to merge data extracted from different
snapshots of the log. Updates are needed from time to time to regenerate
the graphs, given that the information extracted from query logs suffers a
slow aging effect, as demonstrated in [18].

– Difference. The set difference of two graphs G and H is a graph F = G \ H
such that V (F ) = V (G) \ V (H) and E(F ) = E(G) \ E(H).
Example: Similar queries. Identifying queries that express closely related
information needs is crucial task for generating query recommendations [4].
In the Coniunge et Impera framework, a very simple solution for the problem
of detecting queries that are semantically, but not sintactically similar con-
sists of computing the set difference between the Click graph and the Word
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graph: the edges included in the result connect queries that have common
clicked results, and thus are likely to be related to the same topic despite the
fact that their texts have no common words. The edge weights of the click
graph can be used to filter out the least significant relations.

– Intersection. The intersection of two graphs G and H is a graph F = G ∩ H
such that V (F ) = V (G) ∩ V (H) and E(F ) = E(G) ∩ E(H).
Example: Finding logical sessions. Identifying changes in the search
mission, that is, in the information need [7,17] expressed by a user within
a given session, is a critical issue for modeling user behavior and predicting
user satisfaction. To detect different search missions within a user session, we
compute the set difference between the Session graph and the intersection
of the Click graph and the Word graph.

Note. The set operations can be applied on graphs that have weights both on
the nodes and on the edges. We impose no restrictions on how to combine the
weights, as the best choice depends on the particular task that one has in mind.

Unary operations. We consider the following unary operations:

– Node filter. Given a query graph G and a mathematical condition c, this
operation returns a query graph H corresponding to the induced subgraph
of G whose vertex set is formed by all the vertices in V (G) associated with
weights satisfying c.

– Edge filter. Given a query graph G and a mathematical condition c, this
operation returns the (non-induced) subgraph of G whose vertex set includes
all the vertices in V (G), while the set of edges is formed by the edges in E(G)
associated with a weight that satisfies the specified condition.
Examples. We used the filter operations in the preliminary phases of our
study, when we extensively analyzed the structural properties of the graphs
extracted from the log. We tested various thresholds on the weights of nodes
and edges, to study the differences between the resulting denser or sparser
versions of the graphs.
The filter operations allow to select portions of the graphs that are relevant
for a particular application. For example, if we aim to detect similar queries,
we can apply an edge filter on the Click graph, selecting the edges with a
large weight. In the Click graph, a large-weight edge indicates a significant
degree of similarity in the results clicked for the two queries. We applied this
idea in our methods for detecting error corrections (see Section 5).
An opposite filter is needed to identify spam queries, i.e., queries that at-
tract a high number of spam pages in their result set. The heuristic we
developed for this application, which is presented in Section 6, exploits the
fact that a low-weight edge in the Click graph is indication of a relation of
very poor quality between the queries connected by such edge. The clicked
results shared by these queries are usually spam or multi-topical URLs. The
queries containing these URLs in their set of answers are included into a
base set of spam candidates.
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– Connected components. This operation takes a query graph G and re-
turns a set of graphs S = {G1, G2, . . . , Gk}, such that, for each i = 1, 2, . . . , k,
Gi is isomorphic to a maximal connected subgraph of G.
Example: Clustering queries. The computation of the connected compo-
nents in the Session graph and/or in the Click graph is required for the task
of clustering queries, which is useful for many purposes, such as re-ranking,
query recommendation, and finding logical sessions.

– Biconnected components. This operation takes a query graph G and re-
turns a set of graphs S = {G1, G2, . . . , Gk} such that, for each i = 1, 2, . . . , k,
G is isomorphic to a maximal biconnected subgraph of G.

– Articulation points. Given a query graph G, this operation returns a set of
query instancesS = {q1, q2, . . . , qk} such thatS ⊆ V (G) and, for i = 1, 2, . . . , k
qi is an articulation point inG. An articulation pointmay belong to one or more
biconnected component.
Example: Polysemic queries. Polysemic queries [19,23] are related by a
syntactic point of view (for instance, they share one or more common words
in their text representations), but they cover unrelated semantic aspects.
Articulation points in the Click graph and/or in the Word graph are natural
candidates for word polysemy.

4.2 Graph Extraction and Representation

The raw data we analyzed consisted of a set of annotated sessions, containing
20 million distinct queries.

For efficiency and scalability, we used Hadoop’s MapReduce3 to extract the
query graphs. MapReduce [13] is a popular programming model for processing
large-scale data. This model allows users to write map/reduce components that
are scheduled to distributed resources for processing, with a transparent handling
of problems like parallelization, network communication, and fault tolerance.

Due to lack of space, we do not describe the three algorithms we implemented
to generate the graphs. Our procedures cascade a sequence of 3-5 MapReduce
jobs, which are used to gather the specific data that is needed to interconnect
queries and to create the adjacency list of each query.

We ran the MapReduce routines on a server with 3G RAM. We needed 2
hours to generate the Session graph and 4 hours to create the Word graph and
the Click graph. The time required for the Session graph was lower because
the particular format of the input data made the extraction of the information
required for this graph immediate. Altogether, the time used for generating the
three graphs is less than half a day for our sample log. We also observe that our
toolbox allows an incremental construction of the query graphs.

The operations included in our framework are complex and procedural by na-
ture; they require global computations that involve all the nodes in a graph. This
consideration oriented us towards the choice of compressed graph representations
to store and manipulate our data.

3 http://hadoop.apache.org/common/docs/current/mapred_tutorial.html

http://hadoop.apache.org/common/docs/current/mapred_tutorial.html
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Compressed graph representations have become very attractive, as they allow
to overcome the limitations encountered by many modern applications, whose
storage requirements exceed the capacity of the faster memories.

Web search uses graphs as natural models for the Web structure. Several
algorithms that are used by search engines to rank pages, discover communities
and so on are run on these Web graphs.

For graph representation, we use Webgraph [9], a framework that obtains
state-of-the-art results in terms of compression through the combination of sev-
eral mechanisms, such as node reordering, differential encoding, compact interval
representations, and references to similar adjacency lists.

Starting from a raw input of ∼ 30GB, we obtained three representations of
the following sizes: 500M for the Word graph, 500M for the Click graph, and
20M for the Session graph.

Exploting the fact that our graphs are compact and can be efficiently kept in
main memory for navigation purposes, we developed main-memory implementa-
tions of our algorithms. Due to lack of space, we omit details about the specific
realizations, which are all based on standard algorithms. All the operations re-
quire time linear in the size of the input graphs. In our experiments, we reported
running times in the order of minutes for all the algorithms implemented.

We also explored the possibility of developing MapReduce realizations for
our algorithms. We decomposed each operation into a series of MapReduce pro-
cesses, adopting an approach similar to [11]. The obtained implementations are
still inefficient, mostly because many operations are based on graph traversal,
which requires a large number of iterations because a mapper can only read a
random record for each map operation. J.Ekanayake [1] has recently developed
i-MapReduce, a streaming-based framework that supports iterative MapReduce
computations. We plan to explore the usage of this instrument in future work.

5 Classifying Query Transitions

We now show how to apply our methodology to the task of classifying query
transitions. By transition we mean a pair of queries that a user submitted con-
secutively to a search engine. The analysis of these query sequences is extremely
important for the purpose of understanding how the users reformulate their
queries to gather information of better quality.

Retrieving information from the Web is a process that requires a continual
interaction between the user and the search engine. Only in half of the cases
an information need is satisfied with just a single query [22]. In the other cases,
the user submits a refined query, because she is not satisfied with the documents
obtained in the first attempt. This might happen for various reasons, for example
because the former query contained errors, or it was either too general or too
specific for the purpose the user had in mind. A transition between queries that
are part of the same search mission is usually referred to as a query reformulation.

Characterizing query reformulation patterns is a task of critical importance
to improve the relevance of web-search results, or to refine tools for query
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recommendation. Following the taxonomy introduced and used in [7,8], we focus
on the task of recognizing the following types of query transitions:

– Error correction: the user is trying a different spelling or capitalization of
a query. Example: audry hepburn, audrey hepburn.

– Generalization: the second query is more general than the first one.
Example: audrey hepburn quotes, audrey hepburn.

– Specialization: the first query is more specific than the second one.
Example: audrey hepburn films, audrey hepburn breakfast tiffany s.

– Parallel move: the user is modifying her query to search for something
related but not equivalent. Example: audrey hepburn, sophia loren.

– Different mission: the user is trying to satisfy a completely different in-
formation need. Example: audrey hepburn, runners world.

The last two types of query transitions, Parallel move and Different mission,
can be considered as belonging to a broader category, which comprises the tran-
sitions that represent a change in the information need expressed by the user.
In the work of Jones et al. [17], these two transition types are both labeled as
Different chain. We adopt the same approach, aggregating Parallel move and
Different mission into a more general category, which we call Different goal. In
the remainder of this section we describe how to extract and aggregate infor-
mation from the Word graph, the Click graph and the Session graph to classify
query transitions.

5.1 Unsupervised Approach to Query Transition Classification

Our method for classifying query transitions combines three independent heuris-
tics, which are tailored to labelling non-overlapping sets of transitions. This is
an extremely advantageous characteristic, which implies that the three building
blocks of our approach can be either applied in parallel, for example on a grid,
or they can be executed consecutively in a sequential setting, from the most
to the least aggressive approach, so that the amount of data to be analyzed is
drastically reduced at each step.

Algorithm 1: Identifying different goals. Our first algorithm aims at recog-
nizing transitions between two queries that express a different search goal. The
algorithm computes the set difference between the Session graph and the union
of the Click graph and the Word graph. This corresponds to filtering the edges of
the Session graph to retain only the transitions connecting two queries that have
no common clicked results and no common words in their text representations.

Algorithm 2: Error corrections with no common words. An Error cor-
rection is a query reformulation that the user submits to fix a typo, usually
trying a different spelling or capitalization of a query. Our second algorithm
detects error corrections involving queries with no words in common.
Step 1: Edge filter on the Click Graph. We start from the Click graph and
we filter out the edges whose weight is less than 0.3. In this way, we only retain
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the top 10% strongest semantic relations, which is useful because in the case of
an error correction the search goal remains the same.
Step 2: Intersection with the Session graph. We intersect the subset of
the Click graph that was computed in the previous step with the Session graph:
This is needed to identify query transitions.
Step 3: Set difference with the Word graph. We compute the set difference
between the subgraph obtained at the previous step and the Word graph: this
is required to remove transitions with common words. (These transitions are
considered by our third algorithm).
Step 4: Filter by Click labels. We refine the partial result obtained in the
previous step by selecting the edges whose type label in the Click graph is equal
to 2, meaning that the set of results clicked for the first query is strictly contained
in the set of answers associated with the second query. Upon detecting errors
in the text of the query submitted by a user, search engines suggest the proper
spelling, presenting the top-ranked answers of the correct formulation in the
first positions of the result list. This practice makes the above condition on click
labels very likely to be satisfied by error-correction transitions.
Step 4: Filter by edit distance. Finally, we use Levehnstein distance to isolate
error corrections from other cases. We retain only the transitions for which the
edit distance between the two queries is no greater than 0.2. The threshold was
chosen after experimenting with different values (0.2, 0.3, 0.4): As expected, the
lower the threshold, the more we are effective in isolating error corrections from
other reformulations.

Algorithm 3: Transitions involving queries with common words. Our
last algorithm analyzes the transitions involving queries with common words in
their text representations.
Step 1: Intersection between the Session graph and the Word graph.
This is needed to isolate the set of transitions we want to focus on. Many types of
reformulations are characterized by overlapping query texts. A number of tests
are applied to distinguish the various cases.
Step 2. The text of the first query is a subset of the text of the second query:
then we label the transition as Specialization.
Step 3. The text of the first query is a superset of the text of the second query:
then we label the transition as Generalization.
Step 4. We use edit distance to isolate error corrections.

5.2 Evaluation

We used an annotated query-flow graph [8] extracted from the same log snapshot
as the ground truth for evaluating the quality of results. This graph originally
contained ∼ 21M nodes and ∼ 43M edges. Restricting to the nodes included in
our query graphs, we extracted a subgraph that contains ∼ 3.5M edges.

The model introduced by Boldi et al. [8] and used to annotate the edges
of the query-flow graph is able to produce an automatic classification of query
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Table 3. Classification of query transitions: quality of results

Transition type TP TN FP FN Precision Recall Accuracy

Different Goal 2 594 560 318 125 516 501 4 970 0.834 0.998 0.848
Generalization 58 627 3 366 295 2 660 6 574 0.956 0.899 0.997
Specialization 179 774 2 827 724 19 426 639 0.999 0.296 0.878
Error Correction 60 330 3 249 459 21 685 102 682 0.736 0.370 0.964

reformulation types with an accuracy as high as 92%. This method represents
the state of the art for classifying query transitions: However, we remark the fact
that this is a supervised approach, based on machine learning from a human-
labeled log sample.

To evaluate the quality of our method, we compared the classification generated
by our algorithms with the labels associated to the same transitions in the query-
flow graph. We computed True Positives, True Negatives, False Positives, False
Negatives, Precision, Recall, and Accuracy. Results are shown in Table 3.

We report the global evaluation of our methodology in Table 3. We remark
two main results. The first one is that every part of our methodology relies on
merging the information coming from at least two different query graphs. The
second one is that the approach is totally unsupervised, and uses operations
which are linear in the size of the graphs involved. Moreover, since the subsets
of transitions labeled by each heuristic do not overlap, the number of edges to
consider decreases at each step.

Altogether, the labels obtained with our method agreed with those assigned
to the same transitions in the query-flow graph in 84% of the cases. More specif-
ically, we obtained very good results in the cases of generalization and different
goal, for which we measured an accuracy respectively of 99 and 85%. On the
other end, we noticed a very low recall in the case of specialization and error
correction. Since the query-flow graph was labeled using a model, we wondered
whether this poor accuracy could be induced by errors in the query-flow graph
rather than in our methodology.

To investigate this hypothesis, we manually evaluated a random sample of
the transitions for which our method and the one based on the query-flow graph
did not agree. We selected 1K transitions labeled as specialization in the query-
flow graph, and 1K transitions labeled as error correction. We considered the
transitions divided into buckets according to their frequency of occurrence in
the log. Three human assessors were asked to evaluate the transitions, assigning
them one of the reformulation types considered in this study.

We assumed the manual assessment to be the golden truth for the sample, and
we measured how well the two automatic classification methods (ours, and the
one using the query-flow graph) agreed with the golden truth. The evaluation
gave the following results: the labels produced by our method agreed with the
ones assigned by human assessors in 80.4% of cases, while the query-flow-graph
labels resulted equal to the ground truth in 12.8% of cases.
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To evaluate the statistical significance of this result, we associated each auto-
matic method with a vector that has a cell for each sampled transition, contain-
ing a 1 if the label assigned by the method agreed with the ground truth, and
a 0 otherwise. We them performed a Wilcoxon signed-rank test, comparing the
positive differences between the judgements obtained for the two methods. The
test determined a statistical significance at p � 1% for the difference between
our methodology and the query-flow graph.

Hence, we believe that the actual precision of our approach is higher than the
one obtained with this experiment, and that the disagreement with the query-
flow graph is due to errors in the model used by the latter method to train the
classifier.

6 A Heuristic for Detecting Spam Queries

Spam queries [10] are queries that generate a high number of spam pages in
the top positions of their lists of answers. Identifying these queries can uncover
meaningful information for the task of designing more robust spam-detection
algorithms. We now focus on detecting queries that have collected many spam
results. Spam pages typically include many unrelated keywords or links, adver-
tising and machine-generated content. These characteristics make spam pages
likely to be selected as answers for very different queries, which may express
unrelated or poorly related information needs.

We use the Click graph to identify candidate spam pages. Given that spam
pages often cover a large number of unrelated topics, we follow the approach
suggested in [5] to identify multitopical URLs. In the Click graph, low-weight
edges indicate a poor-quality relation between the involved queries. In our ex-
periment, we consider all the edges whose weight is < 0.005; in this way, we
isolate the least significant 25% edges in the graph.

We count each edge as a spamicity vote for all the URLs in the intersection of
the result sets associated with the two queries. We consider the top 200 URLs
that obtain the highest number of votes. All the queries that have one of these
URLs in their result set form a clique in the Click graph. We retain the groups
of queries that are also mutually connected in the other graphs.

As a result, we obtain a list of 9 140 queries. We filter out the queries that
have more than 1K occurrences to get rid of navigational queries. We then sort
the queries by decreasing degree in the Click graph and we select the top 10%
of the queries with highest degree: the intuition is that queries that form small
dense subgraphs in the three graphs, while maintaining many connections to
other nodes in the graph, are good spam candidates. In the end, we extract a
set of 928 queries.

6.1 Experimental Evaluation

The above method led us to isolate 928 queries. We tested the effectiveness
of our strategy by conducting an experimental evaluation aimed to assess the
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Table 4. (a): Top categories obtained from Yahoo! Directory (b): Examples of spam
queries extracted from the graphs

(a)

Level 1 Level 2

Regional Shopping
Business and Economy US States
Entertainment Countries
Arts Business
Society and Culture Music
Recreation Movies
Computers and Internet TV Shows
News and Media Humanities
Government Actors

(b)

Query Spam 1st Category Cat.

filma shqiptar 5 Video 1
pro wresting 1 Entertainment 11
shapely figures 5 Entertaniment 9
video eyewear 3 Business 11
ana visi 2 Entertainment 1
make money 6 Entertainment 10
spanked cutie 5 Recreation 10
suger babes 4 Adult 1
pin up girls 4 Art/Shopping 11

spamicity of the selected queries. For each query, we manually evaluated its
ability of attracting spam results by resubmitting it to the Yahoo! search engine
and counting the number of spam pages obtained within the top ten results.
We marked as spam every query containing at least one spam result in the top
answers.

Given that no agreement on a univocal definition of spam page has been
reached so far, we enforced the strength of our judgements following the label-
ing guidelines used in the construction of the WEBSPAM-UK20074 collection,
which is a Web spam dataset built through the collaborative effort of a team of
volunteers to advance research on Web spam detection.

We matched the top results obtained for each query selected by our algorithm
against the Yahoo! Directory. Table 4(a) shows the most frequent categories
associated with the results returned for the queries. Only the top levels are
considered: Level 1 is the top category, Level 2 the second highest category. The
main categories obtained include Shopping, Business, Movies, Sex and Adult
galleries.

The results obtained in the assessment phase are really encouraging: two thirds
of the evaluated queries collected at least one spam result, and thus were marked
as spam queries. A few examples are shown in Table 4(b), which reports, for
each query, the number of spam results, the main category assigned by Yahoo!
Directory and the number of different categories associated.

The inspection of the categories obtained for our sample set makes us notice
that most of the queries analyzed, even those that are not classified as spam,
are associated with (top) results related to adult, celebrities, video or shopping.
We believe this is a confirmation of the effectiveness of our strategy for selecting
queries that are characterized by a significant degree of spamicity, or, if not
spam, by the covering a broad set of topics.

The peculiar nature of the queries discovered by our heuristic suggests an
immediate application of the tool to developing parental filters.

4 http://www.yr-bcn.es/webspam/datasets/uk2007/guidelines/

http://www.yr-bcn.es/webspam/datasets/uk2007/guidelines/
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6.2 Conclusions

In this work we have introduced the idea of combining different graph represen-
tations of query logs coming from different relevance signals, to be able to tackle
different problems related to queries in a completely unsupervised manner. This
is very important in cases where we do not have enough labeled data such as in
non-popular languages.

The combination of the graph is done with very simple operations over graphs.
In spite of the simplicity of the approach we show that we can obtain very good
results for two different applications as detecting the type of a query transition
or query spam. The former can be used to adapt the ranking of new queries,
whereas the results obtained in the latter case could be used directly in the
design of parental filters.

Further work includes scalability issues of the methods proposed, testing our
implementation in an iterative map/reduce scenario as well as apply these ideas
to other applications. In fact, the same ideas could be applied to the identifi-
cation of polysemic queries, the recognition of logical sessions (missions) or for
query recommendations. We believe that the approach introduced in this paper
will be a valid support for the analysis of the huge amount of data stored in the
logs of search engines. Our methodology can provide efficient methods for com-
bining different aspects of the same multi-faceted scenario and acquiring novel
knowledge that might not be obtained through other methods, in particular if
we have the restriction of having to use unsupervised methods.
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